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This MSc thesis is studying flexible myocardial radiowater PET protocols. The 

compartment model giving the parameters is presented, and mathematical concepts 

like the Laplace transform and convolution integral are defined in the theoretical 

section. This study compares the flexible and conventional protocols, considering 

the differences in parameters based on simulations. Conclusions are drawn based 

on the parameter errata, deviations, and statistical tests given in the simulations. 

The study’s outcome is that simulations based on a given blood curve support 

that the flexible series is more accurate for ptMBF than fixed ones. The simulation 

characteristic leads to limitations of conclusions, and for more reliable results, further 

study is required. 

Keywords: Compartment model, Convolution integral, Laplace transform, Myocar- 

dial PET, Radiowater, Simulation, Time-activity curve 

Tämä Pro Gradu -tutkielma käsittelee joustavia radiovesi PET-protokollia. Lokero- 

malli, josta keskeiset parametrit johdetaan, sekä matemaattiset käsitteet kuten Laplace 

-muunnos ja konvoluutiointegraali, määritellään teoriaosiossa. Tutkimus vertailee 

joustavia protokollia jo käytössä olleisiin hyödyntämällä simulaatioissa saatuja parame- 

trien välisiä eroja. Johtopäätökset perustuvat virheisiin parametreissa, hajontoihin 

ja tilastolliseen testaukseen, simulaatioon pohjautuen. Tämän tutkimuksen lop- 

putulos on että tiettyyn verikäyrään pohjautuvat simulaatiot tukevat väitettä että 

joustavat sarjat ovat tarkempia ptMBF suhteen kuin ennaltamääritellyt sarjat. Sim- 

ulaatiopiirre johtaa päätelmien rajoittuneisuuteen ja luotettavammat tulokset vaa- 

tivat jatkotutkimusta. 

Avainsanat: Aika-aktiivisuuskäyrä, Konvoluutiointegraali, Laplace muunnos, Lokero- 

malli, Myokardiaalinen PET, Radiovesi, Simulaatio
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1 Introduction 

This thesis compares fixed and flexible frame series for myocardial positron emis- 

sion tomography (myocardial PET). Fixed series does not change between imaging 

procedures, but flexible series are practically different each time. 

There are three parameters: perfusable tissue myocardial blood flow, perfusable 

tissue fraction, and arterial volume. The interest is to see if there are positive 

differences in perfusable tissue myocardial blood flow, ptMBF, for flexible series 

compared to fixed series. The interest is, too, if these differences are significant. 

Also, deviations of parameter values are studied because they affect the quality of 

an image. The region of interest, ROI, is the area based on which the parameters 

are computed. 

The main research question is whether a PET procedure with flexible frame 

lengths gives more desirable values for selected parameters than a procedure with 

fixed frame lengths and no flexibility in frame timings. The word flexible refers to 

a frame series where each frame has an equal number of counts, or decay events, as 

possible after the maximum radioactivity on ROI is achieved. 

This study considers whether the error in the parameters with frames fixed in 

advance differs compared to having a flexible series with three different minimum 

lengths of frames. 

There is more weight on perfusable tissue myocardial blood flow (ptMBF) pa- 

rameters compared to perfusable tissue fraction (PTF) and arterial volume (VA) 

parameters. The simulation values for each frame series are given for all three of 

them. Then, the differences in parameter locations between series are statistically 

tested using a two-sided Wilcoxon test. The difference between each pair of series 

is significant if there is a p -value less than 0 . 05 , denoted as p < 0 . 05 . 

For flexible frame length series, three different minimum lengths of frames are 

considered: 5 s , 3 s , and 2 s . The last one mentioned may be relatively short for 

technology when writing this study, but the first two should be applicable at some 

level. Furthermore, the longest minimal frame length, 5 s , has generally been used 

on series having fixed frames during this study. 

This study first presents basics of positron emission tomography in Section 2. 

Mathematical results are given in Section 3 and the model the theory is based is 

presented in Section 4. Then Section 5 describes the methods of this study. Section 

6 presents results this study concludes. Finally Section 7 discusses this study and 

the results and Section 8 draws the conclusions. 
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2 Positron emission tomography (PET) 

Positron emission tomography, abbreviated as PET, is a medical imaging proce- 

dure that applies radioactive tracers. It is a part of nuclear medicine. PET has 

been in use for multiple decades and is involved, for example, in oncologic, cardiac, 

and neurological imaging [18]. Positron emission tomography is an efficient "non- 

invasive" method to study, for example, myocardial functionality [15]. Being often 

non-invasive, PET has made it an effective procedure in contrast to invasive ones. 

In the 21st century, PET combined with computed tomography, PET-CT has 

been widely applied because it combines anatomical and metabolic imaging [12]. 

PET-CT technique is hence commonly used in medical imaging. The technical 

aspects in the field of PET are continuously developing, and there is also more 

advanced technique, such as magnetic resonance imaging combined with positron 

emission tomography, MRI-PET, and more. 

In clinical use, the patient is set in the scanner tube and injected with a radio- 

tracer. The scanner collects information about radioactivity, and then the image is 

constructed with an algorithm-based process that applies theoretic models [28]. The 

development of those algorithms is an ongoing process. Image accuracy has been 

improving over time. 

2.1 Basics of myocardial PET 

PET imaging is a valuable tool for cardiac diagnostics. The procedure gives crucial 

data regarding symptoms of possible coronary artery disease [10]. PET imaging 

offers access to information that other methods can have difficulty providing. 

In [10], the tracer was 2-(fluorine-18) fluoro-2-deoxy-g-glucose, or FDG, that 

had been in standard use before the 21st century. However, the science of nuclear 

medicine is developing continuously, including tracers. 

2.2 Main properties of 

15 O -water 

Radiowater,15 O-water, is now much more prevalent in clinical use than in the very 

beginning of the 21st century [7]. Radiowater’s usage has been growing in the diag- 

nostics of coronary artery disease. It has many beneficial properties for myocardial 

PET [7]. 

A water molecule has two hydrogen atoms and one oxygen atom. An oxygen 

atom usually has 16 electrons, but in 

15 O -water, also called radiowater, the oxygen 

has only 15 electrons. The missing electron makes the molecule radioactive; 

15 O is 

a radionuclide with a half-life near 2 minutes [17]. 

In the Radiowater molecule, the oxygen nuclides decay to nitrogen and positron. 

PET scanners recognize these positrons; this forms the basis for the image construc- 

tion. 
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2.3 Radioactive decay of 

15 O 

The formulas and half-life appear on the websites of Turku PET Centre [20] and Na- 

tional Nuclear Data Center [19], respectively. The half-life of oxygen − 15 is 122 . 24 s . 

Radioactivity at a given point in time can be solved using a formula where A0 

is the 

radioactivity at t = 0 :

 

At 

= A0 

e− λt .

 

(1) 

The decay constant λ is crucial in computations. The following formula gives the 

half-life of the isotope. 

Definition 1. (Decay constant) The decay constant is based on a formula below 

where T1 / 2 

is the half-life of the isotope 

λ = 

ln 2

 

T1 / 2 

. 

The radioactivity at a given moment can be computed using Equation 1 in 

general case. For radiowater there is the result Lemma 2 gives. 

Lemma 2 (Radioactivity at given time) . Given the half-life of oxygen- 15 is 122 . 24 s , 

λ = 

ln 2

 

122 . 24 

. 

then radioactivity at the moment t in seconds is 

At 

= A0 

e− 

ln 2

 

122 . 24 

t . 

We need to know when x % radioactivity is left compared to t = 0 . It can be 

computed using Corollary 3. The radioactivity at the moment t is given by Equation 

2. 

Corollary 3. Time there is x % radioactive counts compared to maximum density. 

There is 

At 

= A0 

e− 

ln 2

 

122 . 24 

t . 

Solving this for t gives

 

t = −
122 . 24 ln 

At

 

A0

 

ln 2 

.

 

(2) 

2.4 Flexible vs fixed PET 

Traditional PET has predetermined frame lengths, while flexible protocol sets each 

frame’s lengths during the PET imaging procedure. While using a flexible process, 

the frames can be determined based on the list-mode data of a PET camera.[23] 

Follows that we can access the total number of counts at a given time. 

We are now studying partially flexible PET procedures where the beginning of 

the procedure behaves like conventional protocol. Still, after the maximum density 

of counts is reached, the protocol is based on radioactive decay of 

15 O . This study 
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applies the idea of flexibility by finding the point with the highest density of ra- 

dioactive counts, and the behavior of frame times is predetermined before and after 

this point in time. 

It is likely that, in some cases, flexible property could be applied more thoroughly. 

However, this thesis aims to show how flexible protocol could be used in myocardial 

PET and compare its efficacy to existing series in a specific case. 
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3 Laplace transform 

Laplace transform has an input function that is time-domained and gives an output 

function that is frequency-domained with complex values, as Schiff states in his book 

[24]. This transform is beneficial if the goal is to find a function of frequency when 

given a function of time. The first subsection provides the mathematical grounds 

for building the theory of Laplace transform and then convolution integral. 

Basic ideas on Laplace transforms in the Subsection 3.2 give a base for results 

needed to justify the model. The inverse Laplace transform, discussed in Subsec- 

tion 3.3, explains the model for parameters. It is often used in solving differential 

equations besides convolution integral and gives a function of time when the input 

is a function of frequency. 

The convolution integral is a more advanced concept based on the theory of 

Laplace transform. It is general while solving differential equations. The idea of 

convolution integral is presented in Subsection 3.4. 

This section is mainly based on Schiff’s book [24] unless there is another reference 

for some results. 

3.1 Profounding analysis concepts 

The concepts of piecewise continuity and absolute convergence of an integral are 

required to justify the Laplace transform. In this study, the set of real numbers is 

denoted by R . 

The function must be piecewise continuous, as in Definition 4, because for the 

Laplace transform, the integral must be defined on every interval [0 , b ) , for any 

b ∈ R . 

Definition 4 (Piecewise continuous function.) . A function f is piecewise continuous 

in a non-negative range [0 , ∞ ) if it fulfils the following two properties: 

1) There exists limt → 0+ f ( t ) , and 

2) The function is continuous on every finite interval (0 , b ) , b ∈ R , but can have 

jump discontinuities on some individual points. 

The Laplace transform also requires that the integral converges absolutely; that 

is, the integral has a finite limit while limb →∞ 

f ( b ) . 

The following Definitions 5, 6 and 7 for improper integral, the convergence of 

integral, and its absolute convergence, respectively, are based on Harjulehto et al. 

book [6]. 

Definition 5 (Improper integral) . Let f : [0 , ∞ ) be integrable on every interval 

[0 , c ] ⊂ [0 , b ) . Then the improper integral is the function E ( x ) : [0 , ∞ ) → R 

defined:

 

E ( x ) = 

∫ x 

0 

f ( y ) dy .
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Now that there is defined the the improper integral in Definition 5. For Definition 

7 of the absolutely converging integral, the more general definition of the converging 

improper integral as Definition 6 is required. 

Definition 6 (Convergence of improper integral) . If E ( x ) : [0 , ∞ ) → R is an 

improper integral as in Definition 5 and limx →∞ 

E ( x ) = r , such that r ∈ R then the 

improper integral converges. The value of converging improper integral is r . 

Definition 7, the absolute convergence of integral, is applied in justifying that a 

Laplace transform exists. 

Definition 7 (Absolutely convergent integral.) . Assume the function f : [0 , b ) → R 

is integrable on every interval [0 , c ] ⊂ [0 , b ) . If the improper integral ∫ b 

0 

| f ( x ) | dx 

converges, then the integral ∫ b 

0 

f ( x ) dx 

converges absolutely. 

3.2 Laplace transform basics 

The Laplace transform presented in Definition 8 transforms a function of time to a 

function of frequency. In this thesis, it is used as a part of the solution process for 

an ordinary differential equation while justifying the parameters. The definition for 

Laplace transform below is based on the reference [24]. 

Definition 8 (Laplace transform) . Let f ( t ) be a function assuming t ≥ 0 and the 

domain being time. Then the Laplace transform L of function f ( t ) is

 

L { f ( t ) } = 

∫ ∞ 

0 

f ( t ) e− st dt (3) 

= lim 

t →∞ 

∫ t 

0 

f ( t ) e− st dt. (4)

 

The following Example 9 illustrates how to apply Definition 8 for an exponential 

function. 

Example 9 (Applying Laplace transform) . Find the Laplace transform of f ( t ) = et, 

while 0 ≤ t < ∞ . 

Solution. To find L ( et) , the function should be plugged into integral Formula 4 

given by the Laplace transform Definition 3, and is then solved, as follows:
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L ( et) = 

∫ ∞ 

0 

et e− st dt 

= 

∫ ∞ 

0 

et (1 − s ) dt 

= 

et (1 − s )

 

1 − s 

+ C .

 

The Laplace transform of the given function f ( t ) is then L ( et) = 

et (1 − s )

 

1 − s 

+ C . 

The preceding example is relevant to the parameters considered later because it 

includes an exponential function, which is usual for physical science applications. 

The Definition 10 of exponential order is needed as an assumption to show the 

transformation L f ( t ) exists. 

Definition 10 (Exponential order) . . A function f has a exponential order α if 

there are for some t0 

≤ 0 non-negative and finite real constants M and α such that, 

| f ( t ) | < M eαt , w hil e t ≤ t0 

. 

If there is an assumption that s ∈ R , it can be stated that the Theorem 11 

justifies the existence of a Laplace transform. 

Theorem 11 (Existence of Laplace transform) . If the function f is piecewise contin- 

uous (Definition 4) in the range [0 , ∞ ) , and is of exponential order α , see Definition 

10, then the Laplace transform L ( f ( t )) exists for s > α . 

Proof. Because f is of exponential order α then there is a finite M1 

> 0 such that, 

| f ( t ) | ≤ M1 

eαt , t ≤ t0 

. 

The function f is also piecewise continuous, that will say it has a supremum on 

[0 , t0) , that can be written as M2 

eαt, where M2 

is finite and non-negative, hence 

| f ( t ) | ≤ M2 

eαt , 0 < t < t0 

. 

Because any exponential function eαt gets only positive values on the range [0 , t0] , 

by using a constant M = max { M1 

, M2 

} it is possible to combine the previous two 

inequalities to, 

| f ( t ) | ≤ M eαt , t > 0 . 

Now that there is an upper bound for | f ( t ) | , the Laplace transform is rewritten: ∫ T 

0 

| e− st f ( t ) | dt ≤ M 

∫ T 

0 

e( α − s ) t dt. 

Computing the integral gives: 

= 

M

 

s − α 

− 

M e− ( α − s ) T

 

s − α 

. 
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Letting T → ∞ and remembering that s > α , because f is of exponential order α . 

Then there is ∫ ∞ 

0 

| e− st f ( t ) | dt ≤ 

M

 

s − a 

. 

Follows that the Laplace integral converges absolutely while s > α .

 

The previous Theorem 11 gives information on whether there exists a Laplace 

transform. The following Theorem 12 will show that an existing Laplace transform 

preserves linearity. This property is applied in solving equations for parameters later 

on. 

Theorem 12 (Linearity of Laplace transform) . Let f1 

and f2 

be linear functions of 

exponential order α1 

and α2 

respectively. Assume c1 

, c2 

∈ R . Then c1 

f1( t )+ c2 

f2( t ) 

is linear and of exponential order α = max α1 

, α2, and there is 

L ( c1 

f1 

+ c2 

f2) = c1 

L ( f1) + c2 

L ( f2) . 

Proof. The proof is based on the integral’s property to preserve the linearity. There 

is given a justification in Schiff’s book [24] on pages 16-17.

 

The previous knowledge is applied further in the following subchapter presenting 

the inverse Laplace transform that can make computations in both directions using 

the Laplace transform. 

3.3 Inverse Laplace transform 

The theorems presented in this subsection are based on Schiff’s book [24]. 

The inverse Laplace transform can be applied in solving differential equations 

and is presented in Definition 13. 

Definition 13 (Inverse Laplace transform) . Assume there is a Laplace transform 

L ( f ( t )) = F ( s ) then the corresponding inverse Laplace transform is 

L 

− 1( F ( s )) = f ( t ) . 

The uniqueness of a Laplace inverse transform is required in many physics ap- 

plications and later on, while solving a differential equation. Theorem 14, Lerch’s 

theorem, is given in Schiff’s book [24], without proof. 

Theorem 14 (Distinct continuous functions on a non-negative range have distinct 

Laplace transforms) . Assume function f ( t ) is continuous on [0 , ∞ ) , then the inverse 

Laplace transform 

L 

− 1( F ( s )) = f ( t ) , 

is uniquely defined. 

The uniqueness of Laplace transforms can be assumed in this study because there 

is a positive range, and the functions in differential equations are continuous. 
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3.4 Convolution integral 

The convolution is a concept required in many physics applications. In this study, 

it is used to show how to derive the most central parameters from models. First 

there is presented Definition 15, that gives grounds for convolution, 

Definition 15 (Convolution integral) . Assume f ( t ) and g ( t ) are piecewise contin- 

uous functions on [0 , ∞ ) , then the convolution integral is defined as 

( f ∗ g )( t ) = 

∫ t 

0 

f ( t ) g ( t − τ ) dτ . 

Theorem 16 for the product of two convolution integrals is crucial while solving 

equations on parameters related to the model. It states that while having two 

piecewise continuous functions of exponential order, the Laplace transform of their 

convolution can be written as a product of two distinct Laplace transforms. 

Theorem 16 (Convolution theorem) . Assume f and g are piecewise continuous 

functions on [0 , ∞ ) , and they are of exponential order α . Then, 

L [( f ∗ g )( t )] = L ( f ( r )) L ( g ( s )) , s > α 

Proof. Begin with 

L ( F ( s ) L ( g ( s )) = 

∫ ∞ 

0 

f ( τ ) e− st dτ 

∫ ∞ 

0 

e− su g ( u ) du 

because the integrals do not have common integrating factors, there is 

L ( f ( s )) L ( g ( s )) = 

∫ ∞ 

0 

f ( τ ) e− sτ 

∫ ∞ 

0 

g ( u ) e− su du dτ . 

Now, by properties of integral by an exponential function 

L ( f ( s )) L ( g ( s )) = 

∫ ∞ 

0 

f ( τ ) 

∫ ∞ 

0 

g ( u ) e− s ( τ + u ) du dτ . 

Next substituting u = t − τ leads to 

L ( f ( s )) L ( g ( s )) = 

∫ ∞ 

0 

f ( τ ) 

∫ ∞ 

τ 

g ( t − τ ) e− st dt dτ . 

Reversing the integration 

L ( f ( s )) L ( g ( s )) = 

∫ ∞ 

0 

(∫ t 

0 

f ( τ ) g ( t − τ ) e− st dτ 

) 

dt. 

Rearranging the exponential term 

L ( f ( s )) L ( g ( s )) = 

∫ ∞ 

0 

(∫ t 

0 

f ( τ ) g ( u − τ ) dτ 

) 

e− sτ dt. 
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The Definition 15 referring to convolution gives 

L ( f ( s )) L ( g ( s )) = 

∫ ∞ 

0 

(∫ t 

0 

f ( τ ) g ( u − τ ) dτ 

) 

e− sτ dt. 

The result 

L [( f ∗ g )( t )] = L ( f ( s )) L ( g ( s )) , 

follows.

 

Now, the mathematical definitions and theorems that the justification of param- 

eters for the compartment model requires are presented. However, a general model 

describing the dynamic system is given before justifying the crucial parameters. 

10



 

4 Compartment model 

This study applies a one-tissue compartment model or, say, a two-compartment 

model. Figure 1 illustrates the model describing the radioactivity on myocardial 

area 

15 O -PET. Here, there is considered such a model that has the artery tracer 

concentration in one compartment and the region of interest radioactivity Dm( t ) in 

another compartment. 

There are two transition constants. The first describes the transition from the 

artery area to the region of interest (ROI); this is written formally using extraction 

fraction E , blood flow f , and tissue fraction α as K1 

= E F α . For simplicity, there 

can be written K1 

= f = E F α . The second transition coefficient k2 

considers the 

flow away from the ROI. That is formulated by using, in addition to the components 

in K1, the tissue/blood partition coefficient p . The coefficient k2 

is then written 

k2 

= f /p .

 

Figure 1: The one-tissue model with parameters K1 

= f , and k2 

= 

f

 

p 

to apply for 

myocardial 

15 O -PET. 

4.1 Deriving the tissue radioactivity concentration 

This subsection discusses large parts of Iida et al. article [8], which shows how to de- 

rive computations for myocardial blood flow parameter, abbreviated MBF. Deriva- 

tion is done by varying the principle of inert gas exchange by Kety and Schmidt 

(1945), [13]. The tissue fraction given in Definition 17 is the considerable difference 

between the myocardial blood flow and the traditional gas exchange model. The 

tissue fraction is the tissue mass divided by the region’s volume of interest. 

Definition 17 (Tissue fraction) . Let W be the tissue mass in d [ g ] , and V the volume 

of ROI (Region of interest) in [ ml ] , then the tissue fraction α is defined 

α = 

W

 

V 

and its unit is [ g /ml ] . 
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Let E be the extraction fraction, F the blood flow [ ml /min ] , p the tissue/blood 

partition coefficient in ml /g , CA( t ) the tracer artery concentration in µC i/ml , and 

CT ( t ) , the net tissue concentration in µC i and CV 

the concentration in the capillary 

and venous blood in µC i/ml . 

According to the Iida et al. study, the following first-order ordinary differential 

equation represents the tracer balance 

dC ( t )

 

dt 

, as Definition 18 states. 

Definition 18 (The tracer balance in the region of interest (ROI)) . The differential 

equation can express the tracer balance in the region of interest: 

dCT ( t )

 

dt 

= K1 

CA( t ) − k2 

CT ( t ) 

, while CA( t ) refers to the tracer artery concentration and CT 

to the net tissue tracer 

concentration. 

The net tissue concentration is impossible to detect but can be solved using 

Dm( t ) , measured ROI concentration. Definition 19 gives a formula for the net tissue 

concentration. 

Definition 19 (The net tissue concentration formula) . The net tissue concentration 

CT ( t ) can be written in terms of the measured ROI concentration Dm( t ) using the 

tissue fraction. 

Dm( t ) = α CT ( t ) 

Theorem 20 (The derivative of measured ROI concentration) . The derivative of 

the measured ROI concentration Dm( t ) equals to the difference of tracer artery CA 

and tracer tissue CT 

concentrations weighted by K1 

and k2, describing the speed of 

the flow, 

dDm( t )

 

dt 

= α K1 

CA( t ) − k2 

CT ( t ) . 

Proof. Begin with 

dCT ( t )

 

dt 

= K1 

CA( t ) − k2 

CT ( t ) . 

Here CT 

is the tracer net tissue concentration, and substituting CT 

= 

Dm( t )

 

α 

to the 

left side of the equation gives 

1

 

α 

dDm( t )

 

dt 

= K1 

CA( t ) − k2 

CT ( t ) . 

multiplying the both sides by α gives 

dDm( t )

 

dt 

= α K1 

CA 

− k2 

α CT ( t ) . 

Substituting Dm( t ) = α CT 

results 

dDm( t )

 

dt 

= α K1 

CA 

− k2 

Dm( t ) .
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In Theorem 21 there is proved a differential equation (Equation 5), that describes 

the concentration of radioactivity in the region of interest. 

Theorem 21 (ROI formula) . Concentration in the ROI at the time t is described 

by the function CT ( t ) when assuming the initial condition CT (0) = 0 .

 

CT ( t ) = α K1 

CA( t ) ∗ e− k2 

/t .

 

(5) 

Proof. Theorem 20 gives 

dCT ( t )

 

dt 

= K1 

CA( t ) − k2 

CT ( t ) . 

Rewriting it as standard form first order linear ordinary differential equation (ODE) 

CT ( t ) 

d

 

dt 

+ k2 

CT ( t ) = K1 

CA( t ) . 

Finding the integrating factor 

µ = e 

∫ 

k2 

dt , 

that is 

µ = ek2 

t . 

The constant in integration can be omitted because the initial value at t = 0 equals 

0 . For this type of ODE, there is 

CT ( t ) = 

∫
( µK1 

CA( t )) dt + C

 

µ 

. 

Substituting µ gives: 

CT ( t ) = 

∫ 

ek2 

t K1 

CA( t ) dt + C

 

ek2 

t 

. 

Then, arranging terms leads to 

CT ( t ) = 

K1 

∫ 

ek2 

t CA( t ) dt + C

 

ek2 

t 

. 

Replacing Laplace transform, see definition 8, gives 

CT ( t ) = 

K1 

L {− k2 

CA 

} [ t ] + C

 

ek2 

t 

. 

Rewriting 

1

 

ek2 

t 

= e− ( k2) t, gives 

CT ( t ) = K1 

L {− k2 

CA 

} [ t ] e− k2 

t + C e− k2 

t . 

Applying the convolution theorem, see Theorem 16, leads to 

CT ( t ) = K1( CA( t )) ∗ e− k2 

t + C e− k2 

t . 

Considering the initial condition and hence letting C = 0 , the results 

CT ( t ) = K1( CA( t )) ∗ e− k2 

t .

 

Remark 22 combines Theorem 21 to the idea of the tissue radioactivity concen- 

tration curve (TAC). 

Remark 22 . Now that we have solved the ODE for concentration in the region of 

interest CT ( t ) , we have found the tissue radioactivity concentration curve: 

Dm( t ) = K1 

CA( t ) ∗ e− k2 

t . 
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4.2 Arterial blood volume parameter and perfusable tissue 

fraction 

This subsection is based on Iida et al. article [9]. We can derive the arterial blood 

volume from the formula for measured radioactivity concentration for some region 

of interest (ROI). The goal is to solve the formulas for the arterial blood volume Va. 

A theorem for ROI radioactivity concentration CT 

has already been proved; 

see Theorem 21. It is utilized while deriving the theorem for the left-ventricular 

concentration curve. 

Definition 23 on left-ventricular time activity curve presents the curve as Equa- 

tion 6. 

Definition 23 (LV time-activity curve) . Denote the time-activity curve describing 

the radioactivity on a given left ventricular region as CLV ( t ) . While β refers to 

recovery coefficient having values between 0 . 0 and 1 . 0 , γ , there is the following 

equality:

 

CLV ( t ) = β CA( t ) + (1 − β ) CT ( t ) .

 

(6) 

Definition 24 including the water perfusable tissue fraction concept, presents the 

Equation 7 that gives the measured radioactivity concentration at a given time. 

Definition 24. For a given myocardial ROI having α denoting PTF - water- 

perfusable tissue fraction, and VA 

the vascular volume fraction, the measured ra- 

dioactivity concentration function CR O I( t ) is:

 

CR O I( t ) = α C( 

t ) + VA 

CA( t ) .

 

(7) 
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5 Methods 

5.1 Referenced frame series for simulations 

After searching and reviewing scientific articles, by groups of Aikawa [2], Danad [4], 

Germino [5], Kajander [11], Sciagrà [25] and Yoshinaga[27], considering myocardial 

PET with 

15 O on adults, the frame series shown in table 5.1 were chosen to the 

simulations. Lubberink et al. [14] have applied the same series as Danad’s group 

[4], and the same applies to Adachi et al. [1] and Kajader et al. [11]. Danad et al. 

and Kajander et al. seemed to be the original references; hence, they were chosen 

for this text. 

This study compares their parameter differences and the flexible protocol repre- 

sented later in this thesis. Some series resemble each other; they were taken to the 

study to increase the scope because there were few procedures to study. 

For series with total length longer than 300 s , there were extrapolation issues 

with the simulation software that was in use; therefore, these are shortened so that 

their maximal length is 300 s , and the changes are as minor as possible. It isn’t easy 

to evaluate for certainty if the results would have been different with another type 

of simulation program, and that is why the results in this study are only directional. 

In the latter sections, some assumptions based on these series results are not 

likely to get significantly better on the scope of this study if there were all frames in 

simulation. These assumptions are based on mathematical analysis principles and a 

general idea of connecting the series with flexible frames and mathematics concepts.

 

Frame

 

Aikawa,

 

Danad,

 

Germino,

 

Kajander,

 

Sciagrà

 

Yoshinaga,

 

length

 

et al. [2]

 

et al. [4]

 

et al. [5]

 

et al. [11]

 

et al. [25]

 

et al. [27]

 

10s

 

x1

 

x1

 

3s

 

x20

 

5s

 

x8

 

x14

 

x8

 

x6

 

10s

 

x18

 

x4

 

x10

 

x3

 

x4

 

15s

 

x2

 

x2

 

x6

 

20s

 

x3

 

x6

 

x3

 

x3

 

30s

 

x4(6)

 

x2

 

x4

 

x2

 

x6(8)

 

60s

 

x1(2)

 

Total

 

300

 

300

 

280

 

280

 

240

 

300

 

length

 

(360)

 

(360)

 

(360)

 

Table 2: Referenced frame series for this study. 
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5.2 Characteristics of flexible frame series 

The goal is to create three flexible frame series with varying technological demands 

to compare with the ones in use around 2020. The first flexible series is well applica- 

ble considering technology 2023. The second is theoretically functional, with more 

developed technology in use at the moment of the study. The third series is probably 

optimal in 2023 but presents the potential of a flexible-type series. The main criteria 

for creating a new flexible frame series has been that each frame should contain an 

equal number of counts as possible. That makes the pictures as comparable quality 

as possible. Figure 5.2 describes the process of creating flexible series. 

While trying to reach an equal radioactive count number, it is clear that soon 

after the radiotracer injection, the counts’ density is very high compared to the latter 

phase of the scan. That is why the frames before the maximum of time activity curve 

(TAC) are set to be of a constant length: 5 , 3 , or 2 s , depending on each series’s 

minimum frame length. 

Depending on the series, a 2 , 3 , or 5 s length frame is centered around the 

maximum TAC. Then, frames before the maximum are placed backward until there 

is a negligible number of counts in a frame. There is a negligible number of counts 

practically before the injection is given. 

After the frame is centered to the maximum of TAC, the number of counts in 

each frame has been tried to be set to be equal to the frame following the centered 

one as possible. The Equation 2 from Corollary 3 is applied in these computations. 

Alternatively, one can think there is an idea of TAC’s integral role behind these 

computations. 

As a concise description, there are constant length frames until the maximum 

TAC is reached. Then, the length of each frame is computed in whole seconds 

based on having as equal of many counts as possible as the first frame after the one 

centered around the maximum of TAC. 

5.3 Computer software and application 

Software is a crucial part of this study. The successive simulations were a prerequisite 

for all the reasoning. Presenting the results in the scope of the study was only 

possible with functional and reliable simulation software. In addition to simulation 

software, a simple frame file generator was executed for creating flexible series’ frame 

files. The code for frame file generator is on Appendix 1. 

5.3.1 Simulation software 

The simulations are completed using a TPCCLIB library and simulation software 

[22] developed by Vesa Oikonen at Turku PET centre. The blood curve this study 

applies stems from Oikonen’s TPCCLIB package [22]. 

It was possible to run two different frame series at a time with software. A run 

16



 

Figure 3: Description of the process for creating flexible series. 

resulted in folders for the series sim 1 and sim 2 and a folder with additional files used 

in the simulation. The parameter values are available on these folders separately on 

.res files or as assembled on the fitted_parameters.html file. 

5.3.2 Flexible frame series’ generator application 

Manual creation of many frame files based on a percentage of radioactive decay was 

found to be laborious using Excel only. Thus, I wrote a Python application that 

returns a frame document in .txt -format. The application computes the frames- 

based radioactive decay and adds the top section with file information. Finally, after 

getting the text files, I converted the files manually to correct .sif -format. 

The application takes the degradation percentage, the point of time with maxi- 

mum radiation density, and the number of frames after maximum radiation as input 

parameters besides the minimal frame length. After the application creates the file, 

the format is manually changed to .sif and renamed as desired. The simulation 

software used required files named ’frame1.sif’ and ’frame2.sif’. 

In the application, there is computed

 

tk 

= 

ln(1 − pk )

 

ln(2) / 122 . 24

 

where p is the percentage of counts in each frame after the centered frame, and k is 

the index - k = 1 for the first frame after TAC maximum. The final start time for 

frame k is tk 

rounded to the nearest integer. 
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5.4 Completing the simulations 

The simulation software was run for each frame set, two sets simultaneously using 

.sif files, see Appendix 1. The results were collected from the folders, including the 

fitted_parameters and .res files. The errors for parameters were first calculated 

using a spreadsheet, but fitted_parameters.html files gave the tabulated values and 

are illustrative. Therefore, the final decision was to take the values from tables from 

.html files to show the values for the central parameters and some vital statistics, 

such as mean and standard deviation. Some of the parameters in HTML files are 

excluded because they are not within the scope of this study. 

The following parameters Oikonen represents at the Turku PET Centre modeling 

website are in the scope of this study: perfusable tissue blood flow (ptMBF), arterial 

blood volume (VA), and perfusable tissue fraction (PTF) [21]. The parameter of 

primary interest in this study is ptMBF, and Va and PTF are of secondary interest. 

Hence, error in ptMBF is to be minimized while it is checked. There is not much 

greater error for Va or PTF than for references. 

The result tables are gathered from the HTML files the simulation software cre- 

ates. After that, the mean root square error and mean absolute errors are computed 

for each series and parameter. Finally, statistical testing was run for differences 

between locations of the ptMBF variable for different series. 

5.5 Computing the errors 

Two different formulas for error are used to illustrate and clarify the differences 

between series more profoundly. Both of these are described in the article by Chai 

and Draxler [3]. The first formula is root mean square error, and the second is mean 

absolute error. 

Root mean square error has the general formula 

√

 

∑n 

i =0( x − xi)2

 

n +1 

. According to 

article [3], the variance of the sample affects the root mean square more than the 

mean absolute error, which does not weigh any values more than others. The formula 

in this case, where the sample size is 6, is: 

R M S E = 

√

 

∑5 

i =0( x − xi)2

 

6 

where x is respectively 1 . 00 for ptMBF, 0 . 60 for PTF and 0 . 25 for V a , and xi 

are 

the parameter values moved 0 , 1 , ... 4 or 5 s . 

The formula for mean absolute error is 

∑n 

0 

√

 

( x − xi)2

 

n +1 

. Previously presented root 

mean square error has been popular and widely used in modeling. Still, because 

variance has no special weight in it and each value has the entirety of the same 

weighting, its features differ from RMSE. The formula for MAE we use is: 

M AE = 

∑5 

0 

√

 

( x − xi)2

 

6 

. 
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5.6 Statistical testing and the significance of differences 

A two-sided pairwise Wilcoxon’s test is applied for each pair of data sets. The test 

is described thoroughly by its founders, Mann and Whitney, in a journal article [16]. 

Hence, this test can also be called the Mann-Whitney U-test. 

Tests were completed for the ptMBF parameter because it has been chosen to be 

the most central aspect of this study. For each flexible series found during this study, 

the statistical significance was tested for differences in ptMBF parameter location 

in both directions compared to the series we referenced. A p-value of 0 . 05 has been 

used as a measure of significance. 
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6 Results 

These results presented are purely based on a blood curve by TPCCLIB software 

[22], Vesa Oikonen, and applying results further in the preclinical study requires a 

greater amount and diverse data. 

6.1 Time-activity curves and parameter values 

There are tables with results for parameter values for each series. For 2 s series, see 

Table 4

 

Table 4: Simulated parameter values for a flexible series with minimum 2 s frames 

For series with 3 s minimum frame length, see Table 5.

 

Table 5: Simulated parameter values for series with minimum 3 s frames. 
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Table 6 presents the simulated parameter values for series with minimum frame 

length at least 5 s .

 

Table 6: Simulated parameter values for series with minimum 5 s frames or longer. 

21



 

The first six represented in Table 6 are comparable in the sense they have a 

minimum frame length of 5 s or longer in the case of upper left cornered series by 

Aikawa et al., namely 10 s . 

Germino et al. and the flexible series in Table 5 have the minimum frame length 

of 3 s . The parameter values seem much more optimal than in Table 6. The 

deviations for these two series seem quite the same, but they are minimal, and there 

can be relative differences. However, the flexible one seems to give a lot, about a 

half, less error than the series by Germino’s group. 

The minimum length of a frame 2 s is a bit optimal at the time of this study, 

but Table 4 shows how the parameters get better values when frames are shortened. 

Time activity curves are presented in Appendix 3. 

6.2 Differences between the series illustrated and described 

Figure 7 illustrates the deviation in myocardial blood flow parameter values moved 

0 to 5 s for all the series. (* The last frame was removed for technical reasons, ** 

The last two frames were removed for technical reasons).

 

Figure 7: Errata in ptMBF, * last frame removed, ** 2 last frames removed for 

technical limitations. 

The deviations and values illustrated in Figure 7 strengthen the idea that for 

series with longer frames, the Kajander et al. study and flexible series seem to be 

the most reliable. The same applies to Germino and flexible series with middle- 

length frames; the latter one seems better in terms of ptMBF. 

The illustration for perfusable tissue fraction PTF, Figure 8, resembles somewhat 

the results for ptMBF, but the errata are smaller. 

For arterial volume parameter, there is more deviation for some series, as the 
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Figure 8: Errata in PTF, * last frame removed ** 2 last frames removed for technical 

reasons. 

illustration in Figure 9 presents. However, still Kajander’s and Germino’s group has 

got reliable-looking results in this simulation, as well as the three flexible series.

 

Figure 9: A graph illustrating errata in VA, * last frame removed, ** 2 last frames 

removed because of technical limitations. 

Table 10 gives Wilcoxon’s U-test’s p-values between the flexible and referenced 

series. The 5 s series has no significant difference from the Germino et al. series, 

but Germino et al. have a minimum frame length of 3 s instead of 5 s . These results 

seem promising. The clinical series and Danad et al. have more standard deviation 

in ptMBF than flexible 5 s , no matter whether their mean/median is relatively near 

the reference value. The ptMBF is this study’s main interest, and the statistical 

test’s values seem reasonable. Or PTF, between Danad’s group serie and 5 s flexible, 
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Table 10: Statistical significance for parameter differences between the reference and 

flexible series. 

there may have been equal values, and hence, the test appears unlikely to work as 

wanted. 
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7 Discussion 

The flexible series developed in this study seems effective and reliable considering 

the simulations committed by using the TPCCLIB library. For ptMBF and PTF, 

the simulation results for flexible series are better than most references in this study. 

The VA parameter for flexible 5 s series could be better, but many referenced series 

gave even more distribution and errata in simulations. 

The statistical tests resulted in significant differences for some parameters and 

series, but only a few. The results after this simulation study are promising, but 

further conclusions can only be drawn after additional studies with more data and 

resources are completed. 

The simulations have limitations, and this study has limitations. The results 

are limited because there is no real-life experiment, only a computer simulation. 

Furthermore, there is no variety in the scope of this study because there is only one 

blood curve in use. 

7.1 Frame lengths 

An interesting outcome of this study is that the results are getting more accurate 

while increasing the frequency of the frames, at least for the method in flexible series. 

It might be possible to get better results, say, compared to the 3 s series, if the 

tenths of the seconds in the frame lengths are allowed. 

This study assumes there are whole seconds in frame lengths, but the first frame 

with negligible counts is not considered in this case. This assumption makes the 

procedure technically efficient. However, advances in technology and computing 

software may enable different types of lengths. 

7.2 Some alternatives for possible further study 

The first step could be to study simulations with another blood curve data. Only 

one blood curve was available for the simulation input during this study. If the 

results follow a similar pattern with different input data, one can make stronger 

assumptions about the functionality of flexible series. 

The next step after this study is more simulations with different blood curve data 

or research with a mechanical heart-emulating device. If this supports the results 

of this study, then animal imaging experiments would be needed before possible 

clinical experiments if the preclinical study gives safe and promising results. 

The changes between the existing referenced series and 5 s series would seem 

small, but because the medical imaging field, accuracy and safety must always be 

studied carefully in multiple phases. 

In the case of this blood curve, using a flexible procedure instead of a fixed one, 
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more accurate parameter values are achieved for ptMBF. However, it is impossible 

to evaluate how these different types of frame series behave for each blood curve 

and even more impossible to predict at the time of this study if there is a chance for 

clinical use one day. Hence, further analysis is required for flexible PET protocols. 
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8 Conclusions 

Based on the simulation results, there might be potential for flexible myocardial 

PET of this type. Any strong arguments or conclusions for the functionality of 

flexible series cannot be made for certainty because of the type of this study. 

The simulation characteristic and having only one blood curve are the main 

reasons this study provides a limited view of the case. However, it showed some 

potential with the resources available compared to the referenced series. Hence, 

further analysis can give more evidence to support the optimality of the series found 

in this study. 
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Appendix 1: Code for frame files application
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Appendix 2: Figures for flexible frame series files 

with .sif format 

The 5 s flexible series
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The 3 s flexible series

 

34



 

The 2 s flexible series
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Appendix 3: Time activity curves
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