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ABSTRACT

Research studies conducted on limited datasets (i.e., data from tens to maximum
hundreds of observations) may be the only practical option for many research areas,
as data collection might be costly, complex, or both. Data analysis on these datasets
is challenging as it can lead to inaccurate results. In this thesis, we addressed this
challenge in the context of prostate cancer research by empirically assessing the pre-
dictive and characterization capabilities of attributes with the following objectives:
to evaluate the predictive power of features extracted from prostate magnetic reso-
nance imaging (MRI) using cross-validation techniques, to develop and evaluate a
cross-validation method for small sample sizes that allow receiver operating charac-
teristic (ROC) analysis, and to identify and compare relevant predictors among MRI
features, clinical variables, gene expressions, and kallikreins for prostate cancer de-
tection and stratification. To achieve these objectives, we used data from approved
studies and registered clinical trials at Turku University Hospital, involving a strong
collaboration between university departments and hospitals. This collaboration en-
abled the collection of diverse, high-quality features to enhance prostate cancer di-
agnosis and prognosis research.

The results of this thesis can be summarized as follows. First, when evaluat-
ing radiomic features from various MRI modalities, our findings demonstrate the
potential that these features have in stratifying prostate tumors into low- and high-
risk. Second, in terms of model evaluation using ROC analysis and cross-validation,
our research highlights a significant negative bias in the area under the ROC curve
when estimated by leave-one-out (LOOCV) and introduces a novel cross-validation
method called tournament leave-pair-out (TLPOCV) as a more reliable method for
ROC analysis than LOOCV. Finally, our results provide empirical evidence of the
predictive potential that quantitative and qualitative features from MRI, clinical vari-
ables, gene expressions, and kallikreins—individually and in combination—have in
detecting and stratifying prostate cancer.

The findings in this research are of interest not only to medical professionals and
healthcare providers engaged in prostate cancer research but also to those involved
in analyzing and learning from size-constrained datasets while achieving clinically
meaningful evaluation outcomes.

KEYWORDS: prostate cancer, data analysis, small sample, model evaluation, cross-
validation, ROC curve
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TIIVISTELMÄ

Rajallisilla aineistoilla suoritettavat tutkimukset (kymmenistä satoihin havaintoihin)
ovat joskus ainoa käytännöllinen vaihtoehto aineiston keräämisen kalleuden, mon-
imutkaisuuden tai molempien vuoksi. Pieni koko taas voi johtaa epätarkkoihin tu-
loksiin. Tässä väitöskirjassa käsittelemme tätä haastetta eturauhassyöpätutkimuk-
sen kontekstissa arvioimalla empiirisesti attribuuttien ennustavaa ja karakterisoin-
tikykyä seuraavilla tavoitteilla: arvioida eturauhasen magneettikuvauksesta (MRI)
saaduista piirteistä ekstraktoitujen ominaisuuksien ennustuskykyä ristiinvalidoin-
titekniikoilla, kehittää ja arvioida ristiinvalidointimenetelmä ROC-analyysin mah-
dollistamiseksi pienillä näyteko’oilla sekä tunnistaa ja vertailla merkityksellisiä en-
nustajia MRI-piirteiden, kliinisten muuttujien, geeniekspressioiden ja kallikreiinien
välillä eturauhassyövän havaitsemiseksi ja stratifioimiseksi. Näiden tavoitteiden
saavuttamiseksi käytimme tietoja hyväksytyistä tutkimuksista ja rekisteröidyistä kli-
inisistä kokeista Turun yliopistollisessa keskussairaalassa. Tämä yhteistyö mah-
dollisti monipuolisten ja laadukkaiden piirteiden keräämisen eturauhassyövän diag-
noosin ja ennusteen tutkimuksen parantamiseksi.

Tämän väitöskirjan tulokset voidaan tiivistää seuraavasti. Löydöksemme vahvis-
tivat radiomisten piirteiden potentiaalin stratifioida eturauhaskasvaimia matala- ja
korkeariskisiin. Toiseksi, tutkimuksemme osoitti yksittäisristiinvalidointiin perus-
tuvien estimaattorien olevan negatiivisesti harhautuneita erottelukykykäyrän (ROC-
käyrä) alaisen pinta-alan (AUC) arvioinnissa, ja esittelee uuden ristiinvalidoin-
timenetelmän nimeltä turnajaisyksittäisristiinvalidointi (TLPOCV), joka välttää ky-
seisen harhan. Lopuksi tuloksemme tarjoavat empiiristä näyttöä siitä ennustepoten-
tiaalista, joka kvantitatiivisilla ja kvalitatiivisilla piirteillä MRI:stä, kliinisillä muut-
tujilla, geeniekspressioilla ja kallikreiineillä on eturauhassyövän havaitsemisessa ja
stratifioimisessa sekä yksittäin että yhdistettynä. Tämän tutkimuksen löydökset ovat
hyödyllisiä paitsi eturauhassyöpätutkimuksessa mukana oleville lääketieteen ammat-
tilaisille, myös yleisemmin pienikokoisia datoja analysoiville tutkijoille.

ASIASANAT: eturauhassyöpa, aineistoanalyysi, pieni otos, mallin ennustuskyvyn¨
arviointi, ristiinvalidointi, ROC-käyrä
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1 Introduction

1.1 Data analysis with a limited amount of data
Although we are living in the era of big data or data flood, in many research areas
the amount of available data for a study is still limited. The sample size may range
between tenths to hundredths of subjects or observations. This data limitation or
scarcity is usually due to time and funding constraints, privacy restrictions, subjects
availability, and/or shortcomings in data collection. For example, research studies
like clinical trials may only be viable for a small sample size because it might re-
quire a complex enrollment process or tests that directly affect the time needed to
complete them. Furthermore, studies researching rare diseases have the restriction
of a small number of subjects with the condition. However, the sample size should
not discourage this type of study.

Studies with a small number of subjects present strengths and limitations [1].
Some of the strengths are related to conducting fast subject enrollment, data cura-
tion, records review, and ethical and institutional approval. On the other hand, the
limitations of small datasets are associated with pitfalls in the data analysis and result
interpretation. In particular, the results could mislead interpretation, produce false
positives or false negatives, and overestimate the magnitude of an association. Nev-
ertheless, studies such as hypothesis-generating and feasibility studies commonly use
a small sample size to avoid expending too many resources while exploring a new
hypothesis.

Non-parametric statistical tests are methods used to analyze data when certain as-
sumptions about the underlying population distribution are not met or when the data
may not follow a specific parametric distribution [2]. Furthermore, non-parametric
statistical tests are recommended for the analysis of small sample sizes [2]. They are
also valuable for examining datasets that exhibit issues such as non-normal distribu-
tion of the dependent variable, the presence of outliers, and unequal class distribu-
tion, among others. Additionally, there has been an observed increase in the use of
non-parametric statistical tests over parametric tests in the medical field, even when
a large sample size is available for the study [3].

Machine learning (ML) is a discipline that provides algorithms and techniques
for building predictive models from a sample [4]. The resulting model embodies
the relationship between the observations in the sample and their associated features.
The main objective of the model is to make accurate out-of-sample predictions. For

1
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this reason, the quality and quantity of the available data are relevant to the model
prediction performance. In other words, the larger and representative the sample is,
the better the model will predict on unseen data. However, as we previously noted,
they might be reasons for having a limited amount of data. In this case, methodolo-
gies for reliable estimation of model performance are of importance.

Resampling methods provide means for estimating the precision of a sample
statistic, performing a significance test, or validating a model performance when the
available sample is small. These methods reuse the sample data to infer properties
of the population without requiring parametric assumptions. The inference is based
on repeated sampling within the same sample, requiring heavy computation. Among
the resampling methods, we find permutation tests and cross-validation [5].

A permutation test allows computing the statistical significance of a test statistic.
It produces the sampling distribution of the test statistic by computing all possible
values of the statistic by going through all possible reordering of the sample observa-
tions. A permutation test may be the most powerful test for analyzing a small sample,
assuming that the observations are exchangeable under the null hypothesis [6].

Cross-validation (CV) is a resampling technique for estimating the prediction
performance of an ML model while maximizing the use of the available data. It
consists of splitting the data into disjoint subsets, and then using these subsets for
training and testing the ML model in a complementary manner [7; 8]. There are
many variations of CV, common ones are hold-out, k-fold, leave-one-out, and leave-
pair-out. Choosing the proper CV is problem-dependent; aspects such as the aim of
the study, dependencies between sample observations, the structure, and the quality
of the data, need to be considered to avoid misleading results.

In combination with cross-validation, a metric is calculated to measure the pre-
diction performance of the ML model. There are many evaluation metrics, and
choosing one depends on the type of model and the situation under consideration.
Generally, the analyst will select one or more metrics that are popular in their re-
search area. Commonly used metrics for regression models are mean absolute error,
mean squared error, and R-squared. In classification models, popular metric choices
are accuracy, F-measure, and area under the ROC (receiver operating characteristic)
curve. For some metrics, the approach used to compute it under cross-validation can
positively/negatively bias the measurement, especially for imbalanced datasets.

ROC curves are useful tools for visualizing the performance of classifiers [9].
The ROC curve plots the classifier’s true positive rate (TPR) against the classifier’s
false positive rate (FPR) over all possible cut-off points, illustrating how the TPR and
FPR vary together. Hence, ROC curves allow a visual comparison of performance
between classifiers at different cut-off points. In addition, the area under the ROC
curve (AUC) quantifies the classifier’s accuracy in a single value between 0.0 and
1.0. The AUC value does not depend on the prevalence of a condition or cut-off
point, making it a good performance measurement. However, AUC estimated from

2
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cross-validation methods may not reflect the reality if it is not properly derived.
It is then clear that resampling techniques combined with non-parametric sta-

tistical tests provide options for analyzing ML models learned from small samples.
However, it is recommended that these methods are applied carefully; and results
are interpreted with caution. These recommendations and the limitations that small
samples present seem to imply a need for studying current and new methods for
accurately analyzing small samples.

1.2 Motivation of the research
This thesis focuses on building and evaluating ML models trained on clinical trial
data for prostate cancer (PCa) detection and characterization. For many years PCa
has been the most commonly diagnosed cancer in men and the second most com-
mon cause of cancer-related death. However, in approximately half of the newly
diagnosed PCa cases, the patients have a low risk of death from the disease [10].
Accurate identification of PCa risk to stratify patients accordingly is necessary to
avoid over-treatment and PCa mortality. The traditional diagnostic protocol for PCa
presents challenges; therefore, ML models that predict and characterize PCa could
support physicians in accurately establishing the risk in men with a clinical suspicion
of PCa. For this reason, a proper assessment of the predictive performance of the ML
models is crucial to determine their usefulness and applicability.

The traditional diagnosis of PCa involves prostate-specific antigen (PSA) level
and digital rectal examination (DRE) findings to decide the need for random biopsies
from the prostate (i.e., systematic biopsies). The probability of PCa increases with
the rise of the PSA level; however, PCa can be found at all levels of PSA, and no PSA
threshold exists that defines the presence of clinically significant PCa (SPCa) [11].
In addition, it has been shown that DRE has low sensitivity for PCa [12; 13]. Taking
these into account and the fact that systematic biopsies only provide limited infor-
mation about the whole gland pathology [14; 15], SPCa cannot be ruled out entirely
based on systematic biopsies findings.

Magnetic resonance imaging (MRI) is a non-invasive method that has shown
great potential for detecting and characterizing PCa, making it an ongoing area of
research [16; 17; 18; 19; 20; 21]. Similarly, other imaging modalities, biomarkers,
and genes have also shown potential for detecting PCa and are under intensive in-
vestigation [22; 23; 24]. Furthermore, there is a significant interest in exploring the
additional value and interaction that attributes from different sources (e.g., clinical
variables, features extracted from MRI, and parameters obtained from genes and
blood kallikreins) have on the detection and characterization of PCa. ML models de-
veloped using these attributes could improve and automate the diagnosis of PCa, and
finding the variables or combinations of variables that yield the highest prediction
performance for PCa or SPCa is desirable.
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Quality annotations of prostate tumors in MRI require the expertise of experi-
enced radiologists, and the process is very time-consuming. Consequently, obtain-
ing studies with a substantial quantity of high-quality annotated PCa MRI datasets
can be challenging. Datasets that include not only annotated prostate MRI but also
gene expressions, among other variables, are even more elusive. However, in this
work, we had access to datasets from approved studies and registered clinical trials
conducted at Turku University Central Hospital (TYKS). The datasets consisted of
biomarkers and annotated MRIs from patients with clinical suspicion of PCa. In
particular, datasets from a single-center trial (IMPROD; NCT01864135) and a mul-
ticenter trial (MULTI-IMPROD; NCT02241122) had a vast number of variables that
include clinical variables, genes, blood kallikreins, and features derived from dif-
ferent MRI modalities that makes them suitable for a broader analysis. These trials
were carried out between 2013-2017 and involved strong collaboration between de-
partments and hospitals.

The availability of these datasets facilitated the analysis of PCa-related attributes
for predicting and stratifying PCa or SPCa. Furthermore, it encouraged us to ad-
dress the challenge of analyzing and learning from size-constrained datasets while
achieving clinically meaningful evaluation outcomes, a matter of interest for both the
medical and computer science fields.

1.3 Main objectives and research questions
This work aimed to evaluate the capability of features extracted from prostate MRI
alone and in combination with other relevant variables for predicting PCa risk us-
ing statistical and machine learning methods suitable for analyzing datasets with
size constraints. More precisely, this thesis has three main objectives, which are: to
evaluate the prediction power that prostate MRI extracted features have in detecting
high-risk PCa using cross-validation techniques, to develop an evaluation method for
small samples that allows ROC analysis, and to identify and compare relevant pre-
dictors among MRI features, clinical variables, gene expressions and kallikreins for
PCa detection and stratification. These objectives are represented by the following
research questions:

(RQ1): How precise are features extracted from prostate MRI in classifying and
stratifying PCa?

(RQ2): How to improve ROC analysis derived from cross-validation to evaluate
models when the size of the available data is small?

(RQ3): How well can linear models that combine variables/features from different
sources predict and stratify PCa?
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The first question is addressed by publications I and II. These publications eval-
uate several types of radiomic features extracted from MRI. Publication I focuses on
evaluating texture features from diffusion-weighted imaging (DWI) parametric maps
for PCa detection using the whole gland image. Publication II evaluates radiomic
features extracted not only from DWI but from other MRI modalities for differenti-
ating low-risk (not clinically significant) from high-risk (clinically significant) PCa
tumors. The second research question studies AUC and ROC curve estimates ob-
tained from different resampling techniques. This topic is covered in Publication
III, where a novel cross-validation method for ROC analysis is proposed and tested
using PCa data. The last research question is explored in Publications IV, V, and
VI. Where PCa-related variables/features are evaluated alone or combined with MRI
features to determine their contribution to differentiate benign/low-risk PCa from
high-risk PCa. For a summary of the outcomes arranged by research question and
original publications see Table 1.

1.4 Structure of the thesis
This thesis consists of two parts. Part I is formed by Chapters 1-5. Chapter 1 provides
an introduction to the subject, motivation, and research questions of this thesis. Then,
Chapter 2 gives the background information on prostate cancer which is the domain
of the data, and conveys the main objectives of this research. Chapter 3 presents a
comprehensive overview of the technical foundation and methods used. The research
publications and results are summarized in Chapter 4, followed by the conclusion,
discussion, and future work in Chapter 5. Part II presents the six original publications
that resulted from this work.
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Table 1. Main outcomes arranged by research question (RQ) and original publications.

RQ: Publication Outcomes

RQ1: I, II

• DWI parametric map features showed good predictive perfor-
mance for PCa.

• Combining radiomics from DWI parametric maps and T2W
had excellent results in stratifying PCa tumors into low- and
high-risk.

• T2 mapping radiomics had the lowest classification perfor-
mance and added little value.

• Features derived from GLCM, Gabor filters, and Zernike mo-
ments excelled in stratifying PCa tumors.

RQ2: III

• The LOOCV AUC estimate exhibited a negative bias, making
it unreliable for ROC analysis.

• LPOCV and the new TLPOCV methods provide nearly unbi-
ased AUC estimates.

• TLPOCV enables ROC analysis and is more reliable than
LOOCV.

RQ3: IV, V, VI

• The bpMRI Likert score from an experienced radiologist ex-
hibited the best predictive performance for PCa and SPCa.

• A linear model using selected clinical variables and mRNA
transcripts exhibited high SPCa detection performance.

• Selected tumor radiomic features had similar SPCa prediction
performance to the bpMRI Likert score.

• Combination of clinical variables, kallikreins, and WG ra-
diomics showed promise but were not superior to bpMRI Likert
score for PCa and SPCa prediction.

PCa: Prostate cancer; DWI: Diffusion-weighted imaging; T2W: T2-weighted imaging;
LOOCV: Leave-one-out cross-validation; LPOCV: Leave-pair-out cross-validation;
TLPOCV: Tournament LPOCV; WG: whole gland; bpMRI: bi-parametric MRI;
SPCa: clinically significant PCa; GLCM: Gray-level co-occurrence matrix.
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2 Prostate cancer domain-specifics

2.1 Prostate gland and its anatomy
The prostate is an accessory gland of the male reproductive system. Its primary func-
tion is to produce prostatic fluid, which is essential for male fertility, as it contains
several factors that control the ejaculation process and the survival of spermatozoa
[25]. It is located in front of the rectum and below the urinary bladder, and its shape
resembles a truncated cone. The prostate, as described by McNeal J.E. in [26], has
four basic anatomic regions:

1. The peripheral zone (PZ), which constitutes over 70% of the glandular prostate.

2. The central zone (CZ), which constitutes about 25% of the glandular prostate
and contains the ejaculatory ducts.

3. The transition zone (TZ), which surrounds the urethra and constitutes approx-
imately 10% of the glandular prostate.

4. The anterior fibromuscular stroma is a thick non-glandular layer that shields
the anterior surface of the three previous glandular regions.

The prostate gland is a direct target of prevalent benign and malignant diseases,
such as benign prostatic hyperplasia (BPH) and prostate cancer [25]. About two-
thirds of the diagnosed prostate cancers are located in the PZ, and the rest are located
primarily in the TZ, while CZ tumors are rarer [27]. BPH, which is a non-cancerous
condition of enlargement of the prostate, typically originates in the TZ [26].

2.2 Incidence and mortality of prostate cancer
Prostate cancer is the second most frequently diagnosed cancer and the fifth leading
cause of cancer death among men, with an estimate of almost 1.4 million new cases
and 375,000 deaths worldwide in 2020 [28]. In Finland, according to the Finnish
Cancer Registry 2020, prostate cancer was the most common cancer diagnosed in
men, with 5035 new cases, and the second most common cancer to cause cancer-
related deaths with 928 fatalities [29].
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2.3 Grading of prostate cancer
PCa is commonly evaluated from biopsy or prostatectomy specimens. Tissue sam-
ples from the prostate are examined under a microscope, and cells are graded using
the Gleason grading system. This grading system was created by Dr. Donald Gleason
in 1966 based exclusively on the patterns found on prostate tumors [30]. The grade
was defined as the sum of the two most common grade patterns seen in the speci-
men and reported as the Gleason score (GS) ranging from 2 to 10, although scores
lower than six are rarely assigned [30]. However, since its creation, the grading sys-
tem has been slightly modified, and in 2014, the International Society of Urological
Pathology (ISUP) consensus conference proposed a new grading system based on
the original GS. In this new grading system, patterns were arranged in five grade
groups (Table 2) to provide a more accurate stratification of the tumor and improve
PCa prognosis [31].

Table 2. ISUP Gleason Grade Groups [31].

Gleason Grade Group (𝐺𝐺𝐺) Gleason Score
1 3+3
2 3+4
3 4+3
4 4+4, 3+5, 5+3
5 4+5, 5+4, 5+5

In this thesis, the Gleason grade group (𝐺𝐺𝐺)was used when defining the patient-
level ground truth. For our analyses, we dichotomized our sample into two groups:
benign/clinically non-significant (𝐺𝐺𝐺 < 2) vs. clinically significant (𝐺𝐺𝐺 ≥ 2).
In the tumor-based analyses, the tumors were labeled as low if GS = 3+ 3 and high
otherwise.

2.4 Screening and Diagnosis of prostate cancer
Prostate-specific antigen (PSA) and digital rectal examination (DRE) are screening
methods routinely used to estimate the risk of prostate cancer. PSA screening has
been associated with overdiagnosis and overtreatment [32; 33], and DRE alone is
not recommended for early detection due to its low sensitivity [13]. Nevertheless, it
has been said that using PSA along with DRE increases the chance of early detection
of PCa [12].

Usually, PCa is suspected when PSA is elevated and/or with an abnormal DRE,
and these indications often lead to a prostatic biopsy. However, according to the Eu-
ropean Association of Urology (EAU), other considerations need to be taken before
a biopsy. For example, the EAU [32] recommends confirming an elevated PSA using
the same laboratory and under standardized conditions before considering a biopsy.
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In addition, the EAU guidelines presented the free-to-total PSA ratio and a panel of
kallikreins (Prostate Health Index test and 4Kscore) for risk stratification as options
to avoid unnecessary biopsies. Yet it stresses that a formal comparison of these tests
is needed.

Traditionally, after clinical suspicion of PCa, transrectal ultrasound (TRUS) and
systematic biopsies were used to diagnose PCa. The EAU guidelines recommend
taking ten- to 12-core biopsies and reporting each biopsy site individually. Further-
more, the guidelines mention that an ISUP 𝐺𝐺𝐺 should be provided as an overall
grade. Additionally, the EAU guidelines also presented the role of multiparametric
MRI (mpMRI) in PCa diagnosis. Indicating the potential that mpMRI has in reliably
detecting aggressive tumors. EAU suggests that systematic and targeted biopsies
combined may also be better for predicting the overall 𝐺𝐺𝐺. In the included articles
of this thesis, the patient-level ground truth is based on the combination of systematic
and targeted biopsy or radical prostatectomy if available.

2.5 MRI in prostate cancer diagnostics
Multiple studies have shown the potential of mpMRI in detecting clinically signifi-
cant PCa and reducing insignificant PCa findings [16; 34; 35]. As a result, the use
of mpMRI for detecting and stratifying clinically significant PCa has increased [36].
Moreover, the EAU guidelines recommend mpMRI as support for initial PCa diag-
nosis if intermediate or high-risk PCa is suspected [32].

Prostate mpMRI combines information from anatomical and functional MRI se-
quences. The standard prostate mpMRI consists of anatomical T2-weighted (T2W)
imaging, DWI, and dynamic contrast enhancement (DCE) sequences. However, the
role of DCE in the detection of prostate cancer is under debate [36]. Therefore, a
biparametric MRI (bpMRI) consisting of T2W and DWI sequences has become a
more appealing alternative [37].

The prostate imaging reporting and data system (PI-RADS) is a reporting scheme
designed to standardize image acquisition techniques and interpretation of prostate
mpMRI. PI-RADS v2 is widely accepted and used in practice and research, and its
latest update version v2.1 was presented by Turkbey et al. in 2019 [36]. In PI-RADS
v2.1, clinically significant PCa is defined as GS ≥ 7, and/or tumor volume ≥ 0.5

cc, and/or extraprostatic extension [38]. Furthermore, PI-RADS v2.1 uses a 5-point
scale to assess the correlation between the findings in the mpMRI and the presence
of clinically significant PCa as presented in (Table 3) [38].

Alternative to PI-RADS, a five-point Likert system can be used for scoring prostate
MRI. The Likert system is not tied to a structured reporting system; hence it may vary
between studies. Its score reflects the radiologist’s overall impression of clinically
significant PCa suspicion. Furthermore, Likert and PI-RADS, as indicated by Khoo
et al. in [39], differ in their scoring description, level of analysis, and implementa-
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Table 3. PI-RADS v2.1 Assessment Categories [38].

PI-RADS
1 Very low (clinically significant cancer is highly unlikely to be present)
2 Low (clinically significant cancer is unlikely to be present)
3 Intermediate (the presence of clinically significant cancer is equivocal)
4 High (clinically significant cancer is likely to be present)
5 Very high (clinically significant cancer is highly likely to be present)

tion. Particularly, Likert combines non-prespecified imaging, biochemical data, and
reader experience, while PI-RADS evaluation is on pre-specified imaging features in
a defined order. The level of analysis in Likert can be patient or tumor-based, while
in PI-RADS is tumor-based only. PI-RADS implementation is for detection only,
while Likert can be implemented for detection, active surveillance, and recurrence,
among others.

A Likert score (i.e, IMPROD bpMRI Likert score) was included in the analy-
ses involved in this thesis as a qualitative feature, the same as the PI-RADS v2.1
score. This Likert scoring for reporting bpMRI was developed in IMPROD clinical
trial [21]. More precisely, the Likert score was based on a combined evaluation of
T2W, DWI, and the apparent diffusion coefficient (ADC) map. In this Likert system,
the assessment categories for clinically significant PCa are analogous to PI-RADS
categories presented in (Table 3).

One of the objectives of this thesis was to evaluate features extracted from prostate
MRI for predicting and stratifying PCa. Therefore, in the following subsections, as
T2W and DWI sequences are part of the gold standard of prostate MRI, we will
provide more details on these two MRI modalities.

2.5.1 Anatomic MRI of the prostate

The prostatic zonal anatomy is well depicted in T2W images. In the T2W image of
an older man, the PZ zona has a homogeneous high signal intensity, while a younger
man can have diffuse intermediate to low signal intensity [40]. The central gland
(i.e., CZ and TZ) has a lower signal intensity if compared to the PZ. In the case of
prostate cancer, tumors in the PZ appear as an ellipsoid or circular sub-capsular shape
of low signal intensity. While in the central gland, tumors appear as homogeneous
low signal intensity without a capsule. As an example, Figure 1(a) presents a T2W
axial prostate image with a GS 7 tumor in PZ zone.
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Figure 1. Apperance of the peripheral zone (PZ) prostate cancer in a) T2-weighted imaging (T2W
axial), b) Apparent diffusion coefficient map (ADCm5b500), c) Diffusion-weighted imaging b-value
of 1500 (DWI b 1500), d) Diffusion-weighted imaging b-value of 2000 (DWI b 2000), and e)
Histopathology section indicating Gleason score of 3+4. Figure from [40].

2.5.2 Diffusion-weighted imaging (DWI) of prostate

Most clinical MRI scanners can acquire DWI sequences. In DWI, a so-called b-
value determines the strength of diffusion weighting applied. In prostate DWI, each
b-value is gathered individually, the resulting images are called trace DWI images
and are denoted by their b-value with units s/mm2 [40]. Examples of prostate trace
DWI with b-value 1500 and 2000 are shown in Figure 1(c) and (d), respectively.
Several methods for postprocessing trace DWI images exist [20; 41]. One of the
most simple and common is to generate an ADC map by fitting the monoexponential
function:

𝑆(𝑏) = 𝑆0(𝑒
−𝑏𝐴𝐷𝐶𝑚), (1)

where 𝑆(𝑏) is the signal intensity at a particular b-value, 𝑆0 is the signal intensity
at 𝑏 = 0, and 𝐴𝐷𝐶𝑚 is the diffusion coefficient of the monoexponential function.
Other mathematical functions can be used to generate an ADC map from the trace
DWI images, for example, the kurtosis function:

𝑆(𝑏) = 𝑆0(𝑒
−𝑏𝐴𝐷𝐶𝑘+

1

6
𝑏2𝐴𝐷𝐶2

𝑘𝐾), (2)

where 𝑆(𝑏) is the signal intensity at a particular b-value, 𝑆0 is the signal intensity
at 𝑏 = 0, 𝐴𝐷𝐶𝑘 is the diffusion coefficient of the kurtosis function, and 𝐾 is the
kurtosis term. An example of 𝐴𝐷𝐶𝑚 map is presented in Figure 1(b). More about
prostate DWI technical details and limitations can be found in [40; 41].
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2.6 Biomarkers for prostate cancer

A biomarker is an objective and measurable characteristic of biological processes
that may or may not reflect a patient’s well-being and clinical condition [42]. Exam-
ples of biomarkers range from basic measurements like pulse and blood pressure to
more complex laboratory tests. In PCa diagnostics, prostate-specific antigen (PSA)
is the most commonly used biomarker. The PSA (a.k.a. hK3) is a member of the
tissue kallikrein gene family. It is expressed primarily in the prostate and is the ma-
jor protein in the seminal fluid, while also found in lower levels in the bloodstream.
PSA is produced in the prostate by the secretory epithelial cells and secreted directly
to the lumen, where active and inactive PSA is generated [43]. When a portion of
the active PSA enters the circulation, it is rapidly bound by protease inhibitors, while
other PSA forms circulate as free PSA (fPSA). The secretory epithelial cells are bor-
dered by a layer of basal cells and a basement membrane. A feature of PCa is the
disruption of the basal cell layer and the basement membrane, which increases PSA’s
direct access to the peripheral circulation [43], elevating the amount of PSA in the
blood. However, PSA is not a cancer-specific marker, and PSA levels can also be
affected by BPH, medications (e.g., 5-alpha reductase inhibitors), advanced age, in-
fection, inflammation, and prostate volume [44; 45]. Therefore, PSA has shown to
be a poor marker in PCa diagnosis due to its low specificity and lack of threshold for
ruling out the presence of PCa [46]. Consequently, to enhance PSA performance in
PCa diagnosis and reduce unnecessary biopsies, biomarkers such as fPSA, free-to-
total PSA ratio, PSA density (dPSA), human Kallikrein 2 (hK2), and intact PSA are
being investigated [22; 24].

It is of major interest to validate the effectiveness of these biomarkers alone or in
combination to improve the detection of high-risk/SPCa and reduce overtreatment.
Therefore, this thesis investigates a set of biomarkers for PCa detection and char-
acterization by developing and evaluating ML models using data from single-center
and multi-center trials.

2.7 Available datasets

The data used in this doctoral thesis is from an approved study conducted at Turku
University Central Hospital (TYKS). The entire study adhered to the guidelines out-
lined in the Declaration of Helsinki. All the protocols of all sub-studies were ap-
proved by the local ethical committee. The approval numbers of the sub-studies are
as follows: PRO3 80/180/2010, PRODIF 112/180/2012, IMPROD 113/180/2012
(clinicaltrial.gov, identifier NCT01864135), MULTI-IMPROD 180/180/2015 (clin-
icaltrial.gov, identifier NCT02241122). For the collection of fresh tissue samples
from total prostatectomies, the approval numbers are VSSHP ETMK 130/180/2008
and Valvira Dnro 394/05.01.00.06/2009.
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In publications I, II, and III, the dataset included subsets of patients from a single-
center study PRODIF that had enrolled 72 patients with histologically confirmed PCa
by robotic-assisted laparoscopic prostatectomy (RALP). The dataset in Publication
IV is based on the single-center clinical trial IMPROD, which enrolled 175 men aged
18 years or older with a clinical suspicion of PCa based on two repeated PSA mea-
surements ranging from 2.5-20.0 ng/mL and/or abnormal DRE. Previous prostate
surgery, previous diagnosis of PCa, acute prostatitis, or contraindication for MRI
were the exclusion criteria. Publications V is based on the data from IMPROD and
the multi-center trial MULTI-IMPROD. In the MULTI-IMPROD trial, 364 men at
four different institutions were enrolled using the same criteria as in IMPROD. Pub-
lication VI combines data from three clinical trials, PRO3, IMPROD, and MULTI-
IMPROD. In Table 4, a summary of the datasets used in this thesis is presented. More
details are provided in Chapter 4, where each publication is summarized.

Table 4. Summary of Dataset by Publication.

Publication N Features Ground Truth Study

I 67

Whole prostate voxel-
wise 𝐴𝐷𝐶𝑚, 𝐴𝐷𝐶𝑘 and
𝐾 textures arranged in a
grid-like metavoxels

Histologically
confirmed PCa by
RALP

Single-
center

II 62

Textures extracted from
manually delineated PCa
tumors on DWI (𝐴𝐷𝐶𝑚,
𝐴𝐷𝐶𝑘, 𝐾), T2W, and T2

Histologically
confirmed PCa by
RALP

Single-
center

III 20
Voxel-wise textures from
PCa tumors in PZ on
𝐴𝐷𝐶𝑚, 𝐴𝐷𝐶𝑘, and 𝐾

Histologically
confirmed PCa by
RALP

Single-
center

IV 80
Clinical variables, mRNA
transcripts, and MRI qual-
itative findings

Systematic and tar-
geted biopsy find-
ings

Single-
center

V 499
Clinical variables, and
MRI qualitative findings

Systematic and tar-
geted biopsy find-
ings

Multi-
center

VI 543

Clinical variables,
kallikreins, 𝐴𝐷𝐶𝑚 and
T2W radiomics, and MRI
qualitative findings

Systematic and tar-
geted biopsy, or
RALP findings

Multi-
center
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3 Data analysis

3.1 Statistics and machine learning

In data analysis, statistics and ML provide methods for exploring data to discover
useful information. Statistics and ML have many similarities, as they share a com-
mon goal which is to extract knowledge from data (i.e., a sample). However, they
differ in their purpose [47; 48]. In statistics, data modeling is used for finding sig-
nificant relationships among the sample variables to infer about the population or
explain causation. In contrast, ML models are trained to find patterns and relation-
ships in the sample to make accurate predictions on out-of-sample data. Although
statistics is one of the foundations of ML, the relationships learned by an ML model
are not usually aimed to explain causality but to uncover generalizable predictive
patterns. Nevertheless, statistical inference and ML together can be of value in a
research project and point to meaningful conclusions [49].

In statistical modeling, the term model refers to a mathematical representation
of a set of assumptions concerning the process that generated the available data or
sample and which also applies to other samples coming from the same population.
In the case of ML, a model refers to the result obtained when a learning algorithm is
applied to the available data. In both cases, the model captures relationships present
in the data.

Statistical models that are developed for making inferences could also be used
for making predictions. However, their main focus is to understand the mechanisms
that generated the data. Therefore, the model evaluation is not focused on prediction
performance but on the significance and robustness of the model itself. Furthermore,
a set of assumptions are made to apply statistical tests for assessing the model’s
validity. Hence, the model may have low predictive power as its prediction accuracy
on unseen data is not its strength.

In ML, data models are built aiming to make the most accurate out-of-sample pre-
dictions, regardless of understanding the underlying mechanisms that generated the
data. ML justifies the need of having training and testing datasets to find models with
strong prediction capabilities. Therefore, the ML model’s prediction makes it possi-
ble to determine the best course of action (e.g., treatment assignment). However, the
model usually lacks interpretability which makes it difficult to prove relationships
within the data.
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The separation between statistical inference and ML is under debate, as some
methods can be used in both [49]. Nevertheless, in a research project, statistical in-
ference and ML modeling could complement each other [47; 49; 50]. For example,
ML models can capture complex patterns and relationships that could improve ex-
isting statistical models [48]. They can expose new variables related to the output,
which can further be investigated in terms of causality. Moreover, ML models can
indicate the level of predictability, as they have higher prediction accuracy than a
statistical model built for inferences. In the case of a low predictability level, deci-
sions such as collecting additional data or developing a different approach could be
made. In addition, understanding the relevance of the variables and how they affect
prediction could provide insight that also supports decisions. Therefore, inferences
and predictions are necessary for generating, developing, and testing theories. Com-
bining both leads to more thorough data analysis, where conclusions could be more
assertive even in small samples.

3.2 Training a model
In statistics and ML, one can roughly divide the methods for training a model into
the classes of parametric and non-parametric. A parametric model learns from the
data a fixed set of parameters. These parameters are an approximation of the avail-
able data. The number of parameters that the model requires is fixed and known
beforehand. The most common parametric model is linear regression. In the case of
a non-parametric model, the parameters are adjustable and can change depending on
the available data. These models are flexible and with non/fewer assumptions than
parametric models. However, they require more data, and their complexity affects
interpretability. A common non-parametric model is the K-nearest neighbors.

Depending on the study and structure of the available data, a learning algo-
rithm can be chosen for learning a model. ML provides different learning algo-
rithms, which are commonly categorized into supervised, unsupervised, and semi-
supervised learning. These categories are based on the learning method used by the
algorithm. In supervised learning, the algorithm requires an output label for each
sample unit or observation in the data in order to learn the model, opposite to unsu-
pervised learning where labels are not needed, and to semi-supervised where labels
are only available for a small set of the sample.

In this work, due to its nature and the available data, we only employ super-
vised learning. As indicated previously, in supervised learning, each sample unit
has a label or output value; therefore, the sample data would be of the form 𝒟 =

{(x1, 𝑦1) , (x2, 𝑦2) , . . . , (x𝑛, 𝑦𝑛)} where x𝑖 ∈ 𝒳 ⊂ R𝑑 correspond to the vector of
inputs for the 𝑖th sample unit and 𝑦𝑖 ∈ 𝒴 ⊂ R its output. It is worth highlighting
that throughout this thesis, we use the terms features, variables, or independent vari-
ables interchangeably to refer to the inputs. Similarly, we may use the terms labels,
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Figure 2. Basic setup of the learning process in ML.

outputs, or dependent variable when referring to the output variable.

In ML, the basic supervised learning setup (Figure 2) as Abu-Mostafa et al., [51]
presented it, consists of a learning algorithm 𝒜 that uses the dataset 𝒟 to choose a
function or model 𝑓 from a set of candidate ℋ that approximates the unknown target
function 𝑔 : 𝒳 → 𝒴 , where 𝒳 is the input space and 𝒴 is the output space. All
learning algorithms considered in this thesis find the model 𝑓 among candidates by
minimizing a specific objective function. The objective function, in turn, typically
measures how well the candidates perform on the training data, but it may also incor-
porate some additional measures of hypothesis complexity, in accordance with the
idea of simple models generalizing better outside the training set than complex ones.

A popular supervised learning algorithm is linear regression. Linear regression
performs a regression task that searches for a linear relationship between the inde-
pendent and dependent variables. The model is parametric and takes the following
form:

𝑓(x) = 𝜃0 +

𝑑∑︁
𝑗=1

𝑥𝑗𝜃𝑗 , (3)

where x ∈ R𝑑 is a vector of inputs with 𝑑-dimensions, 𝜃0 is the intercept or bias term
and 𝜃𝑗 are the model parameters or coefficients.

To find the model 𝑓 ≈ 𝑔 with optimal parameters 𝜃𝜃𝜃 = (𝜃0, 𝜃1, ..., 𝜃𝑑) the least
squares method is commonly used. The objective function which is minimized is the
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sum of squared errors (SSE) defined as:

𝑆𝑆𝐸 =

𝑛∑︁
𝑖=1

(𝑦𝑖 − 𝑓(𝑥𝑖, 𝜃))
2

=

𝑛∑︁
𝑖=1

(𝑦𝑖 − 𝜃0 −
𝑑∑︁

𝑗=1

𝑥𝑖𝑗𝜃𝑗)
2,

(4)

where each x𝑖 = (𝑥𝑖1, 𝑥𝑖2, ..., 𝑥𝑖𝑑) is the vector of inputs measured for the 𝑖th sample
unit, and 𝜃 = (𝜃0, 𝜃1, 𝜃2, ..., 𝜃𝑑) ∈ R𝑑 is a vector of parameters. Mathematically, we
take the optimal parameters for 𝑓 to be 𝜃𝜃𝜃 = (X𝑇X)−1X𝑇 y where X is the 𝑛×(𝑑+1)

matrix with each row being a vector of inputs (a 1 is in the first position for the
intercept or bias term) and y the 𝑛-vector of real-valued outputs.

Logistic regression is another supervised learning algorithm that learns a linear
model, but to solve a classification problem. It is commonly used when the output is
formed by two classes (i.e., 1/0, true/false, yes/no, etc.). Like linear regression, the
goal is to find the optimal set of parameters 𝜃𝜃𝜃 so that 𝑓 ≈ 𝑔. However, in logistic
regression, there is a functional relationship between the probability of the output
class and the inputs. If we take as an example a binary classification with output
𝑦 = {0, 1}, the function that describes this relationship is:

𝑃 (𝑦 = 1|x) = 1

1 + 𝑒−𝑓(x)
=

𝑒𝑓(x)

1 + 𝑒𝑓(x)
∈ [0, 1], (5)

where 𝑓(x) = 𝜃0 +
∑︀𝑑

𝑗=1 𝑥𝑗𝜃𝑗 . By definition, all probabilities have to sum up to 1.
Hence, the probability of 𝑦 = 0 is 𝑃 (𝑦 = 0|x) = 1− 𝑃 (𝑦 = 1|x)).

K-nearest neighbors (KNN) is a non-parametric supervised learning algorithm
that can be used to solve regression or classification problems. It consists of making
a prediction for a new observation using its K-closest observations in the sample.
For regression problems, where the outputs are real values, the mean or median of
the K-closest neighbors is used as the predicted value. When KNN is used for clas-
sification, the class with the majority of votes from the K-closest neighbors is the
predicted class. A distance metric (i.e., Euclidean, Manhattan, etc.) needs to be cho-
sen to determine the proximity of the instances. In addition, the optimal number of
neighbors (K) also needs to be defined before using KNN.

As previously stated, when training a model, we aim to find the 𝑓 that best ap-
proximates 𝑔. However, the available data 𝒟 used in the training process usually
contains noise. This noise is random and, in most cases, related to the physical mea-
suring of the data. In the training process, the model may capture irrelevant patterns
caused by the noise, misleading and harming the model’s inference and prediction
performance. Furthermore, there are cases where some or many input variables have
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no association with the outputs, including those irrelevant variables in the model adds
unnecessary complexity and affects interpretability. Therefore, a set of techniques
are available to help with these issues and preserve the generalization capabilities
of the model. In the following subsections, feature selection and regularization are
presented as examples of these techniques.

3.2.1 Feature selection

In many practical applications, the available data 𝒟 may contain redundant, irrele-
vant, or harmful features. Identifying and removing these features help to solve high
dimensionality problems, avoid fitting noisy features, and lower the risk of making
a false discovery. Furthermore, selecting a small set of features that have a strong
association with the output variable reduces the number of variables that need to be
collected and potentially improves prediction accuracy.

In this work, we focus on two categories of feature selection methods: filters
and wrappers. Filters methods are generally used, as a preprocessing step, as they
select features based on their predictive power or their correlation with the output
variable. More precisely, filters evaluate the importance of the features outside a
model, providing a ranking of the features based on their individual score obtained
with a measure (e.g., mutual information, Pearson’s correlation coefficient, AUC).
In the case of wrapper methods, an algorithm searches the space of feature subsets
with the purpose of finding a set that increases prediction accuracy or reduces the
complexity of the model. Classical approaches of wrappers are backward selection
and forward selection. In these approaches, the search algorithm greedily adds or re-
moves features to a model to improve its prediction accuracy. The difference between
the approaches is that backward selection starts with all the features, while forward
selection starts with no features. Descriptions of these algorithms are available in
many books and articles [52; 53; 54; 7].

In the included publications I, II, and VI, feature selection based on filters or
wrappers were applied in order to reduce dimensionality by removing irrelevant or
noisy features. Additionally, combinations of filters and wrappers were used to im-
prove prediction performance as well as interpretability.

3.2.2 Regularization

Constraining the model training process via penalization limits the model from cap-
turing irrelevant associations or patterns in the data that may have been caused by
noise. Further, it helps to avoid overfitting the training data reducing the model
variability. As explained earlier, in linear regression, the fitting procedure involves
choosing the coefficients that minimize SSE (Equation 4). This process adjusts the
coefficients based on the training data, which in the case of a noisy training dataset
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results in estimated coefficients that may fail to predict well on new data. There-
fore, restraining the learning process by shrinking or regularizing the coefficients
toward zero has the effect of reducing variance, and thus increasing the model’s gen-
eralization capabilities. Two well-known methods for regularizing the regression
coefficients are ridge regression and lasso.

Ridge regression, also known as regularized least-squares (RLS), is a method that
minimizes a penalized version of the least squared function [55; 56]. Particularly, the
ridge regression coefficients are estimated by minimizing the function:

𝑛∑︁
𝑖=1

(𝑦𝑖 − 𝜃0 −
𝑑∑︁

𝑗=1

𝑥𝑖𝑗𝜃𝑗)
2 + 𝜆

𝑑∑︁
𝑗=1

𝜃2𝑗 = 𝑆𝑆𝐸 + 𝜆

𝑑∑︁
𝑗=1

𝜃2𝑗 , (6)

where the term 𝜆
∑︀𝑑

𝑗=1 𝜃
2
𝑗 , known as the shrinkage penalty, becomes small when

𝜃1, ..., 𝜃𝑑 are close to zero. This penalty has the effect of only allowing the coefficient
estimates to become large if there is a proportional reduction in SSE. The parameter
𝜆 ≥ 0 is a hyperparameter that determines the amount of penalty to infringe on
the coefficient estimates, and it is known as the regularization parameter. If 𝜆 = 0,
ridge regression produces the same estimates as least squares, but as 𝜆 → ∞ the
estimates will approach zero. Even though some of the coefficient estimates might
become considerably small they will not be set to zero. On the other hand, the least
absolute shrinkage and selection operator method known as lasso shrinks some of
the coefficients while setting others to zero, thus performing feature selection [57; 8].
The lasso method has a similar formulation as ridge regression. The only difference
is that in the lasso the penalty term is replaced by 𝜆

∑︀𝑑
𝑗=1|𝜃𝑗 |, where

∑︀𝑑
𝑗=1|𝜃𝑗 | is

the 𝑙1 norm. The 𝑙1 norm has the effect of making some estimates to be exactly zero
when 𝜆 is sufficiently large. Therefore, the lasso method performs feature selection
while fitting the model. As a result, the generated model by lasso is easier to interpret
than the one produced by ridge regression. As indicated 𝜆 is a hyperparameter that
can greatly impact the coefficient estimates. For that reason, the value of 𝜆 should
be carefully selected, for example, by using a resampling technique such as cross-
validation, especially in the case of a small sample size.

3.3 Evaluating a model
A methodology for assessing a model’s performance is essential for understanding
its strengths and weaknesses. For a model to be effective, its results should be mea-
surable, comparable, and reproducible across different samples. Therefore, the per-
formance evaluation must show how well the model generalizes to unseen data.

Classification and regression learning algorithms are highly adaptable, which
leads them to learn patterns that are only present in the available data and may not be
reproducible. In other words, they can easily overfit the training dataset; hence they
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may learn the noise and variability rather than the relationship between variables. It
is commonly believed that a model that overfits the training data produces unreliable
inferences and predictions. Therefore, in order to determine a model’s generalization
capabilities, a prediction performance evaluation has to be carried out on an indepen-
dent test set or by using a resampling technique. In addition, an evaluation metric to
indicate the level of prediction accuracy is needed.

3.3.1 Quantitative metrics

Many quantitative metrics exist for evaluating the prediction performance of a model.
For example, there are metrics for evaluating performance when the model predic-
tion is numerical and when it is categorical. A commonly used metric for numeric
prediction is the mean squared error (MSE). The MSE of a model 𝑓 is based on the
model residuals, which are the deviations between the outputs and the predictions.
It is always a positive value that decreases when the predictions approach the true
values. More precisely, MSE is computed by the following formula:

𝑀𝑆𝐸 =
1

𝑛

𝑛∑︁
𝑖=1

(𝑦𝑖 − 𝑓(𝑥𝑖))
2. (7)

In the case of a model predicting a class or the probability of belonging to a
class, there are numerous metrics for measuring its performance. For example, if
the output corresponds to two classes (i.e., positive class and negative class), a 2×2
contingency table or confusion matrix (Figure 3) is commonly used to evaluate the
model. This table or matrix contains the counts of the correct predicted values and
the errors made by the model. The four outcomes presented in the confusion matrix
are true positive (TP), false positive (FP), false negative (FN), and true negative (TN).
Moreover, metrics such as accuracy, sensitivity, specificity, precision, recall, and F1
score, among others, can be derived from those four outcomes. In this work, we
mainly focus on ROC curve analysis which results from the TPR = 𝑇𝑃

𝑇𝑃+𝐹𝑁 and
FPR= 𝐹𝑃

𝐹𝑃+𝑇𝑁 outcomes. Therefore, a more detailed account of ROC curve analysis
is given in the following section.

3.3.2 Receiver operative characteristic (ROC) analysis

A ROC curve analysis is based on the trade-off between TPR (i.e., sensitivity) and
FPR (i.e., 1- specificity). To compute TPR and FPR, a decision criterion or cut-off
point for positivity is needed, making these metrics dependent on the chosen cut-
off point. As an alternative, the ROC curve shows the TPR and FPR trade-off over
all possible cut-off points (Figure 4). Furthermore, the metrics derived from the
ROC curve, such as the AUC, do not depend on the prevalence of a condition or
cut-off point [58]. In the ROC space, a curve that represents a perfect classifier is
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Figure 3. A 2× 2 confusion matrix.

the one with a right angle at (0, 1), which means that there is a cut-off point that
perfectly separates positives from negatives and the AUC of that classifier is equal to
1. Similarly, a classifier that makes random predictions is represented by a diagonal
line from (0, 0) to (1, 1), and the AUC is equal to 0.5. Additional advantages of
ROC curves are that several classifiers trained on the same sample can be compared
simultaneously at different cut-off points. By visualizing the curve, the sensitivity at
a given specificity can be easily obtained.

Regarding the AUC, different approaches for computing it exists [59; 60; 61].
One instance is to estimate the AUC from the ROC curve using the trapezoid rule.
An equivalent way is to calculate the Wilcoxon-Mann-Whitney (WMW) statistic by
averaging the Heaviside step function scores obtained from all possible comparisons
between the pairs of positive-negative data points. The estimated AUC of a function
𝐴(𝑓) in a finite sample 𝒟 using the WMW statistic approach can be formalized as
follows:

𝐴(𝑓) =
1

|𝒟+||𝒟−|
∑︁
𝑖∈𝒟+

∑︁
𝑗∈𝒟−

𝐻 (𝑓(𝑖)− 𝑓(𝑗)) , (8)

where

𝐻(𝑎) =

⎧⎨⎩
1, 𝑖𝑓 𝑎 > 0

0.5, 𝑖𝑓 𝑎 = 0

0, 𝑖𝑓 𝑎 < 0

is the Heaviside step function, and 𝒟+ ⊂ 𝒟 and 𝒟− ⊂ 𝒟 are the positives and
negatives, respectively.
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3.4 Selecting a model
A set of models can be derived from a sample using different ML algorithms, train-
ing with different hyperparameters, or performing feature selection. Some of those
models might be better than others for a given task. Therefore, selecting the most ap-
propriate model for reliable and reproducible statistical inference, prediction, or both
from a set of candidates is a crucial step in data analysis. Furthermore, the model
selection process depends on the objectives or requirements of the study. These re-
quirements might be interpretability, determining feature importance, or producing
accurate predictions.

The process of selecting a model involves defining the task that the model is
intended to solve, having a set of model candidates for the task, training the models
in the available sample data, evaluating the trained models, and selecting the best
model according to the evaluation results. Figure 2 can also be interpreted as the
model selection process, where the unknown target function is the task to be solved,
the sample data is the available data for training the models, the hypothesis set has
the model candidates, and the learning algorithm is in charge of training and finding
the best model for the task, which results in the final hypothesis or best model.

Particularly in prediction, the aim of model selection is to find the model with the
lowest out-of-sample prediction error from a set of candidates. In order to obtain re-
liable model performance estimates, an appropriate selection technique matching the
aim is necessary. It is well-known that biased estimates emerge if the selection and
the evaluation are not performed in separate datasets. Therefore, when the amount
of available data is small, techniques based on resampling can aid the selection and
evaluation process by maximizing the use of the available data and providing addi-
tional information about the fitted models without requiring the model candidates
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to be parametric. In the next section, we provide an overview of resampling tech-
niques used in this thesis (i.e., cross-validation and permutation test), and introduce
our proposed tournament cross-validation method.

3.5 Resampling techniques
Resampling techniques have become an essential tool in statistics and ML, particu-
larly in analysis where the sample size is small and fail the parametric assumptions
[6; 8; 62]. They are methods that involve resampling from a given sample to draw sta-
tistical inferences or assess the stability of an estimate. Moreover, these techniques
are commonly used for estimating the bias or variance of a statistic or estimator,
assessing prediction error, testing statistical hypotheses of an estimated parameter,
among other tasks. It is well-known that these techniques are computationally de-
manding, as they require computing the same statistic or estimator multiple times
using different subsets of the sample. However, due to the latest advances in compu-
tation power, these techniques are now more feasible in practice.

In this work, we focus on two resampling techniques: cross-validation and per-
mutation test. These resampling approaches do not assume a specific underlying
distribution of the observations; thus, they are non-parametric techniques. However,
they require that the observations in the sample are independent and identically dis-
tributed (IID) or exchangeable. The IID property indicates that the observations are
chosen randomly from the same probability distribution. On the other hand, ex-
changeability indicates that the observations can be rearranged without affecting the
underlying probability distribution.

3.5.1 Cross-validation

As explained earlier, proper model selection and performance evaluation are criti-
cal for data analysis and machine learning. Therefore, a resampling technique such
as cross-validation is crucial to estimate the out-of-sample error associated with an
estimator or select the model complexity when the sample size is limited. Cross-
validation (CV) involves splitting the sample data and using different splits for train-
ing and testing the model when performing a model assessment or complexity selec-
tion. Several CV methods exist, and they differ in the number of splits performed
on the available data and the aggregation or summarization of the CV results. For
example, the hold-out CV is the most basic CV approach. It consists of randomly
splitting the data into two sets: training and test sets. In the case of estimating model
performance, the training set is used to fit a model, while the test set is used to esti-
mate the efficacy of the model. The K-fold is one of the most commonly used CV. In
this CV, the data is divided into K mutually disjoint sets of approximately equal size,
which are used as test sets, one at a time, while the remaining K-1 sets are used as
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the training set. The model predictions on the K test sets are summarized to estimate
the model’s performance (e.g., with mean and standard deviation). A variation of the
K-fold CV is the popular leave-one-out cross-validation (LOOCV) where K is equal
to the sample size (𝑛). Here, each point is held-out at a time as a test set, and the
final performance measure is computed from the individual held-out predictions.

The number of splits or folds (K) in a CV is associated with the trade-off of
underestimating or overestimating the out-of-sample error of the model trained on
the whole dataset. For example, LOOCV uses training sets with 𝑛 − 1 data points,
almost as many data points as using the entire available data, making LOOCV an
almost unbiased estimator of the model’s true performance. In contrast, if a large
portion of the available data is set aside as a test set (e.g., hold-out CV) the model’s
out-of-sample error tends to be overestimated. Here, the training set used to fit the
model has much fewer data points than the whole available data, which increases the
bias of the estimator. The trade-off between bias and variance associated with the
size of K has been studied and explained in [52; 51; 8]. An advantage that splits of
larger size (i.e, K < 𝑛) have is that they are less computationally demanding than,
for example, LOOCV. However, the size and the class proportion in the sample may
constrain the size of the splits.

Pooling and averaging are two distinct alternatives for aggregating CV results. In
pooling, all predictions are grouped as a set, and a performance measure is computed
over the predictions set. In contrast, when using averaging, a performance measure is
computed for each split in the CV, then all the measurements are averaged as the final
result. Both aggregations were presented by Bradley [63] when he studied the use of
AUC in evaluating ML algorithms. A noticeable difference between both strategies
is that in pooling the predictions from different models are processed together, while
in averaging are processed separately which may lead to different AUC.

In K-fold, both aggregation strategies can be used to estimate the AUC. In the
pooled K-fold, the AUC is estimated from the set of all the predictions. While in
averaged K-fold, an AUC is computed for each test fold, and the final AUC is the
average of these fold-wise estimates. In the case of LOOCV, each data point consti-
tutes its test fold, and the AUC is estimated using the pooling approach. Estimating
the AUC with the pooling approach is highly risky, as predictions may originate from
completely different models, producing biased AUC estimates. Furthermore, several
studies performing experiments on simulated and real-world data have shown that
both pooled K-fold and LOOCV AUC estimate suffers from high negative bias com-
pared to averaging [64; 65; 66; 67]. For that reason, a CV method that combines the
strengths of pooling and averaging, the leave-pair-out cross-validation (LPOCV) for
AUC estimation, was proposed [66].

In LPOCV, each pair of positive-negative data points are held-out as a test set,
and the CV AUC is computed by averaging over all these pairs’ predictions, as in
equation (8). This ensures that only pairs from the same CV round are compared,
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while it makes maximal use of the available training data. The LPOCV estimate is
formally defined as

𝐴𝐿𝑃𝑂𝐶𝑉 (𝑓) =
1

|𝒟+||𝒟−|
∑︁
𝑖∈𝒟+

∑︁
𝑗∈𝒟−

𝐻
(︀
𝑓𝒟∖{𝑖,𝑗}(𝑖)− 𝑓𝒟∖{𝑖,𝑗}(𝑗)

)︀
,

where 𝑓𝒟∖{𝑖,𝑗} is the model trained without the 𝑖-th and 𝑗-th data points.
Although LPOCV produces a more reliable AUC estimate than the pooling ver-

sion of K-fold and LOOCV, it fails to provide a ranking for each data point predic-
tion, which is needed for a ROC analysis. Therefore, in publication III the tourna-
ment leave-pair-out cross-validation (TLPOCV) is proposed as an alternative.

3.5.2 Tournament cross-validation for ROC analysis

A ROC analysis is based on a rank of the data points, where higher ranks are likely
to belong to the positive class. In a CV, this is only possible if each data point
gets a corresponding model’s prediction with a meaningful rank (e.g., probability
of belonging to the positive class). As mentioned in the previous section, LPOCV
produces an almost unbiased AUC but fails to provide the required ranking for ROC
analysis. For that reason, we proposed TLPOCV which is an LPOCV variant that
produces a ranking of the model’s predictions by combining the method of paired
comparisons [68] and round robin tournament theory [69].

In TLPOCV, all possible pairs of data points are held out as test data at a time,
including those pairs that belong to the same class. Hence, the number of rounds
or paired comparisons carried out is 𝑛(𝑛 − 1)/2. Then we considered a tournament
graph which is a complete asymmetric directed graph. The tournament graph struc-
ture is based on a round-robin competition where participants (i.e., vertices) play
each other only once and accumulate points if they win or none otherwise. In the
TLPOCV tournament graph, the vertices are the data points, and the edge direction
is determined by the predictions’ order produced in the train-test split with test set
{𝑖, 𝑗}. For example, the direction connecting data points 𝑖 and 𝑗 goes from the for-
mer to the latter if 𝑓𝒟∖{𝑖,𝑗}(𝑖) > 𝑓𝒟∖{𝑖,𝑗}(𝑗). From the graph, we can compute a
score for each data point by counting its out-going edges or by the formula:

𝑆(𝑖) =

𝑛∑︁
𝑗=1

𝐻
(︀
𝑓𝒟∖{𝑖,𝑗}(𝑖)− 𝑓𝒟∖{𝑖,𝑗}(𝑗)

)︀
.

These scores can then be used to estimate the TLPOCV AUC through equation
(8). Moreover, by ordering the data points according to their score or number of wins,
we obtain the TLPOCV ranking. It has been shown that tournament scores produce
a good ranking of the data [70; 71]. Therefore, ROC analysis can be performed with
the TLPOCV ranking by using different cutoff points to compute corresponding TPR
and FPR.
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An issue that might arise in a tournament is inconsistency. This inconsistency
emerges in a tournament graph as a cycle. Therefore, it is said that a tournament
graph is inconsistent if it has at least one circular triad. In TLPOCV, inconsistency
emerges when the learning algorithm is unstable on the sample, such that for data
points ℎ, 𝑖, and 𝑗 the following holds:

𝑓𝒟∖{ℎ,𝑖}(ℎ) < 𝑓𝒟{ℎ,𝑖}(𝑖)

𝑓𝒟∖{𝑖,𝑗}(𝑖) < 𝑓𝒟∖{𝑖,𝑗}(𝑗)

𝑓𝒟∖{ℎ,𝑗}(ℎ) > 𝑓𝒟∖{ℎ,𝑗}(𝑗) .

From the above situation, we can see that in each of the cases the training data used
for learning the function differ by one data point. This difference is enough to pro-
duce three functions so different from each other that they create a circular triad. The
combination of the available data and the learning algorithm determines how stable
is the learning algorithm.

In a tournament graph, the level of inconsistency can be measured by counting
the number of circular triads [68; 69; 72]. For example, Kendall and Babington
Smith [68] proposed a coefficient of consistency (𝜁) for a given complete directed
graph, where 0 ≤ 𝜁 ≤ 1. If there are no circular triads in the graph 𝜁 = 1, as the
number of circular triads increases 𝜁 tends to zero, and 𝜁 = 0 indicates that the graph
has the maximum number of possible circular triads.

If the tournament in TLPOCV is consistent, meaning there are no circular tri-
ads in the graph, it generates the strict total order of the data points. Consequently,
TLPOCV produces the exact AUC estimate and shares the same unbiasedness prop-
erty as LPO. However, depending on the severity of TLPOCV tournament inconsis-
tency, both AUCs may drift apart. In publication III, through experiments, we study
to what extent this inconsistency affects TLPOCV AUC reliability.

3.5.3 Nested resampling

In addition to model evaluation, CV is also commonly used for model complexity
selection. For example, to choose the regularization parameter or to perform feature
selection. However, it has been found that using a CV to estimate the out-of-sample
error of a model that has been optimized with CV on the same sample significantly
biased the estimate [73]. Therefore, to estimate the out-of-sample error correctly,
properly defined CV steps should be used when tuning hyperparameters and esti-
mating performance. For instance, the out-of-sample error should be estimated on a
large sample independent from the one used in hyperparameter or feature selection.
In case of a small sample size, nested resampling, also known as a nested CV, can be
used. Nested resampling consists of a series of train/validation/test sets splits, where
the train/validation split constitutes an inner loop for tuning parameters and selecting
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the optimal model, and an outer loop uses the test set to estimate the selected model
out-of-sample error. If the size of the test set in the outer loop is not too large, it gives
an almost unbiased estimate of the out-of-sample error.

3.5.4 Permutation tests

To estimate the statistical significance of an observed statistic, a permutation test
can be carried out. This test is a resampling technique that obtains the empirical
distribution of the observed statistic under the null hypothesis by calculating all pos-
sible values of the statistic over the possible rearrangements of the observations in
the available sample. As Good P. in [6] presented, a standard permutation test is a
five-step procedure:

1. Analyzed the problem—identify the null and the alternative hypothesis.

2. Choose a test statistic that best differentiates the alternative from the null hy-
pothesis.

3. Compute the test statistic for the original sample (e.g., using the original label-
ing of the observations).

4. Rearrange the observations (e.g., by randomly shuffling the labels), then com-
pute the test statistic again. Repeat until obtaining the distribution of the test
statistic for all possible rearrangements or for a large random sample of the
rearrangements.

5. Define the significant level for the test and use the obtained distribution in the
previous step as a guide to reject or accept the null hypothesis.

For small samples, a permutation test that examines all possible rearrangements
is a viable option. However, as the sample size gets larger is more practical and
less computationally expensive to utilize the Monte Carlo method, which uses the
computer to generate a total number of random rearrangements.

Although permutation tests do not require the IID assumption, the observations in
the sample must be exchangeable under the null hypothesis. The exchangeability as-
sumption implies that rearranging the observations should not affect their underlying
joint distribution. Formally, a sequence of finite random variables {𝑋1, 𝑋2, . . . , 𝑋𝑁}
is exchangeable if the following holds:

𝑃 (𝑋1, 𝑋2, . . . , 𝑋𝑁 ) = 𝑃 (𝑋𝜋(1), 𝑋𝜋(2), . . . , 𝑋𝜋(𝑁)),

where 𝜋 is any permutation of the indices {1, 2, . . . , 𝑁}.
A permutation test can be used when assessing the statistical significance of a

model or classifier’s accuracy [74]. Here, the classifier’s test error is the statistic
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used to measure the difference between two populations. In every iteration of the
permutation procedure, this statistic can be estimated from an independent test set or
using cross-validation. In this scenario, the null hypothesis states that we cannot train
a classifier that learns the relationship between the variables and the labels, while the
alternative is that a classifier can be trained with some accuracy.

In this work, publication IV utilizes a permutation test to assess if the prediction
performance of a model trained with only clinical variables could be increased by
including an additional set of biomarkers to the model.
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4 Research studies and results

4.1 Summary of the publications
In this section, we will go through the six original publications included in Part II
of this thesis. For each publication, we provide a summary consisting of the study
objectives, motivation, material and methods, results, conclusions, and contribution
to the research questions presented in Section 1.3. We also provide the author’s
contribution to the publication.

4.1.1 Publication I

Diffusion-Weighted Imaging of Prostate Cancer: Prediction of Cancer using Texture
Features from Parametric Maps of the Monoexponential and Kurtosis functions.

Objectives: This study introduced a method for the detection of PCa using texture
features extracted from DWI parametric maps with a grid approach. The primary
objective was to develop an automated system capable of accurately predicting PCa,
addressing the challenges associated with prostate DWI evaluation.

Motivation: DWI has demonstrated high diagnostic accuracy for PCa detection.
However, quantifying and evaluating prostate DWI can be time-consuming and reader-
dependent. This research was motivated by the desire to create an efficient and re-
liable PCa detection system using texture features extracted from DWI parametric
maps.

Materials and Methods: A dataset consisting of 67 patients with histologically con-
firmed PCa was utilized, with DWI datasets obtained using 12 different b-values
ranging from 0 to 2000, and the acquisition time was 8 min 48 seconds. The DWI
datasets were fitted using the monoexponential (1) and the kurtosis (2) functions,
resulting in three parametric maps: 𝐴𝐷𝐶𝑚, 𝐴𝐷𝐶𝑘, and 𝐾. Prostate and tumor
delineations were performed using whole-mount prostatectomy sections as ground
truth. Texture features, including Gray-Level Co-Occurrence Matrix (GLCM), Lo-
cal Binary Patterns (LBP), Gabor filter, Haar transform, and Hu moments, were ex-
tracted from the three parametric maps. Grid-wise statistical features from 𝐴𝐷𝐶𝑚,
𝐴𝐷𝐶𝑘, and 𝐾 parametric maps were also calculated. In order to extract the features,

29



Ileana Montoya Perez

Figure 5. Method pipeline for classifying prostate cubes based on selected texture features
extracted from the DWI parametric maps (𝐴𝐷𝐶𝑚, 𝐴𝐷𝐶𝑘, and 𝐾). Figure from publication I [75].
Copyright ©2016, IEEE.

parametric and texture maps were partitioned into equal-sized cuboid regions. The
feature was the median value of the voxels inside each cube. The cubes contain-
ing 50% or more prostate voxels were considered and marked as cancerous if 10%
or more voxels were segmented as part of a tumor or otherwise marked as benign.
A total of 12613 prostate cubes and 893 features from each parametric map were
obtained to examine the classification performance of features from DWI datasets.
Regularized logistic regression was the learning algorithm used to build models for
classifying cancerous and benign prostate cubes. The algorithm was applied with
two regularization techniques (i.e., 𝑙1 and 𝑙2 norm) to compare their performance.
Due to a large number of extracted features and to find a subset of relevant features,
two feature selection methods were considered; a filter method based on features’
AUCs and a wrapper with a backward selection strategy. In both selection methods,
5% of the total features were selected based on their prediction performance. Leave-
subject-out cross-validation (LSOCV) was performed to evaluate the performance
of the classifiers. The LSOCV consisted of rounds in which cubes associated with
a single patient were held out as test data while the remaining cubes were used for
training a model to make predictions on the test data. An AUC was calculated for
each patient, and the classifier’s overall performance was the average of these AUCs.
The feature selection was performed as part of the LSOCV. Figure 5 presents the
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method pipeline, where selecting the features and training the model are performed
using the training data.

Results: The results of the model evaluation process showed that the highest predic-
tion performance (LSOCV AUC = 0.85) was obtained by backward feature selection
when combining the feature sets from 𝐴𝐷𝐶𝑚, 𝐴𝐷𝐶𝑘, and 𝐾. Moreover, linear
classifiers trained with features extracted from each of the DWI parametric maps us-
ing the grid approach resulted in LSOCV AUCs ranging from 0.76 to 0.85, showing
the method’s potential in differentiating cancerous tissue from benign tissue.

Conclusions: The presented method demonstrates a promising approach to auto-
mated PCa detection using DWI parametric maps and advanced feature extraction
techniques. The results indicate that this system can effectively differentiate can-
cerous and benign prostate cubes. Feature selection methods contribute to model
simplification, and LSOCV provides a robust assessment of classifier performance
on unseen subjects.

Contribution to the research question: This publication contributes to the research
question (RQ1) by providing quantitative results on the performance of features ex-
tracted from DWI parametric maps for predicting PCa.

Author’s contribution

Preprocessing and merging the datasets, performing the modeling and evaluation of
the classifiers, visualization, and writing the manuscript. The modeling and the eval-
uation were implemented using self-made Python code and the scikit-learn libraries.

4.1.2 Publication II

Radiomics and Machine Learning of Multisequence Multiparametric Prostate MRI:
Towards Improved Non-invasive Prostate Cancer Characterization.

Objectives: The aim of this work was to develop and validate a classification system
for predicting PCa Gleason score using radiomic features extracted from three MRI
modalities. It explores the combination of imaging modalities and texture extraction
methods to determine which ones can effectively assess PCa tumor aggressiveness.

Motivation: PCa is a prevalent and heterogeneous disease, and Gleason score, a
common grading system for PCa, is a critical factor for assessing tumor patterns and
indicating the level of aggressiveness. Radiomics provides a promising approach
to non-invasively assess PCa characteristics, but the optimal combination of MRI
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modalities and texture extraction methods for accurate classification remains unclear.
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Figure 6. The study pipeline. The T2-weighted images (𝑇2𝑊 ) are standardized, the
monoexponential and kurtosis functions are fitted to the diffusion weighted images (DWI), and the
T2-mapping (𝑇2) relaxation values are obtained using two parameters monoexponential function.
Textures are extracted subsequently. The top 1% of the features are selected by AUC. A
regularized logistic regression model is fitted to the selected features and is used to predict the
tumor’s Gleason score class. Figure and caption from publication II [76].

Materials and Methods: The study utilized MRI datasets comprising of T2W, DWI
(12 b-values, 0-2000 s/mm2), and T2 of 62 patients with histologically confirmed
PCa. Tumors were manually delineated on each MRI modality using anatomical
landmarks to align the modality to the whole-mount prostatectomy section. The MRI
modalities were processed before radiomic feature extraction. T2W was standard-
ized, DWI datasets were fitted with the monoexponential and the kurtosis functions
(i.e., 𝐴𝐷𝐶𝑚, 𝐴𝐷𝐶𝑘, and 𝐾 parametric maps were obtained), and T2 relaxation val-
ues were calculated using a monoexponential function. Texture extraction methods,
including GLCM, LBP, Gabor filter, Haar wavelet, Sobel, Hu, and Zernike moments,
were applied with a ”sliding window” algorithm to obtain 2D texture feature maps
per slice from the manually delineated PCa tumor. The resulting texture maps were
averaged as a tumor-wise median feature. Statistical features were computed for
each MRI image type. Various window sizes and parameter combinations yield a
total of 1281 features per DWI parametric maps and 1631 per other modalities (i.e.,
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T2W and T2). Figure 6 illustrates a comprehensive study pipeline. The final dataset
consisted of 100 PCa tumors (i.e., 20 low GS and 80 high GS) and a total of 7015
features when combining all the feature sets.
Logistic regression with either 𝑙1 or 𝑙2 regularization was used to train classifiers for
low vs. high GS classification. The predictive performance of the classifiers was
estimated by a nested CV strategy, which consisted of an outer LPOCV and an inner
10-fold CV for features and hyperparameter selection. Here, an LPOCV variation
was used; instead of negative-positive pairs, every possible pair of data points was
used as test data while the remaining data formed the training set for building a model
to classify the test data. In each round of the LPOCV, a filter-based feature selection
(i.e., selects approx. 1% of all included features based on their AUC) and a regular-
ization parameter selection were performed using the training set. Specifically, the
whole training set was used for feature selection and then transformed accordingly to
select the optimum regularization parameter value over a set of options using a 10-
fold CV. The model for classifying the two data points held out during the LPOCV
round was trained with the selected features and the optimal hyperparameter.

Results: Texture methods ranking in the best 1% per modality are presented in Ta-
ble 5. The highest classification performance, with an LPOCV AUC of 0.88, was
achieved by the 𝑙1 regularized logistic regression model with 1% selected features
from the union of T2W, 𝐴𝐷𝐶𝑚, and K feature sets. T2 mapping features contributed
minimally to the classification performance. ROC curves for the model and the high-
est AUC statistical and texture features per modality are shown in Figure 7.

Conclusions: This research successfully developed and validated a classification sys-
tem for characterizing prostate tumors by distinguishing between low and high Glea-
son scores using radiomic features from multiple MRI modalities. The combination
of T2W, 𝐴𝐷𝐶𝑚, and K features, selected through a rigorous feature selection and
regularization process, yielded the highest classification performance. This approach
holds promise for improving the non-invasive assessment of PCa aggressiveness, po-
tentially aiding in treatment decision-making and patient outcomes.

Table 5. Textures methods ranked in the best 1%. Table from publication II [76].

Image type Window sizes Texture extraction method AUC range
T2W 27 MBB-GLCM, GLCM, Gabor 0.71-0.84
𝐴𝐷𝐶𝑚 11 Gabor 0.79-0.80
𝐴𝐷𝐶𝑘 11 Gabor 0.79-0.80
𝐾 7, 9 Zernike, Gabor 0.78-0.83

T2 15, 19, 27, 31, 35
Zernike, Hu, MBB-GLCM,
LBP, GLCM, Gabor

0.71-0.75
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Figure 7. ROC curves within each image type (T2W, ADCm, ADCk, K, T2). A: The best statistical
features. B: The best textures features. The final model of the selected features from ADCm, K,
and T2W obtained using 𝑙1 regularized logistic regression and validated with leave-pair-out
cross-validation is also included in A and B. Figure and caption from publication II [76].

Contribution to the research question: This publication contributes to the research
question (RQ1) by evaluating the classification performance of statistical and tex-
ture features extracted from three MRI modalities for PCa stratification in low- and
high-risk tumors. Quantitative prediction estimates of individual features and lin-
ear models for classifying PCa tumors were provided as ROC curves and AUC. The
ROC curve of the best classifier was obtained from the scores resulting from the
LPOCV scores, introducing the method proposed in Publication II which contributes
to (RQ2).

Author’s contribution

Preprocessing and merging the datasets, assessing features individually, perform-
ing the modeling and evaluation using nested CV, visualization, and writing the
manuscript. The modeling and the evaluation process were implemented using self-
made Python code and the scikit-learn libraries.

4.1.3 Publication III

Tournament Leave-Pair-Out Cross-validation for Receiver Operating Characteristic
Analysis.

Objectives: This publication introduced a new cross-validation (CV) method called
tournament leave-pair-out (TLPOCV). The TLPOCV is a variation of the leave-pair-
out cross-validation (LPOCV) that produces a ranking of the data points necessary
for ROC analysis. Specifically, TLPOCV constructs a tournament from paired com-
parisons obtained by carrying out LPOCV overall data point pairs; subsequently,
ROC analysis can be performed with the scores determined by the tournament.

34



Research studies and results

Motivation: Other CV methods that allow ROC analysis exist (e.g., LOOCV), but
they have been shown to be biased for AUC estimation. The proposed TLPOCV
is based on LPOCV, which is currently the most reliable CV method for estimating
AUC when the amount of data points is small.

Materials and Methods: Through experiments on synthetic and real-world medical
data, AUC estimates of LOOCV, LPOCV, and TLPOCV with two well-established
classification methods: ridge regression, and KNN, were empirically evaluated in
this publication. In the experiments with synthetic data, the following dataset char-
acteristics: small sample size, class imbalance, low or high dimension, and a large
number of irrelevant features, were examined. Furthermore, both signal and non-
signal data were considered. Signal data refers to data where the effect size, in this
case, the difference between the two distributions from where the classes originate,
exists. To produce datasets with signal, the positive and negative classes were sam-
pled from two normal distributions with means one standard deviation apart for at
least one of the variables in the dataset. In contrast, for the non-signal data, the data
for both classes were sampled from the same normal distribution. In the experiments
with real-world data, the dataset consisted of texture features extracted from DWI
parametric maps (i.e., 𝐴𝐷𝐶𝑚, 𝐴𝐷𝐶𝑘, and 𝐾) of 20 patients with histologically
confirmed PCa in the PZ zone. More precisely, the dataset was formed by 85876
voxels (9268 cancerous and 76608 non-cancerous) and six Gabor features that have
shown potential in differentiating tumor voxels from non-tumor voxels. In every ex-
periment, the mean and variance of the difference between the CV AUC estimate and
the true AUC over several repetitions were computed. The difference was formally
defined as Δ𝐴𝐶𝑉 (𝑓) = 𝐴𝐶𝑉 (𝑓)− 𝐴(𝑓), where 𝐶𝑉 refers to LOOCV, LPOCV, or
TLPOCV, and 𝐴(𝑓) is the true AUC. The true AUC in non-signal data is always 0.5,
while with signal data the true AUC is not known in advance, but it can be estimated
from a large test set drawn from the same distribution that the sample. Therefore,
for the experiments with synthetic data, the 𝐴(𝑓) was computed from a test set size
of 10,000 (5000 positives and 5000 negatives). In the case of real-world data experi-
ments, 30 voxels were sampled to train the model 𝑓 , and the remaining voxels were
used to calculate 𝐴(𝑓). In addition to the AUC evaluation, an analogous analysis for
estimating sensitivity at a given specificity was carried out to demonstrate the typical
case of ROC analysis that is possible by TLPOCV scores.

Results: The results on synthetic data showed that LPOCV and TLPOCV AUC es-
timates are similar on non-signal and signal data with ridge regression. In the case
of KNN, TLPOCV estimates slightly deviate from LPOCV estimates, showing some
negative bias. LOOCV compared to LPOCV and TLPOCV presented a larger nega-
tive bias in most of the experiment’s settings. The variance of the three CV methods
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Figure 8. (a) Mean Δ𝐴𝐶𝑉 of each cross-validation method on real data as class fraction varies.
(b) Δ𝐴𝐶𝑉 variances. Δ𝐴𝐶𝑉 : difference between estimated and true AUC; LOO: leave-one-out;
LPO: leave-pair-out; TLPO: tournament leave-pair-out; Ridge: ridge regression; KNN: k-nearest
neighbors; PCa: prostate cancer. Figure and caption from publication III [77].

estimates decreased with the increase of the class fraction. Figure 8 shows the re-
sult of experiments performed using real-world data. With ridge regression, LPOCV
and TLPOCV estimates are almost unbiased, only affected by high-class imbalance,
while LOOCV estimates have a strong negative bias. In the case of KNN, LPOCV
and TLPOCV estimates are unbiased, and class imbalance seems to not affect the
estimates. The variance of all three estimators is close to zero and stable with KNN,
while with ridge regression high variance is observed in highly imbalanced class
proportions. In the experiments on TLPOCV ROC curve sensitivity at a given speci-
ficity, it was observed that the sensitivity tends to be more biased near the ends of
the ROC curves (see Figure 9), which is a property of ROC curves calculated from a
small sample. For example, the true ROC curve always approaches zero sensitivity
for 100% specificity but for ROC curves with a finite sample, this sensitivity may be
considerably larger.

Conclusions: TLPOCV, a novel CV method that extends LPOCV, demonstrates its
efficacy in AUC estimation, particularly in cases with small data samples. The ex-
periments on synthetic and real-world data showcased its potential to provide reliable
AUC estimates. Notably, TLPOCV performs competitively with LPOCV and out-
performs LOOCV, which tends to exhibit a more significant negative bias. TLPOCV
also demonstrates its applicability in ROC analysis for estimating sensitivity at a
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Figure 9. Example of ROC curves of a classifier evaluated by tournament cross-validation (TLPO)
and by a large test dataset (Test). The TLPO curve was obtained from 30 random sample units (15
positives and 15 negatives) and the rest of the data was used for the Test curve. The real medical
dataset and ridge regression were used. Figure and caption from publication III [77].

given specificity. This study underscores the importance of selecting the appropriate
CV method when evaluating classification algorithms, especially in medical and di-
agnostic contexts.

Contribution to the research question: This publication contributes to the research
equation (RQ2) by providing a novel cross-validation method that can be used for
performing ROC analysis to evaluate the prediction performance of a model trained
on a small sample and makes maximum use of the data in the process.

Author’s contribution

Developing and executing all the experiments, formal analysis, visualization, and
writing the manuscript. The algorithms were developed in Python. Ridge regression
was implemented using the RLScore package [78] and KNN using the scikit-learn
library.

4.1.4 Publication IV

Prostate Cancer Risk Stratification in Men with a Clinical Suspicion of Prostate Cancer
using a Unique Biparametric MRI and Expression of 11 Genes in Apparently Benign
Tissue: Evaluation using Machine-Learning Techniques.

Objectives: This study aimed to investigate and evaluate the diagnostic accuracy of
parameters from the biparametric MRI protocol (IMPROD bpMRI), both individ-
ually and in combination with clinical and molecular markers, for the detection of
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significant prostate cancer (SPCa) defined as GS ≥ 3 + 4 (i.e., 𝐺𝐺𝐺 ≥ 2).

Motivation: Despite the increased use of MRI, accurate risk stratification of men
with a clinical suspicion of prostate cancer remains challenging. Therefore, the mo-
tivation behind this research was to enhance the accuracy of SPCa detection by ex-
amining qualitative and quantitative IMPROD bpMRI parameters, clinical variables,
and molecular markers to identify the most effective predictors for SPCa diagnosis.

Materials and Methods: The study comprises data from 80 men suspected of hav-
ing prostate cancer. This dataset included patients with two repeated measurements
of PSA (ranging from 2.5-11.0 ng/ml), measurements of free PSA, acquisition of
T2W and DWI images, systematic and targeted prostate biopsies (SB and TB, re-
spectively), and available mRNA data for genetic analysis. The dataset had three
variable groups:

• Clinical variables (eight in total): Age, PSA, free-to-total PSA (fPSA), TRUS find-
ings, prostate volume measured by TRUS (TRUS-volume), PSA density based on
TRUS (dPSA-TRUS), digital rectal examination (DRE), and 5-alpha-reductase in-
hibitors (5-ARI).

• mRNA transcripts (11 in total): ACSM1, AMACR, CACNA1D, DLX1, PCA3,
PLA2G7, RHOU, SPINK1, SPON2, TMPRSS2-ERG, and TDRD1.

• IMPROD bpMRI parameters (five in total): IMPROD bpMRI Likert score, PI-
RADS v2.1 score, DWI-based Gleason grade score (DbGGS), MRI-based prostate
volume (MRI-Volume), and PSA density based on MRI (dPSA-MRI).

The study used a combination of SB and TB findings as the ground truth for patients’
conditions, where GS < 3+4 is considered insignificant/benign prostate cancer, and
GS ≥ 3+4 is considered SPCa. Each variable’s potential for SPCa detection was an-
alyzed by computing their AUC and corresponding 95% confidence intervals (CI). A
multivariate analysis using ML techniques was conducted to evaluate the prediction
performance of combined variables from the same or different groups. Regularized
least squares (RLS) with regularization parameter one was used to build regression
models from combined variables. To evaluate the model’s prediction performance,
ROC curves and corresponding AUC were obtained using TLPOCV. Moreover, RLS
with the greedy forward feature selection method (GreedyRLS) was used to find a set
of variables that produce a model with high prediction performance. The GreedyRLS
performance was estimated using a nested cross-validation consisting of a TLPOCV
outer loop and an LPOCV inner loop. A permutation test was carried out to de-
termine if adding a variable group to a model trained with another variable group
while using GreedyRLS would improve the prediction performance even further.
Cohen’s kappa statistic (𝜅) between two readers was calculated for the IMPROD
bpMRI Likert score and PI-RADS v2.1 score to assess the interreader agreement,
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Figure 10. ROC curves for A) clinical variables with highest AUC; B) mRNA transcripts with
highest AUC; C) all IMPROD biparametric MRI (bpMRI); D) best set of features obtained using
GreedyRLS on the clinical variables, on the mRNA transcripts, and on clinical variables with the
mRNA transcripts. Figure and caption from publication IV [79].

and the Spearman rank correlation coefficient (𝜌) to evaluate the cross-correlation
between the variables.

Results: The study results showed that the IMPROD bpMRI Likert score had the
highest prediction performance with TLPOCV AUC = 0.92. The AUC of the clinical
variables ranged between 0.56-0.73, while the mRNA transcripts and other IMPROD
bpMRI parameters had AUC ranging from 0.50-0.67 and 0.65-0.89, respectively.
The feature selection, performed with GreedyRLS using the eight clinical variables
and the 11 mRNA transcripts, resulted in the selection of a linear model using fPSA,
DRE, TMPRSS2-ERG, PSA, and 5-ARI with a TLPOCV AUC of 0.87, the high-
est TLPOCV performance without including IMPROD bpMRI Likert score in the
model. The permutation test to evaluate if the performance of selected clinical vari-
ables could be improved by adding the information of the mRNA transcripts resulted
in a p-value of 0.04, which allows rejecting a null hypothesis of no improvement.
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Figure 10 presents the ROC curves for the variables with the highest AUC per vari-
able group, and the TLPOCV ROC curve for the best set of features obtained using
GreedyRLS on clinical variables, mRNA transcripts, and their combination. The
variables that were strongly correlated were dPSA-TRUS and dPSA-MRI (𝜌 = 0.91),
TRUS-volumen and MRI-volume (𝜌 = 0.88), and IMPROD bpMRI Likert score and
PI-RADS v2.1 score (𝜌 = 0.89). There was a moderate agreement between the two
readers in assigning the IMPROD Likert score (𝜅 = 0.57) and PI-RADS v2.1 score
(𝜅 = 0.53). The agreement improved with the dichotomization of the categories into
1-2 vs 3-5 for IMPROD bpMRI Likert score and for PI-RADS v2.1 score (𝜅 = 0.71
and 𝜅 = 0.65, respectively).

Conclusions: This study highlights IMPROD bpMRI Likert score as the most effec-
tive predictor for significant prostate cancer. The combination of clinical variables
and mRNA transcripts in a model demonstrates promising results for SPCa detec-
tion. These findings provide valuable insights into enhancing the accuracy of SPCa
diagnosis.

Contribution to the research question: This publication contributes to the research
equations (RQ2) by applying the proposed TLPOCV method in a nested CV for
estimating the prediction performance of selected features from different variable
groups for predicting SPCa. Contributions are also made to the research question
(RQ3) as three different sources for PCa biomarkers are evaluated individually and
combined.

Author’s contribution

Preprocessing and merging the datasets, performing the data analysis, performing
the modeling and evaluation using nested CV, applying permutation test for evalu-
ating prediction improvement, visualization, and writing the manuscript. The ML
techniques for model evaluation were implemented in Python using the RLScore
package [78]. The statistical analyses were conducted using R v. 3.4.3.

4.1.5 Publication V

Qualitative and Quantitative Reporting of a Unique Biparametric MRI: Towards Bi-
parametric MRI-Based Nomograms for Prediction of Prostate Biopsy Outcome in Men
with a Clinical Suspicion of Prostate Cancer (IMPROD and MULTI-IMPROD Trials).

Objectives: This study aimed to validate models based on clinical and IMPROD
bpMRI data for predicting the presence of prostate cancer (PCa) in prostate biopsy
cores. The objectives included developing logistic regression models using different
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scenarios and assessing their performance in predicting PCa and SPCa.

Motivation: Accurate prediction of PCa and SPCa is crucial for improving patient
outcomes and guiding biopsy strategies. The motivation behind this research was to
enhance the accuracy of prediction by incorporating various clinical and IMPROD
bpMRI parameters while considering multiple clinical scenarios.

Materials and Methods: The data used in this study was from two registered clinical
trials: IMPROD (n=161), and MULTI-IMPROD (n=338). The patient-level ground
truth was determined by the findings in targeted and systematic 12-core biopsies.
SPCa was defined as biopsy GS ≥ 3 + 4 (𝐺𝐺𝐺 ≥ 2). Clinical scenarios based on
available variables were used to generate logistic regression models. The available
variables in each scenario were are follows:

1. Basic model: PSA, Age, 5-alpha-reductase inhibitors (5-ARI).

2. Visit model: PSA, Age, 5-ARI, DRE.

3. TRUS model: PSA, Age, 5-ARI, DRE, TRUS findings, prostate volume based on
TRUS (TRUS-volume), PSA density (dPSA-TRUS).

4. MRI model: PSA, Age, 5-ARI, DRE, TRUS findings, TRUS-volume, dPSA-TRUS,
IMPROD bpMRI Likert or PI-RADS v2.1 score.

5. MRI model including DWI Gleason grade score: PSA, Age, 5-ARI, DRE, TRUS
findings, TRUS-volume, dPSA-TRUS, IMPROD bpMRI Likert or PI-RADS v2.1 score,
DbGGS.

The logistic regression models were developed using the IMPROD dataset and val-
idated on an independent multi-center cohort MULTI-IMPROD. The ability of the
models to predict PCa and SPCa was evaluated using AUC with 95% confidence
interval. Statistical analysis, such as Cohen’s kappa analysis for evaluating the in-
terreader agreement between the MRI group categorical variables (i.e., IMPROD
bpMRI Likert score and PI-RADS v2.1 score) and decision curve analysis (DCA) to
compare biopsy strategies were performed.

Results: The validation results for models predicting PCa or SPCa in different sce-
narios are presented in Table 6. Models that included IMPROD bpMRI Likert or
PI-RADS v2.1 quality findings had higher prediction performance than the other
models. The basic model was the one with the lowest AUC. Cohen’s kappa analysis
showed a moderate agreement between two readers in assigning IMPROD bpMRI
Likert score (𝜅 = 0.59) and PI-RADS v2.1 score (𝜅 = 0.54). When comparing IM-
PROD bpMRI Likert and PI-RADs v2.1 scoring systems, there was a moderate to
substantial agreement in assigning IMPROD bpMRI Likert score and PI-RADS v2.1
score in the IMPROD cohort (𝜅 = 0.63) and MULTI-IMPROD cohort (𝜅 = 0.85). In
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the DCA analysis performing a biopsy according to MRI models demonstrated the
highest benefit compared to strategies of biopsying no one, according to PSA level,
and all men at risk.

Conclusions: This study validated predictive models for PCa and SPCa using clinical
and imaging data. The incorporation of IMPROD bpMRI Likert or PI-RADS v2.1
quality findings significantly improved prediction accuracy. Moreover, the study
highlights the potential benefit of performing biopsies based on MRI models, which
demonstrated the highest utility when compared to alternative biopsy strategies, in-
cluding those based on PSA levels. These findings contribute to the advancement of
prostate cancer diagnosis and biopsy decision-making.

Contribution to the research question: This publication contributes to the research
question RQ3 as it evaluates the performance of models that combined clinical and
MRI variables for predicting PCa or SPCa. Here, each model represents a scenario
that is determined by the availability of the variables.

Author’s contribution

Preprocessing and merging the datasets, performing the data analysis, visualization,
and writing the manuscript. The analyses were conducted using R v. 3.5.2.

Table 6. Area Under the ROC Curve (95% Confidence Interval) for five logistic regression models
trained on the development cohort (IMPROD trial, N=161) to predict PCa (GS ≥ 3+3) or to predict
SPCa (GS ≥ 3+4) and evaluated on the validation cohort (MULTI-IMPROD, N=338). This Table is
part of Table 2 presented in publication V [80].

Logistic Regression model
Benign vs.
any PCa

[Benign/3+3] vs.
rest of PCa

Basic 0.62 (0.56-0.75) 0.64 (0.58-0.70)
Visit 0.68 (0.62-0.74) 0.75 (0.70-0.80)
TRUS 0.79 (0.74-0.84) 0.80 (0.75-0.85)
MRI: IMPROD bpMRI Likert score 0.86 (0.82-0.90) 0.88 (0.84-0.92)
MRI: PI-RADSv2.1 score 0.87 (0.83-0.91) 0.89 (0.85-0.93)

Basic model = PSA, age, use of 5-alpha-reductase inhibitors.
Visit model = Basic model, and DRE.
TRUS model = Visit model, TRUS findings, prostate volume, and PSA density.
MRI: IMPROD bpMRI Likert score = TRUS model, and IMPROD bpMRI Likert score.
MRI: PI-RADS v2.1 score = TRUS model, and PI-RADS v2.1 score.
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4.1.6 Publication VI

Detection of Prostate Cancer using Biparametric Prostate MRI, Radiomics, and
Kallikreins: A Retrospective Multicenter Study of Men with a Clinical Suspicion
of Prostate Cancer.

Objectives: This study aimed to develop and validate radiomic features derived from
biparametric MRI (bpMRI) and kallikreins models for the detection of clinically sig-
nificant prostate cancer (SPCa, 𝐺𝐺𝐺 ≥ 2) using multi-institutional datasets. The
study compares the performance of these models with routinely used clinical vari-
ables and qualitative IMPROD bpMRI Likert and PI-RADS v2.1 scores.

Motivation: This work was motivated by the need for more accurate and non-invasive
methods to detect SPCa. Through the exploration of radiomic features and kallikreins,
the aim was to improve the precision of SPCa diagnosis to reduce unnecessary biop-
sies and the associated risks.

Materials and Methods: The study cohort consisted of 543 men with suspicion of
PCa who underwent prostate MRI followed by biopsy as part of a single-center trial
or multi-center trial. The ground truth for predicting SPCa was based on biopsy or
prostatectomy findings. In Figure 11 the study postprocessing pipeline is presented.
Radiomic features were extracted from the manually delineated whole prostate gland
(WG) and tumor in ADC maps and T2W images in the initial phase. Next, a prun-
ing and feature selection strategy was applied to obtain a set of radiomic features
with high performance in predicting SPCa. Then in the data integration and model-
ing phase, four variable groups were considered individually and combined. These
groups were basic variables (Age, PSA, dPSA, prostate volume), kallikreins (total-
PSA, free-PSA, intact-PSA, hK2), MRI qualitative features (IMPROD bpMRI Likert
and PI-RADS v2.1 scores), and top selected MRI radiomic features (10 WG and 12
tumor features). In the final phase, variables and models were evaluated on a dataset
not used in the previous phases. A univariate analysis consisting of computing AUC
(95% confidence interval) was performed to assess the performance of each variable
or feature in predicting SPCa. Also, a multivariate analysis using RLS with one
as the regularization parameter was conducted to determine the predictive power of
combining variables. The analyses were performed in two different data-splitting
approaches. In the first approach (split 1), the models were trained using data from a
single center (n=72) and externally validated on multi-center data (n=288), whereas,
in the second approach (split2), multi-center data were pooled (n=360) and randomly
split into 50% for training and 50% for testing. Additionally, models were evaluated
using multi-center data (split 1 test data, n=288) and 10-fold CV.
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Figure 11. The study pipeline. Figure from publication VI [81].

Results: The evaluation results, regardless of the data splitting approach, showed
that the models based on basic variables, kallikreins, and selected WG, alone or
combined, had inferior performance in SPCa detection than the qualitative bpMRI
score (IMPROD bpMRI Likert score AUC = 0.85) reported by an experienced radi-
ologist. In contrast, selected tumor radiomic features had comparable performance
(AUC = 0.83) to IMPROD bpMRI Likert and PI-RADS v2.1 scores. Similar results
were observed with 10-fold CV average ROC curves of RLS models for IMPROD
bpMRI Likert score, PI-RADS v2.1 score, lesion radiomic features, basic variables,
kallikreins, and WG radiomic features using the multi-center evaluation dataset of
288 men of split 1 (Figure 12).

Conclusions: Models based on basic variables, the four kallikreins, and selected WG
radiomic features, either individually or in combination, did not outperform the qual-
itative scores (PI-RADSv2.1 or IMPROD bpMRI Likert) reported by an experienced
radiologist. In contrast, a model based on selected lesion radiomic features demon-
strated comparable performance to the qualitative scores, with no improvement ob-
served when combined with other variables or features during external validation.

44



Research studies and results

0.0 0.2 0.4 0.6 0.8 1.0
1 - Specificity

0.0

0.2

0.4

0.6

0.8

1.0

Se
ns

iti
vi

ty
IMPROD bpMRI Likert score model

Chance
Mean ROC (AUC = 0.85 ± 0.09)
± 1 std. dev.

0.0 0.2 0.4 0.6 0.8 1.0
1 - Specificity

0.0

0.2

0.4

0.6

0.8

1.0

Se
ns

iti
vi

ty

PIRADSv2.1 score model

Chance
Mean ROC (AUC = 0.85 ± 0.07)
± 1 std. dev.

0.0 0.2 0.4 0.6 0.8 1.0
1 - Specificity

0.0

0.2

0.4

0.6

0.8

1.0

Se
ns

iti
vi

ty

Lesion Radiomics model

Chance
Mean ROC (AUC = 0.84 ± 0.07)
± 1 std. dev.

0.0 0.2 0.4 0.6 0.8 1.0
1 - Specificity

0.0

0.2

0.4

0.6

0.8

1.0

Se
ns

iti
vi

ty

Basic model

Chance
Mean ROC (AUC = 0.74 ± 0.14)
± 1 std. dev.

0.0 0.2 0.4 0.6 0.8 1.0
1 - Specificity

0.0

0.2

0.4

0.6

0.8

1.0

Se
ns

iti
vi

ty

Kallikreins model

Chance
Mean ROC (AUC = 0.73 ± 0.10)
± 1 std. dev.

0.0 0.2 0.4 0.6 0.8 1.0
1 - Specificity

0.0

0.2

0.4

0.6

0.8

1.0

Se
ns

iti
vi

ty

WG Radiomics model

Chance
Mean ROC (AUC = 0.74 ± 0.10)
± 1 std. dev.

0.0 0.2 0.4 0.6 0.8 1.0
1 - Specificity

0.0

0.2

0.4

0.6

0.8

1.0

Se
ns

iti
vi

ty

Basic and WG radiomics model

Chance
Mean ROC (AUC = 0.78 ± 0.10)
± 1 std. dev.

0.0 0.2 0.4 0.6 0.8 1.0
1 - Specificity

0.0

0.2

0.4

0.6

0.8

1.0

Se
ns

iti
vi

ty

Kallikreins and WG radiomics model

Chance
Mean ROC (AUC = 0.79 ± 0.08)
± 1 std. dev.

0.0 0.2 0.4 0.6 0.8 1.0
1 - Specificity

0.0

0.2

0.4

0.6

0.8

1.0

Se
ns

iti
vi

ty

Basic, Kallikreins and WG radiomics model

Chance
Mean ROC (AUC = 0.80 ± 0.10)
± 1 std. dev.

Figure 12. Average 10-fold cross-validation ROC curves for RLS models of IMPROD bpMRI Likert
score, PI-RADS v2.1 score, selected lesion radiomics, basic variables, kallikreins, and selected
whole gland radiomic features using the data from 288 men in the test set of split 1. Figure and
caption from publication VI [81].

Contribution to the research question: This publication contributes to the research
question RQ3 as it evaluates the performance of models that combined clinical,
kallikreins, and MRI radiomic features for predicting SPCa. The performance eval-
uation was performed with a hold-out CV and with a 10-fold CV.

Author’s contribution

Preprocessing and merging the datasets, pruning and selecting radiomic features,
performing modeling and evaluation, visualization, and writing the manuscript. The
modeling and the evaluation were implemented using Python code with RLScore
package v 0.8.1 and the scikit-learn library.

4.2 Research results
In this section, each research question is presented and answered according to the
research results.

(RQ1): How precise are features extracted from prostate MRI in classifying and
stratifying PCa?
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In publication I, LSOCV results indicate that texture features extracted from
DWI parametric maps (𝐴𝐷𝐶𝑚, 𝐴𝐷𝐶𝑘, and 𝐾) have moderate to high per-
formance predicting PCa. Specifically, the highest prediction performance
(LSOCV AUC = 0.85) was obtained when selecting features using recursive
feature elimination from the three DWI parametric maps. These results con-
firmed the capability of features extracted from DWI parametric maps in pre-
dicting PCa. In the case of stratifying PCa tumors into low-risk and high-
risk, LPOCV results in publication II showed that high classification perfor-
mance can be obtained by a linear model that combines radiomic features from
𝐴𝐷𝐶𝑚, T2W, and 𝐾 (LPOCV AUC = 0.88). The radiomics extracted for T2
mapping had the lowest classification performance and provided little added
value to the linear models. The features based on the GLCM, Gabor filter, and
Zernike moments were the most useful for PCa tumor stratification.

(RQ2): How to improve ROC analysis derived from cross-validation to evaluate
models when the size of the available data is small?

When the available data for training and testing a model is limited, meaning the
number of observations is small, cross-validation methods can be used to es-
timate the model’s prediction performance. However, not all cross-validation
methods are suitable for ROC analysis. Cross-validation methods that allow
ROC analysis, such as LOOCV and pooled K-fold CV, have been proven to be
biased for AUC estimation and thus not recommended for ROC analysis. Other
cross-validation methods, such as LPOCV, which AUC estimate is almost un-
biased, lack the data needed for plotting the ROC curve. Therefore, to improve
ROC analysis derived from CV, in publication III, we proposed TLPOCV. A
cross-validation method that preserves the advantages of LPOCV for estimat-
ing AUC while providing the ranking of the dataset needed for ROC analysis.
In the same publication, we empirically evaluated the LOOCV, LPOCV, and
TLPOCV estimates on simulated data, where we confirmed the LOOCV AUC
estimate bias. Furthermore, through experiments in a real-world dataset of
DWI voxels belonging to PCa tumor or non-malignant tissue and six texture
features, we demonstrate that LPOCV and TLPOCV AUC estimates are al-
most unbiased and affected only by a highly imbalanced class distribution in
the dataset.

(RQ3): How well can linear models that combine variables/features from different
sources predict and stratify PCa?

In publication IV, we evaluated the performance of eight clinical variables,
eleven mRNA transcripts, and five bpMRI parameters in predicting SPCa. The
evaluation result of the individual and combinations of variables showed that
the highest performance was by IMPROD bpMRI Likert score assigned by
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an experienced radiologist (AUC = 0.92). However, performing feature selec-
tion with GreedyRLS when having access to the eight clinical variables and
to eleven mRNA transcripts resulted in selecting a linear model form by PSA,
fPSA, DRE, TMPRSS2-ERG, and 5-ARI (TLPOCV AUC = 0.87), the highest
performance without including IMPROD bpMRI Likert score in the model.
In addition, a permutation test to evaluate if a model based on selected vari-
ables from the eight clinical could be improved by having access to the eleven
mRNA transcripts resulted in a p-value of 0.04, rejecting the null hypothesis
of no improvement at a significance level 𝛼 = 0.05.

The combinations of variables for PCa or SPCa prediction were also evaluated
in publication V. Here, different scenarios, based on variable availability, were
tested on an independent multi-center test data set. The model that resulted in
the lowest prediction performance was the basic scenario that consisted of a
linear model with age, PSA, and 5-ARI (AUC of 0.62 and 0.64 for PCa and
SPCa, respectively). On the other hand, the highest prediction performance
resulted when the model included qualitative findings from bpMRI (IMPROD
bpMRI Likert or PI-RADS v2.1 scores, AUCs ranging from 0.86 to 0.89).

In publication VI, clinical variables, kallikreins, MRI qualitative variables, se-
lected WG, and tumor radiomic features were evaluated individually and com-
bined for predicting SPCa in men with suspicion of PCa. The evaluation was
performed on an independent test set, following two settings: model trained
in single-center data and evaluated in multi-center data, and model trained and
evaluated in multi-center data. The results in this publication showed, inde-
pendently from the evaluation settings, that clinical variables, kallikreins, and
the selected WG radiomic features, individually or combined, had lower pre-
diction performance than the IMPROD bpMRI Likert score assigned by an
experienced radiologist. In contrast, the selected tumor radiomic features have
comparable performance to the experienced radiologist. In addition, an av-
erage ROC curve obtained by a stratified 10-fold CV on the data set of 288
observations shows the potential that a linear model based on the clinical vari-
ables, kallikreins, and the selected WG radiomic features have in predicting
SPCa (mean AUC = 0.80).

To summarize, publication IV, V, and VI results showed that a qualitative
bpMRI score assigned by an experienced radiologist had the highest predic-
tion performance for PCa or SPCa. However, a linear model based on the
selected tumor radiomic features has comparable performance in predicting
SPCa. Furthermore, high potential for detecting PCa was observed in a linear
model based on selected clinical variables and mRNA transcripts. Meanwhile,
a linear model combining clinical variables, Kallikreins, and WG radiomic
features showed potential in predicting SPCa.
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5 Conclusions

5.1 Summary of the thesis

Chapter 1 covers the thesis introduction, motivation, and research questions. More
precisely, it discusses how some research studies have a limited amount of data
and the need for caution when performing analysis and inference from small-size
datasets. Nevertheless, non-parametric statistics and ML methods that make little as-
sumptions about the data distribution provide tools for analyzing small samples. The
proper use and combination of these tools could yield results useful for decision-
making, regardless of the sample size. In this thesis, we used the detection and strat-
ification of PCa as our case study for evaluating the performance of variables alone
or in combination using statistics and ML methods. The data used in this research
is from approved and registered clinical trials conducted in TYKS. The datasets in-
clude clinical variables, genes, blood biomarkers, and features derived from different
MRI modalities making it suitable for analyzing and developing ML models for PCa
detection and stratification. Chapter 2 provides PCa domain-specifics. It presents
the function and anatomy of the prostate gland and the incidence and mortality of
PCa. The grading of PCa is briefly explained, as this is the base for defining the
ground truth or label of the observations needed in the analysis. It also provides the
background on screening and diagnosis of PCa, MRI in PCa diagnosis, biomarkers
for PCa, and a summary of the datasets. Chapter 3 covers the background of sta-
tistical and ML methods used in this thesis. It briefly explains the similarities and
differences between statistics and ML methods in data analysis. Highlights the con-
tributions that statistical inference and ML provided to data analysis and how they
can complement each other when performing analysis with small sample size. It
explains concepts related to deriving a model from data, which include model train-
ing, selection, and evaluation. Also, resampling techniques are presented as a viable
option for model selection and evaluation when the sample size is small. Further-
more, TLPOCV is proposed as a cross-validation method that allows and improves
ROC analysis derived from cross-validation results. In chapter 4, each publication
included in this thesis is summarized, and the answers to the research questions are
presented. Lastly, this chapter provides the concluding discussion and outcomes of
the research.
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5.2 Discussion and outcomes
Nowadays, it is still common to find studies with a limited amount of data (i.e.,
tens to hundreds of observations), as enrollment of subjects might be costly or a
complex process, among other reasons. This thesis was motivated by the availability
of data from approved clinical trials aiming to improve PCa diagnosis. The data
consisted of a vast number of variables (e.g., clinical variables, gene expressions,
MRI features, etc.), with the number of subjects ranging from 20 to 543. Therefore,
analyzing the capability that these variables have in predicting and stratifying PCa
was an objective of this thesis. As we discussed in earlier chapters, non-parametric
statistical tests and ML methods provide tools that can be used for analyzing datasets
with a scarce number of observations. In our research, in order to accurately evaluate
the performance of the available variables in predicting or stratifying PCa, we applied
resampling techniques such as CV and permutation test. These techniques allow us
to maximize the use of the available data for model selection and evaluation while
avoiding strongly biased results. We also propose the TLPOCV, a cross-validation
method that allows and improves ROC analysis on CV results. In the following
outcomes, we summarize our research findings:

• Radiomic features extracted from DWI parametric maps (i.e., 𝐴𝐷𝐶𝑚, 𝐴𝐷𝐶𝑘,
and 𝐾) have moderate to high performance in predicting PCa, our analyses
confirm the capability that features from DWI parametric maps have in pre-
dicting PCa.

• The results for stratifying of PCa tumors into low-risk and high-risk showed
that high classification performance can be achieved by combining radiomics
extracted from 𝐴𝐷𝐶𝑚, T2W, and 𝐾, while features from T2 mapping pro-
vided little added value to the classifiers. In addition, the findings suggest that
the most useful radiomics for this task were the ones based on GLCM, Gabor
filter, and Zernike moments.

• Our results regarding the bias and variance of the LOOCV and LPOCV meth-
ods are in line with those presented in earlier work [66; 67], where similar
results were also demonstrated for larger sample sizes. We confirmed a substi-
tutional negative bias in LOOCV AUC estimates, which makes it unreliable for
ROC analysis. Consequently, we proposed TLPOCV as a more reliable alter-
native for ROC analysis, provided that the resulting tournament graph remains
consistent. A recommended practice is to compute LPOCV and TLPOCV
AUC estimates to ensure their similarity before utilizing TLPOCV scores for
ROC analysis.

• The qualitative bpMRI score assigned by an experienced radiologist has the
highest prediction performance for PCa or SPCa. However, a linear model
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based on selected tumor radiomics has a comparable performance for SPCa
prediction. Linear combinations of variables from clinical, kallikreins, and
MRI WG showed potential for PCa and SPCa prediction but were not superior
to the bpMRI score.

The previously stated results were the outcome of properly using CV for model
selection and evaluation. In every publication, we selected the CV according to the
specified task to reduce bias when evaluating the out-of-sample error of the model
trained with the whole dataset. In addition, nested resampling was considered when
selecting features to determine their prediction performance, or as an alternative, an
independent data set was used. Furthermore, in publication IV, to determine if the im-
provement of a model trained by greedily combining features from different sources
(i.e., clinical variables and mRNA transcripts) was not by chance, we performed a
permutation test.

The work presented in this thesis has a few limitations. One of those limitations is
that our results are based on a limited amount of available data. Although we applied
statistics and ML tools suitable for small sample sizes, validation of our results on
an independent large dataset is desirable. In addition, in our studies, we had all MRI
datasets evaluated by only one experienced radiologist whose output outperformed
all the models that were not based on bpMRI qualitative findings. Thus, it would be
of interest to have other radiologists (with different levels of experience) evaluate the
MRI datasets to investigate further if models for predicting PCa and SPCa based on
clinical, kallikreins, and MRI radiomics can improve or outperform their findings,
and determine if these models could provide additional support in detecting PCa or
SPCa. Regarding our proposed cross-validation method TLPOCV, one limitation is
that it is computationally expensive as the sample size increases, with time complex-
ity of 𝑂

(︀
𝑛2

)︀
. Therefore, in order to mitigate this limitation, the quicksort leave-pair

out cross-validation (QLPOCV) has been presented [82]. The QLPOCV decreases
the time complexity to 𝑂 (𝑛 log 𝑛), making it faster on average than TLPOCV while
preserving the advantages of TLPOCV.

Data analysis based on ML models learned from a small amount of available
data presents challenges, as it can produce misleading results. In this work, we make
substantial contributions to prostate cancer diagnosis and prognosis research while
addressing the challenges arising from limited dataset availability. Our research is
of significance to data analysts dealing with small datasets and to all medical profes-
sionals and healthcare providers engaged in prostate cancer research.

5.3 Future work
Further research on prostate MRI radiomics, clinical variables, genes, and kallikreins
is necessary to improve the automatic detection and characterization of SPCa be-
yond the use of PI-RADS/IMPROD bpMRI as reported by an experienced radiolo-
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gist using the qualitative Likert scoring. For example, future work should focus on
MRI voxel-wise classification of prostate cancer and automatic prostate segmenta-
tion should be integrated into the process. Exploring further variants of the texture
features might increase the accuracy of PCa detection and classification. Addition-
ally, it is of interest to compare the regularized logistic regression classifier we em-
ployed with other algorithms, such as KNN, random forest, or deep neural networks.

Continuing research on model evaluation methods with a limited amount of data
could involve assessing the extent to which TLPOCV results generalize to different
data distributions and learning algorithms not covered in this thesis. Furthermore, ex-
ploring the application of the TLPOCV rank score to other available ranking metrics,
such as Precision and Recall curves, would be of interest.

Finally, in order to support studies with a limited number of subjects or observa-
tions, additional research should aim to explore and evaluate methods for analyzing
small datasets. This will help ensure that studies with fewer resources can produce
reliable results, thus making valuable contributions.
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[35] Jurgen J Fütterer, Alberto Briganti, Pieter De Visschere, Mark Emberton, Gianluca Giannarini,
Alex Kirkham, Samir S Taneja, Harriet Thoeny, Geert Villeirs, and Arnauld Villers. Can Clinically
Significant Prostate Cancer be Detected with Multiparametric Magnetic Resonance Imaging? A
Systematic Review of the Literature. European urology, 68(6):1045–1053, 2015.

[36] Baris Turkbey, Andrew B Rosenkrantz, Masoom A Haider, Anwar R Padhani, Geert Villeirs,
Katarzyna J Macura, Clare M Tempany, Peter L Choyke, Francois Cornud, Daniel J Margolis,
et al. Prostate Imaging Reporting and Data System version 2.1: 2019 Update of Prostate Imaging
Reporting and Data System version 2. European urology, 76(3):340–351, 2019.

[37] Kristin K Porter, Alex King, Samuel J Galgano, Rachael L Sherrer, Jennifer B Gordetsky, and
Soroush Rais-Bahrami. Financial Implications of Biparametric Prostate MRI. Prostate cancer
and prostatic diseases, 23(1):88–93, 2020.

[38] American College of Radiology et al. Prostate Imaging Reporting and Data System (PI-RADS®),
2019.

[39] Christopher C Khoo, David Eldred-Evans, Max Peters, Mariana Bertoncelli Tanaka, Mohamed
Noureldin, Saiful Miah, Taimur Shah, Martin J Connor, Deepika Reddy, Martin Clark, et al.
Likert vs PI-RADS v2: A Comparison of Two Radiological Scoring Systems for Detection of
Clinically Significant Prostate Cancer. BJU international, 125(1):49–55, 2020.

[40] Ivan Jambor, Alberto Martini, Ugo G Falagario, Otto Ettala, Pekka Taimen, Juha Knaapila, Kari T
Syvänen, Aida Steiner, Janne Verho, Ileana M Perez, et al. How to Read Biparametric MRI in
Men with a Clinical Suspicious of Prostate Cancer: Pictorial Review for Beginners with Public
Access to Imaging, Clinical and Histopathological Database. Acta Radiologica Open, 10(11):
20584601211060707, 2021.

[41] Roger Bourne and Eleftheria Panagiotaki. Limitations and Prospects for Diffusion-weighted MRI
of the Prostate. Diagnostics, 6(2):21, 2016.

[42] Kyle Strimbu and Jorge A Tavel. What are Biomarkers? Current Opinion in HIV and AIDS, 5(6):
463, 2010.

[43] Steven P Balk, Yoo-Joung Ko, and Glenn J Bubley. Biology of Prostate-specific Antigen. Journal
of clinical oncology, 21(2):383–391, 2003.

[44] Thomas A Stamey, Mitchell Caldwell, JOHN E McNEAL, Rosalie Nolley, Marci Hemenez, and
Joshua Downs. The Prostate Specific Antigen Era in the United States is Over for Prostate Cancer:
What Happened in the Last 20 Years? The Journal of urology, 172(4 Part 1):1297–1301, 2004.

[45] Reith R Sarkar, J Kellog Parsons, Alex K Bryant, Stephen T Ryan, Andrew K Kader, Rana R
McKay, Anthony V D’Amico, Paul L Nguyen, Benjamin J Hulley, John P Einck, et al. Associa-
tion of Treatment with 5𝛼-reductase Inhibitors with Time to Diagnosis and Mortality in Prostate
Cancer. JAMA internal medicine, 179(6):812–819, 2019.

[46] Ian M Thompson, Donna Pauler Ankerst, Chen Chi, M Scott Lucia, Phyllis J Goodman, John J
Crowley, Howard L Parnes, and Charles A Coltman. Operating Characteristics of Prostate-specific
Antigen in Men with an Initial PSA level of 3.0 ng/ml or Lower. Jama, 294(1):66–70, 2005.

[47] Leo Breiman. Statistical Modeling: The Two Cultures (with comments and a rejoinder by the
author). Statistical science, 16(3):199–231, 2001.

[48] Galit Shmueli. To Explain or to Predict? Statistical science, 25(3):289–310, 2010.
[49] D Bzdok, N Altman, and M Krzywinski. Points of Significance: Statistics versus Machine Learn-

ing. Nature Methods 2018a, pages 1–7, 2018.

54



LIST OF REFERENCES

[50] Max Welling. Are ML and Statistics Complementary? In IMS-ISBA Meeting on ‘Data Science in
the Next, volume 50, 2015.

[51] Yaser S Abu-Mostafa, Malik Magdon-Ismail, and Hsuan-Tien Lin. Learning from Data, volume 4.
AMLBook New York, NY, USA:, 2012.

[52] Ron Kohavi and George H John. Wrappers for Feature Subset Selection. Artificial intelligence,
97(1-2):273–324, 1997.
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