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Fuzz testing is a technique that can be used to test software in order to discover
potential flaws and vulnerabilities. This particular approach is receiving a quick
widespread adoption to test also embedded software since there is a huge increase in
these kinds of software. This adoption also includes the avionic field, where fuzz
testing is currently used to test the software to ensure the robustness of the software
and its compliance with the standards that regulate its behavior. Airbus Helicopters
tried to research this approach in order to discover its potentiality, leading to the
creation of this work, which will focus on researching the application of fuzz testing to
embedded avionic software.

The objective of the research was to find if it was possible to apply the fuzz testing
on an embedded avionic software by using available fuzz tools, more specifically
available open-source fuzzing tools. Moreover, since the scientific literature does
not provide guidelines on how to perform this approach towards this specific kind
of software, this work will try to give an idea of how to apply the fuzz testing on a
targeted avionic system, which in this case is a software component of a NH90
Airbus Helicopter.

The results of this study demonstrate that it is feasible to apply a fuzz testing
approach to embedded avionic software, but only if the target code has undergone
adequate preparations. If not, this approach may prove challenging to implement.
Together with the suggested compilers and used software, it was also shown that the
used components and measurements were appropriate in the fuzz testing application.

Keywords: avionic embedded software, fuzz testing, software testing, cybersecurity,
embedded systems
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1 Introduction

1.1 Background

In recent years, software in general has been employed within several kinds of dif-

ferent devices [1]. Because it operates inside an embedded device (or an embedded

system), this type of software is known as embedded software. Nonetheless, there is a

growing concern for the security of these particular devices since there is widespread

adoption and implementation of embedded systems [2]. Like any software, several

kinds of threats pose various risks to the devices and the environments in which

they are used.

The avionics field scenario represents a field in particular that may be vulnerable

to these attacks [3]. Because it is necessary to regulate the many aircraft functions

and operations, embedded software is also utilized in this scenario to control the

aircraft. Thus, it plays a crucial role in this specific type of embedded system. As

a result, it’s critical to test the software and give these systems’ security adequate

attention.

Since avionic software and embedded software, in general, might have similar is-

sues, it was important to find out whether there were any other tools or techniques

that could help programmers quickly find possible vulnerabilities in the software.
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To find answers to these questions, companies and certified authorities looked into

several possible solutions. These options included stricter standards to help devel-

opers produce robust software as well as software testing tools [4]. Researchers have

studied and evaluated several tools and techniques that may be used for testing spe-

cific attacks, like pen-testing, or more random approaches, like fuzz testing. These

techniques and tools can be applied in avionic scenarios for many different kinds of

objectives.

These methods were eventually used in the avionic software development indus-

try because of their excellent results (fuzz testing, for example, provides an alter-

native to more traditional methods like pen testing) [5]. However, the scientific

literature did not properly provide research studies on the use of these techniques,

particularly fuzz testing. As a matter of fact, a few companies have already begun

using this approach [6], but they have not disclosed any particular requirements or

potential guidelines on how to use this method of testing. Thus, research is required

to determine the most effective approach for testing embedded avionic software

through the use of fuzz testing, while also providing some insights into the key

requirements and challenges that need to be addressed.

1.2 Research Problem

These days, fuzz testing is gradually becoming more widely used in the context of

avionic software, where companies like AdaCore already provide this type of soft-

ware testing. Additionally, an increasing amount of study is being done on this topic

to improve its application in various scenarios.

However, there is little, if any, research on the fuzz testing method for avionic

systems that provides an in-depth overview of the primary issues that this technique
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may raise or more information on the specifics of its implementation. It also means

that most works don’t provide guidance on how to handle fuzz testing for avionic

software in general, which forces more companies to rely on proprietary software for

testing when there is open-source software that might accomplish the same task for

a lesser cost. In addition, there is no obvious indication of the use of a fuzz testing

tool for an Ada program, which may yield intriguing outcomes but has not been

investigated further.

We aim to provide a clear understanding of the issues surrounding avionic soft-

ware testing and qualification, as well as how fuzz testing may be able to address

some of these issues, by providing an overview of the subject in this work. A  po-

tential strategy for using an open-source fuzz testing tool could also provide further

ideas for future projects, such as companies designing their own fuzz testing tool

using an already-existing one.

1.3 Research Ob jective

The goal of this work is to identify and specify a potential method for applying fuzz

testing to proprietary embedded avionic software using an open-source fuzz test-

ing tool. By using a strong typing language like Ada, which is designed to protect

against improper data entry and other potentially inadequate inputs, one may thus

see how the fuzzing tool behaves. Additionally, the work displays the key findings

of the main experiment to determine whether the software under test exhibits vul-

nerabilities or other issues.

By focusing on this, a strategy to employ an open-source software fuzz testing

tool for complex software, like that found in avionic systems, may be outlined. Given

that the tool can be further optimized and improved, this could serve as a reference
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for future works that wish to employ this kind of technique without depending on

proprietary software. It could also enable a more customized experience with fuzz

testing.

1.4 Research Question

To increase understanding of the fuzz testing approach and to provide suggestions for

ways to make it better, the thesis will go into more depth regarding its background.

There will also be more background information on the needs for the avionic software

system and potential vulnerabilities, many of which are similar to those found in

regular embedded software. Thus, the primary research questions are:

• Can fuzz testing be applied to avionic software? Is it possible to use open-

source software to apply this approach?

• What are the primary prerequisites and tools required for conducting fuzz

testing? What are the best practices?

Several studies were conducted to identify the answers to these challenges.

1.5 Scope of The Thesis

The thesis’s scope is restricted to a couple of case studies that are judged to be plau-

sible. There are minimal chances that our target system, a private avionic software,

may be targeted by such a threat since there are a lot of constraints and protections

behind the embedded system. Therefore, several considerations were taken into ac-

count in order to define the characteristics of our scenario, which in turn defines the

primary risks associated with the avionic software.



1.6 THESIS OUTLINE 5

Fuzz testing is an automated software testing method that tries to attack a

selected system, in which a malicious insider introduces random inputs into the

system in an attempt to identify vulnerabilities or potential issues. Since a hostile

insider is the only type of attacker that may have access to the test tools used to

test the software, which is the only method in which input can be injected, they

emerge as one of the primary threats in this case study.

1.6 Thesis Outline

With open-source software serving as the primary tool, this study aims to clarify

and give guidelines for performing fuzz testing on embedded avionic software. As

such, the chapters are arranged and their contents are structured as follows:

The background of avionic software in general is covered in Chapter 2. Since

avionic software is primarily within the embedded software subject matter, there

will be a discussion on the history of embedded software in general as well as po-

tential dangers and weaknesses. Following this, a more detailed explanation of the

avionic software will be provided, along with an overview of it and the standards

and requirements it must adhere to be deployed. A  section on software testing will

cover additional information on the threats to avionic software. This section will

introduce fuzz testing, one of the most crucial aspects of this work, and explain

its primary applications, methods of operation, and tools that are now accessible.

Furthermore, studies on the use of fuzz testing in research papers and works will be

presented.

The usage of fuzz testing in the chosen avionic system is discussed in Chapter 3.

Since the primary objective in this instance will be an Airbus software component,

further background information about the Airbus organization as a whole and the
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component’s architecture will be provided. By doing this, we will be able to learn

more about the main objective of the component, along with all of its dependen-

cies and purposes, to approach this type of component and employ fuzz testing.

Additionally, the test environment structure will be covered, together with the en-

vironment’s primary features, which include the language, the compiler being used,

and the fuzz testing tool.

Chapter 4 is the most crucial since it describes how to conduct the experiment,

including how to use the fuzz testing tool and how to create important scripts and

components. It also clarifies the primary reasons for some of the decisions made.

To  finally address the research questions, a discussion of the findings along with the

display of some graphs will be given.

In the end, a review of the key discoveries and future works will be covered in

Chapter 5. This chapter will provide useful information for future research projects

that might benefit from the requirements and suggestions provided in this work.



2 Literature Review and State of

The A r t

2.1 Embedded Software and Security

Embedded software is a very broad field that has been growing throughout the years.

This expansion is fairly rapid and apparent because the market for new embedded

devices is expanding significantly these days due in large part to the growth of the

Internet of Things, autonomous systems, etc. It is crucial to pay close attention to

this expansion since it will result in an unprecedentedly large number of devices to

manage as well as an increase in the likelihood that products may malfunction.

A  lack of oversight during the product’s design phase or certain errors from the

previous iteration could be the cause of the potential problems. It’s not only this

problem, though. An increasing number of criminals will attempt to identify and

take advantage of potential weaknesses and flaws that could enable an attacker to

carry out malevolent actions against individuals or corporations as embedded soft-

ware becomes widely used in more and more devices.

As a result, there is a need to improve embedded software security, which could

enable these technologies to be protected even further. Nowadays, usually, cyberse-
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curity requirements are satisfied during the design and production of the software,

by using the methodology of cybersecurity-by-design [7], however, there could still

be some possible vulnerabilities.

2.1.1 History  and Definition of Embedded Software

Software that is specifically designed for a particular embedded system or device

is known as embedded software [8]. This particular kind of software finds a huge

amount of adoption in various kinds of devices, which range from the most common

house furniture to more complex systems such as automotive systems. It is usually

designed specifically for the hardware it runs on, including time and memory con-

straints.

It is essential to consider the hardware of the device when writing code for this

software, as the software will have the duty to control the embedded device. Fail-

ure to do so would prevent several functionalities from working. Furthermore, the

embedded software may be easily customized to work with any sort of device, no

matter how big or small, including avionics systems and other systems. The ability

of embedded software to manage and carry out certain operations without requiring

user input is one of the primary distinctions between embedded and traditional soft-

ware. The actual code that operates in the hardware is called embedded software

and it leaves the management and control of the programs to operating systems [8].

Sometimes the embedded software doesn’t use any of the common operating systems

found on devices (Windows, Linux, Mac, etc.). An operating system that operates

in real-time is required instead. The software is typically written in low-level pro-

gramming languages like Ada, C, and Pascal [9]. However, high-level languages have

also found employment recently, particularly in modern systems [10], but could still

have some problems of performance.
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Essentially, embedded systems are computer systems created to carry out spe-

cific functions and integrated into other goods or devices. Their employment is

spread throughout multiple industries, including consumer electronics, automotive,

and aerospace. They are built with a high level of durability and eficiency in mind

[11].

Several different kinds of communication channels can be used to provide certain

external controls. Furthermore, the fact that there are multiple ways to commu-

nicate with the device presents several ways to access the software for potential

attackers. This will serve as the primary motivation for investigating the subject

of "embedded software security", particularly in the avionic scenario, which will be

explored in this work.

2.1.2 Threats

Assessing the risks and potential threats is crucial since embedded software is used

extensively and plays a significant role in embedded systems. According to a survey

[12], the embedded system may be regarded as a very sensitive area to safeguard

because it requires stringent specifications and limitations, all of which must be met

in real-time, to provide the desired outcomes. There could be some catastrophic

consequences if the requirements are not fulfilled.

Still, there is an abundance of potential risks that could affect embedded systems

in general. By examining C V E  ratings associated with embedded system attacks,

the authors of the paper [13] developed and presented a potential taxonomy of at-

tacks for embedded systems. Five different sorts of criteria were used in the study

to establish the attack taxonomy, and these criteria when combined provide a use-
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ful way to categorize potential assaults. Precondition, vulnerability, target, attack

method, and attack outcome are these requirements.

The following prerequisites were discovered to be necessary to comprehend how

the attack could be carried out for the first of the criteria:

• Internet access: arguably one of the most dangerous and common sources

of attack. In this case, the device is directly connected to the internet, hence

allowing potential malicious attackers to have access and exploit potential bugs

and weaknesses. Since the access is via the Internet, the attacker doesn’t need

to have access privileges, since the attack could be carried out in other ways,

the important part is that the device is detectable via the Internet.

• Local or remote access: similar to internet access, this type of attack in-

volves the use of external services or communication over a network (could

be public or private). But, in this case, the attacker must have access rights,

otherwise, it is not possible to carry out the attack. The rights could be also

normal privileges, it is not strictly necessary that they have to be superuser

or administrator privileges.

• Direct physical access: on contrary to local/remote access, this type of

attack is carried out only if the attacker has physical access to the device. The

attacker doesn’t need to have the privileges since the device could not have

them.

• Physically proximity: this type of attack is quite similar to the previous

one, but the particularity is that the attacker must be near the device, and

could also not have physical access to it (e.g. Radio area with wireless device).

• Others: This category contains all kinds of attacks that do not re-enter the

previous category. Moreover, this category will also contain those attacks that



2.1 E M B E D D E D  SOFTWARE AND S E C U R I T Y 11

do not require a precondition to be carried out.

The vulnerability is the next most significant category to be considered, after the

preconditions. Embedded software may be vulnerable to various vulnerabilities that

affect embedded systems as a whole, perhaps leading to misbehavior or other poten-

tial risks. Consequently, the following categories of vulnerabilities could be targeted

by a malicious attacker:

• Programming errors: some problems during the code or just some mistakes

could create some problems for the program, by creating logical errors that

could be exploited to perform the attack (e.g., overflow attacks).

• Web based: since some devices could have a web interface used to perform

operations such as update or configuration, they may be targeted by attackers

since the web server application is rarely updated.

• Weak access control/authentication: this vulnerability is given by a lack

of concern over the access security, such as having weak passwords (some also

use the default ones), which allows the attacker to easily bypass the control

thus gaining the access to the system.

• Improper use of cryptography: the use of cryptography can in some cases

create some problems if not used in a good manner. Some bad practices in

using cryptography usually consist of using deprecated methods, weak seed

generators, etc.

• Other: this category contains all the other vulnerabilities that do not enter

the other categories.

Since embedded systems have many targets, it’s critical to know which kind of layer

will be attacked to quickly classify them:

• Hardware: this involves targeting the hardware part of the embedded device.
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• F irmware/OS: there is no real distinction between the firmware and the

Operating System because an embedded device could lack the presence of an

OS and thus the only target could be the firmware, which provides the main

functionalities of the device.

• Application: the target is the application contained in the OS of the embed-

ded device.

• Protocol: the target is the protocols used for the communication of the device

with the environment.

Embedded systems are vulnerable to several kinds of attacks, just like any other

device. It’s critical to classify the many ways that the earlier vulnerabilities have

been exploited:

• Control hijacking attacks: the attacker successfully hijacks the flow of the

program to execute some potential malicious code, which allows the attacker

to take control.

• Reverse engineering: the attacker analyzes the code of an embedded device

to "reconstruct" the code thus allowing them to find potential vulnerabilities

to exploit.

• Malware: the attacker can infect an embedded device with malicious soft-

ware, which has the property of executing a malicious act, creating harmful

behavior to the device and the environment. Since the malicious behavior is

quite unpredictable, it could create disastrous events.

• Injecting crafted packets/inputs: as previously stated, the protocols could

be targeted by a malicious attacker, which could inject into some packets a

malicious program created to perform malicious operations onto the embedded
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device. The packet crafting could also create protocol failures thus allowing

more exploits for the attacker.

• Eavesdropping: this attack is different from the others since it is more pas-

sive. Here the attacker simply tries to sniff the packet to capture some infor-

mation that is passed with the messages between devices. This is usually due

to weak cryptography protection or that is not protected at all. The inter-

cepted information could be used later to perform a replay attack, where the

packet is crafted using information obtained from the interception.

• Brute-force search attacks: if the device has weak protection or authenti-

cation, a brute-force attack could be viable. Usually, a generation of random

keys to find the correct one could result in a successful attack on the weak au-

thentication. This is only feasible if the search space is of small size, otherwise,

it could be quite unfeasible.

• Normal use: the attack exploits a device without any dificulty since the

device does not have protection, thus allowing the attacker to exploit the

vulnerability easily.

• Others: these are the other attacks that do not enter the other categories or

that do not exploit the previously stated vulnerabilities.

Attacks may put the targeted assets and systems at grave risk and have a variety of

effects, from a minor service interruption to a significant financial loss. The following

are some possible outcomes of these attacks:

• Denial-of-service: the attack converges in a disruption of the service, which

leads to the unavailability of the service and potential problems in a system.

• Code execution: if the attacker successfully exploits the vulnerabilities of

the embedded device, then they are capable of executing the code thus allowing
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them to have more control over the behavior of the device.

• Integrity violation: some data on the device could be affected by the attack,

which could be modified or deleted. Also, the code could be affected, resulting

in a possible manipulation of the system.

• Information leakage: the data are compromised by the attack and thus

there is a leakage of them.

• Illegitimate access: the attacker can gain access to the device without hav-

ing the rights and privileges. A  particularity of this case is that it is not only

about the fact that can have access to the device, but it can also consider the

fact that the attacker gains more privileges when previously had less of them.

• Financial loss: the victim of the attack suffers from a severe financial loss,

which could be disastrous or light damage.

• Degraded level of protection: the attack successfully lowers the protection

of the device, allowing the attacker to further compromise the device. This is

possible due to a change in security policies or other methods.

• Others: this category contains all the cases that are not entered in the pre-

vious categories.

The categorization makes it feasible to classify an attack accurately and makes it

possible for researchers to identify potential categorizations of the threats in order

to define the appropriate protection. Moreover, it offers a quick overview of the

threats that affect the embedded software scenario.

2.1.3 Possible Measure of Protection Against Threats

Since embedded systems are generally vulnerable to many threats, numerous studies

have been conducted to try and identify possible protections for these kinds of sys-
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tems. The challenge was dificult since it required protection that both used little

resources and did not interfere with the systems’ ability to function as intended.

In reality, one of the biggest dificulties in creating a safe system is the limitations

imposed by limited resources on the system’s ability to protect itself.

Certain solutions are designed to defend against specific types of attacks, de-

pending on the vulnerabilities, the target (hardware, firmware, etc.), and how the

attack is carried out. A  good example of this is the requirement to defend against so-

called run-time assaults, which aim to compromise run-time systems [14]. Run-time

attacks are a specific type of harmful conduct that targets the systems’ run-time.

They accomplish this by applying return-oriented programming (ROP) or intro-

ducing malicious code, which, when performed at run-time, enables the attacker

to take control of the systems and exploit them. The basis of this attack is the

interruption of program flow, which is then directed to the malicious code that the

attacker has injected. This is because embedded systems typically use programming

languages like C  or assembly, which increases their vulnerability to run-time attacks.

As a result, the work [14] relies on attempting to defend against the attack by

employing what is known as the Control-Flow-Integrity ( C F I )  check on the flow. The

C F I  makes it feasible to verify if a program is correctly executing the predetermined

control-flow graph (CFG) ,  or the usual flow that was decided upon when creating it.

If an attack is suspected of causing a redirection or abnormality in the C F G  during

runtime, the C F I  should be able to identify it through a flow check, enabling the

attack to be mitigated. The drawback of this strategy is that it still relies heavily

on the embedded system’s limited resources, which might lead to performance issues.

Some works try to solve the problem by optimizing the C F I  to reach the desired



2.1 E M B E D D E D  SOFTWARE AND S E C U R I T Y 16

goals. A  C F I  that counteracts the ROP attack was proposed in the paper [15], which

also suggests a design for an embedded system’s "fine-grained, hardware-based C F I

defense". The approach uses a hardware-assisted C F I  framework to accurately im-

plement the C F I  policies. Given that runtime assaults provide a potentially harmful

attack vector, it is necessary to contemplate the integration of C F I  within embedded

systems.

Certain works base themselves only on the idea that embedded systems are

severely resource-constrained. The absence of support for memory management for

embedded systems is discussed in the work of [16], where they suggest an approach

based on the usage of passwords for system security. The proposal describes how

to manage the concepts of protection context, which is the set of memory page ac-

cess rights and protection domain, which is the collection of one or more protection

contexts, by using a memory protection unit (MPU), which is the best supporter

for this purpose. Furthermore, the MPU plays a key role in the embedded system

by acting as a mediator between the CPU, main memory, and I/O devices. Since

passwords and protection domains are strongly correlated, they were able to use

the password holder through a process to activate a corresponding domain. It was

possible to regulate an alteration of the domain composition by utilizing a collection

of protection primitives.

Not only is it dificult to identify and investigate potential vulnerabilities, but

it can also be dificult to implement new forms of protection. This is because, as

of right now, relatively little research has been done to determine whether or not

real-time embedded systems’ existing protections are being used, or whether the

algorithms for these kinds of protections are being widely adopted. To  close this

gap, a study is presented in [17] which aims to identify the protection strategies that



2.2 AVIONIC SOFTWARE AND STANDARDS 17

real-time embedded systems use. Additionally, it looks into the kind of impact that

security measures have on embedded systems.

2.2 Avionic Software and Standards

As was previously mentioned, embedded systems as a whole are rapidly growing

and becoming widely used in a variety of industries, from basic home components

to more complex mechanics like avionics. The main dificulty, however, is that the

software used in these systems needs to adhere to strict constraints and respect

them; otherwise, there may be harmful risks that result from improper function

execution.

Due to the extensive use of these systems, increased security measures targeted

at shielding embedded systems from malevolent attackers are essential to safeguard-

ing not only the system’s assets but also the environment that these systems may

control or be a part of. One of the key issues in this situation is figuring out how

to balance resource usage and security since the majority of embedded systems cur-

rently have complicated structures and few resources.

The avionics industry is one of the primary domains where addressing cyber

threats is crucial. Even though the embedded avionic system, also known as avionic

software, is often highly controlled and sophisticated, possible attacks may still

be launched against it. It is essential to first understand the characteristics of

avionic software, the limitations and requirements that set it apart, and the primary

threats to it to come up with a suitable response to potential attacks. Furthermore,

it’s critical to comprehend how the legislation handles this, as there are specific

guidelines that control how the requirements truly affect the software.
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2.2.1 Overview of Security in Avionic software

In general, avionic software is a component of a vast and intricate system that, by

providing additional benefits and features, enables an aircraft to operate as a whole.

This software also serves to ensure the system’s security and safety, making it easier

to do the necessary inspections and testing to confirm its security. To  ensure proper

software development, ethical control over requirements, and safety checks, several

standards and guidelines were established to verify these needs [18].

However, to achieve this, it’s critical to comprehend the specifications required

by an avionic system, as well as the potential challenges that may arise, including

accurately identifying potential software flaws. Following this, to control safety-

critical systems like avionics, it is also necessary to meet the requirements given by

software/hardware certification.

2.2.2 Requirements for Avionic software

Given the critical role that avionic software plays in aircraft operations, it must meet

numerous requirements and limitations to function effectively [19]. In the first place,

they must be able to operate smoothly in real-time, conform to strict standards, and

be dependable in high-pressure situations. Additionally, because they are made up

of a collection of sensors, controllers, computers, and other types of displays, each

part needs to be well-connected to the others and have the proper amount of space

inside the embedded environment.

Basically, we can condense all of the requirements for an avionic system into three

major areas. A  portion of the inspiration for these domains comes from [20]. The

study suggests a model-based method for communicating technical requirements

at the chosen level of the system architect, utilizing the DEPS  (DEsign Problem
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Specification) language. In essence, D A R PA  has determined that there are four

crucial stages in the avionics system design process, which are

1. Abstraction-based design tools

2. System complexity metrics

3. Advanced methods of architecture synthesis

4. Robust uncertainty management

This allows us to identify the three primary categories that specify the fundamental

guidelines that avionic software must adhere to in order to be as reliable as possible:

• Safety requirements: there is a need to use the right standards for the

aircraft in order to guarantee the appropriate safety and availability of the

aircraft, which are defined in these standards.

• Security requirements: essentially, there is a need to have separate levels

of security regarding each specific function of the aircraft, depending on the

system levels.

• Capacity constraints: these are basically the requirements regarding the

memory capacity of each CPU used in the aircraft.

Furthermore, because the avionic software is still an embedded system and has

memory and capacity limitations, it is crucial to consider memory as a constraint.

However, because avionic software is incorporated in many aircraft types, it is very

dependent on the architecture of the aircraft; therefore, before establishing the lim-

itations and the general needs, the architecture must be examined.

2.2.3 Standards for Avionic Software

It is crucial to adhere to a set of guidelines and standards to ensure that the avionic

software can meet the criteria in a way that guarantees the required security. As
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a result, certain standards set by particular certification authorities such as the

standard DO-178b which is applied to safety-critical software in aircraft systems,

must be followed by the hardware and software that together make up the avionic

system. Control for the requirements must be carried out during the software life

cycle since the use of standards to qualify the avionic software is an essential compo-

nent of the software. Because the software is continuously planned and verified, the

avionic system’s safety may be ensured in this manner. Furthermore, several admin-

istrations, like the Federal Aviation Administration of the United States, mandate it.

However, it’s crucial to clarify and look into the features of the applied standard

to have a better understanding of what the standards regulate. Upon examining

the limitations and the standards’ definition, it becomes evident that automated

methods for testing software requirements are essential, given that avionic software

design is not significantly complicated by the need to conform to standards.

DO-178B

As was already said, the DO-178B is the most significant one in the avionic soft-

ware and is thoroughly described in the study [18]. This standard, published in

1992 by the Radio Technical Commission for Aeronautics ( RT C A ) ,  is also known as

"Software Considerations in Airborne Systems and Equipment Certification". The

primary goal of the document is to provide principles and limitations for the develop-

ment of aviation systems generally, with a focus on software development rather than

hardware development, which is regulated by other standards. An increased level

of reliable safety for the aviation system can be attained by fulfilling the standards

found in the document. Following the software section, the document’s primary

focus is on the production processes. Its primary unique feature is its flexibility, as

it is not specifically designed for any particular software cycle. The three primary
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categories that compose the software life cycle and the processes that are detailed

in this document are as follows:

• Software planning process: focuses more on the planning of the processes

involved in developing the program than on its technical aspects or its pro-

duction process.

• Software development process: this topic mostly refers to software de-

velopment design, which outlines the specifications for the software’s needs,

design, coding, and integration.

• Integral process: here, however, the focus is more on software verification

together with configuration management, quality assurance, and evidence of

adhering to the appropriate certifications.

Figure 2.1: Schema for software life cycle presented by DO-178B [18]

The fact that the DO-178B presents the criticality of the systems at the system

level by basing the system safety assessment procedure on failure circumstances

(Catastrophic, Hazardous, Major, Minor, and No effect) is a further essential piece

of information.
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Furthermore, the certification explicitly states how the qualification tools must

be used [18]. First and foremost, the tools are used to automate the manual tasks

specified in the document by streamlining the requirements check of the program,

which verifies that all limitations have been followed to by following the standards.

The instruments specified in DO-178B must meet the following three requirements:

1. Tools have the ability to conceal defects from view or introduce new flaws into

the product.

2. Processes could be simplified, automated, or removed.

3. The tool’s output might not be independently validated.

If none of these conditions are met, no further tool qualification is required. Fur-

thermore, neither the relevant tool history nor the design assurance level is taken

into consideration by DO-178B for determining tool qualification.

As previously mentioned, the standard DO-178 has a significant impact on soft-

ware development, and the importance of non-functional requirements varies ac-

cording to the system’s criticality. For instance, the DO-178 is largely utilized in

the Airbus NH90 civilian model to identify these limitations [21]. These coding con-

straints, which are required for mission-critical code, include the following examples:

• The usage of dynamic programming techniques such as late binding or dynamic

dispatch is forbidden.

• To  guarantee error-free resource utilization and to estimate the amount of

memory consumed at compile time, memory must be allocated statically.

• Any source code that is never executed in any configuration needs to be elim-

inated entirely.
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• It is necessary for each source code line to have a low-level system requirement

associated with it.

The aircraft can operate only when the limitations have been accepted by responsible

engineering experts from a national certification authority.

E D -203A

Specific instructions for the security refutation objectives set by the European Or-

ganisation for Civil Aviation Equipment (EUROCAE)  are contained in the document

known as ED-203A, also named "Airworthiness Security Methods and Considera-

tion". The term "refutation", as described in the document, refers to the "indepen-

dent set of assurance activities beyond analysis and requirements [22]", therefore it

refers to a sort of security evaluation of the analyzed object. It is therefore possible

to refute the claim that there are exploitable vulnerabilities by meeting the defini-

tion of regulation. Additionally, the term "vulnerability" is explicitly specified here,

stating that potential flaws or defects may also be identified as vulnerabilities. This

is significant since there have been instances where maliciously capable vulnerabil-

ities were not identified as such. Furthermore, even in cases that were thought to

be settled and fixed, there remained a chance that new attacks would be launched

against them as time went on.

Since the Airworthiness Security Process’s Refutation phase is used to describe

a system’s security, find potential vulnerabilities, and assess how robust they are, a

system is considered secure if the vulnerabilities are mitigated in one of the following

possible methods [22]:

• Should the vulnerability originate from a software error, it has been addressed

during the implementation process.
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• Protected by a security measure, or set of measures. that are documented in

the vulnerability dossier and appropriate to the level of danger to public safety

associated with the exploitation of the vulnerability.

• Included in the vulnerability dossier and mitigated by a higher-level system in

the aircraft platform as a whole.

• Recognized in the vulnerability dossier as a plausible possibility that the vul-

nerability won’t be used.

If none of the vulnerabilities found fall into any of those scenarios, then they have

to be a part of one of the following scenarios:

• There were no flaws or possible vulnerabilities found by the Refutation.

• Although the probable vulnerabilities were accurately detected, it was not pos-

sible to determine the applicable exploitation level that would have increased

the likelihood of an exploit.

• Similar to the last instance, one of the vulnerabilities or weaknesses may be

exploitable in this one as well, however, it is acceptable to take the risk of an

exploited bug leading to a possible security breach or system security policy

violation.

The document also describes the necessary testing and analytical tasks that need to

be completed in order to correctly carry out the system’s Refutation phase, which

are as follows:

• Security penetration testing: a testing process that includes attempting

to use a system vulnerability to read or alter the state of a recognized security

asset.
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• Fuzzing: an automated process that generates test cases and finds anomalies

in the system. In order to generate extra test cases that are injected into

the system to discover any abnormal behavior, fuzzing capabilities usually

need modifying an initial corpus of test case inputs. Fuzzing is the process of

identifying system inputs that can lead the system to enter an insecure state.

• Static code analysis: a semantic analysis performed at the source code level

of the system to identify code constructs that may be considered unsafe or

insecure.

• Dynamic code analysis: the analysis of how the system behaves when it

is in action. Programming language semantics can be enforced through run-

time constraint checks or dynamic code analysis using tools that find memory

corruption problems through code instrumentation inserted during additional

compilation steps.

• Formal proof : an explicit and limited series of formulas that can be stati-

cally verified with mathematical proof checkers (axioms, assumptions, rules,

and inferences; often called contracts and assertions). In order to describe the

anticipated behavior of the system, these models are generated both automat-

ically by interactive theorem-proving tools and during software design.

There may be more refutation activities, but these are the most important ones and

the ones that have already been implemented in the avionic field.

2.3 Software Testing

As seen in the previous section, avionic software must not only be protected against

every potential threat to an embedded system, but it also needs to take into account

how it conforms to all limitations and the various standards.
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To ensure the avionic software’s safety and compliance with standards, it is there-

fore essential to discover ways of testing it. This can be accomplished by employing

tools or other techniques.

To  ensure proper usage of the tool, one first needs to understand the potential

issues and risks that could impact the system; some of these risks are comparable to

those affecting embedded software as a whole. Furthermore, potential countermea-

sures for these vulnerabilities might offer some strategies for avoiding them, enabling

even more testing enhancements. Examining potential examples that have previ-

ously occurred in this situation may also shed more light on how to solve the issue.

The next step would be to investigate potential solutions that would meet the stan-

dards’ requirements while also suggesting a testing ground for additional system

security and safety improvements. To  get started with fuzz testing, the main tool

that will be examined in this work, potential methods for addressing this will be

discussed..

In order to correctly understand the fuzz testing purpose in an avionic software,

the behavior of the fuzz testing will be explained, together with how it works and how

it is implemented. Moreover, a list of the state of the art of the various fuzz testing

solutions will be explored. All of this will be important in order to understand how

to define a fuzz testing approach on avionic software, which will be explained in the

next chapters.

2.3.1 Threats to Avionics Software

Since avionic software is essentially an embedded software subcategory, it is vulner-

able to similar attacks that take advantage of nearly identical weaknesses, leading

to similar problems. Nonetheless, because avionic software offers more safeguards
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and controls than a typical embedded system, it may have additional hardware and

software security layers. This reduces the likelihood of threats that target embedded

systems in general and that can be applied to the avionic area.

Since attacks like spoofing, denial of service, exploiting, and counterfeiting are

some of the threats that can be carried out against an avionic system, there are

already many different types of research on avionic software generally in order to

find solutions to mitigate attacks and potential threats to the aircraft [23]. As such,

it is necessary to raise awareness of these issues. Several tests must be carried out,

some of which may differ depending on the objectives, in order to identify potential

vulnerabilities and reduce attacks. A  variety of techniques, from the traditional pen

test to the more modern fuzz test, can be used to carry out these tests.

Instead of focusing on determining whether attacks on the tested software are

feasible, we will focus in this work on the testing part, which helps identify potential

issues, as threats to an avionic system can also depend on the environment and the

tools available to carry them out.

2.3.2 Fuz z  Testing

The term "fuzz testing" originated in 1988 [24], where it was practically never used

and it was a term that refers to simply random testing. Years later, additional

research on automation techniques was conducted, and eventually, as time went on,

companies began looking into this subject.

Fuzz testing, also known as fuzzing testing, is a software testing technique that

generates an initial corpus by automatically creating test input data through pseudo-

random mutation of user input data. This starting corpus makes it feasible to
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stress-test a specific piece of software in order to detect and understand any possible

vulnerabilities that may be found as a result of these unexpected inputs.

The purpose of testing the system under these unusual operating settings and

inputs is to determine whether it is suficiently strong to deal with threats of this

nature. In fact, it is possible to confirm whether inputs caused crashes or other types

of hangs during the fuzzing process. This makes it feasible to see how the system

can transition between different states, some of which may be the undesirable states

we are looking for in order to prevent potential vulnerabilities from being exploited.

The main drawback of this technique is that it is not guaranteed that the imple-

mentation conforms to the functional specification with fuzzing, this means that to

verify this a formal verification is needed.

In order for the fuzzing to properly work, it is important to first "instrument"

the target, to understand what is happening inside the system during the testing

[25]. This makes it easy to keep track of any crashes and hangs that may have

occurred throughout the test, allowing one to replicate any potential vulnerabilities

or attacks. To  make the testing as autonomous as feasible, it can also be improved;

for example, by building a test harness that has the ability to restart on its own to

investigate more input combinations. There are also more improvements that can

further enhance the performances and find more vulnerabilities [25], such as crash

deduplication, crash triage based on suspected exploitability, and minimization of

test cases.

2.3.3 Possible Uses

Desktop applications, generic libraries, and most recently, the avionics industry are

among the domains where fuzz testing is rapidly becoming popular. An increasing
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number of companies or open-source libraries are attempting to use this technique

to identify possible problems in their product code because of its ability to uncover

a multitude of flaws and weaknesses. This is because it was demonstrated that us-

ing a fuzzer to discover possible vulnerabilities could achieve interesting results in

various scenarios. For instance, the free software fuzzer A F L  (American Fuzzy Lop)

[26], was used to identify numerous vulnerabilities in a wide range of applications,

including the iOS kernel, LibreOfice, and V L C .

Fuzz testing can also be applied in a variety of ways, greatly varying depending

on the desired result. These methods differ primarily in that they include either

black-box testing, which involves fuzzing a binary code in which the source code is

inaccessible, or white-box testing, which involves fuzzing a binary code in which the

source code is available and allows for potential code analysis. It’s vital to remember

that there is an alternative method as well, known as "gray-box testing", in which

some of the source code is made available, providing additional information.

2.3.4 Additional Components for Fuz z

In the fuzzing tool, it is possible to further expand the capabilities of the fuzzer,

by using external components that are able to amplify the code coverage of the

fuzzer tool. In particular, in the case of A F L  [27], it is possible to use additional

components such as sanitizers and dictionaries, which are:

• Dictionaries: in order to further improve the performance of the fuzzer, it is

possible to attach a "dictionary" [28]. The dictionaries are very useful since

they provide a set of common words or values to the fuzzer which represents

the expected inputs for the program. Therefore, adding a dictionary highly

improves the eficiency of finding new units and performs really well in certain

scenarios, such as the fuzzing of an SQL application [29], where it is dificult to
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stress-test by using a fuzzer since random mutations are unlikely to generate

anything but trivially broken statements.

• Sanitizers: these are a set of tools that are designed to detect and report var-

ious types of programming errors and security issues in a program. They are

initially developed to find possible problems in the code, therefore they assume

a debugging role and can be applied to most languages to test their robust-

ness. Thanks to these tools, it is possible to identify potential memory errors,

like race conditions or other types of abnormal behavior. There are several

sanitizers [30], which tasks can range from memory detector to race conditions

detector. In A F L ,  these sanitizers can be applied when instrumenting targets

for fuzzing [27], in order to discover possible bugs or other problems, but it

has a huge impact on CPU and RAM usage.

2.3.5 Fuz z  Testing in the Literature

To give a clearer overview of the primary findings of fuzz testing, many works in

the scientific literature attempt to describe how and what kind of results it can

achieve when applied to different applications. There is an increasing amount of

research being done on embedded software in general, and these works investigate

its applicability in various kinds of software. Sadly, no research has been done to

explore this kind of use in the context of avionic software, or to put it another way,

no research has been done to make it clear what kinds of strategies need to be used

to utilize an open-source fuzz testing tool with avionic software.

In fact, the only fuzz testing approach that is applied to avionic software is pro-

vided by AdaCore, which offers the tool GNATfuzz [6] to offer an automated testing

technique in order to detect abnormal and faulty behavior. This tool is capable of

providing a fuzz testing approach for avionic software, however, it doesn’t explain
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how the fuzz works and how it can be replicated by using open-source software,

which is understandable since it provides proprietary software. It’s important to

note that this software presents the idea that avionic software can use A F L + +  to

do fuzz testing, as it employs the latter as a back-end fuzzing engine.

Considering how quickly fuzz testing was adopted, many works attempted to ac-

curately assess this approach’s capabilities in order to further testify of any possible

drawbacks that this approach could cause. Researchers discovered possible issues

with fuzz testing in [31], primarily because of the setup built around this approach’s

implementation, which led to potential issues in each evaluation of fuzz testing that

was taken into consideration. Since an incorrect implementation of this could create

misleading or wrong assessments, the work tried to include potential guidelines in

order to achieve more robust results. Some of these possible issues resulted from

not running the program multiple times or from timeouts that weren’t justified. In

order to produce more realistic results while improving suggestions for future work,

some of these concerns were dealt with in this work.

Other works, such as [32], discussed the basic procedure and the main aspects

to provide a more comprehensive understanding of the general features that classify

fuzz testing. This work was taken into account since it provided insights into the

primary issues and fuzz testing approaches, as well as a discussion of potentially

useful fuzzers that are employed in well-known application areas. The paper pro-

vides further information on how to select amongst the different approaches while

also providing a clear understanding of the primary fuzzing techniques that can be

used for each particular kind of software (e.g., white-box and black-box fuzzing).

Though we already had a very clear and defined aim for this project, it was still

necessary to have some sort of explanation for using the chosen approach. Addition-
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ally, the article includes a review of potential fuzzers that can be applied to various

target types. These were taken into consideration during the research process to

find a viable fuzzer; ultimately, A F L + +  was the preferred option. A F L + +  is a

better option because it already takes into account the features that were discussed

as characteristics a fuzzer needs to have.

There are additional interesting studies that focus on fuzz testing’s application to

embedded software, which was important to this work. An overview of fuzz testing’s

use for embedded systems is provided in the work [33], which provides intriguing

details on the methods that can be employed to fuzz an embedded system. The

work covers potential fuzzers and goes into detail on the potentiality of employing

fuzzing for embedded systems. It does not, however, address how it may be put into

practice by providing some instructions on how to replicate and use the fuzzing for

other types of embedded systems.

Other more specific works regarding fuzzing on embedded systems scenarios are

[34] and [35]. The first one, which suggests a gray-box fuzz testing framework, pro-

vides a clear understanding of how to build a potential framework for using fuzz

testing in the automotive industry to test specific autonomous car systems. The

work produces a fascinating approach for applying fuzz testing to a car system, but

it doesn’t offer any general suggestions for applying this to other types of embedded

systems or details on how the fuzz testing is actually carried out on the software.

The second paper, which is one of the few that genuinely shows step-by-step how

the fuzz testing with A F L  is carried out towards the target system, applies the fuzz

testing to a different kind of embedded software scenario, specifically a Garming

Datalink 90 protocol. Even though the work is primarily focused on possible DoS

attacks against a particular protocol, it provides a clear understanding of the fuzz
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testing process by enabling future studies to repeat the experiment and then look

for additional system security-related information. Since this matches the goal of

our work, it was an important paper to study.

Almost none of these papers attempt to apply a fuzz testing methodology to an

Ada application. Given that the primary focus of this work is Ada-written avionic

software, it was necessary to determine whether a fuzz testing strategy could be

applied to an Ada program. The only work that attempted a similar strategy was

[36], where A F L  was used to test multiple Ada projects to identify probable issues

and provided instructions on how to change the target source code to enable the

application of fuzz testing. This work provides guidelines for setting up the target to

be fuzzed by A F L  and explains in detail how fuzz testing operates. The conclusion

is that Ada is a useful example scenario to test using fuzzing because all of the

implemented defensive code and runtime checks may be used as fuzzing targets.

The key concepts that will be applied in this work are provided by the outlined

approach.



3 Research Methodology

3.1 Airbus NH90 context

Among Airbus Helicopters’ unique products, the Airbus NH90 is an extremely ver-

satile aircraft that offers multiple options for customization. A  component of this

aircraft will be provided as the chosen target for the fuzz testing, which was kindly

offered by Airbus Helicopters Deutschland.

3.1.1 Airbus Helicopters

Airbus Helicopters is a helicopter manufacturing division of Airbus, and it is the

largest industry in terms of revenues and turbine helicopter deliveries. It was once

known as the Eurocopter Group, but after merging with Airbus, it became an ofi-

cial Airbus division [37]. As a helicopter manufacturing division, it provides avionics

products for many kinds of helicopters, from military to civil. Given the amount of

products that Airbus produces, additional research and product improvements are

constantly required.

The NHIndustries NH90, or NH90, is a modern multi-role rotorcraft that is one of

Airbus Helicopters’ primary products. It is built to meet and adhere to NATO spec-

ifications [38]. It is produced and supplied as a military helicopter in two variants:

the NATO frigate helicopter (NFH) and the tactical transport (TTH).  Additionally,
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the NH90 operates in many different kinds of scenarios because of its fully integrated

mission system.

The helicopter is the result of a collaboration between Airbus Helicopters, Leonardo

Helicopters, and Fokker Aerostructures, three distinct companies that specialize in

avionics. This led to the development of a cutting-edge aircraft that could meet

the standards and guidelines set by NATO and accomplish a wide range of tasks,

including marine and inland missions. The fly-by-wire flight controls feature, which

essentially replaces manual flight controls with an electronic interface to improve air-

craft stabilization and adjust other characteristics in autonomy, was also introduced

for the first time in production by the NH90 [39].

3.1.2 Variants and Characteristics

Since the NH90 is equipped with a fully integrated mission system, multiple versions

of this particular kind of helicopter are available to provide a different approach de-

pending on the operation for which the helicopter is needed. There are essentially

two main versions that have been developed: the NATO frigate helicopter (code-

named NFH) and the tactical transport version (code-named TTH).  The versions

were made in order to implement the aircraft’s offer and give clients a wider selection.

The NH90 was initially intended to be constructed for four nations: France,

Germany, Italy, and the Netherlands. It was intended to be used for all potential

mission types, including land, air, and maritime operations. As a result, the expan-

sion of variant types was brought due to a rise in different client desires. This is also

the reason for the variants’ numerous changes; nonetheless, certain components of

the aircraft are significantly impacted by various types, which include [40]:

• Data Bus Framing
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• MFD and D K U  formats

• Varying set of application functions

• Dependencies between application functions

• Different operating environments

Since the same core vehicle is utilized in both versions, this shows it applies to both

the T T H  and the NFH versions [37]. This twin-engine rotorcraft core has essential

characteristics such as aircraft monitoring, diagnostic systems, and a fly-by-wire con-

trol system with a 4-axis autopilot, which allows it to support several mission flights.

Furthermore, depending on the task, the aircraft may accommodate up to 20

fully equipped troops, providing a considerable volume for troop transportation.

It’s an excellent option for missions because it has a low structural weight and a

high resistance to battle damage. Thus, the NH90 aims to accomplish the following

three primary missions:

• Detection avoidance

• Self-protection

• Survivability

3.2 NH90 Architecture

The NH90’s architecture is extremely complex since it must account for a wide

range of scenarios that could occur during a mission. As a result, the design is

rather complicated, and several parts work together to enable the aircraft to suc-

cessfully complete the job.
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Since the majority of these characteristics are kept secret by the corporation to

not divulge sensible information to not trustworthy parties, the majority of infor-

mation disclosed here is discussed in the work of Dordowsky [40] about the NH90

of Eurocopter. More of this information will be further improved with additional

information obtained by the work on the project.

3.2.1 System Architecture

The NH90 is made up of two primary subsystems that work together to form the

main system, which is what makes up the Avionic System Architecture. These are

the two primary subsystems:

• C O R E  system: this is one of the subsystems that has the duty of managing

the C O R E  functions, such as Vehicle Management, Communication, etc. This

subsystem is managed by the CMC (Core Management Computer), which is

the main component that will be studied and discussed in this work.

• M I S S I O N  system: this susbystems has the objective of managing the func-

tions regarding the Missions of the aircraft. This subsystem is managed by the

M T C  (Mission Tactical Computer), which will not be discussed in this work.

Using various links, depending on the data that needs to be sent, these two sub-

systems are connected to their main computer. The primary types of connections

are:

• M I L - S T D  1553 bus [41]

• A R I N C  429 line [42]

• Serial RS-485 line [43]
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The main human-machine interface (HMI), which is made up of multiple distinct

components, is unquestionably one of the other significant architectural elements

that is especially significant for the CMC. These components include:

• Display and Keyboard Units ( D K U s ) :  as an interface for mission con-

trol and management between the pilot and the helicopter, the D K U  is a

keyboard-controlled electronic device with an L C D  display [44]. The D K U

uses communication via RS-485 to carry out the communication towards the

subsystems.

• Multifunctional Displays ( M F D s ) :  usually, it is a screen with the ability

to show different aircraft-related information, particularly flight or navigation

data [45]. There are also possible keys that can be used for configuration.

3.2.2 Software Architecture

Due to its responsibility for accurately ensuring the operation of the components,

software architecture plays a crucial role in aircraft design and must be of the highest

quality. Therefore, each component that composes the architecture must be accu-

rately designed and its role must also be defined.

The C O R E  and MISSION computers in the NH90 are controlled by a unique

framework that was created to alleviate programmers to work on laborious and chal-

lenging tasks like data conversion, real-time scheduling, I/O handling, syntax errors,

and various low-level errors, such as redundancy management, etc. This framework

is known as NH90 Embedded System Software (NSS), and it interfaces with the

Equipment Software (EQSW), which provides all the hardware-related functions.

Both computers share the same platform, therefore there is only one NSS that in-

terfaces with both of them. As we can see in Figure 3.1, the software architecture
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Figure 3.1: NH90 Main computers software architecture [37]

comprises several parts that perform different roles.

Operational Processing Functions (OPFs), which mainly include the mission

functions and control for the avionic equipment, are another crucial component

of the software architecture. These OPFs are heavily dependent on the C O R E  and

MISSION computers because of their significant roles in the various missions. In

addition, they depend on the helicopter variation because the mission and variant

may require different types of functions. For this reason, the parts of the NSS in-

stantiated in the CMC and M T C  software are generated automatically to ensure

that the limits imposed by the various rules are always respected. Although it is not

recommended, this adaptation can also be made manually. The code generation is

particularly useful since it provides the right connections between the NSS and the

OPFs.

Always in Figure 3.1, we can see the Isolation Layer, which plays an important

role because it creates a barrier between the hardware and the software, providing

a kind of "cutting edge" where it is possible to separate the hardware and EQSW

from the software and improve its modularity. This will play a significant role in
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the fuzz testing approach.

The DKU, which is located in the aircraft’s cockpit, is in charge of interfacing

the crew members with the two avionic subsystems and, therefore, with the CMC

and M T C  operational functions. In a nutshell, it is capable of receiving manual data

entry and retrieving desired data, typically parameters related to crew commands,

from the C O R E  and MISSION computers. Since the D K U  is a machine on its own,

its software architecture is quite different from the one that was explained, thus they

will not be further explained.

3.2.3 Coding the N H 90

Considering that the avionic system is basically an embedded software system,

object-oriented high-level programming languages like Ada should be used to de-

velop it. In order to obtain a high level of safety for the code and prevent the

system from experiencing errors or flaws related to the type’s issues, the language

Ada is used. Ada was created especially for use in safety-critical embedded ap-

plications and real-time systems [21]. Ada offers several advantages, which include

protected objects, synchronous message forwarding, explicit concurrency, and strong

type. Ada’s adoption of avionic software increased since the original design was made

for an embedded real-time system. Due to Ada’s rigidity, very little study has been

done on the usage of fuzz testing for it. Additionally, since many fuzz tools are

primarily made for other languages, using Ada brings additional challenges that are

examined in this thesis.

3.2.4 Software Lifecycle N H 90

The NH90 Systems must adhere to the software development processes indicated

by the applied DOD-STD-2167A standard [46] in order to ensure a product that
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satisfies all functional but also safety and security requirements. Therefore, there

is a need to use a common framework to work with and which can guarantee the

satisfaction of the requirements.

Thus, the software development process is based on a framework known as ’V-

Model’ (symbolized by the letter ’V’ due to its shape), which foresees on the left

side the implementation activities (software specification, design, and coding) and

on the right the verification activities (integration, testing at different levels, and

ending with formal qualification testing). The procedure goes through the following

phases, specifically for the NH90 [40]:

1. Software requirement analysis

2. Preliminary and detailed design

3. Coding

4. Host integration and testing

5. Target integration and testing

The Software must pass the Qualification tests in order to prove that the functional

requirements are satisfied. Additionally, it must prove that the development require-

ments based on the applied standard (in this case DOD-STD-2167) have been met.

The whole thing is submitted to the Customer (i.e., Qualification Authorities) who

give its final approval. In regard to the design process, it is also critical to try to

understand the likely inclusion of a future testing part, with a focus on fuzz testing,

in order to conduct additional research into potential threats or software flaws.
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3.3 Main Target

Once the general architecture of the NH90 is understood, the key components can

be laid out in order to try to discover a possible approach to fuzz testing for the

embedded avionic software of the NH90. As a result, this part will describe the

primary target selected for the fuzz testing, along with some information about

their key attributes and what will be essential to the test.

3.3.1 Core Management Computer

The Core Management Computer (CMC) is one of the key components that con-

stitute the NH90 software architecture. In the NH90, all of the CMC and M T C

Onboard Flight Resident Software (OFRS) components are combined into a single

suite known as the NH90 embedded System Software (NSS). The CMC is a compo-

nent of the T T H  and NFH and provides a crucial role in the system, such as offering

Operational Functions (CMC-OPF) to execute determinate tasks.

The NSS offers all of the CMC-OPS’s shared services, and these services are

computer-independent. Such is the executive, reusable components, redundancy

management, rate monotonic real-time tasking architecture, and I/O drivers (e.g.,

Milbus 1553, RS-485, Arinc 429). Furthermore, all Core-related D K U  I/O data is

delivered to and received from the CMC computer via an RS485 Serial Line that

connects the CMC computers to the DKU.

3.3.2 N S S  Capabilities

The CMC uses the NSS as its common real-time operating system. The NSS man-

ages all the various operational processing threads in addition to all the necessary

system processing. We call these the Onboard Processing Functions (OPFs). For
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communication with the outside world and between OPFs, the NSS offers a variety

of data interfaces. In addition to the range of functions that the NSS can carry

out, it is critical to comprehend its role since it must be severed from the CMC in

order to isolate the latter and enable the component to be "fuzzed". The NSS also

is connected to the isolation layer, which is connected to the EQSW. The EQSW

contains all the boards that are necessary for providing suitable processor parts and

I/O part interfaces for the NH90-OFRS.

3.3.3 Issues and Threats to the System

The CMC component was the focus of the research and test. More research into

potential threats or attacks was necessary in order to better understand the com-

ponent’s potential risks. Only a small number of potential risks will be highlighted

without going into too much depth because the majority is confidential. Some of

them are:

• Software attacks: because the program was developed in Ada83, it can

resist numerous embedded attacks, the majority of which are focused on type

exploitation or memory overflow. We shall talk more about these attacks in

the section on fuzz testing.

• Physical attacks: a significant number of physical attacks were suggested

to the company in order to assess how prepared it was for such situations.

It was reasonable to conclude that with all the restrictions and clearance re-

quirements, it was nearly impossible for an external attacker to carry out an

attack on the helicopter, given answers that cannot be revealed for security

reasons. Only in the unlikely event that the helicopter gets into the hands

of a hostile attacker (usually during the combat scenario) might an attack be

carried out. The unlikely situation of a malicious insider attack was also taken

into consideration, regardless of its improbability.
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It is important to note that, given the high level of protection of the company and

of the helicopter components, the majority of attacks could be performed outside

the avionic environment only if there are appropriate test benches and laboratories

that are constructed to interface with this embedded software. That is also why a

malicious insider attack was the one scenario that was considered.

3.3.4 Fuzzing Application

It can be dificult to apply fuzz testing to complex embedded systems, such as

avionics embedded systems. Before the actual fuzzing begins, an extensive amount

of analysis has to be performed. The CMC component, which is the software com-

ponent that will be fuzzed in this particular case, must first be thoroughly studied.

To  precisely comprehend how to separate the CMC from the other components, it

is necessary to investigate and study the architecture. It is possible to "construct"

some sort of "wrapper function" after discovering the interactions that the CMC

depends on. This is necessary to mimic a potential communication channel that the

fuzzer may employ to inject the inputs.

All of this can be performed on a virtual machine, which is really convenient to

use for testing and for repeating the experiment in different configurations. Addi-

tionally, using the virtual machine is preferable to causing unwanted issues in the

workplace. Following the development of the wrapper functions, the isolated CMC

may finally be connected to the fuzzer to enable fuzzing and thus, the identification

of potential issues that are typically unnoticeable. The step-by-step process will be

explored in Chapter 4.
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3.4 Test Environment

The main experimental environment is rather complex due to the requirement for

many applications and components that are not only necessary for the software to

function effectively but also for understanding how to appropriately identify poten-

tial issues and operate the fuzzer.

3.4.1 Remote Machine Characteristics

The amount of data and components distributed across several systems created a

somewhat dificult working environment for the tests. Specifically, the central code

for the CMC component was located on a remote system that could only be accessed

by a Unix Account having the necessary permissions to access the data. The primary

operating system on the remote computer was Oracle Solaris, a proprietary Unix

operating system that was created by Sun Microsystem and was just purchased by

Oracle. Because it may be used with several other tools that are required in the

software department, it is widely used in the company. The A P E X  Ada environment

may be accessed within the system, giving the user access to the chosen CMC release

type and version. From there, they can read and test the code.

3.4.2 Virtual  Machine

A  virtual machine was the ideal choice since it provided a completely functional

working environment that would allow the experiment to be carried out multiple

times with the exact same characteristics and therefore prevent any issues that

could result from other factors. A  neutral environment could be created with the

virtual machine and modified as needed, such as in this case with the characteristics

necessary for the fuzz, such as memory and libraries.
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Ubuntu was chosen as the Operating System for the virtual machine mostly due

to the vast amount of packages available and its complete compatibility with other

libraries, which are mostly needed by the fuzzer A F L + +  and GNAT.

3.4.3 Programming Language

The primary programming language of avionic software, particularly Airbus’s em-

bedded avionic software, is Ada83. The language is an excellent choice for program-

ming in an avionic scenario, where an issue could cause disastrous scenarios and have

grave consequences. It is an imperative, object-oriented, statically typed, structured,

high-level programming language. Ada improves code safety and maintainability by

using the compiler to identify problems rather than looking for runtime problems.

Thanks to the easier debugging due to strong typing and range checking and the

ease of finding eventual flaws during the development [47], it makes an interesting

case to be studied and to try to find a possible way to apply fuzz testing in such

a rigid scenario. It is generally more different to implement fuzz testing in an Ada

scenario than in a C / C + +  scenario since the main focus of fuzzing testing is on the

use of a corpus that is generated randomly from user inputs.

3.4.4 Compilers

Being a compiled language, Ada83 requires a suitable compiler to run properly, but

it also requires specific instructions to apply the "instrumentation" to the object

correctly and enable fuzz testing.

In order to correctly compile the Ada file, there is a need for two components:

• afl-clang/afl-gcc: serves as a code compiler and adds basic instrumentation

to branch instructions. It is essentially an expansion of the traditional G C C

compiler, with extra features added by A F L  for target instrumentation. A
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fundamental block is defined as "a straight-line code sequence with no branches

in except to the entry and no branches out except at the exit," and this is

what the instrumentation is aimed at. Afl-clang also comes in several forms

known as afl-clag-fast, which can enhance the fuzzer’s performance in some

cases. However, this work will not address it. By using the standard G C C

to generate the assembly code that makes up the final output object, afl-gcc

can be thought of as an Ada compiler to replace the traditional G C C .  The

instrumentation block that afl-gcc patches is typically applied to every jump

instruction and label (jump destination) before your assembler is called to

finish the compilation process. As G N AT  is based on G C C ,  Ada can use G C C

even though it generally uses G N AT  as its compiler. This means that Ada

code can be fuzzed using the assembly code produced by G C C .  Gprbuild can

be used with the appropriate "switch" to accomplish this.

• Gprbuild: a general-purpose build tool called GPRbuild is intended for build-

ing big multilingual systems that are divided into libraries and subsystems [48].

It works well with compiled languages that support independent compilation,

such as Ada, C, C + + ,  and Fortran, for this purpose. Three primary steps

in the building process are managed by this tool: the compilation phase, in

which each compilation unit of each subsystem is individually inspected, con-

sistency checked, and compiled or recompiled by the relevant compiler; the

post-compilation phase (binding), in which compiled units from a given lan-

guage are passed to a post-compilation tool specific to that language; and the

linking phase, in which all units or libraries from all subsystems are passed to

a linker tool specific to the set of toolchains being used. Because the tool is

generic, it can give equal build capabilities for all supported languages, which

makes it a powerful tool that works well with afl-gcc.
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3.4.5 A F L + +

Of all the possible fuzzing tools that can be used, the one open-source tool that im-

mediately results because of its simplicity and eficiency is without a doubt Amer-

ican Fuzzy Lop (AFL) .  This tool is a fuzzer developed by Michał Zalewski from

the Google security team. Many vulnerabilities and flaws that were discovered in

a variety of open-source libraries and tools have contributed to its success and rich

history [49].

Specifically, we will use A F L + +  for this test, which is an improved fork of the

original A F L  that offers faster execution times, more and better mutations, better

instrumentation, support for new modules, etc. We chose this tool in order to find

possible configurations for it to produce a better fuzzing approach for Ada, as it can

give more functions with higher performances and has never been used to fuzz an

Ada project. Given that A F L + +  is built upon A F L ,  a mutational, coverage-guided

fuzzer, it already has a number of capabilities that are essential for carrying out the

fuzzing, including:

• Coverage Guided Feedback: this is a metric that provides information

about the number of times in which an edge of the code (which was analyzed

by the edge coverage) was executed. Thanks to this the fuzzer is capable of

understanding if the input is considered interesting and thus putting it in the

queue, which happens only if it explores a new part of an edge. These parts

are stored in a bitmap to indicate the coverage of the code. Thanks to this

feedback, it is possible to reduce the size of the test case, which allows for

more speed and better performance.

• Mutations: there are two main types of mutation defined by A F L ,  which are

deterministic and havoc. In the first case we have that single deterministic
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mutations are performed on the contents of the test cases; while in havoc the

mutations are randomly stacked and can change the size of the test case (by

modifying its content).

• Persistent mode: this mode is capable of greatly improving performances

by not applying a fork for each test case, instead it applies a loop into the

target, which allows to have one test case per iteration, reducing thus possible

bottlenecks.

Other features that are frequently included in fuzzer tools to improve eficiency in-

clude smart scheduling, which uses a variety of prioritization algorithms to schedule

different parts of the fuzzing pipeline in order to maximize code coverage. Because

fuzzers frequently produce a large number of incorrect inputs, features like the abil-

ity to mutate structured inputs might be helpful. For this reason, some tools, such

as AFLSmart, can reduce the space of created inputs, thus making the creation of

incorrect but right-structured inputs more feasible.

However, A F L + +  further enhances these features by adding more components

[50], which allows for more potential findings and more performances. Some of these

features are:

• Seed Scheduling: the AFLFast  is incorporated into A F L + + ,  enabling more

powerful schedules and further performance enhancement.

• Mutators: more mutators than the conventional ones, such as deterministic

and havoc, are available. It is also feasible to use a customized mutator, which

is simple to incorporate into the fuzzer.

• Instrumentations: A F L + +  includes and supports a wide range of code-

instrumentation tools, including LLVM,  G C C ,  QUEMU, Unicorn, and QBDI.
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This makes it possible to test various binaries and languages and to have more

adoption and diversity in instrumentation types.

• Platform Support: the fact that multiple operating systems are supported

makes it easier to apply fuzz testing in different environments.

Several features are presented in the documentation [51] and that will not be taken

into consideration for the experiment.

Additionally, because fuzzing an Ada project requires a lot of work, it is essen-

tial to know how to approach an Ada project effectively and use the fuzzing tool

accordingly. In Figure 3.2 there is a high-level representation of the architecture of

unit-level fuzz testing for Ada [52].

3.4.6 Scripts

Some bash scripts were built to further automate all the fuzzing test procedures and

to allow for some generalization. In this manner, future users might just modify a

few variables to customize the fuzzer for a new project. The scripts are shown in

detail in Chapter 4, together with a basic explanation of the main settings and the

main tasks that they perform.

3.4.7 "Understand" Software

The stabbing part posed the biggest challenge to properly fuzz the CMC. This in-

volved separating the CMC components from the NSS components and developing

and implementing wrapper functions that could mimic this connection and main-

tain the CMC’s normal behavior. Since it was not possible to automate this task

for security reasons, it was possible to correctly stab a selected part of the CMC

with the aid of the tool "Understand" [53]. This tool is an integrated develop-
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ment environment that can be customized, and it offers a variety of metric tools,

documentation, and visualizations to facilitate static code analysis. This software

allowed for the accurate understanding of program flows and the identification of

the primary components (programs and libraries) that might be "cut" in order to

replace them with a wrapper function, thereby freeing the program of its NSS and

EQSW dependencies.

3.4.8 Environment Requirements

Given the abundance of tools and software present, this subsection will cover all of

the primary requirements for each component, enabling replication of the experiment

in the exact same settings. The Work Computer, which is the main machine that

was used during the experiment, has the following specs:

• Processor: 11th Gen Intel(R) Core(TM) i7-1185G7 @ 3.00GHz

• Installed RAM: 32.0 G B  (31.7 G B  usable)

• Operating System: Windows 10 Enterprise 21H2 64-bit

Using Virtualbox, a virtual machine was installed on this machine to provide a fully

customizable environment without requiring authorization to make changes to the

files. The principal characteristics of the Virtual Machine are:

• Operating System: Ubuntu 20.04.6 LT S  (Focal Fossa) 64-bit

• Base Memory (RAM): 16 G B

• Processors Allocated: 4

• Video Memory: 96 MB

• Graphics Controller: VMSVGA
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• Network Adapter: Intel PRO/1000 MT Desktop (NAT)

• Shared Folder: 1, important to exchange data between the main working en-

vironment (so from Windows) to the Virtual Machine

Lastly, the A F L + +  was configured with some characteristics that were used in other

experiments and that were suggested by the company, thus the main specs used are:

• G C C  version: 9.4.0

• GPRbuild version: G P R B U I L D  Community 2019 (20190517) (x86_64-pc-

linux-gnu)

• Number of Threads used: 4 (one fuzzer per core)
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Figure 3.2: Unit Level Fuzz Testing Schema used for Fuzz an Ada Programs Archi-

tecture [52]



4 Implementation and Verification

The primary experiments, their methodical execution, and a brief discussion of the

findings will all be covered in this chapter. In order to accurately comprehend the

methodology and motivation behind some decisions, a few references to other works

will be defined, accompanied by a relevant discussion on the individual choices. How-

ever, as the experiment was conducted on a code that is confidential and has some

elements that cannot be shared, all of the missing portions will be described by uti-

lizing aliases or by providing an abstract explanation of the part’s principal purpose.

The chapter will begin with a thorough explanation of how the experiment was

carried out, including how each of the necessary parts was assembled on the correct

setup. After that, the test methodology will be clarified, along with the results

obtained through the use of output screenshots and diagrams. Following that, there

will be a discussion of the findings, with a particular emphasis on what the results

are showing and how to interpret them. There will also be comments on how to

potentially improve the results by speculating on what might work and what might

not, which will provide readers with suggestions for improving future tests. In the

end, an analysis of the successful and unsuccessful aspects of the experiment will be

conducted, along with a reflection of what went wrong.
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4.1 Implementation

This section will discuss the key steps that were taken to carry out the experiment,

with an emphasis on the detailed process so as to provide a general idea of how to

repeat the experiment in the future. Because the experiment was conducted using

private code for an organization, the main process may be implemented differently

depending on the tested code; nevertheless, the main environment and tools utilized

remain fundamentally the same, allowing the experiment to be repeated and adapted

to the chosen target.

4.1.1 Purpose and Ob jective

The purpose of using fuzz testing on the CMC, an avionics system component, is to

identify any possible weaknesses and vulnerabilities that would enable a malicious

attacker to provoke serious incidents or other attacks. Fuzzing avionic software is

still relatively new as of right now, and those who have actually tried it haven’t

yet shared the techniques they used. Hence, another goal of this experiment is to

provide an approach that would allow future projects to perform fuzz testing on

their avionic software (and maybe other software) using open-source software ( A F L

fuzz). Airbus Helicopters, the firm that provided the test case, was granted access

to the test’s primary results, allowing them to repeat the test for other components

in the future if they so choose.

4.1.2 Identifying the Target

In order to determine whether a fuzz method to find potential vulnerabilities to

that component would be practical and produce positive findings without requiring

a significant investment in resources, the company first picked the CMC component

as the one component that potentially requires fuzz testing. Furthermore, the CMC
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was the part of the avionic system that would be easier to separate from the other

parts in order to use the fuzzer, given that the system included multiple components.

The next challenge was figuring out which part could be fuzzed after the CMC

was selected as the component to be fuzzed. Considering the extreme complexity of

the code that constitutes the CMC, selecting only one library within the component

was required. This is also partially because the fuzzer generates random inputs;

however, the corporation felt that adding multiple random variables to large-scale

projects like the CMC would be too dificult and would require too much time.

Therefore, rather than fuzzing the entire project, the initial approach to fuzzing

was to find a suitable library inside the CMC that could meet particular conditions,

which were chosen together with the company in order to produce results quicker:

• Number of dependencies: a library that is inside the CMC zone and has

few dependencies outside of it is the one that has to be selected. The reason for

this is that the library will be "disconnected" from its external dependencies

so that the fuzzer may be attached to it, allowing it to analyze that specific

component by introducing malicious inputs. It is the library with the fewest

dependencies because many libraries have more than a hundred dependencies

outside of the CMC (towards the NSS and EQSW).

• Number of variables: the library needed to have the fewest variables possi-

ble in order to reduce entropy when generating the inputs, which would enable

the fuzzer to generate more potentially harmful inputs without wasting time or

processing power on producing multiple incorrect inputs that might have been

rejected earlier due to inadequate syntax. So, managing the entropy of the

inputs’ randomness was simpler when there were as few variables as possible.
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• Complexity of the library: in order to avoid wasting a lot of computa-

tional power and time, a library that would not perform high computation

performance cost was chosen after the complexity of the library was taken

into account.

In the end, an OPF library within the OPS area was selected as the component;

however, the purpose and name of the component cannot be disclosed, so the library

will now be referred to as "FuzzedComponent" for the duration of this work.

4.1.3 Cutting FuzzedComponent

As a result of the FuzzedComponent’s multiple dependencies on the EQSW and the

NSS, it was necessary to disconnect it from both of them and take into considera-

tion all of these dependencies. This was because, at a later time, these dependencies

would be useful to create all of the wrapper functions that would mimic the depen-

dencies and provide the program with a "normal" behavior.

Since the component could not be used in the Solaris environment (for clearance

reasons), the only way to remove it from the dependencies without resorting to a

script was to identify every one of them using the program Understand. This allowed

for the identification of connections between components that could be severed and

replaced with new parts that could mimic the behavior of the "cut" part. This made

it possible to create new wrapper functions that would perform the same functions

as the call to the dependency. This method made it easy to identify the changes

that needed to be made inside the component in addition to isolating the OPF.

After this, it was possible to move the selected FuzzedComponent to the VirtualBox

environment, thus allowing us to modify it and continue with the experiment.
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4.1.4 Wrapper Functions

The primary challenge, once the code has been chosen and the appropriate compo-

nent has been found, lies in going further into the analysis of the primary dependen-

cies and replacing these connections with variables or wrapper functions that can

accomplish the same tasks without referencing the original component. This was the

most crucial step since the component needs an entry point to receive data from the

fuzzer, which will generate new inputs that have to be injected into it. Since the NSS

and EQSW components in this case served as the entry points, all of the dependen-

cies were changed with a wrapper function after the FuzzedComponent was isolated.

The term "wrapper functions" refers to functions that can actually receive a

crafted data object containing the parameters that will be set inside the compo-

nent. This allows the FuzzedComponent to function as normally as possible be-

cause it "believes" that it has received real data, even though it is actually a crafted

packet created by the fuzzer. Thus, the following is the methodology for developing

"wrapper functions" that are used to inject input data into the fuzzed software:

1. To  begin with, you must accurately stab every external dependency from the

library you wish to fuzz. It’s crucial to accurately identify every variable that

might be exploited as a potential entry point to inject the input after carrying

out the stabbing.

2. After having identified the variables, we can create a package used to store the

data and its structure, which will be then referenced by the fuzzed library. To

achieve this, we should create a file called "fuzzed_data.ads" that defines a

package called "Fuzzed_Data", which contains the specification (so the vari-

ables) to create a record called "Input_Data_Record", that will simulate the

data that has to be passed to the target. The package defines the type of vari-
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ables and which ones are necessary to create a record, which will store the fu-

ture inserted inputs; while the file "fuzzed_data.ads" is used to construct and

build the package with the right values, by passing the "Input_Data_Record"

as an argument for a new package called "Input_Data_File", which redefined

the type "Sequential_Io". An example of this code is shown in 4.1.

3. Thanks to the package, is it now possible to also create an object of type

"Input_Data_Record", which will contain some ad-hoc values inserted by the

user. The file "generate_input_data_file.adb" will generate an object which

will be used to initialize the values contained in "Input_Data_Record".

4. In conclusion, the last thing needed to do is to correctly bind these files from

the libraries that need these variables. Inside there, all the variables that in

reality should need input from the outside or from libraries that had to be

deleted because of the stabbing, can be simply initialized by referring to the

specific value stored in "Input_Data_Record".

5. Lastly, it is possible to correctly generate the record and pass the inputs to

the right components in the main file, as shown in 4.2.

It was possible to replicate the receiving of the data object that the fuzzer would

produce by feeding it with an object file as input for the FuzzedComponent. Because

the FuzzedComponent required data from the NSS and EQSW, it would not have

been possible for A F L  to successfully create a malicious packet through random

permutation of the inputs and inject it into the software (or at least it was not

possible in short periods of time).
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Listing 4.1: fuzzed_data.ads

w i t h S e q u e n t i a l _ I o ;

package F u z z e d _ D a t a i s

t y p e I n p u t _ D a t a _ R e c o r d i s

r e c o r d

- -  l i s t  h e r e a s f i e l d s  r e c o r d a l l  t h e i n p u t

- -  p a r a m e t e r s o f  t h e p r o c e d u r e u n d e r t e s t ;

I n p u t 1 :  B o o l e a n ; - -  o r i g i n a l l y  f rom L i b r a r y 1

I n p u t 2 :  B o o l e a n ; - -  f rom L i b r a r y 2

I n p u t 3 :  So m eTyp e . Su b type ; - -  f rom L i b r a r y 3

- -  . . .  and s o on

end r e c o r d ;

- -  T h i s  i s  t h e c o n t a i n e r o f  t h e d a t a w h i c h w i l l  be r e a d

- -  by t h e p r o c e d u r e u n d e r t e s t

Th e_ D ata :  I n p u t _ D a t a _ R e c o r d ;

package I n p u t _ D a t a _ F i l e i s  new S e q u e n t i a l _ I o

( E l e m e n t _ Ty p e => I n p u t _ D a t a _ R e c o r d ) ;

end F u z z e d _ D a t a ;
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Listing 4.2: main.ads

w i t h F u z z e d _ D a t a ;

w i t h T e x t _ I o ;

w i t h G e n e r a t e _ I n p u t _ D a t a _ F i l e ;

p r o c e d u r e Main i s

D a t a _ F i l e :  F u z z e d _ D a t a . I n p u t _ D a t a _ F i l e . F i l e _ T y p e ;

D a t a _ R e c o r d :  F u z z e d _ D a t a . I n p u t _ D a t a _ R e c o r d ;

b e g i n

- -  p r o c e d u r e t o c r e a t e t h e f u z z e d _ d a t a o b j e c t

- -  ( s h o u l d be u sed o n l y once t o j u s t  c r e a t e t h e o b j e c t )

G e n e r a t e _ I n p u t _ D a t a _ F i l e ;

- -  Open t h e f i l e

F u z z e d _ D a t a . I n p u t _ D a t a _ F i l e . O p e n

( F i l e  =>

Mode =>

Name =>

Form =>

D a t a _ F i l e ,

F u z z e d _ D a t a . I n p u t _ D a t a _ F i l e . I n _ F i l e ,

" p r o v a " ,

" " ) ;

- -  Read The F i r s t  ( O n l y )  r e c o r d

F u z z e d _ D a t a . I n p u t _ D a t a _ F i l e . R e a d

( F i l e  => D a t a _ F i l e ,  I t e m => D a t a _ R e c o r d ) ;

- -  Copy t h e r e c o r d i n  t h e one w h i c h i s  used by

- -  t h e s t u b b e d f u n c t i o n

F u z z e d _ D a t a . T h e _ D a t a : =  D a t a _ R e c o r d ;

end M ai n ;
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4.1.5 Scripts

It is necessary to make some decisions about the environment’s parameters for the

fuzz tool as well as any future dependencies or tools that may be needed (such as

the compiler) in order to execute the fuzzer for the code. Some bash-programmed

scripts were utilized for this project, allowing the virtual machine to have all of its

primary functions implemented immediately. As a result, the environment was able

to be made extremely modular. This is because altering certain variables inside the

scripts files, rather than modifying other configuration files, was all that needed to

be changed for fuzzer optimization. It was also necessary to change the files with

the appropriate extension because there were other issues with the file extensions

that were being used in the original environment (Solaris).

As a result, there were two main types of scripts that were required for either

setting the operating system’s functionalities or for fuzzing. These main categories

are:

• Wo r k  Scripts: these scripts are the ones that are necessary in case of having

older extensions for Ada files, such as ".1.ada" instead of ".ads". Since the

former case does not work for fuzzing (because the fuzzer uses the new version

of Ada), the script will change the extensions correctly, this can also be done

for the body. Moreover, another script allows to change the name of the files

that are constructed with a syntax such as "name.othername.1.ads". Since

this could create a problem, it is mandatory to first change the extensions

and then run this script. It is important to remember that this procedure

is mandatory only in the case scenario that the avionic software is written

with older configurations of Ada, and thus could create some problems for the

fuzzer which uses a relatively new version of Ada. In case the system presents

a more recent version of Ada, this step can be completely skipped.
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• Fuzzing Scripts: contains all the scripts that are used to add a decent level

of "modularity" to the fuzzing. In this way, it is possible to simplify the

execution of all the necessary commands.

Because there are scripts that contain all the variables that were used to config-

ure the A F L  fuzzer, the "Fuzzin scripts" category plays a more significant role

than the former, which can be mostly meaningless depending on the circumstance.

Therefore, among all the scripts, the main one that was the most important was

the "setup_fuzz.sh", which contains all the variables and all the functions used to

correctly compile and launch the program, which is shown in 4.3.

Listing 4.3: setup_fuzz.sh

A F L _ H O ME =/ h ome / u ser / A F L p l u s p l u s

A F L _ F U ZZ = $ A F L _ H O M E / afl - f uzz

# w i l l  s w i t c h t o a d i f f e r e n t  s c h e d u l e eve r y t i m e a

# c y c l e i s  f i n i s h e d

e x p o r t AFL_CYCLE_SC HED ULES =1

# t o d i s a b l e  t h e / p r o c / s y s / k e r n e l / c o r e _ p a t t e r n c h e c k

e x p o r t AFL_I_DONT_CARE_ABOUT_MISSING_CRASHES =1

# d i s a b l e t h e U I

e x p o r t AFL_NO_UI =1

# a f l - f u z z  w i l l  t e r m i n a t e when a l l  e x i s t i n g  p a t h s have been

# f u z z e d and t h e r e were no new f i n d s  f o r  a w h i l e

e x p o r t AFL_EXIT_WHEN_DONE =1

# s e t t h e main GPR f i l e  f rom w h i c h i t  w i l l  r e f e r

e x p o r t G P R _ P R O J E C T = fu zz

e x p o r t E X E C _ P A T H = t e st
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e x p o r t T E S T _ P A T H = f u z z i n g

# do t h e t e s t s  by p a s s i n g t h e a l r e a d y c r e a t e d i n p u t s

# and p e r f o r m t h e f u z z i n g  u s i n g 4 p r o c e s s

f u z z _ t e s t _ p r o g r a m ( ) {

$AFL_FUZZ - D  - x  . / $ T E S T _ P A T H / d i c t i o n a r i e s / $ 1 . d i c t

- i  . / $ T E S T _ P A T H / i n p u t - o  . / $ T E S T _ P A T H / o u t p u t

- L  - 1  -M f u z z e r 0 1 - -  $EXEC_PATH / $1 @@

}

# c o m p i l e t h e program w i t h g p r b u i l d

f u z z _ c o m p i l e _ p r o g r a m s ( ) {

g p r b u i l d - p  - - c o m p i l e r  - s u b s t = A d a , a f l - g c c

- P  $GPR_PROJECT

- - a u t o c o n f = f u z z i n g / f u z z i n g . c g p r

}

# debug t h e program by p a s s i n g t h e same i n p u t t h a t

#made t h e program c r a s h

f u z z _ d e b u g _ p r o g r a m () {

gdb - e x " s e t  a r g s $2 "

- e x ' r u n '  - e x ' b t '  $ E X E C _ P A T H / $ 1 _ t e s t

}

# e x e c t u e s a l l  t h e c r a s h e d f i l e s  on t h e program

# t o s ee t h e e r r o r s

f u z z _ t r i a g e _ p r o g r a m ( ) {
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f o r  f i l e  i n  ` l s  - 1  $ 1 / f u z z e r * / c r a s h e s * / * ` ;  do

i f  [  !  - d  " $ f i l e "  ]  && [  " $ ( basename " $ f i l e " ) "

! = " R E A D M E . tx t " ] ;  t h e n

gdb - q  - e x " s e t  a r g s $ f i l e "

- e x ' s e t  c o n f i r m o f f '

- e x ' r u n '  $EXEC_PATH / $2 - e x ' q u i t '

f i

done

}

There are four main functions in the script that are used to show and test the

findings in addition to compiling and starting the fuzzer. These main tasks consist

of:

• Compile: the primary goal of this function is to use the appropriate compiler

and configurations to compile the application. The following subsection will

go into more detail about this.

• Test: this function has the purpose of performing the test, which in other

words means the execution of the AFL-fuzz tool, thus starting the real fuzz

testing. As input it takes the AFL-fuzz compiler, thus it needs the relative or

absolute path to it (in this case it uses the absolute since AFL-fuzz was not

installed but only cloned from the GitHub repository). After this, it is possible

to provide a dictionary path with the option "-x", which allows the fuzzer to

automatically fetch all the content of the dictionary file. Consequently, there

is the need to provide the input folder path, where all the initial cases that

will be used as input to generate the starting corpus are stored, together with

the output path folder, where all the outputs of eventual crashes found will

be stored. Finally, there will be instructions regarding the execution of the
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eventual "Master" and "Slave" process. This means that a Master process

will start fuzzing the program, and the eventual Slave processes will explore

different paths besides the ones that are already explored by the Master. Fur-

ther information regarding this procedure will be further explained in a later

subsection.

• Debug: this is a simple function that uses the same input that caused the

program to crash to run G D B  (GNU Debugger) on a specified executable file

and gather extra debugging information.

• Triage: a function that runs through all of the program’s crashed files to

identify the problems that caused the crash and notify the fuzzer.

4.1.6 Compiler Specifications

As was previously mentioned, a few configurations need to be made before the appli-

cation can be compiled using gprbuild. It is essential to use AFL-gcc to appropriately

compile the program since the output object cannot be fuzzed since by default it is

not correctly instrumented. This is because the code must be instrumented before

applying the fuzz test. Furthermore, we need to explicitly tell GPRbuild that the

project we really want to compile is an Ada project by using the line "–compiler-

subst=Ada, afl-gcc," where afl-gcc is the primary compiler that will be used in

this case. There is also the possibility of using previous configurations of the compi-

lation process by using the "autoconf" parameter, but this will not be used for this

experiment.

4.1.7 Parallel Fuzzing

Since each instance of afl-fuzz may operate on a single CPU core, it is possible to

run many instances of the fuzzer for the same application simultaneously using the



4.1 IMPLEMENTATION 67

n-core resource, which will allow for faster results. When doing fuzz testing on soft-

ware, the parallel fuzzing approach is a perfect choice because it uses the hardware

to its fullest potential and rarely has performance issues.

Thanks to parallelization, it is possible to target several targets at the same time,

but since this is not our case, we will concentrate on single-target parallelization. In

order to do this, it is important to first create an output directory that will contain

all the outputs of all the instances of AFL-fuzz. After that, when launching the

instances at the same time, they must have a naming scheme for each instance (e.g.,

"fuzzer01"), where the first instance will assume the role of "master" (-M), while

all the following instances will be "slaves" (-S). The main difference between the

two modes is basically that the master will execute more deterministic checks, while

the slaves will have a more random approach. In the case that the deterministic

approach is not wanted, it is possible to use all the instances as slaves in order to

have a more random approach. The primary difference is that each instance will

routinely rescan the output folder, which is the top-level sync directory, to search for

test cases found by other fuzzers. Each instance will run with a subfolder holding

all of the outputs, just like a regular output folder. It will incorporate these into its

own fuzzing if it determines that they are suficiently important.

Another option is to employ a multi-system technique, which enables us to use

many machines to fuzz the same software, thus using additional cores. However,

the multi-system parallelization won’t be discussed because there aren’t enough

resources to implement this strategy.
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4.1.8 Catching Errors with Exception

Since fuzz testing basically has the purpose of intercepting all the crashes that hap-

pen after the injection of a crafted input, it is important that the programs generate

this crash by using exceptions, which allows us to catch and further understand

what is the error and how it was generated.

Therefore, to catch the error, a simple top-level exception handler was used based

on the work of [36], which is shown in 4.4.

Listing 4.4: setup_fuzz.sh

# The e x c e p t i o n i s  needed t o c a t c h t h e r i s e  ,

# t h i s  s h o u l d be p u t i n  t h e main f i l e

# You can a l s o  f i l t e r  unneeded e x c e p t i o n s

e x c e p t i o n

when O c c u r e n c e :  o t h e r s =>

d e c l a r e

T e x t :  c o n s t a n t S t r i n g  : =

A d a . E x c e p t i o n s . E x c e p t i o n _ I n f o r m a t i o n ( O c c u r e n c e ) ;

b e g i n

P u t _ L i n e ( " e x c e p t i o n o c c u r r e d [ "

& A d a . E x c e p t i o n s . E x c e p t i o n _ N a m e ( O c c u r e n c e )

& " ]  [ "  & A d a . E x c e p t i o n s . E x c e p t i o n _ M e s s a g e ( O c c u r e n c e )

& " ]  [ "  & A d a . E x c e p t i o n s . E x c e p t i o n _ I n f o r m a t i o n ( O c c u r e n c e )

& " ] " ) ;

G N A T . E x c e p t i o n _ A c t i o n s . C o r e _ D u m p ( O c c u r e n c e ) ;

e n d ;

For the exception to work properly with the environment, it is recommended to
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use the following libraries, which are used to catch the exception and to create

the core dump: "Ada.Exceptions" and "GNAT.Exception_Actions". Furthermore,

additional exception handlers were put in the dependencies in order to propagate

possible problems.

4.1.9 Test  Cases

The initial input must be properly constructed for the program to function properly;

otherwise, the fuzzer won’t be able to generate further cases because the first case

has already crashed. Since the executable needs to receive a test case that functions

properly and can produce accurate results, it is necessary to create one. Two files

can be created to accomplish this:

• F i le  for Input Data Record: this file contains a package containing a

defined type, which is a record, that contains a list as a field record for all the

input parameters of the procedure under test (in this case FuzzedComponent).

At the beginning, each field will have a defined datatype and value, where the

value will be given when generating the file. For example, in the record, there

will be a variable called "Object_Available" of type "Boolean", which will

replace the variable in the dependencies connected to the FuzzedComponent

where the real value would be passed through other means, but since the

component was isolated from all the dependencies, the value will be passed in

this way.

• F i le  for generating Input Data File: this file contains a procedure that

defines the Record Type defined in the previous file, and here the input file

will be created with defined values for all the parameters contained in the

record. It is important to note that the defined values are created only in

the first creation of the file (so for the initial input case, the so-called starting
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corpus), while in all the later interactions of the fuzzer, all these values will be

generated by the fuzzer.

Finally, by using the appropriate procedure, we can generate the first file (which will

serve as the initial input case). Afterward, we can incorporate the procedure into

the main file to open the input file and accurately parse its contents, which will then

be passed to the appropriate dependencies and used as the value for the variables

that were initially stabbed. This will allow the input file to mimic the proper data

flow between the dependencies and the FuzzedComponent.

4.2 Verification

This section will describe the process of applying the fuzzer to the program. It will

provide an explanation of the specific parameters that were used, along with a rough

idea of the time required to confirm the existence of errors and problems. Moreover,

there will be several graphs that will show the fuzzer’s performances at runtime,

together with additional information regarding the crashes found and the behavior

of the fuzzer.

4.2.1 Using A F L + +

After all the preparations for the fuzz testing are done, it is possible to start the real

fuzz testing by executing the scripts and thus starting the process. First of all, the

program must be compiled with gprbuild, by using afl-gcc as a compiler in order to

instrument the code so that the executable can provide code coverage information.

This is mandatory otherwise the fuzzer won’t be able to work with the provided

executable.

After that, it is possible to start AFL-fuzz with the obtained executable from the



4.2 V E R I F I C AT I O N 71

previous compilation, passing in input all the test cases, which in this case will be

created by us by compiling the relevant file with the procedure for the file creation.

By launching afl-fuzz, usually a UI of the fuzzing will be displayed, such as shown in

Image 4.1. Here it will be shown several pieces of information, which span from the

run-time of the fuzzer to the number of crashes found until that moment. Since the

Figure 4.1: A F L  standard GUI [26]

fuzzer is automated, the only thing left to do is to leave the fuzzer on its own and

wait for possible findings. In the UI there are several information shown, which can

be quite important to understand what is happening at the moment and to further

understand how to possibly improve the fuzz session. Briefly, these information are:

• Process timing: in this section, there is the main information about the

runtime of the fuzzer, which means the duration and how much time has

passed since the last crash was found. There is also information about the

possible findings of new paths and hangs, which allows us to have a clear idea

about whether the fuzzer is correctly working or not. Usually, fuzzy testing

can run for more than one day, and it also can arrive for months of runtime,

but it is important to keep this into account if the fuzzer is finding new paths,

otherwise it is considered a waste of time.
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• Overall  results: this section provides more data regarding the main results

achieved by the fuzzer, meaning the number of cycles performed, how many

paths were found, and, most importantly, the number of crashes achieved.

• Map coverage: here there is information about the coverage observed by

the instrumentation embedded in the target binary. With the map density

is possible to observe how many branches were already searched, by using a

bitmap proportion to indicate this measure.

• Stage progress: gives more in-depth information about what the fuzzer is

currently doing, which can be several types of operations (e.g., trim, bitflip,

artih, etc.). The fuzzer will also warn you in case that the target is really slow.

• Findings in-depth : this shows the exact number and data regarding the

main findings.

However, since the GUI puts quite a toll on the performance of the machine, it was

disabled for this experiment, but it is important to understand all the information

that A F L  can provide. To  further customize and thus improve the afl-fuzz, there

is also the possibility to use environmental variables to find several functions that

could be useful. Some of these variables were used inside the script for running the

fuzzer and can be directly changed there.

4.3 Results and Discussion

This section will provide the most important graphs of the most successful tests

conducted in order to illustrate the main findings from the experiment. To  give

a broad perspective of how to improve the work, more information about the ex-

periment will be given together with an in-depth discussion of the most important

choices made throughout the work’s execution. Finally, a comprehensive analysis of
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the outcomes will be shown, aimed at summarizing the principal discoveries and the

successes achieved from the study. This will be helpful for any future projects so

that the work can be expanded even further and more settings may be optimized.

4.3.1 A F L  results

A  summary of the main results obtained at the end of the experiment is shown in

Figure 4.2. The figure illustrates the main information regarding the achievements

of the fuzzer, ranging from the number of crashes found to the total runtime of the

fuzz testing.

Figure 4.2: A F L  Summary

The fuzzer was left active for several hours, waiting for it to find possible vul-

nerabilities thus creating a dump of the crash and further completing the queue of

test cases generated by A F L .  This resulted in a total run-time of more than three

days (roughly 3 days and 14 hours), performing more than four million execution of

the fuzz testing (4 million and 666 thousand executions circa), shared between the

four main fuzzers alive (1 master and 3 slaves).

We achieved an average speed of 14 executions for seconds, which could be influ-

enced by the computer performances and the several fuzzer actives, nonetheless, it

was possible for each fuzzer to complete several cycles of the code and to find all the
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possible paths. The most important decision for the experiment was to decide when

to stop the fuzzer, otherwise, it would continue endlessly despite the nonpresence

of more things to discover. Therefore, it was decided to stop it after at least 24

hours of inactivity, which in this case corresponds to not finding any new crashes or

possible paths.

In the end, the fuzzer found 4 crashes in total, which will be discussed later in the

chapter. For further details about each fuzzer that was active for the experiment, we

can see Figure 4.3. Here it is shown more details about the behavior of each fuzzer

during runtime, in order to give an example of how it behaves while searching for

possible crashes. Thanks to these results, it was possible to find some problems that

Figure 4.3: A F L  Fuzz Details
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could give a crucial insight into the behavior of an avionic software when performing

under stress test caused by a fuzzer. This further confirms some hypotheses on the

behavior of a fuzzer towards an Ada program and gives an idea of the expected

performances.

4.3.2 Graphical Analysis

These graphs were obtained by using afl-plot and it contains the main graphs re-

garding the performance of each fuzzer during the fuzz testing. There are 4 plots

in total, and each one of them indicates the behavior of the fuzzer by giving details

such as the edges discovered, the execution speed of the fuzzer, and the frequencies

with which each fuzzer generated items and found possible crashes.

The plots are shown in Figure 4.4, 4.5, 4.6, and 4.7. It is noteworthy to mention

that certain graphs might show sudden highs and lows at the end of the graph (e.g.,

4.5b). It is unclear whether this is because the graph generator (afl-plot) made

an error when it was being executed, or if the VirtualBox environment exhibited

abnormal behavior that could have impacted the fuzzer’s performance during run-

time. More likely, the sudden spike was caused by the forced program interruption

at the end of the experiment (essentially shutting down the fuzzer), which could

explain why the spike is only present in the slave processes. Therefore, it might

be beneficial to investigate graph generation in the future. The plots in this work

are presented merely to provide a general notion of how the performances should

appear; nevertheless, this may vary depending on the platforms and targets.

4.3.3 Discussion

Few system crashes were discovered as a result of the fuzz testing, which made it

possible to examine the component and system and determine whether or not a fuzz
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(a) Execution Speed

(b) Code coverage and pending items

(c) Crashes and Hangs

Figure 4.4: Plot of Master Process. a) Corresponds to the number of tests executed

over time b) The plot shows the performance of the Master process during runtime

while showing how many execution paths were found. The information shown is:

the corpus count (set of inputs for a fuzz target, showing the number of test cases

that will be used as a template to generate new inputs), the current fuzz item (shows

the number of execution paths found inside the set of test cases, therefore the newly

generated inputs), the pending items, and favored items (inputs that still did not

get through the fuzzing, favored have more priority for the fuzzer), and cycles that

are done. c) Crashes and hangs found during the fuzzing, where levels represent

how much the inputs have derived from the initial test cases.
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(a) Execution Speed

(b) Code coverage and pending items

(c) Crashes and Hangs

Figure 4.5: Plot of Slave Process 1: This plot shows the performance of the first

slave process, which was initiated right after the execution of the Master process.
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(a) Execution Speed

(b) Code coverage and pending items

(c) Crashes and Hangs

Figure 4.6: Plot of Slave Process 2: This plot shows the performance of the second

slave process, which was initiated right after the execution of the first slave process.
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(a) Execution Speed

(b) Code coverage and pending items

(c) Crashes and Hangs

Figure 4.7: Plot of Slave Process 3: This plot shows the performance of the first slave

process, which was initiated right after the execution of the second slave process.
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testing strategy may be effective. Very few system crashes were discovered in over

three days of run-time and over four million executions; these crashes cannot be

mentioned in this work due to security concerns.

However, the fuzzer only found problems that were mostly related to the input

and how it was parsed. The primary reason for this is that Ada would not accept

these kinds of parameters since the file created by the fuzzer did not adhere to the

correct types specified by the record. This further confirms its strength against these

types of attacks, as this behavior was quite expected given Ada’s strong typing par-

ticularity.

Thus, the primary findings are not only that the open-source software A F L  fuzz

can be applied to avionic software successfully, but it can also search through all of

the code’s paths and identify potential vulnerabilities. This demonstrates that em-

bedded avionic software can benefit from a fuzz testing approach that can identify

potential issues while taking into account the time-consuming process of building

the proper framework. In this particular case, improper input and its parsing were

the main causes of the crashes but we were able to determine that the strong type

of Ada prevented the program from crashing when given malicious random values

as inputs. While it’s possible that the fuzzer may have found more issues with more

time, it was highly unlikely considering that there hadn’t been any new findings for

more than a day and that the coverage was nearly finished.

In the end, it is possible to confirm that, with some work, AFL-fuzz can be

applied to the avionic system in general, and that Ada can provide an additional

layer of protection against the kinds of attacks generated by the fuzzer. Even though

they weren’t considered for this work, there may be additional components (like
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sanitizers) that might be utilized in conjunction with the fuzzer and should be

taken into account in the future. Furthermore, it shows the level of security that

the software can offer in the event of a potential brute force attack, which can result

in undesired behavior or the revealing of potentially sensitive information, although

the real environment that protects the software could be considered secure enough.



5 Conclusion

5.1 Discussion

The basic principles and core notion of a potential approach to applying fuzz testing

to embedded avionic software using open-source software have been shown in this

work. Several tests were conducted on an actual embedded software component that

is a part of the complex avionic embedded software of an Airbus NH90 helicopter

to accomplish this goal.

Understanding the primary features and configurations that permit the fuzzing

of a software component is what allowed the experiment to be conducted, and the

guidelines that emerged from the work done on the component were important. As a

result, it was feasible to construct a virtual workspace that could function similarly

to an actual avionic system, enabling the creation of a fully customizable sandbox

that would enable additional component testing. In order to determine whether a

fuzz testing approach might be used to address the initial research questions, it was

necessary to execute the experiment and see how the fuzzer and the tested system

behaved. Moreover, it allowed us to come up with additional theories for future

studies.

In the end, it was possible to demonstrate that it is possible to apply a fuzz
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testing approach when it comes to embedded avionic software, but it will need some

work to ensure that the software will continue to function in this environment and

to construct a viable test environment. Then, to demonstrate that testing could also

be accomplished with non-proprietary software and to enable future researchers and

workers to use this tool and maybe fine-tune it for their job, a potential configura-

tion of an open-source fuzzing testing tool ( A F L + + )  was shown. Depending on the

code that is fuzzed and the language used, different performances and outcomes may

occur since these factors may allow for vulnerabilities that the fuzzer is more likely

to find. Consequently, the goal of this work is to at least offer some suggestions

about the fundamental specifications needed to complete the fuzzing for embedded

avionic software.

Several tools and libraries are required to fulfill the main requirements, which

means that following best practices is necessary when performing fuzz testing. In

addition to A F L + + ,  which is the best open-source fuzzing testing tool in this sit-

uation, the appropriate compilers must also be used to produce a fuzzable binary,

which in this case is also provided by A F L .  Furthermore, the primary prerequisites

of the virtual environment were demonstrated to accomplish the fuzzing, as A F L  is

limited to operating in a Linux environment. Additionally, there is an emphasis on

modifying the code in advance of the fuzzing testing, which is necessary, or else it

would be tough to apply this approach.

5.2 Future works

There may be various changes and improvements that would be useful and intrigu-

ing for study since this work might serve as a foundation for future studies whose

goal is to apply the fuzzing testing to an embedded avionic program or a general

embedded software.
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Creating its genetic algorithm code, which A F L  uses to create the data that will

be injected into the binary, is one way to do this. Since each system would require

a different set of inputs, it can be helpful to investigate whether a new generator for

test cases can be made to test the software. Moreover, using sanitizers or more re-

fined dictionaries would be a simple way to improve this experiment and enable the

fuzzer to identify potential problems and vulnerabilities that it would not typically

detect on its own.

Lastly, it would be interesting to observe the effects of applying fuzz testing to

a larger portion of the software in terms of time and memory performance. This

could allow for the discovery of more vulnerabilities, but it would need more time.
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