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ABSTRACT

Natural Language Processing (NLP) is a cross-disciplinary field combining elements
of computer science, artificial intelligence, and linguistics, with the objective of de-
veloping means for computational analysis, understanding or generation of human
language. The primary aim of this thesis is to advance natural language processing
in Finnish by providing more resources and investigating the most effective machine
learning based practices for their use. The thesis focuses on NLP topics related to
understanding the structure and meaning of written language, mainly concentrating
on structural analysis (syntactic parsing) as well as exploring the semantic equiv-
alence of statements that vary in their surface realization (paraphrase modelling).
While the new resources presented in the thesis are developed for Finnish, most of
the methodological contributions are language-agnostic, and the accompanying pa-
pers demonstrate the application and evaluation of these methods across multiple
languages.

The first set of contributions of this thesis revolve around the development of a
state-of-the-art Finnish dependency parsing pipeline. Firstly, the necessary Finnish
training data was converted to the Universal Dependencies scheme, integrating Fin-
nish into this important treebank collection and establishing the foundations for
Finnish UD parsing. Secondly, a novel word lemmatization method based on deep
neural networks is introduced and assessed across a diverse set of over 50 languages.
And finally, the overall dependency parsing pipeline is evaluated on a large number
of languages, securing top ranks in two competitive shared tasks focused on multi-
lingual dependency parsing. The overall outcome of this line of research is a parsing
pipeline reaching state-of-the-art accuracy in Finnish dependency parsing, the pars-
ing numbers obtained with the latest pre-trained language models approaching (at
least near) human-level performance.

The achievement of large language models in the area of dependency parsing —
as well as in many other structured prediction tasks— brings up the hope of the large
pre-trained language models genuinely comprehending language, rather than merely
relying on simple surface cues. However, datasets designed to measure semantic
comprehension in Finnish have been non-existent, or very scarce at the best. To
address this limitation, and to reflect the general change of emphasis in the field
towards task more semantic in nature, the second part of the thesis shifts its focus to
language understanding through an exploration of paraphrase modelling. The second
contribution of the thesis is the creation of a novel, large-scale, manually annotated
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corpus of Finnish paraphrases. A unique aspect of this corpus is that its examples
have been manually extracted from two related text documents, with the objective
of obtaining non-trivial paraphrase pairs valuable for training and evaluating various
language understanding models on paraphrasing. We show that manual paraphrase
extraction can yield a corpus featuring pairs that are both notably longer and less
lexically overlapping than those produced through automated candidate selection,
the current prevailing practice in paraphrase corpus construction. Another distinctive
feature in the corpus is that the paraphrases are identified and distributed within their
document context, allowing for richer modelling and novel tasks to be defined.

KEYWORDS: NLP, Finnish, syntactic parsing, paraphrase modelling, machine learn-
ing
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TIIVISTELMÄ

Kieliteknologia on poikkitieteellinen ala, joka yhdistää tietojenkäsittelytieteitä,
tekoälyä ja kielitiedettä tavoitteenaan kehittää menetelmiä ihmisen käyttämän kielen
laskennalliseen analysointiin, ymmärtämiseen tai tuottamiseen. Väitöstutkimukses-
sani pyrin edistämään suomen kielelle tarjolla olevia kieliteknologian ratkaisuja tuot-
tamalla uusia suomenkielisiä aineistoresursseja ja tutkimalla koneoppimiseen perus-
tuvia menetelmiä niiden tehokkaaseen hyödyntämiseen. Väitöstutkimukseni keskit-
tyy kirjoitetun kielen rakenteen ja merkityksen ymmärtämiseen, erityisesti rakenteel-
liseen analyysiin (syntaktinen jäsentäminen) ja sanamuodoiltaan erilaisten lausumien
semanttisen vastaavuuden tutkimiseen (parafraasien mallintaminen). Vaikka väitös-
tutkimukseni puitteissa tuotetut aineistoresurssit on kehitetty nimenomaan suomen
kieltä varten, useimmat esitellyistä menetelmistä ja työkaluista ovat kieliriippumatto-
mia. Väitöstutkimukseeni sisältyvissä tutkimusartikkeleissa näitä menetelmiä onkin
usein sovellettu ja arvioitu monilla eri kielillä.

Väitöstutkimukseni ensimmäinen osa-alue keskittyy koneoppimiseen perustuvan
syntaktisen jäsentimen kehittämiseen ja sen arviointiin suomenkielisellä testiaineis-
tolla. Kehittäminen alkaa koneoppimisen kannalta olennaisen koulutusaineiston, pu-
upankin, muuntamisella Universal Dependencies (UD) -annotointijärjestelmän mu-
kaiseksi. Tämän muunnoksen myötä suomenkielinen puupankki integroitiin osaksi
kansainvälisesti tunnettua, monikielistä puupankkikokoelmaa, mikä loi perustan suo-
menkieliselle UD-jäsentämiselle. Seuraavaksi jäsentämiseen liittyvä tutkimukseni
keskittyy uuden, syviin neuroverkkoihin perustuvan sanojen perusmuotoistamisme-
netelmän kehittämiseen ja arviointiin. Menetelmän osoitetaan olevan kilpailukykyi-
nen yli 50 eri kielellä. Lopuksi kehitettyä jäsennintä, joka sisältää tekstin segmen-
toinnin, perusmuotoistamisen, morfologisen analyysin sekä sanojen riippuvuussuhtei-
den analysoinnin, arvioidaan useilla kielillä kahden monikieliseen jäsentämiseen
keskittyvän shared task -kilpailun kontekstissa. Väitöstutkimukseni syntaktiseen
jäsentämiseen keskittyvä lopputulema on koneopittu, suurten kielimallien pohjalta
toteutettu jäsennin, jonka on tarkkuuden puolesta osoitettu yltävän (ainakin lähes)
ihmistasoiseen suorituskykyyn suomenkielisellä testiaineistolla.

Suurten kielimallien tarkkuutta parantavat vaikutukset syntaktisessa jäsentämi-
sessä — kuten myös monissa muissa rakenteellisissa ennustustehtävissä — herät-
tävät toiveita siitä, että esikoulutetut kielimallit todella ymmärtävät tekstin merki-
tyksen pelkkien pintapuolisten piirteiden sijaan. Tämän mittaaminen on kuitenkin
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ollut haastavaa, sillä suomen kielen semanttisen ymmärtämisen arviointiin suun-
niteltuja korpuksia ei ole juurikaan ollut saatavilla. Tämän puutteen korjaamiseksi
väitöstutkimukseni toinen osa-alue keskittyy rakenteen sijaan tekstin merkityksen
ymmärtämiseen parafraasimallinnuksen kautta. Tämän osa-alueen päätavoitteena on
luoda uudenlainen, käsin annotoitu suomenkielinen korpus parafraasien mallintamista
varten. Korpuksen ainutlaatuinen piirre on, että se sisältää esimerkkejä, jotka on
poimittu käsin kahdesta samankaltaisesta tekstidokumentista, esimerkiksi eri uutis-
artikkeleista, jotka kuvaavat samaa tapahtumaa. Yleinen parafraasikorpuksien koos-
tamismenetelmä on ollut parafraasiparien koneellinen tunnistaminen ja käsintarkas-
tus. Meidän manuaalinen menetelmämme pyrkii löytämään haastavia esimerkkejä,
joita on koneellisesti vaikeita tunnistaa, ja jotka ovat arvokkaita parafraasien ym-
märtämismallien kehittämisen ja arvioinnin kannalta. Osoitamme, että käsin tehdyllä
parafraasien poiminnalla voidaan saada aikaan korpus, joka sisältää pidempiä ja pin-
tamuodoltaan vähemmän samankaltaisia pareja kuin aiemmat korpukset. Korpuk-
semme toinen erityispiirre on, että parafraasiparit sisältävät luonnollisen konteks-
tinsa, mikä mahdollistaa monipuolisemman mallintamisen ja uusien koneoppimisteh-
tävien määrittelyn.

ASIASANAT: kieliteknologia, suomi, syntaktinen jäsentäminen, parafraasien mallin-
taminen, koneoppiminen
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1 Introduction

1.1 Natural Language and Human Language Technol-
ogy

A natural way for humans to communicate is through language. While much of the
daily interactions occur verbally, written language is particularly effective for infor-
mation storage and non-real-time communication, the real-time text communication
also increasing its popularity through modern instant messaging platforms. Conse-
quently, in modern societies a significant proportion of information produced daily
is transmitted and stored as digital text, common everyday use including e.g. digital
newspapers and books, user manuals and administrative forms, as well as text mes-
sages, and web pages. However, the mere existence of textual data is insufficient for
knowledge preservation and transmission; transmitting information and knowledge
requires the recipient to understand and “decode” the meaning of the text — a pro-
cess known as reading and comprehending. While each language includes a certain
set of common practices (grammar) to ensure a smooth process of communication,
decoding the intended meaning from human language is not always a straightforward
task, especially if automatic computer processing is involved. With the current vol-
umes of existing textual data, automatic computer processing is crucial for making
information exchange and storage more efficient and accessible.

In Natural Language Processing (NLP), computers are employed to perform
tasks involving human language (Jurafsky and Martin, 2009), ranging from simple
word counting in text editors to more complex tasks requiring a deep understand-
ing of language, for instance machine translation or question answering. This thesis
tackles NLP topics related to understanding the structure and meaning of language,
mainly concentrating on structural analysis of language (syntactic parsing) as well
as understanding the deeper meaning of text beyond its structure, especially study-
ing the equivalence in meaning of statements differing in their surface realization
(paraphrase modelling). On the methodological aspect, the thesis addresses topics
from corpus creation to deep learning models. While the methodological contribu-
tions introduced in the thesis are language-agnostic and therefore not optimized for
any specific language, the motivation of the work is heavily inspired by the Finnish
language. The overall objective of the thesis is to advance natural language pro-
cessing in Finnish by providing more resources and exploring best machine learning
based practices in their utilization. Therefore, the thesis has a general goal of sup-
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porting the local language usage by improving the situation of technologies available
for the language users. In addition, Finnish is a morphologically complex language
from a non-Indo-European language family, serving as an interesting example of a
less-resourced language in the field where a lot of research still focuses on English.
We hope that our work on Finnish can benefit also other languages that share similar
characteristics.

The publications included into the thesis are dated between 2015 to 2023, cov-
ering the main contributions of developing a neural parsing pipeline for Finnish lan-
guage using Universal Dependencies annotation framework, as well as developing a
corpus of Finnish paraphrases and neural models for paraphrase classification. How-
ever, I have contributed to many topically related publications listed separately, in-
cluding but not limited to construction of the Turku Dependency Treebank (Haver-
inen et al., 2014), construction of the Finnish Proposition Bank (Haverinen et al.,
2015), construction of the Finnish Internet Parsebank (Kanerva et al., 2014; Luoto-
lahti et al., 2015), Finnish text generation (Kanerva et al., 2019) and deep language
modelling of Finnish (Virtanen et al., 2019; Rönnqvist et al., 2019; Pyysalo et al.,
2021).

The structure of the thesis is as follows: First, a general background of the the-
sis topics is provided, introducing machine learning approaches, NLP tasks relevant
to this thesis, as well as corpus annotation and annotated datasets. At the end of
Chapter 1, the research objectives are outlined and their relation to the papers is dis-
cussed. Chapters 2 and 3 each address one broader topic of the thesis, the former
concentrating on syntactic parsing while latter focuses on paraphrase modelling. Fi-
nally, Chapter 4 concludes the work, summarizing the key findings, linking them
back to research questions, and suggesting ideas for future work. Instead of includ-
ing dedicated sections for discussion and related work, the thesis integrates these
aspects throughout the text.

1.2 Machine Learning
The methods presented in this thesis are based on machine learning. Machine learn-
ing methods are generally divided into two broad categories, supervised machine
learning and unsupervised machine learning. In supervised machine learning the
model is trained to predict a known output value based on the given input, while in
unsupervised learning the desired output values are not known beforehand and the
model is learning to induce general patterns from the data. While supervised learn-
ing is often seen as a more direct method to obtain targeted goals, the requirements
for the availability of labeled training data poses its own challenges.

Modern neural network models, for example models based on the self-attention
architecture (Vaswani et al., 2017), have shown huge improvements in many NLP
related tasks (Wang et al., 2018, 2019). Such models are typically very large in
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size, i.e. include a large number of parameters, thus also requiring a large amount
of training data. To overcome the need of large amount of costly annotated, labeled
data, many different transfer learning techniques are introduced (Ruder et al., 2019).
In transfer learning, the model is first trained to solve a task, and the knowledge
obtained during that training is later transferred to another task. In this setting, the
hope is to utilize knowledge from a related task in order to solve an objective where
you may not have an excessive amount of training data. In NLP, a common way to
apply transfer learning is through pre-training, where the model parameters are first
trained with a large amount of unlabeled data to obtain a general representation of a
language, and later on the pre-trained model is fine-tuned into the specific task with
smaller amount of labeled training data by straightforwardly continuing the training
from the pre-trained parameters with new training data and task specific training
objective.

Pre-training can be based on any training objective beneficial for language under-
standing or the task in question, the most popular methods lately resorting to induc-
ing meaning of words or sentences from unlabeled data using language modelling
objective (Ruder et al., 2019). In language modelling, a supervised training objec-
tive can be used with unlabeled textual data, by simply predicting a masked word
based on the observed context. The method thus only requires a large amount of raw
text to learn how the language is formed from individual words, but no additional
annotation is needed. A common approach to transfer learning using the language
modelling objective is pre-trained word embeddings. Word embeddings are dense,
continuous representations of words induced in such a manner where words with
similar meanings or syntactic roles receive a representation similar to each other in
mathematical terms. A common approach for inducing word embeddings is based
on the distributional hypothesis, where the meaning of a word is characterized by the
context it appears in (Harris, 1954; Firth, 1957), thus similar words appearing in sim-
ilar contexts. The most common methods for inducing word embeddings based on
the distributional hypothesis include word2vec (Mikolov et al., 2013), GloVe (Pen-
nington et al., 2014), and fastext (Bojanowski et al., 2017) among others. While word
embeddings are context independent, where each unique word receives exactly one
static embedding irrespective of the context and the different meanings the word may
have, contextualized language models induce a context dependent representation of
text. In contextual representation of text the representation of a word depends on
the actual context where the word appears, thus producing a different representation
for the word bank in the contexts bank account and river bank. Popular methods for
contextualized representations include neural language models such as ELMo (Pe-
ters et al., 2018), ULMFit (Howard and Ruder, 2018), BERT (Devlin et al., 2019),
GPT (Radford et al., 2019), and ELECTRA (Clark et al., 2020).

Lately, the de-facto standard for training a supervised model for an NLP task
has involved using pre-trained, contextualized language models, which are initially
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pre-trained on a large amount of raw text and later fine-tuned to the specific task.
In many benchmarks, such combination is shown to produce human parity or even
super-human performance (Wang et al., 2019). Very recently, instruction fine-tuned
generative models have had a substantial impact on the NLP field. Here, generative
language models are aligned with user intent, i.e. to follow instruction given in the
user’s input prompt (Ouyang et al., 2022). Such prompt-based models, e.g. GPT-
4 (OpenAI, 2023), have shown impressive generalization capabilities on tasks not
directly present in their training data. While such models are largely out of scope of
this thesis, in Chapter 4 we briefly discuss the future of the thesis topics in relation
to these models.

1.3 NLP Tasks Relevant to the Thesis

This section provides an overview of the NLP tasks relevant to the thesis. Many
NLP applications are built as pipelines, where some degree of pre-processing is re-
quired before addressing the actual downstream objective, i.e. the task visible to the
end users. Therefore, to address the overall objective, the system can be performing
several relevant NLP tasks behind the scenes. The level of necessary pre-processing
varies depending on the specific task and the chosen system design. With the in-
creased popularity of the latest deep learning methods, the trend has shifted from
heavily feature engineered pipelines towards end-to-end models directly producing
the desired output based on the given raw text. Nevertheless, even with the recent
end-to-end models, some intermediate processing standards may apply due to prac-
tical issues (such as memory or processing time constrains) or requirements posed
by the task definition itself. For instance, machine translation as a task doesn’t in-
herently have any built-in requirements, however, many translation systems are still
designed to process one sentence at a time and therefore, in practice requiring the
text to be split into individual sentences before translation can occur. Pipeline design
is beneficial especially with models where the complexity grows non-linearly with
respect to the length of the text.

Firstly, we will introduce the common tasks involved in a structural analysis
of the language, including text segmentation (tokenization and sentence splitting),
lemmatization, morphological analysis (part-of-speech and morphological tagging),
as well as syntactic analysis (dependency parsing). These steps are often incorpo-
rated into a single processing pipeline starting from raw text and continuing through
intermediate analysis layers all the way to dependency relations, where the different
tasks may be executed consecutively (predicting one task at a time in a specific or-
der) or jointly (predicting two or more task simultaneously). Secondly, we introduce
the paraphrase modelling as an NLP objective used to study the meaning behind the
surface language.
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1.3.1 Tokenization

Many NLP tasks are designed to operate on token-level, where token is a piece of
text treated as single unit, typically a word or a punctuation character. The process of
identifying token boundaries is called tokenization or word segmentation. While in
many languages, individual words are separated using spacing, and the most simple
tokenization method could rely on whitespace splitting, in certain cases the spacing is
omitted (e.g. before punctuation characters in English) or not used at all (e.g. Chinese
or Thai languages).

In addition to the basic tokenization, if comprehended as separating atomic units
written together only due to conventional spelling rules, several extension are in-
troduced in different studies. A multiword token (MWT) is a single orthographic
token that corresponds to multiple syntactic words and thus, in syntactic analysis
would receive two meaningful relations (Nivre et al., 2020). For example in Finnish,
many coordinate and subordinate conjunctions can be merged with a negation verb
creating an orthographically indivisible word, e.g. muttei ’but not’, which at the same
time serves as a conjunction and a negative auxiliary verb. (Hakulinen et al. (2014),
§139–§141)

On the other hand, sometimes multiple orthographic tokens can represent sin-
gle syntactic units without any internal structure (Kahane et al., 2017), which could
sometimes be considered to be single syntactic words. Most common cases are mul-
tiword expressions (MWEs), which are well established phrases with a single syn-
tactic function (such as in spite of in English or mikä tahansa ’what ever’ in Finnish).
Similar constructions include also multitoken words (MTWs), which are atomic
units, such as numerical expressions, emoticons or abbreviations, occasionally writ-
ten with spacing (such as e. g., : ), or 100 000), however, clearly constituting a single
meaningful unit which could be written without spacing as well.

The tokenization work described in this thesis follows the syntax-oriented to-
kenization guidelines defined in the Universal Dependencies project (Nivre et al.,
2016, 2020), a dependency annotation framework introduced in Section 1.4.2. In
short, the UD tokenization guidelines support analysing multiword tokens (MWT)
as separate syntactic tokens, as well as allowing a restricted set of phenomena to in-
clude whitespace inside a token (MTWs, e.g. emoticons and numeric expressions),
however, multiword expressions (MWEs) are analyzed as separate syntactic words
rather than word-like units.

Several methods for tokenization are suggested in the literature; the traditional
methods often utilize regular expressions (see e.g. Manning et al. (2014)), while
the latest state-of-the-art methods usually rely on supervised machine learning (see
e.g. Zeman et al. (2018); Qi et al. (2020); Nguyen et al. (2021)). When casting the
tokenization as a machine learning problem, the typical approach is to predict for
each character whether it is an end-of-token character or not. Such approach can
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further be restricted to certain characters only, for example preventing tokenizing
inside a sequence of letters without interfering punctuation or spacing, if needed.

1.3.2 Sentence Splitting

Sentence splitting or sentence segmentation is the process of dividing running text
into individual sentences to be able to process one sentence at time. In many cases
simple heuristics for recognizing sentence boundaries will apply, the most typical
case being sentence-final punctuation (e.g. a dot, an explanation mark or a question
mark) followed by a whitespace and an uppercased letter. However, there are several
ambiguities with similar structures that do not imply sentence boundaries (e.g. Mr.
Smith), as well as cases where these visible sentence boundary features are omitted.

Further, the materials processed in NLP are often obtained through automatic
collection, sometimes producing artefacts associated with the collection methods
used, such as web crawling or different data conversion techniques. Due to these
methods, the text layout may not strictly follow the original, and different text seg-
ments, e.g. titles or paragraphs, may be merged together without retaining the visual
spacing of the original layout. In practice, this means that separate, sentence-like
items may be joined in the text. A typical example is the title of a news article being
followed by the main body without any sentence ending marker, as HTML format-
ting is lost at some point in the processing pipeline. In such cases, sentence splitting
methods not limited to orthographic writing rules are necessary.

Similarly to tokenization, the traditional methods for sentence splitting often uti-
lize regular expression (see e.g. Manning et al. (2014)), however, latest methods
usually rely on supervised machine learning (see e.g. Zeman et al. (2018); Qi et al.
(2020); Nguyen et al. (2021)). When casting sentence segmentation as a machine
learning problem, one of the typical approaches is to predict for each character or
token whether it is a sentence-ending-marker or not. Sentence segmentation can eas-
ily be predicted jointly with the tokenization by simply using three classes instead of
two, token-ending-marker, sentence-ending-marker, or no-boundary-marker, where
sentence boundary naturally indicates also the end of the token.

1.3.3 Lemmatization

Lemmatization is a process of determining the lemma (also referred to as the base
form or the dictionary form) for a given surface word appearing in a text. In many
languages, the lemma is considered to be the singular nominative for nouns, the in-
finitive for verbs etc., thus in the process of lemmatization both computer and com-
puters are transformed to their common lemma computer, and the words is, am, are
and were to their common lemma (to) be. For languages possessing rich morphol-
ogy — like Finnish — lemmatization is an important step for numerous downstream
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applications.
Many words are ambiguous in terms of lemmatization, where for the same sur-

face form multiple plausible lemmas exist, and the correct lemma must be understood
from the context where the word appears. For example, the English word lives can
be inflected from two distinct lemmas depending on the context, "(to) live" as in "She
lives in Finland." or "life" as in "Cats are said to have multiple lives.". Thus, when
lemmatizing words in a running text, it is crucial to also understand the sentence
structure and/or meaning in order to lemmatize ambiguous word forms correctly.
Lemmatization methods can therefore be divided into two categories, context-aware
methods where the lemmatization system is aware of the context, and methods where
the system is lemmatizing individual words without contextual information. The ad-
vantage in the former approach is the ability to correctly lemmatize ambiguous words
based on the contextual information while the latter is only able to either give one
lemma for each word regarding its contextual meaning, or list all alternatives.

As lemmatization is defined as determining lemmas for individual words, tok-
enization is a required preprocessing step to first determine the token boundaries
before lemmatizing the individual words. Lemmatizers can be implemented using
rule-based methods relying on a lexicon and grammar rules of the language (see e.g.
Pirinen (2008)), however, the current state-of-the-art methods often rely on super-
vised machine learning by either using edit-tree classifiers predicting which of the
known edit-trees will produce a correct lemma for the given word (see e.g. Straka
et al. (2016)), or sequence-to-sequence transformations generating the sequence of
lemma characters for the given sequence of word form characters (see e.g. Paper II
or Bergmanis and Goldwater (2018)).

1.3.4 Part-of-Speech and Morphological Tagging

Part-of-speech (POS) and morphological features describe the lexical categories the
words belong to, as well as the lexical and grammatical properties they have. Gener-
ally, words belonging to the same part-of-speech group show similar syntactic behav-
ior by often having the same grammatical role in the sentence as well as following
similar inflectional patterns. In morphological tagging, for each word in the given
text the practise is to assign one part-of-speech tag describing its grammatical cat-
egory, and a set of morphological features describing its inflectional properties and
other categorization features. For example, the English word computers is a noun
inflected into its plural form, therefore receiving the NOUN part-of-speech tag and
Number=Plur as morphological features, however the exact definitions and namings
depends on the applied annotation guidelines.

Similar to lemmatization, and in general all task involving human language, also
morphological tagging involves ambiguities. While some words have only one plau-
sible set of morphological features, some words may have alternative analysis de-
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pending on the context, making these words morphologically ambiguous. Again, the
English word form lives is one such word, including the possible analyses of noun in
plural or verb in 3rd person singular. In this example, the word includes a mixture of
morphological and lemmatization ambiguity as selecting one of the morphological
analyses entails committing to the corresponding lemma as well, or the other way
around. However, the ambiguity can be purely on morphological features as well, as
is in the case of run, which can be e.g. a noun, an imperative verb, or a finite verb,
each still receiving the same lemma analysis (if not taking into account the possible
to in verb lemmas).

In order to introduce tags for each word, morphological tagging also requires
tokenization as a preprocessing step in order to know the word boundaries. The clas-
sical approaches to morphological analysis of highly inflective languages are based
on two-level morphology implemented using finite state transducers (FSTs) (Kosken-
niemi, 1984; Karttunen and Beesley, 1992). FSTs are models encoding vocabulary
and string rewrite rules for analyzing an inflected word into its lemma and morpho-
logical tags. However, due to surface form ambiguity, the FST encodes all possible
analyses for a word, and context-aware disambiguation methods are then needed in
order to carry out context dependent morphological tagging. The disadvantage of
morphological transducers is them relying on a list of lexical entries and failing to
analyze a word not defined in the transducer’s lexicon, however, this challenge can be
(at least) partially addressed by the introduction of morphological guessers (Lindén,
2008), which are probabilistic models able to guess the potential analyses for such
words. The state-of-the-art again relies on supervised machine learning, where se-
quence tagging is often applied. While the prediction of part-of-speech tags is quite
straightforward, each word in general receiving exactly one tag, there are several
techniques for predicting morphological features, where a set of appropriate tags
needs to be predicted, predicting either all features at once as one complete tag, or
each feature as a separate class (see e.g. Paper III).

1.3.5 Dependency Parsing

Parsing, also called automatic syntactic analysis, is the task of determining the syn-
tactic structure of the sentence. In dependency parsing, the syntax is described in
terms of dependencies, directed and labeled relations between words encoding the
syntactic structure of the sentence, as well as the syntactic role each word holds.
Each directed relation thus has a head token (also called governor) and a dependent
token, and the relation can be read as the head token governing the dependent, or
the dependent token depending on the head. Many of the dependency syntax frame-
works require the sentence relations to form a tree structure (dependency tree), where
each token can be a dependent of another by exactly once, and exactly one token is
the sentence root not dependent of any token, while directly or indirectly govern-
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Figure 1. An illustration of two ambiguous sentences with two plausible dependency analysis for
both. In the first sentence, the attachment of the prepositional phrase is ambiguous, while the
second sentence involves two ambiguous words creating two different interpretations of the
sentence. The English translation for the first sentence reads I talked about the problems with my
teacher. while the second can be translated Spruce is on fire. or Six pieces. depending on the
intended meaning.

ing all other tokens in the sentence. The task in dependency parsing is then to find
the ’correct’ dependency tree for the sentence among all structurally possible, but
meaningless or contextually inappropriate trees.

In case of structural or attachment ambiguity, the sentence has several ’correct’
dependency trees attaching a word or words differently, and each correct depen-
dency tree thus imply different meaning of the sentence. For example, sometimes
the attachment decision of prepositional phrases adjusts the sentence meaning. In
Figure 1 we illustrate two ambiguous sentences with two different dependency trees
for both, the first one with prepositional phrase attachment ambiguity, where differ-
ent interpretations changes the dependency tree structure, and the second with words
involving lexical ambiguities, making it either a verb phrase or a noun phrase.

While it’s typical to require syntactic relations producing a tree structure for
the sentence, also extended layers of analysis are defined in many dependency for-
malisms producing dependency graphs rather than trees (Nivre et al., 2016; De Marn-
effe and Manning, 2008a). In these extended layers, the idea is to support explicitly
marking secondary relations not supported by the base tree analysis, such as external
subjects or conjunct propagation, where the same word receive two or more incom-
ing relations.

As dependencies are defined as relations between syntactic words in a sentence,
dependency parsing often relies on both sentence splitting as well as tokenization as
necessary pre-processing steps. While many technical implementations are able to
utilize morphological features and/or lemmas as additional features while parsing,
these intermediate step are only optional and not strictly required. The state-of-the-
art methods for dependency parsing rely on supervised machine learning. The ma-
chine learned methods for dependency parsing are often divided into two approaches:
transition-based and graph-based parsing (Nivre, 2004; McDonald et al., 2005). In
transition-based parsing, the construction of the dependency tree is defined as a se-
quence of strictly defined actions building the dependency tree relation at a time.
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While each action executes a special operation (such as creating a relation between
tokens A and B, or changing the place of a token in the parser’s inner data structures),
the role of the machine learning model is in each step to select the desired action out
of all valid actions at that time. In graph-based parsing, the construction of the de-
pendency tree is formulated by running e.g. the maximum spanning tree algorithm
on top of fully connected graph with weighted relations between each token pair, and
the role of the machine learning component is to give a probability weight for each
relation in this fully connected graph.

1.3.6 Paraphrase modelling

Moving from structural analysis to a task more semantically oriented, in paraphrasing
the same meaning is restated using different words. Paraphrasing occurs naturally in
human communication, either by the same speaker repeating the message multiple
times with different words, or multiple speakers conveying the same message in
different places. While some of the paraphrases constitute only minor differences
(e.g. one synonym replacement or structural modification), paraphrases can also use
completely different structures and surface realizations without any lexical overlap
in the statements. For example, the Finnish sentences

(a) Olen siellä puolen tunnin päästä / I’ll be there in half an hour

(b) Saavun sinne 30 minuutin kuluttua / I will arrive in thirty minutes

are paraphrases without any word-level lexical overlap. Common strategies to
create paraphrases include e.g. synonym substitutions, negating antonyms, figurative
language or metaphors, structural changes, and including redundancy or verbosity
by including words not strictly necessary for the meaning (Bhagat and Hovy, 2013;
Chang et al., 2021a). Few example of Finnish paraphrases including different mod-
ification strategies are shown in Table 1. In reality, typically paraphrasing does not
invoke only one category of modifications but rather incorporates a mixture of dif-
ferent changes.

While a strict definition of paraphrases requires the two text statements to have
exactly the same meaning, often in natural language processing and linguistic studies
a broader definition is adopted requiring only having approximately the same mean-
ing (Bhagat and Hovy, 2013). In NLP, paraphrasing leads to interesting challenges
in different natural language understanding and generation tasks such as machine
translation, machine reading, plagiarism detection, question answering and textual
entailment (Mehdizadeh Seraj et al., 2015; Altheneyan and Menai, 2019; Soni and
Roberts, 2019), each requiring deep understanding of the language. The NLP tasks
directly modelling paraphrases are paraphrase classification, where given two text
segments, the target is to determine whether the segments are paraphrases or not,

10



Introduction

Statement 1 Statement 2
Synonym replacement
Kissa on nopea. Kissa on vikkelä.
(The cat is fast.) (The cat is swift.)
Negating antonym
Hän on elossa. Hän ei ole kuollut.
(He is alive.) (He is not dead.)
Hän ei ole täällä. Hän on jossain muualla.
(She is not here.) (She is elsewhere.)
Metaphors
Olen täysin hereillä. Olen pirteä kuin peipponen.
(I am fully awake.) (I am bright-eyed and bushy-tailed.)
Structural changes
Hän ei ole mikään kummajainen. Ei hän mikään kummajainen ole.
(He is no weirdo.) (Weirdo, that he is not.)
Kun hän lähti, hänellä oli... Lähtiessään hänellä oli...
(When he left, he had...) (On departure, he had...)
Redundancy and verbosity
Hae pakkaus kaapista. Hae pakkaus. Se on kaapissa.
(Grab the package from the cabinet.) (Grab the package. It’s in the cabinet.)

Table 1. Visualization of example changes to surface realization in order to create a paraphrase.

paraphrase extraction or retrieval, where given candidate documents or text cor-
pus, the task is to extract text segments which are paraphrases with each other or find
a paraphrase for the given text segment from the text collection, and paraphrase
generation or rephrasing, where the objective is to rephrase the meaning of the
given statement using different words. While paraphrase modelling has also direct
applications (for example filtering duplicate questions from QA websites), many ap-
plications, e.g. in information retrieval or question answering systems, highly benefit
from such semantic understanding, even if not directly applying paraphrase classifi-
cation.

1.4 Corpus Annotation

Accessible text collections, called text corpora, are essential in NLP research, al-
lowing us to study the language and learn its characteristics. While raw text corpora
include only the original text with optional metadata information, annotation can be
used to enrich the data with additional analysis or information. Annotated corpora
are crucial for NLP research as they are used both in training supervised machine
learning models as well as evaluating their performance.
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When creating an annotated corpus, several aspects need to be considered. The
corpus size tells how many examples in total are annotated, reflecting the purpose
to which the corpus was created (e.g. training or evaluation). The corpus domain
reflects the topics or text registers of the underlying texts, where a general domain
corpus usually includes texts from different topics or registers and a domain-specific
corpus targets into a special topic or register, e.g. such as medical or social media.
The annotation scheme instructs and restricts the annotation work by defining what
kind of labels are available and how each labels should be interpreted while annotat-
ing the examples. The annotation scheme also communicates the information related
to the annotation between the corpus creators and the external users of the corpus.
The annotation method can be either manual or automatic annotation, where in
manual annotation a human assigns the labels for each example, while in automatic
annotation (later referred to as automatic analysis in order to clearly separate the term
from the manual annotation), the labels are assigned automatically by e.g. a machine
learned model. While the automatic analysis is cheaper and faster than the man-
ual annotation, and thus can be used to label larger text corpora, human annotation
is almost always necessary in order to create high quality annotations. Sometimes
annotation can also be obtained semi-automatically, where a human creates the an-
notation as a by-product of another process, creating for example metadata which
can be automatically collected to serve as annotations for a specific task.

When creating a human annotated corpus, it is necessary to evaluate the reliabil-
ity and consensus of the annotations. The quality of the annotations can be measured
by using double annotation, where the same example is annotated individually by
two or more different annotators, and the annotations are later compared, producing
measures of inter-annotator agreement (IAA) evaluating the agreement of different
annotators on the same data samples. In case of resolving the disagreements between
different annotators and therefore producing a consolidated consensus subset of the
annotations, the agreement can be measured between each annotator and the consen-
sus subset using e.g. accuracy, the proportion of similarly annotated examples out
of all examples, or using any metric suitable for the given task. The agreement be-
tween two annotators without a need for the resolved consensus subset, is typically
measured using Cohen’s Kappa (Cohen, 1960), which also takes into account the
agreement happening by chance.

Next, we will describe two main resources enabling the work on Finnish syntactic
parsing described in this thesis, the Turku Dependency Treebank, and its Universal
Dependencies annotation scheme. I have contributed to these resources also outside
the scope of this thesis by serving as an annotator during the original dependency
annotation of the TDT corpus, participating in the design of the Finnish-specific
UD guidelines (as part of the data conversion described later in this thesis), as well
as maintaining the converted UD Finnish treebank in the UD collection during and
after the thesis work. In the end of this section, we will also shortly introduce the
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Turku Paraphrase Corpus created as part of the thesis work.

1.4.1 Turku Dependency Treebank

The Turku Dependency Treebank (TDT) by Haverinen et al. (2014) is a publicly
available collection of manually annotated dependency trees of general Finnish in-
cluding approximately 200,000 tokens (15,000 sentences) collected from 10 different
text sources including multiple genres and topics. The text sources include Wikipedia
articles, WikiNews, university online news, financial news, student magazine arti-
cles, blogs, fiction, Europarl speeches, JRC Acquis legislation, and grammar exam-
ples.

The main focus in the TDT corpus annotation was on dependency relations, in-
cluding full manual double annotation for dependencies, where the double annota-
tions were merged and all disagreements resolved collaboratively in order to produce
the final consolidated consensus annotations. It is worth noting that I served as one
of the annotators throughout the dependency annotation process, gaining a thorough
understanding of the corpus and its annotation scheme. In addition to dependencies,
also the text segmentation included manual revisions, whereas part-of-speech tags,
morphological features and lemmas were automatically analysed in the original re-
lease. However, after the original release, manual verification of morphology and
lemmas were included, making all layers of annotation fully manually annotated.

The dependency relations in TDT are based on the Stanford Dependencies (SD)
annotation scheme (De Marneffe and Manning, 2008a,b) with few extensions to bet-
ter suit the Finnish language, as the scheme was originally developed primarily on
English. In addition to the basic variant of the SD annotation scheme, the TDT
corpus introduced an extended dependency layer annotated on top of the base trees
mostly adopted from those defined in the extended version of the SD annotation
scheme, creating an enhanced graph analysis. The extended dependencies annotated
in TDT include propagation of conjunct dependencies, external subjects, syntactic
functions of relativizers, as well as gapping.

The annotation for part-of-speech tags, morphological features, and lemmas was
carried out as single annotation using the OMorFi morphological transducer (Pirinen,
2008) as the initial starting point.1 Each word was analysed using OMorFi obtaining
from zero to several possible analyses each including a lemma, a part-of-speech tag,
and a set of morphological features. In cases where one or more analyses were
returned for a word, these analyses were manually checked and disambiguated based
on the context. In case where none of the returned analyses were correct, or zero
analysis was returned (unknown word for the transducer), the correct lemma and
features were inserted manually.

1Note that at this point of work, the Universal Dependencies framework was not available yet.
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In Haverinen et al. (2014), the dependency annotation accuracy of individual an-
notators is determined to be between 95.9–88.02 as measured between individual
annotators against the final consensus annotations in terms of labeled attachment
score (LAS, measuring the proportion of tokens with correctly assigned head and
dependency relation in the base dependency tree). Furthermore, in triple annota-
tion experiments, where a sample of double annotated sentences is yet annotated
by a third expert annotator and the disagreements between this third annotator and
the double annotated sample are settled to produce a super-gold sample, the double
annotated data is shown to obtain 97.6% accuracy when measured against the super-
gold sample, demonstrating the high quality of the treebank dependency annotations
and giving an upper bound to measurable parser performance on the treebank.

1.4.2 Universal Dependencies

Universal Dependencies (UD) is a community lead effort to build cross-linguistically
consistent treebank annotations for many typologically different languages (Nivre
et al., 2016, 2020; de Marneffe et al., 2021). In its current state (version 2.12 (Ze-
man et al., 2023)) in addition to the annotation guidelines, the UD framework hosts
community contributed treebanks for more than 140 languages, supporting compre-
hensive studies in multilingual parsing directly through different shared task (Zeman
et al., 2017, 2018; Bouma et al., 2020a) as well as indirectly by providing unified
resources. The cross-linguistically consistent UD annotation scheme is the de-facto
standard scheme nowadays in multilingual parsing experiments supporting both lin-
guistic and NLP studies across different languages.

The dependency annotation in UD is revised based on the Stanford Dependencies
scheme, especially its later variant of Universal Stanford Dependencies (De Marneffe
et al., 2014). The morphological layer in UD on the other hand is based on the
Google Universal part-of-speech (POS) tagset (Petrov et al., 2012) and the Interset
interlingua of morphosyntactic features (Zeman, 2008).

During the first UD data releases in 2015 the primary source of UD data was
treebanks converted to UD from other dependency guidelines, later also natively an-
notated UD treebanks started to appear. The first release was based on data converted
from the Google Universal Dependency Treebank Collection (McDonald et al., 2013),
enhanced with several community donated treebanks from different research groups,
also including our Turku Dependency Treebank. Therefore, the Turku Dependency
Treebank was among the first datasets converted to UD, and released together with
9 other languages in the first UD release v1.0 (Nivre et al., 2015). The treebank
conversion work is described as part of this thesis in Section 2.1 and in Paper I.

In Figure 2 we show a comparison of the original Stanford Dependencies (SD)

2Disregarding the least confident annotator, who annotated only 2.6% of the data with an agreement
of 71.8.
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Figure 2. Four related dependency annotation schemes in the order of their publication, (1) SD (2)
TDT (modified SD) (3) Universal SD (4) UD (2.0). The English translation reads I need_to finish
this before the_autum.

annotation scheme as defined for English, the SD scheme as modified for Finnish
during the TDT annotation, the multilingual variant of the SD scheme (Universal
SD) as well as the UD annotation scheme. Some of the language-specific adaptations
presented in the TDT annotation for Finnish were later adopted by the multilingual
SD scheme and therefore are also part of the current UD annotation scheme. The
most notable such modification is the treatment of prepositional phrases and inflected
nominal modifiers (concerning relations prep, pobj, nommod, adpos, nmod, obl, and
case in the example). While the original SD scheme treats the preposition words
the head of the prepositional phrase, despite using different relation names the rest
considers the nominal modifier the head while the preposition word depends on the
modifier.

1.4.3 Finnish Paraphrase Corpus

Turku Paraphrase Corpus, described in more detail in Section 3.1 and Paper V, is a
manually annotated corpus of Finnish paraphrases including a total of 104,645 man-
ually classified paraphrase pairs. The annotated paraphrases include pairs manually
extracted from two related text documents with high probability of naturally occur-
ring paraphrases (e.g. alternative translations of same source texts or different news
articles describing the same event). Additionally, a small subset of the paraphrases
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(12% of the data) are created through manually rewriting the original statements in
order to create paraphrases equal in meaning in all reasonably imaginable contexts.

The paraphrases are collected from five distinct text sources including alternative
movie and TV episode subtitles, news articles, discussion forum messages, university
student translation exercises as well as university essays and exams. However, due to
different factors related to annotation speed and data availability, most of the corpus
data is obtained from the subtitling data. The corpus design is based on the prin-
ciples of building a large but high quality corpus avoiding possible biases towards
trivial, easily recognizable paraphrases often introduced with automatic candidate
selection. The corpus annotation thus relies on manual candidate extraction, where
the annotators manually select paraphrase pairs from two related documents, avoid-
ing uninteresting pairs including only trivial differences easily recognizable e.g. with
lexical overlap.

In addition to manual candidate extraction, all paraphrases in the corpus are also
manually classified according to the annotation scheme developed together with the
corpus. The classification scheme is developed for fine-grained paraphrase classi-
fication with four base labels: (4) universal paraphrase in all imaginable contexts,
(3) paraphrase in the given context but not in all contexts, (2) related, but not a
paraphrase, and (1) unrelated. In addition to base labels, several additional flags
are applied to subcategorize the great amount of positive paraphrases which are not
universal paraphrases for a specific reason, however, not entirely context dependent
either.

1.5 Research Objectives and Disposition of the Thesis
The primary objective of the thesis is to advance Finnish natural language processing
by providing appropriate resources and exploring best practises in their development
and utilization. The thesis is structured into two distinct sections, namely syntactic
parsing and paraphrase modelling, each with its own set of research questions.

When starting to work on this thesis, a reasonably sized, manually annotated tree-
bank for Finnish already existed. However, when utilizing the treebank to train a ma-
chine learned parser for Finnish (Haverinen et al., 2014), the parsing numbers were
only moderate compared with those published for some other languages. Therefore,
the first section focuses on syntactic parsing and addresses the following research
questions:

(RQ1) Is Finnish inherently more challenging to parse with regards to accuracy
when compared to other languages, such as English? Furthermore, given
the existing Turku Dependency Treebank, how far can we advance in de-
pendency parsing without the necessity to increase the size of the manually
annotated corpus?
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(RQ2) What methodological approaches should be employed to optimize the ac-
curacy of the parsing pipeline?

(RQ3) Specifically focusing on lemmatization, what is the most effective approach
to developing a machine-learned, context-aware lemmatizer, and how would
its performance compare to hand-crafted grammatical rules?

The contributions addressing these research questions are presented in Papers I–
IV. Paper I (2015) outlines the conversion of the Turku Dependency Treebank into
the Universal Dependencies annotation scheme, resulting in the creation of the UD
Finnish-TDT corpus. This paper establishes the foundation for Finnish UD parsing
and facilitates cross-language performance comparisons. The paper II (2020) in-
troduces a novel lemmatization approach that achieves state-of-the-art performance
across the UD treebanks. Alongside the development of the machine-learned lem-
matizer model, the paper conducts an extensive data and system analysis. In Paper
III (2018), the Turku Neural Parser Pipeline is detailed – a parsing system with the
capacity to generate fully annotated dependency trees from raw text. In the CoNLL
2018 Shared Task on Multilingual Parsing from Raw Text to Universal Dependen-
cies, this system ranked the 1st, 2nd and 2nd positions among 25 participants when
evaluated across three different metrics, achieving a combined 1st place. This was
the first paper to introduce the principle lemmatizer work later extended in the Paper
II. Paper IV (2020) extends the pipeline’s capabilities by utilizing pre-trained, con-
textual language models rather than static word embeddings. This evolved version,
the Turku Enhanced Parser Pipeline, ranked 1st among 10 participants in the IWPT
2020 Shared Task on Parsing into Enhanced Universal Dependencies.

The second part of the thesis shifts its focus to language understanding through
an exploration of paraphrase modelling. With the significant advancements that the
large, pre-trained language models have brought to different tasks — later demon-
strated to include also syntactic parsing — the emphasis in the field has increasingly
moved towards a deeper semantic understanding of language. The late success raises
questions about whether the current models are genuinely comprehending language,
rather than merely relying on simple surface cues. However, datasets designed to
measure semantic comprehension in Finnish have been non-existent, or very scarce
at the best.

Our primary research objective in paraphrase modelling centers around con-
structing a high-quality corpus of Finnish paraphrasing examples tailored for ma-
chine learning purposes. While the utilization of sentence-level heuristics is a preva-
lent approach for constructing large-scale paraphrase corpora, we hypothesize that
these methods may introduce a bias towards shorter and simpler examples that can
be automatically identified. Therefore, we pose the following research questions:

(RQ4) Can the creation of a large-scale paraphrase corpus be efficiently accom-
plished by manually selecting examples, thereby mitigating bias towards
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Table 2. The relation of research questions and papers in the thesis.

shorter and simpler examples?

(RQ5) Does the resulting corpus exhibit greater diversity in terms of example
length and complexity compared to corpora where candidates are auto-
matically generated?

These questions are addressed in Paper V, where novel methodologies for para-
phrase corpus creation are investigated. Within this paper, the Turku Paraphrase
Corpus is introduced. It comprises 104,645 manually annotated Finnish paraphrase
pairs, which are predominantly also manually selected from related documents pairs.
Together with the dataset, the paper presents several corpus evaluation and compar-
ison experiments as well as baseline results for different machine learned models
trained and evaluated on the new data.

The relations of research questions and papers included in the thesis are summa-
rized in Table 2. Papers II, III and IV present methodologies in a language-agnostic
manner, reporting evaluation results across multiple languages and enabling compar-
isons between Finnish and other languages. In contrast, both Papers I and V focus
specifically on Finnish, introducing new Finnish datasets and conducting Finnish-
specific experiments. This thesis is based on co-authored publications, and while
the experimentation process and manuscript preparation were shared efforts, distinct
responsibilities were distributed among those contributing towards these papers. My
individual contributions are outlined separately under the heading Own contributions
in the beginning of the thesis.
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2 From Raw Text to Dependency Graphs

In this chapter we address the first set of research questions relating to dependency
parsing (RQ1, RQ2 and RQ3). As mentioned earlier in Section 1.4.1, the first, large-
scale treebank for Finnish dependency parsing was released in 2014, creating neces-
sary foundations for machine learning based parsing research for Finnish. However,
the parsing results reported in the paper accompanying the data release demonstrated
a clear gap in accuracy between automatic and human-made analysis (Haverinen
et al., 2014). Furthermore, when compared to the accuracy of English parsers pub-
lished roughly around the same time (e.g. Chen and Manning (2014)), the Finnish
numbers clearly lag behind the English ones. This chapter summarizes the contribu-
tions of Papers I, II, III and IV, all of which are focused on narrowing down these
performance gaps by first introducing a conversion of the treebank data into the Uni-
versal Dependencies scheme, and then building a state-of-the-art parsing pipeline for
Finnish. While many of the technical details are not discussed here and can rather
be found from the paper reprints, this chapter tries to highlight the most important
contributions towards the presented research objectives, as well as give a broader
overview of the research field in general, and therefore connect the individual papers
to the related work on the field.

When summarizing the main work and results, special focus is given to evalu-
ation and analysis in the Finnish language. However, the tools are designed to be
multilingual, and in the original work are often evaluated in highly multilingual set-
ting, enabling also cross-language comparison. Furthermore, many of the parsing
results shown in this chapter are evaluated through several international shared tasks
in the field focusing on multilingual parsing. While shared tasks have received also
concerns related to good scientific practises (Parra Escartín et al., 2017), the overall
objective is to advance research in the field by working together towards shared goals
as well as giving a comprehensive and objective evaluation of different systems (Nis-
sim et al., 2017).

Multilingual parsing evaluation has a strong backbone starting from 2006 through
several shared tasks (Buchholz and Marsi, 2006; Nivre et al., 2007; Seddah et al.,
2013) each including 9–13 languages on which the participant systems were eval-
uated in a controlled setting. In general, the shared tasks on multilingual parsing
advance the inclusion of several languages not usually addressed in methodology
oriented research papers, thus attracting wider audience to work on languages and
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corpora outside the mainstream. The CoNLL 2017 and 2018 shared tasks on Multi-
lingual Parsing from Raw Text to Universal Dependencies (Zeman et al., 2017, 2018)
greatly increased the number of evaluated languages including about 50 languages
on each run of the shared task, as well as brought two important novelties to the
scene; 1) cross-linguistically compatible Universal Dependencies scheme allowing
better cross-language performance comparison, and 2) a tradition of evaluating pars-
ing systems on top of predicted segmentation and morphological features instead
of gold standard to give more realistic real-world evaluation scenario. These nov-
elties created an excellent setting of evaluating strongly language-agnostic parsing
pipelines.

When creating an overview of the results provided in this chapter, one must keep
in mind that the different results published across the research timeline are difficult to
directly compare due to the continuously improved conventions of UD specifications
as well as improvements introduced to the actual data releases, therefore the under-
lying data undergoing some amount of changes between different UD versions. For
the same reason, obtaining a detailed overview of the performance increase related to
the introduced technical contributions may be difficult. However, in terms of our pri-
mary Finnish corpus used throughout the thesis, the modifications between different
UD release versions are minor, and are not expected to greatly affect the compari-
son. The exception to this may be the UD release v2.0 including major structural
changes both in the annotation guidelines and the actual annotations, as well as re-
leasing a previously held-out test set for the public use. To account the comparability
issues, one should only compare the general performance level without doing ex-
act (decimal-level) comparison between systems trained on different versions of the
data. However, when including comparative evaluation of systems using the same
versions, e.g. all results from the same paper or same shared task, accurate and exact
comparison can naturally be made.

2.1 Turku Dependency Treebank into Universal Depen-
dencies

Data being annotated differently between different languages, or even between tree-
banks for the same language, may pose various issues in studies including multi-
lingual or multitreebank aspects. For example, when evaluating the parsing perfor-
mance, the expressiveness of the annotation scheme plays an important role. Nat-
urally, the performance numbers of a parser using an annotation scheme with 50
relation labels cannot be directly compared to one including only 10 relation labels,
and therefore when comparing the parsing performance across different languages
it is important to account for these factors.1 The same holds for many linguistic

1Of course, we note that the annotation scheme is not the only external factor affecting the parser
performance, but the final performance is rather affected by a combination of several factors, for in-
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studies where studying similar phenomena across languages becomes more difficult
when expressing the analysis using different schemes. At the same time the differ-
ent annotation policies between languages do not necessarily reflect these languages
expressing certain phenomena with distinct structures but rather the convention of
leaning into a diverse set of annotation conventions, thus sometimes receiving dis-
tinct analysis for identical structures between treebanks and languages. One of the
design principles of the Universal Dependencies is to facilitate consistent annotation
of similar constructions across languages, while allowing language-specific exten-
sions when necessary (Nivre et al., 2016). With such consistent annotations the UD
treebank collection better supports multilingual comparison of parsing performance,
as well as supports multilingual studies e.g. in cross-lingual parsing and linguistics.

Taking this into consideration, the multilingual UD collection has a great po-
tential of drawing interests towards studies involving several typologically different
languages, or organizing shared tasks based on the large treebank collections. There-
fore, including the Turku Dependency Treebank into such collection can be seen a
major advantage greatly intensifying the attention towards Finnish parsing research,
and already as such motivating to invest the time and effort needed for converting the
original treebank annotations into the UD framework. From the perspective of our
research questions, this multilingually consistent treebank annotation directly facili-
tates cross-lingual performance comparison. In this section, we summarize the pro-
cess of converting the Turku Dependency Treebank into the Universal Dependencies
annotation scheme from Paper I. After that, the main outcomes of the conversion
work are discussed, further demonstrating the significance of the conversion work.

2.1.1 Overall Approach

As already discussed in Section 1.4.2, given the relatively similar annotation conven-
tions used both in the original TDT and UD annotation guidelines, a relatively good
conversion quality can be expected from automatic conversion techniques without
major manual annotation effort. Therefore, the main conversion was implemented as
a pipeline of automatic processing components designed separately for each anno-
tation layer. The implementation is carried out by revising the conversion gradually
based on manual inspection of the outcome. Manual adjustments were needed only
for a relatively few cases where satisfying accuracy was not obtained using the auto-
mated pipeline, or investing time to automatically address only a handful of special
cases was not feasible. While most of the conversion work took place before the first
official UD release (v1.0 in 2015) and is therefore described in Paper I, the current
version of the data have undergone several adjustments also after the initial work,
including both minor corrections of errors in the data as well as necessary modifica-

stance treebank size or text genre.
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tions caused by the evolving annotation guidelines.

2.1.2 Part-of-Speech and Morphological Features

The UD guidelines for part-of-speech tags defines 17 universal POS tags with a strict
requirement of all treebanks conforming to use the same set without any language-
specific additions. In turn, TDT uses 12 part-of-speech tags, however, some divided
into several subcategories. In most cases, the division of words to POS categories is
directly comparable between these two resources, therefore simple renaming of the
tags is sufficient for most cases, potentially distinguishing on the subcategory level if
needed. However, four part-of-speech tags used in the TDT annotation required dis-
tinction into several UD categories (namely pronoun into PRON or ADJ, punctuation
into PUNCT or SYM, symbol into PUNCT or SYM, and verb into VERB and AUX),
and different rules were written to handle these cases. The rules obtained the relevant
information for instance from syntactic relations (e.g. the dependency relation aux
indicating auxiliary usage of the verb), surface form -based heuristics (e.g. for dis-
tinguishing emoticons from other punctuation sequences), or wordlists (e.g. defining
a list of Finnish proadjectives). In the conversion, two of the UD part-of-speech tags
were left unused, DET for determiners and PART for particles. As the original TDT
annotation does not distinguish between determiners and pronouns, or adverbs and
particles, we opted not to introduce the distinction in the UD Finnish-TDT annotation
either. For the secondary, language-specific part-of-speech tag annotation available
in UD (XPOS), we simply use the original TDT tags as is.

For morphological features, a wide set of morphological categories including
lexical or inflectional properties of words are defined in the UD annotation guide-
lines. Such categories include e.g. Case, Person, Number, Voice and Mood, each
including its own set of possible values. Unlike for UD POS tags, in the case of mor-
phological features the treebanks are allowed to introduce language-specific features
not included in the universal feature definitions, thus the conversion process being
more approving towards including the aspects of the original annotation. In order to
minimize the information lost during the conversion, we decided to use the oppor-
tunity to introduce language-specific features when a corresponding feature was not
defined in the universal feature set.2 While most of the features could be directly
mapped into UD with simple renaming, some required more complex methods, such
as lemma lookup tables, especially when inserting new features not explicitly present
in the original TDT annotation.

The part-of-speech and feature conversion was implemented as stand-alone scripts,
in the input side reading TDT annotated words and producing UD annotated words
as the output. In cases where the decision is context dependent and information out-

2Note that some of these features were included to the universal feature set later.
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side the word itself is needed (e.g. its dependency relation), the conversion pipeline
is implemented to introduce all possible UD alternatives for the input word, disam-
biguating these later in the pipeline when the relevant information becomes available.
As will be described later in Section 2.2, this design allows us to utilize the same con-
version tools during statistical parsing while still utilizing the OMorFI morphological
analyzer as a preprocessing tool.

2.1.3 Lemmas

The initial lemma annotation in the first release was based on directly transferring
manually annotated lemmas from TDT annotations to the UD version. However, the
Finnish morphological analyzer OMorFI, which was used as a starting point in the
manual TDT lemma annotation, included some discrepancies with UD guidelines,
therefore several unfortunate systematic deviations from UD specifications were in-
troduced during the first stage conversion. These were later addressed through sev-
eral patterns of manual corrections, mostly focusing on issues related to derivational
morphology and compounding.

While the specifications for lemma annotation in UD are quite loose and under-
specified in many cases, UD instructs against normalizing derivational morphology,
thus the English word organizations should be lemmatized as organization, not (to)
organize. On the other hand, in TDT (due to the influence of OMorFI) derivational
morphology was often normalized, leading to e.g. verb lemmas for noun derivations.
For this reason, all words in the corpus including the morphological feature Deriva-
tion were manually inspected and necessary corrections made.

Another group of systematic lemma revisions relates to compounding words.
While many of the noun compounds in their dictionary form are created by concate-
nating two noun lemmas (e.g. ruoka ’food’ and pöytä ’table’ — ruokapöytä ’dining
table’), sometimes compounds are formed by connecting inflected, derived or short-
ened words as well (e.g. oikeus ’justige, court’ in genitive case and käynti ’working,
action’ — oikeudenkäynti ’trial, legal proceedings’) (Karlsson, 2015). In the latter
case, the original TDT annotation often lemmatized both elements in the compound-
ing word separately using a hash character to indicate internal word boundaries (e.g.
oikeus#käynti). However, this created lemmas which as such do not appear in the lan-
guage, even if not taking into account the internal boundary markers, and hence will
not appear in the dictionary either, while UD suggests to lemmatize into "canonical
or base form of the word, which is the form typically found in dictionaries"3. We
decided to manually verify the lemma annotation of all compounding words, only
normalizing inflections varying between different case variants of the compound.
For example, Uudessa-Seelannissa ’New Zealand’ in inessive case becomes Uusi-

3See documentation in https://universaldependencies.org/u/overview/
morphology.html.
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Seelanti where both parts are lemmatized, while oikeudenkäynnissä ’legal proceed-
ings’ in inessive case becomes oikeuden#käynti, lemmatizing only the second part
of the compound. Also, we opted for keeping the internal boundary markers also in
the UD version of the data, as these can, for instance, support information retrieval
applications.

2.1.4 Dependency Relations

Typically, most time-consuming in treebank conversion are dependency relations as
in addition to mapping the relation types to the new scheme, also structural recon-
figurations are often needed. However, given the similarities between UD and origi-
nal TDT relations, relatively lightweight and straightforward dependency conversion
could be used, encountering fewer challenges than might be expected when convert-
ing from other annotation schemes.

In terms of relation labels, we were able to account for most of the dependency
relations with automatic conversion rules. While most of the relation labels were
either unmodified or required only a simple one-to-one label renaming, a handful of
relation types required more complex one-to-many mapping where one TDT rela-
tion type was divided into several UD relation labels depending on the usage. For
example, while most of the adverbial modifiers remained unchanged, TDT used this
relation type also for sentence-initial conjunctions while UD annotated these with the
relation meant for coordinate or subordinate conjunctions. Therefore, it was required
to recognize all such cases, and rename the relation type accordingly.

Furthermore, two relation types were omitted without substitution as they were
identified as enhanced relations that neither affect the base tree nor fall under UD
enhanced relations, and a few relation types defined in the UD guidelines remained
unused in the newly converted data. This occurred either because the grammatical
relation is not traditionally used in Finnish (e.g. indirect object iobj), or because a
comparable relation is not annotated in the TDT data (e.g. list). This lack of annota-
tion makes automatic conversion unfeasible, and for relations were the expected fre-
quency would be extremely scarce, we decided not to invest manual annotation effort
to these. Finally, in several cases, the original TDT relation labeling included more
detailed analysis as introduced in the universal label category of UD, and therefore
we opted to include some of the original analyses by introducing language-specific
relation subtypes for instance distinguishing between standard nominal subject and
nominal copula subject (nsubj versus nsubj:cop).

Relatively few structural reconfigurations were required during the conversion,
due to both SD and UD schemes already sharing most of the annotation principles
by emphasizing direct relations between content words, while annotating functional
words as dependents of these. In addition to the general scheme similarity, few
modification made to the original SD scheme during the TDT annotation already
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implemented some of the changes made in UD compared to the original SD, thus
TDT directly implementing UD specifications regarding these structures. One such
frequently appearing structure is prepositional phrases, where in TDT and UD the
adposition word depends on the noun while SD (basic variant) treats the adposition
as the head of the phrase. This, in fact, was in part due to the influence of TDT in the
early stages of the UD scheme design.

The required structural changes included for example cases, where the TDT an-
notation allowed functional words to have dependents of their own creating a chained
representation of e.g. auxiliary verbs while UD adopts a flat structure for these, as
well as several head-final structures, where the final element of e.g. name or multi-
word expression was considered head in TDT while UD adopts a head-initial struc-
ture. During the conversion, chains of functional words were reattached to the re-
spective head words, and head-final structures were annotated as head-initial.4

The automatic dependency conversion was implemented as a rule-based tool
searching for dependency relations matching given search criteria, and rewriting the
relations to the ones defined in the given rule. The conversion tool was capable of
both renaming existing relations under specific conditions, with rules such as "search
for a punct relation between tokens A and B, where the token B is an emoticon based
on a given list of emoticons; rename the relation to be discourse", as well as struc-
tural reconfigurations by rules stating for example "search for tokens A, B and C
where there is an aux relation between tokens A and B, and B and C (chain of aux
relations); replace the latter with a new aux relation from A to C". A total of 116
manually implemented rules were defined covering a great majority of the existing
TDT relations. The remaining relations not covered by the rules (on the order of
~250 relations) were manually checked after the conversion, which was determined
to be more efficient than trying to obtain an exhaustive automatic conversion of each
and every relation.

The first stage conversion included relatively few manual revisions. The relations
(and the data in general), however, required several rounds of quality control during
the different UD releases. For example, during the UD release 2.0 the use of copula
construction from equation and attribution was expanded to also cover e.g. location
and possession, requiring major revision to the data. Part of the new revisions were
done automatically, but many changes required also manual work, ensuring the qual-
ity of the output. This continuous work is necessary to maintain TDT in compliance
with the updated UD guidelines. Due to its incremental nature distributed across
time it is not formally described in any paper, nevertheless the maintenance of the
resource should be considered as a contribution to the work presented in the thesis.

4Note that during the Paper I, names were kept as head-final, however, later on the head-initial
structure of names was adopted to the Finnish-TDT corpus as well.
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2.1.5 Discussion and Outcome

The first release of the Universal Dependencies treebanks (Nivre et al., 2015) in Jan-
uary 2015 included 10 languages: Czech, English, Finnish, French, German, Hun-
garian, Irish, Italian, Spanish and Swedish, the first Finnish treebank included in the
UD collection being our conversion of the Turku Dependency Treebank.5 By the
release v2.12 (May 2023), the number of treebanks available through the UD col-
lection has increased to 245, including 141 distinct languages. For Finnish, there
are 4 distinct corpora available, of which three are provided by us and one by the
University of Helsinki. In addition to our primary TDT corpus, we have published
two additional evaluation datasets for Finnish: Finnish-PUD (Zeman et al., 2017)
and Finnish-OOD (Kanerva and Ginter, 2022). The former is one of the 18 parallel
test sets in which the same underlying text is translated into different languages, and
therefore being optimal for cross-lingual comparisons. The latter, on the other hand,
serves as an out-of-domain evaluation set with documents sampled from domains
absent in the original treebank. I was the main annotator for both of these datasets
and therefore these also contribute to the topic of this thesis, however, in order to
maintain the scope, these will not be discussed in detail.

The data released through the UD collection has brought broader attention to our
treebanks within the international parsing community. For example, our converted
TDT treebank has been part of several shared tasks and system benchmarking data
collections targeting into multilingual evaluation or cross-lingual parsing, see Ze-
man et al. (2017, 2018) and Bouma et al. (2020b, 2021) for shared tasks and Hu
et al. (2020) for system benchmarking, thus gaining significant interest also in inter-
national research community.

Based on the treebank statistics presented by Nivre et al. (2016) (based on the UD
release v1.2), most of the 37 treebanks included in the release are automatically con-
verted with or without small amount of manual corrections. Based on the size of the
original TDT treebank (15,000 sentences, 200,000 tokens), as well as a major part
of the conversion effort falling into relatively monotonic work (such as renaming
common relation types), full manual conversion was not considered a feasible op-
tion. Additionally, given the fact of highly related annotation conventions between
the TDT and UD frameworks, we were able to obtain a high quality conversion by
automating majority of the conversion pipeline, with only relatively few problematic
cases resolved manually.

The quality of the treebank conversion is supported by the parsing results on the
newly converted corpus described in Paper I (summarized also in the next section).
These results show strong correspondence between the two treebank versions (tree-
bank before and after the conversion), which supports the accuracy of the automatic

5During the first release, the corpus was named UD Finnish, however, later renamed into UD
Finnish-TDT.
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conversion process. While annotation decisions are shown to affect parsing perfor-
mance, see e.g. Silveira and Manning (2015), both annotation schemes are roughly
on same level of complexity by using similar amount of relation labels as well as
implements the same structural principles of content-word headness. Therefore, the
Labeled Attachment Score (LAS) of the parser trained before and after the conver-
sion are expected to be roughly comparable, significant differences to any direction
being likely due to problematic conversions. If the LAS is substantially higher af-
ter the conversion, the conversion may oversimplify the data by often falling into a
default option, whereas substantial decrease in LAS may indicate unsystematic con-
version policies introducing randomness to the data. The LAS of the parser pipeline
trained on the original TDT corpus is 80.1, while the same parser pipeline trained on
the converted treebank is 81.0, not showing a substantial change in either direction.

2.2 Background on Statistical Parsing of Finnish
In this section, we give the background of statistical parsing of Finnish and report the
baseline UD parsing numbers from the first experiments conducted in Paper I. Also,
related work for the early stages of neural UD Finnish parsing is discussed.

2.2.1 Pre-Neural Times

Upon the release of the original TDT corpus, Haverinen et al. (2014) released also
the first openly available, statistical parsing pipeline for Finnish capable of analysing
text given in its raw, unsegmented form into full morphosyntactic analysis includ-
ing token and sentence segmentation, part-of-speech tags, morphological features,
lemmas, and dependency trees. The pipeline was constructed from independently
trained machine-learned components, where both the sentence splitting and tokeniza-
tion components were implemented using corresponding modules from the Apache
OpenNLP toolkit6, part-of-speech tags, morphological features and lemmas were
predicted using the Conditional Random Fields (CRF) based Marmot tagger (Müller
et al., 2013) utilizing pre-analyses of the Finnish two-level morphological analyzer
OMorFi (Pirinen, 2008; Lindén et al., 2009), while the dependency trees were pre-
dicted using the Mate tools graph-based dependency parser (Bohnet, 2010). While
the dependency parser and both token and sentence segmenters were trained straight-
forwardly using standard machine learning methods, in morphological tagging and
lemmatization external lexical resources were used. As shown by Bohnet et al.
(2013), a straightforward strategy of training a pure machine learned tagger did not
yield top accuracy results for many morphologically rich languages, and thus a hy-
brid approach utilizing both lexical resources and machine learning was introduced

6http://opennlp.apache.org/
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in morphological tagging and lemmatization.
Finite state transducers (FSTs) implementing two-level morphology introduced

by Koskenniemi (1984); Karttunen and Beesley (1992) are rule-based models encod-
ing vocabulary and inflection rules for analyzing an inflected word into its lemma
and morphological tags, giving a set of possible morphological readings (lemma,
part-of-speech, and features) of every recognized word7. In this hybrid approach,
the OMorFi morphological transducer was used to generate a set of possible read-
ings for each word, which were subsequently introduced as features to the machine
learned tagger, where two different constrains were tested. In soft constraint, the
tagger was allowed to freely predict the output based on the given features, while
in hard constraint the prediction was restricted to the given input readings, therefore
the tagger effectively disambiguating the given readings in context. While the soft
constraint showed better generalization across many morphologically rich languages
in experiments conducted by Bohnet et al. (2013), for Finnish the hard constraint
yielded the best overall result in part-of-speech and morphological tagging as well as
in lemmatization, where the predicted lemma was obtained from the disambiguated
reading together with the morphological tags. Therefore, the hard constraint was
applied in the Finnish parsing pipeline. Words not included in the transducer lexicon
did not receive any readings from the transducer, and therefore for these words the
tagger predictions were used as is to obtain morphological features, while for lemma
prediction the wordform was copied to the lemma field as is, in the absence of a
better strategy at the time.

In Paper I, the original statistical parser pipeline was retrained with the new UD
Finnish-TDT corpus, introducing the first parser for Finnish producing UD analy-
sis. While the token and sentence segmenters as well as dependency parser were
straightforwardly re-trained using the new data, morphological tagging and lemma-
tization needed an additional, on-the-fly conversion step in order to be able to utilize
the OMorFi readings also while parsing into the UD framework. In this on-the-fly
conversion, the OMorFi is first used to analyse all words in the input text, but before
applying the machine learned disambiguation step, the morphology conversion script
developed for the treebank conversion is applied to transform all morphological read-
ings into UD. After the conversion, these readings can be introduced as features for
the tagger.

The overall performance for the statistical parsing pipeline for Finnish as de-
scribed above is shown in Table 3, where the performance is measured on the TDT
corpus test set before and after the treebank conversion using the tagging constraint
as originally optimized in Haverinen et al. (2014) (Original pipeline). The perfor-
mance is reported on gold standard segmentation. When running this comparison

7The recognized word means the word belongs to a language as determined based on the given
lexicon and inflection rules.
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Treebank POS PM FM LAS UAS
Original pipeline
TDT (SD) 96.3 93.4 90.3 80.1 84.1
TDT (UD) 96.0 93.1 90.5 81.0 85.0
Optimized pipeline
TDT (UD) 97.0 94.0 90.7 82.1 85.8

Table 3. Results of the first UD Finnish parsing experiments using gold standard segmentation.
TDT (SD) refers to the morphological tagset and dependency relations as defined in the original
TDT after manual morphology annotation, and TDT (UD) refers to the UD Finnish-TDT data as
released in UD v1.0. POS is the POS tagging accuracy, PM the accuracy of part-of-speech tag
and all morphological features, FM is the accuracy of full morphology (part-of-speech, features and
lemma).

with identical experimental setting before and after the data conversion, the evalua-
tion results show strong correspondence between the two treebank versions, obtain-
ing LAS 80.1 on data before the conversion and LAS 81.0 after it, supporting the
high quality of our automatic conversion process. Additionally, when optimizing
the tagging constraint on UD converted data (Optimized pipeline), the best Labeled
Attachment Score (LAS) of the parser pipeline obtained after the UD conversion is
82.1, serving as a baseline for later studies involving UD Finnish parsing.

2.2.2 Early Steps in Neural Parsing of Finnish

UDPipe (Straka et al., 2016) was one of the first neural parsers with published results
for the UD Finnish-TDT treebank in 2016, and afterwards it has served as the de-
facto baseline for UD parsing for many years. UDPipe implemented the full pipeline
of tasks supported by the UD annotation, including word and sentence segmentation,
part-of-speech and morphological tagging, lemmatization and dependency parsing,
excluding only enhanced dependency relations. The parser component in UDPipe,
Parsito (Straka et al., 2015), incorporates distributed representations of input ele-
ments (words, part-of-speech tags, and morphological features) thus being able to
utilize pre-trained word embeddings learned using for example word2vec or similar
methods. This allows for utilizing large-scale, unlabeled resources in order to learn
good representations of words’ meanings and usage prior the actual parser training.

When comparing the initial numbers released from the UDPipe system to our
own Finnish statistical parsing pipeline described in the previous section, the LAS
performance of UDPipe was estimated to be about 5pp lower (LAS 82 compared
to 77) when evaluating both on top of gold segmentation. However, note that the
test set used here is slightly different. While our pipeline was evaluated on the se-
cret, held-out test portion of the corpus, the UDPipe was evaluated on the public
test portion, and while the data characteristics is not expected to change between
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the sets, the underlying test data is different, thus not giving exact comparison be-
tween the two systems.8 Furthermore, our pipeline incorporated language-specific
information (morphological transducer) not available if restricting the system to be
language-agnostic as is the design principle of the UDPipe system. Additionally, the
UDPipe did not utilize the full power of pre-trained word embeddings as it was using
embeddings trained on the treebank training data only.

The CoNLL 2017 Shared Task on Multilingual Parsing from Raw Text to Uni-
versal Dependencies was the first parsing shared task, which included a Finnish tree-
bank. The shared task was highly multilingual in its nature, especially calling for
systems able to obtain high performance in language-agnostic manner, where the
system does not require much or any language-specific adaptation. In total out of the
64 treebanks involved in the shared task, three were Finnish; UD Finnish-TDT, UD
Finnish-FTB9 developed at the University of Helsinki, as well as the UD Finnish-
PUD annotated by us as part of the shared task organization serving as one of the
parallel test sets across 14 languages, where each parallel treebank includes the same
underlying text translated into different languages, therefore serving as an optimal
material for cross-lingual parser comparison.

The winner of the CoNLL 2017 Shared task was the Stanford team (Dozat et al.,
2017) utilizing their freshly introduced deep biaffine parser (Dozat and Manning,
2017), a graph based approach utilizing representations induced using recurrent en-
coder. The performance of the Stanford system on UD Finnish-TDT corpus was
85.6% on top of predicted segmentation, clearly outperforming the previous state-
of-the-art. While the outcomes of the CoNLL-17 shared task showed positive impact
to Finnish parsing performance, we were not satisfied to the current lemmatization
performance, the best performing system yielding only an accuracy of 86.5 on the
UD Finnish-TDT corpus (Che et al., 2017; Yu et al., 2017). Therefore, our next effort
focused on improving the lemmatizer available for Finnish.

2.3 Sequence-to-Sequence Lemmatizer for Finnish
While our primary motivation was to develop a state-of-the-art lemmatizer specifi-
cally for Finnish, we designed the model to be language-agnostic, ensuring its appli-
cability to all UD languages. The novel lemmatizer developed as part of the thesis
work, Universal Lemmatizer, is chronologically introduced first time in Paper III,
however, the Paper II includes an extended analysis and additional experiments in
the area of lemmatizing UD data. The lemmatization work is summarized in this
section.

8In the UD v2.0 release (during the CoNLL 2017 Shared Task), the earlier public test set was merged
with the development set, while the secret test set was released as the new official test set.

9https://github.com/UniversalDependencies/UD_Finnish-FTB
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2.3.1 On the Contextuality of Lemmatization

Most inflected words can be unambiguously lemmatized based on the word itself
without requiring surrounding context, as they can be meaningfully derived from
only one possible lemma (e.g. the Finnish inflected word talossa ’in a house’ is gen-
erally recognized to have only one plausible lemma talo). However, every language
contains instances of ambiguous inflections, where a single inflected form can orig-
inate from two or more distinct lemmas, necessitating contextual information to de-
termine the correct lemma. The same holds also for out-of-vocabulary words, where
context plays a crucial role in lemmatizing words seen for the first time. This means
that by seeing only the inflected word, one cannot reliably determine its lemma with-
out information about the context. One example of an inflected, Finnish word being
ambiguous in terms of lemmatization is koirasta, which can be inflected from two
distinct lemmas, koira ’a dog’ or koiras ’a male’. However, note that the lemma
ambiguity must not be confused with word-sense ambiguity where a word may be
ambiguous in terms of its meaning while still having exactly one plausible lemma
analysis. As an example, the Finnish word kurkku has two distinct meanings, a throat
and a cucumber, however, both meanings share exactly the same inflection paradigm,
where all meaning-ambiguous inflections are lemmatized into the common lemma,
thus the word being unambiguous in terms of lemmatization.

The desired lemma for ambiguous words can be inferred based on the structure
or meaning of the sentence. While in the koirasta ’a dog/male’ example the ambigu-
ous inflected word appears in different position/function in the sentence depending
on the lemma, and thus the desired lemma can be correctly inferred based on mor-
phosyntactic properties of the word in the known context. However, some other
ambiguous words may appear in similar functions, in which case an understanding
of the word’s meaning in the context is required. In order to estimate the number of
lemma-ambiguous words in different UD treebanks, as well as the number of cases
where the known structural information is enough for inferring the correct lemma
for an inflected word, we measure the percentage of running tokens with ambiguous
lemma in the UD treebanks. For each language we measure two categories of ambi-
guities, firstly, the number of inflected tokens having more than one distinct lemma
occurring in the treebank annotations, and secondly, the number of inflected tokens
together with their morphosyntactic analysis (part-of-speech and morphological fea-
tures) having more than one distinct lemma occurring in the treebank annotations.
While the first measures the percentage of plain lemma ambiguity occurring in the
treebanks, the second measures the percentage of tokens where the sentence structure
itself is not enough for unambiguously inferring the desired lemma for the token.

The measures are shown in Figure 3. While the plain lemma ambiguity is close
to 12% on average, the proportion of ambiguous lemmas drastically drops for most
languages when the token’s morphosyntactic tags are taken into account, the token-
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Figure 3. Percentage of running tokens with ambiguous lemma and token-tag pairs with
ambiguous lemma calculated from the UD v2.2 training data. All treebanks of one language are
pooled together. [This figure was originally published in Paper II.]

tag pair ambiguity being only close to 3% of running tokens on average. Addition-
ally, for more than half of the languages, the ambiguity drops below 1% of running
tokens when including morphosyntactic tags, demonstrating that the tags are a pow-
erful yet compact contextualized feature representation for lemmatization ambiguity.
For Finnish, while the number of ambiguous tokens is about 7%, the number of am-
biguous (token, tag) -pairs is only ~0.5%, which translates into a very high oracle
accuracy (upper bound) on Finnish when building a lemmatization system utilizing
only morphosyntactic features in contextual lemmatization, at the same time giving
a compact contextual representation compared to the full sentential context.

Based on this observation, we set out to build a sequence-to-sequence lemmatizer
directly utilizing morphosyntactic information instead of representing the whole sur-
rounding sentence as features.

2.3.2 Modelling Lemmatization Using Sequence-to-Sequence
Framework

The recent neural lemmatizers typically fall into two different machine learning
frameworks: sequence-to-sequence generation models (Bergmanis and Goldwater,
2018; Qi et al., 2018) or classifiers predicting edit-tree transformation rules (Müller
et al., 2015; Chakrabarty et al., 2017; Straka, 2018), both frameworks being able
to perform the lemmatization with or without contextual information. We select
the generation approach for its flexibility and cast lemmatization as a sequence-to-
sequence rewrite problem where lemma characters are generated one at a time from
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Figure 4. Neural lemmatizer model implemented as sequence-to-sequence transformation. [This
figure was originally published in Paper II.]

the given sequence of word characters and the word’s morphosyntatic tags. Once
cast in this manner, essentially any of the sequence-to-sequence model architectures
can be applied to the problem.

While sequence-to-sequence learning framework includes a great variety of dif-
ferent applications and has lately become an intensively researched topic in the field,
maybe one of the most popular applications falling under the framework is machine
translation including large and active community with many mature model imple-
mentation libraries. Therefore, in this work we rely on an existing neural machine
translation model implementation by Klein et al. (2017). The model architecture to-
gether with an example input–output sequence, is illustrated in Figure 4. The items in
the input sequence (individual characters as well as individual morphosyntactic tags)
are encoded using two bidirectional LSTM layers to create contextual representa-
tion of each item in the input, while the output sequence is generated by a decoder
with two unidirectional LSTM layers with attention over the encoder representation.
While the encoder-decoder model is build using recurrent layers, there is no limita-
tions towards specific layer structures, thus replacing the recurrent layers with e.g.
self-attention layers (Vaswani et al., 2017) is entirely possible. However, during pre-
liminary studies, an indication towards self-attention being more beneficial was not
noticed.

Using this framework, the lemmatizer models can be trained by creating training
examples using individual tokens from the UD treebanks (or any other resources
including tokens with their morphosyntactic analysis). During training time, gold
standard tags are used, however, at prediction time the evaluation can be based on
gold standard tags or predicted morphosyntactic tags in order to get more reliable
real-life evaluation numbers.

33



Jenna Kanerva

2.3.3 Results and Discussion

The evaluation is carried out on 76 treebanks representing 52 different languages
from the UD v2.2. release. Primarily, we measure macro-accuracy over all evalua-
tion treebanks, however, we also measure the macro-accuracy metric separately for
different treebank groups as determined based on the amount of training data avail-
able (big, small and low-resource), or the design principle (PUD, which includes
treebanks with the same underlying text translated into several different languages).
The evaluation setting is adopted from the CoNLL 2018 shared task. The macro-
average accuracy of our lemmatizer is above 92% when measured across all tree-
banks using predicted segmentation and predicted morphosyntactic features. When
using the same task setting, but excluding treebanks from the low-resource category
(5 treebanks, each having only close to 20 sentences in the training sets), the macro-
average accuracy is above 95%, with individual treebanks ranging between 82.9%
(Hebrew-HTB) and 99.7% (Indonesian-GSD). For UD Finnish-TDT, the lemmatiza-
tion performance is 95.40 on predicted segmentation and morphosyntactic features,
improving more than 8pp absolute compared to the CoNLL-17 level.

When comparing our system with several recent baselines used in Paper II, UD-
Pipe v1.2 (Straka and Straková, 2017), UDPipe Future (Straka, 2018), Stanford (Qi
et al., 2018), Lematus (Bergmanis and Goldwater, 2018), and dictionary lookup,
our lemmatizer outperforms the other tested systems in three treebank categories
(big, PUD, and small) with approximately 1.4-8.5 absolute points. While both UD-
Pipe v1.2 and UDPipe Future are based on the edit-tree classification, Stanford and
Lematus apply sequence-to-sequence approach. The Stanford system uses dictionary
lookup for words seen in the training data while training a context-free sequence-to-
sequence backup model for unknown words. Lematus is a context-aware sequence-
to-sequence lemmatizer, where the word is given together with 20 characters from
its immediate context on both sides of the word. The above mentioned evaluation re-
sults show that our lemmatization approach outperforms the baselines in cases where
reasonable amount of training data is available. We see the advantage of our model
being the combination of flexibility of the sequence-to-sequence approach combined
with the easily learnable, dense contextual representation. In the fourth treebank cat-
egory, low-resource, where it’s apparent a good neural lemmatizer cannot be trained
using only 20 training sentences without any kind of pre-training of the model, the
simplest of the machine learned baseline models (UDPipe v1.2, where the lemma-
tizer is in practice limited to select one of the very few possible edit-trees seen in
the training data) gives the best results. However, the naive dictionary lookup over
training data performs comparably to the other systems in this category, the over-
all macro-accuracy in low-resource setting being between 40–65% for all systems,
making all of these impractical for real applications.

In Paper II we also study several data augmentation techniques. Especially in ex-
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tremely low-resource settings, where the off-the-shelf model performance is shown
to be weak, model pre-training, training data augmentation or cross-lingual transfer
methods could be potential for lifting the model performance. One additional advan-
tage of our compact context representation is the possibility to utilize (word, tags,
lemma) -triplets isolated from their natural sentence context. This allows us to rather
straightforwardly use manually annotated resources through related projects includ-
ing such information, for instance data extracted from Wiktionary10 (Ylönen, 2022)
or rule-based morphological transducers, to generate additional training examples
for our system.

In Paper II we conduct a study where we lean on the Apertium morphologi-
cal transducers capable of returning all known (tags, lemma) -tuples for given input
words. While the morphological transducer itself does not disambiguate the possi-
ble readings in context, the transducer output can easily be used to create individ-
ual examples for our training regime without any disambiguation, only needing a
language-agnostic feature mapping from Apertium morphological features into UD.
When evaluating this data augmentation approach on four of the five low-resource
languages (Armenian, Buryat, Kazakh, and Kurmanji, which include a morpho-
logical transducer in the Apertium), we notice extremely good generalization per-
formance if reliable morphosyntactic features are available. When measuring the
lemmatization accuracy on gold standard morphosyntactic tags, the lemmatization
performance is 91%–96%. However, if using predicted tags from a tagger trained
on the available treebank data (~20 training sentences per language), the lemmatiza-
tion accuracy drops to 58%–74% hinting on severe error propagation. Therefore it
is still an open question how to obtain reliable tagger predictions in order to utilize
the potential of our data augmented lemmatization models for these low-resource
languages.

2.4 Turku Neural Parser Pipeline
During the lemmatization work, we wanted to evaluate our lemmatizer models as part
of the CoNLL 2018 shared task on Multilingual Parsing from Raw Text to Univer-
sal Dependencies (Zeman et al., 2018) in order to obtain comprehensive comparison
with lemmatization approaches used in current state-of-the-art parsing systems. To
this end, we needed to build a full pipeline capable of carrying out segmentation,
morphological tagging, parsing, and lemmatization steps for given raw text input.
In addition to participating in the CoNLL 2018 shared task, we also wanted to pro-
vide an upgraded version of the Finnish parser pipeline to support state-of-the-art
structural analysis of Finnish language.

To this end, we developed Turku Neural Parser Pipeline introduced in Paper

10https://wiktionary.org
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III. Our overall objective was to develop an easy-to-use parsing pipeline to be used
for analysing raw text for different downstream applications. Although our main
interest was in Finnish language, we also strove for the pipeline to perform well on
other languages and all treebank sizes without requiring any language or treebank
specific method adaptation. With this in mind and based on the knowledge learned
from the CoNLL 2017 shared task results, we decided to rely on openly available,
then state-of-the-art components for segmentation, tagging and parsing, adapted to
our purposes when necessary, while integrating our own lemmatizer introduced in
the previous section.

Next we summarize the initial Turku neural parser pipeline as it appeared in the
CoNLL 2018 shared task submission and is described in Paper III. While this sec-
tion describes the parser as introduced originally, the upcoming Sections 2.5 and 2.6
describe the improvements done after the shared task, as well as the current state-of-
the-art in Finnish parsing.

2.4.1 Parser Modules

Segmentation The segmenter module of the pipeline is based on UDPipe by Straka
and Straková (2017), which jointly performs sentence and token boundary detection
using single layer bidirectional GRU network. For each character, the network pre-
dicts whether the character is the last one in a sentence marking both sentence and
token boundary, the last one in a token marking token boundary, or no segmenta-
tion boundary character. After boundary detection the UDPipe segmenter includes a
separate model for multiword token (MWT) expansion in order to split tokens such
as ettei in Finnish (see Section 1.3.1 for more detailed explanation of MWTs). The
MWT expansion model generates a set of suffix rules learned from the training data
to split and expand multiword tokens into two syntactic words.

Part-of-Speech and Morphological Tagging The part-of-speech and morpholog-
ical tagging module is an adaption of Dozat et al. (2017). The tagger is a time-
distributed affine classifier over tokens in a sentence including two classification lay-
ers, one meant for universal part-of-speech tags and one for language-specific part-
of-speech tags in UD. While the original tagger was not designed to predict the mor-
phological features, in our modification we included the prediction of morphological
features by simply concatenating the language-specific POS tag and all morpholog-
ical features into a single prediction task by predicting the full concatenated string,
such as NOUN/Case=Nom/Number=Sing as one class in multiclass classification.
Therefore, the internal structure of the original model was not changed but rather we
adapted the label set used in the multiclass classification. Both classification layers,
UPOS and combined XPOS plus FEATS, utilize shared token embeddings contextu-
alized using a bidirectional LSTM layer. These token embeddings are a combination
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of pre-trained word embeddings, randomly initialized word embeddings, and a rep-
resentation built from sequences of characters created with an unidirectional LSTM
layer.

Lemmatization The lemmatization component of the pipeline is the Universal
Lemmatizer from the Paper II. In the pipeline, the lemmatizer component is po-
sitioned after the tagger, and therefore it is able to utilize the part-of-speech and
morphological tags predicted by the tagger. Together with the sequence-to-sequence
lemmatizer, a pre-computed lemma cache is used to prevent computing the lemma
multiple times for same input features. Each time the lemmatizer is launched, the
lemma cache is prefilled with examples from the training data, and dynamically ex-
tended with all lemmatized words so that the output is computed only once for each
unique input features during each running instance of the lemmatizer. For models
where the contextual information is represented using the nearby lexical context, this
approach would not be practical due to data sparsity, however, the dense context
representation of the Universal Lemmatizer makes such cache feasible to maintain.

Dependency Parsing The dependency parser used in the pipeline is the graph-
based parser by Dozat et al. (2017). In this parser, each token is first embedded
as a combination of pre-trained, randomly initialized, and character LSTM -based
token embeddings together with embeddings for the part-of-speech tags. These to-
ken representations are contextualized using bidirectional LSTM layers, obtaining
the contextualized representation for each token from the final LSTM layer. Token
representations are then projected using four different ReLU layers to two, jointly
trained biaffine classifiers, one for deciding a head for each token by computing a
score for each token pair, and one for deciding a label for each dependent-head pair
by computing a score for each label for the given token pair. Our module follows the
original implementation of the parser, the only difference being in the parser input
where also morphological features are utilized. Since our part-of-speech tagger was
modified to predict morphological features together with the language-specific part-
of-speech tag as single classification, as a consequence the parser obtains information
about the predicted morphological features through the input embeddings originally
embedding language-specific part-of-speech tags, but in our pipeline including a sin-
gle embedding for a combination of the language-specific part-of-speech tag and
morphological features.

Pipeline Structure The parsing pipeline is designed to produce full morphosyntac-
tic analysis from raw text into dependency trees using a single command, therefore
making the usage easy for people outside the core NLP community as well. The
pipeline is a combination of the above mentioned modules with a possibility for
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easily including additional modules for optional text processing (e.g. cleaning noisy
Internet language), or dropping some of the existing modules if not needed at the
moment. The pipeline runs the defined modules in the given order, as it’s common
to have another module as prerequisite. The modules are run parallel trying to avoid
stalling, where the next module would be waiting for the former to finish. There-
fore, the input is divided into smaller batches, where each batch is forwarded into the
next module immediately after the current processing is finished, while the current
module starts to process the next batch simultaneously.

2.4.2 Turku Neural Parser Pipeline at CoNLL-18 Shared Task

As mentioned previously, the CoNLL 2018 Shared Task on Multilingual Parsing
from Raw Text to Universal Dependencies continued the tradition of CoNLL 2017
shared task by evaluating the participating systems on a highly multilingual tree-
bank collection using predicted segmentation as well as encouraging participant to
provide also intermediate analysis such as part-of-speech tags and lemmas. While
the primary metric in the CoNLL 2017 shared task was the widely used labeled at-
tachment score (LAS) involving only dependency relations, the CoNLL 2018 shared
task introduced three primary metrics, LAS, morphology-aware LAS (MLAS, the
proportion of tokens with correct head, a subset of morphological features and func-
tional dependents correctly predicted), and bi-lexical dependency score (BLEX, the
proportion of head–dependent content word pairs whose dependency relation and
both lemmas are correct), where MLAS and BLEX involved the evaluation of mor-
phological features or lemmas together with the dependency relations. This further
encouraged participants for working on systems with accurate prediction of interme-
diate steps as well, partly impacting on our decision of participating the shared task
with our lemmatization work.

The Turku neural parser pipeline ranked 1st (BLEX), 2nd (MLAS) and 2nd
(LAS) on the three primary evaluation metrics in the shared task among 25 par-
ticipants. The results are summarized in Table 4 for all different metrics comparing
our system with the best competitor in each metric in terms of macro average over all
shared task treebanks. Together with this comparison, the official rank of our system
is given for all different evaluation metrics. Reflecting the design principles of our
pipeline, we ranked 1st on the two metrics evaluating lemmatization, Lemmas and
BLEX, while the system ranked in the top 5 on all metrics.

In terms of Finnish, our pipeline obtained LAS score above 86%, UPOS accu-
racy above 96%, and lemmatization accuracy above 95% on the UD Finnish-TDT
treebank. As a ballpark comparison, the original Finnish parser pipeline from Haver-
inen et al. (2014) had approximately 5pp worse LAS score, 2pp worse part-of-speech
score, and more than 3pp worse lemmatization score. One must keep in mind here
that the numbers are not directly comparable, however, the difference is still indica-
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Metric Ours Rank Best Competitor
Tokens 97.83 4. 98.42 (Che et al., 2018b)
Words 97.42 5. 98.18 (Smith et al., 2018)

Sentences 83.03 5. 83.87 (Che et al., 2018b)
UPOS 89.81 4. 90.91 (Smith et al., 2018)
XPOS 86.17 3. 86.67 (Straka, 2018)

Features 86.70 3. 87.59 (Smith et al., 2018)
All Tags 79.83 2. 80.30 (Straka, 2018)
Lemmas 91.24 1. 89.32 (Straka, 2018)

UAS 77.97 4. 80.51 (Che et al., 2018b)
CLAS 69.40 2. 72.36 (Che et al., 2018b)

Primary Metrics
LAS 73.28 2. 75.84 (Che et al., 2018b)

MLAS 60.99 2. 61.25 (Straka, 2018)
BLEX 66.09 1. 65.33 (Che et al., 2018b)

Table 4. CoNLL 2018 official results for different metrics when measuring macro average over all
shared task treebanks.

tive of the overall direction. It’s evident that the two CoNLL shared tasks affected
positively to the accuracy of Finnish parsing.

2.5 Turku Enhanced Parser Pipeline
Paper IV continues the work on the Turku neural parser pipeline, and extends the
pipeline in two directions: 1) utilizing pre-trained Bidirectional Encoder Represen-
tations from Transformers -model (BERT) as contextualized representation of the
input words in a sentence rather than word embeddings, and 2) producing depen-
dency graphs with enhanced UD relations instead of dependency trees. Otherwise,
the pipeline adheres to the design principles of the Turku neural parser pipeline, leav-
ing the segmentation and lemmatization components untouched, while upgrading the
tagging and parsing modules.

2.5.1 Pre-Trained Contextualized Language Models

Transfer learning using the pre-train–fine-tune paradigm of massive language mod-
els have shown its potential across different NLP tasks (Ruder et al., 2019). In this
paradigm the language modelling objective is used to pre-train the feature repre-
sentation on unannotated corpora in order to obtain a general representation of the
language, while later fine-tuning the learned representation into the specific task by
using task specific, supervised training data. Especially with the existence of contex-
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tualized language models, such as ELMo (Peters et al., 2018), BERT (Devlin et al.,
2019), GPT (Radford et al., 2019), or T5 (Raffel et al., 2020), capable of producing
contextualized word embeddings and/or embeddings for text segments longer than
words, contrasting to earlier distributional semantics approaches such as word em-
beddings (like word2vec and GloVe), numerous NLP task requiring deep language
understanding have recently gained promising results. For example, in different nat-
ural language understanding benchmarks such models have helped to substantially
narrow down the gap between human and model performance (see e.g. Wang et al.
(2018), Wang et al. (2019), Raffel et al. (2020), Sun et al. (2021)).

The contextualized language models have been widely applied in dependency
parsing as well. Che et al. (2018a) modified the Dozat et al. (2017) biaffine parser by
replacing the embedding layers with deep contextualized word embeddings (ELMo)
pre-trained on large web crawl corpora. Kulmizev et al. (2019) on the other hand
experimented with both transition-based and graph-based dependency parsers uti-
lizing ELMo or BERT pre-trained language models. Both of these studies utilized
monolingual fine-tuning on top of either monolingual ELMo models, or the Google’s
multilingual BERT model (mBERT). Kondratyuk and Straka (2019) presented a mul-
tilingual multi-task model referred to as Udify, where the mBERT model was fine-
tuned into 75 languages simultaneously, thus producing a single model capable of
creating predictions for 75 different languages, and four layers of morphosyntactic
analysis (part-of-speech and morphological tagging, lemmatization, and dependency
parsing). While the Udify model showed state-of-the-art performance for many lan-
guages, its accuracy for Finnish was clearly below the baseline performance. As we
later showed in Virtanen et al. (2019), the Udify model architecture itself is perfectly
suitable for producing state-of-the-art results also for Finnish. In the original study
there were two independent reasons for the failure in terms of Finnish parsing ac-
curacy. Firstly, in the study the Udify model was trained simultaneously for 75 UD
languages using all available training resources for each language, therefore meaning
the two independent Finnish treebanks including training data, UD Finnish-TDT and
UD Finnish-FTB, were merged during training, and therefore the model learned from
the mixture of the Finnish training data. However, previous studies have shown that
both cross-treebank experiments as well as combining the training sets of the two
Finnish treebanks will cause substantial decrease in parsing performance (Aufrant
et al., 2017; Vilares and Gómez-Rodríguez, 2017), the likely cause being annotation
inconsistencies between the treebanks. Secondly, the original study trained the Udify
model by fine-tuning the multilingual mBERT model, which was later shown to be
sub-optimal for Finnish.

However, based on the general success of incorporating pre-trained language
models for dependency parsing, especially the Udify’s multitask fine-tuning approach
showing state-of-the-art results for many languages, in Virtanen et al. (2019) we fine-
tuned the Udify multitask network separately for each UD Finnish treebank using the
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language-specific FinBERT language model11 as the starting point. The study led to
a new state-of-the-art performance on Finnish parsing, outperforming strong base-
lines by more than 3pp in LAS (absolute). Based on this positive outcome, the Turku
neural parser pipeline was updated to support pre-trained BERT models using the
Udify multitask predictor in Paper IV.

Furthermore, following the positive results of studies introducing other language-
specific BERT models (e.g. de Vries et al. (2019), Kuratov and Arkhipov (2019),
Martin et al. (2020)), we hypothesized the parsing performance can substantially
improve for several languages with dedicated language-specific models compared
to the mBERT model, the de-facto standard multilingual BERT model at that time.
In particular, in Virtanen et al. (2019) we report a +4.95pp absolute improvement
in LAS when switching from the mBERT language model to the FinBERT model,
when fine-tuning the Udify parser on the UD Finnish-TDT corpus. To follow this,
in Paper IV we carried out a systematic study of language-specific (or language-
group-specific) BERT models compared with the mBERT model, training new BERT
models based on Wikipedia dataset (WikiBERTs, Pyysalo et al. (2021)) especially
for languages where language-specific BERT models did not exist beforehand.

Out of 21 treebanks (17 languages) we found the language-specific BERT model
(either an existing language-specific model or our newly trained WikiBERT model)
outperform mBERT on 18 treebanks, when fine-tuning the Udify parser for each tree-
bank separately, and measured on the development section in terms of LAS. How-
ever, in most of the cases, the difference is only moderate, the average improvement
being 1.5pp (reducing errors an approx. 13%) over all treebanks. When comparing
different treebanks and languages, the largest improvement is in fact seen for Finnish
(+5.0pp), followed by Swedish (+3.6pp) and Lithuanian (+2.2pp).

2.5.2 Enhanced Graph Representation

Many downstream applications capable of utilizing syntactic analysis, such as open-
domain relation extraction or biomedical event extraction benefit from two words or
entities being directly connected in the syntactic analysis (Bassignana et al., 2023).
While the UD representation is generally well suited for such downstream appli-
cations by directly connecting content words rather than connecting them trough
functional words, many phenomena remain hard to capture through single relations
between words. For such reasons, many syntactic annotation schemes define also
additional annotation layers suitable for annotating structures beyond syntactic trees,
producing a graph output. As discussed already in Sections 1.4.1 and 1.4.2, the Stan-
ford Dependencies annotation scheme, used in the annotation of Turku Dependency
Treebank, defines an extended variant for additional dependency relations on top of

11https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1
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the base tree, and the Universal Dependencies scheme includes the enhanced repre-
sentation for similar phenomena annotated in UD treebanks. Such relations help in
having a shorter dependency path, in many cases a single relation, between interest-
ing entities or other content-bearing words, and help to support certain downstream
applications that benefit from representations capturing more aspects of the seman-
tics.

Parsing into such graph representations has a long history with several approaches
taken. Sagae and Tsujii (2008) introduced a simple extension of the transition sys-
tem used in traditional transition-based dependency parsers (Nivre, 2004) supporting
parsing into directed acyclic graphs (DAGs) rather than trees. While in the tradi-
tional transition system, the treeness is enforced by directly reducing the token from
the system when an arc (relation) is created, the extended version defined additional
transitions for creating an arc without reducing the token from the system, and thus
allowing a second relation to be created later in the process. On the other hand,
McDonald and Pereira (2006) approach the DAG parsing from the perspective of
graph-based dependency parsers (McDonald et al., 2005), where the treeness is tra-
ditionally enforced by searching for a maximum spanning tree (MST) in directed,
weighted graphs. In graph parsing work the strict MST decoding of graph-based
parsing was replaced with approximate inference thus allowing output where a word
may depend on multiple heads. In addition to dependency relation, parsing into
graphs is also studied in the area of semantic parsing involving different semantic
structures including e.g. proposition banks (Palmer et al., 2005) or abstract mean-
ing representations (Banarescu et al., 2013), with several different parsing strategies
taken.

While parsers capable of producing output not limited to the tree structure ex-
ist, most of the state-of-the-parsers implement the treeness requirement. In order to
keep our pipeline as flexible as possible while producing enhanced graphs, and to
be able to utilize any state-of-the-art, openly available parser also in the future, in-
stead of parsing directly into the enhanced graph output, we considered two different
approaches both implemented in terms of base trees: 1) encoding the enhanced rep-
resentation into the base trees by enriching the set of dependency types, each depen-
dency type encoding the base tree relation as well as additional enhanced relations
when applicable, or 2) alternatively introducing the enhanced relations separately af-
ter the base parsing, creating a two-step approach. After preliminary experiments in
Paper IV, we continued with the former approach. The overall approach of encoding
the graph into the base tree is well-known and has been applied previously, e.g. by
a number of teams in the SemEval tasks on semantic dependency parsing (Oepen
et al., 2014, 2015).

In order to encode enhanced dependencies into the base tree, we concentrated
on four different structures, which empirically measured cover the vast majority of
the enhanced relations in existing UD annotations. The four encoded structures are
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Figure 5. The four enhanced dependency structures captured in the encoding. The base (b) and
enhanced (e) relations in the left column are encoded in a tree structure as in the right column. In
the encoding, the symbol > stands for "relation from", < stands for "relation to", H is the head in
the base tree, and HH is the head of the head in the base tree. [This figure was originally
published in Paper IV.]

illustrated in Figure 5, from top to bottom being (1) an enhanced relation from base
head to base dependent, (2) enhanced relation from base dependent to base head,
(3) an enhanced relation from base head of head to base dependent, and (4) an en-
hanced relation from base dependent to base head of head. During encoding, the tree
structure of the base tree is not changed, and all information is instead transferred
to the base label names, indicating that in addition to the base relation, an enhanced
relation should be created from X to Y with relation type of Z. This is also the case
in situations where the direction or parent of the enhanced relation differs from the
base relation as shown in the figure, where the direction is simply encoded with an
arrow (< or >) and two supported parent tokens with H (head in base tree) or HH
(head of head in base tree). Even though this simple encoding scheme does not sup-
port arbitrary relations, in practise it’s able to obtain near lossless representation for
many UD treebanks, as will be shown later.

The downside of this approach is that the number of unique relation types in-
creases substantially. While the above mentioned transformation gives us a label set
of (base relation types * enhanced relation types * 4 enhanced structures), in practise
the set of enhanced relation types is even more varied due to many lexicalised rela-
tion types, where the lemma of the head token or dependent token is encoded in the
relation type (e.g. conj:and relation type in enhanced UD referring to the usage of
coordinating conjunction and in coordination). In order to reduce the label set size
in a language-agnostic fashion, we replaced the actual lemma with a placeholder en-
coding from which position (head or dependent) the lemma can be obtained during
detransformation (e.g. conj:d-lemma).

The UD enhanced relations involve also representing empty nodes occurring in
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elliptic constructions, where we again rely on the relation types and encode the empty
nodes by following the procedure used in the shared task evaluations as well. In this
encoding, the original relations involving an empty node e in between, (h, e, r1) and
(e, d, r2), are encoded with one direct relation (h, d, r1>r2) with both relation types.
After all relations involving the empty node are encoded, the node can be removed.
Similarly to others, this encoding is straightforward to reverse, the only exception is
that the position of the original empty node is not stored, however, the position of the
node is not determined to be relevant in the shared task and is not evaluated.

The final encoding is executed in the following order: 1) empty nodes 2) lex-
icalised relations are replaced with placeholders, 3) encode the four main relations
showed in Figure 5, and 4) discard all remaining enhanced relations. After this proce-
dure, we obtain a dependency tree, and the parser can be trained in a normal manner.

The encode-decode procedure can be evaluated with one transform–detransform
cycle without an involvement of a parser, by first encoding the enhanced training
graphs into trees, and then directly decoding them back, and measuring the Labeled
Attachment Score on Enhanced dependencies (ELAS, F1-score over the set of en-
hanced dependencies in the system output and the gold standard) of the decoded
data against the original. A lossless representation would result in ELAS of 100%.
Across different UD treebanks, this value is in the 97.9–99.9% range, showing the
encoding not being far from lossless, and only a minimal gain can be expected from
encoding more complex structures. However, we note that this reflects the compar-
ative structural simplicity of the enhanced relations present in the UD data, rather
than the generality of our encoding. As a comparison, when measuring the ELAS
using only gold base dependency trees as enhanced predictions, i.e. not trying to
represent the enhanced relations at all and therefore measuring the oracle ELAS per-
formance of a system limited to predicting only base trees, the score ranges between
67.3–98.0% across different treebanks (average being 80.7%), showing a clear drop
compared to our encoding method.

During the prediction phase, a de-transformation of the encoding is executed in
reversed order to obtain the desired dependency graph. However, there is a pos-
sibility of the parser producing a combination of encoded relations not leading to
a valid enhanced representation after the de-transformation. Therefore, during the
de-transformation all erroneous predictions producing invalid UD representation are
deleted, possibly replacing the deleted relations with a valid approximation of the
predicted relation in order to create a valid graph structure.

2.5.3 Turku Enhanced Parser Pipeline at the IWPT-2020 Shared
Task

The IWPT 2020 shared task on Parsing into Enhanced Universal Dependencies (Bouma
et al., 2020b) focused on evaluating several phenomena defined in the UD enhanced
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representation. Such phenomena include gapping, coordination, control and rais-
ing constructions, relative clauses as well as case information, producing output ex-
pressed as dependency graphs, where a token may have multiple parent tokens rather
than dependency trees, where only single parent is allowed for each token.

Similar to the CoNLL-18 shared task, the IWPT-2020 shared task evaluated the
enhanced dependencies on top of predicted segmentation and morphological fea-
tures, striving for systems starting from raw text and producing full dependency
graphs. However, several intermediate steps, part-of-speech and morphological tag-
ging, lemmatization, and base parsing into dependency trees, were optional in the
shared task, and evaluated only as secondary metrics, the key focus being on en-
hanced relations.

System Overview For tokenization, multiword token expansion and sentence split-
ting we apply the Stanza toolkit by Qi et al. (2020), where all three are implemented
as joint tagging over character sequences, where the model predicts end-of-token,
end-of-sentence and end-of-MWT markers. After the identification step, MWTs are
expanded as a separate step using a combination of frequency lexicon and neural
sequence-to-sequence model. The models are obtained from the official released
trained with each UD v2.5 treebank separately.

For part-of-speech and morphological tagging as well as dependency parsing we
apply the multi-task Udify model initialized using weights from pre-trained language
models. Udify implements separate prediction layers for each of the supported tasks
learned jointly on top of the pre-trained BERT encoder. Before training the Udify
models, the enhanced dependencies were encoded as relation types in the base tree
using the encoding method described in the previous section. The Udify model is
trained separately for each language instead of the original multilingual training.

For lemmatization, we use the Universal Lemmatizer described in Section 2.3
and Paper III, trained straightforwardly using the treebank data only.

As the shared task evaluation is carried out in terms of languages instead of indi-
vidual treebanks, where all available treebanks for one language are merged together
in the evaluation, for each language, we trained a model using the largest treebank
(in terms of token count) in the shared task data release. All segmentation, tagging,
parsing, and lemmatization models are thus monolingual and fine-tuned using data
from a single treebank only. For each language the fine-tuning is based on a custom
pre-trained BERT model selected based on the experiments reported in Section 2.5.1
and Paper IV.

Results The primary evaluation metric used in the shared task, ELAS, calculates
F-score over the set of enhanced dependencies in the system output and gold stan-
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dard.12 Over the 10 teams submitting their systems in the time of the shared task
submission, the Turku Enhanced Parser Pipeline achieved the highest performance
in terms of the primary ELAS metric on average. For UD Finnish-TDT, our enhanced
parser obtained 92% LAS and 89% ELAS, indicating high quality prediction of both
base and enhanced relations. The accuracy of part-of-speech and lemmatization was
98% (UPOS) and 96% (lemmas). In terms of LAS, UPOS and lemmas, the perfor-
mance increase is approximately +6pp, +2pp and +1pp respectively when compared
with our CoNLL 2018 results, the biggest achievements coming from utilizing the
pre-trained FinBERT language model.

In our preliminary experiments we measured whether the more complex labeling
scheme used after the graph-to-tree transformation harms the prediction accuracy of
the base dependency trees, and therefore the joint prediction of base and enhanced
relation not giving an optimal accuracy for base trees. Most notably, when comparing
the LAS of two near identical parsers, where one predicts only the base trees trained
without including the enhanced dependencies in training, while the second is trained
to predict the base trees where the labels include also information about the enhanced
dependencies (the official IWPT submission), the accuracy of the base tree prediction
(LAS) was nearly identical. Interestingly, the more complex relation labels therefore
did not seem to harm the accuracy of the base relations.

2.6 Parser Utilization and Discussion
In this chapter we have presented work from four research papers, all building to-
wards high-quality syntactic parsing pipeline of Finnish following the Universal De-
pendencies annotation scheme. The Paper I builds the essential groundwork for this
research direction by introducing the first Finnish treebank available in the UD data
collection, enabling the later participation in several highly popular shared tasks as
well as many multilingual studies carried out on the UD data collection. The Papers
II-IV concentrated more on technical aspects by studying different machine learn-
ing methods for morphosyntactic parsing. During these studies, we were able to
substantially improve the accuracy of morphosyntactic parsing when measured on
Finnish data. While our motivation mainly arose from the Finnish language, our
contributions are highly multilingual, showing state-of-the-art results for a number
of languages.

While majority of the academic work in the field of NLP strives towards devel-
oping highly accurate systems, other aspects of the software become crucial, particu-
larly when deploying research software beyond its core developers. This is especially
true in the area of morphosyntactic parsing, where many potential end-users, such as

12Note that in UD representation, most of the base relations are repeated in the enhanced representa-
tion if not explicitly deleted or replaced with another relation. Thus in ELAS metric, most of the "base
relations" are taken into account as well.
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researchers in linguistics or digital humanities, might not possess the same compu-
tational resources or skills as NLP developers. This creates certain limitations for
research software if being deployed for end-users outside the NLP field. Given the
concerns mentioned above, we have made several modifications to the components
of the Finnish parser since the version detailed in this chapter and the accompany-
ing papers. While the most accurate segmentation was achieved with models from
the Stanza framework, during the shared task work the prediction speed of these
models was found to be suboptimal. Although the performance difference between
UDPipe and Stanza segmenters was significant, it was not substantial, leading us to
choose the faster UDPipe component for large-scale deployment of the parser. Re-
garding computational skills, one concern is how easy the software is to install and
use. While the usage of the parser is often relatively simple due to the provided
top-level commands, installing cutting-edge research software that relies on multi-
ple deep learning libraries can be challenging. We encountered this issue on several
occasions when an update to one of these libraries caused failures in different parts
of the pipeline. To address this we have done some modifications to the pipeline im-
plementation (e.g. switching from Udify to Diaparser13 and implementing a custom
tagger), aiming for keeping the pipeline more stable and up-to-date. These kind of
changes naturally have a small impact on the evaluation results, however, they do not
substantially impact the outcomes as presented in this thesis.

Our publicly available Finnish parsing models has been used in several academic
studies. To name few, for example Ivaska and Bernardini (2020) used the auto-
matic analyses of the parser pipeline to study linguistic phenomena distinguishing
constrained (non-native or translated) Finnish from non-constrained one, as well
as distinguishing linguistic phenomena between different text registers. Kuusinen
(2021) used the lemmas produced by the parser in the study of vocabulary diver-
sity of Finnish learners. Janicki et al. (2020) on the other hand combined the parser
pipeline into the workflow of news media analysis in the area of digital humanities.
While the Finnish lemmatizer appears to be the most used function of the Finnish
parsing pipeline, also other layers of analysis are utilized. For example, Ibrahim
et al. (2019) utilizes the syntactic trees to identify common verbs and adjectives as-
sociated to different named entities in health related discussions, while Seuri et al.
(2021) uses syntactic rules based on lemmas, part-of-speech tags, and syntactic rela-
tions for automatic extraction of direct and indirect quotations from news articles in
media and political communication analysis. In addition to Finnish academic com-
munity, our parser has been used outside the academic circles as well in different
public organizations or in the Finnish industry. However, measuring the software
usage outside the academia is not straightforward due to these rarely leading to sci-
entific publications.

13https://github.com/Unipisa/diaparser
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Several novel research directions in syntactic parsing have emerged subsequent
to our work. For instance, Nguyen et al. (2021) introduced Trankit, a multitask
learning framework based on adapter layers (Pfeiffer et al., 2020a,b), where the same
underlying pre-trained language model, multilingual XLM-R model (Conneau et al.,
2020) in their case, is fine-tuned for different tasks and languages by training several
lightweight adapter layers while keeping the language model weights frozen. While
the state-of-the-art results are continuously improving, their work is at least near the
current state-of-the-art, especially when considering average performance over all
UD treebanks. For Finnish, Trankit and the Turku neural parser pipeline give quite
comparable results when taking into account the size of the pre-trained language
model used.
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While the structure of the language is a crucial element in successful communication,
it does not uniquely convey the whole meaning. Altering sentence structure often in-
fluences meaning, and conversely, identical meanings can be expressed through a
variety of grammatical constructs and lexical selections, i.e. paraphrasing. While
many paraphrase pairs share some lexical cues, like overlapping words or phrases,
they often undergo significant structural changes, as well as lexical synonym substi-
tutions or the use of culture-bound idioms. This leads to cases where the paraphrase
pair may not share any single surface unit, but is nevertheless completely (or at least
almost completely) equivalent in meaning.

With the recent advancements in powerful, pre-trained language models for var-
ious traditional NLP tasks, there has been a growing interest in tasks that are more
semantically oriented. Particularly, the recent progress has given hope of these mod-
els genuinely comprehending language rather than relying on simple surface cues.
However, in several language understanding tasks the performance of these mod-
els have still been far from human capabilities, in many cases the model learning
data artefacts rather than truly focusing on real semantics (Glockner et al., 2018;
Tsuchiya, 2018; McCoy et al., 2019). In practical terms, we would like to have a
well-established method capable of consistently generating highly similar represen-
tations for statements with equivalent contextual meanings but varying wording. The
scarcity of deeply semantically-oriented resources in Finnish has slowed down such
research direction. Thus we center our second set of research questions (RQ4 and
RQ5) around this theme, and set out to study methods for constructing a high-quality
corpus of Finnish paraphrases.

This chapter summarizes the creation of the Turku Paraphrase Corpus originally
presented in Paper V. While the utilization of sentence-level heuristics is a prevalent
approach for constructing large-scale paraphrase corpora, we hypothesize that these
techniques might introduce a bias toward shorter and more straightforward instances
that can be automatically recognized. To build a dataset emphasizing diverse para-
phrases while avoiding selection bias towards short and lexically overlapping pairs,
we study a novel manual paraphrase extraction approach. Employing this approach,
we construct a corpus of over 100,000 paraphrase pairs, and proceed to compare its
lexical diversity and length distribution with two paraphrase resources collected us-
ing automatic candidate identification. Additionally, we present baseline modelling

49



Jenna Kanerva

experiments conducted on the newly annotated data.

3.1 Building the Turku Paraphrase Corpus
A common way to construct a paraphrase corpus is to include a large amount of auto-
matically gathered and labeled examples (with an optional manually curated evalua-
tion section) (Dong et al., 2021; Wieting and Gimpel, 2018), or alternatively building
a relatively small corpus of manually annotated examples (Dolan and Brockett, 2005;
Lan et al., 2017). However, when targeting to fine-tune large language models on a
paraphrasing task, many of the existing corpora are too small, while we hypothesize
that the larger, automatically gathered datasets may introduce unwanted bias towards
simpler and shorter paraphrases with higher lexical overlap. As many of the smaller,
fully manually curated corpora include examples that are automatically collected us-
ing different heuristics (Dolan and Brockett, 2005), the manual curation may not be
enough to remove the bias possibly introduced during candidate selection.

In the collection of the Turku Paraphrase Corpus we set out to gather a large-
scale, over 100,000 example corpus of high-quality Finnish paraphrase pairs with
relatively low surface similarity. In order to avoid possible candidate selection bias,
we rely on manual candidate selection, where an annotator receives two text doc-
uments, and extracts all interesting paraphrase candidates from the document pair,
later also labeling each pair based on the developed annotation scheme. Next, the
paraphrase data collection and annotation is briefly discussed, and then we will con-
tinue to evaluate our corpus from several aspects and compare its average paraphrase
length and lexical similarity with two other paraphrase corpora available for Finnish.
Finally, we briefly show several experiments where the paraphrase data is used in
different applications.

3.1.1 Manual Paraphrase Extraction

In the manual paraphrase extraction phase, an annotator receives two text documents,
and extracts all interesting paraphrase candidates from the document pair. The doc-
uments are selected to be paraphrase-rich, i.e. have a high probability for naturally
occurring paraphrases in order to secure a sufficient yield of paraphrases given the
time invested to the annotation. However, we aim to sample as many different text
sources as possible, at the same time optimizing the usage of person-months available
for annotation, especially keeping in mind the aim of gathering a corpus including
over 100,000 high quality paraphrase pairs. We experiment with five different text
sources: 1) alternative Finnish subtitles for the same movies or TV episodes, 2) news
headings and articles discussing the same event in two different Finnish news sites,
3) different messages with identical title and sub-forum information from a popular
Finnish discussion forum, 4) alternative student translations from university transla-
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tion courses, and 5) alternative student essays from university course exams. Next,
we shortly describe each text source, and then continue to the extraction workflow
and statistics.

Alternative subtitles OpenSubtitles1 provides a large amount of user-generated
subtitles for various movies and TV episodes. The subtitles are available in
several languages, and oftentimes there are several independently translated
versions for a single language. This offers an opportunity to make use of the
natural variation in language produced by independent translators by pairing
two Finnish subtitle version for a single movie or TV episode. In total, subti-
tles for over 2,700 movies and TV episodes were used for building the corpus,
however, only a randomly selected, relatively short segment from each subti-
tle pair was annotated in order to avoid a large number of unnecessarily close
examples.

News articles and headings News articles published by two different Finnish
news agencies approximately at the same time have a high likelihood of report-
ing on same events, and therefore including similar statements. While some-
times both news agencies are releasing a near-identical article obtained from
a third party source, some of the news articles are written independently by
the two agencies including legitimate paraphrasing. We utilize news articles
collected from both YLE (the national broadcaster) and Helsingin Sanomat
(Helsinki News) RSS feeds during the years 2017–2020. A total of 2,700
full-text articles and 1,500 news headings pairs were used in the paraphrase
extraction.

Discussion forum messages We hypothesize that different discussion forum
messages related to same topics include a number of naturally occurring para-
phrases. For example, different thread-starting messages under the same sub-
forum often seek information about the same topic or share related experi-
ences. Similarly, different replies to the same message often convey simi-
lar reactions. We set out to experiment with thread opening messages from
the Suomi24 discussion forum2 posted into the same subforum and having an
identical title. We were able to find both highly similar messages written by
different people, but also paraphrased messages clearly originating from the
same author. A total of 7,300 message pairs proceeded into the paraphrase ex-
traction, however, many of the document pairs did not produce any paraphrases
in the end.

1http://www.opensubtitles.org
2http://urn.fi/urn:nbn:fi:lb-2019021101
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Student translations In addition to alternative subtitles, we also initiated an
attempt to find other source materials where the same foreign text is trans-
lated into Finnish by multiple translators. One potential source of constant
amount of alternative translations is exercises from different language studies
and courses, where several people translate the same exercise text. We tar-
geted exercises taken from the university courses in translation studies. Unfor-
tunately, due to the requirement of a written consent of each student, which is
difficult to secure, we were able to gather only 16 unique exercise texts includ-
ing at least two different student translations with the appropriate permission.

University exams The final text source experimented with is student essays
collected from the university course exams, where the hypothesis is that es-
says answering the same exam assignment will include similar arguments, and
therefore have a high probability for naturally occurring paraphrases. Due to
the similar restriction than in student translations, we were able to collect a
total of 24 unique exam questions or essay assignments for which at least one
candidate pair (two alternative essay answers) was available.

Given a candidate document pair, the overall manual annotation workflow starts
from paraphrase extraction, where an annotator sees the two text documents side-
by-side in a custom tool designed for fast paraphrase extraction. The annotator can
independently scroll the two documents, and extracts a paraphrase pair by select-
ing the corresponding text passages from both documents. Annotators are instructed
to select all interesting paraphrase candidates, where a paraphrase can be anything
between a short phrase and a long text segment including multiple sentences, there-
fore the paraphrase extraction is by no means limited to follow sentence boundaries.
Candidates including only uninteresting variation, such as minor differences in in-
flection and word order, are avoided during extraction in order to collect a corpus
with non-trivial examples.

One advantage of manually extracting paraphrases from their original documents
is not only ensuring the quality of the examples but also the opportunity to gather and
assess the paraphrase candidates within their native context. During the extraction,
in addition to storing the paraphrase pair, we also save the information of where
in the document the text appeared, giving us the unique opportunity to study para-
phrasing in context rather than merely comparing two standalone segments as is the
case in most if not all paraphrase corpora. To our knowledge, this work is the first
large-scale paraphrase corpus providing original document context information for
the paraphrase pairs, setting many new possibilities for contextual paraphrase recog-
nition.

In Paper V we compare paraphrase extraction rates of different text sources from
many different aspects. In summary, the two translation based sources (alternative
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Figure 6. The amount of paraphrase pairs in the Turku Paraphrase Corpus originating from
different text sources.

subtitles and student translations) end up being the most time-efficient source materi-
als. While the alternative translations tend to include the statements in similar order,
the other materials may include similar statements but in any arbitrary order, making
it more difficult to find the corresponding statements, and thus, slowing down the
paraphrase extraction. Out of these two translation based sources, the student trans-
lations were clearly the most productive text source experimented with in terms of
time-efficiency, the high average number of paraphrase candidates extracted from a
document pair, and the low number of documents pairs not producing any candidates
(more details given in Paper V). However, due to the limited amount of student ma-
terials available, we had to mainly concentrate on the three other text sources. From
these three sources (subtitles, news, and discussion forum messages), subtitles were
by far the most efficient in terms of annotation time, and thus this source is over-
represented in the corpus. The proportional amount of paraphrase pairs obtained
from different text sources is summarized in Figure 6, the alternative subtitles dom-
inating the final dataset with 82% share, news texts and discussion forum messages
both having bit less than 10% portion both, while both student materials represent
only a tiny fraction of the corpus. To conclude the manual extraction utilizing differ-
ent text sources, the student produced materials were found promising in our experi-
ments, however, the work required to settle legal restrictions on these prevented their
large-scale utilization and therefore student based materials do not greatly contribute
to the final corpus.
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3.1.2 Paraphrase Annotation

After the candidate extraction, all candidate paraphrases are manually annotated ac-
cording to the annotation scheme developed as part of the corpus construction. The
annotation scheme consists of the base scale 1–4, where labels 1 and 2 are used for
negative candidates (1: unrelated, and 2: related but not a paraphrase), while labels 3
and above are paraphrases at least in the given context if not everywhere (3: context
dependent paraphrase, and 4: universal paraphrase) with additional subcategories
(flags) for distinguishing different types of paraphrases which would otherwise fall
from the label 4 into label 3.

While similar numeric scheme to our base scale is used in many earlier studies
to express the scale between unrelated sentences and full paraphrases (see e.g. Dong
et al. (2021) and Creutz (2018)), explicitly defined finer subcategorization is not
widely adopted in paraphrase annotation. Bhagat and Hovy (2013) defines several
categories of near paraphrases, which in practice are considered as paraphrases in
many NLP studies, however their scope of study is not to define a practical annotation
scheme. Nevertheless, some of the categories mentioned in the study comply with
our subcategorization. Our full labeling scheme is shown in Table 5 together with
example annotations.

The novel notion in the annotation scheme is its ability to separate universal
paraphrases in all context (label 4) and context dependent paraphrases being para-
phrases in the given context, however, not necessarily everywhere (label 3). The
main reasons for context dependent paraphrases are sentence ambiguities as well as
different specificity or minor details, where for example a pronoun or other reference
is clear from the context, however, the same reference does not hold in all contexts.
Similar to (Gold et al., 2019), who studied interaction between different semantic
relations such as paraphrasing and inference, we also noticed the occasional unidi-
rectionality in paraphrasing, where the paraphrase pair could be considered universal
in one direction, however, not to both directions. In order to account this behavior,
we introduced the subsumption flag between the universal and context-dependent
paraphrases to mark cases where the substitution test of universal paraphrases holds
for one direction, but not to the other, i.e. the more detailed statement can always
be replaced with the more general one without losing the principal meaning, but the
more detailed one does not fit all contexts where the general statement could be used.
Common cases of unidirectionality are pairs where one of the two statements is am-
biguous while the other is not, or one including a minor additional detail the other
is omitting. If there is a justification for crossing directionality (one statement be-
ing more detailed in one aspect while the other in another aspect), the pair falls into
context-dependent paraphrase (label 3) as the directional replacement test does not
hold anymore.

In addition to subsumption, there are also two other flags used in the corpus. The
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Label Definition Example

4 Full (perfect) paraphrase in all reasonably
imaginable contexts, one can always be
replaced with the other.

Tulen puolessa tunnissa.
Saavun 30 minuutin kuluessa.

I’ll be there in half an hour.
I will arrive in 30 minutes.

4 </> Subsumption: one of the statements is
more detailed and the other more
general. The relation is directional, the
more detailed statement can be replaced
with the more general one in all contexts,
but not the other way around. Arrow ‘points
to’ the more general one.

Haluan vain puhua opettajalle.
Tahdon vain puhua hänen kanssaan.

I just want to talk to the teacher.
I just want to talk to him/her.

4 s Tone or register: the meaning of the two
statements is the same, but the
statements differ in tone or register such
that in certain situations, they would not be
interchangeable.

Päivää tytöt!
Helou gimmat!

Good day, girls!
Hey, you gals!

4 i Minor deviation: minimal differences in
meaning or easily traceable differences
in grammatical number, person, tense or
such. The treatment is considered
application dependent.

Tämä laite on epäkunnossa.
Tuo kone on rikki.

This apparatus is malfunctioning.
That machine is broken.

3 Context dependent paraphrase, the
meaning of the two statements is the same
in the present context, but not necessarily
in other contexts.

911.
Hätänumero.

911.
Emergency number.

2 Related but not a paraphrase, a clear
relation between the two statements, yet
they cannot be considered paraphrases.

Kadonnut 12-vuotias poika löytynyt.
Poliisi etsii 12-vuotiasta poikaa.

The missing 12-y boy has been found.
The police are searching for a 12-y boy.

1 Unrelated, there being no reasonable
relation between the two statements,
most likely a false positive in candidate
selection.

Oletteko Sherlock Holmes?
Riippuu.

Are you Sherlock Holmes?
It depends.

x Skip: labeling a candidate pair is not
possible for a reason or giving a label would
not serve the desired purpose (e.g. wrong
language or identical statements).

Mikä nimesi on?
Vad heter du?

What is your name?
Vad heter du?

Table 5. The annotation scheme used in the Turku Paraphrase Corpus. Examples annotated with
label 1 (unrelated) or label x (skip) are discarded form the final corpus.
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Original
Voinko palata tehtäviini? Can I get back to my assignments?
Saanko jatkaa? Can I continue? 4>
Rewrite
Voinko palata tehtäviini? Can I get back to my assignments?
Saanko jatkaa tehtäviäni? Can I continue working on my assignments? 4

Figure 7. An illustration of one rewritten paraphrase pair taken from the corpus. Modifications are
shown using emphasized font.

style flag (s) marks for tone or register differences in cases where the meaning is in
principle the same, but the way of saying is different in a manner such that the state-
ments would not be fully interchangeable e.g. between different text registers. The
minor deviation flag (i) on the other hand tracks for certain systematic differences of-
ten occurring in the data, which create minor deviation to the meaning (such as this
vs. that), however, which in many use cases or downstream applications could easily
be ignored. However, in respect to other applications, such as paraphrase generation,
it could be desirable for the system to not learn to introduce such differences.

All flags are independent of each other (disregarding the directional subsumption
flag) and can be combined in the annotation, however, the flags are only attached to
label 4 paraphrases (subtypes of universal paraphrases). If the paraphrase pair is al-
ready annotated as context dependent (label 3), the styling and other flag differences
are not considered anymore, as the contextuality itself already covers such differ-
ences.

After the manual extraction, all paraphrase candidates are transferred into a cus-
tom label annotation tool, where the annotator can assign a label for each candidate
pair separately. In this tool, the paraphrase candidates are shown individually, but
including the original document context in order to support contextual annotation. In
addition to paraphrase labeling, the tool provides an option for rewriting each para-
phrase pair to be fully interchangeable, universal paraphrases, if the original labeling
indicates the candidate not to be such. The annotators are instructed to rewrite non-
universal paraphrase pairs in cases where a simple edit, for example word or phrase
deletion, addition or re-placement with a synonym or changing an inflection, can be
easily constructed. Rewrites must be such that the annotated label for the rewritten
example is always label 4. In cases where the rewrite would require more compli-
cated changes or would take too much time, the annotators are instructed to move on
to the next candidate pair rather than overthink the possible rewrite options. An ex-
ample of one rewritten paraphrase pair from the corpus is demonstrated in Figure 7.
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Section Examples Rewrites Total
Train 73,165 10,480 83,645
Devel 9,231 1,298 10,529
Test 9,208 1,263 10,471
Total 91,604 13,041 104,645

Table 6. Data sizes in the Turku Paraphrase corpus. [This table was originally published in Paper
V.]

3.2 Corpus Statistics and Evaluation
Statistics The total number of paraphrase pairs in the final corpus is 104,645, di-
vided into training, development and test sections using roughly 80/10/10 split. In
the Table 6 we illustrate separately for each section the number of paraphrases di-
rectly extracted from the source documents, as well as the number of human-made
rewrites, the rewrites representing 12% of all paraphrases in the final corpus. The
label distribution of the corpus is illustrated in Figure 8, showing a mere 2% of all
annotated paraphrases being labeled as negative, i.e. not representing a paraphrase
pair. The negative pairs consist of examples which are related but not paraphrases
(label 2 in the annotation scheme), as the small number of pairs determined to be
unrelated (label 1 in the scheme) were discarded from the final corpus. While the
actual paraphrase distribution is difficult to compare across different paraphrase cor-
pora due to many of them lacking manual annotation, we carry out a label distri-
bution comparison on those including full manual annotation, Microsoft Research
Paraphrase Corpus (MRPC) (Dolan and Brockett, 2005), PARADE (He et al., 2020),
ParaPhraser (Pivovarova et al., 2018), and Quora Question Pairs3 (QQP). The out-
come of the analysis shows our corpus standing out from the other resources in re-
spect of the label distribution, while our corpus includes 98% of positive examples,
the ratio is 67% in MRPC (binary annotation), 47% in PARADE (binary annotation
derived from the original 4 labels scheme in the official release), 23% in ParaPhraser
(annotation with three labels, 64% if taking into account also those labeled as having
similar meaning instead of taking into account only pairs annotated as having same
meaning), and 37% in QQP (binary annotation). While the heavily skewed distribu-
tion towards positive paraphrases include the obvious advantage of having more true
paraphrase pairs for various experiments, it also poses new challenges. For exam-
ple, when training a classifier for binary paraphrase detection with labels paraphrase
or not-a-paraphrase, it’s expected that a sufficient amount of negative examples are
available. However, our hypothesis is that it’s better to invest the expensive human
resources into finding high quality positive examples, rather than manually annotat-

3https://quoradata.quora.com/First-Quora-Dataset-Release-\
Question-Pairs
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Figure 8. Label distribution in our corpus. Here is, s, i refer to the various additional flag
combinations. [This figure was originally published in Paper V.]
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Figure 9. Comparison of paraphrase length distributions in terms of tokens per paraphrase. [This
figure was originally published in Paper V.]

ing a large amount of negative examples.

Annotation agreement To ensure the consistency of the label annotation and mea-
sure annotation agreement, approx. 2% of the paraphrase pairs in the corpus are
double annotated. In double annotation two annotators annotate the labels indepen-
dently from each other for the same paraphrase candidates, and the annotations are
merged and conflicting labels resolved together with the annotation team, resulting
in a consolidated subset of consensus annotation. When measuring the individual
annotations against the consensus labels, the overall accuracy is around 70%, when
using the full set of labels used in the annotation. The level of agreement is on par
with similar numbers reported in other paraphrase studies (Dolan and Brockett, 2005;
Creutz, 2018).
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Word unigrams Character trigrams
sim 0.0 16% sim 0.0 3%
sim 0.2 38% sim 0.2 16%
sim 0.4 68% sim 0.4 44%
sim 0.6 90% sim 0.6 79%
sim 0.8 99% sim 0.8 98%

Table 7. Cumulative percentage of paraphrase pairs falling below different similarity cutoffs
measured on the corpus training section.

Paraphrase length In order to test our hypothesis of manual paraphrase extraction
producing longer and more varied examples compared to automatically identified
candidates, we compare our corpus with two other paraphrase resources available
for Finnish. Opusparcus (Creutz, 2018) provides 3,700 manually labeled paraphrase
pairs for Finnish with an additional release of automatically scored and filtered can-
didates with different quality threshold ranging from 480K to few million candidates.
TaPaCo (Scherrer, 2020) includes 12K paraphrase candidates for Finnish without any
manual verification. Both are multilingual datasets where Finnish is one of the in-
cluded languages. To keep the sizes of the compared sets uniform, we sample 12,000
examples from each corpus for the study. Figure 9 illustrates that the paraphrase
length distribution in our corpus is broader, including not only shorter paraphrases
but also a noteworthy proportion of longer ones. In contrast, the other two corpora
predominantly consist of relatively concise paraphrase candidates. On average, our
corpus contains 8.8 tokens per paraphrase statement, compared to 5.6 in TaPaCo and
3.6 in Opusparcus.

One positive outcome of the manual paraphrase extraction is that it does not
restrict the selection to follow sentence boundaries or any other predefined units, but
gives a possibility to select text segments of any length. Next, we measure what is
the distribution of short phrases, single sentences, or longer than a sentence units.
To this end, we apply our Finnish dependency parser pipeline to segment sentence
boundaries and recognize whether a paraphrase is a well-formed sentence (starts
with a capitalized letter, ends with a punctuation and includes a main verb) or not.
The outcome is that approximately 12% of the paraphrase statements are phrases or
units not resembling a well-formed sentence, 73% are well-formed, single sentences,
13% are two sentences long, and the remaining 2% being more than two sentences
long segments. When looking into paraphrase pairs instead of individual paraphrase
statements, 63% of the pairs have one-to-one mapping of well-formed sentences,
following with one-to-two (10%), sentence-to-phrase (9%), phrase-to-phrase (7%),
and two-to-two (7%) mappings, the other variants occurring only rarely.
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Statement 1 Statement 2
Word unigrams
Tämä on viimeinen pyyntöni. En pyydä enää mitään muuta.
(This is my last request.) (I don’t ask for anything else anymore.)
Todennäköisesti tekolintu. Luultavasti joku keinotekoinen lintu.
(Probably a mechanical bird.) (Probably some kind of artificial bird.)
Ajatuksesi näyttää harhailevan. Olet kuin muissa maailmoissa.
(Your thoughts seem to wander.) (You are like in other worlds.)
Character trigrams
Menkää rappusista. Kulkekaa portaita pitkin.
(Go by the stairs.) (Walk up the stairs.)
Se tietää pitkää kakkua. Siitä saa paljon linnaa.
(That’s a ticket to jail.) (That’s a long stretch.)
Upeaa. Tosi upeaa. Kymmenen pistettä ja papukaijamerkki.
(Fantastic. Really fantastic.) (Full points and a medal.)

Table 8. Example paraphrase pairs with annotated label 4 and zero lexical overlap in terms of
word unigram or character trigram features. The examples are selected from the corpus training
section.

Lexical similarity One of the main objectives of our corpus creation work was to
avoid populating the corpus with a high amount of lexically very similar, and there-
fore likely uninteresting, paraphrases. In order to study how lexically dissimilar our
manually extracted paraphrases are, we measure the lexical similarity in terms of
tf-idf weighted cosine similarity using both word unigram and character trigram fea-
ture representations. While the word-level measure directly accounts for sharing the
exactly same tokens, the character trigram features also tries to account for the dif-
ferent inflectional variants of the same base words. When using the word unigrams
feature representation, the mean similarity is 0.3 with 16% of the paraphrase pairs
not sharing even a single word (cosine similarity 0.0). When measuring using char-
acter trigrams, the mean cosine similarity is 0.4, with 3% of the pairs not having
a single shared character trigram. In Table 7 we report the cumulative percentages
using different similarity cutoffs, and in Table 8 paraphrase pairs with zero lexical
similarity are demonstrated. In Figure 10, we plot the lexical similarity distributions
for three paraphrase datasets available for Finnish. This comparison reveals that in-
deed our corpus contains a higher percentage of paraphrases exhibiting lower lexical
similarity, whereas the distribution in the case of the other two corpora tends to favor
pairs with greater lexical overlap.
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Figure 10. Comparison of paraphrase pair cosine similarity distributions. [This figure was
originally published in Paper V.]

3.3 Discussion and Paraphrase Modelling Experiments
Given the Turku Paraphrase Corpus, we now have the possibility to train and evaluate
models on a task closely associated with Finnish semantic understanding. The ability
to recognize and understand paraphrases is crucial for various downstream applica-
tions. For example, one of the tasks benefiting of such understanding is a project
of university essay grading support, where the objective is to develop and evaluate
methods for supporting grading of Finnish university essays. (Chang et al., 2021b)
Aside from plain autograding, such as predicting a grade for the given essay, one
possible option to support grading of textual essays is to highlight argumentations
from student essays similar to reference materials (e.g. a reference answer, or al-
ready graded essay) in order to speed up the manual essay evaluation. In such cases
the surface lexical realizations (words or sentence structure) may not be sufficient
enough, if the students are addressing similar arguments using different wordings.
Instead, a deeper paraphrase understanding is required.

In Paper V we present baseline results for two different paraphrase modelling
experiments; paraphrase classification based on a pairwise label classifier, and para-
phrase retrieval based on fine-tuned sentence embeddings. In addition to these, in
Kanerva et al. (2024) we utilized the contextual information of the paraphrases and
introduced a novel paraphrase task setting, where the objective is to extract a text
span from the given source document constituting a paraphrase of the query state-
ment. This span detection approach is highly inspired by similar work on semantic
search and question answering. Next these experiments are briefly summarized to
illustrate the possible ways to utilize the corpus.

3.3.1 Paraphrase Classification

The manually annotated labels in the paraphrase corpus can be straightforwardly
used to train a supervised paraphrase classifier. The classifier is implemented as
pairwise multi-output model, where the model receives one candidate pair at a time,
and predicts a label for it. The model output consists of four jointly trained prediction
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Label Prec Rec F Support
2 40.2 32.9 36.2 161
3 59.3 52.6 55.8 2434
4< 56.0 58.1 57.0 2003
4> 58.3 59.8 59.1 2287
4 70.5 73.9 72.2 3586

i 51.8 48.9 50.3 454
s 49.4 37.7 42.8 438
W. avg 57.9 58.3 58.0
Acc 58.3

Table 9. The paraphrase classifier trained and evaluated on the Turku Paraphrase Corpus. [This
table was originally published in Paper V.]

layers, one for the base label (with classes 2, 3 or 4), one for the subsumption flag
(<, > or none), one for the style flag (s or none), and one for the minor deviation
flag (i or none).

The classification results are shown in Table 9, where the results are tabulated
separately for labels 2, 3, 4<, 4>, and 4 (disregarding the flags s and i) as well as
for the flags s and i (disregarding the base label). Together with these, the weighted
average F-score and accuracy of full labels are reported. The initial modelling results
verifies the challenging nature of the dataset, giving weighted average F-score of
58%. The small amount of label 2 paraphrases in the corpus clearly poses a challenge
for the classifier with an F-score of only 36%. In addition to their rarity, the label 2
examples are likely serving as extremely difficult negative examples due to the fact
of these examples passing the strict candidate selection during annotation.

3.3.2 Sentence Embeddings

In addition to classification, paraphrasing is often estimated measuring semantic re-
lateness through embedding similarity, where the embeddings are created such that
paraphrased statements receive a high similarity score (e.g. cosine similarity or eu-
clidean distance), while semantically unrelated statements receive a low similarity
score. The advantage of similarity based methods compared to pairwise classifiers is
them being considerably cheaper in terms of computational time when applying to
many real-life scenarios including millions of candidate sentences. While the clas-
sifier needs to embed each pair separately, the embeddings can be calculated once
for each statement while the pairwise comparison can be obtained by running only a
lightweight similarity function on top of the pre-calculated embeddings.

We use the test set of the Turku Paraphrase Corpus to evaluate three different
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models on paraphrase retrieval using embedding similarity.

The vanilla FinBERT without any task specific fine-tuning. The embedding
for the given statement is the average of the token embeddings obtained from
the final BERT layer.

The Finnish SBERT model, where we fine-tune the FinBERT language model
for paraphrasing using Sentence-BERT (SBERT) training objective (Reimers
and Gurevych, 2019), where the aim is to improve individual sentence em-
beddings in order to better support the direct cosine similarity comparison. In
addition to the Turku Paraphrase Corpus training set, a large amount of positive
and negative paraphrase candidates are automatically collected for fine-tuning
(more detailed description available in Paper V).

The multilingual SBERT model (paraphrase-xlm-r-multilingual-v1) by Reimers
and Gurevych (2020), where they first fine-tune a monolingual English SBERT
model using different datasets including semantically similar English sentence
pairs. This model is then used as a teacher model in multilingual knowledge
distillation (teacher–student framework) where the multilingual XLM-R lan-
guage model (Conneau et al., 2020) is fine-tuned to mimic the embeddings of
the teacher model on parallel data for over 50 languages. Therefore, the multi-
lingual fine-tuning aligns the multilingual space to follow the semantics of the
paraphrase fine-tuned English embedding space.

The evaluation results are shown in Figure 11, where we simulate a realistic
paraphrase mining setting by testing the retrieval of the target among a set of 399M
unique sentences acting as distructors for the correct target. In this evaluation setting,
we first embed each sentence, and then, for each test set paraphrase pair (𝑠1, 𝑠2),
we measure the similarity of 𝑠1 against all other sentences and calculate at which
rank out of the nearly 400M candidates the embedding of 𝑠2 is found in terms of
Euclidean distance of normalized embeddings. The results are reported for top N
values of 1, 10, 100, 1000, and 2048, i.e. measuring how often the model ranks the
correct paraphrase statement among top-N out of the 400M candidates. The Finnish
SBERT model is able to retrieve 14–36% of the paraphrases as a top-1 candidate de-
pending on the paraphrase label, while a total of 29–53% are returned among top-10
candidates, demonstrating to be a highly efficient method even in a case of retrieving
from a massive set of candidate sentences. When comparing different models, the
vanilla FinBERT without task specific fine-tuning performs clearly worse compared
to the two SBERT models, while the Finnish SBERT and the multilingual SBERT
perform roughly on-par, both being trained on paraphrase data (either Finnish or En-
glish), however the multilingual model being exposed to an additional massive set of
translation pairs as well.
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Figure 11. The retrieval of test set paraphrase pairs by different models. The retrieval is
measured for the three main classes of paraphrase separately (4, 4< or 4>, and 3) disregarding
flags s and i. The colors indicate different top N values, where NA means that the correct
sentence did not rank in the top 2048 list, which was the upper technical limit in the experiment.
The numbers on top of the bars indicate the number of returned paraphrases in percentages. [This
figure was originally published in Paper V.]

3.3.3 Paraphrase Span Retrieval

In Kanerva et al. (2024), we approach the task of semantic search by defining para-
phrase detection as extractive span detection from the given source document. This
novel task setting utilizes the contextual information of the paraphrases available in
the Turku Paraphrase Corpus, and studies how well a span detection model is able
to extract the correct span constituting a paraphrase for the given search statement.
The task setting is similar to question answering (QA), where for the given question,
the model is trying to extract the span from the given source document constituting
a relevant answer for the input question. In our setting, the question–answer pairs
are replaced with paraphrase pairs, both being considered as a subtask under the se-
mantic search framework. In QA, the objective is to directly extract the answer for
the posed question. In our paraphrase span detection, the objective is then to find
the relevant information from the source document even if expressed using different
wording compared to the search phrase. Altogether, a complete semantic search sys-
tem can be considered to be composed of three components: (1) candidate document
retrieval system able to return all relevant documents for the given search phrase from
a massive collection of source documents, (2) QA component extracting the actual
answer from the candidate documents retrieved by the candidate retrieval system in
cases where the search query is expressed as a question, and (3) paraphrase span
detection component extracting the relevant passages from the candidate documents
returned by the candidate retrieval component in cases where the relevant outcome
is information expressing the same meaning despite of the actual words used.
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In the scope of this paper the aim was not to build a complete system for semantic
search, but rather to evaluate the paraphrase span retrieval component in isolation.
By giving the correct source document, we evaluated how likely the span detection
model is able to retrieve the correct span from the document. The analysis in the
paper suggested the span retrieval model being superior to methods based on fine-
tuned sentence embeddings, as well as the span detection model trained on the Turku
Paraphrase Corpus being remarkably better compared to the same model trained on
silver-standard paraphrase data created through automatic back-translation.
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4 Conclusions and Future Work

This thesis has described the development of several NLP resources for the Finnish
language, beginning with structural morphosyntactic analysis and progressing to-
wards the paraphrasing task, more meaning-oriented in nature. Alongside the ele-
mentary data creation work, the described datasets were used to develop different
machine-learning approaches aimed at analyzing and comprehending the structure
and meaning of the Finnish language. In several instances, we achieved state-of-the-
art results at the time of publication.

Four of the papers included in the thesis (Papers I, II, III and IV) collectively
contribute to a highly accurate syntactic parser for Finnish, addressing the research
questions RQ1, RQ2 and RQ3. When starting to work on this thesis, we already
had a reasonably sized, manually annotated treebank for Finnish at our disposal,
yet the parsing numbers were moderate compared with those published for some
other languages. Therefore, in RQ1 we set out to study whether the performance
was limited by the annotated data, the technology, or the language itself by asking
whether Finnish is inherently more challenging to parse with regards to accuracy
when compared to other languages, such as English, and how far can we advance
in dependency parsing without the necessity to increase the size of the manually
annotated corpus.

When publishing the very first results for Finnish UD parsing in Paper I, the la-
beled attachment score was around 82%. However, throughout the work presented in
this thesis, as well as other contributions introduced during the thesis work by our re-
search group or wider research community, to our knowledge the best labeled attach-
ment score published for the UD Finnish-TDT corpus is around 92–94% depending
on the size of the pre-trained language model used. Altogether, a very substantial
improvement of approx. 10pp (absolute) is obtained during the period of the thesis
publications. When contrasting the obtained numbers for human-performance on the
task, the closest point of comparison can be obtained from Haverinen et al. (2014).
The paper reports the labeled attachment score between an individual annotator and
consolidated consensus annotations1 being between approx. 88–96% depending on
the annotator. The parsing numbers obtained with the latest pre-trained language
models are thus narrowing the gap between human and model performance, if not

1Double annotated data, later merged and conflicts resolved together with the whole annotation
team.
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already reaching on average human performance on the task. When reflecting this
to the first research question, an interesting outcome here is that these improvements
were obtained without increasing the size of the manually annotated corpus used in
training but rather relying on methodological contributions and language model pre-
training. Therefore, to conclude regarding the RQ1, with the existing TDT dataset
we are able to achieve at least near human performance on dependency parsing when
evaluated on relatively clean and standard Finnish language. Additionally, when con-
sidering the overall performance of the Finnish parser, as well as comparing the per-
formance of same methods applied to different languages, Finnish does not appear to
be substantially more difficult to parse compared to others as its overall performance
is on par or even above the generally expected level.

Methodologically, when reflecting on RQ2 asking what methodological approach-
es should be employed to optimize the accuracy of the parsing pipeline, there were
two bigger advancements in the dependency parsing performance for Finnish; uti-
lization of Dozat’s parser (Dozat and Manning, 2017) in Paper III and integration of
the pre-trained FinBERT language model in Paper IV. The Dozat’s parser builds a
powerful feature representation by utilizing pre-trained word embeddings contextu-
alized using bidirectional LSTM layers. This method reached approx. 87% LAS and
substantially outperformed both our earlier feature-based parser used in Paper I, as
well as the first neural dependency parser trained for Finnish by Straka et al. (2016).
A similar feature extraction architecture was shown to match or surpass state-of-the-
art results also in other studies, e.g. Kiperwasser and Goldberg (2016). In contrast
to the previous generation of feature-engineered parsers, this approach has several
advantages in addition to performance improvement. Albeit being computationally
complex, the feature representation is simplified in a way that there is not a need
for hand-engineering features for different language phenomena anymore. This also
means that languages do not need to be treated separately based on their properties,
but to some extend the same model can be applied to several (if not all) languages
that has sufficient amount of training data available.

The second big advancement towards human performance in dependency parsing
can be attributed to the large-scale pre-training regime. While Dozat’s parser (and
many other similar ones) used pre-trained word embeddings, the contextual part was
learned only from the supervised treebank data. However, by using the pre-train–
fine-tune paradigm of massive language models, we can directly learn a contextual-
ized representation of words from large unannotated corpora, and later fine-tune it to
the dependency parsing. The incorporation of a large contextualized language model
pre-trained on a massive amount of unlabeled Finnish data, the FinBERT model in
our case, improved the dependency parsing performance by several percent points,
reaching the 92–94% range. Additionally, in Paper IV we showed that for several
smaller languages the Google’s multilingual language model (mBERT) was not suf-
ficient, and the parsing performance can be substantially improved with dedicated
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language-specific models, the effect being especially strong on Finnish.
When considering the entire parsing pipeline, rather than solely focusing on

dependency parsing, our primary emphasis was on lemmatization. Lemmatization
presents interesting challenges due to Finnish inflective morphology, yet it is a sub-
task that often receives insufficient attention. In RQ3, we asked what is the most
effective approach to developing a machine-learned, context-aware lemmatizer, and
how would its performance compare to hand-crafted grammatical rules. In Paper II,
we demonstrated that state-of-the-art results across the UD treebanks can be attained
using an sequence-to-sequence generation model. We account for the contextual na-
ture of lemmatization by conditioning the lemma generation on the morphosyntactic
features, which we demonstrated to produce a compact contextual representation that
disambiguates most of the ambiguous wordforms. The approach is completely data-
driven, and can be applied as-is to all languages with reasonable size of manually
annotated training data. Therefore, this approach gives us a full flexibility without
a need to do any language-dependent adjustments to the model. When compared to
traditional rule-based methods, we gain two major advantages: 1) there is no need to
craft the rules separately for each language, and 2) the model’s ability to generalize
and produce output also to previously unseen words.

To conclude the methodologically oriented RQ2 and RQ3, most state-of-the-art
methods are language-agnostic in a way that they use a same model architecture
regardless of the language as well as rely on automatically learned feature represen-
tations. Therefore, to create a robust parsing pipeline for a language, there may not
be a need to tailor the model architecture or its feature representation exclusively for
that language anymore. Instead, in many cases the key to success lies in compre-
hending the available resources and deploying them effectively.

The parsing experiments presented in this thesis primarily focused on in-domain
parsing, where the parser was evaluated on a test set sampled from its training data.
For future work we leave the question how robust the Finnish parser is if applied
to domains or text registers substantially deviating from its training data. Although
the Finnish-TDT corpus is composed of a variety of text sources, it predominantly
represents standard written language, and consequently, the parser’s performance
e.g. on strong dialect or spoken language may substantially decrease. In Kanerva
and Ginter (2022) we made initial contributions towards out-of-domain parsing by
providing an evaluation corpus for Finnish syntactic analysis including five target
domains absent from the original treebank. We also carried out preliminary parsing
experiments indicating the parser being quite robust on some of the new domains
(web, discussion forum), while the performance drastically dropping when really
pushed into its limits (poems, clinical, tweets). In order to train a parser for domains
differing from general written Finnish, a combination of in-domain data knowledge
and technical skills will likely create an optimal outcome.

The achievement of (at least near) human-level performance in the syntactic pars-
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ing of general Finnish brings up the hope of the large pre-trained language models
genuinely comprehending language, rather than merely relying on simple surface
cues. However, datasets designed to measure semantic comprehension in Finnish
have been non-existent, or very scarce at the best. Consequently, our second set of
research questions (RQ4 and RQ5) were centered around this theme, leading to the
development of the Turku Paraphrase Corpus in Paper V. To prevent bias towards
simpler and shorter paraphrase examples, which we hypothesized would be more
easily recognizable using automatic paraphrase candidate extraction, we set out to
study whether the creation of a large-scale paraphrase corpus can be efficiently ac-
complished by manually selecting examples, thereby mitigating bias towards shorter
and simpler examples (RQ4) and whether the resulting corpus exhibit greater diver-
sity in terms of example length and complexity compared to corpora where candi-
dates are automatically generated (RQ5).

In Paper V, we introduced a novel concept of manual paraphrase extraction from
two related text documents, and explored the utility of several different data sources
likely to contain naturally occurring paraphrases (alternative translations, related
news articles, similar discussion forum messages, and exam answers). The differ-
ent source materials exhibited diverse extraction statistics with efficiency measures
revealing alternative translations as the most time-efficient. This can be attributed
to translations typically adhering closely to the content of the original document,
thus naturally containing extensive paraphrasing. Furthermore, content in alternative
translations usually maintains the order of the original document, accelerating the
extraction process by reducing the need to scroll to find corresponding segments, a
convenience often absent in e.g. related news articles where the order of the infor-
mation can vary significantly. In total, six annotators spent 30 person-months for the
corpus construction including paraphrase extraction, label annotation as well as other
related tasks such as guideline documentation. This resulted in a corpus of more than
100,000 paraphrase pairs for Finnish, which at the time of publication, was one of the
largest manually annotated paraphrase corpora available for any language. Moreover,
the manual extraction provided an opportunity to distribute the collected paraphrase
pairs in their natural document context, making the Turku Paraphrase Corpus the first
paraphrase dataset suitable for studying paraphrasing in document context.

To assess whether the resulting corpus exhibits greater diversity compared to
those build using automatic candidate extraction, we evaluated the paraphrase pairs
in terms of length distribution and lexical variability, making comparisons with other
related works where possible. We demonstrated our corpus contains not only shorter
paraphrases but also a significant proportion of longer ones while the corpora com-
pared to leaned more towards short pairs. Additionally, we illustrated that the flex-
ibility of manual extraction —allowing selections beyond sentence boundaries—
yielded a significant number of paraphrase pairs that were not strictly sentence-to-
sentence, thereby further enhancing the corpus’s variability. In measuring lexical

69



Jenna Kanerva

variance, we demonstrated that our corpus comprises a higher percentage of para-
phrases with lower lexical similarity. These findings indeed validate our hypothesis
that manual paraphrase extraction can yield a corpus with notably longer and less
lexically overlapping pairs than what is attainable through automated candidate se-
lection, creating a more challenging dataset, suitable, for example, for evaluating
various language understanding models.

In this thesis, we presented baseline results for various paraphrase models, trained
and evaluated on the Turku Paraphrase Corpus. However, a more comprehensive in-
vestigation of pre-trained language models in paraphrase modelling is reserved for
future work. In the future, we plan to study the capabilities of diverse paraphrase
models more closely, with a particular focus on understanding the kinds of phenom-
ena the current models can and cannot capture. We aim to progress beyond binary
classification like paraphrase-or-not, and seek to explore deeper into understanding
why a certain text is considered a paraphrase and the rationale behind the model’s
predictions.

Recent advances in instruction fine-tuned generative models, such as GPT-4 (Ope-
nAI, 2023), have had a significant impact on the field of Natural Language Process-
ing. Not that long ago, the preferred method for addressing most NLP tasks involved
fine-tuning pre-trained language models using supervised training data. However, the
models like GPT-4 with their impressive generalization capabilities are emerging as
genuine competitors to this approach, encouraging the idea of developing one univer-
sal model, interactable through human language. However, these models come with
significant restrictions, as the most advanced ones are currently company owned,
accessible only through API interfaces. This limits their applicability, especially in
situations where data privacy is an issue which cannot be compromised. The limited
availability of resources poses substantial challenges for the academic community in
developing similar, but openly accessible models for various languages. Neverthe-
less, there are numerous initiatives ongoing to aggregate the necessary resources to
train models with similar capabilities, such as BLOOM2, GPT-SW3 (Ekgren et al.,
2023), or Finnish GPT-3 (Luukkonen et al., 2023).

Although these models exhibit impressive zero-shot performance across various
tasks, potentially bypassing the need for task-specific training data, they still require
supervised data during the instruction fine-tuning phase. Many existing datasets can
be converted into valuable examples for this purpose. To create a versatile model
capable of executing a wide variety of distinct tasks, instruction fine-tuning data from
tasks that are diverse in nature is likely beneficial. We anticipate that the datasets
developed as part of this thesis can contribute to this effort. At the very least, they
can serve to evaluate the model’s ability to analyze and understand the structure and
meaning of the Finnish language.

2https://huggingface.co/bigscience/bloom
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Abstract

There has been substantial recent interest
in annotation schemes that can be applied
consistently to many languages. Building
on several recent efforts to unify morpho-
logical and syntactic annotation, the Uni-
versal Dependencies (UD) project seeks
to introduce a cross-linguistically appli-
cable part-of-speech tagset, feature inven-
tory, and set of dependency relations as
well as a large number of uniformly an-
notated treebanks. We present Univer-
sal Dependencies for Finnish, one of the
ten languages in the recent first release of
UD project treebank data. We detail the
mapping of previously introduced annota-
tion to the UD standard, describing spe-
cific challenges and their resolution. We
additionally present parsing experiments
comparing the performance of a state-
of-the-art parser trained on a language-
specific annotation schema to performance
on the corresponding UD annotation. The
results show improvement compared to
the source annotation, indicating that the
conversion is accurate and supporting
the feasibility of UD as a parsing tar-
get. The introduced tools and resources
are available under open licenses from
http://bionlp.utu.fi/ud-finnish.html.

1 Introduction

The Universal Dependencies (UD) initiative seeks
to develop cross-linguistically consistent annota-
tion guidelines and apply them to many languages
to create treebank annotations that are uniform in
e.g. their theoretical basis, label sets, and struc-
tural aspects. Such resources could substantially
advance cross-lingual learning, improve compara-
bility of evaluation results, and facilitate new ap-
proaches to automatic syntactic analysis.

UD builds on the Google Universal part-of-
speech (POS) tagset (Petrov et al., 2012), the In-
terset interlingua of morphosyntactic features (Ze-
man, 2008), and Stanford Dependencies (de Marn-
effe et al., 2006; Tsarfaty, 2013; de Marneffe
et al., 2014). In addition to the abstract anno-
tation scheme, UD defines also a treebank stor-
age format, CoNLL-U. A first version of UD tree-
bank data, building on the Google Universal De-
pendency Treebanks (McDonald et al., 2013) and
many other previously released resources (Bosco
et al., 2013; Haverinen et al., 2013b), was recently
released1 (Nivre et al., 2015).

In this paper, we present the adaptation of the
UD guidelines to Finnish and the creation of the
UD Finnish treebank by conversion of the pre-
viously introduced Turku Dependency Treebank
(TDT) (Haverinen et al., 2013b). We also pro-
vide a first set of experiments comparing the pars-
ing scores of language-specific treebank annota-
tion to that of a UD treebank, providing an eval-
uation of both the conversion quality and the fea-
sibility of UD annotation as a parsing target. In a
related but separate effort within the UD initiative,
the FinnTreeBank 12 (ftb-1) (Voutilainen, 2011)
is also being converted into the UD format. The
ftb-1 is a treebank based on all grammatical exam-
ples from the VISK3 Finnish grammar reference
(Hakulinen et al., 2004), and will thus complement
the TDT-based UD Finnish treebank in the set of
UD treebanks.

2 Treebank conversion

The conversion of TDT into the UD Finnish tree-
bank was implemented following the UD specifi-
cation (Nivre et al., 2014) (version 1, Oct 2014),

1Available from http://universaldependencies.
github.io/docs/

2http://www.ling.helsinki.fi/
kieliteknologia/tutkimus/treebank/sources/

3http://scripta.kotus.fi/visk
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the Finnish grammar of Hakulinen et al. (2004)
and the TDT annotation guidelines (Haverinen
et al., 2013b) as the primary references. The initial
stages of the work involved identifying similarities
and differences between the TDT and UD anno-
tation guidelines, adapting the general UD guide-
lines to Finnish, and planning the implementa-
tion of the conversion. Technically, the conversion
was implemented as a pipeline of processing com-
ponents, each of which consumed and produced
CoNLL-U-formatted data. The following sections
present the source data and primary stages of pro-
cessing in detail.

2.1 Turku Dependency Treebank

As the source data for the conversion, we se-
lected the most recent published distribution of
TDT.4 The source treebank contains 15,000 sen-
tences (200,000 words) drawn from a variety of
sources and annotated in a Finnish-specific ver-
sion of the Stanford Dependencies (SD) scheme,
and it has previously been demonstrated to be ap-
plicable e.g. for training broad-coverage depen-
dency parsers for Finnish (Kanerva et al., 2014).

In addition to converting the annotation to
UD standards, we also addressed a number
of instances where tokenization differed from
UD specifications, corrected a small number of
sentence-splitting errors, and updated the lemmas
to improve both treebank-internal consistency and
conformance with the UD specification. We fur-
ther introduced a fully manually annotated mor-
phology layer, replacing the automatically gener-
ated morphological annotation of the initial data.
This modified TDT not only serves as the basis for
conversion but is also made available as a separate
contribution.

2.2 Part-of-speech annotation

The UD specification defines 17 POS tags, and re-
quires that all conforming treebanks use only these
tags.5 The TDT annotation uses a comparatively
coarse-grained set of 12 POS tags, of which ap-
proximately half correspond straightforwardly to
one of the 17 UD POS tags (Table 1). Several
other TDT tags could be assigned the appropri-
ate UD tag based on the value of the SUBCAT fea-

4Available from http://bionlp.utu.fi/
5While no language-specific POS tags can thus be defined

in the primary POS annotation, the CoNLL-U format allows
a secondary POS tag to be assigned to each word to preserve
treebank-specific information.

TDT UD TDT type
A ADJ adjective
Adp ADP adposition
Adv ADV adverb
C[SUBCAT=CC] CONJ coord. conj.
C[SUBCAT=CS] SCONJ subord. conj.
Foreign X foreign word
Interj INTJ interjection
N[SUBCAT=Prop] PROPN proper noun
N[!SUBCAT=Prop] NOUN common noun
Num[SUBCAT=Card] NUM cardinal number
Num[SUBCAT=Ord] ADJ ordinal number
Pron PRON or ADJ pronoun
Punct PUNCT or SYM punctuation
Symb PUNCT or SYM symbol
V VERB or AUX verb

Table 1: Part-of-speech tag mapping from TDT
to UD. TAG[FEATURE=VALUE] specifies a map-
ping that applies only in cases where a word
has both the given tag and the feature value,
TAG[!FEATURE=VALUE] in cases where the fea-
ture is absent or has a different value.

ture, which distinguishes e.g. coordinating con-
junctions from subordinating conjunctions (CONJ
and SCONJ in UD, respectively). Just four TDT
tags, marking pronouns, punctuation, symbols and
verbs, required further information to resolve cor-
rectly.

Punctuation and symbols The guidelines cov-
ering the use of the Punct and Sym tags in the
TDT annotation differed to such an extent from
the UD specification of PUNCT and SYM that the
Punct/Sym distinction in the original treebank was
ignored in creating the mapping. Instead, words
assigned either of these tags in TDT were assigned
UD POS based on newly implemented surface
form-based heuristics, with e.g. currency symbols,
mathematical operators, URLs and emoticons as-
signed SYM and other non-alphabetical character
sequences PUNCT.

Verbs All verbs that can serve as auxiliaries
were assigned AUX or VERB based on the presence
of an aux dependency. This is the only rule con-
cerning the morphological annotation layer that
refers to the syntactic annotation. It should be
noted that this rule cannot be applied determin-
istically in a standard syntactic analysis pipeline
where morphological analysis precedes depen-
dency analysis, but will instead require these verbs
to be assigned both a VERB and AUX reading.

Pronouns The TDT POS tag Pron maps to
PRON for UD Finnish in most cases, but pro-
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adjectives such as millainen “like-what” are an-
alyzed as Pron in TDT but assigned to ADJ in
UD Finnish following the reference grammar and
the UD specification. The annotation of related
cases such as pro-adverbs was already consistent
with the reference resources and could thus be pro-
cessed using the general mapping rules.

Finally, we note that UD Finnish excludes by de-
sign two of the UD POS tags, DET (determiner)
and PART (particle). As Finnish has no true ar-
ticles (Sulkala and Karjalainen, 1992) and words
(primarily pronouns) that play a determiner role
syntactically can be identified using the depen-
dency annotation layer (namely, the det relation),
we opted not to apply DET in UD Finnish annota-
tion. Similarly, although various words have been
categorized as particles in different descriptions of
Finnish, the reference grammar (Hakulinen et al.,
2004) does not assign any Finnish words to the
category covered by PART in the UD specification.
This POS tag is correspondingly excluded from
use in UD Finnish.

2.3 Morphological features

The UD specification defines a set of 17 widely
attested morphological features such as Case,
Person, Number, Voice and Mood. However, by
contrast to the POS tag annotation, the specifi-
cation allows conforming treebanks to introduce
language-specific features that are not included
in this universal inventory, suggesting that such
features be drawn when possible from the ex-
tended Interset compilation of morphological fea-
ture names and labels (Zeman, 2008).

The morphological annotation of TDT draws
directly on the rich features provided by the
OMorFi morphological analyzer (Pirinen, 2008),
and many of the generally applicable UD features
can be generated by direct mapping from TDT
POS tags and features (Table 2). For brevity, we
refer to UD documentation for descriptions of UD
standard features, focusing in the following on UD
Finnish features not among the basic 17.

To minimize information loss from the conver-
sion, we made liberal use of the possibility to in-
troduce language-specific features to mark aspects
of the TDT morphological annotation that were
not captured by the basic 17 UD features. We
aimed to primarily apply extended Interset fea-
tures, drawing from this inventory the features
Abbr (abbreviation or acronym), Style (collo-

TDT UD
CASE Case
CLIT Clitic
CMP Degree
DRV Derivation
INF InfForm and VerbForm=Inf
MOOD Mood
NEG=ConNeg Connegative=Yes
OTHER=Coll Style=Coll
OTHER=Arch Style=Arch
OTHER=Err Typo=Yes
PCP PartForm and VerbForm=Part
POSS Person[psor] and Number[psor]
V[SUBCAT=Neg] Negative=Yes
SUBCAT=Pfx -
Pron[SUBCAT] PronType or Reflex
Adp[SUBCAT] AdpType
SUBCAT=Card|Ord NumType
NUM Number
TENSE Tense
VOICE Voice
PRS Person and Number
ABBR Abbr
ACRO Abbr
not INF and not PCP VerbForm=Fin
FOREIGN[...] Foreign

Table 2: Morphological feature map-
ping. FEATURE denotes a mapping that ap-
plies for all features with the given name,
FEATURE=VALUE for a specific name-value pair,
and TAG[FEATURE=VALUE] also for a specific
POS tag. Person[psor] and Number[psor] are
layered UD features for Person and Number of
possessor, respectively.

quial or archaic style), Typo (typographic error),
Foreign (foreign word or script) and AdpType

(adposition type: pre- or postposition). Finally,
we added features to capture aspects of TDT an-
notation that did not have representation in In-
terset: InfForm (differentiates between Finnish
infinitives), PartForm (similar for participles),
Connegative (verb in connegative form) and
Clitic and Derivation, identifying steps in the
morphological derivation and modification pro-
cesses to create the wordform.

While the great majority of UD Finnish features
could be deterministically generated by reference
only to the TDT POS tag and features, there were
a few cases that required more complex heuristics
to meet UD requirements. For example, the value
of the Person feature is assigned to personal pro-
nouns based on a lemma lookup table as OMorFi
does not generate it, and the value of the Foreign
value is assigned based on comparison of charac-
ters in the surface form against Unicode script ta-
bles.
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Figure 1: Top: TDT-style syntax and part-of-speech annotation for a Finnish sentence. Bottom: The
same sentence converted to the UD Finnish scheme. Analyses visualized using BRAT (Stenetorp et al.,
2012).

2.4 Dependency annotation

UD defines as set of 40 broadly applicable de-
pendency relations, further allowing language-
specific subtypes of these to be defined to meet
the needs of specific resources. Unlike the fairly
straightforward mappings for morphological an-
notations, the conversion from TDT dependency
annotation to UD often required not only relabel-
ing types, but also changes to the tree structure.
This mapping is summarized in Table 3 and pre-
sented in detail below.

Figure 2: Annotation of Huivi oli punainen “The
scarf was red”.

The UD syntactic annotation is based on the
universal Stanford Dependencies (SD) scheme
(de Marneffe et al., 2014). One of the key proper-
ties of these schemes is that they emphasize direct
relations between content words, treating function
words as dependents of content words rather than
as their heads. For example, this leads to a struc-
ture where a copula subject is attached directly
to the predicative with the copular verb also be-
coming a dependent of the predicative (Figure 2).
Furthermore, function words can only have a very
limited set of dependents, with strong preference
given to attachment of function words to content
words rather than to other function words. This
will tend to produce relatively flat tree structures.

The UD emphasis on content words is not uni-
versally shared with other dependency annota-
tion schemes, many of which mediate connections
between content words through function words.

However, TDT is originally annotated using a
language-specific variant of the SD scheme, and
thus already applies an annotation scheme with
predicatives as heads in copular expressions and
content-word heads in prepositional phrases. The
conversion of the syntactic annotation to UD thus
involved fewer challenges than might be encoun-
tered for other treebanks.

During the conversion, relatively few structural
reconfigurations were required. In the original
TDT annotation, function words were allowed
to have dependents of their own, permitting e.g.
chains of auxiliary verbs (see Figure 1). These
modifiers were reattached to the upper-level con-
tent words. Additionally, multi-word expressions
and names were annotated with head-final struc-
tures in TDT, but UD specifies head-initial an-
notation for all expressions that do not have in-
ternal structure of their own. For UD Finnish,
multi-word expressions were revised to follow the
UD head-initial approach. However, the head-final
structure was kept for names. This decision re-
flects the fact that in Finnish multi-word names,
only the last word carries the morphological in-
flections, providing evidence that it is the head of
the phrase. By contrast, fixed multi-word expres-
sions (UD mwe) do not typically inflect, and thus
do not provide sufficient cause to diverge from the
UD guideline of head-initial annotation.

One problematic issue arose from the fact that
UD makes a systematic distinction between core
arguments and other modifiers, which are only
partly distinguished in TDT annotation. For ex-
ample, participial modifiers of predicates, which
usually include also secondary predication, were
annotated simply as participial modifiers in TDT,
while in UD these are seen as clausal dependents
and a distinction must thus be made between com-
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Unchanged types
advcl, amod, appos, aux, auxpass, cc, conj, cop, csubj, det, dobj, mark, name, nsubj, neg,
root, parataxis, xcomp
Simple mapping
acomp→ xcomp, adpos→ case, compar→ advcl, comparator→ mark, complm→ mark,
csubj-cop→ csubj:cop, gobj→ nmod:gobj, gsubj→ nmod:gsubj, iccomp→ xcomp:ds,
infmod→ acl, intj→ discourse, nommod-own→ nmod:own, nsubj-cop→ nsubj:cop,
num→ nummod, number→ compound, poss→ nmod:poss, preconj→ cc:preconj,
prt→ compound:prt, quantmod→ advmod, rcmod→ acl:relcl, voc→ vocative,
xsubj→ nsubj, xsubj-cop→ nsubj:cop
More complex mapping
advmod→ advmod, cc, mark
ccomp→ ccomp, xcomp:ds
dep→ dep, mwe
nommod→ nmod, xcomp, xcomp:ds
nn→ compound:nn, goeswith
partmod→ acl, advcl, ccomp, xcomp, xcomp:ds
punct→ discourse, punct
/0 → remnant
Unmapped TDT types (removed)
ellipsis, rel
Unused UD types
csubjpass, dislocated, foreign, expl, iobj, list, nsubjpass, reparandum

Table 3: Dependency type mapping from TDT to UD Finnish.

plements and adjuncts. To implement the conver-
sion for cases like these, we made reference to the
manually annotated predicate-argument structures
of the Finnish Propbank (Haverinen et al., 2013a).
Since the Finnish Propbank and the Turku Depen-
dency Treebank are built on top of the same texts,
we had access to semantic information where each
argument is marked to identify whether it serves as
a core argument or a modifier.

In some cases the original TDT annotation is
more fine-grained than the relation types defined
in the UD guidelines. We use two approaches to
resolve this issue in UD Finnish. First, most of
the more specific dependency types not defined in
UD are simply dropped from UD Finnish, replac-
ing occurrences of the types with their more gen-
eral UD types. This is done in particular for TDT
types that are not specific to Finnish and encode
distinctions not targeted in UD syntactic relations,
such as the difference between finite and non-finite
clauses (cf. SD partmod and infmod). However,
some fine-grained dependencies were defined in
the TDT variant of the SD scheme to capture prop-
erties that are unique or especially important to the
Finnish language. We introduce some of these re-
lations also in UD Finnish as subtypes of UD re-
lations. This allows us to preserve the information
while allowing a fully comparable UD analysis to
be generated by simply replacing detailed types
with those that they are subtypes of. For exam-
ple, Finnish does not have a specific verb express-

ing ownership (such as to have in English), and
typically the verb olla “to be” is used instead with
the owner expressed with a nominal modifier. The
surface forms of possessive clauses and existen-
tial clauses are similar (Minulla on koira “I have
a dog”, lit. At me is a dog and Pihalla on koira
“These is a dog in the yard”), and using the stan-
dard nominal modifier type nmod for both would
fail to distinguish these constructions. Thus, UD
Finnish carries over the original TDT distinction
and defines a language-specific subtype nmod:own
to address this issue. nmod:own can then trivially
be mapped to nmod when the distinction is not re-
quired.

The total number of dependency relation types
defined in UD Finnish is 43, consisting of 32
universal relations and 11 language-specific sub-
types. In the original TDT annotation, 46 depen-
dency types are used, with an additional 4 types
to mark non-tree structures used in the second an-
notation layer of TDT. In UD Finnish, the second
annotation layer does not expand the set of depen-
dency types. Although not currently formalized in
UD, the extended layer of annotation from TDT
(Haverinen et al., 2013b) was converted as well
and is included in the UD version of TDT. This
extended TDT layer includes (1) conjunct propa-
gation, where dependencies of the head of a coor-
dination structure are propagated where applicable
also to the other coordinated elements, (2) external
subjects (xsubj) of open clausal complements,
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Figure 3: TDT-style (top) and UD-style (bottom) analysis for the sentence Maija meni Pariisiin ja Mirja
Prahaan “Maija went to Paris and Mirja to Prague”.

(3) name dependencies marking named entities
spanning several words and having some inter-
nal syntactic structure, (4) dependencies marking
the syntactic function of relativizers, and (5) the
ellipsis dependency marking constructions in-
volving ellipsis. Of these, conjunct propagation is
converted using the same rules as the base syntax
dependencies, external subjects are renamed to the
standard subject relation nsubj or the language-
specific nsubj:cop copula subject relation, the
name dependencies are preserved, dependencies
marking the syntactic function of relativizers are
converted and placed into the base layer, replac-
ing the rel dependency type (which is eliminated)
and ellipsis dependencies are removed together
with the null nodes they marked. (We refer to the
UD Finnish documentation for further details.)

2.4.1 Implementation
While POS tags and morphological features could
be mapped with rules affecting a single word and
only referencing properties of that word, the de-
pendency annotation mapping requires changes to
the tree structure and the ability to refer to a wider
syntactic context in mapping rules. The conver-
sion is implemented using the dep2dep tool which
allows rules that produce dependencies in the out-
put tree based on an input tree context that can
be specified in considerable detail: it can match
subtree structures, specify negations (e.g. does not
have a property, dependent, or subtree), refer to
the morphological layer, the linear order of to-
kens, and to additional meta-data such as Prop-
Bank argument roles. The tool is implemented as a
compiler that converts the source expressions into
predicates in Prolog, which is then used to apply
the rules.

As an illustration, consider the rule below,
which specifies that an advcl UD dependency is
to be produced between a verb and its participial

modifier partmod in the transitive case, provid-
ing that the participle is not a core argument of the
verb in the PropBank.

[v p (’advcl’)] : [
@[v-"POS_V" p-"CASE=Tra" ("partmod")]
![v p ("Arg_.*")]

]

In total, the conversion consists of 116 such rules,
of which 22 are simple direct dependency renam-
ings, and the remaining refer to a broader context.
We note that these rules did not aim to be universal
or exhaustive: a small number of dependencies, on
the order of 250, were not covered by the rules and
were edited manually upon conversion. This was
more efficient than writing rules that only apply to
generate very few or only single dependencies.

2.4.2 Null tokens

In many situations sentences can be incomplete
and elements obvious from the context can be
omitted. In gapping, an elliptic sentence ele-
ment is omitted to avoid unnecessary repetition,
whereas in sentence fragments the main predicate
is absent. The analysis of fragments and sentences
including gapping is difficult, and many different
approaches have been proposed. In TDT the omit-
ted token, most commonly a verb, is replaced with
a null token, which is given a full morphological
analysis and which acts as a normal token in the
syntactic analysis.

UD takes a different approach to analyzing
omitted sentence elements. UD aims in general
to avoid representing things that are absent, and
does not define a way to introduce null tokens. In-
stead, for example to address coordination with el-
lipsis, UD introduces a special dependency type
remnant. Thus, e.g. Maija meni Pariisiin ja
Mirja Prahaan “Maija went to Paris and Mirja to
Prague” is analysed with an empty token repre-
senting meni “went” in the second constituent in
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Language Tokens Source treebank
Czech 1,506,490 Prague Dependency Treebank 3.0 (PDT) (Bejček et al., 2012)
Spanish 432,651 Universal Dependency Treebank v2.0 (UDT) (McDonald et al., 2013)
French 400,620 Universal Dependency Treebank v2.0 (UDT) (McDonald et al., 2013)
German 298,614 Universal Dependency Treebank v2.0 (UDT) (McDonald et al., 2013)
English 254,830 English Web Treebank v1.0 (EWT) (Silveira et al., 2014)
Italian 214,748 Italian Stanford Dependency Treebank (ISDT) (Simi et al., 2014)
Finnish 202,085 Turku Dependency Treebank (TDT) (Haverinen et al., 2013b)
Swedish 96,819 Talbanken (Nivre, 2014)
Hungarian 26,538 Szeged Treebank (Farkas et al., 2012)
Irish 23,686 Irish Dependency Treebank (IDT) (Lynn et al., 2014)

Table 4: Statistics of the UD Finnish treebank in comparison to the other treebanks included in the first
UD data release.

TDT, but with remnant relations between Maija
and Mirja and between Pariisiin and Prahaan in
UD Finnish (see Figure 3). We applied a combi-
nation of custom scripts and manual reannotation
to resolve empty nodes in the conversion of TDT
to UD Finnish.

2.5 Annotation statistics

Table 4 shows token statistics for the 10 lan-
guages for which treebanks were included in the
initial UD data release. With over 200,000 tokens,
the UD Finnish treebank is in a mid-size clus-
ter among the UD version 1 languages together
with German, English and Italian. This is a rel-
atively prominent position for Finnish, which un-
til recently had no publicly available treebanks.
We hope that the availability of this corpus will
encourage further interest in Finnish dependency
parsing.

3 Experiments

As discussed by de Marneffe et al. (2014) in the
context of the Universal Stanford Dependencies
which formed the basis on which UD was built,
parsing accuracy has not been a major consider-
ation in the definition of the scheme. In fact, a
number of the design choices taken, such as the
attachment of auxiliaries and prepositions as de-
pendents rather than governors of their semantic
head is known to result in a numerically worse
parsing accuracy. Additionally, as the conversion
is an automatic process, the resulting noise may
have a detrimental effect on parsing accuracy as
well. To quantify these effects, we carry out sev-
eral parsing experiments, comparing the Stanford
Dependencies annotation in TDT with its conver-

sion to the UD format. Further, since TDT now
contains also fully manually annotated morphol-
ogy, we will pay extra attention to morphological
processing in the evaluation.

We base the experiments on the publicly avail-
able Finnish parsing pipeline.6 The pipeline uses
the CRF-based tagger Marmot (Müller et al.,
2013), in conjunction with the two-level morpho-
logical analyzer OMorFi (Pirinen, 2008; Lindén
et al., 2009). The morphological analyzer is used
to provide the set of possible morphological read-
ings (lemma, POS, and features) of every recog-
nized word, which are subsequently given as fea-
tures to the Marmot tagger. We initially apply a
hard constraint approach, where the output of the
tagger is used to select one of these readings (the
reading with the highest overlap of tags and a pri-
ority for readings matching the main POS), effec-
tively disambiguating OMorFi output. For words
not recognized by OMorFi, the reading produced
by Marmot is used as-is, and the wordform it-
self is used in place of the lemma. This has so
far been the strategy taken when learning to parse
Finnish (Bohnet et al., 2013). The tagged text is
then parsed with the Mate tools graph-based de-
pendency parser (Bohnet, 2010).7

As baseline, we consider the most recent
Finnish dependency parser trained and evaluated
on the original distribution of TDT. Note that the
test sets differ: the baseline is evaluated on a test
set matching the data it was trained on, which dif-
fers from the new test set in several aspects such
as the treatment of named entities. The results are
thus broadly comparable, but not directly so.

6http://turkunlp.github.io/
Finnish-dep-parser/

7 https://code.google.com/p/mate-tools
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POS PM FM LAS UAS
Baseline (Haverinen et al., 2013b) 94.3 90.5 89.0 81.4 85.2
Stanford Dependencies (SD) 96.3 93.4 90.3 80.1 84.1
Universal Dependencies (UD) 96.0 93.1 90.5 81.0 85.0
Pure Universal Dependencies (Pure UD) 96.0 93.1 90.5 81.5 84.7

Table 5: Results of the parsing experiments. SD refers to the morphological tagset and dependency
relations as defined in TDT, UD to the universal tagset and relations, and pure UD to UD relations with
no language-specific extensions. POS is the POS tagging accuracy, PM the accuracy of POS and all
features, FM the accuracy of full morphology (including the lemma), and LAS and UAS are the standard
labeled and unlabeled attachment score metrics.

POS PM FM LAS UAS
Universal Dependencies (soft) 97.0 93.0 89.3 81.5 85.4
Universal Dependencies (hard-pos) 97.0 94.0 90.7 82.1 85.8
Pure Universal Dependencies (soft) 97.0 93.0 89.3 82.0 84.9
Pure Universal Dependencies (hard-pos) 97.0 94.0 90.7 82.7 85.4

Table 6: Results of the UD parsing experiments with the soft and hard-pos morphological tagging strate-
gies.

The results are summarized in Table 5. Firstly,
we see that all results are roughly comparable,
meaning that the conversion to UD has had no ma-
jor effect on the parsing accuracy. However, the
attachment scores are somewhat lower compared
to the baseline, likely due at least in part to the
different treatment of named entities in the pre-
viously published baseline parser as opposed to
both the newly introduced SD and UD versions of
TDT. Unsurprisingly, the labeled attachment score
is slightly higher for the pure UD scheme with no
language-specific relations.

We additionally focused on morphological tag-
ging. As TDT now contains manual morpholog-
ical annotation, the analyses are no longer tightly
bound to OMorFi as they were in the original re-
lease of TDT. We therefore consider also a soft
constraint approach, where the tags given by Mar-
mot are preserved, and OMorFi is only used to se-
lect the lemma (from the reading with the high-
est overlap of tags). This results in morphological
analyses superior in POS accuracy but inferior in
the prediction of full features. To address this is-
sue, we implemented a new tagging strategy that
applies the hard constraint only in cases where the
predicted POS can be found among the analyses
given by OMorFi (referred to as hard-pos). The
results show an across-the-board improvement for
this strategy as well as numerically the best scores
for Finnish with the graph-based parser of Bohnet
(2010) (Table 6).

4 Conclusions

We have presented Universal Dependencies (UD)
for Finnish, detailing the application of gen-
eral UD guidelines to the annotation of parts-of-
speech, morphological features, and dependency
relations in Finnish and introducing a conversion
from the previously released Turku Dependency
Treebank corpus into the UD Finnish treebank
released in the first UD data release. We also
performed experiments evaluating a state-of-the-
art parser on both the source treebank, TDT, and
the target UD Finnish treebank, finding that per-
formance is slightly improved in the conversion,
which supports both the accuracy of the conver-
sion and the feasibility of UD as a parsing target.

All of the tools and resources described in
this work are available under open licenses from
http://bionlp.utu.fi/ud-finnish.html.
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Abstract
In this paper, we present a novel lemmatization method based on a sequence-to-sequence neural network
architecture and morphosyntactic context representation. In the proposed method, our context-sensitive
lemmatizer generates the lemma one character at a time based on the surface form characters and its
morphosyntactic features obtained from a morphological tagger. We argue that a sliding window con-
text representation suffers from sparseness, while in majority of cases the morphosyntactic features of
a word bring enough information to resolve lemma ambiguities while keeping the context representa-
tion dense and more practical for machine learning systems. Additionally, we study two different data
augmentation methods utilizing autoencoder training and morphological transducers especially benefi-
cial for low-resource languages. We evaluate our lemmatizer on 52 different languages and 76 different
treebanks, showing that our system outperforms all latest baseline systems. Compared to the best overall
baseline, UDPipe Future, our system outperforms it on 62 out of 76 treebanks reducing errors on aver-
age by 19% relative. The lemmatizer together with all trained models is made available as a part of the
Turku-neural-parsing-pipeline under the Apache 2.0 license.

Keywords: Lemmatization; Universal Dependencies; Parsing; Sequence-to-sequence model

1. Introduction
Lemmatization is a process of determining a base or dictionary form (lemma) for a given surface
form. Traditionally, word base forms have been used as input features for various machine learn-
ing tasks such as parsing, but also find applications in text indexing, lexicographical work, key-
word extraction, and numerous other language technology-enabled applications. Lemmatization
is especially important for languages with rich morphology, where a strong normalization is
required in applications. Main difficulties in lemmatization arise from encountering previously
unseen words during inference time as well as disambiguating ambiguous surface forms which
can be inflected variants of several different base forms depending on the context.

The classical approaches to lemmatizing highly inflective languages are based on two-level
morphology implemented using finite state transducers (FSTs) (Koskenniemi 1984; Karttunen
and Beesley 1992). FSTs are models encoding vocabulary and string rewrite rules for analyzing
an inflected word into its lemma and morphological tags. Due to surface form ambiguity, the
FST encodes all possible analyses for a word, and the early work on context-sensitive lemmatiza-
tion was based on disambiguating the possible analyses in the given context (Smith, Smith, and
Tromble 2005; Aker, Petrak, and Sabbah 2017; Liu and Hulden 2017).

The requirement of having a predefined vocabulary is impractical especially when working
with Internet or social media texts where the language variation is high and adaptation fast.

c© The Author(s), 2020. Published by Cambridge University Press. This is an Open Access article, distributed under the terms of the
Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and
reproduction in any medium, provided the original work is properly cited.
https://doi.org/10.1017/S1351324920000224 Published online by Cambridge University Press
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Therefore, there has been an increasing interest in the application of context-sensitive machine
learning methods that are able to deal with open vocabulary.

In this paper, we present a sequence-to-sequence lemmatizer with a novel context represen-
tation. This method was used as part of the TurkuNLP submission (Kanerva et al. 2018) in
the CoNLL-18 Shared Task on Multilingual Parsing from Raw Text to Universal Dependencies
(Zeman et al. 2018), where it ranked 1st out of 26 participants on the lemmatization subtask.
In addition to plain lemmatization, the system ranked 1st on the bi-lexical dependency score
evaluation metric as well, a metric combining evaluation of both lemmatization and syntactic
dependencies. Our Shared Task work is extended in several directions. First, we analyze and jus-
tify the particular context representation used by the system using data from 52 languages; second,
we carry out comparison to state-of-the-art lemmatization methods; third, we test and evaluate
two different data augmentation methods for automatically expanding training data sizes; and
finally, we release the system together with models for all 52 languages as a freely available parsing
pipeline, containerized using Docker for ease of use.

The rest of the paper is structured as follows. In Section 2, we discuss the surface form
ambiguity problem in the context of lemmatization, as well as present a data-driven study for
justifying our contextual representation for resolving the problem. In Section 3, we describe the
most important related work. In Section 4, we present our problem setting, model architecture,
and implementation. Experimental setups for our main evaluation as well as results are given in
Sections 5 and 6. In Section 7, we describe our data augmentation studies to increase training set
sizes leading to a higher prediction accuracy. In Section 8, we summarize the results as well as dis-
cuss the practical issues related to our method, most importantly prediction speed and software
release. Finally, we conclude the paper in Section 9.

2. Lemmatization ambiguity andmorphosyntactic context
Lemmatization methods can roughly be divided into two categories, context-aware methods
where the lemmatization system is aware of the sentence context where the word appears, and
methods where the system is lemmatizing individual words without contextual information. The
advantage in the former approach is the ability to correctly lemmatize ambiguous words based on
the contextual information while the latter is only able to either give one lemma for each word
even though its lemmatization can vary in different contexts, or list all alternatives. While some of
the ambiguous words, such as love in the verb-noun contrast (I love you vs. Love is all you need),
are assigned the same lemma (love in this case rather than to love), it is not always the case. For
example, the English word lives receives a different lemma depending on the part of speech (live
vs. life). Additionally, words can be ambiguous within a single part-of-speech class. For example,
in Finnish the word koirasta is always a noun but depending on the grammatical case it should
be lemmatized to koira (a dog inflected in elative case) or to koiras (a male inflected in partitive
case). Note that the knowledge of the part-of-speech and inflectional tags, that is, morphosyntac-
tic features of the word, is sufficient to correctly lemmatize these two abovementioned examples.
This holds for the majority of cases, with rare exceptions. For example, the Finnish word paikkoja
is a noun in plural partitive, but it can be an inflection of two different lemmas, paikka (a place or
patch) or paikko (a spare in bowling). In these rare cases, the meaning, and therefore the correct
lemma, can only be derived from the semantic context, that is, the actual meaning or topic of the
sentence.

Bergmanis and Goldwater (2018) did a careful evaluation of lemmatization model effective-
ness with and without contextual information. They show that including a sliding window of
nearby characters significantly improves the performance compared to the context-free version
of the same system. However, they only evaluate the system using a textual context (i.e. n char-
acters/words before and after the word to be lemmatized). Suspecting that this lexical context
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Figure 1. Percentage of running tokenswith ambiguous lemma and token-tag pairs with ambiguous lemma calculated from
the UD v2.2 training data. An ambiguous token is a word occurring with more than one lemma in the training data, whereas
an ambiguous token-tag pair is a (word, morphosyntactic tags) -tuple occurring with more than one lemma in the training
data. All treebanks of one language are pooled together.

representation suffers from sparseness, we hypothesize that the morphosyntactic features will
uniquely disambiguate the lemma in all but the rarest of cases, and can serve as a more practi-
cal, dense context representation for the lemmatization task. In order to establish how uniquely
the features disambiguate the lemma, we measure different levels of ambiguity on the Universal
Dependencies (UD) v2.2 treebanks and present the results in Figure 1. We measure how many
times a (word, morphosyntactic tags) -tuple is seen with more than one lemma compared to how
many times a plain word is seen with more than one lemma in the training data.

We can see that the proportion of ambiguous lemmas drastically drops for most languages
when morphosyntactic tags are taken into account, on average the token-tag pair ambiguity being
close to 3% of running tokens, while plain token ambiguity is close to 12%. For more than half
of the languages, the ambiguity drops below 1% of running tokens, to the level which does not
pose an issue anymore, or, from a different point of view, can be expected to cause an issue to
any machine learning system due to the rareness of the words involved as we will demonstrate
shortly. However, for few languages the ambiguity remains on surprisingly high level, especially
for Urdu (36%) and Hindi (22%), both being Indo-Aryan languages and closely related to each
other, as well as for Spanish (14%), a Romance language. To shed some light specifically on these
three languages, we plot in Figure 2 the frequencies of most common and second most common
lemmas for the 100 most common ambiguous words. For all three languages, and all but a handful
of words, the distribution is extremely imbalanced with only a small number of occurrences of the
less frequent lemma.When investigating similar cases in languages we are familiar with, we can see
that in addition to real ambiguities in many cases these turn out to be annotation inconsistencies.
For example, while the word vs. as adposition has only one meaning in the English training data
and therefore should also have only one lemma, it is lemmatized 17 times as vs. and once as versus.
Similarly, most of the ambiguous cases in the Finnish data are inconsistencies in the placement
of compound boundary markers. Even with the real ambiguities, it is debatable whether heavily
skewed distributions, where the most common lemma can be several orders of magnitude more
common, can be learned given the minimal number of training examples for the rarer lemma.

In the light of these findings, we therefore argue that the part-of-speech and rich morphosyn-
tactic features are, from the practical standpoint of building a multilingual lemmatization system,
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Figure 2. Frequency comparison of the most common and the secondmost common lemmas in the training data for words
which are ambiguous at the word-tag level. The top-100 most common ambiguous words are shown for Urdu (left), Hindi
(middle), and Spanish (right), the three languages with the highest ambiguity rate in Figure 1.

sufficient to resolve the vast majority of ambiguous lemmatizations in the vast majority of the 52
languages covered by the UD data set.

3. Related work
The most common machine learning approaches to lemmatization are based on edit-tree classifi-
cation, where all possible edit trees or word-to-lemma transformation rules are first gathered from
the training data, and then a classifier is trained to choose the correct one for a given input word.
These methods do not require that the input word is known in advance as long as the correct edit
pattern is seen during training. Edit-tree classifiers are used, for example, in Müller et al. (2015),
Straka, Hajic, and Straková (2016), and Chakrabarty, Pandit, and Garain (2017), and the sentence-
context for resolving ambiguous words can be incorporated into these classifiers, for example, by
using global sentence features (Müller et al. 2015) or contextualized token representations (Straka
et al. 2016; Chakrabarty et al. 2017; Straka 2018b).

Many recent works build on the sequence-to-sequence learning paradigm. Bergmanis and
Goldwater (2018) present the Lematus context-sensitive lemmatization system, where the model
is trained to generate the lemma from a given input word one character at a time. Additionally,
a context of 20 characters in each direction is concatenated with the input word, resulting in a
12% relative error decrease compared to only the word being present in the input. The Lematus
system outperforms other context-aware lemmatization systems, including Chrupała, Dinu, and
Van Genabith (2008), Müller et al. (2015), and Chakrabarty et al. (2017), and can be seen at the
time of writing as the current state of the art on the task. However, the task is naturally an active
research area with new directions pursued, for example, by Kondratyuk et al. (2018).

The 2018 CoNLL Shared Task on multilingual parsing included lemmatization as one of the
objectives, and has given rise to a number of machine learning approaches. Together with our
work and the abovementioned edit-tree classifier of Straka (2018b), the Stanford system (Qi et
al. 2018) ranked among the top three performing systems on large treebanks in the Shared Task.
In the Stanford system, words whose lemma cannot be looked up in a dictionary are lemmatized
using a sequence-to-sequence model without any additional context information.

Sequence-to-sequence models have also been widely applied in the context of morphological
reinflection, the reverse of the lemmatization task. In the CoNLL-SIGMORPHON 2017 Shared
Task on Universal Morphological Reinflection (Cotterell et al. 2017), the objective was to gener-
ate the inflected word given a lemma and morphosyntactic tags. Here several of the top-ranking
systems were based on sequence-to-sequence learning (Kann and Schütze 2017a; Bergmanis et al.
2017). The entry of Östling and Bjerva (2017) additionally tried to boost the inflection genera-
tion by learning the primary morphological reinflection objective jointly with the reverse task of
lemmatization and tagging.
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4. Methods
Taking inspiration from the top systems in the CoNLL-SIGMORPHON 2017 Shared Task, we cast
lemmatization as a sequence-to-sequence rewrite problem where lemma characters are generated
one at a time from the given sequence of word characters and morphosyntatic tags. We diverge
from previous work on lemmatization by utilizing morphosyntactic features predicted by a tagger
to represent the salient information from the context, instead of using, for example, contextualized
word representations or sliding window of text. We modify the usual order of a parsing pipeline
to include the lemmatizer as the last step of the pipeline, running after the tagger and thus mak-
ing it possible to access the predicted part-of-speech and morphological features at the time of
lemmatization. In this study, we use the part-of-speech tagger of Dozat, Qi, and Manning (2017)
modified to predict also morphological features (Kanerva et al. 2018). More detailed discussion of
the tagger is included in Section 5.1.2.

The input of our sequence-to-sequence lemmatizer model is the sequence of characters of the
word together with the sequence of its morphosyntactic tags, while the output is the sequence
of lemma characters. In the UD representation, three different columns are available for mor-
phosyntactic tags: universal part-of-speech (UPOS), language-specific part-of-speech (XPOS), and
morphological features, a sorted list of feature category and value pairs (FEATS). All three are used
in the input together with the word characters. For example, the input and output sequences for
the English word lives as a noun are the following:

INPUT: l i v e s UPOS=NOUN XPOS=NNS Number=Plur
OUTPUT: l i f e

Once cast in this manner, essentially any of the recent popular sequence-to-sequence model
architectures can be applied to the problem. Similarly to the Lematus system, we rely on an existing
neural machine translation model implementation, in our case OpenNMT: Open-Source Toolkit
for Neural Machine Translation (Klein et al. 2017).

4.1 Sequence-to-sequencemodel
The model implemented by OpenNMT is a deep attentional encoder–decoder network. The
encoder uses learned character and tag embeddings, and two bidirectional long short-term mem-
ory (LSTM) layers to encode the sequence of input characters and morphosyntactic tags into
a same-length sequence of encoding vectors. The sequence of output characters is generated
by a decoder with two unidirectional LSTM layers with input feeding attention (Luong, Pham,
and Manning 2015b) on top of the encoder output. The full model architecture is illustrated in
Figure 3.

An important requirement for sequence-to-sequencemodels is the ability to correctly deal with
out-of-vocabulary (OOV) items at inference time. For example, in machine translation foreign
person and place names should often be copied into the output sequence, which is not possible
if the generation is based on a straightforward classification over output vocabulary learned dur-
ing training. In the case of lemmatization, this issue manifests itself as characters not seen during
training. Since in some languages foreign names inflect, copying full words that contain OOV
characters is not a sufficient solution. For instance, a Finnish lemmatizer model trained on a typi-
cal Finnish corpus will have a vocabulary of mostly Scandinavian characters, and will be unable to
correctly lemmatize the case-inflected Czech name Ru̇žičkalla into Ru̇žička.

In machine translation, the problem of OOV words is for the most part solved using byte pair
encoding or other subword representations, reducing vocabulary size and handling inference-time
unknown words (as unknown words can be split into known subwords) (Sennrich, Haddow, and
Birch 2016). As the lemmatizer operates on the level of characters, indivisible into smaller units,
we instead rely on an alternative technique whereby the model is trained to predict an unknown
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Figure 3. Our encoder–decoder model architecture.

Figure 4. Visualization of the step-wise attention weights (actual system output), where the x-axis corresponds to the input
sequence and the y-axis to the generated output sequence. In post-processing, each generated UNK symbol is replaced with
the input symbol that has the maximal attention at the respective time step.

symbol UNK for rare and unseen characters, and as a post-processing step, each such UNK symbol
is subsequently substituted with the input symbol with the maximal attention value of the model
at that point (Luong et al. 2015a; Jean et al. 2015). For instance, for the inflected name Ru̇žičkalla,
we would get

INPUT: R u̇ ž i č k a l l a UPOS=PROPN XPOS=N Case=Ade Number=Sing
OUTPUT: R UNK UNK i UNK k a

as the initial output of the system, later post-processed to the correct lemma Ru̇žička based on
attention weights visualized in Figure 4.
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5. Evaluation
Next we carry out an extensive evaluation of the lemmatization framework on 52 different
languages with varying lemmatization complexity and training data sizes. We compare our sys-
tem to several competitive lemmatization baselines. First, we give a detailed description of our
experimental setup, the baseline systems, and model parameters, and after that, we present the
evaluation results.

5.1 Data and tools
5.1.1 UD treebanks
We base our experiments on UD v2.2 (Nivre et al. 2018), a multilingual collection of 122 morpho-
syntactically annotated treebanks for 71 languages, with cross-linguistically consistent annotation
guidelines, including also gold standard lemma annotation (Nivre et al. 2016). The UD treebanks
therefore allow us to test the lemmatization methods across diverse language typologies and train-
ing data sizes, ranging from a little over 100 to well over 1 million tokens. We restrict the data to
the subset of 82 treebanks (57 languages) used in the CoNLL-18 Shared Task on Multilingual
Parsing from Raw Text to Universal Dependencies (Zeman et al. 2018). In addition to allowing
a direct comparison with the state-of-the-art parsing pipelines participating in the Shared Task,
the treebanks from this subset all have a test set of at least 10,000 tokens, ensuring a reliable eval-
uation. Note that even though the test set is always at least 10,000 tokens, training sets may be
considerably smaller, in several instances about 100 tokens.

Furthermore, it was also necessary to remove two treebanks with no lemma annotation (Old
French-SRCMF and Thai-PUD) and four treebanks with no training data (Breton-KEB, Faroese-
OFT, Japanese-Modern and Naija-NSC). The four parallel “PUD” treebanks included in the
Shared Task (Czech-PUD, English-PUD, Finnish-PUD, and Swedish-PUD, each including the
same 1000 sentences translated into the target language and annotated into UD) do not have ded-
icated training data, but can be used as additional test sets for models trained on the Czech-PDT,
English-EWT, Finnish-TDT, and Swedish-Talbanken treebanks, which are sufficiently similar in
annotation style. Altogether, we therefore evaluate on 76 treebanks representing 52 different lan-
guages. During evaluation, we show results separately for several different groups categorizing
treebanks by size or other properties. These groups are PUD for 4 additional parallel test sets, big
for 60 treebanks with more than 10,000 tokens of training and 5000 tokens of development data,
small for 7 treebanks with reasonably sized training data but no additional development data, and
low resource for 5 treebanks with only a tiny sample of training data (around 20 sentences) and no
development data. These are the same treebank groups as defined in CoNLL-18 Shared Task.

To ensure that treebanks in the small and low-resource categories also have a development set
for hyperparameter tuning and model selection, we adopt the data split provided by the Shared
Task organizers, which creates the development set from a portion of the training data when nec-
essary (Straka 2018a). This data split was also used to train the Shared Task baseline model, one
of the systems we compare our results to. The final numbers are always reported on the held-out
test set directly specified in the UD release for each treebank. The original test section of the UD
data is never used in system training and development, as suggested by the data providers and
so as to be able to distribute the trained models for further comparison. For this reason, we also
decided not to apply N-fold cross-validation for low-resource treebanks, which otherwise would
have been an option to decrease variance in the results. Furthermore, the training and develop-
ment set split is also kept fixed as the development data are used only for early stopping and
model selection, which we do not expect to greatly affect the numbers, and hyperparameters are
not tuned separately for each treebank.

5.1.2 Part-of-speech andmorphological tagger
As the input of our lemmatizer is a word together with its part-of-speech and morphosyntactic
features, we need a tagger to predict the required tags before the word can be lemmatized. We use
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the one by Kanerva et al. (2018), which is based on the winning Stanford part-of-speech tagger
(Dozat and Manning 2017; Dozat et al. 2017) from the CoNLL-17 Shared Task on multilingual
parsing (Zemen et al. 2017) The tagger has two classification layers (predicting UPOS and XPOS)
over tokens in a sentence, where tokens are first embedded using a sum of learned, pretrained and
character-based LSTM embeddings, which are then encoded with a bidirectional LSTM to create
a sequence of contextualized token representations. The classification layers are trained jointly on
top of these shared token representations. By default, the original tagger does not predict the rich
morphosyntactic features (FEATS column in CoNLL-U format). To this end, in Kanerva et al.
(2018) we modified the tagger training data by concatenating the morphosyntactic features with
the language-specific part-of-speech tag (XPOS), thereby forcing the tagger to predict the XPOS
tag and all morphosyntactic features as one multi-class classification problem. For example, in
Finnish-TDT the original XPOS value N and FEATS value Case=Nom|Number=Sing are con-
catenated into one long string XPOS=N|Case=Nom|Number=Sing which is then predicted by
the tagger. The morphological features are sorted so as to avoid duplicating label strings having
the same tags in different order. After prediction, the morphosyntactic features are extracted into
a separate column. The evaluation in Kanerva et al. (2018) shows that this data manipulation tech-
nique does not harm the prediction of the original XPOS tag, and accuracy of morphosyntactic
feature prediction (FEATS field) is comparable to the state of the art in the CoNLL-18 Shared
Task, ranking 2nd in the evaluation metric combining both morphosyntactic features and syntac-
tic dependencies, and 3rd in the evaluation of plain morphosyntactic features. In our preliminary
experiments, we expected the complex morphology of some languages to result in a large number
of very rare feature strings if combined in such a simple manner. We tested several models, for
instance, predicting a value for each category separately (e.g. Nominative for Case) from a shared
representation layer. However, the results were surpassed by the simple concatenation of mor-
phological features. The conclusion of this experiment was that even though some languages have
many unique feature combinations (number of unique combinations ranging from 15 to 2500) the
most common ones cover the vast majority of the data, with the rare classes having no practical
effect on the prediction accuracy (more detailed discussion is given in Kanerva et al. 2018).

5.2 Parameter optimization
To optimize the hyperparameters of our lemmatization models, we use the RBFOpt library
designed for optimizing complex black-box functions with costly evaluation (Costa andNannicini
2018). Different values of embedding size, recurrent layer size, dropout, learning rate, and learn-
ing rate decay parameters are experimented with. We let the RBFOpt optimizer run for 24 hours
on 3 different treebanks, completing about 30 training runs for Finnish and English, and about
300 for the much smaller Irish treebank. The findings are visualized in Figure 5: On the left side of
the figure, all different runs completed by the optimizer are shown as a parallel coordinates graph,
while on the right side we use a validation loss filter to show only those runs that result in low
validation loss values. From this, we can more easily determine the optimal parameter ranges and
their mutual relationship.

Based on these optimizer runs, the lemmatization models seem to be moderately stable, most
of the parameter values having individually only a small influence on the resulting validation loss,
once the RBFOpt optimizer finds the appropriate region in the parameter space. The learning
rate parameter (lr column) appears to have the largest impact, where lower learning rate values
generally work better. Overall, the learning is stable across the parameter space, and the parameter
optimization does not play a substantial role. Even default values as defined in the OpenNMT
toolkit worked comparatively well.

In the final experiments, apart from the batch size, uniform hyperparameter settings based on
the observations of the three optimization runs are used for all treebanks. We set the embedding
size to 500, dropout to 0.3, recurrent size to 500, and we use the Adam optimizer (Kingma and Ba
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Figure 5. Parallel coordinates graphs for visualizing hyperparameter optimizer runs for three different treebanks (top:
English, middle: Finnish, bottom: Irish). On the left side of the figure are all optimizer runs completed during the 24-hour
time window, while on the right side these runs are filtered based on the validation loss to demonstrate parameter ranges
resulting in low validation loss values.

2015) with initial learning rate of 0.0005 and learning rate decay with 0.9 starting after 20 epochs.
All models are trained for 50 epochs, but for smaller treebanks we decrease the minibatch size to
increase the number of updates applied during training. Our default minibatch size is 64, but for
treebanks with less than 2000 training sentences and less than 200 training sentences, we use 32
and 6, respectively. Models usually converge around epochs 30–40, and final models are chosen
based on prediction accuracy on the validation set. During prediction time we use beam search
with beam size 5.

5.3 Baselines
We compare our lemmatization performance to several, recent baseline systems. Baseline UDPipe
(Straka et al. 2016) is the organizers’ baseline parsing pipeline from the CoNLL-18 Shared Task,
which, due to its easy usability and availability of pretrained models, has been the go-to tool for
parsing UD data. UDPipe Future (Straka 2018b) is an updated version of the baseline UDPipe
pipeline ranking high across the CoNLL-18 ST evaluation metrics. Both UDPipe versions have
a lemmatizer based on the edit-tree classification method. The Stanford system (Qi et al. 2018)
is a dictionary look-up followed by a context-free sequence-to-sequence lemmatizer for words
unseen in the training data. Together with our entry, UDPipe Future and Stanford form the top
three performing entries in the lemmatization evaluation of the CoNLL-18 ST on the big tree-
bank category. In addition to top ranking systems from the CoNLL-18 ST, we also compare to
the context-aware Lematus sequence-to-sequence lemmatizer (Bergmanis and Goldwater 2018)
which outperformed all its baselines in the earlier studies, and can be seen as a current state of
the art in lemmatization research. Our final baseline (Look-up) is a simple look-up table, where
lemmas are assigned based on the most common lemma seen in the training data, while unknown
words are simply copied unchanged to the lemma field.

Results for the baseline systems from the CoNLL-18 ST (Baseline UDPipe, UDPipe Future and
Stanford) are obtained directly from the official ST evaluation,a while the Lematus models are
reimplemented using the OpenNMT toolkit to overcome the experimental differences between

aEvaluation results are available at http://universaldependencies.org/conll18/results-lemmas.html.
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Figure 6. Test set word-level error rates for our system as well as all baseline systems divided into three different treebank
groups, big, PUD, and small, as well as macro-average over all treebanks belonging to these groups.

this and the original study and performance issues regarding the original implementation.b To
mimic the CoNLL-18 ST lemmatization evaluation settings, where lemmas are evaluated on top of
the predicted sentence and word segmentation, we apply the segmentation of the Baseline UDPipe
system (Straka 2018a) for our lemmatizer as well as for the Lematus and Look-up baselines. The
UDPipe Future and Stanford systems instead have their own built-in segmenters. However, Straka
(2018b) reports that when using the same segmentation as in our pipeline, the lemmatization
accuracy of UDPipe Future decreased by 0.03pp overall, showing that the difference between our
andUDPipe Future segmentation is not significant. For the Stanford system, comparable numbers
are not available, and we need to rely on the official Shared Task evaluation.c

6. Results
The results are shown in Figure 6, where we measure word-level error rates separately on three
treebank categories, big, PUD, and small, as well as macro-average error rate over all treebanks
belonging to these three categories.

On all three categories, our system outperforms all the baselines with an overall error rate of
4.61 (macro-average across the treebanks in the three categories). Compared to the second best
overall system, UDPipe Future, our error rate is 1.35 absolute percent point lower, reducing errors
by 23% within these three treebank categories. The widest margin from our system to the second
best systems is in the small treebank category where our system reduces errors by 30%, from 12.75
to 8.98, compared to the second best Lematus system. The simplistic Look-up baseline is clearly
worse than all other systems, reflecting that plain memorizing training tokens and fallback copy-
ing unknowns is not a sufficient strategy for language universal lemmatizer. The three most recent

bThe original implementation relies on the outdated Theano backend which is no longer compatible with our GPU servers.
cNote that the Stanford system official results are affected by a known segmentation bug. Overall lemmatization results

reported by the Stanford team for their corrected system improve its performance from –2.92pp to –2.07pp difference to our
system, that is, not affecting the overall conclusions.
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Figure 7. Test set macro-average error rates of five low-resource category treebanks for two our models as well as all
baseline systems.

baseline systems (Stanford,UDPipe Future and Lematus) perform evenly in terms of average error
rate, outperforming the older Baseline UDPipe.

The fourth treebank category used in the CoNLL-18 ST is low-resource, where only a tiny
training data sample is available, usually around 20 sentences. Results for this group are given
separately in Figure 7, where we measure macro-average word-level error rate over the five tree-
banks belonging to this category. Few dozens of training sentences cannot be expected to result in
a well-performing lemmatization system, and indeed, all systems have error rates near 40%–50%,
where almost half of the tokens are lemmatized incorrectly. Here even the Look-up baseline per-
forms comparably to the other systems, which is for the most part caused by the fallback copying
of the unknown words unchanged to the lemma field, and therefore getting the easy words cor-
rect. For our system, we report two different runs, basic is trained purely on the tiny training data
sample, while official is our official submission for the CoNLL-18 ST, where we experimented with
preliminary data augmentation methods for automatically enriching the tiny training data sam-
ple with words analyzed by morphological transducers. The two lowest average error rates in the
low-resource category are achieved by the two different versions of UDPipe (UDPipe Baseline and
UDPipe Future), both belonging to the category of edit-tree classification systems. Systems based
on sequence-to-sequence learning (Stanford, Lematus, and ours) are hypothesized to be more
data hungry, and these systems indeed achieve clearly worse results in the low-resource category,
all making more errors than correct predictions. However, when we include the additional train-
ing data obtained with data augmentation methods, we are able to boost our performance (Our
official) to the level of the two edit-tree classification systems reducing errors by 24% compared
to our basic models. Nevertheless, as all results are about the same level as the simple Look-up
baseline, the achieved improvement is mostly theoretical.

7. Training data augmentation
In our initial attempt to improve lemmatization performance on the low-resource languages in the
CoNLL-18 Shared Task, we observed a substantial improvement over our basic run when themor-
phological transducers are used to generate additional training data. However, the overall accuracy
of those data sets is below the limits of usable real-world systems and thus the seen improve-
ments are more theoretical than practical. Next, we investigate whether automatic training data
augmentation methods are useful for languages with much better baseline accuracy to improve
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lemmatization performance in a real-life setting as well. We test two different methods on a full
set of treebanks suitable for a given method. First, we apply an autoencoder style secondary learn-
ing objective, where the lemmatizer model is trained to repeat the given input sequence without
anymodification. The benefit of such objective is to support the stem generation without requiring
any additional resources. Second, we repeat the experiment with the morphological transducers
for all languages which have an Apertium morphological transducer available. We generate addi-
tional inflection–lemma pairs based on the known vocabulary and inflection paradigms encoded
as a transducer, and these new training examples are then mixed with the original training data.
Next, we explain both data augmentation methods in detail, and afterwards compare the results.

7.1 Autoencoding random strings
In our first data augmentation method, we apply joint learning of autoencoding and lemmatiza-
tion. The basis of the required work in sequence-to-sequence lemmatization is the ability to repeat
the word stem in the output generation. As suggested by Kann and Schütze (2017b) in the con-
text of morphological reinflection, we hypothesize that learning to repeat the input characters as
a secondary task with additional training examples could simplify the lemmatization complexity
the model has to learn especially for treebanks with less training data. If the model is taught sep-
arately to repeat the input characters in the generated output, the actual lemmatization rewriting
task could be learnable with less training material. In particular, this approach should be able to
help in low-resource settings when the amount of training data is not necessarily sufficient for
learning the complex task from scratch.

Following the autoencoding idea of Kann and Schütze (2017b), we enrich our lemmatization
training data for each treebank by adding randomly generated strings where the input and output
sequences are verbatim copies. These random strings are not equipped with any morphosyntactic
tags, but instead a special tag is added to give the model the ability to distinguish these from the
actual lemmatization examples to avoid confusion. Each random string is generated by sampling
with replacement 3–12 characters individually from the known character vocabulary with charac-
ter probabilities calculated from the training data, producing word-like items of varying lengths.
However, we force each character in the vocabulary to be sampled at least once to better cover
the known character vocabulary. This is achieved by first generating as many random strings as
there are characters in the alphabet, each string containing the respective alphabet character at a
random position. The rest of the strings are randomly sampled without any further restrictions on
the alphabet. These generated strings are then mixed together with the actual training examples
by randomly shuffling all training examples, and both tasks are thus trained simultaneously. The
random shuffling of training examples (i.e. individual words), and therefore breaking the semantic
context, does not harm the training of our lemmatizer as it is anyway looking at individual words
at a time. As in our training data the morphosyntactic tags are already included for each word, and
the random autoencoder strings do not use any morphosyntactic tags, there is no requirement of
running the tagger at training time, thus making the training data shuffling procedure straight-
forward. We chose to autoencode random strings rather than actual words as that way we do not
need any external resources and the method is easily repeatable for any language.

7.2 Morphological transducers
In our second data augmentation method, we lean on additional morphological/lexical resources
available for a particular language. In addition to UD, other projects are also striving to build
unified morphological resources across many different languages. For example, the UniMorph
project (Kirov et al. 2016) extracts and normalizes morphological paradigms from theWiktionary
free online dictionary site. Further, FSTs for morphological analysis and generation for a multi-
tude of languages are available in the Apertium framework, which includes a pool of open source
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resources for natural language processing (Tyers et al. 2010). Both UniMorph and Apertium
frameworks can be used to collect inflected words and for each word a set of possible lemmas
together with the corresponding morphological features. However, while these resources are uni-
fied within a project, their schema and guidelines differ from each other across different projects.
For this reason, using a mixture of training examples gathered from two or more different sources
is not a straightforward task.While harmonized annotations across different languages give a good
starting point for multilingual conversion, the mapping is usually not fully deterministic (see, e.g.,
McCarthy et al. 2018 for detailed study of mapping from UD into UniMorph).

We expand our preliminary data augmentation experiments carried out during the CoNLL-18
ST, where we used the Apertium morphological transducers to collect additional training exam-
ples. A morphological transducer is a finite-state automaton including morphological paradigms
(inflection regularities/rules) and a lexicographical database (lexicon), where each lexical entry
(lemma) is assigned to the inflection paradigm it follows. These linguistic resources can be com-
piled into an efficient FST, an automaton which is able to return all matching lemmas and
morphological hypotheses encoded in it for the given input word.

We set out to test whether improvements similar to those achieved with low-resource languages
can also be seen with languages already including a reasonable amount of initial training data.
We develop a language-agnostic feature mapping from Apertium features into UD, allowing us
to cover all UD languages which have an Apertium morphological transducer available (Arabic,
Armenian, Basque, Bulgarian, Buryat, Catalan, Czech, Danish, Dutch, English, Finnish, French,
Galician, German, Greek, Hindi, Italian, Kazakh, Kurmanji, Latvian, Norwegian, Polish, Russian,
Spanish, Swedish, Turkish, Ukrainian, and Urdu).

For each of these languages, we first gather a full vocabulary list sorted by word frequencies
in descending order. These lists are gathered mainly from the web crawl data sets (Ginter et al.
2017), but for languages not included in the distributed web crawl data set (Armenian, Buryat,
Kurmanji) we use Wikipedia dumps instead. The word frequency lists are then analyzed by the
Apertiummorphological transducers where for each unique word we obtain a set of possible lem-
mas and their corresponding morphological features. Words not recognized by the transducer
(not part of the predefined lexicon) are simply discarded. All of these Apertium analyzes are then
converted into the UD schema using our language-agnostic feature mapping where each morpho-
logical feature is converted into UD, based on a manually created look-up table. As the mapping
from Apertium features into UD features is not a fully deterministic task, our language-agnostic
feature mapping is designed for high precision and low recall, meaning that if a feature cannot be
reliably translated, it will be dropped from the UD analyses. This approach may produce incom-
plete UD analyses, but we hypothesize that the lemmatizer model is robust enough to be able to
utilize existing features without missing ones being too harmful for the training process, espe-
cially since in the actual training data these augmented examples are mixed together with the
actual ones. The lemmas, on the other hand, we assume to be relatively harmonized between UD
and Apertium by default, and these are used without any conversion or modification. After fea-
ture translation, we skip words which already appear in the original treebank training data, as well
as all lemmas with a missing part-of-speech tag in the UD analysis due to an incomplete feature
conversion, and all ambiguous words having two or more different lemmas with exactly the same
morphological features. Finally, we pick a number of most common words from the UD con-
verted and filtered transducer output, which are then mixed together with the original treebank
training data. All training examples are randomly shuffled before training.

7.3 Data augmentation results
First, we compare the two augmentation methods against our basic system, where based on obser-
vations in Bergmanis et al. (2017), we mix 4000 additional training examples together with the
original training data in both experiments. We decided to use a constant number of additional
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Table 1. Evaluation of our two data augmentation methods, augmented with autoencoder
and augmented with transducer as well as a mixed method, compared to our basic mod-
els. Additionally, we measure average percentage of words recognized by the transducer
(Transducer Coverage) and average percentage of words having the correct lemma among
the possible analyses (Transducer Recall), which represents an oracle accuracy achievable by
transducers if all lemmas could bedisambiguated correctly. Allmetrics aremeasuredon token
level, and in each column the highest accuracy value is bolded

All Excl. low Transd. only
Model treebanks resource treebanks

Basic 92.22 95.37 92.03
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Augm. autoencoder 4K 92.89 95.42 93.11
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Augm. transducer 4K 93.15 95.45 93.55
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Augm. mixed 2K+ 2K 93.12 95.47 93.45
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Augm. mixed 4K+ 4K 93.17 95.48 93.56
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Augm. mixed 8K+ 8K 93.24 95.51 93.61
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Transd. coverage – – 86.76
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Transd. recall – – 78.15

examples rather than a percentage to better account for the low-resource languages, the ones
benefiting most from the experiment, where, for example, a 20% increase in training data would
still translate to having less than 500 training examples. Second, we add experiments on using
a mixture of both augmentation techniques and increasing the number of additional examples
included. Additionally, we test how well a morphological transducer itself could serve as a lem-
matizer by measuring its coverage (how many words from the test data are recognized by the
transducer) and lemma recall (how many words from the test set have the correct lemma among
the possible analyses given by the transducer). Lemma recall therefore gives an upper-bound, ora-
cle accuracy achievable by the transducer, assuming that all lemmas in its output can be correctly
disambiguated. Results are given in Table 1. We measure macro accuracy over all treebanks and
results are given separately for three treebank groups: All treebanks includes all 76 treebanks stud-
ied in this paper, Excluding low resource is all treebanks except the 5 low-resource treebanks and
Transducer-only treebanks is a set of 47 treebanks representing languages which have a morpho-
logical transducer available. Note that in All treebanks results the Augm. transducer row uses the
basic model for treebanks where a transducer is not available, giving a realistic comparison against
the Augm. autoencodermethod which does not suffer from lacking resources. In the mixed exper-
iments, if a transducer is not available for a language, the training data is enriched only with
the autoencoder examples. The two direct transducer metrics (Transducer Coverage and Recall),
however, can be realistically measured only for languages having a transducer available and the
results reported for the Transducer-only treebanks group allow for a direct comparison between
plain transducers and our models.

In all three groups, all augmentation methods are able to surpass the basic model, with the
transducer-basedmethod giving slightly better overall results than the autoencoder.Whenmixing
the two methods, the same amount of total examples as in the plain transducer augmentation is
divided evenly between the twomethods. The mixedmethod is not able to surpass the transducer-
based one, but when increasing the amount of additional mixed data, the performance also
increases slightly, the mixed 8K + 8K, the largest mixed method tested, giving the best overall
performance. When considering a macro-average over all treebanks, errors are reduced by 13%
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relative compared to our basic models. However, when excluding the five low resource treebanks
already discussed in Section 6, the difference is smaller, and the relative error reduction becomes a
mere 3%, demonstrating that—unsurprisingly—most of the benefit comes from the low-resource
languages and only a minimal improvement can be seen with reasonably sized training data sets.

The average coverage for the morphological transducers is 86%, with recall being 78%. These
numbers are clearly below our lemmatization methods, showing that, averaged across many
languages, the approach relying on a predefined lexicon and ruleset does not fare favorably to
sequence-to-sequence machine learning methods. The average transducer coverage is on par with
the one reported by Tyers et al. (2010), where coverage numbers reported for a set of languages
varies between 80% and 98%; however, with our set of languages, the variation is much higher
ranging between 5% and 99%, and clearly the transducers in the lower coverage region are miss-
ing much of the core vocabulary. These are measured without using morphological guessers,
where unknown words can be analyzed based only on their morphological shape (e.g. known
suffixes). However, as the guessers consider every possible mapping allowed by the rules of the
language, in many cases a great number of different alternatives is returned, which would need
to be disambiguated later on. We therefore leave it as a future work to study whether morpho-
logical guessers and sequence-to-sequence lemmatizers can have a shared interest. By comparing
the transducer coverage and recall, we can have an estimate of how harmonized the lemmas are
between Apertium transducers and UD treebanks on average. If 86% of words are recognized
by the transducer, but only 78% are having a “correct” lemma analysis, then 8% of the treebank
words are recognized but with a “wrong” lemma, hinting at an incompatible analysis. We leave
it as a future study to examine, whether the differences are systematic and further gains could
be obtained with filtering or harmonizing the lemma annotations between Apertium and UD in
addition to harmonizing morphological features. Such a study however requires the knowledge of
each of the involved languages.

8. Discussion
8.1 Result summary
In Table 2, we summarize the results of all the major experiments reported in this paper. For each
treebank, we present the accuracy of our best overall method, Augm. mixed 8K + 8K, and for
comparison, we also add results for our basic method as well as the best overall baseline method,
UDPipe Future. The comparison of our system and the UDPipe Future baseline is visualized by
coloring each line green where our Mixed 8K+8K method is better than the UDPipe Future base-
line. As discussed in Section 5.3, all numbers are measured on top of predicted segmentation,
therefore reflecting a realistic expectation of the performance with no gold-standard data used at
any point during prediction.

Out of the 76 treebanks, our method outperforms the UDPipe Future baseline on 62 treebanks.
On average, across the 76 treebanks, this translates to a relative 19% error reduction. On 36 tree-
banks the relative error reduction is more than 20%, meaning that we are able to remove at least
one fifth of the errors the best baseline system is making.

While the autoencoding augmentation method does not require any additional data, the
transducer-based techniques move the system into an unconstrained setting, if considering a task
setup where only the given treebanks are allowed in system training. However, in real-life situ-
ations, where all available data are allowed, the comparison between our augmented system and
the baseline systems is fair. Such a real-life task setting was used, for example, in the CoNLL 2018
and 2017 multilingual parsing shared tasks, where a list of additional resources apart from the
treebanks were given to all task participants. These allowed resources also included the Apertium
morphological transducers, which makes the comparison between our augmentation methods
and baseline systems from the CoNLL 2018 shared task fair. The difference between our system
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Table 2. Lemmatization accuracies for all 76 treebanks studied in this paper measured on test data with
predicted segmentation. Green color indicates treebanks where our overall best method, Augm. Mixed 8K+
8K, outperforms the best overall baseline, UDPipe Future

Treebank UDPipe Our Our augm. Relative diff
Treebank category future basic mixed UDP-Ours (%)

Afrikaans-AfriBooms big 97.11 97.59 97.76 22.5
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Ancient Greek-PROIEL big 91.08 97.27 97.31 69.8
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Ancient Greek-Perseus big 81.78 89.40 89.60 42.9
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Arabic-PADT big 88.94 89.47 89.46 4.7
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Armenian-ArmTDP low 57.46 66.82 71.81 33.7
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Basque-BDT big 95.19 96.66 96.81 33.7
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Bulgarian-BTB big 97.41 98.21 98.17 29.3
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Buryat-BDT low 56.83 25.55 56.05 −1.8
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Catalan-AnCora big 98.90 97.57 97.66 −53.0
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Chinese-GSD big 90.01 87.74 89.55 −4.4
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Croatian-SET big 96.69 96.81 96.87 5.4
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Czech-CAC big 98.14 98.19 98.34 10.8
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Czech-FicTree big 97.80 98.74 98.84 47.3
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Czech-PDT big 98.71 98.48 98.52 −12.8
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Czech-PUD PUD 96.44 96.04 96.14 −7.8
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Danish-DDT big 96.66 97.79 97.88 36.5
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Dutch-Alpino big 96.76 96.67 96.85 2.8
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Dutch-LassySmall big 95.78 97.40 97.44 39.3
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

English-EWT big 97.23 96.96 96.94 −9.5
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

English-GUM big 96.18 96.07 96.21 0.8
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

English-LinES big 96.44 96.54 96.79 9.8
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

English-PUD PUD 95.87 96.39 96.40 12.8
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Estonian-EDT big 94.88 96.56 96.60 33.6
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Finnish-FTB big 94.74 97.02 97.18 46.4
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Finnish-PUD PUD 90.64 95.05 95.13 48.0
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Finnish-TDT big 90.18 95.24 95.40 53.2
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

French-GSD big 96.75 96.90 96.91 4.9
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

French-Sequoia big 97.36 97.98 98.06 26.5
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

French-Spoken big 95.98 96.77 97.04 26.4
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Galician-CTG big 97.53 97.88 97.92 15.8
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Galician-TreeGal small 95.05 94.98 95.50 9.1
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Natural Language Engineering 561

Table 2. Continued

Treebank UDPipe Our Our augm. Relative diff
Treebank category future basic mixed UDP-Ours (%)

German-GSD big 96.14 96.68 96.56 10.9
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Gothic-PROIEL big 92.39 96.10 96.21 50.2
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Greek-GDT big 94.74 97.22 97.26 47.9
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Hebrew-HTB big 82.88 82.90 82.93 0.3
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Hindi-HDTB big 98.45 98.68 98.70 16.1
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Hungarian-Szeged big 92.99 94.53 94.57 22.5
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Indonesian-GSD big 99.60 99.69 99.68 20.0
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Irish-IDT small 87.52 90.62 90.52 24.0
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Italian-ISDT big 98.21 98.09 98.16 −2.7
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Italian-PoSTWITA big 94.91 96.61 96.63 33.8
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Japanese-GSD big 90.01 89.94 89.63 −3.7
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Kazakh-KTB low 57.36 48.61 57.43 0.2
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Korean-GSD big 91.37 93.83 93.94 29.8
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Korean-Kaist big 93.53 94.38 94.39 13.3
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Kurmanji-MG low 52.44 42.45 64.83 26.1
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Latin-ITTB big 98.56 98.66 98.67 7.6
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Latin-PROIEL big 95.54 97.14 97.20 37.2
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Latin-Perseus small 75.44 85.37 85.27 40.0
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Latvian-LVTB big 93.33 93.69 93.95 9.3
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

North Sami-Giella small 78.43 89.54 89.70 52.2
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Norwegian-Bokmaal big 98.20 97.87 97.97 −11.3
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Norwegian-Nynorsk big 97.80 97.71 97.72 −3.5
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Norwegian-NynorskLIA small 92.65 92.91 94.51 25.3
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Old Church Slavonic-PROIEL big 88.93 95.33 95.14 56.1
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Persian-Seraji big 97.05 96.99 96.77 −8.7
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Polish-LFG big 96.73 97.50 97.66 28.4
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Polish-SZ big 95.31 96.93 97.08 37.7
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Portuguese-Bosque big 97.38 97.53 97.58 7.6
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Romanian-RRT big 97.61 98.25 98.23 25.9
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Russian-SynTagRus big 97.94 98.16 98.15 10.2
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Russian-Taiga small 83.55 88.47 89.32 35.1
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Serbian-SET big 96.56 97.09 97.17 17.7
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Table 2. Continued

Treebank UDPipe Our Our augm. Relative diff
Treebank category future basic mixed UDP-Ours (%)

Slovak-SNK big 95.66 96.27 96.35 15.9
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Slovenian-SSJ big 96.22 96.35 96.49 7.1
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Slovenian-SST small 92.56 95.06 94.90 31.5
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Spanish-AnCora big 99.02 98.45 98.48 −35.5
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Swedish-LinES big 96.61 96.87 97.29 20.1
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Swedish-PUD PUD 86.23 86.69 87.47 9.0
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Swedish-Talbanken big 97.08 97.81 97.98 30.8
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Turkish-IMST big 92.74 94.85 95.16 33.3
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Ukrainian-IU big 95.94 96.52 96.62 16.7
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Upper Sorbian-UFAL low 63.54 53.73 54.80 −19.3
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Urdu-UDTB big 97.33 97.42 97.43 3.7
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Uyghur-UDT big 92.86 94.09 94.15 18.1
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Vietnamese-VTB big 84.76 84.16 84.26 −3.2
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Average 91.64 92.22 93.24 19.1%

and a standard context-based lemmatization system is that integrating information from these
additional sources is much easier with our task setting where the lemmatizer does not need the
words to appear in a natural context.

8.2 Generalization and error propagation
To understand the generalization capability of the lemmatizer when the segmentation and mor-
phological tagging effects are disregarded, we compare the lemmatization accuracy on top of
predicted segmentation to gold-standard segmentation (sentence and word level), as well as on
top of predicted morphosyntactic features to gold-standard morphosyntactic features. The same
experiment also measures the risk of error propagation, where the lemmatizer makes a mistake
due to incorrectly predicted morphosyntactic features. Results for all treebanks are available in
Appendix A. When comparing the lemmatization accuracy of the five low-resource languages
(Armenian, Buryat, Kazakh, Kurmanji, Upper Sorbian) on predicted and gold morphosyntactic
features, the four transducer languages (Armenian, Buryat, Kazakh, Kurmanji) appear to gen-
eralize extremely well, gold morphosyntactic features increasing the accuracy from 58%–74% to
91%–96%. For Upper Sorbian, the one low-resource language without a transducer, the general-
ization ability is clearly worse, gold tags increasing accuracy only from 55% to 74%. These results
suggest that the data augmentation techniques utilizing a morphological transducer are suffi-
cient enough to train a high-quality lemmatizer if reliable morphosyntactic features are available.
However, at the same time it shows that in extreme cases where the accuracy of part-of-speech tag-
ging is barely above 50%, errors from the tagger component propagate notably. As a future work,
it would be interesting to study whether morphological transducers could be used to create arti-
ficial data for context-dependent morphological tagging so as to improve the tagger performance
as well.
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Currently, the lemmatizer is the last component in the parsing pipeline, thus not affecting the
labeled attachment score of the syntactic parser. The parser currently used in the pipeline was
originally designed to not consider lemmas at all; however, the lemmatizer component could be
located before the syntactic parser as well, making it possible to establish whether using lemmas
as additional features during parsing would improve its performance.

8.3 Future work
We acknowledge that the morphological transducers used in our data augmentation study may
not have been utilized to their full power. Our straightforward featuremapping from the Apertium
framework into UD was designed to be language agnostic, thus suffering from inconsistencies in
annotations between different languages and treebanks. A more focused attempt on a particular,
well-chosen language with an improved morphological transducer, language-specific conversion
or detailed parameter tuning could yield better results. While Apertium can be considered a
trustworthy source for unified morphological resources, for many languages, more developed
language-specific transducers exist. For example, if particularly working on Turkish, Finnish, or
Hungarian, one should consider using morphological transducers by Çöltekin (2010), Pirinen
(2015), and Trón et al. (2006). A focused per-language effort is naturally entirely out of scope of
this current work, which can nevertheless serve as a basis for such a language-specific develop-
ment. Similar argumentation is suggested by Pirinen (2019), who carried out a focused evaluation
of our lemmatization system and the OMorFi morphological analyzer (Pirinen 2015) on the
Finnish language. OMorFi is a mature system, being the result of a major development effort
spanning over several years. Its output is in the UD scheme, providing a valid point of compar-
ison. A lemmatization performance of our pipeline far superior to that of OMorFi is reported,
leading to the conclusion that the machine learning approach is indeed highly competitive with
the traditional transducers and can be seen as the preferred approach to developing lemma-
tizers for new languages. However, we leave it as a future work to study whether combining
such a morphological transducer and machine learning approach in a targeted data augmenta-
tion effort would yield higher improvements for lemmatization accuracy than presented in this
paper.

Another interesting direction to expand the work in future would be to test how well the
lemmatizer works on short text segments, for example, with search queries, where deep learn-
ing systems traditionally need to be trained separately to match the different style of writing,
for example, very often omitting the main verb. As the lemmatizer is operating on the word
level without a notion of context, this should not pose an issue during the lemmatization.
However, a separate question is how reliable a morphological tagger would be with such short text
segments.

8.4 Model and software release
We release trained models for all 76 treebanks experimented in this paper, embedded into a full
parsing pipeline including segmentation, tagging, syntactic parsing, and lemmatization. The pars-
ing pipeline source code is available at https://turkunlp.org/Turku-neural-parser-pipeline under
the Apache 2.0 license. It includes trainedmodels for all the necessary components (segmentation,
tagging, syntactic parsing, and lemmatization), trained on the UD v2.2 treebanks. The whole pro-
cessing pipeline can be executed with a single command, removing the need for data reformatting
between the different analysis components. The pipeline runs in a Python environment which can
be installed with or without GPU support. To increase the usability across different platforms, we
also provide a publicly accessible Docker image, which wraps the pipeline in a container which
can be executed without manual installation, assuring that the pipeline can be executed and the
results replicated also in the future.
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8.5 Training and prediction speed
Typical training times for the lemmatizer models on UD treebanks with 50 training epochs are
1–2 hours on one Nvidia GeForce K80 GPU card. The largest treebanks (Czech-PDT 1.2M tokens
and Russian-SynTagRus 870K tokens) took approximately 15 hours to train for the full 50 epochs.
However, the training usually converges between epochs 30 and 40, and therefore, training time
could be reduced using an early stopping criterion.

In prediction time, we present several advantages over previous sequence-to-sequence lem-
matizer models. First, by using morphosyntactic features instead of a sliding window of text to
represent the contextual information, after running the context-dependent morphological tagger,
the lemmatizer is able to process each word independently from its textual sentence context, and
therefore we only need to lemmatize each unique word and feature combination. This enables us
to (1) only lemmatize unique items inside each textual batch and (2) store a cache of common
pre-analyzed words, and only run the sequence-to-sequence model for words not already present
in this global lemma cache. Together with the trained models, we distribute such a global cache
file for each language.

Prediction times for the full parsing pipeline, including segmentation, tagging, syntactic pars-
ing, and lemmatization, are on the order of 1300 tokens per second (about 100 sentences per
second) on an Nvidia GeForce GTX 1070 card. On a server-grade CPU-only computer (24 cores
and 250GB RAM), prediction times are 350 tokens per second, while on a consumer CPU-only
laptop (8 cores and 8GB of RAM), the full pipeline can process about 280 tokens per second. These
are measured with a pre-analyzed lemma cache collected from the training data, and prediction
times especially on CPU could be yet improved by collecting a larger pre-analyzed lemma cache
using, for example, large web corpora.

9. Conclusions
In this paper, we have introduced a novel sequence-to-sequence lemmatization method utiliz-
ing morphosyntactic tags to inform the model about the context of the word. We validated the
hypothesis that the tags provide a sufficient disambiguation context using statistics from the UD
treebanks across a large number of languages. We presented a careful evaluation of our method
over several baselines and 52 different languages showing that the method surpasses all the base-
line systems, reducing relative errors on average by 19% across 76 treebanks compared to the best
overall baseline. The lemmatizer presented in this work was also used as our entry in the CoNLL-
18 Shared Task on Multilingual Parsing from Raw Text to Universal Dependencies, where we
achieved the 1st place out of 26 teams on two evaluation metrics incorporating lemmatization.
Additionally, we investigated two different data augmentation methods to boost the lemmatiza-
tion performance of our base system.We found that augmenting the training data using a mixture
of autoencoder training and the output of a morphological transducer decreases the error rate by
13% relative to the unaugmented system, with the gain being unsurprisingly concentrated on the
low-resource languages.

As an overall conclusion, we have demonstrated a highly competitive performance of the
generic sequence-to-sequence paradigm on the lemmatization task, surpassing in accuracy prior
methods specifically developed for lemmatization.

The lemmatization models for all languages reported in the paper, source code, and materials
for all experiments, the full parsing pipeline source code, and parsing models, as well as an easy-
to-use Docker container, are available at https://turkunlp.org/Turku-neural-parser-pipeline under
the Apache 2.0 license.
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A Lemmatization accuracy with gold segmentation andmorphology

Table A1. Lemmatization accuracy for all treebanks measured on gold and predicted segmentation and tagging

Treebank Tokens Sents UPOS XPOS UFeats Lemmas LAS

Afrikaans-AfriBooms raw text 99.75 98.25 97.32 93.67 96.71 97.76 85.14


gold seg – – 97.55 93.85 96.92 97.95 85.67


gold seg+mor – – – – – 98.63 88.31

Ancient Greek-PROIEL raw text 100.00 44.57 97.00 97.17 91.86 97.31 75.88


gold seg – – 97.06 97.29 91.93 97.43 82.12


gold seg+mor – – – – – 98.87 84.96

Ancient Greek-Perseus raw text 99.96 98.73 91.93 83.87 89.94 89.60 73.26


gold seg – – 92.01 83.95 89.99 89.61 73.42
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

gold seg+mor – – – – – 92.73 77.63
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Table A1. Continued

Treebank Tokens Sents UPOS XPOS UFeats Lemmas LAS

Arabic-PADT raw text 99.98 80.89 90.47 87.37 87.56 89.46 72.44
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

gold seg – – 96.75 93.73 93.95 95.62 82.46
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

gold seg+mor – – – – – 98.34 84.33

Armenian-ArmTDP raw text 97.21 92.41 69.31 96.47 46.05 71.81 29.74
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

gold seg – – 71.21 100.00 47.71 73.77 30.90
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

gold seg+mor – – – – – 93.47 37.00

Basque-BDT raw text 99.96 99.08 96.01 99.96 92.07 96.81 82.38
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

gold seg – – 96.06 100.00 92.10 96.86 82.52
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

gold seg+mor – – – – – 98.50 86.08

Bulgarian-BTB raw text 99.92 92.85 98.61 96.41 97.41 98.17 89.60
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

gold seg – – 98.70 96.50 97.50 98.25 90.54
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

gold seg+mor – – – – – 99.42 91.59

Buryat-BDT raw text 97.07 90.90 37.95 97.07 35.42 56.05 13.13
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

gold seg – – 39.32 100.00 37.24 58.11 13.43
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

gold seg+mor – – – – – 90.99 15.35

Catalan-AnCora raw text 99.97 99.03 97.32 97.34 96.66 97.66 90.04
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

gold seg – – 97.36 97.37 96.70 97.69 90.15
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

gold seg+mor – – – – – 99.24 92.30

Chinese-GSD raw text 89.55 98.20 85.83 85.60 88.74 89.55 66.26
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

gold seg – – 95.28 95.00 99.10 100.00 81.38
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

gold seg+mor – – – – – 100.00 86.61

Croatian-SET raw text 99.92 95.36 98.02 99.92 91.91 96.87 86.19
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

gold seg – – 98.09 100.00 91.94 96.94 86.65
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

gold seg+mor – – – – – 98.37 87.78

Czech-CAC raw text 99.97 99.76 98.96 95.37 94.65 98.34 90.52
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

gold seg – – 99.00 95.41 94.69 98.39 90.59
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

gold seg+mor – – – – – 99.48 91.72

Czech-FicTree raw text 99.97 98.37 98.51 94.56 95.29 98.84 90.63
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

gold seg – – 98.53 94.59 95.33 98.87 90.83
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

gold seg+mor – – – – – 99.63 92.39

Czech-PDT raw text 99.93 92.29 98.72 95.41 95.18 98.52 90.54
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

gold seg – – 98.80 95.54 95.30 98.60 91.48
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

gold seg+mor – – – – – 99.68 92.42
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Natural Language Engineering 569

Table A1. Continued

Treebank Tokens Sents UPOS XPOS UFeats Lemmas LAS

Czech-PUD raw text 99.28 95.40 96.10 92.19 92.11 96.14 84.71
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

gold seg – – 96.51 92.62 92.57 96.54 85.58
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

gold seg+mor – – – – – 97.52 87.20

Danish-DDT raw text 99.87 87.96 97.31 99.87 97.10 97.88 82.96
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

gold seg – – 97.47 100.00 97.25 98.01 84.34
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

gold seg+mor – – – – – 99.20 86.75

Dutch-Alpino raw text 99.83 90.80 96.13 94.44 96.44 96.85 85.36
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

gold seg – – 96.32 94.65 96.61 97.04 86.56
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

gold seg+mor – – – – – 98.61 89.41

Dutch-LassySmall raw text 99.82 72.23 95.87 94.22 95.66 97.44 81.31
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

gold seg – – 96.08 94.59 96.03 97.68 84.95
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

gold seg+mor – – – – – 99.39 88.42

English-EWT raw text 99.03 75.33 94.85 94.64 95.95 96.94 82.67
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

gold seg – – 95.77 95.63 96.90 97.81 86.93
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

gold seg+mor – – – – – 99.73 89.57

English-GUM raw text 99.75 78.79 93.37 93.28 95.69 96.21 80.67
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

gold seg – – 93.64 93.56 95.99 96.39 83.00
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

gold seg+mor – – – – – 98.08 86.00

English-LinES raw text 99.95 88.08 96.43 95.04 96.74 96.79 79.44
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

gold seg – – 96.49 95.13 96.79 96.83 80.09
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

gold seg+mor – – – – – 97.19 81.66

English-PUD raw text 99.74 95.57 94.90 94.20 95.07 96.40 85.40
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

gold seg – – 95.13 94.44 95.33 96.65 86.06
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

gold seg+mor – – – – – 98.94 88.23

Estonian-EDT raw text 99.91 90.02 96.43 97.87 95.71 96.60 84.14
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

gold seg – – 96.49 97.94 95.78 96.69 85.09
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

gold seg+mor – – – – – 98.34 87.92

Finnish-FTB raw text 100.00 87.04 96.18 95.15 96.45 97.18 86.99
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

gold seg – – 96.29 95.23 96.55 97.22 88.92
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

gold seg+mor – – – – – 99.19 92.34

Finnish-PUD raw text 99.63 92.20 96.91 0.00 96.72 95.13 88.88
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

gold seg – – 97.23 0.00 97.03 95.43 89.23
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

gold seg+mor – – – – – 96.67 88.92
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Table A1. Continued

Treebank Tokens Sents UPOS XPOS UFeats Lemmas LAS

Finnish-TDT raw text 99.69 86.75 96.57 97.61 95.41 95.40 86.48
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

gold seg – – 96.92 97.89 95.69 95.70 88.37
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

gold seg+mor – – – – – 97.68 90.84

French-GSD raw text 99.66 92.12 95.96 98.78 95.73 96.91 85.62
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

gold seg – – 97.15 100.00 96.86 98.11 87.58
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

gold seg+mor – – – – – 99.38 88.81

French-Sequoia raw text 99.79 82.77 97.42 99.09 97.04 98.06 87.42
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

gold seg – – 98.44 100.00 97.97 99.00 89.96
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

gold seg+mor – – – – – 99.66 91.19

French-Spoken raw text 100.00 21.63 94.72 97.51 100.00 97.04 69.15
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

gold seg – – 94.81 97.49 100.00 97.21 76.18
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

gold seg+mor – – – – – 97.95 78.58

Galician-CTG raw text 99.84 96.59 97.07 96.87 98.96 97.92 81.64
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

gold seg – – 97.85 97.67 99.78 98.73 83.25
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

gold seg+mor – – – – – 99.42 85.22

Galician-TreeGal raw text 99.69 83.90 93.81 90.97 92.92 95.50 72.88
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

gold seg – – 94.95 91.92 93.96 96.53 76.04
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

gold seg+mor – – – – – 98.02 79.42

German-GSD raw text 99.58 81.32 93.81 96.56 90.20 96.56 78.64
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

gold seg – – 94.11 97.02 90.87 96.95 80.72
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

gold seg+mor – – – – – 97.28 82.82

Gothic-PROIEL raw text 100.00 28.03 95.49 96.14 89.07 96.21 67.70
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

gold seg – – 96.31 96.67 89.75 96.29 78.08
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

gold seg+mor – – – – – 98.29 82.01

Greek-GDT raw text 99.86 90.11 97.62 97.52 94.18 97.26 88.21
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

gold seg – – 97.79 97.72 94.41 97.38 89.09
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

gold seg+mor – – – – – 98.17 90.17

Hebrew-HTB raw text 99.98 100.00 82.70 82.71 81.05 82.93 64.47
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

gold seg – – 97.23 97.28 95.59 97.19 85.76
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

gold seg+mor – – – – – 98.50 87.79

Hindi-HDTB raw text 100.00 99.20 97.43 96.93 93.91 98.70 91.58
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

gold seg – – 97.44 96.93 93.91 98.70 91.63
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

gold seg+mor – – – – – 98.91 94.02

Hungarian-Szeged raw text 99.81 95.58 94.08 99.81 92.47 94.57 78.53
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

gold seg – – 94.20 100.00 92.63 94.70 79.04
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

gold seg+mor – – – – – 97.45 83.65

https://doi.org/10.1017/S1351324920000224 Published online by Cambridge University Press
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Table A1. Continued

Treebank Tokens Sents UPOS XPOS UFeats Lemmas LAS

Indonesian-GSD raw text 100.00 92.00 91.93 94.52 95.59 99.68 78.34
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

gold seg – – 91.94 94.52 95.61 99.68 78.65
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

gold seg+mor – – – – – 99.85 81.40

Irish-IDT raw text 99.30 92.60 92.36 91.05 82.47 90.52 70.88
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

gold seg – – 93.02 91.68 83.16 91.15 71.80
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

gold seg+mor – – – – – 94.47 74.47

Italian-ISDT raw text 99.75 96.81 97.63 97.41 97.51 98.16 90.22
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

gold seg – – 97.94 97.73 97.77 98.44 90.91
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

gold seg+mor – – – – – 99.35 92.70

Italian-PoSTWITA raw text 99.73 21.80 95.71 95.38 95.76 96.63 72.22
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

gold seg – – 96.29 95.97 96.31 97.17 81.40
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

gold seg+mor – – – – – 98.79 83.61

Japanese-GSD raw text 90.46 95.01 88.84 90.46 90.45 89.63 74.52
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

gold seg – – 97.84 100.00 99.98 98.78 92.43
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

gold seg+mor – – – – – 99.13 94.16

Kazakh-KTB raw text 93.11 81.56 51.06 46.83 35.10 57.43 22.79
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

gold seg – – 55.38 51.19 37.54 61.83 26.50
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

gold seg+mor – – – – – 95.66 33.70

Korean-GSD raw text 99.81 90.49 96.09 90.53 99.59 93.94 83.46
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

gold seg – – 96.35 90.76 99.79 94.11 84.68
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

gold seg+mor – – – – – 97.94 86.69

Korean-Kaist raw text 100.00 100.00 95.61 87.15 100.00 94.39 86.77
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

gold seg – – 95.61 87.15 100.00 94.39 86.77
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

gold seg+mor – – – – – 98.85 89.91

Kurmanji-MG raw text 94.33 69.14 55.42 51.87 42.01 64.83 23.44
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

gold seg – – 57.28 52.78 43.51 67.94 25.19
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

gold seg+mor – – – – – 91.72 28.88

Latin-ITTB raw text 99.94 82.49 98.32 94.47 95.35 98.67 86.53
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

gold seg – – 98.38 94.56 95.44 98.70 88.97
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

gold seg+mor – – – – – 99.64 91.04

Latin-PROIEL raw text 99.99 35.16 96.61 96.81 90.94 97.20 71.47
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

gold seg – – 96.87 97.05 91.51 97.27 80.54
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

gold seg+mor – – – – – 98.97 83.73

https://doi.org/10.1017/S1351324920000224 Published online by Cambridge University Press
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Table A1. Continued

Treebank Tokens Sents UPOS XPOS UFeats Lemmas LAS

Latin-Perseus raw text 100.00 98.35 90.52 75.01 79.18 85.27 62.27
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

gold seg – – 90.49 75.00 79.15 85.26 62.42
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

gold seg+mor – – – – – 91.67 69.58

Latvian-LVTB raw text 99.40 98.34 94.99 86.46 91.08 93.95 80.83
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

gold seg – – 95.47 86.88 91.57 94.45 81.67
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

gold seg+mor – – – – – 98.53 85.30

North Sami-Giella raw text 99.84 98.33 91.37 92.94 88.11 89.70 69.60
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

gold seg – – 91.49 93.17 88.33 89.83 69.89
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

gold seg+mor – – – – – 94.71 80.11

Norwegian-Bokmaal raw text 99.78 95.79 97.33 99.78 96.25 97.97 89.52
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

gold seg – – 97.53 100.00 96.45 98.18 90.27
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

gold seg+mor – – – – – 99.62 93.12

Norwegian-Nynorsk raw text 99.93 92.08 97.18 99.93 96.25 97.72 89.46
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

gold seg – – 97.30 100.00 96.38 97.81 90.31
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

gold seg+mor – – – – – 99.41 92.82

Norwegian-NynorskLIA raw text 99.99 99.86 89.56 99.99 88.84 94.51 57.45
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

gold seg – – 89.63 100.00 88.71 94.53 57.37
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

gold seg+mor – – – – – 98.50 65.13

Old Church Slavonic-PROIEL raw text 100.00 37.28 96.09 96.20 89.39 95.14 73.36
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

gold seg – – 96.35 96.53 89.76 95.27 83.43
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

gold seg+mor – – – – – 97.29 87.49

Persian-Seraji raw text 100.00 98.74 97.02 97.05 97.12 96.77 85.98
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

gold seg – – 97.31 97.34 97.41 97.03 86.53
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

gold seg+mor – – – – – 97.29 89.62

Polish-LFG raw text 99.86 99.74 98.26 93.54 94.57 97.66 94.51
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

gold seg – – 98.39 93.65 94.69 97.77 94.89
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

gold seg+mor – – – – – 99.47 96.64

Polish-SZ raw text 99.99 99.00 97.85 92.03 92.13 97.08 91.15
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

gold seg – – 97.99 92.20 92.30 97.21 91.76
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

gold seg+mor – – – – – 98.86 94.40

Portuguese-Bosque raw text 99.71 88.79 96.07 99.59 95.73 97.58 87.42
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

gold seg – – 96.43 100.00 96.11 98.02 88.56
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

gold seg+mor – – – – – 98.70 89.42
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Natural Language Engineering 573

Table A1. Continued

Treebank Tokens Sents UPOS XPOS UFeats Lemmas LAS

Romanian-RRT raw text 99.67 93.72 97.53 97.04 97.20 98.23 86.04
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

gold seg – – 97.86 97.35 97.51 98.54 86.87
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

gold seg+mor – – – – – 99.63 87.53

Russian-SynTagRus raw text 99.60 98.01 97.98 99.60 96.46 98.15 91.66
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

gold seg – – 98.37 100.00 96.85 98.53 92.51
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

gold seg+mor – – – – – 99.60 93.63

Russian-Taiga raw text 98.14 87.38 91.88 98.12 82.23 89.32 64.15
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

gold seg – – 93.33 99.98 83.86 90.80 66.67
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

gold seg+mor – – – – – 96.40 69.79

Serbian-SET raw text 99.97 92.02 97.97 99.97 93.95 97.17 88.60
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

gold seg – – 97.99 100.00 94.00 97.20 89.11
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

gold seg+mor – – – – – 98.68 90.37

Slovak-SNK raw text 100.00 84.26 95.69 84.30 89.94 96.35 86.61
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

gold seg – – 95.69 84.44 90.06 96.35 88.43
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

gold seg+mor – – – – – 98.30 90.72

Slovenian-SSJ raw text 98.29 76.61 96.49 92.34 92.82 96.49 86.78
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

gold seg – – 98.15 94.21 94.73 98.21 91.63
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

gold seg+mor – – – – – 99.49 94.22

Slovenian-SST raw text 100.00 22.90 93.87 85.43 85.39 94.90 53.97
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

gold seg – – 94.35 85.45 85.54 95.04 66.26
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

gold seg+mor – – – – – 98.89 72.45

Spanish-AnCora raw text 99.97 98.26 97.80 97.76 97.34 98.48 89.62
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

gold seg – – 97.85 97.81 97.39 98.52 89.87
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

gold seg+mor – – – – – 99.71 91.78

Swedish-LinES raw text 99.96 85.25 96.63 94.58 89.55 97.29 81.16
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

gold seg – – 96.64 94.63 89.63 97.34 82.23
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

gold seg+mor – – – – – 98.41 84.06

Swedish-PUD raw text 98.41 94.47 93.58 91.88 77.99 87.47 79.15
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

gold seg – – 94.31 92.48 78.80 88.86 80.42
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

gold seg+mor – – – – – 90.42 82.90

Swedish-Talbanken raw text 99.78 93.17 97.47 96.41 96.63 97.98 85.87
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

gold seg – – 97.64 96.55 96.77 98.15 86.74
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

gold seg+mor – – – – – 98.70 89.10

https://doi.org/10.1017/S1351324920000224 Published online by Cambridge University Press
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Table A1. Continued

Treebank Tokens Sents UPOS XPOS UFeats Lemmas LAS

Turkish-IMST raw text 99.86 97.09 94.32 93.27 91.05 95.16 64.70
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

gold seg – – 96.19 95.02 92.83 97.03 67.84
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

gold seg+mor – – – – – 99.42 69.95

Ukrainian-IU raw text 99.67 95.04 97.04 90.71 90.83 96.62 84.43
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

gold seg – – 97.41 90.96 91.09 96.93 85.24
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

gold seg+mor – – – – – 99.16 88.00

Upper Sorbian-UFAL raw text 98.60 74.51 59.51 98.60 39.66 54.80 24.90
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

gold seg – – 60.42 100.00 40.58 55.26 26.13
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

gold seg+mor – – – – – 73.74 34.51

Urdu-UDTB raw text 100.00 98.60 94.54 92.74 83.90 97.43 82.15
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

gold seg – – 94.54 92.73 83.91 97.43 82.20
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

gold seg+mor – – – – – 97.99 86.85

Uyghur-UDT raw text 99.22 81.61 89.15 91.56 87.45 94.15 62.92
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

gold seg – – 89.96 92.24 88.16 94.95 65.07
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

gold seg+mor – – – – – 99.01 68.44

Vietnamese-VTB raw text 84.26 92.87 76.50 73.79 83.93 84.26 42.87
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

gold seg – – 89.15 85.36 99.53 99.98 59.88
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

gold seg+mor – – – – – 99.98 69.38
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Abstract

In this paper we describe the TurkuNLP
entry at the CoNLL 2018 Shared Task
on Multilingual Parsing from Raw Text to
Universal Dependencies. Compared to the
last year, this year the shared task includes
two new main metrics to measure the mor-
phological tagging and lemmatization ac-
curacies in addition to syntactic trees. Bas-
ing our motivation into these new met-
rics, we developed an end-to-end parsing
pipeline especially focusing on develop-
ing a novel and state-of-the-art component
for lemmatization. Our system reached the
highest aggregate ranking on three main
metrics out of 26 teams by achieving 1st
place on metric involving lemmatization,
and 2nd on both morphological tagging
and parsing.

1 Introduction

The 2017 and 2018 CoNLL UD Shared tasks aim
at an evaluation of end-to-end parsing systems on
a large set of treebanks and languages. The 2017
task (Zeman et al., 2017) focused primarily on the
evaluation of the syntactic trees produced by the
participating systems, whereas the 2018 task (Ze-
man et al., 2018) adds further two metrics which
also measure the accuracy of morphological tag-
ging and lemmatization. In this paper, we present
the TurkuNLP system submission to the CoNLL
2018 UD Shared Task. The system is an end-to-
end parsing pipeline, with components for seg-
mentation, morphological tagging, parsing, and
lemmatization. The tagger and parser are based on
the 2017 winning system by Dozat et al. (2017),
while the lemmatizer is a novel approach utilizing
the OpenNMT neural machine translation system
for sequence-to-sequence learning. Our pipeline

ranked first on the evaluation metric related to
lemmatization, and second on the metrics related
to tagging and parsing.

2 Task overview

CoNLL 2018 UD Shared Task is a follow-up to
the 2017 shared task of developing systems pre-
dicting syntactic dependencies on raw texts across
a number of typologically different languages. In
addition to the 82 UD treebanks for 57 languages,
which formed the primary training data, the par-
ticipating teams were allowed to use also addi-
tional resources such as Wikipedia dumps1, raw
web crawl data and word embeddings (Ginter
et al., 2017), morphological transducers provided
by Apertium2 and Giellatekno3, and the OPUS
parallel corpus collection (Tiedemann, 2012). In
addition to the 2017 primary metric (LAS), the
systems were additionally evaluated also on met-
rics which include lemmatization and morphology
prediction. In brief, the three primary metrics of
the task are as follows (see Zeman et al. (2018) for
detailed definitions):

LAS The proportion of words which have the cor-
rect head word with the correct dependency
relation.

MLAS Similar to LAS, with the additional re-
quirement that a subset of the morphol-
ogy features is correctly predicted and the
functional dependents of the word are cor-
rectly attached. MLAS is only calculated on
content-bearing words, and strives to level
the field w.r.t. morphological richness of lan-
guages.

1https://dumps.wikimedia.org
2https://svn.code.sf.net/p/apertium/

svn/languages
3https://victorio.uit.no/langtech/

trunk/langs
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BLEX The proportion of head-dependent content
word pairs whose dependency relation and
both lemmas are correct.

3 System overview and rationale

The design of the pipeline was dictated by the tight
schedule and the limited manpower we were able
to invest into its development. Our overall objec-
tive was to develop an easy-to-use parsing pipeline
which carries out all the four tasks of segmenta-
tion, morphological tagging, parsing, and lemma-
tization, resulting in an end-to-end full parsing
pipeline reusable in downstream applications. We
also strove for the pipeline to perform well on
all four tasks and all groups of treebanks, rang-
ing from the large treebanks to the highly under-
resourced ones. With this in mind, we decided to
rely on openly available components when the ac-
ceptable performance is already met, and create
our own components for those tasks we see clear
room for improvement.

Therefore, for segmentation, tagging and pars-
ing we leaned as much as possible on well-known
components trained in the standard manner, and
deviated from these only when necessary. Our
approach to lemmatization, on the other hand, is
original and previously unpublished. In summary,
we rely for most but not all languages on the
tokenization and sentence splitting provided by
the UDPipe baseline (Straka et al., 2016). Tag-
ging and parsing is carried out using the parser
of Dozat et al. (2017), the winning entry of the
2017 shared task. Using a simple data manipu-
lation technique, we also obtain the morphologi-
cal feature predictions from the same tagger which
was originally used to produce only universal part-
of-speech (UPOS) and language-specific part-of-
speech (XPOS) predictions. Finally, the lemma-
tization is carried out using the OpenNMT neu-
ral machine translation toolkit (Klein et al., 2017),
casting lemmatization as a machine translation
problem. All these components are wrapped into
one parsing pipeline, making it possible to run
all four steps with one simple command and gain
state-of-the-art or very close to state-of-the-art re-
sults for each step. In the following, we describe
each of these four steps in more detail, while more
detailed description of the pipeline itself is given
in Section 6.

3.1 Tokenization and sentence splitting

For all but three languages, we rely on the UD-
Pipe baseline runs provided by the shared task or-
ganizers. The three languages where we decided
to deviate from the baseline are Thai, Breton and
Faroese. Especially for Thai we suspected the UD-
Pipe baseline, trained without ever seeing a sin-
gle character of the Thai alphabet, would perform
poorly. For Breton, we were unsure about the
way in which the baseline system tokenizes words
with apostrophes like arc’hant (money), and with-
out deeper knowledge of Breton language decided
that it is better to explicitly keep all words with
apostrophes unsegmented. We therefore devel-
oped a regular-expression based sentence splitter
and tokenizer — admittedly under a very rushed
schedule — which splits sentences and tokens on
a handful of punctuation characters. While, af-
ter the fact, we can see that the UDPipe base-
line performed well at 92.3%, our solution outper-
formed it by two percentage points, validating our
choice. For Thai, we developed our own training
corpus using machine translation (described later
in the paper in Section 4.3), and trained UDPipe
on this corpus, gaining a segmentation model at
the same time. Indeed, the UDPipe baseline only
reached 8.5% accuracy while our tokenizer per-
formed at the much higher 43.2% (still far below
the 70% achieved by the Uppsala team). Simi-
larly, for Faroese we built training data by pool-
ing the Danish-DDT, Swedish-Talbanken, and the
three available Norwegian treebanks (Bokmaal,
Nynorsk, NynorskLIA), and subsequntly trained
the UDPipe tokenizer on this data. After the fact,
we can see that essentially all systems performed
in the 99–100% range on Faroese, and we could
have relied on the UDPipe baseline.

On a side note, we did develop our own method
for tokenization and sentence splitting but in the
end, unsure about its stability and performance
on small treebanks, we decided to “play it safe”
and not include it in the final system. However,
the newly developed tokenizer is part of our open-
source pipeline release and trainable on new data.

3.2 Pre-trained embeddings

Where available, we used the pre-trained embed-
dings from the 2017 shared task (Ginter et al.,
2017). Embeddings for Afrikaans, Breton, Buryat,
Faroese, Gothic, Upper Sorbian, Armenian, Kur-
dish, Northern Sami, Serbian and Thai were ob-
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tained from the embeddings published by Face-
book4 trained using the fastText method (Bo-
janowski et al., 2016), and finally for Old French
(Old French-SRCMF) we took the embeddings
trained using word2vec (Mikolov et al., 2013) on
the treebank train section by the organizers in their
baseline UDPipe model release. We did not pre-
train any embeddings ourselves.

3.3 UPOS tagging

UPOS tagging for all languages is carried out us-
ing the system of Dozat et al. (2017) trained out-
of-the-box with the default set of parameters from
the CoNLL-17 shared task. The part-of-speech
tagger is a time-distributed affine classifier over
tokens in a sentence, where tokens are first em-
bedded with a word encoder which sums together
a learned token embedding, a pre-trained token
embedding and a token embedding encoded from
the sequence of its characters using unidirectional
LSTM. After that bidirectional LSTM reads the
sequence of embedded tokens in a sentence to cre-
ate a context-aware token representations. These
token representations are then transformed with
ReLU layers separately for each affine tag classi-
fication layers (namely UPOS and XPOS). These
two classification layers are trained jointly by
summing their cross-entropy losses. For more de-
tailed description, see Dozat and Manning (2016)
and Dozat et al. (2017).

3.4 XPOS and FEATS tagging

As the tagger of Dozat et al. predicts the XPOS
field, we used a simple trick of concatenating
the FEATS field into XPOS, therefore manipu-
lating the tagger into predicting the XPOS and
morphological features as one long string. For
example the original XPOS field value N and
FEATS field value Case=Nom|Number=Sing
in Finnish-TDT treebank gets concatenated into
XPOS=N|Case=Nom|Number=Sing and this
full string is predicted as one class by the tagger.
After tagging and parsing, these values are again
splitted into correct columns. This is a (embarras-
ingly) simple approach which leads to surprisingly
good results, as our system ranks 3rd in morpho-
logical features with accuracy of 86.7% over all
treebanks, 0.9pp below the Uppsala team which
ranked 1st on this subtask.

4https://github.com/facebookresearch/
fastText/blob/master/pretrained-vectors.
md

We, in fact, did at first develop a comparatively
complex morphological feature prediction compo-
nent which outperformed the state-of-the-art on
the 2017 shared task, but later we discovered that
the simple technique described above somewhat
surprisingly gives notably better results. We ex-
pected that the complex morphology of many lan-
guages leads to a large number of very rare mor-
phological feature strings, a setting unsuitable for
casting the problem as a single multi-class pre-
diction task. Consequently, our original attempt
at morphological tagging predicted value for each
morphological category separately from a shared
representation layer, rather than predicting the full
feature string at once. To shed some light on
the complexity of the problem in terms of the
number of classes, and understand why a multi-
class setting works well, we list in Table 1 the
number of unique morphological feature strings
needed to cover 80%, 90%, 95%, and 100% of the
running words in the training data for each lan-
guage. The number of unique feature combina-
tions varies from 15 (Japanese-GSD, Vietnamese-
VTB) to 2629 (Czech-PDT), and for languages
with high number of unique combinations, we can
clearly see that there is a large leap from covering
95% of running words to covering full 100%. For
example in Czech-PDT, only 349 out of the 2629
feature combinations are needed to cover 95% of
running words, and the rest 2280 (of which 588
are singletons) together accounts only 5% of run-
ning words. Based on these numbers our conclu-
sions are that a focus on predicting the rare feature
combinations correctly does not affect the accu-
racy much, and learning a reasonable number of
common feature combinations well seems to be a
good strategy in the end.

Interestingly, on our preliminary experiments
with Finnish, we found that concatenating FEATS
into XPOS improved also LAS by more than
0.5pp, since the parser takes the XPOS field as a
feature and benefits from the additional morpho-
logical information present. To investigate this
more closely and test whether the same improve-
ment can be seen on other languages as well, we
carry out an experiment where we train the tagger
and parser without morphological information for
Finnish and six more arbitrarily chosen treebanks.
This new experiment then follows the original
training setting used by the Stanford team on their
CoNLL-17 submission, and by comparing this to
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80% 90% 95% 100%
Czech-PDT 96 194 349 2629
Finnish-TDT 79 188 349 2052
Finnish-FTB 72 174 333 1762
Czech-CAC 81 160 285 1745
Czech-FicTree 73 161 287 1464
Slovak-SNK 79 163 283 1199
Ukrainian-IU 91 186 322 1197
Polish-LFG 84 170 281 1171
Slovenian-SSJ 73 141 254 1101
Croatian-SET 63 125 212 1099
Latin-PROIEL 121 214 323 1031
Ancient Greek-PROIEL 114 203 308 1027
Urdu-UDTB 30 61 124 1001
Polish-SZ 80 157 267 991
Latin-ITTB 58 136 226 985
Turkish-IMST 54 139 262 972
Hindi-HDTB 38 76 127 939
Estonian-EDT 43 89 151 918
German-GSD 58 96 141 909
Basque-BDT 51 100 169 884
Old Church Slavonic-PROIEL 78 168 276 859
Latvian-LVTB 57 119 218 828
Ancient Greek-Perseus 59 107 169 774
Russian-SynTagRus 67 124 176 734
Slovenian-SST 73 146 233 645
Gothic-PROIEL 75 138 214 623
Hungarian-Szeged 40 90 166 581
Serbian-SET 48 85 131 539
Hebrew-HTB 19 45 85 521
Romanian-RRT 34 58 97 451
Bulgarian-BTB 33 63 107 432
Latin-Perseus 58 100 144 418
Portuguese-Bosque 20 35 60 396
Russian-Taiga 66 126 182 376
North Sami-Giella 39 78 127 369
Irish-IDT 47 81 125 360
Greek-GDT 57 90 123 348

80% 90% 95% 100%
Arabic-PADT 22 35 53 322
Spanish-AnCora 28 48 71 295
Italian-ISDT 22 35 55 281
Catalan-AnCora 28 47 68 267
French-GSD 19 31 46 225
Italian-PoSTWITA 23 39 56 224
Galician-TreeGal 23 41 66 222
Uyghur-UDT 21 40 63 214
Swedish-Talbanken 26 43 61 203
Norwegian-Bokmaal 26 39 57 203
French-Sequoia 25 43 62 200
Indonesian-GSD 12 20 31 192
Norwegian-Nynorsk 26 41 53 184
Swedish-LinES 25 43 61 173
Persian-Seraji 11 19 31 162
Danish-DDT 24 38 53 157
Armenian-ArmTDP 51 85 117 157
English-EWT 19 32 45 150
Upper Sorbian-UFAL 48 88 111 134
English-LinES 18 29 43 104
English-GUM 16 27 40 104
Kazakh-KTB 29 49 71 98
Norwegian-NynorskLIA 22 34 46 96
Dutch-Alpino 16 24 31 63
Afrikaans-AfriBooms 14 22 28 61
Dutch-LassySmall 13 19 26 59
Kurmanji-MG 24 35 46 58
Old French-SRCMF 11 15 19 57
Buryat-BDT 17 26 34 41
Chinese-GSD 7 10 13 31
Galician-CTG 7 9 11 27
Korean-GSD 4 4 6 19
Korean-Kaist 6 8 10 17
French-Spoken 8 10 12 16
Vietnamese-VTB 6 8 10 15
Japanese-GSD 5 7 9 15

Table 1: The number of unique UPOS+morphlogical feature combinations needed to cover 80%, 90%,
95% and 100% of the running words in each treebank.

our main runs we can directly evaluate the effect
of predicting additional morphological informa-
tion. Three of the treebanks used in this exper-
iment (Arabic-PADT, Czech-PDT and Swedish-
Talbanken) seem to originally encode the full (or
at least almost full) morphological information
in the XPOS field in a language-specific manner
(e.g. AAFS1----2A---- in Czech), whereas
four treebanks seem to include only part-of-speech
like information or nothing at all in the XPOS
field (Estonian-EDT, Finnish-TDT, Irish-IDT and
Russian-SynTagRus).

The results of this experiment are shown in Ta-
ble 2. Four treebanks above the dashed line, those
originally including only part-of-speech like infor-
mation in the XPOS field, shows clear positive im-

provement in terms of LAS when the parser is able
to see also morphological tags predicted together
with the language-specific XPOS. The parser see-
ing the morphological tags (LASm column) shows
improvements approx. from +0.3 to +0.9 for these
four treebanks compared to the parser without
morphological tags (LAS column). Three tree-
banks below the dashed line, those already includ-
ing language-specific morphological information
in the XPOS field, quite naturally does not bene-
fit from additional morphology and shows mildly
negative results in terms of LAS. However the
difference in treebanks showing negative results
is substantially smaller compared to those having
positive effect (negative differences stay between
-0.0 to -0.2), therefore based on these seven tree-
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Treebank LAS LASm UPOS UPOSm XPOS XPOSm

Estonian-EDT 83.40 84.15 (+0.75) 96.32 96.45 (+0.13) 97.81 97.87 (+0.06)
Finnish-TDT 85.74 86.60 (+0.86) 96.45 96.66 (+0.21) 97.48 97.63 (+0.15)
Irish-IDT 70.01 70.88 (+0.87) 91.87 92.36 (+0.49) 91.01 91.05 (+0.04)
Russian-SynT. 91.40 91.72 (+0.32) 98.11 98.03 (-0.08) — —
Arabic-PADT 72.67 72.45 (-0.22) 90.39 90.48 (+0.19) 87.36 87.39 (+0.03)
Czech-PDT 90.62 90.57 (-0.05) 98.76 98.74 (-0.02) 95.66 95.44 (-0.22)
Swedish-Talb. 85.87 85.83 (-0.04) 97.40 97.47 (+0.07) 96.36 96.41 (+0.05)

Table 2: LAS, UPOS and XPOS scores for seven parsers trained with and without tagger predicting the
additional morphological information. m after the score name stands for including the morphological
information during training, i.e. the official result for our system. Note that when evaluating XPOS, the
morphological information is already extracted from that field so the evaluation only includes prediction
of original XPOS-tags, not morphological features.

banks the overall impact stays on positive side.
Note that during parsing the parser only sees pre-
dicted morphological features, so this experiment
confirms that predicting more complex informa-
tion on lower-level can improve the parser.

Because of the fact that many treebanks include
more than plain part-of-speech information in the
language-specific XPOS field, likely more natural
place for the morphological features would be the
universal part-of-speech field UPOSwhich is guar-
anteed to include only universal part-of-speech in-
formation. However, with the limited time we had
during the shared task period, we had no time to
test whether adding morphological features harms
the prediction of original part-of-speech tag, and
we decided to use XPOS field as we thought it’s
least important of these two. Based on the re-
sults in the XPOS column of Table 2, we how-
ever see that additional information does not gen-
erally seem to harm the prediction of the original
language-specific part-of-speech tags and hints to-
wards the conclusion that likely the UPOS field
could have been used with comparable perfor-
mance.

3.5 Syntactic parsing

Syntactic parsing for all languages is carried out
using the system of Dozat et al. trained out-of-
the-box with the default set of parameters from
the CoNLL-17 shared task. The parser architec-
ture is quite similar as used in the tagger. Tokens
are first embedded with a word encoder which
sums together a learned token embedding, a pre-
trained token embedding and a token embedding
encoded from the sequence of its characters us-
ing unidirectional LSTM. These embedded tokens

are yet concatenated together with corresponding
part-of-speech embeddings. After that bidirec-
tional LSTM reads the sequence of embedded to-
kens in a sentence to create a context-aware token
representations. These token representations are
then transformed with four different ReLU layers
separately for two different biaffine classifiers to
score possible relations (HEAD) and their depen-
dency types (DEPREL), and best predictions are
later decoded to form a tree. These relation and
type classifiers are again trained jointly by sum-
ming their cross-entropy losses. For more detailed
description, see Dozat and Manning (2016) and
Dozat et al. (2017).

3.6 Lemmatization

While in many real word industry applications es-
pecially for inflective languages the lemmatizer is
actually the most needed component of the parsing
pipeline, yet it’s performance has been undesirable
weak in previous state-of-the-art parsing pipelines
for many inflectionally complex languages. For
this reason we develop a novel and previously un-
published component for lemmatization.

We represent lemmatization as a sequence-to-
sequence translation problem, where the input is
a word represented as a sequence of characters
concatenated with a sequence of its part-of-speech
and morphological tags, while the desired output
is the corresponding lemma represented as a se-
quence of characters. Therefore we are training
the system to translate the word form characters
+ morphological tags into the lemma characters,
where each word is processed independently from
it’s sentence context. For example, input and out-
put sequences for the English word circles as a
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noun are:

INPUT: c i r c l e s UPOS=NOUN
XPOS=NNS Number=Plur

OUTPUT: c i r c l e

As our approach can be seen similar to general
machine translation problem, we are able to use
any openly available machine translation toolkit
and translation model implementations. Our cur-
rent implementation is based on the Python ver-
sion of the OpenNMT: Open-Source Toolkit for
Neural Machine Translation (Klein et al., 2017).
We use a deep attentional encoder-decoder net-
work with 2 layered bidirectional LSTM encoder
for reading the sequence of input characters + mor-
phological tags and producing a sequence of en-
coded vectors. Our decoder is a 2 layered unidi-
rectional LSTM with input feeding attention for
generating the sequence of output characters based
on the encoded representations. In input feeding
attention (Luong et al., 2015) the previous atten-
tion weights are given as input in the next time
step to inform the model about past alignment de-
cisions and prevent the model to repeat the same
output multiple times. We use beam search with
beam size 5 during decoding.

As the lemmatizer does not see the actual sen-
tence where a word appears, morphological tags
are used in the input sequence to inform the sys-
tem about the word’s morpho-syntactic context.
The tagger is naturally able to see the full sen-
tence context and in most cases it should produce
enough information for the lemmatizer to give it
a possibility to lemmatize ambiguous words cor-
rectly based on the current context. During test
time we run the lemmatizer as a final step in the
parsing pipeline, i.e. after tagger and parser, so the
lemmatizer runs on top of the predicted part-of-
speech and morphological features. Adding the
lemmatizer only after the tagger and parser (and
not before like done in many pipelines) does not
cause any degradation for the current pipeline as
the tagger and parser by Dozat et al. (2017) do not
use lemmas as features.

This method is inspired by the top systems from
the CoNLL-SIGMORPHON 2017 Shared Task of
Universal Morphological Reinflection (Cotterell
et al., 2017), where the participants used encoder-
decoder networks to generate inflected words from
the lemma and given morphological tags (Kann
and Schütze, 2017; Bergmanis et al., 2017). While

the SIGMORPHON 2017 Shared Task was based
on gold standard input features, to our knowledge
we are the first ones to use similar techniques on
reversed problem settings and to incorporate such
lemmatizer into the full parsing pipeline to run on
top of predicted morphological features.

4 Near-zero resource languages

There are nine very low resource languages: Bre-
ton, Faroese, Naija and Thai with no training data,
and Armenian, Buryat, Kazakh, Kurmanji and Up-
per Sorbian with only a tiny training dataset. For
the latter five treebanks with tiny training sam-
ple, we trained the tagger and parser in the stan-
dard manner, despite the tiny training set size.
However, for four of these five languages (Ar-
menian, Buryat, Kazakh and Kurmanji) we used
Apertium morphological transducers (Tyers et al.,
2010) to artificially extend the lemmatizer training
data by including new words from the transducer
not present in the original training data (methods
are similar to those used with Breton and Faroese,
for details see Section 4.1). Naija is parsed using
the English-EWT models without any extra pro-
cessing as it strongly resembles English language
and at the same time lacks all resources. Breton,
Faroese and Thai were each treated in a different
manner described below.

4.1 Breton

Our approach to Breton was to first build a Breton
POS and morphological tagger, and subsequently
apply a delexicalized parser. To build the tag-
ger, we selected 5000 random sentences from the
Breton Wikipedia text dump and for each word
looked up all applicable morphological analyzes
in the Breton Apertium transducer converted into
UD using a simple language-agnostic mapping
from Apertium tags to UD tags. For words un-
known to the transducer (59% of unique words),
we assign all possible UPOS+FEATS strings pro-
duced by the transducer on the words it recog-
nizes in the data. Then we decode the most
likely sequence of morphological readings using
a delexicalized 3-gram language model trained
on the UPOS+FEATS sequences of English-EWT
and French-GSD training data. Here we used
the lazy decoder program5 which is based on
the KenLM language model estimation and query-
ing system (Heafield, 2011). This procedure re-

5https://github.com/kpu/lazy
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sults in 5000 sentences (96,304 tokens) of mor-
phologically tagged Breton, which can be used to
train the tagger in the usual manner. The syn-
tactic parser was trained as delexicalized (FORM
field replaced with underscore) on the English-
EWT and French-GSD treebanks. The accu-
racy of UPOS and FEATS was 72% (3rd rank)
and 56.6% (2nd rank) and LAS ranked 3rd with
31.8%. These ranks show our approach as com-
petitive in the shared task, nevertheless the Upp-
sala team achieved some 14pp higher accuracies
of UPOS and FEATS, clearly using a considerably
better approach.

The Breton lemmatizer was trained using the
same training data as used for the tagger, where
for words recognized by the transducer the part-
of-speech tag and morphological features are con-
verted into UD with the language-agnostic map-
ping, and lemmas are used directly. Unknown
words for transducer (i.e. those for which we are
not able to get any lemma analysis) are simply
skipped from the lemmatizer training. As the lem-
matizer sees each word separately, skipping words
and breaking the sentence context does not cause
any problems. With this approach we achieved
the 1st rank and accuracy of 77.6%, which is over
20pp better that the second best team.

To estimate the quality of our automatically pro-
duced training data for Breton tagging and lemma-
tization, we repeat the same procedure with the
Breton test data6, i.e. we use the combination of
morphological transducer and language model as
a direct tagger leaving out the part of training
an actual tagger with the produced data as done
in our original method. When evaluating these
produced analyses against the gold standard, we
get a direct measure of quality for this method.
We measure three different scores: 1) Oracle full
match of transducer readings converted to UD,
where we measure how many tokens can receive
a correct combination of UPOS and all morpho-
logical tags when taking into account all possi-
ble readings given by the transducer. For un-
known words we include all combinations known
from the transducer. This setting measures the
best full match number achievable by the language
model if it would predict everything perfectly. 2)
Language model full match, i.e. how many to-
kens received a fully correct analysis when lan-

6Using development data in these experiments would be
more desirable, but unfortunately we don’t have any Breton
development data available.

guage model was used to pick one of the possi-
ble analyses. 3) Random choice full match, i.e.
how many tokens received a fully correct analy-
sis when one of the possible analyses was picked
randomly. On Breton test set our oracle full match
is 55.5%, language model full match 51.0% and
random full match 46.2%. We can see that us-
ing a language model to pick analyses shifts the
performance more closer to oracle full match than
random full match, showing somewhat positive re-
sults for the language model decoding. Unfortu-
nately when we tried to replicate the same experi-
ment for other low-resource languages, we did not
see the same positive signal. However, the biggest
weakness of this method seems to be in the ora-
cle full match which is only 55.5%. This means
that the correct analysis cannot be found from the
converted transducer output for almost half of the
tokens. A probable reason for this is the simple
language-agnostic mapping from Apertium tags
to UD tags which is originally developed for the
lemmatizer training and strove for high precision
rather than high recall. Our development hypoth-
esis was that missing a tag in lemmatizer’s input
likely does not tremendously harm the lemmatizer,
so when developing the mapping we rather left
some tags out than caused a potential erroneous
conversion. However, when the same mapping is
used here, missing one common tag (for example
VerbForm=Fin) can cause great losses in full
match evaluation.

4.2 Faroese

For Faroese the starting situation was similar to
Breton but as the coverage of the Faroese Aper-
tium tranducer was weak, we decided to take an
another approach. This is because we feared that
the decoder input would have too many gaps to
fill in and therefore the quality of produced data
would decrease. For that reason the Faroese tag-
ger and parser was trained in the usual manner
using pooled training sets of related Nordic lan-
guages: Danish-DDT, Swedish-Talbanken, and
the three available Norwegian treebanks (Bok-
maal, Nynorsk, NynorskLIA). The pre-trained
embeddings were Faroese from the Facebook’s
embeddings dataset, filtered to only contain words
which Faroese has in common with one of the lan-
guages used in training. However, the Faroese
lemmatizer is trained directly from the transducer
output by analyzing vocabulary extracted from the
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Faroese Wikipedia and turning Apertium analyses
into UD using the same tag mapping table as in
the Breton. On UPOS tagging our system ranks
only 10th, whereas on both morphological feature
prediction and lemmatization, we rank 1st.

4.3 Thai

As there is no training data and no Apertium mor-
phological transducer for Thai, we machine trans-
lated the English-EWT treebank word-for-word
into Thai, and used the result as training data
for the Thai segmenter, tagger and parser. Here
we utilized the Marian neural machine transla-
tion framework (Junczys-Dowmunt et al., 2018)
trained on the 6.1 million parallel Thai-English
sentences in OPUS (Tiedemann, 2012). Since we
did not have access to a Thai tokenizer and Thai
language does not separate words with spaces, we
forced the NMT system into character-level mode
by inserting a space between all characters in a
sentence (both on the source and the target side)
and again removing those after translation. After
training the translation system, the English-EWT
treebank is translated one word at a time, creat-
ing a token and sentence segmented Thai version
of the treebank. Later all occurrences of English
dots and commas were replaced with whitespaces
in the raw input text (and accordingly absence of
SpaceAfter=No tags in CoNNL-U) as Thai uses
whitespace rather than punctuation as pause char-
acter, and rest of the words were merged together
in raw text by including SpaceAfter=No feature
for each word not followed by dot or comma. This
word-by-word translation and Thai word merging
technique gives us the possibility to train a some-
what decent sentence and word segmenter with-
out any training data for a language which does
not use whitespaces to separate words or even sen-
tences. Furthermore, all the words were removed
as they have no Thai counterpart, lemmas were
dropped, all matching morphological features be-
tween English and Thai were copied, HEAD in-
dices were updated because of removing before
mentioned tokens, non-existent dependency re-
lations in Thai were mapped to similar existent
ones, and finally enhanced dependency graphs
were dropped. The tagger and parser were then
trained normally using this training data. Training
a lemmatizer is not needed as the Thai treebank
does not include lemma annotation.

Our Thai segmentation achieves 1st rank and

accuracy of 12.4% on sentence segmentation and
5th rank and accuracy of 43.2% on tokenization.
On UPOS prediction we have accuracy of 27.6%
and 4th rank, and our LAS is 6.9% and we rank
2nd, while the best team on Thai LAS, CUNI x-
ling, achieves 13.7%. English is not a particu-
larly natural choice for the source language of a
Thai parser, with Chinese likely being a better can-
didate. We still chose English because we were
unable to train a good Chinese-Thai MT system
on the data provided in OPUS and the time pres-
sure of the shared task prevented us from explor-
ing other possibilities. Clearly, bad segmentation
scores significantly affect other scores as well, and
when the parser and tagger are evaluated on top of
gold segmentation, our UPOS accuracy is 49.8%
and LAS 20.4%. These numbers are clearly better
than with predicted segmentation but still far off
from typical supervised numbers.

5 Results

The overall results of our system are summarized
in Table 3, showing the absolute performance,
rank, and difference to the best system / next
best system for all metrics on several treebank
groups — big, small, low-resource and parallel
UD (PUD). With respect to the three main met-
rics of the task, we ranked 2nd on LAS, 2nd on
MLAS and 1st on BLEX, and received the high-
est aggregate ranking out of 26 teams, of which
21 submitted non-zero runs for all treebanks. For
LAS, our high rank is clearly due to balanced per-
formance across all treebank groups, as our ranks
in the individual groups are 3rd, 6th, 4th and 6th,
still giving a 2nd overall rank. A similar pattern
can also be observed for MLAS. Our 1st overall
rank on the BLEX metric is undoubtedly due to
the good performance in lemmatization, on which
our system achieves the 1st rank overall as well as
in all corpus groups except the low-resourced lan-
guages. Altogether, it can be seen in the results ta-
ble that the two main strengths of the system is 1)
lemmatization and 2) tagging of small treebanks,
and on any metric, the system ranks between 1st
and 5th place across all corpora (all column in Ta-
ble 3).

6 Software release

The full parsing pipeline is available at
https://turkunlp.github.com/
Turku-neural-parser-pipeline,
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All Big PUD Small Low
LAS 73.28 (-2.56 / 2) 81.85 (-2.52 / 3) 71.78 (-2.42 / 6) 64.48 (-5.05 / 4) 22.91 (-4.98 / 6)
MLAS 60.99 (-0.26 / 2) 71.27 (-1.40 / 3) 57.54 (-1.21 / 5) 47.63 (-1.61 / 2) 3.59 (-2.54 / 5)
BLEX 66.09 (+0.76 / 1) 75.83 (+0.37 / 1) 63.25 (+0.91 / 1) 53.54 (-1.35 / 2) 11.40 (-2.58 / 2)
UAS 77.97 (-2.54 / 4) 85.32 (-2.29 / 5) 75.58 (-2.84 / 6) 71.50 (-4.44 / 5) 34.51 (-4.72 / 6)
CLAS 69.40 (-2.96 / 2) 78.26 (-3.03 / 4) 67.65 (-2.21 / 5) 59.28 (-5.57 / 4) 18.15 (-4.03 / 6)
UPOS tagging 89.81 (-1.10 / 4) 95.41 (-0.82 / 6) 85.59 (-1.92 / 9) 91.93 (-0.91 / 3) 52.53 (-8.54 / 4)
XPOS tagging 86.17 (-0.50 / 3) 94.47 (-0.69 / 4) 55.68 (-0.30 / 2) 90.51 (+0.50 / 1) 43.43 (-11.3 / 17)
Morph. features 86.70 (-0.89 / 3) 93.82 (-0.32 / 3) 85.24 (-1.81 / 5) 85.63 (+0.58 / 1) 40.04 (-8.91 / 4)
All morph. tags 79.83(-0.47 / 2) 91.08 (-0.42 / 3) 51.60 (-0.30 / 2) 82.02 (+1.17 / 1) 17.58 (-8.33 / 19)
Lemmatization 91.24 (+1.92 / 1) 96.08 (+0.83 / 1) 85.76 (+0.07 / 1) 91.02 (+1.02 / 1) 61.61 (-2.81 / 3)
Sentence segmt. 83.03 (-0.84 / 5) 86.09 (-3.43 / 7–21) 75.53 (-0.51 / 3–17) 83.33 (-0.12 / 2–20) 66.23 (-1.27 / 2)
Word segmt. 97.42 (-0.76 / 5) 98.81 (-0.40 / 8–21) 92.61 (-1.96 / 7–19) 99.43 (+0.20 / 1–19) 89.10 (-4.28 / 5)
Tokenization 97.83 (-0.59 / 4) 99.24 (-0.27 / 6–21) 92.61 (-1.96 / 7–19) 99.57 (+0.01 / 1–18) 89.85 (-3.49 / 5)

Table 3: Results in every treebank group, shown as “absolute score (difference / rank)”. For first rank,
the difference to the next best system is shown, for other ranks we show the difference to the best ranking
system, shared ranks are shown as a range.

together with all the trained models. We have
ported the parser of Dozat et al. into Python3,
and included other modifications such as the
ability to parse a stream of input data without
reloading the model. The pipeline has a modular
structure, which allowed us to easily reconfigure
the components for languages which needed a
non-standard treatment. The pipeline software is
documented, and we expect it to be comparatively
easy to extend it with own components.

7 Conclusions

In this paper we presented the TurkuNLP entry
at the CoNLL 2018 UD Shared Task. This year
we focused on building an end-to-end pipeline
system for segmentation, morphological tagging,
syntactic parsing and lemmatization based on
well-known components, and including our novel
lemmatization approach. On BLEX evaluation, a
metric including lemmatization and syntactic tree,
we rank 1st, reflecting the state-of-the-art perfor-
mance on lemmatization. On MLAS and LAS,
metrics including morphological tagging and syn-
tactic tree, and plain syntactic tree, we rank 2nd
on both. All these components are wrapped into
one simple parsing pipeline that carries out all four
tasks with one command, and the pipeline is avail-
able for everyone together with all trained models.
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Abstract

We present the approach of the TurkuNLP
group to the IWPT 2020 shared task on Mul-
tilingual Parsing into Enhanced Universal De-
pendencies. The task involves 28 treebanks in
17 different languages and requires parsers to
generate graph structures extending on the ba-
sic dependency trees. Our approach combines
language-specific BERT models, the UDify
parser, neural sequence-to-sequence lemmati-
zation and a graph transformation approach
encoding the enhanced structure into a depen-
dency tree. Our submission averaged 84.5%
ELAS, ranking first in the shared task. We
make all methods and resources developed for
this study freely available under open licenses
from https://turkunlp.org.

1 Introduction

The Universal Dependencies1 (UD) effort (Nivre
et al., 2016, 2020) seeks to create cross-
linguistically consistent dependency annotation
and has to date produced more than 150 treebanks
in 90 languages. UD is a broad and open commu-
nity effort with more than 300 contributors (Ze-
man et al., 2019), and the resources they have cre-
ated have been instrumental in driving progress
in dependency parsing in recent years, also serv-
ing as the basis of widely attended CoNLL shared
tasks on multilingual parsing in 2017 and 2018 (Ze-
man et al., 2017, 2018). While UD resources, the
CoNLL shared tasks, and recent advances in deep
learning-based parsing technology (Dozat et al.,
2017; Kanerva et al., 2018; Kondratyuk and Straka,
2019) have contributed substantially to accurate de-
pendency parsing using a consistent syntactic rep-
resentation for a wide range of human languages,
these efforts have focused almost exclusively on
the basic UD dependency trees. UD defines also an

∗Equal contribution by all three authors
1https://universaldependencies.org/

enhanced graph representation, which allows more
detailed representation of the sentence. Common
types of enhancements include null nodes for elided
predicates, propagation of conjuncts for making
connections between words more explicit, and aug-
mentation of modifier labels with prepositional or
case-marking information. The ability to produce
enhanced UD graphs from raw text, previously ex-
plored by e.g. Schuster and Manning (2016), Nivre
et al. (2018), and Schuster et al. (2018), would
represent a further advance over existing tools.

The IWPT 2020 Shared Task on Multilingual
Parsing into Enhanced Universal Dependendies2

(Bouma et al., 2020) is the first shared task evalu-
ation targeting the enhanced UD graph. The task
was organized using data from 28 UD treebanks
covering 17 languages, representing Baltic, Finnic,
Germanic, Romance, Semitic, Slavic, and Southern
Dravidian languages. We participated in the IWPT
shared task with our parsing pipeline consisting of
components for segmentation, part-of-speech and
morphological tagging, lemmatization, dependency
parsing, and enhanced dependency graph analysis.
Our approach builds on custom pre-trained deep
language models (Devlin et al., 2018), a deep neu-
ral network-based parser (Kondratyuk and Straka,
2019), a character-level sequence-to-sequence lem-
matizer (Kanerva et al., 2020), and a custom graph
transformation approach encoding an enhanced de-
pendency graph in a labeled tree structure. The
parsing pipeline is fully language agnostic, and
therefore trainable with any UD treebank. Our sub-
mission to IWPT achieved an average enhanced
labeled attachment score (ELAS) of 84.5%, the
best performance among the 35 evaluated submis-
sions from ten participating groups with an approx-
imately 2% point margin to the second-best sub-
mission.

2https://universaldependencies.org/
iwpt20/
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2 Shared Task Data

The shared task data invoves 28 UD treebanks for
17 languages, representing the subset of treebanks
for which enhanced dependencies are available.
The enhanced dependencies fall into five types:
gapping, propagation of conjuncts, controlled and
raised subjects, relative clause antecedents, and
case information. However, not all treebanks have
all of these types. While the training data is di-
vided according to individual treebanks, test data
is divided on language level through pooling of
the individual treebank test sets, without any direct
possibility to identify which test set sentence orig-
inates from which source treebank. We note that
this is a departure from previous UD parsing shared
tasks, where the treebank distinction was preserved
also in the test data. The training and development
data range from less than 10,000 words for Tamil
to over a million for Czech. Table 1 gathers statis-
tics of the enhanced dependencies, compared to
the base parse trees. We can see that the number
of unique relation types increases by an order of
magnitude, yet roughly 70-80% of the enhanced
dependencies are copied unmodified from the base
tree, and roughly 90-95% are a base dependency
with its relation type modified.

3 System Overview

We next introduce our system and our approach to
predicting enhanced dependencies.

3.1 Segmentation
For tokenization, multiword token expansion and
sentence splitting we apply the Stanza toolkit by Qi
et al. (2020) and its downloadable models trained
on UD version 2.5 treebanks. Stanza implements a
neural model that treats segmentation as a tagging
problem over sequences of characters, where for
a given character the model predicts whether it is
the end of a token, the end of a sentence, or the
end of a multiword token. Predicted multiword
tokens are then expanded using a combination of
a dictionary compiled from the training data and a
sequence-to-sequence generation model.

3.2 Base Parser
We use the UDify dependency parser introduced by
Kondratyuk and Straka (2019). UDify is a multi-
task model for part-of-speech and morphological
tagging, lemmatization and dependency parsing
supporting fine-tuning of pre-trained BERT models

Treebank Base Enh R% UR%
Arabic-PADT 36 1074 66.1 92.9
Bulgarian-BTB 36 173 84.7 96.1
Czech-CAC 43 639 72.4 89.3
Czech-FicTree 42 295 78.7 90.5
Czech-PDT 43 759 75.6 91.8
Dutch-Alpino 35 416 83.3 95.7
Dutch-LassyS. 35 293 82.2 95.3
English-EWT 49 375 82.3 94.7
Estonian-EDT 38 560 76.1 98.3
Estonian-EWT 39 178 74.1 92.6
Finnish-TDT 45 418 74.1 91.1
French-Sequoia 46 71 93.9 95.3
Italian-ISDT 44 348 78.6 94.8
Latvian-LVTB 40 133 75.9 90.6
Lithuanian-A. 35 194 66.9 88.8
Polish-LFG 40 178 88.8 97.1
Polish-PDB 67 859 77.2 91.8
Russian-SynTag. 40 635 77.5 93.9
Slovak-SNK 41 268 81.0 94.3
Swedish-Talbank. 40 302 79.1 93.2
Tamil-TTB 28 116 69.3 97.3
Ukrainian-IU 57 351 77.5 91.6

Table 1: Statistics of base and enhanced relations from
the training sections of the treebanks: Base is the num-
ber of unique relations in the base tree, Enh is the num-
ber of unique relations in the enhanced graph, R% is
the proportion of enhanced dependencies also present
in the base tree, and UR% is the proportion of unla-
belled enhanced dependencies also present in the base
tree. The letter R refers to recall.

on UD treebanks. UDify implements a multi-task
network where a separate prediction layer for each
task is added on top of the pre-trained BERT en-
coder. Additionally, instead of using only the top
encoder layer representation in prediction, UDify
adds attention vertically over the 12 layers of BERT,
calculating a weighted sum of all intermediate rep-
resentations of BERT layers for each token. All
prediction layers as well as layer-wise attention are
trained simultaneously, while also fine-tuning the
pre-trained BERT weights.

In our shared task system we use UDify for part-
of-speech tagging (UPOS), predicting morpholog-
ical features (FEATS) as well as for dependency
parsing. By contrast to the original UDify work,
we train separate language-specific models rather
than one model covering all languages.

3.3 Lemmatizer

For lemmatization we use the Universal Lemma-
tizer by Kanerva et al. (2020) trained on the shared
task training data. The lemmatizer casts the task as
a sequence-to-sequence rewrite problem where the
input token is represented as a sequence of charac-
ters followed by a sequence of its part-of-speech
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and morphological tags, and the desired lemma is
then generated a character at time from the input.
Following this approach, the contextual informa-
tion needed for disambiguating between possible
lemmas for ambiguous words is obtained directly
from the predicted morphological tags, thus creat-
ing a compact context representation which gener-
alizes well. In order to obtain predicted tags for
lemmatization, we apply the lemmatizer as the final
component in our pipeline.

3.4 Enhanced Representation

Since our base parser is only capable of reproduc-
ing trees, the enhanced representation needs to ei-
ther be encoded into the base trees by enriching the
set of dependency types, or alternatively introduced
in a separate step after base parsing. In our system
submission, we chose the former, but have also ex-
perimented with the latter approach. The overall
approach of encoding the graph into a tree is well-
known and has been applied previously, e.g. by a
number of teams in the SemEval tasks on semantic
dependency parsing (Oepen et al., 2014, 2015).

Our choices adhered to the following princi-
ples: (a) the LAS of the base parser must not be
compromised, (b) the encoding must be language-
independent and applicable to any treebank, and
(c) the method must be sufficiently simple to be
included in a production-grade parsing pipeline.

3.4.1 Encoding into Base Tree
In order to encode enhanced dependencies into
the base tree, we focused on a just four structures,
which nevertheless cover the vast majority of the
edges in the enhanced representation (see Table 2
below). The four structures and their encoding are
shown in Figure 1. In the encoding, the base tree
structure does not change; the enhanced relations
are encoded into the base tree relations, also record-
ing whether the enhanced dependency goes from
or to the head in the base tree, or from or to the
head of the head in the base tree. This encoding
makes the decoding process straightforward and
deterministic, because there can be at most one
head and at most one head of head in the parse tree.
The downside of this approach is that the number
of unique relation types which the parser needs to
predict increases substantially. Note that this en-
coding applies straightforwardly to cases where a
token is the head or dependent in several enhanced
relations; their encoding is simply concatenated.

The main reason for the increase in the num-

Figure 1: The four enhanced dependency structures cur-
rently captured in our encoding. The base (b) and en-
hanced (e) relations in the left column are encoded in
a tree structure as in the right column. In the encoding,
the symbol > stands for ”relation from”, < stands for
”relation to”, H is the head in the base tree, and HH is
the head of the head in the base tree.

ber of unique relation types is the lexicalized rela-
tions which encode the lemma of a functional word
(e.g. the case dependent) into the enhanced relation.
To address this issue in a language-independent
manner, we scan the enhanced relations for occur-
rences of a lemma of a dependent of the head or
the dependent in the enhanced relation. If one is
found, it is replaced with a placeholder encoding
which position the lemma occurred at. For instance
{lemma-d-case} indicates that this placeholder is to
be replaced with the lemma of a case dependent of
the dependent in this enhanced relation. Similarly,
{lemma-h-case} indicates that this placeholder is
to be replaced with the lemma of a case dependent
of the head in this enhanced relation. Such delexi-
calization is once again straightforward to reverse
and in practice deterministic, although not so in
theory, since a word can have several dependents
of the same type.

The final feature of the enhanced representation
that we address is the empty nodes occuring in el-
liptic constructions. Here, we once again rely on
encoding of information into the base tree. The
shared task evaluation procedure includes a step
whereby empty nodes are removed and encoded in
the form of enhanced relations that every two rela-
tions (h, e, r1), (e, d, r2) produce a new enhanced
relation (h, d, r1>r2) which encodes the presence
of an empty node. Once all relations of the empty
node are encoded in this manner, the empty node
is removed. This representation is easy to reverse,
and in practice allows one to reconstruct the empty
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nodes in the enhanced representation except for
their position in the sentence, which is not par-
ticularly relevant nor evaluated in the shared task.
Only cases where a word has several empty node
dependents with the same relation type cannot be
reconstructed correctly.

The overall procedure for encoding the enhanced
representation is:

1. Encode empty nodes as enhanced relations, re-
move from the graph

2. Replace all recognized function word lemmas
with their corresponding placeholders

3. Encode all enhanced relations of the four types
using the encoding in Figure 1, discard any other
enhanced relations

This sequence of steps produces a tree represen-
tation that a standard dependency parser can be
trained on. The output of the parser is decoded
in the reverse order of the encoding steps, pro-
ducing the enhanced representation. The decod-
ing must take into account any errors the parser
produced which might impair the decoding of the
encoded representation, or produce an enhanced
graph which does not validate as Universal Depen-
dencies. In particular:

• Any relation headed by the root is given the type
root regardless of the parser’s prediction.

• If a lemma placeholder cannot be reversed (e.g.
when a parser predicts a placeholder {lemma-
d-case} but there is no such dependent in the
tree, the enhanced relation is discarded. Note
that leads to unconnected words in the enhanced
graph.

• Any word that remains unconnected in the en-
hanced graph is made the dependent of the same
head, with the same relation, as in the base tree.

• For any (undirected) connected component that
does not include the root node, we identify a
word that all other words of the component can
be reached from in the directed graph, and make
this word a dependent of the root node. If no
such word can be found, then the set of words
with no incoming edge in the component are
made dependents of the root node. This latter
condition did not trigger in practice.

The encode-decode procedure can be evaluated
by first encoding the enhanced training graphs into

Treebank Rels ELAS
Arabic-PADT 1,108 99.28
Bulgarian-BTB 152 99.22
Czech-CAC 939 98.13
Czech-FicTree 355 98.38
Czech-PDT 1,079 98.75
Dutch-Alpino 569 99.16
Dutch-LassySmall 420 99.23
English-EWT 611 98.89
Estonian-EDT 359 99.88
Estonian-EWT 202 99.74
Finnish-TDT 451 97.96
French-Sequoia 79 99.09
Italian-ISDT 561 99.53
Latvian-LVTB 405 97.94
Lithuanian-ALKSNIS 267 98.12
Polish-LFG 146 99.21
Polish-PDB 845 98.34
Russian-SynTagRus 1,119 99.57
Slovak-SNK 281 99.44
Swedish-Talbanken 494 99.16
Tamil-TTB 78 99.79
Ukrainian-IU 363 98.88

Table 2: Number of unique dependency relations af-
ter the encoding procedure, and the ELAS value after
an encode-decode cycle. The latter number reflects to
what extent the original enhanced graphs can be recon-
structed after the encoding. The numbers are reported
on the training portions of the treebanks.

trees, decoding back, and measuring the ELAS of
the decoded data against the original. A lossless
representation would result in ELAS of 100%. As
shown in Table 2, this value is in the 97.9–99.9%
range across all treebanks, meaning the encoding
is not far from lossless, and only little gain can
be expected from encoding more complex struc-
tures. Note, however, that this reflects the compara-
tive structural simplicity of the enhanced relations
present in the UD data, rather than the generality of
our encoding. Table 2 also reports on the number of
unique dependency relations in the training section
of each treebank, showing an order of magnitude
increase compared to the base tree.

3.4.2 Enhanced Relations as Tagging

The encoding of the enhanced relations into the
base tree can also be seen as a tagging task, since
every word has exactly one base relation, and there-
fore also exactly one relation in the encoded tree.
It is therefore possible to first parse the sentence
with a parser that predicts the base tree, and then
subsequently tag the words with tags correspond-
ing to the encoding of the enhanced relations, as
introduced earlier, with the base parse tree serving
as a source of features. The main advantage of
such an approach would be guaranteeing that the
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Model Languages References
Arabic-BERT Arabic https://github.com/alisafaya/Arabic-BERT
BERTje Dutch https://github.com/wietsedv/bertje; (de Vries et al., 2019)
BERT (original) English https://github.com/google-research/bert; (Devlin et al., 2018)
FinBERT Finnish https://turkunlp.org/FinBERT/; (Virtanen et al., 2019)
CamemBERT French https://camembert-model.fr/; (Martin et al., 2020)
Italian BERT Italian https://github.com/dbmdz/berts
RuBERT Russian https://github.com/deepmipt/deeppavlov/; (Kuratov and Arkhipov, 2019)
Slavic-BERT Slavic1 https://github.com/deepmipt/Slavic-BERT-NER; (Arkhipov et al., 2019)
Swedish BERT Swedish https://github.com/Kungbib/swedish-bert-models
mBERT 104 lang. https://github.com/google-research/bert

Table 3: Previously released BERT models for shared task languages. 1Slavic-BERT is trained on Bulgarian,
Czech, Polish, and Russian.

base LAS of the parser does not change, while the
main disadvantage is the added complexity of an
additional step and the possibility of error chaining.

We pursued this alternative approach in parallel
to the main line of work. As the results presented
in Section 5 show, however, the encoding of the
enhanced dependencies does not negatively affect
the base LAS, undermining the motivation for a
separate tagging approach with its added software
complexity. In our preliminary experiments on the
development data, the tagging approach resulted in
a minimally worse performance than the primary
approach, and was therefore not pursued further.

4 Language Models

We apply transfer learning using pre-trained BERT
models, using multilingual BERT3 (mBERT) as
a starting point. Based on recent studies intro-
ducing language-specific BERT models (Arkhipov
et al., 2019; Virtanen et al., 2019; de Vries et al.,
2019; Martin et al., 2020), we anticipated that pars-
ing performance could be substantially improved
by replacing the multilingual model with dedi-
cated language-specific ones. To identify or cre-
ate a model that would improve on performance
with mBERT for every treebank in the shared task,
we adopted a three-stage approach: 1) use previ-
ously released models, 2) pre-train a new model
on Wikipedia data, and 3) continue pre-training on
texts from a web crawl.

4.1 Previously Released Models

We considered the previously released models sum-
marized in Table 3. Based on preliminary experi-
ments, we focused on cased models in cases where
both cased and uncased variants are available. We
evaluated mBERT for all shared task treebanks,

3https://github.com/google-research/
bert/blob/master/multilingual.md

Slavic-BERT for Bulgarian, Czech, Polish, and
Russian, and the other models for treebanks for the
individual languages that those models target.

4.2 Unannotated Texts

Our primary source of unannotated texts in various
languages is Wikipedia. To extract plain text, we
processed the full 2020/01/20 Wikipedia database
backup dumps4 for the various languages with
WikiExtractor5. The basic statistics of extracted
Wikipedia texts for the IWPT languages are sum-
marized in Table 9 in the Appendix. We note that
the sizes of these unnanotated texts vary greatly
between languages, ranging just over 20 million
tokens for Latvian to nearly 3 billion for English.
In many cases, languages with large Wikipedias
also have large annotated treebanks, and vice versa;
the language with the smallest amount of annotated
training data in the shared task, Tamil, also ranks
second from bottom in terms of the available unan-
notated Wikipedia data. We augmented the col-
lection of unannotated texts for selected languages
with texts drawn from OSCAR6 (Ortiz Suárez et al.,
2019), using unshuffled versions provided by the
creators of the corpus (see Table 8 in the Appendix).
The unshuffled version of the corpus is used since
BERT training is carried out on text segments of up
to 512 sub-words, far longer than most individual
sentences. To reduce the level of noise in the web-
crawled texts, we filtered the OSCAR source using
5-gram perplexity with a KenLM7 language model
estimated on Wikipedia data. In brief, we measured
the average sentence-level perplexity t and filtered
out any document where the average perplexity was
greater than t. In terms of tokens, this procedure

4https://dumps.wikimedia.org/
5https://github.com/attardi/

wikiextractor
6https://traces1.inria.fr/oscar/
7https://github.com/kpu/kenlm
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Model
Treebank mBERT Language-specific
Arabic PADT 83.62 82.76 (Arabic-BERT)
Bulgarian BTB 90.75 91.83 (Slavic-BERT)
Czech CAC 91.80 92.99 (Slavic-BERT)
Czech FicTree 92.31 93.27 (Slavic-BERT)
Czech PDT 92.58 93.44 (Slavic-BERT)
Dutch Alpino 92.58 93.36 (BERTje)
Dutch LassySmall 88.30 87.69 (BERTje)
English EWT 90.08 91.82 (BERT-large)
Estonian EWT 71.27 73.08 (WikiBERT-et)
Finnish TDT 87.83 92.89 (FinBERT)
French Sequoia 93.12 92.99 (CamemBERT)
Italian ISDT 92.75 93.44 (Italian BERT)
Latvian LVTB 86.71 85.96 (WikiBERT-lv)
Lithuanian ALKSNIS 83.02 85.26 (WikiBERT-lt)
Polish LFG 95.34 96.22 (Slavic-BERT)
Polish PDB 91.90 93.37 (Slavic-BERT)
Russian SynTagRus 92.06 93.34 (RuBERT)
Slovak SNK 92.52 91.89 (WikiBERT-sk)
Swedish Talbanken 86.96 90.56 (Swedish BERT)
Tamil TTB 69.12 67.38 (WikiBERT-ta)
Ukrainian IU 89.60 91.25 (WikiBERT-uk)
Average 88.30 89.28

Table 4: UDify development set LAS performance with
mBERT compared to language-specific BERTs

filtered out approx. 10% of the OSCAR data for
Latvian and Slovak and 24% for Tamil.

4.3 Pre-training

For pre-training new BERT models, we largely
follow the approach used to create the original
BERT-base English model by Devlin et al. (2018).
Specifically, we adapt the preprocessing pipeline
and pre-training process introduced by Virtanen
et al. (2019) for creating the Finnish BERT model.
In brief, we train BERT-base models for 1M steps,
the initial 900K with a maximum sequence length
of 128 and the last 100K with 512, using the orig-
inal BERT software8 and the same optimizer pa-
rameters as Devlin et al. (2018) with the exception
of batch size. Due to memory limitations, a batch
size of 140 was used with 4 GPUs for the first
900K steps and a batch size of 20 with 8 GPUs
for the last 100K steps. Nvidia V100 GPUs with
32 GB memory were used for pre-training. For
comprehensive details of the preprocessing and
pre-training process, we refer to the documentation
of our pipeline.9

4.4 Language Model Evaluation

For evaluating pre-trained language models, we
trained UDify with the shared task training data for

8https://github.com/google-research/
bert

9https://github.com/TurkuNLP/wikibert

Model
Treebank mBERT Language-specific
Arabic PADT 83.62 84.79 (WikiBERT-ar)
Dutch Alpino 92.58 93.47 (WikiBERT-nl)
Dutch LassySmall 88.30 89.23 (WikiBERT-nl)
French Sequoia 93.12 93.21 (WikiBERT-fr)
Average 89.41 90.18

Table 5: UDify development set LAS performance with
mBERT compared to additional WikiBERTs

Model
Treebank mBERT Language-specific
Latvian LVTB 86.71 88.47 (Wiki+OSCAR-BERT-lv)
Slovak SNK 92.52 92.52 (Wiki+OSCAR-BERT-sk)
Tamil TTB 69.12 71.02 (Wiki+OSCAR-BERT-ta)
Average 82.78 84.00

Table 6: UDify development set LAS performance with
mBERT compared to Wiki+OSCAR-BERTs

each language and evaluated on the corresponding
development dataset using gold standard tokeniza-
tion. The standard LAS metric was used to assess
model performance.

Table 4 summarizes evaluation results com-
paring parsing performance with mBERT and
language-specific models. As expected, we find
that language-specific models outperform the mul-
tilingual model in most cases, averaging approx-
imately 1% point higher LAS (∼8% reduction
in error). There are nevertheless a number of
cases where UDify with mBERT outperforms the
language-specific model. To address these cases,
we introduced additional WikiBERT models for
Arabic, Dutch, and French. Results comparing
the performance of these models with mBERT are
summarized in Table 5. We find that in each case
using the WikiBERT model improves on results
with mBERT, with absolute differences around 1%
point for the Arabic and Dutch treebanks but very
limited (∼0.1% point) difference for French, aver-
aging 0.8% point higher LAS than mBERT (∼7%
reduction in error).

Finally, there are three languages for which no
previously released language-specific model was
available and the WikiBERT failed to improve on
performance with mBERT: Latvian, Slovak, and
Tamil. For these languages, we continued pre-
training with texts from OSCAR for an additional
300,000 steps. Table 6 summarizes performance
with these models. For Slovak, the new model
improves over the WikiBERT model performance
but merely matches the performance with mBERT,
while the Latvian and Tamil models outperform



168

Team
Language adapt clasp emory fastparse koebsala orange robert shanghai turku unipi
Arabic 57.19 51.26 67.26 66.92 60.84 70.96 0.0 63.41 77.82 57.79
Bulgarian 77.29 84.90 88.19 84.86 68.88 89.42 0.0 78.67 90.73 84.93
Czech 66.41 67.13 85.51 77.21 61.11 86.95 0.0 75.43 87.51 75.99
Dutch 67.67 78.93 80.72 77.37 62.93 85.14 0.0 70.94 84.73 77.62
English 70.44 82.87 85.30 78.45 65.37 85.21 88.94 72.34 87.15 83.95
Estonian 61.12 60.44 81.36 74.09 59.07 81.03 0.0 74.91 84.54 57.24
Finnish 72.37 65.96 82.96 75.73 67.54 86.24 0.0 75.99 89.49 72.13
French 74.74 72.76 86.23 77.77 67.93 83.63 0.0 76.99 85.90 78.85
Italian 71.98 87.14 88.52 84.77 69.08 90.83 0.0 73.08 91.54 89.14
Latvian 72.41 66.01 79.19 75.57 64.75 82.11 0.0 77.77 84.94 68.23
Lithuanian 58.36 52.56 66.12 61.41 56.28 75.89 0.0 66.85 77.64 61.06
Polish 65.86 71.22 82.39 74.54 61.34 80.39 0.0 71.01 84.64 70.61
Russian 75.27 70.37 88.60 80.35 64.23 89.84 0.0 78.26 90.69 76.90
Slovak 68.43 65.16 82.72 73.46 64.08 84.36 0.0 73.14 88.56 81.40
Swedish 68.39 71.35 78.19 75.24 64.50 83.27 0.0 69.60 85.64 78.73
Tamil 48.47 42.15 54.26 46.99 47.44 64.23 0.0 48.20 57.83 48.50
Ukrainian 66.43 63.24 79.69 74.02 64.17 84.64 0.0 72.98 87.22 73.90
Average 67.23 67.85 79.84 74.04 62.91 82.60 5.23 71.74 84.50 72.76

Table 7: ELAS results for submissions to IWPT 2020 shared task. Team names abbreviated for space: emory =
emorynlp, orange = orange deskin, robert = robertnlp, shanghai = shanghaitech alibaba, turku = turkunlp.

mBERT with a nearly 2% point absolute differ-
ence in LAS. On average, the new models improve
on mBERT by 1.2% points, again an approx. 7%
reduction in error.

5 Results

For our final submission, we trained a model for
each language using the largest treebank (in terms
of token count) for the language in the shared task
data release. All segmentation, tagging, parsing,
and lemmatization models are thus monolingual
and trained using only a single treebank. Each UD-
ify model is fine-tuned for 160 epochs using a num-
ber of warm-up steps10 roughly equal to a single
pass over the training dataset. For each language
the fine-tuning is based on a custom pre-trained
BERT model selected as detailed in Section 4.4.
Lemmatization models do not require any exter-
nal resources, and all hyperparameters follow the
values used in Kanerva et al. (2020).

The primary evaluation metric in the shared task
is ELAS (Labeled Attachment Score on Enhanced
dependencies), which calculates F-score over the
set of enhanced dependencies in the system out-
put and gold standard.11 Table 7 summarizes the
ELAS results for all ten teams participating the
shared task. We note that in addition to achieving

10During warm-up, the learning rate is gradually increased
from zero to its initial value, so as to avoid large changes at
the very beginning of the training.

11Note that in UD many of the base layer relations are re-
peated in the enhanced graph, and therefore the ELAS metric
evaluates a combination of basic dependencies and enhance-
ments as seen in statistics presented in Table 1.

the best average ELAS performance, our system
also outperforms all other submissions for 13 out
of the 17 individual languages included in the task.
For these 13 languages, the largest absolute dif-
ferences for the second-best result are for Arabic
(∼6.9% points), Slovak (∼4.2% points), Estonian,
and Finnish (both slightly above 3% points).

For the four languages where our system did not
achieve the highest ELAS results, the differences
to the highest-performing submission are small
(0.3-0.4% points) for Dutch and French, and 1.8%
points for English. However, there is a more than
6% point difference to the top result for Tamil, the
language with the smallest treebank in the shared
task. This difference indicates a tradeoff of our ap-
proach in training monolingual models: languages
with particularly limited resources do not gain sup-
port from annotations in other languages as they
would in multilingual training.

Table 10 in the Appendix shows average re-
sults for all metrics excepting for XPOS, which
due time limitations we decided not to predict,
and AllTags, which is not meaningfully defined
when not predicting XPOS. We note that our sys-
tem achieves the best performance for all but two
metrics, outperforming other systems in segmen-
tation (Tokens, Words, Sentences), part-of-speech
tagging (UPOS), lemmatization (Lemmas) as well
as for all but one of the seven dependency attach-
ment score (*AS) metrics. Our system falls behind
the best-performing submission (orange deskin)
for the UFeats and MLAS metrics. As MLAS
(Morphology-Aware Labeled Attachment Score)
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requires selected features to match, the results for
these two metrics likely both reflect performance
for morphological features. The absolute differ-
ence of our system to the top result for UFeats is
1.2% points, reflecting a 20% relative increase in
error and indicating a clear remaining point for
improvement in our system.

6 Discussion

Cross-lingual compatibility is a major goal of the
UD effort and the ability to train multilingual mod-
els where lower-resourced languages can benefit
from data in higher-resourced languages a clearly
desirable aim in language modeling. While our
approach – which trains monolingual models and
uses language-specific pre-trained models – can
be seen as running counter to these goals, we do
nevertheless share them. Our choice to train sepa-
rate models for each language for the shared task is
based in part in awareness of remaining compatibil-
ity issues in UD treebanks, even within languages.
We hope contrasting results for joint and language-
specific models for this shared task will help iden-
tify and resolve some of these challenges. Regard-
ing multilingual language models, we note that in
aiming to cover more than 100 languages without
a corresponding increase in model and vocabulary
size, mBERT faces multiple challenges in its ca-
pacity, and the model training does not fully bal-
ance lower- and higher-resourced languages. While
we here found language-specific models to outper-
form a specific mBERT model, highly multilingual
models addressing these challenges might well be
competitive with language-specific ones, and the
creation of such models would greatly benefit prac-
tical parsing efforts targeting a large number of
languages.

To study the impact of the language-specific lan-
guage models in our shared task results, we re-
produce our pipeline using exactly same configu-
rations except for replacing all language-specific
BERT models with the multilingual mBERT. In this
experiment, all languages are using the same multi-
lingual language model as a starting point, later in-
dividually fine-tuned for each language while train-
ing the language-specific parsing models. When
comparing these models to the official submissions
of all 10 teams, the average ELAS is approximately
1.7% points below our own primary submission
(∼11% increase in error), but still slighty above
the second best submission by approximately 0.2%

points. This means that, our pipeline would have
reached the highest average ELAS score among
the official submissions also without the language-
specific BERT models, but only with a very thin
margin to the next best team.

7 Conclusions

We have presented the approach of the TurkuNLP
group to the IWPT 2020 shared task on Multi-
lingual Parsing into Enhanced Universal Depen-
dencies. Our approach is based on deep transfer
learning with language-specific models, the state-
of-the-art UDify neural parsing pipeline, sequence-
to-sequence lemmatization, and a graph transforma-
tion approach to predicting enhanced dependency
graphs. Our submission to the shared task achieved
the highest performance for the primary evaluation
metric (ELAS) both on average as well as for 13
out of the 17 languages involved in the task, also
achieving the highest average performance for most
other evaluation metrics.

All of the methods and resources developed for
this study are made freely available under open
licenses from https://turkunlp.org.
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Agnė Bielinskienė, Rogier Blokland, Victoria Bo-
bicev, Loı̈c Boizou, Emanuel Borges Völker, Carl
Börstell, Cristina Bosco, Gosse Bouma, Sam Bow-
man, Adriane Boyd, Kristina Brokaitė, Aljoscha
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Puolakainen, Sampo Pyysalo, Peng Qi, Andriela
Rääbis, Alexandre Rademaker, Loganathan Ra-
masamy, Taraka Rama, Carlos Ramisch, Vinit Rav-
ishankar, Livy Real, Siva Reddy, Georg Rehm, Ivan
Riabov, Michael Rießler, Erika Rimkutė, Larissa Ri-
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Hajič, Joakim Nivre, Filip Ginter, Juhani Luotolahti,
Sampo Pyysalo, Slav Petrov, Martin Potthast, Fran-
cis Tyers, Elena Badmaeva, Memduh Gokirmak,
Anna Nedoluzhko, Silvie Cinkova, Jan Hajič jr.,
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A Appendix

Table 8 shows the same statistics for the OSCAR
corpora of selected languages, and Table 9 sum-
marizes the basic statistics of extracted Wikipedia
texts for the IWPT languages. Table 10 shows aver-
age results for various metrics for all submissions
to IWPT 2020 shared task.

Language Docs Sents Tokens Chars
Latvian 1.6M 34M 628M 4.0B
Slovak 5.5M 99M 1.5B 9.1B
Tamil 1.3M 39M 528M 3.8B

Table 8: OSCAR source statistics for selected IWPT
2020 shared task languages

Language Docs Sents Tokens Chars
Arabic 1.0M 8.0M 184M 889M
Bulgarian 259K 4.1M 71M 397M
Czech 444K 7.9M 143M 804M
Dutch 2.0M 19M 300M 1.7B
English 5.9M 124M 2.7B 14B
Estonian 205K 2.7M 38M 252M
Finnish 477K 7.4M 97M 731M
French 2.2M 34M 858M 4.5B
Italian 1.6M 22M 579M 3.0B
Latvian 99K 1.3M 21M 126M
Lithuanian 196K 2.3M 34M 207M
Polish 1.4M 16M 282M 1.7B
Russian 1.6M 31M 565M 3.5B
Slovak 232K 2.8M 39M 229M
Swedish 3.7M 30M 364M 2.1B
Tamil 132K 1.9M 26M 195M
Ukrainian 979K 15M 260M 1.5B

Table 9: Wikipedia source statistics for IWPT 2020
shared task languages

Team
Metric adapt clasp emory fastparse koebsala orange robert shanghai turku unipi
Tokens 99.54 99.72 99.66 99.66 99.66 99.68 5.85 99.67 99.74 99.63
Words 98.96 99.12 99.06 99.06 99.06 99.09 5.85 99.08 99.13 99.03
Sentences 89.22 92.34 91.25 91.18 91.25 90.24 5.07 91.97 92.41 90.56
UPOS 95.88 95.48 93.63 93.60 93.63 96.69 5.63 0.63 96.75 92.78
UFeats 91.36 90.66 87.35 88.11 87.35 93.98 5.57 32.84 92.77 86.02
Lemmas 95.40 95.15 92.30 92.23 92.30 95.80 5.62 0.02 95.96 91.35
UAS 87.18 86.41 88.95 82.55 79.97 89.45 5.26 13.01 89.92 84.90
LAS 84.09 82.66 86.14 77.57 75.41 86.79 5.11 0.99 87.31 80.74
CLAS 81.56 79.66 83.81 72.97 71.18 84.42 5.00 1.22 85.23 77.42
MLAS 72.57 69.55 67.84 60.82 60.54 77.75 4.51 0.01 76.63 62.73
BLEX 78.11 76.00 76.11 66.70 65.38 80.86 4.73 0.00 81.93 70.03
EULAS 69.42 80.18 81.26 75.96 64.93 84.62 5.26 73.01 85.83 78.82
ELAS 67.23 67.85 79.84 74.04 62.91 82.60 5.23 71.74 84.50 72.76

Table 10: Average results for different metrics for submissions to IWPT 2020 shared task. Team names abbreviated
for space: emory = emorynlp, orange = orange deskin, robert = robertnlp, shanghai = shanghaitech alibaba, turku
= turkunlp.
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Abstract
In this paper, we study natural language paraphrasing from both corpus creation and modeling points of
view. We focus in particular on the methodology that allows the extraction of challenging examples of
paraphrase pairs in their natural textual context, leading to a dataset potentially more suitable for eval-
uating the models’ ability to represent meaning, especially in document context, when compared with
those gathered using various sentence-level heuristics. To this end, we introduce the Turku Paraphrase
Corpus, the first large-scale, fully manually annotated corpus of paraphrases in Finnish. The corpus con-
tains 104,645 manually labeled paraphrase pairs, of which 98% are verified to be true paraphrases, either
universally or within their present context. In order to control the diversity of the paraphrase pairs and
avoid certain biases easily introduced in automatic candidate extraction, the paraphrases are manually col-
lected from different paraphrase-rich text sources. This allows us to create a challenging dataset including
longer and more lexically diverse paraphrases than can be expected from those collected through heuris-
tics. In addition to quality, this also allows us to keep the original document context for each pair, making
it possible to study paraphrasing in context. To our knowledge, this is the first paraphrase corpus which
provides the original document context for the annotated pairs.
We also study several paraphrase models trained and evaluated on the new data. Our initial para-
phrase classification experiments indicate a challenging nature of the dataset when classifying using
the detailed labeling scheme used in the corpus annotation, the accuracy substantially lacking behind
human performance. However, when evaluating the models on a large scale paraphrase retrieval task
on almost 400M candidate sentences, the results are highly encouraging, 29–53% of the pairs being
ranked in the top 10 depending on the paraphrase type. The Turku Paraphrase Corpus is available at
github.com/TurkuNLP/Turku-paraphrase-corpus as well as through the popular HuggingFace datasets
under the CC-BY-SA license.

Keywords: Paraphrasing; Corpus annotation; Finnish; Paraphrase modeling

1. Introduction
Restating the same meaning in different wording, that is paraphrasing, occurs naturally in human
communication, either by the same speaker repeating the message multiple times with different
words, or by multiple speakers conveying the same message in different places. While a strict def-
inition of a paraphrase requires the two statements to convey exactly the same meaning, often in
natural language processing (NLP) and computational linguistics studies some form of a practi-
cal definition is adopted, requiring only having approximately the same meaning. The degree to

C© The Author(s), 2023. Published by Cambridge University Press. This is an Open Access article, distributed under the terms of the
Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and
reproduction in any medium, provided the original work is properly cited.
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which the strict definition is relaxed differs across the various works that address paraphrasing
(Bhagat and Hovy 2013).

In NLP, paraphrasing poses interesting challenges in the context of different natural language
understanding and generation tasks such as machine translation, machine reading, plagiarism
detection, question answering, and textual entailment (Mehdizadeh Seraj, Siahbani, and Sarkar
2015; Altheneyan and Menai 2019; Soni and Roberts 2019). The large, pre-trained language mod-
els that have recently become the methodological backbone of NLP have brought about a distinct
shift towards more meaning-oriented tasks for model fine-tuning and evaluation. A typical exam-
ple of such language understanding tasks is entailment detection, with the paraphrase task raising
in interest recently, naturally depending on the availability of datasets for the task. Existing para-
phrase corpora are typically either large and automatically constructed, or relatively small and
manually annotated.Whereas manually annotated corpora are often too small for language model
fine-tuning, automatically gathered larger datasets may introduce unwanted bias towards shorter
paraphrases with higher lexical similarity due to the corpus-creation heuristics. Moreover, the
manually annotated examples are often, although not always, sampled from a larger set of auto-
matically gathered set of examples, carrying over any biases present in the automatic selection
heuristics. In view of this situation, there is a need for paraphrase corpora of suitable size for
language model fine-tuning, with high quality paraphrases that facilitate language understanding
without reliance on surface lexical cues.

In this work, we set out to create a paraphrase corpus for Finnish, specifically aiming at pro-
ducing a dataset not biased towards simple pairs that can be identified through a simple heuristic.
Further, we aim to create a dataset sufficient in size for model training. Our primary motivation is
to equip Finnish NLP for research and applications in natural language understanding.

To this end, we develop and apply an extraction protocol for manually collecting text segments
that constitute true paraphrases from different paraphrase-rich text sources. Seeing that man-
ual effort is best focused on searching for positive examples of paraphrases, we use automatic
extraction of negative paraphrase candidates so as to obtain a dataset suitable for paraphrase
classification model training. The concentration of effort on collecting true paraphrases strives
for effective usage of the annotation person-months, as nonparaphrases can be more easily col-
lected automatically. In addition, it is a more clearly defined task for the annotators to extract
“paraphrases” than to extract “related segments that are not paraphrases”.

Importantly, during the manual paraphrase extraction, the position of the statement in the
original source document is stored together with the extracted paraphrase pairs, allowing us to
evaluate paraphrases in their natural document context, distinguishing between paraphrases in
the given context compared with all possible contexts. To our knowledge, this property sets our
work apart from other paraphrase corpora, as it is the first large-scale corpus of sentential para-
phrases including manual paraphrase candidate extraction or document context information for
the paraphrase pairs.

Together with the dataset, we also examine several paraphrase models trained on the data,
as well as include a large-scale paraphrase mining evaluation, where we test how accurately the
paraphrase models are able to identify the correct paraphrase pairs when hidden among almost
400M candidate sentences.

The paper is structured as follows. First, we describe the related work in paraphrasing in
Section 2. In Sections 3, 4 and 5, we present the overall annotation workflow separated into three
phases: heuristic retrieval of related document pairs from different text sources, manual para-
phrase candidate extraction from these document pairs, and manual annotation of the extracted
candidates. In Section 6, we present the corpus statistics and evaluation, and in Sections 7 and 8,
we describe the semi-automatic methods for extracting closely related but negative paraphrase
candidates and provide experimental results on both paraphrase classification as well as on
paraphrase mining.
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2. Related work
Several paraphrase corpora exist, greatly varying in terms of size, extraction methods used, and
whether and to what degree the paraphrase pairs undergo manual verification. While most of the
paraphrasing studies are carried out on English, paraphrase corpora exist for other languages as
well. In addition, a few multilingual paraphrase resources exist. Next, we will review the most
relevant work on building paraphrase resources.

2.1. Paraphrase datasets for English
There are numerous English paraphrase datasets in existence. Microsoft Research Paraphrase
Corpus (MRPC) (Dolan and Brockett 2005) contains 5.8K paraphrase pairs automatically
extracted from an online news collection. Heuristics to identify candidate document pairs and
candidate sentences from the documents are used for the extraction, followed by filtering by clas-
sifier and finally manual binary annotation using labels (paraphrase or not). Twitter URL Corpus
(TUC) (Lan et al. 2017) is a collection of 52K paraphrase pairs extracted based on shared URLs
in news-related tweets. All pairs are manually labeled to be either paraphrases or nonparaphrases.
ParaSCI (Dong, Wan, and Cao 2021) contains 350K automatically extracted paraphrase candi-
dates from ACL and arXiv papers. The extraction heuristics consider term definitions, citation
information, and sentence embedding similarity. The paraphrase candidates are automatically
filtered without manual labels. ParaNMT-50M (Wieting and Gimpel 2018) contains over 50M
sentential paraphrase candidates automatically generated by machine translating the Czech sen-
tences from Czech-English parallel corpora to English. PARADE (He et al. 2020) is a collection
of 10K paraphrase pairs collected from online user-generated flashcards for computer science
related concepts. Definitions for a given term are clustered before in-cluster candidate extraction
to reduce candidate selection noise. The candidate examples are subsequently manually assigned
labels based on a four-label scheme. Quora Question Pairs (QQP)a is a collection of question
headings from the Quora forum marked with either duplicate or not. Though the QQP dataset is
comparatively large (404K pairs) and includesmanual labels, the labeling is not originally intended
for paraphrasing nor guaranteed to be perfect by the dataset providers. Additionally, Federmann,
Elachqar, and Quirk (2019) evaluated different methods for paraphrase dataset generation on
500 English source sentences. These methods include monolingual human paraphrasing as well
as translation roundtrip using both human and machine translation on different intermediate
languages, but unfortunately the resulting dataset does not seem to be publicly available.

2.2. Other monolingual datasets
Monolingual paraphrase datasets have been constructed for many languages other than English,
for instance Chinese, Japanese, Punjabi, Russian, and Turkish. The Phoenix Paraphrasing
Dataset,b released by Baidu, consists of 500K Chinese paraphrase candidates that are short
segments of queries. The dataset is created by first collecting seed paraphrase candidates to
train a model, which is then used to generate more candidates. The generated pairs are sub-
sequently filtered by a paraphrase recognition model. Shimohata et al. (2004) build a Japanese
paraphrase corpus containing 683 paraphrase pairs to simplify long spoken-language sentences
into machine translation-suitable forms. The paraphrases are travel conversations and their
human-paraphrased versions. The paraphrasing strategies are removal of unnecessary redun-
dancy, segmentation of long sentences, and summarization. Arwinder Singh (2020) automatically
create a paraphrase dataset for Punjabi with phrasal and sentential paraphrase candidates. They

ahttps://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs.
bhttps://ai.baidu.com/broad/introduction?dataset=paraphrasing.
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cluster news headings and articles on the same event from the same day and extract paraphrase
candidates with high vector similarity. Nearly 115K phrasal and 75K sentential paraphrase candi-
dates are automatically collected.Manual binary categorization of 1000 pairs from each type shows
88% accuracy for phrasal and 70% for sentential paraphrase candidates. ParaPhraser (Pivovarova
et al. 2018) is a Russian corpus created through automatic candidate extraction of news head-
lines from Russian news agencies followed by crowd-sourced manual annotation. It includes over
7K paraphrase pairs classified into nonparaphrases, near-paraphrases, and precise-paraphrases.
Due to it not being of sufficient size for text generation, the ParaPhraser Plus dataset (Gudkov,
Mitrofanova, and Filippskikh 2020) has been gathered to enable text generation, with over 56M
sentential paraphrase candidates. ParaPhraser Plus is created by automatically clustering news
headlines by events over a 10-year period and enumerating all pairs of sentences in a cluster. The
Turkish Paraphrase Corpus (TuPC) (Eyecioglu and Keller 2018) contains 1002 paraphrase pairs
hand-picked from a pool of automatically paired sentences. The automatic pairing involves all-
by-all sentence comparison and heuristic filtering based on length and word overlap of sentences
from crawled news articles. All selected sentences are manually assigned a numeric label between
0 and 5 quantifying their degree of paraphrase.

2.3. Multilingual paraphrase datasets
Automatic paraphrase recognition oftentimes relies on language pivoting of multilingual parallel
datasets. Pivoting is based on the assumption that identical translation possibly entails a para-
phrase, and thus use sentence alignments to recognize potential different surface realizations of
an identical or near-identical translation.Multilingual paraphrase datasets automatically extracted
by language pivoting include Opusparcus (Creutz 2018) and TaPaCo (Scherrer 2020). Opusparcus
(Creutz 2018) contains paraphrases for 6 languages and TaPaCo (Scherrer 2020) 73 languages,
both including also a Finnish subsection. Opusparcus contains automatically extracted candidate
paraphrases from alternative translations of movie and TV show subtitles. While all of the para-
phrase candidates are automatically extracted, each language has a manually annotated subset
of a few thousand paraphrase pairs. TaPaCo consists of paraphrase candidate pairs automati-
cally extracted from the Tatoeba dataset,c a multilingual crowd-sourced database of sentences and
translations thereof. The paraphrase candidates are assigned into “sets” rather than pairs, and sen-
tences in a set are considered paraphrases of one another. The dataset does not have any manual
annotation. Another multilingual paraphrase collection also extracted through language pivoting
is Paraphrase Database (PPDB) (Ganitkevitch, Van Durme, and Callison-Burch 2013). Unlike the
previously mentioned corpora containing sentential paraphrase candidates, PPDB include only
lexical, phrasal, and syntactic paraphrase candidates collected automatically. PPDB has an English
collection and a multilingual expansion that includes Finnish (Ganitkevitch and Callison-Burch
2014); however, most of the Finnish candidates in PPDB are just different inflectional variants of
the same lexical items.

2.4. Resources for Finnish
The Turku Paraphrase Corpus introduced in this paper, the first large-scale, manually annotated
paraphrase corpus for Finnish, includes 91,604 manually extracted and labeled paraphrases with
an additional 13,041 human-made rephrasing of statements. While the first incomplete version of
the corpus was released in Kanerva et al. (2021b), the current work extends the contributions into
multiple directions: (1) the corpus size is doubled from the first release, (2) the text sources used
to gather the paraphrases are extended from alternative subtitles and news headings to include
also news articles, university student essays, translation exercises made by university students, as

chttps://tatoeba.org/eng/.
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well as messages from an online discussion forum, (3) each manually extracted paraphrase is dis-
tributed together with the original document context to allow studies on paraphrasing in context,
(4) in addition to manually extracted and labeled paraphrases, an automatically extracted subset
of the corpus that contains related nonparaphrase segments is provided to support paraphrase
classification.

Apart from the early release of the Turku Paraphrase Corpus, prior to this work only two
resources of sentential paraphrases were available for Finnish, the two multilingual datasets
Opusparcus and TaPaCo as mentioned above. Opusparcus dataset provides 3700 manually anno-
tated paraphrase pairs for Finnish with an additional release of automatically scored and filtered
candidates with different quality threshold ranging from 480K to few million candidates. TaPaCo
dataset includes 12K paraphrase candidates for Finnish without any manual verification. A more
detailed comparison of these two datasets and our corpus is given in Section 6.2.

3. Text sources for paraphrase extraction
One of the core questions we set out to address in this work is that of bias in paraphrase candi-
date selection. Here, we specifically want to avoid using heuristics as an initial candidate selection
step so as to ensure that the resulting dataset also contains “difficult” examples that would be
missed by heuristic selection. To this end, we rely on manual paraphrase extraction, where an
annotator receives two related text documents presented alongside each other, and extracts all seg-
ments which can be considered as nontrivial paraphrases from the document pair (more details
of the actual extraction work is given in Section 4.1). Therefore, in order to obtain sufficiently
many paraphrases for the person-months we are able to spend, the text sources used in man-
ual extraction need to be paraphrase-rich, that is have a high probability for naturally occurring
paraphrases. Such text sources include for example independently written news articles reporting
on the same event, alternative translations of the same source material, different student essays
and exam answers to the same assignment, related questions with their replies in discussion fora,
and other sources where one can assume different writers using distinct wording to state similar
meanings.

We aim to strike a balance between sampling as many text sources as possible, optimizing
the usage of person-months available for annotation, and the practical need to reach the goal of
100,000 paraphrase pairs set in the project plan based on which this work was funded. We utilize
five different text sources: (1) alternative Finnish subtitles for the same movies or TV episodes,
(2) news headings and articles discussing the same event in two different Finnish news sites, (3)
different messages with identical title and sub-forum information from a popular Finnish dis-
cussion forum, (4) alternative student translations from university translation courses, and (5)
student essays answering the same question in university course exams. Next, each text source is
described separately introducing the specific methods used to select related document pairs for
manual paraphrase candidate extraction.

3.1. Alternative subtitles
OpenSubtitlesd provides a large, vastly multilingual collection of user-contributed subtitles for
various movies and TV episodes. The subtitles are available in a large number of languages, and
oftentimes there are same-language alternative subtitles for a single movie/episode created inde-
pendently. These can be viewed as independent translations of the same underlying content and
offer an opportunity to make use of the natural variation therein. Through comparing, side-by-
side, two alternative subtitle versions of a single movie or TV episode, many naturally occurring
paraphrases are likely to be found.

dhttp://www.opensubtitles.org.
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We selected all movies and TV episodes with at least two alternative subtitle versions in Finnish
from the database dump of OpenSubtitles2018 obtained through the OPUS corpus (Tiedemann
2012). We measure lexical similarity of alternative subtitle versions by TF-IDF weighted docu-
ment vectors based on character n-grams extracted from within word boundaries. We exclude
document pairs with too low or too high document vector cosine similarity values, so as to fil-
ter out document pairs with low interesting paraphrase candidate density. This is because a very
high similarity often reflects identical subtitles with formatting differences, whereas a very low
similarity tends to stem frommisalignments caused by incorrect identifiers in the source data and
other problems in the data. After this exclusion, the most lexically distant pair is used for para-
phrase extraction if there are more than two versions available. For each movie/episode, the two
selected subtitle versions are approximately aligned line-by-line using the subtitle timestamps. As
we strive to collect paraphrase candidates from as diverse sources as possible, we divide eachmovie
or episode into 15-minute-long segments. For each movie or TV episode, only one or two random
segments are used to extract paraphrase candidates. The random selection is intended to prevent
accidentally biasing the selection towards typical language used in the beginning of a story.

Altogether, we obtained aligned alternative subtitles for 1700 unique movies and TV series,
demonstrating that alternative subtitle versions are surprisingly prolific in OpenSubtitles.We con-
sider movies to be unique items, while episodes from TV series are considered mutually related
due to their overlap in plot and characters, resulting in an overlapping in topic and language. After
a period of initial annotation, we noticed a topic bias towards certain TV series with large num-
bers of episodes. We therefore adjusted the number of annotated episodes to be 10 at the highest
from each TV series in all subsequent annotation. In total, over 2700 individual movies and TV
episodes were used in the corpus construction. Ideally, only one 15-minute segment from each
movie or TV episode would be used for candidate extraction, but due to not having enough other
paraphrase-rich sources, we conducted a second round of candidate extraction where a second
random segment is used after all available movie and TV episodes had been gone through once.
The 1300 movies and TV episodes used in the second round were selected based on the number
of paraphrase candidate pairs extracted in the first round, the higher the number, the higher the
precedence a movie is assigned. In the end, approximately 4100 15-minute-long subtitle segment
pairs were used in the corpus construction.

3.2. News articles and headings
We have downloaded news articles through open RSS feeds of different Finnish news sites during
2017–2020, resulting in a substantial collection of news from numerous complementary sources.
For the corpus creation, we narrow the data down to two sources: the Finnish Broadcasting
Company (YLE) and Helsingin Sanomat (HS, English translation: Helsinki News). The news are
aligned using a 7-day sliding window on time of publication, combined with cosine similarity
of TF-IDF-weighted document vectors induced on the article body, obtaining article pairs likely
reporting on the same event. The parameters of the TF-IDF vectors induction are the same as
in Section 3.1. After aligning the candidate documents, article headings and the rest of the arti-
cle text, referred as article body from now on, are processed separately due to different sampling
strategies applied to these. We use a simple grid search and human judgment to establish the most
promising region of similarity values in order to avoid candidate pairs with almost identical texts
or candidates with similar topic but reporting on different events. While in news article bodies,
we strive for balance between too low and too high similarity. In news headings, we target to select
maximally dissimilar headings of news articles having maximally similar body texts as the most
promising candidates for nontrivial paraphrase pairs. Furthermore, while the promising pairs of
article body texts are selected for manual paraphrase extraction, news headings typically include
only single sentence-like statements and are thus directly transferred into the paraphrase classi-
fication tool skipping the manual extraction phase. A total of approximately 2700 news heading
pairs and 1500 article body pairs were used in the corpus construction.

https://doi.org/10.1017/S1351324923000086 Published online by Cambridge University Press



Natural Language Engineering 7

3.3. Discussion forummessages
We hypothesize that different discussion forum messages related to same topics may include a
sufficiently large number of naturally occurring paraphrases to justify a manual extraction effort.
For example, different thread-starting messages under the same subforum often seek informa-
tion on the same topic or share related experiences, or different replies to the same message often
convey similar reactions. We set out to experiment with thread-opening messages with identical
titles posted into the same subforum. We find that while most of the candidate document pairs
selected this way are related messages from different authors often discussing similar personal
experiences or seeking advice for similar matter. We also noticed a significant number of mes-
sages clearly written twice by the same user, with similar overall structure but using a different
wording.

We use the public release of the Suomi24 discussion forume including over 80M messages
posted online between years 2001 and 2017. From the data release, we identify all thread open-
ing messages and align candidate document pairs with identical title and subforum information
combined with TF-IDF similarity of messages. Candidate alignments with too low or too high
similarity, as well as candidates where the shorter message is merely a subset of the longer one,
are filtered out based on preliminary human judgment gridding different similarity threshold
values. This produced about 13K candidate message pairs. However, before the actual para-
phrase extraction phase, 44% of these were yet discarded in an additional manual annotation
step, where candidate document pairs were either accepted or rejected based on the poten-
tial estimated by inspecting the first few sentences from both documents. Here, the annotator
only quickly verified a reasonable correspondence existing between the document pair with-
out carefully reading the message content. This additional manual annotation step was carried
out as we were not able to find an automatic method reliable enough to identify false posi-
tives among the candidates. Furthermore, filtering low-quality pairs before the actual paraphrase
extraction step was found more efficient than executing filtering and paraphrase extraction simul-
taneously. In the end, a total of about 7100 accepted message pairs were used in the corpus
construction.

3.4. Student translations
Seeing the potential of alternative translations originating from movie and TV episode subtitles,
we initiated an attempt to find alternative source material where the same foreign text is trans-
lated into Finnish by multiple translators. One potential source of a constant stream of alternative
translations is exercised from different language studies and courses, where several students trans-
late the same exercise text. In order to avoid oversimplified short sentences, which one would see
in many beginner level courses, we targeted exercises taken from university courses in transla-
tion studies where all students have sufficiently good skills and the exercises include translating
authentic documents from different sources into Finnish. Such sources would typically include
samples of magazine articles, business contracts, advertisements, etc.

We were able to collect 16 unique exercise texts with at least two different student transla-
tions. If more than two translations existed for the same source text, at most three different pairs
were used in annotation so as to avoid over-extracting repetitive paraphrases, and a total of 28
document pairs were used in the corpus construction. However, the main limitation of student
translations is their availability due to data usage regulations.f

ehttp://urn.fi/urn:nbn:fi:lb-2019021101.
fObtaining adequate permissions to use any student produced data involved manual permission inquiries and we found it

difficult to motivate the students to give their consent. A long-term collaboration with a translation study program would
likely improve this situation.
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3.5. University exams
The final text source experimented with is student essays collected from university course exams,
where the hypothesis is that all essays answering the same exam assignment will include similar
arguments, and therefore, have a high probability for naturally occurring paraphrases. However,
the student essays possess the same availability limitations as student translations where the usage
of student materials is restricted and requires an explicit written consent.

We were able to collect a total of 34 student exams from three university courses (Introduction
to Language Technology, Corpus Linguistics and Language Technology, and Philosophy of Science
and Research Process). The exams included 24 unique questions or essay assignments for which
at least one candidate pair (two alternative essay answers) was available. However, the answers
for one assignment often divided into several subtopics because the students were able to select
one aspect covered during the course to answer the assignment. The number of unique topics
was consequently larger.We therefore processed each unique question/essay assignment/subtopic
separately, rather than exams in full. The length of a typical answer varied between few sentences
and one full page depending on the assignment. In the end, a total of 190 student answer pairs
were used in the corpus construction.

4. Paraphrase candidate extraction
After the heuristic document alignment, the actual paraphrase candidate extraction is based on
fully manual work. Next, we describe the paraphrase candidate extraction workflow, evaluate
the adequacy of different text sources using several extraction measures, as well as show the
distribution of paraphrases originating from different text sources in the final corpus.

4.1. Extraction workflow
Given a document pair extracted from one of the text sources, the manual annotation work begins
withmanual candidate extraction. In a dedicated candidate extraction tool, an annotator sees both
documents simultaneously side-by-side and is instructed to extract all interesting paraphrases
from the texts. In order to collect a varying set of nontrivial paraphrases, candidates with simple,
uninteresting changes such as minor differences in inflection and word order are avoided during
extraction. A paraphrase can be any text segment from few words to several sentences long, and
the paraphrase extraction is not restricted to follow sentence boundaries. The two statements in
one candidate pair can also be of different lengths, mapping for example one sentence on one side
to several on the other side. The annotators are encouraged to select as long continuous state-
ments as possible (rather than splitting them into several shorter ones), nevertheless at the same
time avoiding over-extending one of the statements by including a long continuation which does
not have a correspondence in its paraphrased version. The annotators are not actively trained to
harmonize their personal candidate extraction strategies, since the aim is to include more diverse
paraphrase candidates in the corpus, thus minor differences in extraction phase behavior are not
considered harmful. The most typical property defining “personal style” in candidate selection
was where to place the boundary between interesting and trivial pairs.

When completing the document pair, the annotator marks it finished and continues to the
next document pair. After accumulating a reasonable amount of material in the extraction tool,
all extracted paraphrase candidates are transferred into a separate paraphrase classification tool,
where the annotation work continues as a separate session. Even if these two annotation phases
were executed one after the other, the annotators were able to alternate freely between the two
tasks in order to keep the working days more varied. Typically, the annotator who extracted the
paraphrase candidates also did the labeling in the next phase. However, this is not strictly required
and sometimes data is transferred between different annotators due to time constraints.
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Table 1. Manual paraphrase extraction statistics for different text sources, where Documents refers to the number of
document pairs producing paraphrases, Empty refers to the percentage of candidate document pairs not producing any para-
phrase candidates (all other metrics are calculated after discarding the empty pairs), Yield refers to the average number of
paraphrase pairs extracted from one document pair, Coverage is the total proportion of text (in terms of alphanumeric char-
acters) selected in paraphrase extraction from the original source documents, and Length is the average length of the original
document in terms of alphanumeric characters. Note that the alternative subtitle statistics are based on the first round of
annotations only, where the movie/episode selection is not biased towards high-yield documents, and here one subtitling
document refers to a 15-minute segment of a movie/episode

Text source Documents Empty (%) Yield Coverage (%) Length

Alternative subtitles 2781 9.2 17.6 17.5 4300


News article bodies 1463 11.4 3.7 24.6 1600


Discussion forummessages 7106 36.7 1.7 22.8 500


Student translations 28 0.0 22.7 75.1 3700


University exams 190 31.6 2.4 25.8 1100

4.2. Extraction statistics
Next, we analyze the different text sources used in the paraphrase extraction in several aspects.
When evaluating the adequacy of the text source for the extraction purposes, we find it most inter-
esting to measure how “productive” on average one document pair is. This is measured mainly
using two metrics, the percentage of empty documents pairs, where empty refers to a document
pair not producing any paraphrase candidates and can therefore be considered “useless” for the
corpus construction purposes, as well as paraphrase yield, where yield refers to the average num-
ber of paraphrase candidates extracted from a nonempty document pair, where the assumption
naturally is that the more one can extract from one document pair, the more time-efficient the
extraction process is.

The overall extraction statistics are given in Table 1 separately for all five text sources. In terms
of empty document pairs, the percentage varies between 0% and 37%, the two translation-based
sources, student translations, and alternative subtitles, include the least amount of empty doc-
ument pairs. An annotator not being able to extract any paraphrases from the document pair
is typically caused by the two documents being lexically too similar and therefore not including
interesting paraphrases, or them being topically related without any corresponding parts. In terms
of the average yield of paraphrases per pair of documents, the story remains largely unchanged,
with the two translation-based sources clearly having the best yield. From student translations,
the annotators are able to extract on average 22.7 paraphrase candidates per nonempty document
pair and from alternative subtitles the average yield is 17.6 candidates. In the end, it is not surpris-
ing that alternative translations yield the most amount of paraphrases as the translation process
requires keeping the same basic information as present in the original, while for example in news
articles the journalists canmore freely select which aspects to report or not to report. Additionally,
we were somewhat surprised how many verbatim quotations there were in news articles, where
both news agencies clearly used the same reference text and possibly added a paragraph or two
of their own text. The average length of the documents also naturally affects the yield, and the
source with the worst average yield (discussion forum messages with only 1.7 paraphrase candi-
dates per document pair) also has on average the shortest documents, with many of the discussion
forum messages including only 1–2 sentences. In terms of coverage (proportion of the original
text selected in paraphrase extraction), the differences are substantially smaller.

The final selection of source materials used for building the Turku Paraphrase Corpus is for
the most part determined by two factors: availability and average paraphrase yield in the manual
candidate extraction phase. Although the student produced materials were found promising in
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Table 2. The number of paraphrase pairs in the released corpus originating from
different text sources (rewrites, introduced in Section 5.3, are included in the statistics)

Text source Paraphrase pairs % of the corpus

Alternative subtitles 86,170 82%
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

News 9198 9%
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Body text 5450 5%
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Headings 3748 4%
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Discussion forummessages 8175 8%
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Student translations 760 1%
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

University exams 342 <1%

our experiments, especially the translation exercises which gave the best evaluation numbers in
all metrics, the work required to settle legal restrictions on student produced materials prevented
any larger-scale utilization of these sources under the scheduling constraints of the project. More
groundwork would be required at the university and even national level to ease the usage of
such data sources also retrospectively. Additionally, our goal of openly licensing (CC-BY-SA) the
produced corpus creates increased complexity compared with a mere academic use in terms of
student materials.

The limited amount of student materials left us with three primary text sources, of which alter-
native subtitles have a clearly better average yield per document pair compared with news articles
and discussion forum messages. While news articles and discussion forum messages have better
coverage (proportionally more of the source text is extracted), likely due to documents in general
being shorter, one could assume the annotator being able to extract the same amount of material
by just going through more document pairs. However, the amount of time the annotators spend
on one document pair is considerably longer for news articles and discussion forummessages than
for alternative subtitles. The main reason for this is that the two alternative subtitling documents
are well aligned, while arguments in news articles and discussion forum messages often come in
different order, requiring the annotators to scroll up and down in the paraphrase extraction inter-
face in order to find the corresponding arguments. Also, after finding a corresponding argument
in both documents, the annotator must yet verify the meaning of the extracted statement in the
given context, as one cannot reliably assume the whole document following strictly the same story
as in the case of the alternative translations where the source story is guaranteed to be identi-
cal. This extraction complexity effect is clearly visible in the weekly paraphrase extraction speed
unofficially monitored throughout the project, where the extraction speed halved when switching
from alternative subtitles to news articles and discussion forum messages. The extraction speed is
thus the second limiting factor when selecting source material for annotation, and consequently,
some of the text sources are highly overrepresented in the corpus. The number of paraphrase pairs
obtained from different text sources are summarized in Table 2, the alternative subtitles dominat-
ing the final dataset with 82%, news texts and discussion forum messages both having a bit less
than 10% portion, while both student materials represent only a tiny fraction of the corpus data.

5. Paraphrase annotation
After the candidate extraction, all candidate paraphrases are manually annotated according to
the given annotation scheme. Next, we introduce this annotation scheme as well as some of the
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more generally interesting annotation guidelines. In the end of the section, we present the overall
annotation workflow where the annotators also have an option to provide an additional rewrite of
the original paraphrase pair in order to correct small issues in the original candidates.

5.1. Annotation scheme
Many different paraphrase annotation schemes are presented in earlier studies, most commonly
falling either into a simple yes/no (equivalent or not equivalent) as in MRPC (Dolan and Brockett
2005), or a numerical labeling capturing the strength/quality of paraphrases, such as the 1–4 scale
(bad,mostly bad,mostly good and good) used in Opusparcus (Creutz 2018).

Instead of these simple annotation schemes, we set out to capture the level of paraphrasability
in a more detailed fashion with an annotation scheme adapted to this purpose. Our annotation
scheme uses the base scale 1–4 similar to many other paraphrase corpora, where labels 1 and 2
are used for negative candidates (unrelated/related but not a paraphrase), while labels 3 and above
are paraphrases at least in the given context if not everywhere. In addition to base labels 1–4,
the scheme is enriched with additional subcategories (flags) for distinguishing a small number of
common special cases of paraphrases, which in many respects lie between the labels 4 (universal
paraphrase) and 3 (paraphrase in the given context).

5.1.1. Label 4: Universal paraphrases
Label 4 is assigned to cases of a universal (perfect) paraphrase that holds between the two state-
ments in all reasonably imaginable contexts, meaning one can always be replaced with the other
without changing the meaning. This ability to substitute one for the other in any context is the
primary test for label 4 used in the annotation. Examples of universal paraphrases include:

Tulen puolessa tunnissa.
'I'll be there in half an hour.'
Saavun 30 minuutin kuluessa.
'I will arrive in 30 minutes.' 4

Voin heittää sinut kotiin.
'I can give you a lift home.'
Pääset minun kyydissäni kotiin.
'You can ride home with me.' 4

Tyrmistyttävän lapsellista!
'Shockingly childish!'
Pöyristyttävän kypsymätöntä!
'Astoundingly immature!' 4

With the base scale alone, a great number of candidate paraphrases would fail the substitution
test for label 4 and be classified as label 3. This is especially true for any longer text segments which
are less likely to express very strictly the same meaning even though conveying the same princi-
pal idea. So as to preserve some of the most important such general cases and to avoid overusing
the label 3 category with a very diverse set of paraphrases, we introduce flags for finer subcatego-
rization and therefore support a broader range of downstream applications of the corpus as well,
since many applications may have different requirements for paraphrases. For instance, if con-
sidering rephrasing systems (paraphrase generation), the requirements for paraphrasing are quite
strict in order to avoid for example the model learning to introduce additional facts or chang-
ing the style into offensive language on its own. On the other hand, in information retrieval,
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the paraphrasing is usually more loosely defined, and finding occurrences with more variation is
often appreciated. These annotated flags can only be attached to label 4 (subcategories of universal
paraphrases), meaning the paraphrases are not fully interchangeable due to the specified reason,
but, crucially, are context-independent that is their annotated relationship holds regardless of the
textual context, which is unlike label 3. The possible flags are:

Subsumption (> or <). The subsumption flag is for cases where one of the statements is more
detailed and the other more general (e.g. one mentioning a woman while the other a person),
with the arrow pointing towards the more general statement. The relation of the pair is therefore
directional, where the more detailed statement can be replaced with the more general one in all
contexts, but not the other way around. The two common cases are one statement including addi-
tional minor details the other omits, and one statement being ambiguous while the other not. If
there is a justification for crossing directionality (one statement being more detailed in one aspect
while the other in another aspect), the pair falls into label 3 as the directional replacement test
does not hold anymore. Examples of paraphrases with directional subsumption are shown below,
where the first and second examples are cases of one of the statements including information the
other omits (agent in the first example and purpose of the action in the second), while in the third
example the latter statement is ambiguous, including both figurative and literal meaning:

Tulit juuri sopivasti.
'You arrived aptly.'
Loistava ajoitus.
'Fantastic timing.' 4>

Tein lujasti töitä niiden rahojen eteen.
'I worked hard for that money.'
Paiskin kovasti töitä.
'I toiled away.' 4>

En pysty tähän.
'I cannot do this.'
Tämä on liian suuri pala minulle.
'I'm in way over my head with this one.' 4>

Style (s). The style flag is for marking tone or register difference in cases where the meaning of the
two statements is the same, but the statements differ in tone or register such that in certain situa-
tions, they would not be interchangeable. For example, if one statement uses pejorative language
or profanities, while the other is neutral, or one is clearly colloquial language while the other is
formal. The style flag also includes differences in the level of politeness, uncertainty, and strength
of the statements. Examples of paraphrases with different style (examples 1 and 2) and strength
(example 3) include:

Helou gimmat!
'Hey, you gals!'
Päivää tytöt!
'Good day, girls!' 4s

Mistä hitosta tietäisin?
'How the hell should I know?'
Minä en tiedä.
'I do not know.' 4s
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Täällä on aika kylmä ilmapiiri.
'The atmosphere is quite cold here.'
Täällä on jäätävä tunnelma.
'What a chilly mood there is round here.' 4s

Minor deviation (i). The minor deviation flag marks in most cases minimal differences in mean-
ing (typically this vs. that) as well as easily traceable differences in grammatical number, person,
tense or such in cases where they are determined to have a difference in meaning. Some applica-
tions might consider these as label 4 for all practical purposes (e.g. information retrieval), while
others should regard these as label 2 (e.g. automatic rephrasing). In cases where the minor change
in for example mood or tense does not make a difference in meaning, the minor deviation flag is
not marked. However, note that even when these minor differences are accepted, they cannot vio-
late the paraphrasability in the context, for instance replacing the pronounminä ‘I’ with sinä ‘you’
will not (generally speaking) make a paraphrase, while replacingminä ‘I’ withme ‘we’ can work in
some contexts, however, quite rarely. Typical examples of paraphrases with minor deviation flag
include:

Tämä laite on epäkunnossa.
'This piece of equipment is malfunctioning.'
Tuo kone on rikki.
'That machine is broken.' 4i

Teitäpä onnisti!
'You (plural) are in luck!'
Oletpa onnekas!
'Aren't you (singular) lucky!' 4i

Vaimon mukaan hän vihaa tupakointia.
'According to his wife, he hates smoking.'
Hänen vaimonsa sanoo, että hän vihasi tupakan polttamista.
'His wife said that he hated smoking.' 4i

The flags are independent of each other and can be combined in the annotation (naturally with
the exception of > and < which are mutually exclusive).

5.1.2. Label 3: Context dependent paraphrases
Label 3 is a context dependent paraphrase, where the meaning of the two statements is the same
in the present context, but not necessarily in other contexts. The common cases include state-
ments, where both are ambiguous in different ways or both include different additional details not
strictly necessary for conveying the main message (conflict in the subsumption flag directional-
ity). Examples of context dependent paraphrases are shown below, where in the first example both
include different additional details (first statement mentioning night while the second including
a reference to you), while the second and third examples are cases where both statements are
ambiguous in different ways or include a use case not covered by the other (e.g. in the third exam-
ple the 911 can refer to the emergency number or simply be used when counting items, while the
emergency number is 911 in some countries but not in all):

Miten eilisilta meni?
'How was last night?'
Miten teillä meni eilen?
'How did it go for you yesterday?' 3

https://doi.org/10.1017/S1351324923000086 Published online by Cambridge University Press



14 J. Kanerva et al.

Aion tehdä kokeen.
'I am going to make an experiment.'
Aion testata sitä.
'I am going to test it.' 3

911.
'911.'
Hätänumero.
'Emergency number.' 3

5.1.3. Label 2: Related but not a paraphrase
Label 2 means related but not a paraphrase, where there is a clear relation between the two
statements, yet they cannot be considered paraphrases in the sense outlined above for labels 4
and 3. Common cases include statements with a significant difference in the main message even if
describing the same event, statements with contradictory information present, statements which
could be paraphrases in some other context but not in their present context (such examples were
very rare), or literal translations of metaphors which fail to communicate the metaphoric meaning
in the source text (clumsy but understandable translations do receive label 3). Examples of related
statements, which are not paraphrases are shown below, where the first example is topically heav-
ily related and describing the same event but having a different main message, the second example
describes the same event but from different point of time (therefore including contradictory infor-
mation), and the third example includes a literal translation of a metaphor which doesn’t make
sense after the translation:

Tappion kokenut Väyrynen katosi Helsingin yöhön.
'After suffering defeat, Väyrynen disappeared into the night of Helsinki.'
Väyrynen putoamassa eduskunnasta.
'Väyrynen is in danger of dropping out of the Finnish Parliament.' 2

Aurassa perjantaina kadonnut 12-vuotias poika löytynyt.
'The 12-year-old boy who went missing in Aura on Friday has been found.'
Poliisi etsii 12-vuotiasta poikaa Aurassa.
'The police are searching for a 12-year-old boy in Aura.' 2

Olet löytänyt onnen.
'You have found happiness.'
Nyt sinulla on avaimet linnaan.
'Now you have the keys to the castle.' 2

5.1.4. Label 1: Unrelated
Label 1 is for unrelated candidates, where there is no reasonable relation between the two state-
ments, most likely occurring due to a false positive in candidate selection. If the candidate pair
shares only a single proper name while the topic otherwise is different, the candidate is considered
unrelated.

Oletteko Sherlock Holmes?
'Are you Sherlock Holmes?'
Riippuu.
'It depends.' 1
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Sipoonranta on Sipoossa, ei Helsingissä.
'Sipoonranta is located in Sipoo, not in Helsinki.'
Sipoonranta hakee taas lisäaikaa rakentamiseen.
'Sipoonranta is again applying for more time for building.' 1

5.1.5. Label x: Skip
If labeling a candidate pair is not possible for another reason, or giving a label would not serve the
desired purpose (e.g. wrong language or identical statements), the example can be skipped with
the label x.

5.2. Annotation guidelines
While each decision in paraphrase annotation must be done based on considering each individual
example separately, several systematic differences among the annotators were identified during
the annotation process, and comprehensive annotation guidelines were produced to guide the
annotation process towards harmonized decisions between different annotators. A total of 17-
page annotation manual was produced in collaboration among the annotators, and the guidelines
were revised and extended regularly to account for new problematic cases. The full manual is
published as a technical report (Kanerva et al. 2021a), and some of the most interesting/relevant
policies are discussed below.

5.2.1. Syntactic structure
Merely syntactic differences are not accounted in the labeling if they do not change the sentence
meaning, even if the difference would make sentence substitution clumsy in some contexts. For
example, the lack or inclusion of discourse connectives can make the sentence feel clumsy or iso-
lated from the context, however they barely carry much additional information. The same policy
is adapted to for example differing verb tense and mood if the difference does not carry change in
meaning. However, if a shift in meaning is noticed it is annotated accordingly.

5.2.2. World knowledge
In certain cases, one of the statements includes additional information which can be seen as world
knowledge (facts generally known or knowable by everyone). For example, in the paraphrase pair

Omena on hedelmä, josta valmistetaan mm. hilloa ja mehua.
'An apple is a fruit from which you make jam and juice, among other things.'
Omenasta valmistetaan muun muassa hilloa ja mehua.
'Among other things, jam and juice are made from apples.'

the second statement does not explicitly mention apple being a fruit. However, considering that
this is a generally acknowledged fact, which does not contribute to the core meaning, explic-
itly mentioned additional world knowledge facts are not considered additional information in
paraphrase annotation, and therefore, the above-mentioned example would receive label 4 in
annotation.

The same principle is adapted for well-known noun modifiers (e.g. permanent titles and
descriptive nouns such as Queen Elizabeth II, ski jumping legend Matti Nykänen or tech com-
pany Microsoft). However, if the noun modifier is considered to be meant for temporary use
only, as many times for example in politics (e.g. prime minister Sanna Marin), noun modifiers
are considered additional information as it binds the statement into a specific time.
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In few cases, the world knowledge principle allows proper name replacement with a com-
mon noun phrase, if the entity can be unambiguously individualized from the common noun
description. For example, in the paraphrase pair

Ensimmäinen avaruuteen lähetetty suomalaissatelliitti tuhoutui.
'The first Finnish satellite that was launched to space was destroyed.'
Aalto-2 tuhoutui.
'Aalto-2 was destroyed.'

while The Finnish satellite could refer to any Finnish satellite, there can be only one “first one”,
which then individualizes the noun phrase and the example is annotated with label 4.

5.2.3. Time references
Time references can be either exact (24.12.1999, in 2020, 16:00 o’clock) or relative with respect to
the current time (today, last year, in three hours). When comparing two exact time expressions,
the label is 4 if the same amount of information (e.g. day, month, year) is present, but often 4 with
a subsumption flag if one of the two is more descriptive and the additional information cannot be
considered world knowledge. When comparing two different relative time references with each
other (e.g. in the beginning of the week and three days ago), the label is usually 3 if the time is not
further specified elsewhere in the statements. When comparing exact time with relative time, the
labels depends on whether the exact time can be considered world knowledge or not. For example,
in statements

Matti Nykänen kuoli viime vuoden helmikuussa 55-vuotiaana.
'Matti Nykänen died in February of last year at the age of 55.'
Matti Nykänen kuoli helmikuussa 2019. Hän oli kuollessaan 55-vuotias.
'Matti Nykänen died in February of 2019. He was 55 years old at the time of his death.'

the date of death of a famous person can be considered world knowledge, and the paraphrases can
be labeled with label 4> the latter being more general as it can be used in any point of time, while
February of last year can only refer to the year 2019 in this context and therefore be used only in
2020.When comparing exact time with relative time in the context of events not considered world
knowledge, for example in

Rikos tapahtui viime vuoden helmikuussa.
'The crime happened in February of last year.'
Rikos sattui helmikuussa 2019.
'The crime took place in February of 2019.'

the event in question (crime) is not individualized and the exact time cannot be considered world
knowledge, therefore the label is 3.

5.3. Annotation workflow
After accumulating a reasonable amount of material in the candidate extraction phase (typically
every two to three days), the extracted paraphrase candidates are transferred into a dedicated
paraphrase classification tool, where the annotator is able to see all paraphrases extracted from the
document pair one by one. In the paraphrase classification tool, the annotator assigns a label for
each paraphrase candidate using the above-mentioned annotation scheme. Even if the extracted
paraphrases are shown one-by-one in the tool, the full document context is available. In addition
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to labeling, the tool provides an option for rewriting the paraphrase pair to be fully interchange-
able, universal paraphrases. The annotators are instructed to rewrite paraphrase pairs that are not
already label 4, in cases where a simple edit, for example word or phrase deletion, addition, or
re-placement with a synonym or changing an inflection, can be easily constructed. Rewrites must
be such that the annotated label for the rewritten example is always label 4. In cases where the
rewrite would require more complicated changes or would take too much time, the annotators
are instructed to move on to the next candidate pair rather than spend time on considering the
possible rewrite options.

The classification tool also provides an option to tag examples where the annotator feels unsure
about the correct label, the example is particularly difficult, or otherwise more broadly interesting.
These examples were discussed in the whole annotation team during daily annotation meetings.
The annotators also communicated online, for instance seeking a quick validation for a particular
decision.

5.4. Ensuring annotation consistency in early annotations
As the annotation guidelines were revised and extended throughout the corpus annotation, there
is the potential of small discrepancies between examples annotated at the very early stage of the
project compared with those annotated at the very end. In order to assure the consistency between
the revised guidelines and early stage annotations, during the final weeks of annotation several
quality assurance rounds were carried out, especially targeting labels whose guidelines changed
during early annotation work.

All annotated examples were first divided by labels, and then sorted based on annotation times-
tamp from earliest to latest. Concentrating on the most problematic labels s (flag for style) and i
(flag for minor deviation), examples including these flags were manually checked and corrected if
necessary, starting from the earliest annotations and continuing until the latest guidelines and the
annotated examples were in sync, and no systematic errors were noticed anymore. A total of 5.7%
of all annotated examples were inspected, of which about 30% were corrected according to the
latest guidelines. Time-wise most corrections were dated to the first 2 months of the annotation
work.

6. Corpus statistics and evaluation
The released corpus is comprised of 91,604 naturally occurring paraphrase pairs extracted from
the source documents with an additional 13,041 rewrites, thus resulting in a total of 104,645manu-
ally classified Finnish paraphrase pairs. The data are randomly divided into training, development,
and test sections using a 80/10/10 split; however, with the restriction that all paraphrases from the
same movie, TV episode, news article, student translation text, or exam question are assigned to
the same section. Basic statistics are summarized in Table 3, and the label distribution is shown
in Figure 1. As the manual candidate extraction targeted “true” paraphrases, 98% of all annotated
paraphrases are classified to be at least paraphrases in their given context (label 3) if not in all
contexts (label 4). The number of candidates labeled with labels 1 or x is negligible, therefore these
are discarded from the corpus release altogether.

6.1. Annotation quality
The annotation work was carried out by six main annotators together with a broader project
team supporting their effort. The six annotators used a total of 30 person-months for the cor-
pus construction, where the work includes paraphrase extraction, label annotation as well as
other related tasks such as guideline documentation. Each annotator had a strong background
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Table 3. The sections of the corpus and their sizes in terms of number of
paraphrase pairs

Section Examples Rewrites Total

Train 73, 165 10, 480 83, 645
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Devel 9231 1298 10, 529
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Test 9208 1263 10, 471
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Total 91, 604 13, 041 104, 645

Figure 1. Label distribution in the whole corpus.

in language studies with an academic degree or ongoing studies in a field related to languages or
linguistics. After the initial training phase, most of the annotation work was carried out as sin-
gle annotation. However, in order to monitor annotation consistency, double annotation batches
were assigned regularly. In double annotation, one annotator first extracted the candidate para-
phrases from the aligned documents, but later on these candidates were assigned to two different
annotators, who annotated the labels independently from each other. Afterwards, the two individ-
ual annotations were merged and conflicting labels resolved together with the whole annotation
team. These consensus annotations constitute a consolidated subset of the data, which can be
used to evaluate the overall annotation quality by measuring individual annotators against this
subset.

A total of 2025 examples (2% of the paraphrases in the corpus, excluding rewrites) were dou-
ble annotated, most of these being annotated by exactly two annotators; however, some examples
may include annotations from more than two annotators, and thus the total amount of individ-
ual annotations for which the consensus label exists is bit more than twice the number of double
annotated examples (4287 annotations in total). We measure the agreement of individually anno-
tated examples against the consolidated consensus annotations in terms of accuracy, that is the
proportion of individually annotated examples where the label matches the consensus annotation.
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The overall accuracy is 70% when using the full annotation scheme (base labels 1–4 as well
as all flags). When discarding the least common flags s and i and evaluating only base labels and
directional subsumption flags, the overall accuracy is 74%.

In addition to agreement accuracy, we calculate two versions of Cohen’s kappa, a metric for
inter-annotator agreement taking into account the possibility of agreement occurring by chance.
First we measure the kappa agreement of all individual annotations against the consolidated
consensus annotations, an approach typical in paraphrase literature. This kappa is 0.63, indi-
cating substantial agreement. Additionally, we measure the Cohen’s kappa between each pair
of annotators. The weighted average kappa over all annotator pairs is 0.42 indicating moderate
agreement. Both are measured on full labels. When evaluating only on base labels and directional
subsumption flags, these kappa scores are 0.66 and 0.45, respectively.

Direct comparison of annotation agreement with other manually annotated paraphrase cor-
pora is not straightforward due to several factors affecting the expected agreement measures, the
most influential factors likely being the labeling scheme and label distribution of the corpora.
While the kappa measure tries to account for this, this is especially true for accuracy. It should
also be noted that in many semantic annotation tasks, agreement scores can only be used as esti-
mates, and low score does not necessarily refer to a low annotation quality, but rather the nature
of the task itself. (Pavlick and Kwiatkowski (2019), Davani, Díaz, and Prabhakaran (2022)) When
comparing to other paraphrasing projects, all our metrics are in the same ballpark with other
manually annotated samples, MRPC reporting accuracy of 84% with binary labels, Opusparcus
accuracy between 64% and 67% with four labels, and ParaSCI reporting kappa of 0.71 when mea-
suring the individual annotator against the majority vote on a five label scheme. Furthermore, one
must also note that while our manual annotation primarily focuses on distinguishing between dif-
ferent positive labels, the other annotation efforts mentioned include also substantial amount of
negatives, making the task slightly different from ours.

6.1.1. Rewrites
As mentioned earlier, during the annotation, the annotators have the possibility to rewrite the
statements if the classification is anything else than pure label 4. This can be interpreted as the
annotators fixing all flaws in the paraphrases and turning the candidates into perfect, context
independent paraphrases. In order to evaluate the assumption of the rewrites always being a pure
label 4, we sample 500 rewrites for double annotation. To ensure that the annotator does not
know whether the candidate is a rewrite or normal extracted paraphrase, the rewrites are mixed
together with normal paraphrase candidates in a 50/50 ratio. In addition, during this experiment,
the document context is hidden in the annotation tool, as the context has a potential to reveal
the candidate being a rewrite. The data are distributed in a fashion where all annotators receive
only candidates previously annotated by someone else so that there is no risk of the annotators
recalling the previously annotated examples. The candidates are also randomly shuffled.

After merging and resolving the double annotated examples, 78% of rewrites received the
label 4. This is on par with the overall annotation consistency, showing the quality of rewrites
largely following that of the natural examples in the corpus.

6.2. Lexical diversity and corpus comparison
One of our main goals was to obtain a set of paraphrase examples that are not highly lexically
similar. In Figure 2, we measure the distribution of different labels in the corpus conditioned on
the cosine similarity of the paraphrase pairs calculated using TF-IDF weighted character n-grams
of lengths 2–4.While the different positive labels are evenly distributed in the low lexical similarity
area up until similarity value 0.5, in the high similarity area the label 4 begins to dominate the data.
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Figure 2. Histogram of different labels in the corpus conditioned on cosine similarity of the paraphrase pairs.

However, as can be seen from the figure, most of the paraphrases in the corpus fall into the low or
mid-range similarity area making the high similarity quite sparsely populated.

Next, we compare our corpus with the two existing Finnish paraphrase candidate corpora,
Opusparcus and TaPaCo using three different metrics: (1) the distribution of the lengths of the
paraphrased segments, (2) the distribution of lexical similarity values of the two paraphrased
statements, and (3) the presence of systematic paraphrasing patterns that can be identified
automatically.

Such direct comparison between different corpora is naturally complicated by several factors.
Firstly, compared with our manually annotated paraphrases with significant bias towards posi-
tive labels, both Opusparcus and TaPaCo consist primarily of automatically extracted paraphrase
candidates, and the true label distributions are mostly unknown. The small manually annotated
development and test sections of Opusparcus are sampled to emphasize lexically dissimilar pairs,
and therefore not representative of the characteristics of the rest of the corpus, limiting their usage
for corpus comparison purposes.We therefore compare with the fully automatically extracted sec-
tions of both Opusparcus and TaPaCo, as these represent the bulk of the corpora. In our corpus,
we can discard the small proportion of examples of label 2, that is the examples known to not be
paraphrases, while the automatically extracted sections of Opusparcus and TaPaCo are expected
to include a significant portion of negative paraphrase examples as well. Therefore, when drawing
any conclusions an important factor to consider is that the characteristics of false and true candi-
dates may differ substantially, false candidates for example likely being on average more dissimilar
in terms of lexical overlap than true candidates.
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Figure 3. Comparison of paraphrase length distributions in terms of tokens per paraphrase.

For each corpus, we sample 12,000 paraphrase pairs in order to keep the sizes of the compared
sets uniform. For our corpus, we selected a random sample of true paraphrases from the train sec-
tion. For TaPaCo, the sample covers all paraphrase candidates from the corpus, however with the
restriction of taking only one, random pair from each ‘set’ of paraphrases, while for Opusparcus,
which is sorted by a confidence score in descending order, the sample was selected to contain the
most confident 12K paraphrase candidates.g

From Figure 3, it can be seen that the distribution of the paraphrase lengths in our corpus is
wider and contains a hatrivial amount of longer paraphrases as well, while the other two corpora
mainly contain relatively short paraphrase candidates. The average number of tokens in our cor-
pus is 8.8 tokens per one paraphrase statement, while it is 5.6 in TaPaCo and 3.6 in Opusparcus.
Furthermore, as the manual paraphrase extraction was not tied to follow sentence boundaries
in our corpus, we measure how many of our paraphrases are short phrases, single sentences, or
longer than a sentence. To this end, we apply a Finnish dependency parser (Kanerva et al. 2018) to
segment sentence boundaries and recognize whether a sentence is well-formed (starts with a cap-
italized letter, ends with a punctuation character and includes a main verb) or not. We find that
approximately 12% of the paraphrase statements are phrases or not well-formed single sentences,
73% are well-formed, single sentences, 13% are two sentences long, and the remaining 2% being
segments which are more than two sentences long. When looking into paraphrase pairs instead of
individual paraphrase statements, 63% of the pairs have one-to-one mapping of well-formed sen-
tences, following with one-to-two (10%), sentence-to-phrase (9%), phrase-to-phrase (7%), and
two-to-two (7%) mappings, the other variants occurring only rarely.

Figure 4, the cosine similarity distribution of the paraphrase pairs is measured using TF-IDF
weighted character n-grams of length 2–4 for these three corpora. This allows us to establish to
what degree the corpora contain highly lexically distinct pairs. From this figure, it can be seen
that our corpus has a larger proportion of paraphrases with lower lexical similarity, while the
distribution of the other two corpora are skewed towards pairs with higher lexical overlap.

Finally, we study the corpora from the point of view of systematic paraphrasing patterns, that
is pairs which are formed in a systematic, predictable manner. To this end, we follow the method
used in our prior work (Chang et al. 2021), recognizing six systematic ways in which the two seg-
ments of a paraphrase pair differ from each other: (1) word reordering, (2) word inflections (both
having same lemmas in the same order), (3) lemma reordering, (4) lemma reordering after exclud-
ing all functional words (both having the same content word lemmas), (5) synonym replacements,
and (6) a combination of (4) and (5).h These six types of differences are automatically detectable

gWhen the length analysis was repeated with a sample of 480K most confident pairs, the length distribution and average
length remained largely unchanged, while the similarity distribution became close to flat. Without manual annotation, it is
hard to tell the reason for this behavior.
hIf a paraphrase pair can be accounted by either disregarding functional words or synonym substitution, it is classified as

disregarding functional words.
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Figure 4. Comparison of paraphrase pair cosine similarity distributions.

Figure 5. Percentage of the types of systematic differences characterizing the paraphrases in Opusparcus, TaPaCo, and our
corpus. Others refers to all paraphrases including differences not automatically detectable by the usedmethod.

with a simple approach and can be therefore regarded as to some degree “trivial” paraphrase pairs.
From Figure 5, it can be seen that our corpus has a notably smaller proportion of trivial para-
phrases than Opusparcus and TaPaCo. While the other two corpora have a larger proportion of
paraphrases that can be accounted for by lemmatization, that is type (1), (2), and (3), our cor-
pus has less than 1% of these each. The most prominent type of trivial paraphrases in our corpus
is synonym replacement, at 2%. These results support that our manually extracted paraphrases
contain more interesting, nontrivial paraphrases than automatically collected corpora and help to
validate our manual extraction approach.

7. Paraphrase classification
Having described the paraphrase corpus itself, we will continue to paraphrase modeling experi-
ments.We first apply a pairwise paraphrase classifier, where for a given candidate pair the classifier
predicts the label based on the labeling scheme used in the corpus. While the classification model
could be straightforwardly trained using only the annotated paraphrase corpus, in addition to
such a baseline model we also apply a bootstrapping approach where the training data is aug-
mented with automatically extracted negative pairs to account for the low frequency of negative
pairs in the original corpus.
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When creating the paraphrase corpus, we concentrated on building a dataset of nontrivial para-
phrases classified as positive inmanual annotation (label 3 and above), where the occasional label 2
paraphrase candidates were only a by-product of the annotation work. However, in order to train
models able to distinguish negative candidates from the positives, a sufficient number of nega-
tive examples is required during the model training. While unrelated negative candidates (label 1)
can be obtained trivially by pairing arbitrary sentences, it is shown for example by Guo et al.
(2018) in the context of parallel data mining that it is not sufficient to introduce negatives based
only on arbitrary pairs. Instead, better results can be obtained by including hard negatives, that is
candidates which share for example topic or are otherwise related while still not being paraphrases.

In order to obtain such training data for the paraphrase classifier, in our bootstrapping
approach we use sentence embeddings obtained from a basic language model without task-
specific fine-tuning to select semantically related pairs of sentences from a large corpus of text.
These are subsequently filtered using an initial classifier trained purely on the manually anno-
tated corpus data, preserving examples with a confident negative prediction. Finally, we train new
models for paraphrase classification using a combination of the manually annotated corpus and
the automatically extracted negative candidates. Next, we describe all these steps in detail.

7.1. Paraphrase classifier
Our paraphrase classification model is a pairwise classifier based on the BERT encoder, follow-
ing our initial work reported in Kanerva et al. (2021b). The model receives one candidate pair
at a time, encoded as the sequence [CLS] A [SEP] B [SEP], where A and B are the two para-
phrase statements and [CLS] and [SEP] the special tokens in the BERT model. The classifier is
a multi-output model implemented on top of the pretrained FinBERT language model (Virtanen
et al. 2019), including four separate prediction layers, one for the base label (with classes 2, 3, or
4), one for the subsumption flag (<, > or none), one for the style flag (s or none), and one for the
minor deviation flag (i or none). As the additional flags only apply to examples where the base
label is 4, no gradients are produced for subsumption, style, and minor deviation prediction layers
if the base label of the example is 2 or 3. The predictions are based on five different embeddings
obtained from the final BERT layer: embeddings for the [CLS] and the two [SEP] tokens, as well
as the average of token embeddings calculated separately for statement A and statement B, all five
concatenated together and projected for the four prediction layers. The overall model design (e.g.
concatenating the five embeddings rather than using the plain [CLS] embedding) is optimized
during preliminary experiments conducted on the development data. The use of multiple output
layers rather than treating each label combination a separate class in standardmulticlass classifica-
tion is chosen to account for certain flag combinations, such as 4>is, which would not be predicted
at all by a standard multiclass model as such label combinations are so rare in the data.

The initial classifier is trained on the Turku Paraphrase Corpus using the data split reported
in Table 3, receiving an accuracy of 58.1 and a weighted average F-score of 57.6 when tested on
the corpus test set treating each complete label as its own class during evaluation. As expected, the
initial classifier is weakest at classifying the small amount of negative examples (label 2) in the test
set, giving an F-score of 30.3 for label 2, and fully reflecting the design choices of the corpus. The
full evaluation numbers for the initial classifier are given later in Section 7.3 (Table 4) where the
results are compared with the final, bootstrapped model.

7.2. Extracting candidate pairs for model bootstrapping
Deep language models, such as BERT (Devlin et al. 2019) or LASER (Schwenk and Douze 2017),
are commonly used as general sentence encodingmethods, assigning dense vector representations
to sentences and other short text segments. Simple metrics, such as cosine similarity or Euclidean
distance, can then be used to efficiently estimate the similarity of two sentences in the vector space,
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Table 4. Baseline classification performance on the two test sets, when the base label and the flags are predicted separately.
In the upper section, we merge the subsumption flags with the base class prediction, but leave the flags i and s separated.
The rowsW. avg and Acc on the other hand refer to performance on the complete labels, comprising all allowed combinations
of base label and flags.W. avg is the average of P/R/F values across the classes, weighted by class support. Acc is the accuracy

Turku Paraphrase Corpus test set Opus-parsebank-test

Label Prec Rec F Support Label Prec Rec F Support

2 46.8 22.4 30.3 161 neg 99.0 23.1 37.5 6712


3 60.3 50.9 55.3 2434 3 11.7 48.3 18.8 1146


4< 55.8 57.9 56.8 2003 4< 36.9 64.7 47.0 425


4> 57.0 61.9 59.4 2287 4> 37.8 70.7 49.3 560


4 70.5 74.3 72.4 3586 4 47.1 91.3 62.1 793

i 50.0 47.4 48.6 454 i 52.0 71.3 60.2 164


s 49.1 37.0 42.2 438 s 28.2 48.0 35.6 50

W. avg 57.7 58.1 57.6 W. avg 77.8 35.5 37.9
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Acc 58.1 Acc 35.5

with sentences equivalent or closely related in meaning being also highly similar in terms of these
metrics. We rely on such embedding similarities in order to find promising, initial candidates of
related sentences for model bootstrapping, where our aim is to collect negative pairs including
a nontrivial topical overlap (hard negatives). For creating the sentence embeddings, we use the
vanilla BERT model pretrained for Finnish without any task specific fine-tuning of the model.

In order to obtain enough candidate sentences for collecting hard negatives for our bootstrap-
ping experiments, we use two different data sources: OPUS and Finnish Internet Parsebank. OPUS
(Tiedemann 2012) is an open parallel corpus collecting a diverse set of parallel sentences ranging
from EU legislation and software manuals to movie subtitles. The OPUS data is obtained through
the data release of the Tatoeba translation challenge (Tiedemann 2020). The Finnish Internet
Parsebank (Luotolahti et al. 2015) is a large-scale Finnish corpus collected through dedicated
web crawls targeted to find high quality Finnish material from the Internet. Together, these two
resources include almost 400M unique sentences. All unique sentences in this collection are first
encoded with the FinBERTmodel of Virtanen et al. (2019) taking the average of token embeddings
to obtain one vector for each sentence. Next, for each sentence, its five most similar sentences are
collected from the same source (OPUS or Parsebank) using Euclidean distance of the embeddings
implemented in the FAISS library (Johnson, Douze, and Jégou 2021) for fast similarity compar-
ison, constituting a massive candidate set of 400M × 5 closely related sentence pairs. Finally, all
duplicate pairs (irrespective of direction) are discarded.

To understand the distribution of different paraphrase labels in this set of candidates, we
selected a random sample for manual annotation. A total of 15,000 sentence pairs are sam-
pled, taking 7500 pairs from both OPUS and Finnish Internet Parsebank. So as to maximize
the informativeness of this manual evaluation, we stratify the sample in terms of lexical simi-
larity, measured as cosine similarity of term frequency (TF) vectors based on character n-grams
of lengths 2–4. All candidate pairs are split into 20 lexical similarity intervals in increments of
0.05, with an equal number of pairs selected from each interval for manual annotation. This strat-
ified sampling together with manual annotation allows us to estimate the distribution of different
labels in each similarity interval separately. In the manual annotation, we labeled 14,530 candidate
pairs (470 were skipped with label x during the annotation due to various issues such as incorrect
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(a) (b)

Figure 6. (a) Distribution of the manually annotated labels in the opus-parsebank set including both development and test
examples. (b) Comparison of the types of paraphrases in the manually and automatically extracted data. The manually-
extracted data refers to the training set of our corpus, while the automatically extracted data refers to the combination of
opus-parsebank-dev and opus-parsebank-test sets.

language or whitespace-only differences). The sample is divided into development and test sec-
tions (hereafter opus-parsebank-dev and opus-parsebank-test), with a 1/3 and 2/3 split. While
the development section is used to analyze the different properties of the data, the test section
is reserved only for the final test purposes, and none of the annotated data is used for the actual
model training.

Next, we analyze the annotated sample from several perspectives. In Figure 6, on the left
we show the label distribution of this sample, and on the right side we plot the automatically
detectable systematic paraphrasing patterns introduced in Section 6.2. Contrary to the manu-
ally extracted corpus, the sample does not strive to exclude uninteresting candidates including
only elementary variation, and among the examples with a high lexical similarity, trivial differ-
ences are included, such as differences purely in punctuation or capitalization.While themanually
constructed corpus included only occasional negative paraphrases, as expected, the label distribu-
tion in the opus-parsebank sample is skewed towards negative paraphrases (68% being annotated
with label 1 or 2). When measuring the automatically detectable systematic paraphrasing patterns
among positive examples (labels 3 and above), the figure confirms the higher tendency towards
trivial variation appearing among the automatically extracted paraphrases than among the man-
ually selected ones. Along with those shown in the figure, additional 2% of positive paraphrase
pairs in the opus-parsebank sample contain only small character differences that are usually
typos or punctuation differences, totaling the recognized elementary variation to cover approx-
imately 17% of all positive paraphrase pairs. However, part of the elementary variation can be
explained by the stratified sampling over lexical similarity values, as high similarity areas have
proportionally more elementary variations, compared with the automatically detected paraphrase
candidates with lower similarity ranges, which are mostly negative paraphrase pairs, along with
some nonelementary positive paraphrase pairs.

Finally, we analyze the annotated sample regarding the reliability of the classifier prediction
scores, with the aim of identifying areas where we can be reasonably confident in the classifier
predictions and sample “safe” negative examples to complement the primary manually annotated
corpus. When simultaneously plotting classifier prediction scores (probability of negative label)
together with the lexical similarity intervals into a two-dimensional plot, we are able to divide the
examples into several tiles, which can furthermore be enriched with the manually annotated labels
to estimate the actual amount of negative candidates (labels 1 and 2) in each tile. This information
can be used to select tiles (and their corresponding lexical similarity and prediction score values)
to collect safely negative or safely positive paraphrase candidates when applying the same metrics
for the full collection of closely related pairs. The observed tiles are demonstrated in Figure 7,
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Figure 7. Heatmap with estimated negative example density per tile in increments of 0.2 for opus-parsebank-dev. Lexical
similarity is plotted in y-axis and prediction confidence in x-axis, creating two-dimensional tiles when both are divided in
increments of 0.2. Each tile is yet enhanced with a density score indicating the percentage of negative examples in the tile
based on the manually annotated labels.

where the data is split into five intervals in increments of 0.2 on both axes, as both the prediction
score and lexical similarity values range between 0 (unsure, highly dissimilar) and 1 (confident,
highly similar). Each tile is yet enhanced with an annotation indicating the percentage of negative
labels in the tile estimated using the manually annotated sample.

For collecting negative candidates, all pairs with lexical similarity of under 0.1 or negative class
prediction confidence over 0.4 were chosen as optimal region. When applying these values across
the whole set of closely related sentence pairs (discarding those in the annotated sample), we were
able to extract approximately 5M nonparaphrase candidates with precision of 97.7% as estimated
from the manually annotated sample. Additionally, the same experiment was repeated for the
positive paraphrase candidates by using lexical similarity of over 0.5 and the model’s prediction
confidence score of 0.998 or greater for the base label 4, obtaining a set of 500K positive paraphrase
candidates with estimated precision of 95.8%. Both datasets are released as supplementary data
together with the manually annotated examples in order to support for example training with a
binary objective (paraphrase or not-a-paraphrase).

7.3. Paraphrase classification results
For the final classification experiments, the manually annotated Turku Paraphrase Corpus train-
ing set of 84K pairs is combined with an additional 84K pairs sampled from the automatically
gathered negatives, therefore creating a somewhat balanced set of positive and negative training
examples. While all manually annotated examples naturally include the full label information,
for automatically gathered “training” negatives, we do not have distinction between the two
negative labels (label 1 and label 2), and therefore we opted to use only a single label for all neg-
ative examples while training the classifier. As shown in Table 5 versus the baseline performance
shown in Table 4, besides slightly improving the label 2 classification performance, enhancing
the training data with automatically gathered negatives does not affect the performance on the
Turku Paraphrase Corpus test set, where the great majority of the test examples fall into the dif-
ferent positive labels. Therefore, the automatically gathered negative training examples do not
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Table 5. Final classification performance on the two test sets, as in Table 4

Turku Paraphrase Corpus test set Opus-parsebank-test

Label Prec Rec F Support Label Prec Rec F Support

2 40.2 32.9 36.2 161 neg 95.0 75.0 83.8 6712


3 59.3 52.6 55.8 2434 3 25.2 36.3 29.8 1146


4< 56.0 58.1 57.0 2003 4< 44.7 62.4 52.1 425


4> 58.3 59.8 59.1 2287 4> 46.0 68.0 54.9 560


4 70.5 73.9 72.2 3586 4 56.3 89.7 69.2 793

i 51.8 48.9 50.3 454 i 56.0 71.3 62.7 164


s 49.4 37.7 42.8 438 s 32.0 48.0 38.4 50

W. avg 57.9 58.3 58.0 W. avg 78.1 69.9 72.6


Acc 58.3 Acc 69.9

seem to decrease the performance of positive predictions. However, in the opus-parsebank-test,
where more than two-thirds of the examples are negatives and therefore larger differences can be
expected, the bootstrapped model significantly outperforms the baseline model on the negative
class, increasing the negative class F-score from 37.5 to 83.8, which is mostly caused by heavily
increasing its recall without compromising the precision too much. This naturally also increases
the precision of the positive classes by not as heavily overpredicting the positives; however, the
classifier still struggles in distinguishing between different positive labels, as well as precisely
setting the border between negatives and contextual paraphrases. When compared with the esti-
mated human performance on the task, the classifier is still almost 12pp behind the accuracy of
the human annotators whenmeasured on the Turku Paraphrase Corpus test set. However, in con-
trast to the humans, the current model does not have access to the document context, which may
naturally complicate the labeling decision particularly in the context dependent cases (label 3). In
the future, we plan to extend the classification work towards context-aware models.

8. Fine-tuned sentence embeddings in paraphrase mining
Paraphrase classification has been shown to work well and is expected to give good results
accuracy-wise when judging the paraphrasability of a candidate pair of statements. However, the
pair-wise classification approach becomes infeasible especially in large-scale paraphrase retrieval
applications, as it requires applying the computationally heavy classifier separately for each pos-
sible candidate pair. In large-scale scenarios such as paraphrase mining where the objective is to
find good paraphrase candidates from a large collection of sentences, the number of candidate
pairs is quadratic. Therefore, computationally a much more feasible approach is to pre-compute
sentence embeddings once, and for each candidate pair apply only a computationally light-weight
metric (e.g. cosine similarity or Euclidean distance) using these pre-calculated representations. In
addition to directly applying a pre-trained language model such as BERT, one can also optimize
the representations for paraphrase comparison by fine-tuning these models to create sentence
embeddings such that paraphrased statements receive a high similarity score when compar-
ing the calculated embeddings using for example cosine similarity, while semantically unrelated
statements receive a low similarity score.
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A well-known model of this kind is the Sentence-BERT (SBERT) (Reimers and Gurevych
2019), where the training objective is to improve individual sentence embeddings in order to
better support their direct cosine similarity comparison. The SBERT fine-tuning objective applies
a siamese network encoding, where the two sentences are first encoded individually producing a
fixed size embedding for both, and these embeddings are then fine-tuned through either a clas-
sification or cosine similarity objective. The SBERT models are typically trained on semantically
related sentences taken from corpora gathered for for example paraphrasing, natural language
inference or translation, where the positive pairs are mixed with unrelated sentence pairs in order
to provide also negative training examples.

Next, we train a Finnish SBERT model for the paraphrasing task and evaluate it on the task of
paraphrase retrieval using the corpus data. In addition to the paraphrase corpus, we evaluate the
fine-tuned embedding model also in a large-scale paraphrase mining experiment using a dataset
of almost 400M candidate sentences.

8.1. SBERT training and evaluation
In the following, we evaluate the SBERT sentence embedding model on our corpus in the context
of paraphrase mining. We train a Finnish SBERT model initialized from the pre-existing Finnish
BERT-base model with our paraphrase data. We use batch size of 16 and mean pooling over the
final BERT layer, the best-performing pooling method in the original SBERT work (Reimers and
Gurevych 2019). Since the goal is to identify paraphrase candidates, we collapse the labels into
binary: labels 1 and 2 becomes negative, and labels 3 and above positive. We experiment with dif-
ferent combinations of training datasets: (1) the manually annotated Turku Paraphrase Corpus
training set (train), consisting of 81.8K positive and 1.4K negative pairs, (2) the manually anno-
tated training set and the full set of automatically gathered negatives (train+neg), with 81.8K
positives and 5.6M negatives, (3) the manually annotated training set and the full sets of auto-
matically gathered positives and negatives (train+neg+pos), totaling 625K positives and 5.6M
negatives, and (4) only the automatically gathered positives and negatives (neg+pos), with 543K
positives and 5.6M negatives. The learning rate is optimized on the development set, using the
value 1e-5 for all four experiments.

As a non-neural baseline, we use TF-IDF representations of character bi- and tri-grams. As
a modern, neural baseline, we use the vanilla Finnish BERT model to directly encode single sen-
tences without any task specific fine-tuning. For hyperparameter optimization, we test CLS vector,
mean-pooling, and max-pooling on the development set, and select mean-pooling as the final
pooling method.

We evaluate these models on the paraphrase retrieval task, that is given the statement s1 from
a known paraphrase pair (s1,s2), how well the model is able to identify its corresponding para-
phrased version s2 from a collection of Finnish sentences using cosine similarity. First, we evaluate
the retrieval among all paraphrase statements in the corresponding manually annotated test sets.
That is, we take both statements from all paraphrase pairs in the corpus test set and deduplicate
them. This gives 19,893 unique statements in the Turku Paraphrase Corpus test set and 19,271 in
the opus-parsebank-test set. All these candidate text segments are first embedded, and separately
for each paraphrase statement in the test set, the candidates are sorted in descending order based
on cosine similarity giving the most similar candidates first. A good embedding model is expected
to give higher cosine similarity for a paraphrase pair than for a random segment pair, that is rank
the known paraphrase pair high in the sorted candidates.

First wemeasure top-1 retrieval accuracy of all positive examples (labels 3 and above). This is to
inspect how likely the model ranks a good paraphrase pair first among candidate sentences if the
corresponding paraphrased version is guaranteed to exist in the collection. The results are given
in Figure 8. When measured on the Turku Paraphrase Corpus test set (blue color in the figure),
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Figure 8. The top-1 retrieval accuracy (higher is better) of all positive paraphrases in the Turku Paraphrase Corpus test set
and the opus-parsebank-test set. The test sets consists of 19,893 and 19,271 unique retrieval candidates respectively. The
exact accuracy numbers are visualized on top of the bars.

the SBERT model train+neg+pos gives comparable, if not slightly better, results to the vanilla
BERT baseline. The other SBERT models underperform vanilla BERT in terms of top-1 accu-
racy. Unsurprisingly, all the neural models outperform the TF-IDF method. When considering
the opus-parsebank-test set, where the paraphrase candidates were sampled based on a combi-
nation of the TF-IDF and FinBERT similarity scores, it is not a surprise to see that these two
methods obtain the highest performance. While all examples in the opus-parsebank-test set are
selected based on their high BERT similarity score, fully explaining the high top-1 accuracy of
the BERT model, the sample was stratified to include examples from all lexical similarity areas.
However, after manual annotation most of the positive examples are actually located in the high
similarity area (the average lexical similarity of positive examples being 0.73 compared with 0.5
on the full development sample), therefore to some extent skewing the evaluation also in terms of
TF-IDF similarity.

However, measuring the top-1 accuracy of the positive paraphrases does not take into con-
sideration how these models perform on the negative pairs, where the model should not give a
high similarity for nonparaphrase pairs even if their lexical similarity is high. In the light of this,
we next measure the average ranking positions of the paraphrase candidates separately for each
label in order to see whether fine-tuning the model successfully decreases the similarity of nega-
tive paraphrase pairs while increasing or maintaining the similarity of the positive pairs, as it is
expected that a good model should give lower similarity and therefore also worse ranking posi-
tions for unrelated candidates than for related candidates, while similarity of related candidates
in turn should be lower than similarity of real paraphrases and so on. To measure this effect,
in Figures 9 and 10, we report average ranking positions in percentage for each label separately,
where the actual on average ranking positions are normalized to percentages, so as there were 100
candidates. This means that a perfect ranking, where the correct candidate is always ranked top-1,
would give 0%, whereas the results of 5% means that the correct candidate is on average ranked
6th out of 100 candidates.

Based on the results in Figure 9, our ranking assumption seems to hold in the sense that the
more universal the paraphrase pair is the better the average ranking position seems to be in gen-
eral. However, with the exception of the vanilla BERT and SBERT trained on the Turku Paraphrase
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Figure 9. The average ranking positions normalized to percentages (lower is better) for the Turku Paraphrase Corpus test set
by variousmodels. The ranking ismeasured separately for each paraphrase label (2, 3, 4</>, and 4), however disregarding the
flags i and s. The exact numbers are visualized on top of the bars (percentage calculated out of 19,893 candidate sentences).

25.00%

Figure 10. The retrieval of the opus-parsebank test set paraphrase candidates by variousmodels. The numbers on top of the
bars indicate the average ranking in percentage (out of 19,271 candidate sentences) for each class of paraphrase candidates.
The ranking is measured separately for each paraphrase label (1, 2, 3, 4</>, and 4), however disregarding the flags i and s.

Corpus only (train, where fine-tuning data does not include practically at all negatives) models
do not distinguish between the negative label 2 and positive label 3, therefore giving high similarity
scores also for negative paraphrase pairs. However, when increasing the amount of negative exam-
ples seen during the training, the fine-tuned SBERT models start to give clearly worse ranking
positions for label 2 pairs compared with label 3 pairs as the model learns to judge these as nega-
tive examples, which appears to be the main advantage of SBERT models over the vanilla BERT.
When comparing the different SBERT models, the observations remain largely the same as in the
top-1 accuracy analysis. That is, the SBERT model trained with all available training data yielding
the best results among the fine-tuned models. For the evaluation on the opus-parsebank-test set
(Figure 10), the average of BERT embeddings clearly achieves the best ranking positions, which is
not at all surprising as the test set was selected based on the similarity of BERT embeddings. Again,
the notable fact is that while the original BERT naturally assigns good ranking positions for the
negative examples in this dataset as well (label 1 and 2), the model fine-tuning clearly helps to
distinguish between positive and negative examples, pushing the negative examples further while
only negligibly affecting the ranking for the positive examples.
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8.2. Large-scale paraphrase mining
A larger collection of Finnish candidate sentences presumably makes the paraphrase mining task
more difficult as the number of difficult distractors also increases. For instance, considering top-1
accuracy, it takes only one incorrect distractor sentence to fool the model. Thus, we simulate a
realistic paraphrase mining setting by mining the correct target sentence among the combined set
of 399M unique sentences from the combination of the Finnish Internet Parsebank, OPUS, and
our paraphrase corpus. First, we calculate and index the SBERT embedding for each sentence in
this large combined dataset. Then, for each test set paraphrase pair (s1,s2), we query the index with
the embedding of s1 andmeasure at which rank out of the nearly 400M candidates the embedding
of s2 is found in terms of Euclidean distance. For comparison, we also carry out the same exper-
iment with the vanilla FinBERT model embeddings, so as to establish whether the fine-tuning of
the SBERTmodel translates into better performance on the sentence similarity task, as well as with
themultilingual SBERTmodel paraphrase-xlm-r-multilingual-v1 released by Reimers and
Gurevych (2019) fine-tuned to create comparable embeddings for over 50 languages. The multi-
lingual SBERT model is based on the monolingual English SBERT trained on a massive collection
of semantically similar English sentence pairs, and the multilingual XLM-RoBERTa-base language
model (Conneau et al. 2020), where the multilingual language model was fine-tuned to mimic
the embeddings of the English SBERT using multilingual knowledge distillation (teacher–student
framework) on parallel data for over 50 languages.

The results are summarized in Figure 11, where we report the top-N accuracy (where N=1,
10, 100, 1000, and 2048, which is the upper technical limit in the experiment) for label 3, label
4> or 4<, and label 4 separately. Most importantly, for the Finnish SBERT model (named sbert
in the figure), we can see that 53% of label 4 paraphrases, 41% of label 4> or 4< paraphrases, and
29% of label 3 paraphrases are ranked among the top 10 most similar sentences from the group
of nearly 400M candidates. This demonstrates that the SBERT model is highly efficient at finding
paraphrase pairs also in cases where the number of candidates is in the hundreds of millions. This
opens the possibility for further paraphrase mining from even very large text collections. While
it is obviously infeasible to apply an expensive pairwise classification model to all sentence pairs
(in our case that would be on the order of 400M squared), one can use SBERT as an initial filter
and then apply the pairwise classification model to the comparatively small number of top candi-
dates (in our case 400M times 10 pairs if using the cut-off of top-10 candidates). Finally, as seen
in Figure 11, the vanilla FinBERT (bert in the figure) not fine-tuned for the semantic similarity
task produces notably worse results compared with the SBERT models, while both Finnish and
multilingual (xmlrsbert in the figure) SBERT produce comparable results. This seems to indicate
that the advantage of model fine-tuning starts to pay off when the number of candidates for the
retrieval is substantially increased. With this massive candidate set, the SBERT models are likely
better at filtering out topically and lexically difficult distractors, which did not show up when using
a smaller candidate set. The implementation of this experiment was carried out using the FAISS
library (Johnson et al. 2021) for efficient GPU-accelerated k-nearest-neighbor vector similarity
search in large vector collections.

9. Conclusions
In this paper, we presented the Turku Paraphrase Corpus, the first large-scale manually annotated
corpus of Finnish paraphrases. The corpus contains 104,645 paraphrase pairs, targeted to create
a challenging paraphrasing dataset suitable to test the capabilities of natural language under-
standing models. Each pair is manually labeled using a detailed annotation scheme. In addition
to separating positive and negative paraphrase pairs, the annotation also distinguishes between
paraphrases in all imaginable contexts and paraphrases in the given context but not necessarily
elsewhere.
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Figure 11. The retrieval of test set paraphrase pairs by the fine-tuned Finnish SBERT, themultilingual SBERT, and the vanilla
FinBERT, out of 400M candidate sentences. The white numbers indicate percentage of pairs in the given category, and the
retrieval is measured for the three main classes of paraphrase: 4, 4< or 4>, and 3 (disregarding flags s and i); and for several
top k cut-offs. NAmeans that the correct sentence did not rank in the top 2048 list, which was the upper technical limit in the
experiment.

The paraphrase pairs in the corpus are collected using a novel method for manual paraphrase
candidate extraction, assuring both quality and variability of the extracted paraphrases, as well as
efficiency in terms of person-months used for annotation. The paraphrases are manually selected
from two related source documents, where a high tendency of naturally occurring paraphrases
is expected. Compared with other paraphrase resources, the manual extraction is shown to pro-
duce notably longer and less lexically overlapping pairs than what automated candidate selection
permits, creating a challenging dataset to be used for instance in evaluation of different language
understanding models. In addition to quality, the advantage of manual candidate extraction is the
possibility to collect and evaluate the paraphrase candidates in their original document context,
settingmany new possibilities for contextual paraphrase recognition. To our knowledge, this work
is the first large-scale paraphrase corpus providing original document context information for the
paraphrase pairs.

While 98% of the paraphrases in the corpus are manually classified to be at least paraphrases in
their given context if not in all contexts (positive examples), in order to better facilitate also binary
classification experiments (paraphrase or not-a-paraphrase), a method for semi-automatically
extracting negative paraphrase candidates is presented, and a supplementary set of over 5 million
negative paraphrase candidates is provided together with the actual corpus.

The initial modeling results confirmed the challenging nature of the dataset, giving weighted
mean F-score of 58% for a pairwise classifier over the detailed annotation labels, the classifier accu-
racy substantially lacking behind the estimated human performance on the task. However, when
applying semantic similarity models fine-tuned on the data for large-scale paraphrase mining
from a collection of almost 400M candidates, the results were highly encouraging, the paraphrase
retrieval model being able to rank the correct paraphrase pair among the top-10 for 29–53% of the
evaluation examples depending on the paraphrase type.

While our initial paraphrase retrieval experiments show promising results, the classification
experiments using the detailed labeling scheme are still far from human performance, indicating
that the corpus can serve as a challenging evaluation task for different language understanding
models. Such datasets have recently shown their importance when yet more powerful language
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understanding models are approaching human-level performance on several popular evaluation
sets, and more challenging tasks are introduced (Wang et al. 2019). However, despite our initial
modeling experiments, there are still many new aspects to study with the dataset, such as how to
utilize the contextual information available for the paraphrase pairs, and in the future work, we
plan to further study the contextuality aspect of this data.

The corpus is available at github.com/TurkuNLP/Turku-paraphrase-corpus as well as through
the popular HuggingFace datasets under the CC-BY-SA license.
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