
Evaluation of Edge AI Co-Processing
Methods for Space Applications

Master of Science in Technology Thesis
University of Turku
Department of Computing
Robotics and Autonomous Systems
2023
Luca Vicenzi

Supervisors:
Prof Tomi Westerlund
Ir. Egor Tamarin

The originality of this thesis has been checked in accordance with the University of Turku quality assurance system
using the Turnitin OriginalityCheck service.

UNIVERSITY OF TURKU
Department of Computing

Luca Vicenzi: Evaluation of Edge AI Co-Processing Methods for Space Applica-
tions

Master of Science in Technology Thesis, 85 p.
Robotics and Autonomous Systems
June 2023

The recent years spread of SmallSats offers several new services and opens to the imple-
mentation of new technologies to improve the existent ones. However, the communication
link to Earth in order to process data often is a bottleneck, due to the amount of collected
data and the limited bandwidth.
A way to face this challenge is edge computing, which supposedly discards useless data
and fasten up the transmission, and therefore the research has moved towards the study
of COTS architectures to be used in space, often organized in co-processing setups.
This thesis considers AI as application use case and two devices in a controller-accelerator
configuration. It proposes to investigate the performances of co-processing methods such
as simple parallel, horizontal partitioning and vertical partitioning, for a set of different
tasks and taking advantage of different pre-trained models.
The actual experiments regard only simple parallel and horizontal partitioning mode, and
they compare latency and accuracy results with single processing runs on both devices.
Evaluating the results task-by-task, image classification has the best performance improve-
ment taking advantage of horizontal partitioning, with a clear accuracy improvement, as
well as semantic segmentation, which shows almost stable accuracy and potentially higher
throughput with smaller models input sizes. On the other hand, object detection shows
a drop in performances, especially accuracy, which could maybe be improved with more
specifically developed models for the chosen hardware.
The project clearly shows how co-processing methods are worth of being investigated and
can improve system outcomes for some of the analyzed tasks, making future work about
it interesting.

Keywords: Artificial Intelligence, Co-Processing Techniques, Edge AI, Edge Computing,
Horizontal Partitioning, SmallSats, Space Applications, Vertical Partitioning.

Contents

1 Introduction 1

1.1 Research Questions . 2

2 Theoretical Background 4

2.1 Hardware Architecture . 4

2.1.1 State of the Art . 6

2.2 Software Architecture . 13

2.2.1 Task scheduling . 17

2.3 Co-Processing AI Acceleration . 18

2.3.1 Vertical Partitioning . 19

2.3.2 Horizontal Partitioning . 20

2.4 Custom AI Models . 21

2.5 Benchmarks . 22

3 Methodology 24

3.1 Hardware Architecture . 24

3.2 Planned experiments . 25

3.2.1 Tensorflow and Tensorflow Lite 25

3.3 AI Models . 28

3.3.1 MobileNet . 30

3.3.2 EfficientNet . 31

i

3.3.3 DeepLab . 31

3.3.4 Single Shot MultiBox Detector (SSD) 32

3.3.5 Post-Training Quantization 33

3.4 Datasets . 34

3.4.1 COCO17 . 34

3.4.2 ILSVRC2012 . 35

3.4.3 PASCAL VOC2012 . 35

3.5 Co-Processing Methods . 36

3.6 Benchmarks . 38

3.6.1 Latency . 39

3.6.2 Accuracy . 40

4 Experiments 44

4.1 System Architecture . 44

4.1.1 Single Processing . 45

4.1.2 Simple Parallel . 46

4.1.3 Horizontal Partitioning . 48

4.2 Inter-Device Communication . 55

4.3 AI Models . 56

4.3.1 Datasets . 57

4.4 Benchmarks . 58

4.4.1 Latency . 58

4.4.2 Accuracy . 58

5 Results and Analysis 60

5.1 Object Detection . 60

5.1.1 Latency . 60

5.1.2 Accuracy . 65

ii

5.2 Image Classification . 67

5.2.1 Latency . 67

5.2.2 Accuracy . 71

5.3 Semantic Segmentation . 74

5.3.1 Latency . 74

5.3.2 Accuracy . 78

6 Conclusion 81

6.1 Object Detection . 82

6.2 Image Classification . 82

6.3 Semantic Segmentation . 83

6.4 Future Work . 84

References 86

iii

List of Figures

2.1 General co-processing architecture . 5

2.2 N Modular Redundancy (NMR) (© 2022 IEEE [8]) 6

2.3 Hardware Architectures for Edge AI in Space 7

2.4 FPGA & VPU co-processing architecture (© 2021 IEEE [5]) 8

2.5 ϕ-Sat-1 Mission architecture [6] . 12

2.6 AI Acceleration Methods . 19

2.7 (a) Traditional Partitioning (b) eDDNN Partitioning (© 2022 IEEE

[14]) . 20

3.1 TFLite Conversion Flow . 27

4.1 Sigle Processing System Architecture Overview 45

4.2 Simple Parallel System Architecture Overview 47

4.3 Image Split into Tiles . 50

4.4 Original COCO Image . 50

4.5 COCO Image Tiles . 51

4.6 Horizontal Partitioning Merge Results Examples 53

4.7 Horizontal Partitioning Object Detection Bad Merge Results Example 54

4.8 Horizontal Partitioning Semantic Segmentation Bad Merge Results

Example . 55

5.1 Object Detection Pre-Process, Inference and Post-Process times . . . 61

iv

5.2 Object Detection Horizontal Partitioning Merge Times 62

5.3 Object Detection TX Times . 62

5.4 Object Detection Time per image . 63

5.5 Object Detection Throughput . 64

5.6 Object Detection Data Throughput 64

5.7 Object Detection Precision-Recall . 66

5.8 Object Detection IoU . 67

5.9 Image Classification Pre-Process, Inference and Post-Process times . . 68

5.10 Image Classification Horizontal Partitioning Merge Times 69

5.11 Image Classification TX Times . 69

5.12 Image Classification Time per image 70

5.13 Image Classification Throughput . 71

5.14 Image Classification Data Throughput 71

5.15 Image Classification Precision-Recall 72

5.16 Image Classification F1-score . 73

5.17 Image Classification Top-1 Accuracy 73

5.18 Image Classification Top-5 Accuracy 74

5.19 Semantic Segmentation Pre-Process, Inference and Post-Process times 75

5.20 Semantic Segmentation Horizontal Partitioning Merge Times 76

5.21 Semantic Segmentation TX Times . 76

5.22 Semantic Segmentation Time per image 77

5.23 Semantic Segmentation Throughput 77

5.24 Semantic Segmentation Data Throughput 78

5.25 Semantic Segmentation Pixel Accuracy 79

5.26 Semantic Segmentation IoU . 79

5.27 Semantic Segmentation Precision-Recall 80

5.28 Semantic Segmentation F1-score . 80

v

List of acronyms

AI Artificial Intelligence

ASIP Application Specific Instruction-Set Processors

ASPP Atrous Spatial Pyramid Pooling

BEE Basic Electronic Element

CAN Controller Area Network

CERN European Council for Nuclear Research

CIF Camera Interface

CMS Configuration Memory Scrubbing

CNN Convolutional Neural Network

COCO Common Objects in Context

COTS Commercial Off-The Shelf

CRC Cyclic Redundancy Check

DL Deep Learning

DMR Data Memory Recovery

DNN Deep Neural Networj

vi

DPR Dynamic Partial Reconfiguration

DSP Digital Signal Processing

eDDNN Enabling Distributed DNN

EO Earth Observation

EOT Eyes of Things

ESA European Space Agency

FPGA Field Programmable Gate Arrays

FPS Frame per Second

FPS Frame-Per-Second

GIL Global Interpreter Lock

ILSVRC12 ImageNet Large Scale Visual Recognition Challenge 2012

IMR Instruction Memory Recovery

ISS International Space Station

LCD Liquid Crystal Display

LPM Longest Prefix Matching

ML Machine Learning

MLP Multi-Layer Perceptron

NLR Royal Netherlands Aerospace Center

NMR N Modular Redundancy

NN Neural Network

vii

OBDH On-Board Data Handler

PTQ Post-Training Quantization

PTQ Post-training Quantization

RHBD Rad-hard by design

RNN Recurrent Neural Network

SC-LEARN SpaceCub Low-power Edge Artificial Intelligence Resilient Node

SHAVE Streaming Hybrid Architecture Vector Engine

SmallSats Small Satellites

SoC System-On-a-Chip

SSD Single Shot MultiBox Detector

SSD Single-Shot Detection

TFLite Tensorflow Lite

TMR Triple Modular Redundancy

TPU Tensor Processing Unit

VBN Vision Based Navigation

VPU Vision Processing Unit

viii

1 Introduction

This chapter provides a comprehensive overview of the broader context in which this

thesis is situated. Thus, it also introduces the research questions that the project

aims to address.

Artificial Intelligence (AI) and Machine Learning (ML)/Deep Learning (DL)

functionalities are revolutionizing terrestrial applications in every field, creating an

opportunity for innovative and disruptive solutions to be implemented to improve

daily life, and not only that. Therefore, the space sector also can take advantage

of these techniques, especially because, due to technological progress related to the

miniaturization of processing platforms, SmallSats (below 1200Kg) are now afford-

able for private companies, who have interests in enabling Earth observation (EO)

and other applications.

However, one of the main limiting factors, especially for SmallSats, regards the

amount of data that needs to be transmitted to Earth for elaboration. Up/down-

link bandwidth, on-board and computing capabilities and always increasing data

resolution are what limits the performances of those systems while using a classical

approach with space ready processors [1].

Thus, the industry and research are going toward the study of hardware acceler-

ators such as Field Programmable Gate Arrays (FPGAs) and Application Specific

Instruction-Set Processors (ASIPs), in order to implement intelligence on the edge

and consume data processing at the source, increasing data quality and reducing the

1.1 RESEARCH QUESTIONS 2

required downlink bandwidth [2]. These different modules can be implemented in

the system architecture as solo modules, but also can be exploited through the use

of modern System-On-a-Chip (SoC), which are designed to have different “blocks”

suited for different functions, e.g., general-purpose computing or parallel deployment

of algorithms [3]. The most common ASIPs that are evaluated for space mission ap-

plications are Tensor Processing Units (TPUs) and Vision Processing Units (VPUs).

1.1 Research Questions

In recent years, combined setups of the above mentioned devices involving a con-

troller and an hardware accelerator (or more) are becoming a standard in research

and space missions, These integrated configurations are specifically designed to de-

ploy intelligent functions at the edge of space operations. This transition towards

combined architectures is swiftly becoming the standard, driven by the desire to

achieve superior performance levels through the utilization of cutting-edge edge

computing accelerators. At the same time, these setups maintain space-resistant

functionality by leveraging space-grade processors as controllers, ensuring the ro-

bustness required for space missions.

This thesis aims to investigate the co-processing performances of a combined

setup composed by two different hardware accelerators, both suited for edge com-

puting and able to deploy AI inferencing. In particular, this research project will

explore different co-processing techniques and parallelization methods currently in

development within research and industry, aimed to increase the performances of

the system. The benefits and the drawbacks with respect to a single processor de-

ployment are then compared in terms of accuracy and latency. Power consumption

is an important factor as well, but for an initial investigation it is not essential, since

AI consumption is well-known. Thus, the power optimization consideration could

be part of future work, to further improve the benefits of co-processing.

1.1 RESEARCH QUESTIONS 3

The focus is on investigating the performances of techniques such as vertical and

horizontal partitioning, which allow efficient parallelization of AI models, and that

are used in other terrestrial domains like Internet of Things (IoT), to name one.

According to the current state of the art, these above mentioned methods should

exploit the hardware architecture, and therefore stand as a possible solution for the

SmallSats communication bottleneck.

In short, the aim is to implement these techniques on a prototype of technology

readiness level 5, and to determine their effectiveness in optimizing the performances

of a hardware architecture, in terms of latency and accuracy, or if it is still more

convenient to delegate the processing only to one of the devices. Important to

mention is also the scope of this system, which is meant to be versatile and open

to the final client’s use case implementation. Hence, it is not essential to stick to

space related experiments when testing the performances, but just taking advantage

of heavy tasks to test the computation capabilities.

2 Theoretical Background

In this chapter, the current state of the art is investigated, both on hardware and

software level, giving a solid motivation to the methodologies chosen, and described

later in chapter 3.

2.1 Hardware Architecture

The hardware architectures that have been studied in this field can be divided be-

tween single processor and multi-processor ones. The first category usually takes

into consideration SoC, which allows the utilization of different modules for differ-

ent tasks in order to implement algorithms efficiently. Co-Processing architectures

consist of combined setup of both radiation-hardened components and Commercial

Off-The Shelf (COTS) instead, allowing several different techniques to divide the

computational load and optimize the execution.

In general, all the architectures proposed in the industry and research see a

device used as a supervisor, or controller, which manages the data I/O and turns

on/off the hardware accelerators when needed [4], [5], [6], [7]. Usually, since the

aim is to ensure reliable hardware platforms, the device chosen as a framework

processor is a radiation tolerance chip, which assures functioning even in presence of

heavy radiation. Another important characteristic to be considered when choosing

which device to be used as supervisor regards the available communication ports

and protocols, to handle sensors and secondary devices, and that is why FPGAs’

2.1 HARDWARE ARCHITECTURE 5

flexibility is highly appreciated in this context [5].

In figure 2.1, a general co-processing architecture considering i_max sensors and

j_max hardware accelerators are represented.

Figure 2.1: General co-processing architecture

Another characteristic that comes up often in the current research papers is the

fault tolerance of the systems, which should be able to properly function even in dif-

ficult circumstances. Considering application-level fault tolerance, one of the typical

approaches is the so-called Triple-Modular-Redundancy (TMR), which allows fault

masking. Considering the case scenario, it reflects into using three hardware accel-

erators, or more in general three devices with inference capability. In this way, an

error propagates only if two out of the three modules fail [4]. Also withing any single

module, it is possible to assign a modular redundancy assigning the same tasks to

different cores of the chip, for example with different Streaming Hybrid Architecture

Vector Engine (SHAVE) cores on the Intel Movidius Myriad2 [8]. Another approach

to implement the feature is based on using only two devices and slightly differs in

cold standby, warm standby and hot standby systems. Any of them has different

complexity and consequent fault tolerance time while facing real-time errors, but

it is proven that not only fault tolerance is ensured, but also performances can be

2.1 HARDWARE ARCHITECTURE 6

increased [9].

On a lower level, existing techniques to improve fault tolerance are aimed for

example to ensure memory correction or the communication between chips does not

carry error through a Cyclic Redundancy Check (CRC) protocol [8]. Different tech-

niques are aimed for different devices, for example considering FPGAs it is possible

to implement Configuration Memory Scrubbing (CMS) and Dynamic Partial Recon-

figuration (DPR), while for Intel Movidius Myriad2 there are Instruction Memory

Recovery (IMR) and Data Memory Recovery (DMR) [8].

In figure 2.2, it is shown the implementation of N Modular Redundancy (NMR)

for Intel Movidius Myriad2 VPU, which is a generalization of the common TMR. In

fact, the redundant modules are no longer fixed to 3, but depend on the hardware

resources and the design choice. With Myriad2 for example, there are 12 SHAVEs

accelerators, and they can be grouped with N=3 (TMR). In this case, there would

be 4 groups of cores working in parallel. However, N can be set to a higher or lower

value, varying how much the workload is parallelized and the efficiency of the fault

tolerance technique.

Figure 2.2: N Modular Redundancy (NMR) (© 2022 IEEE [8])

2.1.1 State of the Art

In this section, as the diagram in figure 2.3 shows, the outcome of the state of the

art investigation regarding hardware architectures currently used for Edge AI appli-

2.1 HARDWARE ARCHITECTURE 7

cations in space is presented. The characterization mainly depends on the quantity

of devices used (from one to multiple), and on the features that the correspond-

ing configurations offer. Following the diagram, research examples belonging to the

current state of the art are explained more in details.

Figure 2.3: Hardware Architectures for Edge AI in Space

FPGAs are becoming a popular choice because of their flexibility in handling

different types of communication from different instruments/sensors, complying with

different protocol specifications at the same time and allowing less circuit design to

implement the system communication.

One of them is the Xilinx XCKU060, used as a frame processor that interfaces

with multiple instruments and can occasionally host high-performance heritage func-

tions, e.g., data compression. Other than that, the Intel Movidius Myriad2 VPU has

been chosen for the AI acceleration, and the modules implemented in the system are

three to ensure fault tolerance with TMR technique. In this case for example, data

2.1 HARDWARE ARCHITECTURE 8

arrives to the FPGA via SpaceWire and after transcoding processing it is forwarded

to the VPU through the Camera Interface (CIF) , while the VPUs are used for

Digital Signal Processing (DSP)/AI acceleration, and consequently the output data

is returned to the FPGA through its Liquid Crystal Display (LCD). This unusual

way of communication takes advantage fo the LCD controller available on the VPU,

which sends the data on the LCD interface, which is also connected to the FPGA,

able to read data from it, generating a sort of indirect form of communication.

A radiation-tolerant microcontroller (Cobham Gaisler GR716) is implemented as a

supervisor to increase reliability, to ensure the correct functioning of the systems

with error detection [5]. The system performs well obtaining between 6-20 Frame

per Second (FPS) for different kernels such as binning, rendering and different size

convolutions, which are typically used in Vision Based Navigation (VBN) pipelines,

while more than 1 FPS for deep learning image classification (specifically Convolu-

tional Neural Network (CNN) ship detection with 1MPixel images). These results

are achieved with a power consumption in a range between 800-1000mW.

In figure 2.4, the above described architecture with Xilinx XCKU060 FPGA and

Intel Movidius Myriad2 VPU is represented. Within the research, the testbed was

completed by a host PC, used to give input data and retrieve the output results.

Referring to the summary diagram, this architecture is an example of system

formed by a controller, an accelerator and a rad-hard processor as supervisor, which

allows fault tolerance implementation.

Figure 2.4: FPGA & VPU co-processing architecture (© 2021 IEEE [5])

2.1 HARDWARE ARCHITECTURE 9

Another architecture of significant importance in the field is the SpaceCub Low-

power Edge Artificial Intelligence Resilient Node (SC-LEARN), which is a CubeSat-

sized Edge TPU-based co-processor, as well as the supporting test card designed for

rapid prototyping and evaluation. The architecture is a combination of three Google

Edge TPUs together with a high-performance processor, responsible for powering

on/off the individual Edge TPU module through some switches and able of an-

swering to different scenarios such as switching from disaster detection mode (e.g.,

earthquakes, tsunamis, floods and fires), to highly accurate targeting modes (e.g.,

specific object-targeting data). Even if multiple choices are possible, the device taken

into consideration is the SpaceCubev3.0Mini, which features the Xilinx Kintex Ul-

traScale KU060 FPGA [4]. SC-LEARN has three operational modes, developed in

order to answer to different situations. The first one is the high-performance mode,

where the three TPUs are used to exploit parallelization and improve the perfor-

mances (inference is executable in a parallel platform). The second mode is the

fault-tolerance mode, which implements TMR and allows also to switch off one of

the modules in case of high-current event or malfunctioning. The last mode is the

power-saving one, which is designed for conserving on-board power by depowering

two of the three cards. During this mode, any of the three could be the one work-

ing, and this could help in case of malfunctioning. The AI models chosen to assess

the performances of the system were two, based on their compatibility with the

Edge TPU’s set of supported operations and their reported high accuracy on pub-

licly available hyperspectral datasets. The first one is a 1D Multi-Layer Perceptron

(MLP) documented and tested in [10], while the second network is a spectral-spatial

CNN (SS-CNN) for hyperspectral image classification described and tested in [11].

Referring to the initial scheme, the architecture developed by Nasa is an example

of a system with a controller and multiple accelerators, which allow the deployment

of several different operational modes.

2.1 HARDWARE ARCHITECTURE 10

During space missions different case scenarios can occur, therefore a space sys-

tem architecture needs to have not only advantages in terms of performance, power,

programmability, dependability, but also flexibility and adaptability to eventual sud-

den changes and problems. For instance, an architecture could serve as a centralized

processor, it can be placed inside the instrument control unit or payload data han-

dling unit, or be used as an On-Board Computer co-processor, depending on the

mission specifics. To face this challenge, another existing architecture is made by an

FPGA (Xilinx XC6SLX150 chip on the Trenz Electronic TE0600 Spartan-6 board),

which has the function of framing processor and it is very useful for its capability of

interfacing different instruments and sensors with different I/O protocols, and fur-

thermore efficiently apply and implement different forms of data reduction, voting

systems, hardware watchdogs and timers [7]. Intel Movidius Myriad2 takes care of

the DSP&AI acceleration, isolating it from the rest of the system and opening to a

fault-tolerance solution that can de-risk less mature and non-space components. To

increase the fault mitigation in the architecture even more, redundancy of Myriad2

chips, triple modular redundancy protection of the FPGA circuits or even includ-

ing a Rad-Hard by design (RHBD) microcontroller as supervisor are options to be

considered. The communication between the two devices is handled through an

SpW switch, since as most of the COTS HW accelerators, also Myriad2 misses the

SpW/SpFi ports to interface with traditional space-grade instruments. The FPGA

takes the data coming from its SpW interface, stores it in its DDR memory, and then

transcodes it and forward it as Camera Interface (CIF) format, which is supported

by the Myriad2 SoC (the paper describes the logical elements of the SpW transcoder

implemented in the FPGA). Implementing a satellite pose tracking algorithm de-

veloped for an ENVISAT at distances of 20m to 50m, which is representative of

an average computationally intensive computer vision pipeline in space applications

for this type of systems. Using different optimizations in scheduling the algorithm

2.1 HARDWARE ARCHITECTURE 11

tasks, system level results are 2.6 to 4.9 FPS of frame rate for pose tracking on

1Mpixel images, while the power consumption values are from 0.8 to 1.1W.

The above paper study shows an other example of architecture with controller

and supervisor, which also clearly mentions the possibility of implementing other

accelerators or a rad-hard microcontroller to increase the realiability of the system.

Another research to be considered is the ϕ-Sat-1 mission, which is the first ex-

perimental demonstration of Artificial Intelligence (AI) reliability and accuracy in

performing on-board cloud detection in a hyperspectral imaging mission by the Eu-

ropean Space Agency (ESA). The AI capabilities of the architecture are enhanced

by the use of the so called Eyes of Things (EOT), a board developed by ESA’s

Technology and Quality department that features the Intel Movidius Myriad2 pro-

cessing unit, which has been already described above [6]. Something to be added

respect to what has already been said is the fact that ESA managed to assess a

successful radiation characterization of the device, in collaboration with European

Council for Nuclear Research (CERN) [1]. The architecture is made up of the Basic

Electronic Element (BEE), which contains the On-Board Data Handler (OBDH)

and an FPGA. The BEE is the electrical interface to the spacecraft, and it is latch-

up protected. It works as a framing processor/controller, taking the input data that

is provided by the FPGA, used for transcoding, and communicating with the EOT

module to execute the process. The system has been tested implementing a cloud

scout segmentation neural network (NN) to identify, classify and eventually discard

on-board the cloudy images, while assessing the Hyperscout-2 hyperspectral sensor.

Because of the new sensor, the dataset used to train the NN model has been syn-

thesized from a previous existing dataset, and it has been proved that the results

are reliable. Thus, this means that it is possible to directly exploit new sensors

on board. Tests have been made both in development phase using the synthesized

dataset and with real data during the ϕ-Sat-1 mission and the confusion matrix

2.1 HARDWARE ARCHITECTURE 12

confirms that false positives respect the requirement of being <1% in both cases.

Since the acquired data with the Hyperscout-2 was not meant to challenge the NN,

but to simulate the real application of the system, the accuracy of its test is slightly

higher than the synthesized dataset one, which instead considers every case scenario

randomly (e.g., clouds on snow or on Salt Lake). Accuracies are respectively 96%

versus 95.1%.

In figure 2.5, the ϕ-Sat-1 architecture, which has been described above, is shown.

It is an example of a system with controller, accelerator and supervisor, according

to the summary diagram exposed at the beginning of the section.

Figure 2.5: ϕ-Sat-1 Mission architecture [6]

ϕ-Sat-1 Mission follow-up by the European Space Agency uses using Intel Myriad

X instead of Myriad2. In this case the processor is the HPE’s Spaceborne Computer-

2 (SBC-2) together with two Qualcomm Snapdragon 855 HDK’s, mounted on the

International Space Station (ISS) [12]. The system has been evaluated applying

different machine learning models such as Mars HiRISE Classifier to classify Mars

2.2 SOFTWARE ARCHITECTURE 13

surface using orbital imagery, and two Mars MSL Classifiers to respectively classify

Mars rovers’ images and rovers’ parts from the orbit for spacecraft health analysis.

These three models worked with an inference time of around 16ms per image (> 60

fps). Other models implemented are UAVSAR Flood Mapping for alert generation,

with 166 fps rate performance, and ship detection in satellite imagery, with 10.2 fps.

Moreover, a DDR test has also been run to calculate memory bit errors, but none

has occurred.

It is also important to consider a broader range of architectures, and not only the

ones specifically designed for space applications since the beginning. For example, an

existing architecture aimed to get fast IP processing, with special focus on Longest

Prefix Matching (LPM) algorithm, one of the heaviest functions implemented in

internet routers, is made up by three components: a control processor, a co-processor

and a needed customized co-processor interface [13]. The control processor (CPU)

executes the algorithm, except for the LPM, that is accelerated thorough HW-SW

co-processing on the co-processor. It is a XuantieC910, a high-performance open-

source RISC-V processor core developed by T-head. Because of the accelerations,

results show an overall 111% performance improvement for every searching iteration

of the algorithm, and also power consumptions are lowered by a significant factor.

Again, the mentioned research shows the utilization and evaluation of a controller

and accelerator architecture.

2.2 Software Architecture

When targeting high performance along with lower power consumption, COTS-

based design with ASIPs (for example Google TPUs and Intel VPUs) and SoCs are

the most suited, and they also offer practical advantages in terms of ease of pro-

grammability. In fact, for using these heterogeneous architectures and optimizing

their processing there is no need time-consuming design of digital circuits, like it

2.2 SOFTWARE ARCHITECTURE 14

is needed for FPGAs. For example, Intel Movidius Myriad2 is programmed via an

LLVM-based vectorizing C/C++ compiler, which lowers the programming complex-

ity of the software architecture [7].

Given the hardware architecture, the real challenge consists in the efficient uti-

lization of the chips’ resources through parallelization and by algorithm optimization

through the application layer of the software.

While considering FPGAs, the challenge consists in designing the hardware com-

ponents needed to accelerate the algorithm that needs to be implemented to reach

a required performance and also the communication interfaces that are needed to

communicate with sensors and devices. Facing the challenge of COTS devices in-

stead, the options are of using already existing frameworks of libraries developed by

the chips’ producers or to develop custom ones, or even use them both in order to

take advantages of the hardware resources.

An example of a methodology and a support framework to handle the program-

ming complexity of parallel algorithms on Intel Movidius Myriad2 together with

a critical avionics’ architecture is presented in a research proposed by University

of Athens, in collaboration with ESA and Intel [7]. Since the hardware resources

are fixed and the basic functionalities are already implemented, the complexity is

already lighter than other systems that use FPGAs, but still needs to be faced

in some way. In the specific case, the algorithm chosen to evaluate the system is

a vision-based Pose Estimation/Tracking algorithm, which allows straightforward

comparison to competitive implementations already existing on other embedded de-

vices. The tasks are assigned to different components of the SoC, parallelizing and

optimizing their running, in order to maximize the use of the hardware and con-

sequently the performance/power rate, using techniques described in the following

section 2.2.1.

A custom support framework has been implemented to facilitate programming

2.2 SOFTWARE ARCHITECTURE 15

complex parallelization over MDK, which is the development tool of Myriad2, that

offers only basic functionalities and demands low-level coding when targeting effi-

cient custom implementations. The idea was to create an abstraction layer to handle

system resources for I/O, memory and task management, and IPC by developing a

set of lightweight, stand-alone, and transparent C/C++ libraries.

The are different modules that have been implemented: SHAVE Inter Process

Communication (IPC), Memory Management, I/O Management and SHAVE Ac-

celeration Management (SHAVE stands for Streaming Hybrid Architecture Vector

Engines, and they are the key processing units in the device). These add new

mechanisms, improve already existing ones’ performances, and provide automatic/-

transparent device configuration.

Considering the SHAVE IPC module, it is essential because most of the parallel

algorithms require inter process communication. Since Myriad2 provides limited

hardware for this purpose, e.g., a FIFO structure that transmits at most 128 bytes.

In a few words, instead of the classical shared memory programming model proposed

by Intel taking advantage of the so-called Connection Matrix (CMX, which is used

as a scratchpad memory), the custom module implements a barebone IPC that

resembles the MPI standard, so a message-passing protocol, with increased sizes

respect to the original model.

Considering the memory management instead, by default when multiple individ-

ual kernels want to access the same CMX memory resource, MDK uses a library to

load data and code in the CMX at runtime, with some time penalties. The custom

module implemented preloads all the kernels’ code in DDR memory, without the

CMX being allocated yet. Each SHAVE has access to its CMX slice, organized

like a memory heap, using a custom “malloc” function. “Free” function is not im-

plemented to simplify the complexity, but to avoid congestions and race conditions

there’s a dedicated management instance running on each SHAVE.

2.2 SOFTWARE ARCHITECTURE 16

For the I/O management, the implementation of a software module running

on LEON RT (LRT, the second core of Myriad2) wraps the low-level drivers and

interrupts of the SoC peripherals and provide an higher level API to accelerate

the development of I/O tasks. Of great importance is the SHAVE acceleration

management module, within different aspects have been faced. First, high-level

abstraction from the hardware, implementing an API to manage low-level operations

while accessing SHAVEs.

Since every task may have a different execution time, another important aspect is

the amount of idle time that every SHAVE module has after completing a task. Thus,

the custom framework implements dynamic task assignment at runtime through a

FIFO structure managed by LRT. In this way, the idle time of every SHAVE should

be the minimum possible, because as soon as they are done, they get a new available

task. Non-parallelizable tasks with bigger cache and/or enabling any required Real-

Time Executive for Multiprocessor Systems (RTEMS) feature are handled by LOS,

which supports real time elements.

Last but not least, the architecture has different physical implementations for

the cache of LEONs and SHAVEs, therefore there is the need of a cache coherence

mechanism. This software component has been developed as well as part of the

custom framework.

In general, the framework is ideated in order to avoid the introduction of complex

schedulers as well as higher-lever automation of cache coherency to optimize the

algorithm. Moreover, the setup allows to implement important space requirements

such as mitigation, through SW redundancy, cache disabling, error detection, as

well as power/thermal control, through core deactivation, and also fault tolerance

(the SHAVE acceleration manager can replicate N times any function and do it

concurrently in 12%N cores).

The above exposed is an example of custom software framework to improve the

2.2 SOFTWARE ARCHITECTURE 17

performances of a program to run on an hardware accelerator, in this case Myriad

Movidius2. However, the same idea could be applied to other accelerators.

2.2.1 Task scheduling

To get optimization, task scheduling is crucial and must be improved as much as

possible. It is important to take into consideration every hardware resource available

and the required performances in terms of latencies and power consumption.

There are different approaches on how to handle this challenge, and for example

an idea could be to implement an intelligent algorithm to dispatch the task in the

most efficient possible way. Reinforcement learning and deep learning (or also the

combination of the two, which is a Deep Q-Network) are methods that could actually

handle well this challenge, and some research projects are actually relying on those

[14], [15]. Although these methods deploy run-time dynamic resources allocation

and allow dynamic hardware availability, it needs to be reminded that the quoted

case scenarios are quite different from the one considered in this research, and that

they are extremely heavy in terms of computations. In fact, for the quoted research

the topic regards clusters of edge devices for IoT applications, which have way more

computational power on the core cloud processor, and therefore can apply AI. For

what regards the architecture this research investigates, it makes not much sense to

waste so much computational power just for scheduling, while the aim is to get the

maximum performance gain on the actual AI models to be run.

Another approach to save computational resources while defining the dispatching

algorithm is fixed scheduling, and the criteria to follow are several. An example can

be made taking into consideration the Intel Movidius Myriad2 architecture, which

offers the SHAVE subsystem, LEON4 or hardware filters [7]. The first criteria

to take into consideration performance versus power gains, e.g., on Intel Movidius

Myriad2, hardware filters should be avoided because they are low power, but their

2.3 CO-PROCESSING AI ACCELERATION 18

performances are lower than the SHAVEs modules. Another aspect is the paral-

lelization potentiality of a function: sometimes algorithms require to be completely

executed sequentially and it is more convenient to run them on LEON4 instead of

SHAVEs, while other times the acceleration modules give a huge speedup. Memory

access patterns are heavily relevant when considering the effectiveness of SHAVEs,

the more they are predictable according to locality principle the better performances

SHAVEs have. On the other hand, if they are remote and random, it is more effi-

cient to rely on traditional caching techniques, available on LEON4. Last but not

least, library dependencies and heritage issues are software elements that need to

be considered when scheduling functions. For example, when the task includes huge

software libraries with deep call graphs, it is more practical to map it to LEON4

because of its better support and higher library availability.

Considering these criteria, that slightly change according to the considered ar-

chitecture, it is possible to define a static schedule to get a significantly high system

performance speedup. The above example regards Movidius2, but it could be ap-

plied to other accelerators as well.

2.3 Co-Processing AI Acceleration

Different acceleration techniques exist for different algorithms depending on their

main used operations and how they are implemented considering the system hard-

ware resources. Since the aim of this thesis is to evaluate the performances of AI

models (ML/DL) run on the edge in a space scenario, which involves having more

constraints on the needed functioning in terms of speed, for example because of

high-rate input data, it is therefore essential to consider ways of accelerating the

considered AI models’ execution on the edge. Given that the hardware architecture

consists of two devices, each one with several cores or modules and capable of run-

ning neural network inferences, methods to take advantage of all the computational

2.3 CO-PROCESSING AI ACCELERATION 19

capabilities are of important consideration.

In figure 2.6, a diagram summarizing the main AI acceleration techniques able

to improve performance for edge AI inferencing in the above discussed architectures

is shown. They will be investigated in the subsections below.

Figure 2.6: AI Acceleration Methods

2.3.1 Vertical Partitioning

A method already implemented and that significantly improves the performances is

the so called vertical partitioning , which consists of identifying the independent

tasks in the neural network (AI model) and assign them to different processor units,

allowing inference parallelization and also fault tolerance if the system implements

software redundancy [14]. Usually, AI models are split whenever a single device has

not enough resources to fully load it and run it, therefore there is the need of load-

ing only a first part, and then use another device for the remaining layers. Withing

the mentioned research instead, the new method called Enabling Distributed DNN

(eDDNN) , and briefly described above, is proposed. This method can be imple-

mented for example using a TensorFlow environment and working on the reducing

the dependencies of the neural network layers, as it is showed in [16].

In figure 2.7, the difference between the two vertical partitioning approaches are

2.3 CO-PROCESSING AI ACCELERATION 20

shown. The main potentiality of eDDNN consists in the fact that in case (a) parallel

execution is not possible, while in case (b) it is.

Figure 2.7: (a) Traditional Partitioning (b) eDDNN Partitioning (© 2022 IEEE

[14])

2.3.2 Horizontal Partitioning

Although vertical partitioning improves the performances, neural networks will al-

ways have a sequential execution because of their layers’ dependencies, so even if

different layers are assigned to different units, it is difficult to obtain full paralleliza-

tion. Therefore, another idea is to implement the so called horizontal partition-

ing , which consists of implementing the same neural network model on all the units

with a smaller data size, and apply the same inference to different portions of the

input data [14]. The result is obtained by merging the partial results coming from

the smaller networks, which have all the network’s layers. In this way, ideally full

parallelization can be obtained. Also, considering a setup that comprehends sev-

eral devices able to perform an inference, it also possible to implement a different

functioning mode that implements fault tolerance. This could be achieved by using

deploying different AI models on the different devices and compare the results, for

example following the N Modular Redundancy (NMR) technique. However, in this

case while gaining in fault tolerance, the acceleration in performances get lost.

Another consideration that must be made though is that in [14] the considered

2.4 CUSTOM AI MODELS 21

devices are stand-alone Internet Of Things (IoT) ones capable of running an AI

inference and connected via wireless, so ideally the more devices are added, the more

performances should improve. While considering heterogeneous architectures as the

ones mentioned above instead, and the number of devices restricted to just two, the

maximum number of sub-models that can be implemented depends on the hardware

resources available and therefore if the data size is still big, the performances might

not improve significantly.

2.4 Custom AI Models

When considering acceleration for deep learning models on constrained devices, re-

search has developed and keeps studying efficient architectures. Existing and widely

used AI models are several, also within embedded systems. Neural networks of every

sort and shape can be valid for this architecture, from Convolutional Neural Net-

works (CNNs) and Recurrent Neural Networks (RNNs), to Deep Neural Networks

(DNNs) and Multilayer Perception Networks (MLPs). The first approach is to take

into consideration already existing optimized networks for embedded devices, such

as MobileNet, ResNet, AlexNet, YOLO, Inception, etc., which can run different

tasks like Image Classification, Object Detection and Tracking, to name some [1],

[17]. A characteristic that is important to consider while running them is the weight

quantization, which may significantly change the performances in terms of latency,

power consumption and accuracy (sometimes also if a model can be deployed on the

device or not).

Another approach consists of taking inspiration from commercially available

models such as the ones named above and developing a customized neural net-

work to take advantage as max as possible of the architecture hardware resources.

This means studying the network layers’ dependencies and try to make it so that

they can be parallelized in some way, either with vertical or horizontal partition-

2.5 BENCHMARKS 22

ing [14]. An example for space applications is represented by the ϕ-Sat-1 mission,

since the cloud scout segmentation DNN has been developed on purpose for it [6].

In that case for example, the device running the model was Intel Movidius Myr-

iad2 and therefore particular attention had to be devoted to the implementation of

the convolutional/deconvolutional layers because of the limited intra-layer memory

available. Also, the VPU offers 16-bit floating point arithmetic, so the quantization

was set to take advantage of that, and an input size reduction was applied to avoid

memory saturation.

2.5 Benchmarks

Benchmarking is not always an easy task, since the aim is to evaluate a system in

terms of general performances, and it is easy to get results that are valuable, but

only for the specific use-case tested within the experiments.

In this merit, parameters that are to be taken into consideration are time of

execution of certain tasks and the related power consumption. To do so, for example

a set of custom software benchmarks could be implemented, like it is done in [5] in

order to test all the different modules of the architecture. Same thing can be done

using a third-party software developed for the purpose, but that might be too general

considering the use-case. Since the system will be used for edge AI, it might be more

interesting to directly test the performances of time/latency, power consumption and

accuracy, during both training and inference for an AI model. However, these results

severely change depending on the model chosen and that probably is the interesting

part.

In general, when considering co-processing setups, it is also important to consider

intercommunication latencies together with the processing times, since at the end

the system needs to be evaluated as a single block. Also, these communication

latencies need to be low enough to not influence the overall throughput, as it is

2.5 BENCHMARKS 23

shown for example in [5].

3 Methodology

In this chapter, the methodology chosen to address the research questions with prac-

tical answers is described. This comprehends hardware architecture, co-processing

techniques and approaches.

3.1 Hardware Architecture

Following the state of the art trend, the selected architecture for this research project

is a co-processing setup, which gives more flexibility and more operational power in

terms of available resources. Despite the first thought of approaching an FPGA, a

SoC has been chosen as the controller because of its computational resources and

several interfaces available for interconnections, and also because to develop AI on

the FPGA there would have been a license, and that was in contrast with the project

purpose.

The chosen co-processor as AI accelerator has high power efficiency, and the idea

was to implement two modules of it, since they are available in development module

that can be plugged into SoC starter kit. Unfortunately, these mentioned modules

were out of stock, therefore only one has been used.

An interesting characteristic of this architecture is the AI acceleration poten-

tiality both the devices feature, therefore opening to several different co-processing

opportunities to try.

Before choosing the architecture, some radiation testing has been performed in

3.2 PLANNED EXPERIMENTS 25

order to have a de-risking analysis, and the results show how both the processors did

not have any significant effect. Unfortunately, even if the presence of two hardware

accelerator modules would have opened up to implementing different operational

modes such as high performance, fault tolerance and low power, as described more

in detailed in the previous subsection, this was not possible.

3.2 Planned experiments

In order to answer the research questions mentioned in section 1, there is the need of

defining the right experiments to perform, in order to get valuable and meaningful

data. This subsection describes the initial plan of experiments, based on the litera-

ture review carried out in section 2, which highlights the current state of the art for

the subject.

First of all, another general consideration to be made is about the chosen frame-

work to deploy the chosen models, which are presented further below in the section.

Among the available open-source software frameworks, the choice is to go with mod-

els developed and optimized with Tensorflow (more specifically Tensorflow Lite),

mainly because of the amount of available pre-trained models and because of its

spread both in research and industry. A framework overview is in the following

section.

3.2.1 Tensorflow and Tensorflow Lite

TensorFlow is a versatile and widely used open-source machine learning framework

developed by Google [18]. It provides a full range of tools and frameworks for creat-

ing, honing, and deploying machine learning models across numerous platforms and

applications. TensorFlow is a well-liked option for researchers, data scientists, and

developers working on challenging deep learning projects because of its adaptability

3.2 PLANNED EXPERIMENTS 26

and scalability. It is well suited for common machine/deep learning tasks such as

image recognition, natural language processing, and reinforcement learning in a va-

riety of environments. In fact, the framework includes support for cloud servers and

high-performance computing clusters, allowing deployment for distributed comput-

ing. Moreover, GPU acceleration is another essential characteristic that makes the

framework one of the most used tools in the area, also considering the rich ecosystem

of pre-trained models available.

A modified and lightweight version of the framework called TensorFlow Lite

was created specifically for the deployment of machine learning models on embedded

systems and edge devices, such as microcontrollers and other mobile platforms with

limited resources like embedded Linux, Android, and iOS devices [19].

It is crucial for allowing AI and machine learning at the edge, where local data

processing is necessary for low latency, privacy, and effective resource use. Tensor-

Flow Lite accomplishes this by providing model optimization methods like quanti-

zation, model size reduction, and hardware acceleration support, making sure that

models function effectively on devices with constrained memory and computing ca-

pacity.

The greatest characteristics is that TensorFlow Lite easily integrates with Tensor-

Flow, enabling developers to train advanced models within the TensorFlow ecosys-

tem before converting then, and therefore deploying them to edge devices with

optimized performances. This closes the gap between AI research and practical im-

plementation on embedded systems, making this framework a valuable tool for a

variety of applications, from real-time object detection and image classification in

smart cameras and drones, to voice recognition in smart speakers and sensor data

analysis in Internet of Things devices.

The conversion flow from Tensorflow to TFLite is shown below in figure 3.1.

3.2 PLANNED EXPERIMENTS 27

Figure 3.1: TFLite Conversion Flow

Furthermore, its open-source design, multi-language support (Java, Swift, Objective-

C, C++, Python), and vibrant community support make it a dependable option for

creating edge AI applications that bring innovation in a variety of sectors, including

3.3 AI MODELS 28

healthcare, automotive, robotics, and more.

3.3 AI Models

Since the project aim is to study an architecture which is meant to be general and

open to every user’s use case, and not just related to a specific application, the

used AI models themselves are not too important while evaluating the overall per-

formance. What matters is the representation of a typical heavy task that includes

the computational complexity of machine/deep learning inferencing. Therefore, the

choice of the AI model can be totally arbitrary.

This thesis project has been carried out together with the Royal Netherlands

Aerospace Center (NLR) , which provided an AI model they had already tested on

the main device.

Therefore, the first initial idea was to take advantage of the available model,

that they had already trained and optimized to run on the device, through the

manufacturer’s software framework. Moreover, this choice would have allowed the

implementation of space significant tasks as case scenarios for performance evalua-

tion, which would have been a nice addition to keep it more significant.

However, from that choice some problems follow up. Since the focus of the thesis

is not on creating, training and tuning deep learning models, but only to use them

to inference, it is preferable to opt for already available models, which do not need

to be trained for the specific application. Unfortunately, there are not so many

ship detection or cloud detection/segmentation models that are already trained and

available to use, therefore the choice of which task to pursue had to change.

The final considered approach took into consideration the list of available models

for demo purposes of both the devices, which implement common task such as

object detection, image classification, semantic segmentation, and others. These

three mentioned applications are the ones that have been chosen as case scenarios,

3.3 AI MODELS 29

and for what regards the models themselves, some more considerations have to be

made. The hardware accelerator is the device with lower computational capabilities,

therefore what can run well on it can also run with high performances on the main

device. Following this reasoning, two models per task have been chosen from the

list of available optimized ones to run inference on the accelerator device. The idea

is to compile them and optimize them also for the main device, which should run

them even faster.

Both the devices’ producers suggest not to train the AI models directly on the

devices, but rather train them on a more powerful hardware and then load the pre-

trained model, after the right optimization. Therefore, there was an initial idea to

try edge inferencing with different quantization formats for every model, but that

is not possible for one of the two boards, and also not really relevant in the context

of the project.

Another initial idea was to develop a custom neural network from scratch, accord-

ing to the hardware characteristics of the architecture, in order to obtain maximum

optimization, but again it goes out of the scope for what regards this thesis project.

Considering object detection, both the models chosen belong to the MobileNetV2

architecture family, and both of them have been optimized with Tensorflow Post-

training Quantization (PTQ) and implement the Single-Shot Detection (SSD) . The

input size is 300x300 for both of them.

For image classification instead, the first model belongs to the EfficientNet fam-

ily, and it has been optimized with Tensorflow PTQ as well. The other model is

based on MobileNetV3. The input sizes respectively are 300x300 and 224x224, while

the dataset for both the models is ILSVRC2012.

Finally, talking about semantic segmentation, both the models belong to the

DeepLabv3 family, have been optimized with PTQ technique and they have been

trained with Pascal VOC2012.

3.3 AI MODELS 30

To give an overview, these are the chosen models for the boards, whose details

will be investigated more in the following section.

• Object Detection

– SSD MobileNetV2 COCO17 Quant PostProcess 300x300

– SSD MobileNetV2 COCO17 PTQ 300x300

• Image Classification

– EfficientNet S Quant ILSVRC2012 224x224

– MobileNetV3 1.0 PTQ ILSVRC2012 224x224

• Semantic Segmentation

– DeepLabv3 MNV2 DM05 PASCAL-VOC2012 Quant 513x513

– DeepLabv3 MNV2 PASCAL-VOC2012 Quant 513x513

3.3.1 MobileNet

MobileNet is a specialized deep learning architecture tailored for embedded deploy-

ment, ideal for devices like smartphones, IoT devices, and edge computing systems.

By using depthwise separable convolutions, which substantially reduce the number

of parameters and processing requirements, it achieves an amazing balance between

accuracy and computational cost [20]. Depthwise separable convolution essentially

is a convolution split in two layers, which are depthwise and pointwise convolutions.

Splitting a regular convolution operation in these two is a method that allows to

require way fewer computational resources respect to standard filters, and therefore

create light weight models.

Consequently, real-time inference on resource-constrained devices is made pos-

sible by this compact architecture, making it an essential tool for a range of edge

3.3 AI MODELS 31

applications, from autonomous drones to intelligent cameras. The rapid develop-

ment and adaptability of MobileNet have established its status in the design of AI

solutions for embedded systems.

3.3.2 EfficientNet

As cutting-edge deep learning architecture specifically designed for embedded use,

EfficientNet meets the demands of devices such as smartphones, IoT sensors, and

edge computing systems. Its unique model scaling technique, which uniformly ad-

justs network depth, width, and resolution using a compound coefficient, optimizes

both performance and efficiency, as it demonstrated scaling up neural networks based

on MobileNet or ResNet [21].

Moreover, through neural architecture search, a new baseline network gets de-

fined and scaled up to the so called EfficientNet family of models. EfficientNet stands

out for its excellent ability to balance computing demands and accuracy across a

broad range of applications, from object detection to image classification. It emerges

as a game-changing element in embedded AI due to its adaptability and scalability,

enabling real-time inference on resource-constrained devices and rolling into a new

era of intelligent edge applications.

3.3.3 DeepLab

DeepLab is a state of the art deep learning architecture renowned for its exceptional

performance in semantic image segmentation tasks, which derive from its unique and

peculiar characteristics, that make it a powerful instrument in the field of computer

vision [22]. By adopting dilated convolutions, DeepLab is able to efficiently gather

multi-scale contextual data, which is essential for precise object segmentation. It

also uses Atrous Spatial Pyramid Pooling (ASPP), which allows context aggregation

at multiple levels and improves the ability to distinguish things from their back-

3.3 AI MODELS 32

grounds. Additionally, DeepLab has a decoder module that combines high-level and

low-level features to improve segmentation results, producing masks that are more

accurate and comprehensive. It is ideally suited for embedded systems and real-time

applications due to its adaptability to different backbone architectures and resource-

efficient design, and therefore it is a very common NN family for computer vision

research and applications.

3.3.4 Single Shot MultiBox Detector (SSD)

Single Shot MultiBox Detector (SSD) is an object detection technique that has

become commonly used because of its interesting characteristics [23]. SSD stands

out in several ways, that are briefly introduced below in this section.

First and foremost, SSD works in a single pass over the input image to carry

out the task of real-time object detection. Unlike two-stage detectors such as Faster

R-CNN, which include processes like region proposal and object classification. The

single-pass method makes SSD much quicker and better suited for low latency ap-

plications like robotics and autonomous vehicles, with deployment on embedded

systems.

The usage of "default boxes" or "anchor boxes" is another distinguishing aspect

of SSD. It is able to directly forecast object locations and sizes thanks to these

preconfigured boxes that are positioned at multiple sizes and locations inside the

input image. This solution is more effective and efficient since it simplifies the

architecture and eliminates the requirement of a separate region proposal stage.

Additionally, by predicting object bounding boxes and class probabilities at vari-

ous feature map levels, SSD makes use of a multiscale technique. Since the resolution

varies across levels, SSD can efficiently detect objects of various dimensions. In com-

parison to some two-stage detectors, SSD may not attain the maximum precision

possible, but it strikes a compromise between accuracy and speed, making it suitable

3.3 AI MODELS 33

for a variety of real-time object recognition demands.

The object detection and bounding box regression components of SSD are trained

concurrently with shared convolutional layers as part of its end-to-end training

methodology. In comparison to some other approaches, this makes the training

process simpler.

In summary, SSD excels in speed and efficiency due to its single-pass design,

default box mechanism, and multiscale predictions, making it a desirable option for

situations where real-time processing is essential. The decision between SSD and

other techniques will rely on the particular needs of the application, including the

appropriate compromise between speed and accuracy. However, its performance may

not approach the highest precision reached by more complex two-stage detectors.

3.3.5 Post-Training Quantization

Post-Training Quantization (PTQ) is a technique employed in deep learning to op-

timize trained neural network models for deployment on resource-constrained hard-

ware [24].

Quantization is used to reduce the memory footprint and computational re-

quirements of a model after it has been trained using high-precision floating-point

numbers, such as 32-bit or 16-bit. The weights and activations of the model must

be transformed into lower-precision fixed-point numbers, most frequently 8-bit inte-

gers or 16-bit fixed-point values. Weight quantization rounds the continuous weight

values to discrete values within the chosen precision, while activation quantization

similarly quantizes the model’s activations.

Once it has been quantized, reduced memory consumption, quicker inference

times, and increased energy efficiency are all advantages, therefore the model can

be used for inference on platforms like smartphones, IoT devices, or in general edge

computing devices.

3.4 DATASETS 34

However, quantization may also introduce a loss in the model accuracy, which

can sometimes be mitigated through calibration and fine-tuning, in order to find the

preferred balance between model size, inference speed and obtained accuracy.

3.4 Datasets

Even though the chosen models are pre-trained ones, it is still relevant to present

the datasets that have been used for that purpouse, also because they are used to

test the performances as well. Therefore, in this section the datasets related to the

chosen models are briefly described.

3.4.1 COCO17

The Common Objects in Context (COCO) dataset is a widely recognized and exten-

sively used benchmark dataset in the field of computer vision. It is well known for its

wide range of complexity and rich diversity, which makes it a priceless tool for train-

ing and evaluating a variety of computer vision tasks, including object detection,

instance segmentation, and image captioning [25]. More than 200,000 photos from

COCO represent a wide range of contexts, objects, and situations. These photos

have comprehensive, pixel-level annotations that identify the categories, occurrences,

and keypoints of various objects.

In addition, COCO offers a wide range of 91 object categories, from simple ones

like cars and animals to more complex ones like sporting goods and food. COCO

is a crucial dataset to support the development of cutting-edge computer vision

algorithms because of its complexity and scale, which has led to advancements in

picture understanding, object recognition, and scene analysis.

Within this project, COCO had been used for the object detection models train-

ing, and therefore also the test images belong to it.

3.4 DATASETS 35

3.4.2 ILSVRC2012

In the field of computer vision, the ImageNet Large Scale Visual Recognition Chal-

lenge 2012 (ILSVRC12) represents a significant turning point. This major contest,

organized by the ImageNet project, played a key role in promoting deep learning

and object identification [26].

A large data set with millions of tagged photos covering more than a thousand

object categories was presented at ILSVRC12. The difficulty was in designing algo-

rithms that could precisely localize items in pictures while also identifying them. It

paved the way for ground-breaking deep learning models like AlexNet, which showed

off what deep neural networks were capable of when it comes to image classification.

In addition to inspiring extensive research and innovation, the ILSVRC12 com-

petition was an important driver in igniting the deep learning revolution. Since

then, the methods and models created for this competition have evolved into the

fundamental building blocks for a variety of computer vision applications, ranging

from self-driving cars to facial recognition.

Within this project, ILSVRC2012 had been used for the image classification

models training, and therefore also the test images belong to it.

3.4.3 PASCAL VOC2012

An important resource in the field of computer vision is the Pascal VOC 2012

dataset, also known as just "VOC2012." This dataset includes 20 object categories

and is designed for object recognition, detection, and semantic segmentation [27].

These categories range from ordinary objects like bicycles and birds to animals, cars,

and indoor items. The meticulous annotations in VOC2012, which include object

category names, exact bounding box coordinates for object localisation, and pixel-

level segmentation masks for each item instance within the images, are what make

it stand out from other datasets. With the help of these detailed annotations, a

3.5 CO-PROCESSING METHODS 36

variety of computer vision tasks are made possible, and VOC2012 has become an

established standard for analyzing and improving object detection and segmentation

algorithms.

Researchers and professionals have used its features all over the world to create

and compare cutting-edge models, pushing the boundaries of object recognition and

semantic segmentation. Despite its age, VOC2012 is still regarded as an institution

of computer vision research, having made a lasting impact on the field, and providing

the basis for further datasets and benchmark assessments.

Within this project, VOC2012 had been used for the semantic segmentation

models training, and therefore also the test images belong to it.

3.5 Co-Processing Methods

According to the research questions, and therefore the will of evaluating the perfor-

mances of the system, the co-processing methods to be implemented are extremely

important, and answer directly to the sub-question presented in section 1.1 .

First of all, in order to have a comparison to single processing, it is useful to

have experiments also with only one of the devices alone at a time. Given that the

co-processing setup should improve the performances in any case, this could be used

as a comparison ground to analyze the results and see how much the speedup and

the accuracy increase/decrease are.

Considering the current state of the art investigated in section 2.6, some co-

processing methods have been chosen to evaluate the double processors setup. Start-

ing from the basics, simple parallel case with an AI model running on both devices

in parallel has to be considered to see what the improvement on the throughput is

and/or if there is any difference in accuracy.

The next step is what should be the most interesting section of this thesis: the

implementation of co-processing techniques such as horizontal and vertical partition-

3.5 CO-PROCESSING METHODS 37

ing.

Regarding the former, the idea is to run the model, with lower input size, in

parallel on both the devices, and ideally this could be exploited to even more devices

if they were available. The main focus in this case is on how to split the input data,

which essentially is, for what regards this project, a set of test images. Depending on

how the image gets cut into tiles, which could have different shapes and sizes, some

tasks may react in different ways, achieving better or worse results. For example,

it would probably be expectable to see semantic segmentation not affected at all

by the split, because of its nature. In fact, segmentation models work more on a

pixel level, and divide the image into regions based on the features detected, which

we would expect to be independent (up to a certain extent) from the integrity of

the full picture. Taking into consideration object detection and image classification

instead, splitting the original image into tiles may prevent to identificate objects

because of them being cut in smaller pieces, and that is why another characteristic

of really important consideration is the overlap factor. Ideally, it should be high

enough so that the objects which need to be detected fit inside it. Only in this way

you can be sure no detections are lost while applying horizontal partitioning, but

it is not always easy to obtain. For instance, if the object is exactly at the center

of the input image and its dimensions are quite large, then it might be difficult to

get a precise detection, since every tile is going to have only a slice of the object.

Therefore, the overlap factor is an important parameter that will be investigated in

section 5.

In case of the latter, the problem gets shifted from the input data format to

the models themselves, which increases even more the problem complexity. In fact,

instead of having a single challenge to face, when considering vertical partitioning a

unique solution that optimizes the run of every model does not exist by definition,

even for models sharing the same task. Finding a solution to be applied to all of

3.6 BENCHMARKS 38

them would not give optimal results and would be less meaningful, therefore, due

to strict development time constraints, the idea is to implement this technique only

within a single chosen model (so only one task). The initial idea is to check the

architectures of all the models, and see which one offers a less difficult architecture

to split, while which task it refers to is not relevant.

In fact, the challenging part is studying its layers’ dependencies, and therefore

if there are some that can be deployed in parallel. Something that needs to be con-

sidered as well is the communication overhead introduced by interrupting a neural

network in the middle of its workflow. In fact, while processing the input image

data, a deep learning model computes an high numbers of parameters in order to

detect features, and therefore there is the need to transmit also all these mentioned

values that the single layers output. This huge amount of data to be transferred

from one device to another could result in a communication bottleneck, which is

something to avoid.

Consequently, a first approach thought with the consultancy of NLR is to split

the neural network right after a compression layer, or in some point of the processing

in which the data to be transferred is reduced to the minimum possible, so that the

communication latency is as low as possible.

Moreover, the strong dependencies and sequentiality some layers have still re-

mains the hardest challenge in order to successfully apply the vertical partitioning

technique.

3.6 Benchmarks

Of important consideration while evaluating the performances of a system is the

benchmarks choice in order to achieve the goal. The challenge consists in finding

meaningful ones, which are general enough to be used for comparison with other

systems which execute similar tasks and work in a similar context.

3.6 BENCHMARKS 39

In this project, the use case is embedded AI deployment, and therefore the bench-

marks refer to deep learning models. For every task there are different techniques

to record the efficiency.

Furthermore, latencies are always interesting measurements to record, because

they give an idea of the actual throughput of the system.

Even though power consumption would be a meaningful metric to be considered,

especially because of development for a space application, for what regards this the-

sis it is not of interest. It is given as granted that AI applications demand quite a

high amount of energy, and the focus of this project is more about the computa-

tional capability and reachable accuracy by the system, rather than optimizing its

consumption.

3.6.1 Latency

In this merit, the idea is to be able to have performances at system level, which

essentially means computing the throughput capability of the system in full regime.

This can be achieved by recording the inference times, to get an average value which

can be transformed into a rate.

In reality, there are other times which need to be considered, such as pre-

processing, post-processing and inter-communication among the devices. Consid-

ering the communication times as negligible because quite small in comparison with

the other values, the average total time for a single image can be computed like

shown below. Considering three vectors of N images, containing pre-processing,

inference and post-processing times:

tprei , tinf i
, tposti

with i=0...N-1 for all of the elements. By summing up all the pre-processing,

inference, and post-processing times among them, and then all together, a vector

3.6 BENCHMARKS 40

containing the total processing time can be obtained:

ttot =
N−1∑︂
i=0

tprei +
N−1∑︂
i=0

tinf i
+

N−1∑︂
i=0

tposti

Dividing by N allows to compute the average time to deploy the deep learning

model for a single image, while the frame rate is just the inverted value. Note that

times are stored in ms, therefore to get Frame-Per-Second (FPS):

tavg =
ttot
N

, rate =
1000

tavg

It is also interesting to compute the rate in terms of Megabyte-Per-Second

(MB/s), which is easily computed considering a vector containing all the input

images sizes in kilobytes (KB), called size:

rateMB/s =

∑︁N−1
i=0 sizei
1000
ttot
1000

=

∑︁N−1
i=0 sizei
ttot

Note: dividing by 1000 in both cases is necessary to convert KB in MB, consid-

ering the file sizes, and ms to s, considering the times.

Regarding techniques such as horizontal partitioning, in which there is the need

of additional processing to merge the different image tiles results. For these latencies

calculations, these formulas are still valid considering the mentioned additional times

included in the post-processing times.

More in general, these measurements allow to identificate the slowest parts within

the entire inference process, and therefore take action in trying to optimize them.

3.6.2 Accuracy

In the context of accuracy metrics for deep learning models, there are different ones

for every chosen task.

3.6 BENCHMARKS 41

Regarding object detection, the most common metric is the mean Average

Precision (mAP), which provides a comprehensive assessment of a model’s accuracy.

mAP is based on two other concepts: precision and recall.

Precision is a metric that shows how well the model avoids false positives. It

is calculated as the ratio of true positives (correctly identified objects) to the total

number of positive detections, which includes both true positives and false positives.

The precision formula is shown below:

Precision =
TP

TP + FP

In other words, precision assesses the proportion of predicted object instances

that are actually correct.

Recall, on the other hand, investigates the model’s ability to find all relevant

objects in the image. It is computed as the ratio of true positive detections to the

total number of actual objects in the ground-truth data, which includes both true

positives and false negatives. The recall formula is represented as:

Recall =
TP

TP + FN

Shortly, recall measures the percentage of actual objects that were successfully

detected by the model.

mAP combines precision and recall providing a comprehensive evaluation of ob-

ject detection performance across various object categories. It involves calculating

the Average Precision (AP) for each object category, which is essentially the area

under the Precision-Recall curve for that category [28].

The Precision-Recall curve is obtained by varying the confidence threshold for

object detections and recording precision and recall values at each threshold.

The mAP is then computed as the mean of the AP values across all object

categories. Considering N as the total number of object categories, the formula:

3.6 BENCHMARKS 42

mAP =
1

N

N∑︂
i=1

APi

mAP takes into account both the precision, which measures accuracy, and re-

call, which measures completeness, to provide a sort of summary metric for object

detection.

Regarding image classification, several metrics are commonly used to assess

the performance of machine learning models. These metrics are essential for quan-

tifying how effectively a model can correctly classify objects within images [29].

Top-1 Accuracy is a fundamental one, measuring the proportion of images for

which the model’s highest-confidence prediction matches the actual class label [30].Top-

5 Accuracy instead, considers whether the correct class label is among the top five

model predictions, making it more flexible when objects may have multiple plausible

labels. In general, accuracy can be computed as shown:

Accuracy =
Number of Correct Predictions
Total Number of Predictions

Other significant metrics are precision, recall and F1-score, which have already

been described above and can be computed with the same formulas.

These image classification accuracy metrics collectively offer a comprehensive

assessment of a model’s performance. While top-1 and top-5 accuracy provide in-

sights into the model’s ability to make accurate predictions, precision, recall, and

the F1-score offer a more nuanced evaluation, considering both correct and incorrect

predictions, and how well the model captures specific classes within the dataset.

In the domain of semantic segmentation instead, where the goal is to classify

each image pixel into a specific class label, various metrics are commonly used.

The first one to be mentioned is pixel accuracy, which measures the overall cor-

rectness of the segmentation model pixel-by-pixel. It calculates the percentage of

correctly classified ones in the entire image. While useful for assessing global ac-

3.6 BENCHMARKS 43

curacy, it may not capture the implications for class-specific performances [31]. To

get the single-class behaviour, the pixel-wise approach has to be exploited consider-

ing one single class each time. The formula for computing pixel accuracy is shown

below:

Pixel Accuracy =
Number of Correctly Predicted Pixels

Total Number of Pixels

Another important metric is the Intersection Over Union (IoU), also known

as Jaccard Index. It quantifies the overlap between predicted and ground truth

segments, providing segmentation quality insights by assessing how well the model

captures the object boundaries. The scale goes from zero to one, with higher IoU

values indicating better boundary alignment (ideally, value one shows perfect match

with the ground truth). It can be computed with the formula shown below, where

both the prediction and ground truth are image masks related to a single class:

Intersection over Union (IoU) =
Prediction ∩ Ground Truth
Prediction ∪ Ground Truth

These IoU values offer an analysis of how the model works per single class, and

they can be averaged to extrapolate a more general model’s behaviour evaluation.

Considering all of these metrics, a comprehensive understanding of a model’s

strengths and weaknesses in pixel-wise classification and objects boundaries delin-

eation is provided.

4 Experiments

With respect to the planned experiments described in detail in section 3, some

technical issues have been encountered, and therefore, due to the limited available

time to pursue the thesis, the actual implementation differs from the original plan.

In this section, the actual setup and experiments that have been run are described

in detail.

4.1 System Architecture

When considering the setup for the experiments, the primary factor to address is

the system architecture. As initially planned, the comparison revolves around two

devices operating in single processing mode and exploring various co-processing

techniques.

Originally, the plan was to implement three modes of operation: simple parallel

processing, horizontal partitioning, and vertical partitioning. Unfortunately, due

to time constraints and technical issues related to models optimization (which are

detailed in subsection 4.3), the third mode could not be implemented, contrary

to the program. Some of the reasons to avoid deploying vertical partitioning for

this thesis project are the method being not a really common solution and the

significant additional effort required. Consequently, the decision was to exclude

vertical partitioning from this project, choice which allowed a more focused approach

to the other techniques and enhanced system stability.

4.1 SYSTEM ARCHITECTURE 45

4.1.1 Single Processing

The single processing setup is the simplest one, as it is the simplest and more direct

implementation. The chosen device must have the trained model already loaded in

its memory, together with the input data (in this case, a set of 200 images to be

tested for inference).

The first step is the setup of the model TFLite interpreter, which can take the

optimizations according to which devices is running onto, and then there is a loop

in which the input images are read one-by-one, and the pre-process, inference and

post-process chain is applied. Afterwards, the results are saved locally in files.

To summarize, the entire workflow is shown below in figure 4.1.2.

Figure 4.1: Sigle Processing System Architecture Overview

4.1 SYSTEM ARCHITECTURE 46

4.1.2 Simple Parallel

The architecture of the simple parallel co-processing method gets a bit more com-

plicated, but it is still straight forward. With respect to single processing, both

the devices are running concurrently and have the model already loaded in their

memories, while the images are locally stored just in the controller memory.

The accelerator workflow consists in setting up the interpreter and the connection

with the controller, and then it enters a loop in which it waits for input images from

the controller. Every image gets processed with the chosen model’s pre-process and

inference, and then the results are sent back to the controller. In this case, the

post-process is split among the two devices: for example, considering the object

detection task, the accelerator takes care just of extracting the detections and their

info from the raw model output, but it is the controller’s duty to reconstruct the

original image with bounding boxes after receiving the results.

Concurrently to the accelerator workflow, the controller starts with setting up

as well, and then it executes the same workflow explained for the single processing

mode in section 4.1.1.

The images are fetched from a local folder, stored in the controller memory,

and multiprocessing is implemented in order to make the two processes read the

first available image without repetitions, until there are available ones. Detailed

explanations about the concurrency and the communication implementation are

below, in section 4.2. This system ensures the implementation of the most optimal

workload subdivision among the two devices, since they both fetch an image as soon

as they are done with the previous one, avoiding idle state conditions.

To summarize the workflow of the entire system and make it more clear to the

reader, a diagram is shown in figure 4.2.

4.1 SYSTEM ARCHITECTURE 47

Figure 4.2: Simple Parallel System Architecture Overview

4.1 SYSTEM ARCHITECTURE 48

4.1.3 Horizontal Partitioning

The architecture used to implement the horizontal partitioning co-processing method

closely resembles the simple processing setup, but it presents some additional steps.

First of all, the controller takes all the images from the folder and it splits them

into tiles, with details explained in the following subsection 4.1.3. Therefore, the

two processes fetch the single tiles instead of fetching the entire images.

Differently from single parallel mode, with this technique the results of every

inference are just part of the results for a single image, therefore all the results are

stored according to the original image index. Consequently, once all the tiles have

been elaborated the controller has the duty to take into account all the results and

for every image it has to merge the single tiles results.

This operation differs from task to task, and it may be extremely computationally

heavy for some cases, as described in section 4.1.3.

Image Split

An image can be split into tiles in several different ways, which can affect the pre-

dictions of deep learning models, especially when considering tasks whether objects

need to be classified or detected. In fact, partitioning the image in tiles might also

split the objects that need to be recognized in the picture, making it more challeng-

ing for the model. This is why the approach used for splitting the image is relevant

in the consideration of the accuracy results.

Considering some limitations regarding chosen AI models input sizes, within this

project only one configuration for splitting the images has been used (more details

about the reasons in section 4.3), and it consists in splitting the images in four parts.

Before getting split, every image is made squared without modifying the aspect

ratio, but adding overlaps to the lowest dimension, and consequently resized to the

expected size (if needed). Then, four squared tiles are generated: for instance, most

4.1 SYSTEM ARCHITECTURE 49

of the images for object detection are 640x640, therefore the tiles would be 320x320.

Additionally though, a key element for the success of the horizontal partitioning

technique is the overlap between the tiles. It allows to avoid cutting in too small

part objects that need to be recognized and improves the results, even though it

introduces some redundancy in the elaboration, increasing the total elaboration

time.

For this thesis, the overlap factor is an interesting parameter which might change

the final results in terms of accuracy. The experiments have been run with overlap

that goes from 10% up to 30% of the initial squared image pixels. In particular,

for object detection images are 640x640, hence these sizes are 32, 64, and 96 pixels,

while for the other two tasks images are 500x500, therefore they are 25, 50 and 75

pixels.

The way of splitting the images in four tiles is represented down here in figure

4.3, where the overlapped parts are represented by the four strips and the central

square. For every strip, every pixel is shared by two tiles, while the overlapped

square is shared by all the tiles.

4.1 SYSTEM ARCHITECTURE 50

Figure 4.3: Image Split into Tiles

As an example of how the partitioning algorithm works, here below an image

belonging to the COCO test set used for the experiments is shown in figure 4.4.

Figure 4.4: Original COCO Image

4.1 SYSTEM ARCHITECTURE 51

And consequently, the tiles generated from the above image are shown in figure

4.5. The visible black bands on top and at the bottom are present because of the

squaring function, that is described earlier.

Figure 4.5: COCO Image Tiles

Results Merge Operation

Within the horizontal partitioning techniques, the collected results from the devices

are related to single tiles of the images. Therefore, there is the need to merge them

to get the full pictures ones, to evaluate them. This operation varies depending on

the task.

For object detection, first there is the need of repositioning the detected objects

bounding boxes, and then to keep only the meaningful ones. In fact, an object

could be recognized from multiple tiles resulting in multiple overlapping bounding

boxes, but in the end, it is only one that needs to be shown. Furthermore, some

objects might be recognized as different items in the different tiles, so the lowest

score prediction has to be discarded.

For image classification, the merge operation is simpler, since there is no need of

localizing the classified objects, but they just need to be ordered by scores.

For semantic segmentation, the output of the model is a mask of the image at

pixel level, meaning that to merge the results a single image mask is created by

unifying the four different tiles. In this process, the four stripes and the square

4.1 SYSTEM ARCHITECTURE 52

are crucial parts of the process since they require an algorithm to assign the right

prediction to each pixel. The chosen approach for this research is the simplest

possible: the pixel gets the label of the prediction that appears more than once

within the tiles predictions. This means that for the strips both the tiles agree,

while for the square that at least two of the tiles agree (50%). In case this does

not happen, the solution thought for this project is a random choice among the

predictions, but some other approaches would surely work better. For instance,

locality principle could be added to introduce some spatial memory, but considering

the purpose of this thesis and the time constraints, a random choice works fine.

As mentioned already in the previous section, merging the results of tasks like

semantic segmentation could be computationally really heavy, since the logic is a

loop over every element of a 2D array, which could have quite high dimensions. In

this thesis, it has been optimized through the use of the Numpy library, but it is

something that could still be improved very much (details in section 6.4).

Examples of horizontal partitioning merged results are presented below in figure

4.6. There is one example image for each task, showing positive results cases.

4.1 SYSTEM ARCHITECTURE 53

Figure 4.6: Horizontal Partitioning Merge Results Examples

4.1 SYSTEM ARCHITECTURE 54

It is also meaningful to show cases where the inference did not give great results,

and an example of this for object detection is shown in figure 4.7 below.

Figure 4.7: Horizontal Partitioning Object Detection Bad Merge Results Example

An example of not great results for semantic segmentation is shown below in

figure 4.8, obtained because of the random choice of labels while considering the

overlapped sections in the results merge function. As it is clear from the picture,

the overlapped areas present labels with ’noise’ of black pixels, set by the random

choice of the algorithm.

4.2 INTER-DEVICE COMMUNICATION 55

Figure 4.8: Horizontal Partitioning Semantic Segmentation Bad Merge Results Ex-

ample

4.2 Inter-Device Communication

The initial idea of using two AI accelerators modules in the architecture was not

possible due to the lack of available products in the producers’ shop. Therefore, only

a single accelerator has been used, with its starter kit board. Hence, the fastest setup

to have for communication was through a server-client system over TCP protocol,

via LAN network.

Of course, having a more reliable and stable communication method such as Con-

troller Area Network (CAN), I2C or SPI would increase the system performances,

since they would not be affected by latency or other effects such as interference and

signal attenuation, which are already not causing major problems because of the

wired connection.

The transmission times are recorded and taken out of the throughput computa-

tions, addressing this communication stability improvement as possible future work,

as described in section 6.4.

Considering instead the concurrency of device inter-communication and inference

process on the controller, it has been achieved through the use of multiprocessing. In

4.3 AI MODELS 56

fact, the framework device has two general processors that can run the two processes

in parallel, while using multithreading is not as effective in Python because of the

Global Interpreter Lock (GIL). Hence, the main process runs the local inference, and

shares a counter variable with the second process, which handles the communication

with the accelerator: transmission of the input image and reception of the results.

To ensure a safe run and avoid concurrent accesses to the shared variable, a simple

semaphore is implemented (mutex). This way, deadlock cannot happen.

4.3 AI Models

With respect to the planned set of models to be used for the experiments, there

have been some changes due to time constraints. The idea of selecting models pre-

trained to run on the accelerator with optimization and re-optimize their root to

efficiently run on the controller as well is still a solid approach to face this type of

challenges, but it could not be performed for this thesis. The main issue was within

the controller software framework developed by the manufacturer to compile deep

learning models and create delegates, which essentially schedule the operations to

the hardware accelerators available in the board, significantly increasing the speed.

Unfortunately, there were problems with the setup of this framework and with

running the script to optimize the models. Furthermore, the functioning of the

optimized models also was not improving in some cases, and due to lack of time

there has been the need to change models, in order to concentrate on the real focus

of this project. Hence, the final approach has been to choose pre-trained controller

models belonging to the same family of NN architectures (when possible) or running

the same models of the accelerator but without optimization.

Another important consideration regards the models’ input sizes. In fact, to

achieve better time results within the deployment of the horizontal partitioning

technique, the models’ input sizes should be decreased to the tiles dimensions, in

4.3 AI MODELS 57

order to make the process faster. However, since the focus of this project is not on

developing deep learning models and just takes advantage of pre-trained ones to test

co-processing methods, this change has not been possible. Therefore, it has to be

considered during the timing analysis in section 5.

To summarize, these are the chosen models for the boards:

• Object Detection

– SSD MobileNetV1 COCO17 MLPerf 300x300 (Controller)

– SSD MobileNetV2 COCO17 MLPerf COCO17 300x300 (Controller)

– SSD MobileNetV2 COCO17 Quant PostProcess 300x300 (Accelerator)

– SSD MobileNetV2 COCO17 PTQ 300x300 (Accelerator)

• Image Classification

– EfficientNet S Quant ILSVRC2012 224x224 (Both devices)

– MobileNetV2 1.0 PTQ ILSVRC2012 224x224 (both devices)

• Semantic Segmentation

– DeepLabv3 MNV2 DM05 PASCAL-VOC2012 Quant (Both devices)

– DeepLabv3 MNV2 PASCAL-VOC2012 Quant (Both devices)

For simplicity, in section 5 the models will be referred with indexes such as 1

and 2, 3 and 4, and 5 and 6 for the corresponding two configurations of each task,

in order object detection, image classification and semantic segmentation.

4.3.1 Datasets

With respect to the initial plan of using the official test set of each dataset, it has

been difficult to retrieve the correspondent annotations to evaluate the predictions

4.4 BENCHMARKS 58

against the ground truth. Therefore, the choice has been to create a test subset

from the validation set, since the annotations are easily accessible.

The image selection has been made randomly, in order to avoid a significant

imbalance in the distribution of different class labels within the experiments input.

4.4 Benchmarks

Regarding benchmarks, several different metrics were available to evaluate the mod-

els performances, as explained in section 3.6. In this section, the selected metrics

for every task are listed.

4.4.1 Latency

Considering latency, all the metrics considered in section 3.6.1 have been imple-

mented in order to evaluate the overall performances of the system, but also to

consider the weights that every part of the process has in the entire chain. This was

done for all the three tasks investigated.

Regarding the specific benchmarks’ metrics chosen, they all are explained in

detail in section 3.6.2.

4.4.2 Accuracy

Considering object detection, the initial idea was to use the pycocotools python

API, which is an official library from COCO dataset to evaluate the mAP of a

model, given the predictions and the annotations [25]. Unfortunately, there were

some issues with the functioning of this library, and therefore the choice was to

compute metrics manually. Hence, for object detection three benchmarks’ metrics

have been implemented: precision, recall and IoU.

4.4 BENCHMARKS 59

For the other two tasks, the approach has been to manually implement the chosen

relevant metrics, in the same way that has been done for object detection.

Considering image classification, the computed metrics are: top-1 accuracy,

top-5 accuracy, precision, recall and f1-score.

Considering semantic segmentation instead, the calculated metrics are: pixel

accuracy, precision, recall, f1-score and IoU.

5 Results and Analysis

In this section, the achieved results of this project are presented and discussed. The

approach of analysis is task-by-task, since it is not relevant to compute performance

metrics among different tasks.

5.1 Object Detection

In this section, the object detection results are presented.

5.1.1 Latency

Considering timings, first results to analyze are regarding the pre-process, inference

and post-process times. For both the models, similar considerations can be exposed.

In every configuration, it is clear that if the model is optimized on both the

devices, then the controller is way faster in every step of the inference process, and

that is constant for every configuration. Through the different setups, consistency

can be noted, apart from the post-process times for the controller in horizontal

partitioning configuration, which has a very high standard deviation. This means

the times have a high degree of variability, probably due to the different amount of

detected objects per tile.

The above mentioned pre-process, inference and post-process times for every

configuration are shown in figure 5.1.

5.1 OBJECT DETECTION 61

Figure 5.1: Object Detection Pre-Process, Inference and Post-Process times

Focusing on the horizontal partitioning technique, meaningful to observe are the

merge times with different percentages of overlap. As expected, the time increases

with the spatial area of overlap of the tiles, as shown in figure 5.2

5.1 OBJECT DETECTION 62

Figure 5.2: Object Detection Horizontal Partitioning Merge Times

It is also worth mentioning the transmission (TX) times for the two configura-

tions which need inter-device communication. Nevertheless, they are not important

for the following considerations, since they can be drastically diminished switching

to wired communication, or directly placing both the devices on a single board.

As it is shown in figure 5.3, TX times for the accelerators are around 10ms more

(on average), and that is because to stabilize the socket-server system some manual

delays had to be implemented in the loops.

Figure 5.3: Object Detection TX Times

5.1 OBJECT DETECTION 63

More interesting for the evaluation of the co-processing techniques are the average

times that the system takes to elaborate a single image, which is also the inverse

of the overall throughput. Again, the two models have a similar behaviour, so the

same conclusions can be drawn.

As it is clear from figure 5.4, the times taken from the single processing mode

with only the accelerator are way higher, while the other configurations are quite

similar. The fastest configuration is the simple parallel one, but this is probably

related to the fact that the horizontal partitioning technique has been implemented

without changing the models’ input sizes. Therefore, it is expected to not see a time

improvement, since all of the tiles need to be resized to the original image size.

Figure 5.4: Object Detection Time per image

Looking at the throughput comparison shown in figure 5.5, the same trend is

even clearer. Among the horizontal partitioning configurations, the smaller overlap

comes with the higher rate, as expected.

5.1 OBJECT DETECTION 64

Figure 5.5: Object Detection Throughput

The same trend is visible in figure 5.6, which represents the data throughput for

every configuration.

Note: horizontal partitioning values are estimation calculated multiplying by 4

the input images sizes.

Figure 5.6: Object Detection Data Throughput

5.1 OBJECT DETECTION 65

5.1.2 Accuracy

Given the consideration about the fixed models’ input sizes, which make the latencies

less meaningful to analyze, the accuracy results gain even more importance. In fact,

an improvement or worsening of the accuracy is crucial when deciding whether to

implement the method.

The precision-recall graph shown in figure 5.7 shows clearly how the accuracy

drops when implementing horizontal partitioning, at least for object detection tasks.

In fact, both recall and especially precision heavily drop when applying the men-

tioned co-processing technique, especially when considering model 1. In this case,

single processing on the controller and simple parallel configuration are similar with

good performances, while the single processing on the accelerator is the best config-

uration, especially for the really high recall.

Considering model 2, the accelerator is still the best configuration, with a way

lower recall, but a higher precision.

These results are probably related to the fact that objects get split in smaller

pieces and not recognized, considering that the merge results reconstructions maybe

lack precision for the bounding box, and therefore evaluation metrics consider it as

false positive.

5.1 OBJECT DETECTION 66

Figure 5.7: Object Detection Precision-Recall

The second implemented metric is the IoU: also for this one, results for model 1

and model 2 differ.

Considering the former, the average IoU value is higher for the single processing

mode on the controller, followed by the simple parallel configuration and the single

accelerator. Way lower is the IoU achieved with horizontal partitioning.

Considering the latter, the trend is similar, but the single accelerator configura-

tion wins.

This mentioned data is shown in figure 5.8.

5.2 IMAGE CLASSIFICATION 67

Figure 5.8: Object Detection IoU

5.2 Image Classification

In this section, the image classification results are presented.

5.2.1 Latency

Again, the first results to analyze are regarding the pre-process, inference and post-

process times. For both the models, similar considerations can be exposed.

In every configuration, it is clear that since the model is not optimized to run

on the controller, the correspondent inference time is extremely high, and that is

constant for every configuration. Through the different setups, consistency can

be noted, apart from the pre-process times for the accelerator in simple parallel

configuration, which has a very high standard deviation. This means the times have

an high degree of variability, therefore that data is not particularly meaningful.

The above mentioned pre-process, inference and post-process times for every

configuration are shown in figure 5.9.

5.2 IMAGE CLASSIFICATION 68

Figure 5.9: Image Classification Pre-Process, Inference and Post-Process times

Regarding the horizontal partitioning technique merge times, the same trend

seen in section 5.1.1 is shown here, as it is expected and clear from figure 5.10.

5.2 IMAGE CLASSIFICATION 69

Figure 5.10: Image Classification Horizontal Partitioning Merge Times

Regarding TX times, the same consideration proposed for the object detection

task can be done for image classification as well, as visible in figure 5.11.

Figure 5.11: Image Classification TX Times

Considering the average times that the system takes to elaborate a single image,

which is also the inverse of the overall throughput, it is clear how the controller is

way slower than the accelerator. Consequently, also simple parallel and horizontal

partitioning techniques result in being slower than the single processing mode with

5.2 IMAGE CLASSIFICATION 70

the accelerator.

An interesting comparison is between the two models and regarding the co-

processing techniques: all of them are heavily slower on while running model 4.

The mentioned results are shown in figure 5.12.

Figure 5.12: Image Classification Time per image

The throughput data, being the inverse of the time discussed above, follows the

reversed trend, with the single processing accelerator mode having the highest rate

for both the models. The co-processing methods’ performances are unfortunately

limited by the low rate achieved by the controller.

These results are visible below in figure 5.13.

5.2 IMAGE CLASSIFICATION 71

Figure 5.13: Image Classification Throughput

The same trend can be seen in the data throughput graph, which is shown below

in figure 5.14.

Figure 5.14: Image Classification Data Throughput

5.2.2 Accuracy

The same consideration about the importance of the accuracy results in this project

made in section 5.1.2 is valid also here.

Considering the precision-recall graph for image classification, the two models

5.2 IMAGE CLASSIFICATION 72

have quite distinguished outcomes. Starting from model 3 results, they show how

the single processing mode with the accelerator has both higher precision and higher

recall, while the other co-processing techniques still have decent values of precision

and recall, but they are limited by the mediocrity of the model on the controller.

Considering model 4 instead, the controller’s performances heavily increase, and

therefore the horizontal partitioning techniques gain both in precision and recall,

with really interesting performances. All of these results can be seen in figure 5.15.

Figure 5.15: Image Classification Precision-Recall

The F1-score, being computed from precision and recall, follows the same trend,

as shown in figure 5.16 below.

5.2 IMAGE CLASSIFICATION 73

Figure 5.16: Image Classification F1-score

Other important metrics are the top-1 and top-5 accuracy, which actually show

how model 4 has interesting performances when using horizontal partitioning co-

processing methods, as well as the two devices running in single processing mode.

For model 3 instead, the controller can be considered as the bottleneck, also for

the co-processing techniques. These results are visible in figure 5.17, which contains

top-1 accuracy values, and in figure 5.18, which shows top-5 accuracy values.

Figure 5.17: Image Classification Top-1 Accuracy

5.3 SEMANTIC SEGMENTATION 74

Figure 5.18: Image Classification Top-5 Accuracy

5.3 Semantic Segmentation

5.3.1 Latency

Again, the first results to analyze are regarding the pre-process, inference and post-

process times. For both the models, similar considerations can be exposed.

Considering semantic segmentation, both models have not great time perfor-

mances, even if they had been optimized for the accelerator (the models are large).

Therefore, differently from the other tasks there is just a slight difference between

the two devices, making the co-processing methods more interesting also time-wise.

Interesting characteristic which is easily noticeable from the graph in figure 5.19

is that post-process times are huge when using horizontal partitioning, and that is

because of the slow pixel-wise operation the models’ output need to have.

5.3 SEMANTIC SEGMENTATION 75

Figure 5.19: Semantic Segmentation Pre-Process, Inference and Post-Process times

Regarding the horizontal partitioning technique merge times, the same trend

seen in section 5.1.1 is shown here, as it is expected and clear from figure 5.20.

However, for semantic segmentation the operations are extremely computationally

heavy, and that is mostly because of the overlapped sections, which need to be

examined pixel-wise.

5.3 SEMANTIC SEGMENTATION 76

Figure 5.20: Semantic Segmentation Horizontal Partitioning Merge Times

Regarding TX times, shown below in figure 5.21, it is noticeable how another

bottleneck is the results transfer from the accelerator to the controller. The reason

behind this behaviour is the models’ raw outcome nature, which is a 2D array of

the image size, with a high data size.

Figure 5.21: Semantic Segmentation TX Times

Considering the inverse of the throughput, it is clear that the horizontal parti-

tioning is way slower than the other methods, and that is mainly because of the

5.3 SEMANTIC SEGMENTATION 77

heavy post-process and merge needed. The graph in figure 5.22 shows the results

for both the models.

Figure 5.22: Semantic Segmentation Time per image

Looking at figure 5.23 below, the throughput follows the trend extrapolated from

the previous observed data. It shows how simple parallel mode brings some small

improvements in terms of timings.

Figure 5.23: Semantic Segmentation Throughput

The data throughput graph shown below in figure 5.24 is consistent with the

previous ones.

5.3 SEMANTIC SEGMENTATION 78

Figure 5.24: Semantic Segmentation Data Throughput

5.3.2 Accuracy

The same consideration about the importance of the accuracy results in this project

made in section 5.1.2 is valid also here.

The first metric to be considered for semantic segmentation evaluation is pixel

accuracy. For the results obtained and shown below in figure 5.25, both models

follow the same trend.

In general, single processing modes and simple parallel mode offer better pixel-

wise performances, even though the difference is not too significant.

5.3 SEMANTIC SEGMENTATION 79

Figure 5.25: Semantic Segmentation Pixel Accuracy

Same behaviour is present in figure 5.26, representing the average IoU for both

the models in every configuration.

Figure 5.26: Semantic Segmentation IoU

More interesting is the precision-recall graph shown in figure 5.27 below: all

the configurations have interesting results for this task, but still simple parallel and

single processing mode seem to maintain the lead regarding this metric.

5.3 SEMANTIC SEGMENTATION 80

Figure 5.27: Semantic Segmentation Precision-Recall

The F1-score follows the same trend by definition, but showing in a clearer way

that also the horizontal partitioning results are worth of interest. The data is shown

in figure 5.28 below.

Figure 5.28: Semantic Segmentation F1-score

6 Conclusion

In this section, the conclusions that can be drawn from the experiments results

are addressed to answer the research questions exposed in section 1.1. In short,

this section contains the assessment on whether the co-processing techniques tried

within the experiments can improve the performances of an Edge AI system for space

applications, or if they worsen them. The terms of comparison for the evaluation

are accuracy and latency for this first project.

Moreover, ideas for future work to improve the existing prototype whereas weak

points have been detected, and proceed researching are proposed.

As it has been already done while discussing the results, the most appropriate

approach is to evaluate the co-processing methods within every task, since there are

different conclusions coming out of them.

To give an initial overview of the conclusions, they differ according to each single

deep learning task. Especially image classification, but also semantic segmentation

with the tested co-processing method can offer improvements worth of deploying a

co-processing setup rather than a single processing one. Fundamental for making

these results more meaningful is the implementation of smaller input sizes models,

to observe the real potential latency gain.

Nevertheless, not all of the task obtain nice results, and object detection is

just an example of those. This is probably due to the nature of the task itself,

which proposes to recognize and also precisely locate objects, which for horizontal

6.2 IMAGE CLASSIFICATION 82

partitioning are split in smaller pieces.

More details regarding every task follow below.

6.1 Object Detection

Starting off from object detection, first consideration to explicit is regarding the

models chosen. Since they are optimized on both devices, the collected latency

values do not show any particular improvement due to the necessity of resizing the

tiles to the original image input size. Therefore, the rate is the same, but horizontal

partitioning technique overall takes about four times more time. The simple parallel

method slightly improves the rate, but not significantly.

Considering accuracy instead, while simple parallel technique gives about the

same accuracy result as the single processing modes, horizontal partitioning gets

worse evaluation metrics, for whatever considered overlap percentage. Hence, in

conclusion it seems like for object detection, using horizontal partitioning is not

really convenient with this setup, probably because of the objects which get split

into the different tiles.

However, considering more efficient object detection models and different models’

input sizes for horizontal partitioning techniques, there might be improvement either

on the timing or on the accuracy side (or maybe both).

6.2 Image Classification

Moving on to image classification, the consideration about the chosen models is

different: the controller runs a not optimized model, which shows largely slower

performances respect to the accelerator. Therefore, from a latency point of view the

co-processing techniques seem not to make much sense for this task, since they are

slowed down by the controller. It would probably be different if also the controller

6.3 SEMANTIC SEGMENTATION 83

model was optimized to run faster.

Regarding accuracy, for model 3 the same above exposed object detection final

considerations can be drawn, while for model 4 the story is different.

Addressing the thesis research questions, this last case is very interesting to

support the co-processing methods used. In fact, all of the metrics for horizontal

partitioning are higher than all the other configurations, and they grow together

with the overlap factor. This result is meaningful to prove that in for a task such

as image classification, splitting the input data into tiles and spreading them to

different devices can improve the predictions.

Looking at the bigger picture, with an optimized model for the controller the

horizontal partitioning would have better performances on both the aspects eval-

uated, assessing the adequacy of the mentioned method over a single processing

configuration.

6.3 Semantic Segmentation

Semantic segmentation has different issues instead. In fact, the main problem faced

with horizontal partitioning method for this task regards the post-process and in

particular the tiles results merge time, which is huge.

The main reason for that is strictly connected to the models’ input sizes: since

they could not be changed, all the four tiles need to be resized to the original model

input size, which is quite big (513x513). Hence, considering that the merge function

composes the merged result by pasting the four tiles into a single image, the size of

overlapped section to be processed is massive. So, most probably this problem would

be improved, or maybe totally fixed, with smaller models’ input sized as initially

planned.

Accuracy results show how the single processing mode and the simple parallel

mode have better performances. However, horizontal partitioning still has decent

6.4 FUTURE WORK 84

metrics values, which could totally be acceptable for some applications such as clouds

segmentation. Furthermore, the random choice of pixel labels within the overlapped

areas of the tiles needs to be considered when assessing the accuracy results. It

is important to mention that a better approach, such as locality principle, would

definitely increase both models performances.

Thus, investigating more this task with the right models’ input sizes could give

interesting enough results to take it into consideration for deployment on a satellite.

6.4 Future Work

Considering the implementation of this project respect to the initial plan exposed

in section 3, several aspects can be considered as interesting focus for future work

to continue the research.

First of all, one of the main reasons for the experiments to show not useful latency

improvements is related to the models’ input data sizes. Therefore, it would be inter-

esting to focus more on the models’ side and develop custom models with different

input sizes for every horizontal partitioning configuration. This way, timing con-

siderations would also become meaningful in the context of evaluating performance

improvements, and they could also cause different accuracy results.

Moreover, the implementation of smaller input sizes for the deep learning mod-

els would also increase the post-process speed, which is a bottleneck for tasks such

as semantic segmentation. The following problem could be addressed also by opti-

mizing the algorithm itself with cross-compilation with C language, implementing

multiprocessing and parallelizing the images to process, delegating some operations

to the hardware accelerators available in the controller board, involving the other

devices to split the workload, or combining some of these mentioned techniques

together.

Sticking to the initial plan, investigating vertical partitioning would be key to get

6.4 FUTURE WORK 85

a broader comparison for co-processing methods within this hardware architecture,

and therefore a really important direction for the research.

More in general, deploying more models and more tasks could also widen the

results spectrum and offer an analysis of the different response of different model

families and tasks to the above mentioned co-processing methods. This could include

the planned idea of developing a simple custom model to be fully optimized for the

hardware platform.

Last but not least, improving the setup stability and communication speed is

also key for improving the real performances of the system. In fact, all the discussed

results in the previous sections are computed without taking into consideration the

communication times with TCP sockets. This means that the actual performances

of the prototype are lower, and as explained in section 4.2, these components were

omitted from the calculations. Improving the data exchange speed would help im-

proving the overall system performance.

References

[1] G. Furano, G. Meoni, A. Dunne, et al., “Towards the use of artificial intel-

ligence on the edge in space systems: Challenges and opportunities”, IEEE

Aerospace and Electronic Systems Magazine, vol. 35, no. 12, pp. 44–56, 2020.

doi: 10.1109/MAES.2020.3008468.

[2] V. Leon, G. Lentaris, D. Soudris, S. Vellas, and M. Bernou, “Towards employ-

ing fpga and asip acceleration to enable onboard ai/ml in space applications”,

in 2022 IFIP/IEEE 30th International Conference on Very Large Scale Inte-

gration (VLSI-SoC), 2022, pp. 1–4. doi: 10.1109/VLSI-SoC54400.2022.

9939566.

[3] A. D. George and C. M. Wilson, “Onboard processing with hybrid and re-

configurable computing on small satellites”, Proceedings of the IEEE, vol. 106,

no. 3, pp. 458–470, 2018. doi: 10.1109/JPROC.2018.2802438.

[4] J. Goodwill, G. Crum, J. MacKinnon, et al., “Nasa spacecube edge tpu small-

sat card for autonomous operations and onboard science-data analysis”, in

Proceedings of the Small Satellite Conference, AIAA, 2021.

[5] V. Leon, C. Bezaitis, G. Lentaris, et al., “Fpga and vpu co-processing in

space applications: Development and testing with dsp/ai benchmarks”, in 2021

28th IEEE International Conference on Electronics, Circuits, and Systems

(ICECS), 2021, pp. 1–5. doi: 10.1109/ICECS53924.2021.9665462.

https://doi.org/10.1109/MAES.2020.3008468
https://doi.org/10.1109/VLSI-SoC54400.2022.9939566
https://doi.org/10.1109/VLSI-SoC54400.2022.9939566
https://doi.org/10.1109/JPROC.2018.2802438
https://doi.org/10.1109/ICECS53924.2021.9665462

REFERENCES 87

[6] G. Giuffrida, L. Fanucci, G. Meoni, et al., “The phi-sat-1 mission: The first on-

board deep neural network demonstrator for satellite earth observation”, IEEE

Transactions on Geoscience and Remote Sensing, vol. 60, pp. 1–14, 2022. doi:

10.1109/TGRS.2021.3125567.

[7] V. Leon, G. Lentaris, E. Petrongonas, et al., “Improving performance-power-

programmability in space avionics with edge devices: Vbn on myriad2 soc”,

ACM Transactions on Embedded Computing Systems (TECS), vol. 20, no. 3,

pp. 1–23, 2021.

[8] V. Leon, E. A. Papatheofanous, G. Lentaris, et al., “Combining fault tolerance

techniques and cots soc accelerators for payload processing in space”, in 2022

IFIP/IEEE 30th International Conference on Very Large Scale Integration

(VLSI-SoC), 2022, pp. 1–6. doi: 10.1109/VLSI-SoC54400.2022.9939621.

[9] L. Bo, X. Feng, and Y. Yunhong, “A co-processing method based on warm

standby systems”, in 2014 IEEE Symposium on Computer Applications and

Communications, 2014, pp. 109–113. doi: 10.1109/SCAC.2014.30.

[10] N. Audebert, B. Le Saux, and S. Lefevre, “Deep learning for classification

of hyperspectral data: A comparative review”, IEEE Geoscience and Remote

Sensing Magazine, vol. 7, no. 2, pp. 159–173, 2019. doi: 10.1109/MGRS.2019.

2912563.

[11] C. Deng, Y. Xue, X. Liu, C. Li, and D. Tao, “Active transfer learning network:

A unified deep joint spectral–spatial feature learning model for hyperspectral

image classification”, IEEE Transactions on Geoscience and Remote Sensing,

vol. 57, no. 3, pp. 1741–1754, 2019. doi: 10.1109/TGRS.2018.2868851.

[12] D. E. Buckley Léonie, “Benchmarking deep learning on a myriad x processor

onboard the international space station (iss)”, California Institute of Technol-

ogy, Tech. Rep., 2022.

https://doi.org/10.1109/TGRS.2021.3125567
https://doi.org/10.1109/VLSI-SoC54400.2022.9939621
https://doi.org/10.1109/SCAC.2014.30
https://doi.org/10.1109/MGRS.2019.2912563
https://doi.org/10.1109/MGRS.2019.2912563
https://doi.org/10.1109/TGRS.2018.2868851

REFERENCES 88

[13] X. Kong, W. He, and J. Han, “A high-performance risc-v co-processor archi-

tecture for fast ip processing”, in 2022 IEEE 16th International Conference on

Solid-State and Integrated Circuit Technology (ICSICT), 2022, pp. 1–3. doi:

10.1109/ICSICT55466.2022.9963438.

[14] Y. Huang, X. Qiao, W. Lai, S. Dustdar, J. Zhang, and J. Li, “Enabling dnn

acceleration with data and model parallelization over ubiquitous end devices”,

IEEE Internet of Things Journal, vol. 9, no. 16, pp. 15 053–15 065, 2022. doi:

10.1109/JIOT.2021.3112715.

[15] J. Youn and Y.-H. Han, “Intelligent task dispatching and scheduling using a

deep q-network in a cluster edge computing system”, Sensors, vol. 22, no. 11,

p. 4098, 2022.

[16] B. Balachandran, K. F. Saad, K. Patel, and N. Mekhiel, “Parallel computer

for face recognition using artificial intelligence”, in 2019 14th International

Conference on Computer Engineering and Systems (ICCES), 2019, pp. 158–

162. doi: 10.1109/ICCES48960.2019.9068130.

[17] Z. Zhou, X. Chen, E. Li, L. Zeng, K. Luo, and J. Zhang, “Edge intelligence:

Paving the last mile of artificial intelligence with edge computing”, Proceedings

of the IEEE, vol. 107, no. 8, pp. 1738–1762, 2019. doi: 10.1109/JPROC.2019.

2918951.

[18] M. Abadi, P. Barham, J. Chen, et al., Tensorflow: A system for large-scale

machine learning, 2016. arXiv: 1605.08695 [cs.DC].

[19] Tensorflow lite. [Online]. Available: https://www.tensorflow.org/lite/

guide.

[20] A. G. Howard, M. Zhu, B. Chen, et al., Mobilenets: Efficient convolutional neu-

ral networks for mobile vision applications, 2017. arXiv: 1704.04861 [cs.CV].

https://doi.org/10.1109/ICSICT55466.2022.9963438
https://doi.org/10.1109/JIOT.2021.3112715
https://doi.org/10.1109/ICCES48960.2019.9068130
https://doi.org/10.1109/JPROC.2019.2918951
https://doi.org/10.1109/JPROC.2019.2918951
https://arxiv.org/abs/1605.08695
https://www.tensorflow.org/lite/guide
https://www.tensorflow.org/lite/guide
https://arxiv.org/abs/1704.04861

REFERENCES 89

[21] M. Tan and Q. V. Le, “Efficientnet: Rethinking model scaling for convolutional

neural networks”, CoRR, vol. abs/1905.11946, 2019. arXiv: 1905.11946. [On-

line]. Available: http://arxiv.org/abs/1905.11946.

[22] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille, Deeplab:

Semantic image segmentation with deep convolutional nets, atrous convolution,

and fully connected crfs, 2017. arXiv: 1606.00915 [cs.CV].

[23] W. Liu, D. Anguelov, D. Erhan, et al., “SSD: single shot multibox detector”,

CoRR, vol. abs/1512.02325, 2015. arXiv: 1512 . 02325. [Online]. Available:

http://arxiv.org/abs/1512.02325.

[24] Post-training quantization | tensorflow lite. [Online]. Available: https://www.

tensorflow.org/lite/performance/post_training_quantization.

[25] T.-Y. Lin, M. Maire, S. Belongie, et al., Microsoft coco: Common objects in

context, 2015. arXiv: 1405.0312 [cs.CV].

[26] O. Russakovsky, J. Deng, H. Su, et al., “Imagenet lsvrc 2012 validation set

(object detection)”,

[27] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisser-

man, The PASCAL Visual Object Classes Challenge 2012 (VOC2012) Results,

http://www.pascal-network.org/challenges/VOC/voc2012/workshop/index.html.

[28] P. Henderson and V. Ferrari, “End-to-end training of object class detectors

for mean average precision”, CoRR, vol. abs/1607.03476, 2016. arXiv: 1607.

03476. [Online]. Available: http://arxiv.org/abs/1607.03476.

[29] Z. Vujovic, “Classification model evaluation metrics”, International Journal of

Advanced Computer Science and Applications, vol. Volume 12, pp. 599–606,

Jul. 2021. doi: 10.14569/IJACSA.2021.0120670.

https://arxiv.org/abs/1905.11946
http://arxiv.org/abs/1905.11946
https://arxiv.org/abs/1606.00915
https://arxiv.org/abs/1512.02325
http://arxiv.org/abs/1512.02325
https://www.tensorflow.org/lite/performance/post_training_quantization
https://www.tensorflow.org/lite/performance/post_training_quantization
https://arxiv.org/abs/1405.0312
https://arxiv.org/abs/1607.03476
https://arxiv.org/abs/1607.03476
http://arxiv.org/abs/1607.03476
https://doi.org/10.14569/IJACSA.2021.0120670

REFERENCES 90

[30] S. Goyal, Evaluation metrics for classification models, Jul. 2021. [Online].

Available: https://medium.com/analytics-vidhya/evaluation-metrics-

for-classification-models-e2f0d8009d69.

[31] R. TS and R. Senthilnathan, “Dataset and performance metrics towards se-

mantic segmentation”, Available at SSRN 4352476, 2023.

https://medium.com/analytics-vidhya/evaluation-metrics-for-classification-models-e2f0d8009d69
https://medium.com/analytics-vidhya/evaluation-metrics-for-classification-models-e2f0d8009d69

	Introduction
	Research Questions

	Theoretical Background
	Hardware Architecture
	State of the Art

	Software Architecture
	Task scheduling

	Co-Processing AI Acceleration
	Vertical Partitioning
	Horizontal Partitioning

	Custom AI Models
	Benchmarks

	Methodology
	Hardware Architecture
	Planned experiments
	Tensorflow and Tensorflow Lite

	AI Models
	MobileNet
	EfficientNet
	DeepLab
	Single Shot MultiBox Detector (SSD)
	Post-Training Quantization

	Datasets
	COCO17
	ILSVRC2012
	PASCAL VOC2012

	Co-Processing Methods
	Benchmarks
	Latency
	Accuracy

	Experiments
	System Architecture
	Single Processing
	Simple Parallel
	Horizontal Partitioning

	Inter-Device Communication
	AI Models
	Datasets

	Benchmarks
	Latency
	Accuracy

	Results and Analysis
	Object Detection
	Latency
	Accuracy

	Image Classification
	Latency
	Accuracy

	Semantic Segmentation
	Latency
	Accuracy

	Conclusion
	Object Detection
	Image Classification
	Semantic Segmentation
	Future Work

	References

