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ABSTRACT 

Anu Kallio 
THE EFFECTS OF SELECTIVE ESTROGEN RECEPTOR MODULATORS ON THE 
DEATH OF BREAST CANCER CELLS AND OSTEOBLASTIC CELLS 
Institute of Biomedicine, Department of Anatomy and Turku Graduate School of Biomedical 
Sciences, University of Turku, Turku, Finland 
Annales Universitatis Turkuensis 
Painosalama Oy, Turku, Finland 2008 
 
Selective estrogen receptor modulators (SERMs) are structurally different compounds 
that interact with intracellular estrogen receptors (ERs) in target organs as estrogen 
receptor agonists and antagonists. Tamoxifen (Tam) is a SERM compound widely used 
in chemotherapy of ER-positive breast cancer. It inhibits proliferation and facilitates 
apoptosis of breast cancer cells by ER-dependent modulation of gene expression. 
Recent reports have shown that Tam has also rapid nongenomic effects. In this thesis 
we studied the mechanisms by which Tam exerts rapid effects on breast cancer cell 
viability. We demonstrate that Tam at pharmacological concentrations causes rapid 
mitochondrial death program in breast cancer cells. In addition, we evaluated the 
upstream signaling events leading to the mitochondrial disruption by Tam. Our results 
suggest that Tam rapidly induces sustained activation of extracellularly signal-
regulated kinase (ERK1/2) in ER-positive breast cancer cell lines, which effects can be 
opposed by 17β-estradiol (E2). Tam-induced rapid death appears to be primarily ER-
independent, but it can possibly be modulated by ERs. However, epidermal growth 
factor receptor (EGFR)-associated mechanisms were shown to be involved in Tam -
induced cell death. 

We also compared the ability of E2 and different SERMs to promote survival of 
osteoblast-derived cells against etoposide-induced apoptosis. In order to compare the 
roles of the two ER isotypes, we created an U2OS human osteosarcoma cell line stably 
expressing either ERalpha (ERα) or ERbeta (ERβ). We present data that E2 and a 
novel SERM compound ospemifene are able to protect osteoblastic cells from 
apoptosis. The protective effect could be mediated via both ERα and ERβ although the 
responses of the cell lines expressing either of the two receptors differed from each 
other. Moreover, we show that the osteoblast-protective effect is associated with 
changes in the levels of osteoblast-produced cytokine expression. Information about 
the anti- and proapoptotic actions of Tam and other SERMs in different target tissues 
could possibly be exploited in development of new tissue specific SERM compounds.  

Keywords: Apoptosis, tamoxifen, SERM, breast cancer, estrogen, estrogen receptor, 
mitochondria, ERK, osteoblast, ospemifene 
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TIIVISTELMÄ 

Anu Kallio 
SELEKTIIVISTEN ESTROGEENIRESEPTORIN MUUNTELIJOIDEN (SERM) 
VAIKUTUS RINTASYÖPÄSOLUJEN JA LUUN SOLUJEN KUOLEMAAN 
Biolääketieteen laitos, anatomia ja Turun Biolääketieteen tutkijakoulu, Turun yliopisto, Turku, 
Suomi 
Annales Universitatis Turkuensis 
Painosalama Oy, Turku 2008 
 
Selektiiviset estrogeenireseptorin muuntelijat (SERMit) ovat ryhmä kemialliselta 
rakenteeltaan erilaisia yhdisteitä jotka sitoutuvat solunsisäisiin estrogeenireseptoreihin 
toimien joko estrogeenin kaltaisina yhdisteinä tai estrogeenin vastavaikuttajina. 
Tamoksifeeni on SERM –yhdiste, jota on jo pitkään käytetty estrogeenireseptoreita (ER) 
ilmentävän rintasyövän lääkehoidossa. Tamoksifeeni sekä estää rintasyöpäsolujen 
jakaantumista että toisaalta aikaansaa niiden apoptoosin eli ohjelmoidun solukuoleman 
muuntelemalla ER-välitteisesti kohdesolun geenien ilmentymistä. Viimeaikaiset 
tutkimustulokset ovat kuitenkin osoittaneet tamoksifeenilla olevan myös nopeampia, 
nongenomisia vaikutusmekanismeja. Tässä väitöskirjatyössä tutkimme niitä nopeita 
vaikutusmekanismeja joiden avulla tamoksifeeni vaikuttaa rintasyöpäsolujen elinkykyyn. 
Osoitamme että tamoksifeeni farmakologisina pitoisuuksina aikaansaa nopean mito-
kondriaalisen solukuolemaan johtavan signallointireitin aktivoitumisen rintasyöpä-
soluissa. Tämän lisäksi tutkimme myös tamoksifeenin aiheuttamaan mitokondrio-
vaurioon johtavia tekijöitä. Tutkimustuloksemme osoittavat että ER-positiivisissa 
rintasyöpäsoluissa tamoksifeeni indusoi pitkäkestoisen ERK-kinaasiaktivaation, joka 
voidaan estää 17-β-estradiolilla. Tamoksifeenin aikaansaama nopea solukuolema on 
pääosin ER:sta riippumaton tapahtuma, mutta siihen voidaan vaikuttaa myös ER-
välitteisin mekanismein. Sen sijaan epidermaalisen kasvutekijäreseptorin (EGFR) voitiin 
osoittaa osallistuvan tamoksifeenin nopeiden vaikutusten välittämiseen. 

Tämän lisäksi vertailimme myös estradiolin ja eri SERM-yhdisteiden kykyä suojata 
apoptoosilta käyttämällä osteoblastiperäisiä soluja. Pystyäksemme vertailemaan ER-
isotyyppien roolia eri yhdisteiden suojavaikutuksissa, transfektoimme U2OS osteo-
sarkoomasolulinjan ilmentämään pysyvästi joko ERalfaa (ERα) tai ERbetaa (ERβ). 
Tulostemme mukaan sekä estradioli että uusi SERM-yhdiste ospemifeeni suojaavat 
osteoblastin kaltaisia soluja etoposidi-indusoidulta apoptoosilta. Sekä ERalfa että 
ERbeta pystyivät välittämään suojavaikutusta, joskin vaikutukset erosivat toisistaan. 
Lisäksi havaitsimme edellä mainitun suojavaikutuksen olevan yhteydessä muutoksiin 
solujen sytokiiniekspressiossa. Tietoa SERM-yhdisteiden anti-ja proapoptoottisten 
vaikutusmekanismeista eri kohdekudoksissa voidaan mahdollisesti hyödyntää 
kehiteltäessä uusia kudosspesifisiä SERM-yhdisteitä.  

Avainsanat: Apoptoosi, tamoksifeeni, SERM, rintasyöpä, estrogeeni, mitokondrio, 
ERK, estrogeenireseptori, osteoblasti, ospemifeeni 
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ABBREVIATIONS 
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RANK  receptor activator of NF-κB 
RANKL  receptor activator of NF-κB ligand 
RNA  ribonucleic acid 
ROS  reactive oxygen species 
SDS-PAGE  sodium dodecyl sulfate polyacrylamide gel electrophoresis 
SERM  selective estrogen receptor modulator 
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INTRODUCTION 

Breast cancer is the most common malignancy among western women and the second 
overall cause of death in developed countries. Bone is the most common site of breast 
cancer colonization and metastases usually bring about bone loss with accompanying 
pain and loss of function. An association between female hormones and breast cancer 
is evident and estrogens have been shown to regulate multiple activities in breast 
cancer cells, including cell proliferation and escape from apoptotic cell death (Dong et 
al., 2001; Leung and Wang 1999; Zhang et al., 2001; Fernando and Wimalasena 2004; 
Patel et al., 2007). The estrogen receptor (ER) is present in nearly two-thirds of breast 
tumors and the ER status of breast tumors serves as an important indicator of 
likelihood to benefit from endocrine therapy. In addition to genomic effects of 
estrogen, it has more recently been demonstrated that estrogen is capable of enacting 
also rapid, membrane initiated signaling events in a variety of cell types (Migliaccio et 
al., 1996; Song and Santen 1996; LeMellay et al., 1997; Boyan et al., 2003; Adamski 
and Benveniste 2005; Edwards 2005).  However, the nature of plasma membrane ER is 
still a matter of debate.  

Selective estrogen receptor modulators (SERMs) are structurally different compounds 
that interact with intracellular estrogen receptors in target organs as estrogen receptor 
agonists and antagonists. Tamoxifen (Tam) is the first clinically relevant SERM which 
has been used extensively for the treatment of breast cancer over three decades. 
Tamoxifen acts primarily through ERs by modulation of gene expression, which leads 
to inhibition of proliferation and increase of apoptosis (Perry et al., 1995; Otto et al., 
1996). Besides ER-mediated genomic effects, pharmacological concentrations of Tam 
have more recently been shown to have ER-independent nongenomic effects in various 
cell types (Ferlini et al., 1999; Kim et al., 1999; Zhang et al., 2000). Due to the side 
effects related to Tam-therapy, second generation SERMs have been developed. The 
ultimate goal of drug discovery is to find a SERM that prevents breast cancer and 
conserves the skeleton without increasing the risk of endometrial cancer and venous 
thromboembolism, and without inducing hot flushes.  

This study was undertaken to study the mechanisms and pathways of Tam -induced 
death of breast cancer cells. Furthermore, we wanted to study the potential roles of 
different ER subtypes in anti-and proapoptotic actions of estrogen and other SERM 
molecules using ER-transfected U2OS osteosarcoma cell lines as models. 
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REVIEW OF THE LITERATURE 

1.  BREAST CANCER 

There are approximately 1000000 new cases of breast cancer in the world each year (Patel 
et al., 2007) and the incidence of breast cancer is still rising. Breast cancer is slowly 
becoming more prevalent in countries which previously had low rates of cancer as well as 
becoming a leading cause of cancer death in some countries. Indeed, breast cancer has the 
highest incidence of all types of cancer in women. Age and family history are the strongest 
risk factors, but sex hormones also play an important role, as demonstrated by 
epidemiological studies reporting a consistent association by reproductive personal history 
and breast cancer risk. In addition, the acceptability of preventive strategies by healthy 
women is closely related to their lifetime risk of developing breast cancer.  

The main cause of morbidity and mortality in most cancers is metastasis. Breast cancer 
most commonly metastasizes to lymph nodes, bone, lung and liver. Especially ER-
positive breast tumors often metastasize to bone, whereas ER-negative breast cancers 
more aggressively colonize visceral organs (Nguyen and Massague 2007). Bone 
metastasis results in pain, pathologic fractures, bone marrow suppression, 
hypercalcaemia, nerve-compression, cachexia and death (Coleman 2006). Up to 70-
80% of patients with advanced breast cancer have bone metastasis (Woodhouse et al., 
1997; Coleman 2006). Breast cancer patients with bone metastasis are treated with 
antiestrogens and adjuvant therapies with aromatase inhibitors and cytotoxic agents. 
These treatments are used for palliation of pain from bone metastasis and for reduction 
of skeletal events. In addition, surgery, radiotherapy and antineoplastic therapy are 
used to control pain. However, the current treatments do not significantly prolong the 
lifespan of patients (Choueiri et al., 2006; Cicek and Oursler 2006). Thus, no effective 
treatments have been developed that specifically target the metastases in bone. 

2.  ESTROGENS 

Estrogens are a group of steroid compounds functioning as the primary female sex 
hormones. The three major naturally occurring estrogens in women are estradiol, 
estriol, and estrone. Estrogens are produced primarily by ovaries but a smaller 
additional quantity of estrogens is produced by the adrenal glands and peripheral 
tissues such as fat, liver, and kidneys by converting androgens to estrogens. Estrogen 
hormones are also formed in the placenta during pregnancy. Estrogen signaling is 
essential for mammary gland development (Saji et al., 2000) and for the development 
and maintenance of other female sex characteristics.  

2.1  Estrogen and mammary gland 
Estrogens, in particular 17β-estradiol (E2), are well-characterized mitogens in 
mammary gland. In addition to normal developmental functions, estrogens are 
implicated in breast cancer initiation and promotion. The link between ovarian factor 
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and growth of breast cancer was established more than a century ago (Beatson 1896). 
Removal of the ovaries from premenopausal women with metastatic breast cancer was 
found in selected cases to cause temporary disease regression (Boyd 1900). However, 
until recently, it was generally accepted that estrogens do not directly cause breast 
cancer. Nevertheless, recent laboratory studies suggest that the presence of estrogen 
predisposes mammary epithelial cells to malignant transformation (Russo et al., 2006; 
Cavalieri et al.; 2006). Because the strong signal that estrogen has on the mediators of 
cell cycle, cells that have oncogenic mutations may continue to divide in the presence 
of estrogen (Patel et al., 2007). Eventually, these cells may develop into a tumor. A 
mechanistic link between estrogen action and breast cancer was established by the 
discovery of the estrogen receptor (ER). The estrogen receptor expression became 
widely used as a predictive marker of hormonal responsiveness and clinical 
aggressiveness. Breast cancer expression of ER positively correlates with prognosis 
and is associated with a more favorable response to antihormone treatment.  

In addition to proliferative actions, estrogens have also been demonstrated to have an 
antiapoptotic influence in both ER-positive and -negative breast cancer cells (Huang et 
al., 1997; Bynoe et al., 2000; Haynes et al., 2000; Perillo et al., 2000; Ahamed et al., 
2001; Choi et al., 2001; Zhang et al., 2001).  E2 has been shown to protect breast cancer 
cells against apoptosis induced by for example TNF-α, H2O2, serum withdrawal, UV-
radiation and chemotherapeutic drugs (Fernando and Wimalasena 2002; Razandi et al., 
2003; Zhang et al., 2004; Pedram et al., 2006). However, the molecular mechanisms of 
antiapoptotic estrogen action are not fully defined. It has been shown that E2 induces 
transcription of genes that have antiapoptotic actions in many cell types (Dong et al., 
1999; Leung et al., 1999). In addition to nuclear events, estrogen has been demonstrated 
to be capable of bringing about rapid membrane-initiated signaling events in a variety of 
breast cancer cell types (Edwards 2005). These include release of calcium, secretion of 
prolactin, generation of inositol triphosphate and nitric oxide, phosphorylation of Bad 
and activation of MAPK and PI3K/Akt (Pietras et al., 1975; Pietras et al., 1979; Pappas 
et al., 1995; Le Mellay et al., 1997; Razandi et al., 1999; Migliaccio et al., 1996; 
Vasudevan et al., 2001; Fernando and Wimalasena 2004).  

2.2  Estrogen and bone 
Estrogen has an important role in the development and growth of bones and later in the 
maintenance of the bone mass. It is believed that the major action of estrogen on the 
skeleton in vivo is through the inhibition of bone resorption (Riggs et al., 2002). The 
maintenance of bone mass is controlled by the relative activities of bone forming 
osteoblasts and bone resorbing osteoclasts. Classical estrogen receptors are present in 
bone marrow stromal cells, osteoblasts, osteoclasts and their progenitors indicating that 
the effects of estrogen on bone are mediated, at least in part, directly. Although some 
of the anti-resorptive effects of estrogen are via direct actions on osteoclasts and 
hematopoietic cells, estrogen has also been shown to have indirect effects by regulating 
osteoblasts and bone marrow stromal cells (Zallone 2006). Osteoclast formation is 
dependent on equilibrium between several cytokines acting on autocrine and paracrine 
manner and produced by osteoblasts, which indicates that bone resorption is coupled 
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with osteoblastic bone formation. These cellular and molecular bases for the effects of 
estrogen on bone are now being increasingly better understood.  

2.2.1 Effects of estrogen on bone resorption  
Estrogen has clear effects on osteoclast development, activity and apoptosis. The key, 
essential molecule for osteoclast development is receptor activator of NF-κB ligand 
(RANKL), which is expressed on the surface of bone marrow stromal/osteoblast 
precursor cells, T-cells and B-cells. RANKL binds to its cognate receptor, RANK, on 
osteoclast lineage cells, and is neutralized by the soluble decoy receptor, osteoprotegerin 
(OPG), which is also produced by the osteoblastic lineage cells. Combined in vitro and in 
vivo studies have now demonstrated that estrogen suppresses RANKL production by 
osteoblastic cells and also increases OPG production (Lindberg et al., 2001; Saika et al., 
2001; Bord et al., 2003; Syed and Khosla 2005). It has been hypothesized by several 
authors that the protective action of estrogen can be due to a change of the ratio among 
RANKL, cytokine inducing osteoclastogenesis, and OPG. This statement, however, has 
not been clearly proven, due to the discrepancy between the data in the literature.  

In addition to the effects of estrogen on RANKL and OPG expression, estrogen also 
regulates the production of additional cytokines in osteoblasts, thus modulating 
osteoclastic activity in a paracrine fashion. Estrogen suppresses production of pro-
resorptive cytokines such as interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) 
by the cells of osteoblastic lineage (Manolagas and Jilka 1992; Compston 2001). The 
effect of E2 on IL-6 expression has been reported to be mediated via both ERα and 
ERβ (Brady et al., 2002). 

Estrogen also has direct effects on osteoclast lineage cells. Thus, estrogen induces 
apoptosis of these cells and suppresses RANKL-induced osteoclast differentiation 
(Kousteni et al., 2002, Zallone 2006). Moreover, estrogens have also been shown to 
inhibit the activity of mature osteoclasts through direct, receptor-mediated mechanisms 
(Hughes et al., 1996; Chen et al., 2001).  

2.2.2 Effects of estrogen on bone formation 
Although the precise mechanisms that control the relative numbers of osteoblasts and 
osteoclats are not known at present, apoptosis in the regulation of bone metabolism has 
recently been demonstrated by several investigators (Urayama et al., 2000, Kameda et 
al., 1995, Kawakami et al., 1997, Nakashima et al., 1998, Kawakami et al., 1998, 
Weinstein et al., 1998). Especially apoptosis of osteoblasts is getting more attention since 
it has been considered to be an important determinant of bone formation and therefore of 
skeletal integrity (Manolagas 2000; Weinstein and Manolagas 2000), such that disorders 
that promote the process are associated with increased bone fragility (Weinstein et al., 
1998), and treatments that inhibit it are associated with anti-fracture efficacy (Jilka et al., 
1999). Indeed, at the cellular level, there is now considerable evidence that estrogen 
prolongs the lifespan of the osteoblasts by inhibiting osteoblast apoptosis (Syed and 
Khosla 2005). This, in turn, increases the functional capacity of each osteoblast. 
Conversely, estrogen deficiency is associated with accelerated osteoblast apoptosis. 
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Estrogen effects on osteoblast apoptosis appear to be mediated by activation of the 
Src/Shc/ERK signaling pathway and downregulation of JNK leading to alterations in the 
activity of key transcription factors (Kousteni et al., 2001; Kousteni et al., 2003). 

The effects of estrogen on osteoblast proliferation and differentiation markers have been 
variable, depending on the model system used. These discrepancies, however, could be 
due to the fact that most of the studies were conducted before ERβ was discovered, since 
the ER isoform concentrations can greatly influence the estrogen-dependent response. A 
number of more recent studies using osteoblastic cell systems expressing ERα have 
found a consistent inhibitory effect of estrogen on proliferation, whereas no effect of 
estrogen was seen using cells expressing ERβ. It seems that estrogen directly regulates 
osteoblast proliferation and differentiation, although the net effect of estrogen on 
osteoblasts likely depends on factors such as species differences, cell system 
heterogeneity, differentiation stage, ER isoform expression and receptor concentration.  

3.  ESTROGEN RECEPTORS 

3.1  ER structure 
The estrogen receptors (ERs) are members of a large family of steroid receptors that act 
as nuclear transcriptional regulators (Olefsky 2001). ERα was the first estrogen receptor 
cloned and it was isolated from MCF-7 human breast cancer cells in the late 1980s 
(Walter et al., 1985; Greene et al., 1986; Green et al., 1986). Ten years later, ERβ was 
cloned from rat prostate (Kuiper et al., 1996). Mouse (Tremblay et al., 1997) and human 
(Mosselman et al., 1996; Enmark et al., 1997; Ogawa et al., 1998) forms of ERβ have 
also been cloned. The human ERα gene is located on chromosome 6 and the ERβ gene is 
on chromosome 14, demonstrating that they are encoded by separate genes and are 
distinct (Enmark et al., 1997). Both ERs comprise eight exons and have six functional 
domains. At the amino-terminus the A/B domain contains the ligand-independent 
transactivation function 1 (AF-1). The highly conserved DNA binding domain (DBD) is 
located in the central C region, which is adjacent to region D, a flexible hinge which 
contains a nuclear localization signal. The ligand-dependent AF-2 is located at the 
multifunctional E/F domain at the carboxy-terminus. The most highly conserved areas 
are at DNA- and ligand-binding domains (96% and 60%, respectively).  

3.2  ER ligands 
A wide variety of structurally distinct compounds bind to the ER with differing 
affinities. Certain ligands act as ER agonists, and these include the natural ligand E2, as 
well as the synthetic estrogen diethylstilbestrol (DES). Certain phytoestrogens, which 
are environmental compounds such as genistein, can also be estrogenic. Other 
compounds, such as ICI182780, are receptor antagonists. A final group of mixed 
agonists and antagonists are comprised of the SERMs. According to article by Kuiper 
et al. (Kuiper et al., 1997), the relative binding affinities (RBAs) of ERα for various 
ligands are: DES (468)>4-OHT (178)>E2 (100)>ICI 164,384(85)>genistein (5). In 
contrast, ERβ has been shown to display the following RBAs: 4-OHT (339)>DES 
(295)>ICI 164,384(166)>E2 (100)>genistein (36). In this work RBA value for E2 was 
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arbitrarily set at 100. In addition to ligands that bind both ERα and ERβ, also synthetic 
isotype specific ligands have been developed. 

3.3  ER distribution to organs 
Different ER ligands interact with ER subtypes in various parts of the human body. The 
abundance and distribution of the receptors will, in part, determine whether a ligand will 
have a particular effect. ERα and ERβ are known to be localized in the breast, brain, 
cardiovascular system, urogenital tract and bone (Enmark et al., 1997; Kuiper et al., 
1997; Gustafsson 1999; Taylor and Al-Azzawi 2000). ERα is the main ER subtype in the 
liver, whereas ERβ is the main ER in the colon. ERα and ERβ may also localize to 
distinct cellular subtypes within each tissue. For example, within the ovary, ERα is 
largely present in the thecal and interstitial cells, whereas ERβ is predominantly in the 
granulosa cells (Hiroi et al., 1999; Sar and Welch 1999). In the prostate, ERβ localizes to 
the epithelium, whereas ERα localizes to the stroma (Weihua et al., 2001). 
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Figure 1. Simplified overview of ER-regulated gene transcription. Estrogens can initiate gene 
transcription via multiple pathways and receptors: (1.) and (2.) Classical pathway. (3.) Plasma 
membrane ER. (4.) Growth factor related pathways. (5.) G-protein activation. 

3.4  ERα and ERβ activation 
Originally it was considered that ER signalling was relatively straightforward: ligand 
bound to a single nuclear receptor, which resulted in a transcriptional change. It is now 
recognized that there are several mechanisms of action: ligand-dependent and 
independent, genomic and non-genomic. 
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3.4.1 Classical ligand-dependent activation of ER  
In the absence of ligand, ER is sequestered in a multiprotein inhibitory complex within 
target cell nuclei. Ligand binding induces phosphorylation of ER, dissociation from 
chaperones such as heat shock protein 90, changes in protein conformation and 
dimerization (Hall et al., 2001). Dimers (either α/α, β/β homodimers or α/β heterodimers) 
then interact with estrogen-response elements (EREs) in target genes to promote 
transcription (Huang et al., 2004). This may be direct or indirect through the action of co-
activators (e.g. SRC1, AIB1) (McKenna et al., 1998), which enhance transcription or co-
repressors (Dobrzycka et al., 2003) that down-regulate expression. Co-activators such as 
AIB1 are important in breast cancer, where up to 65% of cases can show expression 
(Bouras et al., 2001). Ligand-bound ER can modulate gene expression also in other ways. 
ER can bind to transcriptional complexes on other regulatory DNA sequences, such as 
activator protein 1 (AP-1), which is mediated by c-fos, and c-jun transcription factors 
(Webb et al., 1995), or through GC-box bound specificity protein 1 (SP-1) (Kushner et al., 
2000; Saville et al., 2000; Safe et al., 2001). Several genes important for tumour cell 
proliferation and survival may be regulated by estrogen in this way (Kushner et al., 2000). 

3.4.2 Ligand-independent activation of ER 
It is now recognized that ER can be activated by growth factors (epidermal growth 
factor, insulin growth factor-1, transforming growth factor α) and signalling molecules 
(cyclic AMP) (Lee et al., 2001). Multiple kinases involved in growth factor, stress and 
cytokine signalling can phosphorylate ERα at the AF-1 domain or co-activators and 
co-repressors, so affecting dimerization, DNA binding, ligand binding and 
transcriptional activation (LeGoff et al., 2004; Chen et al., 2002). Activation of ERα 
function by growth factor signalling could be important in the development of 
resistance to tamoxifen by breast cancers (Schiff and Osborne 2005). 

3.4.3. Membrane-initiated non-genomic steroid signaling  
The concept of a putative membrane ER was proposed over 25 years ago, following 
observations of rapid responses of cells to estrogen (Pietras and Szego 1977). 
Originally termed nongenomic ER activity , this is also called membrane-initiated 
steroid signaling (MISS) (Nemere et al., 2003). A series of E2-induced MISS events 
has been described in benign cells and malignant cells of various origins. These effects 
occur from seconds to minutes after administration of E2 and involve rapid activation 
of many signaling molecules (Cheskis 2004; Levin 2005; Shupnik 2004), such as 1) 
IGF1 and EGF receptors, 2) HRAS1 (also known as p21ras) and RAF1, 3) MAPK and 
PI3K/Akt, 4) protein kinase C, 5) calcium channel, 6) nitric oxide and prolactin 
secretion, and 7) Maxi-K channels. These rapid effects are also called "extranuclear", 
or "membrane-mediated effects", because they take place outside of the nucleus and 
are initiated predominantly in or near the plasma membrane.  

Several possible candidates have been suggested to mediate binding of E2 in the plasma 
membrane. These include 1) full-length ERα (Razandi et al., 1996); 2) a truncated form 
of ERα with a molecular weight of 46 kDa (Li et al., 2003); 3) a unique estrogen 
membrane protein called ER-X, whose ligand affinity differs from that of the classic 
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ERα but is recognized by antibodies directed against ERα ligand binding domain 
(Toran-Allerand et al., 2002); 4) sex steroid binding protein acting in concert with a 
membrane protein megalin (Catalano et al., 1997; Hammes et al., 2005); 5) G protein-
coupled receptor 30 (GPR30) (Thomas et al., 2005); 6) growth factor  receptors and 7) an 
unknown protein present in non-ERα-, non-ERβ-expressing CHO and COS-7 cells 
(Netrapalli et al., 2005). Although these various E2 binding proteins exist in specific 
systems, accumulating evidence supports the classic full-length ERα in or near the 
membrane functioning as the membrane estrogen receptor, which has been demonstrated 
in several types of cells, including breast epithelial cells, osteoblasts, endothelial cells, 
and vascular smooth muscle cells. Classical ERα has been shown to be expressed near 
the region of the cell membrane in MCF-7 cells (Song et al., 2002). In addition, 
translocation of full-length ERα has been demonstrated into or near the plasma 
membrane in response to E2 (Song and Santen 2006). Additional evidence supporting the 
classic ERα in the membrane was obtained from studies in which this receptor was 
knocked down by a selective small interfering RNA (siRNA) (Song et al., 2004). In this 
study, E2 activated MAPK in a matter of minutes, but abrogation of ERα with a selective 
siRNA abolished this effect in human breast cancer cells. Yet another study 
demonstrated that transfection of ER-negative breast cancer cells with ERα resulted in 
5% of ERα located in the plasma membrane and the remainder predominantly in the 
nucleus (Razandi et al., 1996). However, opinion is divided regarding whether or not 
membrane initiated steroid signaling occurs in breast cancer, as the most convincing 
studies supporting its existence have come from other systems, such as pituitary (Song et 
al., 2004) and cardiovascular (Zhang et al., 2002). Nevertheless, it has been postulated 
that this type of ER activity may be important in breast cancers that overexpress tyrosine 
kinase receptors and may be a mechanism for tamoxifen resistance (Toran-Allerand et 
al., 2002). 

Recent studies have implicated GPR30, a G protein-coupled seven transmembrane 
receptor target that resides in the plasma membrane, as a more plausible candidate for 
mediating membrane initiated steroid signaling in breast cancer (Thomas et al., 2005), 
and in clinical breast cancer it was demonstrated that GPR30 facilitated both ERα- and 
EGFR-dependent activity (Filardo et al., 2006). However, GPR30 and ERα showed 
different associations with HER-2/neu, tumor size and distant metastasis, suggesting that 
these mechanisms of estrogen activation are autonomous in breast cancer (Filardo et al., 
2006). In vitro studies of breast cancer cell lines have produced contrasting results, as 
estrogen was unable to activate multiple downstream signaling pathways in cells that 
lacked classical (nuclear) ERα, even in the presence of GPR30 (Pedram et al., 2006).  

Another hypothesis is that estrogen exerts extranuclear actions by interacting directly 
with growth factor receptors (Razandi et al., 2004). Crosstalk from membrane-
localized ERs to nuclear ERs has recently been proposed to be mediated through 
growth factor receptor tyrosine kinases such as epidermal growth factor receptor 
(EGFR) (Filardo et al., 2002). Growth factor receptors, in turn, bring about signal 
transduction to kinases such as mitogen activated protein kinase (MAPK).  
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4.  SELECTIVE ESTROGEN RECEPTOR MODULATORS 

SERMs are a group a therapeutic agents available for the prevention and treatment of 
diseases such as osteoporosis and breast cancer (Jordan 2004). A selective estrogen 
receptor modulator is defined as a compound that binds with high affinity to estrogen 
receptors. A characteristic that distinguishes these substances from pure receptor agonists 
and antagonists is that their action is different in various tissues, thereby granting the 
possibility to selectively inhibit or stimulate estrogen-like action in various tissues. 
Clinically available SERMs fall into two chemical classes: triphenylethylenes (e.g., 

SERMs are licensed for clinical use: tamoxifen, toremifene, clomifene and raloxifene. 
New-generation SERMs, such as bazedoxifene, arzoxifene, lasofoxifene and ospemifene, 
are also currently being evaluated. The aim is to find a SERM that conserves the skeleton 
and prevents breast cancer without increasing the risk of endometrial cancer and venous 
thromboembolism, and without inducing hot flushes.  
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Figure 2. Chemical structures of four SERMs tamoxifen, toremifene, raloxifene and 
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tamoxifen and its derivatives) and bentzothiophnenes (e.g. raloxifene). Currently, four 
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4.1  Tamoxifen: a first generation SERM 

4.1.1. Clinical use 
Tamoxifen (Tam), the trans-isomer of a substituted triphenylethylene, (Z)-1-[4-
[(dimethylamino)ethoxy]phenyl]-1,1-diphenyl-1-butene, was synthesized and 
developed in the 1960s (Harper and Walpole 1966). It was initially discovered in a 
search for antifertility agents but later was recognized to have antitumoural potential. 
First reports of its use for the treatment of advanced breast cancer appeared in the early 
1970s (Cole et al., 1971). Currently, Tam is the endocrine treatment of choice for 
women diagnosed with all stages of hormone-responsive breast cancer (both estrogen-
receptor positive and/or progesterone receptor positive). Furthermore, Tam also 
decreases the incidence of contralateral breast cancer in women who have had a first 
cancer (Jordan and Morrow 1999). Tam is also administrated for prophylactic 
chemoprevention in women identified as high risk for breast cancer and appears to 
reduce disease incidence by 50% in pre-or postmenopausal cohort (Fisher et al., 1998; 
Cuzick et al., 2003). Adjuvant Tam treatment for five years reduces the risk of breast 
cancer recurrence by 47% and mortality by 26% among patients diagnosed with 
hormone-responsive disease.   

Toremifene, another SERM, was developed in Finland (Kangas 1990) and is used in 
the treatment of postmenopausal breast cancer (Valavaara 1990). Tor has been shown 
to have similar efficacy and adverse effects as Tam. 

4.1.2 Beneficial effects of Tam use 
Because of its pro-estrogenic action at many target tissue sites, Tam use is associated 
with many beneficial effects (Singh et al., 2007). It appears to maintain and/or, to some 
degree, restore bone mineral density in postmenopausal women. In women being 
treated for breast cancer, Tam was also found to have cholesterol-lowering effects.  

4.1.3 Deleterious effects of Tam use 
There are several limitations to the long-term use of Tam in healthy, postmenopausal 
women. It has been demonstrated that adjuvant Tam treatment specifically for breast 
cancer or for prophylactic chemoprevention is associated with a 2-7 fold elevation in 
risk of subsequently developing endometrial carcinoma (Fisher et al., 1998; Curtis et 
al., 1996; Fisher et al., 1994; Rutqvist et al., 1995; Van Leeuwen et al., 1994). 
Nevertheless, it is important to stress that the increase in endometrial cancer noted with 
Tam only occurs in postmenopausal women (EBCTCG 1998; Fisher et al., 1998). 
Thus, the future use of Tam for chemoprevention may be restricted to high-risk women 
who will develop breast cancer during their premenopausal years since the risk-benefit 
ratio has shown to be favorable in premenopausal women. Tam also significantly 
increases the risk of venous thromboembolism. It also causes vasomotor symptoms 
(i.e. hot flashes) which can be severe enough to lead to discontinuation of therapy in a 
minority of breast cancer patients. 
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4.1.4 Molecular mechanisms of Tam in breast cancer cells 
Tam exerts its effects primarily by binding to ER and altering the conformation of the 
complex. This leads to modulation of gene expression, which in turn leads to inhibition 
of proliferation (Rochefort et al., 1983) and increase of apoptosis (Wärri et al., 1993; 
Watts et al., 1994; Kandouz et al., 1999; Thiantanawat et al., 2003; Salami et al., 2003; 
Somai et al., 2003) of breast cancer cells. An example of the effects of Tam in 
induction of cell death is the transcriptional regulation of expression of members of the 
Bcl-2 protein family involved in apoptosis (Diel et al., 1999). Besides ER-mediated 
genomic effects, pharmacological concentrations of Tam have been shown to have ER-
independent nongenomic effects in various cell types (Couldwell et al., 1994; Ferlini et 
al., 1999; Kim et al., 1999; Zhang et al., 2000; Lehenkari et al., 2003). The various 
molecular mechanisms of the rapid proapoptotic actions of Tam are not fully 
understood, but Tam has been shown for example to have an ionophoric effect on cell 
membranes, which is associated with rapid changes in membrane permeability and 
intracellular pH. This, in turn, leads to decreased viability and death of the cells 
(Lehenkari et al., 2003). Also changes in membrane fluidity and alterations in 
intracellular calcium fluxes (Custodio et al., 1998; Zhang et al., 2000) have been 
reported. Tam has also been shown to rapidly inhibit estrogen-dependent PKC in 
MCF-7 cells, HCC38 cells and chondrocytes (Schwartz et al., 2002; Boyan et al., 
2003). 

Many cancer chemotherapeutic agents have been shown to exert their anticancer 
properties by inducing apoptosis through mechanisms that involve mitochondria. 
Indeed, there are reports demonstrating that mitochondria are also central in the Tam-
induced increased rate of apoptosis after long-term treatment (Tuquet et al., 2000; 
Dietze et al., 2001). High concentrations of Tam have been shown to increase 
mitochondrial respiration and decrease mitochondrial transmembrane potential and 
oxidative phosphorylation (Tuquet et al., 2000; Cardoso et al., 2001; Cardoso et al., 
2003). More recently Tam at submicromolar concentrations has been shown to induce 
oxidative stress and mitochondrial apoptosis of breast cancer cells via stimulating 
mitochondrial nitric oxide synthase (Nazarewicz et al., 2007) and induce release of 
cytochrome c from mitochondria. Tam treatment has also previously been 
demonstrated to induce ROS generation in Jurkat cells and ovarian cancer cells (Ferlini 
et al., 1999). A recent report by Moreira et al. demonstrates induction of ROS 
generation by Tam in isolated liver mitochondria (Moreira et al., 2006). 

4.2 Raloxifene: a second generation SERM 

4.2.1 Current clinical use and results of clinical trials 
Currently Raloxifene (Ral) is the only SERM approved worldwide for the prevention 
and treatment of postmenopausal osteoporosis and vertebral fractures. It was initially 
developed as therapy for Tam-refractory breast cancer (Bryant and Dere 1998), but it 
has been found to have a superior target tissue profile and is by far the most widely 
studied of second generation SERMs. Clinical trials indicate that Ral has ER agonistic 
effects on bone and serum lipids in healthy, postmenopausal women. Recently 
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published results of the Study of Tam and Ral (STAR) show that Ral works as well as 
Tam in reducing breast cancer risk for postmenopausal women at increased risk of the 
disease (Vogel et al., 2007) and that it is associated with a lower incidence of 
endometrial cancer, endometrial hyperplasia and total thromboembolic events than 
Tam. The controversial aspect of the trial appears to be the failure of Ral to control 
completely the development of noninvasive breast cancer after 2 years of treatment. 
Furthermore, Ral has not been tested in premenopausal women. Therefore, Tam 
remains the only proven intervention in premenopausal women. However, for the 
moment, Ral is proving to be an important advance in chemoprevention because it is a 
multifunctional medicine that can target women at low risk for breast cancer with 
osteopenia and healthy women with a high risk of breast cancer.  

4.2.2. Molecular mechanisms of Ral action in bone 
The molecular mechanism of bone protection by Ral is not currently well known. Ral 
acts on bone in a similar manner to estrogens, but its osteoblastic actions remain to be 
fully clarified. Studies in vitro show that Ral modulates the bone homeostasis 
inhibiting osteoclastogenesis and the bone resorption with dose-dependent activity 
(Messalli et al., 2007). The mechanism has been suggested to imply both direct and 
indirect activities on bone cells. However, it has been recently suggested that human 
osteoclast formation and bone resorption is inhibited by Ral mainly indirectly through 
osteoblastic cells and this is associated to increased production of OPG (Michael et al., 
2007). Ral-induced upregulation of OPG expression by osteoblastic cells has been 
demonstrated also in earlier studies (Viereck et al., 2003). Moreover, recently Ral 
treatment in postmenopausal women showed a significant increase in OPG levels after 
6 months of therapy, providing for the first time also in vivo data (Messalli et al., 
2007). In addition to the OPG/RANK/RANKL system, the antiresorptive activity of 
Ral has been suggested to involve also other cytokines, in particular IL-6 (Taranta et 
al., 2002; Cheung et al., 2003, Michael et al., 2007). Indeed, Ral has been shown to 
inhibit the production of IL-6 from cultured human osteoblasts.  

4.3 Ospemifene: a novel SERM compound 
Ospemifene (Osp, previously named FC1271a) is a new selective estrogen receptor 
modulator (SERM) that is being developed for the treatment of urogenital atrophy and 
osteoporosis. It is a metabolite of toremifene (Kangas et al., 1990; Sipilä et al., 1990) 
which specifically binds to both ERs with an affinity very similar to that of toremifene 
and Tam. In the in vitro analysis, Osp has been found to exert estrogen-like anabolic 
effects in bone marrow cultures (Qu et al., 1999). This compound presented tissue-
specific agonistic and antagonistic effects also in vivo (Härkönen et al., 1996). In 
addition, Osp was found to exert estrogen-like effects in bone marrow cultures by 
enhancing osteoblastic bone differentiation with a mechanism that differs from that of 
Ral (Qu et al., 1999). The effects of Osp on osteoblastic differentiation could be 
inhibited by the pure antiestrogen ICI182780, suggesting an ER-mediated mechanism 
(Qu et al., 1999). It has also been recently demonstrated that human osteoclast 
formation and bone resorption is inhibited by Osp mainly indirectly through 



Review of the Literature 

 

 

24

osteoblastic cells and this is associated to increased production of OPG (Michael et al., 
2007). 

Clinically (Voipio et al., 2002; Rutanen et al., 2003), Osp is well tolerated and shows a 
dose-dependent reduction in bone turnover in postmenopausal women, suggesting that 
it may be useful for the treatment and prevention of osteoporosis (Komi et al., 2004, 
Komi et al., 2005). In addition, the bone-restoring activity of Osp has been reported to 
be similar to that of Ral (Komi et al., 2006). Based on in vivo studies, it has also been 
recently suggested that Osp exhibits efficacy in breast cancer chemoprevention 
comparable to that of Tam (Namba et al., 2005; Wurz et al., 2005). Furthermore, Osp 
has neutral or beneficial effects on various vascular surrogate markers (Ylikorkala et 
al., 2003). It does not cause clinically significant changes in endometrium, and it has a 
clear estrogenic effect in vaginal epithelium (Voipio et al., 2002, Rutanen et al., 2003, 
Komi et al., 2005).  

4.4 Molecular basis for the distinct biocharacteristics of SERMs 
It is currently believed that SERMs exert at least their genomic effects mainly via the 
ERs. The mechanisms by which a single compound can demonstrate estrogen agonistic 
effects in some target tissues but antagonistic effects in others have not been fully 
understood. However, several of the possible alternatives have been suggested. First, it 
has been hypothesized that individual SERMs may induce specific and unique changes 
in receptor conformations, which accounts for their particular pharmacological 
properties in target tissues (McDonnell et al., 1995; Brzozowski et al., 1997; Pike et 
al., 1999). Secondly, the ratio of ERα to ERβ and the differential affinity of SERMs 
for each of these receptors could also explain some of aspects of SERM selectivity 
(Kuiper et al., 1997; Kuiper et al., 1998; Gustafsson 1999; Sun et al., 1999). Thirdly, 
the relative concentration of coactivators or corepressors and their selective interaction 
with ERα is another possibility to explain the target site specificity for SERM action 
(Voegel et al., 1996; Hall et al., 2001; Schiff et al., 2003). 

Fourthly, the actions of SERMs may depend on target gene promoter, since in addition 
to classical ERE, SERMs can interact with genes possessing the AP-1 element (Paech 
et al., 1997) or Sp1 binding sites. Finally, SERMs are also likely to be able to enhance 
the signaling potential of ER through intracellular signaling pathways that are induced 
by extracellular factors (e.g. growth factors) (Smith 1998). SERMs may facilitate ERs 
interactions with cell surface receptors or induce ER-independent signaling pathways. 
Also nongenomic ER-independent signaling events have been described at least for 
Tam (Ferlini et al., 1999; Kim et al., 1999; Zhang et al., 2000) 

5.  CELL DEATH PATHWAYS 

Balance between cell division and cell death is of utmost importance for the 
development and maintenance of multicellular organisms. Disorders of either process 
have pathologic consequences and can lead to disturbed embryogenesis, 
neurodegenerative diseases, or the development of cancer. Therefore, cell death is an 
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essential strategy for the control of the dynamic balance in living systems, and two 
fundamentally different forms of cell death, apoptosis and necrosis, have been defined.  

5.1 Necrosis and apoptosis 
Necrosis is an accidental passive process resulting in an early disruption of the cell 
membrane and in the progressive breakdown of ordered cell structures in response to 
violent environmental perturbations such as severe hypoxia/ischaemia, extremes of 
temperature and mechanical trauma. This type of cell death is associated with organelle 
swelling.  

In contrast to necrosis, apoptosis or programmed cell death (PCD) involves the 
activation of energy-requiring intracellular machinery, which is tightly regulated and 
conserved throughout evolution (Yuan 1996). Apoptosis affects single cells 
asynchronously, typically in the absence of inflammatory changes (Wyllie et al., 
1980). It is involved in morphogenesis of embryonic tissues as well as in homeostasis 
of adult organs and tissues. Apoptosis for example eliminates cells exposing the 
organism to danger. Programmed cell death is a process with typical morphological 
characteristics including plasma membrane blebbing, cell shrinkage, chromatin 
condensation and fragmentation (Kerr et al., 1972). A family of cystein-dependent 
aspartate-directed proteases, called caspases, is responsible for the proteolytic cleavage 
of cellular proteins leading to the characteristic apoptotic features, e.g. cleavage of 
caspase-activated DNAse resulting in internucleosomal DNA fragmentation. Currently, 
two pathways for activating caspases have been studied in detail. One (extrinsic 
pathway) starts with ligation of a death ligand to its transmembrane death receptor, 
followed by recruitment and activation of caspases in the death-inducing signalling 
complex (Ashkenazi and Dixit 1998). The second pathway (intrinsic pathway) involves 
the participation of mitochondria, which release caspase-activating proteins into the 
cytosol, thereby forming the apoptosome where caspases will bind and become 
activated (Green and Reed 1998). In addition, several other apoptotic pathways have 
been suggested: for example endoplasmic reticulum stress-induced apoptosis and 
caspase-independent apoptosis (Vermeulen et al., 2005).  

5.2 Death receptor dependent apoptotic pathway  
Plasma membrane receptors triggering external apoptosis signalling belong to the 
tumour necrosis factor (TNF)-receptor superfamily. This family includes Fas (Apo-1 or 
CD95), TNF-receptor-1 (TNF-R1), death receptor-3 [DR3 or TNF-receptor-related 
apoptosis-mediating protein (TRAMP) or Apo-3], TNF-related apoptosis inducing 
ligand receptor-1 (TRAIL-R1 or DR4), TRAIL-R2 (DR5 or Apo-2) and DR6. Upon 
ligand binding, death receptors cluster and and form death-inducing signaling 
complexes (DISCs) consisting of adaptor proteins and several procaspase-8 molecules. 
Two linear subunits of procaspase-8 compact to each other followed by autocleavage 
of procaspase-8 to caspase-8 which in turn will activate downstream effector caspases 
(Thornberry and Lazebnik 1998). In addition to death receptors, decoy receptors 
(DcR1, DcR2, DcR3, osteoprotegerin) have been identified. These receptors compete 
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with the death receptors for ligand binding, but they do not transduce apoptotic signals 
(Sheikh and Fornance 2000). 

5.3 Mitochondrial apoptotic pathway 
Mitochondria play a central role in both cell life and death (Duchen 2004). They are 
essential for the production of ATP through oxidative phosphorylation and regulation 
intracellular Ca2+ homeostasis. In addition, mitochondria are the principal generators of 
intracellular reactive oxygen species (ROS). Furthermore, mitochondria also play a key 
role in controlling pathways that lead to apoptosis. Defects of mitochondrial function 
can result in excessive production of ROS, formation of the permeability transition 
pore (PTP) and the release of small proteins that trigger apoptosis (Moreira et al., 
2007). Therefore, changes in the structural and functional characteristics of 
mitochondria provide a number of primary targets for drug-induced toxicity and cell 
death (Wallace and Starkov 2000). In addition to mitochondia, organelles involved in 
programmed cell death include lysosomes and endoplastic reticulum. However, the 
majority of cytotoxic agents have been shown to trigger the mitochondrial pathway 
(Friesen et al., 1999; Green 2000). 

5.3.1. Bcl-2 family proteins 
The mitochondrial apoptotic pathway is initiated and regulated by the key proteins of 
Bcl-2 family. Based on structure and their roles in apoptosis, the Bcl-2 family of 
proteins is divided into three groups: (1) the antiapoptotic proteins containing four BH 
homology domains (Bcl-2, Bcl-xL, Bcl-w, Mcl-1, A1/Bfl-1, NR-13, Boo/Diva/Bcl-2-
L-10, Bcl-B and adenoviral E1B); (2) the proapoptotic proteins containing three BH 
homology domains (BH3; Bax, Bak, Bok/Mtd, Bcl-Xs); and (3) the single BH 
homology domain containing sensors of apoptosis that function via activation of 
proapoptotic proteins or inhibition of antiapoptotic proteins. These BH3-only members 
include Bid, Bad, Noxa, puma, Bmf, BimL,/Bod, Bik/Nbk, Blk, Hrk/DP5, Bnip3 and 
Bnip3 L (Gavrilova-Jordan and Price 2007). Most of these proteins contain a C-
terminal hydrophobic α-helix, a potential transmembrane domain involved in their 
localization to the membranes of the mitochondria, the endoplasmic reticulum and the 
nucleus (Er et al., 2006). The different family members can homo- or hetero-dimerize, 
and the relative ratios of anti- and pro-apoptotic proteins will determine the 
susceptibility of cells to apoptotic stimuli (Vermeulen et al., 2005).  

5.3.2 Mitochondrial outer membrane permeabilization 
Mitochondrial outer membrane permeabilization (MOMP) is a cellular event that 
integrates upstream apoptotic signals such as activation of Bcl-2 family members into 
release of pro-apoptotic proteins from mitochondria to the cytosol and is often 
considered as point of no return in apoptotic programs. The mechanisms responsible 
for MOMP during apoptosis remain controversial. In general, two classes of 
mechanisms have been described and each may function under different circumstances; 
those in which the inner mitochondrial membrane participates, and those involving 
only the outer membrane (Green and Kroemer 2004). The first class of mechanism for 
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MOMP, which involves only the outer membrane, appears to be mediated by members 
of Bcl-2 family proteins acting directly on the outer mitochondrial membrane (OMM). 
Antiapoptotic Bcl-2 family members function to block MOMP whereas proapoptotic 
members promote it. In the second class of mechanism, a permeability transition pore 
(PTP) opens in the inner membrane, allowing water and molecules up to 1,5 kD to pass 
through. Most models of this pore postulate a role for adenine nucleotide transporter 
(ANT) and the voltage-dependent anion channel (VDAC) in the outer membrane. 
Opening of PTP leads to rapid loss of mitochondrial membrane potential (Martzo et 
al., 1998; Mignotte and Vayssiere 1998; Lemasters et al., 1999), matrix swelling and 
rupture of the OMM. Irrespective of its mechanisms, MOMP leads to release of 
proapoptotic substances such as cytochrome c, smac/DIABLO, Omi/HtrA2 and 
endonuclease G into the cytosol (Kim et al., 2005; Skommer et al., 2007).  

5.3.3. Cytochrome c and AIF release 
One of firstly found proteins to be released from the mitochondria to the cytosol upon 
apoptotic stimuli is cytochrome c, an essential component of the respiratory chain 
(Goldstein et al., 2000). Once released into the cytosol, cytochrome c activates 
apoptotic protease-activating factor 1 (Apaf-1) which, together with procaspase-9, 
forms an active holoenzyme complex termed the apoptosome (Li et al., 1997). 
Apoptosome-associated caspase-9 can then activate effector caspases. Effective 
induction of apoptosis requires that cytosolic inhibitor-of-apoptosis-proteins (IAPs) are 
removed from the complex by Smac/Diablo or Omi/htra2 (Ferri and Groemer 2001; 
Suzuki et al., 2001). 

Apoptosis inducing factor (AIF) is a mitochondrial protein that plays a pivotal role in 
PCD (Susin et al., 1996). It is normally retained in the intermembrane mitochondrial 
space, where it performs an oxidoreductase function (Miramar et al., 2001). Similar to 
the bifunctional role of cytochrome c, AIF becomes an active cell killer when it is 
released to the cytosol; it then translocates to the nucleus and triggers, possibly together 
with endonuclease G (Wang et al., 2002), peripheral chromatin condensation and high 
molecular weight DNA loss (Loeffler et al., 2001; Susin et al., 1999; Yu et al., 2002).  

5.3.4. Caspases 
Apoptotic signalling mainly converges in the activation of intracellular caspases, a 
family of cysteine-dependent aspartate-directed proteases which propagate death 
signalling by cleaving key cellular proteins (Nicholson and Thornberry 1997). 
Caspases are synthesized in normal cells as inactive proenzymes; they can rapidly be 
activated by autoproteolytic cleavage or cleavage by other caspases at specific aspartic 
acid (Asp) residues (Thornberry and Lazebnik 1998). Currently, 14 members of the 
caspase family have been identified, of which 7 mediate apoptosis. During apoptosis, 
caspases with a long pro-domain function as upstream signal transducers (”initiator” 
caspases) and proteolytically activate downstream caspases (”effector” caspases) which 
contain a short pro-domain (Thornberry et al., 1997). In the classic apoptotic pathway 
formation of apoptosome leads to ATP-dependent cleavage and activation of 
procaspase-9, the initiator caspase in mitochondrial apoptosis (Li et al., 1997) 
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Activation of procaspase-9 results in activation of downstream executioner caspases, 
such as caspase-3, caspase-6 and caspase-7 (Leist and Jäättelä 2001; Strasser et al., 
2000).  

Caspases specifically recognize and cleave a tetrapeptide sequence on their substrate 
with an absolute requirement for an aspartate residue. Effector caspases act on a variety 
of substrates resulting in proteolysis of cellular proteins and death by apoptosis. One 
well-known caspase substrate is poly-(ADP-ribose) polymerase (PARP), a nuclear 
protein implicated in DNA repair. PARP is one of the earliest proteins targeted for 
specific caspase cleavage (Kaufmann et al., 1993; Duriez and Shah 1997; Kaufmann et 
al., 1993; Los et al., 1999). Caspase cleavage and inactivation of ICAD (inhibitor of 
caspase-activated DNAse) allow caspase-activated DNAse to translocate to the nucleus 
where it is responsible for internucleosomal DNA cleavage, generating 
oligonucleosomal DNA fragments (Sakahira et al., 1998; Liu et al., 1997). Caspase 
cleavage of lamins results in nuclear shrinkage; cleavage of cytoskeletal proteins like 
fodrin and actin leads to cytoskeletal reorganization and membrane blebbing (Orth et 
al., 1996; Mashima et al., 1995; Martin et al., 1995).  

A molecular link between the death receptor and the mitochondrial apoptosis pathways 
can be found at the level of caspase-8 cleavage of cytosolic Bid, a member of the BH3 
domain-only subgroup of Bcl-2 family (Li et al., 1992). Cleaved Bid translocates from 
the cytosol to mitochondria and activates the mitochondrial-dependent apoptotic 
pathway (Desagher et al., 1999) Caspase-3 can also cleave Bid, thereby inducing 
cytochrome c release and apoptosis (Luo et al., 1998). 

5.3.5. Reactive oxygen species  
In addition to regulation of apoptosis, one of the best known functions of mitochondria 
is energy production. Concomitant with the mitochondrial production of adenosine 
triphosphaste (ATP) is the stepwise reduction of O2 to H2O, with several intermediate 
reactive oxygen species (ROS). Impairment of oxidative phosphorylation and 
excessive generation of ROS leads to damage of cell proteins, lipids and DNA 
(Garilova-Jordan and Price 2007). Indeed, ROS are important to apoptosis induced by 
radiation, chemotherapeutic agents, and many cell stressors (Benhar et al., 2002). 
Release of cytochrome c from mitochondria may lead to formation of ROS and cell 
death even if caspase function is inhibited.  

5.4 Caspase-independent cell death 
Some forms of cell death cannot be easily classified as apoptosis or necrosis, e.g. when 
cell death occurs in the presence of caspase inhibitor without DNA fragmentation, 
DNA condensation or caspase activation. Indeed, there is accumulating evidence 
indicating that cell death can occur in a programmed fashion but in complete absence 
of caspases. Alternative models of programmed cell death have therefore been 
presented.  

Because it has become clear that inhibition of caspase activation does not necessarily 
protect against cell death stimuli but rather can reveal or even enhance underlying 



Review of the Literature 

 

 

29

caspase-independent death programs, several models have been proposed. One of them 
involves autophagy, which is characterized by sequestration of cytoplasm or organelles 
in autophagic vesicles and their subsequent degradation by the cell's own lysosomal 
system (Schweichel and Merker 1973, Kroemer and Jäättelä 2005). Paraptosis, on the 

absence of caspase activation or typical nuclear changes (Speradio et al., 2000), 
whereas mitotic catastrophe occurs as a default pathway after mitotic failure and 
development of aneuploid cells (King and Cidlowski 1995). Slow cell death describes 
the delayed type of PCD that occurs if caspases are inhibited or absent. In contrast to 
these more specific definitions of PCD above, also a model has been proposed that 
classifies cell death into four subclasses, according to their nuclear morphology. 
Apoptosis is defined by stage II chromatin condensation into compact figures, which 
are often globular or crescent shaped. Slightly different is apoptosis-like PCD, which is 
characterized by less-compact chromatin condensation, so-called stage I chromatin 
condensation. In contrast, in necrosis-like PCD no chromatin condensation is observed, 
but at best, chromatin clustering to loose speckles, whereas necrosis is characterized by 
cytoplasmatic swelling and cell membrane rupture (Leist and Jäättelä 2001). In 
addition, attempts have been made to order caspase-independent cell death according 
to the cellular organelles involved (Ferri and Kroemer 2001). Organelles such as the 
mitochondria, lysosomes, or ER and plasma membrane death receptors can be involved 
in either of the subclasses but may play a more prominent role in certain types of PCD. 
The signals from the different cellular organelles are linked and may act both upstream 
and downstream of each other.  

Although several models of caspase-independent cell death have been described, the 
various death routes may overlap and several characteristics may be displayed at the 
same time. Upon a lethal stimulus, a cell is likely to have access to different death 
programs that can be executed via caspases or independent of caspases. In addition, 
more than one death program may be activated at the same time (Unal-Cevik et al., 
2004). Furthermore, a cell may switch back and forth between different death pathways 
(Chi et al., 1999). It has, therefore, been postulated that the dominant cell death 
phenotype is determined by the relative speed of the available death programs; 
although characteristics of several death pathways can be displayed, only the fastest 
and most effective death pathway is usually evident (Burch 2001). Taken together, the 
cellular death response triggered by cytotoxic agents depends on the type and dose of 
chemotherapeutic stress within the cellular context and may involve classic apoptosis, 
as well as various types of apoptotic or necrotic PCD.  

other hand, involves cytoplasmic vacuolation and mitochondrial swelling in the 
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Figure 3. One proposed model for classification of mitochondrial cell death pathways 

6.  MAPK/ERK SIGNALLING 

Mitogen-activated protein (MAP) kinases are serine/threonine-specific protein kinases 
that respond to extracellular stimuli (mitogens) and regulate various cellular activities, 
such as gene expression, mitosis, differentiation, and cell survival/apoptosis. 
Extracellular stimuli lead to activation of a MAP kinase via a signaling cascade 
("MAPK cascade") composed of MAP kinase, MAP kinase kinase (MKK or MAP2K), 
and MAP kinase kinase kinase (MKKK or MAP3K). MAP3K that is activated by 
extracellular stimuli phosphorylates a MAP2K on its serine and threonine residues, and 
then this MAP2K activates a MAP kinase through phosphorylation on its serine and 
tyrosine residues. This MAP kinase signaling cascade has been evolutionarily well-
conserved from yeast to mammals. 

To date, four distinct groups of MAPKs have been characterized in mammals: 

1. Extracellular signal-regulated kinases (ERKs). The ERKs (also known as classical 
MAP kinases) signaling pathway is preferentially activated in response to growth 
factors, such as TGF-β and EGF, and regulates cell proliferation and cell 
differentiation. 

2. C-Jun N-terminal kinases (JNKs), also known as stress-activated protein kinases 
(SAPKs). 
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3. p38 isoforms. Both JNK and p38 signaling pathways are responsive to stress stimuli, 
such as cytokines, ultraviolet irradiation, heat shock, and osmotic shock, and are 
involved in cell differentiation and apoptosis 

4. ERK5, which has been found recently, is activated both by growth factors and by 
stress stimuli, and it participates in cell proliferation. 

MAPK pathway is considered to be one of the key pathways regulating breast cancer 
growth and apoptosis. For example, tumors of breast tissue frequently overexpress 
epidermal growth factor receptor (EGFR) and related family members. EGFR acts as a 
central point linking all upstream ligand signals on MAPK activation. Consistently, 
recent studies have found that breast cancers frequently contain an increased 
proportion of cells with activated form of MAP kinase. Of the four MAPK pathways 
described, the one involving ERK-1 and -2 is most relevant to breast cancer (Santen et 
al., 2002). Estradiol dependent breast tumor cells have been suggested to utilize MAP 
kinase pathways in at least one of three ways. First, MAPK can phosphorylate the ER 
and enhance its transcriptional efficiency. Secondly, estradiol may stimulate growth 
factors which increase the level of MAPK and thirdly, estradiol may activate pathways 
which utilize a membrane associated ER to activate MAPK through nongenomic 
effects. Indeed, the rapid ERK phosphorylation by E2 has been demonstrated in several 
reports (Filardo et al., 2002; Fernando and Wimalasena 2002; Song et al., 2002; 
Thomas et al., 2006).  

Even though activation of ERK1/2 is generally considered to lead to cell survival 
(Marshall 1995; Zhang and Liu 2002) there is evidence that in several cell types ERKs 
may also transmit pro-apoptotic signals (Stanciu and DeFranco 2002; Tang et al., 
2002; Reccia et al., 2004). Phosphorylation of ERK leads to translocation of activated 
ERK to nucleus. Nuclear translocation of MAPK is transient, although the duration 
time in the nucleus varies depending on the cell types and the stimuli used (Marshall 
1995; Adachi et al., 2000). Interestingly, a report by Chen et al., suggests that the anti-
apoptotic effect of E2 in osteoblasts may be converted into a pro-apoptotic one by 
alteration of the temporal pattern the ERK activation (Chen et al., 2005). Thus, the 
ability of ERK-1 and -2 to be involved in both proliferation and apoptosis may be 
explained by activation of a distinct set of transcription factors for genes which 
mediate these processes.  

It is possible that the localization and duration of kinase signaling similarly contribute 
to different actions of Tam in breast cancer cells. Indeed, Tam has been shown to 
activate ERK in HeLa cells (Duh et al., 1997) and human endometrial cancer cells 
(Acconcia and Kumar 2006). In addition, recent report from Visram and Greer 
suggests that both E2 and Tam stimulate rapid and transient ERK activation in MCF-7 
cells via distinct signaling mechanisms (Visram and Greer 2006).  
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AIMS OF THE STUDY 

This work was undertaken to study the pathways and mechanisms of tamoxifen-
induced death in breast cancer cells and the ability of estrogen and some selective 
estrogen receptor modulators (SERMs) to protect against cell death. 

The specific aims of the present study were as follows: 

1.  To compare the ability of tamoxifen (Tam) and different SERM compounds to 
induce cell death in breast cancer cells and to study the molecular mechanisms 
of these actions. 

2.  To determine the upstream events leading to the previously observed 
mitochondrial disruption in breast cancer cells by Tam, and to study the effect of 
E2 on Tam–induced rapid death of breast cancer cells. 

3.  To compare the ability of E2 and different SERMs to promote survival of cells 
against apoptosis, to compare the roles of the two estrogen receptor isotypes in 
these actions and, finally, to study if the cells containing either ERalpha or 
ERbeta differentially respond to E2 at the level of cytokine expression. 
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MATERIALS AND METHODS 

1. REAGENTS (I-III) 

RPMI-1640, McCoy´s 5A, DMEM/F-12, L-glutamine, insulin, diphenylene ionodium 
(DPI), bongkrekic acid (BA), E2, Tam, and trypan blue solution were purchased from 
Sigma (St. Louis, MO) and FBS was purchased from Life Technologies, Inc. (Paisley, 
Scotland, U.K.). Tor, Ral and Osp from Hormos Medical Oy (Turku, Finland), z-Val-
Ala-Asp-fluoromethylketone (Z-VAD-FMK) from Enzyme System Products (Aurora, 
Ohio) and ICI 182780 from Tocris (Ellisville, MO). AG1478 and BIBX1382 were 
from CalBioChem (La Jolla, CA), PD98059, tetramethylrhodamine methyl ester 
(TMRM), MitoTrackerRed CMXRos fixable mitochondrial dye and 
dichlorodihydrofluorescein diacetate (DFH-DA) were from Molecular Probes (Eugene, 
Oregon, USA). All drugs were dissolved in DMSO (Sigma, St. Louis, MO). 
Vectashield mounting medium with DAPI was obtained from Vector Laboratories Inc. 
(Burlingame, CA) and FuGENE 6 Transfection Reagent from Roche Diagnostics 
Corporation, (Indianapolis). Western blotting nitrocellulose membranes were from 
Millipore (Billerica, MA) and culture dishes with glass bottoms from MatTek, 
(Ashland, MA). Antibody for cytochrome c was purchased from BD Pharmingen (San 
Diego, CA), for PARP from Jackson Immunochemicals (West Grove, PA), for 
caspase-9 from Santa Cruz Biotechnology (Santa Cruz, CA), for Bcl-2 and Bcl-XL 
from BD Pharmingen, for ERα, ERK1/2 and p-ERK1/2 from Cell Signaling (Beverly, 
MA) and for β-actin from Sigma. Enhanced chemiluminescence detection system was 
purchased from Amersham Pharmacia Biotech (Uppsala, Sweden) and colored size 
markers for western blotting from BioRad (Hercules, CA). Micro-BCA Protein Assay 
Kit was from Pierce (KMF, Germany), Trizol reagent from Invitrogen (Carlsbad, CA), 
AMV reverse transcriptase enzyme from Finnzymes (Espoo, Finland) and SYBR 
Green PCR Master Mix from Applied Biosystems (Foster City, CA). The ELISA kits 
for detection of OPG and IL-6 were purchased from Biomedica (Wien, Austria) and 
Sanquin (Amsterdam, The Netherlands), respectively. 

2. CELL CULTURE (I-III) 

2.1 Breast cancer cells lines (I,II) 
The estrogen-sensitive MCF-7 and T47D human breast tumor cell lines were originally 
obtained from the laboratory of Dr. C. K. Osborne (University of Texas Health Science 
Center, San Antonio, Texas). The cells were maintained in RPMI 1640 culture medium 
supplemented (10%) with heat-inactivated fetal bovine serum (iFBS), 2 mM L-
glutamine, insulin (4 μg/ml) and 1 nM 17β-estradiol (E2). For estrogen-deprivation and 
Tam pre-culture studies cells were grown in phenol red-free RPMI-1640 culture medium 
supplemented (5%) with dextran charcoal-treated fetal bovine serum (dcFBS) and 2 mM 
L-glutamine. The MDA-MB-231 cells were a gift from Dr. T. Guise (University of 
Texas Health Science Center, San Antonio, Texas). The cells were maintained in DMSO 
culture medium supplemented (10%) with iFBS and 2 mM L-glutamine.  
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2.2 Osteoblast-like cell lines (III) 
Parental U2OS cells were maintained in McCoy´s 5A culture medium supplemented 
(10%) with heat-inactivated fetal bovine serum (iFBS), 2 mM L-glutamine, 50 U/ml 
penicillin and 50 μg/ml streptomycin. For ERα-, ERβ- and vector transfected U2OS 
cells medium was supplemented with G-418 (0,25 mg/ml). SaOS-2 cells were cultured 
in McCoy´s 5A culture medium supplemented (15%) with heat-inactivated fetal bovine 
serum (iFBS), 2 mM L-glutamine, 50 U/ml penicillin and 50 μg/ml streptomycin. For 
experiments cells were grown overnight in phenol-free DMEM/F-12 media containing 
0,1% BSA supplemented with E2, ER ligands or SERMs at the concentrations 
indicated in the results. Treatment times were one hour for TNFα and six hours for 
etoposide. 

2.3 Production of U2OS/ERα and U2OS/ERβ cell lines (III) 
The U2OS (human osteosarcoma) cells were stably transfected with human ERα or 
ERβ. The following constructs were transfected to U2OS cells together with 
pcDNA3.1 expression vector which contains a neomycin resistance gene: 

1) pSG5-hERα:  

Human estrogen receptor α coding sequence: 1,8 kb in pSG5-vector (=HEO), cloned at 
EcoR1 site. In HEO the ERα sequence contains artificial Gly400Val mutation (GGG to 
GTG), which destabilizes it in the absence of ligand. Thus, it gives a lower backgroung 
and clearer ligand-induced transactivation data than that with wild-type ERα (=HEGO) 
(Bruder et al., 1997). 

2) pSG5-hERβ  

Human estrogen receptor β coding sequence: 1,6 kb in pSG5-vector, cloned at 
BAMH1 site encoding a full length ERβ (Fuqua et al., 1999). ERβ cDNA was PCR-
cloned from human ovary mRNA. 

Transfection reagent used was FugeneTM 6 and clones were selected with the antibiotic 
G418 (0,5 mg/ml).  

Expression and functionality of the ER constructs on U2OS cells was confirmed by 
RT-PCR, western blotting and immunofluorescence microscopy.  

2.3.1. RT-PCR  
For RT-PCR analysis the RNAs were isolated from MCF-7, parental U2OS and ERα 
or ERβ transfected U2OS cells by using the Trizol reagent (Invitrogen) and purified 
according to manufacturer´s instructions. cDNA was synthetized from 2 µg of total 
RNA in a 20 µl reaction containing random hexanucleotides and  AMV reverse 
transcriptase enzyme (Finnzymes, Espoo, Finland). RT-PCR was performed using the 
Eppendorf Mastercycler. Amplification reactions for ERα were performed for 35 
cycles. Successful cDNA synthesis was verified by PCR for GAPDH. The following 
primers were used: 
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ERα (forward)  5` ACA AGC GCC AGA GAG ATG AT --3` 
ERα (reverse)    5`- AGG ATC TCT AGC CAG GCA CA -3` 
ERβ (forward)  5`- TGA AAA GGA AGG TTA GTG GGA ACC -3` 
ERβ (reverse)    5`- TGG TCA GGG ACA TCA TCA TGG -3` 
GAPDH (forward) 5`-AGC CAC ATC GCT CAG ACA C-3` 
GAPDH (reverse) 5`-GCC CAA TAC GAC CAA ATC C-3` 

2.3.2. Western blotting 
For analysis of expression of ERα and ERβ by Western blotting, aliquots of whole cell 
lysate protein (50 µg) were separated by SDS-PAGE and transferred to nitrocellulose 
membranes (Millipore, Billerica, MA). The membranes were blocked with 8% 
skimmed milk in TBS/0.05% Tween-20 and incubated with the primary antibodies for 
of ERα and ERβ (Santa Cruz Biotechnology). The proteins were visualized using an 
enhanced chemiluminescence detection system (Amersham Pharmacia Biotech, 
Uppsala, Sweden) with colored markers (BioRad, Hercules, CA) as size standards.  

2.3.3. Immunofluorescence microscopy  
Immunofluorescence microscopy was used for localization of transfected ERs in 
U2OS/ERα and U2OS/ERβ cells. The cells were incubated for 2 hours with ERα or 
ERβ specific monoclonal antibodies (Santa Cruz Biotechnology) after which the media 
were replaced with media containing Alexa Fluor 488-conjugated secondary antibody 
(Molecular Probes) and the cells were further incubated 45 minutes. The cells were 
then incubated with DAPI nuclear dye for 10 minutes. Microscopic imaging was 
carried out on a Zeiss Wide-Field microscope (Zeiss, Jena, Germany). 

2.3.4. Reporter gene assays 
Luciferase reporter gene assays were used to characterize the functionality of 
transfected ERs. The U2OS/ERα and U2OS/ERβ cells were transfected with only a 
luciferase reporter plasmid under the control of two ER response elements or a human 
ERα or ERβ plasmid and the same luciferase reporter plasmid by using Fugene 
transfection reagent (Roche, Madison, WI). Twenty-four hours after transfection the 
cells were treated for 24 hours with 10 nM E2 and the luciferace activity was measured 
using a dual-luciferase reporter assay according to manufacturer´s instructions 
(Promega, Madison, WI). For quantitation, in the absence of hormone, the luciferase 
activity was set to 1.  

3.  CELL DEATH DETERMINATION (I-III) 

3.1  Trypan blue analysis (I, II) 
Cells were cultured overnight in 3.5-cm diameter tissue culture plates at a density of 1-
1.2 × 105 cells/plate. Culture media were replaced with phenol-red-free media 
containing either 5-40 μM BA, 10 nM E2, 50 μM Z-VAD-FMK, 10 μM DPI, 1 μM 
ICI 182780 and/or antiestrogens at the concentrations indicated in the results. 
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Alternatively, cells were incubated for 48 hours in phenol-red-free media containing 
dcFBS (5%) and 2 mM L-glutamine and then treated with 20 μM PD98059, 1 μM 
ICI182780, 10 μM AG1478, 10 µM BIBX1382, 10 nM E2 and/or various 
concentrations of Tam. Pre-treatment times were either a) 3 hours for Z-VAD-FMK 
(50 μM), b) one hour for DPI (10 μM) and BA (5-40 μM) or c) 30 min or 4 hours for 
ICI 182780 (1 μM) d) 1 hour for PD98059 (20 µM), AG1478 (10 µM) and BIBX1382 
(10 µM). 

Control plates had equivalent volumes of DMSO solvent. After treatment for 10–60 
min, the cells were washed with PBS and cell death analysis was performed by way of 
trypan blue exclusion. Four to six separate areas of approximately 400 cells were 
calculated for each plate. The percentage of cells taking up blue dye determined 
relative cell viability. 

3.2 Nuclear staining (III) 
Apoptotic cells were quantified by visualization of changes in nuclear morphology by 
DAPI staining. Cells (1 × 105) were grown in 3.5-cm diameter Petri dishes with 
coverslips for overnight. Culture media were replaced with DMEM/F12 phenol-red-free 
media containing 0,1% BSA and various concentrations of either E2, PPT, DPN or 
SERMs. Non-treated cells served as controls and these cultures had equivalent volumes 
of DMSO solvent. After 24 hours etoposide was added to half of the plates for 6 hours. 
After treatment, the cells were fixed with 3% paraformaldehyde and the coverslips were 
mounted on the slides with Vectashield mounting medium with DAPI. Microscopic 
imaging was carried out on a Zeiss Wide-Field microscope (Zeiss, Jena, Germany). 
Fifteen areas of 1300 × 1000 pixels in one sample were randomly selected from the 
image for quantification of apoptotic cells. Data of three independent experiments are 
presented as the percentage of dead cells (means ± SE) for each treatment. 

4.  MICROSCOPIC IMAGING (I-III) 

4.1 Confocal Microscopic Imaging of Cytochrome c Release (I) 
MCF-7 cells (1 × 105) were grown in 3.5-cm diameter Petri dishes with coverslips for 
two days. Culture media were replaced with phenol-red-free media containing 2 mM 
L-glutamine, 400 nM MitoTrackerRed CMXRos fixable mitochondrial dye and drugs 
at the concentrations indicated in the results. Non-treated cells served as controls and 
these cultures had equivalent volumes of DMSO solvent. After treatment, the cells 
were fixed with 3% paraformaldehyde + 0.5% Triton X-100 for 15 min at RT. The 
specimens were blocked with normal goat serum (NGS) in PBS for 30 minutes. The 
cells were incubated with primary antibody (mouse anti-cytochrome c) in PBS-0.01% 
Triton X-100 with 1.5% NGS at room temperature for 2 hours, then washed and 
incubated with secondary antibody (goat anti-mouse-Alexa 488), after which 
coverslips were mounted on the slides. Confocal imaging was carried out on a Zeiss 
LSM 510 confocal microscope equipped with an argon-ion laser and helium-neon 
lasers (Zeiss, Jena, Germany). For excitation of Alexa 488 the 488 nm line and for 
MitoTrackerRed CMXRos the 543 nm line was used and a ×63 oil objective lens 
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(numerical aperture 1.4) was employed. The beam path for Alexa 488 contained a 488 
nm main dichroic mirror and a 500–530IR nm bandpass filter and the beam path for 
MitoTrackerRed CMXRos contained a 543 nm main dichroic mirror and a 560 nm 
long pass filter for detection of emitted fluorescence. 

4.2 Confocal Microscopic Imaging of the Mitochondrial Membrane Potential (I) 
MCF-7 cells (1 × 105) were grown in 3.5-cm diameter tissue culture dishes with glass 
bottoms for two days, after which they were incubated with 50 nM 
tetramethylrhodamine methyl ester (TMRM) in culture medium for 60 min at 37 °C 
and then rinsed with serum-free medium (phenol-red-free, NaHCO3-free RPMI-1640 
supplemented with 2 mM L-glutamine and 25 mM HEPES buffer). After this, the cells 
were treated with serum-free medium supplemented with 50 nM TMRM and either 
0.2% DMSO, 10 nM E2, or 7.0 μM Tam. Living cells were then placed on the 
microscope stage (with a heater to maintain the temperature at 37 °C) and cells of one 
area were monitored with a Leica DM IRB confocal microscope (Leica, Wezlar, 
Germany) and a PL Apo 40.0 × 1 objective. Confocal images were collected at the 
time points indicated using a 568 nm excitation light from an argon/krypton laser, a 
560 nm beam splitter and a 500–550 nM long pass filter.  

4.3 Determination of ROS Levels by Fluorescence Microscopy (I) 
The method to detect intracellular ROS levels has been described previously (Zhang et al., 
2002). In brief, dichlorodihydrofluorescein diacetate (DFH-DA) is an uncharged 
nonfluorescent cell-permeable compound. Once inside the cells, the diacetate bond is 
cleaved by nonspecific esterases to form the polar and nonfluorescent DFH. Upon 
oxidation by ROS, this compound gives rise to DF, which yields green fluorescence. MCF-
7 cells (1 × 105) were seeded in 3.5-cm diameter tissue culture dishes with glass bottoms 
and grown for two days, after which the culture media were replaced with phenol-red-free 
media containing 5 μM DFH-DA, 2 mM L-glutamine and drugs at the concentrations 
indicated in the Results for 20 min at 37 °C. Non-treated cells served as controls and these 
cultures received equivalent volumes of the DMSO solvent. The cells were viewed under a 
fluorescence microscope (Olympus IX 70) using excitation and emission wavelengths of 
488 nm and 530 nm. Images of 1300 × 1000 pixels were collected and identical 
parameters, such as contrast and brightness, were used for all samples. Five areas in one 
sample were randomly selected from the image and the fluorescence intensity was 
recorded. The experiments were repeated at least three times, with similar results. 

4.4 Transient transfection and fluorescence and confocal microscopic imaging of 
the subcellular localization of ERK2 (II) 

To investigate the subcellular localization of transiently expressed ERK2-GFP fusion 
protein, 5 × 104 MCF-7 cells were grown in 3.5-cm diameter Petri dishes with 
coverslips in MCF-7 maintenance culture medium (RPMI-1640 supplemented with 
iFBS [10%], 2 mM L-glutamine, 10 nM E2, and insulin at 4 μg/ml). After two days, 
plasmids carrying GFP-ERK2 (a kind gift from Dr. Rony Seger, Department of 
Biological Regulation, The Weizmann Institute of Sciences, Rehovot, Israel) and nRFP 
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(red fluorescent protein targeted to the nucleus, a kind gift from Dr. Stavros C. 
Manolagas, Division of Endocrinology and Metabolism, University of Arkansas for 
Medical Sciences, Little Rock, Arkansas, USA) were introduced into the MCF-7 cells 
using FuGENE 6 Transfection Reagent, following the manufacturer’s instructions. The 
following day, the culture media were replaced with phenol-red-free media containing 
dcFBS (5%) and 2 mM L-glutamine. Transient expression of GFP-ERK2 protein was 
assayed 48–72 h after gene transfection by fluorescence microscopy. The cells were 
then treated with serum-free medium supplemented with drugs at the concentrations 
indicated in the results for 5, 10, 20 or 30 minutes. After treatment, the cells were fixed 
with 4% paraformaldehyde. Fluorescence imaging was carried out using a Zeiss 
Axiovert microscope with a 63× oil-immersion objective and an appropriate filter set. 
The percentage of cells showing nuclear accumulation of GFP-ERK2 was quantified 
by enumerating cells exhibiting increased GFP in the nucleus compared with the 
cytoplasm. Fluorescence of nRFP was used to visualize the nuclei. At least 20 fields 
(images of 1300 × 1000 pixels) selected by random sampling were examined for each 
experimental condition. 

5.  WESTERN BLOTTING EXPERIMENTS (I, II) 

Cells (3 × 104 or 1 × 105) were plated in 10-cm Petri dishes and allowed to attach for 
24 h before treatment after which the cells were treated for the various times with 
drugs indicated in the results. Non-treated or vehicle (DMSO) treated cells served as 
controls. Alternatively, the culture media were replaced for 48 hours with phenol-red-
free media containing dcFBS (5%) and 2 mM L-glutamine before treatments. The cells 
were lysed in standard Laemmli sample buffer and lysates were sonicated for 10 sec 
and boiled for 5 min in a water bath at 100 °C with β-mercaptoethanol. Aliquots (30 
μl) of whole cell lysate protein were separated by SDS-PAGE and transferred to 
nitrocellulose membranes. The membranes were blocked with 8% skim milk in 
TBS/0.05% Tween-20 and incubated with the primary antibodies for ERα, ERK1/2 
and p-ERK1/2, PARP, caspase-9, Bcl-2 and Bcl-XL or β-actin, and appropriate 
secondary antibodies. The proteins were visualized using an enhanced 
chemiluminescence detection system with colored markers as size standards. 
Quantification of the bands was carried out with an MCID Image Analyzer (Imaging 
Research, Ontario, CA). The relative pERK values were obtained from normalization 
of pERK1/2 values were normalized against the total ERK1/2 values. 

For analysis of cytochrome c, cells were lysed in buffer A (20 mM Hepes-KOH, pH 
7.5, 10 mM KCl, 1.5 mM MgCl2, 1 mM EGTA, 1 mM dithiothreitol, 250 mM sucrose, 
100 mM phenylmethylsulfonyl fluoride, pepstatin A [1 μg/ml], leupeptin [2 μg/ml] and 
aprotinin [2 μg/ml]). The cells were homogenized using a glass dounce homogenizer 
and a tight pestle (30 strokes). Cell homogenates were centrifuged at 15,000 × g for 15 
min at 4 °C. The pellet obtained represented the mitochondria-enriched fraction. The 
supernatants were further centrifuged at 100,000 g for 1 hour at 4°C and the resulting 
supernatant represented cytosolic protein fraction. Protein content was determined by 
using a Pierce Micro-BCA Protein Assay Kit. Thirty micrograms of mitochondrial 
protein and fifty micrograms of cytosolic protein were used in SDS-PAGE. Proteins 
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were visualized by means of appropriate antibodies. A nonspecific band at 70 kD 
served as a control for loading of proteins.51 Quantification of the bands was carried 
out with an MCID Image Analyzer.  

6.  MOLECULAR BIOLOGY METHODS (III) 

6.1 RNA extraction  
Total cellular RNA was extracted from the U2OS and SaOS-2 cells using the Trizol 
reagent and purified according to manufacturer´s instructions. cDNA was synthetized 
from 2 µg of total RNA in a 20 µl reaction containing random hexanucleotides and  
AMV reverse transcriptase enzyme. 

6.2 Semiquantitative RT-PCR Analysis 
PCR was performed using the Eppendorf Mastercycler. The following primers were 
used: 

TNFα (forward)  5`-TGC TTG TTC CTC AGC CTC TT-3` 
TNFα (reverse)  5`-TGG GCT ACA GGC TTG TCA CT-3` 
IL-6 (forward)   5`-CCT TCC AAA GAT GGC TGA AA-3` 
IL-6 (reverse)   5`-AGC TCT GGC TTG TTC CTC AC-3` 
GAPDH (forward) 5`-AGC CAC ATC GCT CAG ACA C-3` 
GAPDH (reverse) 5`-GCC CAA TAC GAC CAA ATC C-3` 

After an initial denaturation at 94ºC for 3 minutes 25 cycles of PCR amplification were 
performed, each consisting of a denaturing step of 94 ºC for 30 seconds, annealing at 
60 ºC for 30 seconds and extension at 72 ºC for 30 seconds, followed by a final step at 
72 ºC for 10 minutes. The number of 25 cycles was selected because in preliminary 
experiments we verified that with this number of cycles the reaction was still in a linear 
range for all three genes (data not shown). The amplified fragments were detected by 
1,5% agarose gel electrophoresis and ethidium bromide staining. Quantification of the 
bands was carried out with an MCID Image Analyzer. 

6.3  Quantitative real-time PCR  
Real-time quantitative PCR analysis was done using a 5700 Sequence Detector (PE 
Applied Biosystems, Foster City, CA, USA). Amplifications reactions were set up in 
25 µl reaction volumes containing amplification primers and SYBR Green PCR Master 
Mix. The primer concentrations and cDNA sample volumes were optimized for each 
primer set. Primer sequences for IL-6, OPG and β-actin were: 

IL-6 (forward) 5`-TACCCCCAGGAGAAGATTCC-3` 
IL-6 (reverse) 5`-AAAGAGGCACTGGCAGAAAA-3` 
OPG (forward) 5`-TGCAGTACGTCAAGCAGGAG -3` 
OPG (reverse) 5`-TGTATTTCGCTCTGGGGTTC -3 
β-actin (forward) 5`-CGTGGGCCGCCCTAGGCACCA -3` 
β-actin (reverse) 5`- TTGGCCTTAGGGTTCAGGGGG-3` 
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Amplifications were performed in 96-well reaction plates. Calibration curves were 
derived for each gene following serial dilutions of a stock cDNA which were then used 
as standards. Calibration curves were run in parallel in triplicates for each analysis. 
Each sample was analysed three times during each experiment. The experiments were 
carried out at three times on each cell line. Amplification data were analysed using the 
Sequence Detector System Software (PE Applied Biosystems). The results were 
normalized to β-actin and expressed as percentage of controls.  

6.4 Enzyme-Linked ImmunoSorbent Assay (ELISA)  

6.4.1 OPG assay  
Cell culture media were collected, and OPG was determined with ELISA according to 
the manufacturer's instructions. Standards, samples, positive control, assay buffer, and 
detection antibody were pipetted into a 96-well plate precoated with monoclonal anti-
OPG antibody and mixed. After incubation for 24 h at +4°C, the plate was washed five 
times with washing buffer, streptavidin peroxidase conjugate was added to the wells, 
and the cells were incubated for 1 h at room temperature. The plate was washed five 
times, and tetramethylbenzidine was added as a substrate to develop the color reaction. 
After incubation for 20 minutes at room temperature, stop solution was added, and 
OPG was measured with a Victor model 2 instrument (EG & G Wallac) at 450-nm 
absorbance. 

6.4.2. IL-6 assay 
Similarly to OPG assay, cell culture media were collected, and IL-6 was determined 
with ELISA according to the manufacturer's instructions. Standards, samples, positive 
control, assay buffer, and detection antibody were pipetted into a 96-well plate 
precoated with monoclonal anti-IL-6 antibody and mixed. After incubation for 24 h at 
room temperature, the plate was washed five times with washing buffer; standars and 
samples were added to the wells and incubated 1 h at room temperature. Wells were 
again washed as previously after which biotinylated antibody was added and plate was 
incubated for 1 hour at room temperature. After third wash streptavidin-HRP conjugate 
was added to the wells, and the plate was incubated for 30 min at room temperature. 
The plate was washed, and tetramethylbenzidine was added as a substrate to develop 
the color reaction. After incubation for 30 minutes at dark in the room temperature, 
stop solution was added, and IL-6 was measured with a Victor model 2 instrument (EG 
& G Wallac) at 450-nm absorbance. 

7.  STATISTICAL ANALYSIS (I-III) 

Data were expressed as mean ± SE. Statistical significance was determined using either 
student’s t-test (I), one-way analysis of variance (ANOVA) (III), non-parametric 
Mann-Whitney and Kruskal-Wallis comparison tests or ANOVA followed by multiple 
comparison tests or non-parametric (II). The critical value for significance was P<0,05 
(*).  
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RESULTS AND DISCUSSION 

1. RAPID EFFECTS OF TAMOXIFEN ON BREAST CANCER CELLS (I 
AND II) 

1.1 Tam and Tor induce rapid death in breast cancer cells 
When this study was started, there was increasing interest in the rapid nongenomic 
effects of steroid hormones. During the past ten years estrogens have been 
demonstrated to have various rapid effects on breast cancer cells and the first two 
publications of this thesis work are based on the hypothesis that SERM compounds 
also exert antiestrogenic effects in breast cancer cells via nongenomic mechanisms. 
Revealing the multiple action mechanisms of SERMs could possibly be exploited to 
development of new tissue specific SERM compounds as well as improve therapeutic 
responses to the treatment of patients with these drugs. 

We first studied the ability of different SERM compounds to induce rapid death of 
breast cancer cells. As a primary model system we used MCF-7 cell line which is the 
first hormone-responsive cell line described and is considered to be a suitable in vitro 
model for studying the mechanisms of apoptosis (Simstein et al., 2003). Trypan blue 
analyses revealed that Tam induced death of MCF-7 cells already within one hour of 
treatment since nearly 90% of the cells were dead after 60-min treatment with Tam (I, 
Fig. 1a). We also found that Tam-induced death can be facilitated by pre-culturing the 
cells with low concentrations of Tam or in the absence of E2. In addition to MCF-7 
cells, the death-inducing effect of Tam was observed on another ER-positive cell line 
T47D. Furthermore, ERα-negative and estrogen unresponsive MDA-MB-231 cell line 
also responded to Tam. Corresponding effects were obtained with Tor, which is 
another antiestrogen used in breast cancer treatment. However, since chemical 
structure and the clinical profile of Tam and Tor resemble each other, we chose to 
study only the rapid effects of Tam in detail. The two other antiestrogens studied, Ral 
and Osp, were not able to induce death of MCF-7 cells under these conditions. This is 
interesting, since the mechanisms of the genomic effects of Tam, Tor and Ral on breast 
cancer cells closely resemble each other (Pasqualini 2004).  

Pharmacological concentrations of Tam, which are higher than those needed to induce 
transcriptional effects, were required to induce acute death of breast cancer cells. 
Depending on pre-treatment there was fluctuation on the response of the MCF-7 cells, 
but generally a 5-7 μM concentration of Tam appears to represent threshold that is 
needed to trigger the rapid death pathway. This cannot be considered as a toxic dose; 
however, since clinically relevant steady-state plasma concentrations of Tam together 
with its biologically active metabolites measured in patient sera can be as high as close 
to 5 μM (Peyrade et al., 1996). Moreover, owing to accumulation of lipophilic Tam in 
cellular membranes and lipid-rich tissues such as the mammary gland, intra-tumoral 
concentrations can be 5–11 times higher than that (Kisanga et al., 2004), which 
suggests that the rapid death-inducing effects of Tam may also have biological 
significance in vivo.  
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1.2 Tam-induced mitochondrial disruption 
Mitochondria are known to play an integral role in apoptosis induced by various cancer 
chemotherapeutic drugs. There are also reports demonstrating that high concentrations 
of Tam increase the mitochondrial respiration and proton permeability and decrease 
mitochondrial transmembrane potential and oxidative phosphorylation in isolated rat 
liver mitochondria (Tuquet et al., 2000; Cardoso et al., 2001). In order to reveal the 
mechanism by which Tam rapidly induces death of MCF-7 cells, we first tested the 
hypothesis that it affects the mitochondria. 

1.2.1. The effect of Tam on mitochondrial permeability transition pore  
Since disruption of mitochondrial function is considered to be one of the primary 
events in apoptotic cell death, we studied whether bongkrekic acid (BA), an inhibitor 
of mitochondrial permeability transition and mitochondrial depolarization, could 
protect the cells from Tam-induced death. We observed that BA extended MCF-7 cell 
survival time in the presence of Tam, since at 30 minutes time-point the difference 
between the numbers of dead cells in the samples treated with either Tam only or 
combination of Tam and BA was nearly 50% (I, Fig.2a).  

1.2.2. The effect of Tam on release of cytochrome c  
The translocation of cytochrome c from the intermembrane compartment of 
mitochondria to cytosol is known to be central for mitochondrial apoptotic death 
pathway. Thus, we aimed to visualize the subcellular localization of cytochrome c 
following treatments with either Tam or E2 by using immunohistochemical staining 
and a secondary antibody conjugated to Alexa-488 dye. For visualization of 
mitochondria, we loaded the cells with MitoTrackerRed CMXRos dye. A 20 minutes 
treatment with Tam was found to induce release of cytochrome c, whereas comparable 
effect was not observed with E2 (I, Fig. 3a). Corresponding results were also obtained 
by Western blotting in which the level of cytochrome c protein was detected from both 
mitochondrial and cytosolic protein extracts.  

1.2.3. The effect of Tam on mitochondrial membrane potential 
Decrease in the mitochondrial membrane potential (∆ψ m) has been reported to 
accompany apoptosis in many cases and the release of cytochrome c from 
mitochondria to cytosol is considered to be a consequence of a change in Δψ m. To 
evaluate the effect of Tam treatment on the mitochondrial transmembrane potential, we 
loaded MCF-7 cells with tetramethylrhodamine methyl ester (TMRM), which is a red 
cationic fluorophore that accumulates electrophoretically into mitochondria in response 
to the negative mitochondrial membrane potential. In case of mitochondrial 
depolarization the intramitochondrial TMRM fluorescence disappears. In our 
experiment TMRM was added to the culture medium and living cells were monitored 
by confocal microscopy during Tam treatment and images were collected every 10 
minutes. To quantify the changes in TMRM fluorescence over time, the total TMRM 
fluorescence of individual cells was measured at various time points (I, Fig. 4b). We 
first observed decrease of ∆ψm in Tam treated sample after 20 minutes of treatment 
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whereas in other samples ∆ψm remained intact, which results indicate that Tam 
induces decrease of ∆ψm. 

1.2.4. Downstream effects of Tam  
In the established apoptotic model release of cytochrome c from mitochondria triggers 
activation of caspases which are divided into initiator caspases (caspases 8 and 9) and 
executioner caspases (such as caspases 3, 6 and 7). MCF-7 cells have lost caspase-3 as 
a result of a genomic deletion in the casp-3 gene (Jänicke et al., 1998; Zapata et al., 
1998). Other caspases or proteases are, however, probably operative in Tam-induced 
death of MCF-7 cells, since they have been shown to undergo caspase-dependent 
apoptosis following treatment with etoposide and doxorubicin (Jänicke et al., 1998; 
Jänicke et al., 2001). Thus, MCF-7 cells do not exhibit a total defect in the 
mitochondrial apoptotic pathway. 

We investigated the effects of Tam treatment on death pathways downstream from 
cytochrome c by examining the possible activation of procaspase-9 by Tam and, due to 
lack of caspase-3 in MCF-7 cell line, the proteolytic cleavage of PARP which is an 
endogenous substrate of caspases. Western blot analyses showed that neither caspase-9 
nor PARP were cleaved during 30-min treatment of MCF-7 cells with Tam (I, Fig. 5a, 
b). The results concerning lack of acute caspase-9 activation and PARP cleavage in 
Tam-treated cells were confirmed using a broad-spectrum caspase inhibitor, Z-VAD-
FMK. Administration of Z-VAD-FMK together with Tam did not prevent Tam-
induced death of MCF-7 cells, which indicates that Tam-induced cell death was 
caspase-independent. Such alternative death pathways have been described in the 
literature (Obrero et al., 2002).  

1.2.5. The effect of Tam on the production of ROS 
The release of cytochrome c from mitochondria increases oxidative phosphorylation 
and generation of ROS, which may contribute to cell death even if caspases are not 
activated. Tam-treatment has previously been demonstrated to induce ROS generation 
for example in Jurkat cells and ovarian cancer cells (Ferlini et al., 1999). To study the 
effect of Tam on production of ROS in MCF-7 cells, we used diphenylene ionodium 
(DPI). It is a flavoprotein inhibitor of NADPH oxidase, which is considered to be a 
major source of ROS. Trypan blue analysis revealed that DPI was able to delay Tam-
induced death of MCF-7 cells significantly, thus indicating the involvement of ROS. 
Similar results were obtained with E2-deprived MCF-7 cells and MDA-MB-231 cells. 
Furthermore, we used DPI to study the causal relationship between cytochrome c 
release and induction of ROS formation. As demonstrated by immunocytochemistry, 
DPI was not able to prevent Tam-induced release of cytochrome c from mitochondria 
indicating that ROS production is distal to cytochrome c release. It is also possible that 
production of ROS is a separate event from release of cytochrome c, but ROS can also 
feed back on mitochondria and further cause functional damage to trigger the release of 
cytochrome c (Mattsson 2000). 
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The effect of Tam on intracellular ROS levels was further confirmed by fluorescence 
microscopy. The cells were loaded with DFH-DA which, upon oxidation by ROS, 
yields green fluorescence. We observed that addition of Tam for 20 minutes produced 
a rapid and robust increase in ROS in the cells (I, Fig. 8a) which result further indicates 
mitochondrial disruption by Tam-treatment. Tam induced cytochrome c release and 
oxidative stress has recently been reported also by Nazarewicz et al. who demonstrated 
the induction of these effects by submicromolar concentration of Tam in isolated rat 
liver mitochondria and MCF-7 cells (Nazarewitz et al., 2007).  

1.2.6. Effect of Tam on production of antiapoptotic proteins 
Because Bcl-2 family proteins are known to control the sensitivity of cancer cells to 
chemotherapeutic agents, the levels of antiapoptotic proteins Bcl-XL and Bcl-2 were 
determined by Western blotting in E2-deprived and Tam-pretreated cells. Both Bcl-2 
and Bcl-XL have previously been shown to inhibit release of cytochrome c from 
mitochondria to cytosol (Yang et al., 1997) and Bcl-2 has also been shown to prevent 
both caspase-dependent and -independent programmed cell death induced by a variety 
of stimuli (Mathiasen and Jäättelä 2002). Even though both of these antiapoptotic 
proteins maintain mitochondrial integrity, some reports propose that Bcl-2 and Bcl-XL 

could differentially protect cells from apoptosis (Lebedeva et al., 2003; Yang et al., 
2003). However, we found that E2 increased and Tam decreased the expression levels 
of both of these proteins, which could provide an explanation for the increased 
sensitivity of E2-deprived or 1 μM Tam-treated MCF-7 cells to higher doses of Tam in 
our experiments. The pre-incubation-produced facilitation is likely to be a consequence 
of the transcriptional effects of Tam and E2 on expression of pro- and /or antiapoptotic 
proteins.  

1.3 ERK mediates rapid effects of Tam 
Estrogen has been shown to indirectly affect the mitochondria by activation of MAPK 
(Gavrilova-Jordan and Price 2007). In turn, activation of MAPK may affect pro-and 
antiapoptotic proteins, thus changing mitochondrial susceptibility to apoptosis 
(Kirkland and Franklin 2003). It is speculated that also Tam, besides its uptake to the 
cells and nuclear translocation, generates a transmembrane signal transduction cascade 
by virtue of its high lipophilicity and partitioning in the cell membrane. According to 
the literature, Tam-induced activation of ERK has previously been demonstrated in 
HeLa cells (Duh et al., 1997) and human endometrial cancer cells (Acconcia and 
Kumar 2006). Furthermore, since ROS have been shown to contribute to cell death, in 
part, through an effect on various cellular signaling pathways including MAPK 
pathway (Guyton et al., 1996; Chen et al., 1995; Lander 1997; Bhat et al., 1999) we 
tested the hypothesis that activation of ERK could be associated with Tam–induced 
rapid death of MCF-7 cells. 

Activation of ERK has usually been considered to be involved in cell proliferation 
(Zhang and Liu 2002; Zhang et al., 2002; Peyssonaux et al., 2001), and the role of 
ERK in cell death has only recently been hypothesized. However, our Western blotting 
experiments demonstrate that Tam was able to activate ERK and that this activation 
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was sustained for at least 40 minutes in MCF-7 cells, whereas in vehicle-treated cells 
phosphorylation of ERK was detected only at 5 minutes of incubation (II, Fig. 2B). 
When compared to Tam, E2 treatment resulted in only transient activation of ERK and 
baseline conditions returned at 20 minutes. This is basically in parallel with the results 
of previous studies reporting that E2 rapidly and transiently activates ERK1 and ERK2 
in MCF7 cells (Filardo et al., 2002; Fernando and Wimalasena 2002; Song et al., 2002; 
Thomas et al., 2006). Prolonged ERK phosphorylation by Tam was also observed in 
estrogen receptor positive T47D cells. However, in estrogen receptor-negative MDA-
MB-231 cells Tam did not induce statistically significant phosphorylation of ERK. 
These results suggest that ERK has a role in the acute death response of at least ER-
positive breast cancer cells. 

Since phosphorylation of ERK is known lead to translocation of activated ERK to 
nucleus, we also studied the effect of Tam treatment on subcellular localization of 
phosphorylated ERK. MCF-7 cells were transiently transfected with GFP-ERK2 and 
nucleus-targeted red fluorescent protein and exposed for different time periods to 
vehicle, E2, Tam, and combination of Tam and E2 before fixation and visualization by 
fluorescence microscopy. The localization of GFP-ERK2 was determined as the 
percentage of cells exhibiting accumulation of GFP-ERK2 in the nucleus. Our results 
from studies concerning subcellular localization of ERK after Tam treatment were 
basically in parallel with our phosphorylation data. We observed that ERK1/2 
phosphorylation by Tam was associated with a prolonged nuclear localization of 
ERK1/2, which reached a peak level at 20 min, returning to baseline at 40 min (II, Fig. 
3B). Conversely, E2 was shown to exert a different kind of temporal pattern of ERK 
nuclear localization in comparison with Tam; E2 caused a rapid translocation of ERK 
to nuclei, which reached a peak level at 5 min and returned to baseline at 10 min. Of 
note is that the proportion of nuclear GFP-ERK2 in control cells was relatively high, 
approximately 30%, which might have been a consequence of overexpression of ERK 
in these cells. This may partly explain the temporal differences between ERK 
phosphorylation and translocation.  

In order to further confirm the role of ERK in Tam induced rapid effects, we employed 
PD98059, an inhibitor of MEK, at an ERK phosphorylation-inhibiting concentration. 
ERK phosphorylation was determined at several timepoints up to 40 minutes and 
PD98059 was found to oppose Tam-induced ERK phosphorylation completely. We 
also observed that inhibition of ERK with PD98059 resulted in a decreased amount of 
cell death brought about by Tam, which results further demonstrate that Tam acts via 
ERKs to induce apoptotic signaling in MCF-7 breast cancer cells.  

Consistently with our results, a recent report by Visram and Greer also suggests that 
both E2 and Tam are capable of activating ERK in MCF-7 cells (Visram and Greer 
2006). The dual role of ERK1/2 in both cell death and cell proliferation may be 
explained by several recent findings which demonstrate that phosphorylated ERKs may 
produce different outcomes in the same cell depending on the duration of ERK 
accumulation in the nucleus and perhaps also on cell context (Murphy et al., 2002; 
Chen et al., 2005; Jeon et al., 2006; Shaul et al., 2006). For example, in their recent 
article Chen et al. demonstrate that the anti-apoptotic effect of E2 may be converted 
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into a pro-apoptotic one by alteration of the temporal pattern of the ERK activation, 
perhaps by determining the activation of a distinct set of transcription factors. Thus, it 
is possible that the localization and duration of kinase signaling similarly contribute to 
different actions of Tam in breast cancer cells. Persistent nuclear retention of activated 
ERK1/2 has also been considered as a critical factor in eliciting pro-apoptotic effects 
also in neuronal cells subjected to oxidative stress (Stanciu and DeFranco 2002).  

2. INVOLVEMENT OF RECEPTORS IN THE RAPID EFFECTS OF TAM 
(II)  

In addition to signaling pathways, we were also interested in knowing which receptor 
structures mediate rapid effects of Tam on breast cancer cells. Rapid nongenomic ER-
related signaling has been proposed to occur through distinct cellular localization of the 
classical ER or ER-like receptors, through classical heterotrimeric G proteins, and 
through many of the effectors traditionally associated with growth factors and GPCRs 
(Levin 2005). Some investigators postulate that nongenomic signaling of estrogen is 
mainly mediated by membrane-associated ERs (Kelly and Levin 2001), and this 
hypothesis has been further supported by the recent demonstration of membrane-
located ERα in MCF-7 and other cell types (Razandi et al., 2004; Marquez and Pietras 
2001; Powell et al., 2001; Pedram et al., 2006). Furthermore, it has been suggested 
that, as a G-protein coupled receptor, the membrane localized pool of ER might signal 
to the mitochondria (Levin 2005). In addition to membrane and nuclear ERs, both ERα 
and ERβ have been identified within the mitochondrial matrix of rabbit uterine and 
ovarian cells (Monje and Boland 2001). Additional study with MCF-7 cells also 
localized ERα and ERβ to the mitochondria (Chen et al., 2004). Other studies 
suggested that ERβ is primarily mitochondrial, whereas ERα is mainly nuclear 
(Cammarata et al., 2004; Yang et al., 2004). A recent report by Pedram et al. shows 
high affinity ERs in the mitochondria of MCF-7 cells and endothelial cells, compatible 
with classical ERα and Eβ (Pedram et al., 2006). They also provide evidence of 
functions of mitochondrial ER potentially impacting breast cancer cell survival. 
Mechanisms of estrogen-mediated cellular actions have thus been shown to be very 
complex and it is possible that Tam is also capable of activating various receptors and 
signaling pathways that are convergent. Also mitochondrial estrogen receptors may 
contribute to rapid effects of Tam, either directly or indirectly. 

2.1 Estrogen receptors 
The results concerning the role of ERs in Tam-induced rapid effects in breast cancer 
cells were somewhat conflicting. Cell death analyses indicated that, in addition to ER-
positive MCF-7 and T47D cells, Tam was able to induce death in ERα-negative MDA-
MB-231 breast cancer cells, although the effect not equally effective to that in MCF-7 
cells. This finding favors the idea that rapid actions of Tam are independent of ERs. 
Surprisingly, however, the pure antiestrogen ICI 182780 could partly oppose Tam-
induced cell death when it was added together with Tam to MCF-7 cells. This finding 
suggests a role for estrogen receptors in the rapid actions of Tam. When studying the 
role of ERs in Tam-induced phosphorylation of ERK, we observed that Tam could 
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activate ERK in ER positive MCF-7 cells and T47D cells, but not significantly in ERα 
negative MDA-MB-231 cells, which results again indicate the involvement of ERs in 
the induction of rapid effects by Tam. However, addition ICI182780 together with Tam 
did not decrease level of ERK phosphorylation in MCF-7 cells when compared to 
treatment with Tam alone.  

There may be several explanations for the discrepancies observed concerning the role 
of ERs in rapid effects of Tam. The fact that MDA-MB-231 cells are known to be 
ERα-negative, but that they do express ERβ (Vladusic et al., 1998) raises the 
possibility that the rapid actions of Tam could actually be mediated through ERβ. 
However, since the effect of ICI 182780 was not observed in MDA-MB-231 cells, it is 
probable that rapid effects of Tam are primarily ER-independent, but can be facilitated 
by ER dependent mechanisms, as shown in MCF-7 cells. The superiority of Tam in 
MCF-7 cells compared to MDA-MB-231 cells may be explained by the signaling 
through the small pool of ERα that has recently been demonstrated to localize at the 
plasma membrane of MCF-7 cells (Razandi et al., 2003). Interestingly, a recent report 
by Heberden et al. (Heberden et al., 2006) demonstrated a raft-located estrogen 
receptor-like protein distinct from ERα which remained insensitive to the pure 
estrogen antagonist ICI 182780. Another study recently showed the existence of a 
protein named ER-X which could cross-react to an antibody directed against the 
binding site of ERα (Toran-Allerand et al., 2002). Thus, it is possible that rapid effects 
of Tam in breast cancer cells are mediated by a yet unknown receptor structure. 
Although the reason for the lack of statistically significant ERK activation in MDA-
MB-231 cells is not clear, activation of ERK seems to be important at least in the 
apoptotic response of ER-positive breast cancer cells against Tam. On the other hand, 
it is possible that Tam-induced rapid cell death is mediated only partly via the ERK 
pathway.  

2.2 Epidermal growth factor receptor 
There are reports suggesting that, in addition to acting via a membrane ER, estrogen 
can exert extranuclear actions by interacting directly with growth factor receptor 
complexes, which in turn leads to signal transduction to kinases such as ERK that 
phosphorylate and activate nuclear ERs (Levin 2005). Shou and coworkers 
demonstrated that when an EGFR family member ErbB2 was experimentally 
overexpressed, Tam treatment activated both ER and ErbB2 to signal downstream 
through ERK and PI3K (Shou et al., 2004). However, this cross-talk has been 
associated with resistance to endocrine therapy in breast cancer (Nicholson et al., 1999; 
Osborne et al., 2003), rather than induction of cell death. Nonetheless, our results 
suggest that Tam may occupy growth factor signaling pathways also for induction of 
cell death.  

We show that Tam–induced rapid death of breast cancer cells is, at least in part, 
mediated through EGFR since our Western blotting experiments demonstrate that 
inhibition of EGFR with EGFR inhibitors AG1478 and BIBX1382 totally abolished 
Tam–induced ERK-phosphorylation in both MCF-7 and T47D cells (II, Fig. 7A and 
Fig. 7B). Furthermore, we also tested the effect of BIBX1382 on Tam-induced ERK 
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phosphorylation on T47D cells and the results were comparable to those obtained with 
MCF-7 cells. Involvement of EGFR in the effects of Tam has been reported also by 
Visram and Greer who demonstrated that in MCF-7 cells E2 and Tam were both 
equally dependent on EGFR for activation of ERK (Visram and Greer 2006). 
Moreover, results of trypan blue exclusion analyses showed that both EGFR inhibitors 
significantly opposed Tam-induced rapid death of MCF-7 cells which results further 
suggest involvement of EGFR in the Tam-induced rapid effects on breast cancer cells. 

3. THE PROTECTIVE ACTIONS OF E2 AGAINST TAM-INDUCED 
EFFECTS (I and II) 

When studying the effect of E2 on Tam–induced rapid death of breast cancer cells, we 
found that E2 protected ER-positive MCF-7 and T47D cells from Tam-induced rapid 
death. However, it is notable that addition of E2 along with Tam opposed Tam-induced 
ERK activation statistically significantly only in MCF-7 cells, whereas this effect was 
not as clear in T47D cells. The discrepancy observed between MCF-7 cells and T47D 
cells may be due to differences in ERα/ERβ ratio between these two cell lines (Pedrero 
et al., 2002). The MCF-7 cells express a high ERα/ERβ ratio whereas T47D express a 
low ERα/ERβ ratio, which might be relevant if the rapid effects of E2 are mainly 
mediated via the membrane-associated ERα as suggested by Pedram et al. (Pedram et 
al., 2006). The survival-effects of E2 were not observed in ER-negative MDA-MB-231 
cells indicating, in contrast to ER-independence of Tam-induced effects, involvement 
of ERs in the protective actions of E2. Furthermore, even though we observed that E2 is 
able to oppose the effects of Tam, it is likely that E2 and Tam utilize separate 
intracellular signaling mechanisms. This hypothesis is further supported by recent 
findings of Visram and Greer who observed that, even though both E2 and Tam 
induced activation of ERK, the inhibition of Src or metalloproteinases caused distinct 
effects on ERK activation by E2 and Tam (Visram and Greer 2006). 

The antiapoptotic effects of estrogens in both ER-positive and -negative cells, 
including MCF-7 cells, has previously been reported also by others (Bynoe et al., 
2000; Choi et al., 2001; Haynes et al., 2001; Zhang et al., 2001; Huang et al., 1997; 
Perillo et al., 2000; Ahamed et al., 2001). Fernando and Wimalasena reported that E2 
reduces apoptosis induced by TNF-α, H2O2 and serum withdrawal, but not that induced 
by paclitaxel (Fernando and Wimalasena 2002). However, the latter observation was in 
contrast to data published by Razandi et al. (Razandi et al., 2003). In addition, the anti-
apoptotic action of E2 against resveratrol has been described by Zhang et al. (Zhang et 
al., 2004). Interestingly, a recent report of Pedram et al. (Pedram et al., 2006) suggests 
that E2 inhibits UV radiation –induced apoptosis in MCF-7 cells by directly up-
regulating manganese superoxide dismutase activity in these cells. They report that E2 
inhibits UV radiation-induced cytochrome c release, the decrease of mitochondrial 
membrane potential and apoptotic cell death. However, also conflicting results have 
been published. The work by Moreira et al. with isolated rat liver mitochondria 
suggests that Tam delays opening of mitochondrial PTP, whereas E2 has deleterious 
effects on mitochondria due to increased H2O2 production. However, the E2 and Tam 
concentration used in this study were relatively high, which might affect the results.  
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4. DIFFERENT ESTROGEN RECEPTOR LIGANDS PROTECT 
OSTEOBLASTIC CELLS FROM APOPTOSIS (III) 

Apoptosis has been demonstrated to partly regulate bone metabolism (Urayama et al., 
2000, Kameda et al., 1995, Kawakami et al., 1997, Nakashima et al., 1998, Kawakami 
et al., 1998, Weinstein et al., 1998) and especially apoptosis of osteoblasts is getting 
more attention since it has been considered to be an important determinant of bone 
formation and therefore of skeletal integrity (Manolagas, 2000 and Weinstein and 
Manolagas, 2000), such that disorders that promote the process are associated with 
increased bone fragility (Weinstein et al., 1998), and treatments that inhibit it are 
associated with anti-fracture efficacy (Jilka et al., 1999).  

Our studies with breast cancer cells indicated that E2 was able to protect the cells 
against Tam-induced cell death. Consistently, others have also suggested that estrogen 
protects different types of cells from apoptosis induced by various substances (Bynoe 
et al., 2000; Haynes et al., 2000; Perillo et al., 2000; Choi et al., 2001; Zhang et al., 
2001; Gu et al., 2005). A potential role for estrogens in protection of bone mass 
through inhibition of osteoblast apoptosis has also been proposed. Indeed, E2 has 
previously been shown to protect calvaria derived osteoblastic cells from etoposide-
induced apoptosis (Zallone 2006, Kousteni et al., 2001) as well as to protect 
osteoblasts from ethanol-induced bone-loss (Chen et al., 2006).  

In our third work we hypothesized that SERMs, in contrast to pro-apoptotic actions in 
mammary gland, exert estrogen-like bone-protective and antiapoptotic actions in 
osteoblastic cells. In addition, we wanted to evaluate the roles of different ER subtypes 
in the cell-protective effects of E2 and other ER ligands. Furthermore, we studied the 
ability of these compounds to modulate etoposide-induced effects on the expression of 
IL-6 and OPG, which are two important bone regulatory cytokines. To examine the 
individual actions of ERα and ERβ we used U2OS human osteosarcoma cell line that 
lack of detectable endogenous ER expression. These cells were stably transfected with 
expression constructs for the human ERα and ERβ full lenght sequences. Transfected 
cells expressed the receptors at a RNA and protein level as demonstrated by RT-PCR 
and Western blotting. The transactivation capacity of transfected ERs was studed by 
ERE-luciferase reporter gene assays. In addition, we confirmed the functionality of 
transfected ERs by verifying with RT-PCR that ERα and ERβ were able to restore the 
effects of E2 on TNFα –induced cytokine production. Corresponding cell lines have 
also been created and used by others for various purposes (Monroe et al., 2003; Stossi, 
et al., 2004 and Kian Tee et al., 2004). As control, we also tested E2 and SERM effects 
on apoptosis of another osteoblast-like cell line SaOS-2, which is known to express 
both ERα and ERβ (Sutherland et al., 1996, Vidal et al., 1999). For induction of 
apoptosis we used the chemotherapy drug etoposide at an osteoblast apoptosis inducing 
concentration (Urayama et al., 2000).  

4.1 Antiapoptotic effects of different ER ligands 
In order to compare the ability of E2 and synthetic ERα and ERβ agonists PPT and 
DPN to protect osteoblast-derived cells from apoptosis and to study the role of 
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different ER subtypes in these effects, we incubated the ERα or ERβ transfected U2OS 
cells with various ER ligands and induced apoptosis of the cells with etoposide. 
Apoptotic cells were quantified by visualization of changes in nuclear morphology. 
Our findings suggest that both ER isotypes play a role in mediating the protective 
effects of E2 since estradiol was able to prevent etoposide-induced apoptosis in both 
ERα and ERβ -transfected U2OS cells. The protective effect of E2 was not observed in 
parental or vector-transfected U2OS cells, which results support the conclusion that the 
antiapoptotic effect is mediated via ERs. In addition, in SaOS-2 cells both PPT and 
DPN were able to oppose etoposide-induced effect, thus further indicating the 
involvement of both ERα and ERβ. 

Of the three SERMs examined in our experimental setup only Osp could oppose 
etoposide-induced apoptosis in ERα-transfected U2OS cells. For this reason, we chose 
to study only Osp instead of all three SERMs in the following experiments. Also in 
SaOS-2 cells Osp treatment significantly opposed the cell death induced by etoposide. 
Osp has previously been shown to exert estrogen-like effects in bone marrow cultures 
by enhancing osteoblastic differentiation with a mechanism that differs from that of 
Ral (Qu et al., 1999). However, the ability of Osp to protect osteoblasts from apoptosis 
has not been demonstrated before. In contrast, Ral has previously been reported to 
decrease sodium nitroprusside-induced apoptosis of osteoblasts (Olivier et al., 2004). 
However, in our experimental setup Ral did not protect the osteoblastic cells against 
etoposide-induced apoptosis. 

4.2 Regulation of IL-6 and OPG by ER ligands 
The inhibitory effects of estrogens on bone resorption have been suggested to involve 
regulation of RANKL-RANK-OPG system (Syed and Khosla 2005). In addition, 
estrogens have been shown to prevent bone loss also by regulating the production IL-6 
and of several other cytokines that modulate osteoclastic bone resorption (Messalli et 
al., 2007, Compston et al., 2001). Furthermore, E2 has previously been demonstrated to 
dose-dependently increase osteoblastic OPG mRNA and protein levels (Saika et al., 
2001, Lindberg et al., 2001, Bord et al., 2003). This effect has also been shown in 
human osteoblasts transfected with estrogen receptors (Hofbauer et al., 1999). 

To compare the response of ERα and ERβ transfected cells to E2 and other ER ligands, 
we tested the ability of these compounds to modulate etoposide-induced effects on the 
expression of IL-6 and OPG by quantitative real-time PCR method. Our results suggest 
that in U2OS/ERβ cells Osp and DPN prevented the effects of etoposide on the 
expression of OPG, while in ERα-transfected cells none of the ligands tested had 
statistically significant etoposide opposing effect. This suggests involvement of ERβ in 
the regulation of the OPG mRNA expression. The role of ERβ was supported by the 
finding that in SaOS-2 cells only DPN had a significant etoposide-opposing effect. To 
further test the ability of ER ligands to induce OPG and IL-6 production, we used a 
sensitive sandwich ELISA method to measure protein concentrations in the cell media 
collected after different treatments. The results from these experiments also suggested 
a role for ERβ, rather than ERα, in regulation of OPG although on protein level the 
results were somewhat conflicting when compared to data obtained with PCR.  
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In addition to expression of OPG, also RANKL and the ratio of RANKL/OPG have 
been suggested to be important in modulation of bone homeostasis by estrogen. 
However, we could not to assess RANKL mRNA expression since the cell lines 
studied appear to produce very low levels of RANKL and were thus unable to give 
information about the estrogen-dependent RANKL/OPG ratio. Low RANKL 
expression by osteoblastic cell lines has been previously reported also by others 
(Hofbauer et al., 1999, Cheung et al., 2003). 

The stimulatory effect of etoposide on IL-6 production has previously been 
demonstrated (Verdenqh et al., 2002, Wood et al., 2006, Tozava et al., 2002). 
However, there are also conflicting reports (Verdrenqh et al., 2003, De Vita et al., 
1998). We found that etoposide strongly induced expression of IL-6 in osteoblastic 
cells and in case of ERα both E2 and PPT opposed etoposide-induced expression of IL-
6. In contrast, Osp did not have corresponding effect on IL-6 expression. E2 and PPT 
also opposed the etoposide-induced IL-6 protein secretion. In case of U2OS/ERβ cells 
all ER ligands seemed to inhibit the etoposide-induced IL-6 expression but the effects 
were not statistically significant. These results suggest that E2 regulates IL-6 
expression via ERα, whereas Osp does not have an effect on IL-6. However, in SaOS-
2 cells, all ligands did oppose the effects of etoposide on IL-6 expression suggesting 
ERβ contribution and cell-specific effect.  
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SUMMARY 

In this thesis work we have studied the effects of selective estrogen receptor 
modulators on the death of breast cancer cells and osteoblastic cells. Cumulatively, our 
data suggest that Tam causes death of breast cancer by several mechanisms, one of 
which is rapid induction of cell death by mitochondrial mechanisms. Our results 
further show that susceptibility of breast cancer cells to Tam-induced death can be 
increased by a pre-treatment of the cells with antiestrogens such as Tam itself, or by E2 
withdrawal. These effects are most probably dependent on transcriptional regulation of 
the levels of antiapoptotic and/or pro-apoptotic proteins. Furthermore, our results 
suggest that Tam rapidly induces sustained activation of ERK1/2 in ER-positive breast 
cancer cell lines, which effects can be opposed by E2. Tam-induced rapid death appears 
to be primarily ER-independent, but it can possibly be modulated by ERs. However, 
epidermal growth factor receptor (EGFR)-associated mechanisms were also shown to 
be involved in Tam -induced cell death. 

Further work is needed to better understand possible relationships between 
nongenomic and genomic effects of Tam in breast cancer cells, but it is possible that 
these two mechanisms have different functions. Tam-initiated genomic signaling may 
represent a way through which the target cells are programmed for complex functions 
that require a long time to get in action and ultimately determine the fate of the cells. 
Nongenomic signaling mechanisms, on the other hand, may represent systems by 
which cells are rapidly activated to adjust to dynamic changes of the cell environment. 
Identification of the multiple mechanisms underlying Tam-induced cell death is 
important, because this information can be applied to improve therapeutic responses to 
the treatment of patients with this selective estrogen receptor modulator. 

In addition to the Tam-induced effects on breast cancer cells, we present data that E2 
and a novel SERM compound ospemifene are able to protect osteoblastic cells from 
apoptosis. The protective effect could be mediated via both ERα and ERβ although the 
responses of the cell lines expressing either of the two receptors differed from each 
other. Moreover, we show that the osteoblast-protective effect is associated with 
changes in the levels of osteoblast-produced cytokine expression. Revealing the routes 
that lead to different biological effects of E2 and selective estrogen receptor modulators 
used as therapeutics is of importance for understanding the mechanisms by which 
estrogenic/antiestrogenic compounds maintain cell survival in various tissues and 
homeostasis in bone. Our findings could have clinical relevance for example in the 
case of osteolytic breast cancer bone metastasis. Because of their direct role in bone 
degradation, osteoclasts are currently the major target of pharmaceutical interventions. 
Nevertheless, targeting the osteoclasts does not cure the disease or result in bone repair 
(Lipton et al., 2000) indicating that normal osteoblasts function is also impaired in 
osteolytic breast cancer metastasis (Mercer et al., 2004). Moreover, breast cancer cells 
have been demonstrated to directly induce apoptosis of osteoblasts (Mastro et al., 
2004, Mercer et al., 2004). It has been previously suggested that apoptotic osteoblasts 
signal for decreased osteoclastic activity through OPG and our results imply that this 



Summary 

 53

signaling may modulated by ER ligands. Thus, it is possible that the same group of 
drugs that are used to treat primary tumor might also have beneficial effects on tissue 
that is a potent site of metastasis. Information about the anti- and proapoptotic actions 
of Tam and other SERMs in different target tissues could possibly be exploited in 
development of new tissue specific SERM compounds. In this respect, it is of 
importance to understand that SERM compounds having chemically related structures 
might have clinically different effect profiles to patients. 

The most important findings of this thesis are summarized in figures 4-6. 
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Figure 4. The protective effects of estrogen against Tam-induced death of breast cancer 
cells. Tam-induced activation of ERK1/2 leads to mitochondrial disruption and eventually death 
of the cells (1). Alternatively, Tam may induce transcription of proapoptotic genes via nuclear 
ERs (2) or block translation of antiapoptotic proteins (3). Tam-induced effects can be abrogated 
by E2 which acts either via membrane ERs to block Tam-induced ERK1/2 activation (4) or via 
nuclear ERs to upregulate expression of antiapoptotic genes. The model is based on the results 
presented in this study. 
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Figure 5. A model for Tam-induced death pathway in breast cancer cells. Tam may interact 
with several putative receptor structures (ER, EGFR, “receptor X”) on cell membrane. This 
triggers prolonged ERK1/2 activation leading to decrease of mitochondrial membrane potential, 
release of cytochrome c from mitochondria to cytosol and excessive production of reactive 
oxygen species (ROS) eventually leading to death of breast cancer cells. The model summarizes 
the results presented in this study.  
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Fig.6. E2 and SERM protection against cell death in ERα and ERβ expressing osteoblastic 
cells. Both ER subtypes, alpha and beta, mediate the protective effects of E2 against etoposide-
induced apoptosis on osteoblast-like U2OS cells. In addition, Osp extends survival of 
etoposide-treated U2OS/ERα cells (A). The U2OS cells containing either ERα or ERβ 
differentially respond to E2 and Osp at the level of cytokine expression upon etoposide 
challenge (B).  
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CONCLUSIONS 

On the basis of the results and discussion presented in this thesis, I draw the following 
conclusions: 

1.  Tamoxifen at pharmacological, clinically achievable concentrations is able to 
initiate a rapid mitochondrial death pathway in MCF-7 breast cancer cells. Tam-
induced rapid death program has features of both apoptosis and necrosis, and it 
is facilitated by pre-culturing the cells with low concentrations of Tam or in the 
absence of E2.  

2.  Tamoxifen, in addition to previously demonstrated genomic effects, is capable 
of acting via rapid membrane-initiated signaling and ERK pathways. It appears 
to have a primary role in the acute death response of at least ER-positive breast 
cancer cells to Tam. 

3.  E2 is able to oppose the rapid effects of Tam in ER-positive breast cancer cells. 
However, due to lack of protective effect in ER-unresponsive cell line, it is 
likely that E2 and Tam utilize separate signaling mechanisms. 

4.  The rapid effects of Tam are primarily ER-independent, but can be facilitated by 
ER-dependent mechanisms. On the other hand, EGFR-associated mechanisms 
appear to be involved in Tam-induced death. 

5.  The protective actions of E2, as well as novel SERM compound ospemifene, 
against apoptosis are mediated via both ERalpha and ERbeta. In addition, the 
cells containing either ERalpha or ERbeta differentially respond to E2 and 
ospemifene at the level of cytokine expression. 
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