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ABSTRACT 

Heli Hiekkanen

APOLIPOPROTEIN E AND RECOVERY FROM TRAUMATIC BRAIN INJURY 

From the Department of Neurology, University of Turku, Turku, Finland
Annales Universitatis Turkuensis, Painosalama Oy – Turku, Finland 2009

The outcome from traumatic brain injury (TBI) is variable and only partly explained 
by known prognostic factors. This is especially true for predicting long-term outcome. 
Genetic factors may influence the brain`s susceptibility to injury or capacity for repair 
and regeneration. To examine the association of apolipoproteinE (apoE) genotype with 
long-term outcome, hippocampal volumes and general brain atrophy, we determined the 
apoE genotype from 61 TBI patients who had been injured over on average 31 years 
earlier. The long-term outcome was evaluated with repeated neuropsychological testing 
and by applying various measures of everyday functioning and quality of life. Magnetic 
resonance imaging  (MRI) based volumetric analyses of the hippocampus and lateral 
ventricles were performed. 

In the prospective study, the purpose was to examine the association between apoE 
genotype and visibility of traumatic brain lesions during the first year after TBI and the 
ability of apoE genotype, the Glasgow Coma Score (GCS), MRI findings and duration 
of posttraumatic amnesia (PTA) to predict the one-year outcome. Thirty-three patients 
with TBI were studied and the outcome was evaluated with the Head Injury Symptom 
Checklist (HISC) and the Glasgow Outcome Scale extended version (GOS-E) scores 
one year after the injury. MRI and apoE genotyping were carried out.

After three decades, neither hippocampal nor lateral ventricle volumes differed 
significantly in those patients with the apoE ε4 allele vs those without this allele, but the 
TBI patients with the apoE ε4 allele showed significantly poorer general cognitive level 
than those without this allele. This decline was wholly accounted for by a subgroup of 
patients who had developed incident or clinical dementia. 

In the prospective study the apoE genotype was not associated with visible MRI changes 
or outcome. The duration of PTA and acute MRI were the best predictors of one-year 
outcome in TBI. 

A portion of the TBI patients with the apoE ε4 allele seem to be at risk of long-term 
cognitive decline. This association may involve mechanisms other than those responsible 
for the development of brain atrophy. The early MRI and PTA have an important role in 
assessing the injury severity and prognosis.  

Key words: traumatic brain injury, apolipoprotein E, outcome, magnetic resonance 
imaging 
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TIIVISTELMÄ

Heli Hiekkanen

APOLIPOPROTEIINI E JA TOIPUMINEN AIVOVAMMASTA

Neurologian oppiaine, Turun yliopisto, Turku 
Annales Universitatis Turkuensis, Painosalama Oy – Turku, 2009

Toipuminen aivovammasta on vaihtelevaa ja selittyy vain osittain tunnetuilla ennuste-
kijöillä. Tämä pätee varsinkin pitkäaikaistoipumista ennustettaessa. Perinnölliset tekijät 
saattavat vaikuttaa aivojen vaurioitumisherkkyyteen tai korjaantumiskykyyn. Tutkiak-
semme apolipoproteiini E (apoE) genotyypin yhteyttä aivovammapotilaiden pitkäaikais-
toipumisennusteeseen, hippokampusten tilavuuksiin ja yleiseen aivoatrofiaan määritimme 
apoE genotyypit 61 potilaalta, jotka olivat saaneet aivovamman keskimäärin 31 vuotta 
aikaisemmin. Pitkän aikavälin toipuminen määritettiin toistetulla neuropsykologisella tut-
kimuksella ja käyttäen erilaisia päivittäistoimintojen ja elämänlaadun mittareita. Aivojen 
magneettikuvauksella tutkittiin hippokampusten ja sivuaivokammioiden tilavuudet.

Prospektiivisessä tutkimuksessa tarkoituksena oli selvittää apoE genotyypin yhteyttä 
traumaattisten muutosten esiintyvyyteen aivojen magneettikuvauksessa vuoden kulut-
tua vammasta sekä apoE genotyypin, Glasgow’n kooma-asteikon (GCS), magneettiku-
vauslöydösten ja posttraumaattisen amnesian (PTA) kykyä ennustaa toipumista vuoden 
kuluttua vammasta. Työssä tutkittiin 33 aivovammapotilasta ja toipuminen arvioitiin 
vuoden kuluttua vammasta oirekyselyn (HISC, Head Injury Symptom Checklist) ja toi-
pumismittarin (GOS-E, Glasgow Outcome Scale extended version) avulla. Lisäksi teh-
tiin aivojen magneettikuvaus ja määritettiin apoE genotyypit.

Hippokampusten tai sivuaivokammioiden tilavuudet eivät eronneet toisistaan merkit-
sevästi kolmen vuosikymmenen jälkeen sen mukaan oliko potilaalla apoE ε4 alleeli vai 
ei, mutta apoE ε4 alleelin omaavien aivovammapotilaiden kognitiivinen toipuminen oli 
merkitsevästi huonompaa kuin niiden, joilta se puuttui. Tämä heikentyminen selittyi kui-
tenkin kokonaan potilasryhmällä, jolle oli kehittynyt dementia. 

Prospektiivisessä tutkimuksessa apoE genotyyppi ei ollut yhteydessä näkyviin mag-
neettikuvausmuutoksiin tai toipumiseen vuoden seuranta-aikana. Posttraumaattisen am-
nesian kesto ja akuuttivaiheen magneettikuvaus löydökset kuvasivat parhaiten vuoden 
toipumisennustetta.

Osalla aivovammapotilaista, joilla on apoE ε4 alleeli, näyttää olevan pitkällä aikavälillä 
riski kognitiivisen toimintakyvyn heikkenemiseen. Yhteyteen saattavat vaikuttaa muut 
mekanismit kuin ne, jotka liittyvät aivoatrofian kehittymiseen. Aikaisessa vaiheessa teh-
dyllä magneettitutkimuksella ja posttraumaattisella amnesialla on tärkeä rooli arvioita-
essa vamman vaikeusastetta ja ennustetta.

Avainsanat: aivovamma, apolipoproteiini E, toipuminen, magneettikuvaus 
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INTRODUCTION 1.	

Traumatic brain injury (TBI) is the leading cause of death and disability in people under 
the age of 45 years in industrialized countries (Maas et al. 2000, Marshall 2000). Motor 
vehicle accidents account for the majority of fatal head injuries (Kraus 1993). Those 
individuals who survive TBI are often left with permanent neurological deficits, which 
adversely affect their quality of life, and contribute to the enormous social and economic 
costs of TBI that are borne by communities. Mild TBI is significantly underdiagnosed 
and the public health burden is therefore even greater (NIH Consensus Development 
Panel on Rehabilitation of Persons with Traumatic Brain Injury 1999). 

Outcome following TBI is difficult to predict on the basis of clinical features or 
radiological findings at the time of injury. This is especially true for predicting long-term 
outcome (Zhou et al. 2008). Prognosis of outcome is important for clinical decision-
making, rehabilitation planning, and communication with patients and their families. 
There is considerable variability in the outcome of acute head injury. An injury that 
initially appears to be severe can be followed by recovery, a mild injury may be followed 
by disability or even death, and injuries that are apparently similar in the acute stage 
can have markedly different outcomes (Thornhill et al. 2000). Although TBI may result 
in physical impairment, the more problematic consequences involve the individual`s 
cognition, emotional functioning, and behaviour (NIH Consensus Development Panel 
on Rehabilitation of Persons with Traumatic Brain Injury 1999). 

Alzheimer`s disease (AD) is the most common neurodegenerative disorder of modern 
societies (Andersen et al. 2006). The possibility that TBI may predispose a person to 
developing AD in later life has significant social and medical implications, and reinforces 
the need for preventative efforts and health service planning to cope with the potential 
large increase in the number of AD patients (Lye and Shore 2000). It is therefore critical 
to establish whether any link between TBI and AD exists. Genetic factors probably 
contribute to the brain`s susceptibility to injury and capacity for repair and regeneration. 
ApolipoproteinE (apoE) genotype ε4 is a risk factor for AD (Cummings and Cole 2002). 
In the nervous system, apoE is engaged in the redistribution of cholesterol from cells 
during membrane synthesis, and neuritic extension growth and repair (Graham et al. 
1999b, Mauch et al. 2001). Research in AD has provided evidence suggesting that there 
may be a genetic component to recovery or lack of recovery after TBI that is related to 
apoE genotype. 
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REVIEW OF THE LITERATURE2.	

Traumatic brain injury (TBI)2.1	

Definition and classification2.1.1	
A patient with traumatic brain injury (TBI) is a person who has had a traumatically 
induced physiological disruption of brain function, which is manifested by at least one 
of the following: 1. any period of loss of consciousness, 2. any loss of memory for events 
immediately before or after the accident, 3. any alteration in mental state at the time 
of  the accident (e.g. feeling dazed, disoriented, or confused), or 4. focal neurological 
deficit(s) that may or may not be transient (Kay et al. 1993). This definition of TBI 
includes the head being struck, the head striking an object, and the brain undergoing an 
acceleration/deceleration movement (i.e. whiplash) without direct external trauma to the 
head. In addition, traumatic changes in the brain detected with neuroimaging methods 
qualify for a diagnosis of TBI.

TBI can be classified as open or closed, depending on the presence of skull fracture and 
disruption of the dura mater. Neuroradiological techniques have generated an alternative 
classification of (1) focal damage, where a localized area of a brain tissue has been 
damaged, and (2) diffuse damage, where the damage of brain tissue  is widespread  and 
not accurately restricted. Focal brain injury is commonly the result of a direct force 
causing damage to underlying cerebral tissue and vessels. It includes contusions on 
the surface of the brain, intracranial haematomas and various types of secondary brain 
damage, including haemorrhage and infarction in the brainstem. The principal types 
of diffuse brain damage are brain swelling, hypoxic damage, and diffuse axonal injury 
(DAI). At present, the role of DAI is considered increasingly important in the outcome 
of TBI (Graham et al. 2002). Recently, the descriptor traumatic axonal injury (TAI) has 
been applied to experimental studies that have attempted to elucidate the mechanisms of 
axonal pathology after trauma (Graham et al. 2000). Focal damage is more likely to be 
sustained as the result of a fall, while diffuse damage is most commonly associated with 
acceleration/deceleration occurring after, for example, traffic accidents (Graham et al. 
2002). The direct injuries are caused by direct contact on the skull, often as a result of a 
fall, and the indirect injuries by acceleration/deceleration occurring after, for example, 
motor vehicle accidents.

At the acute stage, the severity of TBI can be determined on the basis of the Glasgow 
Coma Scale (GCS) and the duration of posttraumatic amnesia (PTA). The GCS, 
measuring level of consciousness, includes three categories: eyes opening (score 1-4), 
best verbal response (score 1-5), and best motor response (score 1-6) (Teasdale and 
Jennett 1974). The total score of the GCS ranges from 3 to 15, low scores indicating 
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a low level of consciousness. PTA is a typical consequence of TBI, and it is defined 
as last up to the earliest time point after which continuous memory has returned. The 
Finnish Adult TBI Guidline recommends the use of both the GCS and length of PTA. 
The following categories are suggested by the Guideline: mild (GCS 13-15 and PTA < 
24 hours), moderate (GCS 9-12 or PTA 1 to 7 days), severe (GCS < 8 or PTA > 7 days), 
or very severe (PTA > 4 weeks) (Käypä hoito -suositus 2003). 

Epidemiology2.1.2	
Data on hospital discharges and on deaths at national or local level do allow head injuries 
to be identified by the codes of the International Classification of Diseases (ICD) (Jennett 
1996).

The incidence of TBI is difficult to estimate because only a part of individuals with TBI, 
possibly about 25%, are admitted to hospital (Sosin et al. 1996). Incidence reports in 
epidemiological studies also vary depending on the inclusion criteria: whether all grades 
of severity are included, deaths are counted or the study is limited to hospital admissions 
etc. Higher incidence rates are reported from surveys based on routine ICD coding than 
those based on hospital case records (Jennett 1996).

In Finland, the annual incidence of TBI during the years 1991-2000 was about 100 per       
100 000 people on the basis of hospital discharge registers (Alaranta et al. 2000). Fifty-
nine percent of these subjects were men. The largest age groups were men under 20 years 
and 40-49 years, and women under 10 years and over 70 years. The sex difference was 
greatest in favour of men from 10 to 49 years (men 69% vs. women 31%), and in favour 
of women over 70 years (men 37% vs. women 63%) (Alaranta et al. 2000). Winqvist 
et al. (2007) used the Northern Finland 1966 Birth Cohort to study the epidemiology of 
TBI. The annual incidence of TBI was 118 per 100 000 people. It has been estimated 
that, in Finland, 15 000-20 000 individuals sustain a TBI every year, and about 100 000 
individuals have persistent symptoms of TBI (Käypä hoito -suositus 2003). In Sweden, 
the annual incidence in the Borås region was 546 per 100 000 people and fifty-nine 
percent of these subjects were men (Andersson et al. 2003). The incidence of TBI found 
in this study was high but well in accordance with earlier published Swedish studies 
(Silverbåge Carlsson 1986, Johansson et al. 1991). The reported incidences of TBI vary 
widely; between about 100 to over 3000 per 100 000 have been published (Jennett and 
MacMillan 1981, Frankowski 1986, Silverbåge Carlsson 1986, Kraus and Nourjah 
1998).

The main causes of TBI are traffic accidents, falls, and assaults (Jennett 1996). There 
is, however, considerable variation from one study to another due to their different 
inclusion criteria and age and sex distributions. In Finland falls account for 65 % and 
traffic accidents for 20 % of all TBI cases treated in hospitals, followed by 5 % caused 
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by violence. At working age, however, traffic accidents are the leading cause of TBI. In 
Finland, about half of the TBI patients have been under the influence of alcohol at the 
time of injury (Käypä hoito -suositus 2003). In Sweden falls account for 58.1 % and 
traffic accidents for 16 % of all cases (Andersson et al. 2003). Road traffic accidents and 
falls are the most frequent causes of severe brain injuries (Hillier et al. 1997, Masson et 
al. 2001).  Falls are a signinificant cause of TBI, particularly in young children and elderly 
people (Jennett 1996). Intentional injuries (homicide and suicide) occur particularly 
among young people, minorities, and males (Wagner et al. 2000). Those comprise about 
1-15% of all external causes of TBI (Tagliaferri et al. 2005). Sport- and recreation-related 
(SR-related) brain injuries comprised 5.1% of all TBIs, and highest rates of SR-related 
TBI emergency department visits occurred among those aged 10-14 years, followed by 
those aged 15-19 years (Centers for Disease Control and Prevention (CDC) 2007).

Males are more than twice as likely as females to experience TBI. The highest incidence 
is among persons 15 to 24 years of age and 75 years or older. Alcohol is reported to be 
associated with half of all TBI, either in the person causing or in the person with the 
injury, or both (NIH Consensus Development Panel on Rehabilitation of Persons with 
Traumatic Brain Injury 1999). In addition lower socioeconomic status, previous TBI and 
psychiatric disorders are factors associated with TBI (Käypä hoito -suositus 2003). The 
risk of a second head injury has been found to be threefold compared to the uninjured 
population, and the risk rises to eight times the normal risk after two TBIs (Annegers et 
al. 1980).

Mechanisms and pathophysiology2.1.3	
The biomechanics of primary damage (i.e. injury at impact) are linked to the response of 
bone, blood vessels, and the brain to both impact and inertial forces. With direct impact 
to the skull, a local bending occurs with underlying tissue strain and gross movement of 
brain tissue. Conversely, inertial injury does not create local contact effects but produces 
a nonuniform distribution of pressure and tissue strain that cause primary tissue damage. 
Intracranial pressure changes and brain motion due to translational acceleration have 
been linked to specific focal lesions such as coup and contrecoup contusions, intracerebral  
and/or subdural hematomas, and brainstem lesions. DAI is related more to rotational 
acceleration forces (McIntosh  et al. 1996). 

Secondary injury (i.e. delayed injury) develops over a period of hours, days, or weeks 
after the initial trauma. This type of damage appears to be associated with trauma-induced 
neurochemical alterations, which can exert either direct pathogenic effects on regional 
cerebral blood flow, blood-brain barrier (BBB) function, cerebral metabolism, and ion 
homeostasis, or have direct neurotoxic effects on regional populations of neurons or 
glial cells (McIntosh  et al. 1996). These post-traumatic changes may involve alterations 
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in the synthesis and release of both neuroprotective and autodestructive or neurotoxic 
cascades (McIntosh et al. 1998).

TBI represents a process that involves multiple interrelated physiological components 
that exert primary and secondary effects at the level of the individual neuron and at 
the level of neural networks. These include chemical changes to the basic molecules 
of metabolism (especially calcium), to mechamisms of the human cellular response to 
injury, and to the quantities of certain molecules that can be dangerous in excess (oxygen 
free radicals, nitric oxide) (NIH Consensus Development Panel on Rehabilitation of 
Persons with Traumatic Brain Injury 1999).

TBI triggers a complex neuroinflammatory cascade via the innate immune system 
resulting in the release of reactive oxygen and nitrogen species, glutamate, proteases, 
and cytokines to promote tissue survival and facilitate efficient clearance of cellular 
debris (Nguyen et al. 2002, Correlate and Villa 2004, Schmidt et al. 2005). This complex 
biochemical loop of mediators exerts both direct and indirect effects, with distinct time-
dependent expression profiles and agonist/antagonistic interactions that are essential for 
the survival and function of neurons. However, these mediators possess neurotoxic effects 
when their presence is prolonged, unregulated, or excessive. Excessive glial activation 
results in metabolic and oxidative stress, and impairment of ionic homeostasis, thereby 
contributing to the neuropathological sequelae that are hallmarks of TBI, i.e. edema, 
blood-brain barrier (BBB) breakdown, delayed neuronal death, and the concomitant 
neurocognitive and motor impairments observed in TBI survivors (Allan and Rothwell 
2001, 2003, Fujimoto et al. 2004). 

A protein substance that is present in Alzheimer disease, amyloid β peptide (Aβ), may also 
be deposited in neurons. Neurotransmitters have either excitatory or inhibitory effects. 
The most prevalent of these excitatory molecules are the amino acids glutamate and 
aspartate, which can occur in massive amounts following TBI, leading to overexcitation 
and, ultimately, the death of neurons. At the cognitive level, alterations in neural networks 
and neurotransmitter systems (especially ones involving the transmitters acetylcholine, 
dopamine, and serotonin) can affect cognition and behaviour. The brain also has some 
capacity to recover, and adaptive structural changes occur in the adult brain, including 
the generation of new neurons and connections (neuroplasticity) (NIH Consensus 
Development Panel on Rehabilitation of Persons with Traumatic Brain Injury 1999).  

Outcome    2.1.4	
TBI is the leading cause of persistent neurological disability (World Health Organization 
2006), and even in mild TBIs, a substantial number of patients complain about long term 
neuropsychological deficits or postconcussional symptoms (Andersson et al. 2007). The 
majority of patients who experience mild TBI recover without any residue symptoms 
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(Levin et al. 1987, Newcombe et al. 1994, Dikmen et al. 1995). However, 15 to 20% 
show long-lasting neuropsychological impairments (Rutherford et al. 1979, Bohnen 
et al. 1993, Alexander 1995). Of all mild TBI patients, about 50% at three months 
(Middleboe et al. 1992) and 15% at one year (Kushner et al. 1998) will have persistent 
post -concussion syndrome (PCS). 

Most patients with moderate TBI tend to improve neurologically. In one series following 
79 patients, 67% of patients improved to GCS 15 by time of discharge. At an average 
follow up of 27 months, Glasgow outcome scores were rated as good or moderate 
disability in the majority of survivors of moderate TBI, but only 74% of these patients 
who were employed prior to their TBI returned to work. The majority had significant 
cognitive and functional deficits, including memory problems, concentration difficulties 
and headaches (Vitaz et al. 2003). Other reports have confirmed good recovery in terms 
of general outcomes at three months but few patients were actually symptom-free. 
Patients tend to have difficulty with memory function and as many as 50 % have some 
emotional or behavioral difficulty at one-year post-injury (Stein 1996).

Becker et al. (1977) demonstrated a mortality rate in the 30% range in severe TBI 
patients managed  with neurocritical care principals, including ICP monitoring, when 
compared with the same era management at other institutions resulting in a mortality 
rate in the 50% range. Other series report similar mortalities from severe TBI in patients 
undergoing aggressive neurocritical care management (Marshall et al. 1979, Miller et al. 
1981). The European Brain Injury Consortium survey revealed a GOS score in patients 
with severe TBI at six months post-injury of 4-5 (moderate disability-good recovery) in 
45% a score of 2-3 (persistent vegetative state - severe disability) in 19%, and a score 
of  1 (death) in 36% (Murray et al. 1999). Kersel et al. (2001) followed 65 patients with 
severe TBI and assessed their GOS and neuropsychological outcomes at six months and 
at one year. Despite 51% of patients having a good recovery and 20% having moderate 
disability on the GOS, at best 31% and up to 63 % had difficulty in neurocognitive 
tests administered one year post-injury. Nevertheless, few patients sustaining severe TBI 
return to their premorbid functioning, and the majority have significant cognitive and 
emotional sequelae (Marion 1996). Depression, decreased social contact and loneliness 
remain persistent long-term problems for the majority of individuals with severe TBI 
(Morton and Wehman 1995). Marsh et al. (1998) found that anger, dependency and 
apathy were the most difficult emotional problems in severe TBI patients for caregivers 
to deal with.

Predicting outcome after TBI is difficult and it is not always consistent with the estimate 
of severity at the acute stage. The limited self-awareness frequently associated with 
TBI (Hart et al. 2004), can further complicate the identification of TBI symptoms and 
their consequences. Despite the vast burden of TBI, no optimal long-term outcome 
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predictors have been developed. Especially in mild to moderate TBI, there is only a 
weak association between the clinical neurological signs, intracranial abnormalities in 
CT and subtle long-term neurobehavioural disorders (Culotta et al. 1996). The force and 
direction of impact and more generally the injury biomechanics are known to influence 
the outcome (Margulies et al. 1990, McIntosh et al. 1996, Nishimoto and Murakami 
1998, Zhang et al. 2001, Ommaya et al. 2002). Other factors include the size, location, 
and nature of the brain lesion, PTA, GCS, earlier brain insults (Gronwall and Wrightson 
1975), the psychological and emotional state of the victim (King 1996), sex (Farace and 
Alves 2000), level of education, and age at injury (Rothweiler et al. 1998).

Apolipoprotein E (apoE) and TBI2.2	

ApoE2.2.1	
The gene for apoE is located on chromosome 19 and is highly polymorphic. The three 
most common alleles are ε2, ε3, and ε4, which encode the main three isoforms of apoE: 
E2, E3, and E4 (Mahley et al. 1984, Mahley 1988, Rall and Mahley 1992). The isoforms 
differ by single amino acid interchanges at residues 112 and 158: E3 (Cys112 -Arg158), 
E4 (Arg112 -Arg158), and E2 (Cys112 -Cys158) (Weisgraber 1994). This polymorphism 
leads to the occurrence of six different phenotypes: E3/3, E2/2, E4/4, E3/2, E3/4, E2/4. 
Apolipoproteins are lipid carrier proteins that transport and redistribute lipids among 
cells (Graham et al. 1999b, Mauch et al. 2001). The allele frequencies vary between 
different populations. Northern Europeans have higher frequencies (0.17-0.23) of the 
ε4 allele than subjects in most populations studied (Ehnholm et al. 1986, Lehtimäki 
et al. 1990, Gerdes et al. 1992) and, in addition, a gradient for the ε4 allele frequency 
decreasing from Finland to the south of Europe has been reported (Tiret et al. 1994). 
ApoE is mainly synthesised in the liver but also in many other organs including brain, 
spleen and kidney (Siest et al. 1995). 

ApoE in the CNS2.2.2	
ApoE is produced within CNS primarily by astrocytes, although neurons and microglia 
may also contribute to apoE synthesis (Linton et al. 1991). In the nervous system, apoE 
is engaged in the redistribution of cholesterol from cells during membrane synthesis, 
and neuritic extension growth and repair (Graham et al. 1999b, Mauch et al. 2001). It 
seems that the apoE ε4 allele has a detrimental effect when compared with the apoE ε3 
allele. In various cell lines, apoE3 has been shown to increase the growth and branching 
of neurites, whereas apoE4 was found to have the opposite effect (Handelmann et al. 
1992, Nathan et al. 1994, Bellosta et al. 1995). It is not known whether apoE ε2 has a 
protective effect except in the case of Alzheimer`s disease (Corder et al. 1993).
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At present, all the mechanisms underlying associations between apoE genotype and CNS 
disease and injury are not known. Increasing evidence suggests that apoE influences 
outcome after brain injury by apoE isoform differences in synaptic repair, remodelling, and 
protection. Proposed mechanisms by which the apoE E4 isoform magnifies neurological 
injury severity or impedes recovery include: less efficient transport of lipids (Poirier et 
al. 1993, Kay et al. 2003); more accumulation of beta amyloid and more widespread 
pre-existing amyloid deposits  (Nicoll et al. 1995, Graham et al. 1999a); more brain 
inflammation (Laskowitz et al. 1997a, Laskowitz et al. 1998, Grocott et al. 2001); poorer 
protection against oxidative injury (Lee et al. 2004); poor brain perfusion after injury 
(Laskowitz et al. 1997b, Kerr et al. 1999); a cytoskeleton more vulnerable to damage 
(Strittmatter et al. 1994); diminished growth and branching of neurites resulting in poorer 
repair (Strittmatter et al. 1994, Bellosta et al. 1995, Fullerton et al. 2001); poorer cerebral 
edema ( Fullerton et al. 2001, Lynch et al. 2002); poorer pre-existing atherosclerotic 
vascular disease (Ti et al. 2003); slower recovery to anaerobic metabolism (Kerr et al. 
2003); and poorer N-methyl-D-aspartate excitotoxicity (Aono et al. 2002).

Several protective mechanisms induced by apoE ε4 have also been described. The apoE 
ε4 protein was shown to activate an extracellular signal-regulated kinase cascade that 
results in activation of cAMP-response element binding protein and induction of  many 
genes, including the cell-protective gene Bcl-2 (Ohkubo et al. 2001). Cholesterol is 
another potential protective mechanism. ApoE ε4 carriers are known to have elevated 
low-density lipoprotein and total cholesterol levels (Sing and Davignon 1985), which 
lead to an increase in γ -glutamyl-transferase that is protective against neurotoxic effects 
of excitotoxic  amino acids (Dyker et al. 1997). ApoE ε4 allele may have a positive effect 
on neurogenesis. Neurogenesis not only occurs in developing nervous systems but also 
in adults (Altman and Das 1965, Eriksson et al. 1998, Gould et al. 1999). A study in 
transgenic mice found that apoE ε4 positive mice had increased neurogenesis compared 
to apoE ε3 positive mice (Levi and Michaelson 2007). Additional studies are needed to 
identify the factors that induce neurons to express apoE.

ApoE and A2.2.2.1	 β

The association of apoE with Aβ deposits in the brains of  AD patients led to the 
hypothesis that apoE influences the rate of cerebral amyloid deposition (Wisniewski 
and Frangione 1992). ApoE is found in amyloid plaques and neurofibrillary tangles, two 
neuropathological hallmarks of AD, but its role in their pathogenesis is unclear (Namba 
et al. 1991, Selkoe 1991, Wisniewski and Frangione 1992, Crowther 1993, Strittmatter 
et al. 1993ab, Tanzi and Bertram 2001). ApoE modulates the deposition and clearance of 
amyloid β peptides and plaque formation (Strittmatter et al. 1993ab, LaDu et al. 1994, 
Ma et al. 1994, Sanan et al. 1994, Wisniewski et at. 1994, Bales et al. 1999, Irizarry et 
al. 2000).The ε4 allele of apoE is associated with increased Aβ deposition, and increased 
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risk  and earlier onset of AD (Corder et al. 1993, Saunders et al. 1993). Horsburgh et 
al. (2000a)  showed that apoE4 binds more avidly than apoE3 to Aβ, and enhances 
aggregation of Aβ - a cleavage product of amyloid precursor protein (APP). It has also 
been shown that there are apoE-isoform differences in the ability of apoE to transport Aβ 
across the BBB (Martel et al.1997); apoE E2 and E3 prevent the transport of Aβ, whereas 
apoE E4 binds Aβ and crosses the blood brain barrier. However, the mechanisms of these 
effects are still largely unknown, and it is not known which are the primary effects and 
which are subsequent or downstream effects. 

Data from experimental and human post-mortem studies suggest that Aβ deposition 
is promoted by apoE, and this effect is apoE isoform-dependent. Nicoll et al. (1995) 
showed that individuals carrying the apoE ε4 allele have a greater extent of Aβ 
deposition after TBI compared with those without an apoE ε4 allele. Doubly transgenic 
mice expressing mutant APP and apoE ε4 have increased amyloid β -protein deposits 
compared with apoE ε3 mice (Hartman et al. 2002). Transgenic mice that overexpress a 
mutant APP gene, that causes familial AD, deposit Aβ in the brain in an age- and region- 
dependent manner similar to that seen in AD brain (Games et al. 1995). When these 
mice were bred onto an apoE deficient background there was a significant reduction in 
the extent of Aβ deposited (Bales et al. 1997). In contrast, when these APP transgenic 
mice were bred onto apoE ε3 and apoE ε4 transgenic mice expressing human apoE by 
astrocytes there was a marked reduction in Aβ deposition in the mice at 39 weeks of age 
(Holzman et al. 1999). It is unclear whether human apoE inhibits early deposition of 
Aβ, and that with longer survival the mice may exhibit Aβ deposits, or whether there is 
a critical concentration of Aβ at which apoE would promote the deposition of Aβ. The 
question of whether apoE represents a gain of negative or a loss of protective function 
is unresolved. Trommer et al. (2005) suggested  that apoE4 confers a gain of negative 
function synergistic with Aβ1-42, apoE2 is protective, and the apoE- Aβ interaction is 
specific to oligomeric Aβ1-42. These studies serve to highlight the complexity of these 
interactions between apoE isoforms and Aβ. A better understanding of the regulation of 
neuronal production of apoE is important for unravelling the mechanisms underlying 
apoE4-related neurodegenerative disorders. 

ApoE and inflammation2.2.2.2	
There is increasing evidence that apoE plays a biologically relevant role in modulating 
immune responses, but the mechanisms by which this occurs remain unclear. Astrocytic 
and microglial activation, with the resultant secretion of imflammatory mediators, is 
believed to promote breakdown of the blood brain barrier and subsequent development 
of cerebral edema. In the injured central nervous system, apoE may downregulate glial 
activation and the endogenous inflammatory response (Barger et al. 1997, Laskowitz 
et al. 1997a, Hu et al. 1998, Laskowitz et al. 1998, Laskowitz et al. 2001, Lynch et al. 
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2001). The apoE4  isoform is less effective than apoE3 at downregulating inflammatory 
cytokines in the peripheral circulation, as well as in the brain (Laskowitz et al. 2001, 
Lynch et al. 2003). Lynch et al. (2003) found an apoE isoform specific brain inflammatory 
response in transgenic mice expressing human apoE3 versus human apoE4, with the 
apoE4 transgenic mice having a greater inflammatory response than the apoE3 transgenic 
mice. Laskowitz et al. (2001) found similar microglial down-regulation and decreased 
inflammatory cytokine release in mouse and human microglial cultures administered 
with human apoE protein (2, 3, or 4). The  apoE is also capable of binding high affinity 
receptors and initiating a calcium-dependent signalling response in immunocompetent 
cells (Misra et al. 2001). In humans, isoform-specific differences are suggested by 
autopsy reports demonstrating increased numbers of scattered microglia and microglial 
activation in AD patients carrying the apoE ε4 allele (Egensperger et al. 1998).

ApoE and oxidative injury2.2.2.3	
ApoE can protect against oxidative injury and subsequent lipid peroxidation that 
contribute to the pathogenesis of neuronal damage associated with acute brain injury and 
AD (Markesbery and Carney 1999). This is consistent with the observation that plasma 
lipoproteins from apoE deficient mice are more susceptible to in vitro oxidation than 
those of wild-type mice (Hayek et al. 1994). In addition, apoE deficient mice have been 
shown to recover poorly from closed head injury compared to controls (Chen et al. 1997), 
and their diminished recovery has been shown to be related to a reduction in their ability 
to counteract oxidative damage (Lomnitski et al. 1997). 4-Hydroxynonenal (4-HNE) is a 
toxic byproduct of lipid peroxidation. 4-HNE accumulates in the neuronal cytoplasm and 
in neurofibrillary tangles in the brain of AD patients (Montine et al. 1997), the cellular 
distribution of which is influenced by apoE genotype (Montine et al. 1998). A reduction 
was observed in the extent of lipid peroxidation using 4-HNE immunoreactivity in apoE 
deficient mice infused with lipid-conjugated apoE after global ischemia (Horsburgh et 
al. 2000b). In addition, vitamin E, an antioxidant, reduces the extent of atherosclerosis in 
apoE deficient mice (Pratico et al. 1998). This anti-oxidant activity of apoE has also been 
shown to be isoform-specific in vitro: apoE can protect neurons from hydrogen peroxide 
toxicity in an isoform-specific manner, with apoE E4 being less effective compared to 
apoE E3 and E2 (Miyata and Smith 1996).

ApoE and synaptic repair, remodelling and regeneration2.2.2.4	
The apoE may influence AD and the longer term outcome after brain injury by apoE-
isoform differences in synaptic repair, remodelling and regeneration. After injury to the 
entorhinal cortex, an area vulnerable in AD and in some cases after head trauma, it 
has been shown that the increased expression of apoE in astrocytes and apoE receptors 
parallels dendritic proliferation and synaptic regeneration (Poirier et al. 1991, Poirier 
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et al. 1993, Poirier 1994, White et al. 2001a). The co-ordinated increased expression of 
apoE and receptors after injury, is thought to represent the transport of cholesterol and 
lipids necessary for dendritic remodelling and synaptogenesis (Poirier 1994). In support 
of this, the ability of synapses to regenerate after entorhinal cortex lesion is impaired 
in apoE deficient mice (Masliah et al. 1996). Intracerebroventricular administration 
of recombinant human apoE E3 or E4 reverses the impaired synaptic response and 
alleviates the cognitive deficit in apoE deficient mice with ageing (Masliah et al. 1997). 
It is also suggested that apoE plays a role in the clearance of degeneration products 
after injury (Fagan et al. 1998, White et al. 2001a). Alterations in apoE expression 
parallel the removal of degeneration products after injury, and this system is impaired 
in apoE deficient mice that exhibit a persistence of degeneration products (Fagan et 
al. 1998). It is suggested that individuals with an apoE ε4 allele (Arendt et al. 1997) 
are unable to compensate for age-related neuronal cell loss. In keeping with this, the 
neuronal reorganization is more severely affected in patients with AD carrying an apoE 
ε4 allele (Arendt et al. 1997). Low brain concentrations of apoE have been shown in 
AD patients carrying an apoE ε4 allele compared to normal control patients and AD 
individuals with apoE ε3 genotype (Bertrand et al. 1995). The lower levels of apoE 
may compromise lipid homeostasis and underly the poor compensatory synaptogenesis 
(Poirier and Sevigny 1998). More specifically, the cholinergic system is dependent on 
phospholipid homeostasis, and apoE isoform differences have been suggested to underly 
dysfunction of the cholinergic system in AD, apoE ε4 individuals being more severely 
affected (Poirier et al. 1995, Poirier and Sevigny 1998). 

In vitro evidence is consistent with an isoform-dependent neurotrophic role of apoE. 
Rabbit dorsal root ganglion neurons and neuroblastoma cells incubated with lipoproteins 
alone have enhanced neurite outgrowth that is further enhanced in the presence of apoE 
E3 lipoproteins, and inhibited in the presence of apoE E4 lipoproteins (Handelmann et al. 
1992, Nathan et al. 1994). Similar results are obtained when cells are stably transfected 
to secrete apoE E3 or apoE E4; in the presence of lipoproteins, cells expressing apoE 
ε3 have extensive neurite outgrowth, whereas neurite extension is suppressed in cells 
expressing apoE ε4 (Bellosta et al. 1995). One of the cellular events associated with 
neurite outgrowth is an apoE-isoform- specific effect on the cytoskeleton. ApoE E3 
stabilizes the formation of microtubules in vitro in contrast to apoE E4 that is associated 
with destabilization  of the microtubule assembly (Fleming et al. 1996). 

White et al. (2001b) found decreased synaptic plasticity associated with the apoE4 
isoform presence in transgenic mice producing human apoE4 isoform compared to those 
producing human apoE3 isoform. Human apoE3 protein, expressed in mice deficient in 
endogenous mouse apoE, is protective against kainic acid-induced neurodegeneration, 
while human apoE4 is not protective (Buttini et al. 1999). A similar difference was 
observed between human apoE3- and apoE4-expressing mice and chronic age-related 
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neurodegeneration (Buttini et al. 1999). Of potential relevance to longer term outcome, 
apoE is involved in the delivery of cholesterol to neurones required for neurite outgrowth 
and synaptogenesis (Mauch et al. 2001), clearance of degeneration products, microglial 
activation, and the maintenance of the cholinergic system (Graham et al. 1999b, 
Horsburgh et al. 2000a).

ApoE and normal aging2.2.2.5	
Furthermore, most (Haan et al. 1999, Bretsky et al. 2003, Mayeux et al. 2001), but not 
all (Dik et al. 2000, Collie et al. 2001) longitudinal studies of nondemented persons have 
reported that apoE ε4 carriers show greater cognitive decline with aging. Among humans 
with age-associated memory impairment, women performed less well on memory testing 
(Bartres-Faz et al. 2002). Healthy older adults with apoE4 of both sexes without dementia 
or neurological disease, in several studies, have demonstrated deficits in specific areas 
of neuropsychological function, especially visual attention, memory, and psychomotor 
rapidity (Bondi et al. 1995, Berr et al. 1996). ApoE ε4 carriers performed significantly 
more poorly than non-carriers when assessed for learning and memory abilities (Schmidt 
et al. 1996). Normal male twins with the apoE ε4 allele performed more poorly on 
cognitive testing when compared to their co-twins without the apoE ε4 allele (Reed et 
al.1994). Memory declines more rapidly with age in apoE ε4 carriers than in apoE ε4 
non-carriers (Caselli et al. 2004). These results provide support for the hypothesis that 
the apoE genotype can affect cognition even in the absence of disease in aging adults. It 
is assumed that the expression of apoE is not significantly altered during normal aging, 
although this has not been determined experimentally. Recent studies have shown an 
age-related increase in apoE expression in the liver, implying that alterations in apoE 
expression may be an important factor in maintaining normal homeostasis during aging 
in some tissues (Gee et al. 2005). 

The role of apoE in neurological diseases2.2.3	
ApoE Ε4 isoform is genetically associated with late-onset familial and sporadic 
Alzheimer`s disease (Corder et al. 1993, Saunders et al. 1993). AD is characterized by 
loss of synapses and neurons, the accumulation of amyloid plaques and the occurrence 
of neurofibrillary tangles.  The risk of AD was further increased and the age of onset 
decreased in subjects with two ε4 alleles, compared with those with only one ε4 allele 
(Corder et al. 1993).

Seven hundred stroke patients were retrospectively studied, and the apoE ε4 allele did 
not influence the dichotomized three-month outcome (good if alive at home, bad if 
dead or in care) after ischemic stroke. However, in those patients who had suffered a 
hemorrhagic stroke there was a nonsignificant trend towards poorer outcome in those 
patients with the ε4 allele (McCarron et al. 1998). In a prospective study, McCarron et al. 
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(2000) followed  ischemic stroke patients, and the apoE ε4 allele was not associated with 
three-month outcome. MacLeod et al. (2001) examined apoE genotype in 266 ischaemic 
stroke patients and found no association between apoE ε4 allele and ischaemic stroke. 
The apoE ε4 allele did not predict outcome after ischemic stroke at the time of discharge 
from an inpatient rehabilitation programme (Treger et al. 2003). Although the outcome 
measures vary between different studies, it appears that apoE ε4 carriers have a poorer 
outcome after spontaneous intracerebral haemorrhage (Alberts et al. 1995, McCarron et 
al. 1999, McCarron et al. 2003, Martinez-Gonzales and Sudlow 2006). The apo ε4 allele 
was not associated with larger hematomas (McCarron et al.1999), but may be associated 
with relatively prolonged coagulation times (Weir et al. 2001).

The apoE ε4 allele seems to  predispose a patient to a poor outcome after subarachnoid 
hemorrhage (SAH). Leung et al. (2002) demonstrated a significant negative influence 
on six-month outcome in a study of 72 patients. Niskakangas et al. (2001) showed that 
40 % of patients with the apoE ε4 allele had an unfavourable outcome, compared with 
19% of those without. Tang et al. (2003) found that 28% of those with the apoE ε4 
allele had an unfavourable outcome compared with 8% without. Two linked studies 
did not demonstrate an association between the apoE ε4 allele and outcome after SAH 
(Dunn et al. 2001, Morris et al. 2004). However, the patients who sustained the most 
severe hemorrhage showed a trend towards poorer outcome in apoE ε4 -carriers. A 
meta-analysis of apoE genotype and SAH demonstrated that in patients with SAH, the 
expression of the apoE ε4 allele was associated with a higher risk of a negative outcome 
and delayed ischemia (Lanterna et al. 2007). SAH- affected mice expressing the apoE 
ε4 allele also had a greater functional deficit, mortality and vasospasm as compared with 
their ε3 counterparts (Gao et al. 2006). In summary, the results suggest that apoE may 
affect outcome after ICH and SAH, but not after ischemic stroke (Martinez-Gonzales 
and Sudlow 2006).

Evidence derived from several clinical studies suggests an unfavourable course of 
multiple sclerosis (MS) in carriers of the apoE ε4 allele (Sylantiev et al. 1998, Chapman 
et al. 1999, Evangelou et al. 1999, Fazekas et al. 2000, Masterman et al. 2002, Chapman 
et al. 2001, Fazekas et al. 2001, Enzinger et al. 2003), although such an association was 
not seen in all studies (Ferri et al. 1999, Weatherby et al. 2000, Schmidt et al. 2002, 
Schreiber et al. 2002).

The apoE ε4 allele is associated with poorer neurological outcome after cardiopulmonary 
arrest (Schiefermeier et al. 2000), and carriers of the apoE ε4 allele have been shown 
to recover neuropsychological and cognitive functions less well following cardiac 
bypass surgery (Tardiff et al. 1997). The apoE ε4 allele seems to be associated with an 
increased risk of developing diabetic neuropathy and human immunodeficiency viral 
neuropathy (Blacman et al. 2005). Reports on apoE genotype and Parkinson`s disease 
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are inconsistent. Some studies have reported an association between the apoE ε4 allele 
and Parkinson`s disease or Parkinson`s disease with dementia, whereas others have not 
(Whitehead et al. 1996, Inzelberg et al. 1998). To date, there is little evidence to support 
the role of gene polymorphisms in outcome from CNS infections. ApoE interacts with 
HSV-1 and may facilitate its transport within the CNS but it does not appear to affect 
outcome from herpes simplex encephalitis (Nicoll et al. 2001).

ApoE and outcome of TBI2.2.4	
ApoE has been implicated in modifying neurological outcome after TBI, although  the 
mechanisms by which this occurs remain poorly defined. Several studies have shown 
that patients with apoE ε4 have a poorer outcome after TBI in the acute and subacute 
stage. Sorbi et al. (1995) showed that the apoE ε4 allele was a prognostic factor for 
posttraumatic coma. Teasdale et al. (1997) demonstrated a significant association between 
apoE ε4 and poor outcome after head injury. Patients with the ε4 allele were more than 
twice as likely to have an unfavourable outcome six months after head injury than those 
without. Subsequent studies have shown a similar association, although in all cases the 
subject numbers have been small. Jordan et al. (1997) suggested that possession of an 
apoE ε4 allele may be associated with increased severity of chronic neurological deficits 
in high-exposure boxers. Friedman et al. (1999) reported that only 3.7% of patients with 
the ε4 allele made a good recovery, compared with 31 % of patients without the allele. 
The outcome of patients who were able to complete a course of neurorehabilitation after 
TBI was also found to be associated with apoE genotype (Lichtman et al. 2000). Overall 
and motor recovery, as assessed by the Functional Independence measure (FIM), were 
both significantly lower in patients with the ε4 allele than in those without. Crawford et 
al. (2002), while demonstrating poorer outcome in ε4 patients, found that memory post 
TBI was poorer in these subjects. In their study, 110 active and veteran American military 
personnel were assessed using a number of memory and cognitive measures. Although all 
patients displayed impaired performance, those who had the ε4 allele were significantly 
worse. This relationship did not extend to all aspects of cognitive functioning, as there 
was no relationship between measures of executive functioning and presence of the ε4 
allele. The memory performance of subjects without ε4 was poorer after a more severe 
head injury than after a milder one, while the performance of subjects with ε4 was as 
poor as the severely injured subjects without ε4, regardless of TBI severity.  

An important point in studies of genetic variation is the ethnicity of the population. Chiang 
et al. (2003) extended the findings of the above studies to a Chinese population, in whom 
the ε4 allele is relatively uncommon in comparison to European and North American 
populations. One hundred consecutive patients admitted with TBI were prospectively 
followed to six months post-injury. More than twice as many patients with ε4 had an 
unfavourable outcome at that stage than those without (52.6% vs. 24.1%). Nathoo et 
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al. (2003) reported that apoE ε4 allele had no significant effect on TBI outcome in an 
African cohort.

The ε4 allele adversely affects outcome even after mild head injury. Sundström et al. 
(2004) performed a series of neuropsychological tests on a small cohort of individuals 
both pre- and post-head injury. Those with the ε4 allele performed significantly more 
poorly on three tests post-head injury, while those without the ε4 allele performed no 
differently. Liberman et al. (2002) showed that ε4-carriers had lower neuropsychological 
outcome scores on 12 out of 13 neuropsychological outcomes  three weeks after 
injury compared with non -ε4 carriers. Two of the differences were significant. Six 
weeks after injury, apoE ε4 -positive patients had lower adjusted mean scores on 11 
of the 13 neuropsychological outcomes. None of the differences was significant. The 
conclusions were that apoE genoptype may influence the severity of the acute injury. 
However, with no consistent pattern to the recovery curves, the influences on the rate 
of recovery are unclear. In a large prospective study, 1094 subjects were included and 
the outcome was assessed using the GOS (Teasdale et al. 2005). The apoE genotype 
did not affect the overall outcome, but the prognostic influence of apoE was restricted 
only to younger TBI victims. In a cohort of moderate and severe TBI patients, subjects 
with the ε4 allele showed poorer learning and long-term memory, and had significantly 
more neurobehavioural disturbances (Ariza et al. 2006). TBI patients with the ε4 allele 
had a slower recovery rate than those without this allele over a two-year period, and the 
presence of the apoE ε4 allele influenced the recovery rate from severe TBI irrespective 
of other covariates (Alexander et al. 2007). A recent meta-analysis indicated that the 
presence of the apoE ε4 allele is not associated with the initial severity of brain injury 
following TBI but is associated with increased risk of poor outcome at six months after 
injury (Zhou et al. 2008).

The very long-term outcome of TBI patients is poorly known, with few studies dealing 
with this problem. In a cross-sectional study, middle-aged and elderly patients had 
persisting cognitive impairments 30 years after a mild-to-moderate TBI compared to 
age-, gender- and education-matched controls (Klein et al. 1996). Other studies dealing 
with truly long-term outcome have mostly included veterans of war (Plassman et al. 
2000), who differ markedly both in trauma mechanism  and population background from 
modern civilian injuries. In a study of mainly severe TBI patients, cognitive decline 
15 to 25 years after injury was not related to apoE genotype (Millar et al. 2003). The 
subjects assessed were relatively young (mean age 42.1 years) in the context of age-
related congitive decline and the onset of sporadic Alzheimer`s disease.

Animal studies, using apoE knockout and transgenic mice, have also provided further 
information about apoE mechanisms and the response of the brain to injury. Some 
studies have shown that the apoE molecule may have a direct neurotoxic role (Neve and 
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Robakis 1998), whereas others have speculated that apoE ε4 may directly interact with 
Aβ and impact on the metabolism of APP (Growdon 1998). Transgenic mice expressing 
human apoE ε4 had increased mortality and worsened neurological scores compared 
with apoE ε3 transgenic mice after experimental closed-head injury (Sabo et al. 2000). 
Ezra et al. (2003) found increased mortality and poorer outcome in apoE ε4 transgenic 
mice, and greater recovery and less cortical damage in apoE ε3 transgenic mice. 

However, the effect of apoE is still controversial, since some studies have failed to show 
any association with the outcome of TBI (Plassman et al. 2000, Jellinger et al. 2001, 
Diaz-Arrastia et al. 2003, Millar et al. 2003, Nathoo et al. 2003, Chamelian et al. 2004, 
Smith et al. 2006, Ponsford et al. 2007, Willemse-van Son et al. 2008). Polymorphism 
within the promoter region may increase the apoE expression and thus exacerbate the 
response to TBI. To date, several polymorphisms within the promoter region of the apoE 
gene have been identified at -491 (A/T transversion), -427 (T/C transversion), and -219 
(G/T transversion), and these are proposed to affect the transcriptional activity of the 
apoE gene in both the periphery and the CNS (Artiga et al. 1998). 

Table 1. Studies of relationships between apoE genotype and outcomes from TBI in adults
Study Sample 

size
Outcome measure Effect Time of 

assessment

Sorbi et al. 1995 16 Coma duration e4 + 1 year

Teasdale et al. 1997 89 GOS e4 + 6 months

Jordan et al.1997 30 CBI scale e4 + unclear

Friedman et al. 1999 69 Functional and cognitive assessment e4 + 6-8 months

Lichtman et al. 2000 31 FIM e4 + 6 months

Crawford et al. 2002 110 Learning/fluency test e4 + 6 months

Liberman et al. 2002 80 Neuropsychological tests e4 No consistent 
pattern

6 weeks

Liaquat et al. 2002 129 Haematoma volume/GOS e4 + 6 months

Chiang et al. 2003 100 GOS e4 + 6 months

Diaz-Arrastia et al. 2003 106 Seizure frequency/GOS e4 associated with 
increased risk for 
seizures but not 
outcome

6 months

Millar et al. 2003 396 GOS/Neuropsychological tests e4 - 18 years

Nathoo et al. 2003 110 GOS e4 - 6 months

Chamelian et al. 2004 90 GOS/Neuropsychological tests/RHFUQ/
RPQ/GHQ

e4 - 6 months

Sundström et al. 2004 34 Neuropsychological tests e4 + unclear

Teasdale et al. 2005 984 GOS e4 + only younger 
patients

6 months

Ariza et al. 2006 77 Neuropsychological tests e4 + 6 months

Alexander et al. 2007 123 GOS e4 + 2 years

Ponsford et al. 2007 120 Neuropsychological tests e4 - 1 year

Willemse-van Son et al. 2008 79 GOS, SIP-68, CIQ e4- 3 years
e4+ =e4 associated with poorer outcome, e4- = no association with poorer outcome; CBI, chronic brain injury; FIM, 
Functional Independence Measure; RHFUQ, Rivermead Head Injury Follow-up Questionnaire; RPQ, Rivermead Post-
Concussion Symptoms Questionnaire; GHQ, Twenty-eight-item General Health Questionnaire; GOS, Glasgow Outcome 
Scale score; SIP-68, Sickness Impact profile-68; CIQ, Community Integration Questionnaire
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Relation of TBI, apoE and dementia2.2.5	
The association between TBI and dementia is still controversial. TBI can lead to 
overexpression of the APP resultting in deposition of the β-amyloid in the brain, similar 
to that seen in brains of AD subjects (Graham et al. 1996). This finding has led to the 
hypothesis that TBI may increase the risk of AD. The mechanisms by which TBI is 
associated with the formation of Aβ plaque depositions are still unknown. However, 
significant discrepancies exist in neuropathological studies. The epidemiological studies 
that have reported on the relationship between TBI and dementia are also contradictory. 
The apoE ε4 allele is a risk factor for AD (Corder et al. 1993). Of special interest is 
the possible influence of TBI on the risk of developing later Alzheimer`s disease, and 
the eventual interaction with the apoE genotype. Although epidemiological studies and 
retrospective autopsy data provide evidence that a later cognitive decline may occur 
after severe TBI, the relationship between dementia after TBI and apoE status is still 
ambiguous (Jellinger 2004). The role of  apoE genotype for the prognosis of TBI is 
also contradictory. Most studies supports the view that the ε4 allele of apoE adeversely 
affects outcome after TBI in the first six months post injury (Zhou et al. 2008). Its effects 
over a much longer period are less clear. In contrast to the studies demonstrating an 
association between apoE ε4 and an unfavourable outcome following TBI, a number of 
recent studies examining both severe and mild TBI have failed to support such findings 
(Guo et al. 2000, Plassman et al. 2000, Jellinger et al. 2001, Chamelian et al. 2004, 
Willemse-van Son et al. 2008). A cohort study (Guo et al. 2000) and a neuropathological 
study (Jellinger et al. 2001) have suggested that TBI might be a risk factor for AD in 
those lacking the ε4 allele of apoE. 

Preliminary evidence indicating a possible role for TBI in the development of AD 
came from an early case report documenting classic AD pathology in a 38-year-old 
man who had suffered a severe head trauma 16 years earlier (Rudelli et al. 1982). 
Neuropathological studies of the brains of boxers suffering from dementia pugilistica 
have also demonstrated AD-like pathology with diffuse Aβ plaque depositions (Roberts 
et al. 1990). Histopathological studies of individuals who have died after suffering 
a severe TBI demonstrate widespread cerebral Aβ deposition in short (Roberts et al. 
1991, 1994, Gentleman et al. 1997, Ikonomovic et al. 2004) and long-term (Clinton 
et al. 1991) survivors, irrespective of age. However, significant discrepancies exist in 
neuropathological studies. Adle-Biassette et al. (1996) were unable to detect any Aβ 
deposits in the head injuries of individuals below the age of 63 years, in a similar age 
range and survival time to those studied by Roberts et al. (1991). Also, the non-selective 
autopsy investigation by Braak and Braak (1997) rarely detected Aβ plaques in the 
younger subjects (below the age of 40 years). 

Studies using different forms of experimental TBI have given some insight into how 
brain injury may lead to AD, although the results remain somewhat inconclusive. In 
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support of the argument that increased APP levels following TBI may potentiate AD 
pathology, experimental TBI in rats induced overexpression and accumulation of APP in 
the cerebral cortex and hippocampus, which subsequently led to neuronal degeneration 
in the CA3 region of the hippocampus as early as three days post-injury (Murakami 
et al. 1998). Also, experimental trauma studies in pigs have demonstrated  rapid Aβ 
accumulation, manifested in axonal bulbs and diffuse plaques three days after trauma 
(Smith et al. 1999). However, post-traumatic Aβ deposition has not been observed in 
the majority of non-transgenic animal studies, unlike human studies (Pierce et al. 1996, 
1998, Masumura et al. 2000, Laurer et al. 2001, Ciallella et al. 2002, Hamberger et al. 
2003). In the transgenic models, rapid  Aβ deposition has not been demonstrated (Roberts 
et al. 1991,1994, Gentleman et al. 1997, Ikonomovic et al. 2004), and increased severity 
of injury did not result in increased Aβ deposition; if anything, it actually seemed to 
correlate with reduced Aβ deposition or even resolution of already established plaques 
(Szczygielski et al. 2005). In humans, both the risk (Plassman et al. 2000) and the post-
traumatic Aβ deposition increased with TBI severity (Roberts et al. 1994).

Some case-control studies suggest that head injury may increase the risk of dementia               
(Heyman et al. 1984, French et al. 1985, Mortimer et al. 1985, Graves et al. 1990, van 
Duijn et al. 1992,  Mayeux et al. 1993, O`Meara et al. 1997, Salib and Hillier 1997, 
Guo et al. 2000) but not all case-control studies (Amaducci et al. 1986, Chandra et al. 
1987, 1989, Shalat et al. 1987, Broe et al. 1990, Ferini-Strambi et al. 1990, Fratiglinoni 
et al. 1993). The MIRAGE study analysed 2233 definite and probable AD patients, and 
14,668 first-degree relatives, and showed that head injury with loss of consciousness 
significantly increased the AD risk (Guo et al. 2000). Specifically, the meta-analysis 
of seven case-control studies by Mortimer et al. (1991) provided the first convincing 
evidence in support of a strong association between TBI and AD. A relative risk of 1.82 
was reported (95% confidence interval (CI) 1.26 to 2.67) for head injury with loss of 
consciousness. The relative risk, when adjusted for a family history of dementing illness, 
education, and alcohol consumption, remained significant but was only true for males 
(2.67, 95% CI 1.64 to 4.41). Later, a  review of case-control studies sought to replicate 
those findings, and supported an association between head injury and AD in males 
(Fleminger et al. 2003). The possible explanation for the gender differences in the risk 
of AD following TBI may be attributed to the neuroprotective and neuroregenerative 
effects of the female hormones oestrogen and progesterone (Stein 2001), or it could be 
merely the fact that men typically suffer more severe injuries than women. 

There have also been conflicting reports in cohort studies. In two early studies, no 
significant association was found between head injury and the risk of developing  
AD (Katzman et al. 1989, Williams et al. 1991).  A history of head trauma with 
unconsciousness was excluded as a risk factor for AD in both the Rotterdam Study 
(Mehta et al. 1999) and the large EURODEM study (Launer et al. 1999). Plassman et 
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al. (2000) examined the association between early adult head injury and dementia in 
late life. In the study of 548 World War II (US Navy) brain-injured veterans and 1228 
age-matched non-injured controls, follow up after 50 years revealed that moderate to 
severe head injuries in young men may be associated with increased risk of AD and other 
dementias in late life. 

Several studies have shown that there is a greater risk of developing AD when the head 
injury has occurred in later life (within 10 years of onset of AD) as opposed to a head 
injury occurring earlier in life (beyond 10 years of onset of AD) (Graves et al. 1990, 
Mortimer et al. 1991, van Duijn et al. 1992). In contrast, other studies have shown that 
a head trauma occurring mainly in earlier childhood is associated with an increased risk 
of AD in later life (Schofield et al. 1997, Plassman et al. 2000). After examining the 
incidence of AD pathology in 58 consecutive patients with residual closed TBI lesions 
and the frequency of TBI residuals in 57 age-matched autopsy controls, Jellinger et 
al. (2001) concluded that severe TBI may have some influence on the development of 
AD, irrespective of the age at which the TBI occured.  According to cohort studies TBI 
may interact with other risk factors to hasten the onset of AD in persons susceptible to 
the disease (Sullivan et al. 1987, Gedye et al. 1989, Schofield et al. 1997, Nemetz et al. 
1999). Rasmusson et al. (1995) did not find any effect of head injury on age of onset of 
AD in a cohort of 68 AD cases, and nor did the MIRAGE study (Guo et al. 2000).

Mayeux et al. (1995) reported a synergistic interaction between head injury and apoE 
ε4 on the risk of AD. In their study, head injury alone did not increase the risk, but head 
injury in persons with ε4 increased the risk 10-fold compared with those who lacked 
both factors. O`Meara et al. (1997) showed an increased risk of AD in individuals with 
a history of TBI but no modification by the apoE ε4 allele. Cohort studies from selected 
(Plassman et al. 2000), retrospective population -based (Guo et al.2000), or prospective 
population -based (Mehta et al. 1999) materials have also yielded very different results. A 
prospective study of 1776 World War II navy veterans showed that moderate and severe 
TBI, rated by duration of loss of consciousness or PTA in early adult life, was associated 
with increased risk of AD and dementia in late life. This risk increased with the severity 
of TBI, and showed a non-significant trend towards a stronger association between AD 
and TBI in men with apoE ε4 alleles (Plassman et al. 2000). In the MIRAGE study, head 
injury as a risk factor for AD appeared greater amongst subjects lacking apolipoprotein  
apoE ε4 (Guo et al. 2000). Mehta et al. (1999) did not find either a connection between 
TBI and AD or an interaction with the apoE genotype. Fleminger et al. (2003) found 
an association between head injury and AD in males, but this review was unable to 
determine the relationship with apolipoprotein E gene status. A long-term follow-up of 
cognitive outcomes after head trauma showed that a late decline may occur after head 
injury, but no association with the apoE genotype. However, the majority of patients were 
still too young (mean 42.1 years) to assess the risk of AD (Millar et al. 2003). A 30-year 
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follow-up study of mental disorders after TBI indicated that apoE ε4 predicted dementia 
but not other psychiatric disorders (Koponen et al. 2004). Luukinen et al. (2005) showed 
that fall-related TBI predicted earlier onset of dementia, with the effect being especially 
high amongst subjects who carried the apoE ε4 allele.

There is no conclusive evidence linking apoE genotype with the development of AD 
following TBI (Jellinger 2004). However, it is still unclear whether TBI might really 
increase the risk of AD by, for example, triggering a process whereby Αβ accumulates in 
the brain, or whether the connection between TBI and AD evolves only from the lower 
cerebral reserves after TBI, thus causing the earlier appearance of eventual AD (Nemetz 
et al. 1999). ApoE4 -related long-term cognitive decline may also appear through 
increasing cholinergic hypofunction (Kleifeld et al. 1998, Champagne et al. 2005).
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AIMS3.	

The specific aims of the study were:

I. 	 To investigate the outcome of TBI after three decades and its relationship to apoE 
genotype

II. 	 To evaluate the association between hippocampal volume, brain atrophy and apoE 
genotype

III. 	 To evaluate the relationship of mri changes during the first year after TBI  to apoE 
genotype

IV. 	 To investigate the association of injury severity, MRI results and apoE genotype 
with one-year outcome in mainly mild TBI
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MATERIAL AND METHODS4.	

Subjects4.1	

Studies I and II4.1.1	
This study was a part of a more extensive TBI research project coordinated by the 
Department of Neurology of Turku University. The study group was selected from 210 
patients who had suffered TBI between 1950 and 1971, and who had been referred for 
neuropsychological evaluation to one of the authors (RP) at Turku University Central 
Hospital between the years 1966 - 72. The reason for the referral to the neurologist 
and neuropsychologist was either a recent injury or significant disability after an earlier 
injury, and all referred patients were included in the original material. Inclusion criteria 
in our current study were: (1) a blunt injury severe enough to cause TBI and causing 
neurological symptoms and signs lasting at least one week after the injury (including 
headache and nausea); and (2) at least one of the following: loss of consciousness for at 
least one minute (eye-witnessed); posttraumatic amnesia (PTA) for at least 30 minutes; 
neurological symptoms and signs of recent brain injury during the first three days after 
the trauma (excluding headache and nausea); or neuroimaging findings suggesting TBI 
(e.g. skull fracture, intracerebral hemorrhage). Exclusion criteria were: (1)  significant (i.e 
causing possibly permanent damage) brain disease prior to TBI; (2) clinical symptoms of 
a nontraumatic brain disease developed after TBI (excluding degenerative dementia); (3) 
insufficient cooperation; (4) refusal to participate in the study; and (5) medical records 
not available.

From the original sample of 210 patients, 76 patients had died, 13 patients did not meet 
the inclusion criteria, one patient was excluded because of brain disease prior to TBI, and 
the medical records were missing for two patients. After this screening, the remaining 
118 patients were contacted by mail, and 88 of them responded. Of these, 83 patients met 
the inclusion criteria, but seven of them were excluded because of a later non-traumatic 
brain disease, and 14 patients refused to participate in the study. The remaining 62 patients 
were examined between January 1998 and April 1999. MRI was not available for four 
patients and one patient refused the neuropsychological examination. The formation of 
the study groups is presented in Figure 1. To test the representativeness of the study 
group (n = 61), the deceased subjects plus the combined group of subjects who either 
refused or could not be reached were compared with the study group in terms of age, 
gender, education and severity of TBI. The representation analyses were restricted to 
the same age range as in the study group (age at TBI < 53 years). The only significant 
differences between the groups, according to analysis of variance (ANOVA) were that 
the deceased subjects were significantly older (p < 0.0001) and had less education (p < 
0.01) compared to the other groups.
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Patients with TBI in 1966-1972 n=210 

Deceased n=76 

Inclusion criteria not met n=13 or 
exclusion criteria met n=3 

according to medical records 

Patients with TBI contacted by mail in 1997 n=118 

No reply n=30 

Replied n=88 

Refused n=14 

Inclusion criteria not met n=5 or 
exclusion criteria met n=7  

Study group in 1998-1999 n=62 

Subjects of study I   
n=58 

Subjects of study II  
n=61 

No MRI n=4 No neuropsychological 
examination n=1 

Figure 1. Formation of the stydy groups.

Studies III-IV4.1.2	
Thirty-three consecutive patients attending the Emergency Department of the Turku 
University Central Hospital were recruited for the study from January 1998 to February 
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2000. The inclusion criteria for the patients were: 1) acute (< 3 days) brain trauma that 
included one or more of the following: a) loss of consciousness for at least 1 minute, 
b) at least half an hour posttraumatic amnesia, c) neurological symptoms or signs 
of brain injury during the first three days ( excluding headache and nausea), and d) 
neuroradiological findings indicating  acute TBI: 2) age 16-70 years and 3) informed 
consent. Patients with other central nervous system diseases or contraindications to MRI 
were excluded. The severity of TBI was assessed both by the GCS on arrival and by the 
duration of PTA (Kay et al. 1993, McFarland et al. 2001) using the Rivermead protocol 
(King et al. 1997). Table 2 shows the characteristics of the subjects.

Table 2. Demographic features of the patient material
Variable Study I Study II Studies III-IV

n=58 n=61 n=33

Age at injury,y 28.9±10.5 28.9±10.7 44.2±16.6

Age at examination,y 60.2±10.2 60.3±10.6 44.2±16.6*

Time from injury,y 31.3±3.9 31.4±3.9 0

Education**,y 9.3±2.2 9.3±2.2 10.6±2.4

Gender, m/f (%) 67/33 69/31 70/30

Mechanism of injury (%)

Traffic accident 60 62 27

Fall 24 23 73

Assault 2 2 0  

Other 14 13 0
* Age at first examination

** Education was recorded as the total number of school years

Methods4.2	

Rating scales and questionnaires4.2.1	
In studies I and II, information regarding the TBI was obtained retrospectively from 
medical records and patient interview. Background data were collected with a questionnaire 
containing information on the demographic characteristics and TBI. All patients suffered 
from closed head injuries. Subjects reported education as the total number of school years. 
The mechanism of injury was grouped into four categories: motor vehicle accident, fall, 
assault, and other. The severity of TBI was classified according to the duration of PTA as 
follows: < 1 hour = mild, 1-24 hours = moderate, 1-7 days = severe, and > 7 days = very 
severe (Rusell and Smith 1961). In study II, physical outcome was estimated with the physical 
category (ambulation, mobility, body care and movement) of the Sickness Impact Profile 
(SIP) (Bergner et al. 1981). Subjective symptoms and ADL functioning were assessed by the 
Symptom Checklist-90 (SCL-90) (Degoratis et al. 1973) and the Patient Competency Rating 
Scale (Prigatano 1986). Vocational outcome was assessed by a detailed interview covering 
the whole working history before and after the TBI, in terms of duration, level of demand, 
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and continuity. For the analysis, the original seven employment categories were grouped into 
two categories: not employed after the injury and employed after the injury.

In study IV, to assess outcome at one year after injury, the Head Injury Symptom 
Checklist (HISC) (McLean et al. 1984) and the Glasgow Outcome Scale, extended 
version (GOS-E) (Wilson et al. 1998) were used.

Neuropsychological assessment4.2.2	
Cognitive outcome was assessed in study II by comparing the score of the Mild Deterioration 
Battery (MDB) (Kujala et al. 1994) in the original examination to the follow-up study about 
30 years later. The MDB measures general cognitive impairment in episodic memory and 
in verbal and visuomotor performance. It consists of eight tests: Similarities, Digit span, 
Digit symbol, and Block design from the Wechsler Adult  Intelligence Scale (Wechsler 
1955), the Benton Visual Retention test (Benton 1963), immediate recall of 30 paired 
word associates, and naming time and immediate recall of 20 common objects. A patient 
received one deterioration point, if his or her performance on any of the eight subtests was 
1.5 standard deviations below the norm, two points if the score was 2.0 standard deviations 
below the norm, and three points if the score was 3.0 standard deviations below the norm. 
Thus the maximum total score on  the MDB was 24 points. The results were rescored as 
described earlier, and only the total score was used for the analysis. The MDB was the only 
outcome measure that was also registered at baseline, but in the follow-up examination, 
parts of CERAD (Verbal fluency test, modified Boston naming test, Mini-Mental State 
Examination, Word-list memory, Word-list recall and Word-list recognition) (Welsh et al. 
1994), and a memory questionnaire (Sunderland et al. 1983) were also applied.

In studies I and II, in addition to the diagnosis of dementia (definite) according to DSM-
IV criteria, a diagnosis of subclinical dementia was made in those cases where the DSM-
IV criterion ”significant impairment in social or occupational functioning” was not met 
unequivocally.

Magnetic resonance imaging (MRI)4.2.3	

Study I4.2.3.1	
The MRI scans were acquired with a 1.5 T Siemens Magnetom system using a standard 
head coil. In addition to routine T2-weighted axial sequence, a sagittal three-dimensional 
MPR (magnetization prepared rapid gradient echo; TR 10, TE 4, flip angle 10˚, matrix 
192 x 256, contiguous 1.5 mm slices, 1 acquisition) sequence was obtained in all cases. 
All measurements  were evaluated blindly by an experienced neuroradiologist.

Hippocampal volumes were measured according to a previously described method 
(MacKenzie et al. 2002). The hippocampus included the Ammon’s horn, the gyrus 
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dentatus, the subiculum and the uncus ventral to the caudal amygdala: the slice in 
which the fornices were visible in their full length determined the posterior end of 
the hippocampus. Intracranial coronal area was measured at the level of the anterior 
commissure; this area was used to normalize the volumes with respect to head size. 

Primary intracranial lesions were classified by their location into cortical contusions and 
traumatic axonal injury (TAI). The volume of contusions was assessed by a previously 
published method to measure intracranial lesions (Pasqualin et al. 1991). Lesions were 
considered as TAI based on their location and characteristics. In general hemorrhagic 
lesions or lesions at the grey-white matter junction, in the corpus callosum and the 
dorsolateral upper brain stem were considered as TAI. 

Studies III and IV4.2.3.2	
Head MRI was performed one week (7± 2 days) and again one year after the trauma. 
Nine of the patients were studied on a Siemens Magnetom 1.5 T system. The following 
sequences were used for the analysis: (a) T2-weighted axial turbo spin echo (TSE) 3500/93 
ms (repetition time/ echo time) with one acquistion, slice thickness 5.0 mm, data acquisition 
matrix 192 x 256, and field of view (FOV) 23.0 cm; (b) T1-weighted coronal SE 600/15 
with two acquisitions, slice thickness 7.0 mm, data acquisition matrix 192x 256, and FOV 
23.0 cm; (c) T2/PD-weighted coronal TSE 3500/93/19 with one acquisition, slice thickness 
4.0 mm, data acquisition matrix 192x 256, and FOV 23.0 cm. 

Twenty-four of the MRI studies were obtained with a General Electric Signa 1.5 
T-system. The analysis was performed using the following sequences: (a) T2-weighted 
axial fast spin echo (FSE) 4520/81.6 with two acquisitions, slice thickness 5.0 mm, data 
acquisition matrix 512 x 224, and FOV 24 x 18 cm; (b) fluid-attenuated T2-weighted fast 
spin echo inversion recovery (FSEIR) 10002/172.5 with inversion time 2200 ms, one 
acquisition, slice thickness 7.0 mm; data acquisition matrix 256 x 192, and FOV 24.0 
cm; (c) 3D fast spoiled gradient echo (FSPGR) 11.3/4.2, flip angle 20˚, one acquisition, 
data acquisition matrix 256 x 192, slice thickness 1.2 mm, FOV 22 x 17.6 cm, and 124 
contiguous axial slices with no inter-slice gap.

The MRI scans were analysed by an experienced neuroradiologist, with early and late 
scans reviewed on different days. Rating of contusions was done according to their number 
in different anatomical locations and their size. The extent of contusions was rated on 
a scale of  0-3, in which 0 indicated absence of contusions; 1 indicated contusions that 
include cortex and white matter (WM), together less than 0.5 cm; 2 indicated contusions 
that included 0.5 – 2 cm of the WM; and 3 indicated contusions that included over 2 cm 
of the WM (Brandstack et al. 2006). To determine ventricular size in successive MRI 
scans the maximum distance between the frontal horns (A) and the maximum inner 
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diameter of the skull (B), measured from the same slice as (A) were evaluated. These 
measurements were used to obtain the Evans’s index (Evans 1942) (EI) (EI=A/B).

Other intraparenchymal lesions consisted of TAIs and traumatic deep grey matter injuries. 
Hemorrhagic white matter changes without adjacent cortical lesion or lesions at the grey-
white matter junction, in the corpus callosum, corona radiata and the dorsolateral upper brain 
stem were considered to be TAI. Visual rating of these traumatic lesions on T2-weighted 
images was done using the modified Scheltens semiquantative rating scale (Scheltens et al. 
1993), so that both T2-hyperintense and T2-hypointense changes were included.  

ApoE genotyping4.2.4	
To perform the apoE genotyping assays 3 mL of EDTA anticoagulated blood was 
collected from each patient. Genomic DNA was extracted from fresh or frozen whole 
blood  either by the Nucleon DNA-extraction kit (Amersham) or by a modified salting-
out procedure (Donohoe et al. 2000). The quality and quantity of DNA was then measured 
by spectrophotometry, and samples were diluted to a final concentration of 20 mg/L. 
The determination  of the six major genotypes of apoE was done using the multiplex 
amplification refractory mutation system PCR as previously described (Donohoe et al. 
1999). Each PCR run included negative controls and three to five samples of known 
apoE genotypes as positive controls.

Statistical analyses4.2.5	
For analytical purposes, the patients with various apoE genotypes were grouped into apoE 
ε4 carriers (ApoE4+, including patients with one or two ε4 alleles) and apoE ε4 non-
carriers (ApoE4-, including patients without ε4 allele). The significance of differences 
between the apoE groups for continuous variables was evaluated by one-way analysis 
of variance (ANOVA) and analysis of covariance (ANCOVA) in post hoc pairwise 
comparisons, with Bonferroni corrected p values. Age, sex, education, and the severity 
of brain injury were used as covariates. Association of categorical variables and apoE 
status was tested using the Chi-square test and the Fisher exact test when needed. In 
study I, volumes normalized for the intracranial area were used in all statistical analyses. 
In study IV, multiple linear regression analyses were used to examine the association 
between response and explanatory variables. Correlations were tested according to 
Pearson. The level of significance was p < 0.05 in all analyses. For data management and 
statistical calculations, SPSS software was used.

Ethical considerations4.2.6	
After the subjects had been given a complete description of the study, written informed 
consent was obtained. The protocol was approved by the joint Ethics Committee of 
Turku University and Turku University Hospital.
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RESULTS5.	

Association between hippocampal volumes, brain atrophy, and apoE 5.1	
genotype after TBI (I)

The apoE genotypes were distributed among the 58 patients as follows: ε2/3, eight patients 
(13.8%); ε2/4, one patient (1.7%); ε3/3, 31 patients (53.4%); ε3/4, 13 patients (22.4%); 
and ε4/4, five patients (8.6%). Accordingly, 32.8% of the patients were apoE4+ and 
67.2% were apoE4-. The left and right hippocampal volumes did not differ significantly 
between the apoE4+ and apoE4- patients. Neither did the volumes of the lateral ventricles 
differ significantly between these groups. The presence of the apoE4 was not associated 
with the presence or number of focal visually detected MRI abnormalities, whether 
defined as contusions (p=0.51) or signs of TAI (p=0.47) (I: Table 2).

In multivariate analysis, the MRI findings in the apoE4+ and apoE4- groups were 
compared taking into account the effect of age, education, gender, and severity of injury. 
None of the assessed MRI volumes showed differences between the apoE4+ and apoE4- 
patients (p= 0.13 to 0.40) (I: Table 3).

Six of the TBI patients developed subclinical or clinical dementia according to DSM-
IV criteria, all of whom were apoE4 positive. One of them had mild, one moderate, two 
severe, and two very severe TBI according to the classification  used. Their volumetric 
measurements were compared both to the other apoE4+ and  the apoE4- patients. These 
patients showed more global atrophy as measured by lateral ventricular volume (p=0.038), 
but other radiological features analyzed did not differentiate them from the other groups 
(I: Table 4). However, the degree of ventricular  enlargement was largely explained by the 
larger contusion volume in these demented patients because, after taking contusion volume 
as a covariate, these patients did not differ from the other groups (p=0.641). Those apoE4+ 
patients who had not developed subclinical/clinical dementia did not show any atrophy 
either in the hippocampuses or globally compared to apoE4- patients.

ApoE genotype and outcome of TBI after three decades (II)5.2	

At baseline, the apoE4+ group performed more poorly than others, but the difference 
was not significant. In the follow-up assessment, the cognitive outcome according to 
the MDB score was significantly poorest in the apoE4+ group (p=0.034) after adjusting 
for confounding variables (II: Table 2). Six patients in this material had developed 
clinical or subclinical dementia according to the DSM-IV criteria during the 30-year 
follow-up, all of them being apoE4 positive. Without these six patients, the cognitive 
level (measured with the MDB score) of the apoE4+ patients did not show any decline 
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with age, and their performance was slightly, although not significantly, better at the 
follow-up examination.

There was no association between the apoE genotype and physical outcome, vocational 
outcome, or subjective symptoms/ADL functioning using the outcome measures applied 
in this study.

ApoE genotype and MRI changes during the first year after TBI (III)5.3	

Nineteen patients had traumatic lesions on MRI, 30.3% of them being apoE4+ and 
69.7 % apoE4-. The number and extension of contusions after injury, and at one year 
did not differ significantly between the apoE4+ and apoE4- patients. Neither did the 
results from the analysis of other intraparenchymal lesions differ significantly between 
these groups, and nor did the evolution of ventricular size index (III: Table 2).

In ANCOVA, the MRI findings in the apoE4+ and apoE4- groups were compared taking 
into account the effect of age, gender, and severity of injury but the results remained 
insignificant (III: Table 3). 

Association of injury severity, MRI results and apoE genotype with 5.4	
one-year outcome in mainly mild TBI - a preliminary study (IV)

The HISC and GOS-E values did not differ significantly between the the apoE4+ and 
apoE4- patients, although the HISC scores tended to be poorer in the apoE4+ group. 
Thus, there were no significant association between the apoE genotype and outcome. The 
GCS and PTA did not correlate with the HISC values, but PTA correlated significantly 
with the GOS-E values (r= -0.458, p=0.007).

Nineteen patients had traumatic lesions on MRI. The number of contusions correlated 
significantly with the HISC (r=0.669, p=0.003), and  GOS-E scores (r=-0.665, p=0.004). 
The number of other intraparenchymal lesions was significantly correlated with the 
HISC scores (r=0.723, p=0.008), but not with the GOS-E. In a multiple linear regression 
model, the number of intraparenchymal lesions was the only significant predictor of HISC 
(p=0.001), indicating an association between the presence of TAI and poor outcome. 
No significant association was found between apoE genotype, GCS, PTA, number of 
contusions and the HISC score. The results remained significant after adjustment for 
age at injury (R square ( intraparenchymal lesions ) = 0.764, B=1.078; p=0.019). The 
only significant explanatory variables for GOS-E were PTA (R square 0.253, B=0.478; 
p=0.018) and number of contusions (R square 0.557, B = 0.157: p=0.014). All the other 
above-mentioned explanatory variables remained insignificant for GOS-E. In this study, 
the duration of PTA and acute MRI were the best predictors of one-year outcome in TBI.



	 Discussion	 39

DISCUSSION6.	

Material and methods6.1	

Subjects (studies I,II)6.1.1	
Our material was clearly selected, as the patients were drawn from a group of patients 
referred on a clinical basis for neurological and neuropsychological evaluation. 
The reason for the referral was either a recent injury or significant disability after an 
earlier injury. Thus, the subjects have probably had more symptoms and disability than 
individuals with TBI in general. It is unlikely that fully unselected TBI materials can be 
collected. Moreover, such a material might not even be clinically relevant because most 
patients have mild injuries without long-term sequences. We believe that our population 
represents well a spectrum of patients with TBI and long-lasting symptoms, but due to 
the selection bias, our results cannot be generalized to all TBIs.

The representativeness of the study groups was tested in terms of age, gender, education, 
and severity of TBI. The representation analyses were restricted to the same age range as 
in the study group (age at TBI younger than 53 years). The only significant differences 
between the groups were that  the deceased subjects were older and less well educated 
compared to the other groups. The characteristics of the present subjects were not 
essentially different from TBI populations in general, as the majority of the subjects 
were men, and in early adulthood at the time of injury.

Other weaknesses in our study include the relatively small material and the uncertainty 
in assessing TBI severity. Although the size was moderate, it proved to be small for 
subgroup analyses. At the time of the collection of this material, neither the Glasgow 
Coma Scale nor assessment of PTA was in clinical use. Thus, we were forced to use a 
retrospective assessment of trauma severity by using all obtainable data. The reliability 
of the retrospective assessment of TBI severity may have been affected by patients` 
memory disturbances, inadequately  maintained hospital records in the 1960s, and the 
lack of systematic brain imaging technology at that time.  Because of this and the still 
persisting variability in classifying TBI severity using PTA, the association of our results 
with TBI severity must be regarded with caution.

A systematic bias is a well-known problem in studies on the outcome of TBI. At one-year 
follow-up, about 40% of the subjects were lost, and at two-year follow-up, about 60% 
were lost (Corrigan et al. 2003). In follow-up studies of TBI patients among individuals 
lost to follow-up, three categories have been described: persons from socioeconomically 
disadvantaged groups, persons with a preinjury history of substance abuse, and persons 
injured because of self-or other-directed violence (Corrigan et al. 2003). 
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The main weakness of our study I is the lack of controls. We were unable to collect 
retrospective controls because the MRI equipment was changed soon after our patients 
were selected, thus making impossible a reliable comparison. Consequently, we could 
not analyze whether our patients with TBI showed more atrophic changes than healthy 
controls. However, the main point was to evaluate the effect of apoE4, and the lack 
of controls does not prohibit evaluating its effect among patients with TBI. In fact, 
studies have been done in a normal population where the effect of apoE4 on developing 
hippocampal atrophy with age has been studied. As these studies have shown apoE4 to 
predispose to hippocampal atrophy in a normal population, it gives even more weight to 
the lack of such a connection in our patients with  TBI, especially as the majority of our 
apoE4+ patients did not show any sign of atrophy.

In study II, the lack of an age-matched control group is the most important shortcoming. 
Such a comparison would have given a significantly more reliable answer to whether the 
time profile in cognitive performance is similar in patients with TBI and in controls in 
relation to the apoE genotype.

Subjects (studies III,IV)6.1.2	
We wanted to study the outcome of TBI patients in an unselected population (excluding 
the most severely injured patients who were unable to participate in the examination one 
week after the trauma, and trivial injuries) because predicting their outcome is the most 
challenging. In unselected material, where most injuries are mild, many patients fail to 
show visible lesions with conventional MRI sequences. Generalization of the present 
results is restricted by the small sample size.  

Hippocampal volume, brain atrophy, and apoE genotype after TBI (I)6.2	

To our knowledge, there are no earlier studies specifically evaluating the association 
between apoE polymorphism with the degree of hippocampal and global brain atrophy 
in TBI partients. Hippocampal or lateral ventricle volumes did not differ significantly 
in patients with apoE ε4 compared to those without this allele. Even after multivariate 
analysis the results remained insignificant. Our study suggests that the presence of apoE 
ε4 in patients with TBI does not have a major influence on the development of atrophic 
changes, either in the hippocampus or in general. If the apoE ε4 allele is associated 
with an unfavourable outcome after TBI, this association may involve mechanisms other 
than those responsible for the development of brain atrophy. The results do not support 
a connection between apoE genotype and AD-type atrophic changes in TBI patients. 
We aimed to clarify in particular the long-term effects of TBI on brain structure, and 
to relate these to the apoE genotype. If a significant TBI were a risk factor for the 
development of AD in later life involving the predisposing effect of apoE ε4, one would 
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expect to find at least some of the following long-term consequences: a) development of 
more hippocampal atrophy in patients with apoE ε4, at least when adjusted for trauma 
severity; b) more signs of general brain atrophy in patients with apoE ε4, after adjusting 
for trauma severity; or c) a positive interaction between trauma severity, apoE ε4, and 
other demographic variables to predict long-term structural changes.  

It may be that our material was too small or selected to show these connections, or 
that such connections after TBI do not exist. The former explanations remain possible 
but the significance in our material was fairly low, and our patients represented rather 
a wide range of TBI. Moreover, the patients seemed to be unselected according to the 
distribution of the apoE genotypes compared to the general Finnish population, where 
38.7% have the ε4 allele (Ehnholm et al. 1986).

We cannot rule out that the interaction between TBI and apoE4 could lead to hippocampal 
or global atrophy, especially in certain types and severities of TBI. Indeed, our earlier 
studies show that only a portion of the apoE4+ patients developed long-term cognitive 
decline, and in these patients the global atrophy was significant (Koponen et al. 2004, 
Himanen et al. 2006). As most of these patients had grade 2 to 3 contusions, and most 
of them also severe injuries, it is uncertain whether the presence of apoE4 had any 
effect on the development of atrophy, or whether it was mainly determined by trauma-
related factors, such as the contusion volume and severity of TAI, as largely suggested 
by the multivariate analysis. However, as all patients developing incident or manifest 
dementia were apoE4+, our results are in accordance with an earlier report suggesting 
synergistic effects between TBI and apoE4 for the development of dementia (Mayeux et 
al. 1995). It should be noted that without neuropathological examination it is  difficult 
to determine whether the patient has posttraumatic atrophy and generalized cognitive 
decline superimposed by an aging effect, or an ongoing AD process.    

The association between TBI and AD has been criticized, and some analyses  have 
suggested that TBI does not predispose to AD but may hasten its development to a 
clinically evident stage (Nemetz et al. 1999, Fleminger et al. 2003). Our study may 
be seen to support this view. The undisputedly strong predisposing effect of apoE4 on 
the development of AD (Farrer et al. 1997) did not receive any additive features from 
coexisting TBI in our material, if hippocampal or general atrophy is thought to be a sign 
of, or to predispose to the development of AD. According the cognitive reserve theory 
(Satz et al. 1993), all processes diminishing the reserves of the brain may hasten the 
appearance of dementia in later life, and significant TBI may have  a strong influence on 
these reserves. A possible explanation for these and our earlier results is that the apoE4- 
related long-term cognitive decline appears through increasing cholinergic hypofunction 
(Kleifeld et al. 1998, Champagne et al. 2005), and not by premature neuronal loss. The 
relationship between dementia after TBI and apoE status is still ambiguous. In contrast to 
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the studies demonstrating an association between apoE ε4 and an unfavourable outcome 
following TBI, a number of recent studies have failed to support such findings (Guo et 
al 2000, Plassman et al 2000, Jellinger et al 2001, Chamelian et al. 2004, Ponsford et al. 
2007, Willemse-van Son et al. 2008). Therefore, there is no conclusive evidence linking 
apoE genotype with the development of AD following TBI (Jellinger 2004). Further 
prospective human clinicopathological and experimental studies are warranted to clarify 
the relationship between TBI, apoE genotype and AD. Moreover, the exact mechanism 
by which apoE genotype influences outcome is unclear. 

Outcome of TBI after three decades -relationship to apoE genotype (II)6.3	

The main finding of the present study was that those with an apoE ε4 allele showed 
a significantly lower cognitive level three decades after TBI than patients with the 
other apoE genotypes. The Mild Deterioration Battery (MDB) was used to describe the 
overall cognitive functioning of the subjects (Portin et al. 2001). This method has earlier 
been applied in several studies (e.g. Kujala et al. 1997, Polo-Kantola et al. 1998). The 
apoE ε4 allele increased the risk of poorer overall cognitive presentation, but not of 
poorer subjective memory, well-being or ADL functioning. The apoE genotype was not 
associated with physical or vocational outcomes, either. However, this cognitive decline 
was wholly caused by a subgroup of the apoE4+ patients, who developed subclinical or 
clinical dementia during the follow-up. 

Although some degree of recovery is a general rule after TBI, other studies also suggest 
that some patients may actually show a steady decline even at a younger age (Teasdale 
et al. 1997, Kesler et al. 2003, Teasdale et al. 2005). Our results suggest that this decline 
is largely restricted to the apoE4+ patients, or to a subgroup of them, at least using the 
outcome measures of this study. Interestingly, in our results, the apoE3 patients showed 
only a mild cognitive decline during the follow-up, while the apoE2 patients showed no 
decline at all. This is in accordance with the view that apoE4 increases the risk of poor 
recovery, while apoE2 is protective and apoE3 intermediate (Horsburgh et al. 2000a).

The poorer outcome of patients with apoE4 after TBI may be related to the deposition Aβ-
protein (Graham et al. 1999b). However, it is still unclear whether TBI really increases the 
risk of AD by, e.g. triggering a process in which Aβ  accumulates in the brain, or whether 
the connection between TBI and AD evolves only from the lower cerebral reserves after 
TBI, thus causing the earlier appearance of eventual AD (Nemetz et al. 1999). Our study 
does not give an answer to this, but suggests that those TBI patients possessing the 
apoE ε4 allele may have poorer long-term cognitive outcome. Because our study lacks 
a 30-year follow-up of normal controls, it is impossible to say whether this age-related 
decline in the apoE4+ patients merely reflects the earlier appearance of cognitive aging 
phenomena, or whether it represents a more specific TBI-related process. The prevalence 



	 Discussion	 43

of dementia in those patients who had reached 65 years of age was 30 % in this material, 
which is many times higher than that found in random population samples of the same 
age group in Finland (Juva et al. 1993, Hänninen et al. 2002). This supports the view that 
TBI has contributed to the appearance of dementia.

The fact that the apoE4+ patients did not differ from the others in CERAD scores thirty 
years after the injury does not support the view that the apoE ε4 positive TBI patients are 
generally at special risk of developing AD. Indeed, as the latest results both in AD and in 
patients with multiple sclerosis suggest, the role of the apoE4 seems to predispose to a 
disease-related decline rather than to the disease itself (Enzinger et al. 2004, Khachaturian 
et al. 2004). On the other hand, all our patients fulfilling either of the criteria for subclinical 
or clinical dementia were apoE4 positive. Without neuropathological confirmation, it 
is impossible to say whether these patients had an Alzheimer’s disease or whether the 
DSM-IV criteria were fulfilled due to the combined effect of TBI and ageing. 

Very interestingly, the cognitive decline in the apoE4+ patients was wholly restricted to 
those patients developing subclinical or clinical dementia. Indeed, the majority (68 % of 
apoE4+ patients) did not show any cognitive decline during the 30-year follow-up, and 
all their CERAD subtests were actually non-significantly better than, e.g. in the apoE3 
patients. The fact that 32 % of the apoE4+ patients had developed significant cognitive 
decline by the mean age of 72.7 years is not especially different from what is expected in 
the general population (Raber et al. 2004), at least when considering that most of these 
patients definitely had a low cognitive level already before their seventies because of the 
former TBI, and possibly also because of their low level of education. It is actually more 
interesting that the combined effect of apoE4 and TBI does not cause any long-term 
cognitive decline in the majority of these patients. However, it should be noted that these 
patients who maintained their cognitive level were on average 56.2 years at follow-up, 
so it may still be possible that they will develop significant cognitive decline during the 
next fifteen years. In this material, the combination of apoE4+ and poor cognitive level 
at baseline were strong predictors of old-age dementia.

It is necessary to compare our results to the study of Millar et al. (2003) which dealt 
with the very same issue altogether. 396 TBI patients were reassessed at a mean of 18 
years after the TBI. Their analysis could not find a statistically significant association 
between outcome and apoE genotype. There are several possible explanations for the 
seemingly discordant result compared with the present study. First, they used slightly 
different methods to measure the outcome. As seen in the present study, only a certain 
combination of cognitive measures – the MDB – showed a significant association. This 
suggests that if the apoE genotype affects long-term brain functioning, not all processes 
are similarly affected; there may be certain functions that are selectively vulnerable to 
the detrimental effect of apoE4, at least in TBI patients. Indeed, this view has got support 
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from both human (Crawford et al. 2002) and animal studies (Kleifeld et al. 1998). 
Secondly, their patient material included mainly severe TBIs, where a lower remaining 
reserve might not allow the effects of apoE to become evident. However, although in 
our material the apoE4-positive patients had, on average, the mildest injuries, those six 
patients who developed a clear decline had mainly severe injuries. Thirdly, their patient 
material was also markedly younger at the time of the follow-up study, which may mean 
that the eventual combined effect of ageing and apoE4 on the cognitive performance 
after TBI could not yet be detected.

Our study has couple of clear advantages. First, this is a truly long follow-up study 
after TBI, which included  the effect of apoE genotype and other parameters in multiple 
logistic models. The possible association between TBI and AD is most reliably assessed 
with long-lasting follow-up protocols. The second advantage of our study is that the 
evaluation of cognitive functioning using  a sensitive and wide neuropsychological test 
battery was done both at baseline and at follow-up.

MRI changes and apoE genotype - a prospective one-year follow-up 6.4	
of TBI (III) 

ApoE has been implicated in modifying neurological outcome after TBI, although the 
mechanisms by which this occurs remain poorly defined. Most of the published literature 
supports the view that the ε4 allele of apoE increases the risk of poor outcome during the 
first six months after TBI (Zhou et al. 2008). Early MRI is important for the detection 
of traumatic lesions. Both the number and extent of lesions diminish significantly with 
time (Brandstack et al. 2006). Our study suggests that the presence of apoE4 in TBI 
patients does not have a major influence on the development of MRI changes during 
the first year. The findings of this prospective study on acute injuries are in agreement 
with our earlier study, suggesting that the processes responsible for the development 
of atrophy or for the repair of visible lesions are not dependent on apoE. Our results 
must be viewed with caution, bearing in mind the relatively small sample size. Also, in 
unselected material, where most injuries are mild it can be expected that  many patients 
fail to show visible lesions with conventional MRI sequences. Our findings merit further 
confirmation with a larger sample size, in only patients with severe injuries, and with 
new imaging techniques.

Association of injury severity, MRI results and apoE genotype with 6.5	
one-year outcome in mainly mild TBI (IV)

The assessment of TBI severity is complicated, because of its complex pathophysiology, 
and because multiple variables affect the outcome. Hitherto, the GCS score and duration 
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of PTA have been the main indices of TBI severity. However, we still do not sufficiently 
know which phenomena of brain physiology these variables reflect, or whether they may 
be caused by variable pathologies. Therefore, there is a major need for reliable markers 
of TBI severity. This is especially true for “mild” injuries, which constitute the vast 
majority of all TBIs. A reliable marker would also be helpful to solve the medico-legal 
problems that often arise when neuropsychological impairment occurs after a seemingly 
mild traumatic event.

GOS is the most widely used method for assessment of outcome in TBI patients (Teasdale 
et al. 1998). It is used to rate a patient`s overall outcome, taking into consideration 
cognitive and physical impairments, as well as disability in everyday activities, whereas 
HISC has been used to describe the overall subjective symptoms. We wanted to evaluate 
the outcome taking account of both these aspects, so instead of GOS, we used the extended 
version of the scale (GOS-E) because patients with a mild or moderate head injury in 
general end up with good recovery or moderate disability, and this scale describes this 
upper range of outcome in more detail.

Early MRI is important for the detection of traumatic lesions. Both the number and extent 
of lesions diminish significantly with time (Brandstack et al. 2006). The use of acute 
MRI in investigating the TBI pathology offers clear advantages over the use of CT alone, 
particularly in regard to the visualization of basal lesions and TAI. In accordance with 
many earlier studies (Paterakis et al. 2000, Hughes et al. 2004), we found a significant 
correlation between the acute MRI findings and outcome, especially concerning the TAI 
lesions.

The presence of the apoE ε4 allele may have a negative effect on response to injury and 
recovery in patients with TBI. In this study, we did not find such a connection. Perhaps 
our sample size was too small to show the connection, or else the methods used to 
measure the outcome were unable to reveal it. However, our results are consistent with 
other recent findings suggesting the need for caution in accepting the hypothesis that 
apoE status is a factor in recovery from TBI (Millar et al. 2003, Chamelian et al. 2004, 
Teasdale et al. 2005, Ponsford et al. 2007, Willemse-van Son et al. 2008). 

Due to the complex interaction of various factors in determining the final TBI outcome, 
a multivariate analysis is necessary to give more reliable estimates of the role of various 
explanatory variables. Therefore, we compared the predictive values of apoE genotype, 
GCS, PTA, and MRI findings using multiple regression analysis. After adjusting for 
age, only the presence of TAI lesions and duration of PTA were predictive of the one-
year outcome. The presence of TAI lesions explained about 76 % of the variance in the 
outcome scores using the HISC, while duration of PTA explained 52 % of the variance 
using the GOS-E. These results suggest that the duration of PTA is the best predictor 
of global functional outcome after TBI, whereas the presence of TAI lesions in acute 



46	 Discussion	

imaging may better predict the overall subjective symptoms. In this material, apoE 
genotype and GCS were not found to predict the outcome, which at least in the case of 
GCS, probably stems from the small number of subjects.

The implications of these results are important, since they, like the findings of many 
other studies (Alexandre et al. 1983, Bishara et al. 1992, Ellenberg et al. 1996), suggest 
that the dominating role of GCS in assessing TBI severity should be questioned, at 
least concerning long-term outcome. We claim that many cases of poor recovery from a 
seemingly mild TBI are due to misinterpretations of the actual severity when using only 
GCS as a measure. If the duration of PTA is not properly assessed and the presence of 
TAI lesions is missed due to late imaging or insensitive techniques, the real nature of the 
injury may be underestimated. 

Reliable outcome prediction of TBI remains difficult despite major progress in cerebral 
monitoring and imaging techniques. Hence, there is a need for supplementary tests to 
enable early prediction, both to select appropriate management strategies and to determine 
the need for prolonged follow-up. Our study supports the view that an early MRI has a 
key role in assessing the injury severity and prognosis. The more detailed information 
offered by MRI, especially with the newest more sensitive imaging techniques such 
as diffusion-weighted imaging, diffusion tensor imaging and susceptibility-weighted 
imaging (Arfanakis et al. 2002, Babikian et al. 2005, Ezaki et al. 2006), particularly in 
patients with relatively normal CT, may be a more reliable tool with which to manage the 
patients and communicate more accurately with their families. MRI allows the detection 
of diffuse white matter brain damage or axonal brain injury with a much greater accuracy 
than conventional CT. Most MRI studies have failed to identify consistent relationships 
between the pattern of neuropsychological impairments and the site of focal structural 
lesions, again suggesting the importance of diffuse damage for the outcome.

A combination of clinical and imaging variables seems to be the best approach to 
predict the outcome in mild as well as more severe TBI. The combined use of multiple 
predicting variables probably more accurately reflects the multifactorial pathophysiology 
that leads to the development of posttraumatic neuropsychological and neuropsychiatric 
impairment (Boake et al. 1996). Generalisation of the present results is restricted by 
the small sample size, which is why these findings should be replicated in larger trials.
Because of the relatively homogeneous sample population (mostly mild TBIs), the lack 
of variability may have limited the power of the analyses. Moreover, the prognostic role 
of MRI may be largely determined by the sequences used.
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SUMMARY AND CONCLUSIONS   7.	

1. 	 The apoE ε4 was not associated with the development of hippocampal or 
ventricular atrophy after TBI. If apoE ε4 allele is associated with an unfavourable 
outcome after TBI as proposed, this association may involve mechanisms other 
than those responsible for the development of brain atrophy.

2. 	 After three decades, TBI patients with the apoE ε4 allele showed significantly 
poorer general cognitive level than those without this allele. This decline was 
wholly accounted for by a subgroup of these patients who had developed incident 
or clinical dementia, while the majority of the apoE ε4 positive patients showed 
no decline at all. The other outcome measures describing vocational, physical, or 
subjective symptom outcome did not show significant relationships with the apoE 
genotype. A portion of the TBI patients with the apoE ε4 allele seem to be at risk 
of long-term cognitive decline.

3. 	 The presence of apoE ε4 was not associated with MRI changes during the first 
year after TBI. This suggests that if the apoE ε4 is associated with an unfavourable 
outcome after TBI, the processes responsible for the repair of visible lesions are 
not dependent on apoE genotype.

4. 	 In multivariate models, the duration of PTA and acute MRI were the best predictors 
of one-year outcome in TBI, whereas the prognostic values of GCS and apoE 
were modest. The dominating role of GCS in assessing TBI severity should be 
questioned.

Most published literature supports the view that the apoE ε4 allele adversely affects 
outcome after TBI in the first six months post injury. Its effects over a much longer period 
are less clear. In general the populations studied have been small. The assessment of 
outcome has been variable, in terms of both measurement tools and time of assessement, 
making comparison of different studies difficult. Early MRI is important for the detection 
of traumatic lesions. Both the number and extent of lesions diminish significantly with 
time. The findings of our prospective study on acute injuries are in agreement with our 
earlier study, suggesting that the processes responsible for the development of atrophy 
or for the repair of visible lesions are not dependent on apoE. These findings merit 
further confirmation with a larger sample size  and with new imaging techniques. Future 
research will continue to elucidate the pathophysiology of apoE in neuronal repair. As 
clinical studies continue, more information may be obtained about the ability of the 
apoE genotype to predict long-term outcome in brain injury. In the case of TBI, we may 
perhaps be better able to prognosticate functional recovery and survival.
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