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ABSTRACT 

Critically ill patients often experience pain during their treatment but due to patients’ 
lowered ability to communicate, pain assessment may be challenging. The aim of 
the study was to develop the concept of the Smart Pain Assessment tool based on the 
Internet of Things technology for critically ill patients who are unable to 
communicate their pain.  

The study describes two phases of the early stage development of the Smart Pain 
Assessment tool in a medical device development framework. The initiation Phase I 
consists of a scoping review, conducted to explore the potentiality of the Internet of 
Things technology in basic nursing care. In the formulation Phase II, the prototype 
of the Smart Pain Assessment tool was tested and the concept was evaluated for 
feasibility. The prototype was tested with healthy participants (n=31) during 
experimental pain, measuring pain-related physiological variables and activity of 
five facial muscles. The variables were combined using machine learning to create a 
model for pain prediction. The feasibility of the concept was evaluated in focus 
group interviews with critical care nurses (n=20) as potential users of the device. 

The literature review suggests that the development of Internet of Things -based 
innovations in basic nursing care is diverse but still in its early stages. The prototype 
was able to identify experimental pain and classify its intensity as mild or 
moderate/severe with 83% accuracy. In addition, three of the five facial muscles 
tested were recognised to provide the most pain-related information. According to 
critical care nurses, the Smart Pain Assessment tool could be used to ensure pain 
assessment, but it needs to be integrated into an existing patient monitoring and 
information system, and the reliability of the data provided by the device needs to be 
assessable for nurses. 

Based on the results of this study, detecting and classifying experimental pains 
intensity automatically using an Internet of Things -based device is possible. The 
prototype of the device should be further developed and tested in clinical trials, 
involving the users at each stage of the development to ensure clinical relevance and 
a user-centric design. 

KEYWORDS: Critically ill patient, critical care, intensive care unit, Internet of 
Things, machine learning, medical device, pain assessment   
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TURUN YLIOPISTO 
Lääketieteellinen tiedekunta 
Hoitotieteen laitos 
Hoitotiede 
RIITTA ROSIO: Älykäs kipumittari kommunikoimaan kykenemättömille 
kriittisesti sairaille potilaille − Lääkinnällisen laitteen varhainen kehittäminen 
Väitöskirja, 157 s. 
Hoitotieteen tohtoriohjelma 
Lokakuu 2023 

TIIVISTELMÄ 

Kriittisesti sairaat potilaat kokevat usein kipua hoidon aikana, mutta potilaiden kivun 
arviointi on haastavaa tilanteissa, joissa potilaan kyky kommunikoida on alentunut. 
Tutkimuksen tavoitteena oli kehittää toimintakonsepti esineiden internet -tekno-
logiaan perustuvalle Älykkäälle kipumittarille, joka on suunniteltu kriittisesti 
sairaille potilaille, jotka eivät kykene kommunikoimaan kivustaan. 

Tutkimuksessa kuvataan Älykkään kipumittarin varhaisia kehitysvaiheita 
lääkinnällisen laitteen kehitysprosessin mukaisesti. Aloitusvaiheessa I toteutettiin 
kartoittava kirjallisuuskatsaus, jossa selvitettiin esineiden internet -teknologian 
mahdollisuuksia perushoidossa. Muotoiluvaiheessa II testattiin laitteen prototyyppiä 
ja arvioitiin laitteen toimintakonseptin toteutettavuutta. Prototyypin testaukseen 
osallistui terveitä koehenkilöitä (n=31), joille tuotettiin kipua. Kipualtistuksen 
aikana mitattiin kipuun liittyviä fysiologisia muuttujia ja viiden kasvolihaksen 
aktivoitumista. Muuttujat yhdistettiin koneoppimismenetelmällä kivun ennuste-
malliksi. Lisäksi teho-osastolla työskentelevät sairaanhoitajat (n=20) arvioivat 
fokusryhmähaastatteluissa laitteen toimintakonseptin toteutettavuutta. 

Kirjallisuuskatsauksen tuloksista käy ilmi, että esineiden internetiin perustuvien 
innovaatioiden kehittäminen perushoidon tukemiseen on monipuolista mutta se on 
vielä alkuvaiheessa. Älykkään kipumittarin prototyyppi osoittautui lupaavaksi 
kokeellisen kivun tunnistamisessa ja sen voimakkuuden luokittelussa, saavuttaen 83 
%:n tarkkuuden kivun luokittelussa lievään tai kohtalaiseen/voimakkaaseen. Lisäksi 
todettiin, että viidestä mitatusta kasvolihaksesta kolme antoi merkittävintä tietoa 
kivun tunnistamiseen ja voimakkuuteen liittyen. Sairaanhoitajat näkivät potentiaalia 
Älykkään kipumittarin käytössä potilaiden kivun arvioinnissa teho-osastolla. Laite 
tulisi kuitenkin integroida käytössä olevaan potilastietojärjestelmään, ja laitteen 
tuottamien tietojen luotettavuus tulisi olla hoitajien arvioitavissa. 

Tulosten perusteella esineiden internet -teknologiaan perustuvan laitteen avulla 
on mahdollista tunnistaa ja luokitella kokeellisen kivun voimakkuutta auto-
maattisesti. Laitteen prototyyppiä tulee jatkokehittää ja testata kliinisissä tutkimuk-
sissa. Tulevat käyttäjät tulee ottaa mukaan jokaiseen kehitysvaiheeseen laitteen 
kliinisen merkityksen ja käyttäjälähtöisen muotoilun varmistamiseksi. 

AVAINSANAT: Esineiden internet, kivun arviointi, kriittisesti sairas potilas, 
koneoppiminen, lääkinnällinen laite, tehohoitotyö, teho-osasto  
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1 Introduction 

The sickest patients, who are having acute life-threatening organ dysfunction, are 
treated in intensive care units (ICUs) (Marshall et al., 2017). These patients are often 
suffering from multiple interconnected distressing and unpleasant physical and 
psychological symptoms such as pain, agitation, anxiety, confusion, difficulties to 
breath, tiredness and thirst (Puntillo et al., 2010; Rotondi et al., 2002). Pain in 
critically ill patients is often a result of individual characteristics, interventions 
including operations and daily care procedures, and underlying disease processes 
(Olausson el al., 2013; Puntillo et al., 2010). The ability to express extent of pain 
verbally or by other voluntary means is often limited in critically ill patients, 
especially during mechanical ventilation.  

The treatment of critically ill patients should be based on the lightest possible 
sedation and effective analgesia. In this way, the primary goal of care could be 
achieved: patients should be comfortable and calm and be able to cooperate with 
healthcare personnel and family members. (Vincent et al., 2016.) Achieving this goal 
requires systematic and effective pain and sedation management. To ensure adequate 
pain management, it is necessary to assess pain, identify patients who need 
interventions and evaluate the effectiveness of pain management. Pain is a subjective 
multidimensional phenomenon and the “gold-standard” in pain assessment relies on 
self-reporting. In situations where the patient’s ability to communicate is impaired, 
pain assessment remains a challenge. Currently, there is no valid and reliable 
objective means to assess pain (Herr et al., 2019a). Pain can be assessed by changes 
in two different categories that can be partly quantified in cases where self-reporting 
is not available. The first relates to changes in the central nervous system. The second 
is the behavioural changes associated with pain including withdrawal or avoidance, 
and expressive acts such as vocalising or grimacing. (Hadjistavropoulos & Craig, 
2002.) 

Technology is an integral part of care for critically ill patients. Recent 
technological advances have enabled the use of artificial intelligence (AI) in 
healthcare. However, in nursing the implementation of AI enabled innovations is 
still uncommon. Symptom monitoring and management are areas specific to nursing 
that could be strengthened by the application of AI. The Internet of Things is a smart 
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technology often supported by AI that has the ability to connect to a network to share 
and interact with other devices or human users (Silva et al., 2018). The aim of the 
study was to develop a concept of the Smart Pain Assessment tool, an automated 
pain detection method based on the Internet of Things technology. The ultimate goal 
is to develop a clinically useful medical device for the ICU environment enabling 
continuous and automated detection of acute pain in critically ill patients unable to 
self-report their pain. 
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2 Review of the Literature 

The literature review is twofold; first, the current evidence in pain assessment 
methods in critically ill patients are introduced. Secondly, the current stage of 
research in automated pain detection methods is reviewed. Using the information 
from these two elements, the need and the theoretical basis is formulated for the 
innovation of Smart Pain Assessment tool.  

The literature search was done in three phases using the databases PubMed 
(Medline), CINAHL, and the Web of Science. (Appendix 1.) The topics of the 
searches were 1) pain assessment in critically ill patients, 2) facial expression of pain, 
and 3) automated pain detection. An additional search for facial expressions of pain 
was conducted due to the limited findings from the previous research in the area of 
facial expressions among critically ill patients. The literature searches were 
supplemented by reviewing the reference lists of the chosen articles and suggestions 
from the refence management system Mendeley. In addition, relevant articles were 
used to define the concepts of the study. 

Studies with the following inclusion and exclusion criteria were chosen for the 
review. (Appendix 2.) Studies covering the research on pain assessment in critically 
ill patients were included in the review with the main focus in the methods of pain 
assessment. The literature search was limited to adult patients and those studies 
describing automated pain detection methods were limited to acute pain and adults. 
The research on chronic pain and studies related to specific diagnoses (e.g. low back 
pain) and syndromes associate with pain (e.g. fibromyalgia) were excluded. Articles 
describing only the development of or exploration of methods without a clear clinical 
context were also excluded. 
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2.1 Pain in critically ill patients 
Pain is one of the major stressors that patients experience whilst being treated in 
ICUs (Zengin et al., 2020; Azizi-Fini et al., 2017). Pain is defined according to the 
International Association for the Study of Pain (IASP) as “an unpleasant sensory and 
emotional experience associated with, or resembling that associated with, actual or 
potential tissue damage” (Raja et al., 2020). The definition is followed by notes that 
emphasise the subjective and multimodal nature of pain, and that the verbal 
expression of pain is not the only behaviour through which it can be expressed (Raja 
et al., 2020). This subjectivity is stressed in the clinical definition “Pain is whatever 
the experiencing person says it is, existing whenever he/she says it does” 
(McCaffery, 1968).  

The term nociception describes the physiological process by which noxious 
stimuli are encoded and processed. Nociception and pain should not be confused, as 
they can occur together or on their own. (Loeser & Treede, 2008.) The pain 
processing involves several stages: transduction, transmission, modulation, 
perception and interpretation. In the transduction, specialised sensory neurons 
known as nociceptors located in skin, joints, muscles, and internal organs, become 
activated. (Garland, 2012.) These nociceptors can be triggered by various stimuli, 
including mechanical pressure, temperature (heat/cold), or exposure to chemicals. 
Nociceptors are connected to thin myelinated Aδ fibers and unmyelinated C-fibers, 
which ultimately terminate in the spinal cord's dorsal horn. Nociceptors can be 
roughly categorised into two classes: Aδ fibers, responsible for transmitting sharp 
and fast pain signals, and C-fibers, responsible for conveying slow, persistent, and 
dull pain signals. (Garland, 2012; Reddy et al., 2012.) During the transmission, the 
nerve impulses generated by these sensory nerve terminals travel from the periphery 
to the spinal cord. From there, these impulses are conveyed along nerve pathways 
through the spinal cord and brainstem, ultimately reaching various regions of the 
brain, including the thalamus and somatosensory cortex. Modulation introduces 
variability into the transmission of pain signals, which can differ both among 
individuals and within the same individual at different times. The descending pain 
modulatory system has both pro-nociceptive effects to facilitate nociception, and 
anti-nociceptive to inhibit nociception. Pain perception occurs in the brain when 
these signals are processed. (Garland, 2012.) The experience of pain is inherently 
individual, influenced by cognitive and social factors (Raja et al., 2020). Pain 
represents an individual's unique interpretation of pain signals based on their 
personal experiences, emotions, and expectations. 

As emphasised in the definition of pain, the inability to express pain verbally 
does not mean that it is not possible for a person to experience pain (Raja et al., 
2020). Most patients in ICU are unable to self-report their symptoms because of their 
clinical conditions, altered consciousness levels or the use of sedatives or 
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neuromuscular blocking agents (Burry et al., 2014; Bennett & Hurford, 2011). Being 
intubated during mechanical ventilation is one of the main reasons for not being able 
to communicate verbally (Guttormson et al., 2015). The use of sedatives does not 
eliminate the possibility of pain, on the contrary, sedatives can in some cases even 
increase pain perception (Frölich et al., 2013). Agitation and anxiety are often 
associated with critical illness as distressing condition, inability to communicate, 
being away from the family and being mechanically ventilated (Tate et al., 2012). 
Experiencing pain also predisposes patients to delirium, which is often an 
undiagnosed syndrome of disturbance in consciousness and a change in cognition 
(Cavallazzi et al., 2012). Delirium may increase and confuse the assessment of the 
of other interconnected unpleasant symptoms like pain (Reade & Finfer, 2014). The 
critical care nurses may underestimate pain among the other unpleasant symptoms 
in mechanically ventilated, sedated critically ill patients (Randen et al., 2013). 

The study of Vincent et al. (2016) divides the pain in critically ill patients into 
four categories: 1) pre-existing persistent pain 2) acute pain related to an ongoing 
disease including post-operative, visceral and trauma pain, 3) intermittent acute pain 
associated with care procedures, and 4) continuous pain/discomfort related treatment 
caused by mechanical ventilation or immobilisation/stiffness (Vincent et al., 2016). 
This classification presents the heterogeneity of pain in its duration, aetiology and 
pathophysiology. 

2.1.1 Pain prevalence and effects of untreated pain 
The prevalence of pain in critically ill patients varies across studies; it has been 
suggested that 50−77% of patients suffer from untreated pain, depending on the 
study population and pain assessment methods (Sigakis & Bittner, 2015; al Sutari et 
al., 2014). Fortunately, there may have been some advances in pain rates. In the 
contrast to the study of Gélinas et al. (2007) where 77.4% of 93 patients recalled 
having pain during the treatment in an ICU, a recent study by Olsen et al. (2021) 
reported that only 10% of the assessed critically ill patients were in pain when at rest 
and 27% had procedural pain after implementing a pain management protocol. 

Critically ill patients commonly experience mild to severe acute pain during 
routine invasive and non-invasive procedures. Endotracheal suctioning and 
turning/repositioning are often rated as the most painful procedures (Ayasrah, 2016; 
Arroyo-Novoa et al., 2008; Gélinas, 2007; Puntillo et al., 2001).  Chest tube and 
wound drain removal and arterial line insertion are also among the most painful 
procedures (Puntillo et al., 2014, 2018). Procedures connected to early rehabilitation, 
like mobilisation, deep breathing and coughing exercises, might cause pain (Puntillo 
et al., 2014; Siffleet et al., 2007). There is no consensus on painfulness on some of 
the daily procedures and even harmless daily care procedures may cause pain. For 
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example, oral care has been used in studies as a painless control measure (non-
nociceptive procedure) in critically ill patients (Ayasrah, 2016) but in a study on oral 
care in critically ill patients, the patients found oral procedures to be painful, 
uncomfortable and emotionally distressing (Dale et al., 2020). In addition, dressing 
change has been used as non-nociceptive procedure (Ayasrah, 2016) even if it is 
reported as painful procedure in some studies (Puntillo et al., 2018). Non-invasive 
blood pressure cuff inflation and eye care are examples of painless procedures used 
in studies (Ayasrah 2016, al Sutari et al., 2014).  

Several risk for experiencing higher pain intensity during ICU care have been 
identified associated with patient characteristics and care. These risks include young 
age (Ayasrah, 2016; al Sutari et al., 2014) non-white ethnicity (Arroyo-Novoa et al., 
2008), specific care procedures (al Sutari et al., 2014; Puntillo et al., 2014), 
administration of opioids specifically for the procedure, pre-procedural pain or 
distress, most severe pain experienced on the same day, and  procedure performed 
by individuals other than nurses (Puntillo et al., 2014).The procedures that are 
experienced as most painful in critical care varies among age groups; for adult 
critically ill patients turning is one of the most painful and distressing procedure, 
whereas for adolescents it was wound care (Puntillo et al., 2001). Moreover, pain 
before ICU admission is one of the risk factors identified as causing persistent pain 
to be associated with the ICU treatment after the discharge (Mäkinen et al., 2020; 
Kemp et al., 2019).  

Untreated pain or suboptimal pain management in critically ill patients may lead 
to several adverse events, poor clinical outcomes and causes human suffering. Acute 
pain activates the sympathetic nervous system which leads to an increase in stress 
hormones (Barr et al., 2013). In critically ill patients, this may lead to 
vasoconstriction, increases oxygen demand, alters glycaemic regulation and impairs 
immune function (Sigakis & Bittner, 2015). Adverse events associated with 
untreated pain may be fatal to critically ill patients as higher pain intensity has been 
associated with increased mortality rate among mechanically ventilated patients 
(Yamashita et al., 2017). Untreated pain is also associated with higher rates of 
agitation (Bennett & Hurford, 2011). Untreated pain during intensive care also has 
long-term consequences: long-term pain rates were observed to range from 14% to 
77% in an investigation into pain one year after discharge from ICU (Kemp et al., 
2019). Furthermore, adverse events and poor clinical outcomes associated with 
untreated pain may lead to post-intensive care syndrome including persistent and 
severe physical, cognitive, and psychological deficits (Rawal et al., 2017). While 
some factors associated with chronic pain after intensive care have been identified, 
the underlying mechanisms have remained unclear and require further investigation 
(Kemp et al., 2019).  
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2.1.2 Clinical guidelines for pain management  
The ABCDEF Bundle in Critical Care is an evidence-based guideline to optimize 
the outcomes and recovery of ICU patients (Marra et al., 2017). The bundle includes 
six components of patient care: Assess, Prevent, and Manage Pain, Both 
Spontaneous Awakening Trials and Spontaneous Breathing Trials, Choice of 
analgesia and sedation, Delirium: Assess, Prevent, and Manage, Early mobility and 
Exercise, and Family engagement and empowerment. The pain assessment, 
prevention and management are guided by the Clinical Practice Guidelines for the 
Management of Pain, Agitation, and Delirium in Adult Patients in an Intensive Care 
Unit (PAD guideline) created by the Society of Critical Care Medicine (Barr et al., 
2013). The PAD guideline was updated by an expert group in 2018 leading to The 
Pain, Agitation/sedation, Delirium, Immobility, and Sleep disruption (PADIS) 
guidelines. An update on immobility and sleep disturbance was added to the 
recommendations, as these aspects were found to influence the experience of pain, 
the use of sedation and the incidence of delirium (Delgado, 2020; Devlin et al., 
2018).  

The American Society for Pain Management Nursing has published a statement 
position and clinical practice recommendations for patients unable to self-report 
(Herr et al., 2019a; Herr et al., 2019b). For the pain assessment of critically ill 
unconscious patients, the following five-step protocol is proposed: 1) search for 
potential causes of pain, including known painful interventions and procedures 2) 
attempt to obtain the patient’s self-report of pain 3) observe the patient for pain 
related behaviour 4) ask proxy about pain and behaviour/activity changes 5) attempt 
an analgesic trial (Herr et al., 2019a). 

2.2 Pain assessment in critically ill patients 
Systematic pain assessment is associated with improved treatment outcomes in 
critically ill patients; these include reduced duration of mechanical ventilation, 
length of stay in intensive care and reduced complications (Georgiou et al., 2015). 
Pain assessment has a major role in effective pain management in critically ill 
patients as pain assessment is associated with lower pain intensities, incidence of 
pain episodes (Georgiou et al., 2020), and increases the use of analgesic 
administration (Phillips et al., 2019). 

Self-report of pain is the “gold standard” of pain assessment in critically ill 
patients, and it is used in patients who are able to communicate (Herr et al., 2019a). 
Pain should be assessed using a validated pain scale, rather than with a yes/no 
question. This will allow the intensity, type and location of pain to be accurately 
determined and the response to pain treatment to be assessed. (Chanques et al., 
2010.) Pain assessment tools validated for critically ill patients who are able to self-
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report are the numeric rating scale (NRS), verbal rating scale (VRS) and visual 
assessment scale for pain (VAS). The most feasible and discriminative tool is a 
horizontal 11-point NRS scale in a visually enlarged laminated form. (Chanques et 
al., 2010.) For critically ill patients unable to communicate, the literature especially 
promotes the use of three observational tools: the Behavioral Pain Scale (BPS), the 
Behavioral Pain Scale for non-intubated (BPS-NI), and the Critical Care Pain 
Observation Tool (CPOT) as they have been found to be valid and reliable in various 
settings and countries (Gélinas et al., 2019b; Pudas-Tähkä & Salanterä, 2018). In 
addition, the PADIS guidelines recommend the use these pain assessment tools 
(Devlin et al., 2018). In practice, self-reporting and observational measures are used 
interchangeably to assess pain, as the mental state of patients varies. The correlation 
between of self-reported and observational pain assessment methods is still 
questionable: when testing five observational pain measures against patient self-
reported pain ratings, all the tested pain scales had moderate to high correlations with 
the patient's self-report during suctioning (Arif-Rahu et al., 2015). However, the 
study by Bouajram et al. (2020) found that the results between behavioural pain 
scales and self-reports may not correlate and current validated behavioural pain 
scales may not provide an accurate interpretation of self-reported pain in critically 
ill patients.  

The implementation of published guidelines on pain assessment in critically ill 
patients is inconsistent (Hamdan et al., 2022; Hamdan, 2019; Kemp et al., 2017). For 
example, in the study conducted in 45 ICUs in the United Kingdom, only two ICUs 
used validated observational pain assessment tools and one fifth of the patients 
received no pain assessment at all during the 24-hour study period (Kemp et al., 
2017). Moreover, it was found that while using the observational pain assessment 
tools, the nurses might not choose the most valid and reliable tools intended for the 
particular patient group (Hamdan, 2019). Several barriers have identified to pain 
assessment and management in ICUs. These include a heavy workload, patient 
related issues including patient instability, the use of sedation, and an inability to 
communicate (Hamdan et al., 2022).  

2.2.1 Observational pain assessment tools 
The observational tools are mainly based on observation of the various actions 
associated with pain behaviour: paralinguistic vocalisation, facial expression, body 
posture, movement rigidity, and behaviour of escape and avoidance. These signs are 
often in the automatic, nondeliberate domains and beyond purposeful 
communication. (Hadjistavropoulos & Craig, 2002.) Over the past ten years, several 
systematic reviews have introduced and explored the psychometric properties of 
observational pain assessment tools targeted to critically ill patients who are unable 
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to communicate (Gélinas et al., 2019b; Gélinas et al., 2013; Stites, 2013). The most 
recent systematic review (Gélinas et al., 2019b) updated the previous work on the 
psychometric properties on the of the pain assessment tool. They found nine pain 
assessment tools originally developed for the critical care; the Behavior Assessment 
Tool (BOT) (Puntillo et al., 2004), the Behavioral Pain Assessment Tool (BPAT) 
(Devlin et al., 2018), the Behavioral Pain Scale (BPS) (Payen et al., 2001), the 
Behavioral Pain Scale Non-intubated (BPS-NI) (Chanques et al., 2009), the Critical-
care Pain Observational Tool (CPOT) (Gélinas et al., 2006),  the Pain Assessment 
and Intervention Notation (P.A.I.N.) (Puntillo et al., 1997), the Nonverbal Pain 
Assessment Tool (NPAT) (Klein et al., 2010), the Nonverbal Pain Scale (initial) 
(NVPS-I) (Odhner et al., 2003) and the Nonverbal Pain Scale (revised) (NVPS-R) 
(Kabes et al., 2009). (Table 1.) 

There are both behavioural and physiological domains in the observational pain 
assessment tools. The most common behavioural domains are the facial expression 
(included in 9/9 of the pain assessment tools), movements of the body or upper 
extremes (8/9), vocalisation (5/9), guarding (3/9), muscle tension (3/9), and posture 
(2/9). Three of the nine observational pain assessment tools also include 
physiological domains in addition to the behavioural domains. The P.A.I.N. tool and 
the Nonverbal Pain Scale (NVPS-I and NVPS-R), both contain several physiological 
domains including the evaluation of heart rate, blood pressure, respiration, 
perspiration, and pallor, and the NVPS-I also includes the domains of skin 
temperature, pupil dilation, and flushing. The scoring system varies from one 
assessment tool to another, i.e. by observing the items either on a simple 
present/absent scale (e.g. BOT, BPAT) or more accurately describing the degree 
(e.g. CPOT, BPS). 

The BPS, BPS-NI, and CPOT have the best psychometric properties and the 
largest pool for evidence among the evaluated tools (Gélinas et al., 2019b). More 
research on the validity of behavioural pain assessment tools in specific subgroups 
is needed to broaden their applicability in critical care. The systematic review and 
meta-analysis on the diagnostic accuracy of the CPOT revealed that it is an adequate 
tool but not excellent, requiring further validation in specific subgroups (Zhai et al., 
2020). The validity especially of BPS and CPOT have been questioned for brain 
injured critically ill patients and a new observational tool is under development 
(Gélinas et al., 2019a). Furthermore, the pain behaviour of patient that are under 
heavy sedation and neuromuscular blocking is difficult to assess with the current 
observational pain assessment tools  (Gélinas et al., 2019b). 



Review of the Literature 

 21 

Table 1. The domains and scoring of the observational pain assessment tools developed for 
critically ill patients. 

INSTRUMENT DOMAINS SCORING 

Behavior Assessment Tool 
(BOT) 
(Puntillo et al., 2004)  

A List of 38 items including 
facial responses, verbal 
responses, and body 
movement  

Each domain: present/absent 
Total scoring: 0−38 

Behavioral Pain Assessment 
Tool (BPAT) 
(Devlin et al., 2018)  

Facial expressions: neutral, 
grimace, wince, eyes closed 
Verbal responses: moaning, 
complains of pain 
Body muscle responses: rigid, 
clenched fists  

Each domain: present/absent 

Behavioral Pain Scale (BPS) 
(Payen et al. 2001) 
Behavioral Pain Scale Non-
intubated (BPS-NI) 
(Chanques et al., 2009) 

Facial expression, upper limb 
movements, compliance with 
ventilation (BPS)/vocalisation 
(BPS-NI) 
 

Each domain: 1–4  
Total Scoring: 3–12 

Critical-care Pain 
Observational Tool 
(CPOT) 
(Gélinas et al., 2006)  

Facial expression, body 
movements, muscle tension, 
compliance with the 
ventilation/vocalisation 

Each domain: 0–2  
Total scoring: 0–8 

Pain Sssessment and 
Intervention Notation Tool 
(P.A.I.N.) 
(Puntillo et al., 1997) 

Behavioral domains: 
movements, facial expression, 
posture, vocal sounds 
Physiological indicators: heart 
rate, blood pressure, 
respiration, pallor 

Each domain: present/absent 

Nonverbal Pain Assessment 
Tool (NPAT) 
(Klein et al., 2010) 

Emotion, movement, facial 
glues, verbal glues, 
positioning/guarding 

Each domain: 0−2 or 0-3 
(verbal glues: yes/no)  
Total scoring: 0−10 

Nonverbal Pain Scale Initial 
(NVPS-I) 
 (Odhner et al., 2003) 
Nonverbal Pain Scale 
Revised (NVPS-R) 
(Kabes et al., 2009) 

Behavioral domains: face, 
activity/movement, guarding 
Physiological signs: vital signs, 
skin (NVPS-I) 
Respiratory: respiratory rate, 
oxygen saturation, compliance 
with ventilator (NVPS-R) 

Each domain: 0−2  
Total scoring: 0−10 
 

2.2.2 Physiologic parameters in pain assessment 
The ability to continuously monitor the patients’ physiological status is one of the 
key factors differentiating ICU from other hospital ward environments. Patient data 
is continuously displayed and readily accessible for the health care personnel. 
(Marshall et al., 2017.) Nurses commonly use vital signs for pain assessment (Rose 
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et al., 2011). Blood pressure, temperature, heart rate, and respiratory rate are usually 
referred to as vital signs (Lockwood et al., 2004). According to the PADIS 
guidelines, vital signs are not a valid pain indicator in critically ill patients (Devlin 
et al., 2018). However, the changes in the hemodynamic status may be pain related, 
and therefore pain should be assessed with a valid pain assessment tool in cases with 
fluctuations in the vital signs (Erden et al., 2018).  

Physiological changes connected to acute pain in critically ill patients have been 
widely studied. In most study designs, the physiological parameters are collected at 
three timepoints: in rest prior to procedures, during and after the care procedures that 
are known to be painful. Moreover, designs with two timepoints exist; prior to and 
immediately after the care procedures. The designs often include a nociceptive 
procedure and a non-nociceptive procedure for a comparison. Turning and 
endotracheal suctioning are most commonly used as nociceptive stimulus and a non-
invasive blood pressure cuff infiltration as the non-nociceptive procedure. (Table 2.)  
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Table 2. Physiologic measures used for pain assessment in critically ill patients. 

MODALITY MEASURES  MEASUREMENT 
PRINCIPLE 

REFERENCES 

Hemodynamic 
score 
connected to 
vital signs  

Heart rate Beats per minute Young et al., 2006; Gélinas & 
Johnston, 2007; Siffleet et al., 
2007; Li et al., 2009; Arbour & 
Gélinas, 2010; Kapoustina et 
al., 2014; Ayasrah, 2016; 
Hasanin et al., 2017; Cheng et 
al., 2018; Khanna et al., 2018; 
Shan et al., 2018; Erden et al., 
2018 

 Respiratory rate Respiration number per 
minute 

Gélinas & Johnston, 2007; 
Arbour & Gélinas, 2010; 
Kapoustina et al., 2014; Cheng 
et al., 2018; Erden et al., 2018 

 Blood pressure Systolic: maximum 
blood pressure during 
ventricular contraction 
Diastolic:minimum 
pressure between the 
contractions 
Mean arterial pressure: 
average pressure during 
one contraction 

Young et al., 2006; Gélinas & 
Johnston, 2007; Siffleet et al., 
2007; Li et al., 2009; Arbour & 
Gélinas, 2010; Ayasrah, 2016; 
Hasanin et al., 2017; Cheng et 
al., 2018; Khanna et al., 2018; 
Shan et al., 2018; Erden et al., 
2018 

 Arterial oxygen 
saturation 

The percentage of 
hemoglobin molecules 
saturated with oxygen in 
arterial blood 

Gélinas & Johnston, 2007; 
Arbour & Gélinas. 2010; 
Kapoustina et al., 2014; Cheng 
et al., 2018; Erden et al., 2018 

Single 
parameter 
score 

Pupillary reflex 
dilation 

Absolute/changes in 
pupillar width 

Paulus et al., 2013; Fratino et 
al., 2021; Fratino et al., 2023 

 Skin conductance 
SCA index 

Number of fluctuations 
in skin conductance per 
second 

Khanna et al., 2018; Fratino et 
al., 2021; Fratino et al., 2023 

 Analgesia 
Nociception Index 
(ANI) 

Computed from high 
frequency component of 
heart rate variability 

Fratino et al., 2023 

Multiparameter 
score 
 

Nociception Level 
Index (NOL) 

Skin galvanic response, 
plethysmographic pulse 
wave, temperature, and 
accelerometry 

Shahiri et al., 2020 

 Bispectral Index 
(BIS) 

Electromyographic 
activity, 
electroencephalographic 
data, and the density 
spectral array 

Faritous et al., 2016 
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The connection of heart rate to procedural pain has been studied in several 
studies (Abdelhakeem et al., 2021; Cheng et al., 2018; Erden et al., 2018; Khanna et 
al., 2018; Shan et al., 2018; Hasanin et al., 2017; Ayasrah, 2016; Kapoustina & 
Echegaray-Benites, 2014; Arbour & Gélinas, 2010; Li et al., 2009; Gélinas & 
Johnston, 2007; Siffleet et al., 2007; Young et al., 2006). According to most of the 
studies, heart rate increases during or immediately after a nociceptive procedure. 
However, the increase might not be statistically significant as shown in study by 
Siffleet et al. (2007) or heart rate may stay unchanged as in the study of Abdelhakeem 
et al. (2021). Similar to the heart rate, the respiratory rate usually increases during a 
nociceptive procedure (Cheng et al., 2018; Kapoustina & Echegaray-Benites, 2014; 
Arbour & Gélinas, 2010; Gélinas & Johnston, 2007) but might also stay unchanged 
(Erden et al., 2018). Blood pressure has been measured using invasive systolic blood 
pressure (SBP), diastolic blood pressure (DBP) and the mean arterial pressure 
(MAP). The results on blood pressure are contradictory: The increase of SBR and 
DBR during nociceptive procedure have been statistically significant (Khanna et al., 
2018; Ayasrah, 2016) and insignificant (Siffleet et al., 2007), and similar to the heart 
rate and respiratory rate, they have reminded unchanged (Kapoustina & Echegaray-
Benites, 2014). While using the MAP, blood pressure has increased according to the 
studies (Cheng et al., 2018; Erden et al., 2018; Kapoustina & Echegaray-Benites, 
2014; Arbour & Gélinas, 2010; Gélinas & Johnston, 2007). SpO2 tends to decrease 
during nociception, but it is the weakest of the parameters to respond to nociceptive 
procedures (Cheng et al., 2018; Erden et al., 2018; Kapoustina & Echegaray-Benites, 
2014; Arbour & Gélinas, 2010; Gélinas & Johnston, 2007).  

Several studies have used physiological variables to assess pain with other 
validated pain assessment tools as a reference according to patients' level of 
consciousness. The number of pain assessment tools used as references is 
considerable. In the studies, for patients unable to communicate, the CPOT, BPS, 
BPS-NI and Behavioral checklist measures were used. For patients who were able 
to communicate, the Numeric rating scale (NRS), Verbal Descriptor Scale (VDS), 
Faces Pain Thermometer (FPT), Visual Numeric Scale (VNS), Visual Analogue 
Scale (VAS), and yes/no questions were used. Furthermore, the results regarding the 
association between physiological measures and the refence measures are 
contradictory. While some studies found a positive correlation coefficient between 
pain intensity, heart rate, and respiratory rate levels (Erden et al., 2018; Kapoustina 
& Echegaray-Benites, 2014; Arbour & Gélinas, 2010), other studies, such as those 
by Cheng et al. (2018) and Gélinas and Johnston (2007), reported no association 
between pain intensity and physiological measures.  

Conflicting findings from previous studies suggest that changes in 
haemodynamic parameters and respiratory rate are not specific to pain; they can be 
affected by several factors such as the conscious status of the patients, medications 
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and diseases. This led to the exploration of other, potentially more specific 
physiological pain indicators in critically ill patients. Pupillometry, skin 
conductance, Analgesia Nociception Index (ANI) have been described as potential 
pain assessment methods in critically ill patients in ICU. Skin conductance has been 
studied using the skin conductance algesimeter (SCA) index. The method has found 
promising; the study by Khanna et al. (2018) found that the SCA Index was more 
sensitive and specifically linked to pain than other monitored physiological 
parameters, and was found not to be influenced by circulatory changes and therefore 
not affected by many drugs. However, there were challenges in measuring the SCA 
index in a study population including brain injured patients as it was only detectable 
in 29% of the patients (Fratino et al., 2021).  

The use of pupillary reflex dilation has shown some promising findings in pain 
assessment of ICU patients, and has been used to predict the sufficiency of analgesia 
before a noxious procedure in patients in ICUs (Lukaszewicz et al., 2015; Paulus et 
al., 2013). A tetanic stimulus in three levels and a video-based pupillary dilatation 
evaluation was used to predict the level of analgesia in 34 patients. They found that 
it was possible to predict an insufficiency of analgesia before endotracheal suction. 
(Paulus et al., 2013.) Similarly, Lukaszewicz et al. (2015) tested a pupillometric 
method to assess the adequacy of anaesthesia in intensive care patients before an 
invasive drainage exchange by measuring pupillary light reflex. The results were 
promising for the adjustment analgesia before painful procedures. Moreover, 
approaches which combine these methods with Analgesia Nociception Index (ANI) 
have been used to assess nociception in critically ill mechanical ventilated patients. 
The ANI is a measure based on heart rate variability from ECG monitoring. It is a 
number between 0−100 estimating the balance between parasympathetic and 
sympathetic outflows. (Fratino et al., 2023.) The study by Fratino et al. (2023) found 
no correlations between the methods when automated pupillometry, the number of 
skin conductance fluctuations per second, and the ANI were collected during a 
tetanic stimulus as a measure of nociception. Furthermore, in an earlier study, the 
pupillary reflex dilation and SCA showed poor agreement in the assessment of the 
response to noxious stimulation (Fratino et al., 2021). 

In addition to the ANI, two other methods originally developed to monitor 
nociception during anaesthesia have been studied in patients in ICUs. The Bispectral 
index (BIS) is a technique measuring nociception from cortical activity and the 
activity of the corrugator supercilii during anaesthesia. Several studies have found 
an increase in the BIS during nociceptive procedures in critically ill mechanically 
ventilated patients (Coleman et al., 2015). However, the BIS index was not primarily 
developed to assess pain and demands further validation. A novel method, the 
Nociception Level Index (NOL), was tested for feasibility in 15 critically ill patients 
for pain assessment. In the study, NOL scores were able to distinguish between 
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nociceptive and non-nociceptive interventions and were associated with CPOT 
scores and self-reported pain intensity. (Shahiri et al., 2020.) 

2.2.3 Facial expression of pain 
The potentiality of facial expressions, among other nonverbal measures of pain, has 
been the focus of comprehensive research. Facial expressions in humans have both 
a voluntary and an involuntary aspect. The voluntary aspect has a major role in 
communicating pain and suffering to others while the involuntary actions are more 
reflections of autonomic nervous system to nociception (Hadjistavropoulos & Craig, 
2002). The studies also describe the most common features of facial expressions that 
form the "core facial pain expression" (Prkachin & Solomon, 2008; Prkachin, 1992). 
This include lowering of brows, wrinkling of nose, tightening of orbit, and closing 
of eyes. In some studies, mouth stretching and opening is described as a part of the 
core pain expressions (Kunz & Lautenbacher, 2014, 2015; Craig & Patrick, 1985). 
The universal facial expression of pain has identifiable features. However, the 
expression's prevalence in individuals differs. The study by Kunz and Lautenbacher 
(2014) classified the subjects into four phenotypes, each with a different weighting 
of the features of the facial expression of pain. Furthermore, a group of subjects did 
not exhibit any activation of the expression. 

One of the main frameworks in behavioural science to investigate the face is the 
Facial Action Coding System (FACS). The framework is used to identify and 
objectively measure the facial expressions (Ekman & Friesen, 1978). The FACS is 
usually coded from a video and the code provides precise specification of the 
dynamics of facial movement in addition to the specific facial actions. The 
framework divides facial movements into Action Units (AUs) representing 
individual components of muscle movements producing the expression. There are 
46 AUs that have been defined. The reliability of the FACS has been tested and 
found to be good or excellent (Sayette et al., 2001). However, the use of the FACS 
requires training and scoring is based on the subjectivity of the scorer (Prkachin, 
2009). Several AUs have been identified as being associated with the facial 
expression of pain but their combination varies between studies (Prkachin, 2009; 
Prkachin, 1992). (Table 3.) 
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Table 3. The facial Action Units (AUs) and corresponding muscle basis associated with 
expression of pain. (Adapted from Paper III) 

DESCRIPTOR FACIAL ACTION UNIT  MUSCLE BASIS  ANATOMICAL 
CHANGES  

Brow lowering AU41 Corrugator supercilii 
Depressor glabellae 
Depressor supercilia 

Lowering down of 
eyebrows  
Moving eyebrows 
medially 

Cheek raising AU62 Orbicularis oculi (pars 
orbitalis) 

Appearing of vertical or 
oblique wrinkles 
between eyebrows 

Lid tightening AU7 Orbicularis oculi (pars 
palpebralis) 

Pulling of skin toward 
the eyes  
Lifting of the cheeks 
and infraorbital triangle 
Narrowing the eyes 
Wrinkling the skin 
below the eye 

Nose wrinkling AU9 Levator labii superioris 
alaeque nasi 

Tightening and 
narrowing of the 
eyelids  

Upper lip raising AU10 Levator labii superioris Deepening or wrinkling 
of infraorbital and 
nasolabial furrow 
Widening and raising of 
the nostril wings 

Lip corner pulling AU12 Zygomaticus major Drooping or oblique 
movement of lateral 
corners of the lips 

Llp stretching AU20 Risorius Bilateral lips stretch 
AU= facial Action Unit 

The study by Arif-Rahu et al. (2013) is the only study that has determined the 
specific features of the facial expression of pain in critically ill patients who are 
unable to communicate using the FACS. According to their results, the strongest 
activation found was in the upper part of the face and the actions were similar to the 
identified features in the core pain expression. In addition to lowering of the 
eyebrows, tightening of the orbit, wrinkling of the nose and closing of the eyes, they 
found that during nociceptive procedure there was frequent internal elevation of the 
eyebrows, opening of the mouth, and turning of the head to the right. In the 
observational pain assessment tools developed for critically ill patients, the facial 
expression descriptors are used interchangeably. (Table 4.) In all the instruments, the 
clearest/strongest facial expression connected to pain is described as a grimace. A 
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grimace is perceived as a clearly visible expression across the face, associated with 
pain and also other strong negative emotions (Prkachin, 1992). Strong pain-related 
facial expressions are also described by the terms frown and wince, which may be 
associated with partial or milder activation of the face. Grimacing, frowning, and 
wincing are used to identify a certain expression (e.g. in the BOT, BPAT, and 
P.A.I.N.) or to assess the intensity of the expression (e.g. in the NPAT and NVPS). 
In the BPS and CPOT, the assessment of facial expression is described in more 
details using the terminology of the FACS framework. The most descriptors in the 
assessment tools are located in the upper part of the face which is practical since the 
lower part is often distorted by the presence of an endotracheal or nasogastric tube 
(Arif-Rahu & Grap, 2010). 
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Table 4.  The items for assessing the facial expression in the observational pain assessment tool 
developed for critically ill patients. 

INSTRUMENT  ITEMS ON FACIAL EXPRESSION  

Behavior Assessment Tool 
(BOT) 
(Puntillo et al., 2004)  

Grimace/Frown/Wince  
Eyes closed   
Grin/Smile 
Eyes wide open with raised eyebrows  
Looking away in opposite direction of the pain  
Mouth wide open /Clenched teeth 

Behavioral Pain Assessment 
Tool (BPAT) 
(Devlin et al., 2018)  

Neutral 
Grimace  
Wince  
Eyes closed 

Behavioral Pain Scale (BPS) 

(Payen et al., 2001) 

Relaxed 
Partly tightened (eg. brow lowering) 
Fully tightened (eg. eyelid closing) 
Grimacing  

Critical-care Pain Observational 
Tool (CPOT) 
(Gélinas et al., 2006)  

No muscular tension observed: relaxed  
Neutral Presence of frown brow lowering, orbit tightening, 
and levator contraction: tense  
All of the above facial movements plus eyelid tightly closed: 
grimacing 

Pain Assessment and 
Intervention Notation (P.A.I.N-) 
(Puntillo et al., 1997) 

Grimacing 
Frowning 
Wincing 
Drawn around month and eyes 
Teary/Crying 
Wrinkled forehead 

Nonverbal Pain Assessment 
Tool (NPAT) 
(Klein et al., 2010) 

Relaxed, calm expression 
Drawn around month and eyes/Tense 
Frowning/Wincing/Grimacing 

Nonverbal Pain Scale (NVPS) 
(Odhner et al., 2003) 

No particular expression or smile 
Occasional grimace, tearing, frowning, wrinkled forehead 
Frequent grimace, tearing, frowning, wrinkled forehead 

2.3 Automated pain detection 

Automated pain detection based on experimental pain databases 

Automated pain detection refers to the use of technology, such as sensors and 
machine learning algorithms, to detect and analyse physiological and behavioural 
signals to infer the presence and intensity of pain without the use of patient self-
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reporting or pain-related behaviour observation. These models can be used to 
identify patterns within data without human intervention. These patterns can be used 
to predict and classify future data, to reveal sub-groups of data, or to extract relevant 
data to find new insights. (Lötsch and Ultsch, 2018.) The research on automated pain 
detection methods are mainly done on experimental pain databases. One of the most 
versatile databases is the BioVid Heat Pain Database, including both physiological 
and video data of ninety study subjects under heat pain induction. The heat pain was 
induced at four pain levels according to the determined individual pain threshold and 
pain tolerance. The collected variables include the skin conductance level, the 
electrocardiogram, the electromyogram of three pain related muscles, and the 
electroencephalogram. (Werner et al., 2013.) The data has been used in several 
studies to predict pain using the video based facial action unit (AU) recognition 
(Werner et al. 2016, 2018). It has also been used to build prediction models to predict 
pain from physiological parameters (Werner et al., 2014) from the combination of 
the physiological and facial expression parameters (Gruss et al., 2015). The EMG 
data from the BioVid Heat Pain database are used less frequently in studies. 
Limbrecht-Ecklundt et al. (2016) have used both the visual FACS based and EMG 
methods in the BioVid database to assess their validity for pain intensity prediction. 
They found that the FACS allowed a reliable distinction between pain threshold and 
pain tolerance.  Correlations between both methods and pain intensity were high, but 
the EMG and pain intensity increase had a closer relation. Kelati et al. (2022) 
analysed the EMG data set of the BioVid database. They used data from two facial 
muscles, the zygomaticus and corrugator supercilii, and succeed in developing a 
model to predict pain classification with a 99.4% accuracy with binary pain intensity 
level no pain−high pain.  

Automated pain detection in clinical setting 

Clinical data have only been used in a few studies to develop pain prediction models 
using machine leaning in adult patients. Aqajari et al. (2021) formed a research group 
that built models for automated pain intensity prediction using clinical data collected 
from post-operative patients using galvanic skin response (GSR) measurement. They 
were able to build and test several machine learning models with satisfying results 
with a baseline and five different pain intensity levels using data from 25 post-
operative patients. Kobayashi et al. (2021) developed a semiautomated system using 
machine learning to predict pain in patients in ICUs using continuous vital signs data 
and other patient information. The retrospective study had a sample with 11 527 
patients. They used continuous heart rate, pulse oximetry, arterial oxygen saturation, 
and arterial blood pressure that was recorded every minute in the model. In addition, 
the pain intensity assessed with the CPOT, a sedation score and the information on 
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age and sex were included to the analysis. Additionally, another group conducted a 
preliminary study using clinical data of patients from an ICU while developing an 
autonomous pain expression assessment system (Nerella et al., 2021). They collected 
and analysed a dataset collected from ten patients, including more than 55 000 
images. They explored the dataset first using an open source OpenFace platform to 
automatically detect pain using facial action units (AUs), however, satisfactory 
results were only obtained using a deep learning method. Clinical challenges 
emerged using a video-based methodology: the accuracy of the images was 
hampered by assisted breathing devices, lighting used in the critical care 
environment, and the orientation of the patient's face to the camera. However, this 
was the first step to identify pain related AUs in an ICU setting and led to new ICU-
pain database with clinical data. (Nerella et al., 2021.) 

2.4 Summary of the literature review  
The literature review findings show that unrelieved pain is current and one of the 
most distressing and unpleasant symptoms present for the majority of critically ill 
patients. Pain management in critically ill patients requires special attention due to 
the frequent impairment of their ability to communicate and the daily occurrence of 
multiple painful episodes associated with the treatment of their critical illness and 
care activities. Systematic pain assessment in critically ill patients leads to more 
focused interventions to minimise unnecessary suffering and adverse events.  

The interpretation of behaviour associated with pain and the recordings of vital 
signs are the methods that are most used for pain assessment of critically ill patients 
who are unable to communicate. While physiological parameters are associated with 
painful events, individual vital signs should not be relied upon pain assessment, as 
they are not exclusive to pain. Facial expression of pain is one of most prominent 
pain behaviour but the interpretation of these subtle and transient expressions is 
challenging. Several observational instruments based on behavioural and 
physiological pain related changes have been developed for critically ill patients, the 
most valid and reliable being CPOT, BPS and BPS-NI. However, these methods are 
subjective, depending on the nurses’ education and ability to use the tools and to 
interpret pain.  

Current methods for assessing pain in critically ill patients do not allow 
continuous pain monitoring as they depend on relatively short observation windows. 
Continuous monitoring would be essential as pain is often intermittent and of varying 
intensity. Automated pain detection methods are being developed to meet this 
challenge, but their development for clinical pain is still in the early stages. New 
physiological methods are being tested for feasibility in critically ill patients. Some 
preliminary studies have been conducted on the use of nociception monitoring 
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methods to detect pain in critically ill patients. In particular, multimodal methods 
using several parameters seem promising. However, these methods are developed 
for monitoring the level of nociception during anesthesia, not for pain assessment, 
and their use for this purpose needs to be carefully studied. To date, only one 
semiautomatic method has been developed for pain detection in critically ill patients 
combining continues vital signs monitoring and patient information based on the 
behavioural pain scale and other patient information. Currently, there is no clinically 
useful and valid method for continues automated pain detection for critically ill 
patients who are not able to communicate.  
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3 Aims 

The overall aim of the study was to develop the concept of a Smart Pain Assessment 
tool based on the Internet of Things (IoT) technology for critically ill patients who 
are not able to communicate their pain verbally or by other means. The study was 
conducted within the framework of a medical device development process and 
describes the early-stage development including two phases and four sub-studies.  
 
The sub-aims and research questions were as follows:  

Phase I: Initiation 

The aim of Sub-study I was to explore and describe the state of art of the IoT in basic 
nursing care.  

1. What innovations are available for basic nursing care using IoT? (Paper I) 

2. In what way is IoT technology used in innovations targeted at basic 
nursing care? (Paper I) 

Phase II: Formulation 

The aim of Sub-studies II and III was to explore the initial validity of the concept of 
the Smart Pain Assessment tool for pain detection.  

1. What is the validity of the chosen parameters in relation to pain intensity? 
(Papers II and III) 

2. In what way is the system capable of detecting experimental pain in 
healthy adults using the chosen machine learning algorithms? (Papers II 
and III) 

The aim of Sub-study IV was to evaluate the feasibility of the Smart Pain Assessment 
Tool concept by the potential future users for and to involve the users in the 
development process. 
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1. What are the perceptions of critical care nurses regarding the use of smart 
technology in pain assessment? (Paper IV)  

2. How do critical care nurses evaluate the feasibility of the proposed Smart 
Pain Assessment tool? (Paper IV)  
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4 Materials and Methods 

4.1 Methodological approach 

4.1.1 Medical device development process 
Briefly, medical devices are defined according to the Medical Devices Regulation 
(EU) 2017/745 (MDR) as “any apparatus, software, material or other similar or 
related article, intended to be used for specific medical purposes: diagnosis, 
prevention, monitoring, treatment or alleviation of a disease or an injury”. The 
development of medical devices is regulated by the European Union (EU) in Europe 
and by the U.S. Food and Drug Administration (FDA) in the United States. The 
purpose of the regulation is to provide effective and safe devices for users. The 
regulation is also aimed at improving the availability of innovations on the market. 
In the EU, the regulation of medical devices has been reformed over the last few 
years and the Regulation (EU) 2017/745 on medical devices (MDR) was applied in 
May 2021. (Fimea, 2021.) 

The medical device development process describes the development and 
regulation of a medical device step by step. Typically, the medical device 
development process is described through five stages, but the concepts and details 
of their content vary. The FDA process description includes four steps: 1) device 
discovery and concept, 2) preclinical research-prototype, 3) FDA device review, 4) 
FDA post-market device Safety monitoring (FDA, 2018). The development process 
is not described in the EU through the same type of phases, but focuses on the 
regulations at different stages, in particular through the ISO standards. In this study, 
the phases described by Pietzsch et al. (2009) for medical device process is used. 
(Figure 1.) This model was developed by reviewing the literature on medical device 
development processes. The model identifies five phases from initiation to product 
launch. Phase I includes early evaluation of the clinical needs and reviews on the 
technological concepts and existing technology. Phase II includes an iterative 
concept and prototype analysis with continuous interaction among developers and 
future device users. Phase III concentrates on feasibility studies, verification testing, 
and user prototype evaluations. These continue before the final formal validation 
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performed in Phase IV. In Phase V, the product is launched and postmarketing 
surveillance assessment is conducted. (Pietzsch et al., 2009.) 

 
Figure 1. The medical device phases of the development process (Pietzsch et al., 2009). 

The development process reviews and the approval for marketing of a medical 
device are done by named notified bodies, accredited by Member State Health 
Ministries. In Finland, the Finnish Medicines Agency Fimea is responsible for the 
administration of medical devices. Fimea controls the safety of medical devices and 
their operability before they become available on the market. The medical devices 
that conform with existing regulations are marked with the CE conformity markings. 
(Fimea, 2021). Before starting the clinical study, the Smart Pain Assessment tool 
research was registered with the National Supervisory Authority for Welfare and 
Health (Valvira), which is the authority controlling the medical devices prior to 
Fimea. The medical devices are divided to four classes that are associated with the 
intended use of the device. The classes are divided according to the risk the device 
poses to the patient, and the intended use, invasiveness, and local vs. systemic effects 
are also assessed. (Regulation (EU) 2017/745.) 

4.1.2 The Internet of Things 
The proposed device under development in the study uses the Internet of Things 
(IoT) technology, a system enabling “things” or objects to be connected to the 
Internet (Atzori et al., 2010). The IoT is a network of connected objects or things, 
characterised by autonomous regulation, administration, and control. In practice, the 
IoT connects devices, other objects and systems with sensors or Radio Frequency 
Identification (RFID) and Wireless Local Area Network (WLAN) chips, allowing 
these devices to be controlled and interact. The technology enables continuous and 
simultaneous collection, analysis and display of heterogenous data.  

The architecture of the IoT-based system in consist of four layers according to 
the structure and functions of the system; these layers include sensing, networking, 
services, and application (Xu et al., 2014). The sensing layer is the sensor network 
which collects the heterogeneous data from devices, sensors and actuators. This is 
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the layer closest to the clinical environment. The networking layer acts as a bridging 
component via wireless protocols such as Bluetooth and Wi-Fi between the sensor 
network and the service layer. In the networking layer, a gateway transfers and pre-
organizes the collected data for further usage to a remote or local server in the cloud. 
The data is transferred via gateway to the service layer for processing and service 
creation. The cloud generates information from heterogeneous the data through data 
analytics and semantic processes. The data processed in the application layer is 
displayed to the end user in a usable format through user interfaces. (Xu et al., 2014.) 
A smart gateway can also improve system performance by reducing latency and 
managing outages when Internet access is not available (Rahmani et al., 2015).  

4.2 The Smart Pain Assessment tool innovation 
The Smart Pain Assessment tool is an innovation targeted to detect acute pain in 
patients unable to communicate in ICU environment. The proposed Smart Pain 
Assessment tool is an IoT-based, smart, wireless system that collects data 
simultaneously from selected physiological parameters. The parameters include the 
heart rate (HR), respiratory rate (RR), galvanic skin response (GRS), and facial 
muscle activity using surface electromyography (EMG). Data collected from 
multiple sources is transferred wirelessly to a smart gateway and on to a cloud service 
for data storage and analysis. (Figure 2.) The system is able to detect the pain 
automatically using advanced data analytics and machine learning. The pain 
intensity is displayed to healthcare personnel via automated notifications in the 
patient monitor.  

 
Figure 2. The Smart Pain Assessment tool based on IoT technology. (Adapted from paper IV) 

The system is structured in four layers according to the architecture of the IoT 
technology: 

1. The sensing layer: The method includes wearable, wireless sensors that 
do not interfere with patient movement and remain in place even when the 
patient is restless. In addition to other wearable sensors, the method 
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includes a sensor mask that is attached to the patient's face to measure 
facial muscle activation. The sensor mask covers the facial muscles that 
are connected to pain expression  (Yang et al., 2018). 

2. The networking layer: The system transfers the data via wireless WiFi to 
the gateway.   

3. The service layer: In the cloud service and with a special Fog computing 
service, the data can be combined and classified into different degrees of 
pain through machine learning and data analytics. 

4. The application layer: The pain related data is displayed to the end-user 
through the user interface. 

4.3 Study design 
The study was conducted in two phases and four sub-studies following the early 
phases of the medical device development process (Pietzsch et al., 2009). (Figure 3.)   

 
Figure 3. The study design as part of the medical device development process. 

The initiation Phase I included a scoping review, which aimed to explore the novel 
technology paradigm in nursing care. The formulation Phase II included Sub-studies 
II-IV and aimed to develop and test the feasibility of the concept. In Sub-studies II 
and III, data from a clinical trial with a cross-over design and experimental pain 
induction were used. In Sub-study IV, the feasibility of the concept of the Smart Pain 
Assessment tool was evaluated by critical care nurses as potential future users of the 
device. The study was conducted as a descriptive qualitative study with focus group 
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interviews. The methodology of each phase and sub-study are presented as a 
summary in Table 5. Sub-studies I-IV and corresponding publications (referred as 
Papers I-IV) are numbered accordingly. 

Table 5.  Summary of the methodological approaches of the study.  

PHASE  SUB-
STUDY 

DESIGN SETTING SAMPLING 
AND 
SAMPLE 

DATA 
ANALYSIS 

REPORTED 
IN  

INITIATION 
PHASE I 

I Scoping 
literature 
review 

Databases:  
ACM DL 
CINAHL 
Google 
Scholar 
IEEE Xplore 
DL 
PubMed 
ScienceDirect 
Scopus 
SpringerLink 

The literature 
on IoT 
innovation 
targeted to 
basic nursing 
care in 
hospital 
eligible 
literature, 
sample 
(n=62) 

Narrative 
synthesis  

Paper I 

FORMULATION 
PHASE II 

II & III  
 

Prospective, 
observational 
study with 
cross-over 
design 

Laboratory, 
university 
campus  
 

Purposive 
sampling, 
healthy 
volunteers 
(n=31)  

Statistical 
tests, 
supervised 
machine 
learning  

Papers II 
and III  
 

 IV Qualitative 
descriptive 
study 

Level III 
intensive care 
unit 

Purposive 
sampling, 
critical care 
nurses (n=20) 

Inductive 
and 
deductive 
content 
analysis 

Paper IV 

4.4 Materials and methods used in the initiation 
Phase I (Paper I) 

4.4.1 Sample, setting and data collection 
A scoping review method was used to identify and map the state of art of the IoT 
technology used in basic nursing care according to the current research literature. 
Scoping review is suitable for emerging research areas because there might be 
diversity in the methodologies and there is a need to identify the main sources and 
types of evidence available (Arksey & O’malley, 2005; Colquhoun et al., 2014). The 
scoping review framework (Arksey & O’malley, 2005) guided the review in five 
stages1) identifying the research question 2) identifying relevant studies 3) defining 
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the selection of relevant studies 4) extracting the data, and 5) compiling, 
summarising and reporting the results. 

The literature search was done using eight databases and employing search terms 
to suit the topic in different research fields (See Paper I, Table 1.). The search was 
conducted in two parts: In the primary search, the databases Pubmed, CINAHL and 
Scopus (nursing subject area) were searched using a Boolean combination of the 
terms “Internet of Thing” OR “IoT” to find the nursing care related literature on IoT 
technology. In the five technological databases, the terms “Internet of Things” AND 
“Nursing” OR “Hospital” were used. A further search of these databases was carried 
out, replacing the term Internet of Things with selected basic nursing terms to find 
literature with more detailed information. The search was conducted in March and 
April 2016. An additional search in Pubmed, CINAHL and Scopus also included the 
term “nursing informatics”. The English language was used as a limitation. No time 
limit was used in the primary search, but the search concerning nursing informatics 
was limited to the years 2006 to 2016. The literature published in scientific 
publications concerning basic nursing care in hospital environment was included. 
IoT based solution for health-related self-monitoring or remote monitoring were 
excluded as well as papers only describing technical development. The study 
selection was done and reported according to PRISMA guidelines.  

4.4.2 Data extraction and analysis 
The characteristics of the eligible studies were extracted, and the type of the article 
and study design were analysed. In addition, if mentioned, the main target patient 
group was specified into age groups. The Internet of Things based innovations were 
identified and classified into basic nursing care topics. For this, a narrative synthesis 
and deductive approach were used as the innovations were categorised according to 
the definition of basic nursing care for hospitalised adult patients (Englebright et al., 
2014); these were based on Henderson's (1964) description of the 14 fundamental 
needs of the patients. By definition, these activities are common to all adult hospital 
patients, without reference to a specific health problem or patient outcome 
(Englebright et al., 2014). 

4.5 Materials and methods used in the formulation 
Phase II (Papers II−IV) 

4.5.1 The study designs, participants and settings  
Sub-studies II and III were conducted as a clinical trial with a cross over design. 
Experimental pain was used to collect data in order to validate the initial prototype 
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of the Smart Pain Assessment tool. The study population consisted of working-age 
(18−65 years old) healthy adults. Participants who had healthy skin in the facial area 
and upper extremities and were able to communicate in the Finnish language were 
included. The exclusion criteria included any acute and chronic illnesses, medication 
use during the study or the previous two weeks, pregnancy, and Body Mass Index < 
30. In addition, excessive facial hair in the sensor site was a reason for exclusion. 
The participants were recruited via advertisements on notice boards on the university 
campus and through the university webpage. The data was collected between 
December 2015 and March 2016. 

The data was collected in a technical laboratory in the university campus area. A 
technician and a study nurse were present at the data collections. The aim was to 
obtain a purposive sample of 30 participants with an even distribution of male and 
female study participants. The final data consisted of 31 participants data because of 
technical challenges in some of the collection sessions.  

In Sub-study IV, the participants were the professional end-users of the medical 
device under development. A focus group design was used to involve the critical 
care nurses working in the ICU to the Smart Pain Assessment tool development 
process. The participants were recruited using a purposive sampling method 
(Andrade, 2021). Participants who had minimum of a one year of working 
experience in an ICU, experience of working with noncommunicative patients, and 
were willing to participate in the focus group interviews were included in the study. 
All participants (n=20) were registered nurses. The interviews took place in a level 
III ICU of a university hospital in April and May 2019. The recruitment was done 
via a contact person in the ward administration, who contacted the critical care nurses 
and organised the groups according to their work shifts. The focus group interviews 
were conducted during the morning shifts in the ICU meeting room. 

4.5.2 Data collection instruments and procedures 
In Sub-studies II and III, the data was collected using several instruments during 
experimental pain induction. In Sub-study IV, the data was collected using thematic 
interviews in focus groups. 

Instruments for measurement (Papers II and III) 

Bioharness. A wearable Bioharness 3.0. device was used for detecting the heart rate 
and respiratory rate of the study subjects. Bioharness 3.0 (Zephyr Technology, 
Annapolis, Maryland, US.) is a device for monitoring physiological parameters of 
adults in non-medical use. The device consists of a chest strap and an electronics 
module for signal detection attached to the strap. The device collects data from 
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electrocardiography (ECG), heart rate (HR), and respiration rate (RR); body 
orientation and activity can also be detected. The pressure sensors for detection of 
the breathing movement of the rib cage is located in the elastic strap, as well as the 
passive sensors for the ECG detection. The data is collected and transmitted with the 
Bioharness module attached to the chest strap. The Bioharness 3.0 is wireless and 
operates with an internal rechargeable lithium polymer cell. The collected data is 
sent wirelessly via Bluetooth or 802.15.4 frequencies.  

Facial surface electromyography (EMG). A multi-functional biosignal 
acquisition device, developed by the research group, was used to collect the EMG 
signal. The device has the capacity to acquire signals from eight channels, with a 24-
bit analogue-to-digital resolution. The signal was sampled at a rate of 1000 samples 
per second. (Jiang et al. 2016.) The configuration was chosen to be monopolar 
because of the relatively small size of the facial muscles and the future aim to 
develop a clinically usable wearable sensor mask for the EMG measurement. The 
sensors were applied on the right side of the face. Five facial muscles were selected 
to measure expression during the experimental pain induction: corrugator supercilii, 
orbicularis oculi, levator labii superioris, zygomaticus major, and risorius. The 
muscles were chosen based on knowledge of corresponding Action Units and muscle 
basis. (Table 3.) The reference electrodes were set on the bony area behind the ear 
and on the frontalis muscle. 

Galvanic skin response (GSR). The skin conductivity using galvanic skin 
response was used to measure the sympathetic arousal during pain induction. The 
GSR measured the changes in sweat gland activity and it was captured by detecting 
the changes in electrical conductivity using Ag/AgCl electrodes. The electrodes 
were attached to the middle and index fingers. The device was made by the 
research group.  

Self-reported pain assessment tool. The self-reported pain was assessed in 
order to label to collected data with pain intensity labels. A visual horizontal, 11-
point (0−10) NRS-measurement was used in the study (Breivik et al., 2008). The 
use was introduced to the participants before the start of the data collection. The 
point of NRS 3 was emphasised as a threshold for meaningful pain. The 
participants were asked to report the experienced pain intensity on the NRS scale 
at the end of the pain exposure but these reports were not used in the analysis in 
the current study.   

Instruments for experimental pain inducement (Papers II and III) 

Transcutaneous electrical nerve stimulation (TENS). The transcutaneous 
electrical nerve stimulation device (TENS, Sanitas, Hans Dinlage GmbH, Germany) 
was used to induce a painful electrical stimulus. A pre-installed program with pulse 
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width of 250 μs and the frequency of 100 Hz was chosen after pretesting the device. 
The TENS output was manually increased by the study nurse every three seconds 
from level 0 to a level, until the participant reported intolerable sensation or reached 
the maximum level of 50 (peak to peak voltage 2V per level at 500 Ohm). The 
electrical stimulus was induced on the fingertip of the forth finger. 

Heating element. The heating element used in the study was developed by the 
research group. The heating element had a round metal contact surface with 3 cm 
diameter. The temperature rose by 1°C every three seconds until it reached 45°C, 
and then continued to increase by 1°C every five seconds until it reached a 
temperature of 52°C. The heat pain was induced on the inner arm of the participant. 
A cold pad was applied to the skin after removing the heating element to cool down 
the skin and avoid burns. 

Procedures (Papers II and III) 

The participants sat in an armchair during the data collection. The preliminaries 
included cleaning of the skin under the electrodes, and attaching electrodes and the 
Bioharness belt. The stimulus started from a non-painful level and rose constantly 
as prescribed. The participants were informed to press a signalling button first time 
when the sensation started to feel painful (NRS 3−4), and again, when the pain felt 
intolerable, and participant wanted to stop the test. Each participant had four pain 
tests; two times in each pain inducement method. The order of the pain inducement 
methods and sites were randomised to avoid the order bias. A baseline period was 
recorded before testing. The participants were instructed to avoid talking during 
the pain inducement and measurements. The procedures are described in detail in 
Papers II and III, and the parameters and data collection methods are presented in 
Table 6. 
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Table 6. The parameters and methods used in data collection in sub-studies II and III. 

PARAMETER  METHOD  DATA COLLECTION  

Electrical potential of the facial 
muscles associated with the 
expression of pain (corrugator 
supercilii, levator labii 
superioris, orbicuralis oculi, 
zygomaticus major and 
risorius) 

Surface electromyography 
(EMG) 
Self-developed device  
 

Surface sensors applied with 
monopolar configuration on 
the right side of the face (pre-
gelled H124SG Ag/AgCl 
sensors size 30 mm × 24 mm) 

Skin conductivity  Galvanic skin response (GSR) 
Self-developed device  

Sensors attached to the 
middle and index fingers 
opposite site to the pain 
exposure  

Respiration rate (RR) 
Heart rate (HR) 

Electrocardiography (ECG)  
Bioharness 3 

Sensors attached to the belt 
worn around the chest by a 
participant 

Self-reported pain threshold 
and tolerance  

Visual horizontal numeric 
rating scale (NRS) 

Collected in two time points: 1) 
when the stimulus reaches 
painful sensation (threshold) 
and 2) when the pain intensity 
reached intolerable level (pain 
tolerance) 

Focus group interviews (Paper IV) 

In Sub-study IV, focus group interviews (n=5) were conducted in May 2019. Two 
researchers and four participants attended each focus group. One researcher was 
responsible for conducting of the interviews and the other researcher simultaneously 
took notes and handled the technical recording. The participants' background 
information (age and work experience in ICU) was collected with a form at the 
beginning of the interview. The interviews were structured around three themes 1) 
the challenges faced by nurses in assessing the pain of patients who are unable to 
communicate 2) future visions for pain assessment technology, and 3) evaluation of 
the concept of the Smart Pain Assessment tool. The Smart Pain Assessment tool 
concept was introduced in the focus groups for an evaluation of the visual illustration 
and verbal description. The interviews were audio-recorded and transcribed. The 
interviews lasted from 42 to 54 minutes. The saturation of the data was assessed 
initially during the data collection process using the notes and the preliminary coding 
of the data. 
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4.5.3 Data analysis 

Analysis of the bio-signal data (Papers II and III) 

The raw data included the physiological HR, RR and GSR data and EMG data from 
facial muscles. The signal data was first preprossessed and standardised. The pain 
labels were applied and the parameters and their correlations were statistically tested 
before classification. The prediction models were verified before the final output as 
a prediction of pain intensity. The data analysis was done by two members of the 
research group with expertise in data analytics and machine learning. (Figure 4.) 

 
Figure 4. The data analysis process in Sub-studies II and III. 

The input was the raw biosignal data collected from multiple data sources 
during the four pain inductions in each study participants.  

Preprosessing and feature extraction. The signal processing was done with the 
MATLAB programming platform in Sub-studies II and III. The preprossessing 
included the elimination of noise and verification of validity of the collected data. 
The noise in the data was caused by movement artefacts, drift in low frequencies at 
the baseline and electrical pulses of the TENS device. In Sub-study II, after the 
validation check, the physiological signals were standardized and the 13-
dimensional parameter matrix described in details in Paper II. In Sub-study III, the 
facial muscle signals were standardised, recomposed and downsampled from1000-
Hz to1-Hz features leading to ten features with root mean square (RMS) and a wave 
form length (WL). 

Data labelling was done to allow exploration of the collected parameters at 
different pain intensity levels. In Sub-study II, the labels were the baseline before the 
start of the pain induction (t0−30sec), “no pain” period after the stimulus start (t0), 
“mild pain” period until the pain threshold (t1) and “moderate/severe pain” period 
until the pain tolerance (t2). In Sub-study III the correspondent test periods were 
labelled using the timepoints of the stimulus start (t1), subject-reported pain 
threshold (t2), and pain tolerance (t3). Sub-study III aimed for closer exploration of 
the pain intensity during the test periods and the test periods were divided into four 
shorter period labels P1–P4. The test period P0 was set to the baseline for the 30-
second period preceding the start of pain induction.  
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Statistical analysis. Before the classification, the parameters were tested 
statistically to determine the strongest parameters to be used in the models. In Sub-
study II, a correlation analysis was done with Pearson’s linear correlation 
coefficients between each standardized parameter and the pain intensity labels. The 
data analysis in Sub-study III was done using a Python (2.7.14 and 3.6.3) and 
included a pair-wise comparison with a Wilcoxon signed-rank test.  

Classification. An Artificial neural network algorithm (ANN) was used in Sub-
study II to classify the pain labels from the input features. The parameters of the 
matrices were used as the input and the three pain intensity labels as the output. The 
architecture of the model is presented in details in Paper II, figure 4.  The receiver 
operating characteristic (ROC) curve was used for each classification. The area 
under the ROC curve (AUC) was evaluated in addition to the average accuracy to 
present the performance of the classification (Hanley & McNeil, 1982). The true 
positive rate (TPR) was used for the evaluation of the proportion of correct 
identification of each pain intensity level. In Sub-study III, a supervised machine 
learning method k-Nearest Neighbour (kNN) was applied. kNN is a basic supervised 
machine learning algorithm for classification tasks that identifies the k nearest data 
points in the training set based on some similarity metric and assigns the new point 
the most common class (LaRose et al, 2014). The self-reported pain threshold and 
tolerance were used to detect the pain intensities in the three labels. As a result, the 
concordance index (c-index) was used to calculate the concordance between the real 
ordinal outcomes and model predictions. The c-index is a measure to show how well 
a predictive model can distinguish between individuals who experience an event and 
those who do not, ranging from 0.5 (random result) to 1.0 (perfect prediction) 
(Longato et al., 2020). 

Evaluation. In Sub-study II, a Leave-one-subject-out cross-validation was done 
as part of the ANN classifier to see, how the method adapted to a fresh subject. In 
Sub-study III, nested cross-validation was used to ensure that the performance of the 
classifier was not the result of random variation, but that there was a real link 
between the input data and the labels. 

The output was a pain prediction at three pain intensity levels (no pain–mild 
pain–moderate/severe pain). 

The qualitative data analysis (Paper IV) 

In Sub-study IV, a qualitative data analysis was done using a deductive approach 
(Kyngäs & Kaakinen, 2020). The deductive analysis was based on the part of 
Rogers’s Diffusion of innovation theory describing the features of feasible 
innovation (Rogers, 1983). The theory was used to define those attributes of the 
technology that will influence its adoption by future users. These attributes include: 
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relative advantage - the extent to which users perceive benefits or improvements 
from adopting the innovation; compatibility - the extent to which the innovation is 
in line with the values, experiences and needs of the users; complexity - the difficulty 
of understanding and/or using the innovation; trialability - the extent to which and 
how the innovation can be tested or experimented with; observability - the extent to 
which the innovation produces visible and concrete benefits. (Rogers 1983.)  

Following the deductive analysis, data that did not fit the theory or did not 
describe the feasibility from a device perspective were analysed using an inductive 
approach (Graneheim & Lundman, 2004). The inductive analysis was done to cover 
such topics that was not covered in the deductive analysis using the Diffusion of 
Innovation theory as a framework. It was proceeded in an iterative process in which 
initial expressions were condensed and coded. The codes were classified into 
subcategories and by abstracting further to the main categories. The codes were 
reviewed by the other members of the research group and the codes as well as the 
categories were revised several times to reach their final form.  

4.6 Ethical considerations 

Research integrity 

The research integrity was established by following the guidelines for responsible 
conduct of research and procedures for handling allegations of misconduct in Finland 
(TENK, 2023). The clinical studies were subject to ethical review and the relevant 
research permissions were obtained. For reporting of the studies, we used the 
relevant guidelines according to the Enhancing the QUAlity and Transparency Of 
health Research (The EQUATOR Network). When defining the authorship of the 
publications, we followed the Vancouver recommendations of the authorship by the 
International Committee of Medical Journal Editors (ICMJE, 2023). The data from 
the clinical studies was kept confidential in the Seafile, which is a cloud storage 
maintained by the university on its own server. Only authorised members of the 
research team had access to the data. The data were pseudonymised and kept separate 
from the identification data of the participants. Data from the sub-studies will be kept 
for the period specified in the study plan and destroyed in a secure manner. 

Ethical considerations in experimental pain research 

In Sub-studies II and III, we induced experimental pain in the participants, which 
requires the researcher to be particularly careful about the ethics of the study. The 
ethical considerations were reviewed using the Ethical Guidelines for Pain Research 
in Humans by the International Association for Study of Pain (International 
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Association for Study of Pain, 2021). The guidelines were realised in the study as 
follows:  

The study protocol review and approval by an independent and expert 
human research committee. The protocol of Sub-study II and III was approved by 
the Ethics Committee of the Hospital District of South West Finland 
(ETMK:83/1801/2015) and medical device research was reported to the National 
Supervisory Authority for Welfare and Health in compliance with the relevant 
procedures at that time. As some of the devices used in the study were not CE 
marked, a separate report on their use and characteristics was made as an annex to 
the application for the ethical review.  

The participants right to informed consent and information on the 
objectives and procedures. The participants received both oral and written 
information on the study and an opportunity to ask questions and to discuss with the 
researcher before signing a written informed consent. The participants were aware 
about the aim and methods of the study and possible risks related. They were also 
aware that there was no direct benefit to the participants. The study was carried out 
by individuals trained in health care. A safe and confidential research environment 
was created and each participant was treated as an individual and on an equal basis 
to support the psychological wellbeing during the study. The participants were aware 
that they could withdraw their participation at any time. The study was discontinued 
if the researcher thought it would be in the best interest of the participant. An 
anaesthesiologist was available for consultation in case of adverse events during the 
data collection phase. Unexpected effects in the data collection were recorded and 
the data collection practices reviewed in cases where adverse effects were 
experienced by the research group. 

Vulnerable subjects in pain research. The Smart Pain Assessment tool 
development study aims to develop a clinically applicable pain assessment method 
for critically ill patients who are unable to communicate verbally or by other means. 
Patients who are unable to communicate are considered to be a vulnerable group as 
their pain might stay unrecognised or can be under- or over-treated (Herr et al., 
2019a). The current definition of pain by IASP is followed by six notes, one of which 
is to clarify that verbal communication is only one form of pain expression and that 
the possibility of pain should be considered for all living beings (Raja et al., 2020). 
Experimental pain research balances the ethical principles of beneficence (duty to 
benefit) and nonmaleficence (duty not to harm). These same ethical principles also 
guide the overall aim of the study, which is to develop a new pain assessment tool, 
as they oblige healthcare professionals to provide the same quality of pain care and 
comfort to all patients, including vulnerable patients who are unable to communicate. 
(Herr et al., 2019a). In this study, the development of the instrument is at an early 
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stage and therefore the study used healthy volunteer patients to test the prototype 
device. 

Use of the stimulus in experimental pain research. The research must not in 
any way harm the subject physically or psychologically or offend their values. As 
this study requires the participants to be subjected to local and at most moderate pain, 
it was carried out with particular care and caution. The study followed the principle 
that participants should be able to interrupt the pain stimulus at any time and the 
amount and intensity of the painful stimuli should be kept to a minimum (Birnie et 
al., 2014). This was ensured by carefully pre-testing in advance by the research team 
of the mechanisms of pain induction, pain intensity regulation and related 
measurement used in the study. Both stimuli had predefined safety limits that were 
followed. The sample size of the study was kept as small as possible for ethical 
reasons, that is so as to provide the necessary research data, but avoid causing 
unnecessary pain. 

Ethical considerations on the focus group study 

Sub-study IV was approved by the Ethics Committee of the University of Turku 
(Statement nr.7/2019) and was subject to a request for research permission from the 
hospital organisation (TP2/002/19) where it was carried out. The participants 
received both verbal and written information about the study before signing a written 
informed consent. The participants were aware that they were free to withdraw from 
the study at any stage. The focus group interview topic was non-sensitive and 
focused on the use of technology in nursing and nursing practice in pain 
management. Participants were recruited through the ward contact person, who 
disseminated information about the study to the ward nurses. Participation in the 
study was voluntary and those interested expressed their interest in taking part to the 
contact person. Before informed consent was obtained, participants were given time 
to familiarise themselves with the written study information material. They had the 
opportunity to ask questions about the process and purpose of the study.  

The interview was designed so as not to burden the participants more than 
necessary. The focus groups were conducted during the work shift, as work 
arrangements allowed, and lasted under 60 minutes. The moderation of the focus 
group interview focused on ensuring that everyone had an equal opportunity to 
participate in the discussion, but also considered the possibility for participants to 
opt out of the discussion if they wished (Sim & Waterfield, 2019). In the final 
research report, care was taken to ensure that none of the participants could be 
identified as the quotes were reported at focus group level.  
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5 Results 

In this chapter, the results of the study are presented based on the phases of the 
medical device development framework and the study aims. First, the results from 
the initiation Phase I (Paper I) provide a theoretical background of the technology 
used for basic nursing care. Subsequently, the results from the formulation Phase II 
present the findings from the testing (Papers II and III) and evaluation (Paper IV) of 
the Smart Pain Assessment tool concept.  

5.1 Possibilities of the Internet of things technology 
in the initiation Phase I (Paper I) 

The results of the scoping review were part of the scientific groundwork done during 
the initiation Phase of the development work for the Smart Pain Assessment tool. In 
the scoping review, 62 eligible papers were included; these papers were published 
between the years 2008−2016 and presented technological development and testing 
of innovations using IoT targeted to basic nursing care in hospital environment. The 
majority of the research was published as proceedings of technological conferences. 
The methodologies in the included studies were diverse: the major of the studies 
were concerned with testing the usability and feasibility of early designs. There were 
no trials with comparisons or randomised study designs.  

The innovations were classified using activities of the basic nursing care 
according to a model developed for basic nursing care in electronic health records 
by Englebright et al. (2014). All together 70 basic nursing care topics were found. 
These were further classified into four activities in basic nursing care: 1) 
comprehensive assessment including baseline assessments of patients, 2) periodical 
clinical reassessment including regular assessments throughout the hospitalisation, 
3) activities of daily living consist of the patient’s basic physical needs, and 4) care 
management including coordination of activities in care team (Englebright et al., 
2014). (Table 7.) Especially the vital signs were used in various ways; mostly the 
vital signs were used to monitor the patients’ physiological condition, but they were 
broadly used in innovations targeted to neonatal monitoring, sleep and rest detection, 
pain detection and activity monitoring. Other areas with several innovations included 
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falls monitoring and prevention, and hygiene monitoring in the hospital 
environment. 

Only one innovation was found connected to pain assessment. An IoT based pain 
and discomfort detection system for new-borns collects both physiological and 
behavioural parameters connected to pain in new-borns: heart rate, respiratory rate, 
blood oxygen level, blood pressure, body and head movements, frowning, lips 
movement, eyes open/closed, sleeping periods, and vocalisation. The proposed 
system includes data collection with sensors, web camera video and audio processing 
attached to an incubator, a system for processing and analysing the pain and 
discomfort and a log of the information for health professionals and parents. 
(Martínez-Ballesté et al., 2014.) However, the paper was a methodological proposal 
of the system published in a conference proceeding without clinical testing.  

Table 7. The topics of IoT enabled innovations in basic nursing care. 

BASIC NURSING CARE AREAS TOPICS  (n) 

PERIODICAL CLINICAL 
REASSESSMENT  
 

Physiological monitoring  13 

Neonatal monitoring 2 

Pain and discomfort 1 

Medication 6 

 Sleep and rest detection 6 

ACTIVITIES OF DAILY LIVING Secretion 7 

Fall detection 10 

Activity monitoring 3 

Decision support system 6 

CARE MANAGEMENT Tracking (personnel, patients, devices) 3 

Nurse calling system 3 

Hygiene 9 

COMPREHENSIVE ASSESSMENT 
 

Comfort and play 1 

 
The studies were analysed to determine which layers of the IoT technology 

architecture they described in relation to basic nursing care. The majority of the 
studies (49/62) described the development of the perception layer, meaning the 
development of sensors and other data sources, and the validation of data collection 
methods. In addition, the cloud layer development was described in 44/62 of the 
studies including the machine learning models used and their validation. The 
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development and function of the gateway layer was less seldom described. The 
results of the analysis are presented in details in paper I, Table 2. 

The innovations targeted to basic nursing care using IoT used multiple data 
sources. (Figure 5.) In the majority of the innovations, the data were collected from 
the patients with non-invasive and wireless sensors.  Ambient sensors collected data 
from the environment, such as pressure sensors in the mattress to detect real-time 
sleeping patterns and physical activity during the hospitalisation (Liu & Hsu, 2013). 
Moreover, some of the vital sign monitoring was done by measuring parameters from 
the environment; for example, the breathing rate and pattern were measured with a 
paper-based sensor attached to breathing mask from the changes in humidity caused 
by cycles of inhalation and exhalation (Güder et al., 2016). Another area where the 
data was collected from the environment was secretion; an intelligent system based 
on IoT for detection of continence was proposed by Wai et al. (2010), collecting data 
from diapers with a wetness sensor. Nurses or other health professionals were less 
frequently used as sources of information. Innovations to improve hand hygiene 
included the collection of positioning data on caregivers entering and leaving patient 
rooms and the enforcement of hand disinfection (Baslyman et al., 2015). An example 
of an innovation that combined location data collected from nurses and patients is 
the proposal by Kanan and Elhassan (2015) for a new type of nurse call system that 
sends a call from the patient to the nurse who is available and closest to the patient.  
Methods that collect data from all three analysed sources (patient, nurse and 
environment) were the most common innovations in two areas: the intelligent 
decision support systems and the tracking of patients, staff and equipment. An 
example of such IoT-based innovation is the intelligent, context-aware decision 
support system proposed by Manate et al. (2014). This combines location-based and 
patient physiological and psychological status monitoring into seamless healthcare 
services in a hospital environment. 
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Figure 5. The IoT based innovations in basic nursing care described together with the IoT 

architecture. (Adapted from Paper I) 

5.2 The concept and feasibility of the Smart Pain 
Assessment tool in the formulation Phase II 
(Papers II–IV) 

The feasibility of the concept of the Smart Pain Assessment tool was first established 
by testing the prototype of the facial EMG device and by measuring the chosen 
physiological parameters with commercial and research technology. The collected 
sample used in Sub-studies II and III consisted of 31 working-aged healthy 
participants (15 males and 16 females) 21–51years (33 ± 9.0 years). In Sub-study II, 
the data of 30 participants (15 males and 15 females) were valid for the analysis. In 
Sub-study III the facial muscle EMG data from the 31 participants was included (15 
males and 16 females). As each participant had four tests, the number of the test in 
the sub-studies were 116 and 120, respectively. The average length of one test was 
108 s (SD 39). In these results, all the four tests (two electrical and two heat) were 
analysed together to be in line with the aim to build a general model for acute pain 
intensity prediction.  
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5.2.1 The validity of the parameters for automated pain 
detection (Papers II and III) 

The validity of the parameters selected for pain detection was examined in relation 
to self-reported pain, which was reported as the pain threshold and tolerance during 
pain induction. Pain intensity was examined using gradually increasing stimulus 
intensity and time points t0-t3 (stimulus onset/pain threshold/pain tolerance). In Sub-
study II, pain was classified into three categories: no pain (baseline) mild pain 
(before pain threshold), and moderate/severe pain (before pain tolerance).  

In Sub-study II, Pearson's linear correlation coefficients were used for 
correlation analysis between the parameters and the pain intensity level. The 
correlation of the parameters was observed over both physiological and facial muscle 
data, using the two preprocessed matrices, the median matrix and the parameter 
matrix separately. The best three parameters for prediction were GSR, HR and RR. 
GSR and HR were correlated positively to the pain intensity level and RR was 
correlated negatively, meaning the first two increased and the last decreased as the 
pain intensity increased. In the correlation analysis of the facial muscle parameters, 
the facial muscles features had lower values than the physiological parameters GSR, 
HR and RR. The strongest pain-related facial muscle features were the medians of 
both the corrugator supercilii parameters. The parameters GSR, HR, BR and the two 
corrugator supercilii parameters of the median matrix correlate more strongly with 
the level of pain intensity than in the parametric matrix (described in more details in 
Paper II, Figure 6). 

In Sub-study III, the aim was to further investigate the individual role of each 
feature derived from the five facial muscles in order to develop a feasible and 
clinically useful EMG measurement as an integral component of the device. The 
three pain intensities were assessed in more detail and they were subdivided into four 
time periods: mild pain start (P1), mild pain end (P2), moderate/severe pain start (P3) 
and moderate/severe pain end (P4) (see Paper III, p.15, Figure 2). The EMG 
parameters were observed as features of wave length (WL) and the root mean square 
(RMS) and the correlation analysis was done over the pain periods P1−P4. The 
activation of each facial muscle feature during test periods was explored using 
pairwise comparisons of EMG features. The change in activation of all five muscles 
tested was statistically significant when comparing the P2 and P3 periods, which 
represent the time when the participant reported the pain threshold. When comparing 
the five muscles, corrugator supercilii activity increased steadily and most strongly 
between the periods and were the only ones to show a statistically significant 
difference (p<0.05) throughout the test from the beginning of the stimulus to the pain 
tolerance. The increase was statistically significant in all test periods, except for the 
RMS value during moderate/severe pain.  The increase in levator labii activity was 
significant in all tests comparing the periods before and after the pain threshold. The 
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results for orbicularis oculi activation were similar to those for levator labii, but the 
feature RMS was not statistically significant when comparing periods P1 and P4. 
The p-values for Wilcoxon signed-rank statistics are shown in Table 8. 

Table 8.  Pairwise comparison of both features (RMS and WL) of each tested muscles across the 
time periods P1–P4. (Adapted from Paper III) 

MUSCLE FEATURE P-VALUE DURING TIME PERIODS  

  P1 vs. 
P2 

P1 vs. 
P3 

P1 vs. 
P4 

P2 vs. 
P3 

P2 vs. 
P4 

P3 vs. 
P4 

CORRUGATOR 
SUPERCILII 

RMS 0.013 <0.001 <0.001 <0.001 <0.001 0.088 

 WL 0.015 <0.001 <0.001 <0.001 <0.001 0.046 

ORBICULARIS 
OCULI 

RMS 0.367 0.018 0.057 <0.001 <0.001 0.422 

 WL 0.422 0.010 0.008 <0.001 <0.001 0.953 

LEVATOR LABII  RMS 0.829 0.001 0.015 <0.001 0.001 0.493 

 WL 0.984 0.003 0.022 <0.001 0.001 0.784 

ZYGOMATICUS 
MAJOR 

RMS 0.085 0.290 0.570 <0.001 0.023 0.433 

 WL 0.164 0.136 0.583 0.001 0.024 0.357 

RISORIUS RMS 0.638 0.023 0.088 <0.001 0.003 0.597 

 WL 0.597 0.048 0.071 0.002 0.004 0.456 
RMS=root mean square WL= wave form length 

5.2.2 The accuracy of the pain intensity classifications 
(Papers II and III) 

The pain prediction model in Sub-study II was done using an Artificial Neural 
Networks (ANN) classifier. The model was tested separately with the median and 
the parameter matrix (Table 9). The average classification accuracy of the median 
matrix was 83.3% and 70.6% in parameter matrix. The results were viewed also as 
true positive rates (TPR) which were in line with the accuracy of both matrixes. The 
analysis revealed more modest values in the mild pain class, especially in the 
parametric matrix. The ROC curves from the overall classification results are shown 
in article II, Figure 7. The AUC values of the median matrix were 0.90 and over in 
all pain intensity classes. The AUC of the parameter matrix were also good, with a 
lower value in the mild pain class.  

Because of its lower level of noise and fluctuations, the median matrix 
classification outperformed the parameter matrix classification in terms of 
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classification accuracy. Classification using the parameter matrix were still closer to 
the real-time pain intensity monitoring simulation because the statistical median of 
each data section was not pre-known. 

Table 8. The accuracy and sensitivity of the pain intensity prediction. (Adapted from Paper II) 

 MEDIAN MATRIX 
CLASSIFICATION 

PARAMETER MATRIX 
CLASSIFICATION 

DATA SIZE 348.0 12509.0 

AVERAGE ACCURACY (%) 83.3 70.6 

TPR OF NO PAIN (%) 86.2 70.9 

TPR OF MILD PAIN (%) 78.4 65.6 

TPR OF MODERATE/SEVERE PAIN (%) 85.3 70.6 

   

AUC OF NO PAIN 0.96 0.91 

AUC OF MILD PAIN 0.90 0.78 

AUC OF MODERATE/SEVERE PAIN 0.97 0.89 
TPR= True positive rate, AUC= Area under curve 

According to the results of the correlation analysis of Sub-study II, the 
physiological parameters HR, RR and BR were those most strongly associated with 
pain intensity. Thus, these parameters had the greatest influence on the classification 
performance. The role of facial muscles in the classification result was to be further 
investigated and in the next step in which all combinations of EMG parameters and 
their contribution to the classification were observed. The ANN classifiers were 
trained and tested for each parameter combination. Results showed that adding EMG 
features to the classifier improved overall performance. However, performance was 
affected by the approach used to add the parameters. In the median matrix, the best 
performance was achieved when all EMG parameters were added to the classifier, 
whereas in the parameter matrix, the AUC value tended to increase with increasing 
number of EMG parameters. 

In Sub-study III, the prediction model was done using the k-Nearest Neighbour 
algorithm. The selection of most feasible features for the prediction model was done 
using a meta learning model. The meta learning model tested all possible 
combination of the ten facial features. A final prediction model was created using 
the waveform length of corrugator supercilii and levator labii, which were identified 
as the two most prominent features of pain. The model's performance yielded a c-
index of 0.64 which was a modest result but above a value for random prediction.  
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In the validation of the pain intensity models, the individual differences and the 
applicability of the model to a new subject were tested using leave-one-subject out 
cross validation in both sub-studies. The classifiers were trained using data from all 
of the study subjects but one and then tested with the one subject through the data. 
The results show, that with the ANN classifier in Sub-study II, for the majority of 
subjects, the pain intensity was predictable with an average accuracy of more than 
70%, and only for four subjects was the accuracy under 50%, while in Sub-study III, 
the results were more modest, as eight subjects had a c-index > 0.70 and six subject 
c-index values of 0.43–0.55. 

5.2.3 Users’ evaluations of the feasibility the Smart Pain 
Assessment tool concept (Paper IV) 

In Sub-study IV, future users were involved in the Smart Pain Assessment tool 
development. The participants (n=20) in this phase of the study were all registered 
nurses working in critical care, aged 25−57 years (median 35 years), 85% of whom 
(n=17) were female. The average work experience of the participants in an ICU was 
10.1 years (range 1−30 years). 

The attributes of feasible smart technology in pain assessment of critically 
ill patients 

Relative Advantage. The participants identified several potential advantages in 
using Smart Pain Assessment tool for critically ill patients but at the same time it 
was identified as an additional device not related to the support of patients' vital 
functions. The advantages included the optimisation of analgesic use, personalised 
pain management and possibility learning from earlier pain periods. Participants 
described that pain medication is frequently administered on a regular and predefined 
basis, which is often not individualised and situation-specific. The Smart Pain 
Assessment tool could be used to optimise the use of analgesics, as the effect of 
analgesics would be easier to detect through continuous pain monitoring. The 
continuous and more accurate pain assessment enabled by the tool could help to find 
ways to understand individual needs.  

Compatibility. The Smart Pain Assessment tool was identified to be compatible 
with the currently used pain assessment methods. The current methods were 
described as including the interpretation of changes in pain-related behaviour and 
physiological parameters. The detection of the facial changes (expression, pallor, 
sweating) was an important part of the pain interpretation. Even if many of the 
detected symptoms are not specific to pain, some of the participants questioned the 
need for an automated detection device. Moreover, ethical issues related to the use 
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of objective methods for pain assessment ware raised. The participants were 
concerned about the possible misuse of the Smart Pain Assessment tool in situations 
where the tool could challenge the patient's subjective experience of pain. However, 
pain assessment using an objective measure could also contribute to equal pain 
management for all patients. 

Complexity. In terms of complexity, the participants identified several features 
that could hinder the use of the Smart Pain Assessment tool. Wearable sensors and 
wireless solutions were considered user-friendly but not as they were attached to the 
face. Skin sensitiveness, skin care, potential skin pressure and sensor attachment 
were also raised. Furthermore, it was also considered that the Smart Pain Assessment 
tool should be adjustable for individual patients. Participants questioned whether 
fewer sensors could be used to collect pain-related parameters if not all the sensors 
could be used. 

Observability. Participants described that the results of pain assessment often 
go undocumented. The results of the pain management process could be observable 
to others through automated documentation, a clear pain score scale and automated 
reporting. Specifically, a dedicated module for pain scoring was proposed in the 
existing patient monitoring screen, as one of the vital signs. This would also ensure 
a smooth flow of information between those involved in the patient's care and the 
family members. One possibility to make the presence of pain visible to care staff is 
the possibility of automated notifications in the smart system.  

Trialability. Trialability refers to the possibility of testing an innovation before 
its wider adoption. Participants' perceptions of their involvement in the process of 
developing clinical care devices were mainly positive. However, they did stress 
though that testing technology in their daily work is burdensome. They stressed that 
involvement in technology development should be part of their normal work and 
they emphasised their role as nursing experts in equipment development. 
Implementation of technology developed in collaboration with nurses as the users 
was considered a more straightforward process.  
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Smart technology to meet users’ need and perceived challenges 

Three main categories were formed to describe the perceptions of critical care nurses 
use of smart technology for pain assessment in critically ill patients who are unable 
to communicate; integration of scattered technologies, need for transparent and 
reliable technology, and smart technology as a decision support. The participants 
described that nurses in critical care assess pain on a continuous basis but they found 
accurate and systematic pain assessment challenging. Technology was perceived as 
both useful and a burden on nursing care.  

Integration of scattered technologies. The nurses' working environment in ICUs 
is highly technological, and the current technology was described as scattered rather 
than integrated. It was suggested that new devices should to be integrated into the 
existing patient monitoring and information system, which would also make it easier 
to use. Integration would also allow access and use of the existing patient data. 

Need for transparent and reliable technology. According to participants, it is 
important to be able to assess the reliability of the data processing, which is done 
automatically by smart technology. Nurses constantly monitor the condition and 
well-being of ICU patients using monitors, but they also make judgements about the 
accuracy of the information provided by the monitors.  

Smart technology as a decision support. Technology and the provided 
information are used as a nursing tool, but nurses also have their nursing expertise. 
Assessing pain in patients who are not able to communicate, requires various patient 
observation skills. For pain management, the participants mostly relied on their own 
observations.  Participants described their role in pain management as patient 
advocates and saw there was sometimes a debate between nurses and physicians 
about pain management goals. Technology could strengthen the role of nurses by 
giving them the means to justify their decisions regarding pain management.  

5.3 Summary of the main results 
In the current study, the preliminary testing and evaluation of the concept of the 
Smart Pain Assessment tool was conducted. From a technical perspective, an IoT 
based system was tested using experimental pain. Additionally, the users’ needs were 
assessed and preliminary input for the design was obtained using focus groups. The 
summary of the main results is presented in Figure 6. 
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Figure 6. Summary of the main results of Sub-studies I−IV. 
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6 Discussion 

The development of a medical device is ready to move forward in the process as the 
goals of Phases I and II are reached: These goals include the concept being verified 
based on the user´s needs and design input, confirmation that it offers customer 
value, and the technical feasibility is proven and optimised. In practice, the various 
aspects of the development might be found in the different development phases. 
(Pietzsch et al., 2009.) The degree of development achieved in this study and the 
results are discussed in this present chapter as well as the validity and reliability of 
the results. 

6.1 Discussion of the results 

Bringing the IoT technology into basic nursing care 

In Sub-study I, the applicability and potential of the technical paradigm of the IoT in 
basic nursing care were examined. The study was conducted in 2016, when the IoT 
as a technological paradigm was still novel in many sectors. As a phenomenon, IoT 
is said to have started in 2008, as the number of "things or objects" exceeded the 
number of people connected to the internet. (Cisco Internet Business Solutions 
Group, 2011). As the literature review only focused on the hospital environment and 
basic nursing care, many IoT-based innovations for remote monitoring were not 
included in the study. The innovations discovered covered a diverse range of nursing 
topics, although the study found limited innovations supporting basic nursing care. 
Most of the innovations were related to monitoring patient conditions and activities, 
but some innovations related to care delivery were also identified. 

Only one study was found describing a system based on IoT technology for 
assessing pain and discomfort. The system was developed for new-borns and was 
built into an incubator, which was used to obtain heterogeneous data from multiple 
sources (Martínez-Ballesté et al., 2014). This is an example of an IoT-enabled system 
that allows the use of diverse sensing technologies and the collection of a wide range 
of data from patients and the care environment. Assessment of subjective symptoms 
often remains a challenge, although modern technological advances allow for 
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increasingly objective and accurate patient monitoring.  Assessment is needed to 
alleviate symptoms, which in turn is essential for the overall well-being of the patient 
and is associated with a number of care related outcomes (Chanques et al., 2015; 
Payen et al., 2009). A review by Argüello Prada (2020) on the use of IoT in pain 
assessment and management supports the view that the development of such systems 
is still limited and at an early stage. The studies have mainly focused on the 
development of mobile phone-based pain assessment applications rather than on the 
development of systems using multimodal physiological data collection and cloud-
based computing for data processing and storage. 

The added value of IoT is based on fact that an increased amount of information 
and planning operations can be anticipated and it can be made more efficient by 
automating the work steps (Rault et al., 2017). However, the research on the 
effectiveness of the phenomenon in terms of basic nursing care has not yet been 
carried out. Furthermore, using IoT technology in healthcare poses a number of 
challenges related to security, privacy as well as education which have to be 
addressed before implementation. Our findings show that research and development 
work on novel technologies for basic care work was concentrated in the fields of 
technology and engineering and multidisciplinary aspects were missing. Several 
studies call for strengthening the role of nursing in care technology development 
(Matinolli et al., 2020; Archibald & Barnard, 2018; Glasgow et al., 2018; Castner et 
al., 2016). In order to shift from a reactive approach to a more proactive stance, the 
nursing profession must be proactive in anticipating the impact of technology on 
care. This involves exerting their influence over how technology affects nursing care. 
(Archibald & Barnard, 2018.) 

The proof of the Smart Pain Assessment tool concept 

The exploratory testing was done at an early stage of development to assess the initial 
validity of the concept of the Smart Pain Assessment tool for automated pain 
detection. A prototype was established to collect easily accessible physiological 
variables and facial muscle activation using both commercial and research 
technologies. The results of the physiological variables tested in this study showed 
that galvanic skin response, respiratory rate and heart rate were associated with 
experimentally induced progressively increasing pain and these could be feasible 
variables for the Smart Pain Assessment tool. The strongest single variable was the 
galvanic skin response, that has also been found to be a valid variable in response to 
acute pain in clinical settings (Aqajari et al., 2021; Aslanidis et al., 2018; Susam et 
al., 2018). One of the major concerns with the use of a GSR measurement is that it 
mainly measures emotional arousal and does not indicate anything about its context; 
a high GRS value can therefore indicate both a positive or negative experience. Its 
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use among other variables is recommended, as they can provide information about 
what caused the emotional reaction. (Gaffey and Wirth 2014.)  Another interesting 
finding is that the respiratory rate decreased during pain exposure, contrary to what 
has been previously observed in critically ill patients. This may be due to the 
activation of the parasympathetic nervous system, particularly, when deeper 
breathing is used as a method of self-regulation (Joseph et al., 2022), which is 
possible in such test situations. However, this requires further clarification as part of 
the concept development work. To enhance the use of heart rate as a variable, the 
inclusion of heart rate variability derived from ECG data could provide additional 
support, as it has shown promise in the analysis conducted of the same data (Jiang et 
al., 2017). 

While no single physiological parameter is reliable for assessing pain (Devlin et 
al., 2018; Shahiri & Gélinas, 2023), the variables were combined to a multimodal 
pain prediction model. The model reached to good average result, as it was able to 
classify pain with a 83% accuracy, at best, in three pain intensities. The use of 
multimodal physiological variables to assess pain in critically ill patients also looks 
promising, as Gelinas et al. (2020) have tested the Nociception Level (NOL) index 
for pain assessment in critically ill patients with promising results. The NOL index 
includes several variables, such as heart rate, heart rate variability, photo-
plethysmography pulse wave amplitude, skin conductance and temperature. These 
variables are combined for index using a nonlinear Random Forest regression 
technique. (Ben-Israel et al., 2013.) The multimodality of the concept was also 
supported by the result of the ANN classifier, as the performance of the classification 
was stronger as more features were added to the model. However, contradictory 
results are also presented: a review by Frisch et al. (2020) shows that at present the 
multimodal methods are not superior to unimodal pain detection methods. 

Facial muscle EMG is an example of a psychophysiological measure used to 
assess psychological processes and behaviour correlated with bodily physiological 
processes (Gaffey & Wirth, 2014). The results on the classification of the pain-
related EMG features of the facial muscles is modest, which may be partly due to 
the data collection and prototype related issues, this is discussed in more details in 
Paper III, chapter 6.2. However, measuring the facial expression with a continuous 
EMG is one of the core ideas behind the Smart Pain Assessment innovation, as facial 
muscle activity reflects pain behavior, and distinguishes the device from simply 
measuring nociception. Pain and nociception are different phenomena and pain 
cannot be inferred from sensory neuronal activity alone (IASP, 2021). Unlike pain, 
nociception is not a subjective experience but the result of the physiological 
encoding and processing of a nociceptive stimulus (Ledowski, 2019).  

Five facial muscles were included in this study with aim to assess which muscles 
provide the most information about pain intensity. Using these results, the number 
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of muscles measured could be reduced and the method could be developed in a more 
clinically useful direction. Among the facial muscles, the corrugator supercilii 
exhibited the strongest association with pain, as it is linked to brow lowering. In 
addition, the levator labii, responsible for cheek raising and nose wrinkling, and the 
orbicularis oculi, responsible for eye narrowing, were also found to be connected to 
experimental pain. The results were promising as they were in line with previous 
results describing universal pain expressions (Prkachin and Solomon, 2008). As 
reported by Rahu et al. (2015), most changes in facial expression during pain in 
critically ill patients were localised to the upper part of the face, where also the 
muscles corrugator supercilii, levator labii superioris, and orbicularis oculi are 
located. Therefore, it might be advisable to develop a facial EMG sensor that covers 
only this portion of the face.  

The EMG method is non-invasive, but is generally considered unsuitable for 
clinical use. Pain expression interpretation in research using the EMG method is also 
still rare. Only Wolf et al. (2005) have reported a pilot study investigating the 
activation of nine facial muscles during experimental pain. Automated pain pattern 
recognition relies almost exclusively on video images, from which facial changes 
can be decoded by an AU-based frame by frame system. However, Kelati et al. 
(2022) have succeeded in building a pain prediction model with two facial muscles 
using the BioVid Heat Database. Facial muscles are small and located in layers and 
the anatomy of the face can be considered complex. A good knowledge of anatomy 
is therefore required to position the electrodes on the face in order to measure the 
correct muscles. (Tassinary et al., 1989.) 

The strength of the EMG method lies in its ability to detect the transient and 
subtle changes in facial expression. The results described in Sub-study II also 
indicate that changes in facial expressions is transient under continuous, increasing 
experimental pain, as changes in facial muscle activity were more clearly visible in 
the median matrix compared to the parametric matrix, which is closer to real-time 
detection of changes. Kelati et al. (2022) discussed the advances and limitations of 
surface EMG measurement, with a goal of building an IoT system to automated pain 
detection. They referred to the ability of continuous measurement to detect facial 
changes as a strength of the method. On the other hand, signal processing and 
analysis require specific skills, and movement and coupling can introduce artefacts 
into the data (Kelati et al., 2022). These issues should be addressed as the 
development of the Smart Pain Assessment tool continues. In addition, the EMG 
method may have several advantages in a clinical setting as it does not depend on 
factors such as patient posture or patient face orientation, unlike the camera-based 
automated pain detection systems (Nerella et al., 2021). However, these require 
further investigation and testing in a clinical setting. 
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Involving the users into the development process 

To strengthen the multidisciplinary connection in the development process, the 
critical care nurses, as the potential users of the Smart Pain Assessment tool were 
invited to evaluated the feasibility of the concept. Rogers’s Diffusion theory of 
innovation was used as a model to gain insight into the perceptions of critical care 
nurses of smart technology for pain assessment in the ICU environment. The theory 
allowed the examination of the characteristics of innovation, focusing on the 
observed innovation characteristics that increasingly drive further development in a 
user-centered model (Rogers, 1983). As a result, both the perceived benefits and 
challenges of the concept of the Smart Pain Assessment tool were identified. 

The main advances identified when using smart technology in pain assessment 
were connected to improve pain assessment which was linked to the optimisation of 
analgesics use and providing more personalised pain care for critically ill patients. 
This could be achieved by using a learning algorithm that could use the data from 
patients’ previous pain periods. Decision making in critical care is complex and 
influenced by the nursing assessment component (Aitken et al., 2009; Wysong, 
2014). The assessment of pain in sedated and mechanically ventilated patients is also 
complex: nurses need to analyse pain behaviour, interpret pain scores, make 
informed clinical decisions and distinguish between situations requiring analgesia 
and sedation (Gerber et al., 2015). In cases where patients cannot communicate their 
pain, nurses' ability to interpret pain-related changes becomes even more important. 
In the findings, participants expressed a need for a clear pain scoring system through 
technology, which could enhance current validated observational pain assessment 
scales. Although the participants identified the potential benefits of Smart Pain 
Assessment tool, it is currently not sufficiently accurate to provide a clear pain 
scoring system. While some studies have shown promising results in classifying pain 
intensities (Hassan et al., 2021), the best that can be achieved at present is pain 
detection rather than results that can provide a clear pain assessment. The first model 
developed to classify pain in intensive care patients was binary and used the CPOT 
scale to classify pain into two categories according to the presence of pain 
(Kobayashi et al, 2021). While future development may focus on more accurate 
classification models, the subjective nature of pain makes it difficult to model the 
pain experience using objective methods. 

The inductive analysis also revealed useful information about the possible use 
and design of the device. Critical care nurses were motivated in using smart 
technology for supporting pain assessment, but learning how to use new technology 
and attaching wearable electrodes to critically ill patients seemed burdensome and 
impractical from the perspective of clinical work. Participants recognised smart 
technology as an opportunity to utilise existing patient data in a novel manner, thus 
eliminating the need for separate devices. The study of Kobayashi et al. (2021) has 
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presented a similar approach, where a semi-automated model was built with data 
collected from critically ill patients, using the results of physiological measurements 
and other care-related data. Such an approach needs to be considered in particular in 
the development of the facial expression detection component which need further 
development in cooperation with clinical practitioners. 

In the results, participants pointed to the need for reliable technology with 
transparent data processing. Algorithms are frequently described as "black box" 
models, meaning that the logic and computations behind the resulting outputs are 
mysterious. It is uncommon for individuals who receive an algorithmic decision to 
have complete visibility into the data that was utilised to train or test the algorithm, 
as well as the specific data points that led to the decision. (Morley et al., 2020.) 
Transparency and the use of methods for explainable AI are prerequisites for the 
successful implementation for AI in healthcare (Bharatet al., 2023). 

Technology or AI itself has no morals or ethics (Einav & Ranzani, 2020; Morley 
et al., 2020). The ethics of health technology are ultimately determined by their 
users: when, how and for whom each technology is used (Einav & Ranzani, 2020). 
In the results from the focus groups, nurses raised ethical issues related to the use of 
smart technology. The first issue was the potential misuse of the smart technology 
in a situation where the patient is able to communicate and the pain assessment is 
inconsistent with patient's self-report. The Smart Pain Assessment tool is not relevant 
in situations, where the patient is conscious, fully oriented, and able to communicate 
verbally. The use of the device must be assessed on a case-by-case basis, considering 
the variability of the patient's mental status. Another issue identified concered the 
ethical principle that guides pain management, according to which pain should be 
assessed in all patients regardless of their ability to communicate (Herr et al., 2019b; 
Raja et al., 2020). Using an automated pain detection method could enable the 
detection of patients' pain in these cases and improve pain assessment in vulnerable 
patients.  

Critically ill patients experience a number of stressful situations during 
treatment: common experiences include pain, fear, anxiety, sleep deprivation, 
tension, inability to communicate, lack of control, nightmares, and loneliness. All 
these factors can increase the experience of pain according to the biopsychosocial 
framework (Raja et al. 2020). Symptom management and monitoring is an area of 
nursing practice that should be developed to improve patient outcomes. (Rotondi et 
al., 2002.) For the critically ill patients, technology and nurses' expertise are 
perceived as important because they sustain life functions and enable treatment. 
However, spiritual aspects such as compassion, encouragement, comforting, 
alleviating fear and creating safety are the most important aspects of nursing care 
that patients experienced as support. (Hofhuis et al., 2008.) Physiological and 
psychophysiological biosignals may be a window into how the human body behaves 
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under normal and pathological conditions. In the future, psychophysiological 
measurements and their integration into a multimodal model could promote system 
management by providing insight into the inner world of patients who are unable to 
communicate. 

6.2 Validity and reliability of the study 

6.2.1 Validity and reliability of the data collection 
In Sub-study I, a scoping review method was employed, which was suitable for the 
purpose of mapping the extent and content of research in IoT technology in nursing, 
as there was available literature with emerging evidence (Peters et al., 2015). The 
method does not usually include a quality assessment of the included reports 
(Colquhoun et al., 2014) but such an assessment could have been used to ensure the 
validity of the included studies. The majority of the included research papers were 
conference proceedings. Only those studies were included where the technology 
used was described at a sufficient level to allow its identification as an IoT system. 
The concept of the IoT is a relatively novel paradigm. The literature search was made 
across eight databases and was thus comprehensive, but the diversity of the subjects 
and disciplines resulted also in diversity in the used search terms and strategies. The 
literature search was not successful with the same search terms in all databases, and 
the search strategy had to be selected according to the database. This may have led 
to a loss of systematicity for some databases. Two reviewers were used in the 
literature selection phase, and their roles were defined according to their disciplinary 
expertise; one of the reviewers verified that the selected studies addressed the right 
technology and the other ensured that the research adequately addressed basic 
nursing care in a hospital setting.  

In Sub-study II, a cross-over design was used with four pain tests, two pain 
induction methods, and several instruments. The use of multiple technical devices to 
collect data may pose challenges in terms of reliability. However, the data collection 
was successful, as 116 pain tests (out of a possible 124) could be used in the analysis 
of the entire pain data in Sub-study II and 120 tests in Sub-study III in the facial 
muscle analysis. Using a cross-over design with several tests might help control the 
effect of individual psychological stress in the results. The weakness of the design 
was that painless control condition (non-painful stimulus) was not used. In addition, 
when a study participant is subjected to multiple interventions, there is a possibility 
of a carryover effect (Cleophas, 1993). Randomisation of the pain induction starting 
position was used to avoid to carryover effect in the analysis. 

The study protocol was carefully reviewed and tested several times before the 
data collection, first with the research team members and later with external subjects. 
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Data collection was carried out by a technician and two study nurses who took turns 
in collecting the data. Therefore, there may be some variation in the data collection 
procedures. The electrical stimulus was delivered using a pre-programmed program 
on the TENS unit, but the intensity was increased manually every three seconds. This 
may have led to inaccuracies in the timing of the gradually increasing stimulus. 
Experimental heat pain has several advantages in research because the spatial 
location, temperature and duration of the pain stimulus are well controlled (Birnie et 
al., 2014). The temperature of the thermal stimulus pain element was automatically 
increased, but the pressure of the thermal element on the skin was not standardised. 
Heat transfer to the skin is dependent on the pressure at which the heating element 
is applied to the skin because contact of the heating element with the skin also 
activates the concomitant non-nociceptors (Reddy et al., 2012).  

Due to the pilot nature of the study, the sample size was limited and constrained 
by the age range of the participants. The sample consisted of working-age volunteers, 
ranging from 21 to 51. The collected demographics included the age and sex but they 
were not used in the analysis. Facial expressions of pain have been found to remain 
unchanged even in older individuals, suggesting that facial expressions are valid 
measures across age groups (Kunz et al., 2008). However, ageing affects facial 
structure, and occurs in the facial bones, soft tissues and skin (Farkas et al., 2013). 
The age should be considered when using EMG to assess pain expression while 
muscle contraction amplitude and signal selectivity may be affected age (de la 
Barrera & Milner, 1994; Yun et al., 2014). Electrodes were attached by a designated 
researcher to each participant according to the instructions of the human 
electromyography (Fridlund & Cacioppo, 1986), but it cannot be ascertained 
whether the recorded muscle activities actually reflected the muscle to which the 
electrodes were to be attached or the adjacent muscle. The crosstalk effect is typical 
for surface EMG (Farina et al., 2004), especially if the muscles are small and the 
electrodes are close together, as was the case in the study. 

In Sub-study IV, the focus groups were conducted with semi-structured 
interviews. Two research team members were present for the data collection and they 
agreed beforehand on the division of tasks. One researcher led the conversation while 
the other took notes on the course of the interview and the outlines of the discussion. 
The notes were used to assess the saturation of data collection but not to reflect and 
verify the mutual understanding with the participants after the interview.  

6.2.2 Validity and reliability of the instruments 
Several instruments were used in Sub-studies II and III. The instruments were used 
for experimental pain induction (TENS device, heating element), self-reported pain 
assessment (NRS), and to measure the pain related parameters (EMG, Bioharness, 
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GSR measurement tool). The heating element, EMG device and GSR measurement 
tool were made in house by the research group members with technological 
expertise. The devices were carefully tested by the research group before use in 
study, but their validity has not been proven in relation to the pilot nature of the 
study. The further development of the EMG device has been reported in the study 
by Sarker et al., (2017). A review of ten studies concludes that the Bioharness device 
can provide reliable and valid heart rate measurements in a variety of contexts when 
compared to the gold standard (ECG) and other similar commercial devices (Nazari 
et al., 2018). In addition, the BioHarness has been proven to be a valid and reliable 
device for determining breathing rate during exercise (Hailstone & Kilding, 2011). 
The quality of the biopotential signal poses some challenges to the research. In 
particular, the EMG sensors had long leads and their movement caused some 
interference and artefacts with the collected data.  

6.2.3 Validity and reliability of the results 
Pain is not a single variable, but a state resulting from somatosensory, cognitive and 
emotional events that changes over time. Its subjective nature is often difficult to 
assess and interpret objectively. (Giordano, 2004.) Experimentally produced acute 
pain can be standardised in time and (stimulus) intensity and the mechanisms of 
production are well known. Even in controlled environment, the experiences of 
experimental pain can be highly variable both within individuals and among 
individuals for the same stimulus (Rosier et al., 2002). The participants were aware 
of the aims of the study to assess the changes in measured pain related behaviour and 
physiological signs. Pain, especially the pain related behaviours, may be subject to 
varying degrees of personal control (Hadjistavropoulos & Craig, 2002) which may 
have affected the results. Furthermore, there is also the possibility that some 
participants may have exaggerated or tried to control the appearance of pain. The 
development and validation of an IoT based pain detection system needed data on 
people experiencing pain. Acute experimentally induced pain served as a starting 
point for the development of the concept for the Smart Pain Assessment tool. An 
advantage of the study was that it involved healthy volunteers, thus avoiding the 
influence of diseases and drugs on the autonomic nervous system. However, a 
person's experience of pain is influenced by many factors, such as anxiety, 
expectations and distractions. These are more difficult to influence in experimental 
studies even though the conditions and measurements are controlled.  

The data was explored using various methods including statistical methods as 
well as two machine learning algorithms. The data was rather small for building such 
model and lead to the use of same data as a training and testing data. However, effort 
was used to validate the models using cross-validation and a meta learning model. 
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The outcomes of classification by machine learning are probabilistic and not 
sufficient to prove the existence of a causal relationship (Morley et al. 2020).  

In Sub-study IV, a purposive sample was used. In a purposive sample, the 
characteristics of the individuals selected are predetermined based on their relevance 
to the study's objectives (Andrade, 2021). When using purposive sampling method, 
the external validity of the study is limited, and the results can be only be generalised 
to the population similar to used selection criteria. The main limitation of the sample 
was that it was collected from a single setting. All interviews were conducted in a 
single level III ICU. The results might possibly have been different if they had been 
collected from different ICU settings with different levels of care. Another major 
limitation is that the users in this study only included critical care nurses. Users of 
medical devices can be defined by specifying the difference between users and end-
users (Shah et al., 2008). A user is the person who uses a medical device to treat 
him/herself or someone else, whereas an end-user is the person who is the ultimate 
beneficiary of the use of a medical device (Shah & Robinson, 2008). Including 
patients as end-users, would have strengthened the study and the results should be 
treated with caution as they do not represent a diverse range of future users.  

The Sub-study IV was conducted early in the development process, when the 
design was in its first prototype phase. The researchers considered that the 
presentation of the prototype at this stage might have been misleading and may not 
have corresponded with the intended later design of the device. The concept of the 
Smart Pain Assessment tool was presented to the participants through illustrations 
and a verbal presentation, explaining the principles of operation of the device. 
Participants had the opportunity to ask questions about the device and ensure their 
understanding, but they did not have the opportunity to see or try out the actual 
device. This may have led to misunderstandings while discussing the intended use. 
The semi-structured interview themes were formed mainly from technical point of 
view to serve the goal of the development of the medical device. With different kinds 
of questions, for example ones more focused on the pain management process, the 
results of the interviews could have revealed more insight into actual pain care. As 
the study has a qualitative nature, these results reflect the experiences and 
perspectives of the persons who took part in the study. The results are not 
transferable as such to other settings (Graneheim & Lundman, 2004).  

6.3 Suggestions for future research 
The following suggestions are made for future research based on these studies:  

• In the current study, the early stages of the development process in the 
Smart Pain Assessment tool are described. The results of the first 
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explorative validations and feasibility assessments of the concept should 
be verified with larger samples and with clinical pain. 

• The EMG device developed in this study should be validated with an 
equivalent device that is already validated as a reference. 

• The feasibility of EMG method in clinical use should be tested further, 
as it was used in a laboratory environment and measured while the 
participants were in static sitting position and were asked avoiding 
talking. Tests in a clinical health care environment and natural situations 
should be conducted.   

• To ensure the clinical usability of the device, end-users including 
patients must be involved in the next development phases in a 
comprehensive way.  

• The role of clinical nursing and nursing science in multidisciplinary 
teams should be strengthened when developing technology for clinical 
care. 

• In similar studies with experimental pain, as well as in the next phases 
of the current study, the possibility of providing access to pain data for 
research use should be considered. Allowing other researchers access to 
data reduces the need to collect similar data, saves resources and is in 
line with ethical values. 

6.4 Implications to clinical practice  
Based on the results of the study, the following implications for clinical nursing 
practice is summarised:  

• If the development of the Smart Pain Assessment tool device is successfully 
completed, it may be useful in detecting painful periods in critically ill 
patients, particularly those associated with procedural pain and other acute 
pain, such as post-operative pain. Developing a valid and reliable pain 
assessment tool for patients unable to communicate may help to provide 
better physical and psychological comfort in patients who are likely to suffer 
pain during their daily care. Furthermore, it may help to evaluate outcomes 
associated with pain management interventions.  

• Critical care nurses use technology as a tool to provide care and introducing 
new technology should ease the work of nurses and not make it more 
complicated. Nurses generally rely on their own observations of the patient's 
condition rather than over smart technology and therefore want to be able to 
assess the reliability of the patient's monitoring equipment. 
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• The number of new devices needs to be considered when developing 
technology for the care of critically ill patients. New technology might 
function better as part of an existing patient information and monitoring 
system rather than as stand-alone devices. 

• The role of nurses in developing technology for clinical nursing is still weak 
as new technologies are introduced into the area. Nursing professionals 
should be included in development work, as their perspectives are valuable 
and they are willing to contribute to development work as users of the 
proposed care technology. 
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7 Conclusions 

Assessing pain in patients who are unable to communicate is perceived as a challenge 
that could be addressed, at least to some extent, by the use of smart technology. 
Automated pain detection is already emerging but there is no clinically usable and 
validated device for pain detection of critically ill patients who are unable to 
communicate their pain. The promising progress of this medical device to support 
pain assessment combining physiological and pain behaviour variables related to 
acute pain with a learning algorithm should be further developed. Ideally, the 
development of a device for clinical care should be done at each phase of the 
development by a multidisciplinary team, and incorporate with users, including both 
nursing professionals and patients. 
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Appendices 

Appendix table 1. The literature searches 

CONCEPTS  SEARCH  LIMITATIONS  

Pain assessment in 
critically ill patients 

((((“pain”[MeSH Terms] OR “pain”[tiab]) 
AND “assessment*”[tiab]) OR 
((“pain”[MeSH Terms] OR “pain”[tiab]) 
AND “measurement*”[tiab])) AND 
(((“critical”[tiab] OR “critically”[tiab]) AND 
“ill”[All Fields]) OR ((“critical”[tiab] OR 
“critically”[tiab]) AND “care*”[tiab]) OR 
(“critical care”[MeSH Terms] OR 
(“critical”[tiab] AND “care”[]) OR “critical 
care”[tiab] OR (“intensive”[tiab] AND 
“care”[tiab]) OR “intensive care”[tiab]) OR 
((“critical care”[MeSH Terms] OR 
tiab(“critical”[tiab] AND “care”[tiab]) OR 
“critical care”[tiab] OR (“intensive”[tiab] 
AND “care”[tiab]) OR “intensive 
care”[tiab]) AND “unit*”[tiab]))) AND (pain 
assessment*) 

Adults  
 

Facial expression of pain ((“face”[MeSH Terms] OR “face”[tiab] OR 
“facial”[tiab] OR “facials”[tiab]) AND 
“expression*”[tiab] AND (“pain”[MeSH 
Terms] OR “pain”[tiab])) AND 
(humans[Filter]) 

Human 
 
 

Automated pain detection 
 

(“automat*”[tiab] AND (((“pain”[MeSH 
Terms] OR “pain”[tiab]) AND 
(“detect”[tiab] OR “detecting”[tiab] OR 
“detection”[tiab] OR “detections”[tiab] OR 
“detects”[tiab])) OR ((“pain”[MeSH Terms] 
OR “pain”[tiab]) AND (“recognition, 
psychology”[MeSH Terms] OR 
(“recognition”[tiab] AND 
“psychology”[tiab]) OR “psychology 
recognition”[tiab] OR “recognition”[All 
Fields] OR “recognitions”[tiab])) OR (“pain 
measurement”[MeSH Terms] OR 
(“pain”[tiab] AND “measurement”[tiab]) 
OR “pain measurement”[tiab] OR 
(“pain”[tiab] AND “assessment”[tiab]) OR 
“pain assessment”[tiab]))) AND 
(humans[Filter]) 

Adults 
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Appendix table 2. Literature search results and the included studies 

CONCEPTS  PUBMED  CINALH  WEB OF 
SCIENCE 

INCLUDED 

Pain assessment in 
critically ill patients  

1025 2218 355 60 

Facial expression of 
pain  

895 299/3 
 

588 12 

Automated pain 
assessment  

958 688 30 10 
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