
Tapio Pahikkala

Turku Centre Computer Sciencefor

TUCS Dissertations
No 103, June 2008

New Kernel Functions and

Learning Methods

for Text and Data Mining

New kernel functions and learning
methods for text and data mining

Tapio Pahikkala

To be presented, with the permission of the Faculty of Mathematics and
Natural Sciences of the University of Turku, for public criticism in

Auditorium Beta on June 18th, 2008, at 12 noon.

University of Turku
Department of Information Technology

Joukahaisenkatu 3-5, 20014 Turku

2007

Supervisors

Professor Tapio Salakoski
Department of Information Technology
University of Turku
Finland

Docent Jouni Järvinen
Department of Information Technology
University of Turku
Finland

Doctor Jorma Boberg
Department of Information Technology
University of Turku
Finland

Reviewers

Professor Alessandro Moschitti
Department of Information and Communication Technology
University of Trento
Italy

Professor Juho Rousu
Department of Computer Science
University of Helsinki
Finland

Opponent

Professor Timo Honkela
Laboratory of Computer and Information Science
Helsinki University of Technology
Finland

ISBN 978-952-12-2091-3
ISSN 1239-1883

Abstract

Recent advances in machine learning methods enable increasingly the auto-
matic construction of various types of computer assisted methods that have
been difficult or laborious to program by human experts. The tasks for
which this kind of tools are needed arise in many areas, here especially in
the fields of bioinformatics and natural language processing. The machine
learning methods may not work satisfactorily if they are not appropriately
tailored to the task in question. However, their learning performance can
often be improved by taking advantage of deeper insight of the application
domain or the learning problem at hand. This thesis considers developing
kernel-based learning algorithms incorporating this kind of prior knowledge
of the task in question in an advantageous way. Moreover, computationally
efficient algorithms for training the learning machines for specific tasks are
presented.

In the context of kernel-based learning methods, the incorporation of
prior knowledge is often done by designing appropriate kernel functions.
Another well-known way is to develop cost functions that fit to the task
under consideration. For disambiguation tasks in natural language, we de-
velop kernel functions that take account of the positional information and
the mutual similarities of words. It is shown that the use of this informa-
tion significantly improves the disambiguation performance of the learning
machine. Further, we design a new cost function that is better suitable
for the task of information retrieval and for more general ranking problems
than the cost functions designed for regression and classification. We also
consider other applications of the kernel-based learning algorithms such as
text categorization, and pattern recognition in differential display.

We develop computationally efficient algorithms for training the consid-
ered learning machines with the proposed kernel functions. We also design a
fast cross-validation algorithm for regularized least-squares type of learning
algorithm. Further, an efficient version of the regularized least-squares al-
gorithm that can be used together with the new cost function for preference
learning and ranking tasks is proposed. In summary, we demonstrate that
the incorporation of prior knowledge is possible and beneficial, and novel
advanced kernels and cost functions can be used in algorithms efficiently.

i

ii

Acknowledgements

First of all I want to thank my supervisors Jorma, Jouni, and Tapio. I also
thank my colleagues Aleksandr, Antti, Evgeni, Filip, Hanna, and Sampo
for inspiring discussions and fruitful cooperation. This thesis would not
have been possible without the good spirit and atmosphere in our group. I
am grateful for Professor Olli Nevalainen and Docent Tero Aittokallio for
encouraging me to begin my research career.

I would also like to thank Professor Alessandro Moschitti and Professor
Juho Rousu for their excellent reviews for this thesis. Their critic on my
thesis was extremely constructive and helpful. Further, I sincerely thank
Professor Timo Honkela for accepting to act as opponent at the disputation
of this thesis.

I am grateful for Turku Centre for Computer Science (TUCS) and De-
partment of Information Technology for providing excellent working condi-
tions and financial support. I acknowledge the staff at these institutions for
creating pleasant and helpful working environment. I also thank the Nokia
Foundation for two scholarships, and Tekes, the Finnish Funding Agency for
Technology and Innovation, for financial support of my work.

Finally, I thank my wife Nina, my daughter Anna, and my parents for
their love, encouragement, and support during the years I was working with
my thesis.

iii

iv

List of original publications

I Tapio Pahikkala, Filip Ginter, Jorma Boberg, Jouni Järvinen, and
Tapio Salakoski. Contextual weighting for support vector machines
in literature mining: an application to gene versus protein name disam-
biguation. BMC Bioinformatics, 6(1):157, 2005.

II Tapio Pahikkala, Sampo Pyysalo, Filip Ginter, Jorma Boberg, Jouni
Järvinen, and Tapio Salakoski. Kernels incorporating word positional
information in natural language disambiguation tasks. In Ingrid Rus-
sell and Zdravko Markov, editors, Proceedings of the Eighteenth In-
ternational Florida Artificial Intelligence Research Society Conference,
pages 442–447, Menlo Park, Ca, 2005. AAAI Press.

III Tapio Pahikkala, Sampo Pyysalo, Jorma Boberg, Jouni Järvinen, and
Tapio Salakoski. Matrix Representations, Linear Transformations, and
Kernels for Disambiguation in Natural Language. TUCS Techical Re-
port 890, 2008. Submitted to a journal.

IV Tapio Pahikkala, Jorma Boberg, and Tapio Salakoski. Fast n-fold
cross-validation for regularized least-squares. In Timo Honkela, Tapani
Raiko, Jukka Kortela, and Harri Valpola, editors, Proceedings of the
Ninth Scandinavian Conference on Artificial Intelligence (SCAI 2006),
pages 83–90, Espoo, Finland, 2006. Otamedia.

V Tapio Pahikkala, Evgeni Tsivtsivadze, Antti Airola, Jorma Boberg, and
Tapio Salakoski. Learning to rank with pairwise regularized least-
squares. In Thorsten Joachims, Hang Li, Tie-Yan Liu, and ChengXiang
Zhai, editors, SIGIR 2007 Workshop on Learning to Rank for Informa-
tion Retrieval, pages 27–33, 2007.

VI Heidi Vähämaa, Pekka Ojala, Tapio Pahikkala, Olli S. Nevalainen, Riit-
ta Lahesmaa, and Tero Aittokallio. Computer-assisted identification of
multi-trace electrophoretic patterns in differential display experiments.
Electrophoresis, 28(6):879–893, 2007.

v

List of related co-authored and co-edited original
publications not included in the thesis

Co-authored publications

• Antti Airola, Sampo Pyysalo, Jari Björne, Tapio Pahikkala, Filip Gin-
ter, and Tapio Salakoski. Graph kernel for protein-protein interaction
extraction. BioNLP 2008 Workshop. To appear.

• Tero Aittokallio, Jani S. Malminen, Tapio Pahikkala, Olli Polo, and
Olli Nevalainen. Inspiratory flow shape clustering: An automated
method to monitor upper airway performance during sleep. Computer
Methods and Programs in Biomedicine, 85(1):8–18, 2007.

• Tero Aittokallio, Tapio Pahikkala, Pekka Ojala, Timo J. Nevalainen,
and Olli Nevalainen. Electrophoretic signal comparison applied to
mrna differential display analysis. BioTechniques, 34(1):116–122,
2003.

• Filip Ginter, Tapio Pahikkala, Sampo Pyysalo, Jorma Boberg, Jouni
Järvinen, and Tapio Salakoski. Extracting protein-protein interaction
sentences by applying rough set data analysis. In Husaku Tsumoto,
Roman Slowinski, Jan Komorowski, and Jerzy W. Grzymala-Busse,
editors, Proceedings of the Fourth International Conference on Rough
Sets and Current Trends in Computing, Uppsala, Sweden, volume 3066
of Lecture Notes in Computer Science, pages 780–785, Heidelberg,
2004. Springer.

• Filip Ginter, Tapio Pahikkala, Sampo Pyysalo, Evgeni Tsivtsi-
vadze, Jorma Boberg, Jouni Järvinen, Aleksandr Mylläri, and Tapio
Salakoski. Information extraction from biomedical text: The BioText
project. In Margit Langemets and Penjam Priit, editors, Proceed-
ings of the Second Baltic Conference on Human Language Technologies
(HLT 05), pages 131–136, 2005.

• Marketta Hiissa, Tapio Pahikkala, Hanna Suominen, Tuija Lehtikun-
nas, Barbro Back, Eija Helena Karsten, Sanna Salanterä, and Tapio
Salakoski. Towards automated classification of intensive care nurs-
ing narratives. In Arie Hasman, Reinhold Haux, Johan van der Lei,
Etienne De Clercq, and Francis Roger-France, editors, Ubiquity: Tech-
nologies for Better Health in Aging Societies. Proceedings of MIE2006.
The 20th International Conference of the European federation for Med-
ical Informatics, Studies in Health Technology and Informatics, pages
789–794, Amsterdam, 2006. IOS Press.

vi

• Marketta Hiissa, Tapio Pahikkala, Hanna Suominen, Tuija Lehtikun-
nas, Barbro Back, Helena Karsten, Sanna Salanterä, and Tapio
Salakoski. Towards automated classification of intensive care nurs-
ing narratives. International Journal of Medical Informatics, 76(3):
S362–S368, 2007.

• Tapio Pahikkala, Jorma Boberg, Aleksandr Mylläri, and Tapio
Salakoski. Incorporating external information in Bayesian classifiers
via linear feature transformations. In Tapio Salakoski, Filip Gin-
ter, Sampo Pyysalo, and Tapio Pahikkala, editors, Proceedings of the
5th International Conference on NLP (FinTAL 2006), volume 4139 of
Lecture Notes in Computer Science, pages 399–410, Heidelberg, 2006.
Springer.

• Tapio Pahikkala, Sampo Pyysalo, Jorma Boberg, Aleksandr Mylläri,
and Tapio Salakoski. Improving the performance of Bayesian and
support vector classifiers in word sense disambiguation using posi-
tional information. In Timo Honkela, Ville Könönen, Matti Pöllä,
and Olli Simula, editors, Proceedings of the International and Inter-
disciplinary Conference on Adaptive Knowledge Representation and
Reasoning, pages 90–97, Espoo, Finland, 2005. Otamedia.

• Tapio Pahikkala, Hanna Suominen, Jorma Boberg, and Tapio
Salakoski. Transductive ranking via pairwise regularized least-squares.
In Paolo Frasconi, Kristian Kersting, and Koji Tsuda, editors, Work-
shop on Mining and Learning with Graphs (MLG’07), pages 175–178,
2007.

• Tapio Pahikkala, Antti Airola, Hanna Suominen, Jorma Boberg, and
Tapio Salakoski. Efficient AUC maximization with regularized least-
squares. In Proceedings of the 10th Scandinavian Conference on Arti-
ficial Intelligence (SCAI 2008). To appear.

• Tapio Pahikkala, Evgeni Tsivtsivadze, Jorma Boberg, and Tapio
Salakoski. Graph kernels versus graph representations: a case study in
parse ranking. In Thomas Gärtner, Gemma C. Garriga, and Thorsten
Meinl, editors, Proceedings of the International Workshop on Mining
and Learning with Graphs (MLG’06), pages 181–188, 2006.

• Sampo Pyysalo, Filip Ginter, Tapio Pahikkala, Jorma Boberg, Jouni
Järvinen, and Tapio Salakoski. Evaluation of two dependency parsers
on biomedical corpus targeted at protein-protein interactions. Recent
Advances in Natural Language Processing for Biomedical Applications,
special issue of the International Journal of Medical Informatics, 75
(6):430–442, 2006.

vii

• Sampo Pyysalo, Filip Ginter, Tapio Pahikkala, Jorma Boberg, Jouni
Järvinen, Tapio Salakoski, and Jeppe Koivula. Analysis of link gram-
mar on biomedical dependency corpus targeted at protein-protein in-
teractions. In Nigel Collier, Patrick Ruch, and Adeline Nazarenko,
editors, Proceedings of the JNLPBA workshop at COLING’04, pages
15–21, 2004.

• Hanna Suominen, Sampo Pyysalo, Marketta Hiissa, Filip Ginter,
Shuhua Liu, Dorina Marghescu, Tapio Pahikkala, Barbro Back, He-
lena Karsten, and Tapio Salakoski. Performance evaluation measures
for text mining. In Min Song and Yi-Fang Wu editors, Handbook of
Research on Text and Web Mining Technologies, To appear.

• Hanna Suominen, Tapio Pahikkala, Marketta Hiissa, Tuija Lehtikun-
nas, Barbro Back, Eija Helena Karsten, Sanna Salanterä, and Tapio
Salakoski. Relevance ranking of intensive care nursing narratives.
In Bogdan Gabrys, Robert J. Howlett, and Lakhmi C. Jain, editors,
Knowledge-Based Intelligent Information and Engineering Systems,
10th International Conference, KES 2006, Part I, Lecture Notes in
Computer Science, pages 720–727, Heidelberg, 2006. Springer.

• Evgeni Tsivtsivadze, Tapio Pahikkala, Antti Airola, Jorma Boberg,
and Tapio Salakoski. A sparse regularized least-squares preference
learning algorithm. In Proceedings of the 10th Scandinavian Confer-
ence on Artificial Intelligence (SCAI 2008). To appear.

• Evgeni Tsivtsivadze, Tapio Pahikkala, Jorma Boberg, and Tapio
Salakoski. Locality kernels for sequential data and their applications
to parse ranking. Applied Intelligence. To appear.

• Evgeni Tsivtsivadze, Tapio Pahikkala, Jorma Boberg, and Tapio
Salakoski. Kernel methods for text analysis. In Advances of Compu-
tational Intelligence in Industrial Systems. To appear.

• Evgeni Tsivtsivadze, Tapio Pahikkala, Jorma Boberg, and Tapio
Salakoski. Locality-convolution kernel and its application to depen-
dency parse ranking. In Moonis Ali and Richard Dapoigny, editors,
Proceedings of the 19th International Conference on Industrial, Engi-
neering & Other Applications of Applied Intelligent Systems (IEA/AIE
2006), volume 4031 of Lecture Notes in Computer Science, pages 610–
618, Heidelberg, Germany, 2006. Springer.

• Evgeni Tsivtsivadze, Tapio Pahikkala, Sampo Pyysalo, Jorma Boberg,
Aleksandr Mylläri, and Tapio Salakoski. Regularized least-squares for
parse ranking. In A. Fazel Famili, Joost N. Kok, José Manuel Peña,

viii

Arno Siebes, and A. J. Feelders, editors, Proceedings of the 6th In-
ternational Symposium on Intelligent Data Analysis, volume 3646 of
Lecture Notes in Computer Science, pages 464–474, Heidelberg, Ger-
many, September 2005. Springer.

Co-edited conference proceedings

• Tapio Salakoski, Filip Ginter, Sampo Pyysalo, and Tapio Pahikkala,
editors. Proceedings of the Fifth International Conference on Natu-
ral Language Processing FinTAL 06, Turku, Finland, volume 4139 of
Lecture Notes in Artificial Intelligence, 2006. Springer, Heidelberg.

ix

x

Contents

1 Introduction 1
1.1 Aims of the Thesis . 2
1.2 Organization of the Thesis . 3

2 Regularized kernel methods 5
2.1 Kernel Functions . 6

2.1.1 Closure Properties of Kernel Functions 10
2.1.2 Constructing Learners with Linear Kernels 11

2.2 Regularization Framework . 13
2.2.1 Reproducing Kernel Hilbert Space 13
2.2.2 The Framework and the Representer Theorem 15

2.3 Cost Functions . 19
2.3.1 Support Vector Machines 19
2.3.2 Regularized Least-Squares 20
2.3.3 Preference Learning 23

2.4 Measuring Learner Performance 24
2.4.1 Measures for Binary Classification Learning 25
2.4.2 Measures for Ranking Performance 26
2.4.3 Hold Out and Cross-Validation 27
2.4.4 Computation of Hold Out for RLS Learners 28
2.4.5 Parameter Selection 31

3 Learning Tasks 33
3.1 Natural Language Disambiguation 33

3.1.1 Word Sense Disambiguation 33
3.1.2 Context-Sensitive Spelling Error Correction 34
3.1.3 Gene versus Protein Name Disambiguation 34

3.2 Learning to Rank for Information Retrieval 35
3.3 Pattern Recognition in Differential Display Experiments . . . 36
3.4 Other Applications . 37

3.4.1 Ranking of Dependency Parses 37
3.4.2 Classification and Ranking of Clinical Narratives . . . 38

xi

4 Summary of publications 39

5 Conclusions 43
5.1 Achievements of the Thesis 43
5.2 Future Work . 44

Bibliography 45

Publication Reprints 53

xii

Chapter 1

Introduction

The capability of a machine learning method to take advantage of prior
knowledge is often crucial for gaining satisfactory performance. By prior
knowledge, we mean a deeper insight of the application domain or the learn-
ing problem at hand, for example. Moreover, the computational efficiency
of a machine learning method has a strong influence on its usability.

With a learning machine, we refer to a system that may be automat-
ically trained with a given data set to perform a specific task. This is in
contrast, for example, to such rule-based artificial intelligence methods that
are completely designed and programmed by human experts. Machine learn-
ing algorithms can play an essential role in applications that are too difficult
or laborious to program by hand (see e.g. [40]). Many such application do-
mains are found, for example, in the fields of data mining, bioinformatics,
and natural language processing (NLP). In bioinformatics, there are huge
databases from which the machine learning methods can be used to mine
biological knowledge. Moreover, machine learning can be used to construct
automatic tools that facilitate effective analysis of biological data. In NLP,
machine learning can be used to improve the performance of automatic text
processing tools and to infer knowledge from text.

Recently, the fields of BioNLP and medical NLP have emerged, because
of the huge increase of the biological and medical texts. Usually, the tasks
related to this type of texts are more challenging than those related to
conventional text found, for example, from newspapers. Therefore, a lot of
attention has been paid for tailoring machine learning methods, for example,
to infer knowledge from scientific biological texts and clinical narratives.

This thesis considers ways to adapt machine learning algorithms to cer-
tain application domains and tasks. The adaptation is done by taking ad-
vantage of prior knowledge of the domain and task in question. By prior
knowledge, we mean, for example, information about what characteristic of
the data may be useful in solving the learning task. Further, prior knowl-

1

edge about the task may aid us in setting the actual objective of the learning
algorithm. For example, it is possible to learn to rank data points using a
regression algorithm, but the ranking performance may be improved by us-
ing a learning algorithm better suitable to the ranking task. In a sense, the
use of prior knowledge together with the machine learning results in “hy-
brid” algorithms that are partly human designed and partly automatically
learned. We focus on two typical ways to do the incorporation in the con-
text of kernel-based methods, namely on designing so-called kernel and cost
functions. The kernel functions can be considered as similarity measures
between data points. Further, a kernel function acts as an interface between
the actual learning algorithm and the data whose representation can depend
heavily on the application domain. We can easily use our knowledge of the
application domain to design the kernel function so that it helps to solve
the learning problem in question. The cost functions are used to determine
the actual learning objective. In case of a classification task or example,
each misclassification causes a certain cost and the objective of the learning
method is to minimize the number of misclassifications.

We also develop computationally efficient algorithms for training the
considered learning machines. The training algorithms are designed in such
a way that they work efficiently together with the kernel functions proposed
in this thesis. Moreover, algorithms for specific learning problems such as
ranking are designed. By ranking, we refer to a task in which a set of data
points are supposed to be ranked, for example, in order of importance. The
proposed ranking method consists of a cost function appropriate for the
ranking task and a computationally efficient training algorithm. Further,
we consider cross-validation, a widely used method for selecting parameter
values for the learning algorithms and performance measurement. We de-
velop fast algorithms for cross-validation and parameter selection for the
learning methods considered in this work.

1.1 Aims of the Thesis

The general aims of this thesis are to design machine learning algorithms
that are computationally efficient and to incorporate prior knowledge of the
learning tasks in question in an advantageous way. We divide this objective
into the following two parts.

Incorporating Prior Knowledge We develop kernel functions especially
for the natural language disambiguation problems. The proposed kernels
take account of the positional information and the mutual similarities of
the context words in an advantageous way. We evaluate our kernels with
various disambiguation tasks. The tasks are gene versus protein name dis-

2

ambiguation, word sense disambiguation, and context sensitive spelling error
correction. As kernel-based learning algorithms, we use support vector ma-
chines (see e.g. [72]), regularized least-squares (RLS) (see e.g. [51]), and
flexible Bayes classifiers [31]. For pattern recognition in differential display
data, we consider the use of polynomial kernel functions of different degrees.
The kernels are used together with the regularized least-squares algorithm.

We also use of our insight of the ranking tasks to develop learning al-
gorithms. The problem of ranking is often cast as a problem of learning
pairwise preferences so that the training set is composed of data point pairs,
in which one point is preferred over the other. In this case, the aim is to
predict the direction of preference for each data point pair. Therefore, we
develop a cost function that approximates the number of pairwise misrank-
ings and set the objective of the learning algorithm to be the minimization
of this cost. The cost function can be considered as a variation of the cost
function used in RLS learners.

Developing Efficient Algorithms Most of the considered kernel func-
tions can be calculated via linear transformations of the data vectors. There-
fore, we use standard linear algebra techniques also to train kernel-based
learning machines efficiently. Further, we develop a highly efficient predic-
tion algorithm for a learning method trained using the kernel functions.

Moreover, we consider methods based on linear algebra for training RLS
learners. In particular, we develop a computationally efficient algorithm for
performing cross-validation with RLS learners. This type of algorithms are
also designed for variations of RLS, such as the ranking version of the RLS
proposed by us.

A drawback of our ranking cost function is that the number of data
point pairs grows quadratically with respect to the number of individual
data points in the training set, and hence increasing the computational
complexity of the traditional algorithms that are used to minimize this type
of costs. Therefore, we develop a new algorithm for minimizing the cost
whose computational complexity depends on the number of individual data
points instead of the number of data point pairs, hence making the use of
the ranking method practical.

1.2 Organization of the Thesis

The thesis is organized as follows. Chapter 2 presents a formal introduction
to the methods used in this thesis. The introduction is based on machine
learning literature and the research papers included in this thesis. The
learning tasks are described in Chapter 3. A summary of each paper included
in this thesis is presented in Chapter 4, and Chapter 5 concludes the work.

3

4

Chapter 2

Regularized kernel methods

In this chapter, we briefly describe machine learning methods relevant for
the thesis. We first recall the concept of supervised learning. A supervised
learner is a machine that is taught with a set of training examples to perform
a specific task. By a task, we mean the prediction of an output for an unseen
data point. Formally, let X = (x1, . . . , xm) ∈ (Xm)T be a sequence of inputs,
Y = (y1, . . . , ym)T ∈ Ym a sequence of outputs, where X and Y, called the
input space and the output space, are the sets of possible inputs and outputs,
respectively. In this thesis, Zm and (Zm)T denote the sets of column and
row vectors of size m whose elements belong to the set Z, respectively.
Moreover, let S = ((x1, y1), . . . , (xm, ym))T ∈ (X × Y)m be a training set of
m training examples, where (X ×Y)m denotes the set of all possible training
sets of size m. Note that while we call S a training set, it is actually an
ordered sequence of examples. Further, we use the term data point when
we refer to input-output pairs z = (x, y) that do not necessarily belong to
the training set. Unless stated otherwise, we restrict our considerations to
the case in which Y ⊆ R, and hence the sequence of outputs can be treated
as a real column vector Y ∈ Rm. Training of a supervised learner can be
considered as a process of selecting a function among a set of candidates
that best performs the task in question. Following the notation of [24], we
formalize the training algorithm in the following way. An algorithm A that
selects the function given the training set S can be considered as a mapping

A :
⋃

m∈N
(X × Y)m → H, S 7→ f, (2.1)

where H ⊆ YX , called the hypothesis space, is a set of functions among
which the algorithm selects an appropriate hypothesis f ∈ H. With YX and⋃

m∈N(X ×Y)m, we denote the set of all functions from X to Y, and the set
of all possible training sets, respectively.

Typical difficulties of supervised learning are underfitting and overfitting.
By underfitting, we mean that the learning algorithm selects a function that

5

is not able to correctly predict the outputs of the training examples. This
usually happens when the hypothesis space H does not contain the correctly
predicting functions or when the training algorithm does not prefer to select
them. For example, if the functional relationship between the inputs and
outputs is nonlinear, a learning machine may underfit if the hypothesis space
consists of linear functions only. Overfitting, on the other hand, refers to
the situation in which the selected function can correctly predict the outputs
of the training examples, but fails to do so with unseen data points. This
may happen when too complex functions are selected. For example, if we
memorize the whole training set into a lookup table and randomly predict
the outputs for unseen data points, we have fitted perfectly to the training
data but we have not learned to predict correctly.

In this thesis, we use so-called kernel functions to modify the hypothesis
space to better fit to the learning task in question and therefore make the
learning machines less likely to underfit. We also use so-called regularization
techniques and this causes the learning algorithm to prefer simple functions
over complex ones in order to avoid the problem of overfitting.

We next discuss about kernel-based learning algorithms. Designing ker-
nel functions suitable for specific learning problems is a practical way to in-
corporate prior knowledge of the problem into the learning machine. More-
over, with the help of kernel functions, we are usually able to make the
hypothesis space H expressive enough so that the underfitting does not hap-
pen. The obtained space H provides us the tools to measure the complexity
of its elements so that the problem of overfitting can be avoided. The use of
such tools is often called regularization, and hence we refer to the resulting
algorithms as regularized kernel methods.

In order to determine how well a learner is able to predict the outputs of
unseen data points, we measure its performance on a test set of data points
that the learner has not used in the training phase. How the measurement
is done, depends on the learning task in question. In Section 2.4, we give
a brief presentation on the performance measures that are relevant in the
thesis.

2.1 Kernel Functions

Kernel-based learning algorithms (see e.g. [24, 64, 65]) consist of a learning
algorithm and the kernel function. The kernel can be considered as a simi-
larity measure between two inputs which corresponds to their inner product
in some feature space into which the original inputs are mapped. This is
very useful, for instance, when the concept to be learned depends nonlin-
early on the data, but the learning algorithm is able to learn only linear
dependencies. For example, we may have a two-class classification problem

6

Φ

Figure 2.1: If inputs of one class all lie inside a circle in two-dimensional
space and inputs of another class are all outside of the same circle, a linear
learning machine cannot classify them correctly. We can fix this situation
by using a feature mapping Φ that maps the inputs into a new feature space
where they are linearly separable.

in which the class boundary is a circle so that the inputs of data points
belonging to the positive class lie inside and the inputs of the negative data
points outside the circle. This kind of situation is depicted in Figure 2.1 —
the mapping Φ transforms the boundary to a form a learner can “compre-
hend”. In order to design a good kernel function for a particular learning
problem, we may use prior knowledge of the problem (see e.g. [63] for a
typical example of this approach).

Formally, let X denote the input space, which can be any set, and F
denote the feature vector space. For any mapping

Φ : X → F , (2.2)

the inner product
k(x, z) = 〈Φ(x),Φ(z)〉 (2.3)

of the mapped inputs is called a kernel function.
Note that if we have an efficient way to compute the kernel directly, there

is no need to explicitly compute the mapping Φ, because the kernel-based
learning algorithms need only the value k(x, z). In fact, we do not even
have to care about the mapping Φ or the feature space F . However, in that
case we still need to ensure that the mapping exists so that the function
k(x, z) really corresponds to an inner product in some feature space. A
necessary condition for this is that k(x, z) is symmetric and finitely positive
semidefinite (see e.g. [65]). A kernel k(x, z) is said to be finitely positive
semidefinite if

m∑
i,j=1

aiajk(xi, xj) ≥ 0 (2.4)

7

for any m ∈ N, x1, . . . , xm ∈ X , and a1, . . . , am ∈ R. On the other hand,
symmetry of a kernel function means that k(x, z) = k(z, x) for all x, z ∈ X .

Given a sequence X ∈ Xm of inputs, the values of the kernel function
for each pair of inputs are usually stored in so-called kernel matrix. Before
presenting the kernel matrix, we define some useful shorthand notations.
Firstly, let Φ(X) be row vector whose elements are the images of the inputs
of the training examples, that is,

Φ(X) = (Φ(x1), . . . ,Φ(xm)) ∈ (Fm)T. (2.5)

Secondly, we define

k(x,X) = (k(x, x1), . . . , k(x, xm)) ∈ (Rm)T (2.6)

and

k(X, x) =

 k(x1, x)
...

k(xm, x)

 ∈ Rm

for all x ∈ X , X ∈ (Xm)T. Finally, similarly to the above notations, we
define the kernel matrix K ∈ Rm×m, where Rm×m denotes the set of all
m×m real matrices, as

K = k(X, X) =

 k(x1, x1) · · · k(x1, xm)
...

. . .
...

k(xm, x1) · · · k(xm, xm)

 . (2.7)

For example, if the codomain of the mapping Φ : X → F is F = Rh, we
can consider Φ(X) as a real matrix of type m× h and the kernel matrix is
the result of a matrix product of Φ(X)T and Φ(X). We can also express
the finitely positive semidefiniteness condition (2.4) equivalently by saying
that K is always a positive semidefinite matrix. Formally, this means that
if the kernel function is symmetric and a finitely positive semidefinite, then
for any m ∈ N, X ∈ (Xm)T, and A ∈ Rm,

ATKA ≥ 0,

where K is the kernel matrix k(X, X). This property is very useful for the
learning algorithms considered in Section 2.2.

There are various types of kernels that can be found in the literature.
Next, we consider so-called polynomial kernels (see e.g. [50, 64]). Let [x]j
denote the jth component of an input space vector x. Suppose that the
input space is two-dimensional and the learning problem to be solved is
not linear, that is, the classes in a binary classification task are not linearly
separable. In Figure 2.1, for example, the inputs of one class lie in a circle in

8

two-dimensional space and inputs of another class are all outside of the same
circle. The circle separating the two classes can not be expressed linearly
with the two input features. However, the linear separation is possible using
the second order product features [x]21, [x]1[x]2, and [x]22. Therefore, we
transform the input features into their second order product features with
a feature map

Φ : R2 → R3, ([x]1, [x]2) 7→ ([x]21, [x]22, [x]1[x]2). (2.8)

The values of Φ are easy to compute and so is the inner product 〈Φ(x),Φ(z)〉.
However, the computations are very demanding in higher dimensional input
spaces because the number of the product features grows exponentially. In
fact, when the number of input features is n, there are altogether(

d + n− 1
n

)
=

(d + n− 1)!
n!(d− 1)!

product features of order d.
If we, instead of (2.8), consider the following mapping of the inputs

Φ : R2 → R3, ([x]1, [x]2) 7→ ([x]21, [x]22,
√

2[x]1[x]2),

we can compute the inner product between the mapped inputs with the
following polynomial kernel function of degree 2:

k(x, z) = 〈Φ(x),Φ(z)〉 = [x]21[z]21 + [x]22[z]22 + 2[x]1[x]2[z]1[z]2 = 〈x, z〉2,

which is simply the square of the inner product taken in the input space.
Of course, the same function can be determined for arbitrary n and d ∈ N,
where d ∈ N is the degree of the polynomial. Using this kind of shortcut,
the expensive computations of values of Φ and their inner products can be
avoided. In a general case, the homogenous polynomial kernels are of the
form

k(x, z) = 〈x, z〉d. (2.9)

Sometimes, also so-called inhomogenous polynomial kernels are used, that
is,

k(x, z) = (γ + 〈x, z〉)d

=
d∑

i=0

(
d

i

)
γd−i〈x, z〉i,

where γ ∈ R+ is a parameter that determines the weights of the homogenous
polynomial kernels of different degrees. As an example can be mentioned
that we used a homogenous polynomial kernel of degree 8 in paper [VI] when
identifying electrophoretic patterns, whereas inhomogenous polynomial ker-
nels were used in paper [I].

9

2.1.1 Closure Properties of Kernel Functions

In order to construct kernel functions from existing ones, or by using some
other functions as building blocks, the following closure properties of kernel
functions are essential; they can be found in [12], for example. Let k1 and
k2 be kernel functions and K1,K2 ∈ Rm×m be the corresponding kernel
matrices. Further, assume α ∈ R+ and A ∈ Rm. Then we may give the
following observations.

• Sum of k1(x, z) and k2(x, z):

k(x, z) = k1(x, z) + k2(x, z) (2.10)

is a kernel, because AT(K1 + K2)A = ATK1A + ATK2A ≥ 0.

• Multiplication of k1(x, z) by a positive constant α:

k(x, z) = αk1(x, z) (2.11)

is a kernel, because ATαK1A = αATK1A ≥ 0.

• The product of k1(x, z) and k2(x, z):

k(x, z) = k1(x, z)k2(x, z) (2.12)

is a kernel (see [12] for a proof).

• If g(·) is a real valued function on X , then

k(x, z) = g(x)g(z) (2.13)

is a kernel, because∑
i,j

aiajk(xi, xj) =
∑
i,j

aiajg(xi)g(xj)

=
∑

i

aig(xi)
∑

j

ajg(xj)

=

(∑
i

aig(xi)

)2

≥ 0

for any set of inputs x1, . . . , xm and any a1, . . . , am ∈ R.

• Any positive real constant

k(x, z) = α (2.14)

is a kernel. Note that this follows directly from (2.13) by choosing
g(x) =

√
α for all x ∈ X .

10

• Any polynomial p with positive coefficients evaluated at k1:

k(x, z) = p(k1(x, z)) (2.15)

is a kernel.

• The exponential function

k(x, z) = ek1(x,z) (2.16)

is a kernel, because we can approximate it arbitrarily closely using
polynomials with positive coefficients.

• If Ψ is a mapping from X to Rn, where n ∈ N, and k3 is a kernel on
Rn × Rn, then

k(x, z) = k3(Ψ(x),Ψ(z)) (2.17)

is a kernel. This follows from the fact that because each Ψ(x) is already
a vector in some feature space, the matrix obtained by using a valid
kernel k3 restricted to those vectors is positive semidefinite as required.

• If x, z ∈ Rn and M̂ ∈ Rn×n is a symmetric positive semidefinite matrix,
then

k(x, z) = xTM̂z (2.18)

is a kernel. This can be seen by considering the eigen decomposi-
tion M̂ = V ΛV T, where V is an orthogonal matrix that contains the
eigenvectors of K, and Λ is a diagonal matrix containing the corre-
sponding eigenvalues. Due to the positive semidefiniteness of M̂ , the
eigenvalues are nonnegative. Therefore, by setting Φ(x) = Mx, where
M =

√
ΛV T and

√
Λ is a diagonal matrix that contains the square

roots of the eigenvalues, we can rewrite (2.18) as

k(x, z) = xTM̂z = xTV ΛV Tz = xTV
√

Λ
√

ΛV Tz = 〈Φ(x),Φ(z)〉.

which is of the form (2.3). Note that in this thesis the mappings of
the form x 7→ Mx are generally referred to as linear transformations,
or simply as transformations.

2.1.2 Constructing Learners with Linear Kernels

We now consider the special case of the kernel functions being linear, that
is, kernels constructed using the closure property (2.18). Suppose that our
input space and feature space are X = Rn and F = Rh, respectively. Re-
call that, in this case, the feature mapping can be expressed as a linear
transformation of the inputs

Φ(x) = Mx,

11

where M ∈ Rh×n is called the matrix of the transformation. Then, the
kernel (2.3) can be written as

k(x, z) = 〈Mx,Mz〉 = (Mx)TMz = xTMTMz. (2.19)

We can also perform the kernel calculation so that we transform the input
x with a matrix

M̂ = MTM.

Since M is a real-valued matrix the identity matrix I ∈ Rh×h is positive
definite, we can write for any x ∈ Rn

xTMTIMx = bTIb ≥ 0,

where b = Mx. Therefore, the matrix M̂ is a symmetric positive semidefinite
and it can be used to determine a kernel function for the inputs. Thus,
we obtain the value of (2.19) also by computing the inner product of the
transformed inputs M̂x and z

k(x, z) =
〈
M̂x, z

〉
.

In Section 2.2, we consider functions that are linear combinations of the
inputs xi of the training examples in the feature space

f(·) =
m∑

i=1

aik(·, xi),

where ai ∈ R. When the kernel is linear, this type of functions can be
expressed as

f(·) =
m∑

i=1

aik(·, xi)

=
m∑

i=1

ai

〈
·, M̂xi

〉
=

〈
·, M̂

(
m∑

i=1

aixi

)〉
= 〈·, w〉.

If we have w stored in the memory, the evaluation of the function at input
x ∈ X can be calculated in a linear time with respect to the number of
nonzero elements in x. This is, because we do not have to calculate the
kernel functions separately for each training example but only the inner
product between x and w. This is a clear computational advantage when

12

compared to the most commonly used nonlinear kernels with which this
kind of speedup is not possible. Moreover, the computational benefit is
even larger if the input vectors are sparse, that is, if most of the elements
of the input vectors are zeros. We further note that there are also nonlinear
kernels that take advantage of the sparsity of the feature vectors (see e.g.
[61]).

We study kernel functions constructed from linear feature transforma-
tions especially in paper [III] but the kernels considered in papers [45] and [II]
can also be linearized in a similar way as in the above examples. In addition,
the contextual weighting considered in [I] can also be realized with a linear
transformation, but in that study, we use nonlinear kernels together with
the weighting. Further, many kernel functions taking advantage of external
source of information (such as the one proposed in [6]) can be considered as
linear feature transformation based kernels.

2.2 Regularization Framework

We now consider an approach that we call here the regularization framework.
Both the support vector machines and the regularized least-squares learners
can be considered as instances of this framework. As a similarity measure
of the input space elements, we use a symmetric and positive definite kernel
function k. In Section 2.2.1, we consider the hypothesis space determined
by the kernel k and the input space X . In Section 2.2.2, we aim to select
such a hypothesis f from H that performs well on the training data set but
is not overly complex. We use definitions similar to that used in [62].

2.2.1 Reproducing Kernel Hilbert Space

As discussed above, a learning algorithm A defined as in (2.1) selects a
function f from a hypothesis space H that fits the training data well but is
not too complex. Given a finitely positive semidefinite kernel function k, we
can construct a hypothesis space of functions which is called a reproducing
kernel Hilbert space (RKHS) [4]. This provides us the machinery

• to measure how well each candidate hypothesis fit to the training data,
and

• to measure the complexity of the hypotheses.

Therefore, we are able to construct learning algorithms that make a trade-off
between training set performance and hypothesis complexity. These kinds
of algorithms are discussed in Section 2.2.

We follow [24, 52, 62, 64], with an exception that, for simplicity, we
restrict our consideration to the real-valued functions. Recall the following
characteristic properties of any Hilbert space H:

13

(i) H is a vector space (over R in our case),

(ii) H is endowed with an inner product,

(iii) H is complete, that is, every Cauchy sequence in H is a convergent
sequence.

Next we consider an interpretation of the mapping Φ that allows us to
construct the RKHS corresponding to the kernel k and the input space X .

Let RX denote the space of all functions that map from the input space
X to real numbers. Then, the feature mapping can be defined as

Φ : X → RX , z 7→ k(·, z), (2.20)

where k(·, z) : X → R denotes the function assigning the real number k(x, z)
to x ∈ X , that is, Φ(z)(·) = k(·, z). Let H0 be the span of the image of the
mapping Φ, that is, the set of all finite linear combinations of the elements
of {k(·, z) | z ∈ X} ⊂ RX . Formally,

H0 =

{
n∑

i=1

βik(·, zi)
βi ∈ R, zi ∈ X , n ∈ N

}
.

Clearly, H0 is a vector space over R.
Next, we endow H0 with an inner product. Let f, g ∈ H0 be defined by

f(·) =
n∑

i=1

αik(·, xi), and g(·) =
n′∑

j=1

βjk(·, zj),

where n, n′ ∈ N, αi, βj ∈ R, and xi, zj ∈ X . We define the inner product for
the elements of H0 to be the following

〈f, g〉k =
n∑

i=1

n′∑
j=1

αiβjk(xi, zj)

=
n∑

i=1

αig(xi)

=
n′∑

j=1

βjf(zj).

(2.21)

This really is an inner product, because it can be shown (see e.g. [52]) that
it satisfies the following properties:

(i) Symmetry: 〈f, g〉k = 〈g, f〉k

(ii) Bilinearity: 〈af + bg, h〉k = a〈f, h〉k + b〈g, h〉k

14

(iii) Strict positive definiteness:

〈f, f〉k ≥ 0, and 〈f, f〉k = 0 implies that f = 0

The term reproducing kernel comes from so-called reproducing kernel prop-
erty that follows directly from the definition (2.21). Namely,

〈k(·, x), g〉k = g(x), (2.22)

which can be seen by choosing f(·) = k(·, x) in (2.21), and in particular

〈k(·, x), k(·, z)〉k = k(x, z).

We can also express this by saying that k is the representer of evaluation,
that is, a function f is evaluated at the input x by taking the inner product
〈k(·, x), f〉k.

By endowing the vector space H0 with the inner product (2.21), we have
obtained a pre-Hilbert space. We also note that the norm induced by the
inner product (2.21) is

‖f‖k =
√
〈f, f〉. (2.23)

Following [62], we define the RKHSH corresponding to the kernel k to be the
completion of H0, that is, in addition of all the finite linear combinations of
the elements of {k(·, x) | x ∈ X} ⊂ RX , H also contains all limits of Cauchy
sequences that are convergent in the norm:

H =

{
f(·) =

∞∑
i=1

βik(·, zi), βi ∈ R, zi ∈ X , ‖f‖k < ∞

}
. (2.24)

The inner product in H is defined analogously to that in H0.

2.2.2 The Framework and the Representer Theorem

Let H be the hypothesis space defined as in (2.24). A suitable measure of
the hypothesis complexity can be obtained from the function norm in the
RKHS defined by the kernel k. Therefore, we define a function

Ω : R → R+ (2.25)

that we call a regularizer. The only requirement for (2.25) is that it is strictly
monotonically increasing. The regularizer (2.25) assigns a value

Ω(‖f‖k) (2.26)

for the function f that we use as its complexity measure.

15

The performance of the hypothesis on the training data set can be mea-
sured with various ways which depend on the learning task in question. We
start by first defining a general cost function and consider more specific ones
in the sequel. Let us denote f(X) = (f(x1), . . . , f(xm))T for sequence of in-
puts X = (x1, . . . , xm) and a hypothesis f ∈ H. We use cost functions of
type

c : Rm × Rm → R (2.27)

to assign a value
c(Y, f(X)) (2.28)

on the given training set S and a candidate hypotheses f ∈ H that measures
how well f fits S. Usually, the cost functions have zero as their minimum
value. Further, the larger is the value of the cost function, the worse is the
fit considered to be. Similar kind of functions are also used to measure the
performance of a hypothesis on a given test data set (Section 2.4). The cost
functions are often approximations of the performance measures, because
searching H for an optimally performing hypothesis may otherwise be an
intractable task. In the sequel, we present some examples of cost functions.

We now consider the following variational problem as a realization of
(2.1) that we use to select an appropriate hypothesis f among H for a given
training set S. The problem is formally defined as

A(S) = argmin
f∈H

(c(Y, f(X)) + Ω(‖f‖k)). (2.29)

The first term measures the performance of a candidate hypothesis on the
training set and the second term, the regularizer, measures the complexity
of the hypothesis with the RHKS norm.

Following [62], we present the generalized representer theorem. Any
solution f ∈ H of the minimization (2.29) admits the representation of the
following form:

f(·) =
m∑

i=1

aik(·, xi), (2.30)

where ai ∈ R and k is the kernel function associated with the RKHS men-
tioned above. This can be shown by contradiction. Suppose that the optimal
hypothesis f can not be expressed with the images of the inputs and is there-
fore not of the form (2.30). Because H is a vector space, f can be written
in the following two mutually orthogonal parts

f(·) =
m∑

i=1

aik(·, xi) + v(·), (2.31)

where v(·) ∈ H is a function with

〈k(·, xi), v(·)〉k = 0

16

for all 1 ≤ i ≤ m. Recall that since of the reproducing property (2.22) holds,
we can write v(z) = 〈k(·, z), v(·)〉k for z ∈ X . Therefore, we observe that,
for all inputs xj , 1 ≤ j ≤ m,

f(xj) = 〈k(·, xj),
m∑

i=1

aik(·, xi) + v(·)〉k

=
m∑

i=1

aik(xj , xi) + 〈k(·, xj), v(·)〉k

=
m∑

i=1

aik(xj , xi),

that is, the value of (2.28) is independent of v.
Moreover,

Ω(‖fv(·)‖k) = Ω


√√√√wwwww

m∑
i=1

aik(·, xi)

wwwww
2

k

+ ‖v(·)‖2
k


≥ Ω

(wwwww
m∑

i=1

aik(·, xi)

wwwww
k

)
,

that is, the smallest value of the regularizer (2.26) is obtained when ‖v(·)‖k =
0. Therefore, when we substitute (2.31) in (2.29), we observe that (2.31)
can be the solution only if v = 0, which proves the representer theorem.

Due to the representer theorem, we can restrict our set of candidate
hypotheses to be the set of linear combinations of the training examples
mapped with (2.20):

HX =

{
m∑

i=1

aik(·, xi) | ai ∈ R

}
⊆ H.

Therefore, we only need to solve a regularization problem with respect to a
finite number of coefficients ai.

Let A = (a1, . . . , am)T ∈ Rm be a vector consisting of some real values
and let

fA(·) =
m∑

i=1

aik(·, xi) ∈ HX

be the function determined by the vector A. According to (2.5), (2.6) and
(2.20), we write

Φ(X) = k(·, X) = (k(·, x1), . . . , k(·, xm)) ∈ (Hm)T

17

and, in particular

k(z, X) = (k(z, x1), . . . , k(z, xm)) ∈ (Rm)T, for z ∈ X .

Using this type of matrix notation, the image fA(z) of an input z ∈ X can
be written as

fA(z) =
m∑

i=1

aik(z, xi) = k(z,X)A. (2.32)

Similarly, the column vector fA(X) ∈ Rm, that contains the output predic-
tions for the training examples obtained with the function fA, is

fA(X) =

 k(x1, X)A
...

k(xm, X)A

 = k(X, X)A = KA. (2.33)

Further, the norm of fA is

‖fA‖k =
√
〈fA, fA〉k =

√√√√ m∑
i,j=1

aiajk(xi, xj) =
√

ATKA. (2.34)

We may use these forms in (2.29) and have

A(S) = argmin
A∈Rm

(
c(Y, KA) + Ω

(√
ATKA

))
. (2.35)

We have not yet considered the actual algorithms used to search the
optimal coefficient vector that minimize the regularization problem. The
difficulty of the problem depends crucially on the selection of the suitable
cost function and on the regularizer. One of the greatest difficulties related
to the classical machine learning algorithms is the problem caused by having
several local minima. That problem can be avoided by ensuring that both
the cost function and the regularizer are convex. Recall that a function g is
convex if g(zx + (1− z)y) ≤ zg(x) + (1− z)g(y) for any two vectors x and
y in the domain of g and any z in [0, 1].

We restrict our considerations here to the following convex regularizer,
sometimes called a quadratic regularizer, which usually leads to feasible op-
timization problems:

Ω(‖f‖k) = λ‖f‖2
k = λATKA. (2.36)

Here λ ∈ R+ is called a regularization parameter. The regularization param-
eter is used to control the tradeoff between the training set performance and
the hypothesis complexity. Thus, if we set λ = 0, we do not perform any
regularization and we select the hypothesis that minimizes the cost function
only. In this case, the hypothesis may, of course, be too complex and overfit
to the training set. On the other hand, if the value of the parameter is too
large, the selected hypothesis may be too simple to be able to fit properly
to the training set.

18

2.3 Cost Functions

We can select an appropriate cost function depending on the learning prob-
lem in question. For example, if we want to maximize the accuracy when
solving a binary classification task in which the class labels y are either +1
or −1 (see (2.51) in Section 2.4.1), a natural way would be to minimize the
number of misclassifications. Let

sign(r) =


1, r > 0
0, r = 0
−1, r < 0

. (2.37)

be the signum function. The ith training example is misclassified by a
hypothesis f if yi 6= sign(f(xi)) and hence the number of misclassification
can be calculated as

c(Y, f(X)) =
m∑

i=1

1
2
|yi − sign(f(xi))|. (2.38)

Here the prediction f(x) = 0 can be interpreted, for example, so that the
classifier is not taking the risk to predict the wrong class for x, and hence
the cost is only 1/2.

Unfortunately, it is reported that the use of (2.38) as a cost function
usually leads to intractable optimization problems (see e.g. [64] where fur-
ther references can be found). Therefore, instead of using (2.38), we use
such cost functions that only approximate (2.38) and thus leads to “easier”
optimization problems. Further, we use only convex cost functions to avoid
the problem of having multiple local minima.

2.3.1 Support Vector Machines

We get several well-known classification algorithms with different approxi-
mations of the misclassification cost function (2.38). For example, support
vector machine classifiers [72] are obtained with

c(Y, f(X)) =
m∑

i=1

max(1− yif(xi), 0), (2.39)

which is called the hinge loss or the linear soft margin loss function.
Due to the nature of the loss function, the problem to be solved is an

instance of quadratic optimization problems (see e.g. [7]). However, instead
of using a general purpose quadratic problem solvers, SVMs are usually
trained with algorithms that are specially designed for them. One such
algorithm is, for example, the sequential minimal optimization algorithm
given in [49].

19

An algorithm that trains SVM for each value of the regularization pa-
rameter that make any difference in the form of the minimizer of the regu-
larization problem was proposed in [21]. This type of algorithms are usually
called regularization path algorithms (see e.g. [60] for more information on
this topic). Briefly, the training algorithm starts from the extreme margin
case where the regularization parameter is initialized to

λ = max
j∈{1,...,m}


m∑

i=1

yik(xi, xj)

 . (2.40)

It can be shown that regularization parameter values larger than or equal to
(2.40) determine a minimizer of (2.35) in which the coefficient vector satisfy
λA = Y . The algorithm then trawls through the intermediate values of λ
and ends at the optimal margin, that is, the linearly separable case when
yif(xi) ≥ 1 for all the training inputs. If the data are not linearly separable,
λ goes all the way down to zero, and the algorithm ends at the solution with
minimal training error measured by the cost function (2.39). We note that
the vector A is piecewise linear with respect to λ, that is, there are only a
finite number of different vectors λA along the way from the extreme margin
to the minimal training error, and hence it is not necessary to train the SVM
classifier with several values of λ that correspond to the same vector. As
a rule of thumb, the extreme margin usually underfits, the optimal margin
may overfit and the best value of the regularization parameter is somewhere
in between these two extremes. However, the algorithm does not tell which
value of the regularization parameter is the optimal for the classification ac-
curacy. Therefore, it has to be found out, for example, by cross-validation.
Nevertheless, [21] claim that their regularization path algorithm runs as
efficiently as training SVM for only a single value of the regularization pa-
rameter, and hence it has an important computational advantage over the
previously proposed SVM training algorithms.

2.3.2 Regularized Least-Squares

Regularized least-squares learners are obtained with the least-squares cost
function,

c(Y, KA) =
m∑

i=1

(yi − f(xi))2 = (Y −KA)T(Y −KA), (2.41)

Traditionally, regularized least-squares (RLS) type of algorithms have been
applied to regression problems [51]. However, lately they have also been
used on other machine learning problems, such as classification, and their
performance has been reported to be comparable to that of the ordinary
support vector machines [57]. Recently, we have successfully applied RLS

20

to classification of clinical narratives [27, 67] and identification of multi-
trace electrophoretic patterns in differential display experiments [VI]. Our
another successful application area has been ranking of dependency parses
[48, 69, 71].

Using the least-squares cost function (2.41) and the quadratic regularizer
(2.36), we may rewrite (2.29) in a matrix form as follows

A(S) = argmin
A∈Rm

(
(Y −KA)T(Y −KA) + λATKA

)
. (2.42)

The solution can be found by first taking a gradient of the objective to be
minimized with respect to A, that is,

∇A = (−K)T(Y −KA) + λKA.

Then, the gradient is set to be zero and solved with respect to A:

A = (KK + λK)−1KY. (2.43)

If the kernel matrix is positive semidefinite instead of being strictly positive
definite, the solution is not unique. However, as discussed above, each solu-
tion of (2.43) is a global optimum of (2.42), because both the cost function
and the regularizer are convex. Since we only need one solution, we can (see
[57]) reduce (2.43) to

A = (K + λI)−1Y. (2.44)

The matrix K+λI is invertible if λ > 0, because the kernel matrix is positive
semidefinite. We next consider an implementation technique for the RLS
algorithm that is in many cases more practical than directly computing the
inverse of the diagonally shifted kernel matrix as in (2.44).

We have made a simple implementation of the RLS algorithm which is
described in [IV]. The implementation is done via the eigen decomposition
of the kernel matrix. Our implementation of the RLS has the following
three computational advantages as compared to the ordinary support vector
machines.

• It is possible to calculate the N -fold cross-validation (CV) performance
of RLS on the training data without retraining in each CV round. The
proposed CV method for RLS is a generalization of the fast leave-one-
out cross-validation (LOOCV) method for RLS which is widely known
in the literature.

• We can compute the RLS solution for several different values of the
regularization parameter in parallel.

21

• Several problems on the same data set can be solved in parallel pro-
vided that the same kernel function is used with each problem. We
note that in the following considerations, the sequence of the outputs
Y can also be defined to be a matrix Y ∈ Rm×p whose rows are the
vectors of the outputs, that is, it has one column per each of the p
problems to be solved in parallel (see e.g. [58] for a more comprehen-
sive discussion of this type of parallelization).

We now introduce the eigen decomposition on which our approach for train-
ing RLS learners is based on.

Let G = (K + λI)−1 denote the inverse of the diagonally shifted kernel
matrix. Teaching several learners in parallel is efficient, because G has to be
computed only once and it can then be used in (2.44) for each subproblem.
The computational complexity of the matrix inversion is O(m3) in the worst
case. Therefore, the complexity of the matrix multiplication of G with Y
is negligible when the number of subproblems p is small compared to the
number of training examples m.

We do not usually know in advance the optimal value of the regular-
ization parameter λ for the learning task in question, and therefore several
values have to be tested (see Section 2.4.5 for more discussion on select-
ing the parameters). We can train an RLS learner efficiently with several
different values of λ via the eigen decomposition of the kernel matrix

K = V ΛV T, (2.45)

where V is an orthogonal matrix that contains the eigenvectors of K and
Λ is a diagonal matrix that contains the corresponding eigenvalues. The
computational complexity of calculating the eigen decomposition of K is
also O(m3) in the worst case. We observe that

G = (V ΛV T + λI)−1 = V Λ̃λV T (2.46)

in which the diagonal matrix Λ̃λ = (Λ+λI)−1 contains the eigenvalues of G.
To be exact, the element [Λ̃λ]i,i is 1/(µi + λ), where µi is the ith eigenvalue
of K. Note that we do not need to compute the matrix G, because the
solution (2.44) can now be efficiently obtained by computing the following
matrix products in the order determined by the parentheses

A = V
(
Λ̃λ(V TY)

)
. (2.47)

Since, we can easily calculate the eigenvalue matrix Λ̃λ for different values
of λ, we can easily compute a whole array of the corresponding RLS solu-
tions from (2.47). We can then select the regularization parameter for each
subproblem with a cross-validation which we consider below.

22

The idea of training RLS using the eigen decomposition resembles the
training of SVMs with the regularization path algorithms considered in Sec-
tion 2.3.1 in the sense that both make it possible to train the learners ef-
ficiently with several values of the regularization parameter. However, in
case of RLS, the coefficient vector A is not piecewise linear with respect
to λ, and hence it is not fruitful to consider RLS under the concept of the
regularization path.

2.3.3 Preference Learning

We can also define cost functions for learning tasks that are more complex
than the binary classification. In the ranking or preference learning type
of tasks (see e.g. [16]), the aim is to learn a hypothesis that is able to
rank the given data points in the correct order. The order of two data
points, z1 = (x1, y1) and z2 = (x2, y2), can be expressed, for example, by
the difference of their outputs so that z1 should be ranked higher than z2 if
y1− y2 > 0 and lower if y1− y2 < 0. Thus, this type of ranking tasks can be
reduced to binary classification tasks in which the inputs to be classified are
the pairs of the original inputs and the signs of the corresponding output
differences indicate whether the pairs belong to the positive or negative class.

Of course, some of the data point pairs may be irrelevant for the task in
question. For example, suppose that we are given a set of web-search results
obtained with a set of queries and our aim is to rank the results according
to the user preference. In that case, we are not interested in the order
of the web documents obtained from different queries. The only relevant
pairs of data points are the ones in which both of the web documents are
obtained from the same query. To take into account which of the data point
pairs are relevant, we define an undirected loopless graph whose vertices
are the training examples and two vertices are connected with an edge if
the corresponding example pair is relevant. The graph of a training set is
determined by an adjacency matrix W ∈ Rm×m. Using the regularization
framework point of view, we aim to learn a hypothesis f that predicts the
order of the examples z1, z2 via the difference f(x1)−f(x2). For this purpose,
we have defined in [47] a cost function

cW (Y, f(X)) =
1
2

m∑
i,j=1

Wi,j

sign
(
yi − yj

)
− sign

(
f(xi)− f(xj)

). (2.48)

However, like the misclassification cost function, the use of the above cost
function leads to intractable optimization problems, and hence we have to
use approximations also in this case. In [47], we have proposed the use of

23

the following least-squares approximation of (2.48)

cW (Y, f(X)) =
1
2

m∑
i,j=1

Wi,j

((
yi − yj

)
−
(
f(xi)− f(xj)

))2
. (2.49)

We note that for any vector r ∈ Rm and an undirected weighted graph W
of m vertices, we can write

1
2

m∑
i,j=1

Wi,j(ri − rj)2 =
1
2

m∑
i,j=1

Wi,jr
2
i −

m∑
i,j=1

Wi,jrirj +
1
2

m∑
i,j=1

Wi,jr
2
j

=
m∑

i,j=1

Wi,jr
2
i −

m∑
i,j=1

Wi,jrirj

=
m∑

i=1

r2
i

 m∑
j=1

Wi,j

−
m∑

i,j=1

Wi,jrirj

= rTDr − rTWr

= rTLr,

where D is a diagonal matrix whose entries are defined as Di,i =
∑m

j=1 Wi,j ,
and L = D −W is so-called Laplacian matrix (see e.g. [8] for a typical use
of the Laplacian matrix in machine learning) of the graph determined by
W . Therefore, by selecting r = Y −KA, we rewrite the cost function (2.49)
in a matrix form as

cW (Y, f(X)) = (Y −KA)TL(Y −KA),

and hence the minimizer of (2.35) using this cost function can be obtained
similarly as in the case of the ordinary least-squares cost function (2.41). We
refer to the method minimizing (2.35) with this cost function as RankRLS.

In addition to our information retrieval experiments reported in [47],
we have used RankRLS for maximization of the AUC performance measure
[43] (see Section 2.4.1 for the definition of AUC). We have also developed
an efficient cross-validation algorithm for RankRLS that works for certain
types of ranking tasks [46], and a sparse version of the algorithm that can
be used for large scale learning [68].

2.4 Measuring Learner Performance

When studying machine learning methods, we use functions that measure,
on a given test data set, how well the learner is able to predict the outputs of
the test data points. Before the measurement, a supervised learner is trained
with a training set that is independent of the test set. The results of the

24

performance measurements are also used for parameter selection purposes.
Therefore, the estimation usually takes two rounds, namely the validation
round with an independent data set for parameter selection and a final
test round with another independent data set called a test set. In this
section, we give a brief presentation of the performance measures that are
relevant for the thesis. The measures, of course, depend on the learning
task in question. We first present a general formulation for the performance
evaluation functions. Next, in Section 2.4.1, we give examples of different
performance measures used in the task of binary classification. Performance
measures used in the ranking tasks are considered in Section 2.4.2. Finally,
we consider the hold-out and cross-validation techniques in Section 2.4.3

As before, we denote X = (x1, . . . , xm) ∈ (Xm)T, Y = (y1, . . . , ym) ∈
Rm, and f(X) = (f(x1), . . . , f(xm)) ∈ Rm, for a given set S =
((x1, y1), . . . , (xm, ym)) ∈ (X × R)m of training examples and a hypothe-
sis f . In the following definitions of measures we use the training data, but
the measures can, of course, be analogously defined for any sequence of data
points. We consider performance evaluation functions of type

p : Rm × Rm → R. (2.50)

Each function assigns a value

p(Y, f(X))

which measures how well the hypothesis f fits to S. How the value of the
function is calculated, depends on the learning task in question.

2.4.1 Measures for Binary Classification Learning

Classification accuracy, that is, the number of correctly classified examples
divided by the number of all examples, is a simple and intuitive way to
measure the performance of a binary classifier. In binary classification, we
assume that the outputs are either +1 or −1. Then, the realization of
(2.50) for the performance measure accuracy is the following sum over the
data points

p(Y, f(X)) =
1
m

m∑
i=1

1
2
|yi + sign(f(xi))|. (2.51)

Note the similarity of the binary classification accuracy (2.51) and the train-
ing error cost function (2.38). Thus, if the aim is to learn a classifier having
a maximal binary classification accuracy, it is natural to select a hypothesis
that minimizes (2.38) on the training data set.

When we have a balanced class distribution, that is, there are approx-
imately equal number of positive and negative examples in the data set,

25

the accuracy of a classifier that assigns the classes randomly has an accu-
racy close to 0.5, while a perfect classifier has an accuracy 1. However, the
classification tasks have often skewed distributions of positive and negative
examples. For example, in our gene versus protein name disambiguation
study [I], the number of protein examples is 30269 which is about three
times as big as the number of gene examples 9533. Thus, if we select a
hypothesis f such that f(x) = 1 for all x ∈ X , that is, a classifier that
always predicts the protein class, the performance measure (2.51) gives us
a classification accuracy of about 0.75.

To cope with the imbalance in the data, we measure the performance of
a classifier as the area under the ROC curve (AUC) (see e.g. [14, 36, 53]).
Unlike other popular measures such as accuracy and precision-recall anal-
ysis, the AUC measure is invariant to the prior class probabilities. AUC
corresponds to the probability that given a randomly chosen positive exam-
ple and a randomly chosen negative example, the classifier will correctly say
which is which. Formally, for a training set S and a classifier f , the AUC
measure can be calculated from the following formula which is also called
the Wilcoxon-Mann-Whitney statistic (see [11] for a proof):

p(Y, f(X)) =
1

|P ||Q|
∑

i∈P,j∈Q

1
2
(1 + sign(f(xi)− f(xj))), (2.52)

where P ⊂ {1, . . . ,m} and Q ⊂ {1, . . . ,m} are index sets containing the
indices of the positive and negative examples in S, respectively. We use the
AUC performance measure in all our studies that involve binary classifica-
tion.

2.4.2 Measures for Ranking Performance

We now consider learning problems, where the task is to predict a ranking
for a given set of data points. Let (x1, y1) and (x2, y2) be two unseen data
points and f(x1) and f(x2) their predicted outputs obtained with a learner
f . While the learning machine makes an output prediction for each unseen
data point, the goal is to ensure that f(x1) < f(x2) whenever y1 < y2. In
this case, it is not important how close the predicted outputs are to the true
values of the outputs. We present the measure used to evaluate the ranking
performance in our experiments with parse ranking [48, 69, 71], and [IV],
and ranking of clinical narratives [67], namely the Kendall’s τb correlation
coefficient. For more information on this type of ranking measures, we refer
to [32].

The vector Y of outputs determines a complete ranking for the data
points (xi, yi) so that when sign(yi − yj) = 1, we say that si = (xi, yi) is
ranked higher than sj = (xj , yj). On the other hand, when sign(yi− yj) = 0
or sign(yi − yj) = −1, the ranks of si and sj are tied or si is ranked lower

26

that sj , respectively. Similarly, a complete ranking for the data points is
determined by the vector f(X) of predicted outputs. We now define the
Kendall’s τb correlation coefficient for the rankings corresponding to Y and
f(X) as follows:

p(Y, f(X)) =
σ(Y, f(X))√

σ(Y, Y)σ(f(X), f(X))
,

where

σ(a, b) =
m∑

i,j=1

sign(ai − aj)sign(bi − bj),

for a = (a1, . . . , am)T ∈ Rm and b = (b1, . . . , bm)T ∈ Rm. We observe that
p(Y, f(X)) = 1 when the rankings determined by Y and f(X) are completely
correlated. On the other hand, τb = −1 when the rankings is are the reverse
of each other. In all other cases, the value of τb lies between −1 and 1.

2.4.3 Hold Out and Cross-Validation

The learning algorithms discussed above have parameters that must be se-
lected before the learners are trained. The regularized kernel methods that
use a regularizer of the form (2.36) have a regularization parameter λ. We
do not usually know in advance which value of λ provides us the best per-
formance for unseen data. Moreover, the kernel function that determines
the hypothesis space has usually also parameters to be selected. The degree
of the polynomial kernel (2.9) is one such parameter, for example. One of
the most popular ways to obtain empirical estimates of the learner perfor-
mance on an unseen data is to use so-called hold-out estimation technique.
By hold-out, we mean that a part of the available data set is set aside to
form a hold-out set for performance estimation which is independent of the
training set used to train a learner. Cross-validation (CV) is a method in
which the hold-out technique is repeated with different (usually mutually
exclusive) hold-out sets of the data set. We now present a formalization for
these techniques.

Let H ⊆ {1, . . . ,m} denote an index set in which the indices refer to
the examples in the training set that belong to the hold-out set, and let
C = {1, . . . ,m} \ H be the set indexing the rest of the training examples.
Let XH ∈ (X |H|)T, YH ∈ R|H|, and SH ∈ (X × R)|H| denote, respectively,
the sequence containing only the inputs, outputs, and training examples
that are indexed by H. We call SH a hold-out set. Further, let fC = A(SC)
denote a learner that is trained using only the training examples SC , where
SC is defined analogously to SH . Then, fC(XH) consists of the output
values for the hold-out examples XH that are predicted by fC . The hold-
out performance of a learner, that is, the performance of a learner fC on the

27

hold-out set SH is defined by

p(YH , fC(XH)).

To formalize the CV technique, we follow [22] and define an indexing function
that determines a partition of the training set

ϕ : {1, . . . ,m} → {1, . . . , N},

where N is the size of the partition, so that each training example is assigned
a fold number among {1, . . . , N}. Let Hj = {i | ϕ(i) = j} for all 1 ≤ j ≤ N ,
that is, Hj is the index set containing the indices of the training examples
that belong to the jth cross-validation fold. CV performance estimate is
defined to be the average of the hold-out estimates obtained with the N
mutually exclusive hold-out sets (called cross-validation folds in context of
CV) determined by a partition ϕ. Thus, it can be computed from

pCV(S,A, ϕ) =
1
N

N∑
j=i

p(YHj , fCj (XHj)).

For the statistical properties of the CV estimators, we refer to [34]. The
CV performance estimates, of course, depend of the size N of the CV folds.
The smaller is the size of a fold, the closer the learner trained with the rest
of the data set usually is to the learner trained with the whole data set. The
estimates also depend of the selected partition ϕ. There are, in fact,

(
m

m/N

)
possibilities to choose a hold-out set of size m/N out of m examples and the
performance differences between the different possibilities may be large.

An extreme case of the CV, in which N = m, is called a leave-one-out
cross-validation (LOOCV). LOOCV is known to be an almost unbiased es-
timator of the learning performance. However, the variance of the LOOCV
may be larger than that of the N -fold cross-validation. This was experi-
mentally demonstrated in [34], and the parameter selection method recom-
mended there for classifiers was a stratified ten-fold cross-validation repeated
ten times with different fold partitions (by a stratification we mean that the
CV fold partition is formed so that the class distribution of examples in
them is approximately the same as the distribution in the whole training
set). Indeed, in our word sense disambiguation study [45], the size of the
training data set was so small that we had to use repeated CV in order to
stabilize the parameter estimation procedure.

2.4.4 Computation of Hold Out for RLS Learners

If the learner has to be retrained each time a hold-out estimate is computed,
the calculation of the average CV performance may be computationally too

28

expensive. This is especially true when repetition with different partitions
or LOOCV is used. Fortunately, with some learning algorithms, the training
examples in the hold-out set can be efficiently “unlearned” and the retraining
does not have to be performed. By unlearning, we mean the elimination of
the effect of the hold-out set from the learner trained with the whole data
set, that is, the learner after the unlearning is equal to the one that would
be obtained with a training set from which the examples that belong to the
hold-out set are removed.

We now consider an efficient method to calculate the hold out perfor-
mance of the RLS learners. The formulation can then be used, for example,
to perform a cross-validation by holding out a different part of the data set
at a time and averaging the results.

Below, with any matrix that has its rows indexed by the training ex-
amples M ∈ Rm×p, where p ∈ N, we use the subscript H so that a matrix
MH ∈ R|H|×p contains only the rows that are indexed by H. For M ∈ Rm×m

we also use MHH ∈ R|H|×|H| to denote a matrix that contains only the rows
and the columns that are indexed by H.

We can, of course, use the naive approach of training fC first, and then
computing fC(XH). According to (2.44) and (2.32), this can be formally
written as

fC(XH) = KHC(KCC + λICC)−1YC . (2.53)

The computation of (2.53) is, however, too cumbersome for cross-validation
purposes, because RLS has to be retrained separately for each different hold-
out set. In [IV], we prove that fC(XH) can also be obtained from

fC(XH) = (IHH −BHH)−1((BY)H −BHHYH), (2.54)

where B = K(K + λI)−1. The computation of (2.54) is much less compu-
tationally complex than the naive method (2.53), because we only have to
invert a matrix IHH − BHH of size H × H and it can be easily generated
when the RLS with the whole data set has already been trained. Namely,
the elements of BHH can be computed using the eigenvectors V and the di-
agonal elements of ΛΛ̃λ, since according to (2.45) and (2.46) B = V ΛΛ̃λV T

and therefore BHH = VHΛΛ̃λ(VH)T. Thus, the computational complexity
of calculating the outputs fC(X) for the hold-out set is dominated by the
complexity of calculating BHH = which is O(|H|2m). The equation (2.54)
was proved using a technique similar to the leave-one-out lemma (see e.g.
[73]).

We now introduce even simpler formulation for obtaining the hold-out
performance estimate and present a proof that uses only linear algebra tech-
niques. Before we give the formulation, we first present the following lemma
which is often called the block inverse (see e.g. [28]).

29

Lemma 1. Let M ∈ Rm×m be a positive definite matrix, H ⊂ {1, . . . ,m},
and C = {1, . . . ,m} \H. Without losing generality, by reindexing we may
write M as a following block matrix

M =
[

MHH MHC

MCH MCC

]
.

Then the inverse of M is[
R−1 −R−1MHC(MCC)−1

−(MCC)−1MCHR−1 (MCC)−1 + (MCC)−1MCHR−1MHC(MCC)−1

]
,

where R is the Schur complement of MCC , that is,

R = MHH −MHC(MCC)−1MCH . (2.55)

Let M = K + λI and G = M−1. Using the block inverse, we can derive
the following simple formulation for the RLS hold out.

Proposition 1. The matrix fC(XH) consisting of the output values of the
hold-out examples predicted with fC can be obtained from

fC(XH) = YH − (GHH)−1AH . (2.56)

Proof. We start by noting that the matrix GHH is a positive definite, because
it is a principal submatrix of a positive definite matrix G, and therefore, it
is invertible for any H (see e.g. [28]). By reindexing we may write the kernel
matrix K as the following block matrix

K =
[

KHH KHC

KCH KCC

]
. (2.57)

Recall that the output fC(XH) can be computed naively by training an
RLS without the examples indexed by H as in (2.53). We start from the
formulation of the naive method (2.53) and show the equivalence with (2.56).

fC(XH) = MHC(MCC)−1YC

= (GHH)−1GHHMHC(MCC)−1YC

= −(GHH)−1GHCYC (2.58)
= YH − YH − (GHH)−1GHCYC

= YH − (GHH)−1GHHYH − (GHH)−1GHCYC

= YH − (GHH)−1(GHHYH + GHCYC)
= YH − (GHH)−1GHY

= YH − (GHH)−1AH

where the tenability of the equality (2.58) can be seen by observing
that −GHHMHC(MCC)−1 = GHC from the formula of the block inverse
(Lemma 1).

30

If we have already calculated the eigen decomposition of the kernel ma-
trix when training an RLS with the whole data set, the computational
complexity of calculating the outputs fC(XH) using (2.56) is dominated
by the complexity of calculating GHH = VHΛ̃λ(VH)T which is O(|H|2m),
because Λ̃λ is a diagonal matrix. Therefore, performing an N -fold cross-
validation with the training set has an overall computational complexity
O(n(m/n)2m) = O(m3/n), since the number and the size of the hold-out
sets are N and m/n, respectively.

2.4.5 Parameter Selection

The learning algorithms considered in this thesis have parameters that
should be selected on the basis of the training data. For example, the regu-
larization parameter λ of the regularized kernel methods and the parameters
of the kernel functions are such that we do not usually know their optimal
values before seeing the training set. In order to fit the parameters to the
training set, we use a grid search over the parameter space. For example,
when selecting the regularization parameter together with the width of a
Gaussian kernel, we may create the following set of candidate parameter
combinations B = {(2i, 2j) | −5 ≤ i, j ≤ 5}. We select the parameter com-
bination which gives the best cross-validation performance estimate on the
training set. Formally, let B be a finite set of parameter combinations that
can be used to train a learner. The optimal parameter combination b∗ is

b∗ = argmax
b∈B

pCV(S,Ab, ϕ), (2.59)

where Ab is a learning algorithm parametrized by b ∈ B and ϕ is an indexing
function determining a fold partition for cross-validation.

31

32

Chapter 3

Learning Tasks

In this chapter, we briefly discuss the domains with which we have evalu-
ated the methods described in Chapter 2. In Section 3.1, we discuss about
a task that we call here as natural language disambiguation. In Section 3.2,
we consider ranking tasks in the domain of information retrieval. Then,
we discuss about multi-trace electrophoretic patterns in differential display
experiments in Section 3.3. The task of dependency parse ranking is dis-
cussed in Section 3.4.1 and the classification as well as ranking of the clinical
narratives are discussed in Section 3.4.2.

3.1 Natural Language Disambiguation

The amount of ambiguity in natural language is large and it causes differ-
ent kinds of problems in the field of automatic natural language processing.
In this thesis, we consider three kinds of disambiguation tasks, namely the
word sense disambiguation in Section 3.1.1, context sensitive spelling error
correction in Section 3.1.2, and gene versus protein name disambiguation
in Section 3.1.3. On these tasks, we apply the kernel functions and feature
transformations that we have proposed. The classifiers that we use together
with the proposed kernels or transformations are the support vector ma-
chines in [I-III] and [45], and the flexible Bayes kind of classifiers in [45] and
[44]. There is also a lot of other research on designing kernel functions for
the natural language disambiguation tasks (see e.g. [19]).

3.1.1 Word Sense Disambiguation

The most common disambiguation problem in natural language is the pro-
cess of resolving the sense of a word or some other linguistical entity, namely
the task of word sense disambiguation (WSD) (see e.g. [29, 38]). The word
“bank” is an example traditionally used to explain what is WSD. The word
can refer to a river bank, a financial institution, or the building where a

33

financial institution resides, and even subtler nuances can be found. This
is not, however, the only possible formulation of the problem, but it can be
formulated in a wider way. For example, one needs to decide, whether a
bank is situated in some specific area in case banks from several areas are
considered in the same text. WSD is an essential part of the NLP and has
been a long time under scientific research. It is not of much use for end-users
as such, but rather an intermediate task of several other NLP tasks (see e.g.
[29]).

We consider WSD as a classification problem in which each sense of a
word is considered as a class. The classification performance of the WSD
systems are often evaluated and compared with each other using a publicly
available annotated data set. A popular choice is the Senseval-3 English
lexical sample train and test datasets [39], which we use in [45].

3.1.2 Context-Sensitive Spelling Error Correction

Context-sensitive spelling error correction is a classification task which is
closely related to WSD. The task refers to a problem, for example, in which
the word “desert” is misspelled as “dessert” (see e.g. [20]). The word
“dessert” belongs to the English lexicon and therefore, the mistake will be
unnoticed by the lexicon-based spellcheckers. A set of similar words, such
as “desert” and “dessert”, that belong to the lexicon and that are often
confused with the other words in the set is called a confusion set.

Similarly to the other WSD problems, we cast context-sensitive spelling
error correction as a classification task such that each word of the confu-
sion set is considered as a class. Namely, the task is to select the correct
spelling from the confusion set to which the word to be spellchecked be-
longs. This selection can be performed on the grounds of the context. The
context-sensitive spelling error correction task is ideal for evaluating clas-
sification systems, because the data can be easily obtained automatically
for these problems, whereas data for the other kinds of WSD problems may
have to be annotated by hand. As high-quality texts such as newswire
articles are widely available, the required examples for the classification ex-
periments can simply be extracted from such resources. For example, in
[20] a context-sensitive spelling correction system was tested on data sets
of commonly confused words extracted from the Reuters News corpus [59].
In our experiments with binary classifiers, we use the binary confusion sets
among the ones created by [20].

3.1.3 Gene versus Protein Name Disambiguation

In order to find the relations between biological or chemical entities, first
the names of the entities have to be recognized in a reliable way. There

34

has been a significant amount of effort to do that automatically (see e.g.
[33] for a recent comparison of the state-of-the-art systems for this task). A
large standardized domain corpus helps to consolidate the research efforts.
The GENIA corpus [9] has been commonly used in biomedical named entity
recognition.

The task of named entity recognition can be divided in two subtasks, the
identification of entities, that is, determining the boundaries of the named
entities, and their classification into proper classes. In our study [I], we have
focused on the problem of finding the class the entity belongs to. The entities
in biomedical text are highly ambiguous. For example, it is common that a
gene has the same name as the protein it codes for. Such an ambiguity is
illustrated in the two sentences given by [23]:

• By UV cross-linking and immunoprecipitation, we show that SBP2
specifically binds selenoprotein mRNAs both in vitro and in vivo.

• The SBP2 clone used in this study generates a 3173 nt transcript (2541
nt of coding sequence plus a 632 nt 3 ′ UTR truncated at the polyadeny-
lation site).

The occurrence of SBP2 is a protein in the first sentence, whereas the oc-
currence of SBP2 in the second sentence is a gene. In the same study, a
domain corpus was annotated by three biology experts. The three experts
unanimously agreed only in 78% of the cases, each name being classified
as either a gene, protein or mRNA. This low rate of inter-annotator agree-
ment suggests that the task is relatively difficult even for human experts.
However, the study does not analyse more closely the reasons that lead to
annotation disagreements.

In our study [I], we have considered the disambiguation of the sense
“gene” or “protein” when the name is not disambiguated explicitly by the
author with the word “gene” or “protein” (e.g. “SBP2 gene”). This task is
important, because the release of the human genome and large scale func-
tional genomics studies and methods have made it important to be able to
find information from literature specifically for proteins and the correspond-
ing genes. For example, in data mining related to proteomics the scientists
could save much time if they could direct their literature searches only to
proteins, since the searches provide a lot of hits among which the correct
and important articles have to be sorted manually.

3.2 Learning to Rank for Information Retrieval

One of the most important tasks in information retrieval is the ranking
of documents based on their relevance to a query (for more on information
retrieval, we refer to [5]). Much effort has been placed on the development of

35

ranking functions and applying machine learning techniques to learn them
is viewed as a promising approach (see e.g. [30]). The aim is to develop
methods to automatically learn a function from training data, such that the
function can sort documents according to their degrees of relevance with
respect to, for example, a certain query.

Letor (LEarning TO Rank) [37] is a collection of data for evaluation
of learning to rank methods that contain features and relevance degrees
for training. The collection consists of a set of document-query pairs. Each
document-query pair is represented as an input consisting of a small number
of features that indicate how well the document matches the corresponding
query. The document-query pairs are also associated with a relevance degree
indicating whether (or how much) the document is relevant to the query.
The machine learning methods are trained to predict the relevance degrees
of the document-query pairs that are associated with unseen queries. The
predicted degrees should be such that the documents being relevant to the
query in question are ranked higher than the less relevant ones. The data
sets are, of course, partitioned according to the queries, that is, the rankings
are considered for each query separately and we are not interested in the
mutual order of the query-document pairs that are associated with different
queries.

In paper [V], we proposed the RankRLS algorithm (see Section 2.3.3) and
evaluated its ranking performance with the Letor dataset. The performance
was compared to that of RankSVM [25] and RankBoost [15], two algorithms
which can also be efficiently trained in such setting. It was shown that
RankRLS achieved performance comparable to the two baseline methods
on the task of ranking query-document pairs. Thus, RankRLS appears to
be a simple and efficient alternative to the state of the art rank learning
algorithms for document retrieval tasks.

3.3 Pattern Recognition in Differential Display
Experiments

So-called mRNA differential display (DD) [35] is a widely used method to
identify differentially expressed genes [13] that is based on comparison of
labeled DNA fragments separated in electrophoresis. The method enables
weekly production rate of digital data from tens of thousands multiplexed
electrophoretic samples containing hundreds of thousands fragment peaks.
However, visual analysis of these results is usually infeasible, and hence au-
tomatic analysis tools are needed for the detection of differential expressions.

To address the need of more detailed analysis in terms of peak pattern
comparisons across pairs of electrophoretic traces, a method for computer-
assisted ranking of such patterns in DD experiments was developed by [2].

36

The ranking method aims at identifying the most potential findings to be
visually confirmed among the massive number of all peak patterns. There-
fore, the researcher will finally evaluate visually only the automatically pre-
screened findings, drastically reduced in number and enriched in relevance.
The ranking method has successfully been used to detect changes in ex-
pression patterns, for example, in response to human colonic carcinoma [3].
However, as the trace comparisons were based on a pairwise alignment al-
gorithm, the method is not applicable to designs involving simultaneous
comparisons between multiple traces.

With this task, we used an RLS learner with an eight-degree polynomial
kernel. The experiments are reported in [VI] in which it is shown that
while a prediction function designed by a human expert has the highest
performance, a function that is automatically learned by a machine learning
algorithm also obtains a competitive performance.

3.4 Other Applications

In addition to the above described applications, we have used the methods
described in Chapter 2 also for following tasks in papers not included in this
thesis.

3.4.1 Ranking of Dependency Parses

Ranking, or ordinal regression, has many applications in NLP, for example,
parse re-ranking (see e.g [10]) and re-ranking of predicate argument struc-
tures (see e.g. [42]). In [71], we study the task of parse re-ranking in the
domain of biomedical texts. The link grammar (LG) parser [66] used in the
study is a full dependency parser based on a broad-coverage hand-written
grammar. The LG parser generates all parses allowed by its grammar and
applies a set of built-in heuristics to rank the parses. However, the ranking
performance of the heuristics has been found to be poor when applied to
biomedical text [55, 56]. Therefore, a primary motivation for the work is to
present a machine learning approach for the parse re-ranking task in order
to improve the applicability of the parser to the domain. A method based on
the RLS algorithm is trained to regress the goodness values of the candidate
parses obtained from a hand-annotated corpus introduced in [17, 54]. The
regressed outcomes are then used to generate a ranking for each sentence.

In [69, 70], we developed a kernel function for sequential data and showed
that the parse ranking performance of RLS is further improved when using
the new kernel. We continued the seek for good data representations and
kernels in [48], and considered how much effect different graph based rep-
resentations and kernels have on ranking performance (see e.g. [1, 41] and

37

references therein for more information about kernels for dependency struc-
tures). However, it turned out that by using a cost function suitable for
ranking problems that we developed in [47] and extended for large scale
learning in [68] provided much larger performance gain than engineering the
kernel functions.

3.4.2 Classification and Ranking of Clinical Narratives

Health-care providers have recently been changing paper-based patient
records to electronic ones, and hence new possibilities to take advantage
of the gathered data in intensive care have emerged. For example, tools
that classify the nursing narratives automatically make it easier for a nurse
to retrieve relevant information in order to build a general picture. To serve
as a basis for these kinds of tools, we have applied the RLS algorithm for
multi-label classification of pieces of Finnish intensive care nursing narra-
tives according to their content [26, 27]. By multi-label classification, we
indicate that each text piece can belong to several classes simultaneously
but it does not necessarily belong to any class. The classes used in the
studies are breathing, blood circulation and pain.

In some cases, it is more practical to rank the texts in order of importance
with respect to the given class than to classify them. In other words, the
more strongly the statement relates to the given class, the higher rank it
gets. In [67], we have presented an adaptation of the regularized least-
squares regression algorithm to ranking pieces of nursing notes according to
their relevance to breathing, blood circulation, and pain.

38

Chapter 4

Summary of publications

The thesis constitutes of six publications. The topics of the articles are
summarized in Table 4.

I II III IV V VI
Kernels x x x x
Algorithm development x x x
Natural language disambiguation x x x
Information retrieval x
Pattern recognition x

Table 4.1: Summary of the topics and articles. The columns correspond to
the papers included in this thesis and the rows to the considered topics.

Paper I: Contextual Weighting for Support Vector Machines in
Literature Mining: an Application to Gene versus Protein Name
Disambiguation

In the paper [I], we explore the capability of the support vector machines
(SVM) for the gene versus protein name disambiguation task discussed in
Section 3.1.3. We incorporate into the conventional SVM a weighting scheme
developed in [17, 18]. The weighting is based on distances of context words
from the word to be disambiguated. The words that are close to the name
to be disambiguated are given larger weights than the words that are far.
The weighting scheme increased the performance of SVMs by five percentage
points giving performance better than 85% as measured by the area under
ROC curve and outperformed the weighted additive classifier developed in
[17, 18], which also incorporates the weighting, and the naive Bayes classi-
fier. We also measured the classification performance of the SVMs with the
linear, inhomogenous polynomial, and Gaussian kernels with and without

39

the weighting scheme. We conclude that the performance gain obtained by
using the weighting is larger than the performance differences between the
different kernels or classification methods.

Although not directly discussed in [I], the weighting can be considered
as a linear transformation of word-position feature vectors (see Section 2.1.2
and [III]). Namely, the word-position features are first weighted according
to their positions and subsequently transformed to a weighted bag-of-words
vectors.

Paper II: Kernels incorporating word positional information in
natural language disambiguation tasks

In the paper [II], we introduce a new kernel function designed for the problem
of word sense disambiguation. In the article, the proposed kernel is consid-
ered as a nonlinear one while it can also be interpreted as a linear feature
transformation. This is explicitly shown in [III]. Similarly to the weighting
scheme considered in [I], the word-position features are weighted according
to their positions. Additionally, the kernel also transforms the word occur-
rences to the nearby positions instead of identifying every position as it is
done when constructing bag-of-words vectors. Unlike the approach proposed
in paper [I], the new kernel also takes account of the mutual positional sim-
ilarities of the context words in an advantageous way when calculating the
similarities between the contexts around the ambiguous words. We apply
the kernel to context-sensitive spelling correction (see Section 3.1.2) together
with SVM classifiers and show that it statistically significantly outperforms
the standard bag-of-words kernel and the kernel-based on the contextual
weighting scheme.

Paper III: Matrix Representations, Linear Transformations, and
Kernels for Disambiguation in Natural Language

In the paper [III], we describe a framework for natural language disam-
biguation tasks that is based on a word-position matrix representation of
text, linear feature transformations of the word-position matrices, and kernel
functions constructed from the transformations. The contextual weighting
used in [I] and the kernel functions proposed in [II] and in [45] are special
instances of this framework. In addition to the positional transformations
of word-position features that we have considered in the previous papers, we
consider here also the word transformations that can be used to incorporate
prior knowledge of the word similarities into the learners.

We introduce several ways to obtain both kinds of transformations. For
example, we show how the information of the most common parts-of-speech
of the context words can be encoded into a word transformation. We also

40

introduce a positional transformation that has only one parameter but gives
as good or even better results than the positional transformations considered
in [I, II], [45], and [44]. Moreover, we introduce a way to construct both
types of transformations automatically from a data set. Finally, we present
efficient algorithms for calculating kernel functions that correspond to the
transformations.

The proposed framework provides an elegant way to use both types of
transformations simultaneously, improving further the performance of the
kernel-based learning algorithms for certain NLP tasks. We demonstrate
the performance gain by experiments of context sensitive spelling error cor-
rection with the Reuters News corpus using a regularized least-squares clas-
sifier.

Paper IV: Fast n-Fold Cross-Validation for Regularized Least-
Squares

The paper [IV] considers our implementation of the regularized least-squares
(RLS) algorithm. The implementation takes advantage of the following three
properties. Firstly, it is possible to calculate the hold-out performance es-
timates for a RLS learner efficiently provided that the learner is already
trained with the whole training set. In the paper [IV], we give a formal
proof for this claim and a more sophisticated version of it is given in Sec-
tion 2.3.2. The hold-out performance estimates can be used to calculate
the cross-validation (CV) performance of RLS on the training data without
retraining in each CV round. This decreases the computational complexity
of calculating the CV performance, because unlearning the hold-out set is
more efficient than retraining the learner. Secondly, it is possible to com-
pute the RLS solution for several values of the regularization parameter at
the same time without retraining the learner separately for each different
value. This can be combined with the fast hold-out computation so that we
can, for example, select the regularization parameter which has the best CV
performance. Finally, several problems on the same data set can be solved
in parallel provided that the same kernel function is used with each prob-
lem. Again, this can be combined with the above two properties so that
the regularization parameters can be efficiently selected for each problem
separately.

Further, we show that for some tasks, the leave-one-out cross-validation
(LOOCV) gives poor performance estimates for the learning machines, be-
cause of the dependencies between the training examples. We demon-
strate this by experimentally comparing the performance estimates given
by LOOCV and CV in a ranking task of dependency parses generated from
biomedical texts. The fold partition used in the CV is constructed so that
the effect of the dependencies between the training examples is removed. In

41

summary, our CV algorithm makes it possible to efficiently calculate reliable
performance estimates for RLS learners with arbitrary fold partitions.

Paper V: Learning to Rank with Pairwise Regularized Least-
Squares

We continue our study of RLS based learning algorithms in paper [V] and
develop a simple preference learning algorithm we call RankRLS. As de-
scribed in Section 2.3.3, RankRLS minimizes a regularized least-squares
approximation of a ranking error function that counts the number of in-
correctly ranked pairs of training examples. Both primal and dual versions
of the algorithm are considered in the paper. By primal version, we refer to
the case discussed in Section 2.1.2 in which a linear kernel is used and the
learned ranking function can be expressed as a vector in the input space.
We show that both versions of RankRLS can be trained as efficiently as
the corresponding primal and dual versions of the standard RLS regression,
despite the fact that the number of training example pairs under considera-
tion grows quadratically with respect to the number of individual examples.
Further, similarly as in paper [IV], we show that it is possible to compute
the RankRLS solution for several values of the regularization parameter at
the same time without retraining the learner separately for each different
value.

Paper VI: Computer-Assisted Identification of Multi-Trace Elec-
trophoretic Patterns in Differential Display Experiments

The paper [VI] proposes two methods for scoring and ranking of multi-trace
peak patterns in differential display experiments (see Section 3.3). The peak
patterns are obtained by aligning sets of traces with a multiple alignment
algorithm that is also described in the paper. The paper focuses on the user
defined computer-assisted method that uses strong prior knowledge of the
type of the patterns that a human expert prefers. The part which is relevant
for this thesis is a data driven method that automatically learns to identify
the preferable patterns, thus trading off some of the prior knowledge for
automation of the identification process. This method is implemented with
a regularized least-squares regressor and a homogenous high-degree polyno-
mial kernel function. It is shown that while scoring function programmed by
a human expert has the best performance, the performance of automatically
learned method is also surprisingly good.

42

Chapter 5

Conclusions

5.1 Achievements of the Thesis

In this thesis, we made several adaptations of regularized kernel methods for
tasks in natural language processing and bioinformatics. In particular, we
aimed to develop kernel functions that incorporate prior knowledge about
the learning task under consideration. Another aim was to develop efficient
algorithms for training the kernel-based learning algorithms.

Incorporating Prior Knowledge Taking advantage of the positional
information of the context words around the term to be disambiguated is
a typical use of prior knowledge in the task of natural language disam-
biguation. We incorporated into the conventional SVM a weighting that
is based on distances of the context words from the focus word and in-
troduced kernel functions incorporating the word positional information in
even more advantageous way than just taking into account the distances.
Further, we described a framework in which the kernels could be considered
as linear feature transformations. This allowed the simultaneous incorpo-
ration of both word positional and word-word similarity information into
kernel-based natural language disambiguation algorithms. Altogether, the
proposed framework provides an elegant way to encode prior knowledge into
a learning machine, leading to an improved disambiguation performance.

We also used our prior knowledge of the learning task at hand to develop
a new cost function. The new ranking cost function was shown to have better
performance in information retrieval tasks and in maximization of the AUC
classification performance measure than a similar type of regression cost
function.

Developing Efficient Algorithms We considered computationally effi-
cient algorithms for calculating the kernels and for training machine learning

43

algorithms that employ the kernel functions incorporating the word position
and word-word similarity information. We also developed a highly efficient
algorithm for predicting the outputs of unseen data points when the learning
algorithm is already trained.

We also proposed an efficient method of computing a hold-out perfor-
mance for RLS. This is especially suitable for cases in which there are such
dependencies in the training data that the standard leave-one-out cross-
validation would give overoptimistic results. In this thesis, we also proposed
a refined version of the efficient hold-out method. The method can the be
used to perform, for example, N -fold or leave-cluster-out cross-validation
efficiently.

The task of ranking or preference learning is often cast to the problem
of binary classification of example pairs so that the pair is considered to be-
long in the positive class if the first example is preferred over the second one
and in the negative class in the opposite case. However, since the number
of training example pairs grows quadratically with respect to the number
of individual examples, the training of a classifier may become too expen-
sive. We proposed RankRLS, a modification of the regularized least-squares
(RLS) algorithm that corresponds to a RLS classifier of example pairs. The
training of RankRLS is computationally as complex as the training of a
RLS classifier or regressor for the individual examples. Hence, the problem
of having a quadratic number of training example pairs is avoided.

5.2 Future Work

The use of the linear feature transformations to construct kernel functions is
a promising approach in general, because it provides an elegant and efficient
way to incorporate external information into learning methods. We will
investigate whether the use this technique is advantageous also in other
applications than those considered in this thesis.

As considered in this thesis, the standard RLS regression algorithm
has many computational advantages such as the efficient cross-validation,
regularization, and learning multiple outputs simultaneously. The efficient
regularization and multiple output learning can be quite straightforwardly
transferred to RankRLS. In [46], we described a cross-validation algorithm
for RankRLS that works for certain types of ranking tasks. Since hold-out
and cross-validation are very important methods in performance evaluation
of the learning methods especially if the amount of labeled data is small, we
will continue this investigation and aim to design cross-validation algorithms
also for more general ranking and preference learning tasks.

44

Bibliography

[1] Antti Airola, Sampo Pyysalo, Jari Björne, , Tapio Pahikkala, Filip Gin-
ter, and Tapio Salakoski. Graph kernel for protein-protein interaction
extraction. In BioNLP 2008 Workshop, 2008. To appear.

[2] Tero Aittokallio, Pekka Ojala, Timo J. Nevalainen, and Olli Nevalainen.
Automated detection of differentially expressed fragments in mrna dif-
ferential display. Electrophoresis, 22(10):1935–1945, Jun 2001.

[3] Tero Aittokallio, Tapio Pahikkala, Pekka Ojala, Timo J. Nevalainen,
and Olli Nevalainen. Electrophoretic signal comparison applied to mrna
differential display analysis. BioTechniques, 34(1):116–122, Jan 2003.

[4] Nachman Aronszajn. Theory of reproducing kernels. Transactions of
the American Mathematical Society, 68(3), 1950.

[5] Ricardo A. Baeza-Yates and Berthier A. Ribeiro-Neto. Modern Infor-
mation Retrieval. ACM Press / Addison-Wesley, 1999. ISBN 0-201-
39829-X.

[6] Roberto Basili, Marco Cammisa, and Alessandro Moschitti. Effective
use of WordNet semantics via kernel-based learning. In Proceedings
of the Ninth Conference on Computational Natural Language Learning
(CoNLL-2005), pages 1–8. Association for Computational Linguistics,
June 2005.

[7] Mokhtar S. Bazaraa, Hanif D. Sherali, and C. M. Shetty. Nonlinear
Programming: Theory and Algorithms. John Wiley & Sons, 1993.

[8] Mikhail Belkin, Irina Matveeva, and Partha Niyogi. Regularization and
semi-supervised learning on large graphs. In John Shawe-Taylor and
Yoram Singer, editors, Proceedings of the 17th Annual Conference on
Learning Theory, volume 3120 of Lecture Notes in Computer Science,
pages 624–638. Springer, 2004.

[9] Nigel Collier, Hyun Seok Park, Norihiro Ogata, Yuka Tateisi, Chikashi
Nobata, Takeshi Sekimizu, Hisao Imai, and Jun’ichi Tsujii. The genia

45

project: corpus-based knowledge acquisition and information extrac-
tion from genome research papers. In Henry S. Thompson and Alex
Lascarides, editors, Proceedings of the European Association for Com-
putational Linguistics, pages 271–272. Association for Computational
Linguistics, 1999.

[10] Michael Collins. Discriminative reranking for natural language parsing.
In Pat Langley, editor, Proceedings of the Seventeenth International
Conference on Machine Learning, pages 175–182, San Francisco, CA,
2000. Morgan Kaufmann.

[11] Corinna Cortes and Mehryar Mohri. Auc optimization vs. error rate
minimization. In Sebastian Thrun, Lawrence Saul, and Bernhard
Schölkopf, editors, Advances in Neural Information Processing Systems
16. MIT Press, Cambridge, MA, 2004.

[12] Nello Cristianini and John Shawe-Taylor. An Introduction to Support
Vector Machines. Cambridge University Press, 2000.

[13] Michael Eisenstein. A look back: putting differences aside. Nature
Methods, 3(4):324, 2006.

[14] Tom Fawcett. Roc graphs: Notes and practical considerations for data
mining researchers. Technical Report HPL-2003-4, HP Labs, Palo Alto,
California, 2003.

[15] Yoav Freund, Raj Iyer, Robert E. Schapire, and Yoram Singer. An
efficient boosting algorithm for combining preferences. Journal Machine
Learning Research, 4:933–969, 2003.

[16] Johannes Fürnkranz and Eyke Hüllermeier. Preference learning.
Künstliche Intelligenz, 19(1):60–61, 2005.

[17] Filip Ginter. Information Extraction in the Biomedical Domain: Meth-
ods and Resources. PhD thesis, Turku Centre for Computer Science
(TUCS), 2007.

[18] Filip Ginter, Jorma Boberg, Jouni Järvinen, and Tapio Salakoski. New
techniques for disambiguation in natural language and their application
to biological text. Journal of Machine Learning Research, 5:605–621,
2004.

[19] Alfio Gliozzo, Claudio Giuliano, and Carlo Strapparava. Domain ker-
nels for word sense disambiguation. In Proceedings of the 43rd Annual
Meeting of the Association for Computational Linguistics (ACL’05),
pages 403–410. Association for Computational Linguistics, June 2005.

46

[20] Andrew R. Golding and Dan Roth. A winnow-based approach to
context-sensitive spelling correction. Machine Learning, 34(1-3):107–
130, 1999.

[21] Trevor Hastie, Saharon Rosset, Robert Tibshirani, and Ji Zhu. The
entire regularization path for the support vector machine. Journal of
Machine Learning Research, 5:1391–1415, 2004.

[22] Trevor Hastie, Robert Tibshirani, and Jerome H. Friedman. The Ele-
ments of Statistical Learning: Data Mining, Inference, and Prediction.
Springer, New York, 2001.

[23] Vasileios Hatzivassiloglou, Pablo A. Duboué, and Andrey Rzhetsky.
Disambiguating proteins, genes and rna in text: a machine learning
approach. Bioinformatics, 17(1):97–106, 2001.

[24] Ralf Herbrich. Learning kernel classifiers: theory and algorithms. MIT
Press, 2002.

[25] Ralf Herbrich, Thore Graepel, and Klaus Obermayer. Support vector
learning for ordinal regression. In ICANN99, pages 97–102, London,
1999. Institute of Electrical Engineers.

[26] Marketta Hiissa, Tapio Pahikkala, Hanna Suominen, Tuija Lehtikun-
nas, Barbro Back, Eija Helena Karsten, Sanna Salanterä, and Tapio
Salakoski. Towards automated classification of intensive care nursing
narratives. In Arie Hasman, Reinhold Haux, Johan van der Lei, Eti-
enne De Clercq, and Francis Roger-France, editors, Ubiquity: Tech-
nologies for Better Health in Aging Societies. Proceedings of MIE2006.
The 20th International Conference of the European federation for Med-
ical Informatics, Studies in Health Technology and Informatics, pages
789–794, Maastricht, Netherlands, 2006. IOS Press.

[27] Marketta Hiissa, Tapio Pahikkala, Hanna Suominen, Tuija Lehtikun-
nas, Barbro Back, Helena Karsten, Sanna Salanterä, and Tapio
Salakoski. Towards automated classification of intensive care nursing
narratives. International Journal of Medical Informatics, 76S3:S362–
S368, 2007.

[28] Roger Horn and Charles R. Johnson. Matrix Analysis. Cambridge
University Press, Cambridge, 1985.

[29] Nancy Ide and Jean Véronis. Introduction to the special issue on word
sense disambiguation: the state of the art. Computational Linguistics,
24(1):1–40, 1998.

47

[30] Thorsten Joachims. Optimizing search engines using clickthrough data.
In Proceedings of the ACM Conference on Knowledge Discovery and
Data Mining, pages 133–142, New York, NY, USA, 2002. ACM Press.

[31] George H. John and Pat Langley. Estimating continuous distributions
in Bayesian classifiers. In Philippe Besnard and Steve Hanks, editors,
Proceedings of the Eleventh Annual Conference on Uncertainty in Arti-
ficial Intelligence, pages 338–345, San Mateo, 1995. Morgan Kaufmann
Publishers.

[32] Maurice G. Kendall. Rank Correlation Methods. Griffin, London, 4.
edition, 1970.

[33] Jin-Dong Kim, Tomoko Ohta, Yoshimasa Tsuruoka, Yuka Tateisi,
and Nigel Collier. Introduction to the bio-entity recognition task at
JNLPBA. In Nigel Collier, Patrick Ruch, and Adeline Nazarenko,
editors, Proceedings of the International Joint Workshop on Natural
Language Processing in Biomedicine and its Applications, pages 70–75,
August 28–29 2004.

[34] Ron Kohavi. A study of cross-validation and bootstrap for accuracy
estimation and model selection. In Chris Mellish, editor, Proceedings of
the Fourteenth International Joint Conference on Artificial Intelligence,
pages 1137–1143. Morgan Kaufmann, 1995.

[35] Peng Liang and Arthur B. Pardee. Differential display of eukaryotic
messenger rna by means of the polymerase chain reaction. Science, 257
(5072):967–971, August 1992.

[36] Charles X. Ling, Jin Huang, and Harry Zhang. Auc: a statistically
consistent and more discriminating measure than accuracy. In Georg
Gottlob and Toby Walsh, editors, Proceedings of the Eighteenth In-
ternational Joint Conference on Artificial Intelligence, pages 519–526.
Morgan Kaufmann, 2003.

[37] Tie-Yan Liu, Jun Xu, Tao Qin, Wenying Xiong, and Hang Li. Letor:
Benchmark dataset for research on learning to rank for information re-
trieval. In Thorsten Joachims, Hang Li, Tie-Yan Liu, and ChengXiang
Zhai, editors, SIGIR 2007 Workshop on Learning to Rank for Informa-
tion Retrieval, pages 3–10, 2007.

[38] Christopher D. Manning and Hinrich Schütze. Foundations of Statis-
tical Natural Language Processing. The MIT Press, Cambridge, Mas-
sachusetts, 1999.

48

[39] Rada Mihalcea, Timothy Chklovski, and Adam Kilgarriff. The senseval-
3 english lexical sample task. In Rada Mihalcea and Phil Edmonds,
editors, Senseval-3: Third International Workshop on the Evaluation
of Systems for the Semantic Analysis of Text, pages 25–28, Barcelona,
Spain, July 2004. Association for Computational Linguistics.

[40] Tom M. Mitchell. Does machine learning really work? AI Magazine,
18(3):11–20, 1997.

[41] Alessandro Moschitti. Efficient convolution kernels for dependency and
constituent syntactic trees. In Johannes Fürnkranz, Tobias Scheffer,
and Myra Spiliopoulou, editors, Proceedings of the 7th European Con-
ference on Machine Learning, volume 4212 of Lecture Notes in Com-
puter Science, pages 318–329. Springer, 2006.

[42] Alessandro Moschitti, Daniele Pighin, and Roberto Basili. Semantic
role labeling via tree kernel joint inference. In Proceedings of the Tenth
Conference on Computational Natural Language Learning (CoNLL-X),
pages 61–68. Association for Computational Linguistics, June 2006.

[43] Tapio Pahikkala, Antti Airola, Hanna Suominen, Jorma Boberg, and
Tapio Salakoski. Efficient auc maximization with regularized least-
squares. In Proceedings of the 10th Scandinavian Conference on Ar-
tificial Intelligence (SCAI 2008). IOS Press, 2008. To appear.

[44] Tapio Pahikkala, Jorma Boberg, Aleksandr Mylläri, and Tapio
Salakoski. Incorporating external information in Bayesian classifiers
via linear feature transformations. In Tapio Salakoski, Filip Ginter,
Sampo Pyysalo, and Tapio Pahikkala, editors, Proceedings of the 5th
International Conference on NLP (FinTAL 2006), volume 4139 of Lec-
ture Notes in Computer Science, pages 399–410, Heidelberg, Germany,
2006. Springer.

[45] Tapio Pahikkala, Sampo Pyysalo, Jorma Boberg, Aleksandr Mylläri,
and Tapio Salakoski. Improving the performance of Bayesian and sup-
port vector classifiers in word sense disambiguation using positional in-
formation. In Timo Honkela, Ville Könönen, Matti Pöllä, and Olli Sim-
ula, editors, Proceedings of the International and Interdisciplinary Con-
ference on Adaptive Knowledge Representation and Reasoning, pages
90–97, Espoo, Finland, 2005. Otamedia.

[46] Tapio Pahikkala, Hanna Suominen, Jorma Boberg, and Tapio Salakoski.
Transductive ranking via pairwise regularized least-squares. In Paolo
Frasconi, Kristian Kersting, and Koji Tsuda, editors, Workshop on
Mining and Learning with Graphs (MLG’07), pages 175–178, 2007.

49

[47] Tapio Pahikkala, Evgeni Tsivtsivadze, Antti Airola, Jorma Boberg,
and Tapio Salakoski. Learning to rank with pairwise regularized least-
squares. In Thorsten Joachims, Hang Li, Tie-Yan Liu, and ChengXiang
Zhai, editors, SIGIR 2007 Workshop on Learning to Rank for Informa-
tion Retrieval, pages 27–33, 2007.

[48] Tapio Pahikkala, Evgeni Tsivtsivadze, Jorma Boberg, and Tapio
Salakoski. Graph kernels versus graph representations: a case study in
parse ranking. In Thomas Gärtner, Gemma C. Garriga, and Thorsten
Meinl, editors, Proceedings of the International Workshop on Mining
and Learning with Graphs (MLG’06), pages 181–188, 2006.

[49] John C. Platt. Fast training of support vector machines using sequential
minimal optimization. In Advances in kernel methods: support vector
learning, pages 185–208. MIT Press, Cambridge, MA, USA, 1999.

[50] Tomaso Poggio. On optimal nonlinear associative recall. Biological
Cybernetics, 19:201–209, 1975.

[51] Tomaso Poggio and Steve Smale. The mathematics of learning: Dealing
with data. Notices of the American Mathematical Society (AMS), 50
(5):537–544, 2003.

[52] Massimiliano Pontil. Learning in reproducing kernel hilbert spaces:
a guide tour. Bull. of the Italian Artificial Intelligence Association –
AI*IA Notizie, 2003.

[53] Foster Provost, Tom Fawcett, and Ron Kohavi. The case against ac-
curacy estimation for comparing induction algorithms. In Jude W.
Shavlik, editor, Proceedings of the 15th International Conference on
Machine Learning, pages 445–453. Morgan Kaufmann, San Francisco,
CA, 1998.

[54] Sampo Pyysalo, Filip Ginter, Juho Heimonen, Jari Björne, Jorma
Boberg, Jouni Järvinen, and Tapio Salakoski. BioInfer: A corpus for
information extraction in the biomedical domain. BMC Bioinformatics,
8:50, 2007.

[55] Sampo Pyysalo, Filip Ginter, Tapio Pahikkala, Jorma Boberg, Jouni
Järvinen, and Tapio Salakoski. Evaluation of two dependency parsers
on biomedical corpus targeted at protein-protein interactions. Recent
Advances in Natural Language Processing for Biomedical Applications,
special issue of the International Journal of Medical Informatics, 75(6):
430–442, 2006.

50

[56] Sampo Pyysalo, Filip Ginter, Tapio Pahikkala, Jorma Boberg, Jouni
Järvinen, Tapio Salakoski, and Jeppe Koivula. Analysis of link gram-
mar on biomedical dependency corpus targeted at protein-protein inter-
actions. In Nigel Collier, Patrick Ruch, and Adeline Nazarenko, editors,
Proceedings of the JNLPBA workshop at COLING’04, Geneva, pages
15–21, 2004.

[57] Ryan Rifkin. Everything Old Is New Again: A Fresh Look at Historical
Approaches in Machine Learning. PhD thesis, MIT, 2002.

[58] Ryan Rifkin and Aldebaro Klautau. In defense of one-vs-all classifica-
tion. Journal of Machine Learning Research, 5:101–141, 2004.

[59] Tony G. Rose, Mark Stevenson, and Miles Whitehead. The Reuters
Corpus Volume 1: From yesterday’s news to tomorrow’s language re-
sources. In Manuel Gonzales Rodriguez and Carmen Paz Suarez Araujo,
editors, Proceedings of the Third International Conference on Language
Resources and Evaluation. ELRA, Paris, France, 2002.

[60] Saharon Rosset and Ji Zhu. Piecewise linear regularized solution paths.
Annals of Statistics, 35(3):1012–1030, 2007.

[61] Juho Rousu and John Shawe-Taylor. Efficient computation of gapped
substring kernels on large alphabets. Journal Machine Learning Re-
search, 6:1323–1344, 2005.

[62] Bernhard Schölkopf, Ralf Herbrich, and Alex J. Smola. A general-
ized representer theorem. In D. Helmbold and R. Williamson, editors,
Proceedings of the 14th Annual Conference on Computational Learning
Theory and and 5th European Conference on Computational Learning
Theory, pages 416–426, Berlin, Germany, 2001. Springer.

[63] Bernhard Schölkopf, Patrice Simard, Alex Smola, and Vladimir Vap-
nik. Prior knowledge in support vector kernels. In Michael I. Jor-
dan, Michael J. Kearns, and Sara A. Solla, editors, Advances in Neural
Information Processing Systems 10, pages 640–646. The MIT Press,
Cambridge, Massachusetts, 1998.

[64] Bernhard Schölkopf and Alexander J. Smola. Learning with kernels.
MIT Press, Cambridge, MA, 2002.

[65] John Shawe-Taylor and Nello Cristianini. Kernel Methods for Pattern
Analysis. Cambridge University Press, Cambridge, 2004.

[66] Daniel D. Sleator and Davy Temperley. Parsing english with a link
grammar. Technical Report CMU-CS-91-196, Department of Computer
Science, Carnegie Mellon University, Pittsburgh, PA, October 1991.

51

[67] Hanna Suominen, Tapio Pahikkala, Marketta Hiissa, Tuija Lehtikun-
nas, Barbro Back, Eija Helena Karsten, Sanna Salanterä, and Tapio
Salakoski. Relevance ranking of intensive care nursing narratives.
In Bogdan Gabrys, Robert J. Howlett, and Lakhmi C. Jain, edi-
tors, Knowledge-Based Intelligent Information and Engineering Sys-
tems, 10th International Conference, KES 2006, Part I, Lecture Notes
in Computer Science, pages 720–727, Heidelberg, 2006. Springer.

[68] Evgeni Tsivtsivadze, Tapio Pahikkala, Antti Airola, Jorma Boberg, and
Tapio Salakoski. A sparse regularized least-squares preference learning
algorithm. In Proceedings of the The 10th Scandinavian Conference on
Artificial Intelligence (SCAI 2008). IOS Press, 2008. To appear.

[69] Evgeni Tsivtsivadze, Tapio Pahikkala, Jorma Boberg, and Tapio
Salakoski. Locality-convolution kernel and its application to depen-
dency parse ranking. In Moonis Ali and Richard Dapoigny, editors,
Proceedings of the 19th International Conference on Industrial, Engi-
neering & Other Applications of Applied Intelligent Systems (IEA/AIE
2006), volume 4031 of Lecture Notes in Computer Science, pages 610–
618, Heidelberg, 2006. Springer.

[70] Evgeni Tsivtsivadze, Tapio Pahikkala, Jorma Boberg, and Tapio
Salakoski. Locality kernels for sequential data and their applications to
parse ranking. Applied Intelligence, 2008. To appear.

[71] Evgeni Tsivtsivadze, Tapio Pahikkala, Sampo Pyysalo, Jorma Boberg,
Aleksandr Mylläri, and Tapio Salakoski. Regularized least-squares for
parse ranking. In A. Fazel Famili, Joost N. Kok, José Manuel Peña,
Arno Siebes, and A. J. Feelders, editors, Proceedings of the 6th Inter-
national Symposium on Intelligent Data Analysis, volume 3646 of Lec-
ture Notes in Computer Science, pages 464–474, Heidelberg, Germany,
September 2005. Springer.

[72] Vladimir Vapnik. Statistical Learning Theory. Wiley, New York, 1998.

[73] Grace Wahba. Spline Models for Observational Data. Series in Applied
Mathematics, Vol. 59, SIAM, Philadelphia, 1990.

52

Publication Reprints

53

Paper I

Contextual weighting for support vector machines
in literature mining: an application to gene versus
protein name disambiguation

Tapio Pahikkala, Filip Ginter, Jorma Boberg, Jouni Järvinen, and Tapio
Salakoski. BMC Bioinformatics, 6(1):157, 2005.

BioMed CentralBMC Bioinformatics

ss
Open AcceResearch article
Contextual weighting for Support Vector Machines in literature
mining: an application to gene versus protein name disambiguation
Tapio Pahikkala*, Filip Ginter, Jorma Boberg, Jouni Järvinen and
Tapio Salakoski

Address: Department of Information Technology, University of Turku and Turku Centre for Computer Science (TUCS), Lemminkäisenkatu 14 A,
20520 Turku, Finland

Email: Tapio Pahikkala* - tapio.pahikkala@it.utu.fi; Filip Ginter - filip.ginter@it.utu.fi; Jorma Boberg - jorma.boberg@it.utu.fi;
Jouni Järvinen - jouni.jarvinen@it.utu.fi; Tapio Salakoski - tapio.salakoski@it.utu.fi

* Corresponding author

Abstract
Background: The ability to distinguish between genes and proteins is essential for understanding
biological text. Support Vector Machines (SVMs) have been proven to be very efficient in general
data mining tasks. We explore their capability for the gene versus protein name disambiguation
task.

Results: We incorporated into the conventional SVM a weighting scheme based on distances of
context words from the word to be disambiguated. This weighting scheme increased the
performance of SVMs by five percentage points giving performance better than 85% as measured
by the area under ROC curve and outperformed the Weighted Additive Classifier, which also
incorporates the weighting, and the Naive Bayes classifier.

Conclusion: We show that the performance of SVMs can be improved by the proposed weighting
scheme. Furthermore, our results suggest that in this study the increase of the classification
performance due to the weighting is greater than that obtained by selecting the underlying classifier
or the kernel part of the SVM.

Background
The amount of scientific biomedical literature readable by
computer programs is overwhelming. For example,
PubMed [1] contains about 7.5 million article abstracts.
Therefore automatic literature-mining methods can be
exploited in order to retrieve relevant information (for
recent thorough reviews of related work in Bio-NLP, see
e.g. [2,3]). For example, several algorithms have been
developed for extracting information about protein-pro-
tein interactions from the biomedical literature [4-10].

The problem
In order to find the relations between biological or chem-
ical entities, first the names of the entities have to be rec-
ognized in a reliable way. There has been a significant
amount of effort to do that automatically [11-20]. A large
standardized domain corpus helps to consolidate the
research efforts. The GENIA corpus [21] has been com-
monly used in biomedical named entity recognition. The
state-of-the-art systems have recently been compared, for
example, in Kim et al. [22] using the GENIA corpus.

Published: 22 June 2005

BMC Bioinformatics 2005, 6:157 doi:10.1186/1471-2105-6-157

Received: 12 July 2004
Accepted: 22 June 2005

This article is available from: http://www.biomedcentral.com/1471-2105/6/157

© 2005 Pahikkala et al; licensee BioMed Central Ltd.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Page 1 of 12
(page number not for citation purposes)

http://www.biomedcentral.com/1471-2105/6/157
http://creativecommons.org/licenses/by/2.0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15972097
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

BMC Bioinformatics 2005, 6:157 http://www.biomedcentral.com/1471-2105/6/157
The task of named entity recognition can be divided in
two subtasks, the identification of entities, that is, deter-
mining the boundaries of the named entities, and their
classification into proper classes. The problem of finding
the class the entity belongs to can be treated as a word
sense disambiguation (WSD) task, which, on its own, is
an essential part of natural language processing (see e.g.
Manning and Schütze [23] for more information).

The entities in biomedical text are highly ambiguous. For
example, it is common that a gene has the same name as
the protein it codes for. In the following three sentences
from the GENIA corpus, the occurrences of BZLF1 are a
protein, a gene, and an RNA, respectively: (1) Expression of
either BZLF1 or BRLF1 triggers expression of... (2) ... DNA in
lymphoblastoid cell lines induced by transfection with BZLF1.
and (3) ... lysis of certain HLA B8+ LCL targets was associated
with the abundance of BZLF1 transcripts. Similar ambiguity
is illustrated in the two sentences given by Hatzivassi-
loglou et al. [24]: By UV cross-linking and immunoprecipita-
tion, we show that SBP2 specifically binds selenoprotein
mRNAs both in vitro and in vivo. The SBP2 clone used in this
study generates a 3173 nt transcript (2541 nt of coding
sequence plus a 632 nt 3' UTR truncated at the polyadenylation
site). The occurrence of SBP2 is a protein in the first sen-
tence, whereas the occurrence of SBP2 in the second sen-
tence is a gene. In the same study, a domain corpus was
annotated by three biology experts. The three experts
unanimously agreed only in 78% of the cases, each name
being classified as either a gene, protein or mRNA. This
low rate of inter-annotator agreement suggests that the
task is relatively difficult even for human experts, reflect-
ing the inherent complexity of the domain. However, the
study does not analyse more closely the reasons that lead
to annotation disagreements.

In this paper, we consider the disambiguation of the sense
"gene" or "protein" when the name is not disambiguated
explicitly by the author with the word "gene" or "protein"
(e.g. "SBP2 gene"). This task is important, because the
release of the human genome and large scale functional
genomics studies and methods have made it important to
be able to find information from literature specifically for
proteins and the corresponding genes. However, database
searches provide a lot of hits among which the correct and
important articles have to be sorted manually. Therefore,
for example, in data mining related to proteomics the sci-
entists could save much time if they could direct their
search only to proteins.

Much of the ambiguity in biomedical text is caused by
inconsistent or non-existent naming conventions. For
example, there exist Drosophila gene names such as ring
and arc that can be confused with their ordinary mean-
ings. Manual analysis of a small set of abstracts returned

by PubMed for the query ring and drosophila shows that the
word ring appears in its gene/protein sense in about 30%
of the cases, both capitalized and non-capitalized. Simi-
larly, the word arc is ambiguous and appears in about
75% of the cases in its gene/protein sense, again both cap-
italized and non-capitalized. In both cases, only abstracts
regarding Drosophila were considered, thus the two
example words retain their ambiguity even in the sublan-
guage of articles concerning Drosophila. In contrast, some
other gene/protein names, such as, tax do not retain their
ambiguity in the sublanguage: all occurrences of tax in the
GENIA corpus refer to its gene/protein sense. Another
major source of ambiguity in scientific biomedical text are
abbreviations, which are widely used and therefore are
very important to be identified correctly in natural lan-
guage processing applications [25].

There have already been applications of word sense dis-
ambiguation methods in the field of scientific biological
text processing. Hatzivassiloglou et al. [24] disambiguated
names of genes, proteins and RNAs using a Naive Bayes
classifier. Previously we have developed a method named
here Weighted Additive Classifier (WAC) and applied it to
the problem of gene/protein name disambiguation [26].
Liu et al. [27] disambiguated abbreviations from Medline
abstracts using a Naive Bayes classifier. Yu et al. [28]
achieved better results for the same task using Support
Vector Machines (SVMs) with the one sense per discourse
hypothesis. Furthermore, a system developed by
Podowski et al. [29] assigns gene names to their
LocusLink IDs in previously unseen abstracts.

Lee and Ng [30] performed a comparison of several super-
vised learning algorithms for WSD tasks and in their
study, SVMs were confirmed to have the best perform-
ance. SVMs have also been applied in biomedical WSD
(see e.g. Yu et al. [28]) as well as in biomedical named
entity recognition [20,31-35]. Furthermore, in the COL-
ING-2004 JNLPBA shared task of Bio-Entity Recognition
[22], five studies [36-40] used SVMs either alone or com-
bined with other algorithms. In this paper, we apply SVMs
and as baselines, we consider the Naive Bayes and WAC
classifiers. The studies mentioned above use narrow con-
text windows and focus mainly on studying different fea-
tures such as orthographical, morphological, lexical,
contextual, part-of-speech, head-noun, and name-alias
features. We, in contrast, focus on context representations
that use distance of the words from the ambiguous name
in addition to the context words themselves. We evaluate
the methods on the GENIA data set (see e.g. Collier et al.
[21]), using the area under ROC curve (see e.g. [41]) as a
performance measure.
Page 2 of 12
(page number not for citation purposes)

BMC Bioinformatics 2005, 6:157 http://www.biomedcentral.com/1471-2105/6/157
Support Vector Machines
SVMs can be used to classify multidimensional data into
two classes. SVMs were introduced by Boser et al. [42].
Thorough presentations of SVMs are given by Burges [43]
and Vapnik [44], for example, and in the Methods section
we give a concise introduction to SVMs. In a binary classi-
fication task, the training set consists of data points which
are labeled as positive or negative. In our case, the training
data points are the contexts of the ambiguous names. The
positive and negative labels denote genes and proteins,
respectively. In order to improve linear separability, the
data points are mapped from the input space to a new fea-
ture space before they are used for training or for classifi-
cation. The mapping is done implicitly by a so-called
kernel function, which computes the similarity of two
data points in the feature space. The choice of an appro-
priate kernel function is a nontrivial problem, but there
are certain standard kernel functions which are frequently
used. Kernels and the SVM itself also have certain param-
eters which have to be adjusted in order to make the SVM
classifier work in the best possible way.

Contribution of this work
In short, we considered application of SVMs to the gene
versus protein name disambiguation problem in abstracts
of biomedical articles. While other studies focus mainly
on studying different features, our work primarily consid-
ers context representations. We resolve the ambiguous
names using their context which spans up to the whole
abstract, in contrast to other previous applications of
SVMs which typically use narrow context windows. To
improve the performance of conventional SVMs and
accommodate the wide context span, we adopted a
weighting scheme introduced by Ginter et al. [26] that
exploits the information about the distances of the words
from the name to be disambiguated, and adjusted the
scheme for the SVM classifier. We carefully searched for
the best parameter values of SVMs and kernel functions
using grid optimization as suggested by Hsu et al. [45],
and we also performed a similar search for the parameters
of the proposed weighting scheme. Finally, we measured
the performance of both conventional and weighted
SVMs together with two baseline methods, and showed
that the performance improvement was statistically
significant.

Results and discussion
We experimented with the protein versus gene name dis-
ambiguation problem using conventional SVMs with lin-
ear, Gaussian, as well as second and third degree
polynomial kernels. Also, we tested SVMs using different
kernels augmented with the proposed weighting scheme.
As additional baseline classifiers, we used the Weighted
Additive Classifier, which also uses contextual weighting,
and the Naive Bayes classifier. These methods and their

parameters to which we refer in this section are described
in detail in the Methods section.

In the following, we first discuss the weighting scheme
and the reasons why its use is beneficial. Then, we present
how the data was generated and preprocessed. Finally, we
present the performance measure used in the experi-
ments, describe the experimental setting and the results of
the parameter estimation and the final validation.

Contextual weighting
The training data points are vectors of word frequencies in
the context in which the names to be disambiguated were
found. The basic SVMs with any kernel use only the word
frequencies and do not take into consideration the dis-
tances of the words with respect to the position of the
name to be disambiguated. However, the distance infor-
mation seems intuitively to be important, and therefore
we apply a weighting scheme that incorporates this infor-
mation into the context representation used by SVMs. The
weighting scheme models the distances of the words from
the ambiguous name, while the information whether the
words are before or after the ambiguous name is not con-
sidered. The weight of a context word at the distance d is
given by d-λ + β, where the parameters λ and β are used to
control the effect of the distances of the words from the
name to be disambiguated. A more detailed explanation
of the weighting scheme is presented in the Methods
section.

We now discuss some possible reasons for the weighting
scheme achieving a statistically significant gain in classifi-
cation performance. Yarowsky [46] argues that the effect
of context words is strongest for immediately adjacent
words, and weakens with distance. This phenomenon is
called the one-sense-per-collocation principle. Yarowsky also
considers the one-sense-per-discourse principle, that is, all
instances of an ambiguous word tend to have the same
sense within one discourse unit, the article abstract in our
case. In that case also distant words can help in disam-
biguation. One-sense-per-discourse is, however, pre-
sumed to be a weaker hypotheses, which should be
overridden when the local evidence is strong. In order to
study the tenability of these hypotheses in our data, we
estimated the following conditional probabilities of the
name to be disambiguated to have another instance of an
ambiguous name in its context. For each distance from the
name to be disambiguated, we estimated the conditional
probability that there is a word in the context at that dis-
tance and the word is another ambiguous name with the
same sense, as well as the conditional probability that the
word is a name with the opposite sense. These probabili-
ties are illustrated in Figure 1, where the solid line denotes
the probability of an occurrence of a name with the same
sense and the dashed line denotes the probability of the
Page 3 of 12
(page number not for citation purposes)

BMC Bioinformatics 2005, 6:157 http://www.biomedcentral.com/1471-2105/6/157
opposite sense. At close distances (<6), the probability of
the same sense turned out to be high and decreasing with
distance, whereas the probability of the other sense
behaved in the opposite way. In the proposed method,
the words in the area of influence of the one-sense-per-
collocation principle, that is, the words at close distances,
have more weight than the long distance words and these
weights are controlled by the parameter λ. On the other
hand, at long distances, the probabilities of the same and
the opposite senses settled down to 0.08 and 0.02, respec-
tively, indicating that mostly the one-sense-per-discourse
principle holds. Therefore, when the close context is una-
ble to make a strong decision, the information of the long
distance words may be useful. This effect is controlled by
the β parameter, which balances the influence of the one-
sense-per-discourse principle compared to the one-sense-
per-collocation principle. Note that one-sense-per-dis-
course does not have to hold strictly, because the informa-
tion can be useful if there are on average more instances
of the names with the same sense than with the opposite
sense in the far context. Both near and far context words
are important when deciding the sense of a name. For
example, verbs like "activate" or "phosphorylate" are
often found around protein names, whereas verbs like
"express" or "transcribe" may be found around gene

names. Similarly, head nouns, such as expression, are also
highly indicative of the sense. These words may be located
near to the name to be disambiguated, being strong indi-
cators of its sense. As shown above, ambiguous names in
the abstract are more likely to be of the same sense and
therefore the words around the other ambiguous names
are partly indicative about the sense of the name to be dis-
ambiguated. Since other ambiguous names can occur at
any position of the abstract, it is beneficial to use long
context. Descriptions of experimental conditions can
indicate one sense common to all of the names in the
abstract. For example, "yeast two-hybrid" indicates pro-
tein-protein interaction finding, while "microarray"
relates to gene experiments. Further, the occurrence of a
distant coreference, for example, between the full form of
an ambiguous name and its abbreviation, in the context
of the ambiguous name may provide distant words indic-
ative of the correct sense.

The phenomena discussed above are highly data depend-
ent. However, the proposed weighting scheme models
them if the weighting scheme is equipped with the opti-
mal values of the parameters λ and β found in the training
phase.

Data and its preprocessing
The data set considered in this paper is constructed as fol-
lows. We obtained the evaluation data set for the COL-
ING-2004 JNLPBA shared task of Bio-Entity Recognition
[22], which is derived from the GENIA corpus [21], a
standard corpus for biomedical named entity recognition,
by conflating the original 36 classes into five classes
(DNA, RNA, protein, cell line and cell type) of which we
only use two classes, namely, DNA and protein. The data
set consists of 2000 hand-annotated abstracts and con-
tains 30269 protein examples and 9533 DNA examples.
Average number of words in the abstracts is 246.

Naturally, not all names are truly ambiguous in all
domains and corpora. In these cases a classifier could gain
by simply memorizing the names. We made an experi-
ment in which we used only the ambiguous gene and pro-
tein names as data points and the performance obtained
was over 95%. Using context words as extra features
improved the performance only by 0.3% percentage
points, with optimal context span 1 found experimen-
tally. The difference was not statistically significant. To
assess the performance in a more general setting and to
avoid the overfitting effect of memorizing, we do not
include the instance of the term to be disambiguated into
its context, as the purpose of this paper is to study context-
based name disambiguation. Note also that memorizing
the names does not help the classifier to disambiguate
names that do not exist in training data, for example,
names introduced only recently.

Conditional probabilities of having other instances of ambigu-ous names in the context of the name to be disambiguatedFigure 1
Conditional probabilities of having other instances of
ambiguous names in the context of the name to be
disambiguated. The X-axis denotes the distance in words
from the name to be disambiguated and Y-axis is the proba-
bility. The solid line denotes the probability that if there is a
word in the context at the given distance, the word would be
another ambiguous name having the same sense with the
name to be disambiguated and the dashed line denotes the
corresponding probability for the opposite sense.

1 2 5 10 20 50 1000.
00

0.
05

0.
10

0.
15

Distance

P
ro

ba
bi

lit
y

Same sense
Opposite sense
Page 4 of 12
(page number not for citation purposes)

BMC Bioinformatics 2005, 6:157 http://www.biomedcentral.com/1471-2105/6/157
The text was further preprocessed by removing stop words
and stemming the words with the Porter stemming algo-
rithm [47] (stemming and stop-word removal are dis-
cussed in the Methods section).

Measure of performance
The number of protein examples (30269) in our corpus is
about three times greater than the number of gene exam-
ples (9533). Thus, we could achieve a classification accu-
racy of about 75% by always predicting the protein class.
To cope with the imbalance in the data, we measure the
performance of each classifier as the area under ROC
curve (AUC). ROC curve is a relation between the true-
positive rate (TPR) and the false-positive rate (FPR) at var-
ious classification thresholds:

where TP, FN, FP, and TN are true positives, false nega-
tives, false positives, and true negatives, respectively.
Unlike other popular measures such as accuracy and pre-
cision-recall analysis, the AUC measure is invariant to the
prior class probabilities. AUC corresponds to the proba-
bility that given a randomly chosen positive example and
a randomly chosen negative example, the classifier will
correctly say which is which. For a thorough discussion of
ROC curves and the AUC measure, see, for example,
Fawcett [41], Maloof [48], and Bradley [49].

We cross-validate all AUC measurements using the 5 × 2
cross-validation scheme, which is an ordinary 2-fold
cross-validation performed five times. To obtain a 2-fold
cross-validated performance estimate, we randomly
divide a set of abstracts into two equally-sized sets and
average the two performance measurements obtained by
training the classifier on one set and testing the classifier
on the other set. To obtain a 5 × 2 cross-validated perform-
ance estimate, a 2-fold cross-validation is performed five
times and the estimates are then averaged. To avoid indi-
rect overlap between test and training sets, we form the
sets so that examples originating in the same abstract
always remain in the same set.

To test for statistical significance, we use the robust 5 × 2-
cv test [50]. The test avoids the problem of dependence
between folds in N-fold cross-validation schemes and
results in a more realistic estimate than, for example, the
t-test.

Experimental setup
We randomly divided the preprocessed set of 2000
abstracts into two equal-sized sets; 1000 abstracts for

parameter estimation and 1000 abstracts for final valida-
tion of the methods. The 5 × 2 cross-validated AUC was
used as the measure of performance in both parameter
estimation and final validation. In all the experiments
with SVMs, we normalized the word frequency vectors to
unit length, because the sizes of the contexts varied con-
siderably. We carried out the SVM experiments using the
LIBSVM 2.6 software [51] and the Naive Bayes experi-
ments using the Bow toolkit [52].

In the experiments, optimal parameter values for SVMs
with different kernels and for the proposed weighting
scheme must be searched (the exact definitions of the
parameters and kernel functions are presented in the
Methods section). Every SVM itself has always a penalty
parameter C, linear kernel has no other parameters than
C, and both Gaussian and polynomial kernels have an
additional parameter λ. Adopting a contextual representa-
tion yields a context span parameter s. The SVM equipped
with the weighting scheme has two additional parameters
λ and β by which we may control the effect of the dis-
tances of the words from the name to be disambiguated
when weighting the context words. The performance of a
classifier may be strongly influenced by the choice of the
values for its parameters. For example, from Figure 3 (dis-
cussed in more detail later) it can be observed that a
wrong choice of the kernel parameters as well as the SVM
penalty parameter C can lead to a severe loss in perform-
ance. Particularly when comparing the methods, the cor-
rect parameter setting for each of the compared methods
is crucial, as only then a reliable estimate of the perform-
ance is obtained for each of the methods. The correct
parameter values cannot be known in advance and the use
of the default values may result in sub-optimal classifica-
tion performance. Therefore, the parameter values are
most commonly estimated from the data. Hsu et al. [45]
recommend a grid-search on C and γ parameters using
cross-validation and exponentially growing sequences of
C and γ. Since an exhaustive search for the parameters can
not be done in the continuous space of SVM and kernel
parameters, we performed a coarse preliminary search in
order to find an auspicious region, and subsequently con-
ducted a finer grid search. As can be observed from Figure
2, the choice of values of the weighting parameters λ and
β is as important for the classification performance as the
choice of the other parameters. Moreover, as noticed by
Ginter et al. [26], the optimal values depend on the task
and are not known beforehand. Therefore, we use a grid-
search also for finding the optimal values of the parame-
ters λ and β.

In short, the parameter estimation for SVM classifiers was
performed as follows. First we estimated the context span
s for the conventional SVM and the values of λ and β for
the weighted SVM, using a grid search with the linear

TPR
TP

TP FN

FPR
FP

TN FP

=
+

=
+

Page 5 of 12
(page number not for citation purposes)

BMC Bioinformatics 2005, 6:157 http://www.biomedcentral.com/1471-2105/6/157
kernel function. We used the whole abstract to form the
examples for the weighted SVM. With the s, λ and β
parameters fixed, we evaluated different types of SVM ker-
nels, estimating the kernel parameters with a grid search.
The SVM penalty parameter C is optimized separately at
each point of the context span, weighting and kernel
parameter grids.

In a similar manner, the optimal combination of λ, β and
s for the WAC classifier was found by performing a 3-
dimensional grid search. For the Naive Bayes classifier,
only the optimal value for s must be searched. For final
validation, we chose the best performing kernel function
for conventional and weighted SVMs. Using the parame-
ter values found in the parameter estimation phase, we
then measured the performance of each of the compared
classifiers on the validation set, again using 5 × 2 cross-val-
idation.

A detailed explanation of the grid search for the parameter
estimation described above is presented in the following
sections.

Parameter estimation for conventional SVM
First, we searched for the optimal context span s that we
will use in our experiments with the conventional SVM.
We experimented with different context spans using the
conventional SVM with the linear kernel, namely spans of
1, 2, 3, 4, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90 and 100
words to both directions from the term to be disambigua-
ted. The parameter C for the SVM with the linear kernel
was searched with values 2-5, 2-4,..., 23 for each of the dif-
ferent context spans. In these experiments, the context
span of 60 words to both directions from the term to be
disambiguated resulted in the highest performance for the
conventional SVM. We used this context span when exper-
imenting with Gaussian and polynomial (d = 2, d = 3) ker-
nels, because simultaneous searching for optimal context
span and kernel parameters C and γ for the Gaussian ker-
nel and polynomial kernels with degrees d = 2 and d = 3
would have been computationally impractical. The values
of the C and γ parameters of the Gaussian kernel were 2-5,
2-4,..., 22 and 2-3, 2-2,..., 22, respectively, and the values for
the C and γ parameters of the polynomial kernels were 2-

10, 2-9,..., 2-2 and 2-2, 2-1,..., 25, respectively. The results
obtained with different kernel functions using the opti-
mal context span s = 60 found with the linear kernel are
shown in Table 1.

Parameter estimation for weighted SVM
With the weighted SVM, we always used the whole
abstract as a context. For the weighted SVM, we estimated

Parameter estimation: The performance of the weighted SVM with the linear kernel as a function of the weighting parameters λ and βFigure 2
Parameter estimation: The performance of the
weighted SVM with the linear kernel as a function of
the weighting parameters λ and β. The best perform-
ance is reached at λ = 1.5 and β = 0.025.

Parameter estimation: The performance of the weighted SVM with the Gaussian kernel as a function of the SVM pen-alty parameter C and the kernel parameter γFigure 3
Parameter estimation: The performance of the
weighted SVM with the Gaussian kernel as a function
of the SVM penalty parameter C and the kernel
parameter γ. Both parameters are in a logarithmic scale.
The best performance is reached at C = 1 and γ = 1.

 8
3.

4
 8

3.
5

 8
3.

7

 8
4.

1

 84.2

 84.2

 84.5

 8
4.

6

 84.8

 84.9

 85.0

 85.1

0.5 1.0 1.5 2.0 2.5

0.
00

0
0.

02
5

0.
05

0
0.

07
5

0.
10

0

β

 85.3

 85.2

λ

lg(C)

lg
γ

 83.3

 83.7
 83.9

 84.1

 84.1

 84.2

 84.3

 84.4

 84.5

 84.6

 84.7

 84.8

 85.1

 85.1

 85.2

 85.2

 85.3

 8
5.

4

 85.6

 8
5.

7

 85.8 8
5.

9

 86.0

−4 −3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2

−4 −3 −2 −1 0 1 2 3

(
)

 86.1

Table 1: Parameter estimation: The performance of
conventional SVMs with different kernel functions, context span
s = 60.

Kernel AUC Parameters

Linear 80.47% C = 2-3

Gaussian 80.62% C = 2-2, γ = 2
Polynomial (d = 2) 80.49% C = 2-9, γ = 8
Polynomial (d = 3) 80.53% C = 2-7, γ = 2
Page 6 of 12
(page number not for citation purposes)

BMC Bioinformatics 2005, 6:157 http://www.biomedcentral.com/1471-2105/6/157
the best combination of the weighting parameters λ and β
with the linear kernel. The parameter C was also sepa-
rately searched with values 2-5, 2-4,..., 23 for each of the dif-
ferent weightings. The comparison of the performance
with different weightings using the linear kernel is
illustrated in Figure 2. At this point, we found that the val-
ues λ = 1.5 and β = 0.025 performed best for the linear ker-
nel (for illustration, see Figure 6). We used these
parameters when experimenting with Gaussian and poly-
nomial (d = 2, d = 3) kernels. The values of the C and γ
parameters of the Gaussian kernel were 2-4, 2-3,..., 23and 2-

3, 2-2,..., 22, respectively, and the values for the C and γ
parameters of the polynomial kernels were 2-7, 2-6,..., 2-2

and 2-2, 2-1,..., 22, respectively. The performance of the
weighted SVM with different C and parameters of the
Gaussian kernel is illustrated in Figure 3. The figure illus-
trates the importance of correct parameter selection. The
weighted SVM performance with different combinations
of γ and the penalty parameter C follows the behavior
described by Keerthi and Lin [53]: Areas of underfitting
can be seen at the left, where the value of the C parameter
is low, and at bottom left where the values of both C and
γ are low. On the other hand, SVM with Gaussian kernel
overfits heavily if the value of γ is too large, as can be seen
at the top of the figure. Overfitting happens also with
noisy data at the right part of the figure, where the value
of C is too large. The results obtained with different kernel
functions using the best weighting parameters λ = 1.5 and
β = 0.025 found with the linear kernel are shown in Table
2.

Parameter estimation for baseline methods
The only parameter of the Naive Bayes classifier is the con-
text span s. We performed a search for s � [5, 30] with step
5. The performance reached maximum for s = 15. The
WAC incorporates an identical weighting scheme as the
weighted SVM. We found the optimal parameters by per-
forming a 3-dimensional grid search for λ � [0,3] with
step 0.1, β || [0, 0.25] with step 0.025 and context span in
the interval [5,70] with step 5. The maximum perform-
ance was obtained for λ = 1, β = 0.025 and context span s
= 55 (for illustration, see Figure 4).

Final validation
The Gaussian kernel was found to be the best with both
the conventional and weighted SVMs when tested in the

Table 2: Parameter estimation: The performance of weighted
SVMs with different kernel functions, λ = 1.5 and β = 0.025.

Kernel AUC Parameters

Linear 85.31% C = 1
Gaussian 86.15% C = 1, γ = 1
Polynomial (d = 2) 86.09% C = 2-3, γ = 2
Polynomial (d = 3) 86.13% C = 2-3, γ = 1

Parameter estimation: The performance of WAC with s = 55 as a function of the weighting parameters γ and βFigure 4
Parameter estimation: The performance of WAC
with s = 55 as a function of the weighting parameters
λ and β. The best performance is reached at λ = 1.0 and β =
0.025.

Final validation: Averaged ROC curves of the classifiersFigure 5
Final validation: Averaged ROC curves of the classifi-
ers. The averaged ROC curves were obtained from the folds
of the 5 × 2 cross-validation using the vertical averaging
method described by Fawcett [41].

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

 8
3.

1

 83.1

 8
3.

2

 83.2

 8
3.

3

 83.3

 8
3.

4
 8

3.
5

 8
3.

6 83.6

 8
3.

7

 8
3.

8

 83.9

 8
4.

0

 84.1

 84.2

β

λ

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

False−Positive Rate

Tr
ue

−P
os

iti
ve

 R
at

e

Weighted SVM
WAC
Naive Bayes
SVM
Page 7 of 12
(page number not for citation purposes)

BMC Bioinformatics 2005, 6:157 http://www.biomedcentral.com/1471-2105/6/157
parameter estimation. The best parameters for the
Gaussian kernel were C = 0.25 and λ = 2 with the conven-
tional SVM, and C = 1 and λ = 1 with the weighted SVM.
The AUC results of the final validation are presented in
Table 3 and the ROC curves are given in Figure 5. To test
the statistical significance of AUC differences between the
weighted SVM, the conventional SVM, WAC and Naive
Bayes, we performed the robust 5 × 2-cv test on the valida-
tion data. Each of the pairwise differences were strongly
significant with p-values below 0.01, except for the differ-
ence between the conventional SVM and the Naive Bayes
classifier (p-value of about 0.1). The conventional SVMs
performed poorly compared to the baselines, especially to
the WAC classifier that takes advantage of the contextual
weighting. Incorporation of the weighting scheme into
SVMs, however, improved their performance by five per-
centage points.

Conclusion
In this paper, we show that SVMs can be successfully
applied to gene versus protein name disambiguation. We
demonstrate how their performance can be further
improved by incorporating a weighting scheme based on

the intuition that the words near the name to be disam-
biguated are more important than the other words. The
weighting scheme results in a notable performance gain of
five percentage points. We also study carefully the effects
of different kernel functions and parameters and show
that the proposed weighting scheme influences the
performance even more than the selection of the kernel
part of SVMs. The weighted methods statistically signifi-
cantly outperformed their unweighted counterparts, the
difference being particularly notable for SVMs.

In Ginter et al. [26], we have shown that the optimal val-
ues for λ and β are non-zero and differ substantially
depending on the classification task at hand. This suggests
that the extent to which the long distance words
contribute to the classification is task-dependent and
could reflect differing properties of the tasks. While find-
ing correct values of these parameters is clearly important
as shown by the experiments, an exact interpretation of
the values remains speculative. However, we discuss sev-
eral reasons why the use of the proposed weighting
scheme is beneficial. Further study could bring a better
insight into the underlying phenomena.

The performance of the weighted SVM might be further
improved, for example, by using collocations in order to
capture the local syntax around the term to be disam-
biguated. However, the proposed weighting scheme uses
the local information, and therefore it already captures
the information represented by collocations to some
extent. In addition, several special text kernels have suc-
cessfully been applied to text classification as reported by
Lodhi et al. [54] and by Cancedda et al. [55]. These kernels
and different weighting methods based on the distances

A weighting exampleFigure 6
A weighting example. Here is an example of a context (t1,..., t16). The term t is the name to be disambiguated. Figure illus-
trates the weights of the context words t1,..., t16 with two different parameter value pairs of λ and β. The weight values are rep-
resented as a continuous function, although they take discrete values. The parameter combination λ = 1.5 and β = 0.025 yields
the best performance when using the linear kernel.

w
ei

gh
t

t1 t2 t3 t4 t5 t6 t t7 t8 t9 t10 t11 t12 t13 t14 t15

0.
0

0.
4

0.
8

1.
2

λ = 1.5, β = 0.025
λ = 1, β = 0.1

Table 3: Final validation: The performance of the classifiers.

Method AUC

Conventional SVM 79.85%
Weighted SVM 85.48%
WAC 83.05%
Naive Bayes 80.81%
Page 8 of 12
(page number not for citation purposes)

BMC Bioinformatics 2005, 6:157 http://www.biomedcentral.com/1471-2105/6/157
and also, for example, on the biological relevance of the
words in the context, are still to be studied.

Methods
In this section, we describe the concepts necessary to
understand the application of a SVM classifier to gene ver-
sus protein name disambiguation. We start by giving a
short introduction to SVMs. The training data points of
the classifier are vectors describing the word frequencies
in the context in which the names to be disambiguated
were found. Then, we explain the general bag of words
(BoW) approach that uses only the word frequencies.
However, the distances of the words with respect to the
word to be disambiguated seem intuitively to be impor-
tant. We describe a weighting scheme (the weighted BoW)
based on distances of the context words from the ambig-
uous name. Finally, we briefly introduce the two baseline
methods, the Naive Bayes classifier and the Weighted
Additive Classifier.

Support Vector Machines
Here, we give a brief description of SVMs. A more compre-
hensive treatment can be found, for example, in Burges
[43] and Vapnik [44]. In a binary classification task m
labeled examples (x1, y1),..., (xm, ym), where xi ε X are train-
ing data points and yi ε {-1, +1} are the corresponding
class labels, form the training set. In order to make the
data linearly separable, data points are mapped from the
input space X to a feature space F with a mapping

Φ : X → F

before they are used for training or for classification.

SVMs can be considered as a special case of the following
regularization problem:

where i ranges from 1 to m, l is the loss function used by
the learning machine, f : X → Y is a function which maps
the input vectors x � X to the output labels y � Y, C � +

is a regularization/penalty parameter, and || · ||k is a norm
in a Reproducing Kernel Hilbert Space defined by a posi-
tive definite kernelfunction k. The second term is called a
regularizer. The loss function used by SVMs for binary
classification problems is called linear soft margin loss or
hinge loss and is defined as

l(f(x), y) = max(1 - yf(x), 0).

By the Representer Theorem, the minimizer of (1) has the
following form:

where ai ε and k is the kernel function associated with
the Reproducing Kernel Hilbert Space mentioned above.

The penalty parameter C controls the trade-o3 between
the complexity of the decision function and the number
of wrongly classified training points the model will
tolerate in the feature space. Minimizing number of
training errors by selecting an appropriate parameter can
sometimes lead to overfitting due outliers. On the other
hand, too strong regularization (low penalization) under-
fits. A good insight of trade-o3 can be found, for example,
in Hastie et al. [56].

There are several commonly used kernels (see Vapnik
[44]). The ordinary inner product is called the linear kernel

k(u, v) = <u, v>

and the polynomial kernel is defined as

k(u, v) = (γ<u, v> + 1)d

where d ε is the degree of the polynomial and γ ε +.
When the polynomial kernel is used, the datapoints are
mapped into a feature space which contains all products
of input vector elements up to d (see e.g. Vapnik [57]). The
γ parameter of the polynomial kernel controls the weight
differences of the product features of different orders.
Another widely used kernel function is the Gaussian kernel

whose width is determined by the γ parameter. We refer to
Keerthi and Lin [53] for more information of the behavior
of the SVM with the Gaussian kernel with different com-
binations of and the penalty parameter C. Hsu et al. [45]
suggested to use a cross-validation and a grid search in
order to estimate the best combination of and the penalty
parameter C for the Gaussian kernel. We adopt this proce-
dure and also perform a similar search for the linear and
polynomial kernels. A detailed description of the parame-
ter selection is given in the Results and Discussion section.

Representation of contexts
In our experiments, we trained the SVM classifier to dis-
ambiguate the sense of a term between two possible
senses based on its context. Let us denote by s the context
span parameter controlling the lengths of the contexts. For

a fixed s, we take such a context = (t1,..., tl) that both the
number of words preceding and following t is maximal

min ((),) ,
f

i i
i

C l f x y f
k

+ ()∑ 1
2

2
1& &

ℜ

f x k x xi i
i

() (,),= ∑α

ℜ

` ℜ

k u v e u v(,) ,= − −γ& &2

t

Page 9 of 12
(page number not for citation purposes)

BMC Bioinformatics 2005, 6:157 http://www.biomedcentral.com/1471-2105/6/157
but at most s. The words which precede t are t1,..., tk, 0 ≤ k
≤ s, in the order they appear in the text, and correspond-
ingly tk+1,..., tl, 0 ≤ l - k ≤ s are the words which follow t in
the text.

Hence, if there exist s words preceding and following the
word to be disambiguated, then k = l - k = s. The contexts
may be of different lengths, since the number of words
from t to the beginning or end of the abstract may be
smaller than s.

The BoW approach
Let C be a set of all possible contexts and let V = {v1,..., vn}
be an ordered set of all distinct words of the contexts of C.
We formed the set V of all distinct words separately for
each training-testing experiment from the words found in
the contexts of abstracts of the training set. Let be the map-
ping, which maps contexts to BoW vectors, defined by

where , 1 ≤ i ≤ n, is the number of occurrences of the

word vi � V in the context . Thus, only the frequency of
a word in the context is recorded, but the information
about the distances of the words from the ambiguous
name is ignored. The BoW vectors can now be used as
input space data points for SVM classifiers.

The number of words in V is usually large, and therefore
the dimension of the input space is also high. Customary
means to reduce the dimensionality are, for example,
stop-word removal and stemming. Stop-words are words
that occur very often in all documents, for instance, 'is',
'the', 'are', 'a'. Stemming combines words that only differ
in suffix. For example, the stemming algorithm of Porter
[47] removes all suffixes it recognizes. We have applied
these dimensionality reduction techniques in our main
experiments. However, the number of words still often
remains in tens of thousands.

In a separate experiment, we have estimated the effect of
stop word removal and stemming using theconventional
SVM with the linear kernel and grid search optimization
of C and context span parameters. We found that stem-
ming results in a low increase in performance (0.59%),
stop-words removal haspractically no effect on the per-
formance (an increase of 0.01%). Neither of the differ-
ences were statistically significant.

The weighted BoW approach
The BoW approach does not preserve any information
about the positions of the words in the context. Therefore,
we use a particular weighting scheme based on the dis-
tances of the words from the term t to be disambiguated.

The idea is that the words near t are more likely to be
important than other words, and therefore they are given
larger weights.

The weighted vector space model of contexts can be for-
malized as follows. Let dist(j) denote the distance of the
word tj from the term t, that is, the number of words
between the word tj and t including the word tj itself. Let

further Pos(v,) = {j | v = tj ε } denote a set of positions

j for each word v ε V in a particular context . The weight
for the word tj is defined as

where λ, β ≥ 0 are the parameters for the weighting. If λ >
0, the weights get a hyperbolic shape with highest values
immediately around the term to be disambiguated (see
Figure 6). The bigger λ is, the steeper the weight values
grow towards the term t, and β is an offset of the values.
The role of β is to reduce the ratio between the weights of
the words that are near to the term t and the weights
which are far from t.

Let Ψ now be the function which maps contexts to
weighted BoWs given by

Where

Note that the setting λ = β = 0 corresponds to the ordinary
BoW approach (2).

Baseline methods
The two baselines, the Naive Bayes classifier and the
Weighted Additive Classifier, represent a family of linear
classifiers based on aggregating the class-wise co-occur-
rence statistics of the words in the context. The Naive
Bayes classifier (see, for example, Manning and Schütze
[23]) evaluates the a posteriori conditional probability of
a class by computing a product of the corresponding
conditional probabilities of the context words obtained
from their class-wise co-occurrence statistics.

The Weighted Additive Classifier [26] considers co-occur-
rence statistics similar to that used in the Naive Bayes clas-
sifier. However, the decision rule is additive and
incorporates a weighting scheme. The weighting can be

Ψ : , ((), , ()),C t t tn
n→ ()` 6 …ψ ψ1 2

ψi t()

t

t t

t

1

dist()
,

j λ β+

Ψ : , ((), , ()),C t t tn
n→ \ 6 …ψ ψ1

ψ βλi
j v t

t
j

i

()
)

.
(,)

= +








 ()

∈
∑ 1

3
dist(Pos
Page 10 of 12
(page number not for citation purposes)

BMC Bioinformatics 2005, 6:157 http://www.biomedcentral.com/1471-2105/6/157
defined in a manner identical to that described in the sec-
tion on weighted BoW.

Authors' contributions
TP carried out the experiments with SVMs and the weight-
ing scheme as well as the sense distribution analyses. He
also drafted the manuscript. FG designed and carried out
all the experiments with Naive Bayes and WAC. JB, JJ and
TS conceived the original design of the work, participated
in the analysis and interpretation of data, and provided
scientific guidance. All authors critically revised the man-
uscript and approved the final version.

Acknowledgements
We thank Professor Mauno Vihinen, Institute of Medical Technology, Uni-
versity of Tampere, Finland, for the discussions and reasonings of the bio-
logical importance of the gene versus protein name disambiguation task.
We also thank the anonymous reviewers for their insightful comments.
This work was supported by Tekes, the National Technology Agency of
Finland.

References
1. Pubmed database [http://www.ncbi.nlm.nih.gov/PubMed/]
2. Shatkay H, Feldman R: Mining the Biomedical Literature in the

Genomic Era: An Overview. Journal of Computational Biology 2003,
10:821-855.

3. Cohen KB, Hunter L: Natural language processing and systems
biology. In Artificial intelligence and systems biology Edited by: Dubitzky
W, Pereira F. Kluwer Academic Publishers; 2004.

4. Blaschke C, Andrade MA, Ouzounis C, Valencia A: Automatic
Extraction of Biological Information from Scientific Text:
Protein-Protein Interactions. In Proceedings of the Seventh Inter-
national Conference on Intelligent Systems for Molecular Biology Edited by:
Lengauer T, Schneider R, Bork P, Brutlag D, Glasgow J, Mewes HW,
Zimmer R. AAAI Press; 1999:60-67.

5. Ono T, Hishigaki H, Tanigami A, Takagi T: Automated extraction
of information on protein-protein interactions from the bio-
logical literature. Bioinformatics 2001, 17:155-161.

6. Marcotte EM, Xenarios I, Eisenberg D: Mining literature for pro-
tein-protein interactions. Bioinformatics 2001, 17:359-363.

7. Temkin JM, Gilder MR: Extraction of protein interaction infor-
mation from unstructured text using a context-free
grammar. Bioinformatics 2003, 19:2046-2053.

8. Donaldson I, Martin J, de Bruijn B, Wolting C, Lay V, Tuekam B, Zhang
S, Baskin B, Bader G, Michalickova K, Pawson T, Hogue C: PreBIND
and Textomy – mining the biomedical literature for protein-
protein interactions using a support vector machine. BMC
Bioinformatics 2003, 4:11.

9. Daraselia N, Yuryev A, Egorov S, Novichkova S, Nikitin A, Mazo I:
Extracting human protein interactions from MEDLINE using
a full-sentence parser. Bioinformatics 2004, 20:604-611.

10. Ginter F, Pahikkala T, Pyysalo S, Boberg J, Järvinen J, Salakoski T:
Extracting protein-protein interaction sentences by applying
rough set data analysis. In Proceedings of the Fourth International
Conference on Rough Sets and Current Trends in Computing, Lecture Notes
in Computer Science 3066 Edited by: Tsumoto H, Slowinski R,
Komorowski J, Grzymala-Busse JW. Springer-Verlag; 2004:780-785.

11. Fukuda K, Tsunoda T, Tamura A, Takagi T: Toward information
extraction: Identifying protein names from biological
papers. In Proceedings of the Pacific Symposium on Biocomputing Edited
by: Altman R, Dunker A, Hunter L, Klein T. Singapore: World Scien-
tific Press; 1998:707-718.

12. Nobata C, Collier N, Tsujii J: Automatic Term Identification and
Classification in Biology Texts. Proceedings of the fifth Natural Lan-
guage Processing Pacific Rim Symposium 1999:369-374.

13. Collier N, Nobata C, Tsujii J: Extracting the Names of Genes
and Gene Products with a Hidden Markov Model. In Proceed-
ings of the Eighteenth International Conference on Computational
Linguistics Association for Computational Linguistics; 2000:201-207.

14. Tanabe L, Wilbur WJ: Tagging gene and protein names in bio-
medical text. Bioinformatics 2002, 18:1124-1132.

15. Yu H, Hatzivassiloglou V, Rzhetsky A, Wilbur WJ: Automatically
identifying gene/protein terms in MEDLINE abstracts. Journal
of Biomedical Informatics 2002, 35:322-330.

16. Franzén K, Eriksson G, Olsson F, Asker L, Lidén P, Cöster J: Protein
Names And How To Find Them. International Journal of Medical
Informatics 2002, 67:49-61.

17. Yu H, Agichtein E: Extracting synonymous gene and protein
terms from biological literature. Bioinformatics 2003, 19(Suppl
1):i340-i349.

18. Chang JT, Schütze H, Altman RB: GAPSCORE: finding gene and
protein names one word at a time. Bioinformatics 2004,
20:216-225.

19. Zhou G, Zhang J, Su J, Shen D, Tan CL: Recognizing names in bio-
medical texts: a machine learning approach. Bioinformatics
2004, 20:1178-1190.

20. Lee KJ, Hwang YS, Kim S, Rim HC: Biomedical named entity rec-
ognition using two-phase model based on SVMs. Journal of Bio-
medical Informatics 2004, 37:436-447.

21. Collier N, Park HS, Ogata N, Tateisi Y, Nobata C, Sekimizu T, Imai H,
Tsujii J: The GENIA project: corpus-based knowledge acquisi-
tion and information extraction from genome research
papers. In Proceedings of the European Association for Computational
Linguistics Edited by: Thompson HS, Lascarides A. Association for
Computational Linguistics; 1999:271-272.

22. Kim J, Ohta T, Tsuruoka Y, Tateisi Y, Collier N: Introduction to
the bio-entity recognition task at JNLPBA. Proceedings of the
International Joint Workshop on Natural Language Processing in Biomedi-
cine and its Applications 2004:70-75.

23. Manning CD, Schütze H: Foundations of Statistical Natural Language
Processing Cambridge, Massachusetts: The MIT Press; 1999.

24. Hatzivassiloglou V, Duboué AP, Rzhetsky A: Disambiguating pro-
teins, genes and RNA in text: a machine learning approach.
Bioinformatics 2001, 17:97-106.

25. Liu H, Aronson A, Friedman C: A Study of Abbreviations in
MEDLINE Abstracts. In Proceedings of the 2002 AMIA Annual
Symposium Edited by: Kohane IS. Hanley and Belfus; 2002:464-468.

26. Ginter F, Boberg J, Järvinen J, Salakoski T: New Techniques for
Disambiguation in Natural Language and Their Application
to Biological Text. Journal of Machine Learning Research 2004,
5:605-621.

27. Liu H, Johnson SB, Friedman C: Automatic Resolution of Ambig-
uous Terms Based on Machine Learning and Conceptual
Relations in the UMLS. Journal of the American Medical Informatics
Association 2002, 9:621-636.

28. Yu Z, Tsuruoka Y, Tsujii J: Automatic Resolution of Ambiguous
Abbreviations in Biomedical Texts using Support Vector
Machines and One Sense Per Discourse Hypothesis. In Pro-
ceedings of the SIGIR'03 Workshop on Text Analysis and Search for Bioin-
formatics Edited by: Brown E, Hersh W, Valencia A. ACM Press;
2003:57-62.

29. Podowski RM, Cleary JG, Goncharoff NT, Amoutzias G, Hayes WS:
AZuRE, a Scalable System for Automated Term Disam-
biguation of Gene and Protein Names. In 3rd International IEEE
Computer Society Computational Systems Bioinformatics Conference IEEE
Computer Society; 2004:415-424.

30. Lee YK, Ng HT: An Empirical Evaluation of Knowledge
Sources and Learning Algorithms for Word Sense Disam-
biguation. In Proceedings of the Conference on Empirical Methods in
Natural Language Processing Edited by: Hajič J, Matsumoto Y. Philadel-
phia: Association for Computational Linguistics; 2002:41-48.

31. Kazama J, Makino T, Ohta Y, Tsujii J: Tuning Support Vector
Machines for Biomedical Named Entity Recognition. In ACL
Workshop on Natural Language Processing in the Biomedical Domain
Association for Computational Linguistics; 2002:1-8.

32. Takeuchi K, Collier N: Bio-Medical Entity Extraction using Sup-
port Vector Machines. Proceedings of the ACL 2003 Workshop on
Natural Language Processing in Biomedicine 2003:57-64.

33. Lee KJ, Hwang YS, Rim HC: Two-Phase Biomedical NE Recog-
nition based on SVMs. Proceedings of the ACL 2003 Workshop on
Natural Language Processing in Biomedicine 2003:33-40.

34. Collier N, Takeuchi K: Comparison of character-level and part
of speech features for name recognition in biomedical texts.
Journal of Biomedical Informatics 2004, 37:423-435.
Page 11 of 12
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/PubMed/
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14980013
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14980013
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11238071
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11238071
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11238071
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11301305
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11301305
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14594709
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14594709
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14594709
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12689350
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12689350
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12689350
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15033866
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15033866
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15033866
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12176836
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12176836
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12968781
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12968781
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12460631
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12460631
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12855479
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12855479
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14734313
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14734313
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14871877
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14871877
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15542017
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15542017
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12386113
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12386113
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12386113
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15542016
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15542016

BMC Bioinformatics 2005, 6:157 http://www.biomedcentral.com/1471-2105/6/157
Publish with BioMed Central and every
scientist can read your work free of charge

"BioMed Central will be the most significant development for
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

35. Zhou G: Recognizing Names in Biomedical Texts using Hid-
den Markov Model and SVM plus Sigmoid. Proceedings of the
International Joint Workshop on Natural Language Processing in Biomedi-
cine and its Applications 2004:1-7.

36. Park KM, Kim SH, Lee DG, Rim HC: Incorporating Lexical
Knowledge into Biomedical NE Recognition. Proceedings of the
International Joint Workshop on Natural Language Processing in Biomedi-
cine and its Applications 2004:76-79.

37. Lee C, Hou WJ, Chen HH: Annotating Multiple Types of Bio-
medical Entities: A Single Word Classification Approach.
Proceedings of the International Joint Workshop on Natural Language
Processing in Biomedicine and its Applications 2004:80-83.

38. Rössler M: Adapting an NER-System for German to the Bio-
medical Domain. Proceedings of the International Joint Workshop on
Natural Language Processing in Biomedicine and its Applications
2004:92-95.

39. Zhou G, Su J: Exploring deep knowledge resources in biomed-
ical name recognition. Proceedings of the International Joint
Workshop on Natural Language Processing in Biomedicine and its
Applications 2004:96-99.

40. Song Y, Kim E, Lee GG, Yi BK: POSBIOTM-NER in the Shared
Task of BioNLP/NLPBA2004. Proceedings of the International Joint
Workshop on Natural Language Processing in Biomedicine and its
Applications 2004:100-103.

41. Fawcett T: Roc graphs: Notes and practical considerations for
data mining researchers. Tech Rep HPL-2003-4, HP Labs, Palo Alto,
Ca 2003.

42. Boser BE, Guyon I, Vapnik V: A Training Algorithm for Optimal
Margin Classifiers. In Proceedings of the Fifth Annual ACM Workshop
on Computational Learing Theory Edited by: Haussler D. New York:
ACM Press; 1992:144-152.

43. Burges CJC: A Tutorial on Support Vector Machines for Pat-
tern Recognition. Data Mining and Knowledge Discovery 1998,
2:121-167.

44. Vapnik VN: Statistical Learning Theory New York: Wiley; 1998.
45. Hsu CW, Chang CC, Lin CJ: A practical guide to support vector

classification. Tech. rep., Department of Computer Science and
Information Engineering, National Taiwan University, Taipei; 2003.

46. Yarowsky D: Unsupervised word sense disambiguation rival-
ing supervised methods. In Proceedings of the Thirty-Third confer-
ence on Association for Computational Linguistics Edited by: Uszkoreit H.
Association for Computational Linguistics; 1995:189-196.

47. Porter MF: An algorithm for suffix stripping. Program 1980,
14:130-137.

48. Maloof M: Learning when data sets are imbalanced and when
costs are unequal and unknown. ICML-2003 Workshop on Learn-
ing from Imbalanced Data Sets II 2003.

49. Bradley AP: The use of the area under the ROC curve in the
evaluation of machine learning algorithms. Pattern Recognition
1997, 30:1145-1159.

50. Alpaydin E: Combined 5 × 2 cv F Test for Comparing Super-
vised Classification Learning Algorithms. Neural Computation
1999, 11:1885-1892.

51. Chang CC, Lin CJ: LIBSVM: a library for support vector
machines. [http://www.csie.ntu.edu.tw/~cjlin/libsvm].

52. McCallum AK: Bow: a toolkit for statistical language modeling,
text retrieval, classification and clustering. 1996 [http://www-
2.cs.cmu.edu/~mccallum/bow/].

53. Keerthi SS, Lin CJ: Asymptotic behaviors of support vector
machines with Gaussian kernel. Neural Computation 2003,
15:1667-1689.

54. Lodhi H, Saunders C, Shawe-Taylor J, Cristianini N, Watkins C: Text
Classification using String Kernels. Journal of Machine Learning
Research 2002, 2:419-444.

55. Cancedda N, Gaussier E, Goutte C, Renders JM: Word-Sequence
Kernels. Journal of Machine Learning Research 2003, 3:1059-1082.

56. Hastie T, Rosset S, Tibshirani R, Zhu J: The Entire Regularization
Path for the Support Vector Machine. Journal of Machine Learn-
ing Research 2004, 5:1391-1415.

57. Vapnik VN: The nature of statistical learning theory Springer-Verlag New
York, Inc; 1995.
Page 12 of 12
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10578036
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10578036
http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www-2.cs.cmu.edu/~mccallum/bow/
http://www-2.cs.cmu.edu/~mccallum/bow/
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12816571
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12816571
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

Paper II

Kernels incorporating word positional information
in natural language disambiguation tasks

Tapio Pahikkala, Sampo Pyysalo, Filip Ginter, Jorma Boberg, Jouni
Järvinen, and Tapio Salakoski. Proceedings of the Eighteenth International
Florida Artificial Intelligence Research Society Conference, pages 442–447,
Menlo Park, Ca, 2005. AAAI Press.

Paper III

Matrix Representations, Linear Transformations,
and Kernels for Disambiguation in Natural Lan-
guage

Tapio Pahikkala, Sampo Pyysalo, Jorma Boberg, Jouni Järvinen, and Tapio
Salakoski. TUCS Techical Report 890, 2008. Submitted to a journal.

Paper IV

Fast n-fold cross-validation for regularized least-
squares

Tapio Pahikkala, Jorma Boberg, and Tapio Salakoski. Proceedings of
the Ninth Scandinavian Conference on Artificial Intelligence (SCAI 2006),
pages 83–90, Espoo, Finland, 2006. Otamedia.

Fast n-Fold Cross-Validation for Regularized Least-Squares

Tapio Pahikkala? Jorma Boberg?

Tapio Salakoski?
?Turku Centre for Computer Science (TUCS), Department of Information Technology, University of Turku

Lemmink̈aisenkatu 14 A, FIN-20520 Turku, Finland
firstname.lastname@it.utu.fi

Abstract

Kernel-based learning algorithms have recently become the state-of-the-art machine learning methods
of which the support vector machines are the most popular ones. Regularized least-squares (RLS),
another kernel-based learning algorithm that is also known as the least-squares support vector machine,
is shown to have a performance comparable to that of the support vector machines in several machine
learning tasks. In small scale problems, RLS have several computational advantages as compared to
the support vector machines. Firstly, it is possible to calculate the cross-validation (CV) performance
of RLS on the training data without retraining in each CV round. We give a formal proof for this
claim. Secondly, we can compute the RLS solution for several different values of the regularization
parameter in parallel. Finally, several problems on the same data set can be solved in parallel provided
that the same kernel function is used with each problem. We consider a simple implementation of
the RLS algorithm for the small scale machine learning problems that takes advantage of all the above
properties. The implementation is done via the eigen decomposition of the kernel matrix. The proposed
CV method for RLS is a generalization of the fast leave-one-out cross-validation (LOOCV) method for
RLS which is widely known in the literature. For some tasks, the LOOCV gives a poor performance
estimate for the learning machines, because of the dependencies between the training data points. We
demonstrate this by experimentally comparing the performance estimates given by LOOCV and CV in
a ranking task of dependency parses generated from biomedical texts.

1 Introduction

Kernel-based learning algorithms (Schölkopf and
Smola, 2002; Shawe-Taylor and Cristianini, 2004)
have recently become the state-of-the art machine
learning methods of which the support vector ma-
chines are the most popular ones. In this paper,
we consider Regularized least-squares (RLS) algo-
rithm (see e.g. Rifkin (2002); Poggio and Smale
(2003)), another kernel-based learning algorithm that
is also known as the least-squares support vector ma-
chine (Suykens and Vandewalle, 1999). They were
shown to have a performance comparable to that of
the support vector machines in several machine learn-
ing tasks. Traditionally, RLS type of algorithms
have been applied to regression problems but lately
they have also been used on other machine learning
problems. Recent classification tasks in which RLS
have been successfully applied are, for example, dis-
ambiguation problems in natural language (Popescu,
2004), DNA classification (Ancona et al., 2005), and
classification of intensive care nursing narratives (Hi-

issa et al., 2006). Another successful application area
has been ranking or ordinal regression (Tsivtsivadze
et al., 2005, 2006; Suominen et al., 2006; Pahikkala
et al., 2006c).

Cross-validation (CV) is a commonly used method
for the performance estimation and model selec-
tion for the learning algorithms. For RLS, it is
widely known that the leave-one-out cross-validation
(LOOCV) has a closed form whose computational
complexity is quadratic with respect to the number
of training examples. In reality, however, the training
set may contain data points that are highly dependent
with each other. In text categorization tasks, for ex-
ample, it may happen that the training set contains
several documents written by the same author while
that author may not have written the new examples
to be predicted with the learning machine. In this
kind of situation, the LOOCV performance estimate
becomes unreliable, because it may be much easier
to predict the labels of the documents when the ma-
chine is trained with documents written by the same
author. Fortunately, we often have a priori knowledge

of such clustering in the training data set and we can
perform the CV so that we leave out the whole clus-
ter of data points in each CV round. In this paper, we
show that also the leave-cluster-out cross-validation
can be performed for RLS with much smaller compu-
tational complexity than the naive approach in which
the RLS would be retrained in each CV round. To
our knowledge, this has not been considered in the
literature.

2 Regularization Framework

Let S = {(x1, y1), . . . , (xm, ym)} ∈ (X ×R)m be a
training set ofm training examples, wherexi ∈ X
are the training data points,yi ∈ R are their la-
bels, andX can be any set. We consider the Reg-
ularized Least-Squares (RLS) algorithm as a special
case of the following regularization problem known
as Tikhonov regularization (for a more comprehen-
sive introduction, see e.g. Poggio and Smale (2003)):

min
f

m∑
i=1

l(f(xi), yi) + λ‖f‖2k, (1)

wherel is the loss function used by the learning ma-
chine, f : X → Y is a function which maps the
inputsx ∈ X to the outputsy ∈ Y , λ ∈ R+ is a
regularization parameter, and‖ · ‖k is a norm in a Re-
producing Kernel Hilbert Space defined by a positive
definite kernel functionk. The second term is called
a regularizer. The loss function used with RLS for
regression problems is called least squares loss and is
defined as

l(f(x), y) = (y − f(x))2.

Note that if we usel(f(x), y) = max(y − f(x), 0),
we obtain the support vector machines (SVM) for
classification. Other choices of the loss function lead
to other popular classifiers, for example, the SVM re-
gression and kernel logistic regression. By the Rep-
resenter Theorem (see e.g. Schölkopf et al. (2001)),
the minimizer of equation (1) with the least-squares
loss function has the following form:

f(x) =
m∑

i=1

aik(x, xi), (2)

whereai ∈ R andk is a kernel function.

3 Implementation

We now state the solution of RLS in the case where
there are several output labels for each data point

(see e.g. Rifkin and Klautau (2004) for a more
comprehensive consideration). Below,Mi×j(R) de-
notes the set of real valued matrices of dimension
i × j. Suppose we have a set ofm training exam-
plesS = {(x1, y1), . . . , (xm, ym)} ∈ (X × Rp)m,
wherexi ∈ X are the input variables,X can be any
set, andyi are the corresponding vectors ofp output
variables. LetK ∈ Mm×m(R) be the kernel ma-
trix generated from the training data points using the
kernel functionk(x, z), that is,Kij = k(xi, xj). Let
Y ∈ Mm×p(R) be a matrix whose rows are the vec-
tors of the output variables, that is, it has one column
per each subproblem. Further, letG = (K + λI)−1,
whereI ∈ Mm×m(R) is the identity matrix. Be-
cause the kernel function from which the kernel ma-
trix is generated is positive definite, the matrixK+λI
is invertible whenλ > 0. Given a regularization pa-
rameterλ, the coefficient matrix is obtained as fol-
lows

A = GY ∈Mm×p(R) (3)

whose columns are the coefficient vectors of the RLS
solution (2) for eachp output (for a proof, see e.g.
Rifkin (2002)). Because the kernel matrixK is the
same for all of thep problems, we obtain all solutions
from (3) with approximately the cost of solving only
one problem.

3.1 Solving RLS via eigen decomposi-
tion of kernel matrix

Solution (3) can be obtained simply by calculating the
inverseG of the matrixK+λI. Instead of calculating
the inverse, we compute the solution by first calculat-
ing the eigen decomposition of the kernel matrix

K = V ΛV T, (4)

whereV is an orthogonal matrix that contains the
eigenvectors ofK and Λ is a diagonal matrix that
contains the corresponding eigenvalues. Then,G =
(V ΛV T+λI)−1 = V Λ̃λV T, whereΛ̃λ = (Λ+λI)−1

is a diagonal matrix that contains the eigenvalues of
G. Theith eigenvalue ofG is 1/(µi + λ), whereµi

is theith eigenvalue ofK. Note that we do not need
to compute the matrixG, because the solution (3) can
now be obtained as

A = V Λ̃λV TY. (5)

From (5) we observe that after we have calculated the
eigen decomposition ofK, we can easily compute a
whole array of RLS solutions for different values of
λ. To compute the solution (5) for a certain value of
λ, we need to calculate the product of the matrices

V Λ̃λ ∈ Mm×m(R) andV TY ∈ Mm×p(R) which
is fast when the number of subproblemsp is small
compared to the number of training examplesm. We
can then select the regularization parameter for each
subproblem with a cross-validation which we con-
sider below. Of course, different subproblems may
prefer different values ofλ. In that case, we do not
obtain the column vectors ofA from (5), but one by
one fromAp = V Λ̃λp

V TY , whereap is thepth col-
umn of A andλp is the value of the regularization
parameter preferred by thepth subproblem.

3.2 Efficient Computation of Cross-
Validation

We now consider an efficient computation of cross-
validation (CV) for the RLS algorithm. By CV we
indicate the method that is used to estimate the per-
formance of the learning algorithm with a given data
set. The outline of the method is the following. First,
the data set is partitioned into subsets called CV folds.
Next, the learning machine is trained with the whole
data set except one of the folds that is used to mea-
sure the performance of the machine. Each of the CV
folds is held out from the training set at a time and
the CV performance of the machine is obtained by
averaging over the performances measured with the
different folds.

In order to calculate the CV performance of a
learning machine explicitly, we need to train the ma-
chinen times, wheren is the number of the CV folds.
This is, in many cases, computationally cumbersome,
especially if the number of the folds is large. Fortu-
nately, it is possible to obtain the CV performance
of RLS with a smaller computational cost than in the
naive approach.

We now prove a lemma that we use below to derive
a faster method for the computation of CV. The proof
is similar to the proof of the leave-one-out lemma (see
e.g. Wahba (1990)). For simplicity, we prove only the
case in which the number of output variables is one.
However, it is easy to extend the lemma forp output
variables.

Lemma 1. LetL be a set of indices of the data points
that are held out from the training set and letfL be
the function obtained by training the RLS algorithm
with the whole data set except the set of data points
indexed byL. By definition,fL is the solution to the
following variational problem

min
f

∑
i/∈L

(f(xi)− yi)2 + λ‖f‖2k. (6)

The functionfL is also the solution to the following
variational problem

min
f

∑
i/∈L

(f(xi)− yi)2 +
∑
i∈L

(f(xi)− fL(xi))2

+λ‖f‖2k

Proof. We observe that for any functionf∑
i/∈L

(f(xi)− yi)2 +
∑
i∈L

(f(xi)− fL(xi))2 + λ‖f‖2k

≥
∑
i/∈L

(f(xi)− yi)2 + λ‖f‖2k

≥
∑
i/∈L

(fL(xi)− yi)2 + λ‖fL‖2k

=
∑
i/∈L

(fL(xi)− yi)2 +
∑
i∈L

(fL(xi)− fL(xi))2

+λ‖fL‖2k

Using the above lemma, we are able to state the re-
sult that allows us to calculate the values of the output
variables of the data points held out from the training
set without explicitly retraining the algorithm with
the rest of the training examples.

Let I ∈ Mm×m(R) denote an identity matrix and
let IL ∈ M|L|×m(R) be a matrix that contains the
rows of I indexed byL. We use the matrixIL to
“cut” out rows from other matrices, or alternatively
to “add” rows consisting of zeros. Below, with any
matrix M ∈ Mm×n(R), wheren ∈ N, we use the
subscriptL to denote the left multiplication byIL,
that is, we denoteML = ILM . Further, we denote
MLL = ILMIT

L for M ∈ Mm×m(R). Let Y ∈
Mm×p(R) be the label matrix corresponding to the
training data and let us denoteB = KG. Then

B = V ΛV TV Λ̃λV T = V ΛΛ̃λV T. (7)

By the equation (2), the predicted output of the RLS
algorithm for its training data is

Ŷ = KA = KGY = BY. (8)

Finally, let Y ′ ∈ Mm×p(R) denote the matrix con-
sisting of the output values of the training data points
obtained using the functionfL.

Theorem 1. The matrixY ′
L consisting of the output

values of the held out data points predicted withfL

can be obtained from

Y ′
L = (ILL −BLL)−1(ŶL −BLLYL). (9)

Proof. According to the Lemma 1, the functionfL is
obtained by training the RLS using the whole data set
with a label matrixY − IT

LYL + IT
LY ′

L. Knowing the
label matrix, we now use the equation (8) to compute
the output matrixY ′.

Y ′ = B(Y − IT
LYL + IT

LY ′
L)

= Ŷ −BIT
LYL + BIT

LY ′
L.

By multiplying with IL from left we get

Y ′
L = ŶL −BLLYL + BLLY ′

L

⇔ (ILL −BLL)Y ′
L = ŶL −BLLYL

⇔ Y ′
L = (ILL −BLL)−1(ŶL −BLLYL).

In order to the last equivalence to hold, we have to
ensure the invertibility of the matrixILL −BLL. Let
γi be theith eigenvalue ofB. From (7) we observe
thatγi = (ΛΛ̃λ)i,i = µi

µi+λ . Because0 ≤ γi < 1,
the matrixI −B is a positive definite. From the pos-
itive definiteness ofI −B, it follows that all its prin-
cipal submatricesILL − BLL have strictly positive
determinants (see e.g. Meyer (2000)) from which the
invertibility follows.

For a held out set of of size|L|, the time consum-
ing part in the computation of (9) is the calculation
of the matrixBLL. When we have solved the RLS
problem via the eigen decomposition of the kernel
matrix, the elements ofBLL can be computed us-
ing the eigenvectorsV and the diagonal elements of
ΛΛ̃λ, sinceB = V ΛΛ̃λV T. Thus, the computational
complexity of calculating the outputsY ′

L for the held
out set isO(|L|2m). If we perform ann-fold cross-
validation with the training set, the number and the
size of the held out sets aren andm/n, respectively,
and the overall complexity of the cross-validation is
O(n(m/n)2m) = O(m3/n).

The larger the number of folds in the cross-
validation is, the faster is its computation. In the ex-
treme case where the size of the held out set is1, the
computational complexity isO(m2), since we only
have to calculate the diagonal elements ofB in the
whole cross-validation process. Indeed, from Theo-
rem 1, we obtain as a special case the known result of
the leave-one-out cross-validation (LOOCV) for RLS
(this case has been proved, for example, by Vapnik
(1979); Wahba (1990); Green and Silverman (1994)).

Corollary 1. Let f(xj) and fj(xj) denote the out-
put of the RLS algorithm for the training examplexj ,
when the algorithm is trained with all examples and
all examples exceptxj , respectively. We can calcu-

late the value of the outputfj(xj) as follows

fj(xj) =
f(xj)−Bj,jYj

1−Bj,j
. (10)

From the computational complexity perspective,
the LOOCV should be preferred with the RLS. How-
ever, in practice, there are often cases where the
LOOCV should not be used to estimate the perfor-
mance of the learning algorithm because of depen-
dencies between the training data points. Note also
that the sizes of the cross-validation folds do not have
to be equal. Therefore, we can divide the training
set into folds of different sizes according to the de-
pendencies between the training points. Below, we
discuss those cases in more detail.

4 Experiments

With real world data, it is often the case that the data
points used to train a machine learning method are not
completely independent. For example, we may have
several text documents written by the same author in
text categorization tasks. A document may be very
similar to other the documents written by the same
author but very different compared to the documents
written by an other author. In these cases, the leave-
one-out cross-validation (LOOCV) performance of a
learning machine may not be a good estimate of the
true performance of the learning machine. This is,
because on the contrary to the case with the training
set, it is rarely the case that a document to be classi-
fied with a trained learning machine is written by the
same author as some of the documents in the training
set. Generally, we say that the training set consists of
clusters of data points. By a cluster we indicate a sub-
set of training examples that are mutually dependent.

Fortunately, we often have a priori knowledge of
such clustering in the training data set and we can per-
form the CV so that we leave out the whole cluster of
data points in each CV round. For example, in our
earlier experiments using support vector machines
and Bayesian classifiers on natural language disam-
biguation tasks (Pahikkala et al., 2005a,b,c, 2006a,b),
we often extracted several examples of the words to
be disambiguated from a single text document. When
we used bag-of-words kind of features extracted from
the whole text, the examples originating from the
same text document formed a cluster in the training
set. Clearly, it does not happen in practice that a
learning machine trained to detect context sensitive
spelling errors, is trained with examples originating
from the same document the examples to be predicted

are originated from. Thus, we had to perform the
cross-validation on the document level so that no two
examples from the same document end up in different
cross-validation folds.

Here we demonstrate the “clustered training set ef-
fect” by comparing the LOOCV performance of a
trained RLS to a leave-cluster-out cross-validation
(LCOCV) performance so that each fold in the
LCOCV consists of the training examples that form a
cluster in the training set. The demonstration is done
with the problem of dependency parse ranking of sen-
tences extracted from biomedical texts. Here we give
a brief introduction to the problem, the data, and the
solution approach. For a detailed description, see the
paper by Tsivtsivadze et al. (2005).

To generate the training data, we took one hundred
sentences from the BioInfer corpus (Pyysalo et al.,
2006). Each sentence in the corpus has a manu-
ally tagged linkage that corresponds to the “correct”
parse that a parser is supposed to output for the sen-
tence. For each sentence, we use link grammar parser
(Sleator and Temperley, 1991) to generate a set of
candidate parses. The number of candidate parses de-
pends of the sentence. If the parser generates more
than 20 parses for a sentence, we randomly select 20
of them and discard the rest. Otherwise, we keep all
candidate parses. For each candidate parse we calcu-
late a score value that indicates how close to the cor-
rect parse it is. The score value is the F-score calcu-
lated from the link differences between the candidate
parse and the correct parse as follows (Tsivtsivadze
et al., 2005):

F =
2TP

2TP + FP + FN
,

whereTP , FP , and FN are the numbers of true
positives (the links present in both the candidate and
the correct parse), false positives (links present in the
candidate parse but not in the correct one), and false
negatives (links present in the correct parse but not
in the candidate), respectively. The training set is
constructed from the candidate parses and their score
values. The task of the learning machine is, for a sen-
tence, to rank its candidate parses in the order of their
score values. The RLS algorithm is, in fact, trained to
regress the score values of the parses but in this paper,
we are only interested of the ranking of the candidate
parses for each sentence.

We measure the ranking performance by calcu-
lating Kendallsτb correlation coefficient (Kendall,
1970) for the parse candidate set of each sentence.
Note that the coefficient is calculated for each sen-
tence separately, since we are not interested of the

−15 −10 −5 0 5 10 15
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 1: The ranking performance of the RLS al-
gorithm computed with LOOCV (dashed line) and
LCOCV (solid line). The x-axis denotes the value
of the regularization parameter in a logarithmic scale.
The y-axis is the ranking performance measured with
τb correlation coefficient.

mutual order of the parses originating from differ-
ent sentences. The overall performance for the whole
data set is obtained by taking the average of the cor-
relation coefficients of the sentences in the data set.

The kernel function, that we use as a similarity
measure of the parses, is described in detail by Tsivt-
sivadze et al. (2005). The kernel function has the
drawback that two parses originating from a same
sentence have almost always larger mutual similar-
ity than two parses originating from different sen-
tences. Therefore, the data set consisting of the parses
is heavily clustered in the feature space determined
by the kernel function. The clustered structure of
the data can have a strong effect on the performance
estimates obtained by cross-validation, because data
points that are in the same cluster as a held out point
have a dominant effect on the predicted output of the
held out point. This does not, however, model the
real world, since a parse ranker is usually not trained
with parses originating from the sentence from which
the new parse with an unknown F-score is originated.
The problem can be solved by performing the cross-
validation on the sentence level so that all the parses
generated from a sentence would always be either in
the training set or in the test set.

In order to compare the performance estimates
given by the LOOCV and LCOCV, we train an RLS
algorithm with the data set described above. Re-
call that after we have a trained RLS, we obtain
the LOOCV output for each parse in the data us-
ing (10). From the LOOCV output, we calculate the

F-scores for each sentence and compute their aver-
age. We calculate the LCOCV performance by leav-
ing each sentence out from the training set at a time
and computing the F-scores for their parses with (9).
We make a grid search for the regularization param-
eter λ of the RLS algorithm with the grid points
2−15, 2−14, . . . , 214. With the grid search, we can
test the performances of LOOCV and LCOCV in the
model selection of RLS.

The results of the comparison are illustrated in
Figure 1. From the figure, we observe that the
performance difference between the LOOCV and
the LCOCV is, with some values of the regulariza-
tion parameter, over0.3 correlation points. Thus,
LOOCV clearly overestimates the ranking perfor-
mance. Moreover, the LOOCV prefers small values
of the regularization parameter (the most preferable
value of the regularization parameter is2−2) while
the LCOCV prefers a more regularized solution (the
most preferable value of the regularization parame-
ter is 24). Therefore, we can also conclude that the
LOOCV may not be a good method for the model
selection when the training set is clustered. Indeed,
when we test the ranking performance of the RLS
with one hundred test sentences unseen to the RLS,
we obtain correlations0.37 and 0.38 with the ma-
chines trained with the whole training set and with the
regularization parameters preferred by the LOOCV
and LCOCV, respectively.

5 Conclusion

The regularized least-squares (RLS) algorithm has
been shown to be a competitive alternative to the
standard support vector machines in several machine
learning tasks. It also have several computational ad-
vantages, such as solving several tasks in parallel, fast
tuning of the regularization parameter, and fast leave-
one-out cross-validation (LOOCV).

The LOOCV method, however, is not always a
suitable method for performance estimation or model
selection because of dependencies between the train-
ing data points. In several learning problems, the
training data set may be clustered so that the predic-
tion of a held out data point will be unrealistically
easy if the data points that belong in the same cluster
with the held out data point are kept in the training set.
Since it may not happen in the real world that a data
point, whose output is to be predicted with a learn-
ing machine, belongs in the same cluster with some
of the training data points, the LOOCV estimate does
not reflect the reality.

We introduce and prove a closed form of ann-fold

cross-validation performance estimate for the RLS
algorithm. The closed form can be used to calcu-
late a leave-cluster-out cross-validation (LCOCV), in
which a whole cluster of training examples is held out
from the training set in each cross-validation round
avoiding the harmful effect of the clustered training
set.

We experimentally demonstrate the effect of the
clustered data set on the LOOCV performance esti-
mate with a ranking task of dependency parses gen-
erated from biomedical texts. With the same data and
task, it is also demonstrated that the LCOCV is better
than LOOCV as a model selection tool.

Acknowledgments

This work has been supported by Tekes, the Finnish
Funding Agency for Technology and Innovation.

References

Nicola Ancona, Rosalia Maglietta, Annarita
D’Addabbo, Sabino Liuni, and Graziano Pesole.
Regularized least squares cancer classifiers from
dna microarray data. BMC Bioinformatics, 6
(Suppl 4):S2, 2005.

P.J. Green and B.W. Silverman.Nonparametric
Regression and Generalized Linear Models, A
Roughness Penalty Approach. Chapman and Hall,
London, 1994.

Marketta Hiissa, Tapio Pahikkala, Hanna Suomi-
nen, Tuija Lehtikunnas, Barbro Back, Eija Helena
Karsten, Sanna Salanterä, and Tapio Salakoski. To-
wards automated classification of intensive care
nursing narratives. InThe 20th International
Congress of the European Federation for Medical
Informatics (MIE 2006), Maastricht, Netherlands,
2006. To appear.

Maurice G. Kendall. Rank Correlation Methods.
Griffin, London, 4. edition, 1970.

Carl D. Meyer. Matrix analysis and applied linear
algebra. Society for Industrial and Applied Math-
ematics, Philadelphia, PA, USA, 2000.

Tapio Pahikkala, Jorma Boberg, Aleksandr Mylläri,
and Tapio Salakoski. Incorporating external in-
formation in bayesian classifiers via linear feature
transformations. In Tapio Salakoski, Filip Ginter,
Sampo Pyysalo, and Tapio Pahikkala, editors,Pro-
ceedings of the 5th International Conference on

NLP (FinTAL 2006), volume 4139 ofLecture Notes
in Computer Science, pages 399–410, Heidelberg,
Germany, 2006a. Springer-Verlag.

Tapio Pahikkala, Filip Ginter, Jorma Boberg, Jouni
Järvinen, and Tapio Salakoski. Contextual weight-
ing for support vector machines in literature min-
ing: an application to gene versus protein name
disambiguation. BMC Bioinformatics, 6(1):157,
2005a.

Tapio Pahikkala, Sampo Pyysalo, Jorma Boberg,
Jouni J̈arvinen, and Tapio Salakoski. Matrix repre-
sentations, linear transformations, and kernels for
natural language processing, 2006b. Submitted.

Tapio Pahikkala, Sampo Pyysalo, Jorma Boberg,
Aleksandr Myll̈ari, and Tapio Salakoski. Improv-
ing the performance of bayesian and support vec-
tor classifiers in word sense disambiguation using
positional information. In Timo Honkela, Ville
Könönen, Matti P̈ollä, and Olli Simula, editors,
Proceedings of the International and Interdisci-
plinary Conference on Adaptive Knowledge Rep-
resentation and Reasoning, pages 90–97, Espoo,
Finland, 2005b. Otamedia OY.

Tapio Pahikkala, Sampo Pyysalo, Filip Ginter, Jorma
Boberg, Jouni J̈arvinen, and Tapio Salakoski. Ker-
nels incorporating word positional information in
natural language disambiguation tasks. In Ingrid
Russell and Zdravko Markov, editors,Proceedings
of the Eighteenth International Florida Artificial
Intelligence Research Society Conference, pages
442–447, Menlo Park, Ca, 2005c. AAAI Press.

Tapio Pahikkala, Evgeni Tsivtsivadze, Jorma Boberg,
and Tapio Salakoski. Graph kernels versus graph
representations: a case study in parse ranking. In
ECML/PKDD’06 workshop on Mining and Learn-
ing with Graphs (MLG’06), 2006c. To appear.

Tomaso Poggio and Steve Smale. The mathematics of
learning: Dealing with data.Notices of the Amer-
ican Mathematical Society (AMS), 50(5):537–544,
2003.

Marius Popescu. Regularized least-squares classifi-
cation for word sense disambiguation. In Rada
Mihalcea and Phil Edmonds, editors,Senseval-3:
Third International Workshop on the Evaluation of
Systems for the Semantic Analysis of Text, pages
209–212, Barcelona, Spain, July 2004. Association
for Computational Linguistics.

Sampo Pyysalo, Filip Ginter, Juho Heimonen, Jari
Björne, Jorma Boberg, Jouni Järvinen, and Tapio

Salakoski. Bioinfer: A corpus for information ex-
traction in the biomedical domain, 2006. Submit-
ted.

Ryan Rifkin. Everything Old Is New Again: A Fresh
Look at Historical Approaches in Machine Learn-
ing. PhD thesis, MIT, 2002.

Ryan Rifkin and Aldebaro Klautau. In defense
of one-vs-all classification.Journal of Machine
Learning Research, 5:101–141, 2004.

Bernhard Scḧolkopf, Ralf Herbrich, and Alex J.
Smola. A generalized representer theorem. In
D. Helmbold and R. Williamson, editors,Proceed-
ings of the 14th Annual Conference on Compu-
tational Learning Theory and and 5th European
Conference on Computational Learning Theory,
pages 416–426, Berlin, Germany, 2001. Springer-
Verlag. ISBN 3-540-42343-5.

Bernhard Scḧolkopf and Alexander J. Smola.Learn-
ing with kernels. MIT Press, Cambridge, MA,
2002.

John Shawe-Taylor and Nello Cristianini.Kernel
Methods for Pattern Analysis. Cambridge Univer-
sity Press, Cambridge, 2004.

Daniel D. Sleator and Davy Temperley. Parsing
english with a link grammar. Technical Report
CMU-CS-91-196, Department of Computer Sci-
ence, Carnegie Mellon University, Pittsburgh, PA,
October 1991.

Hanna Suominen, Tapio Pahikkala, Marketta Hi-
issa, Tuija Lehtikunnas, Barbro Back, Eija Helena
Karsten, Sanna Salanterä, and Tapio Salakoski.
Relevance ranking of intensive care nursing nar-
ratives. Inproceedings of KES2006 10th Interna-
tional Conference on Knowledge-Based & Intelli-
gent Information & Engineering Systems, 2006. to
appear.

J. A. K. Suykens and J. Vandewalle. Least squares
support vector machine classifiers.Neural Process.
Lett., 9(3):293–300, 1999.

Evgeni Tsivtsivadze, Tapio Pahikkala, Jorma Boberg,
and Tapio Salakoski. Locality-convolution ker-
nel and its application to dependency parse rank-
ing. In Moonis Ali and Richard Dapoigny, edi-
tors, Proceedings of the 19th International Con-
ference on Industrial, Engineering & Other Ap-
plications of Applied Intelligent Systems (IEA/AIE
2006), volume 4031 ofLecture Notes in Com-
puter Science, pages 610–618, Heidelberg, Ger-
many, 2006. Springer-Verlag.

Evgeni Tsivtsivadze, Tapio Pahikkala, Sampo
Pyysalo, Jorma Boberg, Aleksandr Mylläri, and
Tapio Salakoski. Regularized least-squares for
parse ranking. In A. Fazel Famili, Joost N. Kok,
Jośe Manuel Pẽna, Arno Siebes, and A. J. Feelders,
editors,Proceedings of the 6th International Sym-
posium on Intelligent Data Analysis, volume 3646
of Lecture Notes in Computer Science, pages
464–474, Heidelberg, Germany, September 2005.
Springer-Verlag.

V. Vapnik. Estimation of Dependences Based on Em-
pirical Data [in Russian]. Nauka, Moscow, 1979.
(English translation: Springer Verlag, New York,
1982).

Grace Wahba.Spline Models for Observational Data.
Series in Applied Mathematics, Vol. 59, SIAM,
Philadelphia, 1990.

Paper V

Learning to rank with pairwise regularized least-
squares

Tapio Pahikkala, Evgeni Tsivtsivadze, Antti Airola, Jorma Boberg, and
Tapio Salakoski. In Thorsten Joachims, Hang Li, Tie-Yan Liu, and ChengX-
iang Zhai, editors, SIGIR 2007 Workshop on Learning to Rank for Infor-
mation Retrieval, pages 27–33, 2007.

Paper VI

Computer-assisted identification of multi-trace
electrophoretic patterns in differential display ex-
periments

Heidi Vähämaa, Pekka Ojala, Tapio Pahikkala, Olli S. Nevalainen, Riitta
Lahesmaa, and Tero Aittokallio. Electrophoresis, 28(6):879–893, 2007.

71. Mehran Gomari
72. Ville Harkke

73. Marius Cosmin Codrea
74. Aiying Rong

75. Chihab BenMoussa

76. Jussi Salmi
77. Orieta Celiku

78. Kaj-Mikael Björk

79. Viorel Preoteasa

80. Jonne Poikonen

81. Luka Milovanov
82. Francisco Augusto Alcaraz Garcia

83. Kai K. Kimppa

84. Drago Tru can
85. Eugen Czeizler

86. Sanna Ranto

87. Tuomas Hakkarainen

88. Elena Czeizler
89. Marcus Alanen
90. Filip Ginter

91. Jarkko Paavola

92. Arho Virkki
93. Olli Luoma

94. Dubravka Ili

95. Kim Solin
96. Tomi Westerlund
97. Kalle Saari
98. Tomi Kärki
99. Markus M. Mäkelä

100. Roope Vehkalahti

101. Anne-Maria Ernvall-Hytönen

102. Chang Li
103. Tapio Pahikkala

, On the Generalization Ability of Bayesian Neural Networks

, Knowledge Freedom for Medical Professionals – An Evaluation

Study of a Mobile Information System for Physicians in Finland

, Pattern Analysis of Chlorophyll Fluorescence Signals

, Cogeneration Planning Under the Deregulated Power Market and

Emissions Trading Scheme

, Supporting the Sales Force through Mobile Information and

Communication Technologies: Focusing on the Pharmaceutical Sales Force

, Improving Data Analysis in Proteomics

, Mechanized Reasoning for Dually-Nondeterministic and

Probabilistic Programs

, Supply Chain Efficiency with Some Forest Industry

Improvements

, Program Variables – The Core of Mechanical Reasoning about

Imperative Programs

, Absolute Value Extraction and Order Statistic Filtering for a

Mixed-Mode Array Image Processor

, Agile Software Development in an Academic Environment

, Real Options, Default Risk and Soft

Applications

, Problems with the Justification of Intellectual Property Rights in

Relation to Software and Other Digitally Distributable Media

, Model Driven Development of Programmable Architectures

, The Inverse Neighborhood Problem and Applications of Welch

Sets in Automata Theory

, Identifying and Locating-Dominating Codes in Binary Hamming

Spaces

, On the Computation of the Class Numbers of Real Abelian

Fields

, Intricacies of Word Equations

, A Metamodeling Framework for Software Engineering

, Towards Information Extraction in the Biomedical Domain: Methods

and Resources

, Signature Ensembles and Receiver Structures for Oversaturated

Synchronous DS-CDMA Systems

, The Human Respiratory System: Modelling, Analysis and Control

, Efficient Methods for Storing and Querying XML Data with Relational

Databases

, Formal Reasoning about Dependability in Model-Driven

Development

, Abstract Algebra of Program Refinement

, Time Aware Modelling and Analysis of Systems-on-Chip

, On the Frequency and Periodicity of Infinite Words

, Similarity Relations on Words: Relational Codes and Periods

, Essays on Software Product Development: A Strategic

Management Viewpoint

, Class Field Theoretic Methods in the Design of Lattice Signal

Constellations

, On Short Exponential Sums Involving Fourier

Coefficients of Holomorphic Cusp Forms

, Parallelism and Complexity in Gene Assembly

, New Kernel Functions and Learning Methods for Text and Data

Mining

º º

ã

Turku Centre for Computer Science

TUCS Dissertations

Joukahaisenkatu 3-5 B, 20520 Turku, Finland | www.tucs.fi

Turku

Centre

Computer

Science

for

ISBN 978-952-12-2091-3

ISSN 1239-1883

University of Turku

Department of Information Technology

Department of Mathematics

Åbo Akademi University

Turku School of Economics

Department of Information Technologies

Institute of Information Systems Sciences

�

�

�

�

T
a
p
io

P
a
h
ik

k
a
la

N
e
w

K
e
rn

e
l
F
u
n
c
tio

n
s

a
n
d

L
e
a
rn

in
g

M
e
th

o
d
s

fo
r

T
e
x
t

a
n
d

D
a
ta

M
in

in
g

T
a
p
io

P
a
h
ik

k
a
la

N
e
w

K
e
rn

e
l
F
u
n
c
tio

n
s

a
n
d

L
e
a
rn

in
g

M
e
th

o
d
s

fo
r

T
e
x
t

a
n
d

D
a
ta

M
in

in
g

	ContextualWeighting.pdf
	Abstract
	Background
	Results
	Conclusion

	Background
	The problem
	Support Vector Machines
	Contribution of this work

	Results and discussion
	Contextual weighting
	Data and its preprocessing
	Measure of performance
	Experimental setup
	Table 1

	Parameter estimation for conventional SVM
	Table 2

	Parameter estimation for weighted SVM
	Parameter estimation for baseline methods
	Table 3

	Final validation

	Conclusion
	Methods
	Support Vector Machines
	Representation of contexts
	The BoW approach
	The weighted BoW approach
	Baseline methods

	Authors' contributions
	Acknowledgements
	References

