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ABSTRACT 

Hanna Laurén: GABAA receptors in experimental models of epilepsy in the developing 
and adult rat brain. Department of Pharmacology, Drug Development and Therapeutics, 
University of Turku, and Drug Discovery Graduate School. Annales Universitatis Turkuensis, 
Medica-Odontologia, Painosalama Oy Turku, Finland, 2007. 
  
γ-aminobutyric acid (GABA) is the major inhibitory neurotransmitter in the mammalian brain 
and it binds to ionotropic GABA type A (GABAA) receptors that are pentameric compelexes 
composed of a variety of different subunits. The receptor subtypes have different 
pharmacological properties, and the α subunit variant mainly determines the binding properties 
to GABAA receptors. Changes in the structure and function of GABAA receptors may contribute 
to epileptogenesis and reduced GABAergic inhibition is proposed to be a key element for 
seizure generation in epilepsy. Several studies have demonstrated changed expression of 
multiple GABAA receptor subunits after seizures in the adult rat brain that may result in 
receptors with altered functional and pharmacological properties. The postnatal GABAA 
receptor subunit messenger RNA (mRNA) expression in the rat brain, including the 
hippocampus, exhibits a unique temporal and regional developmental profile in vivo. The 
influence of epilepsy on the expression of GABAA receptor subunits in the immature, 
developing brain is not well known  

Here, the expression and pharmacology of GABAA receptor subunits were studied in 
different experimental models of epilepsy. For studies of the developmental subunit expression, 
as well as the impact of epileptiform activity on subunit expression in the immature rat brain, 
two separate models were applied: organotypic hippocampal slice cultures that serve as an in 
vitro model where the structural organization is retained and can be compared to the in vivo 
development, and immature 9-day old rats, in which status epilepticus (SE) is induced by the 
excitatory glutamate receptor agonist kainate, and roughly function as an in vivo epilepsy model 
for newborn children. In addition to these acute models, long-term alterations in the expression 
of GABAA receptor subunits were examined in chronically epileptic adult rats, in which 
epilepsy was induced by electrical stimulation of the amygdala. 

As a conclusion the results show that SE region- and subunit-specifically alterered the 
subunit mRNA and protein expression as well as pharmacology of the GABAA receptor in the 
immature rat brain during the sensitive postnatal period. Especially, SE disturbed the normal 
developmental α1 and α2 subunit expression patterns. This may have long-term consequences 
on the strictly developmentally-regulated maturation of GABAA receptors and lead to receptors 
with altered function and pharmacology. Chronic treatment of cultured hippocampal slices with 
drugs that affect the balance between excitation and inhibition altered the mRNA expression of 
several subunits in a region-specific manner, some of which are comparable to the epileptic 
hippocampus. In adult rats with chronic epilepsy, region- and subunit-selective changes of 
GABAA receptor subunit mRNAs were found in the hippocampus, however different from 
changes after acute seizures and those found in immature rats. The decreased expression of the 
α2 and α4 subunits and the increased expression of the β3 subunit in certain hippocampal 
subfields of adult epileptic rats, may represent compensatory responses to seizure activity. 

 
Keywords: epilepsy, GABAA receptor, hippocampus, immature brain, status epilepticus 
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TIIVISTELMÄ 

 
Muutokset γ-aminovoihappo tyyppi A (GABAA) reseptorin rakenteessa ja toiminnassa voivat 
johtaa epilepsian syntyyn. Vähentyneen GABAergisen inhibition oletetaankin olevan eräs 
avaintekijä epileptisten kohtausten syntyessä aikuisilla rotilla. Monien GABAA 
reseptorialayksikköjen ilmentyminen on muuttunut aikuisten rottien aivoissa epileptisten 
kohtausten jälkeen. Nämä muutokset voivat johtaa sellaisten reseptorien muodostumiseen, 
joiden toiminnalliset ja farmakologiset ominaisuudet poikkeavat normaalista, ja siten ne voivat 
edesauttaa epilepsian syntyä. Ne voivat myös vaikuttaa antiepileptisten lääkkeiden tehoon. 
Kehityksen kuluessa rottien aivoissa, mukaan lukien hippokampus, tapahtuu ainutlaatuisia 
ajallisia ja alueellisia muutoksia GABAA reseptorialayksikköjen lähetti-RNA:n ilmentymisissä, 
mutta epileptisten kohtausten vaikutukset alayksikköjen ilmentymiseen kehittyvissä aivoissa 
tunnetaan huonosti. 

Tässä työssä tutkittiin GABAA reseptorialayksikköjen ilmentymistä ja reseptorin 
farmakologisia ominaisuuksia kolmen erilaisen kokeellisen epilepsian mallin avulla. Kahta eri 
mallia käytettiin tutkittaessa alayksikköjen kehityksellistä ilmentymistä ja epilepsian kaltaisen 
sähköisen aktiviteetin vaikutusta alayksikköjen ilmentymiseen kehittyvissä aivoissa: 
organotyyppiset hippokampuksen kudosviljelmät in vitro ja 9-vrk:n ikäiset rotat in vivo. 
Hippokampusten kudosviljelmissä kaikki päähermosolutyypit säilyvät hyvin ja erilaistuvat 
kuten in vivo olosuhteissa. Myös kudoksen perusrakenne ja sen sisäiset hermoyhteydet 
kehittyvät kuten in vivo ja siten viljellyissä kudoksissa tapahtuvia muutoksia voidaan verrata 
aivoissa tapahtuvaan in vivo kehitykseen. Käsittelemällä viljelmiä ja kehittyviä eläimiä 
sellaisilla farmakologisilla aineilla, jotka stimuloivat hermosolujen toimintaa saadaan sekä in 
vitro että in vivo epilepsiamalleja. 9-vrk:n ikäiset rotat, joille aiheutettiin status epileptikus (SE) 
eksitoivalla glutamaattireseptoriagonistilla kainaatilla, vastaavat karkeasti ottaen vastasyntynyttä 
lasta. Näiden akuuttimallien lisäksi tutkittiin GABAA reseptorialayksiköiden ilmentymisissä 
tapahtuvia pitkäaikaisia muutoksia aikuisilla, kroonista epilepsiaa sairastavilla rotilla.   

Tulokset osoittavat, että SE muuttaa alue- ja alayksikkö-spesifisesti monien alayksikköjen 
GABAA reseptori lähetti-RNA:n ja proteiinin ilmentymistä. Myös reseptorin farmakologiset 
ominaisuudet muuttuvat 9-vrk:n ikäisen rotan aivoissa niiden herkässä kehitysvaiheessa. 
Kroonisen epilepsian mallissa aikuisilla rotilla havaittiin alue- ja alayksikkö-spesifisiä 
muutoksia GABAA reseptorin alayksikköjen lähetti-RNA:n ilmestymisessä hippokampuksessa. 
GABAA reseptoreiden monimuotoinen molekulaarinen rakenne antaa runsaasti kohteita ikä- ja 
kohdespesifisten lääkeaineiden kehittämiselle mm epilepsian hoitoon. Epileptisten kohtausten 
aiheuttamat ikäspesifiset muutokset GABAA reseptoreiden rakenteessa sekä akuuttien 
kohtauksien jälkeen että kroonisessa epilepsiassa tarjoavatkin haasteen uusien antiepileptisten 
lääkeainemolekyylien kehittämiseksi epilepsiaa sairastaville sekä aikuisille että lapsipotilaille.  
 
Avainsanat: epilepsia, GABAA reseptori, hippokampus, kehittymättömät aivot, status 
epileptikus 
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1. INTRODUCTION 

GABA is a neurotransmitter responsible for the major part of inhibition in the mammalian 

central nervous system (CNS). It acts mainly on GABAA receptors which are coupled to a 

ligand-gated Cl- channel. GABAA receptors are the target for a variety of drugs that enhance 

GABAergic function for the treatment of diseases such as epilepsy, anxiety, sleep disorders and 

addiction (Sieghart, 1995; Korpi et al., 2002). In the adult rat brain, activation of GABAA 

receptors increases Cl- permeability of the neuronal membrane leading to hyperpolarization and 

decreased excitability of neurons. In the immature brain, the receptor activation leads to 

depolarization of neurons in all regions of the CNS studied (Cherubini et al., 1991; Leinekugel 

et al., 1997). During development GABA also acts as a trophic neurotransmitter by regulating 

nearly all the key developmental steps, from cell proliferation to circuit refinement (Demarque 

et al., 2002). 

The GABAA receptors are protein complexes consisting of five subunits, and there are 16 

different receptor subunit types (Barnard et al., 1998). This gives an almost unlimited amount of 

possible subunit combinations, forming receptors with very different binding properties, and the 

subunit composition (mainly the α subunit) determines the pharmacology of the receptor 

(Bonnert et al., 1999; Korpi et al., 2002). The receptors display a unique distribution in the 

mammalian CNS. The expression patterns of GABAA receptor subunits in the rat brain, 

including the hippocampus, also change region- and subunit-specifically during the embryonic 

and postnatal development (Laurie et al., 1992; Poulter et al., 1992; Fritschy et al., 1994; 

Paysan & Fritschy, 1998). In particular, the expression of α1 and α2 subunits is strictly 

developmentally regulated, with a high α2 mRNA level of the embryonic phase that declines, 

whereas the α1 mRNA expression increases during the early postnatal development in the rat 

hippocampus (Laurie et al., 1992; Poulter et al., 1992; Fritschy et al., 1994; Paysan & Fritschy, 

1998). This switch has been suggested to indicate the appearance of a new, prevalent receptor 

subtype involved in synaptic inhibition (Fritschy et al., 1994; Hevers & Lüddens, 2002). 

Epilepsy is a fairly common chronic neurological disorder disturbing the normal function of 

the brain and the patient gets recurrent seizures. The cellular and molecular detrimental effects 

related to epilepsy are however not well known, especially during brain development. In adult 

rats, an important triggering factor for seizure generation is an impaired function of GABAA 

receptors (Tsunashima et al., 1997; Bouilleret et al., 2000; Andre et al., 2001). Recent 

10
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investigations in adult patients with epilepsy and adult epileptic experimental animals show that 

the subunit composition, function, and pharmacology of the GABAA receptor changes after 

increased excitation, i.e. seizures (Brooks-Kayal et al., 1998b; Nusser et al., 1998a; Loup et al., 

2000; Andre et al., 2001; Raol et al., 2006b). However, it is still incompletely known whether 

and to what extent the subunit composition is modulated by seizures in the developing brain, 

with special interest to the hippocampus that is a region highly vulnerable to seizures. 

The main objectives of this thesis were to study seizure-induced alterations in the subunit 

composition of GABAA receptor by using in vitro and in vivo experimental epilepsy models of 

the developing and adult rat brain. The goal was to find out the time course of seizure-induced 

changes in the expression of subunit mRNAs and to study how the changes may affect the 

receptor pharmacology. Understanding of these epilepsy-associated, regionally distinct changes 

in the GABAA receptor in different hippocampal neurons of the immature brain should permit 

development of new anti-epileptic drugs that specifically target receptor subtypes, which may 

predominate on the epileptic neuron in pediatric patients. 

11
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2. REVIEW OF LITERATURE 

2.1 GABA 

2.1.1 GABA as a neurotransmitter  

The amino acid gamma-aminobutyric acid (GABA) has long been considered to be the main 

inhibitory neurotransmitter in the adult mammalian CNS. It regulates a neuron’s ability to fire 

action potentials either through hyperpolarization of the membrane potential or through shunting 

of excitatory inputs. GABA was first identified in the mammalian brain during the 1950s 

(Roberts & Frankel, 1950). When GABA was applied to nerve and muscle cells of both 

vertebrates and invertebrates, it was generally found to have inhibitory effects and produce 

conductance changes with ion sensitivities similar to those observed after the activation of 

inhibitory nerves (Kuffler & Edwards, 1958; Krnjevic et al., 1966). In the 1970s GABA was 

finally localized to mammalian nerve terminals (Bloom & Iversen, 1971), and antibodies raised 

against GABA-biosynthetic enzymes were shown to be localized preferentially to known 

inhibitory neurons (Ribak, 1978; Ribak et al., 1978). However, recent evidence suggests that 

GABA is not only an inhibitory neurotransmitter, but also act as an excitatory and trophic 

neurotransmitter in the immature brain and is involved in generating rhythmic activities in 

neuronal networks (Cherubini et al., 1991; Ben-Ari et al., 1997; Demarque et al., 2002). 

2.1.2 Synthesis and metabolism 

In the mammalian brain, the portion of GABA that functions as neurotransmitter is formed by a 

metabolic pathway commonly referred to as the GABA shunt. As with glutamate synthesis, the 

most common precursor for GABA formation is glucose. The first step in the GABA shunt is 

the conversion of α-ketoglutarate into glutamate by the action of GABA α-oxoglutarate 

transaminase (GABA transaminase or GABA-T) (Shank et al., 1989). GABA is then 

synthesized primarily from glutamate in a reaction that is catalysed by two glutamic acid 

decarboxylase (GAD) enzymes, GAD65 and GAD67 (Martin & Rimvall, 1993) (Figure 1).  

Like most neurotransmitters, GABA is packaged into vesicles in the presynaptic terminals 

by a vesicular GABA transporter. Upon stimulation, GABA is released from nerve terminals by 

calcium-dependent exocytosis (Gaspary et al., 1998). Once released, GABA freely diffuses 

across the synaptic cleft to interact with its appropriate receptors on the postsynaptic membrane. 

12
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GABA signals are terminated by reuptake of the neurotransmitter from the cleft into nerve 

terminals by the actions of several types of plasma membrane GABA transporters (GATs). By 

this mechanism, GABA can be returned to GABAergic nerve terminals where it is repackaged 

for release (Conti et al., 2004). The transport of GABA requires extracellular Na+ and Cl-; two 

Na+ and one Cl- ion are transported for each GABA molecule (Radian & Kanner, 1983). By 

molecular cloning techniques the genes for four highly homologous GABA transporters have 

been characterized, and they are expressed on nerve terminals and glial cell membranes 

throughout the nervous system (Conti et al., 2004). GAT-1 is considered the predominant 

neuronal GABA transporter, whereas the others show a more ubiquitous distribution (Guastella 

et al., 1990; Borden, 1996; Engel et al., 1998).  

 

GABAA receptor

Glial cell

Succinic 
semialdehyde

GAT

GABA

Glutamate

GAD

GABA
GABA-T

GAT

Postsynaptic neuron

Presynaptic neuron

GABA-T

GABAB receptor

Ca2+

Glutamate

GABAA receptor

Glial cell

Succinic 
semialdehyde

GAT

GABA

Glutamate

GAD

GABA
GABA-T

GAT

Postsynaptic neuron

Presynaptic neuron

GABA-T

GABAB receptor

Ca2+

Glutamate

 
Figure 1. The GABAergic synapse. GABA is synthesized from glutamate by glutamic acid decarboxylase (GAD) 
and stored in vesicles located in the presynaptic terminal. It is then released to the synaptic cleft and interacts with 
postsynaptic GABAA receptors apposed to GABAergic release sites. The GABAA receptor is linked to the 
postsynaptic membrane by anchoring proteins, such as gephyrin. GABA is removed from the synaptic cleft by 
specific transporters, GABA transporters (GATs), located both on presynaptic nerve terminals and on adjacent glial 
cell membranes. GABA is again converted into glutamate by GABA transaminase (GABA-T). In glial cells, 
glutamate can be further metabolized to glutamine, which is more easily taken up by neurons via amino acid 
transporters and reused for GABA synthesis. GABAB receptors, located on presynaptic GABAergic nerve 
terminals, suppress the release of GABA, by inhibiting Ca2+ influx. Modified from Möhler et al. (2002). 
 

GABA can thus also be taken up by surrounding astrocytes where it is metabolized into 

succinic semialdehyde by GABA-T, which is again transformed into glutamate (GABA shunt) 

(Waagepetersen et al., 2003). Because GAD is not present in glia, glutamate cannot be 

13
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converted into GABA and is instead transformed by glutamine synthetase into glutamine 

(Waagepetersen et al., 2003; Schousboe & Waagepetersen, 2006). Glutamine is then transferred 

back to neurons by specific transporters (Varoqui et al., 2000), where it can be converted by 

GAD to regenerate GABA (Schousboe & Waagepetersen, 2006).  

2.1.3 GABAA receptor 

The GABA receptors are divided into three groups: GABAA, GABAB and GABAC (reviewed in 

Chebib & Johnston, 2000). The GABAB and GABAC receptors are shortly described later, 

whereas the GABAA receptor, the main interest of this work, will be further discussed here.   

GABAA receptors are ligand-gated ion channels that belong to the same superfamily of 

receptors as the nicotinic acetylcholine receptor, glycine receptors, and the serotonin 5-HT3 (5-

hydroxytryptamine) receptor, although they exhibit a low sequence homology (approximately 

10-25%) (reviewed in Leite & Cascio, 2001). The receptors are heteropentameric protein 

complexes that arrange around a central water-filled pore that constitutes the Cl- channel 

(Chebib & Johnston, 2000). When GABA binds to GABAA receptors the channel responds by 

opening and mediating fast inhibitory neurotransmission (Figure 2A).  

2.1.3.1 Subunit genes 

The receptors are thus constructed of five subunits from several related genes or gene classes. 

The first of the GABAA receptor subunits was cloned in 1987 (Schofield et al., 1987). Since 

then 16 different subunit genes have been identified and categorized into seven functionally 

distinct classes: α1-6, β1-3, γ1-3, δ, ε, θ, π (Sieghart, 1995; Barnard et al., 1998; Bonnert et al., 

1999; Sinkkonen et al., 2000; Korpi et al., 2002; Whiting, 2003). All subunits are products of 

separate genes, but further variety is caused by several splice forms, e.g. for α6, β2 and γ2 

subunits (Whiting et al., 1990; Harvey et al., 1994; Korpi et al., 1994). The γ2 subunit exists in 

short (γ2S) and long (γ2L) forms distinguished by an additional 8 amino acids in the 

cytoplasmic loop of the longer form (Whiting et al., 1990). There is a high conservativity among 

subunits at the amino acid level, with about 70% sequence similarity within classes and about 

30% between classes (Korpi et al., 2002). The subunits are polypeptides of approximately 50 

kDa in size. They all possess a similar putative membrane topology, comprising a long 

extracellular N-terminal domain, four transmembrane spanning segments (M1-M4) (Schofield et 

al., 1987), a long intracellular sequence between M3 and M4, and a short extracellular C-
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terminal loop. The M2 region of each of the five subunits arranges to form the wall of the 

channel pore (Johnston, 2005) (Fig 2B).  
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Figure 2. Schematic structure of the GABAA receptor. A. The receptors are heteropentameric proteins most 
commonly composed of 2α, 2β and 1γ subunit forming an integral Cl- channel. Binding of GABA to its distinct 
binding site at the receptor allows influx of Cl- ions leading to inhibitory neurotransmission. B. Each subunit 
polypeptide chain consists of a large extracellular N-terminal region, four transmembrane regions (M1-M4), and a 
short extracellular C-terminal portion. 

2.1.3.2 Subunit expression 

The large number of receptor subunits provides an enormous number of possible subunit 

combinations and calculations indicate that more than 2000 distinct GABAA receptors could 

exist (Moss & Smart, 2001; Johnston, 2005). However, subunit studies show that every 

combination is not possible and it seems that only certain subunit combinations are preferred in 

the CNS (Barnard et al., 1998; Whiting, 2003). The number of combinations is reduced by the 

limited spatiotemporal overlap in the subunit expression patterns (Laurie et al., 1992; Wisden et 

al., 1992; Fritschy & Möhler, 1995) and by the rules determining subunit assembly into 

functional receptors (reviewed by Moss & Smart, 2001). Coexpression of α and β subunits in 

heterologous cells is enough to assemble GABA-gated ion channels on the cell surface (Günther 

et al., 1995; Fritschy et al., 1997), but these receptors lack the full range of electrophysiological 

and pharmacological properties. Evidence from both native and recombinant receptors indicate 

that a single receptor complex commonly contains two α, two β and one γ subunit, with the δ, ε, 
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π and θ subunits being able to substitute for the γ-subunit (Chang et al., 1996; Tretter et al., 

1997; Baumann et al., 2001). Also receptors containing two isoforms of a subunit class, e.g. 

certain co-localized α subunit pairs, on various neurons have been detected with 

immunofluorescent stainings (Fritschy et al., 1992).  

In the adult brain, the α1 is the most prevalent subunit and the α1β2γ2 combination is 

widely expressed and represents the major subtype of GABAA receptors (Laurie et al., 1992; 

Wisden et al., 1992; Whiting, 2003). In contrast, most other subunits display a unique regional 

and/ or cellular distribution in the mammalian CNS, and this will determine the functional and 

pharmacological properties of the receptor (Sieghart, 1995; Bonnert et al., 1999; Korpi et al., 

2002). For example, the α4 subunit is concentrated in the thalamus and hippocampal dentate 

gyrus (DG) (Wisden et al., 1992; Sperk et al., 1997). Other subunits expressed in the 

hippocampus are the α2 and α5 subunits, that are predominantly expressed in pyramidal cells, 

most commonly combined with β3 and γ2 (Laurie et al., 1992; Wisden et al., 1992; Fritschy & 

Möhler, 1995; Sperk et al., 1997; Pirker et al., 2000; Brünig et al., 2002a; Christie et al., 2002). 

The α2 subunit is expressed only weakly in interneurons, whereas immunoreactivity for the α1 

subunit is found over the entire hippocampus (Laurie et al., 1992; Fritschy & Möhler, 1995; 

Sperk et al., 1997; Pirker et al., 2000). α1 is strongly expressed especially in parvalbumine-

positive GABAergic interneurons, colocalized with the β2 and γ2 subunits (Fritschy & Möhler, 

1995; Sperk et al., 1997), but also found in principal cells (Nusser et al., 1995, 1996). Some 

neuronal populations, such as the dentate granule cells, contain virtually all GABAA receptor 

subunit mRNAs (Laurie et al., 1992; Wisden et al., 1992). The α6 subunit, on the other hand, is 

only expressed in cerebellar granule cells (Lüddens et al., 1990; Nusser et al., 1998b). γ1 is a 

rather rare subunit, that still seems to be the major subunit e.g. in the hypothalamus, septum, and 

amygdala (Wisden et al., 1992; Pirker et al., 2000). All GABAA receptors are thought to contain 

β subunits, with the possible exception of the θ subunit-containing receptors which are unlikely 

to be present in the hippocampus (Sinkkonen et al., 2000). The ε and θ subunits are fairly 

similarly expressed in the noradrenergic locus coeruleus of the brainstem (Bonnert et al., 1999; 

Sinkkonen et al., 2000). Additionally, the π subunit is abundant in reproductive tissues, but is 

virtually absent in the brain (Hedblom & Kirkness, 1997).  

Furthermore, GABAA receptors with different subunit compositions seem to be distributed 

to different cellular compartments. This has been well documented in hippocampal pyramidal 
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neurons containing α1, α2, and α5 subunits together with β1-3 and γ2 subunits, suggesting that 

they can coexpress several distinct receptor subtypes in the same cell (Fritschy & Möhler, 1995; 

Pirker et al., 2000). Parvalbumine-positive basket cells make synapses with receptors that 

contain α1 subunits equally distributed on neuronal soma, proximal and distal dendrites, spines, 

and axon initial segment of pyramidal cells (Nusser et al., 1996; Nyíri et al., 2001; Klausberger 

et al., 2002). In contrast, receptors that contain α2 subunits are preferentially localized at axo-

axonic synapses on the axon initial segment of Cornu Ammonis (CA) field 1 (CA1) pyramidal 

cells, (Nusser et al., 1996; Fritschy et al., 1998), known to be innervated by parvalbumine-

immunoreactive cells (Nyíri et al., 2001). To a lesser extent α2 subunit-containing receptors are 

found postsynaptically at axo-somatic synapses formed by cholecystokinin-positive 

(parvalbumine-negative) basket cells (Nusser et al., 1996; Nyíri et al., 2001).  

Although most GABAA receptors are located postsynaptically, some structurally and 

functionally distinct subtypes are also differentially located to extrasynaptic membrane sites 

(Mody, 2001; Fritschy & Brünig, 2003). The targeting of GABAA receptors to these sites has 

been extensively analysed in cerebellar granule cells (Nusser et al., 1998b) where receptors that 

contain δ subunits, mainly α4βδ and α6βδ, are specifically targeted to extrasynaptic domains 

(Jones et al., 1997; Nusser et al., 1998b; Sur et al., 1999). α5 subunits are predominantly 

expressed at extrasynaptic regions of pyramidal neurons in the CA1 and CA3 regions of the 

hippocampus (Fritschy et al., 1998; Brünig et al., 2002a), but also at synapses (Christie & de 

Blas, 2002). Furthermore, there is also evidence for presynaptic GABAA receptors e.g. at 

hippocampal mossy fibers (MFs) (Ruiz et al., 2003). The mechanism that underlies differential 

subcellular targeting of GABAA receptor isoforms remains largely speculative. Studies in 

hippocampal pyramidal cell cultures, however, have shown that in the absence of GABAergic 

innervation mismatched GABAA receptor clusters were formed opposite to presynaptic 

glutamate-containing terminals, suggesting the importance of presynaptic factors for proper 

synapse formation (Brünig et al., 2002b; Christie et al., 2002).  

2.1.3.3 Receptor assembly and intracellular trafficking 

Neurotransmitter receptors have to accumulate postsynaptically for efficient synaptic 

transmission, and studies have demonstrated that functional GABAA receptors are clustered 

opposite to GABAergic terminals at postsynaptic sites (Maccaferri et al., 2000; Ruiz et al., 

2003). The γ2 subunit has a central role in the clustering of synaptic GABAA receptors, not only 
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in embryonic cells undergoing synapse formation (Essrich et al., 1998) but also in more mature 

neurons with existing synaptic contacts (Schweizer et al., 2003). In fact, the γ2 subunit is part of 

all naturally occurring postsynaptically located GABAA receptor subtypes identified to date, 

most commonly associated with the α1, α2, or α3 subunit (Essrich et al., 1998; Fritschy et al., 

1998; Brünig et al., 2002a). The mechanisms how GABAA receptors are maintained at synapses 

are still poorly understood. Several intracellular scaffolding proteins have shown to interact with 

the receptors for clustering at their synaptic locations (Moss & Smart, 2001; Fritschy & Brünig, 

2003), and the functionally best characterized scaffolding proteins are discussed below.  

Gephyrin is a 93-kDa, highly concentrated protein in the subsynaptic compartment of 

inhibitory synapses, and it was first identified to colocalize with glycine receptors (Kirsch et al., 

1991). It interacts with tubulin of the cytoskeleton (Kirsch et al., 1991), and forms a hexagonal 

lattice that serves as a subsynaptic scaffold (Schwarz et al., 2001). In the brain, gephyrin shows 

a dominant role for postsynaptic clustering of GABAA receptors, probably together with the γ2 

subunit (Kneussel et al., 1999; Brünig et al., 2002a; Brünig et al., 2002b; Christie & de Blas, 

2002), seen in both immature and mature synapses (Essrich et al., 1998; Schweizer et al., 2003). 

It also seems essential for proper localization of receptors containing the α2 subunit (Essrich et 

al., 1998; Kneussel et al., 1999). No direct biochemical interaction between GABAA receptors 

and gephyrin has, however, been demonstrated, so there might be other possible intermediate 

proteins involved (Fritschy & Brünig, 2003).  

Dystrophin is a protein restricted to postsynaptic sites that has been associated with a subset 

of GABAA receptors containing α1 or α2 subunit, e.g. in the hippocampus (Knuesel et al., 

1999). Studies in mutant mouse (mdx) that lacks dystrophin, show no change in gephyrin 

clustering, but a significant reduction in GABAA receptor clusters. Dystrophin might therefore 

regulate the stability of GABAA receptors at synapses (Knuesel et al., 1999). It is suggested to 

cluster selectively opposite to GABAergic terminals, unlike gephyrin that together with GABAA 

receptors may be mistargeted to glutamatergic synapses (Brünig et al., 2002b).  

A protein called GABAA receptor-associated protein (GABARAP), that specifically interacts 

with the cytoplasmic domain of the γ2 subunit as well as with microtubules and gephyrin, has 

recently been identified (Wang et al., 1999), and is implied to have a role for clustering of 

GABAA receptors. However, GABARAP is concentrated in the Golgi complex and other 

vesicular bodies including subsynaptic cisternae and is present only scarcely at inhibitory 

synapses (Kittler et al., 2001). Thus it might therefore facilitate the intracellular transport of 
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GABAA receptors between the Golgi apparatus and synaptic sites (Moss & Smart, 2001). The 

mechanisms responsible for this targeting remain unknown but likely involve several anchoring 

proteins.  

Additional mechanisms involving the intracellular trafficking of GABAA receptors have 

been detected. Palmitoylation of residues on the cytoplasmic loop of the γ2 subunit by a novel 

GABAA receptor-associated membrane protein named Golgi apparatus-specific protein with the 

DHHC Zn2+ finger domain, represents a new, reversible post-translational modification that is 

important for normal clustering of GABAA receptors at synapses (Keller et al., 2004). GABAA 

receptor function can also be modulated through phosphorylation. Several protein kinases 

including cAMP-dependent protein kinase, protein kinase C (PKC) can phosphorylate key 

residues within the intracellular loop of β1-3 and γ2 subunits (McDonald et al., 1998; Connolly 

et al., 1999). The phosphorylation has been suggested to be important in functional regulation 

(ranging from enhancement to inhibition of the GABA-mediated anionic currents) and cell-

surface stability of GABAA receptors (McDonald et al., 1998; Connolly et al., 1999).  

It was recently shown that GABAA receptors are constitutively internalized by clathrin-

dependent endocytosis (Kittler et al., 2000) and are constantly cycling from synaptic sites on the 

membrane to internal endocytic structures, endosomes (Connolly et al., 1999; van Rijnsoever et 

al., 2005). During endocytosis, GABAA receptors interact with the adaptin complex AP2, 

constituting of adaptin proteins that are one of the main components of the clathrin-coated pits 

subsequently converting into endosomes (Kittler et al., 2000). Individual subunits or incomplete 

GABAA receptors are retained within the endoplasmic reticulum and are quickly degraded 

(Connolly et al., 1999). Only receptors that are fully assembled as pentamers (α and β or α, β, 

and γ) reach the cell surface (Connolly et al., 1999). PKC may regulate αβγ receptor expression 

at the cell surface by recycling them from endosomes (Connolly et al., 1999).  

2.1.4 GABAA receptor function 

For the GABAA receptor class of receptors, ligand binding is followed by a conformational 

change in the channel protein that allows a net inward or outward flow of ions through the 

membrane-spanning pore of the channel, depending on the electrochemical gradient of the 

particular permeant ion. GABAA receptors carry primarily Cl- ions; however, other anions, such 

as bicarbonate (HCO3
-), can also permeate the channel pore, although less efficiently (Kaila, 

1994). Activation of GABAA receptors by GABA in the adult rat brain increases Cl- 
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permeability of the neuronal membrane, allowing an inward Cl- flow that leads to a 

hyperpolarizing postsynaptic response, the inhibitory postsynaptic potential (IPSP), and 

decreased excitability of the neuron. As mentioned earlier the receptor has been found both pre- 

and postsynaptically and Cl--dependent GABAA receptor-mediated synaptic inhibition can occur 

at both synaptic sites.  

2.1.4.1 Types of inhibitory action 

Most neurons in the brain show two different types of inhibitory action for the GABAA receptor: 

phasic and tonic inhibitory activity. These two types of inhibition correlate with the structurally 

and functionally distinct GABAA receptor subtypes that are differentially located to postsynaptic 

and extrasynaptic membrane sites (Mody, 2001; Fritschy & Brünig, 2003). Neurotransmitter 

receptors located traditionally at the synapse mediates the phasic neurotransmission, where 

postsynaptic receptors are activated by a GABA transient that is rapidly diffused away from the 

release site (Brickley et al., 1996). Thereby, miniature inhibitory postsynaptic currents 

(mIPSCs) with a rapid onset are generated, followed by deactivation of the receptor and decay 

of the inhibitory postsynaptic current (IPSC) when the ion channel closes and the ligand is 

removed (Brickley et al., 1999). As mentioned earlier, some neurotransmitter receptors, on the 

other hand, are located in the membrane outside the synapse (extrasynaptic) where they respond 

to neurotransmitter spilled out of the synapse and hence mediate tonic activity (Mody, 2001). 

Consistent with such a paracrine activity, these receptors have a high affinity for GABA, and are 

therefore activated by the low concentrations of the neurotransmitter found outside the synapse, 

and they desensitize more slowly.  

Tonic activity was first identified in cerebellar granule cells and these cells, where synapses 

made with Golgi cells constitutes the only inhibitory input, have provided a good model of the 

inhibitory actions (Brickley et al., 1996; Nusser et al., 1998b). Electrophysiological and 

anatomical evidence from cerebellar granule neurons suggests that phasic inhibitory currents are 

mediated by postsynaptic GABAA receptors that contain the γ2 subunit in combination with 

diverse α and β subunits (Nusser et al., 1998b; Brickley et al., 1999). On the other hand, 

receptors containing the δ subunit together with the α6 subunit preferentially localize to 

extrasynaptic sites, where they mediate tonic inhibition (Jones et al., 1997; Nusser et al., 1998b; 

Brickley et al., 1999; Mody, 2001; Wisden et al., 2002). Tonic currents mediated by 

extrasynaptic GABAA receptors have subsequently been found also in several other brain 
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regions, such as α5 subunit-containing receptors in hippocampal CA1 pyramidal cells 

(Collinson et al., 2002; Wisden et al., 2002), and in receptors containing the δ subunit, likely 

together with the α4 subunit in granule cells of the DG (Nusser & Mody, 2002).  

2.1.5 Molecular pharmacology 

The era of GABAA receptor pharmacology started in the 1970s, when researchers discovered 

that that the convulsant alkaloid bicuculline antagonizes certain inhibitory actions of GABA 

(Curtis et al., 1971). Since then it has been found that the multitude of GABAA receptor subunits 

forms receptors with different subtypes and many different drug binding sites, and they are 

indeed pharmacological targets for many groups of drugs (Figure 3). Drugs acting on GABAA 

receptors are in clinical use for treating anxiety, epilepsy, sleep disorders, cognitive and mood 

disorders, alcohol withdrawal, and for induction and maintenance of anesthesia (Korpi et al., 

2002; Johnston, 2005). These drugs mainly act to increase GABA-mediated synaptic inhibition 

either by directly activating GABAA receptors or, more commonly, by enhancing the action of 

GABA on GABAA receptors. This latter action is known as positive allosteric modulation, and 

the drugs act as agonists on allosteric sites that are remote from the GABA site on the receptor, 

thereby increasing the affinity of the receptor for GABA at its own binding site and 

consequently also the frequency of channel openings. The benzodiazepine (BZ) site is such an 

allosteric site (Sieghart, 1995; Korpi et al., 2002). BZs act as agonists on GABAA receptors 

(Johnston, 2005). They are widely used therapeutic drugs in the treatment of anxiety disorders, 

sleep disturbances, and epilepsy including SE. Still, the use of BZs is limited because they may 

produce tolerance and dependence.  

Drugs that reduce the action of GABA on GABAA receptors are known as negative allosteric 

modulator, or inverse agonists, that have the opposite actions to classical BZs. They decrease 

both the frequency of channel openings and the efficacy of GABA binding. Inverse agonists, 

such as ethyl-8-azido-5,6-dihydro-5-methyl-6-oxo-4H-imidazo[1,5-a][1,4]benzodiazepine -3-

carboxylate (Ro 15-4513) (Sieghart et al., 1987), tend to be convulsant and anxiogenic. Agents 

that block the actions of both positive and negative allosteric modulators are known as 

neutralizing allosteric modulators or antagonists, e.g. the classical BZ antagonist flumazenil. 

They bind to and occlude the BZ-binding site, but do not affect channel function and can be 

used to reverse the actions of an agonist or inverse agonist, as in the treatment of an overdose 

with a BZ agonist.  
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Selective competitive agonists that directly activate GABAA receptors are, in addition to 

GABA, conformationally restricted analogs such as muscimol and 4, 5, 6, 7-

tetrahydroisoxazolo[5, 4-c] pyridine-3-ol (THIP). Muscimol acts as a full agonist in most 

GABAA receptor subtypes, whereas THIP seems to act as a partial agonist (Ebert et al., 1997). 

Several competitive antagonists of GABAA receptors are also known, including bicuculline and 

SR 95531 (Heaulme et al., 1986). In addition, the GABAA receptor antagonists picrotoxin, 

pentylenetetrazol, and t-butylbicyclophosphorothionate (TBPS) bind at or near the Cl- channel at 

an assumed “convulsant site” and non-competitively block GABA-gated Cl- currents (Squires et 

al., 1983). These compounds also cause convulsions in animals.  
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Figure 3. Major drug-binding sites of the GABAA receptor. The binding sites for GABA and benzodiazepines are 
located extracellularly at the interface of the α/β and α/γ2 subunits, respectively. Some sites, e.g. for barbiturates, 
neurosteroids, anesthetics and alcohol, may be located at the M regions, whereas other binding sites, e.g. for Zn2+ 
and picrotoxin, are most likely located near the Cl- channel pore.  

 

GABAA receptors are also the site of action for a large number of sedative-hypnotic and 

anesthetic agents, including barbiturates, ethanol, and volatile anesthetics. They facilitate 

GABA’s ability to activate the receptor by prolonging the time that the Cl- channel remains 

open. Barbiturates bind to a distinctly separate location, most likely near the Cl- channel pore. 

The mechanism of ethanol-induced GABAA receptor enhancement is unclear, and different 

studies have produced controversial results. 

Furthermore, there are many endogenous ligands that may influence GABAA receptor 

function in vivo including metal ions such as Zn2+, steroids , and chemicals derived from the diet 
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such as flavonoids (reviewed by Korpi et al., 2002; Johnston, 2005). Zn2+ has an opposite effect 

to barbiturates, thus slowing the onset and accelerating the deactivation kinetics of the receptor. 

It does not competitively interact with the GABA recognition site and probably has a different 

recognition site formed by the interaction of several subunits (Berger et al., 1998). Neuroactive 

steroids and their synthetic derivatives may be synthesized endogenously in the brain, and 

modulate brain function by still unknown mechanisms. However, neurosteroids can 

allosterically regulate GABAA receptor function to enhance or attenuate Cl- conductance. 

Neurosteroids recognize a distinct site on the GABAA receptor, probably dependent on certain 

subunit combinations (Siegwart et al., 2002).  

2.1.5.1 Subunit-selective drugs 

Classical BZs, such as diazepam and flunitrazepam, are thought to act on GABAA receptors at a 

binding pocket at the interface between the γ2 subunit and α subunits (α1, α2, α3 and α5 

subunits), that contain a conserved histidine residue at the amino acid position 101 in the BZ 

binding domain on the extracellular N-terminus. GABAA receptors containing α4 or α6 subunits 

have an arginine at the corresponding position and they are relatively insensitive to classical 

BZs (Wieland et al., 1992). When the BZ-sensitive histidine residue was replaced to an arginine 

in the α1 subunit these receptors became diazepam-insensitive (Wieland et al., 1992). By this 

kind of “knock-in” approach of the BZ-insensitive residue into several α subunits, the 

behavioural roles of these subtypes have been defined. Concluded from these studies it seems 

that the α1-containing receptors are important for the sedative, amnesic and partially the 

anticonvulsant actions of BZs (Rudolph et al., 1999; Crestani et al., 2002) whereas α2-

containing receptors seem to mediate anxiolytic effects (Rudolph et al., 1999; Löw et al., 2000). 

Mice lacking the α5 subunit, which is mainly located in the hippocampus, showed decreased 

GABA-mediated synaptic inhibition and enhanced learning (Collinson et al., 2002).  

The α subunit variant thus mainly determines the binding properties of BZ site on the 

receptor (Pritchett et al., 1989; Pritchett & Seeburg, 1990; Lüddens et al., 1995), and these sites 

have been divided into types I (α1) and II (α2, α3 and α5) according to their α subunit affinity 

(Pritchett et al., 1989; Pritchett & Seeburg, 1990; Lüddens et al., 1995). Classical BZs are 

nonselective for type I and II BZ receptors. In addition, a third group of receptors were found 

that bound RO 15-4513 with high affinity, but were insensitive to diazepam (Sieghart et al., 
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1987). RO 15-4513 is a BZ site antagonist somewhat selective for cerebellar α6-containing 

GABAA receptors (Lüddens et al., 1990). This drug reduces ataxia produced by ethanol without 

altering other actions of ethanol. Ligands, such as zolpidem and CL 218,872 have high affinity 

for type I receptors, whereas they show low affinity for type II receptors (Pritchett et al., 1989; 

Pritchett & Seeburg, 1990; Lüddens et al., 1995). They can further be distinquished as zolpidem 

prefers receptors containing the α1 and γ2 subunits together with a β subunit whereas CL 

218,872 has a higher affinity for receptors with the α1, γ3 and β subunits (Lüddens et al., 1995). 

Zolpidem is a non-BZ, clinically used sedative-hypnotic drug that has provided a basis for 

further classification of the BZ-sensitive GABAA receptors (Korpi et al., 1997) into three 

distinct GABAA receptor subtypes with high (α1), low (α2, α3), and very low (α5) affinity for 

zolpidem (Ruano et al., 1992; Benavides et al., 1993).  

2.1.6 Other GABA receptors 

Other members of the GABA receptor family are the metabotropic GABAB receptor and the 

ionotropic GABAC receptor. Similarities as well as differences can be found when comparing 

these receptors with the GABAA receptor. They have also been shown to interact with GABAA 

receptors.  

2.1.6.1 GABAB receptor 

At the beginning of the 1980s, a bicuculline-insensitive, Cl--independent GABA response was 

discovered in the brain. This was shown to be mediated by a metabotropic receptor termed the 

GABAB receptor (Bowery et al., 1980). GABAB receptors belong to the superfamily of 

heterotrimeric guanine nucleotide-binding protein (G-protein) coupled seven-transmembrane-

domain receptors that inhibit adenylyl cyclase via the Gαi/o subunits of the G-protein 

(Holopainen & Wojcik, 1993). GABAB receptors are localized both pre- and postsynaptically, 

and they use different mechanisms at these locations to regulate cell excitability (Bettler et al., 

2004). In the hippocampus, presynaptic GABAB receptors located both on inhibitory 

(GABAergic) and excitatory (glutamatergic) terminals are proposed to be tonically activated by 

ambient levels of GABA (Kubota et al., 2003).  

GABAB receptors were not cloned until 1997 and thus remained the last of the major 

neurotransmitter receptors to be characterized at the molecular level (Kaupmann et al., 1997). 

They show sequence homology with the metabotropic glutamate receptors (mGluRs) 
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(Kaupmann et al., 1997). Two molecular subunits of the GABAB receptor, GABAB1 and the 

GABAB2, have been characterized and both subunits seem to be required to assemble functional 

heterodimeric receptors (Bettler et al., 2004). In the rat brain, GABAB1 mRNA is detectable in 

almost all neuronal cell populations, with highest levels of expression in hippocampus, thalamic 

nuclei, and cerebellum (Liang et al., 2000). High levels of GABAB2 mRNA are found in cortex, 

hippocampus, thalamus, and in cerebellar Purkinje cells (Liang et al., 2000).  

GABAB receptors are considered to be promising drug targets (Bettler et al., 2004). They are 

activated by baclofen, a competitive agonist, and inhibited by phaclofen, a competitive 

antagonist. Baclofen is a lipophilic derivative of GABA and is used to treat spasticity and 

skeletal muscle rigidity in patients with spinal cord injury, multiple sclerosis, and cerebral palsy 

(Wojcik & Holopainen, 1992; Bettler et al., 2004). A number of studies have also shown the 

involvement of GABAB receptors in the etiology of epilepsies. A dysfunctional GABAB system 

is proposed to be one of the causes of temporal lobe epilepsy (TLE) (Scanziani et al., 1994; 

Gambardella et al., 2003). 

2.1.6.2 GABAC receptor 

A third related ionotropic GABA receptor, termed the GABAC receptor, has also been identified 

(Johnston et al., 1975; Polenzani et al., 1991). This receptor is a Cl--selective ion-channel but 

differs from the GABAA receptor by having a smaller single channel conductance, meaning a 

longer lasting inhibition (Feigenspan & Bormann, 1994), and a higher affinity for GABA than 

the GABAA receptors (Feigenspan & Bormann, 1994; Wang et al., 1994). GABAC receptors are 

believed to be homo- or heteropentameric proteins that are composed of ρ-subunits, of which 

three subunits have been identified, the ρ1, ρ2 and ρ3 subunits (Cutting et al., 1991; Alakuijala 

et al., 2005). Little is known about their function, but as the ρ-subunits share sequence 

homology (30-38%) with the so far identified GABAA receptor subunits, GABAC receptors can 

be considered as pharmacological variants of GABAA receptors. The functional characteristics 

of these receptors are nearly identical to extrasynaptic GABAA receptors composed of α6 and δ 

subunits at the cerebellar Golgi cell-granule cell synapse (Alakuijala et al., 2006). In addition, 

extrasynaptic GABAC receptors possessing tonic inhibitory activity have already been found in 

the retina (Cutting et al., 1991; Polenzani et al., 1991; Enz et al., 1995). Recent evidence 

indicates that the receptor is also expressed widespread in the CNS, including the cortex, 
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thalamus, cerebellum, hippocampus and spinal cord (Johnston et al., 1975; Enz et al., 1995; 

Alakuijala et al., 2006).  

The pharmacology of the GABAC receptors also differs from that of the GABAA receptors. 

Agents like muscimol and cis-4-aminocrotonic acid act on GABAC receptors as agonists (in 

addition to GABA) (Johnston et al., 1975; Alakuijala et al., 2006), that suppress postsynaptic 

excitability and increase the membrane conductance, and they are antagonized by Cl--channel 

blockers such as picrotoxin (Feigenspan & Bormann, 1994; Wang et al., 1994). On the other 

hand, GABAC receptors are insensitive to potent GABAA receptor modulators such as BZs, 

barbiturates and neurosteroids (Feigenspan & Bormann, 1994; Wang et al., 1994), and they 

neither respond to the GABAA receptor antagonist bicuculline nor to the GABAB receptor 

agonist baclofen (Cutting et al., 1991; Polenzani et al., 1991; Wang et al., 1994). The major 

indications for drugs acting on GABAC receptors are in the treatment of epilepsy, as well as 

visual, sleep and cognitive disorders (Johnston et al., 2003).  

2.1.7 GABA in the developing brain 

As GABA is able to depolarize postsynaptic cells in the early postnatal rat brain, it has been 

suggested that fast excitatory synaptic transmission is mediated by GABAA receptors (Cherubini 

et al., 1991; Ben-Ari et al., 1997). Later in development, around the end of the second postnatal 

week in the rat, GABA becomes mainly hyperpolarizing (Ben-Ari et al., 1989; Khazipov et al., 

2004). The depolarizing effects of GABAA receptor-mediated responses in immature neurons 

are due to a high intracellular Cl- concentration (Kaila, 1994; Payne et al., 2003). During 

neuronal maturation the intracellular Cl- concentration decreases, causing a shift in the 

equilibrium potential of Cl- to more negative values (−60 to −70), which allows the effect of 

GABA to become progressively inhibitory (Rivera et al., 2005). Consistent with this is the 

differential expression of cation-chloride co-transporters during different developmental stages 

(Rivera et al., 1999). The main transporter mediating Cl- uptake in immature neurons is the 

inwardly directed Na-K-2Cl co-transporter isoform 1, NKCC1 (Kaila, 1994; Payne et al., 2003). 

The developmental shift of GABA becoming hyperpolarizing is primarily attributed to the 

developmental up-regulation of the outwardly directed K-Cl co-transporter isoform 2, KCC2, by 

the end of the second postnatal week in the rat (Rivera et al., 1999; Payne et al., 2003). These 

developmental gradients have also been detected in primate neurons in utero, and can thus be 

compared to development in human fetuses and preterm babies (Khazipov et al., 2001). 
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In hippocampal interneurons and pyramidal cells functional GABAergic synapses are the 

first to be formed, even before glutamatergic ones are established (Khazipov et al., 2001; 

Hennou et al., 2002). The majority of synaptic activity and functional connections in the 

neonatal rat and monkey neocortex and hippocampus are hence GABAA receptor-mediated 

(Khazipov et al., 2001; Hennou et al., 2002). Before the functional maturation of synapses, 

GABA also exerts its effects in a paracrine fashion via tonic GABAA receptor activation, 

because of higher agonist affinity and longer-lasting activation kinetics of these receptors 

(Demarque et al., 2002). These responses are mediated by the activation of GABAA, but also to 

a lesser extent by N-methyl-D-aspartate (NMDA) receptors (Demarque et al., 2002). The 

endogenous GABAergic depolarization may induce synaptic plasticity by removing the Mg2+ 

block of NMDA receptors, resulting in an increased Ca2+ influx to the cell (Ben-Ari et al., 1997; 

Leinekugel et al., 1997). This function is attributed to α-amino-3-hydroxy-5-methyl-4-isoxazole 

propionic acid (AMPA) receptors in the adult brain, but as the first glutamatergic synapses 

[appearing after postnatal day (P) 2] only consist of NMDA receptors, GABAA receptors play 

the role of AMPA receptors in the immature brain, acting in synergy with NMDA receptors 

(Ben-Ari et al., 1997; Leinekugel et al., 1997).  

These events where NMDA receptor-mediated signals are potentiated by the depolarizing 

effect of GABA, called GDPs (giant depolarizing potentials), occurs during the first two 

postnatal weeks in the rat hippocampus (Ben-Ari et al., 1989; Khazipov et al., 2004). GDPs are 

a synchronized neuronal activity associated with intracellular Ca2+ oscillations, thought to play a 

central role in the formation of functional neuronal circuits and provide conditions for plasticity 

in developing synapses (Ben-Ari et al., 1997; Leinekugel et al., 1997). These events also 

generate long-term potentiation (LTP) and long-term depression (LTD) of developing 

GABAergic synapses (McLean et al., 1996).  

The endogenous GABAA receptor activation early in development where GABA acts in a 

paracrinic fashion on distal neurons (Demarque et al., 2002), together with the depolarization-

induced increase in intracellular Ca2+, have provided knowledge about GABA acting as a 

trophic factor in brain development (Brickley et al., 1996; Demarque et al., 2002). The trophic 

actions of GABA can influence processes such as DNA synthesis (LoTurco et al., 1995), 

neuronal migration (Manent et al., 2005), neuronal differentation (Marty et al., 1996), and 

synaptogenesis (Marty et al., 2000). Brain-derived neurotrophic factor (BDNF) has been shown 

to be an important mediator of the trophic effects of GABA in the postnatal hippocampus 
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(Marty et al., 1996; Marty et al., 2000). Moreover, during early development GABAA receptors 

may exert dual, that is inhibitory as well as excitatory actions, depending on the context of their 

activation (Khazipov et al., 2004). Thus, GABA will provide a sufficient degree of excitatory 

drive to modulate developmental processes without danger, because GABAergic synapses may 

also inhibit overexcitation. 

2.1.7.1 GABAA receptor expression and assembly 

Studies applying in situ hybridization and immunohistochemistry have revealed that individual 

GABAA receptor subunits have a different temporal expression pattern, apart from the spatial, in 

the CNS. It has been suggested that the change in GABA function from a trophic, excitatory 

neurotransmitter in the immature brain to an inhibitory neurotransmitter in the mature brain 

could be, to some extent, connected to the developmental regulation of GABAA receptor subunit 

expression (Poulter et al., 1992; Fritschy et al., 1994; Paysan & Fritschy, 1998; Vicini et al., 

2001). In the developing brain, there is a specific subunit expression, with the α2, α3, α5 and 

β2/3 subunits predominantly expressed during embryonic development, whereas α1 is most 

prominent during postnatal development and α2 decreases during the first postnatal week 
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Apart from changes in the properties of GABA and in the GABAA receptor subunit 

expression there seem to be maturational changes in other components of the GABAergic 

system in the immature brain including metabotropic GABAB receptors, GABA transporters and 

GADs. The GABAB1 and GABAB2 receptor subunits have been detected during early embryonic 

and postnatal development of the CNS, even before the formation of synaptic circuits (Fritschy 

et al., 1999; Lopez-Bendito et al., 2002). It has been suggested that GABAB receptors function 

as the main inhibitory receptors in the neonatal rat hippocampus (Gaiarsa et al., 1995; Mc Lean 

et al., 1996). There is also evidence implicating for GABAB receptors as mediators of motility 

signals for migrating embryonic cortical cells (Behar et al., 2001). GABA itself is expressed early 

during rat brain development [embryonic day (E) 15] and the activity of its synthesizing 

enzyme, GAD, increases with age (Coyle & Enna, 1976). Both GAD and the main GABA 

transporter, GAT-1, are present before birth (Dupuy & Houser, 1996; Jursky & Nelson, 1996). 

In interneurons they show a largely similar distribution throughout the postnatal rat hippocampal 

development (Frahm & Draguhn, 2001). It has been shown that GAT-1 is up-regulated during 

the first two postnatal weeks, followed by a down-regulation to adult levels (Jursky & Nelson, 

1996; Yan et al., 1997). 
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(Laurie et al., 1992; Fritschy et al., 1994; Brooks-Kayal et al., 1998, 2001). The expression 

levels of the γ1 and γ3 subunits drop markedly during development, whereas γ2 expression 

increases after birth and remains mostly constant throughout development (Fritschy et al., 

1994).  

During synaptogenesis, the α2, α3, and α5 subunits (Hutcheon et al., 2004) as well as the 

β2/3 and γ2 subunits (Fritschy et al., 1994; Scotti & Reuter, 2001) are expressed and clustered 

early on in the membrane of neurons even before synapses have been formed, and maturation 

then proceed by recruitment of the α1 subunit receptors to these sites (Hutcheon et al., 2004). 

The α1 subunit expression thus increases with age and becomes increasingly associated with 

synaptophysin (a synaptic vesicle at the presynaptic terminal), indicating an increased number 

of synapses formed (Hutcheon et al., 2004). Also the developmental clustering of the β2/3 and 

γ2 subunits become increasingly associated with presynaptic terminals, but even after 30 days in 

culture, large fractions of these complexes are not associated, and were presumed to be 

extrasynaptic receptors (Scotti & Reuter, 2001). GABAA receptor β3 and γ2 subunit knockout 

mice are confronted with a high lethality and serious epileptic seizures (Günther et al., 1995; 

Homanics et al., 1997), indicating that these subunits are obligatory at least during development. 

Unexpectedly, deficiency of two of the most abundant subunits, α1 and β2, are not associated 

with lethal or strong behavioural effects, which could be due to a functional compensation by 

other GABAA receptor subunits (Sur et al., 2001). 

Moreover, differences have been found in the expression of BZ-sensitive sites between the 

adult and neonatal rat brain e.g. in the cortex and hippocampus (Ruano et al., 1992; Benavides 

et al., 1993; Roberts & Kellogg, 2000). It has been shown that a relatively high level of 

GABAA/BZ receptors is present in the rat brain at birth, the levels then alters region-specifically 

during the development, and the adult levels are achieved by about three weeks of age 

(Chisholm et al., 1983; Daval et al., 1991). The expression of BZ binding sites stabilizes after 

P10 in the cortex and hippocampal CA1 and CA3 layers, increases in the DG up to adulthood, 

but decreases in certain thalamic regions (Daval et al., 1991). The developmental increase in BZ 

binding has been demonstrated to be due to an additional number of specific sites. There is a 

postnatal increase in BZ type I receptors (Chisholm et al., 1983; Bacon et al., 1991), and the 

levels of high affinity zolpidem sites increase between P6 and P14 in the hippocampus, whereas 

the highest levels of the low and very low affinity zolpidem sites have been detected in P7 rats 
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(Roberts & Kellogg, 2000). These changes in BZ receptor expression coincide with the 

developmental increase of the α1 subunit and with the decrease of the α2 in many brain regions 

during the development (Poulter et al., 1992; Fritschy et al., 1994; Brooks-Kayal et al., 2001). 

The BZ enhancement of GABAA receptor activity also increases in multiple brain areas over 

postnatal development (Kapur & Macdonald, 1999). 

2.2 Hippocampus 

The hippocampus is a part of the brain located under the temporal lobe (humans and other 

mammals have two hippocampi, one in each side of the brain), forming a part of the limbic 

system. Memory formation and spatial navigation are associated with the hippocampus 

(Ekström et al., 2003), and hippocampal synaptic plasticity has been regarded as a cellular 

model of memory formation (Lynch et al., 2000). Studies in rats have shown that certain 

neurons in the hippocampus, called place cells, may fire when the animal finds itself in a 

particular location (Ekström et al., 2003). Recent experiments demonstrate that selective 

hippocampal damage results in profound amnesia in adult humans (Astur et al., 2002), and 

prevents spatial relational learning in adult rodents and monkeys (Lavenex et al., 2006). 

Removal of most of the medial temporal lobes in children to relieve frequent epileptic seizures, 

may also result in memory impairment (Cronel-Ohayon et al., 2006). In contrast, in monkeys 

with neonatal hippocampal lesions some functional brain reorganization takes place that enables 

spatial information to be acquired through the use of brain regions that normally do not subserve 

this function. These monkeys showed normal spatial relational learning and memory (Lavenex 

et al., 2007b). 

2.2.1 Structural and functional organization 

The hippocampal formation consists of the DG, the CA fields CA1-CA3, the hilus (considered 

part of the DG), and the subiculum. The main input to the hippocampus is received from cortical 

and subcortical structures. Cortical input is mainly derived from the entorhinal cortex that in 

turn receives input from many subcortical regions including the amygdala, medial septum, and 

thalamus (reviewed in Knowles, 1992). It is widely accepted that each of these hippocampal 

subregions has a unique functional role in the information processing of the hippocampus, but 

still to date the specific contribution of each region is poorly understood. In the most classical 

glutamatergic pathway, cells of the entorhinal cortex are connected by the perforant pathway to 
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the DG. The dentate granule cells are thereby excited and their axons, called MFs, project to the 

pyramidal cells of the CA3 field that are further excited. The CA3 region sends connections to 

the CA1 region through a set of fibers called the Schaffer collaterals. The CA1 pyramidal cell 

axons are the main output from the hippocampus and they project to the subiculum as well as to 

the enthorhinal cortex (Figure 4).  
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Figure 4. Structure and functional connections of the hippocampus. In the classical trisynaptic pathway granule 
cells of the dentate gyrus are excited by the perforant pathway coming from the entorhinal cortex (1). The granule 
cell axons, the mossy fibers excite the CA3 pyramidal cells (2), that in turn excite CA1 pyramidal cells via Schaffer 
collaterals (3). The axons of CA1 pyramidal cells are the main output from the hippocampus, that project back to 
the entorhinal cortex and the subiculum. Modified from Danglot et al. (2006). 

2.2.1.1 Excitatory and inhibitory pathways 

At all developmental stages of brain maturation, the strength of inhibitory and excitatory 

connections must be well equilibrated (Danglot et al., 2006). In the adult brain, the vast majority 

of neurons are glutamatergic providing the main excitatory drive, whereas the inhibitory drive is 

provided by interneurons that constitute 10-15% of the neurons (Freund & Buzsaki, 1996). 

Upon excitation in the hippocampus, NMDA receptors are activated in principal cells and this is 

required for formation of LTP, a plasticity phenomenon important for the formation of memory 

(McLean et al., 1996).  

Interneurons are local circuit neurons responsible for inhibitory activity in the adult 

hippocampus, and despite their small amount, they control the activity of principal excitatory 

cells, i.e., pyramidal cells in the hippocampus proper and granule and mossy cells of the DG 

(Freund & Buzsaki, 1996), but some interneurons also inhibit each others (Freund & Buzsaki, 

1996; Klausberger et al., 2002). In the adult hippocampus, there are several types of GABAergic 
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interneurons whose morphological and physiological characteristics have been reviewed in 

detail (Freund & Buzsaki, 1996; Somogyi & Klausberger, 2005). The inhibitory interneurons 

are GABAergic. They inhibit principal cells through the activation of postsynaptic GABAA 

receptors, but they are also activated by excitatory afferents or by nearby glutamatergic neurons. 

Thereby, GABAergic interneurons establish local feedforward and feedback inhibitory circuits, 

respectively.  

Moreover, subgroups of hippocampal interneurons establish connections with specific parts 

of the principal neurons (Freund & Buzsaki, 1996; Klausberger et al., 2002) that may 

differentially affect the activity of excitatory neurons. A hippocampal pyramidal cell receives 

GABAergic innervation from several distinct interneurons (Freund & Buzsaki, 1996), e.g. the 

same postsynaptic domain of a pyramidal cell soma may be targeted by two distinct basket cells 

expressing specific calcium-binding proteins such as parvalbumin or cholecystokinin (Freund & 

Buzsaki, 1996; Nyíri et al., 2001; Klausberger et al., 2002). Indeed, the divergent axonal 

arborisation of interneurons allows them to contact hundreds of pyramidal cells (Sik et al., 

1995). Furthermore, interneurons regulate not only the excitability of the hippocampus, but act 

also as stable oscillators, which is important for the generation of rhythmic activities in neuronal 

networks (Somogyi & Klausberger, 2005). By innervating perisomatic regions of pyramidal 

cells, hippocampal basket cells synchronize their activity thereby generating network 

oscillations (Somogyi & Klausberger, 2005). 

2.2.2 Development of the hippocampus 

Morphological studies have shown that comparable stages of hippocampal development occur 

much earlier in primates than in rodents with most of the developmental processes taking place 

in utero in human and in nonhuman primates (Bayer, 1980; Khazipov et al., 2001; Lavenex et 

al., 2007a). There is a hippocampal-dependent form of recognition memory in human and 

monkey babies soon after birth (Bachevalier et al., 1993; Pascalis & de Schonen, 1994), and the 

hippocampal network is active before birth in monkey (Khazipov et al., 2001). Early studies of 

the development of neuronal activity in the rat brain demonstrated that irregular 

electroencephalography (EEG) activity appears at the age of 5-6 days (Deza & Eidelberg, 1967, 

Gramsbergen, 1976). However, up to the 10th postnatal day EEG activity is interrupted by 

periods of electrical silence (Gramsbergen, 1976; Mares et al., 1979). A similar brain activity 

pattern was seen in preterm newborns but not in full-term human newborns (Dreyfus-Brisac & 
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Monod, 1966). Around P11 considerable developmental changes occur in the EEG of rats with a 

high amplitude pattern that adopts the adult basic rhythmic activity by the third postnatal week 

(Deza & Eidelberg, 1967; Gramsbergen, 1976; Mares et al., 1979). An important period of brain 

development is the so-called brain growth spurt, a transient period when the brain is growing 

most rapidly, with intense neuronal growth and synaptogenesis. This occurs in the first 2 

postnatal weeks in the rat and between the third trimester of gestation and first 2 years of life in 

humans (Dobbing & Sands, 1979).  

It is, however, very difficult to correlate developmental stages of immature rodents with 

humans, as different studies are based on age-related changes of various parameters. Older 

studies claimed that the 5-day-old rat is an appropriate model for the human newborn in terms of 

brain maturation based on the timing of peak velocity of accumulation of brain wet weight in 

both species (Dobbing & Sands, 1979). However, based on timing of ”growth spurt” as a 

vulnerable-period, Dobbing (1970) compared human babies from the last few weeks of 

gestation through the first few months of life to 10-12 days old rats. Roughly, the developmental 

stages between rodents and humans can be compared as a newborn rat pup to a third trimester 

fetus, a rat at 7-10 days of age similar to a full-term newborn baby, and a 3-week-old rat can be 

considered as a young child (Avishai-Eliner et al., 2002; Marsh et al., 2006). The milestones in 

hippocampal development of human, rat and primates is reviewed by Avishai-Eliner et al. 

(2002).  

The first GABAergic synapses are established in interneurons already during rat embryonic 

development (around E20), before they become expressed in pyramidal cells around birth 

33

P a i n o s a l a m a   O y   –   T u r k u   2 0 0 7

All neuronal generation in the Ammon’s horn, however, occurs prenatally, whereas most 

granule cells of the DG are generated postnatally (85%) in rats (Bayer, 1980). The DG is also 

one of the few brain regions with postnatal neurogenesis throughout life (reviewed in Lavenex 

et al., 2007a). Proliferation of neurons is first followed by axon and later by dendrite extension 

and spine formation. GABA-containing interneurons are generated prenatally in rats and 

monkeys (between E13 and E18), before the excitatory glutamatergic pyramidal neurons and 

astrocytes (Bayer, 1980; Khazipov et al., 2001; Hennou et al., 2002), but most of their 

morphological maturation extends to the postnatal period (Hennou et al., 2002). In rodents, 

pyramidal cells are generated primarily during the last third of embryonic life, i.e. E 16-19 

(Bayer, 1980), whereas in primates the second half of gestation is a principal period of 

pyramidal cell differentiation (Khazipov et al., 2001).  

Review of literature 



 

34

(Hennou et al., 2002). The number of pyramidal neurons targeted by an interneuron increases 

during rat hippocampus development (Groc et al., 2003). In the monkey hippocampus, 

immature pyramidal neurons start to receive sequentially established GABAergic synapses 

already at midgestation whereas the glutamatergic synaptic inputs appear later, and their 

expression coincides with the appearance of the first dendritic spines (Khazipov et al., 2001).  

2.3 Epilepsy 

first year of life and in old people (Pitkänen & Sutula, 2002). It is one of the most common 

neurological disorders (Pitkänen & Sutula, 2002). Epilepsy results from an electrical disturbance 

in the brain which is characterized by recurrent seizures (International League Against Epilepsy 

(ILAE), (Fisher et al., 2005). Epileptic seizures are associated with abnormal high firing rates 

and synchronization of neurons in the defined regions of the brain (Fisher et al., 2005). Epileptic 

activity may be conducted from all cortical areas to the hippocampus that is a region of high 

vulnerability to seizures (Ben-Ari, 1985; Bengzon et al., 2002). The diseased hippocampus can 

also be a source of epileptic seizures. The electrical activity of the brain can be recorded by an 

EEG examination and it is used in the diagnosis of epilepsy. A seizure can last from a few 

seconds to SE, continuous seizures lasting more than 30 min, that is a life-threatening condition 

(Lowenstein, 1999). 

Seizures are broadly classified into two large categories, partial and generalized seizures, 

according to their origin within the brain (Commission on Classification and Terminology of the 

ILAE, 1981). Partial seizures involve an electrical discharge only in a localized part or in one 

hemisphere of the brain, whereas generalized seizures involve both hemispheres of the brain. 

The two main categories include many individual seizure types, usually depending on the 

behavioural effects the seizure produces. One type of generalized seizures is tonic-clonic 

seizures that may prolong into SE, if there is no recovery between successive seizures. The 

incidence of SE is highest in the first year of life (including febrile SE) and in humans over age 

60 years.  

TLE is the most common form of human partial epilepsy (Engel, 1996), that has got its name 

from the seizures originating from the temporal lobe structures, particularly the hippocampus. It 

is typically refractory to anticonvulsant therapy but amenable to surgical interventions (Engel, 

1996).  
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The prevalence of epilepsy is about 1% of humans worldwide, with the highest incidence in the 
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Epilepsy may be caused by certain postnatal insults such as brain trauma, CNS infections, 

SE, stroke, and brain tumors (reviewed in Pitkänen & Sutula, 2002). Some epilepsy syndromes 

may be related to heritable mutations. For example, mutations in GABAA receptor α1 (Cossette 

et al., 2002) or γ2 subunits have been detected in some forms of generalised epilepsies (Wallace 

et al., 2001). Both from studies with experimental animals (Cavalheiro et al., 1991; Mello et al., 

1993) and from patients with epilepsy (Pitkänen & Sutula, 2002) it has been shown that after the 

initial brain insult there is a latent period defined as to epileptogenesis. During the epileptogenic 

period, neurobiological events such as neuronal loss and abnormal synaptic reorganization may 

occur (Mello et al., 1993). This reorganization of the neuronal integration leads to abnormally 

increased excitability and synchronization, and eventually to the occurrence of spontaneous 

seizures (Cavalheiro et al., 1991), the chronic epileptic condition. The progression of seizure-

induced neuropathology is illustrated in Figure 5. 

 

 
Figure 5. The process of epileptogenesis in the brain. Modified from Pitkänen and Sutula (2002).  
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2.3.1 Neuropathological alterations of epilepsy in the adult brain 

There is a high risk of mortality (20-60%) as well as morbidity associated with SE, including 

epileptogenesis (Claassen et al., 2002). In experimental models of adult rat, neuronal damage is 

apparent shotly after SE induction, and the extent of injury is correlated to SE duration (Ben-

Ari, 1985; Covolan & Mello, 2000). It is, however, not well known for how long the 

neurodegenerative processes proceed after SE in different brain regions (the epileptogenic 

period) until full epilepsy has developed. Some recent histological data from rats indicate that 

SE-induced damage continues for several weeks (Pitkänen & Sutula, 2002), involving several 

brain structures including the hippocampal areas, amygdala, thalamus, and cortical regions 

(Tuunanen et al., 1999; Covolan & Mello, 2000; Nissinen et al., 2000). The hippocampus 

(Covolan & Mello, 2000; Smith & Dudek, 2001) as well as several nuclei of the amygdala 

(Tuunanen et al., 1999; Nissinen et al., 2000) may suffer from serious damage during 

epileptogenesis. In the hippocampal hilar, CA1 and CA3 subregions, the majority of neurons 

may undergo cell death shortly after SE (Buckmaster & Dudek, 1997; Bengzon et al., 2002; 

Pitkänen & Sutula, 2002). During the epileptogenic process cell death has been proposed to 

occur through both apoptotic or necrotic pathways, or as a combination of both (Fujikawa et al., 

2000; Bengzon et al., 2002). The outcome depends on the severity and duration of seizures that 

differently affect the various cell types in the brain (Fujikawa et al., 2000; Bengzon et al., 2002; 

Henshall & Simon, 2005).  

The extensive neuronal loss is associated with synaptic reorganization in the hippocampus 

(Tauck & Nadler, 1985; Haas et al., 2001). One of the most prominent reorganizations is MF 

sprouting, that refers to abnormal axonal growth, and the development of new excitatory circuits 

in the hippocampus (Buckmaster & Dudek, 1997; Smith & Dudek, 2001; Bengzon et al., 2002). 

The relevance of the MF sprouting is however not clear, but it has been demonstrated that the 

fibers target granule cells and GABAergic interneurons, which might lead to abnormal 

excitability and the development of recurrent spontaneous seizures after SE (Brooks-Kayal et 

al., 1998b; Nissinen et al., 2000; Scharfman et al., 2003).. 

SE has also been shown to promote the neurogenesis of dentate granule cells, (that are 

neurons normally undergoing proliferation in adult brain) (Covolan et al., 2000), which also 

complicates the outcome of cell death as it may reduce its impact (Sutula et al., 2003). The 

neurogenesis may persist long after the induction of SE (days to weeks) as shown in the 

pilocarpine and kainic acid (KA) models of epilepsy (Covolan et al., 2000; Sankar et al., 2000). 
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Although these new granule cells develop normally, they show some abnormal features such as 

extensive growth of dendrites. However, they seem to be well integrated into local networks and 

could therefore be involved in seizure activity (Scharfman et al., 2000).  

The neuropathological changes associated with the kindling epilepsy animal model seem to 

be milder than with the experimental model of KA-induced SE (Mathern et al., 1997; Nakagawa 

et al., 2000; Morimoto et al., 2004). However, there is neuronal loss in the hippocampal hilar, 

CA1 and CA3 subfields resembling that of hippocampal sclerosis in patients with TLE (Mathern 

et al., 1997; Haas et al., 2001; Kotloski et al., 2002). The distribution of damage depends on the 

site of stimulation (Kotloski et al., 2002) and changes have also been found in other temporal 

lobe structures including the amygdaloid complex (Nissinen et al., 2000). MF sprouting has 

been detected in the DG (Lynch & Sutula, 2000; Haas et al., 2001). Furthermore, kindling also 

induce neurogenesis of dentate granule cells (Nakagawa et al., 2000), and proliferation and 

reorganization of glial cells, usually referred to as gliosis (Khurgel & Ivy, 1996).  

Repeated SE results in progressively longer seizures and may produce further long-term 

cellular and network alterations which may lead to more severe damage to the hippocampus 

(Sarkisian et al., 1997). Seizures evoked by kindling as well as SE evoked by convulsants also 

result in many molecular changes, such as in GABAA and glutamate receptor composition and 

gene expression, activation of glutamate receptors, cytokine activation, oxidative stress, and 

changes in plasticity (Pitkänen & Sutula, 2002; Sutula et al., 2003). The neuronal loss in the 

hippocampus after repeated seizures is associated with progressive memory dysfunction 

(Sarkisian et al., 1997; Kotloski et al., 2002). 

The consequences of SE in human are not that clear-cut. In some cases SE causes permanent 

injury but not in others (Sutula et al., 2003). The prolonged seizure activity of SE may cause 

brain damage that can lead to the development of epilepsy and cognitive decline (Pitkänen & 

Sutula, 2002). Many patients with TLE have progression of hippocampal sclerosis, a unique 

neuropathological disturbance of atrophy with changes such as neuronal loss, MF sprouting and 

gliosis (Engel, 1996; Kälviäinen & Salmenperä, 2002). Changes such as neuronal cell death has 

been found in other brain regions as well, especially in the amygdala and enthorhinal cortex 

(Mikkonen et al., 1998; Kälviäinen & Salmenperä, 2002). 
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2.3.1.1 Changes in the GABAA receptor 

One main determinant for seizure generation in epilepsy is proposed to be reduced GABAergic 

inhibition (Rice et al., 1996; Tsunashima et al., 1997; Brooks-Kayal et al., 1998b). 

Pharmacologically, this is proven by GABAA receptor agonists that suppress seizures in animal 

models, and antagonists that block the receptor activity leading to seizures. The neuronal loss 

caused by repeated seizures eventually involves hippocampal GABAergic interneurons and it 

could contribute to the reduced inhibition (Sayin et al., 2003). These neurons comprise those 

components that provide axo-somatic and axo-axonic inhibition by regulating the propagation of 

activity into axons, and if they are lost, the presynaptic inhibitory drive to excitatory principal 

cells will be reduced (Tsunashima et al., 1997; Bouilleret et al., 2000; Andre et al., 2001; Sayin 

et al., 2003).  

Also postsynaptic alterations in the GABAergic synapse have been found in the epileptic 

brain. These changes in the GABAA receptors presumably largely relate to the altered 

expression of genes encoding different GABAA receptor subunits as well as receptor proteins, as 

seen in adult experimental epileptic animals and in human with epilepsy (Rice et al., 1996; 

Schwarzer et al., 1997; Sperk et al., 1997; Tsunashima et al., 1997; Brooks-Kayal et al., 1998b; 

Fritschy et al., 1999; Loup et al., 2000; Raol et al., 2006b). Both up- and downregulations in the 

expression of different subunits have been detected after seizures (Rice et al., 1996; Brooks-

Kayal et al., 1998b; Nusser et al., 1998a; Loup et al., 2000; Andre et al., 2001; Zhang et al., 

2004; Raol et al., 2006b). Different effects may be seen in different epilepsy models and 

whether the alterations are of acute or chronic origin. Seizure-induced alterations may be 

persistent, but not necessarily similar to those of an acute phase (Schwarzer et al., 1997; Sperk 

et al., 1997; Brooks-Kayal et al., 1998b). At the chronic phase, i.e. 1-2 months after pilocarpine 

injection in adult rats, α2 expression has decreased in the CA1-CA3 regions (Rice et al., 1996). 

On the other hand, the expression of α4 and β3 subunits has increased, whereas α1 has either 

increased or decreased in granule cells 1-4 months after KA- and pilocarpine-induced seizures 

(Schwarzer et al., 1997; Sperk et al., 1997; Brooks-Kayal et al., 1998b; Fritschy et al., 1999). 

Neuronal loss detected in several epilepsy models, especially in the CA1 and CA3 pyramidal 

cell regions (Schwarzer et al., 1997; Tsunashima et al., 1997; Fritschy et al., 1999; Nissinen et 

al., 2000), could partly explain the decreased subunit expression but not the increased 

expression, indicating that real changes in GABAA receptor subunit expression occur in 
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surviving neurons. In agreement with the animal studies, loss of CA1 and CA3 interneurons as 

well as a decreased number of α1 immunopositive cells were reported in human tissue resected 

from patients who had undergone surgery for TLE, compared to autopsy controls (Loup et al., 

2000; Pirker et al., 2003). There was also an increase in immunostainings of α1, α2, β2 and β3 

subunits, particularly in the dentate granule cell layer.  

The changes in subunits are also consistent with changes found in receptor pharmacology. 

Several studies have shown increased [3H]flunitrazepam binding in the DG of adult rats 

subacutely after seizures (Shin et al., 1985; Nobrega et al., 1989; Titulaer et al., 1995c). In the 

CA1 and CA3 regions, seizures caused decreased binding of [3H]flunitrazepam (Titulaer et al., 

1995c; Rocha & Ondarza-Rovira, 1999), whereas the long-term effects of seizures on receptor 

binding are usually different. In dentate granule cells from animals with spontaneous seizures 

induced with pilocarpine, Zn2+ sensitivity was increased and zolpidem sensitivity decreased, 

findings that both could be due to the decrease in α1 subunit mRNA (Brooks-Kayal et al., 

1998b). 

2.3.2 Epilepsy in the developing brain 

The postnatal brain with its complex maturation can be expected to be more sensitive to 

disturbances and the majority of epilepsy syndromes in human start in infancy or childhood. 

There is thus a higher incidence of seizures and also seizure severity in the immature brain  

(Holmes & Ben-Ari, 2001), which according to different experimental seizure models is 

maximal between P10 and P12 in rats (Khazipov et al., 2004). Despite the low seizure 

threshold, the immature hippocampus is quite resistant to SE-induced damage (Haas et al., 

2001; Holmes & Ben-Ari, 2001; Baram et al., 2002; Zhang et al., 2004) compared with the 

mature brain. In some studies, little or no neuronal damage was found in the hippocampus of 

experimental rats experiencing continous seizures early in life (Haas et al., 2001; Wasterlain et 

al., 2002; Bender et al., 2003; Lopez-Picon et al., 2004). Also, modest or no synaptic 

reorganisation, such as MF sprouting, was detected (and did not occur until after the third 

postnatal week) (Sankar et al., 1998; Haas et al., 2001; Wasterlain et al., 2002; Bender et al., 

2003; Cilio et al., 2003; Lopez-Picon et al., 2004). Overall, the extent of hippocampal damage is 

small in the postnatal period and increases with maturation (Wasterlain et al., 2002).   

Other studies have shown that some degree of hippocampal injury may occur during early 

development but the pattern seems to be different from that in adult rats (Haas et al., 2001; 
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Baram et al., 2002; Wasterlain et al., 2002). Neuronal damage has been detected in the 

hippocampus and other brain structures after SE in rats older than two weeks (Sankar et al., 

1998; Humphrey et al., 2002; Dong et al., 2003; Druga et al., 2005). However, in some of these 

studies there was no cell loss in animals that survived to adulthood indicating that some effects 

may be reversible (Toth et al., 1998; Baram et al., 2002), whereas other studies demonstrated 

the presence of irreversible damaged neurons in the hippocampus or other parts of the brain in 

animals younger than 3 weeks (Sankar et al., 1998; Kubova et al., 2001; Nairismägi et al., 

2006). Available techniques may not be sensitive enough to detect limited neuronal loss, which 

can be present only in a subpopulation of surviving animals (Nairismägi et al., 2006). In fact, 

there are studies showing chronic hippocampal damage induced by SE in rats younger than three 

weeks (Wu et al., 2001; Nairismägi et al., 2006). During brain development there is a 

physiological programmed cell death, usually defined as apoptosis that may be accelerated by 

seizures (Kuan et al., 2000; Wasterlain et al., 2002). Neuronal damage in the CA3 region as 

well as MF sprouting has also been detected after KA-induced SE in cultured hippocampal 

slices, prepared from P6-7 rats and cultured for 1 week (Routbort et al., 1999; Holopainen et al., 

2001a; Holopainen et al., 2004), which corresponds to 14-days-old rats in vivo. In contrast to 

adult brain, seizures occurring in the immediate neonatal period (P0-7) reduce neurogenesis of 

dentate granule cells (McCabe et al., 2001), but as early as P15, SE-induced dentate granule cell 

neurogenesis has been detected (Sankar et al., 2000) and also in the CA3 region (Dong et al., 

2003). 

SE early in life may increase the development of TLE in adulthood (Holmes & Ben-Ari, 

1998; Dube et al., 2000), and even increase the sensitivity to other insults later in life (Koh et 

al., 1999; Bender et al., 2003). In P20 rats experiencing seizures early in life by the kindling 

method, the susceptibility to seizures was higher in adulthood (Cilio et al., 2003). It has also 

been observed that about 25% of rats with SE at P12 will develop spontaneous seizures within 3 

months (Kubova et al., 2004). However, the neural damage may be less severe prior to episodes 

of SE early in life which could be due to some plasticity-related neuroprotective effects (Sutula 

et al., 2003). 

There are also long-term effects such as impaired spatial learning and memory deficits at P1-

25 in rodents after seizures, induced for example by KA (Lynch et al., 2000) and pilocarpine 

(Kubova et al., 2004). A cellular basis for these deficits is supported by findings that animals 

experiencing early-life seizures have impaired LTP (Lynch et al., 2000). According to this, 
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some studies indicate that children with epilepsy are at risk for cognitive and learning deficits 

(Hermann et al., 2006).  

2.3.2.1 Changes in the GABAA receptor 

The higher incidence of seizures in the immature brain is assumed to at least partly be due to the 

late maturation of a potent inhibitory GABAergic system and the early excitatory actions of 

GABA (Holmes & Ben-Ari, 1998; Khazipov et al., 2004). There is also evidence that seizures 

early in life can cause alterations in inhibitory neurotransmission and in the GABAA receptor 

subunit expression. At the circuit level, increased hippocampal inhibition was seen after KA-

induced seizures in P1-14 rats (Lynch et al., 2000). At the molecular level, early-life KA- or 

pilocarpine-induced seizures produce subunit-specific alterations in the hippocampus of 

immature rats, such as an increased number of GABAA receptors and a selective increase in α1 

subunit expression in several regions (Zhang et al., 2004; Raol et al., 2006b). These findings 

suggest that seizures disturb the normal developmental GABAA receptor subunit expression (in 

the hippocampus), and this could represent a compensatory response to epileptiform activity. 

Similarly to SE-induced regional changes in adult rats, the short-term developmental alterations 

can be different from those of chronic ones (Zhang et al., 2004). 

The seizure-induced disruption of normal developmental alterations in subunit expression 

may also disturb other developmental processes such as maturation of the inhibitory synaptic 

transmission and its strength (Marty et al., 2000; Vicini et al., 2001) or synaptogenesis, which is 

dependent on the normal developmental α2 subunit down-regulation (Fritschy et al., 1994). 

There are also pharmacological changes after seizures in the immature hippocampus, including 

increased BZ binding (Werck & Daval, 1991; Rocha et al., 2000), and more selectively, 

enhanced type I BZ augmentation consistent with the increased α1 subunit expression (Zhang et 

al., 2004).  

2.3.3 Experimental models of epilepsy 

Ideally the research on human epilepsy should be carried out on humans with epilepsy, but this 

it not always possible for ethical or practical reasons and therefore experimental models of 

epilepsy and epileptic seizures in animals are essential. Experimental models of epilepsy can be 

distinguished between models of acute epileptic seizures that occur in a normal brain and do not 

necessarily indicate the presence of an epileptic condition, and chronic models of epilepsy that 
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are associated with a permanent epileptogenic condition. Several of these chronic models were 

created to reproduce certain types of human epilepsy, particularly the most common form, TLE. 

There are both in vivo and in vitro epilepsy models where acute versus chronic neuronal 

mechanisms in the epileptic brain can be studied, including the altered GABAA receptor 

expression and function, excitotoxicity, and synaptic reorganization. The results from animal 

studies are usually compared with investigations carried out in patients with epilepsy. 

Ultimately, the goal with these animal models is to develop more effective treatments for 

epilepsy, and to reveal the mechanisms for the development of recurrent seizures so this process 

could be prevented. 

Although there are currently more than 100 seizure models available for epilepsy research, 

later spontaneous seizures, i.e. epilepsy, occur in only a few of them. Such models include 

systemic injection of a chemoconvulsant such as KA or pilocarpine (with or without lithium) 

(Turski et al., 1983; Ben-Ari, 1985; Cavalheiro et al., 1991), or electrical stimulation of the 

brain (Mathern et al., 1997; Sayin et al., 2003). Common for these models is that they can 

induce a state of chronic spontaneous recurrent seizures, reflecting the clinical and 

neuropathological features of TLE (Engel, 1996). Accordingly, these animal models are 

valuable imitations of human TLE (Turski et al., 1983; Ben-Ari, 1985; Cavalheiro et al., 1991), 

but with the chemoconvulsant models also more acute effects of SE can be studied. 

In addition to SE, some of the most common factors causing epilepsy are traumatic brain 

injury and stroke (Hauser, 1997), and there are also animal models for these epileptogenic 

ethiologies. The weight drop and lateral-fluid percussion models represent two models for 

traumatic brain injury (Pitkänen & McIntosh, 2006). In models of stroke, thrombosis, 

thromboembolism, or vasoconstriction can be applied to cause stroke for epileptogenesis studies 

(Karhunen et al., 2005).  

2.3.3.1 Chemically-induced status epilepticus 

SE can be induced in animals by a number of different stimuli. KA is the most common 

neurotoxin used to cause SE by acting as an agonist for the KA subtype of ionotropic glutamate 

receptors and depolarizing neurons that express these receptors, such as CA3 pyramidal cells 

(Westbrook & Lothman, 1983) and interneurons of the hippocampus (Cossart et al., 1998) of 

adult rat. The CA3 pyramidal neurons have a particularly low threshold for the generation of 

seizures by KA (Westbrook & Lothman, 1983; Ben-Ari, 1985). However, apart from 
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postsynaptic receptors, KA may affect presynaptic AMPA receptors on glutamatergic and 

GABAergic terminals and the underlying bases for these effects remains unclear (Huettner, 

2003). However, at low concentrations KA activate mainly KA receptors, as shown in 

hippocampal slice cultures (Kristensen et al., 2001). There is a high density of KA receptors in 

the developing rat hippocampus already at birth (Bahn et al., 1994; Ritter et al., 2002). 

Systemic injection of KA gives rise to sustained limbic seizures (SE) lasting for several 

hours, which is then followed by a period of a few weeks with no obvious ictal activity 

(epileptogenesis). After this silent period, during which epileptogenesis occurs, adult animals 

start to display spontaneous recurrent limbic seizures with increasing frequency and no 

remission (Wasterlain et al., 2002). In rats younger than 2 weeks, seizures of tonic-clonic type 

will appear, but no spontaneous seizures (Wasterlain et al., 2002). KA can also be administrated 

through other routes, but the intraperitoneal (i.p.) as well as intracerebral injections, including 

intrahippocampal and intracerebroventricular, are the most common ones (Ben-Ari, 1985). 

Unfortunately, there is a high mortality with the approach of one single systemic KA injection in 

immature rats, as shown e.g. for P15 rats (Koh et al., 1999). This can be reduced by stopping the 

resulting SE with an antiepileptic compound such as paraldehyde or diazepam within a specified 

time window (Kubova et al., 2004). Consequently, the seizure-induced alterations in such a 

model will represent the more acute phase of SE. 

Systemic injection of pilocarpine, an agonist of muscarinic acetylcholine receptors, 

represents a model similar to that of KA, and produces persistent and long-lasting seizures in 

adult rats (Turski et al., 1983). The dose of pilocarpine required to induce seizures is high but it 

can be decreased by pre-treatment with lithium chloride (Jope et al., 1986). In contrast to the 

KA model, the lithium-pilocarpine model produces neuronal damage in the immature 

hippocampus of P12-14 rats (Sankar et al., 1998; Nairismägi et al., 2006), in addition to the 

adult rat hippocampus (Turski et al., 1983). Also the pattern of hippocampal damage in adult 

rats seems to be different between the two models (Turski et al., 1983; Sankar et al., 1998). 

After a latency period, spontaneous seizures occur in a subpopulation of P12-14 animals (Sankar 

et al., 1998; Kubova et al., 2004). 

2.3.3.2 Electrical induction of status epilepticus 

SE can also be induced by sustained electrical stimulation to specific sites of the brain, such as 

the perforant path, the ventral hippocampus, and the amygdala (Mathern et al., 1997; Nissinen et 
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al., 2000; Sayin et al., 2003). The most sensitive area for SE induction is the basolateral 

amygdala (Goddard et al., 1969). In this stimulation procedure, seizures can be provoked by, 

most commonly, electrical stimuli through surgically implanted electrodes (Nissinen et al., 

2000). In adult rats, after repeated or a long-lasting (> 20 min) electrical stimulation, SE is 

induced, and after a latency period of approximately 1 month spontaneous generalized seizures 

will develop that continue for the rest of the animals’ life (Nissinen et al., 2000; Sayin et al., 

2003). The changes that take place during/ after the stimulation period can be characterized as 

epileptogenesis. Therefore, electrical stimulation can be used to study the cellular and molecular 

epileptogenic alterations induced by SE and the neuropathological changes resemble those of 

human TLE (Pitkänen et al., 1998). 

Kindling is another commonly used method, considered to be a chronic model of TLE 

(Goddard et al., 1969). Seizures are induced by repeated administration of a subconvulsive 

chemical or repeated electrical stimulation of a defined brain structure, e.g. hippocampus 

(Mathern et al., 1997) or amygdala (Goddard et al., 1969), through implanted electrodes. At 

early stages of kindling, partial seizures appear that gradually after daily repetition of the 

stimulation become generalized. In adult rats, after many days of repeated electrical stimulation 

and approximately 90-100 kindled seizures, spontaneous generalized seizures will develop that 

continue for the rest of the animals’ life (Sayin et al., 2003). During the kindling procedure, the 

number of seizures is precisely controlled, and cellular alterations induced by a specific number 

of seizures can be studied. The long-term neuropathological changes in this model also resemble 

those of human TLE. (Lynch & Sutula, 2000; Pitkänen & Sutula, 2002; Sutula et al., 2003). 

2.3.3.3 In vitro model: Organotypic hippocampal slice cultures 

Organotypic hippocampal slice cultures can be used as an in vitro model to study the cellular 

and molecular changes induced by enhanced excitatory activity. In these cultures, epileptiform 

activity can be induced e.g. by GABAA receptor antagonists such as picrotoxin and bicuculline, 

whereas the application of e.g. non-NMDA receptor antagonists blocks the increased activity 

(Scanziani et al., 1994; Routbort et al., 1999; Bausch & McNamara, 2000). Hippocampal slice 

cultures are prepared from postnatal rat (usually P6-7), and they can be cultured from one week 

up to 1-2 months (Stoppini et al., 1991; Routbort et al., 1999; Bausch & McNamara, 2000; 

Holopainen et al., 2001a; Holopainen, 2005). Advantages of slice cultures are that they can 

survive for long time in vitro, the experimental conditions can be precisely controlled, and 
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confounding variables of in vivo models are eliminated. Furthermore, all major neuronal types 

survive and the native structural organization is retained (Caeser & Aertsen, 1991; Frotscher et 

al., 1995; Gähwiler et al., 1997). Consequently, the expression of receptors as well as synaptic 

contacts resembles those seen in vivo (Frotscher et al., 1995; Gähwiler et al., 1997; Holopainen 

et al., 2005). However, the preparation of slices results in loss of normal afferent input to 

dentate granule cells, which upon culturing favors growth of aberrant, excitatory connections of 

MFs into the molecular layers of the DG (Caeser & Aertsen, 1991; Frotscher et al., 1995; 

Bausch & McNamara, 2000). Despite this partial circuit reorganization, cultured hippocampal 

slices offer a relatively simple and pharmacologically accessible method to study changes in 

receptors, such as GABAA receptor subunit expression, cell death and morphological 

rearrangements (Gerfin-Moser et al., 1995; Holopainen et al., 2001a; Holopainen, 2005).  

2.3.4. Antiepileptic drugs acting through the GABAergic system 

Many types of antiepileptic drugs (AEDs) are used to prevent epileptic seizures. They interact 

mainly with voltage-gated ion channels such as Na+ and Ca2+ channels, metabolic enzymes and 

neurotransmitter transporters in the brain, thereby inhibiting epileptic bursting, synchronization 

and seizure spread (reviewed in Rogawski & Löscher, 2004). Several AEDs decrease synaptic 

excitation or enhance synaptic inhibition by blocking glutamate receptors or enhancing GABAA 

receptor activity, respectively.  

Enhancement of GABA-mediated inhibition is indeed one of the major mechanisms of 

action of AEDs, affecting different steps of the metabolic cycle of GABA (GABA shunt). The 

BZs act as agonists on GABAA receptors enhancing their currents, and are used as first-line 

drugs in the treatment of SE. Vigabatrin is another anticonvulsant drug that act by irreversibly 

inhibiting the GABA-degrading enzyme GABA-T (De Biase et al., 1991). This is assumed to 

lead to elevation of extracellular GABA levels in the brain (Löscher & Horstermann, 1994) and 

potentiation of the inhibitory effects of GABA on CNS function (Jackson et al., 2000). 

Tiagabine is a selective competitive inhibitor of the high-affinity plasma membrane GABA 

transporter GAT-1 (Suzdak & Jansen, 1995) that prevents GABA uptake and prolongs IPSPs 

(Engel et al., 1998). It seems to reduce partial seizures but shows complex responses to some 

other seizure types (Skardoutsou et al., 2003). Loreclezole is an anticonvulsant with a broad 

spectrum that can act only on receptors with the β2 or β3 subunit but is inactive in β1-

containing receptors (Siegwart et al., 2002). One of the new AEDs is topiramate that shows 
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effects on GABAA receptor responses in vitro (Gordey et al., 2000). However, it also increases 

the level of GABA in the brain and, therefore, it may use direct and indirect mechanisms to 

enhance GABAergic neurotransmission.  

Despite advances in the treatment of epilepsy about 25% of patients, including children, 

have refractory epilepsy resistant to traditional drug therapy. Moreover, adverse effects of these 

drugs have been found in the immature brain, both in animals (Bittigau et al., 2002; Raol et al., 

2005) and in children (Herranz et al., 1988; Calandre et al., 1990). There is still a growing 

concern about the current epilepsy treatment, and a need for more effective epilepsy therapy, 

especially in infants and children. 
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3. AIMS OF THE STUDY 

Reduced GABAergic inhibition is proposed to be a key element for seizure generation in 

epilepsy in the adult brain, and seizures are known to change the structure and function of 

GABAA receptors that may contribute to epileptogenesis. However, it is not known whether or 

not the subunit expression is changed in response to seizures in the developing brain. In this 

thesis work, the objective was to characterize the influence of excessive neuronal activity, i.e. 

epileptic seizures, on the expression of GABAA receptor subunits in both the developing and 

adult rat brain. To address this question, different experimental models were used and the 

specific aims were:  

 

1. to determine the long-term alterations in the expression of GABAA receptor subunits in the 

hippocampus of spontaneously seizing adult rats with chronic TLE   

 

2. to analyze the expression patterns of GABAA receptor subunits during rat postnatal 

development in organotypic hippocampal slice cultures in vitro and in developing rat 

hippocampus in vivo 

 

3. to study whether the GABAA receptor subunit expression is altered by neuronal activity in 

hippocampal slice cultures and by SE in developing rats  

 

4. to reveal the distribution of BZ- and zolpidem-sensitive receptors in developing rats after SE
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4. MATERIALS AND METHODS 

4.1 Experimental epilepsy models 

4.1.1 Animals (I-IV) 

Adult male Harlan Sprague-Dawley rats (n=8, I) and 9-day old Sprague-Dawley rat pups (n=51, 

III; n=26, IV) were used in the experiments. Hippocampal slice cultures were prepared from 6-

day-old Wistar rat pups (II). All experimental animal procedures were done with the permission 

of the Animal Use and Care Committees of the University of Kuopio or the University of Turku, 

and they were conducted in accordance with the guidelines set by the European Community 

Council Directives 86/609/EEC. All attempts were made to minimize the pain, discomfort, and 

number of the experimental animals. 

The new model of SE induced by electrical stimulation of the amygdala leading to spontaneous 

seizures was used in the laboratory of Prof. Asla Pitkänen in University of Kuopio and 

developed by Nissinen et al. (2000). Briefly, stereotaxic instruments were used for implantation 

of electrodes in adult rats (n=4): one in the left lateral nucleus of the amygdala for stimulation, 

one in frontal cortex for recording the spread of electrographic seizures, and two electrodes in 

the cerebellum serving as ground and reference electrodes. In control rats (n=4), the electrodes 

were implanted in corresponding locations but animals were not stimulated. Two weeks after the 

surgery, SE lasting for 6-20 h was induced by stimulating the amygdala for 20-30 min. If the 

animals did not meet the criteria of clonic SE, the stimulation was repeated for another 5 to 10 

min. Electrographic seizure activity was recorded 9 weeks after induction of SE to detect 

spontaneous seizures using video-EEG recording systems. Rats were used for in situ 

hybridization 3 months after SE. 

4.1.3 Status epilepticus induced by kainic acid injection (III, IV) 

P9 rats were chosen for the studies of GABAA receptor subunit expression in immature rat 

brain, because the expression of many subunits alters during the second postnatal week (Laurie 

et al., 1992; Fritschy et al., 1994). In rat pups, a single dose of 2 mg/kg of KA (Tocris Cookson 

Ltd, Avonmouth, UK or Ocean Produce International, Shelbourne, NS, Canada) administered 

i.p. leads to seizures. Rats were then carefully followed up to detect signs of seizures that 
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usually started to appear within 12-15 min. One hour after the KA injection, paraldehyde (0.3 

ml/kg; i.p; Fluka Chemie AG, Buchs, Switzerland) was injected to stop SE, as described 

recently (Kubova et al., 2001). To restore dehydration, 0.9% NaCl was injected (i.p.) to the pups 

soon after, at a dose of 2.5% of the body weight, and the well-fare of the pups was carefully 

controlled during the recovery period. After the follow-up for at least 2 h, pups were taken back 

to their lactating mothers until they were sacrificed for the studies at different time points. Age-

matched control rats received the same volume of 0.9% NaCl as those of KA-treated, but in 

order to minimize the discomfort of the experimental animals, they did not receive any further 

injections and were otherwise treated like the KA-treated rats. Animals were used for the studies 

6 h, 3 days or 1 week after KA injection. 

4.1.4 Organotypic hippocampal slice cultures (II) 

Hippocampal slice cultures were prepared from the hippocampi of P6 rat pups, using the 

modified method of Stoppini et al. (1991), and as described recently in detail by Holopainen et 

al. (2001). Briefly, hippocampi were isolated, slices (400 μm) were cut perpendicular to the 

septotemporal axis of the hippocampus, and placed on semipermeable membrane inserts 

(Millipore Corporation, Bedford, MA, USA). Inserts were kept on the membranes in a six-well 

plate, at the interface between culture medium and the air, which allows sufficient amounts of 

oxygen to diffuse into the slice. Slices were incubated at 37°C in 5% CO2 for 7 days. The 

culture medium, containing no antibiotics or antimitotics, was changed twice a week. Cultures 

were chronically treated (for the entire culture period of 7 days) either with picrotoxin or with 

the non-NMDA receptor antagonist 6,7-dinitroquinoxaline-2,3-dione (DNQX) (20 μM) or the 

GABAA receptor antagonist picrotoxin (100 μM) (both from Sigma, St. Louis, MO, USA). 

4.2 Receptor localization 

4.2.1 In situ hybridization (I-III) 

In situ hybridization was used for the detection of GABAA receptor subunit mRNA expression, 

with the aid of radiolabeled probes that are allowed to hybridize with their complementary 

mRNA molecules in brain tissue sections. The hybridized duplexes can then be detected on 

irradiation-sensitive films. The procedure was performed using the protocols of Wisden and 

Morris (1994) and Gerfin-Moser and Monyer (1994), and as modified by Sinkkonen et al. 

(2001). Shortly, brains were dissected, frozen in isopentane, and cut into coronal sections (14 
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μm) (I, III). Sections were mounted on poly-L-lysine-coated slides, fixed in 4% 

paraformaldehyde (PFA, Sigma, St Louis, MO), and stored in 95% ethanol at 4°C until used. 

Hippocampal slice cultures were fixed with PFA in the culturing plates, transferred to poly-L-

lysine-coated slides, and stored in -20°C until used (II).  

The 45-bases-long antisense oligonucleotide probes (Institute of Biotechnology, University 

of Helsinki, Finland), complementary to rat cDNA sequences for the GABAA receptor subunits, 

were 3’ end labeled with 0.06 nM [α-33P]dATP (NEN, Boston, MA, USA), and terminal 

transferase (Finnzymes Oy, Espoo, Finland or Boehringer Mannheim, Mannheim, Germany). 

Unincorporated nucleotides were separated by chromatography columns. Sections and slices 

were incubated (42°C, overnight) with hybridization buffer containing the labelled probe. After 

hybridization, sections were washed, dehydrated, and dried before exposure to autoradiographic 

film with a [14C] labeled standard (II, III). Signal specificity of probes was determined with 100 

x excess of unlabeled probe. For detection of cellular expression of GABAA receptor subunits, 

some sections were dipped in autoradiographic nuclear emulsion (I). The emulsion contains 

silver grains that precipitate over the cells in which radiolabeled molecules are hybridized to 

endogenous mRNA, and the density of silver grains can be quantified and correlated to the 

amount of mRNA. 

4.2.2 Ligand binding autoradiography (IV) 

Ligand binding autoradiography is a precise technique for the study of receptor populations, 

where a radioactively labelled ligand binds to its binding site in the receptor complex in brain 

sections. While freezing and sectioning of the brain destroys most neurons, receptor proteins can 

remain intact for several years if handled and stored properly. The specific binding of the 

radioligand can be determined in competition binding assays, by displacing the radioactively 

labelled ligand at a low, fixed concentration from its specific binding sites, with an unlabelled, 

competing ligand at a range of concentrations. This approach enables detection of receptor 

subpopulations, such as different GABAA receptor subunits. Here, displacement of 

[3H]flunitrazepam binding by zolpidem was performed to reveal the distribution of the α1, 

α2/α3 or α5 subunit-containing receptors.  

Brain samples were processed otherwise similarly as for in situ hybridization, but brain 

sections were mounted onto gelatin-coated glasses, and stored at -20°C without any fixation. For 

the binding, tissue sections were preincubated in ice-cold incubation buffer to remove 

50

P a i n o s a l a m a   O y   –   T u r k u   2 0 0 7

Materials and methods



 

51

endogenous GABA. Then sections were incubated with 1 nM [3H]flunitrazepam (PerkinElmer 

Life Sciences, Boston, MA) diluted in incubation buffer for 1 h. Zolpidem (10 nM – 100 μM) 

was used to estimate zolpidem-sensitivity of [3H]flunitrazepam binding. Nonspecific binding 

was determined with 10 μM flumazenil (Hoffmann La-Roche, Basel, Switzerland). The 

incubation was terminated by washing the sections, followed by drying and exposure of sections 

together with a plastic 3H standard to autoradiographic film for 6 weeks. 

4.2.3 Immunocytochemistry (III, IV) 

For the detection of GABAA receptor subunit proteins, the immunocytochemical staining 

procedure with perfusion-fixed brain sections was applied, as recently described in detail 

(Lopez-Picon et al., 2004). Briefly, rats were anaesthetized with sodium pentobarbital (50 

mg/kg; i.p.), transcardially rinsed with 0.9% NaCl, and thereafter perfused with 4% PFA. After 

that, brains were rapidly removed, postfixed, and then processed with an antigen retrieval 

protocol as published by Fritschy et al. (1998). Thereafter, brains were cryoprotected in 30% 

sucrose, and kept at -80°C until used.  

For the immunostaining, brains were sectioned, collected in buffer (III, 40 μm thick sections, 

free-floating system), or put onto gelatine-coated glasses (IV, 20 μm thick sections). Slices were 

incubated in the blocking solution, and thereafter with the primary antibodies for 24 h. After 

washing with buffer containing Triton X-100, the free-floating slices were incubated with the 

biotin-SP-conjugated secondary antibodies (Jackson Immunoresearch Labs, Inc, USA) for 1 h 

(III). Thereafter slices were incubated with the avidin-peroxidase conjugate (Vectastain ABC 

Kit, Vector Laboratories, Burlingame, CA, USA), and the staining was detected with 3,3’-

diaminobenzidinetetrahydrochloride (Sigma) under microscope. Finally sections were 

transferred to glasses that were coverslipped. Alternatively, after primary antibody incubation, 

glasses were incubated with the secondary fluorescent antibody Alexa 488 (Molecular Probes, 

4.3 Histological staining methods 

4.3.1 Thionin staining (II, III) 

Thionin staining was used to verify the severity of neuronal damage in various hippocampal 

regions after drug treatments in brain sections and cultured slices. The staining of cultured 

hippocampal slices (II), was carried out as earlier described in detail (Holopainen et al., 2001a). 
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Briefly, slices on membrane inserts were first fixed with 4% PFA, detached, and transferred to 

glass slides. After rehydration, slices were treated in 0.1% Triton X-100 followed by 0.1% 

thionin (Sigma, St. Louis, MO). Finally, they were dehydrated, cleared in xylene, and 

coverslipped. The number of neurons were scored using defined criteria (scale from 0-4), 

according to the number of stained neurons. 

For thionin staining of immature rat brain sections (III), the same procedure as used for 

immunocytochemistry was applied, i.e. perfusion-fixation, postfixation and cryoprotection. 

Brain sections (20 μm) were cut, mounted on glasses and rehydrated. Then sections were stained 

in 0.1% thionin, dehydrated, cleared in xylene, and coverslipped.  

4.3.2 Fluoro-Jade B staining (III)  

Fluoro-Jade B staining was used to study KA-induced neuronal degeneration (Schmued et al., 

1997), as previously described in detail (Holopainen et al., 2004) with minor modifications. 

Brain sections (20 μm; prepared as for the thionin staining) were rehydrated, transferred to 

0.06% potassium permanganate, and then to 0.001% Fluoro-Jade B solution. After the staining, 

sections were washed, dried, cleared in xylene, and coverslipped.   

4.4 Data analysis 

4.4.1 Quantification of autoradiographic films and dipped samples (I-IV) 

The hybridization and ligand binding signals were quantified in film autoradiograms by using 

the MCID AIS image analysis devices and programs (Imaging Research, St. Catharines, 

Ontario, Canada). The binding densities for each brain area were measured, and the resulting 

binding values were converted to radioactivity levels estimated for gray matter areas (in nCi/g), 

with reference to the standard curve created from the calibrated [14C] (II, III) or [3H] (IV) 

standards. Dipped sections were imaged with dark-field microscopy (Leica DMR, Heerburg, 

Switzerland) connected to a grey-scale digital camera (Leica DC100), and the density of silver 

grains was quantified (Image-J Program, version 1.20s) (I).  

4.4.2 Microscopy (II-IV) 

Sections processed for thionin staining (II, III) and immunocytochemistry (III) were imaged 

under microscope using bright-field optics (Leica DMR, Heerbrugg, Switzerland or Olympus 

BX60, Olympus Optical, Tokyo, Japan). A computerized image analysis program (Cell A, 
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Olympus Soft Imaging System, Hamburg, Germany) was used to count immunopositive 

neurons with the Leica DMR microscope using a fluorescence filter for Alexa 488 (IV). A 

digital camera (Leica DC100, Leica, Olympus U-TV1 X or Olympus DP 70, Olympus Optical) 

was used to capture images.  

The stainings with Fluoro-Jade B (III) and of the α1 subunit/ Alexa 488 complex (IV) were 

analysed with a confocal microscope (Leica, Heidelberg, Germany) equipped with an 

argon/krypton laser (Omnichrome; Melles Griot, Carlsbad, CA). The laser wavelength used for 

excitation of Fluoro-Jade B and Alexa 488 was 488 nm, and the emission detection window was 

500–600 nm.  

4.4.3 Statistical methods (I-IV) 

All statistical analyses were carried out using Prism software (versions 3.0 and 4.0, GraphPad 

Software, San Diego, CA, USA). The level of significance was set at p<0.05. Student’s 

independent two-tailed t-test (I, III, IV) was used to assess differences between two groups. 

When three or more groups were compared, one-way analysis of variance (ANOVA) with 

Tukey-Kramer Multiple Comparison as a post hoc test (I, II, III) or two-way ANOVA with the 

Bonferroni post hoc test (II, IV) were adapted. The nonlinear regression analysis (one site 

competition) was applied for calculating IC50 values (IV).  
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5. RESULTS 

5.1 GABAA receptor subunit messenger RNA expression in rat hippocampus 
(I-III) 

The GABAA receptor subunit mRNA expression was examined in four hippocampal regions 

with in situ hybridization in studies I, II and III. These regions were the pyramidal cell layers 

CA3c, CA3a/b and CA1, and the granule cell layers (both superior and inferior blade) of the 

DG. 

5.1.1 Adult rat (I) 

In adult control rats, mRNAs for GABAA receptor α2, α4, β3, and γ2 subunits was expressed in 

all the studied subfields of the hippocampus. Each subunit showed a varying subunit expression 

between the subfields, with a high expression in the DG and the lowest expression was found in 

the hilus for all subunits. The highest mRNA level was detected for γ2 subunit in the granule 

cell layer as well as in the CA3 and CA1 regions.  

5.1.2 Developing rat (III) 

In immature control rats, the expression levels of several GABAA receptor subunit mRNAs 

varied significantly during the postnatal development (from P9 to P16) in the hippocampal 

subregions. The expression of α1 showed an increased developmental expression profile 

between P9 and P16 in all subregions, whereas that of α2 showed a decreased one. Also the 

expression of α4 mRNA increased in CA1 and DG, whereas significantly decreased expression 

levels were detected of β3 mRNA between P9 and P12 and of γ2 mRNA between P12 and P16 

in all subregions. No significant developmental changes were detected in the expression of α3, 

α5, β1, β2 and γ1 subunit mRNAs in any subregion. 

5.1.3 Hippocampal slice cultures (II) 

The subunit mRNA expression in control cultured hippocampal slices indicated significant 

regional differences. The most abundantly expressed subunits were α2 and α5 in all 

hippocampal subfields. These subunits were expressed in the CA3a/b and CA1 regions as well 

as the other studied subunits (α1, α4, α5, β1, β3, γ2 and γ3). The expression of all subunits, 

except for α4 and γ3, was detected in the DG and CA3c regions. 
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5.2 GABAA receptor subunit messenger RNA expression in the rat 
hippocampus in different experimental epilepsy models (I-III) 

5.2.1 Adult rat (I) 

In rats with chronic TLE, the expression of α2 and α4 mRNAs was decreased significantly in 

the CA3c and CA1 subfields, respectively, compared to that in controls. The expression of the 

β3 subunit, on the contrary, was elevated in all hippocampal subfields of epileptic rats with the 

highest increase in the granule cell layer and in the hilus, whereas the signal intensity of the γ2 

mRNA subunit did not differ between the two groups in any hippocampal region. However, in 

stimulated animals the daily seizure frequency was varying from 0.2 to 26.8 seizures/ day. 

5.2.2 Developing rat (III) 

KA-induced SE significantly altered the normal developmental expression patterns of all studied 

α subunits (α1-5), as well as of β3 and γ2 subunits in all or some hippocampal subregions as 

compared to their age-matched control rats. The developmental down-regulations normally seen 

in the expression of mRNAs encoding α2, β3 and γ2 subunits, and the up-regulation of α1 

subunit mRNA in the CA3 pyramidal cell regions were not detected in KA-treated rats. In KA-

treated rats, the normal developmental GABAA receptor expression pattern was altered. 

Significant developmental changes were detected 1 week after SE in the expression of α3 

subunit mRNA in all subregions, in α4 mRNA expression in the CA3 regions, and α5 

expression in CA3a/b and CA1. 

When comparing the GABAA receptor subunit mRNA expression between KA-treated and 

their age-matched controls at various time-points after SE further significant differences were 

found. The α1 mRNA expression was down-regulated in CA3c 1 week after SE, γ1 expression 

in the CA3c, CA1, and DG regions 6 h, and γ2 expression in all subregions 6 h and 3 days after 

SE. On the other hand, the β1 mRNA expression was up-regulated 6 h, and β3 subunit mRNA 1 

week after SE, both in CA1.  

5.2.3 Hippocampal slice cultures (II) 

The chronic treatment of cultures either with DNQX or picrotoxin caused region- and subunit-

specific changes in mRNA expression, when compared with untreated control cultures. The 

picrotoxin treatment significantly increased the mRNA expression of α1 in CA3a/b and CA1, 
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and of α5 and γ2 in CA1. The treatment with DNQX instead dramatically increased β1 subunit 

mRNA expression in DG, as well as also significantly the expression of α2 mRNA in CA3c and 

DG. The expression of the other studied subunits showed no significant changes after the 

treatments.  

5.3 Immunostainings of GABAA receptor subunits in the developing rat brain 
and after kainic acid-induced status epilepticus (III, IV) 

The immunostainings of α1, α2 and β3 subunits were studied in the hippocampus 6 h and 7 

days after KA-induced SE together with their age-matched controls (III). Similarly to the 

mRNA expression, the α1 immunoreactivity increased, whereas the α2 and β3 

immunoreactivities decreased during the maturation in control rats. The α1 subunit specific 

antibody immunostained mainly processes of the main cell types in CA1, CA3, and DG, 

whereas α2 showed pronounced immunostaining in cell bodies of CA3 pyramidal cells and 

dentate granule cells. The number and staining intensity of α1 interneurons increased in the 

CA3 and DG regions during the development. Also interneurons in the CA3 and DG were α2 

immunopositive. β3 was moderately immunostainined at P9 and the staining was localized in 

the cell processes within the stratum oriens and radiatum of CA3 and CA1, and in the molecular 

layers of the DG. 

The localization of the subunits were rather similar between the treated and control rats 

either 6 h or 7 days after SE. The developmental changes in the α1 and α2 immunoreactivities 

were less pronounced in KA-treated rats, than those in the control rats, in particular in the 

stratum oriens and radiatum of the CA3 and CA1 regions (III). In P16 KA-treated rats (1 week 

after SE), the α1 immunoreactivity was attenuated, and the amount of stained neurons was 

significantly decreased in the CA1 and CA3 pyramidal cell layers compared to control rats (IV). 

However, no clear differences were detected in the β3 immunostaining between either P9 or P16 

treated and control rats (III).  

5.4 Pharmacology of GABAA receptor subtypes in the developing rat brain  

5.4.1 Developmental benzodiazepine receptor expression 

The number of total [3H]flunitrazepam binding sites was measured in P9 and P16 control rats in 

the following regions of the hippocampus: the CA3 and CA1 stratum pyramidale, oriens, 
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lacunosum moleculare, and the stratum granulare, and molecular layers of the DG, and 

additionally in the parietal cortex and thalamus. The total [3H]flunitrazepam binding was more 

than two-fold higher in P16 than in P9 control rats in all these studied regions. 

The displacement of [3H]flunitrazepam binding by zolpidem was analyzed in P9 and P16 

control rats. For the displacement 10, 30, 100, 300 nM, and 3 and 100 μM zolpidem was used, 

corresponding to the approximate equilibrium dissociation constants (Ki) for zolpidem 

displacement of [3H]flunitrazepam binding; the high Ki = 2.7 nM, low Ki = 67 nM, and very low 

Ki = 4.1 μM affinity sites. The IC50 values were calculated from the displacement curve of 

[3H]flunitrazepam binding by zolpidem. These values were also significantly higher in P16 than 

in P9 control rats in all other brain regions, except for in the CA3 stratum pyramidale and the 

parietal cortex. According to the proportion of zolpidem displacement of the total 

[3H]flunitrazepam binding between the two age groups, the proportion of both the very low (3 

μM), and low affinity (30 to 100 nM) zolpidem binding sites were higher in P16 than in P9 

control rats in most hippocampal subregions and in the cortex. Within the high affinity site (10 

nM), the displacement by zolpidem was more effective in P16 than in P9 control rats only in the 

CA1 stratum oriens, and CA3 stratum pyramidale.   

5.4.2 Changes in benzodiazepine- and zolpidem-sensitive binding after kainic 

The total [3H]flunitrazepam binding was significantly higher in P9 rats 6 h after KA-induced SE 

in the stratum oriens and stratum lacunosum of the CA3 region, but decreased 1 week after SE 

in the CA1 and CA3 stratum pyramidale, and in the stratum granulare of the DG.  

The displacement of [3H]flunitrazepam binding by zolpidem was analyzed in P9 rats 6 h, 

and 1 week after SE together with their age-matched control rats. In general, SE significantly 

attenuated the potency of zolpidem to displace [3H]flunitrazepam binding in both age groups. In 

P9 rats 6 h after SE, zolpidem displaced [3H]flunitrazepam binding significantly less within the 

low affinity binding range in the molecular and granule cell layers of the DG (100 nM), and in 

the parietal cortex (30 nM), and within the high affinity binding site in the thalamus (10 nM). 

The IC50 value was significantly increased 6 h after the KA treatment, in the granule and 

molecular cell layers of the DG.  

In P16 rats, the displacement curves of [3H]flunitrazepam binding by zolpidem were almost 

identical in control and KA-treated groups. However, in the CA1 and CA3 stratum pyramidale, 
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zolpidem displaced [3H]flunitrazepam binding significantly less in KA-treated than in control 

rats within the high (10 nM) and low affinity binding sites (300 and 100 nM respectively).  

5.5 Damage and loss of hippocampal cells in different experimental epilepsy 
models (I-III) 

In rats with chronic TLE, neuronal cell loss was detected bilaterally in the hippocampus with 

thionin staining. The most severely affected subregions were the CA3 and CA1 regions (I). 

The immature brain was evidently more resistant to the increased excitability. The neuronal 

cell layers were well preserved in treated hippocampal slice cultures as (II). Similarly in rats 

after KA-induced SE, no neuronal degeneration was detected with Fluoro-Jade B and no 

neuronal loss was observed with thionin staining at any time point. Thionin staining also 

showed that the hippocampal cell layers were well preserved in the studied age groups after KA-

induced SE (III). 
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6. DISCUSSION 

6.1 Methodological considerations 

6.1.1 Epileptic in vivo animal models as models of human epilepsy 

Experimental animal models of epilepsy try to mimic human epilepsy as much as possible. In 

the epilepsy models described here, a chemoconvulsant or electrical stimulation is administered 

to produce recurrent seizures in an unnatural way, whereas in human epilepsy there is a 

pathological process causing the seizures. There is also substantial variability between animals 

experiencing seizures. For example, the duration of seizures or the seizure frequency and type in 

animals after SE may be very different (Sankar et al., 1998; Kubova et al., 2004). Despite these 

differences, the animal seizure models provide information about neuropathological 

consequences of seizures, whereas they provide only rough measures of learning and memory. 

Furthermore, when handling immature rats it is important to consider also other factors than 

seizures that may influence the results. In neonatal rats exposed to recurrent seizures in addition 

to daily separation from their mothers, neuronal degeneration was more prominent, and long-

term cognitive impairments were worse than in rats with neonatal seizures alone (Huang et al., 

2002). Likewise, P9 rats that also experienced repeated maternal separation maintained a more 

immature GABAA receptor phenotype, and exhibited more active responses to stress than did 

control rats (Hsu et al., 2003). Therefore, in our study of SE in P9 rats, pups were taken back to 

their lactating mothers immediately after recovery of SE, and control and KA-treated rats were 

separated from their mother for an equal time. 

In the KA model of epilepsy, an acute excitotoxic insult (SE) is later followed by 

spontaneous seizures in adult rats (Wasterlain et al., 2002). In adult rats, SE will lead to more 

severe hippocampal injury, than with chronic models of TLE where repeated seizures are 

induced e.g. by electrical stimulation (Haas et al., 2001). However, spontaneous seizures do not 

develop in immature rats after KA-induced seizures before P21, although they occur in adult 

rats (Wasterlain et al., 2002). Therefore, in our model where seizures are induced in P9 rats by 

KA (III, IV), the effects of seizures thus represent those of more acute type, as no spontaneous 

seizures appear comparable to adult rats, during the time window we have studied. Also, a lesser 

extent of hippocampal damage has been detected in immature rats than in adult rats after KA-

induced seizures (Haas et al., 2001; Lopez-Picon et al., 2004). This is however not due to an 
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absence of KA receptors (Berger et al., 1984), because there is a high density of KA receptors in 

the hippocampus of young rats (Bahn et al., 1994; Ritter et al., 2002).  

Furthermore, seizures are more easily induced, and the dosage of KA to induce seizures is 

much lower (~2mg/kg) in immature rats than in adult animals (~10 mg/kg) (Stafström et al., 

1992; Lopez-Picon et al., 2004). The seizures are also rather severe and frequently lethal for 

young animals, so in order to reduce the duration of SE a single dose of paraldehyde was 

administered shortly after KA injection, as described recently (Kubova et al., 2001). The 

behavioral seizures are thereby suppressed, but ictal activity may still continue as has earlier 

been shown by EEG recordings (Kubova et al., 2004; Druga et al., 2005). 

In the other animal model of epilepsy used in the present study (I), SE, lasting for several 

hours, was induced by a 20 to 30 min electrical stimulation of the lateral nucleus of the 

amygdala in adult rats (Nissinen et al., 2000). The lateral nucleus of the amygdala can be 

considered a good stimulation site because of its low threshold for electrically induced seizures 

(Goddard et al., 1969). Moreover, the most wide-spread intra-amygdaloid projections originate 

from the lateral nucleus of the amygdala, thus facilitating the spread of seizure activity 

(Pitkänen et al., 1997). After a latency period of approximately 1 month, adult rats develop 

spontaneous seizures, the sequence of events mimicking the pattern of human TLE. The pattern 

and neuropathological changes of the seizures can then be followed up for long periods. The 

long follow-up period after SE enables testing of new AEDs, possibly for preventing 

epileptogenesis or the development of recurrent seizures. The effect of the AED vigabatrin to 

spontaneous seizures in this model appears similar to that found in the treatment of human 

epilepsy (Nissinen & Pitkänen, 2007). 

Other advantages of the electrical stimulation-induced SE model include easy induction of 

seizures at an identified site, and with a known stimulus. With this model the toxic effects 

associated with chemical convulsants are avoided. Furthermore, the epileptogenic agent is 

acting only during application of current and it is not interfering with the epileptic brain activity. 

On the other hand, the electrical current stimulates all neurons in the stimulated tissue. For the 

local electrical stimulation procedure, good equipment and operator experience is required for 

reproducible experiments, and these experiments are also time-consuming and labor-extensive. 

Therefore, if the main interest is to study acute effects of seizures, the KA-model requiring less 

effort is preferred.  
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6.1.2 Organotypic hippocampal slice cultures as in vitro model of epilepsy  

Organotypic hippocampal slice cultures are intact preparations of postnatal hippocampus that 

correspond to perinatal human hippocampal tissue (Caeser & Aertsen, 1991; Frotscher et al., 

1995). In these cultures, many of the intrinsic properties of the tissue are maintained, including 

important aspects of connectivity, and the morphological organization of the hippocampus is 

well preserved. During the first two weeks in culture, many developmental processes continue, 

e.g. proliferation of granule cells, and outgrowth and organizarion of axons and dendrites and 

the maturation of synapses and receptors resembles that seen in vivo (Caeser & Aertsen, 1991; 

Frotscher et al., 1995; II). Therefore, the in vitro slice cultures are also valuable models to study 

developmental changes in cellular and molecular reorganizations, such as in GABAA receptor 

subunit expression. Furthermore, in contrast to acute slices, the organotypic slice cultures 

possess all of the neuron types that are present in the brain in vivo and they also can be further 

cultivated after pharmacological manipulations. However, the in vitro slice cultures are usually 

maintained in an artificial growth medium, supplied with serum, and extrinsic factors such as 

the immune signaling system is lost, so it is obvious that they may not be straightforward 

comparable to a brain in vivo. 

Nevertheless, all slice preparations have undergone a period of ischemia and the normal 

afferent input to dentate granule cells has been severed (Caeser & Aertsen, 1991; Frotscher et 

al., 1995). Upon culturing this leads to some reorganization of excitatory synaptic circuitry in 

slice cultures, i.e. the MFs sprout into the molecular layers of the DG, and the dentate granule 

cells show enhanced excitability (Bausch & McNamara, 2000). As result of the abnormal 

connections in slice cultures, seizure-like events can be induced in slice cultures, for example by 

application of GABAA receptor antagonists (Scanziani et al., 1994; Bausch & McNamara, 

2000). Furthermore, in mature hippocampal slice cultures (12-20 DIV) treated for 3 days with 

picrotoxin, there were morphological changes similar to those observed in the hippocampus of 

patients with epilepsy, such as loss of neurons and dendritic spines (Müller et al., 1993). Thus, 

cultured hippocampal slices represent an ideal, carefully controlled system to study cellular and 

molecular rearrangements, such as region- and subunit-specific changes in GABAA receptor 

subunits, induced by seizure-like events. Some of the changes may even be comparable to those 

of the epileptic hippocampus.  
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6.2 Neuropathology of epilepsy in the developing and adult rat brain 

In the amygdala stimulation model used in our study, the most severe damage has been shown 

to appear in the amygdala and surrounding cortex of adult rats (Nissinen et al., 2000). 

Consistently, amygdaloid damage has been found in humans who died from SE (Pitkänen et al., 

1998) and damage of the entorhinal cortex has been found in humans with TLE (Mikkonen et 

al., 1998). In addition, hippocampal damage was found in our model, including neuronal loss in 

the hilus as well as in the CA1 and CA3 areas, as also found in human TLE (Mikkonen et al., 

1998; Pitkänen et al., 1998). In rats of this model, MF sprouting has been found (Nissinen et al., 

2000), the feature typical for patients with TLE (Engel, 1996; Kälviäinen & Salmenperä, 2002).  

In adult rats, death of hippocampal neurons, particularly in the CA3 and CA1 regions 

(Fujikawa et al., 2000; Zhang et al., 2002), and also in the DG (Buckmaster & Dudek) has 

frequently been detected after KA-induced seizures. Even a brief, non-convulsive seizure 

evoked by kindling stimulation was found to produce apoptotic neurons in the rat DG (Bengzon 

et al., 2002). In contrary, several studies have found the immature rat hippocampus to be 

resistant to seizure-induced neuronal death, where seizures were induced with KA at P1-16 

(Lynch et al., 2000; Haas et al., 2001; Lopez-Picon et al., 2004). However, in other studies 

neuronal death has been detected in the hippocampus after KA-induced seizures at P7 

(Humphrey et al., 2002; Dong et al., 2003). Neuronal damage has also been found in 

hippocampal regions of P14 rats (Sankar et al., 1998) as well as in the thalamic region of P12 

rats (Kubova et al., 2001; Druga et al., 2005) after seizures induced with lithium-pilocarpine. 

Neuronal death was also detected in cultured hippocampal slices started at P6-7 and treated with 

KA for 2 days (Holopainen et al., 2001a; Holopainen et al., 2004). Furthermore, in immature 

P10 rats hippocampal neurons were injured 24 h after febrile seizures, but 4 weeks after the 

seizures no significant neuronal death was detected (Toth et al., 1998; Baram et al., 2002), 

indicating that some kind of recovery of damaged neurons may occur.  

Sprouting of dentate granule cell MFs, has been detected besides in adult experimental 

animals after KA-induced seizures (Buckmaster & Dudek, 1997; Lynch & Sutula, 2000), also in 

epileptic humans (Engel, 1996; Kälviäinen & Salmenperä, 2002). Similarly to the rarely seen 

neuronal death, MF sprouting of varying degree has been detected in the immature brain. In our 

KA model of P9 rats, neither neuronal death nor MF sprouting was found 1-4 weeks after 

induction of seizures (Lopez-Picon et al., 2004; III). On the contrary, prolonged febrile seizures 

induced at P10 resulted in MF sprouting 3 months later (Bender et al., 2003). Also in cultured 
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hippocampal slices started at P10-12 and treated with KA for 2 days sprouting of MFs was 

detected (Routbort et al., 1999). On the other hand, the neuronal viability of cultured 

hippocampal slices was not affected by chronic treatment with a GABAA receptor antagonist 

picrotoxin or with a non-NMDA receptor antagonist DNQX (II). The discrepancy between 

different studies in the consequences of seizures may be due to the fact that available techniques 

are not sensitive enough to detect limited neuronal loss, which can be present only in a 

subpopulation of surviving animals (Nairismägi et al., 2006). However, factors such as the 

postnatal age of the animals, as well as the type of animal model used in the studies may also 

contribute to the differences in seizure outcome.  

6.3 GABAA receptor expression in the rat brain 

6.3.1 Receptor expression during development 

In the developing rat hippocampus, GABA acts as an excitatory neurotransmitter (Ben-Ari, 

2002). Around the end of the second postnatal week GABA switches from a depolarizing to a 

hyperpolarizing mode (Ben-Ari et al., 1989; Khazipov et al., 2004). During this period many 

other developmental changes also take place. An important feature is the expression patterns of 

GABAA receptor subunit mRNAs that change region- and subunit-specifically during the 

embryonic and postnatal development (Fritschy et al., 1994; Brooks-Kayal et al., 1998; II; III). 

This was verified in our in situ hybridization studies, both using organotypic hippocampal slice 

cultures in vitro (II) and in immature rat hippocampus in vivo (III). The developmental subunit 

expression in these two models can be compared, as the slice cultures were prepared from P6-7 

rats and cultured for 7 days in vitro which corresponds roughly to P14 rats in vivo, whereas the 

studies in immature rats were performed during the postnatal brain development from P9 to P16. 

Compared to humans, these stages of hippocampal development in rodents can approximately 

be correlated to the development of a full-term newborn baby (Marsh et al., 2006). This is an 

important period of brain development in both rodents and humans, when the brain is growing 

most rapidly, with intense neuronal growth and synaptogenesis (Dobbing & Sands, 1979).  

Especially the strictly developmentally regulated expression patterns of α1 and α2 subunits 

(Laurie et al., 1992; Poulter et al., 1992; Fritschy et al., 1994; Paysan & Fritschy, 1998) could 

be detected in our studies, and they were surprisingly similar in the slice cultures (II) to those 

observed in the rat hippocampus in vivo (III). The expression level of α2 mRNA decreased 

significantly between P9 and P16 in rat hippocampus, whereas α1 mRNA increased. Similarly, 
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in slice cultures, the expression level of α2 was also high, with the highest level in the CA3 

region similar to the immature rats and the level of α1 mRNA was much lower. The highest 

mRNA level was detected for α5 subunit in slice cultures in all subregions and in accordance its 

expression was at its highest in the CA3 region of immature rats at P12, and then decreased.  

Corresponding with the increased α1 mRNA expression, the amount of BZ-sensitive 

GABAA receptors increased in immature rat hippocampus between P9 and P16, as also shown 

in previous studies (Daval et al., 1991; IV). The zolpidem displacement of [3H]flunitrazepam 

binding within the high affinity site was also more pronounced in P16 than in P9 control rats 

within some regions of CA3 and CA1. This is in accordance with a postnatal increase of the 

α1β2γ2 GABAA receptor subtype, involved in synaptic inhibition and with high affinity for 

zolpidem (Brooks-Kayal et al., 2001; Roberts & Kellogg, 2000; Hevers & Lüddens, 2002). 

6.3.2 Effects of seizures in the immature brain 

6.3.2.1 Changes in the expression of GABAA receptor subunits 

By treating hippocampal slice cultures with the GABAA or glutamate receptor antagonists, 

picrotoxin respective DNQX, it was shown that a disruption of the balance between excitation 

and inhibition in neurons can alter the mRNA expression of GABAA receptor subunits in a 

region- and subunit-specific manner (II). There are only a few earlier studies on this specific 

question, and in those studies different treatment conditions have been applied (e.g. Gerfin-

Moser et al., 1995), so they are not straightforward comparable to the results of our study. The 

slice cultures in our study, were chronically treated with drugs during the entire culture period of 

7 days. The time period when in situ hybridization was performed in these slice cultures, is a 

critical period in brain development when GABA is thought to change from an excitatory to 

inhibitory transmitter (Ben-Ari et al., 1989; Khazipov et al., 2004).  

It is widely assumed that death of neurons is a direct consequence of excessive glutamatergic 

excitation that also causes the epileptiform discharge. This could be due to the activation of both 

NMDA and non-NMDA, i.e. AMPA and kainate, receptors that increases the intracellular Ca2+ 

(Holopainen et al., 1989). Blockade of these receptors with a glutamate receptor antagonist such 

as DNQX is suggested to be neuroprotective (Drian et al., 2001). KA-induced neuronal death 

was effectively decreased by low doses of DNQX at the early phase (within 12 h), but a longer 

exposure (24 h) significantly enhanced the damage in the CA3 regions (Holopainen, 2005). 
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How these mechanisms are related to the changes in subunit expression in our study remains 

unknown. The increased expression of α2 in the CA3 and DG regions after DNQX treatment, 

and the increased expression of α1 and γ2 in the CA3 and CA1 regions after picrotoxon 

treatment could represent some compensatory mechanisms associated with neuroprotection. In 

hippocampal slices cultured for 13 d in the presence of bicuculline, the density of GAD65-

immunoreactive terminals was increased in the CA1 area when compared with control slices, 

whereas treatment with DNQX decreased their density in CA1 (Marty et al., 2000). Tonic 

GABAA receptor activity is present in developing pyramidal cells (Demarque et al., 2002). 

Under normal conditions, pharmacological blockade of tonic GABAergic inhibition with 

picrotoxin selectively enhances the excitability of interneurons leading to an increase in GABAA 

receptor-mediated tonic conductance in CA1 pyramidal cells (Semyanov et al., 2003). The α5 

subunit, up-regulated by picrotoxin in CA1 in our study (II), is often extra-synaptic, raising the 

possibility that blocking of GABAA receptors may cause increased inhibitory activity in CA1 

pyramidal cells. 

Similarly, KA-induced SE in immature 9-day-old rats altered in a time-dependent region-and 

subunit-specific manner the normal developmental expression pattern of GABAA receptor 

subunit mRNAs, especially those encoding α1, α2, β3 and γ2 subunits. The disruption of the 

normal expression pattern, may have long-term consequences on many developmental 

processes. Deficiency of the α1 subunits in knockout mice impairs normal development of 

dendritic spines (Heinen et al., 2003), indicating that this subunit is needed for the development 

and maintenance of normal synaptic contacts. Furthermore, seizure activity can disturb the 

maturation of the inhibitory synaptic transmission and its strength (McLean et al., 1996; Marty 

et al., 2000). It has been shown that the α1 subunit is important at the inhibitory synapse by 

regulating the duration of IPSCs (Hevers & Lüddens, 2002). In studies using acutely dissociated 

cerebellar Purkinje cells from juvenile mice, gene deletion of the α1 subunit resulted in almost 

complete loss of spontaneous and evoked IPSCs (Sur et al., 2001). The increased developmental 

expression of α1 subunit is proposed to be important for formation of the fast inhibitory 

synaptic currents (Vicini et al., 2001). Conversely, the expression of α2 subunit is suggested to 

be down-regulated by the inhibitory synaptic activity (Hevers & Lüddens, 2002). Therefore, the 

enhanced excitatory activity induced by KA in our immature rats could disturb processes such 
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as synaptogenesis, which is suggested to temporally coincidence the developmental switch in α 

subunits (Fritschy et al., 1994). 

6.3.2.2 Changes in the GABAA receptor pharmacology 

The alterations in subunit expression are associated with changes in both function and 

pharmacology of the GABAA receptor. There is evidence for enhanced inhibition after KA-

induced seizures in the postnatal period (P1-14) (Lynch et al., 2000). In our pharmacological 

study, the total [3H]flunitrazepam binding was increased 6 h after KA-induced SE in P9 rats in 

the CA3 region (IV). This is in accordance with other studies showing augmented BZ-binding 

after seizures in the immature rat brain (Werck & Daval, 1991; Rocha et al., 2000), as well as 

with our in situ hybridization study where the α1 mRNA level was increased acutely after SE in 

CA3 (III). One week after SE, the total [3H]flunitrazepam binding was decreased in the CA1 

and CA3 pyramidal cell layers. In accordance, at the same time point zolpidem displaced 

[3H]flunitrazepam binding less effectively within the high zolpidem affinity binding site of the 

CA1 and CA3 pyramidal cell layers in KA-treated rats (IV). Altogether, these results could 

indicate an acute seizure-induced increase in α1 subunit expression already after 6 h, perhaps to 

enhance inhibition, but after 7 days there is a significant decline of α1 expression (III; IV). On 

the other hand, rats with pilocarpine-induced SE at P10 had increased α1 subunit expression 3 

months later in dentate granule cells, and in accordance enhanced zolpidem augmentation 

(Zhang et al., 2004). These rats did not become epileptic unlike adult rats  that have a decreased 

α1 subunit expression (Gibbs et al., 1997; Brooks-Kayal et al., 1998b). Moreover, seizure-

induced changes in the mRNA expression of most GABAA receptor subunits may closely be 

associated with the corresponding protein levels (Brooks-Kayal et al., 2001), as we have shown 

for the α1, α2 and β3 subunits (III. IV).  

6.3.3 Effects of seizures in the adult brain 

In our study of adult rats with chronic TLE, the expression of several GABAA receptor subunits 

were found to undergo region-selective changes in the hippocampus after the development of 

spontaneous seizures (I). Changes in α subunits after seizures have been variable between 

different studies. We found that the mRNAs of α2 and α4 subunits were down-regulated in the 

CA3c and CA1 subfields of the hippocampus, respectively, in epileptic rats compared to 

controls. Similarly, α2 expression has decreased in the CA1-CA3 regions 1-2 months after KA 
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or pilocarpine injection in rats (Rice et al., 1996; Tsunashima et al., 1997). Other groups have 

found increases in the expression of α2 and α4. The α4 mRNA expression has increased in rat 

granule cells 1-4 months after pilocarpine- or electrically-induced SE (Brooks-Kayal et al., 

1998b; Nishimura et al., 2005), whereas in our model it remained unchanged. Seven days after 

injection of KA, α4 expression has increased in dentate granule cells, but returned to the control 

level after 30 days (Tsunashima et al., 1997). Likewise, α2 subunit mRNA expression has 

transiently increased in the CA1 and DG regions in the kindling model, and then returned to the 

control level at long-term (Kamphuis et al., 1995). In our study, the amount of γ2 subunit did 

not change in any hippocampal subregion, which is consistent with the pilocarpine model where 

γ2 expression remained unchanged (Rice et al., 1996). On the other hand, the expression of the 

β3 subunit, a subunit relatively highly expressed also in normal brain, was considerably 

increased in all hippocampal subregions in our rat model, suggesting that the β3 subunit may be 

of importance in controlling the neuronal excitability. The increased β3 subunit expression after 

seizures is in accordance with earlier in situ hybridization studies, using several different 

experimental animal models at both the acute and chronic phase (Kamphuis et al., 1995; 

Schwarzer et al., 1997; Brooks-Kayal et al., 1998b; Sperk et al., 1998; Nishimura et al., 2005). 

Similar cell-specific as well as cell layer-specific changes in GABAA receptor subunit 

expression as in the hippocampus of epileptic animals has also been found in patients with TLE, 

with enhanced β3 expression and modest or no changes in γ2 expression (Loup et al., 2000; 

Pirker et al., 2000). 

The discrepancy of the results obtained in various studies indicate that the seizure-induced 

acute alterations in the expression of GABAA receptor subunits are not necessarily similar to 

those of the chronic state. The changes detected here were studied in rats having chronic 

epilepsy (I), an exceptionally long period (3 months) after induction of seizures, whereas most 

other studies have focused on the effects of SE after a shorter time point (usually up to one 

month) (Schwarzer et al., 1997; Sperk et al., 1997; Brooks-Kayal et al., 1998b). In addition, 

differences between the present and earlier findings in the subunit expression could partly be 

related to the animal model used as well as the method used to measure mRNA levels. If mRNA 

is measured by traditional in situ hybridization, changes in expression of individual neurons of a 

single cell type are not detectable, which is possible with the single-cell mRNA amplification 

approach. 
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Because of the neurodegeneration in the CA1 and CA3 regions in our model (I), the changes 

in subunit expression are more difficult to interpret than in granule cells that are relatively 

spared in experimental models. Lasting decreases of α2 and α4 subunits could at least partly be 

due to loss of pyramidal cells. However, the up-regulation of β3 expression in these regions 

supports the idea that the decreased expression of GABAA receptor subunits in epileptic tissue 

represents real changes occuring in the surviving neurons. The α2 subunit-containing receptors 

are usually located at axo-axonic synapses on CA1 pyramidal cells (Nusser et al., 1996; Fritschy 

et al., 1998), strategically located to effectively inhibit the generation of action potentials of 

these neurons (Maccaferri et al., 2000; Fritschy & Brünig, 2003). These excitatory pyramidal 

cells are innervated by GABAergic interneurons that regulate their excitability through GABAA 

receptors (Freund & Buzsaki, 1996). If receptors containing α2 subunit are lost, the inhibitory 

activity is assumed to be affected. Accordingly, GABAA receptor-mediated inhibition seems to 

be impaired in the CA1 and CA3 regions in kindled experimental animals (Titulaer et al., 

1995a). The long-term alterations in GABAA receptor subunit α2, α4 and β3 expression may 

represent compensatory responses to seizure activity in the remaining pyramidal neurons, 

aiming at enhanced GABAA receptor-mediated neurotransmission to prevent the spontaneous 

seizures of the chronic epileptic state in our model. 

The changes in subunit composition in adult rats may also contribute to changes in GABAA 

receptor pharmacology. As the subunits assemble into pentameric receptor complexes, usually 

having two α subunits, two β subunits, and one γ subunit, the seizure-induced changes in 

individual subunits are difficult to interpret (Korpi et al., 2002). There seem to be a persistent 

seizure-induced decrease in BZ binding in the CA1 and CA3 regions (Titulaer et al., 1995c; 

Rocha & Ondarza-Rovira, 1999). Binding studies in kindled rat brain, however, show increases 

in muscimol, BZ and TBPS binding in the DG, labeling the GABA, the BZ and the Cl- channel 

sites of the GABAA receptor complex, respectively (Shin et al., 1985; Nobrega et al., 1989, 

1990; Titulaer et al., 1995b, c). These increases were significant shortly after kindling, but 

returned to control levels at 4 weeks (Shin et al., 1985; Nobrega et al., 1990). There is also 

initially increased GABAergic transmission in the DG of kindled rats (Buhl et al., 1996; Gibbs 

et al., 1997; Nusser et al., 1998a).  

Moreover, after repeated seizures, the inhibition and number of GABAergic interneurons 

seem to decrease (Bouilleret et al., 2000; Sayin et al., 2003). These interneurons provide axo-

somatic and axo-axonic inhibition to granule cells of the DG, and due to their reduction the 
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excitatory output from granule cells to pyramidal neurons in CA3 could be enhanced and 

contribute to spontaneous seizures (Sayin et al., 2003). The up-regulation of the β3 subunit 

could contribute to the increased GABAA receptor-dependent inhibition in the DG and may 

indicate that some compensatory subunit expression takes place. Since the α subunits (α1, α2, 

α3 and α5) confers sensitivity to BZs, it is possible that remaining receptors with reduced α2 

and α4 subunit assembly might be compensated with other α subunits, or there might be a loss 

of functional receptors in some cells but not in others. Mouse lines in which the α1 subunit has 

been genetically deleted, exhibited a decreased number of type I BZ binding sites (Sur et al., 

2001; Kralic et al., 2002b). These mice had instead a compensatory increase in type II BZ 

binding sites and in accordance increased GABAA receptor α2 and α3 subunit 

immunoprecipitation (Sur et al., 2001; Kralic et al., 2002b). The α5 subunit mRNA is decreased 

in the CA1-CA3 regions, but increased in the DG after seizures (Rice et al., 1996), and could 

thereby give rise to increased BZ binding in the DG. As the α5 subunit most commonly forms 

receptors together with the β3 and γ2/3 subunits (Fritschy & Möhler, 1995), the increases in α5 

and β3 subunit expression could contribute to the increased BZ binding in the DG. 

Certainly, seizures may have an influence on many factors, such as those involved in the 

assembly and clustering of subunits, as well as presynaptic factors including release probability 

of GABA, and diffusion of GABA from the cleft, that may in turn affect the expression, 

function and pharmacology of GABAA receptors. Endocytosis of receptors is another important 

mechanism for regulation of their short and long-term expression on the cell surface (Connolly 

et al., 1999; Kittler et al., 2000). Indeed, there is an increase in GABAA receptor endocytosis 

during SE (Blair et al., 2004). It was proposed that endocytosis provides synaptic plasticity by 

contributing to short-term regulation of GABAergic inhibitory transmission in direct response to 

acute changes in network activity (Kittler et al., 2000; van Rijnsoever et al., 2005).  

6.4 Functional consequences of altered GABAA receptor expression in the 
immature and adult brain 

The findings of this thesis together with other studies, suggest that the GABAA receptor subunit 

composition is different in the developing rat brain compared to the adult. Moreover, increased 

neuronal activity may disrupt the normal maturation of GABAA receptor subunits during early 

postnatal development. The effects of seizures on subunit expression are also region- and age-

dependent and may lead to consequences on receptor function, the effects, however, being 
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different in the adult compared to the immature brain. Besides, GABA plays an important role 

during development. Thus in addition to their obvious role in controlling excitability in adult 

brain, a change in GABAA receptor function during development could be expected to elicit 

neurodevelopmental abnormalities perhaps leading to epilepsy.  

The β3 subunit gene seems to be necessary for normal GABAA receptor function, as β3 

knockout mice have spontaneous seizures with high mortality and a phenotype with marked 

similarities to patients with Angelman syndrome (Homanics et al., 1997; DeLorey et al., 1998; 

Holopainen et al., 2001b). Angelman syndrome is a neurodevelopmental disorder with severe 

mental retardation, epilepsy and delayed motor development. The majority of patients have a 

mathernal deletion in the gene coding for β3 subunit (DeLorey et al., 1998; Holopainen et al., 

2001b). Disruption of the γ2 subunit gene in mice likewise causes high lethality at birth, and a 

94% reduction in binding to the BZ binding site on the GABAA receptor (Günther et al., 1995). 

Genetic studies in humans revealed a point mutation of the γ2 subunit linked to childhood 

absence epilepsy and febrile seizures (Wallace et al., 2001). In frog oocytes, this mutation 

showed diminished sensitivity to BZs (Wallace et al., 2001). In addition, a mutation in the M3 

region of the α1 subunit is related to a common epilepsy syndrome in humans, i.e. juvenile 

myoclonic epilepsy (Cossette et al., 2002).  

An interesting hypothesis is that the general pattern of GABAA receptor subunit expression, 

and its pharmacological profile is in many ways similar in immature brain to that of adult 

animals with TLE. The relative expression of α1 mRNA is significantly lower in immature than 

in adult dentate granule cells resulting in lower sensitivity to augmentation by zolpidem and 

higher sensitivity to Zn2+ inhibition, although zinc concentrations in dentate gyrus are low in 

immature rats (Brooks-Kayal et al., 2001). In adult epileptic animals the expression of α1 

mRNA and zolpidem augmentation are decreased in the DG, and the inhibition by Zn2+ is 

coincidently increased (Buhl et al., 1996; Brooks-Kayal et al., 1998b). The MFs sprout 

extensively into the inner molecular layer of the DG and could provide an increased source of 

Zn2+ (Tauck & Nadler, 1985), which could lead to the long-term failure of inhibition in epileptic 

tissue that facilitates seizure generation (Buhl et al., 1996; Gibbs et al., 1997; Brooks-Kayal et 

al., 1998b; Cohen et al., 2003). 

Furthermore, the inhibitory GABAergic function can change to excitatory during seizure 

activity (Khazipov et al., 2004). Depolarizing GABAergic responses have been recorded in 

pyramidal neurons from human epileptic hippocampal slices (Cohen et al., 2002). This could be 
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due to the intracellular Cl- concentration that seems to be altered in epileptic networks, such that 

the GABAergic function would become excitatory in the epileptic brain activity (Cohen et al., 

2002). The changed GABAergic function could be mediated by intracellular cascades that 

involve down-regulation of KCC2 which leads to impaired Cl- extrusion from neurons, as 

shown in the hippocampus of kindled mice (Rivera et al., 2002). The NKCC1 transporter that is 

highly expressed in the immature brain plays the opposite function, accumulating Cl- in neurons 

(Kaila, 1994), and is, on the other hand, up-regulated in the rat cortex after kindling (Okabe et 

al., 2002). These abnormal expression patterns of the Cl--transporters causing altered Cl- 

transport and decreased GABAergic inhibition, were also seen in hippocampal specimens from 

human TLE patients (Palma et al., 2006). Thus, the adult epileptic brain seems to revert to a 

more immature state, that may be necessary for repair mechanisms that operate at the network 

level (Rivera et al., 2005).  

A fascinating approach is that altering GABAA receptor subunit expression could affect the 

development of epilepsy. This was successfully achieved by using a novel promoter, that was 

up-regulated after SE and successfully increased the expression of α1 subunit and reduced the 

incidence of seizures (Raol et al., 2006a). Furthermore, the anticonvulsant efficacy of BZs is 

primarily mediated by receptors containing an α1 subunit (Rudolph et al., 1999; Crestani et al., 

2002), which is also important for seizure sensitivity to GABAA antagonists (Kralic et al., 

2002a). It would be interesting to test if the anticonvulsant effects of BZs are conferred by the 

same α1 subunit-containing receptors in the immature brain for example by using transgenic 

immature animals with substitutions in α-subunits. 

As GABA can have excitatory as well as trophic effects on immature neurons, an interfering 

compound on the immature GABA system, such as an AED, may have adverse effects on 

developmental processes (Ben-Ari & Holmes, 2005). Consequently, the use of classical BZs 

that potentiate the function of α1-, α2-, α3- and α5-containing receptors during the early 

development, may contribute to increased excitability (Ben-Ari et al., 1997; Leinekugel et al., 

1997; Khazipov et al., 2004). The enhancement by diazepam on GABAA receptor currents in 

dentate granule cells increases with postnatal development (Kapur & Macdonald, 1999). Certain 

types of neonatal and early childhood seizures are currently treated with BZs, as well as other 

AEDs. Adverse effects of some AEDs have been found in the immature brain, both in animals 

(Bittigau et al., 2002; Raol et al., 2005) and in children (Herranz et al., 1988; Calandre et al., 

1990). They have even been shown to cause apoptotic neuronal death in the developing rat brain 
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(Bittigau et al., 2002) and teratogenic effects as well as cognitive impairment in children born to 

mothers with epilepsy treated with AEDs during pregnancy (Calandre et al., 1990; Meador et 

al., 2006). Also in rat pups that were exposed to the AEDs vigabatrin, and valproate in utero, 

showed hippocampal and cortical dysplasias (Manent et al., 2007).  

At any rate, there are possible deleterious actions of drugs acting on GABAA receptors in the 

immature brain, and a need for more effective therapy in infants and children. Also the 

observation that the action of GABA reverses in the epileptic brain, sets our currently used 

AEDs in a new light and calls for new strategies in the development of new AEDs (Ben-Ari & 

Holmes, 2005). Better insight of the seizure-induced changes in GABAA receptor subunit 

expression is needed to be able to develop age- and subunit-specific drugs for patients with 

epilepsy.
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7. SUMMARY AND CONCLUSIONS 

 
In the current thesis project the main goal was to characterize seizure-induced alterations in 

GABAA receptor subunit expression in the developing and adult rat brain, specifically in the 

hippocampus. The developmental subunit expression was also verified. The main findings of the 

study are summarized. 

 
1. Long-term epilepsy-induced changes in the GABAA receptor subunit expression were found 

in the hippocampus of adult rats with chronic TLE, i.e. having spontaneous seizures. These 

changes were both subunit- and subregion-selective and the most prominent ones were the 

decreased mRNA expression of the α2 and α4 subunits in the CA3c and CA1 regions, 

respectively, and the increased expression of the β3 subunit in all hippocampal subregions. 

These long-term alterations may lead to impaired GABAergic function, favoring the state of 

increased excitability that gives rise to spontaneous seizures. Another possibility is that the 

changes are compensatory responses to the chronic epileptic state in this model attempting to 

prevent seizure activity. 

 

2. The strictly developmentally regulated expression patterns of GABAA receptor subunits 

during the second postnatal week were studied in organotypic hippocampal slice cultures in 

vitro and in developing rat hippocampus in vivo. This is a critical time period in development 

when the function of GABA is thought to change from excitatory to inhibitory. Comparison of 

the expression patterns of GABAA receptor subunit mRNAs in the two models indicated high 

expression of the α2 and α5 subunits, and low expression of the α1 subunit in cultured 

hippocampal slices, which is surprisingly similar to the subunit expression observed in rats of 

the corresponding age in vivo. In the immature rat hippocampus, α1 mRNA expression showed 

an increased profile between P9 and P16, whereas that of α2 and β3 showed a decreased one. 

Similarly, the α1 immunoreactivity increased, whereas the α2 and β3 immunoreactivities 

decreased during the development. Furthermore, the amount of BZ-sensitive GABAA receptors 

increased in the immature rat hippocampus between P9 and P16. Also the zolpidem 

displacement of [3H]flunitrazepam binding within the high affinity site was more pronounced in 

P16 than in P9 control rats within certain subregions of CA3 and CA1. These findings indicate 
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that pharmacologically important changes occur in GABAA receptor subtypes during the 

development. They can be correlated to the increased developmental expression of the α1 

subunit that is assumed to be involved in synaptic inhibition.  

 

3. The GABAA receptor subunit expression was altered region- and subunit-specifically in 

cultured hippocampal slices, by disturbing neuronal activity with chronic treatment of a GABAA 

receptor antagonist picrotoxin, or with a non-NMDA receptor antagonist DNQX. Particularly, 

increased mRNA expression of the α1, α5 and γ2 subunits was found in the pyramidal cell 

layers of picrotoxin-treated cultures, and of the α2 subunit in the CA3 and DG and of the β1 

subunit in the DG of DNQX-treated cultures. The picrotoxin-induced changes are comparable to 

changes in the epileptic hippocampus. The cultured hippocampal slices represent a potent, 

carefully controlled system to study seizure-induced cellular and molecular alterations, such as 

in the expression of GABAA receptors.  

 

4. KA-induced SE in 9-day-old rats disturbed the normal developmental expression patterns of 

several GABAA receptor subunits in the rat hippocampus in a subunit- and subregion-specific 

manner during the critical second postnatal week. Especially, the normal developmental mRNA 

expression patterns of the α1, α2 and β3 subunits were abolished. The developmental changes 

in the α1 and α2 subunit immunoreactivities were also less pronounced in rats after SE, 

indicating that changes in the mRNA expression may be closely correlated to the corresponding 

protein levels. The changes in subunit expression were not due to neuronal loss in immature rats 

as they are resistant to neuronal damage. The pharmacological properties of BZ- and zolpidem-

sensitive GABAA receptors were also region-specifically altered after SE in the immature rat 

brain during the postnatal period. The total [3H]flunitrazepam binding decreased, and zolpidem 

displaced [3H]flunitrazepam binding significantly less within the high affinity binding range in 

the CA1 and CA3 pyramidal cell layers of rats one week after SE. These results could imply a 

down-regulation of α1 subunit containing receptors in these specific regions one week after SE, 

which is consistent with the results both at the mRNA and protein level. Altogether, these 

findings suggest that the GABAA receptor subunit transcription is extremely sensitive to external 

stimuli during the early postnatal development. The SE-induced changes in the α1 and α2 

subunit expression can profoundly affect the normal maturation of GABAA receptors that may 
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have long-term consequences on many developmental processes such as synaptogenesis, and 

lead to expression of receptors with abnormal function and pharmacology.  

However, further research is needed to reveal possible alterations in GABAA receptor 

subtypes after acute seizures as well as after chronic epilepsy in the developing and adult brain. 

New information about the epilepsy-associated changes will enable to discover the molecular 

targets for age-specific antiepileptic drugs acting on specific receptor subtypes, which may 

predominate on epileptic neurons. 
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