Anne-Maria Ernvall-Hytonen
Camilla Hollanti
(Eds.)

Proceedings of the 3rd Nordic EWM
Summer School for PhD Students
in Mathematics

Turku CENTRE for COMPUTER SCIENCE

TUCS General Publication
No 53, June 2009






<7
7
¥ rucs

Proceedings of the 3rd Nordic EWM
Summer School for PhD Students in
Mathematics

Editors:
Anne-Maria Ernvall-Hyténen

Camilla Hollanti

TUCS General Publication
No 53, June 2009






Proceedings of the 3rd EWM Summer School for PhD Students in
Mathematics

Preface

When the first preparations for the third EWM summer school for PhD students in mathematics were made,
nobody really knew if anybody would attend. When the contribution deadline got nearer and nearer, we
still did not know if we would get any contributions.

We were pleasantly surprised when our email inboxes started to fill with articles from around the world
and from different mathematical areas. We were even happier when we learned that the quality of the
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when we needed to find a suitable referee.
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hope you enjoy reading the result.
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The determination of the optimal sensors’ location using
genetic algorithm

A.S. Astrakova * D.V.Bannikov! S.G. Chernytand M.M. Lavrentiev, Jr.3

Abstract

We consider the problem of placing sensors optimally for the earliest detection of tsunami waves. It
is necessary to record a tsunami wave from an arbitrary point of a subduction zone as soon as possible,
using a given number of sensors. We use a genetic algorithm to solve this problem. Wave travelling times
were calculated from the linear approximation of a shallow water model. The proposed computational
algorithm was verified on problems that can be solved also analyticaly. The real-life problem of optimal
sensor placement on the Alaska-Aleutan subduction zone is solved.

1 Introduction

At the time being, mankind is not able to avoid most of natural disasters. However, problem of risk
assessment and damage mitigation could be effectively solved. Catastrophic tsunami waves are definitely
among the most dramatic disasters. Each additional minute in tsunami wave warning may save many lives
in inundation coastal areas. Most of tsunamis (up to 85%) are caused by the strong underwater earthquakes.
Majority of these earthquakes take place in subduction zones, where the Earth crust is penetrated into the
mantle. One of the modern technologies for reporting tsunami is based on deep water bottom pressure
recorders (BPR). Obviously, time required for tsunami wave detection depends on number and location of
these BPR’s. In this paper problem to find both optimal locations and minimal necessary number of such
BPR’s is solved with the help of so-called genetic optimization algorithm. Celebrated shallow water model
is used for wave propagation simulation.

2 General Problem Statement

2.1 Basic notions

Let © be domain with a parts of aquatoria (negative depth parameter h < 0, dry land (h > 0), and
subduction zone P. Domain D stands for the part of €2, where pressure recorders could be displayed. The
problem is: to determine locations for the given number L of BPR’s such that seismic event from any point
of P will be detected (wave is passed over at least one of BPR’s) after minimal possible time. Without loss of
generality we suppose  rectangular (fig. 1), approximated by the mesh wj= {(n, m);n=1,Nm=1, M}
=
where p; = {z;,y;} € wy. Coordinates of each from L BPR’s q; = {x;,y;} are belonging to D. Domain D
is arbitrary subset, possibly coinciding with €. By configuration Q = {q,...,qr} we understand selected
set of L BPR’s, representing suggested solution to considered problem.

Suppose that disturbance (tsunami source) arises at point p; € P. This disturbance propagates over
“water” part of domain €2 with certain speed (depending on point). Velocity distribution determines traveling
time from source to each point (fig. 2). We are interested in minimal time, required for disturbance (wave)
to approach any “water” point x from the given source p;. Let v be one of the ways, connecting points p;
and x, and 7, be wave traveling time along this way. As 7(p;,x) we denote minimal time to approach x
from pj:

with the given depths distribution k. Subduction zone P is determined at the same mesh by points {p;}

7(pj,x) = minT,. (1)
¥

Fig. 3 displays trajectories, along which wave is approaching points by minimal time, started from selected
point at subduction zone.
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Fig. 1. Domain € under con- Fig. 2. Level lines of equal Fig. 3. Trajectories of distur-
sideration, which includes water time wave propagation, caused bance propagation.

area with depth h < 0, dry land by event at p;.

(h > 0), and subduction zone P.

Intensity of grey color is propor-

tional to water depth.

Time required for determination of tsunami wave (source at point p;) by configuration Q of L BPR’s is
calculated as follows

t(pja Q) = lglélLT(pj’ qz) (2)
Guaranteed tsunami registration time from any point p; € Pby configuration Q is nothing but
T = Q).
(Q) 1I<njagxpt(py, Q) (3)

2.2 Statement of Optimization Problem

Mathematical statement of problem to determine optimal configuration Q (we speak about minimization of
guaranteed time for wave registration from any point of P) is formulated as follows:
Find configuration Q = {q, ...,qr}, which bring minimal value to goal functional T(Q) in (3):

min 7(Q) (4)
where number L is given and phase restrictions are
QeD. (5)

2.3 Wave propagation model

We consider linear approximation of shallow water equations [2]. In this case wave velocity is proportional
to square root of depth h at each point:

[ V/=gh, h <0,
U_{O,h>0. ()

Software application for fast calculation of traveling time 7(p;,x) between any two given points of aquatoria
has been kindly provided by Prof. An.G. Marchuk (ICM&MG SB RAS, Novosibirsk) [3].

Examples of application for both shallow water model and traveling time calculation for selected bathymetry
are given in fig.’s 2, 3.

3 Method of Solution

Suggested method of solution is based on Genetic Algorithm (GA). This traces evolution of population of
individuals according to recombination and mutation, being selected under certain selection criteria. In



application to problem of determination of configuration Q from L BPR’s, particular configuration Q stands
for the individual. We will also refer as individual the set of coordinates

(l‘lay17x27y27"'7xi7yi7“'7xL7yL)7 (7)

determining all BPR’s from Q.

3.1 Scheme of Algorithm

General scheme for GA is given in fig. 4. This consists from the following steps.

L. Initial population Qf,...,Qg, ..., Q, (s = 0) is composed from p = po individuals. Each individual is
nothing but the set of numbers (7), which determine configuration being optimized under restrictions
{z3; 3} €D, k=1,..,p,i=1,..., L. Initial population is generated randomly with respect to all
parameters, satisfying (5). For better convergence is very favorable to have in initial population “nearly
optimal” individual. Later we discuss how to fulfill this requirement.

2. Value of goal function T'(Qj) is calculated for each individual from configuration.

3. Selection of T'r-p best individuals (with smaller values of the goal function T'). Then, by recombination

and mutation new Qf"’l, e Z‘H, ) Q‘;H is constructed. Size of population does not increasep < pg.

4. Return to the step 2, unless the desired number of generations N, is already reached.

Number of generations Ng.,, is determined by approaching of global minimum, that is absence of valuable
change in minimal value of goal function from generation to generation.

~ Begin Check of optimization process convergence
Initial generation s=0
gt T(Q. ") -T(Q; <&
Q@@ b @) -TQk)
3 -
i \ Optirmal
T U \ solution
6F - founded
Calculating sk \‘ L it
values of o - SN 0
Functional Q) omar
T 0 3 6 9 S 12 15 18 21
s=g+1

Genetic algorithm

Create New generation

Ql+1,..., g+la---aQ;+1

Fig. 4. Scheme of optimization process.

3.2 Operations of Genetic Algorithm

Let describe operations of GA in better details.

3.2.1 Selection

Certain fixed number Tr - p (0 < Tr < 1) of individuals, possessing the smallest values of goal function, is
selected. Rest of generation excluded from account.



3.2.2 Recombination

After selection, two parent individuals are randomly chosen,
Q' = (2, y1, xh, yh, ..., xh,yr) and Q" = (zf, y{, x5, v5, ..., 27, y}). They “produce” new individual Q™" =
(e, yPev, ., e,y by recombination. This consists of sorting out BPR’s ¢/, and q”;, i = 1,...,L
from both configurations Q" and Q" in order to determine new BPR q'** = (2%, y"). Coordinates of
this new one are (fig. 5):

27 = oy + (1= aw)zl, 4 = ayay; + (1 — aya)yi (8)
where oy ; € RAND(—d, 14+d), ay,; € RAND(—d, 1+d). Quantity d > 01is called recombination parameter.
Note that both oy ; € oy,; could be greater than unit and less than zero. Thus, recombination extrapolates
some individuals. Operation is applied (1 — T'r) - p times to obtain generation of p individuals. Scheme of
BPR creation is presented in fig. 5.
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Fig. 5. Recombination. Fig. 6. Mutation. Fig. 7. Projection to domain D

of configuration from one BPR.

3.2.3 Mutation

All individuals, obtained by selection and recombination (except the best one), are subject of slight variation
according to:
2P = 2+ w2z — 20,4)0, 1 =1,..., L. 9)

K3

By symbol z in (9) is understood any of coordinates = or y of i-th BPR from “mutating” configuration;
p € [0,1] - mutation parameter, § = 27167 4 - random value from [0, 1] interval, values 2, and zp;
are determined by phase restrictions. Mutation stretches individuals to wider domain. This increases the
possibility to obtain global minimum. Scheme of mutation is given in fig. 6.

Preserving the best individual from each generation is called cloning. This is required as the best one
could not be lost by recombination and mutation.

3.2.4 Projecting

New generation is constructed in such manner that restrictions in (5) are fulfilled. In case individual Q
does not satisfy them, it is substituted with the new one Q, obtained by projection of Q to domain D. This
operation is executed as follows: Q = Q + a(Q™ — Q), where Q™ stands for best individual from previous
generation (having minimal value of goal function). Constant a € [0,1] is picked up such that the worse
BPR from configuration Q match the boundary of D, while all the rest be inside it.

Schematically projection (for configuration from one BPR) is shown in fig. 7.

3.2.5 Stop Criteria

New generation are constructed until N, ones will be calculated. Stop criteria is simple — absence of
appreciable change in goal function (3) from generation to generation. Using preliminary runs number
of generations Ngep is determined. Individual from the last generation, processing minimal value of goal
function, is regarded as problem solution.

In this study we did use the following parameters in GA: d = 0.7, p = 0.1, Tr = 0.3. These values have
been determined through numerical experiments with test problems (see section 4 for details). The best
performance of GA is observed for these values of parameters.



4 Numerical Experiments

In order to verify and calibrate implementation of the proposed numerical algorithm, several experiments
have been done with simulated domain geometries, bathymetric and subduction zones shapes. Flat and
variable depth profiles have been tested, areas with positive h (islands) were considered. Subduction zones
were shaped as circle segments and intervals to compare numerical results with analytic solutions.

4.1 Constant depth and subduction zone is semicircle

100 150
X

Fig. 8. Aquatoria geometry and depth Fig. 9. Isochrones 7 = const.
profile.

Rectangular aquatoria €2, subduction zone P as semicircle, and phase restrictions D from the first series
of numerical tests is shown in fig. 8. Water area with constant depth h = —10 m takes exactly domain D.
Rest of domain € is supposed to be dry land. Time isochrones for wave (caused by seismic event at point
propagation p; from subduction zone P) over D is depicted in fig. 9.

120,
80F

401

700 750
X X

Fig 10. Traveling time T'(q) distribution for Fig. 11. Problem solution for one BPR.
one station.

4.1.1 Optimal location for one station

For almost trivial case then configuration Q consists of one BPR (L = 1), value of goal function T in (3)
is easily calculated for all points of “water” domain D. Fig. 10 presents distribution of values of O in D.
Obvious optimal position of BPR, providing minimal value for goal function T, is nothing but center of the
circle. This result was numerically obtained for (4), (5) (see fig.11).

4.1.2 Optimal location for several stations

Numerical tests with two BPR’s.
Evolution of Generations



100
=80
60

40

Fig. 12. Evolution of configurations from two BPR’s (A - first and + - second BPR, respectively). Number
of generation s is presented: (a) — s =1; (b) — s =3; (c) — s =5; (d) — s =11; (e) — s =20). Figure (f)
visualizes convergence of the goal function 7.
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Configurations convergence for the case of two BPR’s, along with dynamics of goal function T are given
in fig. 12. Number of individuals in generation p=>50 was used. All individuals are shown in fig. 12.

Impact p — size of generation — on problem solution

For the small size p of generation individuals with low values of T' (however, being far from global mini-
mum) may provoke absence of alternative configurations. This may prevent appearance of better solutions
in the sequel generations. As a result, evolution will lead to local minimum, which is shown in fig. 13,
where results for generations of different size are displayed. For each size five numerical tests were performed
(this is also indicated in fig. 13). For large size individuals from new generation have wider distribution of
parameters, compared to smaller ones. However, larger size of generation causes proportional increase in
CPU resources (time required for calculation). Thus, number of individuals should be balanced to achieve
both converge with global minimum and reasonable performance. This population-sizing problem attracts
many attention in literature [4, 5, 6].

Fig. 13. Locations of obtained optimal positions for 5 different runs of optimization code: (a) - p=20; (b) -
p=40; (c) - p=80.

Convergence histories for generations of the same sizes for the best (with respect to value of T') individuals
of each generation is shown in fig. 14. Similarly as it has been done in fig. 13, for each p convergence of five
numerical runs are presented. In all cases obtained solutions provide slightly higher values of T', compared to
exact solution. This difference goes down then the size pincreases. The larger is size p, the more generations
are needed for convergence.

5500

5000 5000 5000
~ ~ ~
4300 4500 4500F
4000 4000 4000
63 6 9 10 15 1% 2l 03 6 6 10 15 18 2
Y 5
a b ¢

Fig. 14. Convergence histories for different generation sizes: (a) - p =20; (b) - p=40; (c¢) - p=80, 5
optimization restarts have been done in each case.

Numerical results for two and more BPR’s

Fig. 15 demonstrates solutions to optimization problems for various values of BPR’s number L. For each
value of L five restarts have been done, best of the obtained solutions was chosen. Generation size was fixed
at the level p =100.

For this flat bottom case exact solution is symmetric and therefore, could be easily calculated in analytic
form. Comparison of calculated values of goal function T with its values for exact solution is given in fig.
16. Horizontal axis shows number of BPR’s.

Parameters of GA — impact on convergence and precision

Calibration of the GA parameters has been obtained by numeric optimization of configuration with L = 6.
Data of obtained numerical solution for various ratios between the number of individuals in initial generation

11



Fig. 15. Numerically obtained configurations for: (a) - L=2; (b) - L=3; (c¢) - L=5.

6000

4000

2000

Fig. 16. Values of goal function T vs number of BPR’s: solid line
— numerical solution, dashed line — exact solution.

po and number p of individual in the sequel generations are summarized in Table 1. Parameter Vg, indicates
number of calculated generations, such that problem solution does not change for the following generations.
Average time was calculated for five optimization restarts according to:

1 n
Taverage = - § E;
n
i=1

where n — represents the number of optimization restarts, executed for each of cases considered; T;- solution
obtained after i-th restart; Tyni, = min(7h, ..., T,,). Parameter n takes the value § for p=100, 1000, 3000 and
takes the value & for p=10000, 30000. Exact solution (time) in with case is T.pqct=1355.

Table 1
Quantity Values
po/ P 300,/100 | 3000/1000 | 30000,/10000 | 10000/100 | 30000,/100
Nyen 50 100 120 60 85
Toverage 2458 2462 1419 2088 2288
Trin 2177 2167 1355 1683 2112

Convergence history for the best optimization restart with pp=30000 and p=10000 is given in fig. 17.
Dependence of GE performance on mutation parameter p (9) has been studied, see Table 2. Here

0T = 0.5(Tmax — Tiin),

with Thpee=max(Th,...,T,). Rest of GA parameters have been fixed as d = 0.7, Tr = 0.3, pop = p = 100.
Better values of tsunami detection time was observed for small values of 1. Both these numbers y = 0.2 and

= 0.1 have been selected for the further numerical experiments. Corresponding columns in Table 2 are
marked in bold.

12
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Fig. 17. Goal function convergence history for the best
obtained solution with pg=30000 and p=10000.

Table 2
Quantity Values
m 0.1 0.2 0.3 0.5 1
Nyen 50 70 75 80 85
Taverage £ 07 | 22794895 | 2203+£786 | 23204+774.5 | 23994794 | 2305+578
Tomin 1355 1399 1400 1696 1723

Solution dependence on recombination parameter d (8) for selected values of mutation p is given in Table
3 for selection parameter Tr = 0.1 (section 3.2.1) and in Table 4 for Tr = 0.3. All these data were obtained
with pg = p = 100 by 16 optimization restarts, n = 16.

Table 3
Quantity Values for 4y=0.1 and Tr = 0.1 Values for py=0.2 and Tr = 0.1
d 0.3 0.7 0.9 0.3 0.7 0.9
Nyen 50 70 70 50 95 100
Taverage £ 07 | 26004593 | 2434+620.5 | 21594747 | 2570+466.5 | 2204+£732 | 22384+597.5
Trmin 2178 1858 1423 2112 1735 1723

As the value y = 0.1 corresponds to better numerical results, numerical study for Tr = 0.5 has been
done only with p = 0.1, see Table 5.

There are almost equally effective sets of parameters d = 0.7, p = 0.1, Tr = 0.3 and d = 0.9, 4 = 0.1,
Tr = 0.3 in table 4. But the first one has an advantage in the convergence rate: in this case 60 generations
are necessary for convergence, the second one requires 70 generations.

Summing up we conclude that GA implementation is the most effective with the following parameters:
d=0.7, u=0.1, Tr =0.3. Corresponding column in Table 4 is marked in bold. Observation that increase
in value of p supports global minima determination is effective.

4.1.3 Some properties of genetic optimization algorithm

For the cases of large enough number of stations, say L > 5, too small size of generation (e.g. p ~ 100)
convergence with local minima can take place. Thus, solution obtained for L = 8 and p = 100 is presented
in fig. 18. It is clear that only four of eight BPR’s are displaced in correct positions, while the rest four ones
are far from the exact solution.

The following three schemes have been proposed to avoid this phenomenon.

Increase the number p of individuals in generation

Result of this obvious factor on global minima approximation is given in fig.’s 13-14 for L = 2 and in
Table 1 for L = 6.

Consequent problem solution increasing number of BPR’s from 1 to L

Illustration of this scheme is given in fig. 19. For the case of L=8, p=100 transition from L =7 to L =8
is demonstrated. This transition is made by introducing into initial population for L=8 an individual, which

13



Table 4

Quantity Values for p = 0.1 and Tr = 0.3 Values for p = 0.2 and Tr = 0.3
d 0.5 0.7 0.9 0.5 0.7 0.9
Ngen 50 60 70 50 70 80
Taverage £ 07 | 22594789 | 22794895 | 21084832 | 2280+£1016 | 2203+£786 | 21814949.5
Tinin 1723 1355 1356 1399 1399 1399
Table 5
Quantity Values for p =0.1¢Tr =0.5
d 0.5 0.7 0.9
Ngen 300 400 60
Taverage & 07" | 23424775 | 2089£792 | 22234944
Trnin 1399 1399 1416
1207 -~ 7
100 = i
sl
mosn b
g
b -
o
0 50 T00 T5D
x

Fig. 18. Local minima obtained by GA with L = 8, p = 100.



is supposed to be close to global minima. Such individual was chosen by adding eighth BPR to optimal
configuration, obtained for L = 7. One of possible addition is shown in fig. 19 (b).

120 120
100} 100}
A S0f 50}
aof oo}
a0} 40}
37 ) 750 30 100 750
a b C

Fig. 19. Consequent problem solution for L=8: (a) optimal solution for 7 BPR’s; (b) - Construction of
“good” individual of 8 BPR’s (squares) from the optimal individual of 7 BPR’s (circles); (c) - obtained
optimal solution (global minima) for 8 BPR’s.

Insertion of “good” configuration to initial generation

In some cases “good” individual (close to global minima) for initial generation could be obtained for
large L directly (no consequent solution for different L) by projection of subduction zone P onto the nearest
boundary of domain D. This idea is illustrated in fig. 20 for the case of Alaska-Aleutan subduction zone.

Fig. 20. Composition of “good” configuration for initial generation: BPR’s are uniformly distributed along
projection of zone B to the closest boundary of D.

4.2 Constant depth, subduction zone is semicircle, presence of island in D

Now we modify the problem considered in section 4.1 by introducing the circle island into domain D, see fig.
21. Fig. 21 displays the distribution of our goal function 7" for D in case of one BPR. Clearly, exact solution
in this case, providing global minimal value of T, is the lowest point of the island. This exact solution has
been reproduced in numerical experiment, see fig. 23 (a). Fig. 23 (b) displays numerical solution for 2
BPR’s.

4.3 Constant depth, subduction zone is combination of two semicircles

Geometry of aquatoria €2 with subduction zone P, being combination of two semicircles is given in fig. 24.
Distribution of traveling times for tsunami source at point p; is displaced in fig. 25.

Fig. 26 shows the distribution of values of goal function T in case of one BPR. Location of global minima
is easily identified. This solution of optimization problem (4), (5) has been calculated, see fig. 27.

Fig. 28 demonstrates solutions of optimization problems for various value of L. Optimal detection time
versus the BPR’s number is drawn in fig. 29.

15
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Fig. 21. Aquatoria geometry and relief of Fig. 22. Traveling time T'(q) distribution
bottom. for one BPR.

0 50 1)(2_0 1)%0

Fig. 24. Aquatoria geometry, uniform depth profile. Fig. 25. Isochrones T = const.
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10000
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09 30 1(‘3? 150 200

Fig. 26. Distribution of traveling time T'(q) for one  Fig. 27. Problem solution, numerically obtained for
BPR. one BPR.
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Fig. 28. Numerically obtained optimal configuration for the cases: L=2 (a); L=3 (b); L=4 (c).
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Fig. 29. Time of tsunami detection in dependence on the number of BPR’s.
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4.4 Variable depth, subduction zone is horizontal interval

Rectangular domain € with variable depth profile, subduction zone coincides with “lower” boundary of €2,
and admissible for BPR’s area D (shown by rectangular frame) are given in fig. 30. Traveling times from
the source point p; and trajectories to obtain given point by minimal time are shown in fig. 31.

(4), (5), coinciding with the one of fig. 32, is shown in fig. 33.

function T versus number of BPR’s.

I

- -1000

B -2000
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. Aquatoria geometry and depth profile.
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Fig. 32. Traveling time T'(q) distribution for one

BPR.
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Fig. 31. Isochrones 7 = const and trajectories of
wave first arrival in given points.
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Fig. 33. Problem numerical solution for L=1.

-9000

Distribution of the goal function T for one BPR in domain D in presented in fig. 32. Optimal deployment
of one BPR, which provide global minima for T, is clear. Result of numerical solution of optimization problem

Numerically obtained solutions to optimization problem for different number of BPR’s are depicted in
fig. 34. In each case five optimization restarts were executed. Best solutions have been chosen. Size of
generation were fixed as p = 100. Fig. 35 demonstrates minimal (from five restarts) obtained values of goal
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Fig. 34. Numerically obtained configurations: L =2 (a); L =
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Fig. 35. Value of the goal function T vs number of BPR’s: numerically obtained solution — solid line, exact
solution — dashed line.

5 Algorithm application to real bathymetry at Alaska-Aleutan sub-
duction zone

Real bathymetry around Alaska-Aleutan subduction zone P could be observed in fig. 36. White lines show
the borders of domain D for BPR’s deployment. Traveling times for tsunami wave are given in fig. 37.

4
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Fig. 36. Aquatoria geometry and depth profile.

Fig. 38 demonstrates solutions to optimization problem with different number L of BPR’s. For each
value of L five optimization restarts were executed, solutions with the best (minimal) values of time were
plotted. Size of generations were fixed p=100. Locations of BPR’s of NOAA DART buoys are given in fig.
39, marked with small white circles. In the same figure numerically obtained optimal solution is presented
by black framed larger circles O. Decrease of time required for tsunami wave detection for larger number of
BPR’s is illustrated in fig. 40, obtained results are shown with squares. Black cross indicates this detection
time for the current position of DART buoys.

Note that presented software application is able to solve the problem of optimal deployment of certain
number of additional BPR’s provided that locations of some buoys are already fixed.
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Fig. 37. Level lines 7 = const for different sources.

Fig. 38. Numerically obtained configurations for: L =1 (a); L =2 (b); L =3 (¢); L =4 (d).
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Fig. 39. Positions of existing BPR’s — DART buoys of Fig. 40. Guaranteed time of tsunami
NOAA - are indicated by small white circles, numerically ~ wave detection for various number of
obtained optimal locations are shown with larger circles, BPR’s: B — numerically optimized; x

framed in black (O). — for the deployed system.

6 Some data about developed software application

All program modules have been written as FORTRAN codes (GA and application to calculate traveling time
between any two given points of aquatoria). Typical time for optimization is compared to 2 min on Pentium
IV 3 GHz, compaq visual fortran 6.6 (Nge, =50, p = 200, L = 6).

There exists parallel implementation of GA FORTRAN code for multicomputer systems. All commu-
nications are implemented using MPI. Preliminary test calculations show near linear speedup up to 64
Processors.

7 Discussion and conclusion

One of the methods of the optimal sensors location for the earliest warning of tsunami wave in defended
centers of the Pacific region is considering in [1]. It consists in the consideration of six possible positions
of BPR’s and choosing among them those which in case of putting there the sensors will allow to save
maximum of people in zones concerned. Braddock uses 18 representative tsunami generation regions and 27
representative population centers with known population sizes. For each generation region it’s determined
quantity of people that will be rescued for the certain set of BPR’s. There for we compare tsunami travel time
from the generation region to population center with the sum of tsunami travel time to BPR’s, response time
of the sensor (to signal and confirm generation of tsunami) and the reaction warning period at population
center. This procedure takes place for all generation regions and all centers. Thus author introduces the
functional expressing the ratio of part of people that will be rescue to the general number of population.
Optimal location of minimum number of BPR’s providing maximal value of the functional is the solution of
this problem. This approach is associated with fixed location of BPR’, so it can’t guarantee minimal possible
tsunami wave detection time.

In our case we consider solution of the minimal time detection problem for free BPR’s location. It
allows to ensure maximal possible time which is necessary for warning and evacuation and thereby it assures
people’s rescue from the disaster. Method of the genetic optimization have allowed to formulate and solve
problem for whole searching domain.

Math statement of problem to optimize sensor network location in order to detect earlier tsunami wave,
caused by earthquake within the given subduction zone, is proposed. Efficient numerical algorithm, based on
GA, has been developed. Algorithm parameters have been calibrated in numerical tests. Problem of DART
buoys optimization around Alaska-Aleutan subduction zone has been studied. The method can be applied
to other real-life problems.
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Abstract

One of the key issues in financial mathematics is portfolio selection, in which fund managers are
responsible for the performance of their mutual funds. Historically, there has been a claim that women
perform worse, on average, than men do on mathematical tasks. In contrary to this claim, this paper
finds the performance of women outperforming the men performance in mutual funds business, where
financial mathematics models are crucial and highly utilized. In particular, this paper examines the
determinants of mutual fund performance in one of the emerging markets (Egypt), with an emphasis
on the factor of fund manager gender. This paper offers new insights into the Egyptian mutual fund
industry. The results regarding the determinants examined (fund manager gender, in addition to fund
age, size, objective, total risk, systematic risk, expenses ratio and type) show significant relation between
fund’s manager gender, expenses ratio, objective, type and total risk, and fund performance. For the
common investor who wanted to invest in Mutual Funds in an emerging market like Egypt’s market
during a five-year period (January 1999 -December 2003), the selection criteria that could have provided
the best results in selecting the fund are: a fund managed by a woman, an open end fund, with a growth
objective and low expenses ratio. In contrast, the traditional selection criteria of size of the fund and
its age appeared to be statistically irrelevant in this study. The result of having a relation between fund
manager gender and fund performance in an emerging market clearly warrant future studies.

Key Words: Financial Mathematics, Gender, Mutual Funds.

1 Introduction to the Study of Gender, Financial Mathematics and
Mutual Funds

Simon (2000) emphasises that the notion that mathematics is a masculine pursuit persists, however, he
supports the commonsense view that no inherent characteristics of mathematics warrant excluding women
and the same statement holds true for the sub-disciplines of mathematics. As times have changed, and more
women are entering what were once exclusively masculine professions of mathematics and science; women
are thriving.

Roth (2003) argues that there is a claim of significant gender differences in participation rates in mathe-
matics education studies, and in related careers, besides the claim that women perform significantly worse,
on average, than men do on mathematical tasks and activities.

One clear example of a profession which was traditionally dominated by men, which requires mathematical
proficiency, is mutual fund management. The main duties of portfolio or mutual funds manager are to select
securities to purchase, determine which ones to sell, and rebalance the portfolio in conjunction with the fund’s
buying, selling, contributions and redemption activity. Performing such duties relies in most of the cases on
financial mathematics models. At the core of portfolio management activities is portfolio optimisation.

Portfolio optimisation is mainly focused on the determination of an optimal investment strategy on a
financial market. The fund manager must determine how many shares of which securities to hold when, in
order to maximise his/her utility of wealth at the end of the planning period. Portfolio optimisation involves
modern methods of financial mathematics.

Beazer (1975) explains that optimisation models are models designed to be used as operational devices
to improve portfolio (or mutual funds) performance. Dyer et al. (1992) argue that many of the topics in
Multi-Criteria Decision Making have been optimisation-related, in which Goal Programming, conceived by
Charnes, Cooper & Ferguson (1955), was an early contribution. Goal Programming is the most widely used

*The author would like to thank Dr. Dylan Jones, senior lecturer in the Department of Mathematics at the University of
Portsmouth. Dr. Jones provided invaluable comments on this manuscript.
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approach in the field of Multiple Criteria Decision Making that enables the decision maker to incorporate
numerous variations of constraints and goals, particularly in the field of Portfolio Selection.

The old model of Markowitz (1952), including several variations, is still representing the foundation of
fund managers’ investment decision. The development of modern, time-continuous portfolio optimisation,
which is one of the growing research areas in the field of financial mathematics, had advanced so far that
many algorithms now suggest themselves for practical application and implementation. The basic objective
of a mutual fund is to provide a diversified portfolio so as to reduce the risk in investments at a lower cost.
Markowitz suggests that investors should consider risk and return together and determine the allocation of
funds among investment alternatives on the basis of the trade-off between them.

Mankert (2006) emphasises that portfolio (mutual fund) models are tools intended to help portfolio
managers decide on weights of the assets within a portfolio. The ideas of Markowitz (1952) have had a great
impact on portfolio theory. However, in practical portfolio management the use of Markowitz model has not
had the same impact as it has had in academia. Many fund managers consider developing new models, using
their financial mathematics capabilities, which build on Markowitz model and aims at handing some of its
practical problems.

Over and above, Modern Financial Theory is based, amongst the others, on the Portfolio Theory of
Markowitz (1952), the Arbitrage Principles of Modigliani & Miller (1958), the Capital Asset Pricing Model
of Sharpe (1964), Lintner (1965) and Black (1972), and the Options Pricing Theory of Black & Scholes
(1973). Hromis (2004) argues that the Modern Financial Theory is based on a heavy use of mathematical
models.

In a dynamic market the need for professional fund managers increase enormously. The complexity
involved in analyzing individual securities makes it extremely difficult for an investor to take the investment
decision on their own, particularly under current circumstances of the financial crisis. So it makes lots of
sense to depend on those who are good at this job of managing funds.

Beckmann & Menkhoff (2008) mention that fund managers are not only worth a detailed analysis because
they are experts in managing risks but also because they work in a field of financial decision making.

This paper examines the performance of female and male mutual funds mangers, as one of the impor-
tant careers in the field of financial mathematics, in order to investigate the claim that women perform
lower, on average, than men do on financial mathematics activities, particularly in the field of mutual funds
management.

The reminder of the paper is organized as follows. Section (2) provides an overview of mutual fund
industry in an emerging market. Section (3) discusses the relevant literature review. Section (4) outlines the
research data and relevant analysis. Empirical results are summarised in section (5), while section (6) gives
some implications and areas for future research and finally section (7) provides concluding remarks.

2 Mutual Fund Industry in Emerging Markets

The important role of mutual funds in terms of stock markets efficiency, liquidity and transparency in
emerging markets raises the need for studying the factors behind the performance of mutual funds.

While there is an extensive collection of literature on emerging markets, these mainly focus on the US
funds investing in the emerging markets (for example Aggarwal, Klapper & Wysocki, 2004 and Gottesman &
Morey, 2006), there is very limited work that has been done on mutual funds that exist in emerging markets,
particularly when it comes to studying such factors as gender. This could be due to difficulties in portfolio
evaluation in theses markets.

Nevertheless, the size and return of available funds in emerging markets and their growth prospect warrant
in-depth study into these markets (Gottesman & Morey, 2006).

There is a need for mutual fund performance attribution in emerging markets, particularly with factors
such as fund manager gender. A growing number of literatures in developed market investigate gender dif-
ferences amongst mutual fund managers. Based on findings from the existing literature on gender differences
(for example, Beckmann, Lutje & Rebeggiani, 2007; Bliss & Potter, 2001; Niessen & Ruenzi, 2005 and Vel-
eva, 2005), it is hypothesized that female fund managers are well educated, in financial mathematics, take
less risk and follow less extreme investment styles that are more consistent over time. Furthermore, female
fund managers are expected to be less overconfident and therefore to trade less.

This paper is distinct from other gender and financial mathematics related papers in that it provides
imperical evidence on emerging markets, particularly Egypt, where the mutual fund industry is emerging and
where the gender role is increasing. Mutual fund industry started in Egypt on 1994 with the establishment
of the first mutual fund by the National Bank of Egypt (Azmi, 2005).

Although the number of funds in Egypt is very small compared to established markets, the growth is
high with the increasing openness of the Egyptian economy, together with the active implementation of the
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privatization program, although this would change with the current financial crisis.

This paper also contributes to the growing literature on gender and mutual fund performance evaluation
and attribution. In particular, this paper is designed to provide evidence on relation between different fund
factors, especially the gender of the fund manager, and its performance in an emerging market.

3 Literature Review

Treynor (1965), Sharpe (1966), and Jensen (1968) develop the standard indices to measure risk adjusted
mutual fund returns. Numerous studies have tested the performance of mutual funds compared to a certain
benchmark, usually market index (Artikis, 2002, Cresson, Cudd and Lipscomb, 2002, Daniel, Grinblatt,
Titman and Wermers, 1997, Lehmann and Modest, 1987, Matallin and Nieto, 2002, Otten and Schweitzer,
2002, Persson, 1998, Raj, Forsyth and Tomini, 2003, and Zheng, 1999).

Lehmann and Modest (1987), and Daniel et al. (1997) find the performance of mutual funds to under-
perform the market index in the US financial market, consistent with a study by Persson (1998) who finds
the performance of the Swedish mutual funds to underperform the market index, and in contrast to a later
study by Artikis (2002) who argues that the performance of the Greek mutual funds outperforms the market
index.

Otten and Schweitzer (2002) compare the European mutual fund industry with the United States using
risk-adjusted measures of performance. They find that Europe is still lagging the US mutual fund industry
where it comes to total asset size or average fund size.

Cresson, Cudd and Lipscomb (2002) show that fund performance outperforms the market index in the
short-term, whereas it underperforms the market index in the long-term. Matallin and Nieto (2002) claim
that the performance of most of the Spanish mutual funds underperforms the Spanish financial market index.

Previous studies on the evaluation of the mutual fund’s performance in developed countries varied in
their results. In addition, there are some factors (like: the volatility of markets, the size of government
involvement and the extent of regulations) which distinguish mutual funds in emerging markets from their
counterparts in more established markets. Studies examining the relation between mutual fund performance
and factors such as fund manager gender, fund expenses, size, age, and objective report conflicting results.

For example, Barber & Odean (2001) find that the average portfolio turnover rate for men is significantly
higher than for women, and mutual fund performance losses are significantly more pronounced for men.
While Niessen & Ruenzi (2005) hypothesise in their research that female fund manager take less risk and
follow less extreme investment styles that are more consistent over time. Their empirical results support
these hypotheses, but they find no evidence that behavioural differences between female and male fund
managers are reflected in fund performance.

Beckmann, Lutje & Rebeggiani (2007) argue that Italian female professionals do not only assess them-
selves as more risk averse than their male colleagues, they also prefer a more passive portfolio management
compared to the level they are allowed to. Besides, in a competitive tournament scenario near the end of
the investment period, female asset managers do not try to become the ultimate top performer when they
have outperformed the peer group. However in case of underperformance, the risk of deviating from the
benchmark makes female professionals more willing than their male colleagues to seize a chance of catching
up.

Aside from fund manger gender relation to fund performance, Volkman & Wohar (1995) and Gallagher
(2002) claim positive relations between fund performance as a dependent variable in their studies and fund’s
objective as well as fund’s systematic risk as independent variables. Whereas Peterson, Pietranico, Riepe
and Xu (2001) find negative relation between fund performance and fund’s systematic risk. Other studies
(example Carhart, 1997) find no relation between fund performance and fund’s age.

Table (1) lists the literatures’ results on the factors determining the performance of the mutual funds.

Literature in the area of finance and financial mathematics, particularly on mutual funds, provides a range
of factors that contribute to the performance of a particular fund. Although the direction and extent to
which these factors influence performance varies among the developed countries funds, evaluating developing
countries funds according to such factors has scarcely been investigated, particularly for fund manger gender
factor.

This paper attempts to accomplish this by empirically tests the relation between mutual fund performance
and fund manager gender, in addition to other seven factors, which are: fund age, size, objective, expenses
ratio, systematic risk, type and total risk in one of the emerging markets, that is Egypt’s market.
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Table (1): Review of Different Research Results on the Determinants of Mutual Fund Performance

4 Methodology and Data

4.1 Research Model

The research model is based on the relevant literature reviewed in the previous section. The research model
depicts the relations between fund manager gender, in addition to other seven factors of mutual funds, and
the fund performance.

Other factors (variables) were excluded because of the lack of their information in the Egyptian emerging
market (examples: fund turnover, liquidity, etc.) or to avoid the multicolinearity issue.

4.2 Research Variables and Measurement

a. Mutual fund performance

Mutual fund performance is the dependent variable in the research model. There are three measures of
mutual fund performance based on the literature reviewed in the previous section. But for the purpose of
this research, Sharpe’s Index will be used to measure mutual funds performance as it is the recommended
measure of mutual fund performance in the Egyptian emerging market where diversification opportunities
locally are not good enough to eliminate entirely the unsystematic risk and active stocks are limited (Azab,
2002; Azmi, 2005).

The Sharpe’s index is computed by applying the following:-

SIP = (Rp - er)/Dp

Where:
S1I, = Sharpe’s index for portfolio (mutual fund) p.
R, = Return on portfolio p.
R, ¢ = Return on risk-free asset.
D,, = Standard deviation of portfolio p.
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The numerator is the excess return above the risk-free return on a portfolio, and Dp is the measure of
total risk of the portfolio. A portfolio performs better than the benchmark if its Sharpe’s index is greater
than that of the benchmark.

b. Fund manager gender and other mutual fund factors

Fund manager gender and other seven factors are examined in terms of their relation with mutual fund
performance as follows:-

e Fund manager’s gender (Male/ Female) is examined in terms of its relation with mutual fund perfor-
mance. It is measured by one dummy variable of gender (Male= 1, Female= 0).

e Mutual fund age is computed on a quarterly base during the study period of 5 years (Jan. 1999- Dec.
2003).

e Mutual fund size is computed by applying the following: Total assets value of the fund/ Number of
mutual fund’s shares outstanding.

e Mutual fund objective is measured by two dummy variables of income and growth objectives (Income:
(1,0) ; Growth: (0,1); Income/Growth: (0,0)).

e Fund’s total risk is measured by the standard deviation (the square root of the variance) of the fund’s
returns.

e Fund systematic risk is measured by beta coefficient (Miller, 2001) as follows:-

_ COV(X,‘,Xm) _ Z?:l(Xit - Yz)(-X—mt - Xm)
T >t (Xme = Xom)?

Bi

Where:-

B;: The Beta coefficient of mutual fund 1.

Cov (X, X,,): Covariance between the return of the mutual fund ¢ and the return of the market portfolio
(m).

o2,: Variance in market portfolio return.

X;i: The return of mutual fund i in the period ¢.

X, : The average returns of fund i during the period.

Xme: Market return in the period t.

X,, : The average returns of the market portfolio during the period.

e Fund’s expenses ratio: computed by applying the following: Expenses/ Net assets value of the mutual
fund.

e Mutual fund’s type (Open/ closed end): measured by one dummy variable of fund’s type (Open= 1,
Closed= 0).

These variables are considered to be the determinants of mutual funds performance according to the
literature review. VIF is calculated for them to identify multicolinearity. VIF, variance inflation factor, if
highly collinear a high value is calculated, higher than 5 (Levine et al., 2005, p.632).

In this study, the calculated VIF values indicate no existence of the multicolinearity issue with the current
independent variables as the calculated VIF values are less than 5 as shown in table (2).

Table (2): VIF Values for the Independent Variables of the Research

The Independent Variables VIF Values
Fund Manager Gender 1.532
Fund Size 1.396
Fund Total Risk 1.067
Fund Systematic Risk 1.042
Fund Expense Ratio 1.055
Fund Age 1.811
Fund Type 1.246
Fund Objective (Income) 2.077
Fund Objective (Growth) 2.653
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4.3 Research Hypotheses

1. Fund manger gender and mutual fund performance (hypothesis H1)

Atkinson, Baird and Frye (2003) show that fund manager gender is related to fund performance. Bliss
and Potter (2001) argue that female fund managers outperform their male counterparts, consistent
with later study by Veleva (2005) who finds a correlation between the percentage of female represen-
tation and total (and average) annual returns. Bliss and Potter (2001) further compare data from
domestic and international US equity funds and expected women to hold less risky portfolios than
men. Assuming them to be less overconfident, female asset managers are expected to trade less than
their male counterparts, and thus to perform better (Bliss & Potter, 2001; Barber & Odean, 2001).
H1: There is a relation between fund manager gender and fund performance.

2. Other factors of mutual fund performance (hypotheses H2: H8)

Carhart (1997) show that fund age is not related to performance, in contrast to a later study by
Gallagher (2002) who finds balanced mutual fund performance to be negatively related to fund age.
H2: There is a relation between fund age and fund performance.

Grinblatt and Titman (1994), Volkman and Wohar (1995), and Carhart (1997) find no relation between
fund performance and its size, in contrast to Israelsen (1998), and Ramasamy and Yeung (2003) who
find fund performance to be positively related to fund size.

H3: There is a relation between fund size and fund performance.

Volkman and Wohar (1995) compare the fund performance of growth, income, growth/income objec-
tives of a fund. They find fund performance to be positively related to fund objective when it is the
growth, in contrast to Bauman (1968) who find no clear relation between fund performance and its
objective.

H4: There is a relation between fund objective and fund performance.

Glenn (2004) examines the relation between fund performance and its type (open/ closed end). He
finds a significantly positive relation between performance and fund type when it is closed end fund, in
contrast to Kacperczyk, Sialm & Zheng (2005) who find a positive relation between fund performance
and fund type when it is open end fund.

H5: There is a relation between fund type and fund performance.

Peterson, Pietranico, Riepe and Xu (2001) show that expense ratios are directly related to the variabil-
ity of mutual fund returns, consistent with a study by Goettesman & Morey (2006) who find a strong
relation between fund performance and fund’s expenses ratio.

H6: There is a relation between fund’s expense ratio and fund performance.

Gallagher (2002) find positive relation between fund performance and systematic risk, whereas Peterson
et al. (2001) argue fund performance to be negatively related to fund’s systematic risk.
H7: There is a relation between fund systematic risk and fund performance.

Das, Kish, Muething and Taylor (2002) find fund performance to be positively related to the total risk
(as measured by the standard deviation).
HS8: There is a relation between fund total risk and fund performance.

4.4 Data and Sampling

Sharpe’s Index is used to evaluate the risk-adjusted performance of the mutual funds operating in the
Egyptian stock exchange during the period from January 1999 to December 2003 using quarterly data.
Then fund manager gender and other seven factors are examined in terms of their relation with mutual fund
performance using a multiple regression.

The data for the estimation of Sharpe’s index as well as fund’s manager gender, age, size, type, total
risk, objective, systematic risk and expenses ratio are collected from the Capital Market Authority of Egypt
and the Cairo and Alexandria Stock Exchange, in addition to the investment management companies of the
Egyptian mutual funds.

The benchmark used to compare the risk-adjusted performance of the Egyptian mutual funds is the
CASE 30 index!. The risk free return necessary to compute the Sharpe’s index is the reported 3-months
Egyptian Treasury bill yield.

In order to avoid survivorship bias, the sampling period is chosen to include all mutual funds during 5
years including those funds which did not survive after the study period. The research population consists

1CASE 30 Index: Cairo and Alexandria Stock Exchange Index for the top 30 companies, CASE 30, is the benchmark of the
Egyptian emerging market. http://www.egyptse.com/index.asp
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of 21 mutual funds in which 19 funds are included in the research based on their inception dates during 5
years from Jan. 1999 to Dec. 2003, in which Delta fund, a closed end fund for example, is included although
it is no longer available in the Egyptian stock market since January 2004.

The study examines multiple regression model using the risk-adjusted measure of mutual fund perfor-
mance with the fund manger gender, in addition to other seven determinants of mutual fund performance
in the Egyptian emerging market as follows:-

SIj = a+b1Gj + baRs, +b3Rp, +byEj + b55; +bsAj + b7 T + bsOr, +bgOg, + e
Where:
e SI;: The performance of the mutual funds measured by Sharpe’s index during the period j.
e G;: The gender of the mutual fund manger during the period j.
e Rg,: The total risk of the mutual fund, measured by the standard deviation, during the period j.
e Rp,: The systematic risk of the mutual fund, measured by Beta coefficient, during the period j.
e I;: The expenses ratio of the mutual fund during the period j.
e S;: The size of the mutual fund during the period j.
e A;: The mutual fund age during the period j.
e T;: The mutual fund type during the period j.
e Oy;: The mutual fund objective as a dummy variable representing income fund during the period j.
¢ Og,: The mutual fund objective as a dummy variable representing growth fund during the period j.

e a,b1,02,...,09 : The multiple regression coefficients with fund performance.

e: The random error of the multiple regression model.

5 Results

The results of the multiple regressions processed show that the performance of the Egyptian mutual funds
is related to five factors as shown in table (3).

Table (3): The Factors Determining the Performance of the Mutual Funds Operating in the Egyptian
Emerging Market

Independents Regression Co- | t-test Standard Error | Significance
Variables efficients level
Manager Gen- | -1.449 -5.988 0.242 0.000

der

Expenses Ratio | -4.050 -4.258 0.951 0.000

Fund Objective | 0.519 2.455 0.211 0.015
(Growth)

Total Risk -0.107 -2.271 0.047 0.024

Fund Type 0.683 2.014 0.339 0.045

Table (3) reports the regression coefficients, t-test, standard errors and the significance level for five
independent variables, in which a regression coefficient with positive sign indicating a positive relation
between the fund’s determinant and the fund performance, and with a negative sign indicating reverse or
negative relation. Therefore, the results support the acceptance of the hypotheses: H1, H4, H5,
H6 and H8, whereas the results do not support the acceptance of the hypotheses: H2, H3 and
HT7.

The results suggest that mutual fund performance is inversely related to fund’s manager gender (when
it is a male), expenses ratio and total risk, and positively related to fund’s objective (when it is growth) and
fund’s type (when it is an open-end fund).

The results of the relation between fund performance and fund’s manager gender implies that male fund
managers perform, on average, 1.449 points more poorly than do female fund managers.
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Teats Nlutual Funds Llanaged by Iutual Funds Managed
ety Total Wutual Funds W omen by Men
petiod)

MNumhber Percentage Humber Fercentage Humhber Fercentage
1999 4 21.05% 15 T8 95%
2000 4 21.05% 15 T8 95%
2001 19 100% 4 21 05% 15 TE Q2%
4004 5 26 32% 14 T3 68%
4003 8 42.11% 11 STE9%M

Table (4): Number and Percentage of Mutual Funds Managed by Women vs. Men

6 Implications and Areas for Future Research

Several studies either on fund’s performance evaluation (Cresson et al., 2002, Daniel et al., 1997, Lehmann
and Modest, 1987, Otten and Schweitzer, 2002, Raj et al., 2003, etc.) or fund’s performance attribution
(Atkinson et al., 2003, Carhart, 1997, Grinblatt and Titman, 1994, Volkman and Wohar, 1995, etc.) report
conflicting results.

The result of fund’s manager gender is interesting as existing studies (Bliss and Potter, 2001, Schubert,
Gysler, Brown, and Brachinger, 2000, Veleva, 2005, etc.) show that men and women view money, risk, and
investing differently.

There is also anecdotal evidence and research suggesting that women might actually be better investors
than men. However, none of this has historically mattered in the mutual fund industry in the United States
because the number of women fund managers was negligible. But this is changing as women represent 11
percent of the fund managers in the USA and in Egypt women represent, surprisingly, on average 27 percent
of the fund managers (Azmi, 2005).

This result of having a relation between fund performance and fund’s manager gender is somewhat
surprising particularly in an emerging market like Egypt’s Stock Market, and clearly warrant future studies.
But such result could be attributed or interpreted in light of the trend of increasing number of funds managed
by women vs. men by the end of study’s period. Table (4) shows the percentages of women and men managing
mutual funds in the Egyptian emerging market during the study period of 5 years.

Also this result of fund manager gender influence over fund performance could be attributed to the high
impact of manager characteristics in fund performance particularly in an emerging market. Therefore, other
studies in management aspects of mutual funds in Egypt or other emerging countries are encouraged as they
could reveal more determinants of mutual funds performance in these markets.

The Egyptian mutual funds categorized into 3 groups based on their objectives (income, growth, in-
come/growth funds) in which the results reveal a relation between fund performance and fund’s objective
when its come to growth objective. This result is in line with what has been found in literature (example
Volkman & Wohar, 1995) and can be attributed to the basic relationship between return and risk.

The results show a negative relation between fund performance and its expense ratio and a negative
relation also between fund performance and fund’s total risk as measured by the standard deviation. This
is consistent with the international fund literatures which imply that those literatures do indeed apply to
emerging market funds.

Although the results of this study regarding the relation between fund performance and fund type are in
line with some literatures (example Rao, 2001), they are contradicting with other studies like Glenn study
(2004). And this could be attributed to the very small number of existed closed end funds (only 2 closed-end
funds) in the Egyptian emerging market.

Fund age, size and systematic risk found to be of no significant relation with the Egyptian mutual funds
in this study which contradicts with what has been found on the international literature of funds in the US
and other developed markets, but it is justifiable with the circumstances of emerging markets as they are
characterised by limited numbers of active stocks, etc. Therefore, mutual funds manager usually find limited
opportunities in emerging markets to diversify or eliminate the unsystematic risk and that why the results
suggest that unsystematic risk proportion in the fund’s total risk influence more fund performance than the
systematic risk proportion (although this is changing due to the current financial and economic turmoil).
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To summarise, there is no significant evidence of relation between mutual fund performance in the
Egyptian emerging market and fund’s systematic risk, age and size during the period from Jan. 1999 to Dec.
2003. The results indicate significantly positive relation between fund performance and fund’s type (open)
and objective (growth), during the same period. These results imply positive performance of a mutual fund
when its type is an open end fund and also when its objective is growth over income or income,/ growth.
The results also indicate negative relation between fund performance and fund’s expenses ratio, fund’s total
risk, and fund’s manager gender (when it is a male).

Therefore other studies are warrant for validating or finding out in line or different results concerning
the set of factors of influence on the mutual fund performance and whether women are outperforming men
in this career.

7 Concluding Remarks

This paper finds significant relation between mutual fund performance and fund’s manager gender, suggesting
that women perform well in financial mathematics field but equality is yet to be realised in terms of more
women joining this career.

The main limitation in this paper is the small number of the available mutual funds in the Egyptian
emerging market and the lack of information for other factors that could be of influence over mutual funds
performance in the Egyptian emerging market (example: the factors related to management characteristics).

Future researches are warrant in the area of fund performance attribution in emerging markets; perhaps
with larger emphasis on manager specific factors and gender differences.
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Introduction to algebraic number theory

Eva Bayer-Fluckiger
Ecole Polytechnique Fédérale de Lausanne, Switzerland

1 An example — sums of squares

The origin of the theory lies in concrete and beautiful problems. Some of these are easy to solve, but others
are inaccessible with elementary means, and lead to the introduction of new objects and methods that can
then be used to deal with them. The aim of this section is to illustrate this through one example, namely
sums of two squares of integers.

Problem 1.1. Which positive integers can be written as sums of two squares?

Experimentally, one sees that — for instance — 5 is a sum of two squares, namely 5 = 1 + 4, but 3 cannot
be expressed as a sum of two squares. In the 17th century, Pierre de Fermat proved the following beautiful
theorem:

Theorem 1.2. Let p be an odd prime number. Then p is a sum of two squares if and only if p = 1 (mod 4).

One direction is obvious: one sees very easily that if p is a sum of two squares then p = 1 (mod 4). The
converse is much more difficult. Fermat’s original proof is different from the one presented here.

The main idea of the proof we discuss here is to consider a new object, the ring Z[i], where i is the
imaginary number, i2 = —1. In other words, we consider the subset of the complex numbers consisting of
the expressions a + bi where a and b are integers. This is closed by addition and multiplication, hence it is
a subring of the complex numbers. It is called the ring of Gaussian integers. Note that Gauss lived much
later than Fermat — this notion was not used in Fermat’s original proof.

Let us denote by x — T the complex conjugation. This clearly preserves the ring of Gaussian integers —
if t =a+bi € Z[i], then T = a — bi € Z[i]. Let us look at the complex norm : N : Z[i] — N defined by
N(z) = 2%. If z = a + bi, then N(x) = a? + b*. This leads us to the following basic observation :

Remark 1.3. A positive integer n is a sum of two squares if and only if n € N(Z[i]).

This motivates a study of the ring of Gaussian integers and of the norm, with the hope that it will lead to
the solution of our problem. It is natural to look at the Gaussian integers as a generalization of the ordinary
integers, and investigate whether some of the basic properties of Z are also true for Z[i]. One of these is the
Euclidean division :

Euclidean division Let a and 3 be two integers, § # 0. Then there exist two integers v and § such
that a = 87 + § and that the absolute value of § less than the absolute value of 5.

This can ideed be generalized to the Gaussian integers, as follows :

Proposition 1.4. (Euclidean division for the Gaussian integers) : Let o, 8 € Z[i] with 8 # 0. Then there
exist v and 0 in Z[i] such that o = By + 0 and that N(0) < N(B).

Note that here we use the norm N to measure the size of the elements of the ring of Gaussian integers.

Proof. Set x = %. Note that there exists v € Z[i] such that N(z — ) < 1. We conclude by setting
0=af—1. O

@l

Recall that an ideal is said to be principal if it is generated by a single element. For instance, every ideal
of the ring Z is principal. This can be proved by Euclidean division — if I is a non—zero ideal, then take
an element of I such that its absolute value is minimal. Then Euclidean division shows that this element
generates the ideal. The same method leads to the following :

Corollary 1.5. Every ideal of Z[i] is principal.

Proof. Let I be a non—zero ideal of Z[i], and let 8 € I be a non—zero element such that N(3) < N(p') for
all non—zero 3’ € I. Let a € I. Then there exist v,d € Z[i] such that & = v+ ¢ and that N(§) < N(3).
As B €I and I is an ideal, we have 8~ € I. Therefore 6 € I, and by minimality of N(3) this implies that
§=0. O
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In other words, the ring Z[¢] is a principal ideal domain.
We also need a lemma concerning the invertible elements of Z[7] :

Lemma 1.6. Let x € Z[i]. Then there exists y € Z[i] with xy = 1 if and only if N(z) = 1.

Proof. Suppose that there exists y € Z[i] with zy = 1. Then N(zy) = N(x)N(y) = N(1) = 1, therefore
N(z) =1or —1. As N(z) > 0, we must have N(z) = 1. Conversely, suppose that N(xz) = 1. We have
N(z) = 2T = 1, hence T is the inverse of . O

The final ingredient in our proof of Fermat’s theorem concerns the behavior of prime numbers in the ring
Z[i]. Let p be a prime number. Then the ideal pZ is a maximal ideal of the ring Z. Of course pZ[i] is an
ideal of the ring Z[i], but is it always maximal ? The following proposition shows that this is not the case,
and gives a complete answer to our question.

Proposition 1.7. Let p be an odd prime number. Then the ideal pZ[i] is mazimal if and only if p =
3 (mod 4).

Proof. The ideal pZli] is maximal if and only if Z[i]/pZ]i] is a field. Note that Z[i] = Z[X]/(X? + 1), hence
we have Z[i]/pZ[i] ~ Fp[X]/(X? + 1), where F, is the finite field with p elements. On the other hand,
F,[X]/(X?% +1) is a field if and only if the polynomial X2 + 1 € F,[X] is irreducible, and this happens if
and only if —1 is not a square modulo p, or equivalently p = 3 (mod 4). O

We can now prove Fermat’s theorem. Recall that it is sufficient to show that every prime number p with
p= 1 (mod 4) is the norm of an element of Z[i].

Proof of Fermat’s theorem. Let p be a prime number such that p = 1 (mod 4). Then by the previous
proposition, the ideal pZ[i] is not maximal. Hence there exists an ideal I of the ring Z[7] strictly containing
the ideal pZ[i]. As every ideal of Z[i] is principal, there exists a € Z[i] such that I = «Z[i]. This « is not
an invertible element of Z[i] because I # Z[i]. Therefore by the lemma N(a) # 1. As pZJ[i] is contained in
1, there exists § € Z[i] with p = af8. The element g is not invertible because pZ[i] is not equal to I, hence
N(B) # 1. We have p? = N(p) = N(af8) = N(a)N(B), hence N(a) = p. This implies that p is a sum of two
squares. O

This gives us a motivation to study rings such as Z[i], in particular their ideals and invertible elements.
We will do this in the following.

2 Algebraic number fields and rings of integers

The previous section shows that it is worth while to study rings of the type Z[i], and of course also their
fields of fractions, such as Q[i]. This leads us to the notion of algebraic number field.

Definition 2.1. An algebraic number field K is a field extension of finite degree of the field of rational
numbers Q.

Recall that if F is a field, then a field extension of F'is a field K containing F'. Then K is a vector space
over F', and the dimension of this vector space is called the degree of the extension. The degree of K over F'
is denoted by [K : F].

The simplest example of an algebraic number field is Q, the only number field of degree 1. The next
simplest ones are number fields of degree 2, the so—called quadratic extensions. It is easy to see that these
are of the form K = Q(+/d), where d is a square—free integer. We say that K is a real quadratic field if d > 0,
and that K is an it imaginary quadratic field if d < 0.

We would also like a generalization of the rings Z and Z[i]. This is based on the following observation:
if K is an algebraic number field and o € K, then there exists a monic polynomial f € Q[X] such that
f(a) =0. Indeed, if n = [K : Q], then the elements 1,q,...,a™ are linearly dependent over Q.

Definition 2.2. Let K be an algebraic number field and let &« € K. Then we say that « is an integer of K
if there exists a monic polynomial f € Z[X] such as f(a) = 0.

Let us denote by Ok the set of elements that are integers of K. We have the following
Theorem 2.3. Ok is a subring of K.

It seems hard to prove directly that if @ and 3 are integers of K then so is their sum and their product.
One uses the following lemma :
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Lemma 2.4. Let K be an algebraic number field, and let « € K. Then a € Ok if and only if Z]a] is a
finitely generated abelian group.

The proof of this lemma can be found (for instance) in [2], 2.1. Let us show how to use the lemma to
prove the theorem :

Proof of theorem. Let a, 3 € Og. Then by the lemma Z[a] and Z[f] are finitely generated abelian groups.
Hence Z[«, (] is also a finitely generated abelian group. As this group contains Za + 8], Zla — §], Z]ag],
these are also finitely generated abelian groups, and hence another application of the lemma shows that
a+ p,a—p,af € Ok. O

The ring Ok is called the ring of integers of K. It has the following properties :
Proposition 2.5. Let K be an algebraic number field of degree n. We have the following :
(i) Ok NQ=12Z
(ii) OxQ = K
(ii) O is a free abelian group of rank n.

See for instance [2], Chap.IL
It is not easy in general to determine the ring of integers of an algebraic number field. However, this can
be done for quadratic fields, and one gets the following result :

Theorem 2.6. Let d be a square—free integer, and let K = Q(\/&) be the corresponding quadratic field.
Then
Ok =Z[Vd] ifd= 3 (mod 4).
Vd+1
2

Ok =1Z] ] if d= 1 (mod 4).

See for instance [2], 2.5.
In order to prove more properties of rings of integers, we need some more algebraic notions which will be
developed in the next section.

3 Trace, norm and discriminant

Let F be a field, and let K be an extension of degree n of F'. Let x € K. Then the multiplication by x

mg: K — K

m(y) = xy

is an F-linear map. Let us define the ¢race of x by Tr(x) = Tr(m,) and the norm of x by N(x) = det(m,,).
Let z1,...,2, € K. Let us denote by D(x1,...,z,) the determinant of the matrix T'r(z;z;).
The following is well-known (see for instance [2], 2.6).

Proposition 3.1. Letx € K, and let x4, ..., x, be the roots of the minimal polynomial of K over F counted
with multiplicity [K : F(xz)]. Then Tr(z) =x1+ -+ + xp, and N(x) =21 -+ Ty

Let K be an algebraic number field. Then we have
Proposition 3.2. Let x € Og. Then Tr(z), N(x) € Z.
Proof. This follows from the previous proposition, and from the fact that Ox N Q = Z. O
Definition 3.3. The discriminant of the number field K is by definition
disc(K) = Dk (e1,...,en)
where {e1,...,e,} is a basis of the free abelian group Ok.

It is easy to see that this does not depend on the choice of the basis {e1, ..., e,}. Indeed, if {f1,..., fn}is
another basis, then Dk (eq,...,e,) and Dg(f1,..., fn) differ by the square of the determinant of the change
of basis matrix A. As A is integral and invertible, det(A) = 41, so det(A)? = 1. Hence Dk (e1,...,e,) =

D (fi,---y fn)-

For more details concerning discriminants, see for instance [2], 2.7.
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Example 3.4. Let K = Q(V/d) be a quadratic field. Let # = a 4+ bv/d with a,b € Q. Then Tr(x) = 2a and
N(x) = a? + db®.
If d = 3 (mod 4), then disc(K) = 4d, and if d = 1 (mod 4) then disc(K) = d.

We also need the notion of norm for ideals :

Definition 3.5. Let I be an ideal of Og. Then we define the norm of I as being the number of elements of
Ok/I.

Proposition 3.6. If I = aOg for some o € Ok, then N(I) = |N(a)|.

For a proof, see for instance [2], 3.5.

4 Euclidean division and principal ideal domains

We proved that Z[i] is a principal ideal domain by showing the existence of Euclidean division in this ring.
Both notions make sense for arbitrary rings of integers, but they don’t always hold, nor are they always
equivalent.

Definition 4.1. Let K be an algebraic number field and let Ok be its ring of integers. We say that K is
Euclidean (or that Og is Euclidean) if for all a, 8 € Ok with 8 # 0 there exist v and 0 in Ok such that
a = v+ ¢ and that |[N(5)| < |N(8)|-

It is easy to see that if K is Fuclidean, then Ok is a principal ideal domain — the proof we saw for
the Gaussian integers works in general. However, the converse is not true in general : for instance, if
K = Q(v/—19), then Ok is a principal ideal domain but is not Euclidean.

On the other hand, being a principal ideal domain is equivalent to having unique factorization :

Proposition 4.2. Let K be an algebraic number field and let O be its ring of integers. Then Ok is a
principal ideal domain if and only if Ok has unique factorization.

These equivalent properties do not always hold, as shown by the following example :

Example 4.3. Let K = Q(v/—6). Then O = Z[/—6)]. The element 6 € O has two different decompo-
sitions into products of irreductible elements of Ok, namely

6=2-3=+v-6-(—v/-6).

Let us check that 2,3 and v/—6 are irreducible elements of Og. If for instance we had 2 = o8 with «, 8 € Ok
and neither o nor 8 invertible in Ok then N(2) =4 = N(a)N(8) and N(a) # 1, N(8) # 1. This imples
that N(a) = 2. If @ = a + by/—6, a,b € Z, then N(a) = a® + 6b%, and clearly this cannot be equal to 2.
Hence 2 is irreducible. Similarly, we show that 3 and v/—6 are irreducible.

It is a basic problem in number theory to decide which algebraic number fields K have principal rings of
integers.

5 Ideal class groups

As we saw in the previous section, unique factorization does not always hold in rings of integers of algebraic
number fields. However, such a property exists at the level of ideals. The results below can be found in most
books on algebraic number theory, for instance [2], Chap.III.

Let K be an algebraic number field and let Ok be the ring of integers of K. Recall that if [ and J are
ideals of Ok, then the product I.J is the set of finite sums of products ab with a € I and b € J.

Theorem 5.1. Let I be an ideal of Og. Then there exist distinct prime ideals Py, ..., P. and positive
integers e; such that
I=P*.. P
Moreover, this decomposition is unique up to permutation.
It is also useful to note the following :

Proposition 5.2. An ideal of Ok is mazimal if and only if it is prime.

In order to go further, we need the notion of fractional ideal :
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Definition 5.3. A fractional ideal of K is a subset I of K such that there exist a € Ok and an ideal J of
Og such that of = J.

Proposition 5.4. For any prime ideal P of O, there exist a fractional ideal P’ such that PP’ = O.
The ideal P’ is called the inverse of P and is denoted by P~!. With this notation, we get the following

Theorem 5.5. Let I be an ideal of Og. Then there exist distinct prime ideals P, ..., P, and integers e;
such that
I=P7*. . P,

Moreover, this decomposition is unique up to permutation.

This shows that all fractional ideals of K are invertible, and hence the set of fractional ideals of K is a
group. Let us denote this group by Zx, and let Px be the subgroup of principal fractional ideals.

Definition 5.6. The ideal class group of K is by definition the quotient group Cx = Tx /Pk-
Theorem 5.7. The group Ck is finite.

Definition 5.8. The class number of K is by definition the cardinal of the finite group C'x. It is denoted
by hK.

Note that hx = 1 if and only if the ring Ok is a principal ideal domain. It is an important open question

whether or not there are infinitely many algebraic number fields K with hx = 1. The conjectured answer is

“ 29

yes

6 Decomposition of prime numbers in algebraic number fields

In our discussion of sums of two squares, we needed to know which prime numbers remained prime (equiv-
alently, maximal) when extended to the ring of Gaussian integers. We will now examine this question in
general. For the proofs of the results given below, see for instance [2], 5.2.

Let K be an algebraic number field of degree n, and let Ox be the ring of integers of K.

Let p be a prime number. Then there exist distinct prime ideals P; and positive integers e; such that

pOg = P1€1 ...Pfr.

We say that p ramifies in K (or that it is ramified in K) if there exists an ¢ with e; > 1. The integer e;
is called the ramification index. Otherwise, we say that p is unramified in K. This notion is related to the
discriminant

Theorem 6.1. A prime number p ramifies in K if and only if p divides disc(K).
This immediately implies that a number field has only finitely many ramified primes.

Example 6.2. Let K = Q(v/d) be a quadratic field, and let p be a prime number. If p = 1 (mod 4), then
disc(K) = d, hence p ramifies in K if and only it divides d. If p = 3 (mod 4), then disc(K) = 4d, hence 2
and the prime divisors of d are ramified.

Definition 6.3. Let P be a prime ideal of Og. The number fp = N(P) is called the residual degree of P.
Set f; = fp,. Then we have
Theorem 6.4. For any prime number p, we have e1 f1 + -+ -+ e, f, = n.

Let us denote by G(K/Q) the set of field automorphisms of K that are the identity on Q. Recall that
K/Q is Galois if the number of elements of G(K/Q) is equal to n, the degree of the extension K/Q. If this
is the case then we say that K is a Galois number field.

Proposition 6.5. Suppose that K is a Galois number field. Thene; =e and f; = f foralli=1,...,7.
In particular, the formula of the previous theorem becomes efr = n.
Definition 6.6. Let p be a prime number. We say that p is inert in K if pOx = P is a prime ideal.

In other words, we have r = e = 1. Note that this implies that f = n.
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7 An example — cyclotomic fields

Let p be a prime number, and let ¢ be a primitive p—th root of unity (that is, (¥ = 1 and ¢ # 1). Set
K = Q(¢). This field is called the pth cyclotomic field.

Set ¢,(X) = XP~1+..-+ X +1 € Z[X]. Note that X? — 1 = ¢,(X)(X — 1), hence ( is a root of ¢,. We
have

Proposition 7.1. The polynomial ¢, is irreducible.
This follows from Eisenstein’s criterion, see for instance [2], 2.9.
Corollary 7.2. We have [K : Q) =p—1.

Proof. Indeed, as ¢ is irreducible, we have K ~ Q[X]/(¢(X)). But the degree of ¢ is p— 1, hence [K : Q] =
p—1. O

The following properties are proved for instance in [2], 2.9.
Proposition 7.3. The ring of integers of K is Ox = Z[(].
Proposition 7.4. The discriminant of K is pP~2.

This implies that the only ramified prime is p. We have pOx = pP~!, where the prime ideal P is principal
generated by ( — 1. Wehaver = f=1ande=p—1.

8 The canonical embedding of an algebraic number field

Let K be an algebraic number field of degree n, and let Ok be its ring of integers. It is interesting to study
the Q-linear embeddings o : K — C. Some of these have their image contained in R, and these are called
real embeddings of K, the others are called imaginary embeddings of K. If o is an imaginary embedding,
then so is its complex conjugate @, hence imaginary embeddings come in pairs. Let r; be the number of real
embeddings and 2r5 the number of imaginary embeddings of K. Then we have r1 + 275 = n (see for instance
[2], 4.2.).

Example 8.1. Let K = Q(v/d) be a quadratic field. If K is real, then r; = 2 and 75 = 0, whereas if K is
imaginary then r; = 0 and ro = 1.

Let
01,...,0n : K =R

be the real embeddings of K, and let
Ory+1s--- 70'7'1-‘1-7'2767'1-"-17 s 757‘1-"—7‘2 K —C

be the imaginary embeddings of K. The canonical embedding of K is by definition

c: K —-R"
defined by o(z) =

(01 (x)v vy Oy (l’), Re(arl-‘rl(x))? Im(arl-i-l(x))’ s 7Re(JT1+T2 (CC)), Im(UT1+T2 ($)))

Let us recall that a lattice of rank n is a discrete subgroup of R™ that contains a basis of R™. The
covolume of a lattice is by definition the volume of any fundamental domain (cf. for instance [2]. 4.2). Then
for any ideal I of Ok, o(I) is a lattice of rank n.

Using these observations, we can apply geometric methods to obtain arithmetic results. One of the basic
relations between geometry and number theory is the following

Proposition 8.2. The covolume of 0(Ok) is the absolute value of the discriminant of K.
Using geometric methods, one obtains information concerning class numbers, for instance
Theorem 8.3. (Minkowski bound) Every ideal class contains an integral ideal I with

4 n!
N(I) < (2)2—|disc(K)|Y2.
()_(ﬂ) nnl isc(K)|

Cf. [2], 1.3. Using the same method, one obtains other finiteness results, for instance that there are only
finitely many algebraic number fields with a given discriminant.
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Mathematics and Gender Studies: an Overview

Andrea Blunck
University of Hamburg

Abstract

Mathematics and gender studies seem to be two disciplines that are far away from each other. The
category “gender” does not seem to play any role in mathematics. So it is difficult to access mathematics
from a gender studies perspective, and research on mathematics and gender is mostly concerned with
meta-mathematical topics. I subdivide the research on mathematics and gender into four areas:

1.

history of mathematics,

2. didactics of mathematics,
3.
4

. feminist science studies on mathematics.

mathematics as field of study or work,

In areas 1 - 3 there has been done quite a lot of work. For each of these areas I will present some
typical questions and some interesting results. Research in area 4, however, is only at the beginning.
Possible questions are: Does gender matter when a mathematical theory comes into being? Does math-
ematics participate in the construction of gender? I will present some more possible questions and some
approaches how to tackle them.
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Teaching Mathematics and Gender at the University

Andrea Blunck
Hamburg

Abstract

In this talk I will explain what it means to teach “mathematics and gender studies” at a German
university mathematics department. I will present the gender-related courses I give, namely:

e Women in the History of Mathematics,

e Gender and MIN (Mathematics, Informatics, Natural Sciences; joint course with Ingrid Schirmer,
Dept. of Informatics),

e various seminars.

Moreover, I will explain why I think it is useful for students of mathematics to learn something about
gender and mathematics.
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Abstract

The aim of these notes is to demonstrate, by way of examples, how the techniques of Adaptive
Dynamics can be used to study the evolutionary dynamics of infectious diseases. We focus on evolution
of a single phenotypic trait, namely the disease induced death rate, or virulence. In a series of worked-out
examples, we introduce the basic notions of Adaptive Dynamics and follow (some of) the development of
evolutionary epidemiology through the years. We begin with the so called single infection model, discuss
the conventional evolutionary wisdom and the trade-off hypothesis. Later on, we focus on the role of
multiple infections in the evolution of infectious diseases. We investigate in more detail a superinfection
model and discuss how the details of the superinfection process shape the course of evolution. In the last
part of these notes, we introduce an example of a nested model that explicitly links the epidemiological
dynamics at the host population level to the dynamics of infection in a single infected host. Such a
nested model allows us to derive the precise form of the superinfection probability from the underlying
mechanistic submodel of within-host dynamics.

1 Introduction

In 1973, the Russian evolutionary biologist Theodosius Dobzhansky wrote in one of his essays: “Nothing in
biology makes sense except in the light of evolution” [21]. This is especially true for microorganisms, such as
bacteria and viruses, for which it is now clear that evolution occurs not only on ecological time scales, but
even during a course of an infection of a single infected host. For HIV-1 virus, for instance, the mutation
rate per base pair is of the order of 107> to 10~%. It is estimated that 10° replication cycles occur per day
within a single infected individual, which means that a tremendeous selection pressure is exerted on the virus
even during the course of a single infection [45, 46, 50]. Another example of the rapid evolution of pathogens
are bacteria which have developed resistance to antibiotics, e.g. Methicillin-resistant Staphylococcus aureus
(MRSA), Vancomycin-resistant Staphylococcus aureus (VRSA) or Vancomycin-resistant enterococcus (VRE)
(6,9, 12].

Natural selection acts on pathogens on several different levels. At the host population level, for instance,
pathogens compete for susceptible hosts. These can either be uninfected, or, if multiple infections are
possible, can also include already infected hosts. At the within-host level, pathogens compete for, for
instance, uninfected target cells and even for resources within a single cell. These different levels of selection
are interrelated and ideally, evolution of pathogens should be investigated by taking the different levels
into account. However, this very quickly leads to complicated models. Traditionally, mathematical models
explore selection pressures only at the host population level [5, 8, 13, 14, 26, 33, 34, 37, 40, 42, 47, 48, 51|,
but the importance of the so called nested (or embedded) models has increasingly been realized in the recent
years [1, 2, 7, 11, 29, 39]. In these notes, we start simple by investigating the selection pressures at the
host population level (i.e., by ignoring within-host dynamics). Later on, we present an example of a nested
model that explicitly links the within-host pathogen dynamics to the traits that determine the spread of the
infection at the host population level (e.g. virulence and transmissibility).

It is well documented that selection acts not only on different levels but also on different pathogen traits,
such as for instance, the rate of pathogen reproduction within a host, the rate of evasion from the immune
system, the infection induced death rate [32, 43, 52, 54]. In the first part of these notes we focus only on
evolution of the disease induced death rate (virulence). When an explicit model of within-host dynamics is
embedded into the epidemiological model, virulence will naturally be related to within-host production rate
of the pathogen and we will thus focus on evolution of intra-host pruduction rate.

Clearly, some pathogens (such as the virus causing the common cold) are virtually avirulent, while others
(for instance, the ebola virus) are almost always lethal. What are the factors that determine the levels of

* Acknowledgement. This work was supported by the Academy of Finland (Finnish Centre of Excellence in Analysis and
Dynamics Research)
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virulence of various pathogens? Extensive studies of different aspects of pathogen dynamics have shown that
several mechanisms may explain the very different evolutionary paths of pathogens. Transmission mode (i.e.,
the way in which the pathogen is transmitted from one host to another) and host population regulation, for
example, are known to play an important role in the evolution of pathogens [8, 18, 23, 24]. Another factor
that plays a significant role, and one that we shall investigate in more detail in these notes, are multiple
infections of the host. In general, a host that is already infected by some strain is not completely immune to
infections by different strains. It seems reasonable to expect that the success of a reinfecting strain depends
on several things, for instance, the difference in within-host competitive ability with the resident strain, the
reinfection dose or the host susceptibility to another infection (this can either be reduced due to some partial
immunity the first strain confers or increased because the host’s immune system is weakened by the first
infection). It is thus important to understand how different assumptions regarding the reinfection process
shape the course of pathogen evolution.

Apart from a few introductory examples we mainly focus on the role of reinfection (in particular superin-
fection). We refer the reader to [18, 8, 23, 24, 47] and the references therein for some studies of other aspects
of the evolutionary dynamics of infectious diseases.

Throughout the notes we use the tools of Adaptive Dynamics [27, 28, 19]. The reader who is not familiar
with the terminology of Adaptive Dynamics can consult the boxes, where the basic notions are explained.

2 The basic model

We base the examples on a simple SI (Susceptible - Infected) model. Our basic assumptions are:

(i) The population birth rate is constant and is denoted by b. All newborns are susceptible.
(ii

) Susceptible individuals die at a constant per capita rate d.
(iii) Infected individuals die at an increased per capita rate d + «.
)

(iv) New infections occur according to the Law of Mass Action. That is, the rate at which an infected indi-
vidual infects susceptible hosts is proportional to the abundance of susceptible hosts in the population,

BS.
(v) Infected hosts become infectious at the moment of infection.

The disease induced death rate « is often called virulence (see however [10, 53] for other meanings of the
term virulence). Note that assumptions (i) and (iv) imply that the pathogen is transmitted only horizontally
(i.e. from one host to another) and not vertically (from the mother to a newborn child). Note also that
we did not include any recovery which means that we limit ourselves to chronic pathogens (see [47] for a
comparable study in the context of an SIR model).
If we denote by S and I the abundance of, respectively, susceptible and infected hosts, we can translate
the above assumptions into the following system of ODEs,
ds
— =b—p5I—dS,
dt
T (1)
— =pSI—(d I
O = 55T~ (d+ )
System (1) has two equilibria: the infection free steady state,

b

S==, I=0
d7 b

and the endemic steady state given by

e Tt @
o B

The endemic equilibrium is biologically meaningful only when it is positive. This is the case precisely
when the basic reproduction ratio, Ro, is larger than 1. The basic reproduction ratio is defined as the
expected number of new infections caused by a single infected host in an otherwise uninfected population

[20]. In this case, Ro can easily be determined: since each infected individual is expected to live d%l units

S’: f:

of time and is in that time expected to infect g new individuals, we find that

b

Ro=Gid+a)
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The basic reproduction ratio also determines stability of the two equilibria. If Ry < 1, the infection free
steady state is the only biologically meaningful steady state and it is globally stable: when every infected
individual produces, on average, less than one new infection, then every introduction of the infection will
inevitably die out. If, on the other hand, Ry > 1, the endemic steady state is globally stable, while the
infection free steady state is unstable (cf. [20], Exercise 3.11).

Our aim now is to investigate how virulence o changes in the course of evolution. To keep things simple,
we shall assume that the host does not coevolve with the evolving pathogen. That is, the host parameters b
and d are assumed to be fixed.

3 Evolution of virulence in the context of a Single Infection Model

In order to study the competition of multiple pathogen strains (characterized by different values of «) in
a populations of hosts, we have to specify assumptions about how multiple strains are handled within a
single infected host. We begin with the simplest possible assumption, namely that a host infected by one
strain is completely protected from further infections (in other words, we assume complete cross immunity).
This yields the so called Single Infection Model. In a special case where only two strains (characterized by
virulence values «; and as) circulate in the population, we can describe the dynamics by

% =b— BSI, — BSI, — dS,

I

7; =pShH — (d+ a1)lh, (3)
dI

d—f = BSIL, — (d + az)ls.

Suppose that a mutant strain «,, is introduced into a population in which the resident strain «,. is
endemic. The mutant strain grows (or declines) according to

L, _

= (8S  (d+ @) I
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Box 1. Some basic notions of Adaptive Dynamics

The invasion exponent 7(z,y) is defined as the growth rate of a mutant population with trait y in the
environment set by the resident population with trait z. If the invasion exponent is differentiable as a function
of y in the point y = x, then the sign of the selection gradient

or

6y y=x
determines the direction of evolution from the resident trait . If it is positive, the trait will (at least locally)

increase in the course of evolution and if it is negative, the trait will (locally) decrease in the course of evolution.
Singular strategies are trait values in which the selection gradient vanishes, i.e.

or
8y y=x

A singular trait z* is called convergence stable, if a nearby strategy can be invaded (only) by traits that
are nearer to z*. That is, if x < z*, then r(z,y) > 0 for z < y < z*, while for z > z* the invasion exponent
is positive when z* < y < x. Convergence stable strategies are thus (local) attractors for monomorphic
evolutionary dynamics.
An evolutionarily stable strategy (ESS) is a strategy that cannot be invaded by neighbouring traits. That
is, * is an ESS if r(a*,y) < 0 for y € (z* —e,2* + €) with some € > 0. Despite the enticing ‘stable’ in its name,
an ESS may not be an evolutionary attractor. If it is, it is called a continuously stable strategy (CSS).
An evolutionary branching point is a singular strategy that is convergent stable, but not an ESS.
If the invasion exponent is differentiable twice, then the second partial derivatives allow us to classify the singular
points. In particular, if )

o%r

8y2 y=x=x* <0,
the point z* is an ESS. If

0%r 9%r

oy? ‘y:x:x* oz2 ‘y:zc:ac”‘7

then z* is convergence stable. A singular point for which
82r‘ S 827"’ >0
Ox2 y=z=x* 8y2 y=z=x*

is a branching point.

Two basic assumptions of Adaptive Dynamics are that (i) mutants are introduced in small numbers and
(i) mutations are rare on the ecological time scale. The first assumption allows us to view the abundance
of susceptibles S as depending only on the resident strain, «,.. That is, the mutant is so rare that it initially
doesn’t influence the environment into which it is introduced. The second assumption allows us to presume
that the resident population has reached an equilibrium, S (cv).

The invasion criterion can thus be formulated in terms of the invasion exponent: if the per capita growth
rate of a mutant a.,, that is introduced into the resident population infected with a.,

s(ar, am) = 6‘§<ar) —(d+am) (4)

is positive, the mutant will invade, while the invasion fails if s(a;., @y, ) is negative. This is indeed the case
when we model invasions deterministically. If the model was stochastic, the invasion would still fail when
the growth rate of the mutant is negative. With a positive growth rate, however, the mutant succeeds only
with some positive (but smaller than 1) probability since the mutant may go extinct because of demographic
stochasticity while it is still rare.
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Box 2. Pairwise invasibility plots

Pairwise invasibility plots (PIPs) are a handy way of representing graphically the ability of a mutant trait
to grow in the resident community. A PIP is constructed by plotting the sign of the invasion exponent r(z,y)
for all feasible pairs (x,y) of (resident, mutant) trait values.

If the resident population is at a stable equilibrium, then 7(z,z) = 0 and so the zero contour lines contain at
least the main diagonal. The shapes of other zero contour lines, if there are any, contain important information
about the course of evolution. In particular, singular points are found as intersections of zero contour lines with
the main diagonal. If we now imagine that black and white regions in the PIP represent the regions where the
invasion exponent is, respectively, negative and positive, then the ‘character’ of a singular strategy can easily
be recognized from a pairwise invasibility plot. Namely, if * is to be an ESS, and hence uninvadable by the
neighbouring strategies, the straight vertical line through (z*,z*) must lie, at least locally, in the region where
the invasion exponent is negative, i.e. in the black region. The singular trait z* is convergence stable when the
regions left of (z*,z*) are, at least close to the diagonal, white above the diagonal and black below the diagonal
(i.e. z* is locally attracting from the left), while the regions right of the point (z*,z*) are (at least close to the
diagonal) black above the diagonal and white below the diagonal (in other words, x* is locally attracting from
the right).

We can reformulate the invasion criterion in terms of the basic reproduction ratio: the mutant «,,, invades
if the basic reproduction ratio of the mutant in the environment set by the resident,

Ro(S(ar). ) = 200 o)

exceeds 1, while the invasion fails if ’RO(S”(aT), am) < 1.

3.1 Conventional wisdom.

It was believed for a long time that all pathogens would eventually evolve to be benign to their hosts. The
words of the French-American microbiologist René Dubos (1965) reflect this, in that time widely accepted,
idea: “Given enough time, a state of peaceful coeristence eventually becomes established between any host
and parasite.”

In the context of our model, evolution to avirulence is certain if we assume that transmisibility § and
virulence o are independent of one another. Using (2) and (4) we can then write the invasion exponent as

5(Qtry am) = BS(ay) — (d + ) = @ — Qi (6)

Hence, mutants that decrease virulence are successful, while those that increase it are not. Assuming
that mutualism is not possible (that is, « is always nonnegative), we conclude that evolution indeed drives
virulence towards zero. We thus recover the so called conventional evolutionary wisdom: pathogens evolve
to become avirulent. Figure 1 shows the (very trivial) corresponding pairwise invasibility plot.

3.2 The trade-off hypothesis

Supporters of the avirulence hypothesis argued that the reason we still observe virulent microorganisms
today is simply that the process of pathogen adaptation to their hosts has not been long enough. However,
there are many examples of host-parasite systems with very long coevolutionary history in which pathogens
have not evolved towards avirulence [25, 31].

The first breaktrough in our understanding of why this could be the case came in the early 1980’s with
the work of Anderson and May [3, 4, 36, 37] and Levin and Pimentel [34]. What they suggested was a
trade-off between virulence and transmissibility, essentially reflecting the idea that ‘you don’t get something
for nothing’: pathogens aim to increase transmission to new hosts, but cannot do so without simultaneously
harming the host, i.e. increasing the host’s death rate.

The trade-off hypothesis was doubted at first, mainly due to the lack of empirical support. However,
there is now good experimental evidence that such trade-offs exist [16, 17, 22, 35, 41, 55]. Note, however,
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Figure 1: Pairwise invasibility plot corresponding to the invasion exponent in (6). White represents the
regions where the mutant can invade, while the invasion fails in black regions. Pathogens can persist in
the population when Rg > 1, which is equivalent to a < 8 — §. Evolution drives the pathogens towards
avirulence.

that the lack of empirical support for the existence of a trade-off between transmissibility and virulence in
any particular case may simply be due to the fact that the harmful effects of the pathogen on the host
manifest themselves in some other form, for instance in decreasing host’s fecundity [44, 49].

So let us suppose that there exists a trade-off between virulence and transmission rate and let us see
what this means for the evolution of the pathogen. A mutant strain «,, can invade when

s(ry ) = 6(am),§'(ozr) —(d+am)>0 (7)
where
A _d+ta
() = By

Thus, the mutant succeeds if it decreases S() set by the resident. Since s(ay, ;) > 0 implies that
s(ar, am) < 0 (i.e., the resident cannot invade back), the evolution proceeds, in a series of trait substitutions,
towards a local minimum of S(«). The traits that (locally) minimize the steady state abundance of susceptible
hosts are necessarily uninvadable and thus represent the possible end points of evolution, i.e., the continuously
stable strategies.

The ultimate evolutionary winner is thus the strain that is able to persist in the worst possible environ-
ment, i.e. with the least amount of susceptible hosts. This is sometimes called the pessimization principle
[19]. Note, incidentally, that minimization of S is equivalent to maximization of the basic reproduction ratio.
The evolutionary winner is therefore the trait that (locally) maximizes Ry.

The precise conclusions about the outcome of evolution will depend on the shape of the trade-off function
B(«). If the trade-off is concave then there exists a single maximum of Rg. If 5(«) is convex, then there are
no maxima of Ry. There may, however, exist a single minimum. This minimum is an evolutionary repeller
and represents a separating point for evolutionary outcomes: if the starting virulence is below the value
that minimizes R, evolution will drive virulence towards zero, while a starting point above the threshold
virulence level means that virulence increases indefinitely. In Figure 2 we present the pairwise invasibility
plots for two choices of G(c).

Remark 3.1. Evolution acts as an optimization only in a very special case, when the dimension of the
environment equals one [38]. This is the case here where the only environmental variable for the pathogens is
the abundance of susceptible hosts, S. This simplicity comes not only because of the assumption of complete
cross-immunity between strains but also because of the very simple demography of the host population.
Once more realistic assumptions of density dependence in birth or death rates are included, the evolutionary
dynamics becomes richer and we no longer find optimization. We refer the reader to the studies of Pugliese
[48] and Svennungsen and Kisdi [51], where density dependence was taken into account. This shows that
demography plays an important role in the evolution of pathogens.
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Figure 2: PIPs corresponding to (7) and (a) a concave trade-off function 8(a) = 35, (b) a convex-concave

trade-off function (o) = W with A =2 B =0.1,C = 0.4. In (a), evolution drives virulence to
some intermediate value, denoted by a*. In (b), the point & is an evolutionary repeller: traits starting below

this value evolve towards zero, traits above evolve towards the continuously stable strategy a*.

4 The superinfection model

In this section we relax the assumption of complete cross-immunity and consider the possibility of reinfections.

Multiple infections within a single host can be modeled in different ways. Superinfection models assume
that within-host dynamics is fast compared to processes at the host population level. If an individual infected
by strain « is reinfected by another strain «s, then the better within-host competitor immediately ousts the
other strain and takes over the host (here we have in mind a very simplistic within-host scenario where, in
the long run, only one strain can persist inside a host). Coinfection models, on the other hand, incorporate
also the transient dynamics where the host harbors both strains «; and as.

Since there will always be a period in which a reinfected host harbours more than one strain, coinfection
models may be argued to be more realistic than superinfection model. The added realism, however, does
not come for free and the models very quickly become untractable when the number of strains increases. In
these notes we limit ourselves to studying the superinfection models and refer the reader to [40, 18] for a
study of virulence evolution in the context of a coinfection model and for a derivation of superinfection as
the limiting case of a coinfection process.

To include the possibility of superinfections we extend the single infection model with two strains to

% =b—B(o)SI — B(az)SIy —dS,
% = f(c1)ST + Blar)(as, ar) 112 — B(a2)P(ar, o)1 Is — (d+ a1)]q, (8)
% = B(as)STs + Blaa)y(an, ao) 1 Ir — Blar)yp(an, a1) 11> — (d + as)Is,

where 1 denotes the superinfection function. More precisely, we define

(o, an) := the probability that, upon reinfection, the newly infecting

strain ag takes over the host that is already infected with «;.

Remark 4.1. The model could in principle include a rather more general description of a superinfection. For
instance, instead of 3(a2)1 (a1, as), one could write S(ag)y (a1, as)o(ar) to take into account the fact that
already infected individuals may differ in their susceptibility to an infection from uninfected individuals.
If 0 < o(aq) < 1, then infection with oy has conferred some partial immunity and the individual is less
susceptible to infection with ap than an uninfected host. If o(a;) > 1, on the other hand, the host resistance
to infection by oy has decreased because of the existing infection by «;. Such modifications would be easy
to include, however, to keep the presentation simple, we choose not to do so.

We shall in fact assume that the probability of superinfection depends only on the difference of the two
strains. That is, we shall write

1/1(01702) = ¢(062 - 041)
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and, to shorten the notation, we define

CI)(OQ, az) = 5(C¥2)¢(0l2 - 041) - 6(al)¢(a1 - 042). (9)

The invasion exponent now takes the form

r(a, am) = B(am)S(a,) — (d+ am} + D (a, am)I () (10)
= s(ap, am) + (ap, am)I (),

where s is the invasion exponent from the single infection model. Note that the resident equilibrium is
the same as in the basic model since the resident is assumed to consist of one strain only and thus no
superinfections take place.

The assumptions regarding the superinfection function are now crucial and, as we shall see below, different
choices can lead to very different evolutionary outcomes. Note that, since mutations are assumed to be small,
the outcome of invasion relies only on the behaviour of ¢ in the vicinity of zero (the shape of ¢ away from
zero, however, plays a role in global and in polymorphic dynamics; see [8]).

We assume that the superinfection function is a nonnegative, increasing function and consider the fol-
lowing three classes of superinfection functions:

(A) ¢(a) =0 for a <0, ¢ has a jump discontinuity in a = 0,

(B) ¢(o) =0 for o < 0, ¢ is continuous in a = 0 and is differentiable twice in zero from the right with
¢4 (0) >0,

(C) ¢(0) > 0, ¢ is differentiable.

Selection gradient exists in cases (B) and (C). We find that a singular strategy o* satisfies

or Os

aam am=a,=a* aam

+ ®ol(a*) = B (a*)S(a*) — 1 + Dol (a*) =0, (11)

A= r=a*

where

B (a*)é(0) + 28(a*)¢’(0), in case (C),

Since ((a) is assumed to be increasing we see that ®; > 0 in both case (B) and case (C). It is then clear
from (11) that superinfections drive virulence beyond the point that maximizes Rg. In other words, when a
host can be superinfected, pathogens evolve to be more virulent than when there is complete cross-immunity
between strains.

The three classes of superinfection functions give very different evolutionary outcomes. In the examples
that follow we give some biological motivation for a particular class and study the corresponding adaptive
dynamics.

o= { B(a*)¢! (0), in case (B)

4.1 Case A

We first consider the case where ¢ is zero on (—oo, 0] and moreover has a jump discontinuity at zero. One
may, for instance, have in mind

0, a<O0,

ba) = { bt (12)

which corresponds to the deterministic description of an invasion: reinfection with a more virulent strain
succeeds with probability 1, while a reinfection with a less (or equally) virulent strain always fails.

The discontinuity at the origin implies that even a slightly larger mutant strain will successfully invade
the resident strain in the population and that the less virulent strain can never invade back. Indeed, for
am = ap £ ¢, the term ®(a,, ) in (10) is O(1), while s(ay., auy) is of the order O(e), and so it is the
sign of ® (., ;) that determines the outcome of an invasion. Evolution thus increases virulence with every
successful mutation. In the long run, therefore, virulence increases either indefinitely or to the maximum
virulence level that still allows the infection to persist in the population. As we have seen in the previous
section, the convexity of the trade-off determines which of the two scenarios applies.

The evolution of virulence in the context of a superinfection model with a discontinuous superinfection
function has been studied already in the 1990’s. In their 1994 paper [42], Nowak and May consider the
superinfection functions of the form c¢ with ¢ in (12) and some ¢ > 0. They find that, assuming that
mutations are generated uniformly on some interval [(min, max], & continuum of strains can coexist on the
evolutionary time scale.
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Figure 3: Case (A), superinfection function is 2¢ with ¢ in (12): (a) PIP corresponding to 8 = 2, (b) regions
of mutual invadability in (a) are depicted in white, (c) PIP corresponding to 3(a) = 122 (d) regions of

a+1?
coexistence in (c) are depicted in white.

Adaptive Dynamics, on the other hand, assumes more realistically, that the mutants arise locally around
the strains that are already present in the population. In Figure 3, we present the pairwise invasibility plots
corresponding to the superinfection function 2¢ with ¢ as in (12). We moreover consider two choices of §: in
the top row (Figures 3a and 3b) we consider a constant transmissibility § while in the bottom row (Figures

3c and 3d) we take 5 = (}%ﬁ

As predicted, we observe increase of virulence in the course of evolution via a series of trait substitutions.
For comparison, we note that in the case of a constant transmission rate, the single infection model predicts
evolution towards avirulence (i.e. a = 0; see Figure 1), while the second choice of 5 would lead to some
intermediate level of virulence (cf. Figure 2a). When virulence evolves into vicinity of amayx (the maximum
virulence value that still allows persistence of infection in the population), however, some pairs of strains
(a1, an) are mutually invadable, which means that both r(a, az) and r(ag, ap) are positive (i.e., both (aq, )
and (ao,aq) fall into the white region of the PIP; see Figures 3b and 3d). In the case of constant 3, this
region is more easily accessible by small mutations around the boundary auyax-

Thus, we find coexistence of two strains. What happens with dimorphisms on the evolutionary time scale?
Since the environment the pathogens experience has now become three dimensional (set by s, Ia1 , Iaz) it is
now in principle possible that a third strain could coexist with a;; and as. The dimension of the environment
then increases to four, so there is a possibility of the fourth strain, and so on. However, the dynamics of
polymorphisms has, to our knowledge, never been investigated in the context of this model and we thus end
here the discussion of Case A.

4.2 Case B

We now assume that the superinfection function is continuous in @ = 0. As we shall see in the following
section (when the within-host dynamics is taken into account), the continuity of the superinfection function
at the origin arises naturally when we consider the reinfection process as a stochastic event.
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Figure 4: (a) Pairwise invasibility plots corresponding to Example 4.2: B(a) = 10 and ¢(a) = ;55 for
a > 0, (b) The regions of coexistence (depicted in white), along with isoclines that depict the evolution of
dimorphisms. The isocline Mbm:al = 0 is depicted with a full line (in the interior of the white
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region), while the dashed line represents the isocline W\amzw =0.

o101 (d) ® (@)

0.05 \ '

—0.05 - v\

© W

-0.10 -

Figure 5: Plots of (a) r(a*, am), (b) R(a*,2,am), (¢) R(a*,1,ay,) and (d) R(1,2, am).

Even though the superinfection function may not be differentiable, the selection gradient exists and is
given by
or 0s .
= + B(ew) ¢, (0)I (), (13)

a@m Q=0 aOém Q=0

which means that the singular strategies can be determined by calculating the points in which the selection
gradient vanishes. Note that, if ¢/, (0) = 0, the singular strategies coincide with the ones obtained from the
single infection model.

Since r isn’t differentiable twice we cannot characterize the singular strategies in the usual way, however
we can write

o {ﬂ”(a*>5'<a*> +20(@) (@) O + @A O, azat

N B (") 8 (o) — I(a*)B(a*) 10), a<at,

604271 am=a,=a*

Expression in (14) allows us to determine whether the singular strategies are invadable or not. The discon-
tinuity of ¢’ at the origin implies that the non-generic type of singular points, which are invadable from one

side but uninvadable from the other, may now be the rule rather than the exception. We demonstrate this
on two examples.

Example 4.2.
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Suppose that the transmission rate § is constant. Singular strategies are then given by

a*:i d.

. _
7o+
Furthermore, expression (14) simplifies to

0% { BI(a)¢(0), a>a

_Bf(a*) ,—&/-(0)7 a < Oé*a (15)

2
80% Am=a,=a*

In this case, the singularity will always be invadable from one side but not from the other. The curvature of
the superinfection function at the origin determines which of the two sides is invadable: if ¢’/ (0) > 0, then
the singularity is invadable from above and uninvadable from below, and vice versa if ¢’ (0) < 0.

RiYe’

In Figure 4a we show the pairwise invasibility plot corresponding to ¢(a) = ()%TH (for @« > 0 and

¢(a)) = 0 otherwise). The fact that ¢ is concave implies that the singular strategy o* = % is invadable from

below and uninvadable from above. Simple geometric arguments show that there must exist a region of
mutual invadability close the singular strategy. Hence, after evolution has brought virulence in the vicinity
of a* the population becomes dimorphic. To decide whether any such dimorphism would be converging
or diverging, we calculate the invasion exponent with two resident strategies, a; and s, R(aq, s, ).
Because of continuity of invasion exponent, the graph of R will be (for small perturbations) similar to the
graph of r and R will thus in a generic case have three roots. In Figure 5 we show the graphs of R for a few
choices of dimorphic residents. The nature of dimorphisms can, however, most easily be determined using
the isoclines

OR(ay, g, i) — 0 and OR(an, g, ) —0,

8am Qo =t 8am Q=g

which we show in Figure 4b. The isoclines, along with the arrows showing the direction of dimorphic
evolution, reveal that, in this case, dimorphisms are only of transient nature and eventually all converge
to the monomorphic singularity. Further numerical experiments (not shown here) reveal, however, that
divergent dimorphisms are possible as well in the context of this model (see also [7]).

Example 4.3.
Let us now consider the trade-off 5(a) = C%ﬁ and the superinfection functions of the form
&7 a>0
Pala) = aa+1 (16)
0, a<0,

for some a > 0. Note that ¢/, (0) = a and ¢/ (0) = —2a®. The parameter a therefore represents the slope
of the superinfection function at the origin (to the right). As we shall see in the next section, the slope of ¢
at the origin is related to the reinfection dose, i.e. the number of pathogens of the superinfecting strain. So
how do the singular strategies depend on the value of a?

In Figure 6 we show a series of pairwise invasibility plots corresponding to increasing values of a. Note
that the case a = 0 corresponds to the single infection model (superinfections are not possible) and we thus
recover the PIP in Figure 2a. The singular strategy is a CSS in this case.

When a increases, the singular point increases and moves towards to boundary apax. In the limit a — oo
we should recover the PIP from case (A) since for a — oo the superinfection functions converge to the step
function in (12).

Note that, both the trade-off function and the superinfection functions are concave. This implies that
the second derivative in (14) is always negative for a > o, which means that the singular strategy is never
invadable from above. For small values of a, the singular strategy is uninvadable also from below and is thus
a CSS. At some critical value a a bifurcation occurs and the singular strategy becomes invadable from below
(see Figure 7).

4.3 Case C

The case where ¢(0) > 0 corresponds to the situation where both the resident and the invading population
are assumed to be finite and subject to demographic stochasticity. Indeed, if N denotes the abundance of
the resident strain and n the number of newly introduced pathogens of identical virulence, then the new
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Figure 6: Pairwise invasibility plots corresponding to Example 4.3: G(«a) = (%"i and ¢, in (16) with (a) a =
0.01, (b) a = 0.7, (c) a = 2, (d) a =20.
infection settles with probability ¢(0) = &~ > 0. In reality, n will typically be very small. On the other

hand, N is large and in the limiting case, where N is considered to infinite we obtain ¢(0) = 0, as was
the case in previous examples. The additional assumption of differentiability in Case (C) is made purely to
simplify the analysis.

The case where ¢(0) > 0 was studied extensively by Pugliese in [48] and more recently by Boldin et al. in
[8] (where, in addition, different assumptions about the host population regulation were investigated). We
refer the reader to the papers for more details, here we only summarize the main findings.

As in Case (A) and (B), we no longer have optimization in the course of evolution (which can easily
be recognized by the loss of skew symmetry in PIPs). However, superinfections do not imply evolutionary
coexistence per se. By writing out the second derivative

9%r
Oa?

m

= 7"(a°)(8(a") + 6(0)) + 26 (0)/ (0)

QA =Qr=a*

we observe that the curvature of the trade-off plays a role in the characterization of singular strategies. It
was shown in [48] that, if the trade-off function belongs to a certain family of concave functions, the singular
strategy is unique and it is always a CSS, which means that dimorphisms, if they occur, are only of transient
nature and are eventually resolved in a CSS. As was shown by Boldin et al. in [8], branching points can
be found, even among the concave trade-offs. In [8] it was furthermore investigated how the assumptions
about the host population regulation influence the occurence of branching. This was done by investigating
in detail three population dynamics regimes, (i) the constant population birth rate (as we assume here), (ii)
constant population size and (iii) logistic population growth. Case (i) appears to be the most conducive to
branching. Branching is found also in other models, however, the convexity ranges of the trade-offs that
yield branching are narrower. Moreover, we found mutual exclusion, which is contrary to the common belief
that superinfections promote coexistence. We refer the reader to [8] for some more detailed examples and
for a discussion on the dynamics after branching.

Remark 4.4. In these notes we investigated the adaptive dynamics by choosing a particular trade-off. Using
the so called critical function analysis, one can turn the question around and ask: which trade-offs lead to
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Figure 7: Singular strategy a* as a function of a (Example 4.3). The black line shows the region where o*
is a CSS. The grey line shows the region where the singular strategy invadable from below, but not from
above.

a particular outcome (for instance, branching)? We shall not go into the details of critical function analysis
here but refer the interested reader to [8, 51] for examples.

5 Linking population dynamics to the dynamics within the host

Even though transmissibility 3 as well as virulence « are likely to be related to the individual’s within host
state of infection (such as for instance, the amount of viruses the individual harbors), our modeling thus far
ignored a detailed descripition of the infection within a host. As a consequence, we had to settle with some
phenomenological trade-off 3 = B(«) and superinfection function ¢.

In this secion we introduce an explicit model of within-host pathogen dynamics that follows the time
evolution of target cells and free pathogens. This will allow us to make more natural (and ultimately more
easily tested by experiments) assumptions about how transmissibility and virulence depend on individual’s
infection state. Moreover, such description will allow us to derive the superinfection function from the
mechanistic intra-host submodel.

This section is based on the modeling and analysis presented in [7].

5.1 A model of within-host pathogen dynamics

We describe the dynamics inside a single host using three variables: T, 7 and V represent, respectively, the
number of uninfected and infected target cells and the number of free pathogens. We assume that

(i) In the absence of infection, target cells are produced at a constant rate A and die at a constant per
capita rate 6.

(ii) Free pathogens inside a host die at per capita rate c.

(iii) Infections of uninfected target cells are described by the mass action term kV7T. That is, the rate at
which pathogens find uninfected target cells, successfully bind to the surface of the cell and/or enter the
target cell, is proportional to the product of the numbers of uninfected target cells and free pathogens.
Upon infection, the uninfected target cell and the pathogen that infected it, form an infected cell.

(iv) Infected target cells produce free pathogens at a rate p. This production comes at a cost, namely, it
increases the death rate of infected target cells by u(p). We assume that g is a nonnegative, increasing
function of the production rate p.

These assumptions yield the following system of ODEs,

ar _\ wvT T

dt
dT*

S = BVT — (6 + u(p)T" (17)
AV

& o kYT — V.

ar P ¢
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System (17) has two equilibria: the infection free steady state,

V=T*=0 and T:% (18)
and the nontrivial equilibrium given by
. c
Te =
k(Bo(p) — 1)
. Bo(p) cd
T = Am———— 19
» O KB D) 1)

- 2o-) -

Here, By stands for the so called burst size, i.e. the expected number of pathogens produced by one
infected target cell. If pathogens are produced at rate p, then

p

The nontrivial steady state given by (19) is biologically meaningful only when all three components in
(19) are positive. This is the case when the within-host basic reproduction ratio of a pathogen, RY (the
superscript w serves to distinguish it from the pathogen’s basic reproduction ratio at the host population
level) exceeds one. Ry is defined as the expected number of new pathogens produced by a single pathogen
introduced into a virgin cell environment. Since free pathogens need to enter uninfected target cells in order
to reproduce and since the probability with which the pathogen enters a target cell in a virgin environment
equals k)\ki-i\dc’ the within-host basic reproduction ratio of a pathogen with trait p equals

kA
= Ta g oc o)

When the nontrivial equilibrium exists, it is locally asymptotically stable, while the infection free steady
state is unstable in that case (see [15] for a global stability result).

We now consider the rate of pathogen production p as the (only) trait that is subject to natural selection.
All the other parameters in the within-host model will be kept constant throughout. We furthermore assume
for simplicity that, if a target cell is infected with one trait, it is protected from further infections. In other
words, we do not consider superinfections or coinfections at the cell level. Since this assumption implies
that the pathogens compete within a host for only one resource, i.e. uninfected target cells, the evolutionary
dynamics at the within-host level is very simple. Namely, when a mutant trait, say ¢, is introduced into
a host where the trait p is resident, the mutant is successful (according to the deterministic model) if and
only if it exploits the resource better than the resident, i.e. when T(q) < T(p) Note, incidentally, that
minimization of T'is equivalent to maximization of RY and also to maximization of By.

Ry (p)

5.2 The superinfection model revisited

We can now rewrite the superinfection model in the form

ds

— =b=B(p)SL, — 4(q)SI, — dS

% = B(p)SI, + (g, p)Iplq — (ap) + d) I, (20)
% = B(q)SIy + @(p, ) Iply — (alq) + d) 1y,

where now
®(p,q) = B(q)o(p,q) — B(p)d(q,p)

and the superinfection function ¢(p, q) is defined as

o(p, q) := probability that the reinfecting strain q wins the within-host competition
with strain p and takes over the host that is already infected by p.
As before, we could now investigate how different choices of superinfection function shape the course
of evolution. However, the mechanistic submodel of within-host dynamics now allows us to derive explicit

expression for the superinfection probability directly from the underlying branching process. We now present
the derivation.

56



5.3 The dynamics in the initial stages of a superinfection

In the initial stages of a superinfection, the invading trait ¢ is likely to be present only in small quantities.
Hence, even when T(q) < T(p) (and so the newly introduced trait has the potential to outcompete the resident
trait), trait ¢ may go extinct due to demographic stochasticity in the initial stages of a superinfection, when
it is still rare. We thus describe the initial stages of an invasion as a stochastic birth-and-death process. At
this point, lytic viruses have to be distinguished from the non-lytic (or budding) viruses. Here we present
the derivation of the superinfection probability only for non-lytic viruses and refer the reader to [47] for a
similar analysis of lytic viruses.

Suppose first that only one free pathogen with trait ¢ is introduced into a host that is already infected
by trait p. If we assume that the trait p resides at a stable equilibrium, then the new trait ¢ is introduced
into an environment given by the steady state value of T'(p),

~ Cc

T'(p) = EBolp) — 1)’ (21)

The probability that the clan of this initially introduced pathogen survives in an already infected host, is
given as the smallest fixed point of a generating function [30]. In order to compute it, we must first derive
the probabilities 7, with which one free pathogen with trait ¢ will produce n new pathogens.

In order to reproduce, a pathogen must bind to an uninfected target cell. This happens with probability

kT (p)
kT(p) +ec

When the pathogen enters a target cell, its survival relies on the survival of the target cell that hosts it.
The life span of a target cell infected with trait g is exponentially distributed with parameter (u(q) + d).
The infected target cell produces free pathogens according to a Poisson process with parameter gq. So the
probability density that an infected target cell lives ¢ units of time and in that time produces n offspring
equals
—(otu(a)t—at "

(0 + n(g))e et

Accounting for all possible times ¢, we arrive at the following expression for 7,

_ KT ~ (6 + u(q))e—(ﬂu(q))te—qt q"t" dt (22)
n kT (p)+c 0 n! ’

which is valid for n > 1. For the probability of having no offspring at all, however, we have to take into

account that the pathogen may never reproduce simply because it never enters an uninfected target cell.

Since the probability with which the pathogen dies before it binds to a cell equals m, we obtain the

following generating function G(z),

c (oo}
G(z)=———+ 2",
(2) ET(p) +c Z

n=0
which, by using (22) and interchanging the order of summation and integration, can be written as

B ¢ KT(p) 1
CKT(p)+c¢ kT(p)+c 1+Bo(g)(1—2)

G(z) (23)

The probability with which the clan of the invading pathogen goes extinct is given as the smallest solution
of G(z) = z (cf. [30]). Whether this solution lies in [0, 1], depends on the value of G'(1), which equals the
invaders within-host reproduction ratio in the environment set by the resident,

KT (p)

RBU(T(I’L q) = m

Bo(q).
If R¥(T(p),q) < 1, the clan will go extinct with certainty. If, on the other hand, R¥(T'(p),q) > 1, the
invasion will be successful with nonzero probability.

Let P(p,q) denote the probability of extinction of trait ¢, following an introduction of a single free
pathogen into an environment set by the resident trait p. Using (23) and (21) we obtain

c 1 . 1 1
c+ kT(p) * BO(Q)} - mln{l,l  Bolp) * m}

Pl = min {1,
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Thus, the invading trait has a nonzero probability of success only when its burst size exceeds the burst size
of the resident trait p. We also observe that (i) P(p,p) = 1, as it should be since the resident trait resides at
a stable equilibrium, and (ii) when By(q) — oo, the invading trait will survive with certainty, provided that
the pathogen initially introduced makes it to an uninfected target cell. The probability of extinction must
therefore equal the probability with which the pathogen dies before it enters a target cell. And indeed,

lim  P(p,q) = ———.
Bo(g)—o0 P.9) kT (p) + ¢

The complementary probability
¢1(p,q) =1—P(p,q)

is the probability that the clan of one free pathogen with trait ¢ survives in the environment set by the
resident trait.
When n pathogens are introduced, therefore, the probability of survival equals

_J1=Pp,9), Bo(p) < Bo(q)
9nlp.@) = { 0, otherwise 24)
or, rewritten in terms of 7'(p) and T'(q),
kT (p) KT(q) \" - ;
1-(1- L ‘ , 7 7
win={ " a0t ) =T (25)
0, otherwise

We observe that the superinfection functions are continuous, but not differentiable in ¢ = p. The fact that
they are increasing as functions of By(g), implies that the traits that significantly increase the burst size
also have a better chance of surviving in the host than the traits which are only slightly better within-host
competitors than the resident.

Note also that {¢,} is an increasing sequence for every resident strategy, that is,

bo(p;q) < ¢1(p,q) < Pa2(p,q) < ...

for every p. Thus, if p and ¢ are given, the larger the reinfection dose is, the better the chances of survival
of the mutant are.
In the limit, when the number of initially introduced pathogens goes to infinity, we have

. 1, T(q) <T(p)

T}LH;O 9n(p:0) { 0, otherwise,

i.e., the superinfection function is a discontinuous function which furthermore doesn’t discriminate among
the winning strategies: every trait that reduces the steady state level of target cells to a lower level than
the resident trait succeeds with probability one. Hence, when infinitely many pathogens with trait ¢ are
introduced, the deterministic description gives the full story: if the newly introduced trait goes extinct,
it is because it loses the competition within the host and not due to bad luck while still rare. In this
deterministic description, an even slighly better within-host competitor will outcompete the resident strain
and evolution will drive p towards the within-host optimum. Assuming small mutational steps, therefore,
the outcome of evolution at the population level will be the same as in a single infected host. Contrary
to the within-host evolution, however, we do not have an optimization model at the population level (we
refer to [7] for details). For comparison, we note that while the basic superinfection model predicted ever
increasing virulence, the superinfection model with a nested within-host submodel predicts evolution towards
the within-host optimum.

If, on the other hand, n approaches zero, the chance of a successful invasion becomes virtually zero. In
this case, therefore, superinfections play a negligible role. In the limit » = 0 we end up with the single
infection model.

For intermediate levels of n, the singular strategy lies inbetween the within-host optimum and the op-
timum of the single infection model. With increasing n, the singular strategy moves from the optimum of
the single infection model towards the optimum of the within-host model. Depending on the trade-off and
the reinfection dose n, the convergence stable strategies can either be uninvadable or invadable. However,
because of the fact that the superinfection function is merely continuous, we may again get singular points
that are invadable from one side only. If branching occurs, one of the two strains has very little room to
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evolve and remains virtually constant through the course of evolution. We refer the reader to [7] for examples
and more details.
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Abstract

These lectures will give an account of Local and Global Class field Theory as covered by Serre and
Tate in the classic book ‘Algebraic Number Theory’ by Cassels and Frohlich.
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Function Theories in Higher dimensions

Sirkka-Liisa Eriksson®

Abstract

There is a rich interplay between potential theory in the plane and complex function theory. In higher
dimensions potential theory is very well developed but extensions of one variable complex function theory
to higher dimensions has plenty of open problems. A higher dimensional generalization of the algebra of
complex numbers is a Clifford algebra which is the smallest extension of the Euclidean space R™ to an
associative algebra that inherits the algebraic, geometric and metric properties of the Euclidean space
R™. Tt is a generalization of the algebra of quaternions introduced by Hamilton around 1843.

In 1935 Fueter defined regular functions in the algebra of quaternions and was able to prove the main
theorems as Cauchy theorem, Cauchy formula and Laurent power series expansions. The key idea is that
a regular function is a conjugate gradient of a harmonic function. Delanghe in 1970 was able to prove
similar results in R" using Clifford algebras.

A generalization of the Laplacian is the Laplace-Beltrami operator defined on manifolds. We consider
hyperbolic harmonic functions with respect to the Laplace-Beltrami operator of the hyperbolic metric
ds? = x;2 POy dz?. An important fact is this hyperbolic distance is Mdbius invariant without any
conformal factor. Leutwiler noticed around 1990 that if the usual Euclidean metric is changed to a
hyperbolic one then the power function, calculated using Clifford algebra, is the conjugate gradient of the
a hyperbolic harmonic functions. We study generalized holomorphic functions, called hypermonogenic
functions, connected to the hyperbolic metric. They satisfy many similar properties as holomorphic
functions.
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Some generalizations of trigonometric functional
equations

Zywilla Fechner
Silesian University, Institute of Mathematics, Bankowa 14, PL-40-007 Katowice, Poland
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Abstract

We discuss some trigonometric functional equations for mappings defined on a group and taking
values in the field of complex numbers. Moreover, we will present some methods which are helpful in
solving these equations. First, we give some examples of applying spectral analysis to solve the cosine
functional equation, next we show that under certain assumptions Bochner Theorem can be used. Our
main goal is to introduce some integral-type generalizations of the cosine equation. The main tool in
solving this equation is a version of Wiener’s tauberian theorem. Finally, we give certain modifications
of these equations and pose some possible directions of further investigations.

1 Introduction

Observe that the function f(z) = cosx for = € R satisfies the following equation:

fx+y)+ flx—y)=2f(2)f(y), (1)

for all z,y € R, which justifies to call (1) the cosine functional equation. It is also known as d’Alembert
functional equation, since it was introduced by J. d’Alembert in [2]. Let us notice that we may consider
functions to be defined not only on the real line R, but also on an arbitrary group G. In the target space we
require addition and multiplication, thus we need a field or, in vector case, a ring or an algebra. In the next
section we discuss certain generalizations of (1), our aim is to present different methods which are useful in
solving the cosine equation.

Now observe that the pair (g(x), f(x)) = (sinz, cosz) for z € R satisfies

gz +y) +g(x—y) =29(zx)f(y) (2)

for all x,y € R. This equation is known as the cosine-sine equation or Wilson’s functional equation. Of
course, the foregoing remarks about the domain and the range of solutions remain valid in case of Wilson’s
equation. We discuss the form of solutions of equation (2) in Section 2.

There exist a number of generalizations of equations (1) and (2) in different directions. Pl. Kannappan
[9] investigated (1) for mappings defined on a group and taking values in the field of complex numbers, see
Theorem 2.1 below. Some results concerning d’Alembert functional equation on step 2 nilpotent groups are
due to H. Stetkeer in [15] and [16]. There are also known some generalizations for vector-valued functions
defined on abelian groups (cf. L. Rejté [13], S. Kurepa [11]) and for Wilson’s-type generalizations by S.
Kurepa [10] and by the author [6].

Another generalizations are due to W. Chojnacki in [4]. He has considered a d’Alembert-type equation:

/K f@+ hey)du(h) = f(2)f(y), 2.y €G 3)

and a Wilson’s-type equation:

/K gz +h-y)dv(h) = g(2)f(5). =y €G, (4)

where K is a compact group with a Haar measure v acting on a locally compact abelian group G with a
Haar measure m and functions f,g: G — C are m-measurable and essentially bounded. By the use the
Fourier analysis he found the explicit formula of f in (3) and (4) without giving a description of g in (4). If
we consider a locally compact abelian group, then equations (1) and (2) are special cases of (3) and (4); it
is enough to take K = Z, with a normalized counting measure and K acting on G by the rule 0- 2z = = and
l-z=—zxforall x € G.
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A one more generalization of Wilson’s equation has been considered by H. Stetkeer in [14] in connection
with spherical functions:

/K o(e + k- y)dk = g(@)f(), wy € G,

where K is a compact group acting by automorphisms on an abelian group G and dk denotes the normalized
Haar measure on K.
Now, let us focus on the following generalization of d’Alembert functional equation:

(f * py) (@) + (f * (1) ")) = f(2)f(y), z,y€G, (5)

where G is a locally compact abelian group, f € L*°(G), B(G) is a family of all Borel subsets of G,
w: B(G) — C is a regular bounded measure and

wo(A) == (= A), uy(A) = u(A+y), AcB@).

Equation (5) was introduced and solved by Z. Gajda in [7]. It is easy to see that the cosine equation is a
special case of (5). Indeed, it is enough to take p given by

u(A) = { ; X ; ﬁé Ac B(G). (6)

In Section 3 we are going to present some results concerning Wilson’s-type extensions of equation (5) and
we will suggest some possible directions of further research.

All terminology concerning the field of harmonic analysis is in accordance with the monograph of E.
Hewitt, K. A. Ross [§].

One more notion may be useful: for any function F': G — C defined on a group G the functions

F(z)+ F(—x)

F.(x):= 5

, TG

are the odd and the even parts of F, respectively.

2 D’Alembert and Wilson’s equations

2.1 The cosine equation

In this section we discuss some possible solutions of cosine functional equation (1) in different settings.
Classical results for d’Alembert functional equation have been obtained by Pl. Kannappan [9].

Theorem 2.1 (Pl. Kannappan, [9]). Let (H,+) be a group (not necessery abelian) and f: H — C satisfies
fe+y+z)=fle+z+y), =yzeH (7)
The function f satisfies equation (1) iff there exists a homomorphism m: H — C such that

m(x)+m(—x
oy = M) g s
Note that we do not impose any topology on H; in particular, we do not assume any regularity conditions.
The proof of this theorem is divided into two complementary parts: first it is assumed that f(H) C {-1,1}
and then that f(x1)? # 1 for some 21 € G. First part is a straightforward calculation and in the second part

it is shown that the function

flz+21) — f2)f(21)
flz1)? =1 ’
is a homomorphism. Therefore there is the explicit formula for the homomorphism m from (8).

Now we give a rough idea about solutions of d’Alembert functional equation obtained by means of spectral
analysis. The following version of Wiener’s tauberian theorem can be useful (see Székelyhidi [17], p. 9):

m(z) = f(x) + x € H,

Theorem 2.2 (Wiener). If G is a locally compact abelian group, then any nonzero closed invariant subspace
of L*(G) contains a character.
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We give two examples of solutions of d’Alembert functional equation for groups. Both examples may
be derived from a general theorem due to L. Székelyhidi [17], which tells us that each solution of (1) on a
locally compact abelian group is a real part of some character. We present special case of a reasoning from
[17].

Example 2.3. Let (Z,,,+) be the additive group of all remainders from division by m equipped with the
discrete topology. If f: Z,, — C is a bounded function satisfying d’Alembert functional equation for all
T,y € Zm, then there exists k € Z such that

F() = cos (2;?’) YT

Indeed, let 7(f) denote the minimal proper closed invariant subspace containing f. First, observe that if
f is a solution of equation (1), then each function g € 7(f) satisfies (2). To show this fix z, z € Z,,. From
(1) applied for x — z instead of x we have

fz(il?+y)+fz($*y):2fz(9€)f(y), Y € Ly,

Since a linear combination of solutions of (2) is a solution of (2) we obtain

gz +y)+glx—y)=29(x)f(y), y€Lm

for any function g € 7(f).
By Wiener’s theorem the space 7(f) contains a character. Therefore (cf. E. Hewitt and K. A. Ross, [8],
p. 367) there exists an [ € {0,1,...,m — 1} such that the character

27ik

x(k)=e "; , k€Zp,

is an element of 7(f), i.e.
Xz +y) +x(@—y) =2x(2)f(y), Y ELm.
Dividing by x(x) # 0 we arrive at

— 1 iy —27miy 2
f@)zwz,{;m 4o }:COS Y ez
2 2 m

We give an example of a solution of (1) on a multiplicative group Z, \ {0} for p being a prime number.

Example 2.4. Let x be a Dirichlet character (cf. e.g. T. Apostol [3], Chapter 6) given by

(n) = ny\ _ 1, n = 22 modp for some z,
X\ = p) | -1, n = 22 modp for no x.

If f is a solution of (1), then f(Z,) C {—1,1}. It is easily seen that for each character y we have x (z71) =
x(z) for all x € G. Therefore f = .

The following result is due to T. A. O’Connor [12]:

Theorem 2.5 (T. A. O’Connor). Let (H,+) be a connected, separable, locally compact abelian group and
let f: H— R be a bounded continuous function such that f(0) = 1. The function f satisfies (1) iff there
exists a character xo such that

f(2) = Rxo(e), @€ H.

The main tool to prove Theorem 5 is Bochner’s characterization of positive definite functions; namely,
let H denote the set of all characters of H. It is shown that a solution of d’Alembert equation is positive
definite and thus by Bochner theorem there exists a regular measure P: B(H) — [0, 1] such that

fla) = | Rx@dP(o. w e
For each € H we define a random variable £,: H — R by the formula ¢,(x) = R(x) for x € H. The
variance Varf,, = 0 and thus ¢, = 0 a.e. Therefore, if (2, )nen is a countable and dense subset of H and
E:=({x€H:4l,,(x)=const, neN}),

then P(E) = 1 and thus there exists a character yo such that E = {x0,X0}. Now we have the desired
representation.

One should be aware that O’Connor’s results is far from being general, since it deals only with real
bounded solutions, however it is a nice example of using Bochner theorem combined with some basic prob-
ability notions.
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2.2 The cosine-sine equation

Now we discuss solutions of Wilson’s functional equation. Typical method used in solving Wilson’s equation
is to show that under some additional assumptions f satisfies (1). In order to do this one may try to use
results from previous section. However, this method may not be useful. It is worth to underline that the
main difficulty in solving Wilson’s-type equations is to give a description of g. This is not obvious even in
the real case (cf. J. Aczél [1]). For complex-valued mappings defined on an abelian group one of possible
methods to find the form of g is spectral synthesis (for details see the monograph [17] of L. Székelyhidi).
Namely, we have the following result:

Theorem 2.6 (L. Székelyhidi, [17], p. 109). Let G be an abelian group and let f,g: G — C be in L>=(G).
The pair (g, f) satisfies Wilson’s functional equation for all x,y € G iff either

() f =0 and g is arbitrary,
or

(ii) there exist a character x1 € I' and a constant o € C such that x3 =1 and
f@) =xa(x), g(@)=axi(z), z€G, 9)

or

(iii) there exist a character x € I' and constants K, L € C such that x> # 1 and

x(x) + x(=x)

flay = MEIXZE g(a) = Kx(e) + Lx(—2), € G, (10)

As we observed it in the Introduction f is a generalization of the cosine and g is a generalization of the
sine. To obtain this it is enough to take x(z) := exp(iz) and K = —L = . It is worth to notice that in the
general case g need not to be odd. More precisely, g is odd iff K = —L.

3 Some integral generalizations

In the Introduction we have mentioned some possible integral generalizations of d’Alembert and Wilson’s
equations. The purpose of the present part is to give a rough idea how to solve (5) and the following equation:

(9% py) (@) + (g% (1y) ) (x) = g(2) f(y), z,y€G. (11)

Taking a measure u given by (6) equation (11) becomes Wilson’s functional equation (2).
We will need some notations concerning algebra L!(G). Namely, Fourier transforms of a function f €
L'(G) and a bounded regular measure u: B(G) — C are defined in the following way:

Fy) = /G f@(~x)dm(z), Aly) = /G A(~a)du(x), ~eT.

For any ideal Z of the algebra L'(G) let
Z(Z):={yeTl:g(y)=0forallgeT}.
Now we cite a one more version of Wiener’s theorem (see e.g. Gajda, [7]).
Theorem 3.1 (Wiener). Assume that Z is a closed ideal in L*(G). If Z(Z) = @, then T = L}(G).

In the following theorem we have a description of solutions of (5).

Theorem 3.2 (Z. Gajda, [7]). Let u: B(G) — C be a bounded regular measure. Then a function f € L(G)
which does not vanish m- locally almost everywhere (m-l.a.e.) satisfies equation (5) if and only if there exists
a character v € T' such that

Fy) = (v py)(0) + (7 % (1y) ) (0) = /G {v(y—s)+(s —y)}duls) (12)
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Now we enumerate the steps which were used to solve equation (5). First, we define A as the set of all
Y € LY(G) of the form

Y =(¢* (y)") + (9% py) — f(y)o,

where ¢ ranges over L'(G) and y over G. Next, after some calculations involving Fubini theorem and
convolution properties we obtain

/G f@)yi(z)dm(z) =0, e A, (13)

Let Z be the linear space spanned by the set A. It is easy to verify that Z is an ideal of L*(G). Let F denote
the closure of Z in the norm topology. Clearly, F is a closed ideal in L'(G). Suppose that for every v € T’
there exists a y € G such that

(1)) ™) () + () () # f(y)- (14)

It can be shown that Z(F) = @. Thus, by Wiener’s theorem we infer that Z = L'(G). Consequently, A
is linearly dense subset of L;(G). From (13) we derive that f = 0 m-l.a.e., which is impossible. Therefore,
there exists a character v € I" such that (12) holds.

Now, we are going to outline the reasonings from [5], where one can find the detailed proof of solution
of (11). Using Gajda’s methods presented above we show that if (g, f) satisfies (11), then f satisfies (5),
hence, there exists a character v such that f is given by (12). Next we show that (g, f) satisfies (11) iff
(9o, f) and (ge, f) satisfy (11), therefore we may deal with the even and the odd part of g separately. In the
even case we show that g. is proportional to f. The odd case is a bit more complicated; we use the form
of solution of classical Wilson equation (cf. Theorem 2.6), Theorem 3.2 and linear independence of the set
of all characters of G to show that g, is proportional to the odd part of a certain character . Finally, we
obtain the following theorem:

Theorem 3.3. Let pu: B(G) — C be a bounded regular measure, f,g € L*°(G) and assume that f,g do not
vanish m-l.a.e. If the pair (g, f) satisfies equation (11), then there exist a character v € T' and constants
C1,Cy € C such that f is the form of (12) and

g(z) = C1y(z) — Coy(—2x), =z €G. (15)

Conversely, if v € T is a character, Cy,Cq € C are constants and f is given by (12) and g by (15), then the
pair (g, ) fulfills (11).

It is worth to notice that constants appearing in Theorem 3.3 depend on measure p and values f(0) and
9(0).

Problem 3.4. It could be interesting to find the general solution of

(f o py) () + (9% (y) ") () = h(2)k(y), =,y €G, (16)

for unknown mappings f, g, h,k € L*°(G) and a bounded regular measure p: B(G) — C. Equation (16) is a
generalization of a number of classical functional equations, which appear in the monograph of L. Székelyhidi,
[17], Chapters 10 — 13.
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Abstract

This paper discusses the current status of women mathematicians in France. Recent sex-disaggregated
data for universities and research institutes reveal how the situation of women mathematicians is dete-
riorating in France. The paper describes the actions of the associations of women scientists or engineers
in France to promote sciences towards young people and to help improve the situation of women. The
paper ends by analysing the recent government programs being implemented in the past ten years.

1 Status of women mathematicians

Although girls in France have a slightly higher success rate than boys in high school and account for over 45%
of students in the standard scientific track, attrition becomes significant in higher education. Throughout
undergraduate and graduate university studies, the proportion of female students in fundamental sciences
is constant, around 27% [1]. In the selective parallel track for entering Engineering Schools (a French pecu-
liarity), women account for 25% of the students, but 18% in mathematics- and physics-oriented disciplines
[2].

Other French distinctive features include a favorable —although not perfect— social situation (low-cost
public daycares, school all day long for young children, paid maternity leave), and the fact that a large
portion of women mathematicians are civil servants, hired for a permanent position in the public research
system in their late twenties or early thirties, after a short postdoctoral period.

Women account for 21% of mathematics faculty at French universities and 16% of mathematics researchers
at the French National Center for Scientific Research (CNRS, the major public research institution in France,
and the largest in Europe) [3]. Although these numbers might seem high compared to other countries such
as USA, Canada or Finland, they remain unsatisfying and there is no progression, actually a noticeable
decrease (20% women in mathematics at CNRS in 1989, the percentage being about constant since 1992, 16
to 17%). The number of mathematicians employed by CNRS has increased from 250 to 350 in the past 20
years, though the number of women mathematicians has stayed constant, about 50. Women Phd account
for about 26% of all Phd’s in mathematics, which is comparable to the number of associate professors at
universities: there is no male advantage at this entry level. Note that there are very few women entering the
most prestigious institution CNRS (zero to two a year, which amounts to about 0 to 10%).

However, the so-called glass ceiling remains very real. In mathematics, at universities, 26% of associate
professors, but only 10% of full professors are women (respectively 30% and 9,7% in 1996) and the male
advantage (ratio of the proportion of senior researchers —or full professors— among men over the proportion
of senior researchers —or full professors— among women) is as high as 2.65 (whereas it is 2.4 in physics).
At CNRS, the situation is more favorable, with 17% and 15% women among junior and senior researchers
respectively, and with a male advantage of 1.04. The male advantage for mathematics is much lower than
the male advantage in physics (which is 1.4) and than the overall male advantage at CNRS including all
disciplines, which is 1.55 [3]. These figures give an idea of the thickness of the glass ceiling women find when
they look for a promotion: in mathematics, men have 2.65 more chances to be promoted than women. Note
that the number of women at CNRS (55 in 2005) is much lower than the number of women at universities (696
in 2006) [4], where the male advantage is huge; moreover men mathematicians very often prefer to become
full professors at university rather than continue their career at CNRS. A finer study of the population of
mathematicians shows that this is in the 30-40 age category that the thickness of glass ceiling is the largest:
in other words, men mathematicians tend to get promoted between 30 and 40, whereas women tend to stay
blocked in their career at that age.

* Association femmes et mathématiques, Institut Henri Poincaré, 11 rue Pierre et Marie Curie, 75230 Paris Cedex 05, France,
fetm@ihp.jussieu.fr.
T Association “Femmes et Sciences”, 9 rue Vésale, 75005 Paris, France, femmes.sciences@orange.fr.
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2 Encouraging Girls to Choose Scientific Careers

This is one of the main goals of the “Femmes et Sciences” (F & S, Women and Science) Association [5],
working in close partnership with femmes et mathématiques (F & M, Women and Mathematics) [6] and the
“Association Frangaise des Femmes Ingénieurs” (FI, French Women Engineers). Their members visit high
schools to meet students, particularly girls, and inform them about scientific studies and careers, and to bear
testimony to how rewarding they find their profession. As an example, in 2007, an action towards Parisian
pupils was organized with the participation of more than 100 scientific female students from universities or
Engineering schools who were trained by the three associations, and with the support of the City of Paris.
Some other programs of these three associations are:

e the common website “elles-en-sciences” [7] (She In Sciences), aimed at girls as well as their parents and
teachers, launched in 2005 with support from the Ministry for Higher Education and Research;

e a booklet to help teachers tackle stereotypes about girls in science, published in 2006 [8];

e a photograph exhibition of women trained in mathematics Women In Math... Why Not You?, created
by F & M, which has been circulating everywhere in France in high schools, commercial centers,...

e mentoring for teenagers;

e a yearly colloquium organized by F & S, where high school students are invited to meet women
scientists;

e regular public debates, where gender specialists, sociologists, philosophers, historians and scientific
women talk about general thematics concerning women and sciences ;

e a two-day forum is organized every other year by F & M for young women mathematicians, where they
can present their work and prepare their interviews for teaching and research positions.

The Mission for the Place of Women at CNRS [9], established in July 2001, has developed various
educational outreach tools, including the Women in Physics exhibition, created for the World Year of Physics
in 2005. Now coming with a DVD, the exhibition continues to travel through France (already over 70 showings
and debates in high schools, science centers and museums, conferences, etc.) and is now touring abroad in
its English translation through partnerships developed with the USA, Canada and South Africa.

In the private sector, some companies have recently started positive actions like the “Elles bougent!”
(Women On The Move!) Association [10] created in 2005 with the financial support of aviation, rail transport
and automobile industries, in collaboration with related Engineering Schools, to present the careers available
to girls and to offer mentoring.

3 Promoting Women in Science and Gender Equality

In France, several institutional structures are now operational, such as the “Mission for Gender Equality
in Science and Technology”, later entitled “Mission for Parity in Research and Higher Education”, created
in September 2001 at the Ministry of Higher Education and Research. This bureau has been transformed
recently in 2009 in the “Mission of Parity and for Fighting Against Discriminations” [11]. The yearly “Iréne
Joliot-Curie” Award created by the Mission, in collaboration with EADS, to promote women in research and
technology, was awarded to several mathematicians and physicists since 2005.

At CNRS, the Mission for the Place of Women [9] has remained very active, collecting and analyzing sex-
disaggregated data, producing surveys and studies, sponsoring various colloquia, nominating CNRS women
researchers for awards, promoting gender research, organizing gender trainings sessions across the country,
and fostering gender equality within CNRS.

France is also actively involved in the European Platform of Women Scientists [12] created in 2005,
particularly through former F & S founder, physicist Claudine Hermann, now on the administration board
of EPWS, and through CNRS.

The 14th International Conference of Women Engineers and Scientists, ICWES14, was hosted by France
in July 2008, in partnership with the Mission for the place of women at CNRS and the F & S, F & M and
FI associations [13].

The “Société Frangaise de Physique” (SFP, French Physical Society) [14], as the three above-cited As-
sociations, pays much attention to promotions and appointments in leading positions and governmental
committees, often unfair to women, and lodges complaints when necessary. The SFP also lobbies for more
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women as chairpersons and speakers in scientific conferences and colloquia. The SFP and F & S also partic-
ipate every three years in the IUPAP International Conference on Women in Physics: the last one was held
in Seoul in 2008 [15].

New awards for women scientists have been created in France in 2005.

e The Excellencia Trophy for high-tech women engineers (fundamental research, applied research, R &
D, production, and students preparing to enter high-tech professions).;

e The City of Paris Award for a young (<35 years) female Parisian scientist, award which has been
discontinued as a consequence of the change of the vice-mayor for universities, innovation and research,
after the 2008 city elections.

In collaboration with the French Academy of Sciences, L’Oréal and UNESCO also have launched new national
doctoral fellowships in 2007, which are awarded to women, every other year in exact sciences (mathematics,
physics, chemistry, computer science, engineering sciences), or in natural sciences (biology, health sciences,
Earth sciences). These fellowships help the doctoral student in her last year of doctorate to promote her
work in view of applying for her future job.
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Modeling invasions and calculating establishment success
chances

Patsy Haccou
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Abstract

Invasions play a big role in many biological contexts. Since in most cases initial numbers of invaders
are small, branching processes provide a good way to model and study such processes. I will discuss the
basic Galton Watson Branching process, multitype GWBPs and the inhomogeneous branching process
(Smith and Wilkinson). I will show how to calculate establishment success chances, and show how these
models can be applied in a biological context.
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What should maths teachers know about girls and boys?

Markku Hannula
Unwversity of Turku, Finland

There used to be clear gender differences favouring males in large scale mathematics performance tests
(Hyde, Fennema & Lamon, 1990), but these overall differences have disappeared in most countries (IEA
/ TIMSS, 1999; OECD / PISA, 2000). There are tasks in mathematics that still produce large gender
differences in favour of boys. For example, some conceptual tasks about fractions (Hannula, 2003) and infinity
(Hannula, Pehkonen, Maijala, Soro, 2006), when the issues have not been explicitly dealt in school. Problem
solving has been among the topics that have produced the largest and most durable gender differences, and
this was reflected also in PISA study, where boys scored better in 15 of the 27 OECD countries. There are
also task types where female students tend to perform higher, such as when there is a straightforward or
standard solution or the task is in shopping context (van den Heuvel Panhuizen, 1997). Overall, girls seem
to perform well on tasks that they have been taught to solve.

Moreover, as soon as mathematics becomes optional in schools, there tends to be overrepresentation of
male students over female students. In Finland, roughly one third of girls and two thirds of boys choose
the more advanced mathematics course in upper secondary school (Vélijarvi & Tuomi 1995). This is also
reflected in their respective test performances, the more students have studied mathematics, the better
they tend to perform in tests. This leads to a widening gender gap in performance as students get older.
At university level, mathematics programs typically attract mainly male students, although mathematics
teacher education programs typically attract more female students. The ratio of female students decreases
the further the studies continue.

As numerous studies on achievement differences indicate, there is no reason to believe that female students
are underrepresented due to inferior mathematics skills. Rather, female students tend to opt out mathematics
more often than male students at equal performance level. Some studies have indicated that students tend
to perceive mathematics as a male domain (Frost, Hyde and Fennema, 1994), but this belief is mainly held
by male student’s and hence does not give an appropriate explanation to why female students who perceive
mathematics as gender neutral opt out mathematics.

Studies on student mathematical self-efficacy beliefs have produced very consistent results that indicate
that across age and performance levels female students tend to have lower self-confidence in mathematics
than male students (e.g. Hannula, Maijala, Pehkonen & Nurmi, 2005; Leder, 1995). Lower self-confidence
among female students has been found even on level of individual tasks, in case of both correct and incorrect
answers (Hannula , Maijala, Pehkonen & Soro, 2002). Related to low self-confidence, female students also
suffer mathematics anxiety more often than male students (Frost, Hyde & Fennema, 1994; Hembree, 1990).
These results in affect provide explanation to why female students choose usually not to study optional
mathematics, especially when we consider that female students may have higher performance levels in arts
and social sciences Lower self-efficacy is also likely to explain why female students rely on school-taught
solutions methods and avoid non-standard or own solution methods that include an element of risk.

There is no reason to believe that the low level of female students’ self-efficacy beliefs is a natural and
permanent gender characteristic of female sex. The research has cumulated evidence for the hypothesis
that female students’ lack of confidence in mathematics is consistent with their teachers’ beliefs (Li, 1999;
Soro, 2002; Sumpter, 2009) and that teachers’ typical interaction patterns with male and female students
may thus attribute to the generation of gender differences. Mathematics teachers tend to believe that
their male students often have hidden talent, but due to being lazy and careless they underperform, while
female students tend to reach their performance due to diligence and hard work even if they are not very
talented. These teacher beliefs are assumed to lead to different feedback to male and female students and
thus contributes to the observed gender differences in self-efficacy beliefs. Another theory formulates the
female beliefs as "learned helplessness" (Licht & Dweck, 1987). According to this theory, male students get
typically their negative feedback due to misbehaviour and lack of effort, while well-behaving female students
get more negative feedback on their cognitive performance. Moreover, female students get positive feedback
on tidyness and behaviour while male students mainly on their performance. In summary, this pattern
leads female students to attribute success to effort and failure to lack of talent while male students learn to
attribute success to talent and failure to lack of effort.

According to the tendencies found when women have started working in the traditionally male fields
Réséinen (1989b) distinguishes three stages also in teachers’ attitudes towards girls studying mathematics or
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physics: 1. These subjects are not suitable for girls. Girls do not belong to these lessons. 2. It is all right
that also girls study these subjects but they are taught in the same way as used earlier. 3. The pedagogical
methods have to be developed so that both girls and boys will benefit as much as possible from teaching.
Although there seems to be a general belief in most cultures that mathematics is suitable for girls, few
teachers are aware of the need for and have skills to implement gender sensitive teaching.
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Curves of genus 2 on rational normal scrolls
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Abstract

The objects of study in this article are curves of genus 2 in projective space which lie on rational
normal scrolls. It is known that a curve C' of genus 2 has a unique g3 which gives rise to a surface
scroll that contains C. For curves of genus 2 and degree d, 6 < d < 8, we find a threefold scroll that
contains the curve C' and whose ideal together with the ideal of the surface scroll generates the ideal of
C. This result leads to the conjecture that for a genus 2 curve C of arbitrary degree d > 6 we can always
find a threefold scroll whose ideal together with the ideal of the surface scroll generates the ideal of C.
Furthermore we study the syzygies of genus 2 curves and ask whether the ith syzygies of the ideal of the
surface scroll S together with the ith syzygies of the ideals of all threefold scrolls that contain C' generate
the ith syzygies of I¢.

1 Introduction

In this paper we study the ideal and syzygies of curves of genus 2 and degree d in P%~2. It is known that
the ideal of such a curve C is generated by quadrics. One interesting issue is then to investigate if the ideal
of C' is generated by quadrics that generate the ideals of scrolls the curve lies on. One can pose the same
question for the ith syzygies of Io. Here we are only interested in two-dimensional and three-dimensional
rational normal scrolls that contain C.

1.1 Main results

A curve of genus 2 and degree d in P?~2 lies on one rational normal surface scroll S which is generated by
the unique g3(C) and on a two-dimensional family of rational normal three-fold scrolls where each scroll is
generated by a g3(C).

Proposition 1.1. For a curve C' of genus 2 and degree 6 < d < 8 the following holds:
(a) SNV =0C,
(b) Is + Iy = Ic,

where S is the gi(C)-scroll and V is a g3(C)-scroll that does not contain S. In particular, the ideal I¢ is
generated by quadrics of rank 4 or less.

These results lead to the following conjecture:

Conjecture 1.2. For d > 9, the ideal of a curve C of genus 2 and degree d in P%~? is generated by the
quadrics in Is and Iy where S is the g3 (C)-scroll and V is a g3(C)-scroll that does not contain S.

Now one can ask the same question for higher syzygies:

Question 1.3. Let C be a curve of genus 2 and degree d > 6. For 1 < i < d — 6, are the ith syzygies of
Ic generated by the ith syzygies of Ig, where S is the gi(C)-scroll, and the ith syzygies of the ideals of all
g3(C)-scrolls that do not contain S?

Remark 1.4. As we will see in Example 3.2, the ith syzygies of the ideal Ig and of the ideal of only one
such gi(C)-scroll are not enough to generate all ith syzygies of I¢.

*I wish to thank my advisor Kristian Ranestad for useful discussions and proofreading.
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1.2 Preliminaries

In algebraic geometry one important issue is to study properties of projective algebraic varieties and to classify
these objects according to their properties. In this article we study curves embedded in the projective space
P~

Definition 1.5. The n-dimensional projective space P™ over the complex numbers C is
C"*tt — {0}/ ~ where two points z = (zg,21,...,7,) and ¥ = (Yo, %1, --,¥n) € C*H1 are equivalent (we
write x ~ y), if there exists a A € C — {0} such that x; = A\y; for all i = 0,...,n.

From now on let zg, x1,...,x, denote the coordinates in P".
A projective variety X C P" is an irreducible zero set of finitely many homogeneous polynomials
fl,...,fT S C[xo,xl,...,xn]:

X={PeP"|fi(P)=0foralli=1,...,7}.
The ideal of X is then defined to be the ideal generated by fi,..., f:

IX = (fla"'af’r)'

In order to study and classify algebraic varieties, the attention was drawn to syzygies and minimal free
resolutions in the past decades. One is interested in the connection between the geometry of projective
varieties X and the minimal free resolution of its ideal Ix.

If Y is a variety which contains X, then Iy C Ix and one aim is to investigate which syzygies of I'x are
generated by the syzygies of Iy. We will call these syzygies geometric syzygies.

One natural question is then to ask whether the space of all ith syzygies of the ideal Ix is spanned by
geometric syzygies.

This question was discussed for some varieties in [4], [7], [8] and [9].

We are studying curves of genus 2 and degree greater or equal to 6 which are lying in a natural way on
rational normal scrolls and look at the syzygies of the ideals of the scrolls. Here we will focus on rational
normal scrolls of dimension 2 and 3.

A curve of genus 2 over C looks topologically like a double torus when considered as a two-dimensional
real manifold:

Now, if a a curve C is embedded in P™, then each linear space H C P™ of dimension n — 1, which we
also call a hyperplane, intersects the curve in a finite number of points. The number of these points is called
the degree of C.

If C is a smooth curve of degree d in P", we say that it has an embedding of degree d in P™.

Definition 1.6. A rational normal scroll Y of dimension & in P™ is the union of (k — 1)-dimensional linear
spaces, parametrized over P!, such that Y is linearly normal.

Here the notion of "linearly normal" is equivalent with deg(Y) + dim(Y) = n + 1. For the definition of
linearly normal see also [1], Chapter III, Exercise appendix D. Each such (k — 1)-dimensional linear space
is also called a fiber of the scroll. See [2], Appendix A2H, or [3] for three different characterizations of a
rational normal scroll.

On each scroll there exist rational curves of arbitrary degree which intersect each fiber in the scroll
in exactly one point. Actually, there exist k rational curves on the scroll such that each of these curves
intersects each fiber of the scroll in one point and such that the degrees of these curves are dy,...,d; with
di+---+dr =n—k+ 1 and such that each fiber in the scroll is spanned by the k points in the intersection
of the k curves and this fiber.
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Definition 1.7. We call (dy,...,dy) the type of the scroll, and we will always order these numbers in such
a way that dy > dy > -+ > di. The degree of the scroll is given by dy + ds + - - - + dj.

Proposition 1.8. By an appropriate choice of coordinates, the ideal Iy of a rational normal scroll Y in P™
of scroll type (dy,...,dy) is generated by the 2 X 2 minors of the following 2 x m matrix:

i) X1 s xdl—l Id1+1 s $d1+d2 . xn—dk e Tn—1
Ty Xo - Td, Tdy42 Tdi+do+1 -+ Tn—dp+1 .- In

(Notice that m is the degree of the scroll.)
Proof. See [3]. O

Definition 1.9. A ¢{(C) is a family of k-tuples of points on C parametrized by a P*.
A point P € P™ is a basepoint for a gi(C) if P is contained in all k-tuples of points in the g;(C). If the
g;(C) has no basepoints, then we say it is basepoint-free.

Notice that a basepoint-free gi(C) gives rise to a k : 1 map C — PL.

The following is known (use the Riemann-Roch Theorem for curves in [6], Chapter IV):
Proposition 1.10. A curve of genus 2 has an embedding of degree d in P*~2 when d > 5.

Now let C be a curve of genus 2, embedded in P42,

A ¢} (C), 2 <k <d -2, gives rise to a rational normal scroll of dimension k: Each fiber of such a scroll
is given by the (k — 1)-dimensional linear space spanned by a k-tuple in the g}.(C). We call such a scroll a
g1 (C)-scroll.

There exists exactly one g3(C) and the family of all g1(C) is an Abelian surface, which we denote by
Pic®(C). This surface is isomorphic to Jac(C'), the Jacobian variety of C. You can read about the Jacobian
variety and Pic?(C) in [1], Chapter I, §3.

We will denote a g3(C) by |D| and a member of |D| (i.e. three points on C) by D’.

Mainly we are interested in the two-dimensional scroll S = U( P,Pnegi(c) Lp.pr and in three-dimensional

scrolls V.="V|p| = UD’elDl D' where by Lp p we mean the line through the points P and P’ and by D we
mean the plane spanned by the three points in D’.
The degree of Sisd —2—2+1=d — 3 and the degree of V isequal tod—2—-3+1=d —4.

Since by construction C' C S and C' C V, it follows that Is C I and Iy C I¢. It is known that also the
ideal I¢ is generated by quadrics:
Proposition 1.11. Let C be a curve of genus 2 and degree d > 6. The ideal I is generated by (dgg) +d—5
quadrics; (d;?’) of these come already from Ig.
Proof. By Theorem (4.a.1) in [5], C is projectively normal and the ideal I is generated by quadrics. Now
we can apply the Riemann-Roch formula for curves (see e.g. [6], Chapter IV) to obtain that I is generated
by (d;3) 4+ d — 5 quadrics. Since C C S, Ig C I-. By Proposition 1.8 the ideal Ig is generated by the 2 x 2
minors of a 2 x (d — 3) matrix, i.e. the number of generators of Ig is equal to (d;?’). O

Now one interesting question is to ask whether the quadrics in Is and Iy for a general V' are enough to
generate I. This problem will be discussed in Section 2 for curves of degree d =6, d =7 and d = 8.

In the following, C' will always denote an irreducible, smooth curve of genus 2 and we will denote the
quadrics in its ideal by I (2).

2 The ideal of genus 2 curves of degree d > 6

2.1 Genus 2 curves of degree 6

Let C be a curve of genus 2 and degree 6 in P%. Now we know that C' is lying on a g2 (C)-scroll of type (3,0)
or (2,1). Assume that S has scroll type (2,1) (the case where the scroll type is (3,0) is analogous). Then it
is possible to choose coordinates of P4 in such a way that its ideal Is is generated by the 2 x 2 minors of

the following matrix:
To T1 T3
Ty T2 w4 )

Set Q1 = wowa — 73, Q2 = 2wy — x123 and Q3 = T1T4 — T2T3.
Now we have an explicit description of the ideal I¢:
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Proposition 2.1. The four quadrics Q1,Q2, Q3,Q where Q is a quadric in P* that contains C' but not S,
generate the ideal I¢.

On the other hand, the quadrics Q1,Q2,Qs,Q where Q is a general quadric in P*, generate the ideal of
a curve of genus 2 and degree 6 in P*.

Proof. For a general quadric @ in P* which contains C' and not S, we have dim(SNQ) = 1 and deg(SNQ) = 6.
Hence the intersection is a curve C' of degree 6. Moreover, with the adjunction formula in [6] (Proposition
1.5 in Chapter V) it can be calculated that the genus of C' is 2. O

A quadric of rank 3 in P* is a cone over a conic in P? with a line as vertex. A special hyperplane
intersection Hg of this quadric splits into two P2, call them A; and A, which intersect in the quadric’s
vertex line L. The two planes A; and As move in a one-dimensional family, parametrized by the conic, while
the line L is fixed. Since C is of degree 6 the intersection Hg N C consists of 6 points which are distributed
among A; — L, Ay — L and L. We say that a quadric of rank 3 in P* is of type (a1, az,a3) if the six points
in Hg N C are distributed in such a way that a; points lie in A; — L, a2 points lie on L and a3 points lie in
Ay — L.

Lemma 2.2. We have the following possibilities for ay, az and ag:

222
3103

Proof. Since A; and A are lying in the same family of planes parametrized by a conic, Ay NC and Ay N C
are parametrized by the same conic, i.e. a; = az. Since, for any curve C’, a gi(C") gives an isomorphism
C’ = P!, it follows that C’ has a gi if and only if the genus of C’ is 0. So our genus 2 curve C' cannot have
a gi. This implies that a; # 1 and a3 # 1. Moreover, since each hyperplane in P* intersects the curve in 6
points, it is impossible to have a; 4+ as = 6 or as + az = 6, in other words we must have a; > 2, ap > 2. [

Quadrics of type (2,2,2) contain the scroll S since they contain the gi(C). On the other hand, the
quadrics of type (3,0,3) will not contain S since the gi(C) involved here has no basepoints. So we have
seen that a quadric does not contain S if and only if for a special hyperplane intersection we can write
Hgo N C =2D', where D' is lying in somebasepoint-free g3(C).

In a similar way we can look at special hyperplane intersections Hg of quadrics of rank 4 in P4: A quadric
of rank 4 in P*# is a cone over a quadric in P? with a point P as vertex. A special hyperplane intersection
Hy of this quadric splits into two P2, A; and A, that intersect in a line . A general such Hg will intersect
the curve C in such a way that no point of Hg N C' is lying on [. That is, a quadric of type (a1, as, az) will
be a quadric where a; points of Hg N C lie on A; — 1, ag points are lying on Ay —l and ag is 1 if P € HoNC
or0if P¢ HoNC.

Lemma 2.3. Here we have the following possibilities for a1, as and ag:

21113
2101 4
3103

Proof. Since the two P? are lying in two different families, we no longer need to have a; = a3, but still, by
the same reasons as in Lemma 2.2, a; > 2, az > 2. O

Note that the quadrics of type (2,1,3) and (2,0,4) contain S while a quadric of type (3,0, 3) does not
contain S. Moreover, the two families of planes in a quadric of type (3,0,3) give us two rational normal
scrolls V|p,| and V|p,|, which are both equal to the quadric. We conclude that a quadric of rank 4 in P*
does not contain S if and only if we can write Hg N C = D} + D), where D} and D are members of some
basepoint-free g3 (C)’s |D;| and |Ds|.

Example 2.4.
Below we have illustrated a quadric of rank 4 in P%. This is the cone over a smooth quadric in P? with
a point as vertex. There are two different families of lines on the quadric in P3, and a special hyperplane
intersection Hg of the quadric in P* consists of two planes A; and A, which intersect in a line [. For each
point p on the smooth quadric in P3, the tangent plane at this point will intersect the quadric in exactly
the two lines L; and Ly. By moving the point p we obtain the two families of lines.
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There is an involution

i: Pic*(C) — Pic’(C),
|D| = |(Ho N C) = D.

The quotient Pic3(C)/(i(|D]) ~ |D|), i.e. here we identify a ¢g3(C) |D| with |[(Hg N C) — D|, is an
algebraic surface, called Kummer’s quartic surface.

All the quadrics in the ideal I span a linear space P3 while the quadrics in Is span a P2. Call these
linear spaces P2 and P%. The locus {Q € I¢(2)|rank(Q) < 4} splits into the P% and Kummer’s quartic
surface K in P3Q. Here the points on K — P% correspond to quadrics that contain C' but not S. The
Kummer surface has 16 simple nodes. They correspond to quadrics of rank 3, 15 of these lie on K —P% and
they correspond to points |D| in Pic?(C) which satisfy |[Hg N C| = 2|D|. These again correspond to those
quadrics of rank 3 that contain C' and V|p| but not S. The remaining node lies in P?s and corresponds to the
only quadric of rank 3 that contains S. For a special hyperplane intersection of that quadric we can write
HoNC = E;+ E>+ Ry + Ry where E7 and Es are elements in the g4 (C) and Ry and Ry are points in HoNC'.

In particular we can take the extra quadric in Proposition 2.1 to be of rank 4:

Proposition 2.5. The ideal of a curve C of genus 2 and degree 6 in P* is generated by the quadrics in Ig
and Iy where V is a g3(C)-scroll that does not contain S.

Proof. In this situation, a g4(C)-scroll is a quadric of rank 4 and if we add an arbitrary quadric in K — P%,
then this quadric together with the quadrics that generate Ig generate the ideal . O

2.2 Genus 2 curves of degree 7

Let C be a curve of genus 2 and degree 7 in P°. We know that the degree of any ga(C)-scroll is 4, so C lies
on a scrollar surface S of scroll type (2,2), (3,1) or (4,0). Assume that S is of scroll type (2,2) (the other
two cases are analogous).

One can choose coordinates such that the ideal I's is generated by the 2 x 2 minors of the following
matrix:

o X1 I3 X4 (1)
T1 X T4 Ty )
We include the following proposition without proof in order to show that we can obtain an explicit

description of the generators of I. Notice that by Proposition 1.11 we need 2 quadrics in addition to Ig to
generate I¢.

Proposition 2.6. The ideal I¢ is generated by the 2 X 2 minors of the matriz (1) and two quadrics
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Q1 = lLizg+laxy + 1323 + lsz4,
Q2

lizy + loxo + I3z + ly25

where 11, ls, I3 and 1y are linear forms in P2.
Conversely, if we take

Q1 = bLizo+laxy +lsws + a2y,
Q2

llxl + lQ(EQ + lg$4 + l4$5

with general linear forms l1,...,ls in P53, then the 2 x 2 minors of (1) together with Q1 and Q2 generate the
ideal of a smooth curve of genus 2 and degree 7 in P5.

A special hyperplane intersection Hg of a quadric of rank 4 in P® splits into two P? that intersect in a
P2. Now we know that Hg N C consists of seven points. Let A; and Ay denote the two P3 and let A2
denote the intersection of A; and A,. Then the seven points in Hg N C are divided between A; — Ay o,
Ay — Aj 2 and Aj 5. Note that as in the case of a curve of degree 6, A; and Ay move in a one-dimensional
family, while A, 5 is fixed. We say that a quadric has type (a1, a2, a3) if a special hyperplane intersection of
this quadric intersects C' in such a way that a; points are in A; — A; 5, ag points are in A o and ag points
are in Ay — Aj 9.

Proposition 2.7. Let V = Vp| be a g}(C)-scroll that does not contain the g3(C)-scroll S. Then Ig(2) N
Iy (2) = (Q), where Q is of type (2,2,3), and this implies that SNV = C.

Proof. The intersection of two quadrics Q; and Q5 in P? is of dimension 3 and degree 4. So if S and V are
contained in @1 and Q, then it follows that Q; N Q2 = V U P3. Since S is irreducible, it must be either
contained in V or in P2. But by assumption, S is not contained in V and it cannot be contained in P3
either, since it spans all of P°. So we have seen that at most one quadric can contain both S and V.

On the other hand, if D’ € |D| and E € gi(C), then we can write Ho N C = D' + E + By + By, where
B, and B, are points on the curve. If we project from the line L that intersects the curve of degree 7 in P°
in the two points B; and By, we obtain a curve C’ of genus 2 and degree 5 on a quadric @’ in P3. There are
two families of lines on @'. A line in one family will intersect the curve C’ in an element in |D| and a line
in the other family will intersect the curve in an element in the g3(C). The cone over this quadric Q' with
the line L as vertex is a quadric of type (2,2, 3) which contains V' and S. O

Proposition 2.8. For a three-dimensional rational normal scroll V' that does not contain S we have Ig+1Iy, =
Ic.

Proof. Notice that by Proposition 1.8 and 1.11 the ideals Ig, Iy and I are generated by quadrics. Obviously,
Is(2)+1Iv(2) C Ic(2). Moreover we know that there are six generators in Ig(2) and three generators in Iy (2)
and by Proposition the intersection Ig(2) NIy (2) consists of only one quadric, hence there are 6 +3—1=28
independent quadrics in Is(2) + Iy (2) which by Proposition 1.11 is exactly the number of generators of
Ic. O

2.3 Genus 2 curves of degree 8

Let C be a curve of genus 2 and degree 8 in PS. Since the g3 (C)-scroll S has degree 5, the scroll type of S
can be (3,2), (4,1) or (5,0). We assume that the scroll type is (3,2) (the other two cases are analogous) and
then we know that after an appropriate choice of coordinates, the ideal Ig is generated by the 2 x 2 minors
of the following matrix:

(xo T Xy T4 x5>' @)

Ty T2 T3 Ts Te

Note that by Proposition 1.11 we need 3 extra quadrics in addition to the 2 x 2 minors of the above
matrix to generate the ideal Io. As in the case d = 7 we found an explicit description of the 3 extra quadrics
(also here no proof is stated):
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Proposition 2.9. There are three quadrics

Q1 = lLzo+lxy + 324,
Q2
Qs

lizy + laxg + I35,

111‘2 + lgil?g + 131‘6

where Iy, ly and I3 are linear forms in P which together with the 10 2 x 2 minors of the matriz (2) generate
Ic.
On the other hand, if we set

Q1 = bhLizo+ s + 1324,
Q2
Qs

liwy + laxg + l37s,

liwo + laxs + I376

with general linear forms 1y, ly and I3 in P8, then Q1, Q> and Q3 together with the 2 x 2 minors of the
matriz (2) generate the ideal of a smooth curve of genus 2 and degree 8 on S.

We also obtain a result analogous to Proposition 2.8 (also here the proof is omitted):
Proposition 2.10. For a gi(C)-scroll V that does not contain S the following holds:
(a) SNV =C

(b) Is+ Iy =1c.

2.4 Genus 2 curves of arbitrary degree d, d > 9

The results for curves of low degree presented in the previous section lead to the following conjecture:

Conjecture 2.11. Let C be a curve of genus 2 and degree d > 9 in P42, For a general g3 (C)-scroll V we
have Ig + Iy = I, i.e. the quadrics in Ig and Iy generate I. In particular, I is generated by quadrics of
rank 4 or less.

Remark 2.12. Examples for d = 12, 14 < d < 47, can be calculated with the computeralgebrasystem
Macaulay 2. With this system we can explicitly construct the ideal of a surface scroll S and the ideal of a
threefold scroll V' that does not contain S in such a way that they both contain a genus 2 curve C of degree
d. The computations show then that the two ideals Is and Iy generate the ideal I¢.

3 Resolutions and syzygies

Having investigated the ideal I, the next step is to look at so-called higher syzygies of I¢:

If X is a variety and Iy is generated by the homogeneous polynomials f1, ..., f;, then we can ask if there
are any relations between fi,..., f,, that is if there exist polynomials g1,...,gm in R = Clzg, ..., z,] such
that Y"1, g;fi = 0. Any such relation is called a first syzygy of Ix. The degree of a syzygy is the degree of
the coefficients g;. We can continue in this way and ask if there are any relations between the relations and
SO on.

In this way we obtain an exact complex, also called a resolution of Ix:

0— M ™S By B B Iy -0,

where the M; = @jR(fj)ﬁ “J are free R-modules and the maps ¢; are given by multiplication with
matrices that have the coefficients g of the syzygies as entries.

The image of ¢; is called the ith syzygy module of Ix and the ideal Ix itself is called the Oth syzygy
module.

Example 3.1. We have seen that, after choice of coordinates, the ideal of a rational normal surface scroll
S in P* is generated by the 2 x 2 minors of the following matrix:
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To T1 I3
r1 T2 T4 '

Set Q1 = vow2 — 23, Q2 = Tox4 — 1173 and Q3 = w174 — Tow3. We obtain the first syzygies in the following
way: Obviously,
To T1 T3
0 = det Xog T1 I3 = 1‘0@3 — l‘lQQ + Z‘ng.
1 T2 X4

Likewise,
21Q3 — 12Q2 + 2401 = 0.

And it is easy to check that zo@Q3 — x1Q2 + x3Q1 and z1Q3 — z2Q2 + 4@ are independent over R =
Clzo, x1, 2, T3, x4]. That is, there are no second syzygies.
Thus, we obtain the following resolution:

0— R(=3)2 % R(-2)3 % Is — 0,
where 1 is given by multiplication with the matrix

2
( ToTg — X7 ToTg4 — XT1T3 T1T4 — XT2T3 )

and ¢ is given by multiplication with the matrix

Zs3 Ty
—x1 —T2
o Iy

A rational normal threefold-scroll in P# is a quadric cone in P*. Let V be a threefold-scroll with ideal

Iv = (Q). Then the resolution of Iy is given by
0— R(-2) % Iy —0,

where the map g is given by multiplication with Q.
The resolution of the ideal Io of a curve of genus 2 and degree 6 lying on S and the V from above is

given by

0— R(—5)2 2 R(=3)2a R(—4)® B R(—2)* X I — 0,

where (after choice) f; is given by multiplication with the matrix

( ToT2 — l"% ToT4 — T1T3  T1T4 — ToT3 Q) )

fo is given by multiplication with the matrix

I3 Xy Q 0 0
—x1 —Ta 0 Q 0
o T 0 0 Q
0 0 —x0To + x% —ToTq + X123 —T1T4 + T2X3
and f3 is given by multiplication with the matrix
Q 0
0 Q
—x3 —I4
X1 i)
—Xyp —X1

Here we see that only the Oth syzygies of I can be generated by the Oth syzygies of Is and Iy where S
is the g3(C)-scroll and V a gi(C)-scroll with Iy = (Q).
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Example 3.2. In P%, the resolutions of Ig, Iy and I¢ where C is a curve of genus 2 and degree 7, S is the
g3(C)-scroll and V a g3 (C)-scroll, are the following:

0 — R(—4)> - R(-3)® - R(-2)® — Is — 0,

0— R(-3)*> = R(-2)> = Iy — 0

and

0 — R(—6)? — R(—4)* ® R(—-5)* — R(-3)'? — R(-2)® — Ic — 0.
As we have already shown, the Oth syzygies of I~ are generated by the Oth syzygies of Ig and Iy, where

V is a g3(C)-scroll that does not contain S. Now one can study the first syzygies of Ic and investigate if
these are generated by the first syzygies of Is and the first syzygies of the ideals of all g3 (C)-scrolls that do
not contain S. Obviously, one such gi(C)-scroll is not enough.

Remark 3.3. Now Examples 3.1 and 3.2 lead to the following question, analogous to the question for the
generators of the ideal: For any 1 < i < d — 6, are the ith syzygies of I generated by the ith syzygies of Ig,
where S is the g3 (C)-scroll, and the ith syzygies of the ideals of all g3(C)-scrolls that do not contain S?
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On inequalities in borderline cases
Ritva Hurri-Syrjdanen

Abstract

In the mini-course we studied the validity of classical Sobolev inequalities and embeddings also when
the underlying bounded domain D in R™, n > 2, need not have a smooth boundary 0D . The target
space of the embedding was of Lebesgue or Hélder type. Our goal in this special lecture is consider the
position in limiting cases. This is a survey talk. Among other things we consider the following:

If D is smooth, it is a familiar fact that the Sobolev space W™ (D) is embedded in the Orlicz space
Ly with Young function ¢ with values which behave like exp(t"/("fl)) for large values of the argument
t. We consider here, on one hand, spaces of functions that are larger than W™ (D), but are contained

in
N wo),
1<p<n

and on the other hand, also spaces of functions that are smaller than W™ (D), but each WP (D) with
p > n is contained in them.

One of our objects is to give conditions on D which are sufficient to ensure Sobolev inequalities of
exponential type yet allow the boundary of D to be quite rough. We show that if D is a bounded co-John
domain and u is a function on D such that

I(a, D) = (/D V()| log™ (e + |Vu(ac)|)da:)1/n <00

for some a < 1 —1/n, then there are constants ¢; = c;(a, co, |D|,n), i = 1,2, such that

/ exp(M)a 4z < ¢

D 01[(0,7 D) - ’

where @ = n/(n — 1 —an) and up = |D|™" [, u(x)dz. When 9D is smooth, the special case a = 0
corresponds to the Trudinger embedding and a < 0 to the result obtained by Fusco, Lions and Sbordone.
In a limiting case, corresponding to a = 1 — 1/n, we show that a double exponential inequality holds
in smooth and certain nonsmooth domains D in R"™ : given any positive constants A; and A2 < 1 such
that A;As < 2e™', A3 > 0, which does not depend on |Vu|, such that

/exp Ay exp(Az'u(:r)_uD')n/("_l) dx < As
D I(D) -

I(D) := (/D |Vu(z)|" log" " (e + |Vu(:r)|)dx) o < o0.

This limiting case as well as the previous John domain case is from the joint work of Edmunds and
Hurri-Syrjénen.

The background information for this special lecture is found in the papers and books listed in the
Bibliography.
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On Sobolev spaces

Ritva Hurri-Syrjinen

Contents
1 Introduction 85
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1 Introduction

These lecture notes contain the basic information on Sobolev spaces, so that we will be able to present the
classical Sobolev embedding theorems for VVO1 "P(D)-functions and in certain classes of domains D in R" for
W1P(D)-functions, 1 < p < n and p > n, in the summer school on Monday, the 22nd of June. The case
p = n is to be considered on Friday, the 26th of June. My lecture notes are based on the lectures I gave
on Sobolev spaces at the University of Helsinki in 2004. When I prepared the lectures back then, I mainly
followed O. Martio’s lectures on the classical results of Sobolev spaces at the University of Jyvéskyld from
the 1980’s, [M]. Chapters 2-17 partly follow notes from those lectures. Chapter 18 is based on some parts
of my doctoral thesis, [Hu]. I thank P. Harjulehto for some useful comments.

For further reading, there are several excellent books as well as lecture notes on Sobolev spaces listed in
the Bibliography.
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k k
2 The spaces C"(G) and Cj(G)
Let G be an open set in Euclidean n-space R™, n > 1. Let £k =0,1,2,... . We write

C*(@) = {u: G — R| function u has continuous partial derivatives
of the kth order in G}.

Especially,

C°(G) =C(G) = {u: G — R| function u is continuous in G},
C'(G) = {u € C(G)| function u has continuous first order partial

derivatives in G},

C*(G) = ﬂc’“(G) = {u: G — R| function v has continuous
k
partial derivatives of all orders in G}.

Spaces C¥(G), k = 0,1,---, and C®(G) are real linear vector spaces with natural operations. The
addition is done by points as well as multiplication by a real number by points; if f € C*(G) and g € C¥(G),
k=0,1,--- ,00, and A € R then

(f+9)(x)=f(z)+g(x) forall z € G
Af)(x) =Af(x) forallz € G.

Note that
C> (@) c (@) c k(@) c cH(@) c C(G)

forallk=2,---.

Support 2.1. The closure of a set A is denoted by A. Let G be an open set. Let v : G — R be a function.
The set {x € G|u(z) # 0} which we write sptu is the support of a function « . Also notation supp u for spt u
is used in literature.

Note that for a function v : G — R"

1. sptucC G

2. The point = € G is also in spt u if and only if in every neighbourhood of x there is a point y with

u(y) # 0.
3. The set sptu is a closed set in R™.

As an example, define u : R — R such that

] —1 , ifze[-1,1],
u(z) = .
0 , otherwise.

Then {x € Glu(x) # 0} =] — 1,1 and sptu = [—1,1].
Ifu:G—-Rand k=0,1,2,... ,00, we write
CH(G) = {u € C*(@)| sptu is compact in G}.

The spaces C(G) are linear subspaces of C*(G) . Note that

c’(G)y> CH@)D> C*@)D--- D C®(G)
U U U U
COG)D Ci@)> C(G)>- D CF(G)
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For our previous example function v : R — R,

() = {|:17| —1 ,ifze[-1,1],

0 , otherwise,

we have u € Cy(R).

Remark 2.2. Let i = 1,2,... ,n. If u € C¥(G), then D;u is the partial derivative of u with respect to z; .
The mapping

D, : C*(@G) — (@)
is a linear mapping with the properties

1. if u € C*(G) then D;u € C*~1(@G),
2. if u € C§(G) then Dyu € Ci Y (G).

3 Partial differentiation

Lemma 3.1 (Partial differentiation in R). Assume that A is an open subset of R, u € C*(A), and v € C}(A).
Then

/Au(t)v’(t) dt:f/Au'(t)v(t) dt.

Lemma 3.2. Let G be a domain in R™ that is G is an open and connected set in R™. If u € CY(G) and

v € C(Q), then
/uDivdm:—/vDiudm, i=1,...,n.
G G

Proof. Functions uD;v and vD;u are continuous functions in domain G and they differ from zero only in a
compact set in G . Hence, the integrals fG uD;vdm and fG vD;u dm are well defined.
Let us set u(x)D;v(x) = 0 and v(z)D;u(z) = 0 for all z in R™ \ G. Then we can integrate the integrals

over R™
/ uD;vdm = / uD;vdm
G n
= / (/ uDivdml) dmg,_1.
Rrn—1 \JR
Let us fix (z1,...,Zi—1,Tit1,-.-,Tn) € R™ 1. Let us denote

ﬂ(t):u(xl,...,xi,l,t,miﬂ,...,xn), tGR,

and

O(t) =v(®1, . oy Tim1, 6, Tig 1y, ), L ER;

here 4 € C}(A) and v € C}(A).
Since A is an open set in R,

/uDivdml = /df}'dt
R A
- / w'v dt
A
= —/vDiudml.
R

The claim follows from Fubini’s theorem. O
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4 Multi-indices

Let n=1,2,... and a = (ay,...,a,) € N® where N = {0,1,2,...}. We call « as a multi-index. Its degree
or norm is

n
|| = Zai7 la| > 0.
i=1

The ath partial derivative is
D = D DS? ... D&,

where B0
D;? = DjDj - Dj:(aT)ajvjzlw”,n-
Especially, D? of the function is the function itself.

If u € C1*/(G), then D* u exists and

oo
(0z1)™ (022)** ... (Owy)™"
— DODS2 ... Dy,

D%u =

Especially, if « = (0,0,...,0,1,0,...,0) € N” then |a| =1 and
D“u = Dju.

Lemma 4.1 (General partial derivatives rule in R"). Assume that u € C!*/(G) and v € C(I)al(G). Then

/GuDo‘vdm:(—l)“’l/vDaudm. (1)

G

Proof. 1. If |a] =0 that is « = (0,--- ,0), then we have an identity.
2. If |o| = 1, then the claim is Lemma 3.2.

3. If |a| > 1, then the claim follows from Lemma 3.2 by induction.

5 Weak derivatives

Let G be an open set in R", let u be in L (G) and let o be a multi-index with o € N". The function

v € L (G) is called the o' weak derivative of the function u, if

/vwdmz(—l)'a‘/ uD* pdm, V@GC(‘)‘X'(G). (2)
G G

Let us denote v = D*u. The function D* u is called also the Sobolev derivative or the generalized partial
derivative of w.

Remarks 5.1.
1. The function D® u is uniquely determined up to a set of measure zero.

2. If u € C1*I(G), then DPu € LP (Q), for all 3, || < |a| with all p € [1,00]. The function D” u is the

loc
Bt weak derivative, since by Lemma 4.1

/uDﬁapdm:(—l)w/ D’ updm, Vo€ C(G).
G el

3. The integrals in (2) exist and are in R.

4. Tt is possible to prove that if u € L? (G), 1 < p < oo, and [updm = 0 with all ¢ € C(‘)al(G), then
u(z) = 0 almost every z € G.
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6 Sobolev spaces W"P(G)

Definition 6.1. The Sobolev space WP (@) consists of all LP(G)-functions u such that functions D u,
la] < m,m €N, exist and are also in L?(G). That is

W™P(G) = LP(G) N {u|Du € LP(G), |a| < m},
where p > 1land me N={0,1,2,...}.
Remark 6.2. The notation W)"(G) and H}*(G) are used also in literature. Especially, W?(G) = LP(G).
Example 6.3.

1. Let u: R — R be a function such that u(z) = |z|. Then, u € LY (R) for all p € [1, o0].

loc

It is clear that u ¢ C!'(R). But the function u has the generalized first derivative D® u, |a| = 1. Let us

set
+1 , x>0
v(z) =
-1 , x<0.

Then v € L} _(R). Let ¢ € C5°(R) . If we show that
/ugp’dm:—/vgodm,
R R
then v =D%w, |o| =1 € N.

Let us choose M > 0 such that spt¢ C [-M, M]. Then

M
/wp’ dm = / up dt
R -M
0 M
/ up’ dtJr/ up dt
-M 0

0 0 M M
= ‘ uga—/ u'gpdt+’ ug@—/ ' pdt
—M -M 0 0

0 M

= 7/ u'gadtf/ u'pdt
-M 0
M

= 7/ v dt
-M

—/vcpdm.

R

2. If u € C™|G|, then u € CY(G) whenever 0 < [ < m. But a similar result does not hold for generalized
derivatives.

Remark 6.4. The generalized derivative D% u € L}, (G) of function u € L} (G) is defined modulo the
equivalence relation:

f ~ g if and only if (f — ¢g)(x) = 0 for almost every x € G.
Theorem 6.5.
1. The Sobolev space W™P(QG) is a linear subspace of LP(G) .

2. The Sobolev space W™P(G) is a Banach space with a norm

lullwese = 32 1D ullr ).

lal<m

Theorem 6.6. 1. The space W™HP(G), where | € N, is a linear subspace of W™P(Q).

2. If the Lebesgue measure of G, which we denote by |G|, is finite, then W™%(G) is a linear subspace of
W™P(Q) , whenever 1 <p < g < co.
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Proof. 1. Tt follows from the definition.

2. Recall from the theory of LP-spaces: LY(G) C L?(G), whenever
l<p<qg<oo.
O

Remark 6.7. The space W™2(G) is a Hilbert space that is a Banach space with a norm which the inner

product
(ulv) = Z /Do‘uDo‘vdm.
e}

lal<m

introduces. This norm is equivalent to the classical norm of W™2(G),

1 1 m
—|lullwmezg) < (u,0)2 < Cllullwmeg), Yu€ W™G).
C

7 Approximation by smooth functions

Mollifier /Regularizer 7.1. Let ¢ € Cg°(R™) be a function with the properties
1. o(z) >0 for allx € R™,
2. spty C B(0,1),
3. Jan o(x)dm(z) = 1.

A classical example is

o) = cexp(—l_‘%lg) .zl <1
0 |z| > 1

)

where the constant ¢ > 0 is chosen such that

1 —1
exp| ————— | dm(z) =c " > 0.
/B"(O,l) < 1—|332) ()
Let e > 0. If we set

then
1. pe € Cgo(R™),
2. @c(x) >0 for all x € R™,
3. sptoe C B(0,e7 1),
4 Jgn 0c(z)dm(z) =1.
The function @ is called a mollifier (or reqularizer).

Convolution 7.2. Let ¢, be a mollifier and let f be a function in LL (R™). Then

loc

(f x@e)(x) = - FW)pe(z —y) dm(y) (4)

is the convolution of f and . .
Lemma 7.3. The convolution of a function f € L (R™) and a mollifier pc, f * @, has the properties
1. fxpe:R" =R,
2. fxp.€C®R"),
3. DY(f xp.) = [ * D%, with every multi-index .
The following lemma is important.

Lemma 7.4. Let f € L (R™). If spt f is a compact set in an open set G C R", then f = p; € C°(G)

loc

whenever 0 < j—! < dist(spt f, 0G).

Approximation 7.5. Assume that f € LP(G) with some p € [1,00). Then there exists a sequence (f;) of
C>(R™)-functions f; = f*g; such that f; € LP(G) and f; — f in the space L?(G) when j — oo ; this means
in the LP -sense ||f; — f|lLr — 0, when j — oo.
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8 Partition of unity

Partition of unity 8.1. Let A be a subset in R™. Let U be an open cover of the set A with open sets U
that is U = {U}. Then there exists a family of functions ¥ = {¢}, with ¢ € C§°(R™), such that

1. 0<¢(z) <1 for allz € R™.
2. If K is a compact subset of A, then Y|k # 0 only with a finite number of functions i € W.

3. For every function ¢ € U there exists U € U such that spty C U.
4o Dpew(x) =1 for allz € A.

9 The space H™?(G)

There exits a natural characterization for the Sobolev space W P(G). Let us assume that G is an open
subset of R™ and p € [1,00) and m € N=1{0,1,2,...}.

Definition 9.1. Function v € LP(G) belongs to the space H™P(G), if there exists a sequence (¢;) of
C*(@)-functions ; such that

L l@illwm.»(a) < oo for all 7,
2. ¢; — u in the space LP(G) when i — oo,
3. (D% ;) is a Cauchy sequence in the space LP(G) when |a| < m.

By this definition H%? = LP(G), since every function u € LP(G) should have the following property, for
an arbitrary function u € LP(G) there exists ¢; € C°°(G) such that [¢;]|1»(q) < oo and ¢; — u in the space
LP(G) when i — oo. On the other hand, W°?(G) = LP(G) as well.

The fact W™P(G) = H™P?(G) when m = 0,1,... and p € [1,00) was proved by Meyers and Serrin in
1960’s, [MeSe]. The inclusion H"™P?(G) C W™P(QG) is easy to prove. The inclusion W™P(G) Cc H™P(G)
requires some work. It is possible to prove the inclusion by using mollifiers and the partition of unity.

Warning 9.2. If u € W™P(G) and we set u(z) = 0 for x € R"\G, then u € LP(R™). However, note that it
does not hold always that u € W™P(R™).

The space H,""(G) 9.3. A function u € L?(G) belongs to the space Hy *(G), if there exists a sequence
of functions (¢;) such that

1. ¢p; € C§°(G) for every 1,

[\

- Neillwmr ey < oo for every i,

3. ¢; — u in the space LP(G) whenever i — oo,

4. (D ¢;) is a Cauchy sequence in the space LP(G) when |a| < m.
Theorem 9.4.

1. The space Hy"*(Q) is a linear subspace of the space W™P(QG).

2. A function u € W™P(G) belongs to the space Hy"'(GQ), if and only if there exists a sequence of
functions (v;), where ¢; € C°(G), such that

i — u in the space WP(G) when i — 0.
3. The space Hy)""(Q) is closed in the space W™P(Q).

Remarks 9.5.

1. We write
Wo"P(G) = Hy""(G).

2. WOr(G) = LP(G) = WP (G).
3. WP (R™) = WmP(R™).
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4. If m > 1, then u € W;"?(G) means that u ~ 0 near the boundary of the set G .
Examples 9.6.
1. If p € C§°(G) , then p € W"P(G).

2. There exist functions u such that
u € (Wol’p(G) N COO(G)) , but u ¢ Co(G) . Hence, sptu ¢ G. Let us define u : (0,7) — R such that

u(z) = sinz.

Then u € (W(}’P((o,w)) OCOO((O,w))) , when p € [1,00) and sptu = {z € (0, m)]u £ 0} = [0,]. But
u ¢ Co(G), since [0, 7] ¢ (0, 7). The reason is that we can approximate functions belonging to Wy (G)

with functions with compact support although functions in W™ (G) are not necessarily functions with
compact support.

Example 9.7. Let u(z) = sinz and G = (0,1). We show that u € Wy'(G). We have to construct a
sequence (¢;), where p € C§°(GQ), such that ¢ — u in WH1(G).
Set G; = [27%, 7 —27%] and let xg, be the characteristic function of G; that is

() 1 , when z € G;
(z) =
XG 0 , when z ¢ G,.

Let us define a C*™-function, which is very near the characteristic function when j = j; =4 - 2. Let ¢; be a
mollifier (we refer to (3)). Then,

i = Xa, *p; € CP(R)
and
Yi(z) = /]R xa: (W)e;(x —y) dm(y)
and
Pi(z) = (xa *9;) (x)
= (xa, *¥)) (x)

~ [ xeia - ) dm(y)
R
~ [ xelo = 22 dm(e)
R
Let us define a new mollifier as in (3) with e = j
pj(x) = je(jr)
and hence
o (x) = ¢ (jz).

Thus, .
()| < M- j2 = M - 2%

for all z € R; here M = sup,cp |¢'(z)| . Hence,
2 2 i
[i(2)] < My - 2% = = My - 2",

Further,
Yi(x) =0, kun z € G;_;.

Let us define

Yi = wi%
so that now ¢; € C5°(G). We have obtained
loi —ullpye = / i — ul dm
(0,m)
<

/ 1dm — 0,
G\Gi71
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when i — oo, and

Ioh — ol = / ¢! — | dm
(0,7)

/ [Yiu+ P’ — | dm
(0,m)

< [ whddms [l am
(0,7) (0,7)

</ wiadm+ [ ol = 1] dm
(0,7\')\Gi71 (0,71')

< 9.t gy 1+/ [ — 1] d

— 2i—1 2 2i—1 ) g m
2- M, -2

20202 / 1dm — 0,
22(171) C\Gs_1

when 7 — oco.

Thus,
loi = ullwrrey = llei — ullLye) + i = u'llLie — 0,

when 7 — co.

Remark 9.8. The most important spaces of W™?(G) and WJ"*(G) are W'?(G) and W, *(G). Many
proofs of the results considering the space W™P(G) can be reduced to the results in WP (G).

10 One version of the Poincaré inequality
Assume that u € C1(R"). Then

Du(xzo)h = Vu(zg)-h
= 81U(1‘0>h1 + 82u(x0)h2 + e + 8nu(£170)hn,

where Vu(zg) = (Oru(xo), dau(xo), . .., 0hu(xp)) is the gradient of u at g and h = (hq,- -

in R™.
Lemma 10.1. Let u € C}(R") and h € R™. Then
1
u(z +h) —u(z) = / Vu(z +th) - hdt.
0
Lemma 10.2. If u € C}(R") and h € R", then

/n jue + h) — w(@)[” dm(z) <n¥ ~Hn]? Z /Rn |Oiu(z)[? dm(z).

,hy) is a vector
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Proof. Let p > 1. By Lemma 10.1, Holder’s inequality with (p, p%l) , and Fubini’s theorem

[ e 1)~ u(@)” dmo)

_ /
< /n (/01 |Vu(x +th) - h dt)p dm(x)
< /R (/01 Vu(x +th)||h|dt>p dm(z)

< |h|”/n (/01 |Vu(:v+th)|dt>p dm(z)
< |h|p/n (/01 |Vu(:v+th)|pdt> dm(z)

1
< | / / V(e + th)|P dm(z) dt
0 n

p

/1 Vu(z +th) - hdt| dm(z)
0

_ |h|p/ Vul? dm.
R‘IL

By setting |9;u(y)|? = max;—1,._, [0;u(y)|? and by estimating we obtain

n 1/2
[Vu(y)| = <Z aiu(y)2>

< (naju(y)z)l/2
< n'?10uly)|

<n'2> " |ou(y)|.
=1

Hence,
[Vu(y)|P < nP*nP= 1 " |0u(y) P
i=1
Thus,
[ w0 @) dmia) <% a Y [0ty dm.
n = Jre
If p=1, the claim is clear. O

Theorem 10.3. Assume that u € Wy *(G) and diam(G) < co. Then,

n
ull Loy < e(n) diam(G) > [0l Lo
i=1
where
Oru = D100y 9 = DOO01)y
are the generalized first derivatives of u and the constant c¢(n) < oo depends only on the dimension n.

Remarks 10.4.
1. If G an open bounded set, it is possible to use in Wy (G) the norm

(@) u ullwire) = lullLe@) + 20imy 10iullLe @)
(b) w370 |05ul| (@),

because by Theorem 10.3 these are equivalent.

2. Note that Y1, [|0;ul| Lr () is not a norm in WP(G). If u is a non-zero constant then dju = 0 with

all i =1,...,n, but ||lu|lL»(g) # 0. This gives just a seminorm which does not have the condition: if
|lu]| =0 then u=0.
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11 Sobolev spaces in R

Definition 11.1. Recall that a function f : [a,b] — R is absolutely continuous on the interval [a, )], if and
only if for every € > 0 there exists § > 0 such that whenever Zle(bi —a;) < 6 then

k
Z | f(bi) — flai)| <,

where the intervals (a;,b;) are disjoint intervals of [a, b] .
Remember 11.2.
1. An absolutely continuous function f : [a,b] — R is continuous.

2. If the function & : [a,b] — R is Lebesque integrable with respect to the Lebesque measure m , then the
function

f) =k + / h(y) dm(y)

[a,x]

is absolutely continuous, f(a) =k, and f/(z) = h(z) for almost every x € [a, b].

Theorem 11.3. Let G be an open set in R and let 1 < p < oo. If u € WHP(G), then there exists a function
g : G — R such that

1. the function g is absolutely continuous on every closed interval [a,b] C G,
2. (u—g)(x) =0 for almost every x € G,

3. Du(z) = ¢'(z) for almost every x € G.

On the other hand,

Theorem 11.4. Let G be an open set in R and let 1 < p < oco. If a function g : G — R is absolutely
continuous on every interval [a,b] C G, and g € LP(G), and ¢’ € LP(G), then

g e W (@).
There is a local version of Theorem 11.3

Theorem 11.5. Let G C R be an open set and u € Li _(G). If the function u has the weak derivative

loc

Du € L} (G) then there exists a function g : G — R such that
1. the function g is absolutely continuous on every interval [a,b] C G.
2. uw= g almost everywhere in G.

3. Du =g’ almost everywhere in G.

Remark 11.6. Let G be an open set in R. Then by Theorem 11.3
WP(G) = AC([a, b)),

where [a,b] C G. Thus, functions v : G — R which have weak derivatives and functions v : G — R which
are absolutely continuous on every closed interval in G form the same function class.

12 ACL-property

Let G be an open set in R™. Function u : G — R is ACL, absolutely continuous on lines, if for almost every
line L which is parallel to a co-ordinate axis the restriction |z, is absolutely continuous on every closed
interval J C (GNL).

Remark 12.1. Let L be a straight line which is perpendicular to the co-ordinate plane R*~!. Let = be
the point where the line L meets the plane R®~! . The property P holds on almost every line L, if

my—1 ({zr € R"7!| P does not hold on L}) = 0.
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Example 12.2. Let G = R? and

22, ifx#0
wrne) =0 g

The function u is an ACL-function in R2, since on every line which is parallel to x;-axis or zs-axis but which
does not go through the origin the function u is absolutely continuous on every closed interval, since the
function w is continuously differentiable in R? \ {0}.

Remark 12.3. Let G C R™. If the function u : G — R is ACL, then the function u has the ordinary partial
differential derivatives O;u, i = 1,...,n, almost everywhere in G .

The following two theorems correspond to Theorem 11.3 and Theorem 11.4 in R™, n > 2:

Theorem 12.4. Let G be an open set in R™ and let 1 < p < oo. If u € WHP(Q) , then the erists a function
g: G — R such that

1. g is ACL.
2. uw= g almost everywhere in G.

3. Ou=0;9,1=1,...,n, almost everywhere in G, where O;u are the weak derivatives of u and 0;g the
ordinary partial derivatives.

Theorem 12.5. Let G C R™ be an open set and let 1 < p < co. If g : G — R is an ACL-function and
g € LP(G) and 0;9 € LP(G) for everyi=1,--- ,n,, then

g€ WhHP(@).
The local versions of Theorem 12.4 and Theorem 12.5:

Theorem 12.6. Let G C R™ be an open set and u € LL (G). If the function u has weak derivatives O;u,

loc
i=1,...,n, then there exists a function g : G — R such that

1. the function g is ACL.
2. uw= g almost everywhere in G.
3. O;u = 0;g almost everywhere in G.

Theorem 12.7. Let G be an open set in R™. Let g : G — R be an ACL-function with g € L{ (G) and
g € LL . (Q). Then d;g,i=1,---,n, are the weak derivatives of the function g.

loc

13 Corollaries

Lemma 13.1. If functions f,g: [a,b] — R,a < b, are absolutely continuous, then the function h

h(z) = max{f(z), g(x)}
is absolutely continuous. Further,
7 (@)] < [f' ()] + 19 ()]
for almost every x in [a,b].
Corollary 13.2. Ifu € WY?(G) and v € WYP(G), then
max(u,v) € WHP(G)

and
min(u,v) € WH?(Q).

The following corollary is important,

Corollary 13.3. Ifu € WYP(G), then
lu| € W(@).

Proof. Since |u| = max(u, —u), Corollary 13.2 implies |u| € W1P(G). O

Warning 13.4. Assume that v € W™P(G) and v € W™P(G) with m > 1. Then it might happen that
max(u,v) ¢ W™P(G) and |u] ¢ W™P(G).
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14 Embedding theorems

Generalized Holder’s inequality 14.1. Let g; € LPi(G), i = kK and —|— ~ ot

1/p1 1/pk
‘/ 91~~-gkdm‘ < </ Igll’“dm> (/ ngl”’“dm> .
G G G

Lemma 14.2 (The inequality between the geometric mean and the arithmetic mean.). Let a; > 0. Then,

= 1. Then,

(1) =3

i=1

Gagliardo-Nirenberg-Sobolev embedding theorem 14.3. Let D be a domain in R™. Ifu € Wol”’(D) ,
1<p<n,n>2, then

np

u € L»=r (D).

Further, there exists a constant ¢(n,p) such that

Jull | 22, (D) _C(WP)Z:H@UHLP(Dy

Proof. 1t is enough to prove the claim for u € C3(R"), D = R"™. (In the end of the claim’s proof we show
this, t0o.) Let us prove the claim when p = 1. So we have to show that

oll gy < ) D 1950l 2 ey -
=1

Foreveryi=1,--- n,
X, oo
lu(z)| < / |Ouldz; < / |Ojuldz; .
—0o0 — 00
Hence,
n oo
)" < H/ |0;udz; ,
i=1"7°
and
1
n o) n—1
lu(z)|7=T < <H/ 8Z-udxi>
i=17 7%
We integrate with respect to the variable z; . By the generalized Holder inequality when p; = -+ = p,, =
n—1,
o0 n
| @)=,
—o00

< / (/ |81u|dx1> L (/ |6nu|dxn> o dxzy
|31u|d:1:1) o / </ |82u|dxg> B (/ |8nu|dxn> . dxq

< |81’U,|d$1) - (/ </ |(92’LL|CL’E2> " dx1>

1

% n—1
|8nuda:n> dm1> )
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Next, we integrate with respect to the xo. By the generalized Holder inequality, when py = p3 =ps=---

pn =n — 1, we obtain

[ L

i
(I

(-
A
i
([
(2

(I

We continue in this way for ¢

Thus,

DO(/OO 81u|dx1) (/ / 82udx2d331) o

1
/ |On u|dxldxn> dzo
Lil oo o0 Z:} n=1
/ 82’U,|d$2d$1> (/ (/ |81u|d;v1> d$2>
—00 —0o0

n
|"—1 dzidzs

1

n—

/ |On u|dxndx1) das
/ 82u|dx2da:1> " / (/ |81u|dx1> "

( |(’)zu|dxz> d.’L‘1> "

n—1

1

1

= e
/ / |0 udmldm) dl’g)

1
o moo n-1 T
(/ / |8nu|dxndx1) dx2> )
=3,...,n. Hence,
/ / |lu(x) idzy - --dxy,

< H (/ / |8iu(ac)dx1---dxn> "
i—1 —o0 —00

_ (ﬁ/zu-/o;8iu(sc)|dx1~~dxn> o

ol gy < (H/}Rn@mdm)
i=1
1 n
*Z/ |O;u|dm
iz R
1 n
gZHaWHLl(Rn)-
i=1

IN

This is the claim, when p=1.

Let us prove the claim, when 1 < p < n. Let v > 1 and let u € C}(R™). Then |u|” € C}(R"™). We have

proved already
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We apply this inequality to the function |u|” . By Hoder’s inequality with (p, p%l) ,p > 1, we obtain

Y n 'Y
el 2 gy < Z / (") ldm

< 4y / [l suldm
i=1 /K"
-1
S ’y|||/u“"Y HL%(R");||8’LUHLP(R”)'
Let us choose v = ( ) > 1. Then y-25 = £ and

n—p

n—1 =1
(/ |u|%f—1) <o (1) T Y ol
=1
(Ju) ™ < ()" Z||au||LpRn.

—1_p—1

np ’LT P n
(fu=) " " <23 1ol

i=1

and

Hence,

which means
nep

n
np np
([ 1) ™ =l s ) < 72 N0rulaogan.
i=1

where v = p(:i:;) = ¢(n,p).

We have proved the claim using C}-functions u . Now we show that the claim follows from this to Sobolev
functions u € Wy *(D) . Assume that u € Wy'?(D). Then there exists a function sequence (¢;) of functions
pj € C§°(D) such that p; — u, when j — oo, in WP(D). By taking a subsequence we may assume that
¢; — u, when j — oo, for almost every x in D. By Theorem 14.3 the sequence (y;) is a Cauchy sequence
in L7-7 (D). Then, there is a function v € L7-5 (D) such that pj — v in L#=5 (D). Further, there exists a
subsequence ¢;, such that ¢;, — v, when h — oo, for almost every « in D. Thus, u(z) = v(z) for almost
every x in D . Hence,

lall, 22, ) =l lles]

< i 3 e oo = €3 0o
i=1 i=1

Lne P(D)

Remark 14.4. If w € LY(D), |D| = o0, and ¢ > p > 1, then it might happen that

ud LP(D).

Corollary 14.5. Ifu € Wol’p(D), 1 <p<mn, and |D| < oo, then for every q, 1 < q < £

ulla(py < e(n,p,q,|D]) Z 19:ull Lo (D)-

i=1

Proof. Assume that 1 < p < ¢ < oo and let |D| < co. Then by Hélder’s inequality with (%, 72

(o) =) ()

S
S
~——

1

'E\-m
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which is L1
llullze(py < [D]? "7 ||ullLa(p)

We apply this inequality and prove the claim. O
Remarks 14.6.
1. If w € WHP(D), then the claim in Theorem 14.3 does not hold unless we require extra assumptions.

2. Theorem 14.3 is known as the Gaghardo Nlerenberg Sobolev embedding theorem. It means that the
space Wy P(D) can be embedded into L7735 (D), when 1 < p < n.

3. Theorem 14.3 does not hold when p = n.
We need the following lemma when we prove the case p > n.

Lemma 14.7. Assume that the function u: G — R is measurable. Then,

1 P
esssup |u| = ||u||pe~(q) = lim | — wlPdm |
oplul = lull ey = i (i [ furam)

whenever 0 < |G| < co.

Proof. For almost every x € G

lu(z)| < esssup |u(x)|.
ze€G

(|61;|/G |U(1‘)|Pdm(ar)); < ess sup ()],

1
1 ]
lim (/ |u|pdm) < ess sup |u(z)].
r—oe \ |G| Ja zeG
If esssup,cq [u(x)] = 0, then u(z) = 0 for almost every x and the claim follows. We may assume that there
exists A € R such that 0 < X < esssup,cq |u(z)|. We denote A = {z € G : |u(x)| > A\}. Now,

(o) = (s ) -7 ()}

Thus,

and

when p — oco. Hence,

1 P
lim, (/ |u|pdm> > A for every A € [0,esssup |ul),
Gl Ja G

and

1
1 »
lim (/ |u|pdm) > esssup |ul.
r— \ |G| Jg G
O

Theorem 14.8. Let D be a bounded domain in R™. If u € Wol’p(D) , p > n, then there exists a function
v € C(D) such that (v —u)(xz) =0 for almost every x in D and

sup [v(z)| < c(n, p)| D[~ Z 10ullL» (D
xz€D

Proof. Let us assume that u € Cy(D). If >, [|0sul|Lr(py = 0, then d;u =0 for all i = 1,...,n in D. Thus,
u =0, since u € Cj(D). Hence, we may assume that "' | [|0;ul|1»(p) > 0 and denote v = 7" [|9;u| 1o (p)-
Let us define

i

a="—.
a
We may assume that |D| = 1. Let v > 1. By the proof for Theorem 14.3

n
el gy < Al 2 ) S 10l 2o
=1
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Let us multiply the above inequality by -

v
|ul” uP
77 n S’Y y—1 :
@’ |lL==1 (D) « LP=1(D)
Hence,
v v—1
(Y ] I
which is

n-1 e
(frar==e) " <o (fragone) ”

Let us take the power % and apply Holder’s inequality with ( %, v),

()"

p—1

()"
D

IN
2
Ry

(1-3)

1 p('v 1)
<yt (/ a5 ) ]
(p=1) (v=1) por70-3)
1 (v— p(v=1) v p(r-0 Y
<A (/ |u,‘ (p— 1) (= 1)) (/ 1'Y>
D

1 p=1 N (1_%)
=D (lal, g )

Thus,

1
1all 22 )_WII ”LN(D)

Recall p > n. Let § = (nﬁl)(’;%l) > 1. Set v =67, where j = 1,2,... . Thus,

—J

=i 1-0 5= 157
| nos <87 1 ; = Q|| nsie )
lll s ) < (wnmw ) R (R,

Let us assume for awhile that

1 2 1,

when j > jo and
lall, o si-r <1,

L7197 (D)
when j < jo. Hence,
. - 1-§77
lall sy < 87 ("“"Lnﬁl‘”‘1<p))
,671 " ‘
S ¢! ||u||L"7_Ll§J71(D)
< 5j5_j+(j*1)6_(-7_1)||ﬁ‘| Cw e )
- L1 (D)

Let us continue in this way until the number jg. Thus,

j
159 (py < 5215— ‘1

forall j =0,1,... . Write A\ =)_72i6 " € [i,00). Thus,

lall,

- A
HuHLﬁsJ(D) >0
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By Lemma 14.7,
esssup || < 6.
D

Because the function @ is continuous, we have

sup |a| < 6”.
D
By the definition of the function

sup lu| < 6*a =6 Z l|0iul| L (D)

=1

So we have proved the claim of the theorem when p > n, u € C}(D), and |[D| =1.

Let us remove the restriction |D| = 1. Assume that T : R — R™ is a linear mapping such that
Tz = |D|wz. When Tz = Az and A is a measurable set in R™ , then |T(A)| = A"|A|. Write w(z) = u(T(z)).
Then, w € C}. Hence,

n
SBP lw| < A? Z 10wl e (D7
i=1

n

<Nl Y (/. |aiu<:r<x>>|pdm<x>);

n 1

XD S ([ Dl @) pam)

i=1
=ND[x" 7Y (/D |8iu|pdm(w)) ’
i=1

1_1 -
= XD Y |05l 1o () -
=1

Thus,

T 0wl o) - (5)

i=1

sup |u| = sup |w| < A°|D
D D’

The claim of the theorem holds for functions u € C}(D).

Let us prove that the claim holds for functions u € Wy?(D). Let u € Wy*(D). Then there exists a
function sequence (¢;), p; € C5°(D), such that ¢; — u in WHP(D). Especially, ¢; — u in LP(D). If we
take a subsequence we may assume that ¢; — wu for almost every x in D. We may assume that

leillwirpy < lullwrrpy + 1.

The sequence (p;) converges uniformly in the set D, since if we apply the inequality (5) to the function
;i — @; we obtain

n
1_1
sup [ — ;| < XID|77% Y |10nei = Onpslle(o) = 0,
b h=1
when i,7 — oo. By the Cauchy criteria of the uniform convergence the sequence (p;) converges uniformly

in D. Let us denote
v(z) = lim @;(x).

11— 00

Since the functions ¢; are continuous and the sequence (;) converges uniformly, the function v is continuous.
On the other hand,

lim ¢;(z) = u(x)
for almost every « € D. Hence, (u — v)(x) = 0 for almost every z € D. The claim follows when p >n. O
Remark 14.9. Theorem 14.3 does not hold when p = n. The following example shows that there exists a
function u € W, "™ (D) such that u ¢ L>(D).
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Example 14.10. Let
loglog(1l + |z|71) —loglog2 , 0<|z| <1
u(z) =
0 , x> 1.
Then,
[ vutray <o,
|z|<1

but
esssup |u(z)| = oo.

15 Embedding theorems in the space W;""(D)

Theorem 15.1. Let D be a domain in R, n > 2. Let u € W.P(D) and mp < n. Then, u € L7m5 (D)
and
[l <c(m,n,p) > D% ullzr(c)-

np
L n—mp (D)
lo|=m

Proof. We may assume that v € C5°(D) and prove the claim for v € C§°(D). We apply the Gagliardo-
Nirenberg-Sobolev embedding theorem to the inequality

n
lell 225 gy < N0l o),

i=1

when 2L = 2P that is g =

Pt By iteration,

n—(m—1)

n
||u||Lnffnp(D) < z; ||8iU||L%(D)
i—

<cmo1 Y ID%ullze(p) -
|a|=m
O

Example 15.2. 1. Let u € W(}’I(Rg). Here, n = 3 and p = m = 1. By the Gagliardo-Nirenberg-Sobolev
embedding theorem u € L3/%(R?).

2. If u € W' (R?). Here, n =3, p=1 and m = 2. Hence, u € L3(R3).
It seems that the integrability gets better if the degree of differentiability increases.
Theorem 15.3. Let D be a bounded domain in R™, n > 2. Assume that uw € Wi"P(D) and
O<k<m-_bm—n
p p

Then there exists a function v € C¥(D) such that (v — u)(z) = 0 for almost every x in D and

Z sup | D%v(z)| < ¢ Z | D* ull e (D) 5

xeD

la| <k~ |a|=m

here ¢ = c(k,m,n,p,diam(D)).
Proof. Let u € C5°(D) and |a| < k. Then,

sup| D0 < > [0, D vl|z(p)
=1

n n
Y Y 1105 D vl Lo ()

<
i=1j=1
n n
< ¢ Z Z Hailig...ik DQUHLP(D)
ir=1 tp=1
- ¢ Z HDﬁvHLp(D)-
|B]=m
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If we take a sum over all o we obtain
> sup D0l < e Y D] Loy
|| <E lal=m

Also, v — u as in Theorem 14.8. O

Examples 15.4.
1. Let u € W, '°(R?). Here, m = 1, p = 10, and n = 2, we have
mp—n 10—2 1

= =1——
p 10 )

which means k = 0. Hence, the function u is not continuously differentiable but there exists v € C(R?)
such that (v —u)(z) = 0 for almost x in R?.

2. Let u € Wy*' (R?). Here, m = 10, p = 1, and n = 2, and

mp—n 10-1-2
p 1

8.

Thus, there exists a function v € C7(R?) such that (v — u)(x) = 0 for almost every = in R?.

Remark 15.5. The results are for functions u € Wol’p(D); for example, if p < n, then
n
lull e < ¢S [0ulliooy.
i=1

If u € WHP(D) the previous inequality does not hold at least when D is a bounded domain and u is a
non-zero constant function. So we do not obtain information of the global integrability of v. We are able to
obtain local information of the differentiability of the function w .

16 Embedding theorems in the space W™P(D)
Lemma 16.1. Let A be an open set in R™ and K C A compact. Then there exists a function ¢ € C§°(A)
such that

1. 0<¢y <1 and

2. Y|k =1.
Proof. Choose j such that Jl < %dist(F, CA). Let i > j. Define

Y= XK+§(0,§) * P
Since % < 3 dist(K,CA), then + < 3 dist(K,CA). Thus, ¢(z) = 0, when ¢ A. Hence, ¥ € C§°(A). Also
Y|k =1, since%<%. O
Remember 16.2. If the set spt f is compact in an open set A in R™, then
[ s € CE(A),

whenever 0 < % < dist(spt f, 0A).

np

Theorem 16.3. 1. If D is a domain in R™ and u € W™P(D), then, u € L' (D), if mp < n.

loc

2. If D is a bounded domain in R™ and uw € W™P(D), then there exists a function v € C*(D) such that
(u—v)(z) =0 for almost every x in D, if 0 < k < =E=2.

Proof. Let K C D be compact. Choose a function ¢ € C3°(D) such that 0 < ¢ < 1 and 9|x = 1 as in
Lemma 16.1. Then, the function v = ¢pu € W"?(D). Theorem 14.3 implies that

v € L7 (D)

and

||UHL%(K) < ||U||Lnf—fnp(D) < 0.
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Lemma 16.4. There exists a constant K = K(n) € [1,00) such that for all r € (0,00] there exists a function
P € C§°(R™) with the following properties

1.0<y <1

2. Yl = 1.
3. 10;¢| < K for everyx e R™, i=1,...,n.
Proof. Let ¢ € C§°(R™) be a mollifier with spt ¢ C B(0,1). Let us define

U = XB(0,r+3) * -
Then, ¢ € C°(R") and |9;4(z)] < K. O
Theorem 16.5. If p € [1,00), then WHP(R™) = W, P(R™).

Proof. Obviously, W, ?(R") ¢ W1P(R").
By Theorem 9.4 it is enough to prove: if u € WYP(R"), then for every ¢ > 0 there exists a function
¢ € C5°(R™) such that
Hu — (,D”Wl,p(Rn) < E.
Since WP(R™) = H'P(R™), there exists a function sequence (¢;), ¢; € C*(R™), such that ||¢;]|w1.egn) <
00, p; — w in LP(G) and (D” ;) is a Cauchy sequence in LP(G) for every «, |a] < 1. Thus, there is a
function ¢; € C*°(R") such that
€
H’LL — spl”Wl,p(Rn) < 5

Let us choose r > 0 with -

||</71 ||W1wp([‘. B(0,r)) < M

Define
o =Yp1 € Ce°(R™),

where ¢ € C§°(R™) is a function as in Lemma 16.4. Thus,

Hu_§0||W1vP(R”)

< lu = etllwre@ny + o1 — @llwre@ny
g
s 5t 1 — Yerllwre@e o) + lle1 — Yeillwie@sro,m):
where
lor — Y1llwreBrory) =0
and
ler = Yerllwreesr 0,
= el =D reBr (o) + Z 1001 — Y0ip1 — Oivp1l Lo B (0,r))
=1
< llerl(X =)l Le e B0,y
+10ip1 (L =)l Lo @ B (0,r)) + 110001 Lo € B (0,r))
g g 13
< K .
S K T T e e
Thus,
lu = gl < 5 +e= 3
Pllwre(rr) S B £ = 26.
Hence the claim of the theorem holds. O

Definition 16.6. Let D be a domain in R™. Let m > 0, p € [1,00), and v € W™P(D). The domain D is
an (m,p)-extension domain if there exists a function u* € W™P(R"™) such that v* = u in D and

llw* [lwm.»@ny < cllullwme Dy,

where ¢ = ¢(m,n,p, D).
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Theorem 16.7. Assume that D is a bounded (m,p)-extension domain. Then,

1. for u € W™P(D) and mp < n there exists a constant ¢ < oo such that

Il 22, ) < cllulwmso).

2. foru € W™P(D), where 0 < k < L=, there exists a function v € C*(R™) such that
(a) (u—v)(x) =0 for almost every x in D.
(b) 3 |a1<k SUPzep | D* v(2)| < cl|ullwm.r(p) where the constant c is independent of u.

Proof. (1) If w € W™P(D) and D is an (m,p)-extension domain, then by the definition of the extension
domains there is a function v* € W™P(R™) such that v = u* in D. Theorem 16.5 implies that uv* €
Wy"?(R™). By Theorem 15.1

HU*HL%(R@ sc Z D" ™| Lo ey

|a]=m

The definition of the extension domain yields that

lell 22 ) = 107l 222 -
Thus,
full ze_ = |lu*|| oo
L P (D) L ? (D)
< |l e
Ln=mp (Rn)
< ¢ Y DU pogny
|a]=m
< C”u*”Wm,p(Rn)
< cullwm.r(py-

(2) If w € W™P(D), then the definition of the extension domain implies that there exists a function
u* € W™P(R") such that u = u* in D. Theorem 15.3 yields that there exists a function v; € C¥(R™) such
that v1(z) = u*(z) for almost every z in the space R™. Hence, vi(x) = v*(z) = u(z) for almost every z in
D. Recall that we assume D is bounded. Let us choose a number » > 0 such that D C B"(0,r). Then we
may choose a function ¢ € Cg°(B" (0,7 + 3)) such that 0 <+ < 1, |gnoy = 1 and [037)] < K(n). Let us
set v = ¢v;. Then, v = u for almost every x in D, since v = vy in B"(0,7), D C B"(0,r) and v; = u for
almost every z in D. Since v € C* and v € W"F(B"(0,r + 3)), Theorem 15.3 implies

doswp D < e D ID vl

la <k laf=m
< ¢ Y ID 0] Loer(0rts)
laf<m
< e Y ID ) Leen
la|<m

= c[vllwme@n) = [[Yv1llwmegn)

vl Lo ey + Z | D* (1)l e (&)

laf
lvillze@®ny + [0 DY v1|| Lo ey + [| DY o1 || Lo mn)

cllorllwme@ny = cllu*lwms@n)

IA A CIA

C”u”WnL,p(D).
O

Definition 16.8. A domain D in R" is a Lipschitz domain if the boundary of the domain can be expressed
locally as a graph of a Lipschitz mapping which is defined in an open ball in the space R* 1.
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The following theorem and its proof are found in the book [St].
Theorem 16.9 (A. P. Calderon, Elias M. Stein). Fvery Lipschitz domain is an extension domain.

Definition 16.10 (Peter W. Jones). A domain D in R"™ is an (g,d)- domain if for every pair of points
x,y € R™, when |z — y| < 4, there exists a rectifiable curve 4 in D joining the points « and y in D such that

I(y) <e o —yl

and
|z — 2]ly — 2|

dist(z,R"\ D) > ¢
B EAD) =y

for all z € ~.
The following theorem and its proof are in [Jo].

Theorem 16.11 (Peter W. Jones). A domain D in R™ is an extension domain if and only if D is an
(e,0)-domain with some € and d.

Theorem 16.12. A domain D in R™, n > 2, is a uniform domain if there are constants o and (3 such that
every pair of points x1,xo can be joined by a rectifiable curve Vg, o, in D such that

l(7w172v2) < Oél.%‘l - x2|
and
i=1,
forall x € vz, 4,

Theorem 16.13. A bounded domain is a bounded uniform domain, if and only if it is an (e, d)-domain with
some € and 9.

Definition 16.14. The boundary of a domain D in R" is a C! -boundary, if for every x € 9D there exists
a neighbourhood U, of the point z and a mapping ¢ : U, — B"(0, 1) such that

1. ¢ is homeomorphism,
2. (UNoD) =B"(0,1)N{x € Rz, =0},
3. v(xg) =0and p(UND)=B"0,1)N{x € R"|z, > 0}.

Theorem 16.15. A bounded domain with a C' -boundary is an extension domain.

17 Potential inequality
Theorem 17.1. Assume that D is a bounded domain in R™, f € LP(D), and 1 < p < oco. Let

I f(x) = /D |z — y[' " f(y)dm(y),

when x € D. Then ) )
I f 1l e (py < nIB™(0, )|~ D= || f]| Lo (D) -
Proof. Let us fix a point « € D. Let us choose a positive real number R such that
|D| = |B"(z, R)| = |B"(0, 1)|R" .
Then,

/ |z —y|' "dm(y) < / |z —y|'"dm(y)
D B"™(x,R)

- / |21~ dm(2)
B"(0,R)

R
= mn,l(S"_l(O, 1))/ pl=npn=1q,
0
=mu_1(S"71(0,1))R
= n|B"™(0,1)||D|=|B"(0,1)| "=
= n|B™0,1)|'" % |D|7 .

1
n
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Since the point x € D is arbitrarily chosen and then fixed,
[ 2= sl "dmy) < nlB, D H DI
D

for every = in D.
If p < 0o, then by the Holder inequality with (p, %)

(/ o=y f(y >dy) dac)l

3 =

§3 p(p—1)

z—qy|lt " Pq ! z —y|t7"d ! dz
< \ Y1) y) (/D yl y)
< (n|B"01|1-*|D| )7 ([ (fe-vrris >|pdy) a)’

n|B" =% |D|= w u x —y|'"dx : Pd ’
< (mpr.y) )7 (s [ e =orran)” ([ 1)
< B0, 1)~ |D|} ( / |f<y>pdy)p
If p = oo, then
Lf@) < (/D |x—y1”dm<y>) e
< B0, 1)]* % [D|% || fll 1 (p)

Theorem 17.2. Assume that D is a bounded conver domain in R™ and uw € WYP(D). Then

1
B0, 1)\ .
= upllzoipy < ('|(D)') diam(D)"||Vul ooy

whenever 1 < p < oo.

Proof. We may assume that u € C1(D). Since D is a convex domain, for every z and y in D holds that

lz—y|
u(z) —uly) = _/0 %u(m + r0)dr,

where 6 = é:;. Let us denote

|Opu(z)| , kun z € D
pla) =
0 , kun z ¢ D.

Integrating over all z in D and using Fubini’s theorem we obtain

|z—yl

—u(z +ro
L gt
/ / o(z + rd)drdm(y)

B"(z,diam(D))
diam (D)

= / / / o(x +70)p" tdpdfdr

0\ 1
= diam(D / / o(z + rd)dodr

6= 1

di
tam(D /IVu Iz — yl'"dy.

The claim follows from the potential inequality.

| Dl[u(z) = upl

IN

drdm(y)

IA
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Remark 17.3. If D is a bounded convex domain in R” and u is a function from W1?(D), then

Hence,

1D
D /Du(x)dx .

Also the other direction is valid as soon as we choose v = u — up . Note that vp = 0.

1
B0, D\ """ . .
o — wpll oy < (()) diamn(D)" | V]| o
B0, 1)\ . . i
lullr(py < (| =77 diam(D)"||Vul|Le(py + D]~ "7

Theorem 17.4. Assume that D in R™ is a bounded uniform domain, p € [1,n) and q € [p, n"pp} Then

there exists a constant ¢ such that for every function u € W1P(D)
v —=upllLap) < cl|VulLr(p)-

Proof. Since D is a bounded uniform domain, D is an extension domain. It is possible to prove that a
uniform domain satisfies the Poincaré inequality, (6). Hence, for u € W1P(D)

lu—upllepy < ¢ D*(u—up)|Le(p)

laf<1

¢ ([lu —upllLepy + VUl Le(p))
cl|Vull Ly (p)-

IN

18 On Poincaré domains

This chapter is based on some parts of my thesis, [Hu].

Lemma 18.1. Assume that D is a bounded domain in R™. Let A be a subset of D with |A] > 0 and
u € LP(D). Then, for every real number c

DI\ *
HU_UAHLP(D) <2 <|A| HU_CHLP(D)

Proof. By the Minkowski inequality

(/D lu(z) — u,ﬂ”dx)é

< (/Du(x)cpdx +(/Dcu,4pd:c>;
- ( /D u(z) — Pdz )

P 1
+ |D[?|c — ual
= </ lu(z) — c|Pdx
D

i,
S
4]
< </ lu(z) — c|Pdx —|— —/ lu(y) — c|ldy .
D Al
If p=1, the claim follows.

By the Holder inequality with (p,p/(p—1)),p > 1,

</ (e —uApda:>;
< (/D |u(x)6|pd$>f 'ﬂl </ uly cl”dy) Al
< (/D |u(x)—c|pdw)p+|D| (/ Ju(y) |”dx) ,

which yields the claim. O

o
+ D7

\/\_/\/\_/
Q=
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Definition 18.2. Assume that D is a bounded domain in R™, n > 2, and 1 < p < oo. The domain D is
called a p-Poincaré domain, if there exists a constant k = k, (D) such that the inequality

lu —upllLe(py < ElIVUllLeo (6)

holds for all functions u € WP (D). We write D € P, or D € P(p).
The inequality (6) is called the Poincaré inequality and x is a Poincaré constant of D, k = k,(D).

Lemma 18.3. Assume that D; € P, is a Poincaré domain with a constant ky(D;), i = 1,2, respectively,
and |D1 N Dg| > 0. Then Dy U Dy is a p-Poincaré domain with a constant

8
tip(D1 U Do) < ———— (|D1]rp(D1)? + | Da|kp(D2)?) .
| Dy mD2|

Proof. Let us write D = D1 U Dy. Applying Lemma 18.1 three times we obtain

/ fu(y) — uplPdy
D

<2”‘D‘ / |u(y) — up,np,|Pdy

< 221 (/ |u(y) — up,np,|"dy +/ lu(y) — UDmD2|pdy>
Dy D2

_ Dy |
<23p 1( u — U pd
<2 gy ) — o,y
| D
+ |D1 N DZ‘ |u(y) — UD, |pdy
23p 1
D; —up,|Pd
\DlﬁD2|§:‘ [ )~ ray

23p 1
D;|x Vu(y)|Pdy,
‘DmDﬂZ\ In( /D (w)lPdy
whenever u € WHP(D;),i=1,2. O

Definition 18.4. Domains D; in R", ¢ = 0,1,...,k, form a chain C(Dy) = (Dy, D1, ..., D) whenever
|D; N D;| # 0, if and only if | — j| < 1. The length of the chain C(Dy) is [(C(Dy)) = k. The notation C(Dy)
means also a collection of the sets in the chain.

Poincaré decomposition 18.5. Let W be a family of domains D € P(p) such that k,(D) < ¢; < co. Let
N > 1. The family W is called a (¢1, N, p)-Poincaré decomposition of G, if the following claims hold.

1. G=UpewD
2. > pew Xp(x) < Nxg(z) for all z € R™.

3. There exists a fixed domain Dy € W such that for every D € W there is a chain C(D) = (Dg, D1, ..., D)
of domains from the family W such that

max{| Dy, [Diy1]} < e1|Di 0 Dy
for alli =0,1,...,1(C(Dy)) —
Let us fix for each D € W a chain C(D). This chain is called a Poincaré chain from Dj to D.
Let us write AW) ={D € W|A € C(D)}.

Theorem 18.6. Assume that G is a domain in R™ and W is a (c¢1, N, p) Poincaré decomposition of G . If
there is a constant co < 0o such that for every A € W

D UCD))PTHD| < cary(A)P|A]
DeA(W)

then G is a p-Poincaré domain.
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Proof. By Lemma 18.1 it is enough to prove that the inequality

[ 1uw) —unay < c [ [Tuwlray
G G
holds for every u € WHP(Q).
We may assume that u € C1(G). Since each D is a p -Poincaré domain with a Poincaré constant (D),

/ ju(y) — up,lPdy = 3 / fu(y) — upy Pdy

Dew
(Z / lu(y) — up[Pdy + Z/|UD—UDo|pdy>
Dew Dew
§2P< /|Vu )|Pdy + Z / lup — up,|P dy)
Dew Dew
(cpN/ [Vu(y)|Pdy + Z / |uD—uD0|pdy>
Dew

Let us fix D € W. We may choose a Poincaré chain (Dy, D1, ..., D) such that Dy = D. Then, by Lemma
18.1

p

k
lup — up,|” < Z lup, — uj—1|

<kp 1Z|UD —uD ,1‘11_]{71) 12/ |uDj—uD],,1|pdy

] 1ﬂD

b 1
S 2kp71 (/ uly) —u ,71pdy
( ) ; |Dj71 N Dj‘ D]‘71 | ( ) D] |

+ /D Jul) -~ up, 0y

J

— P4
< clz(wj 1|/ up, ,[Pdy

1
+ — u(y) — up;, pdy)
By, 1u) |
k
_ K (D 1)p
< (2K e < =L wuw)ray
; |D.] 1‘ D]'71

Thus,

k
fup —up, P <20 er Sy (D)7 [ [Tulw)Pa
=0 b
Hence,

Z/|uD—uD\dy< Z/ Z\uD —uD,1| dy

Dew Dew

< 2P Z/ P Dl > /|Vu )|Pdy

Dew AEC(D

=3 3 D) Dl (A /A Vu(y)Pdy

AEW DeA(W)

<ep Y / |Vu(y |de<c2N/ |Vu(y)|Pdy .

Aew
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Namely, in the previous estimate it is possible to change the order of summation:
Let us write a(D;) = I(C(D;))?~*D,|, b(D;) = k,(D;)? [, |Vu(y)[Pdy and

1 ,iftD, eC(D;
Xe(p,)(Dj) = { j € C(D:)

0 , otherwise.

Then,
> ey Dl Y way [ Vat)rdy
Dew AeC(D) A
a( Zb aDj = Zb Zfl i)Xc(p,)(Di)
=0 Jj=
=Y X ey Ay [ vutlay.
AeW DeA(W)
The theorem is proved. O

Example 18.7. Let 0 < h; < 1 and 0 < §o; < 1 such that Zzoil hi =1<o00,0<b < h;tl < 1 and
0 < 82 < hgir1. Let 2% h; = dy, where k =1,2,... . Let

1 1
Doi—1 = (dai—1 — hoi—1,d2;—1) X (—57122‘71, §h2i71)"_1
and 1 1
Py = [dai—1,doi—1 + ha;i] x (—5521', 5521')"71,
where i = 1,2,... . Let us define

D= (Dgifl U PQZ) .

@,
TC:

Assume that dy; = bah;, where a > 1 and by > 0. If p > (n—1)(a—1), then D € P(p). Details are provided
in [Hu, Chapter 5]. If p < (n —1)(a — 1), then D ¢ P(p). Let (ug), k =1,3,5,... be a sequence of piecewise
linear continuous functions such that

h.” i Dy
up(z) = .
0 1nD\{Pk_1 UDkUP]H_l}.

Let us extend uy into the set DU Dy U (— 71, %)” as odd functions with respect to z1 . Then

/ |U2i_1(I)|de > / |’LL21'_1(I)|de > C
D Daj—1

/ |Vugi—1(z)|Pdz
D

= 2/ |Vuzi,1(:c)|”dx+2/ [Vug;—1(z)|Pdz
Pai—2 Pa;

eah{m D@D | o =D _

and

IN

ifi wocoandp< (n—1)(a—1).
Also, D € P((n — 1)(a — 1)), but for the proof we need a theorem we do present here. We refer to [Hu,
5.9 Remark].

Definition 18.8. Let D be a proper domain in R™. The quasihyperbolic distance between the points 7 in

D and z5 in D is defined as
ds

Fp(wi,v2) = mf/ dist(z,0D)’

where the infimum has been taken over all rectifiable paths v which join the points x; and x5 in D.
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Whitney decomposition 18.9. [St] Let W be the Whitney decomposition of D . This means that W is a
family of closed dyadic cubes @ such that the interiors of the cubes are pairwise disjoint and

1. D= UQGWQ

dist(Q,0D)
2. 1< diam(Q) <4

3. § < Gomt@U <4 when Q1 N Qs # 0.

Also, at most 12" cubes can touch a fized cube Q, and for o € (1, g) fized each point of D lies in at most
12™ of the cubes 0@, Q € W.

Lemma 18.10. Let W be a Whitney decomposition of a domain G . Let us fir Qo € W with x¢ € Qq. For
each QQ € W there exists a chain C(Q) which joins the cubes Q and Qo such that for every x in Q

(C(Q)) < e(n)kp (o, 2) +1 < 5e(n)(UC(Q)) + 1).

If the cubes in the chain C(Q) are expanded by a factor %, then the chain C(int %Q) is a Poincaré chain.

18.1 Conditions for Poincaré domains

Let D be a bounded domain in the Euclidean n- space R™. Let WW be a Whitney decomposition of D .
(Py) Let p € [1,n). Suppose that for some 29 € D
/D (kp(zo,x) + 1)P7 126 (=Pkp(20:2) gy o
for some constant ¢(n) < co.

(P2) Let p € [n,00) . Suppose that for some xg € D

/ (kp(xo,x))P ' da < co.
D

(P3) Let p € [1,00) . Suppose that for some constnat ¢ < oo and z¢ € D the chains C(Q) satisfy
Z / (kp(zo,z) + 1)P~ 1 dz < cdiam(A)" P
Qeaw) @
forall AeW.

Theorem 18.11. If one of the conditions (P1),(P2) or (Ps) is satisfied, then D is a p-Poincaré domain.
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Hausdorff measures and dimensions

Maarit Jarvenpda
Department of mathematics and statistics, University of Jyvdskyld, Finland

Abstract

In fractal geometry various notions of dimensions play an important role. In these lecture notes we
discuss the most commonly used concepts of dimension. The emphasis is given to Hausdorff dimensions
which are defined in terms of Hausdorff measures.

1 Introduction and notation

The aim of these lecture notes is to consider general features of fractal geometry at a level which is accessible to
those who have various mathematical backgrounds. The emphasis is given to different concepts of dimensions,
their basic properties and methods for calculating their values. The attempt is to provide mathematical
insight into the subject without going into the abstract measure theory. A good overview of the topic can
be found from [1], [2], [3], [4] and [5]. This exposition which is based on [3] and [5] contains some crucial
definitions, examples and results and it will be used as a basis of my lectures.

In this section we make a rapid survey of some basic definitions and results in measure theory that we
will need later. We restrict our consideration to the n-dimensional Euclidean space R™. We denote by
diam(F) the diameter of a set E C R", i.e. diam(E) = sup{|z — y| : =,y € E} where | - | is the usual
Euclidean norm. The closed ball with centre z € R™ and with radius r > 0 is denoted by B(x,r), i.e.
B(z,r)={y e R": |z —y| <r}. Let P(R") = {A: A C R"} be the power set of R".

Definition 1.1. A function p: P(R"™) — [0, 00| is a measure if

0,
(2) p(A) < u(B) provided that A C B C R",
(3) u(lJA) <D u(A) for all A; C R".
j i=1

=1

Contrary to Definition 1.1, in measure theory a measure means usually a non-negative, countably additive
set function which is defined in a o-algebra of R™. The set function defined in Definition 1.1 is often called
an outer measure. There is a close relation between these concepts, see [5].

Definition 1.2. The support of a measure p is the smallest closed set E such that u(R™ \ E) = 0. It is
denoted by spt u. We say that p is a measure on A if spt u C A.

The following consequence of Fubini’s theorem turns out to be be very useful.

Lemma 1.3. Assume that p is a measure and f : R™ — [0,00) is a Borel function. Then

[ rau- /OOO () > 1)t

Proof. Letting A = {(x,t) : f(z) >t} and denoting by £! the 1-dimensional Lebesgue measure, we have by
Fubini’s theorem

/ T f@) = 1)) d = / T il (@) € AY) de

= /El({t € [0,00) : (z,t) € A}) dux
- / £1((0, f(2)]) dpz = / f() dy.
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2 Hausdorff dimensions and measures

The notion of dimension is crucial in fractal geometry. Among different concepts of dimensions, the Hausdorff
dimension is the oldest and the most important one. It measures the metric size of a general set. The
Hausdorff dimension has the disadvantage that in many cases it is rather hard to calculate and to estimate.
The definition is based on Hausdorff measures.

Definition 2.1. Suppose that A C R™. Let s > 0 and ¢ > 0. Define

H3(A mf{z diam(E;)* : A C | J E;, diam(E;) < 6}

i=1
and
H(A) = }in% H3(A). (1)
The limit in (1) exists since Hj(A) < HZ(A) for all 0 < ¢ < §. In fact,

H?(A) = sup H3(A).

6>0

It is not difficult to show that equation (1) defines a measure. The measure H?® is called the s-dimensional
Hausdorff measure.

For integer values of s the Hausdorff measures generalize the length, area and volume measures. Indeed,
it turns out that the n-dimensional Hausdorff measure is a constant multiple of the n-dimensional Lebesgue
measure £". Moreover, HY(A) gives the number of points in A.

One may use more restrictive coverings in the Definition 2.1. Indeed, instead of arbitrary coverings may
take closed, open or convex sets [5].

The definition of the Hausdorff dimension is based on the following property of Hausdorff measures.

Proposition 2.2. Suppose that A C R™. Let 0 < s <t.
(1) IfH*(A) < oo, then H'(A) = 0.
(2) IfH'(A) >0, then H*(A) = co.
Proof. We verify Claim 1. Claim (2) is a restatement of Claim 1. Let 6 > 0. Assume that A C U2, E; where
diam(E;) <6 and ) .o, diam(E;)* < Hj(A) + 1. Then
) < Zdlam Zdlam )8 diam(E;)* < §0F Zdlam S < ST (HE(A) + 1).

Letting 6 — 0 gives (1). O

By Proposition 2.2 there is a unique value of s at which the s-dimensional Hausdorff measure ’jumps’
from infinity to zero. This critical value is called the Hausdorff dimension.

Definition 2.3. The Hausdorff dimension of a set A C R” is defined as follows:
dimpg A = inf{s > 0: H*(4) =0} = sup{s > 0: H*(A) = oo}.

For the critical value s = dimy A, the s-dimensional Hausdorff measure may be zero, infinite or positive
and finite. On the other hand, if 0 < H*(A) < oo, then s = dimy A.

The Hausdorff dimension satisfies the following properties which follow easily from the definition.
e Monotonicity. If A C B then dimy A < dimyg B.
e Countable stability. If Ay, As,--- C R™ then

dimpy U A;) = sup dimy A;.

i=1

e Hausdorff dimension does not increase under Lipschitz mappings, i.e. if f : A — R™ is a Lipschitz
mapping, that is, there is a constant 0 < L < oo such that

|f(z) = f(y)| < Llz — y|
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for all x, y € A, then dimy f(A) < dimy A.
e bi-Lipschitz invariance If f : A — R™ is a bi-Lipschitz mapping, i.e. there are constants 0 < L; <
Ly < oo such that
Lilz —y| < [f(x) = f(y)| < Lo|z -y

for all z, y € A, then dimy f(A) = dimy A.
e If A C R™ is countable then dimyg A = 0. If A C R™ is open then dimyg A = n.
e For all A C R™ we have 0 < dimyg A < n.

The Cantor set is one of the best known fractals. It is easy to construct and it illustrates many typical
fractal characteristics.

Example 2.4. Let 0 < A < 1/2. Denote by Iy ; the closed unit interval [0, 1]. At first step of the construction
we delete from the middle of Iy ; an open interval of length 1 — 2A. The remaining two closed intervals of
length A are denoted by I3 1 = [0,A] and I; 2 = [1 — A, 1]. We continue this process. Having defined closed
intervals I _11,...,I;_1 ox—1 of length AF=1 we delete from the middle of each of them an open interval of
length (1 — 2X\)A*~1. This gives closed intervals Iy 1, ..., Ij o« of length AF. Define

oo 2k

cny = U s

k=0j=1

The Cantor set C(\) is an uncountable compact set without interior points. Moreover, it has Lebesgue
measure zero.

We prove that

dimg (C(\)) = 102%. (2)

Since for all k&
2k
C()\) C U ]k,j-
=1

we obtain that

2k
W (C) <Y diam(Iy, ;) = (20%)F.
j=1
Choosing
~ log2
- log(1/A)
gives

HH(C(V) = lim HI(C(N) <1,

k—o0

and therefore, dimy(C'(\)) < s.
For the purpose of proving (2) it suffices to verify that H*(C'()\)) > 1/4. Since C'(X) is compact the lower
bound for the measure follows once we show that

!
) 1
Zdiam(]i)é > 1 (3)
i=1
for open intervals Iy, Io, ..., I; covering the set C'(\). Since C'(A) has no interior points we may assume that

the end points of each I; are outside C'(A). Choose § > 0 such that the distance from all these end points
to C(\) is at least § > 0. Letting k be so large that A\* < 4, each construction interval I ; is contained in
some interval I;.

Let I be on open interval and let n be a positive integer. We proceed by showing that

> diam(I, ;)* < 4diam(1)". (4)

I, ;CI

From (4) we get immediately (3) since

l l 2"
4Zdiam(1¢) > Z Z diam(7, ;)* > Zdiam(l’n,j)S =1.
i=1 j=1

=1 InijIi
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Finally, to verify (4) suppose that the open interval I contains construction intervals I,, ;. Let ng be the
smallest integer such that I contains a construction interval I, ;. Clearly, no < n. Let L, j,,..., In, , be
the construction intervals at step ng that intersect I. Then p < 4. Indeed, if this is not the case then [
would contain some construction interval I,, 1 ;. Hence

P P
4diam(])°® > Z diam(1y,, ;.. )° = Z Z diam(I,, ;)° > Z diam(1,, ;)°
m=1 1

m=1 In,jclnojm n,i CI

giving (4).

To conclude, we have 1/4 < H*(C(\)) < 1 implying that dimg(C(X)) = s. Similar methods can be used
to prove that H*(C'()\)) = 1. For general sets the exact value of the Hausdorfl measure in impossible to
compute. However, in many cases Hausdorff measures can be estimated by generalizing the above argument.

As an immediate consequence of Example 2.4 we get:

Corollary 2.5. For all 0 < s <1 there exists a set A C R with dimy A = s and with 0 < H*(A) < 0.

3 Box-counting dimensions

Box-counting dimension is one of the most commonly used dimensions. The value of box-counting dimension
is relatively easy to compute mathematically and estimate empirically.

Definition 3.1. Let A C R” be a non-empty bounded set. For all § > 0 denote by N(A,d) the smallest
number of sets of diameter at most § that cover A. The lower and upper box-counting dimensions of A are

defined as

. . . logN(A,0)
dlmB A = llléIl_}(I)lf Tg(s
and . log N(A4,6
dimp A = lim sup L(’).
6—0 - log(;

If these are equal the common value is called the boz-counting dimension of A and denoted by dimp A, that
is,

dimg A — lim 28 N(4:9)
s—0 —logd
Note that o
dimpg A < dimg A < dimp A. (5)

Clearly, dimg A < dimp A. Moreover, if dimg A > s, then
1< H(A) = ;irr(l)Hf;(A) < gir% N(A,6)o°

giving log N(A4,¢) 4+ slogé > 0 for sufficiently small 6. This implies s < dimpy A. Hence dimpg A < dimp A.
In general we do not have equalities in (5).

The box-counting dimensions have the following elementary properties which are easily verified:
o Monotonicity. If A C B then dimp A < dimp B and dimg A < dimg B.
e Finite stability. The upper box counting dimension is finitely stable, i.e.
k
MB(U Az) = maxﬁg A2
1
i=1
where Ay, ..., Ay C R" are non-empty and bounded sets. The lower box-counting dimension does not satisfy
the corresponding property.
e The lower and upper box-counting dimensions do not increase under Lipschitz mappings.
e bi-Lipschitz invariance. The lower and upper box-counting dimensions are bi-Lipschitz invariant.
e If A C R™ is open and bounded, then dimg A = n.
e For all bounded sets A C R" we have 0 < dimp A < dimg A < n.

There are several equivalent ways to define the box-counting dimension which are stated in Proposition
3.2. For 6 > 0 the cubes of the form

[k16, (k1 + 1)8] % -+ x [knd, (kn + 1)J]

where ki, ..., k, are integers are called §-mesh cubes.
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Proposition 3.2. The lower and upper bozr-counting dimensions of a non-empty compact set A C R™ are
given by

log M(A, b
dimp A = lim inf log M(4,9)
60 —logd
and E— log M (A, d
dimg A = lim sup log M(4,5)
6—0 - log d

where M(E, ) is any of the following:

1) the smallest number of sets of diameter at most § that cover A,

2) the smallest number of closed balls of radius § that cover A,

(1)
(2)
(3) the smallest number of cubes of side length § that cover A,
(4) the smallest number of 6-mesh cubes that intersect A,

(5)

5) the largest number of disjoint balls of radius § with centers in A.
Proof. See [3] or [5]. O
The Cantor set is an example of a set for which Hausdorff and box-counting dimensions agree.
Example 3.3. For 0 < A < 1/2 let C'(\) be the Cantor set. Then

. log 2
dlmB C()\) = m

Let 6 > 0. Choose a positive integer k such that \¥ < § < A~1 Since C(\) can be covered by the 2*
construction intervals Iy ; we have N(C()\),§) < 2F. This gives

— ) log N(C()N),6) .. log 2% log 2
=1 — 2 <] = .
o C1) =gy =0 2 < o o = i

To see that the reverse inequality is valid, choose a positive integer k such that (1—2\)A\* < § < (1—2\)AF—L
Then any interval of length at most § intersects at most one of construction intervals of length A\*. Since

there are 2 such construction intervals at least 2% intervals of length at most § are needed to cover C(\).
This gives N(C()),8) > 2F leading to dimpg C(A\) > log2/log(1/A).

The following proposition indicates a disadvantage of box-counting dimension:

Proposition 3.4. Let A C R" be non-empty and bounded. Denoting by A the closure of A , i.e. the smallest
closed set containing A, we have
diﬂB A= diimB A

and
dimp A = dimp A.

Proof. If closed balls By, ..., By of radius § cover A, i.e. A C Ule B;, then they also coverg. Denoting by
M (A, §) the smallest number of closed balls of radius ¢ that cover A, we get M(A,d) = M(A,J). The claim
follows. [

An immediate consequence of Proposition 3.4 is that the box-counting dimensions are not countably
stable. Indeed, if A is the set of all rational numbers in the closed unit interval [0, 1], then dimp E = 1 even
though the box-counting dimension of each singleton is zero. It turns out that similar difficulties remain
even if one restricts the attention to closed sets:

Example 3.5. The set £ = {0,1, %, %, ...} is compact and dimg F = %

4 Methods for calculating dimensions
In this section we consider some of the basic tools that can be utilized in dimension calculations. The

following theorem is often called the Mass distribution principle. A measure y on a bounded subset of R™ is
called a mass distribution if 0 < p(R™) < oc.
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Theorem 4.1. Let A C R™ be bounded and let i1 be a measure on A such that 0 < p(R™) < oo. Suppose
that for some s there exist ¢ > 0 and 6y > 0 such that

w(E) < cdiam(E)?®
for all E C R™ with diam(E) < 6y. Then H*(A) > u(A)/c, and moreover,
s < dimg A < dimp A < dimp A.

Proof. Let 0 < § < &y. Assume that A C |J;2, E; where diam(FE;) < ¢ for all i. Then

0<p(A) <p(|JE) < u(E) <cd diam(E;)*.
i=1 i=1 i=1
Taking infima gives Hj(A) > pu(A)/c. Thus H*(A) > p(A)/c > 0 implying dimyg A > s. O

The Mass distribution principle is an important tool for estimating dimensions from above.

Example 4.2. Consider the 1-Cantor set C(3). Let p be the natural mass distribution on C(3), i.e. at
step k each construction interval Iy, ; of length % carries a mass 27%. Defining for all A C R

p(A) = inf{> " p(Ipq) s AC|J i}
i ki

gives a mass distribution on C(3). We omit the of the proof of this fact.

Let E be a set with diam(E) < 1. Choosing a positive integer k such that 3=+ < diam(E) < 37*,
the set E intersects at most one of the construction intervals I ;. Since

,LL(E) < 27k — (ka)log2/ log 3 < (3 diam(E))logZ/logB
we get from the Mass distribution principle that
Hlog2/log3(c(%)) > 3—10g2/10g3 — %
and dimy C(3) > log2/log 3.

The following theorem is called Frostman’s lemma. In a sense it generalizes the Mass distribution principle
and gives a converse of it. For the proof and generalizations of Frostman’s lemma see [5].

Theorem 4.3. Let A CR™ be compact. Then H*(A) > 0 if and only if there exists a measure p on A such
that 0 < u(R™) < oo and u(B(x,r)) < r° for all z € R™ and r > 0.

Potential theoretic methods turn out to be useful when calculating dimensions. Indeed, using Frostman’s
lemma we may relate Hausdorff dimension to capacities

Definition 4.4. Let s > 0. The s-capacity of a compact set A C R" is defined by
Cs(A) = sup{I,(u)~' : p is a measure on A with u(R") = 1}

where

Is(p) =/ |z —y|™* duz dpy
is the s-energy of .

Note that Cs(A) > 0 if and only if there is a measure p on A such that u(R™) =1 and I;(u) < co. The
Hausdorff dimension is closely related to capacities:

Theorem 4.5. Suppose that A C R™ is compact. Then

dimpg A = sup{s > 0: Cs(A4) > 0} = inf{s > 0: Cs(A) = 0}.
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Proof. We prove that
dimyg A = inf{s > 0: C4(A) = 0}. (6)

The remaining equality follows easily from definitions.
Let s > 0. For the purpose of verifying (6) we need to show that the following claims hold:

Cs(A) = 0 provided that H*(A) < oo (7)

and
H'(A) = 0 for all t > s provided that Cs(A) = 0. (8)

We proceed by showing first that (7) holds. Assume to the contrary that C5(A) > 0. Then there is a
measure £ on A such that p(R") = 1 and I,(p) < co. Thus [|z — y|~*duy < oo for p-almost all z € R
giving

lim |z —y|™*duy =0
r—0 B(z,r)

for p-almost all € R™. Let € > 0. Then there are B C A and § > 0 such that u(B) > 1/2 and

MBQJDSr{/ & — | dpy < er®
B(z,r)

forallz € Band 0 <r < 4. Let E;, Ey,--- C R™ such that B C U; E;, diam(F;) <6, E; N B # () and
> diam(E;)* < H3(B) + 1.
i

Choosing z; € E; N B and setting r; = diam(F;) gives
1/2 < p(B) <> p(Blai,ri) <&y _rf <e(H*(B)+1) < e(H*(A) +1).
Letting € — 0 implies that H*(A) = oo proving (7).
For (8), assume that H!(A) > 0 for some ¢ > s. Applying Frostman’s lemma we find a measure p on A

such that 0 < u(R™) < oo and u(B(x,7)) < r! for all z € R” and r > 0. By Lemma 1.3 and a change of
variables we get

/m—m*széwmw:u—Mﬂ>unm
= [ Bt du

0

- s/ooo v (B(a, 1) dr

1 oo
< s/ sl dr 4+ sp(R™) / r=sldr
0 1

S
= R™) < o0.
t_s+u( ) < oo

Thus Cs(A) > 0 contradicting (8). This completes the proof of (6). O

5 Iterated function systems

Iterated function systems is an important family of fractals for which there is a simple way of calculating
dimensions.

Definition 5.1. A mapping S : R™ — R" is called a contraction if there exists 0 < ¢ < 1 such that
1S(x) = S(y)| < clz -yl

for all z, y € R™. Moreover, S is called a similitude provided that
S(z) = S(y)| = clz -yl

for all 2, y € R™. A finite family of contractions S = {S1,Sa,..., S} is called an iterated function system.
A non-empty compact set K C R"™ is an attractor of S if it is invariant under S, i.e.

K = 6 i (K).
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It turns out that each iterated function system has a unique attractor.

Theorem 5.2. Suppose that S = {S1,52,...,Sm} is an iterated function system. There there exists a
unique attractor of S.

Proof. The family of all non-empty compact subsets of R" equipped with the Hausdorff metric
p(E,F) = max{dist(x, F'),dist(y, E) : . € E,y € F}

is a complete metric space. Here dist(z, F') = inf{|z — y| : y € F'} is the distance from x to F. The mapping
F : Ew— U™, S;(F) is a contraction, and therefore, it has a unique fixed point which it the attractor of
S. O

Definition 5.3. Let S = {51, S2, ..., S, } be an iterated function system consisting of similitudes S; : R” —
R™ such that
1Si(z) = Si(y)| = cilz —yl.

for all z, y € R™. Then the unique attractor of S is called a self-similar set. We say that S satisfies the open
set condition if there is a non-empty bounded open set O C R" such that

O S;(0) C O and S;(0) N S;(0) = 0 for i # j.

i=1
The Cantor set is an example of an iterated function system satisfying the open set condition.

Example 5.4. The middle third Cantor set C(3) is the attractor of the iterated function system {Si,S3}
where Sp, Sy : R™ — R”™ are given by

1 1 2
Si(x) = 3% and Sa(z) = gx—l- 3

Hence C(3) is a self-similar set. Moreover, {S1,S,} satisfies the open set condition with O as the open unit
interval (0, 1).

According to the following theorem, the dimensions of an iterated function system satisfying the open
set condition are easy to calculate. For the proof see [3].

Theorem 5.5. Suppose that S = {S1,S2,...,Sm} s an iterated function system satisfying the open set
condition. Let K be the unique attractor of S. Then dimyg K = dimg K = s where s is the unique number
satisfying

m

Zcf =1. 9)

=1

Example 5.6. For the middle third Cantor set C(%) the formula (9) is of the form 2 - 3% = 1 giving
dimg C(3) = log 2/ log 3.
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Continued fractions

Lisa Lorentzen
Norwegian University of Science and Technology

Abstract
This is an introduction to the field of continued fractions, with emphasis on how they are used in
function theory. In particular we shall look at these structures as alternatives to series expansions. The
question of convergence therefore arises naturally, and so does the question of what they can be used for.
We shall touch on both of these aspects. The philosophy of this paper is to present ideas through simple
examples. It does not take much imagination to see how these can be extended and generalized.

The analytic theory of continued fractions is a fascinating study with connections to many areas of
mathematics. This course is meant to be just a taster of what to expect from these structures. The
emphasis will be on convergence questions, both the convergence theory for continued fractions which can
be quite involved, and how this often surprisingly good convergence appear in applications.

The paper consists of four different parts. The first part gives an overall picture of what continued frac-
tions really are, and some examples to show why they are of interest. In particular their strong connection to
linear fractional transformations is explained. Actually, a continued fraction can be interpreted as a sequence
of such transformations. And it is amazing how much one can do with these very simple transformations,
and how important they are in so many branches of mathematics.

Continued fractions have many applications, mostly due to their roles as expansions of a given number
or function. And as such, their convergence properties are important. The second part goes a little deeper
into the convergence theory for linear fractional transformations, although still on an elementary level.

In part 3 we describe some areas where linear fractional transformations; i.e., continued fractions, and
their convergence enter the picture. The idea is to show examples of areas where continued fractions are
in use. A good thing is that results and ideas from the various fields can be exchanged; i.e., adapted and
integrated wherever needed.

A particular topic close to the heart of the author is the equivalence between properties of continued
fractions, moment problems and orthogonal polynomials or Laurent polynomials. This is the theme of part
4.

The paper concludes with references to some additional literature and a list of open problems.

1 Continued fractions

1.1 Some basics
1.1.1 Definitions

Let us first agree on what we are talking about. A continued fraction

ax

bo+ KO 5= bo + K(an/ba) i= b +

n= a9

b1 + a
b2+73
b3 +

is an infinite structure which works as an alternative to infinite series. If all a,, = 1 and all b,, € N, we are
back to the regular continued fractions in number theory, and if a,, and/or b,, are complex-valued functions,
we move into the field of complex function theory. For simplicity we let its elements a,, and b, be complex
numbers to start with, and we assume that all a,, # 0. We write this continued fraction as

Qn, ai az as
bo+ K97 —ipp 4 2L 92 93
0t Ny O
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Note where we place the plus signs to indicate the fraction structure, as opposed to series notation.
As for series and infinite products, we need a concept of convergence. The classical way to define
convergence of a continued fraction, is to form the approzimants

a a
fo := bo, f13—b0+bf far=bo+ ———, fy=bot—,
1 az az
b1—|—* by +
be

b i
2+b3

and so on. We get f,, by truncating the continued fraction after n fraction terms ay/bx. (We shall soon see
that the approximants are always well defined in C := CU{oo}.) Then by + K (an/bn) converges to the value
f of bp + K(a,/by,) if and only if lim f,, = f. We also allow convergence to f = oo, and we adopt a tradition
from the theory of series and infinite products and write

K T = by + K2 (00/bn) = bo + K /bu),

both for the continued fraction structure and for its value when it converges.

1.1.2 Connection to linear fractional transformations

We have already claimed that the approximants f, always exist in C for a continued fraction bo + K(an/by)
with all 0 # a,, € C and b,, € C. This can be explained by the following connection between continued
fractions and non-singular linear fractional transformations

aw +b
cw+d

7(w) = where A :=ad — be # 0. (1)

For the time being, the coefficients a, b, ¢ and d are just complex numbers. We let M denote the family of
these transformations. If we write

Qp
bp +w

so(w) :=by+w and s,(w):= for n=1,2,3,.

then the condition a,, # 0 implies that s,, € M for all n. Their compositions

@ n
bi+bot - +by +w

Sp(w) :=8p0810830--08,(w) = by

(2)

therefore also belong to M. Indeed, M is a group with composition as the group operation. The identity
in M is the identity function I(w) =w (a=d #0,b=c¢=0), and 71, 72 € M implies that 7 o 7 € M
and 7'1_ , 751 € M. Since the mappings from M are univalent mappings of C onto (C this means that the
approximants fn = S, (0) are always well defined in C.

1.1.3 Tail sequences

A classical approximant f,, is obtained by truncating the continued fraction after n fraction terms. The part
we cut away,
Qp+41 Ap 42 An 43
f(n) — 3
anrl +bn+2+bn+3+'“ ( )

is called the nth tail of by + K(a,/b,). This is also a continued fraction, and it converges if and only if
bo + K(a, /by,) converges. Indeed, (3) converges to f(™ if and only if by + K(ay,/by,) converges to

= Sa(f™). (4)

The sequence {f(™} is then called the sequence of tail values for by + K(ayn /by,).

Definition 1.1. For every t € ((A:, the sequence
ni=S1(t) for n=0,1,2,... (5)

is called a tail sequence for K(a,/b,) or for {S,}.
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Properties:

1. The sequence {f(™} of tail values for a convergent continued fraction K(a,, /b, ) is evidently an example
of a tail sequence.

2. Since S,, =81 082 0---08,, we have
tn—1 = Sp(tn) for n=1,2,3,.... (6)
3. The asymptotic behavior of tail sequences {t,} actually determines the convergence properties of
K(an/by).
A tail sequence can also be expressed as a kind of ,reversed approximants”

Theorem 1.2. Let {t,} be a tail sequence for K(a,/by,). Then

tn = S, (to) = s," 05,2 0057 (to)

anp, Ap—1 az ay
=_4b + = orn>1.
{ " bn1+bn2+---+bl+(—to)} Jor n 2

Proof. The result follows since

szl(w)bwfj{bm(f’;)} for k>1.

O

The use of tail sequences to describe the action of a continued fraction was introduced and advocated in
a number of papers by Waadeland and Jacobsen.

1.2 Why continued fractions?

Now, what can we do with these continued fractions? Quite a lot, actually! In this section we shall see a few
examples of applications in function theory. This means that we allow {a,} and {b,} to depend on a complex
variable z. By the way, this is the reason why we always use w to denote the variable in transformations
from M.

1.2.1 Computation of functions.

Example 1.3. The principal branch Ln(1 + z) of the natural logarithm In(1 + z) has the continued fraction
expansion

f%anz z z/2 z/6 2z/6 2z/10 3z/10

el 1 1+ 1 + 1+ 1 + 1 + 1 4 @
where
k k
agk = m, A2k+1 = m
This can be derived from the Taylor series
2 3 4
Ln(l+2)=2— 2+ 2 -4 (8)

What we do is to expand the approximants f, of K(a,z/1) in Taylor series and require that they coincide
with (8) as far out as possible. There exist several algorithms for deriving such a continued fraction expansion,
depending on the desired form of the continued fraction. The form K(a,z/1) with all a,, > 0, as used here,
is called a Stieltjes fraction.

The continued fraction (7) converges locally uniformly to Ln(1 + z) for z in the cut plane D_; := {z €
C; |arg(l + z)| < w}. It can’t get any better than this, since the approximants of K(a,z/1) are rational
functions, whereas In(1 + z) has logarithmic branch points at —1 and oco. Hence we need a branch cut
connecting —1 and co. The continued fraction has chosen the most “economical one”; i.e., the branch cut
along the real half line (co, —1].
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For comparison we note that the Taylor series diverges outside the closed unit disk I. But not only is
the domain of convergence for the continued fraction much, much larger than the one for the series — the
continued fraction converges faster than the series in their common convergence disk. In the extreme case
z = 1, their value is

Ln(2) = .69314718, correctly rounded in the 8th place.

The first approximants of the continued fraction are

f1 = 1.000000, f» = .666667, f3=.700000, f; = 692308,
fs = .693333, fs=.693121, f; = 693152

In order to get the polynomial approximation with the same accuracy as f7, we need n > 100000 terms of
the power series. Of course, the convergence of the power series can be improved by for instance using the
average value of two consecutive partial sums as an approximation to In(1 + z), but also the convergence of
K(a,z/1) can be accelerated by simple means: Since a, — ; and the periodic continued fraction K(1z/1)
converges in D_; with value

()._iz iz iz B %z o () = 1+1 177 R >0
g(z) == T+ 1414 " 1140 Le., g(z) = -5 2\/ z, Rey/ .. >0,
we can replace the classical approximants
_ @z ar e
Jnlz) =5 + 1 44+ 1
by
1 1
a1z G2z anz 32 7% a1z anz
Sn(9(2)) = —  —— Ll T — @ n
L+ 1441 4+14+1+- 1 4-41+g(2)

which converges considerably faster to Ln(1 + z) than f,(z) for z € D_;. Even faster convergence can be
obtained by better approximations to the value of the tail

Ap412  An422  An43%2
I + 1 + 1 +-

(For a number of ideas on how to approximate the value of a convergent tail, see for instance [17] or [22,
Section 5.1, p.218 ff].)

1.2.2 Summation method for divergent series.

Example 1.3 already showed that replacing the Taylor series by a continued fraction expansion can work as
a summation method, since the continued fraction extended the domain of convergence considerably. Here
we shall look at an even more dramatic example. We start with a series which diverges for all z. We convert
this series into a continued fraction and look at what we then have got:

Example 1.4. The series

> . 120 3l
L(z) =Y nl(-2) =l-—+5 -5+

diverges for all z € C. Let us convert this series into a continued fraction of the form

_ a1 ag/z a3z ag/z
dKlan )= - T T
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By purely formal operations we get

12! 1 1
Rl R S s b s
L(z) z 22 28
B 1 1 1/z
o 1+ 1 2
1+ 1z 1+1+77—+
1 z 22
1 3
124 =2 _
z 22
1 1/z
1—1—1Jr 1/z
1
2
1-2 4.

which eventually leads to the continued fraction

1 1/z 1/z 2/z 2/z 3/z 3/z n/z  n/z
1+ 1+ 1+ 1+ 1+ 1+ 1 4+ 1+ 1+
This continued fraction is known to converge locally uniformly in the cut plane Dy := {z € C; |arg z| < 7}

to the analytic function
* ze™t
z) = dt. 9
R = )
We have thereby given the divergent series a value in Dy. The question is now: Does this value f(z) have
anything to do with the series?
The answer is YES! The series L(z) is an asymptotic expansion of f(z) in angular openings |argz| <
a < 7; that is, for each fixed n € Nand 0 < a < 7,

n

k!
z—>oo71\igflg2|§a |f(z2) —on(z)| =0 where o,(2):= Z(_l)kzik
k=0
To see this we observe that

o= [Tt

0 1—(—-t/2)

o t 12 AL — )t

=/ e_t1—7+72_..._|_( ) +( ) i

1! 2! 3! n! o (—t)"'H
=l-—+ 5 -5+ +(=D)"3 tL L dt,

Z+Zz 23“‘ + ( )z”+/0 e et

and thus

1 [ e tntt < (n+1)!

— o, < 0 .
172) = onle)] < 2 Sy Re(z+6)“ = elteosa |2 = o0

(Remember, the gamma function I'(z) is defined by

F(z)::J/ t* e tdt
0

and I'(n) = (n — 1)1)

Not every sequence L(z) = > (—1)"c,z~™ can be converted to a continued fraction of the form
2K(anz71/1), not to mention a continued fraction of this form with only positive coefficients a,,. But if we
are in luck, just as in Example 2, then

e the two sequences {f2,(2)} and {fan41(2)} of approximants for zK(a,z""/1) converge locally uni-
formly in the cut plane Dy := {z € C; |argz| < m} to some analytic functions f(z) and f(z).

e L(z) is an asymptotic expansion of both f(z) and f(2), and thus of convex combinations of f and f;
ie, Bf+(1—p)f for some 0 < 3 < 1.
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e f(2) = f(2) if and only if

X aaz- - a S aza a
1043 -+ d2p—1 204 - - G2n
E + E = 00. (10)
ey Q204 ey A1a3 " d2n4

The convergence is actually a consequence of the Parabola Theorem which we partly prove in Section 2.5.

1.2.3 Solving moment problems

Moment problems come in many different forms. As an example at this stage we settle for the following one
due to Stieltjes [29]:

Stieltjes Moment Problem For a given sequence {c,}52, of positive numbers, find a real non-decreasing
function ¥(¢) on RT with infinitely many points of increase, such that

Cn ::/ t"d¥(t) for all n.
0

It is customary to require that ¥ is normalized so that

co = /0OO dv(t) =
/ gty du(t)

is called a Stieltjes integral. It is defined just like a Riemann integral, except that the Riemann sum is
replaced by

An integral of the form

Sp.s = g(ti)(¥(te) — L(ti-1))
k=1

where P is the partition a =ty < t; <--- <t, = b and S the selection ¢} € [tx_1,ts).
In more modern language we say that d¥(t) is a positive measure with infinite support on Rt and if
co =1, then d¥(t) is a probability measure on RT.

Example 1.5. Let U(t) have a continuous derivative on the finite interval [a,b]. Then we say that the
measure d¥(t) is absolutely continuous with finite support. In this case

b b
[ owave = [ sovea o
a a
Example 1.6. Let U(t) be the ,infinite step function”

0 for 0<t<t;
p1 for ty <t <ty
U(t):=<pr+pe for to <t <t3

P for t > limt,

for some positive numbers p,, where P := 220:1 Pn < 00. Then

when this sum converges.
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Of course, such a function ¥ does not always exist, but if it exists and can be found, at least approximately,
then

L) =Y (- =) /OOO L;}” AW (t),
n=0 n=0

so, if we could interchange Y and [, then

L(z) ~ /Owg) (j)ndw) - /OOO 0 _ s

So in some sense,

o= [T e = S (1)

Properties:

e The Stieltjes moment problem has a solution if and only if L(z) can be brought to a continued fraction
of the form 2 K(a,z"'/1) where a,, > 0 for all n.

e The solution is unique (up to an additive constant) if and only if this continued fraction converges
for some z > 0. It turns out that in this case this continued fraction 2K (a,z71/1) converges locally
uniformly in the cut plane Dy := {z € C; |arg z| < 7} to the analytic function f(z) in (11).

e The distribution function ¥(¢) can be derived from f(z).

o If 2K(a,z"1/1) fails to converge, then {f2,(2)} and {f2,41(2)} still converge locally uniformly to
analytic functions f(z) and f () in Dg. In this case we get two corresponding distribution functions
W(t) and U(t), and every convex combination Bf(z) + (1 — ) f(z) with § € [0,1] gives a new solution
BU(t) + (1 — B)U(t) of the moment problem.

This was proved by Stieltjes in his famous 1894-paper [29]. The particular Stieltjes integral (11) is called
the Stieltjes transform of the measure d¥(¢).

Note that this means that every function f(z) of the form (11) has a continued fraction expansion of the
form zK(a,z71/1) with all a,, > 0. Similarly, every function

R0
1) '_/0 1+tz

has a continued fraction expansion of the form 1K(a,z/1) with all a, > 0. This continued fraction converges
locally uniformly in Dy if and only if it converges at a point 2o € Dy, which happens if and only if (10) holds.
A second criterion is due to Carleman [4], [3]:

Theorem 1.7. Let L(z) :== > 2 (=1)"¢,2" with all ¢, > 0 have a continued fraction expansion of the form

1K (anz/1) with all a, > 0. Then 1K (a,z/1) converges ifzcgl/% =

There is also a third method based on properties of the distribution function ¥(¢) in the Stieltjes integral
(11). If W(¢) has a continuous derivative such that d¥(¢) = ¥’'(¢)dt, then conditions on ¥’(t) makes it
possible to conclude that K(a,z/1) is limit periodic with a certain limit az; i.e., a,, — a. From this we may
conclude convergence of K(a,z/1) and even accelerate its convergence.

The conditions are placed on the function

Q(t) := —Ln(t¥'(t*)),
and they are:
e there exist numbers M > 0 and € > 0 such that [tQ'(t)] < M for 0 <t < ¢,
o there exist numbers k£ > 0 and B > 0 such that for all t > k

Q'(t) >0 and ‘%’ < B,
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e tQ"(t)/Q'(t) approaches a limit as t — oo,
e there exist numbers a > 0, 6 > 0 and ¢ > 0 such that

Q(t)=ct T (1+0(t%) ast— oo

The following was then proved by Jones and Van Assche [14] based on results from [23]:

Theorem 1.8. Let f(z) be a Stieltjes transform satisfying the conditions described above. Then its corre-
sponding S-fraction expansion z 1K (a,z/1) has coefficients

1 T'(2)\2/a
an ~an?'® as t — co where a::f(L(f)) .
i\ereg

~—

For the particular value o = 2, the value a reduces to a = 1/c since I'(1) = 1 and I'(3) = 1I'(3) = /7.

The connection to Example 1.4 is clear: f(z) in (9) is a Stieljes integral of the measure d¥(t) = e~ 'dt,
and thus ¥(t) = C' — et for some arbitrary real constant C. Hence this W(¢) is the unique solution (up to
an additive constant) of the Stieltjes moment problem with given ¢, = nl.

We shall go in more detail on this important application of continued fractions in Part 3 and 4, where we
also include the connection to the sequence of orthogonal polynomials with respect to the measure d¥(¢).

1.2.4 Sequences from M

Let {7,} be a sequence from M. We can use continued fractions to determine convergence properties for
{7 }. This follows from the following observations:

1. For a given sequence {7,} from M, we can let @, := Tnill o T, with 75 := I to get

Tn =@10@a0---0@, forall n. (12)

2. Similarly, with v, := 7, o T;_ll, Yo =1, we get

Tp =Ypoty_10---01; forall n. (13)

3. Moreover,

(propro-op,) t=p toptio 0!

14
and  (Yn0Pp_q0--0oy) = oy ooyt 19

something which also is exploited in tail sequences {S, ! (to)} for arbitrary t, € C in continued fraction
theory.

4. If a,, # 0, then

Ay
apw + by,

a,w + by, an

= @n o @;(w) where @n(w) = ) @:L(w) =

pn(w) = cpw + dy, Cp +w

where A,, = a,d,, — b,c, is the determinant for ¢,,.
5. If {¥,} and {¢,} are two sequences from M, and we define @, := ﬁ;il o @p 0¥, for all n, then

9510952O"'O<)57L021951o‘pIOQDQO"'OSOnOﬂ'm
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1.2.5 Continued fractions and beauty

The regular continued fraction expansion for 7 gives an infinite representation of 7, but no-one can really
claim that it is beautiful. The same can be said for the decimal representation of 7. In a way this is strange
and not very satisfactory. A number like 7, the ratio between the circumference and the diameter of the
most perfect object, the circle, ought to be beautiful! And it is! Here is one way to write 7:

412 22 3 g2
TTIHB A5 T A9
The pattern stays all the way through the continued fraction.

While we are at it, we can also mention that Euler’s number e, the base for the natural logarithm, which
also ought to have a beautiful representation, can be written for instance as

.2 3 456
T 243444546+
This number even has a beautiful regular continued fraction expansion

11 1 1 1

1 11
O T4 AT HT+6 4

Also here the pattern stays all through the continued fraction.

1.3 Some basic theory

Before we go on to study convergence properties of continued fractions, it is useful to know some standard
and basic continued fraction theory.

1.3.1 Recurrence relations

With basis in the linear fractional transformations

so(w) = by + w, Sp(w) := 2 a:w for n=1,2,3,...

and

a; az Qp,
Sn =by+ — —
R S

connected to a continued fraction K(a, /b, ), we immediately find that

= 50081082008, (w) (15)

Sp(00) = Sn-1(0),
so S, has the following representation:

Lemma 1.9. Let S, be given by (15). Then

An—lw + An
Sn = — 5 = 1, 27 3, .
(w) B. w1 B, for n
where
A, =byAp_1 +anAn_s, B, = b,Bp_1 + anBn_2 (16)

with initial values A_1 =1, Ag =bg, B_1 =0 and By =1.
Proof. Tt is clear that

bo +w
So(w) =byp+w= 10+ ow’ Sl(w) = by +

a; _ bobi +ay + bow
b1+w_ b1+’UJ

)

so (16) holds for n = 1. To see that it holds for general n € N, we observe that

Anil + Ani? bna+n w (bn + w)An—l + anAn—Q
Sn(w) = Sn—l(sn(w)) = B ay, = b B B . (17)
n—1+ Bn_2 b, +w ( n + w) n—1 1 GnDp—2
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A, and B, are called the nth canonical numerator and denominator of by + K(a,/by), or just its nth
numerator and denominator for short. These names are quite natural since

If a,, depend on a complex variable z, but a,(z) # 0 for all n and all z in some set D, then A, (z) and B, (z)
have no common zeros. This follows since f,(z) is a well defined element in C for each z € D.

The additive term by is not so important in convergence investigations of continued fractions, and is often
set equal to zero. Then so(w) = w, and S,, = $1 08200 8,.

1.3.2 A uniqueness question

The representation
aw + b

cw+d

T(w) =
of 7 € M is not unique. For an arbitrary complex number r # 0 we have

aw+b_arw+br

7(w) = cw+d  crw4+dr’

so there is a whole equivalence class of representations for 7. In particular, the determinant A for 7 varies
with r. In function theory one often requires that A := 1 to obtain (almost) uniqueness of the representation
(one can still use r = —1). In classical continued fraction theory we have traditionally gone the other way. By
picking out the canonical representation in Lemma 1.9, we have identified 7 with the corresponding matrix

a b
My = (c d)

and distinguished between different matrices, and thus between different representations, even though they
correspond to the same function 7. In this setting we have to be careful when we define compositions of
mappings from M. For 7 := (agw + b)/(crw + dy), the composition 71 o 75 shall mean

a1(asw + by) + by (cow + da)
cl(agw + bg) + dl (CQU) + d2)

71 0 To(w) =

as in (17). Then M, .., is equal to the matrix product M, M,,.

The reason for this choice is that it gives a close connection between continued fractions, recurrence
relations of the form (16) and matrices. This is useful in applications, such as for instance for orthogonal
polynomials.

Classical convergence theory for continued fractions was mainly based on manipulation of the recurrence
relations (16). In more modern theory the representation of S, is no longer so important, since we often
base the analysis on the mapping properties of S,, € M. Still, we want to combine classical results with the
newer ideas, so we shall at least have the canonical representation for S, as an option.

2 Convergence of sequences from M

2.1 Introduction.

Let {7,,} be a sequence from M. What kind of convergence can we expect for such a sequence? It is natural
to regard the compact set C as the Riemann sphere, and use the chordal metric

2|U)1 7w2|

N AN

m(wy, we) :

in C. (m(wy,ws) takes the natural limit values if w; and/or wy are = 00.) This bounded metric has the
useful property that w, — w in C if and only if m(w, w, ) — 0, something which is not true in general in the
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euclidean metric since w,, — oo is not equivalent to |w, — co| — 0. On the Riemann sphere equipped with
the chordal metric, the point at oo is treated just like any other point on C. In fact,

o) =m (- o). (18)

w1 w2

We shall consider uniform convergence in C with respect to the chordal metric. This is what we call m-
uniform convergence. With the standard metric

o(f1, f2) == supm(fi(w), f2(w)) (19)

weC

for functions f1, f2: C— @, we find that {f,} converges m-uniformly in C to some function f if and only if
o(fn, f) — 0. Similarly, a sequence {f,} converges m-uniformly on some set D if and only if op(fn, f) — 0
where

UD(fnv f) ‘= Sup m(fn(w)’ f(w)), (20)

weD

and it converges locally m-uniformly on D if and only if it converges m-uniformly on compact subsets of D. If

{fn(z)} is uniformly bounded in D, then m-uniform convergence in D is equivalent to uniform convergence

with respect to the euclidean metric. It is also clear that {f,,} converges m-uniformly in D to f(w) if and
only if

{fn} converges uniformly in D; := {w € D; |f(w)| < M} and

{1/fn} converges uniformly in D, := {w € D; |f(w)| > 1/M}

for some constant M > 1.

(21)

2.2 The metric space (M, o).

The convergence in this space is very nice indeed:

Theorem 2.1. Let {r,} be a sequence from M. Then 1, — 7 € M m-uniformly in @, if and only if there
exist three distinct points wy,wa, w3 € C such that 7, (wg) — g for k =1,2,3 where v, € C are distinct.

Proof. The only-if-part holds trivially, so let 7, (wx) — v for k = 1,2,3. The pointwise convergence 7,, — 7T
follows then from the invariance of the cross ratio,

To(w) — Ta(w1) To(ws) —Tn(wz)  w—wi ws—ws

- , 29
Tn(w) — To(wa) Tp(ws) — T(w1) w—we ws—wq (22)
and the m-uniform convergence from its chordal version
(70 (w), Tn(w1)) m(Tn(ws), Tn(wz)) = m(w, w1) m(ws, wy) (23)
m(7, (W), To(wa)) m(tp(ws), Tn(wi))  m(w, we) m(ws, wy)
O

~

Since the metric space (C, m) is compact, we thus have:
Corollary 2.2. Let {1,,} be a sequence from M. Then there exist three sequences {wi,}, {wan}, {wsn}
from C such that
liminf m(wj n, wkn) >0 and lminf m(r,(w;.), Th(wk,)) >0  for k#j,

if and only if every subsequence of {1} has a subsequence converging m-uniformly to some T € M.

Corollary 2.3. A sequence {1,} from M converges to a T € M if and only if there exists a sequence {ry}
from C\ {0} such that the finite limits

TpGn — @, Tpby, — b, Thep —c¢ and rod, —d, ad—0bc#0

exists. In this case T(w) = (aw + b)/(cw + d).
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Proof. The if-part holds trivially, so let 7, (w) := (apw +by,)/(chw + d,,) converge poinwise in CtoaTeM
(and thus m-uniformly in C). Then

(075 a bn b

Tn(00) = CfHT(OO): i Tn(0) = d—HT(O): 7
d d
—1 = ——n — -1 = —,
and 7, (0c0) = . 7 (00) ;

Corollary 2.4. A sequence {1,} from M converges m-uniformly in C if and only if its limit also belongs to

M.

Proof. In view of the proof of Theorem 2.1 it suffices to prove that if {7,,} converges m-uniformly in ((AI, then

its limit 7 belongs to M. Assume that 7 € M. Then 7(w) = 7o for some constant vy € C. Let v # v and
Wy, := 7, (7). Then 7,(w,) = v — 7, a contradiction. Hence 7 € M. O

n

Corollary 2.5. Every Cauchy sequence {1,} from (M, o) converges to some T € M.

In other words, the metric space (M, o) is both compact and complete. For a sequence {7,,} from
Mz = {r € M; 7(D) C D} (24)

where D is a closed subset of C with at least three elements, the situation is different. The sequence may well
converge generally to a constant even if the convergence is m-uniform in D. The thing is that the exceptional
sequence may have all its limit points well outside D. But if {7,,} converges to some 7 € M, then this 7 also
belongs to M.

Example 2.6. The sequence {7, } with 7,,(w) := w/n maps D into D and converges uniformly in D to 0.

Hence (M, 05) may be neither compact nor complete. Similarly, let

(e)

20

:= D\ B(zp,¢) for some given ¢ > 0 (25)

ME = {r € M; (D) C DY} where D

where B(zp,¢e) := {w € C; m(z9,w) < ¢) and zg € D may depend on 7. Then a sequence from this space
which converges m-uniformly in D will either converge to a 7 € ./\/l%) or to a constant, just as above.

(M%), 05)) may therefore also be neither compact nor complete, [20].
20

2.3 Locally m-uniform convergence of sequences from M.

In this section we look at convergence which no longer is m-uniform in C. Then the limit function no longer
belongs to M.

Example 2.7. For the sequence {7,,} from M given by

b
To(w) := % where a,, — 0, b, — 0, (26)

Tn(w) — 0 for every w € C\ {1}, and 7,,(—1) = co. Similarly, if

n b'ﬂ/
Tn(w) == % where a,, — 0, b, — 0, b, # na,, (27)

then 7,, € M, and 7, (w) — 0 for every w € C, but not m-uniformly, since Tn(—n) = 00 — o0.
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Theorem 2.8. Let {7,} be a sequence from M. If there exist three distinct points wy, wa, ws € C such that
Tn(wg) — i for k =1,2,3 where v, € C and y1 = v2 # 3, then 7, (w) — 7 locally m-uniformly in C\ {ws}
where

ll
T(w) = {% forall w 7 ws, (28)
vz for w= ws.
Proof. From (23), interchanging wy and ws, we find that for w # wy, we, w3
o ), () mw, ) mws,ws) (), 7o) )
n—oo M(T,(w), Th(ws)) m(w, wy) m(ws, wy) n—oo M(7,(w2), T (ws))
where the right hand side — 0, uniformly with respect to w with m(w,ws) > € for some € > 0. O

In other words, transformations 7 of the form (28) are possible limits for {7,,} when we no longer require
m-uniform convergence in C. This is evidently not the whole story. The sequence (27) converges to 0 for all
w € C, but the convergence is not m-uniform in C, only locally m-uniform in ((A:\ {o0}. The crucial thing is
that the limits lim 7, (w1 ) and lim 7, (w2 ) exist and are equal at two distinct points wy, ws, or more generally,
that lim 7, (w; ,,) = lim 7, (w2 ,,) for two asymptotically distinct sequences {w1 ,,} and {ws,} from C:

Theorem 2.9. Let {7,} be a sequence from M. Then there exist two sequences {wy n} and {wa,} from C
such that
liminf m(wy p, w2 ,) >0 and lim7,(w,) =lim7,(we,) =7,

if and only if there exists a sequence {w]} from C such that for every e >0
limop, (Tn,7) =0 for D, :={wée€ C: m(w,w]) > e}

Proof. Again the if-part holds trivially. Let g, := 7, *(y) and w} := 7,71 (y") for some fixed v # + for all n.
Let further
wy, if m(wl,n,w;ﬂ) > m(wgm,w;ﬂ)
Wy, 1= ]
wa ,,  Otherwise.

Then 7,(gn) — 7, Tn(wn) — 7, Tu(w)) — 4" and liminf m(w,,w}) > 0. The result follows therefore from
(29) with w; replaced by w,, ws by ¢, and ws by w. O

Remarks.

1. We say that {7,,} converges generally to v with exceptional sequence {w],} in this case. A possible choice
for {w]} is wl := 7,71 (y") for a 4T # ~. This concept of convergence was introduced by Jacobsen (now
Lorentzen) [10] for continued fractions, and extended to quasi-normal function families in [18]. It has
now gained acceptance in the continued fraction community.

2. We notice that the exceptional sequence {w]} can not be avoided in Theorem 2.9 since m-uniform
convergence leads to a limit function from M.

3. General convergence can also be formulated as follows: every subsequence of {7,,} has a subsequence
converging locally m-uniformly in C\ {ws} to some 7 of the form (28) for some w3 € C depending
on the subsequence (possibly with v3 = 71). (Just let the subsequence be chosen such that {ka}

converges in C and let ws be its limit.)

4. The convergence of {7,} to 7 can not be m-uniform in ((Aj, but it is locally m-uniform in the following
sense:
lim sup m(7,(w),y) =0 for every ¢ > 0.

" wel, m(w,wh) e

Corollary 2.10. Let {7,} be a sequence from M which converges locally m-uniformly in C \ {w'} to a
constant y. Then {171} converges locally m-uniformly in C \ {7} to w'.

Proof. Let 4 € C\ {7} be arbitrarily chosen, and set w,, := 7,,*() for all n. Then 7,(w,) = 7 # ~. That
is, every subsequence of {w,,} converges to w'. The local m-uniformity follows since also {77!} is a sequence
from M. O
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In the next corollary we consider the asymptotics of the coefficients of

anpw + by,
cow +dy,’

Tn(w) == Tn € M. (30)

Corollary 2.11. Let {7,}52, given by (30) converge locally m-uniformly in (/C\I\{wT} to . Then there exists
a sequence {ry,} from C\ {0} such that the finite limits

Tplp — @,  Tpby, — b, rhcy, — ¢, rpd, —d
exist, with ad —bc = 0 and |a| + |b| + |¢| + |d| # 0.

Proof. Case 1: w' # oo and vy # 0o. Then 7,,(00) = a,,/c, — v and 7,,(—d, /c,) = 00, so w' = —limd,, /c,.
Therefore there exists a sequence {r,} from C\ {0} such that

TnCn — 1, Than, — 7y =:a, Tpd, — —wh=14d.

Moreover,
apw+b, rpa,w + b,
Tn(w) = = s
cpw + dy, TnCnW + Tndy,
so for w # w',
Tnbn = (Tpcpw + 1pdy) T (W) — rpa,w — (W — wh)y — yw = —yw’ =: b.

That is,

aw+b  y(w—w)

cw+d  w—wt

where ad — bc = —yw' +~yw = 0 and |a| + |b] + |c| + |d| > |¢| = 1.
Case 2: w! # 0o, v = co. The sequence {7,} given by

for w # w', (31)

Tn(w) = 7(w) =

1 mn dn
Tn(w) := _ W for n=1,2,3,...
To(w)  apw+ by,

is also a sequence from M. It converges locally m-uniformly to 7 := 1/y = 0 in C \ {w'}, so the result is a
consequence of Case 1. In particular, the limit function 7 has the form

1 w—wh y(w—w)
T ) = 5w e

Case 3: w' = oo. This time we consider the transformations

~ a, + bw
n =71 =
() 1= 7o(1/w) = S E
which also belong to M. These transformations converge locally m-uniformly to v in C \ {1/w'} = C\ {0},
so {7,,} belongs to Case 1 or to Case 2. Hence the result follows. In particular,
A(1fw—0) (1 0w)

7(w) =7(1/w) = w—0 =T ow for w # oo. (32)

Remarks.
1. The possible limit functions in Corollary 2.11 are therefore singular linear fractional transformations

aw + b

ot d a,b,c,d € C with ad —bc =0, |a|+ |b| + |c|+ |d] # 0. (33)

7(w) =
We let M?® denote the family of transformations (33).

2. We note that 7 is given by (31) if w! # oo and by (32) if w' = ooc.
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3. Throughout this analysis we have chosen to require that also the singular linear fractional transfor-
mations shall have finite coefficients, and thus their determinants are ad — bc = 0. Another possi-
bility would have been to require that a,d, — b,c, = 1 for all n and thus also in the limit, whereas
lan| + [bn| + |en| + |dn| — oo when 7, approaches a singular 7. Our choice seems to give a clearer
picture of the situation.

4. Let M* := MU M?®. Then every sequence {7} from M* which converges in C \ {w'}, converges to
a transformation from M*.

5. It seems natural to ask what possibilities can occur if {7,,} from M (or M*) is known to converge at
two distinct points, but to distinct values. However, this does not lead to anything substantially new.
Indeed, let w3 be a third point from C. Since (C, m) is compact, there exists a subsequence of {7, (ws)}

which converges to some 3 € (E, and we are back to the m-uniform convergence in Theorem 2.1 or the
locally m-uniform convergence in Theorem 2.9 for this subsequence.

The following behavior proved by Piranian and Thron [26] is now easy to explain:

Theorem 2.12. Let {r,} be a sequence from M which converges at two distinct points wy,ws € C. Then,
either

(i) {Tn} converges m-uniformly in C to some T € M, or
(ii) {Tn} converges in C to some function

34
va  for w=wt (34)

Fw) = {’yl for all w e C\ {w'}

where v1 # 72, and the convergence is locally m-uniform in C \ {w'}, or

(iii) {7} converges only at these two points, or

(iv) {m.} converges to a constant function on its set D C C of convergence.

Possibility (i) is the convergence in (M, o), possibility (ii) is described in Theorem 2.8, and possibility
(iv) is a consequence of Theorem 2.9 with D being the complement of the set of limit points for {w]}.
Possibility (iii) is either a consequence of Theorem 2.9 or as described in Remark 5 above.

2.4 The value set technique

A sequence {V,,}22 of sets V,, C C is a sequence of value sets for K(a,/b,) if

sn(Vi) == baﬁ = {w = baﬁ; v e Vn} CVpoq for n=1,2,3,.... (35)

It is normally quite difficult to find value sets for a given continued fraction. So what we do is to start with
a sequence {V,} of sets, and the determine for which continued fractions this is a sequence of value sets.
The significance of value sets is that

Sn(Vi) = Sp1(8n (V) € Spe1 (V1) € --- C Vo for all n.

This means that we have better control over the modified approximants Sy, (w,,) with w,, € V,,. Indeed, if the
closed, nested sets S,,(V,,) converge to a one-point set {7} and lim inf diamy,(V;,) > 0, then {S,} converges
generally to v. If all V,, = V| we say that V is a simple value set for K(a,, /by,).

Of course, this idea also works for more general function families.

The nestedness may also be useful in cases where the diameter of S,,(V,,) converges to a positive number:

Theorem 2.13. [19]. Let rad 7,(D) <r < 1 for alln and rad 7,(D) — R > 0 for T, :==Ti0m0---0T,. If
there exists a sequence {wy,} of complex numbers such that

liminf [|w,| — 1| >0 and liminf||7,(w,)| — 1] >0,

then {7T,} converges pointwise in D to a constant. The convergence is absolute for each ( € D.
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Idea of proof: We know that 7,(D) is a circular disk. Let C, and R, be its center and radius. Since
7.(D) C D, 7,,(w) can then be written

T, (w) = C, —|—R,,Leiw"1_7— where |C,|+ R, <1, w, €R and |Q,| < 1.

Straightforward computation shows that

Bt <1-9¢, where §,:= (1=r)(1 = [Qnl)

If (1 = |@n]) = o0, then R,, — 0, and 7,(¢) — C :=lim C,, for all ¢ € D.
If >7(1—|Qn|) < oo, then > |Thy1(wnt1) — Tn(wy)| < 0o, and thus {7, (w,)} converges absolutely, since

| Tr1(Wns1) — Tn(wn)| = | T (Trg1 (Wng1)) — Tn(wy)]
(1- |Qn|2)‘7n+1(wn+l) — Wp| (36)
1-— @n7n+l(wn+1)| : |1 - @nwn| '

This equality also proves that > |Z,41(wnt1) — Tn(¢)| < oo for every ¢ € D. That is, {7,(¢)} converges
absolutely to the same value. (|

"

That {7,,()} converges absolutely is the same as > |7,+1(¢) — 7,,(¢)| < co. Hence, this theorem implies
that {7,,} converges locally uniformly in D to a constant.

2.5 The Parabola Theorem

The possibly most important convergence criterion for continued fractions K(a, /1) is the Parabola Theorem
due to Thron [30]:

Theorem 2.14 (The Parabola Theorem). Let Py, := {a € C; |a| —Re(ae™%%) < L cos?a} for a given o € R
with |a] < 7/2, and let K(an /1) be a continued fraction from P,; i.e., all an € P,. Then:

A. {fon} and {fant1} converge to finite values.

B. K(a,/1) converges if and only if

Z |dn| =00 where d, = H ai,_l)nﬁﬂ. (37)
n=1 k=1

2|a1]/ cos «
2

The essence of this theorem is that we know everything about convergence for continued fractions K(a,, /1)

if all a,, are taken from a parabolic region P, with focus at the origin and axis along the ray {z = re?®; r >

—% cos? a} through the origin which does not go out towards oo along the negative real axis. The half plane

Vo :={w € C; Re((w + $)e™**) > 0}

is then a simple value set for K(a, /1); i.e., V,, = V,, for all n. The condition (37) is equivalent to the condition
(10) on page 128. Indeed, the convergence results for the Stieltjes fractions zK(a,27%/1) in Sections 1.2.2
and 1.2.3 are consequences of this Parabola Theorem.

We shall prove the convergence part of this theorem. The purpose is to demonstrate some of the techniques
in this area. An important tool is the Lane-Wall Characterization [16] whose proof can be found in [22, p.103].

Theorem 2.15 (The Lane-Wall Characterization). If

> fnsr = il < o0, (38)

then K(ay, /by) converges if and only if (37) holds.

138



Of course, (38) means that {f,_1} and {fa,} both converge absolutely to some finite values f and f
respectively.

Proof of the convergence part of the parabola theorem. Let ¢ € M map the unit disk I onto the interior VJ of
V. Then the compositions 7,, := ¢~ 'os, 0 map D into D and 7,, := Ty 079007, = p losj0850---08,0p =
¢ 1t oS, 0p. Since we are interested in convergence properties of {S,(0)}, we may just as well look at
{Za (0™ 1(0)}

Evidently the disks 7, (D) are nested and C D since 7,,41(D) = 7, 0 7,41(D) C 7,,(D). Hence the radius
R, :=rad 7,(D) of 7, (D) is decreasing, and thus it converges to some R > 0. If R = 0, then the convergence
of 7,,(p71(0)) is clear.

Let R > 0. Since s,(00) =0 € V2, it follows that rad 7,,(D) < r for some 7 < 1. It therefore follows from
(36) that > |7, (¢~ 1 (=1)) = T (¢~ 1(0))] < o003 ie., D2 180 (=1) = S, (0)] = 3= | fu_2 — fu| < 0o. The Parabola
Theorem follows therefore from the Lane-Wall Characterization. O

For the more general Parabola Sequence Theorem [30] where V,, is allowed to vary with n, we refer to
[22, p.154].

This type of convergence criteria is in particular useful when a,, is a function of a complex variable z,
since then we want uniform convergence with respect to z. (Note that this is another type of uniformity
that uniform convergence of {7, (w)} with respect to w.)

2.6 Equivalence transformations

The Parabola Theorem is valid for continued fractions of the form K(a,/1). However, it does not take much
effort to see that if {r,}>2, is a sequence of non-zero complex numbers with ro := 1, then K(anr,rn—1/r)
has the same sequence of approximants as K(a,/1). (Just check the first few approximants and see how it
works.) Or, conversely, if K(a,/by,) is a continued fraction with all b,, # 0, then

K(cn,/1) with ¢ := “u and ¢, := an for n > 2
bl bnbn—l
has the same approximants as K(a,/b,), and thus the same convergence properties. This means that any
continued fraction with all b,, # 0 can be brought to the form K(c, /1), and any continued fraction K(a,,/b,)
can be brought to the form K(1/b,d,,). Indeed, d,, is given by (37) in this case.
This kind of transformation is called an equivalence transformation.

2.7 Iterations
2.7.1 Classification of linear fractional transformations

We classify linear fractional transformations 7 € M according to the asymptotic behavior of iterations 7" =
ToTo---o7 as the number n of 7s in the composition approaches co. A linear fractional transformation 7 is
conjugate to T if there exists a transformation ¢ from M such that 7 = po7op~!. Since 7" = porMop=1
the classification shall be invariant under conjugation.

If {7I"} converges generally to some z € C, then x must be a fized point for 7; i.e. 7(x) = 2. Unless
7 is the identity transformation I(w) = w; i.e. a = d # 0,b = ¢ = 0, it follows that 7 has two (possibly
coinciding) fixed points x and y.

Case 1: T has only one fixed point.

Let 7(w) := w+ ¢ for a complex constant ¢ # 0. Then 7 € M, and the point at oo is the only fixed point for
7. Moreover, 71" (w) = w 4 ng — oo for every w € C. (The convergence is not locally uniform in ((A:, though,
since 71" (—ng) — 0.)

Every 7 € M with only one fixed point must be conjugate to 7; i.e., 7 = p o T o ¢! for some ¢ € M.
This follows since then x := p(00) is the only fixed point for 7. Hence, iterations of 7 converge generally to
this fixed point with exceptional sequence {p(—ngq)}, or, equivalently, exceptional sequence {p(o0)}.

We say that 7 is a parabolic transformation and that the fixed point of a parabolic transformation is
attracting.

Case 2: T has exactly two distinct fixed points x # y.

Then 7 = poTop~! for a 7(w) := kw for a complex constant k # 1 with |k| < 1. The points 0 and oo are
the fixed points for 7, and 71" (w) = k"w.

139



Case 2A |k| < 1. Then 7"(w) = k™w — 0 for every w # oo. Hence 7" (w) — z := ¢(0) for all
w #£ y := ¢(00). We say that 7 is a lozodromic transformation with attracting fized point x = 0 and
repelling fized point y = oo.

Case 2B |k| = 1 with k # 1. This time 7" (w) = k™w diverges for every w € C except at the two fixed
points 0 and co. Hence 71" (w) diverges for all w € C except at its two fixed points x and y. Indeed,
no subsequence of {7'[”]} converges generally to a constant. We say that 7 is an elliptic transformation
with (indifferent) fixed points x = 0 and y = oo.

The case k = 1 naturally gives 7(w) = I(w) = w, the identity transformation.

Remarks.

1. The classification is also invariant under inversion. Indeed, w is a fixed point for 7 if and only if w
is a fixed point for 771. The roles of x and y must be interchanged, though. If 7 is loxodromic with
attracting fixed point  and repelling fixed point ¥, then 77! is loxodromic with attracting fixed point
y and repelling fixed point x.

2. The only 7 € M for which {71} converges to some 7 € M is the identity transformation 7 = I.

3. The only case of divergence of {T[”]} is the case where 7 is elliptic.

2.7.2 Convergence of periodic compositions

Let {¢,} and {¢,} be periodic sequences from M with period p € N; i.e., ¢4y = ¢, and 4, = ¢y, for
all n € N. Let further

Tp = (10 @20---0Qy, and %n;:wnown710~-'oll)1 for all n.

It is then clear that

_ n ~ o~ ~[n
Trnp+m = TI[) o Tm and  Tppym = Tm © Tz[) ]

for n € Nand m € {0,1,...,p — 1}, where 79 := 7y := I. Therefore the classifications of 7, and 7, are
imperative. If p = 1, then the inner compositions 7,, and the outer compositions 7, are just iterations, so
their convergence properties are already described.

Let p > 1. Then we find:

o If 7, (7, ) is elliptic, then {7} ( {7} ) diverges, but every subsequence has a subsequence converging
to some T € M.

e If 7, is parabolic or loxodromic, then {7,,} converges generally to the attracting fixed point x of 7.

The exceptional sequence {w] } is for instance given by wLerm =wl =71y form =1,2,....p

where y is the repelling fixed of 7,. (y = =z if 7, is parabolic. )

e If 7, is parabolic or loxodromic, then {%Z[,"]}n converges generally to the attracting fixed point z of 7,
with exceptional sequence {y}, where y = z if 7, is parabolic, and y is the repelling fixed point of 7,
otherwise. But this does not necessarily give convergence of {7,,}. Indeed, a necessary condition for
convergence is that z is a fixed point for every ,,, and a sufficient condition is the x is an attracting
fixed point for every ..

2.8 Limit periodic compositions
Let {¢n} and {9, } be sequences from M which converge to some ¢ € M and ¢ € M respectively. Then
Tp i =@10@a0---0¢, and T,:=®Y,o0WY,_10-- -0y

for all n have more and more character of iterations of ¢ and ¢ as n increases. So, no wonder, the classification
of ¢ and 1 are again vital.

Case 1: ¢ and v are elliptic.
We would expect {7,,} and {7,,} to diverge, but this does not always occur. It depends on how {¢,} and
{¢n} approach their limit functions.
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Example 2.16. Let ¢, (w) := ¢, (w) := k,w where k, — k # 1 with |k| = 1. Then
To(w) = Fp(w) = Kyw  where K, := H k;
j=1

which converges generally if K,, — 0 or K,, — 0o and diverges otherwise.

Evidently the cases ¢ = I and ¥ = I are also quite intricate cases.

Case 2: ¢ and v are parabolic.
In this case we would expect {7,,} and {7,,} to converge, but the catch is again how ¢, — ¢ and 1, — .

Example 2.17. Let ¢, (w) = ¢, (w) = w + ¢, where ¢, — q # 0,00. Then
Tn(w) = 7~_n(w) =w+ @, where Q,:= Z aj
j=1
which converges to oo if @, — 0o, and diverges otherwise.

Case 3: ¢ and v are loxodromic.

This is the show case situation. Here we always get a robust general convergence of both {7,} and {7,}.
The reason for this is that if ¢ is loxodromic with attracting fixed point = and repelling fixed point y, then
its derivatives at these points satisfy

[P'(z)] <1 and |¢'(y)[ > 1.

Hence there is a neighborhood U of z and an ng € N such that |¢'(w)| < 1 for all w € U and n > ng, and

thus {7,,} converges generally to some value v € C with exceptional sequence {y}. Similarly, {7} converges
generally to = with some exceptional sequence {w, }.

The extensions to cases where {¢,} or {¢,,} are limit p-periodic for some p > 1; i.e., the limits
Om, = nh—>Holo Pnp+m € M and wm = nh—{go ¢np+m eM

exist for m = 1,2,...,p, and ¢ := @1 0Pz 0--- 0 @, and Y =1 0tg0---0 1/;1, are of elliptic, parabolic,
loxodromic or identity type follow similarly.

3 Sources for results on convergence of sequences of linear frac-
tional transformations.

Transformations from M are extreme in several situations, such as for instance in the Schwarz Lemma
and Brouwer’s fixed point theorem. They also pop up in various disguises throughout the literature of
mathematics. In this part we shall present some situations where some kind of convergence of sequences
from M plays a role.

3.1 Schur’s algorithm

Schur’s algorithm gives a method to determine whether a given (formal) power series L(z) := Y 0 ¢p2"
belongs to the class £1 of power series which converge in the unit disk D to some function f(z) bounded by
1. The idea behind this algorithm is that L € £; implies that |co| < 1, and if |¢y| < 1, then L € £, if and
only if
1 w—co
Li:=71(L)e L here mp(w) := — ——.
1 m0(L) 1 W m0(w) 71— Gow

(Evidently 79(w) is a transformation from M with coefficients depending on z # 0, and z7y maps D onto
D.) Repeating this idea on L1, and so on, gives a sequence {L,} of power series, and thus a sequence of
numbers 7, := L,(0), the Schur parameters. The algorithm stops if |vy,| > 1 at some point.
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If the algorithm stops with a |y,| > 1, then L & L.
If the algorithm stops with a |, | = 1, then L is the expansion of a rational function from £;. Indeed, as
proved by Schur [27], this case occurs if and only if L is the expansion of a finite Blaschke product

f(z) :emH el for some o € R and wy € D.

If all |y,| < 1, then L € £y, and
L=poopio---0py(Lny1) forall n, where ¢ := Tk_l,
and the question of convergence arises. Since

2w+ Yn (1= |wl*)=
ipn(w) = 1475, 2w =Tt Nz + 1w’

the corresponding continued fraction is

A-hol?z 1 A=z 1 (1—|nf)z

+ — — — — — .
o Yoz + v+ Y12 + e + Yoz + -

Let us for convenience assume here that all 7, # 0. Then Wall [34] proved that the even approximants { fa, }
of this continued fraction converge locally uniformly with respect to z in D to the function f(z) ~ L(z).
That is, the Schur algorithm converges to the ,right function” f(z). This also happens if some or all ~,, = 0.

3.2 The linear group of 2 x 2-matrices

M can be regarded as an embedding in the general linear group GL(2,C) of 2 x 2 non-singular matrices

M= (Z Z) a,b,c,d € C, ad—be#0. (39)
In this setting
aw+b
= 4
7(w) cw+d (40)

has the corresponding matrix M (7) given by (39), and M (1 079) = M (1) M (72). Moreover, the coefficients
of 7 are unique.

As already mentioned, another standard way to handle the uniqueness question of the coefficients of 7 is
to require that
a b

A =ad—bc= ¢ d

-

The corresponding subgroup of GL(2,C) is called the special linear group SL(2,C). To analyze the asymp-
totic behavior of {7,,} one can study the asymptotic behavior of {M(7,,)} and vice versa. The tools at hand
are different in M and GL(2,C), results on sequences of matrix products

Mh ]\41.]\427 M1M2M3,... or Ml, MQMl, M3M2M1,...
in GL(2,C) have their equivalent counterparts for sequences
Tn == P10P20---0p, Or Tn::'(/]nownflo"'owl (41)

in M. A particularly well studied case is the case where all M,, are equal and all ¢,, are equal. The case
M = I is trivial, so let M # I. For M™ we first look for eigenvalues A1, A2 and the corresponding eigenvectors

(T) ) (?) for M by solving the equation

or-10(3)- )

N a+d+/(a+d)?—4A a—d=x+/(a+d)?—4A
12 = ; .
’ 2 2c

which gives

Yy =
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We choose the notation here such that Ay = cz + d and Ay = cy + d. For simplicity we assume that z and y
are finite with & # y. Then M has the representation

-1
(T oy A O Ty
v=(0 G ) ()
which means that

-1 .
M" = (1 1) (0 X;) (1 1) = A3 (1 1) (0 AT where R := N

The counterpart for the nth iterate o™ := popo--- 0y (composition of n copies of ) takes the form
_ A1 — 91
ﬁo@(w)—/\—ﬁ(w) & p=19""oxod,
2
w—1y ALw
here 9 = d =
where J(w) ——— x(w) "

The points « and y are the two fixed points of ¢ and A\; = cz + d, A2 = cy + d. Hence

oMw)y =9 oxM oy where YM(w)= <i\1> w = RN"w
2

This means that {¢[™} converges generally to 9=1(0) = y if |R| < 1 and to 9~ '(c0) = x if [R| > 1. If |R| =1
(with ® # 1), then {p["} diverges. We recognize the situation from Section 2.7.2.

3.3 DMore general group theory

If we start with some subset B of M and consider the family G C M which contain B and the identity
transformation I(w) = w and has the properties that

7€G = 7'€G and T,m€eEG = Tom€EQ, (42)

then G is the group under compositions generated by B. It is a very nice group in the following sense: every
sequence from M has a subsequence which either converges m-uniformly in C to a  from M, or locally
m-uniformly in C \ {w'} for some wf € C to a constant. This is what is called a convergence group. A
subgroup G of M is called discrete if no sequence of distinct elements from G converges to some 7 € M; i.e.,
if every sequence from M has a generally convergent subsequence. This has lead to a theory of convergence
groups more generally.

The group properties (42) are rather restrictive. For instance, G := {r € M; 7(V) = V} for a given
set V C Cisa group, but the transformations 7 € M which map V into V does not form a group since
7(V) C V does not imply that 7=1(V) C V when V contains more than one element. This is unfortunate
since 7,(V') C V for all n can for instance be an important factor in a proof for convergence. What we want
is a theory for semigroups where the condition 7 € G = 77! € G is no longer part of the requirements.
Actually, it is fair to say that convergence criteria for special sequences of elements from G has not been a
hot topic in this area. The emphasis is more on characterizing properties of the elements in the group as a
whole.

3.4 Recurrence relations

Let
A,w+ B, a,w + by,

Chw + Dy’ oo (W) = cow +dy’

be transformations from M regarded as embeddings in GL(2, C); i.e., the coefficients are unique and M(7,,) =
M(1p—1 0 ¢n) = M(7h—1) - M(p,). This is equivalent to the fact that the coefficients of 7,, satisfy the

recurrence relations
A, B, _ A1 Bp an by
Cn Dn N Cn—l Dn—l Cn dn ’

Tp(w) = Th =1 0@20---0 ¢y,
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that is,
An = anAnfl + Canfla Cn = anCnfl + Cnanh

B, =b,A,1+d,Bn-1, D,=0,Ch_1+d,Dy_1.
In the following we assume that ¢, = 1 and a,, = 0 for all n, just as they are for continued fractions. (See
also remark 4 on page 130.) Then 4,, = B,,_1 and C,, = D,,_1, and thus
B, =d,Bn,_1+b,By_2, D,=d,D,_1+b,D,_s. (43)
That is, {B,} and {D,} are solutions of the homogeneous, linear recurrence relation
X, =d, Xpn_1+b0,X,_2 for n=1,2,3,... (44)

with initial values B_; := 1, By := 0, D_;1 := 0 and Dy := 1. Since ¢,, € M, we know that b, # 0 for all n.
Conversely, if {B,} and {D,} are solutions of (44) with these initial values, and all b,, # 0, then the
transformations

bn

on(w) == w ~+ dy, give Tp(w) = 109200 py(w)

_ Ayw+ B,
B an + Dn

(45)

where A, = B,_1 and C,, = D,_; for all n. One of the questions asked in this theory is what kind of
asymptotic behavior of the solutions of (44) can we expect? For instance, are two solutions asymptotically
equal? Since

Bn An+1

(0) = D, - Cnt1 = Tn+1(0),

a convergence (B,/D,) — v € C can only occur if {7,} converges generally to v. Indeed, the solution space
of (44) is a linear vector space of dimension 2 since all b, # 0. Since {B,,} and {D,,} are linearly independent,
they form a basis in this vector space; i.e., every solution {X,} can be written as a linear combination of
{B,} and {D,}:

{X,} =06{Bn} +6{D,} for some constants 3, J € C. (46)
Hence, if (B,,/D,) — 7, then (X,,/D,) — By + 4.

A solution {X,,} of (44) is said to be minimal if it is non-trivial (i.e. not all X,, are equal to 0) and there
exists a second solution {Y,,} such that (X,,/Y,,) — 0. We say that {Y,,} is a dominant solution in this case.
Then most of the solutions of (44) are dominant, since also ({X,}, {Y,}) is a basis of the solution space.
Indeed, the minimal solutions form a subspace of dimension 1, and the rest of the solutions are dominant.

Theorem 3.1. [25] Let {P,} and {Qn} be two linearly independent solutions of (44). Then {P,/Qn}

converges to some v € C if and only if (44) has a minimal solution {X,}. In particular (B, /D,) —
~Xo/X_1.

Proof. Since {P,} and {Q,} are linearly independent, we know that A := P_1Q¢ — PyQ—1 # 0. Moreover,
a second pair ({P,}, {Qxr}) of solutions is also linearly independent if and only if

(P} = Bi{Pa} + Bo{Qn} and {Qn} =01{Pn} + 02{Qn}

for some complex constants (1, B2, 41 and dy with 819 — B291 # 0. Since then

Pn _Blpn+ﬁ2Qn _ﬁl gn +62

n

Qn 0P+ 02Qn 6152 46,

(with natural limit forms if Q,, = 0), we find that {P,/Q,} converges if and only if {P,/Q,} converges.

In the convergence case, every number v € C can be a limit of {Pn/Qn} by appropriate choice of §1, 02, d1
and Jo. In particular v = 0 is possible, which makes {Pn} minimal.

Let {P,} be such a minimal solution, and set {P,} := {B,} and {Q,} := {D,}. Since B_; = Dy =1
and By = D_1 = 0, we must have

_ @ _ b _ @ _ P
51—A7 B2 = A 0 = A and &z = A
and thus (Bn/Dn)Z(Pn/Qn)Hﬂg/(SQ:—PQ/P_l L]
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The recurrence relation (44) can be written on matrix form:

b —-dy 1 0 0 0 X_y 0
0 by —ds 1 0 0 ---|] Xo 0
0 0 —bs —d3 1 0 || Xxi|_1o
0 —dy 1 - 0

0 0 —b4 X2

and by induction, the solution {D,,} with D_; := 0 and Dy := 1 can be written as

Dn—2 Dn—3 0

Dy, =dyDy_1+byDy_g = ’l)_b_l DZ;_Q =|=bp_1 dn_1 1
" 0 —b, d,
Dn—3 Dn—4 0 0
_ *bn—2 dn—Q 1 0 _
N 0 _bnfl dnfl 1 N
0 0 b, dn (47)
dy 1 o 00 -- 0 0
—by do 1 0 O --- 0 0
10 —=bs dg 1 0 --- 0 0
0 0 0o 00 - —=b, d,
which again can be written as the symmetric tridiagonal determinant
dq v —bs 0 0 0 0 0
v —bo ds v —b3 0 0 0 0
Dn — 0 RV 7()3 d3 vV *64 0 0 0 (48)
O O 0 0 O e 7bn dn
Since {B,} is a similar solution of the shifted recurrence relation (By =0, By = by), we also get
ds v —bs 0 0o --- 0 0 d 1 0 0 .- 0 0
v —b3 ds v=bsy 0 --- 0 0 —bs d3 1 0 --- 0 0
Bn,=0b1| . . : .o . =6 . (49)
0 0 0 0o --- —b, d, 0 0 0 0 -+ =b, dy

Similar connections between recurrence relations and linear fractional transformations can be derived

from
_ Ayw+ B,

™) = Gt Dy

In particular if all a,, = 0 and b,, = 1, then

An Bn _ 0 1 An—l Bn—l
Cn Dn n Cn dn Cnfl anl '

That is, 4, = C,,—1 and B,, = D,,_1, where {C,} and {D,,} are solutions of the recurrence relation

a,w + by,

T

Tn:¢n0¢n—10"'0¢1~

Xn=dpn Xy 1+ cnXn 2.

3.5 Orthogonal polynomials

Let d¥(t) be a positive measure with infinite support on the real line, with finite moments

Cn ::/t”d\IJ(t) for n=0,1,2,...,
R
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and let {P,(x)}52, be the corresponding sequence of orthogonal monic polynomials; i.e., P,(z) = 2™ +
lower degree terms, and

=0 for n#m,

#0 for n=m. (50)

/ Po(t)Po(t) dU(t) is {
R

For convenience we write £(f) for integrals of functions f over R with respect to this measure. That is, the
integral above can be written £(P,P,,).
Evidently, P, _1(x) has the orthogonal expansion

n—1

P, 1(7) = P, + Z @ Pr(x) where ¢ =
k=0

E(.%‘Pn,lpk)
——————~ for k=0,1,...,n— 1.

(77 or ,1,...,n
Since £(xP,,—1Py) = £(Pn—1(xPy)) where x Py, also has such an orthogonal expansion, it follows by (50) that
qr =0 for k <n—2. Hence zP,,_1 = P, + ¢n—1Pn—1 + ¢n_2P,_2 which means that {P,(z)} is the solution
of the recurrence relation

P,=(x—by)Py1—a P, o for n=1,2,3,... (51)
with P_; :=0, Fy :=1 and
£(zP2 ) &(xP,_1Py_s) £(P2_,)
bn _ = n—1 2 — = n n — n—1 ) 52
Do =) TS TR,y TSP (52

Conversely, by Favard’s theorem [6] (first proved by Stieltjes [29]) we know that if {P,}72 is the solution
of (51) where a,, b, € R, a, # 0 and P_1(z) =0 and Py(z) =1, then {P,} is sequence of monic orthogonal
polynomials with respect to some positive measure du(t) with infinite support C R. As in (47)-(48), {P,} is
then given by

r— by 1 0 00 --- 0 0
a3 x — by 1 00 --- 0 0
P,(z) = 0 a? r—bz3 1 0 0 0 (53)
0 0 0 0 0 a? x—b,
which also can be written
Tr — bl a9 0 0 0 0 0
a2 T — by as 0 0 0 0
Pyz)=| 0 az  x—by as O 0 0 (54)
0 0 0 o 0 --- a, x—by,

Asymptotics for {P,} is important. Ratio asymptotics means limiting behavior of P, 1/P, which in the
notation of the previous section can be written Dy, 41/D,, = —7,,_ 4}1(0@-

The solution {P,(Ll)} with Pél) =0, Pl(l) =1 is called the sequence of associated polynomials related to
the measure. Also the asymptotics of {Péi)l /P,} is of interest. Clearly

(1) 2 2 2
Pn—l 1 as as a,

P, z—by—z—by—2z—-b3—"—2z-0,

which for instance can be written as 1 0 gz 0 -+ 0 ¢, (0) where @i (w) := 1/(z — by — ajw). If f(z) =
lim Pél_)l(z)/Pn(z) exists; i.e., if the corresponding continued fraction converges to f(z), then this can be
used to determine the measure dy(t). (This will be the topic in Section 4.3.)

Of course, here we restricted the situation to the classical cases where the support of the measure is real,

its moments are of orders > 0 and the orthogonal functions {P,(z)} are monic polynomials. This has been
extended to more general situations.
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3.6 Linear operators

We consider linear self adjoint operators A on an infinitely dimensional Hilbert space, and require that the
matrix of A has a symmetric tridiagonal form

b1 aq 0 O 0
aq b2 a9 0 0
= 0 with all a, # 0.

- 0 a9 b3 as

Searching for eigenvalues A and eigenvectors & = (zg, 1,2, )¢ (the superscript ¢ means the transpose),
we require that

M—-A)-2=0
ie.,
A — b1 —ay 0 0 0o - i) 0
—an A — b2 —as9 0 0 I 0
0 —as9 A — b3 —as 0 - To = 01>
ie.,
—p-1Tp—1+ A —=bp)xp —aprye1 =0 for n=2,34,...
with z_; := 0 and z¢ := 1. By Favard’s theorem this means that x is an eigenvector for A if and only

if {x,,(\)} is a sequence of orthogonal polynomials of A\ and Y |z, (A\)|?> < co. Indeed, one can prove that

{z,(A\)} is a sequence of orthonormal polynomials with respect to some measure under certain conditions.

3.7 Moment problems

There exists a whole bunch of moment problems. In Section 1.2.3 we looked at the Stieltjes moment problem.
Each one of these problems are connected to a continued fraction of a certain shape. In Section 4.3 we shall
for instance consider the Hamburger moment problem which is connected to continued fractions of the form

z a3 a?

Z—bl_Z—bQ_Z—bg_"'.

3.8 Discrete dynamical systems

Let f be a function mapping a set V into itself. For given py € V, the structure

pn = f(pn—1) for n=1,2,3,...

is a dynamical system in its simplest form. The sequence {p,} is called an orbit or a graph trajectory of the
system, and the equation is to be understood as an alternative to differential equations.

In more general cases, the function f may also depend on a time parameter; i.e., f = f(¢, w) such that
f(tk, w) = fr(w) and thus

Pn = fn(pnfl) = fn Ofnfl(pn72) == fn Ofnfl SI Ofl(p(])' (55)

Of course, {f,} is a sequence from M only in very special cases, but techniques to prove convergence for
sequences from M may sometimes be adapted to (55) and vice versa.

The "filled-in" Julia set for f (or {f,}) is the set of points pg € V for which {p,} does not approach
infinity. The true Julia set is the boundary of the filled-in set (the set of "exceptional points"). If the Julia
set is connected, it is often called a Fatou set. Otherwise, if it is a Cantor set, it may be called Fatou dust.
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3.9 Random iteration

We say that K(a,/b,) is a continued fraction from Q C (C\ {0}) x C if (ay,by,) € Q for all n. In continued
fraction theory, a number of sufficient convergence criteria has the following form: If (a,,b,) € Q for alln
(for some given Q), then K(a, /by,) converges. This is a result on what we might call random iteration. Pick
a continued fraction from €2 at random. Does it converge or not? Or more generally: what is the probability
for convergence, given a probability distribution on the continued fractions from 2.

As already mentioned, a sequence {7, } from M can always be regarded as a sequence

Tp =Q10@20---0p, O Tp=1Yp0tYp_10---01; (56)

of compositions of transformations from M. In this case we have:

Lemma 3.2. Let {¢,} and {¢} be sequences from M. If {m,} given by (56) converges m-uniformly in C,
then ¢, — I and ¥, — I.

1

Proof. <pn:7'7:_1107'n—>7'_ or =1, wn:TnOTg_ll—)TOT_lzf. O

In combination with the following result by Ambroladze and Wallin [1] on transformations from My :=
{r € M; 7(H) C H} where H is the upper half plane H := {w € C; Im(w) > 0}, this gets quite interesting:

Theorem 3.3. Let du be a probability measure on My, and assume that the transformations in the support
of 1 have no common fized point in H and no common invariant hyperbolic line in H. Let {1, } be a random
sequence from My with distribution u. Then, for any point w € H, 7, (w) := ¥y, 0 b1 0 -+ 0 1 (w) tends
to R almost surely.

This was actually a consequence of Fiirstenberg’s more general result [7]:

Theorem 3.4. Let du be a probability measure on SL(2,R) and let G, be the smallest closed subgroup
of SL(2,R) which contains the support of du. Assume that G, is not compact and no subset L of R? is
a finite union of one-dimensional subspaces with ML = L for some M € G,. Finally, let {M,} be a
random sequence from SL(2,R) with distribution p. Then, with probability 1, ||Myz|| grows exponentially
for x = (w1, 22)" € R?\ {0}, where M, := M,M,_1--- M.

a b
c d)’
obvious interpretation, ||¢,|| — oo implies that no subsequence of {7, } converges to some 7 € M.

Here ||M|| = /]a]? + [b]?> + |c|]? + |d]?> for M = the standard norm in SL(2R). Hence, with

4 The trinity of moment problems, orthogonal polynomials and
continued fractions
There is a beautiful theory of equivalences between the three fields
e continued fractions
e orthogonal polynomials
e moment problems
We shall look at a particular example where the continued fractions have the form

2 2
z as as

here all a2 >0, b, € R, 57
pry iy sy wIOS where all a; , € (57)

the orthogonal polynomials are as in Section 3.5 and the moment problem is the Hamburger moment problem:
For a given sequence {¢, }52, of real numbers with ¢¢ := 1, find a probability measure d¥(t) of infinite support

on R such that
Cn = / t" dU(t).
R

The idea is to present some theorems without proofs to illustrate the connections.
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4.1 J-fractions

A continued fraction of the form (57) is called a positive definite J-fraction. It has some nice properties. For
instance, the upper half plane H is a simple value set for this continued fraction when z € H. This follows
easily since with z := z + iy and w := u + v where y > 0 and v > 0 we have

) a2 b i)
" z=bp+w (z+u—>b,)+i(y+v) (x4+u—">bp)% 4+ (y+v)?

The following convergence property is therefore a consequence of a generalization of the Parabola Theorem
in Section 2.5.

Theorem 4.1. The positive definite J-fraction (57) converges locally uniformly with respect to z in the upper
half plane H to a holomorphic function f(z) in H if

oo 1 00 bn+1
_ — 58
ngl |an| o or 7;1 AnAn41 ( )

Of course, by complex conjugation, the same holds true if we replace the upper half plane by the lower half
plane.
Another important property is its correspondence to some formal series

L(z) =Y (-1 2 (59)
n=0

that is, the Taylor series expansion of the nth approximant f,(z) of (57) has the form

An(2) C1 2 Con don+1.n
~ep— 2422y ’
B, (2) 0= T 2 S2n T ontl

fulz) = +--- forn=0,1,2,... (60)

where {d n }k>2n are some real numbers depending on n.
Theorem 4.2. The positive definite J-fraction (57) corresponds to a unique series (59).

The canonical denominators {B,} of (57) are of course monic polynomials in z of exact degree n, with
B_1:=0, Bp:=1and
Bn(2) = (2 = bp)Bn_1(2) — a2 B, _2(2) for n=1,2,3,.... (61)

The Hankel determinants for a given sequence {c,, }22, of complex numbers (or series L(z) as in (59) ) are
given by

Cm Cm4+1 - Cm4n—1
Cm+1 Cm+2 Cm+n
Hém) =1, Hflm) = . . for m>0, n>1. (62)
Cm+4n—1 Cm+n tee Cm+42n—2

They are useful in this theory. For instance, it turns out that the canonical denominators of (57) can be
written

C1 C2 0 Cnyl
1 |¢2 C3 ot Cny2
B, (z) = where H( > 0. (63)
(1) "
Hy
P 1

Theorem 4.3. Let L(z) := Y>> (—1)"¢c, /2™ have a continued fraction expansion of the form (57). Then

n=0

all a2 > 0 and b, € R for all n if and only if HS" > 0 for all n.
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Another interesting feature is the zeros of the denominators of S,,(7) for some given 7 € R; i.e., for
Qn(z) = Bn(2) + 7Bp-1(2) for n € N. (64)
Theorem 4.4. The zeros {Z;(Cn)}z:l of Q.. are all real and simple, and they can be ordered such that
z§”+1) < z,(cn) < z,(;:{l) < z,(ﬁr)l < zg_f;l) for k=1,2,...,n—1. (65)

o Ap + 7451 . P,

Moreover, the approximants Sy, (1) = B 1B )
n TDnp—1 n

has a partial fraction decomposition

Pn n )\(") N
o= S —Sh s where A >0 for all k. (66)
T ok=17T %k

4.2 Orthogonal polynomials — J fractions

Let d¥(¢) be a positive probability measure with infinite support on R and finite moments
Cn ::/Rt”d\ll(t) for n=0,1,2,.... (67)
As in Section 3.5 we use the notation
S(/0) = [ f)ave) for [R-R, (65)

so that ¢, = £(t"™). Then £ is a linear operator on the space P of polynomials P(t) of arbitrary degree. By
applying Gramm-Schmidt orthogonalization to the sequence

1t 2,3, ...

of monomials in P, we can obtain the corresponding sequence { P, (t)}22, of monic orthogonal polynomials
with respect to d¥(t). We have already seen in Section 3.5 that {P,(z)} also is the sequence of canonical
denominators of the continued fraction

z a% a§ 2 £(P371) S(tprgfl)

h =——7<>0, by,=——=—-€R. 69
z2=by—2z—by—z—bg— RS E(Pﬁ—z) S(Pr%—l) ( )
The coeflicients can also be represented by Hankel determinants
cy v Cn—1 Cn+1
2 Hr(Ll)/H»ELl_)l o Gn Gn—l h Q. = Cy Cn Cn+2
W= g g T gm T @ VR b= : :
nfl/Hn72 H’” anl
Cp =+ Cop—2 Copn

Conversely, let zK(—a2/(z — by)) be a given continued fraction with a2 > 0 and b,, € R for all n. Then
its canonical denominators P, are given by

Po(2) = (2 = bp)Pu_1(2) — a2 Py _o(2) for n=1,2,3,... (70)
with P_1(2) = 0 and Py(z) = 1. In particular {P,} are monic polynomials of exact degree n. By Favard’s

Theorem they are the monic orthogonal polynomials for some positive measure d¥(¢) with infinite support
on R. To retrieve this measure (or measures) is exactly what the moment problem is all about.
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4.3 Moment problems — J-fractions

Theorem 4.5. The Hamburger moment problem has a solution if and only if

Co 1 Cpn—1
0 Cl 62 e Cn
Hﬁl):: . . . >0 forn=1,23,....
Cpn—1 Cn - Con—2

Theorem 4.6. If dU(t) is a solution of the Hamburger moment problem, then > (—1)"c,/z™ is an asymptotic
expansion of

F(z) = /R - i ¥ (1) (71)

in the upper half plane H in the sense that

lim  2"(f(z) —on(2)) =0 for all n, where o,(z) := Z(—l)kc—k. (72)

Z=1yY, Yy—00

Theorem 4.7. If all 7Y > 0, then

(i) 3> cnz™ has a corresponding continued fraction K(—a?/(z — by)) where {a,} and {b,} are given by
(52).

(ii) dV(t) is unique if and only if K(—a?/(z — b,) converges. This continued fraction then converges to
Jz ﬁltz dip(t) from which dip(t) can be retrieved.

(iii) If K(—a2/(z —b,)) diverges, then it has exvactly two limit functions, and the possibilities for di)(t) are
all the linear combinations of the two measures retrieved from each of these two limits.

Example 4.8. Let the sequence {c,}>2 , with ¢, := n! for all n be given. We are looking for a probability
measure d¥(t) such that

oo
cp=nl= / t"dU(t) for all n.
0

We pretend that we have never heard about the Gamma function which naturally gives the answer

o
/ t"e "t dt = n!
0
and thus that d¥(t) = et dt.
This is actually a Stieltjes moment problem (a special case of the Hamburger moment problem). We
therefore try to find a continued fraction expansion of the form 2K(a,271/1) with all a,, > 0 for

L(z) = Z(—m% =S nl(-2)
n=0 n=0

This was exactly what we did in Example 4.5.1 where we got the continued fraction expansion
1 1/z 1/z 2/z 2/z 3/z 3/z n/z  n/z
1+ 1 + 1 + 1+ 1+ 1+ 1 4+ 1+ 1+
which converges locally uniformly in Dy := {z € C; |argz| < 7} to some holomorphic function f(z). (This

is a consequence of Corollary 10.) This f(z) is the Stieltjes transform of the measure d¥(t) we are looking
for, so we have at least attached some value to L(z), and we can in principle find this measure. Since

o) = [ v
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in general is unknown, we can also use an approximant f,(z) of the continued fraction, and use its inverse

Stieltjes transform
—s

1
¥ (t) = = lim Im fu(x —ig) dx

T e—0t —t

as an approximation to ¥(¢). In order to get a good approximation, we normally need a larger value of n.
But for demonstration, let us use

3

PYRTEE N VERN VERNTE 1+ (38-2v2)/4  (3+2v2)/4
4 = — _ —_— —_ = =

1+ 1 + 1 + 1 i 2 1 I 1

144+ —41-— —41+—

tStE Stlmm it

dWy(t)

ol But that is easy to achieve. According to Example 4.6.2 we can
z

oo
which we want to be equal to /
0

use the step function

0 for 0<t<1-1/V2,
Uy(t):=14 (3—-2v2)/4 for 1-1/V/2<t<1+1/V2,
V2 for 14+1/V2<t. O

4.4 Gauss quadrature

The theme in this section is an application of this theory. We shall see how we can apply it to approximate
integrals of the form

/ £(t) dw(t) (73)
R

where f is continuous at the support of the probability measure di(t). We first note that since

F n
lim (2) =F'(z) #0 for F(z):= H(z - Zk),
2=z 2 — 2k baiet
it follows that

_ F(z)
pk(Z) i (Z — Zlc)F/(Zk:)

is a polynomial of degree n — 1 with pg(z,,) = 0 for m # k and px(z;) = 1. This means that if we set

= Z Akpr(2)
k=1

then G,, is a polynomial of degree < n — 1 with G,(zx) = A; for kK < n. G, is called the Lagrange
interpolating polynomial. We can use this idea to approximate (73). If we know the sequence {P,(z)} of
monic orthogonal polynomials for d¥(¢), then we know the canonical denominators B,,(z) = P, (z) of the
corresponding positive definite J-fraction.

Theorem 4.9. Let the infinite support of the measure d¥(t) be contained in a bounded interval, and let
{z,gn)}zzl be the zeros of By (z). Then

n—oo

/f ) dw(t) =Y N f(l") + B, where lim E, =0
k=1

where

N 1 B, (t
A _ (t)

o [ e Y0 =
By(7) Je t= By(207)

n

and E, =0 if f is a polynomial of degree < 2n — 1.
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5 Additional literature

For those who want to go deeper into the material, we can mention the books [24], [15], [34] and [13]. The
exposition in the present paper is however closer to [21], or rather the new and improved edition [22]. For
number-theoretic aspects we can also mention the recently published [9].

6 Open problems

There is a lot of open problems in this theory, of course, so the list below is just presented for inspiration.
They are neither chosen nor ordered by their importance or grade of difficulty.

1.

The question of singular points for functions K(a,2%"/1) with a,, > 0 and «,, € N has been studied
by Thron in a number of papers, for instance with Callas [2] and with D. Singh [28]. In particular it
is nice to know when 9D is a natural boundary for the function. In [13, Thm 12.8, p.383] it is stated
that sufficient conditions are essentially

Pn

lim(4|an|)1/a” =1 and liminf
n - Pn

=0

where p,, := max{deg A,, deg B,,} and h,, := ZZ=1 Q. Also more references can be found in that
book. But what about necessary conditions?

. A related problem is the following: let L(z) be a power series with convergence radius 1, and assume

that L(z) has a continued fraction expansion of the form ¢y + K(a,271) with all a,, > 0. Under what
conditions will also K(a,271) converge in D? And when will it converge in a larger region? Does the
location of possible branch points have any impact on this question?

In [5] they compute special functions by means of continued fractions. Of course they use the fixed
point modification S, (g(z)) from Example 5, but the more refined ideas in [17] or [22, p.218ff] have
not been fully exploited.

. It is easy to prove convergence or divergence of a 2-periodic continued fraction. But it is not so clear

what happens if the continued fraction K(c,/1) has elements picked randomly from a 2-point set
E :={aj,as}. If E is contained in a parabolic region P, from the Parabola Theorem (or some other
well known convergence set), the case is clear. But what can we say otherwise?

We have seen that a function has an S-fraction expansion if and only if it essentially is a Stieltjes
transform. Similar results are valid for other moment problems. But Carleman’s criterion does not yet
have any counterparts for these cases. It is also possible to state other types of sufficient conditions for
function to have a continued fraction of specified form with complex coefficients [32], [12], but there
exist very few results of this nature.

For what kind of series and /or continued fractions does the conversion from series to continued fraction
represent a summation method or a convergence acceleration method? It is true in all the interesting
cases so far, but surely it can’t always be true. What kind of sufficient or necessary criteria can be
found? This is of course related to Problem 2 above.

The idea of general convergence has been extended to sequences of functions from quasi-normal families,
such as for instance to sequences of univalent or p-valent functions in some domain D, [18]. This kind
of convergence is different from convergence in measure or capacity. But the possibilities here have not
yet been exploited.

Value sets {V,} for a family F of continued fractions K(a, /b,) give a domain V; for their values f. So
at least we know something about the values f even in cases where they are not known explicitly. In
[11] we developed the probability distribution for f in some special cases. The idea due to Waadeland
is found in [33]. Such results are also of interest for estimation of tail values for a given continued
fraction, in order to accelerate its convergence.

If K(a,/1) converges generally but not in the classical sense, then probably also K(c, /1) shares this
property if > |¢, — an| < 00 or Y m(ay,c,) < oo under proper conditions. Is this true? If so, what
are the proper conditions?
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10. There is a number of generalizations of continued fractions: vector- or matrix-valued continued frac-
tions K(A4,/1), branched continued fractions meant for expansions of analytic functions of several
complex variables, Schur analysis of functions analytic in the unit disk, compositions of functions other
than the s,s that make up a continued fraction (continued radicals, towers of exponentials, continued
fractions building upwards instead of downwards, etc). What can we say about convergence etc for
such structures? Some is known, but the topic is by far exhausted.
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The Yamabe problem with singularities
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Abstract
Let (M,g) be a compact Riemannian manifold of dimension n > 3. Under some assumptions, we
prove that there exists a positive function ¢ solution of the following Yamabe type equation
n+2

Ap+ hp = ﬁgpn 2

where h € LP(M), p > n/2 and h € R. We give the regularity of o with respect to the Value ofp Finally,
we consider the results in geometry when g is a singular Riemannian metric and h = Rg, where

4(71, 1
Ry is the scalar curvature of g.

1 Introduction

Let (M, g) be a smooth compact Riemannian manifold of dimension n > 3. Denote by R, the scalar curvature
of g. The Yamabe problem is the following:

Problem 1.1. Does there exists a constant scalar curvature metric conformal to g7

If § = ¢* ("2 g is a conformal metric to g with ¢ a smooth positive function, then the scalar curvatures
R, and Rj are related by the following equation:

An—-1)

— g+ Ry = Ry~ (1)

where N = % and A, is the geometric Laplacian of the metric g with nonnegative eigenvalues.
To solve the Yamabe problem, it is equivalent to find a function ¢ solution of equation above where Rj is

constant. Equation (1) is called Yamabe equation. Yamabe [11] stated the following functional, defined for
any ¢ € Hy (M) — {0} by

/lvw n-2 T R

I,(¢) = = (2)
I lel2 ||¢||2
and he considered the infimum of I, defined as follow
p(g) = inf Iq(l/))

YeH, (M)—{0}

He solved the case when p(g) is nonpositive. Aubin [1] showed that it was sufficient to solve the following
conjecture:

Conjecture 1.2 (Aubin [1]). If (M, g) is not conformal to (Sy, gean) then
1(M, g) < p(Sn; gean) (3)
where (M, g) = inf{Iy(¢), ¢ € Hi(M) —{0}}

It is known that 1(S,, gean) = K 2(n,2) = (n 2)wn 2/n , where w,, is the volume of the unit sphere S,,
and K(n,2) is defined in theorem 2.5.
In the following, we write u(g) instead of u(M,g).
Aubin proved that the conjecture is valid for all smooth compact non conformally flat Riemannian manifolds
of dimension n > 6 and conformally flat manifolds with finite non trivial fundamental group. The case
of conformally flat manifolds and the dimensions 3,4 and 5 were solved by Schoen [9] using positive mass
theorem. Hence the conjecture above holds. By works of Yamabe [11], Aubin [1] and Schoen [9], the Yamabe
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problem is completely solved, when the manifold is compact and smooth.
The purpose of this paper is to study the following equation

Agp+ hap = hp 3 (4)
where h € LP(M), and h € R. We call this kind of equation "Yamabe type equation". We will give a special
consideration for the case h = 4&7:21)]%9.

2 Regularity theorems for Yamabe type equations

Theorem 2.1. Let Q be an open subset of R™ and L an uniformely elliptic linear operator of the second
degree, defined by

L(u) = Z a;;055u + Z b;0;u + hu (5)
©,J i

where the coefficients a;;, b; and h are real valued bounded functions of class C* with k € N. Let u be a
weak solution of the equation Lu = f.

(i) If f € C*(Q) then u € C*+22(Q)
(i) If f € HL () then u € H ,(Q)

This theorem is the standard regularity theorem, we can find a proof in the book of Gilbarg and
Trudinger [7].
The following two theorems allow us to find the best regularity for the solution of Yamabe type equations.
Using the theorem 2.2, Trudinger [10] Showed that the weak solutions of the Yamabe equation (1) are
smooth. Yamabe [11] had already used implicitely this theorem.

Theorem 2.2. On a n—dimensional compact Riemannian manifold (M, g), if u > 0 is a non trivial weak
solution in Hy(M) of equation Agu + hu = 0, with h € LP(M) and p > n/2, then u € C*~"/PLB(M) and
positive.

[n/p] is the integer part of n/p, 8 € (0,1).

Notice that if u satisfies the assumptions of this theorem, then Au € LP(M). Regularity theorem 2.1
implies that uw € HY(M) and using Sobolev embedding, we find u € C*=["/Pl:8 (1)
Theorem 2.2 permits to proof the following theorem:

Theorem 2.3. Let (M, g) be n—dimensional compact smooth Riemannian manifold. p and h are two reel
numbers, with p > n/2. If ¢ € H1(M) is a non trivial, nonnegative weak solution of

> nt2
Ayt + hp = b (6)
then o € HE (M) c C*=["/PLB(M) and ¢ is positive.
Proof. Tt is sufficient to show that there exists ¢ > 0 such that ¢ € L(E+20)/(2=2)(M). Indeed, if ¢ satisfies
the assumptions of theorem and belongs to L(¢+2)/ ("’2)(M ), then it is a solution of

Agu+ (h— ﬁ@ﬁ)u =0

with h — ﬁ@ﬁ € L"(M) and r = min(p, 24) > n/2. Using theorem 2.2, we deduce that ¢ is positive and
continuous. Theorem 2.1 and Sobolev embedding imply that ¢ € HY (M) with p > n/2.
Let [ be a positive reel number and H, F' are two continuous functions in R defined by:

24 i <t<
H(t) = t_l » %fOftfl

1 qlr % — (¢ —1)17) ift>1

t4 ifo<t<li
F(t) = L= E

qli=1t — (¢ —1)1¢ ift>1

-1
where v = 2¢q — 1, and1<q<n((p2;
pin —
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© is positive, belongs to Hi(M). H o ¢ and F o ¢ belong also to Hy(M). Notice that for any t € Ry — {l}
qH(t) = F(t)F'(t), (F'(t))* < qH'(t) and F*(t) > tH(t) (8)
If ¢ is a weak solution of equation (6), then
Vi € Hy (M) / Vo - Vipdv +/ hoypdo = il/ oV Lpdo (9)
M M M

where N = 2n/(n — 2).
Let us choose ¢ = n2H o, where 1 is C*—function with support in the ball Bp(2§) and radius 2§ sufficiently
small, such that n = 1 on Bp(d). If we substitute in (9), we obtain

/ nzH’o<p|Vg0|2dv—|—2/ nH o oV - Vndv = fz/ <pN_1772Ho<de—/ hon?H o pdv (10)
M M M M

Let f = F o ¢ be a function. We estimate the forth integrals above, using function f and relations (8). We
have Vf = F’ o oV, the second relation in (8) implies

IVFI? = (F' o)’ |Vl|* < qH' 0 p|Vop|®
We deduce that the first integral of equality (10) is bounded from below.

1
anVfIIS < / n*H' o o|Ve|*dv
M

The first relation of (8) and Cauchy—Schwarz inequality imply that the second integral of (10) is bounded
from below by:

2 -2
2/ nHwVw'Vndv:*/ DV FVnds > 2 F 2V £
M qJm q

By the last relation in (8), we have pH o < f2. The two integrals in the right side in (10) are bounded by:

7 — 7 4/(n—
i [ oo o [ ot o o] < LGNS A + WLyl

where [Jo||¥ . = S0t ©Ndv. If we take together these estimates, equality (10) becomes:

1% £113 = 21 VnllallnV £l2 < a(Rlllell NS5 > Inf 13 + 1lplnf13,)0-1) (11)

Notice that for all nonnegative reel numbers a, b, ¢ and d, if a? — 2ab < ¢ 4 d? then a < ¢+ d + 2b. Using
this remark, inequality (11) becomes:

¥ 2 -2
10V £llz < v/ alblllel Sty + /@l blplnglzps -1y + 217Vl (12)

By Sobolev embedding, we know that there exists a positive constant ¢, which depends only on n, such that

Inflly < clnV £z + 1FVnlz + lInfll2)
The choice of ¢ (¢ < N) and inequality (12) permit to write

7 2/(n—2
(L= e/ NIAlIeINSs D nfln < e(y Nllalplnfllp/p-1) + 31F9nl2 + [nf]2) (13)
We choose ¢ sufficiently small such that

el S5 < 1/(2¢\/ NIR|)

when [ goes to +o00, we deduce that there exists a postive constant C', which depends on n, 4, [|1]|se, [|V7]|co,
l2]|, and |h| such that

%25 < Cll@?l2 + 6 ]2p/(p-1))
%q < N and ¢ is bounded in L", hence
lllgn,2s < C
If (n;):er is a partition of unity subordinate to the covering {Bp,(d)}ics on M

lelliy = lImellin s, <
el

Hence ¢ € L with ¢N > N. The remark in the begining of the proof implies the theorem. O
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Proposition 2.4. Let (M, g) be n—dimensional compact smooth Riemannian manifold. L := Ay + h is a
linear operator, with h € LP(M) and p > n/2. If the smallest eigenvalue A of L is positive then

i. L est coercive, in other words there exists ¢ > 0 such that
W € Hy(M) (L, ¢)r2 > e(([VII3 + [|[9]3)

ii. The opertor L : HY (M) — LP(M) is invertible.

Proof. L admits a smallest eigenvalue because if A is an eigenvalue associated to the eigenfunction v then
there exists C' > 0 such that

MWl3 = (L, ¥) 2 = V3 + /M hp*dv > =[] ¢13,) -1y = —CllRlp[¥113

Hence A > —C||h|p. If A is the smallest eigenvalue of L then

_ E(p)
weH: (M)—{0} |¢l12

where

E(p) = (Lo, )12 = /M IVl + hp?dv

So, for any ¢ € H1(M)
E(p) = Mell3 (14)

Suppose that L is non coercive, then there exists a sequence (1;);en in Hy (M), which satisfies
1 n
E(;) < ;(leﬂ% +wol(M)*/™) and [|¢]| v = 1

It implies
2/n 1
(- ey < L 2 zao
M

i i
because | [,, hpZdv| < [|h|[, 2, limi— oo E(1;) < 0. On other hands E(¢);) > A|[th]|3 with X > 0. Which is
impossible.
If Ly = 0, then, using (14), ¢ = 0. So L is injective.
Let f € LP(M). Let us prove that the following equation admit a solution ¢ € HE (M)

Ap+hp=f (15)

We minimize the functional £ defined in the begining of the proof. Let define u as follow

i = int{E(¢)/ € Hy(M), /M fodo =1 (16)

and (¥;);en a sequence in Hy (M) which minimizes F, then

lim E(¢;) = p and / fidv=1
M

i——o00
Without loss of generalities, we suppose that for any nonnegative integer i, E(¢;) < p+ 1. It implies
c(IVll3 + [[9ill3) < E(vi) < p+1

because L is coercive. We conclude that (1;);cn is bounded in Hy(M). The Kondrakov theorem and Banach
theorem imply that there exists a subsequence (¢;),en such that

% 1p; — 1) weakly in Hy (M)
% 1; — 1 strongly in L°(M) for all 1 <s < N

* 1p; — 1 almost everywhere.
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Then (¢;) converge strongly in L2/~ (M) because 2p/(p — 1) < N. So

/M fidv =1 and /M h%?_dv - /M hap2dw

The weak convegence in Hy (M) and the strong convergence L?(M) imply
im [[Vejll2 > [[Ve]2
Jj—+oo
We conclude that E(y) < u, hence E(¢) = p. If we write Euler-Lagrange equation for ¢, we find that it is a

weak solution in Hq (M) of equation (15). It remains to prove that ¢ € HY(M). Suppose that ¢ € L% (M).
ps;

Then hu € Ll’iiS(M)7 Hence Au € LPPT(M) Regularity theorem 2.1 assures that u € H;T(M) We
know that Hy (M) C L¥(M) if r < n/2 with s = nr/(n — 2r), and Hy(M) c C*="/"LB(M) if + > n/2.
These inclusions imply the following results

So = N

u € L%+ (M) where s;11 = % if 5; < 2;fn
p .

u € HY (M) if i > 5720

If there exists ¢ € N such that s; > 25%”, which is equivalent to % > n/2 then u € C%%(M), which

implies Au € LP(M), hence uw € HY(M). If there exists i € N such that s; = 5oy then u € L*(M) and

we conclude by regularity theorem that u € HY(M). Suppose that for any i € N, s; <

np
Gy the sequence

(Si)ien is increasing and bounded from above, it converges to s = 0 which is impossible. O

Theorem 2.5. Let (M, g) be a n—dimensional smooth compact Riemannian manifold. For all € > 0, there
exists A(e) > 0 such that

Vo e Hi(M) lelly < (K(n,2) +¢)l[Vell2 + Ale)[[¢ll2

— _2n _ —1/n
where N = 2 and K(n,2) = mwn

The inequality of this theorem is a particular case of a more general one. More further details are given
in the Aubin’s book [2].

3 Existence theorem

We consider the following equation :

Agth + hap = hap2 (17)
where ¢ € Hy(M), h € LP(M) with p > n/2 and h is a reel number. As mentionned in the introduction,
this kind of equation are called Yamabe type equation. In the particular case when h = 4&7__21)Rg, equation

(17) is the Yamabe equation (1). To solve this equation, we use the variational method.
We define the energy E of ¢ € H1(M) by:

Bw) = [ V0 + hodo (15)
M
and we consider the fonctional I, defined for all ¢ € Hq(M) — {0} by
E(y
L = o 1
N
We denote
- inf I = inf E 20
M= e oB o0 ) = gz P 20)

with N = % the main result of this section is

Theorem 3.1. Ifp >n/2 and

ulg) < K7%(n,2)
then equation (17) admits a positive solution ¢ € HY (M) C C*=IVPLB(M), which minimizes I, (i.e. E(p) =
w(g) =h and ||@||x = 1). where 5 € (0,1).

160



To proof this theorem, we need the following lemma, proven by Brezis and Lieb[4]

Lemma 3.2. Let (f;)ien be a sequence of mesurable functions in (2,3, 1). If (fi)ien s uniformely bounded
in LP with 0 < p < 400 and f; — f almost everywhere, then

W filly = 11fe = fIR) = 1L£115

lim
1—+00
Proof of theorem 3.1. We check that p(g) is finite. In fact, using Holder inequality, we have

BE() = ~|hlln/2ll9ll%

we deduce that p(g) > —||h|l,/2 > —oo.
Let (p;)ien be a minimizing sequence:

E(pi) = pu(g) +o(1), [[pilln =1et p; >0 (21)
Applying Holder inequality again for the equation above, we obtain

IV@ill3 < 1Al + 1lg) +o(1)
a3 < (vol(M))*/

We conclude that (p;);en is bounded in Hy(M). Without loss of generalities, we suppose that there exists
¢ € Hi(M) such that

* ; — ¢ weakly in Hy (M)
% ; — @ strongly in L*(M) for any s € [1, N)
* (; — @ almost everywhere

We deduce that
/ Rl = p*dv < [|hllplle: — ©l13,,/p—1) — O strongly because 2p/(p —1) < N
M

Let 1; = ¢; — ¢, then 1; — 0 weakly in Hy (M), strongly in LI(M) for any g < N.
We have [[Vipi[3 = Vi3 + V@[3 + 2 J,, Vi - Vodv. Hence

B(pi) = B(p) + [ V¥i]l3 + o(1)

We know that E(p) > u(g)||¢l|% by definition of u(g), and E(¢;) = u(g) 4+ o(1) by definition of (¢;)ien. We
conclude

p(@)lelx + [IVell5 < plg) + o(1) (22)

Using lemma 3.2 for (p;)ien, we obtain
[l N + lell ¥ +o(1) =1 (23)
[l % + el +o(1) > 1 (24)

Theorem 2.5 gives
il < (K*(n,2) + ) [[Vei3 + o(1)

Inequality (24) becomes
(K2(n,2) + ) Veull3 + llellz +o(1) > 1

Using the last inequality in (22), we obtain
p@ el + IVeill3 < u(g) (K3 (n,2) + &) Veill3 + llellR] + o(1)

Finally
[1 = u(g)(K*(n,2) +€)][|Vehil3 < o(1)

If u(g) < K=2%(n,2), we can choose ¢ such that the first factor of this inequality becomes positive. We
deduce that (1;);en converges strongly to zero in Hy(M), ¢; — ¢ strongly in Hy(M) and L™ (M). Hence

Iy(0) = p(g)-
We have just found a non trivial solution of the following Yamabe type equation

A+ hp = p(g)p™ !
which satisfies |¢||y = 1 and ¢ > 0. Theorem 2.3 implies ¢ € HEY (M) C C*~[*/PLA(M) and ¢ > 0. O
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4 The choice of the metric

From now until the end of this paper, M is a compact smooth manifold of dimension n > 3. Denote by
T*M the cotangent space of M.

Assumption (H): g is a metric in the Sobolev space HY(M,T*M & T*M) with p > n. There exists a
point Py € M and & > 0 such that g is smooth in the ball Bp,(9).

We can suppose that g is C? instead of C™° in this ball, but it is not an important point.
Actually our objectif, in this section is to study the Yamabe problem when the metric ¢ admits a finite
number of points with singularities and smooth out side these points. The assumption (H) generalizes this
conditions and define the notion of "singularities".
By Sobolev embedding, HY(M,T*M @ T*M) C CY#(M,T*M @ T*M) for some 3 € (0,1). Hence the
metrics which satisfy assumption (H) are C1-%. The Christoffels belong to H} C C®(M). Riemann curvature
tensor, Ricci tensor and scalar curvature are in LP. An example of metric which satisfies assumption (H) is
g=(1+d(Py,-)?~%)™gy where gg is a smooth metric, a € (0,1) and d(P,, -) is the distance function.
We obtain many results which are true for metrics in HY (M, T*M @ T* M), with p > n/2. In the assumption
(H), we add the condition that p > n to have a continuous Christoffels for g € HY(M,T*M ® T*M). The
assumption (H) is sufficient to prove the Aubin’s conjecture 1.2 (cf. theorem 8.1), and to construct the
Green function of the conformal Laplacian (cf. section 7).
We consider the following problem:

Problem 4.1. Let g be a metric which satisfies the assumption (H). Does there exist a conformal metric
g for which the scalar curvature Rj is constant ?

It is clear that if the initial metric g is smooth then the problem above is the Yamabe problem 1.1, which
is completely solved. We will prove that the answer to this problem is positive. The following proposition
tell us that the conformal class of the metrics is well defined when the metrics are in HY.

Proposition 4.2. Let g be a metric in HY and ¢ € HY (M) a positive function. If p > n/2 then the metric
g= wﬁg 1s well defined, and it is in the same space as g.

Proof. Using Sobolev embedding, it is easy to check that HY(M) is an algebra for any p > n/2. This
proposition is a consequence of this fact. O

In their paper [6] about the Yamabe problem, Lee and Parker proved that on every compact Riemanniann
manifold (M, g), there exist a normal coordinates system {(U;, ;) }ier and metric g’ conformal to g such that
det ¢’ =1+ O(|z|™) with m as big as we want. Cao [5] and Giinther [8] proved that we can get det ¢’ = 1.

Definition 4.3. g is a Cao—Giinther metric if it is conformal to g and there exist a coordinates system such
that det g = 1.

Theorem 4.4 (Cao-Giinther). Let M be C*t2P compact manifold of dimension n with a € N, g € (0,1),
g be a CoYP— Riemannian metric , and P be a point in M. Then there exists a C*T1P —positive function
© with 5" € (0,8) such that det(pg) =1 in a normal coordinates system with origin P.

Notice that if the metric g € HY (M, T*M ®T* M) with p > n then it belongs to C1*#. Hence the manifold
(M, g) admits a Cao—Giinther metric. It is not really useful to suppose that the metric is smooth in a ball,
for the existence of this kind of metrics.

5 Conformal Laplacian

Definition 5.1. The conformal Laplacian of Riemannian manifold (M, g) is the operator L, defined by :
n—2
4(n—1)

It is known that the conformal Laplacian, when g is smooth, is conformally invariant. Actually it verifies
(25) strongly. We prove that we have this property even when the metric is in HY (M, T*M @ T*M).

Ly=A,+ R,

Proposition 5.2. g € HY(M,T*M ® T*M) is a Riemannian metric on M with p > n/2. If § = zbﬁg is
a conformal metric to g with ¢ € HY(M) and v > 0 then L is weakly conformally invariant, which means
that

Yu € Hy (M) w%Lg(u) = Ly(¢u) weakly (25)

Moreover if u(g) > 0 then the conformal Laplacian Ly, = A, + 4(’;7*_21)1% is invertible and coercive.
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Proof. Recall that dvg = w%dv and
Vu,w e L* (M) (u,w), r2 :/ uwdug
M

is the scalar product in L?(M) with the metric g.
For all u,w € Hy(M):
2n_
(772 Lgu, w)g 12 = (Lgu, w)g 12
n—2
= [ §(Vu,Vu) + ——
/Mg(Vu, w) + =1

n—2 nt2

Rz1pn=2 (uvwyp)du,

Rzuwdvg

_ 2
= | V(v V) + o

We know that the scalar curvatures R, and Rj are related by Yamabe equation (1), which is equivalent to

-2 nt2
Ly = 4&7_1)}%@/}”5 weakly
then 5
n— nt2
(Lgth,uwi)) g r2 = m(R§¢"‘2,uww)g,L2
Hence
7 Ly w)ye = [ 00V Vo) + (9 Vwwn) + 47— Ryl o,
_ n—2 (26)
= [ o). V(i) + 7= Ry ) v,

= (VLg(Yu), w)g, 1>
We used the fact that uy and wiy belong to Hy (M), indeed we have the the following Sobolev embedding
HE(M) c CY=In/PhB(An), HP(M) € L#5% (M) and Hy(M) C L2 (M)
Let us prove that L, is invertible and coercive. Let X be the smallest eigenvalue of L, with positive
eigenfunction ¢ € Hy(M), then
Mol = (Lgp, ©)g,2 = Ly(@)llelln > ulg)lellz >0
hence A > 0. We conclude the result, by applying proposition 2.4.

6 Yamabe conformal invariant

In the case of smooth metrics, p(g) is conformally invariant, which means that if g and § are two smooth
conformal metrics then u(g) = 1(g). The next proposition shows that we can extend this property to metrics
in HY.

Proposition 6.1. Let M be a smooth compact manifold of dimesion n > 3. Let g and g = wﬁg be two
metrics in HY, with ¢» € HY(M) positive. if p > n/2 then

w(g) = n(g)

Proof. Let u € H(M) be test function for the Yamabe functional I,. Notice that E(u) = (Lg(u),u)q, 12-
then

Ig(u) = (Lg(u), u)g 2w || 32
Using proposition 5.2, we deduce that

Ig(w) = (Lg(Yu), du)g 2 [ug)|| 3

Finally

I3(w) = I,(bu) (@)
Which implies that p(g) = p(g). So this invariant depends only on the conformal class [g] and the manifold
M. O
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7 Green Function

Definition 7.1. Let (M, g) be a compact Riemannian manifold and P be a point in M. We call Gp the
Green function on P of the linear operator L, if it satisfies

LGp = bp(«=Vf e C*(M) (Gp,Lf) = f(P))

Proposition 7.2 shows the existence of such function for the operator L = A+ h with a positive continuous
function h. Unfortunately, the method used to construct this function doesn’t work when h belongs to LP(M).
This case holds for the conformal Laplacian operator Ly, because R, € LP(M). But, using proposition 7.3,
we construct this function and we obtain corollary 7.4.

Proposition 7.2. Let h be a positive continuous and P € M. g is a metric satisfying assumption (H).
There exists a unique Green function Gp for the operator L = A, + h which satisfies LGp = dp and

(i) Gp is smooth in Bp,(6) — {P}
(ii) Gp € C*(M — {P})
(iii) There ezists ¢ > 0 such that for any Q € M — {P}, |Gp(Q)| < cd(P,Q)*™"

Proof. Gp is unique because L is invertible. In fact, if A is an eigenvalue of L and ¢ is a positive eigenfunction
associated to A then

Mgl = (Lo, @)z = E(p) >0

Hence A > 0. To conclude, it is sufficient to apply proposition 2.4. For the existence of such function, we
follow Aubin’s [2] construction for the Laplacian, in the case of smooth metrics. We choose a decreasing
positive smooth radial function f(r), equal to 1 for r < §/2 and zero for r > §(M) the injectivity radius of
M. We define the following functions

f(r)

(n —2)wp_1
Fl(PaQ) = _LQH(PrQ)

VieN' TH(PQ) = / (P, S)TY(S, Q)du(S)
M

H(P,Q) = r2" with r = d(P, Q)

Then
ITY(P,Q)| < cd(P,Q)*™

We show that

cd(P,Q)*—n if 2i <n
vi>1 |TYP,Q)| < c(1 +logd(P,Q)) if 20 =n

c if2i >n
In the last case I'? is continuous.
More details are given in Aubin’ book [2].
The Green function of L is given by

k .
Gr(Q = H(P.Q)+ Y. [ T(P.S)H(S.Q)u(S) + Fr(Q) (28)
M

i=1

where Fp satisfies
LFp =T*(P,)

We choose k = [n/2], T**1(P,) is continuous. Regularity theorem 2.1 implies that Fp is C2.
(1) LgGp = 0 in Bp,(d) — {P} and the metric is smooth on Bp,(d), regularity theorem assure that Gp is
smooth on Bp,(§) — {P}, with P € M.
(ii) We have also LGp = 0 in M — {P}. We conclude that Gp is C? in M — {P}.
(7i7) In the expression (28), we notice that the leading term, in the neighborhood of P, is H(P,Q), then for
all P+ 0,

Gp(Q)] < cd(P,Q)>"
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Proposition 7.3. Let g be a metric in HY (M, T*M @T*M), g = wﬁg is conformal to g with ¢ € HY (M)
positive and p > n/2. We suppose that Lz admits a Green function on P, denoted Gp, then Ly admits a
Green function, denoted Gp and it is given by

VQ € M — {P} Gp(Q) = ¢Y(P)Y(Q)Gr(Q)

Proof. For any function ¢ € C*(M):

(W(PJWGp, Lyohy = v(P) | éprgMg)]dvg

_ 1% o
—u(p) [ GrigLay,
- w<P><ép,Lg§>g

= p(P)

The second equality above is obtained by the weak conformal invariance of the conformal Laplacian (see
proposition 5.2). We know that for any Q € M — {P}

Gr(Q)] < cd(P,Q)*™"

then Gp € L*(M), for any s € [1,n/(n — 2)) and Lgf € LP(M) with p > n/2. We choose s such that
(Gp, L§%>g is finite. Hence the third equality is well defined. O

Corollary 7.4. g is a Riemannian metric, satisfying assumption (H). If u(g) > 0 then the conformal
Laplacian L, admits a Green function G p, which satisfies LGp, = 0p, and

(1) Gp, is smooth in Bp,(0) — {Po}
(1) Gp, € HY(M — Bp, (7)) for any r > 0.
(iii) There exists ¢ > 0 such that for any Q € Bp,(8) — {Po}, |Gp,(Q)] < cd(Py, Q)>™™

Proof. p(g) > 0, Ly is invertible. We deduce that L, admits a unique Green function. Using standard
variational method (see the proof of poroposition 2.4 ), we can show that the equation

—2
Ayt + Ryt = g (99" (29)

(n—1)

admits a positive solution ¢ € HY (M) when 2 < ¢ < N, with

. E(y)
clg) = inf
HaGl9 = e B o TOlR
Moreover, g is smooth in Bp, (J), regularity theorem shows that 1 is also smooth in the same ball. The metric

g := wﬁ g satisfies assumption (H). Using Yamabe equation (1), we deduce that the scalar curvature of §

° 4(n—1)

Ry = n—2

/Jq,G(g)wqiN

Hence Rj is positive continuous because p,,c(g) > 0. Now, we are able to use proposition 7.2, which assure
the existence of the Green function G p, for Lz with the metric §. using proposition 7.3, we conclude that
Gp, = ¥(Py)yGp, is the Green function of L,. The metrics g and § are smooth in Bp,(§) and Gp, satisfies
the properties of proposition 7.2, then the properties announced for Gp, are valid. O

8 Existence theorem

Theorem 8.1. Let M be a smooth compact manifold of dimension n > 3, g is a Riemannian metric which
satisfies the assumption (H). If (M, g) is not conformal to the sphere (Sy, gean) then u(g) < K=2(n,2).
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This theorem assure that Aubin’s conjecture 1.2 still valid for any metric satisfying the assumption (H).
To prove this theorem, we use the results of Aubin and Schoen, when the metric g is smooth. The strategy
is the following: we construct a test function for the functional I,, with a support in small geodesic ball.
Then the problem is local. We know that the metric g is smooth in Bp,(d), so the proof of this theorem is
the same as when the metric is smooth everywhere (this is the point where we need the assumption : g is
smooth in Bp,(d)). After, we consider Aubin and Schoen’s test functions.
We need also the following result obtained by Aubin [3], for the Green function of L:

Theorem 8.2. If g is a Cao-Gfiinther metric, L, is invertible and the normalized Green function Gp, have
the following expression

Gp,(Q)=r>""+A+0(r)

in a neighborhood of Py with r = d(Py, Q), then A > 0, except if (M, g) is conformal to (Spn, gean) for which
A=0.

Proof of theorem 8.1. If (g) < 0 then the inequality is obvious. From now until the end of the proof,
we suppose that p(g) > 0. without loss of generalities, we suppose that g is a Cao—Giinther metric given in
theorem 4.4. In fact, p(g) is conformally invariant (see proposition 5.2).

There are two cases which can happen :

(a) The case (M, g) is not conformally flat in a neighborhood of Py and n > 6. We define ¢, = nu., 1 is a
cut-off function with support in Bp,(2¢), n =1 in Bp,(¢), 2¢ < § and

n—2

) r—amo

v:(Q) = (rgisg

suppyp C Bp,(0) and the metric g is smooth in this ball, we obtain the following lemma (see Aubin [1]):

Lemma 8.3.
K=2(n,2) — c|Wy(Po)|?e* + o(e*) sin > 6
K72(n,2) — c|Wy(Py)|e*log L + O(e*) sin=6

where |Wy(Fo)| is the norm of the Weyl tensor on Py.

1(g) < Ig(pe) < {

( Lee et Parker [6] gave a simple proof of this lemma, using the conformal normal coordinates on P).
Using this lemma, we conclude that p(g) < K~=2%(n,2).
(b) The case (M, g) is conformally flat in a neighborhood of Py or n =3, 4 or 5. In this coordinates system,
the Taylor expansion of the Green function is:

Gp,(Q) =1 "+ A+0(r)

with r = d(Py, Q) (see Lee and Parker’s paper [6] for the proof of this expansion).
If g satisfies assumption (H) and (M, g) is not conformal to (Sp, gean), then theorem 8.2 assure that A > 0.
Hence we can consider Shoen’s test function ¢., defined for any Q) € M by:

v:(Q) if Q € Bp,(po)
e=(Q) =1 eolGp, —n(Gp, — > = A)Q) if Q € Bp,(2p0) — Br,(po)
€OGP0 (Q) ifQeM— BPO (2,00)

with 2pg < 4, (pg‘fﬁ)(”ﬂ)/2 = eo(pg~ ™+ A) and 7 is a smooth nonnegative decreasing function on R, with
support in (—2pg,2p0), equal to 1 in [0, po], the gradient |Vn(r)| < py'. g is smooth in Bp,(2p0) C Bp, ()
and Gp, € HY(M — Bp,(po)) (see corollary 7.4), then we have the estimate of u(g), obtained by Schoen[9]:
Lemma 8.4.
1(g) < Iglpe) < K™2(n,2) + ce§(cpo — A)
The fact that A > 0 allows us to choose pg sufficiently small (cpy < A) such that u(g) < K=2(n,2).
O

Now, we can state the main theorem which solves the problem 4.1 for any metric which satisfies assump-
tion (H).

Theorem 8.5. Let M be a smooth compact manifold of dimension n > 3 and g be a metric satisfying
assumption (H). There exists a metric g conformal to g such that the scalar curvature Ry is constant
everywhere. This metric solves the problem 4.1.
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It means that we can always solve the equation of type Yamabe (17) when h = (7;21) R,.

Proof. If (M, g) is conformal to (S, gean) then the result is obvious because the scalar curvature of (Sy, gean)
is constant. Otherwise (M,,, g) is not conformal to (Sy,, gean ). In this case, we have the inequality

u(g) < K%(n,2)

given by theorem 8.1. Using theorem 3.1, we get a positive solution ¢ € HY (M) of (17), where h = n_21) R,
and h = u(g). Using Yamabe equation (1), we deduce that the metric § = wﬁ g has a constant scalar
curvature R; = 4(: zl)u(g) O

9 TUniqueness of solutions

When the metrics are smooth, if u(g) is nonpositive then the solutions of the Yamabe equation (1) are
proportional. The following theorem generalizes the uniqueness theorem in the singular case.

Theorem 9.1. Let g be a metric in HY (M, T*M @ T*M), with p > n. If u(g) < 0 then the solutions of (1)
are proportional.

4
Proof. Let 1 and 2 two positive solutions of (1). The metrics g; = ¢;"~* g have a constant scalar curvatures

R;, where i =1 or 2. Define ¢ = %, then g1 = wﬁgg. It implies that i satisfies

n—2 n—2
D2V o

By regularity theorem 2.1, we deduce that 1 is C%# because the coefficient of the Laplacian are C°. In
fact, in a local coordinates system :

Ay = —=V;Vip = —g" (9;50) — TF;011)

and the Christoffels are in H} (M) then continuous if p > n. In other hands, notice that Ry, Ry have the
same sign. Hence, if u(g) < 0 then R; < 0for i =1 and 2. Let Q1 € M (resp. Q2 € M) be a point for which
1 is maximal (resp. minimal ). Then Ay, (Q1) > 0 and Ag,1(Q2) < 0. Hence, if we evaluate equation (30)
at Q1 and @2, we obtain :

Agt + Ry (30)

Ro R
O (@) < B and ¥ (Qa) 2
We conclude that ¥ = 32, ¢1 and 9 are proportional.
If u(g) =0 then Ry = R2 =0 and (30) becomes Ay, = 0, hence 1 is constant. O
References

[1] T. Aubin, Equations différentielles non linéaires et probléme de Yamabe, J. Math. Pures et appl 55 (1976),
269-296.

[2] T. Aubin, Some Nonlinear Problems in Riemannian Geometry, Springer, 1998.
[3] T. Aubin, Démonstration de la conjecture de la masse positive, J. Funct. Anal 242 (2007), 78-85.
[4] H. Brezis and E. Lieb, A relation between pointwise convergence, Proc. Amer. Math. Soc 88 (1983), 486-490.

[5] J. Cao, The existence of generalized isothermal coordinates for higher dimensional riemannian manifolds, Trans.
Amer. Math. Soc 324 (1991), 901-920.

[6] J.M. Lee et T. Parker, The Yamabe problem, Bull. Amer. Math. Soc 17 (1987), 37-91.

[7] D. Gilbarg and N. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer, Berlin Heidelberg
New York 1983, 1983.

[8] M. Giinther, Conformal normal coordinates, Ann. Global Anal. Geom 11 (1993), 173-184.

[9] R. Schoen, Conformal deformation of a riemannian metric to constant scalar curvature, J. Differ. Geom 20 (1984),
479-495.

[10] N. Trudinger, Remarks concerning the conformal deformation of riemannian structures on compact manifolds,
Ann. Scuola Norm. Sup. Pisa 22 (1968), 265-274.

[11] H. Yamabe, On a deformation of riemannian structures on compact manifolds, Osaka Math. J 12 (1960), 21-37.

167



Hausdorff dimensions of Good sets and strict Jarnik sets
for Fuchsian groups with parabolic elements

S. Munday
University of St. Andrews

Abstract

Certain subsets of limit sets of geometrically finite Fuchsian groups with parabolic elements are
considered. It is known that Jarnik limit sets determine a "weak multifractal spectrum" of the Patterson
measure in this situation. The paper will describe generalisations of these Jarnik sets. In particular,
we will show that a natural generalisation of these sets, which we call strict Jarnik limit sets, gives rise
to generalised weak multifractal spectra. We will also give number-theoretical interpretations of these
results in terms of continued fractions.

1 Introduction

The first two sections of the paper consist of preliminary material. In Section 1 we introduce the Hausdorff
dimension of a set. In Section 2 we give the background in hyperbolic geometry necessary to understand the
results of the following sections. In particular we introduce Fuchsian groups - discrete groups of isometries
of hyperbolic space with the hyperbolic metric - and their limit sets.

In Section 4 and Section 5 we describe certain subsets of the limit set of a non-elementary geometrically
finite Fuchsian group with parabolic elements. The first of these we call Good sets and the second we call
strict Jarnik sets. The main results given in this paper are the calculation of the Hausdorff dimensions of
these sets.

In Section 6 we give the briefest of introductions to the so-called Patterson measure, including the global
measure formula, which is used in Section 7 to derive a weak multifractal spectrum for the Patterson measure.

Finally, we will attempt to make clear the sense in which the limit set of a Fuchsian group with parabolic
elements can be thought of as a generalisation of continued fractions. This idea allows us to derive the
Hausdorff dimension of certain sets of continued fractions as immediate corollaries to the results of Sections
4 and 5.

2 Hausdorff Dimension

Felix Hausdorff (1868-1942) introduced the theory of fractional dimension, now called Hausdorff dimension,
in his foundational paper from 1918, “Dimension und duferes Maf” [11]. In this paper, he adapts a definition
of dimension given by Carathéodory in [5] so that it makes sense for non-integer values. (Hausdorff very
modestly refers to this ground-breaking work as a “small contribution”.)

Definition 2.1. If U is any non-empty subset of R™, define the diameter of U to be |U| := sup{|z — y| :
z,y e U}.

Definition 2.2. If {U,};>1 is a collection of sets of diameter at most J with the property that F' C Uf; Ui,
we say that {U;} is a d-cover of F.

Definition 2.3. Suppose that F is a subset of R™. Then for any § > 0 we define
Hi(F) := inf{z |U;|° : {U;} is a d-cover of F'}.
i=0

This infimum increases as § decreases and so it approaches a limit as § — 0. Thus, the following definition
makes sense for any subset F' of R™.

Definition 2.4. The s-dimensional Hausdorff measure of a set F' C R™ is given by

HA(F) = lim H3(F).

§—0
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Of course, the limiting value can be 0 or co. It is not too difficult to show that H? is really a measure. In
particular we have that H*(0) = 0, if £ is contained in F then H*(F) < H*(F), and if {F}} is any countable
collection of pairwise disjoint Borel sets, then

e ([’j F) S )
i=1 i=1

Remark 2.5. It is equivalent in the definition of the Hausdorff measure to use coverings by open balls.

For a given set F' and a given § < 1, it is clear that Hj(F) is a non-increasing function of s. So, H*(F)
is also non-increasing. In fact, if ¢ > s and {U;}5°, is a d-cover of F' we have that

o o o0
Z |U1|t _ Z |Ui‘tfs+s < 5t—s Z |Uz‘s
=1 =1 =1

so, taking the infimum over all d-covers on both sides, H4(F) < 6*7*H3(F). If we then let § — 0, we see
that if H*(F) < oo then H!(F') = 0 for every t > s. So there is a critical value of s where H*(F') jumps from
oo to 0. This critical value is called the Hausdorff dimension of F', written dimg (F'). Explicitly,

dimpg (F) :=sup{s: H*(F) = oo} = inf{s : H*(F) = 0}.

If s = dimgy(F), then H*(F) may be 0 or oo, or may satisfy 0 < H*(F) < oo. A set with this last
property is called an s-set.

The following proposition collects some of the basic properties of Hausdorff dimension. For the proofs,
the reader is referred to [7].

Proposition 2.6. Let F' C R".
1. dimpy (F) lies between 0 and n, inclusively.
2. If ECF, then dimy(F) < dimg(F).

3. The Hausdorff dimension is countably stable, that is, if Fy, Fs,... is a countable sequence of sets, then

dim g U F; | =sup{dimy(F;) : i € N}.

i>1

Although it is possible to calculate the Hausdorff dimension of a set using only the definition, it can
often involve pages of complicated estimates. Of course to obtain an upper bound for the dimension of a
particular set F' C R™ is often (although by no means always) easier than obtaining the corresponding lower
bound. For the upper bound it is enough to consider specific coverings of F', while for the lower bound we
would have to consider every covering of our set F'. In particular, some of the covers will consist of both
very small sets and sets with relatively large diameters, making obtaining estimates more difficult. A good
way around this is to use the following lemma, proved by Frostman in 1935, in his doctoral thesis [9]. A
mass distribution on F' is a finite measure with support contained in F. The proof is not complicated so we
include it here for completeness.

Lemma 2.7. (Frostman’s Lemma.) Let F be a bounded subset of R™. Let i be a mass distribution on F
and suppose that for some s > 0 there exist constants ¢ > 0 and § > 0 with the property that

pU) < cup

for all sets U with |U| < 8. Then H*(F) > L) gnd so
C

s < dimpg(F).

Proof. It {U;} is any d-cover of F, then

0<p(F) < ZM(Uz‘) < CZ|U1"S-

i>1

Taking the infimum over all d-covers of F, we obtain that Hi(F) > & (f) for all sufficiently small §. Hence,
|
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3 Hyperbolic Geometry.

In this section, we will briefly introduce two models of the hyperbolic plane and give the basic background
in hyperbolic geometry necessary for the results of the following sections. A good reference for the missing
details is [2].
3.1 The Poincaré Disc
Let D? denote the open unit disc in the complex plane,

D*:={z€C:|z| <1}
and let S! denote the boundary of D?, where

St:=0D%:={z€C:|z| =1}

T

|

|

Figure 1: The Poincaré disc.

The Poincaré disc model of hyperbolic space is the metric space (D?,d;) where d;, is the hyperbolic
metric, which is defined in the following way. Let A : D> — R be given by

2
A2z) = ——
© =
for all z € D2. Then the metric dj, : D? x D? — R* is given by

dp(u,v) := inf {/ A(z)|dz]| : v is a smooth curve joining u and v} .
8!

I-IIyperbolic geodesics in D? are given by straight (Euclidean) lines through the origin, or circles orthogonal
to S*.

Recall that a map ¢ : D? — D? is a conformal automorphism if and only if it is differentiable and preserves
angles (magnitude and orientation) between smooth curves in D?. The set of all conformal automorphisms
of D? forms a group under composition of mappings. This group will be denoted by

Con(1) := {g : g is a conformal automorphism of D?}.

The elements of Con(1) are a certain type of Mbius transformation. It can be shown that if g € Con(1),
there exist complex numbers a and ¢ with the property that |a|?> — |c|*> = 1 and

az+¢

9(z) =

cz+a

Lemma 3.1. For all g € Con(1l) we have that

1. |4'(2)| = 1ILQ‘(ZT)2|2 for all z € D?. In particular, |g’(0)] =1 — |g(0)]%.

) 2
2. P = 19/ (@) llg' )]
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az+c
cz+a’

Proof. By direct calculation, letting g(2) =
We can now show that the elements of Con(1) are the isometries of the metric space (D?,dp,):
Proposition 3.2. For each g € Con(1) we have that
dn(z,w) = dn(g9(2), g(w)) Vz,w € D2
That is, g is an isometry of (D?,dp).

Proof. Let 7y be a smooth curve between z and w, also let g € Con(1). Then, using the substitution u = g(v),

/ 2|dul / 2|g'(v)[ldv] _ / 2|dv|

g(v) 1- |’u’|2 ¥ 1- |g<’0)|2 ¥ 1- |’U|27

by Lemma 3.1. Therefore, since g maps smooth curves to smooth curves, taking the infimum on both sides
gives the desired result.

|
We will now give one explicit formulation of the hyperbolic distance between points of the unit disc.
There are, of course, many other such formulae. For details, refer to [2].

Lemma 3.3. For all z € D?, we have that

3.2 The Upper Half-Plane

We will now introduce another model of hyperbolic space, namely the upper half-plane model. Let H denote
the upper half of the complex plane C, so

H:i={z=2+iyeC:y >0}

The boundary of H is the set RU {o0}.

Figure 2: The upper half-plane.

The metric in the upper half-plane is given by the map dy : H x H — RT, which is defined for all z,w in
H by

d

dy(z,w) := inf {/ ldz| : 7y is a smooth curve between z and w} .
Y

.

The geodesics in H are either vertical Euclidean straight lines (corresponding to geodesics in D? with an
endpoint at 1) or semicircles orthogonal to the real axis. The following lemma is an easy consequence of this
fact.

Lemma 3.4. For all z,w € H with Re(z) = Re(w), we have

Im(z)
Im(w) |

du(z,w) = 'log
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The reason for having more than one model of hyperbolic space is purely practical - some results are
easier to phrase in terms of one model than another. In order for this to make sense, though, the models
must be equivalent in some way. The equivalence we require is conformal equivalence, which means that
there exists a conformal map from one model to the other. We will now define a conformal map from H to
D2. Consider the following three maps:

e Let p; be reflection at the line {z =2 4+ iy € C: y = 0},
p(z) =7,
where Z denotes the complex conjugate of z.
e Let ps be the reflection at the circle centred at ¢ with radius \/5,

pa(z) = i + (‘/i) (z— ).

|z =i

e Let p3 be the map given by clockwise rotation around 0 by 7,
p3(z) = —iz.

Note that each of these three maps is conformal. Now let ¢ := p3 o ps 0 p1. It is easily verifiable that
#(H) =D?, ¢(R) =S\ 1 and ¢({oo}) = 1. Also, it is easy to check that, for each 2z € H,

6(z) = ;z and ¢(z) = fizil.

Definition 3.5. The map ¢ : H — D? is called the Cayley transformation.

It can be directly calculated that dy(z, w) := d(¢(2), (w)) for each z,w € H. Also, the group of isometries
of (H, dy) can be obtained by conjugating with Con(1) as follows:

Isom(H) = ¢~ Con(1)¢.
Also, the group of isometries of (H, dy) is isomorphic to the group PSLy(R), where

PSLy(R) := {( ‘; Z ) ta,b,c,d, € R and ad — be = 1}/{11}.

The group PSLy(R) acts on H via linear fractional transformations:

¢m: PSLy(R) x H — H,

where for g € PSL2(R), z € Hand g = ( a b ), we have

c d

az+b

¢H(gvz) = g(Z) = CZ+d

3.3 Classification of Isometries

In this section, we give a classification of hyperbolic isometries in terms of fixed points and geometric actions.
For convenience, we will work in the upper half-space model, but it is to be understood that all results here
are also valid in the disc model of hyperbolic space (or, for that matter, any other model).

Let g € PSLy(R). Then g is of the form g(z) = ‘jj_ts where a, b, c and d are real numbers. It is clear,
on setting g(z) = z, that the fixed points of g are the roots of a quadratic equation with real coefficients.
These will either be two points in R U {oc}, one point in R U {co} or complex conjugate roots, giving one

fixed point inside the upper half plane. We make the following definition.

Definition 3.6. Each element g of PSL(2,R) is of exactly one of the following three forms:

1. g is said to be hyperbolic if g has exactly two fixed points and these lie on the boundary of hyperbolic
space.

2. g is said to be parabolic if g has exactly one fixed point that lies on the boundary of hyperbolic space.
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3. g is said to be elliptic if g has exactly one fixed points that lies in the interior of hyperbolic space.

In the sequel, we will be mostly interested in parabolic points. So, let g € PSLo(R) be a parabolic map
and let h € PSLy(R) be a transformation which maps the fixed point of g to {oo}. Then the conjugate
hgh~! is called the standard form of g. We have the following proposition.

Proposition 3.7. Let g € PSLy(R). Then g is parabolic if and only if the standard form of g maps every
horizontal Fuclidean straight line in H into itself. (So the standard form of g is given by a translation
z+— z+b, for non-zero b € R.) More generally, if g is parabolic then there exists a Euclidean circle tangent
to R or a horizontal Fuclidean straight line in H left invariant by g.

These circles and straight lines are called horoballs. In the Poincaré disc model of hyperbolic space, the
horoballs are Euclidean circles internally tangent to S'. We can also define horoballs in terms of the Poisson
kernel P(z,&), which is given for z € D? and ¢ € S! by

1— 2
P(Z,g) = |Z_|Z||2

(There is a similar formula in H.) Then we say that the horoball in D? at the point & of radius k is the set
of points z € D? with the property that P(z,€) = 1%, Also (in D? or H), the Poisson kernel P(z,¢) is the
“signed distance” between the horoball H, at £ through z and the horoball Hy at £ through the origin (either
0 or ¢). If we denote the distance between the horoballs Hy and H, by D,, then the signed distance means
that if z is inside Hy the Poisson kernel P(z,¢) is equal to eP”= whereas if 2 is outside Hy we have that the
Poisson kernel P(z, &) is equal to e~ P=.

3.4 Fuchsian Groups

We can equip the group PSLy(R) with a topology inherited from R* by identifying ( b ) with (a,b,¢,d) €

a
c d
R*, then defining the norm on PSLy(R) to be the Euclidean norm on R*. The norm then induces a metric,
which in turn induces the metric topology. Recall that a set E in a topological space (X, 1) is discrete if for

each e € F there exists an open subset G € 7 such that £ NG = {e}. We then define:

Definition 3.8. Let G be a subgroup of PSLs(R). Then G is said to be a Fuchsian group if and only if G
is a discrete subset of the topological space PSLy(R).

Another way to describe a Fuchsian group G is in terms of properly discontinuous group actions. We say
that a group G acts properly discontinuously on a metric space X if and only if the orbit G(z) := {g(x) :
g € G} is locally finite for all x € X. That is, given an orbit G(z), every compact subset K C X contains at
most finitely many points of G(x). Note that stating that a group acts properly discontinuously is the same
as stating that each orbit of G is a discrete set of points.

Proposition 3.9. Let G be a subset of Con(1). Then G is Fuchsian group if and only if G acts properly
discontinuously on D2.

Definition 3.10. Let G be a Fuchsian group. A fundamental domain F for G is an open subset of D? such
that the following conditions are satisfied.

1' UgEG g(F) = ID)Za
2. g(F)Nh(F) =0, for all g,h € G with g # h.

Definition 3.11. A Fuchsian group G is said to be geometrically finite if any fundamental region for G has
only finitely many edges.

Remark 3.12. That a Fuchsian group G is geometrically finite is equivalent to G being finitely generated.
(This is no longer true if we are in higher dimensions).

Recall that a Riemann surface is a connected, analytic, complex 1-dimensional manifold. A Riemann
surface S is called simply connected if every closed curve on S can be continuously deformed into a single
point (so the surface of the 2-sphere is simply connected, whereas the torus is not). It is a very deep
theorem in the theory of complex functions - the Riemann Mapping Theorem (sometimes called the First
Uniformization Theorem) - that every simply connected Riemann surface is conformally equivalent to one
of C, CU{oo} or D?. Further, the Second Uniformization Theorem states that every Riemann surface S is
conformally equivalent to a quotient S /G for some simply connected Riemann surface S and for some group
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G of conformal automorphisms which acts properly discontinuously on S. It follows that if we are in the case
where S is conformally equivalent to D2, every properly discontinuous group G is a Fuchsian group. So, here
we always have that a Riemann surface is conformally equivalent to D? /G and this is clearly represented by a
fundamental domain for the action of G. We can also think of this the other way around - that every Fuchsian
group G has an associated Riemann surface, obtained by “gluing” the edges of a fundamental domain F' for
G, see Figure 3 below.

F@G')

Figure 3: Two Fuchsian groups G, G’, their fundamental domains and their associated Riemann surfaces

M(G), M(G").

3.5 The Limit Set of a Fuchsian Group
Definition 3.13. Let w € D? (or H) be given. Then the limit set L(G) of the Fuchsian group G is the set

L(G) ;== {¢£ € CU{0} : £ is an accumulation point of the orbit G(w)}.

In fact, the limit set is independent of the choice of w in this definition. It is immediately clear that the
limit set of a Fuchsian group is always a closed set. It is also clear that the limit set is G-invariant, meaning
that g(L(G)) = L(G) for each g in G. It is a consequence of the discontinuous action of a Fuchsian group
that L(G) C S'.

Theorem 3.14. If L(G) has more than two points, then L(G) has uncountably many points.

We say that G is elementary if L(G) is either empty (so G generated only by elliptic elements), or
consists of only one or two points (so G generated by either a single parabolic element or a single hyperbolic
element). Otherwise, G is non-elementary. From this point on, unless stated otherwise, assume that G is
non-elementary.

We now define certain subsets of the limit set L(G). First we fix some notation. Let s¢ denote the
hyperbolic ray from the origin to the point £ € S! and, for t € R, let & be the point on s¢ such that
dp(0,&;) = t. Also, for a Fuchsian group G and ¢ > 0, define A(&;) by setting A(&;) := dp (&, G(0)). In other
words, A(&) is the smallest hyperbolic distance from the point & to an orbit point of 0.

Definition 3.15. Let G be a Fuchsian group. A point £ € L(G) is said to be a radial limit point if there
exists a positive constant ¢ such that
litm inf A(&) < e
— 00

Denote the set of radial limit points by L, (G). A point n € L(G) is said to be a uniformly radial limit point
if there exists a positive constant ¢ such that

limsup A(&) < c.

t—o0
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Denote the set of uniformly radial limit points by L,,(G). Finally, let L,(G) denote the set of parabolic
limit points, where a point p is parabolic if it is the fixed point of some parabolic map in G.

Geometrically, a point £ € L(G) is a radial limit point if the ray s¢ intersects infinitely many balls of
radius ¢ around orbit points of 0 and £ is a uniformly radial limit point if the ray s¢ is covered by such balls.

Each limit point £ of G can be represented by the geodesic ray s¢ from 0 to £&. So if L(G) is the whole
of St, every geodesic direction from 0 represents a limit point. If L(G) is a proper subset of S!, certain
directions do not represent limit points. On the surface M (G), the limit points are represented by all those
geodesics which do not escape out of a funnel. The parabolic limit points are represented by any geodesic
which ends up in a cusp. If £ is a radial limit point of G, because each of the orbit points 0 projects to the
same point 7(0) on M(G), the ray s¢ projected to M(G) can be described as “loop approximable”, which is

illustrated in Figure 4 below.
@)y
) S/

M(@G)

" loop agproximabla’

Figure 4: A geodesic on M (G) corresponding to a radial limit point is approximated by loops.

The following result is due to A.F. Beardon and B. Maskit [3].
Theorem 3.16. Let G be a Fuchsian group. Then G is geometrically finite if and only if

L(G) = L,.(G) U L,,.
Definition 3.17. For any Fuchsian group G, the Poincaré series is defined for s € R and z,y € D? to be

S (@y) =Y emdnl@al)),

geqG

Definition 3.18. The exponent of convergence §(G) is defined to be the infimum of all those s for which
the Poincaré series converges. That is

§5(G) =60 :=inf{s e Rt : 3° (z,y) < oo}

More explicitly

S ={ T, 30

< oo, §>6.

From the triangle inequalities dp,(z, 9(y)) < dn(x,y) +dn(y, 9(y)) and di(z, 9(y)) = dn(y, 9(y)) —dn (2, y),

we see that
€7Sdh(z’y) Zs(y7 y) S ZS(xa y) S eSdhr(Iyy) Zs(y7 y)’

so the convergence depends only upon G and not upon z,y and we are justified in writing simply §(G).

It was proved by D. Sullivan [22] that if G is a geometrically finite Fuchsian group, then G is of divergence
type. That is, the Poincaré series ) (x,y) diverges when s = 6(G). This will be important when we come
to define the Patterson measure in Section 6.

It is a result of Bishop and Jones [6] (see also the paper [20]), that for any Fuchsian group G,

dimg (Lo (G)) = dimg (L, (G)) = 8(G).

This result and Theorem 3.16 above imply that if G is a geometrically finite Fuchsian group, then dimpgy (L(G)) =
(G).
Finally, it is a result of Beardon [1] that for G a geometrically finite Fuchsian group with parabolic

elements, we have that §(G) > 3. Consequently, for such a group G, we obtain the result that dimy (L(G)) >
1

3-
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3.6 Standard Horoballs

Throughout the rest of this paper let G be a non-elementary, geometrically finite Fuchsian group with one
parabolic element, say 7. Let p be the fixed point of the map ~, so y(p) = p. Let Fg be a fundamental domain
for G, fixed so that F; contains the origin of D?. Denote by C'(L(G)) the “convex hull” of the limit set L(G).
By the “convex hull” we mean the intersection of all convex sets containing the set L(G) x L(G) \ {diagonal}
(viewed as a set of geodesics in D? with endpoints in L(G)).

In the following section we describe a certain set of horoballs associated to the orbit of the parabolic fixed
point p under the group G, called a standard set of horoballs. This was first introduced, in a more general
situation, by B. Stratmann and S. Velani in [21].

Assign a horoball H,, to the point p, and let Hy be the image of H, under the map g € G. Note that if
the map g belongs to the stabiliser G, of p, where G, := {g € G : g(p) = p}, then the horoball H, is equal
to H,. It is well known that the set {H, : g € G/Gp} can be chosen in such a way that it is a pairwise
disjoint collection of horoballs. We will call this set a standard set of horoballs for G, see Figure 5. Unless
stated otherwise, consider {H, : g € G/G,} to be a fixed standard set of horoballs for G.

Figure 5: Some standard horoballs for the Fuchsian group G.

Recall that s¢ denotes the hyperbolic half-ray between the origin and the point & on S*. Define the top
of the standard horoball H, to be
Ty i= Sg(p) N OHg.
It was shown in [21] that the point 7, lies a bounded distance away from the orbit of the origin under G.
For completeness, we include the proof here in the Fuchsian groups setting.

Lemma 3.19. There exists a positive constant p, depending only on G, such that for each g(p) € G(p),
there exists f € G such that

dn (79, £(0)) < p-

Proof. First, note that the set (C(L(G)) N 0H,)/G, is compact. Then, from this fact and the fact that 7,
lies in C'(L(G)), it follows that there exists a compact subset K (p) of 0H, \ {p} containing 7,. Denote by
dk the hyperbolic diameter of K (p) and let ¢, denote the distance from the origin to 74, i.e., t, := dp (0, 7).
Fix g € G. Then g(K(p)) is a compact subset of 0H, containing the point g(7,). The point 7, is contained
in C(L(G)) and, since C(L(G)) is a G-invariant set, the point g(7,) is also contained in C(L(G)). Thus,
there exists some map h in the stabiliser Gy(,) = gG,g~" such that both 7, and ho g(7,) lie in ho g(K(p)).
Note that the diameter of h o g(K(p)) is equal to dg. It follows that

dn(7g,h0g(0)) < di(rg,hog(ry)) +dn(hog(ry) hog(0))
= dn(1g,hog(7y)) + din(7y,0)
< dig +tp.
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Setting f := ho g and p := dg +t,, the proof is finished.
O
Examining the proof of Lemma 3.19, we see that it is possible to choose the map ¢ in such a way that
g(K(p)) and the intersection of 0H, with the image of Fz containing 7, are one and the same thing. We
can now choose a set T of coset representatives of G/G, in a geometric way, namely, let g be in ¥ if the
orbit point g(0) lies in a p-neighbourhood of 7,4, the top of the horoball H,, where p comes from Lemma
3.19. That is
g € T = dp(14,9(0)) <p.

From here on, we will write {H, : g € ¥} for a fixed standard set of horoballs for G with top representation.

Definition 3.20. The shadow map II : D? — S! is defined by
IM(A) :={¢ €S": se N A #0}.

Using basic hyperbolic geometry, we obtain the following estimate of the size of the shadow of the standard
horoball H,. Recall that x is said to be comparable to y, denoted x < y, if there exists a constant ¢ > 1
such that c’ly <z <cy.

Proposition 3.21. For every standard horoball with top representation from {Hy : g € T} we have that

TI(H,)| = &0,

4 Good Sets

We consider geodesic movements with infinitely many cusp excursions and which spend at most a bounded
hyperbolic time between two consecutive cusp excursions. More precisely, for £ € L(G), assume that the ray
s¢ intersects infinitely many standard horoballs Hy, (€), Hy,(§), ..., which we always assume to be ordered
according to their appearance when travelling from 0 to {. Then let d,(§) := max{dy(n,0H,,(§)) : n €
s¢ N Hy, (€)} denote the depth of the n-th cusp excursion and let #,,(€) := dp, (0, H,, (€)). For k > 0, we then
define

B.(G) :={{ € L(G) : s¢ makes infinitely many cusp excursions,
and d(H,, (§),Hg,.,(§)) <k, for all n € N},

» Htgn+1

and let

B(G) := | B«(G).

k>0

Our first result is to give an estimate for the Hausdorff dimension of the 7-Good set
C-(G) :={¢ € B(G):d,(&) >, forall neN},

for 7 > 0 sufficiently large. For these sets we derive the following result, where A, := 1/2 (a topological
invariant).

Theorem 4.1.
lim dimg (C-(G)) = A,.

Before we give a sketch of the proof, we remark that although the definition of the 7-Good set may seem
a little unusual, the description on the surface M(G) associated to G is quite natural. A point & is in the
set C(G) if € corresponds to a geodesic on M (G) which makes infinitely many cusp excursions, each time
going at least a distance 7 into the cusp, and in between these cusp excursions, the geodesic can only spend
a bounded time in the “compact part” of M (that is, out of the cusp).

In order to prove Theorem 4.1, we have to establish both an upper bound and a lower bound for the
Hausdorff dimension. First fix K > 0. For the upper bound, note that the shadows of the standard horoballs
{H, : g € T} cover the set C; (G) = {€ € B.(G) : d,(§) > 7, for all n € N}. Fix some € € C, ,(G). Then
s¢ intersects the sequence of horoballs Hy, (€), Hy,(§), . ... Suppose we have reached the top of the horoball
Hyg, . (¢). In order to reach this point, we must have a sequence of natural numbers a;(§), a2(§), ... such
that 2loga;(§) < d;(§) < 2log(a;(§) + 1) for each 1 <i < n.

Then, by Proposition 3.21, we know that

0 1
e G A
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Figure 6: The sequence a; (&), az(§),. .. associated to the point £ € L(G).

We can clearly choose n large enough that the family F of (n+ 1)-st level standard horoballs is a y-cover
of Cr.(G) for any positive . So, letting s := (1 + €(7)), we have that

1
H3(Crn(@) < 3 N(H,, () =3¢ < <),
. (@)~ an ()2

where ¢(7) is a positive constant depending only on 7. Hence, H*(C . (G)) < oo and so
1
dimg (Cr x(G)) <s= 5(1 +¢(7)).

Finally, choosing e(1) — 0 as 7 — oo, we have that

lim dimg (C;x(G)) < A,.

T—00

For the lower bound, define the Cantor-like set C, , (G) inside the set C; .(G) in the following way:
Cr o (G):={£€B.(G): 7 <d,(&) <7, forall neN}.

The upper bound 7’ in the definition allows us to control the sizes of the covering horoballs. It also means
that there are only finitely many horoballs at any given layer of the construction. We then use a Frostman
argument, with the mass distribution V(H(Hgn ) = m’ where S is a constant depending on 7/,

to obtain that dimy (C} . (G)) > 3 for every 7 and , and by the monotonicity of the Hausdorff dimension
(Proposition 2.6), we are done.

5 Strict Jarnik Sets

Let t,,(§) 1= tn(§) + dn(§). We consider the strict (0, k)-Jarnik limit set J;, (G) which is given for £ > 0

Tox(G) = {f € B.(G): liTILILSng f:((g = 9} )

The strict 6-Jarnik limit set J; (G) is then defined by
T3 (G) = | 5. (Q).

k>0

We have the following result.

178



Theorem 5.1. For each 0 € [0,1], we have that
dimp (T5(G)) = (1 - 0)A,.

Suppose that 6 > 0. If £ € J;(G), the intuition is that the hyperbolic time spent making the n-th cusp
excursion is longer than all the time taken travelling to the top of the n-th standard horoball Hy, (£). So,
on the surface M (G) the geodesic movements representing points in 7, (G) are those that make successively
deeper and deeper cusp excursions but still only visit the compact part of M(G) for a bounded amount
of time. Note that Theorem 5.1 implies that the Hausdorff dimension of the strict #-Jarnik limit set is at
most . If > 0, then the Hausdorff dimension of J;(G) is strictly less than 1. Recall that in Section
3.5 we stated that the limit set L(G) of a geometrically finite Fuchsian group with parabolic elements has
Hausdorff dimension strictly larger than . We infer that in order to define a subset of the limit set L(G)
with Hausdorff dimension in the range (1,8(G)), we would have to relax the restriction that £ € By, that is,
we would have to increase the time spent outside the cusp.

The proof is a little more involved than that of Theorem 4.1, so we give just a brief sketch. We first
observe that the set Fy , defined for a fixed integer N > 2 by

] log sp+1 4
F K o — K - 1 n S dn S 1 N n’l - ’
b, {5 € B, :logs (§) <logN's 1T€risolip 2log(sy...5,) 1—10

has the same Hausdorff dimension as the set J;(G). (That Fy . C J; (G), so that dimg (Fp ) < dimp (T, (G)),
is easy to see. The reverse inequality is somewhat more difficult.) To establish the dimension of the set Fy .,
we proceed in a similar manner to the proof of Theorem 4.1 but instead of coverings by shadows of standard
horoballs we now cover our set with shadows of “shrunken” horoballs, which are defined as follows. Let
H,, (&) be the horoball with base point g, (p) and top 7, given by

dn(0,7g,) = dn(0,74,) +1og Sp.

Define sy = 1 j and let s > sy be given. Let F be a y-cover of Fy , consisting of n-th level shrunken

242(75

horoballs. So )
. n— 1 S
s < S < — . e
(0 < S ©F < TV ()

where H?;ll(N —1)s; is the number of n-th level shrunken horoballs and Py TR is the largest size the
shadow of such a horoball could have. By the definition of s, this is bounded for each v > 0, so we have
dimg (Fy ) < s for every s > so and thus dimpg (Fp ) < so = @AP =(1-6)A,.

1—-6

To obtain the lower bound, we again use Frostman’s Lemma, but we omit the details here.

6 The Patterson Measure

The Patterson measure was constructed by S.J. Patterson in 1976 [16]. His work was motivated by a number
theoretical problem in the theory of Diophantine approximation. The Patterson measure is a very effective
tool for examining the limit set of a Fuchsian group. For further details about the Patterson measure, refer
to [15].

In the construction of the measure it is important to distinguish between those groups whose Poincaré
series converge at 6(G) and those whose Poincaré series diverge at 6(G). In the former case we say that the
group G is of convergence type and in the latter case we say that the group G is of divergence type. It was
proved by D. Sullivan in [22] that if G is geometrically finite with parabolic elements, then G is of divergence
type.

For x € D? and s > §, the basic idea of the construction is to place a Dirac point mass of weight

% at each point ¢g(0) in the orbit of 0. Then we invoke Helley’s Theorem to obtain a measure in

the limit as s — §. If the group G is of divergence type, this limit measure will be supported on the limit
set L(G). If G is of convergence type, we will simply get another measure supported on the disc D? with
point masses on the orbit of 0.

In order to get around this problem, Patterson introduced an ingenious multiplicative factor
h(edn(®:9(0))) which does not alter the exponent of convergence, but ensures that the Poincaré series at 6(G)
diverges. However, as we are only interested here in geometrically finite groups and recalling from Section
3.5 that geometrically finite groups are of divergence type, in all that follows the factor h will be set equal
to 1.
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Let s > 6. We will start by forming the measure

%:Gefsd(z,g(O))dg(o)(A)

9

MI,S(A) = Z e—sd(0,9(0))
geG

Here, d (o) is a Dirac point-mass at the point g(0), that is

_ 1, ifg(0) € A;
39(0)(4) —{ 0, otherwise.

Notice that the family of measures {p; s : s > ¢} is bounded. We deduce that on a sequence of values
monotonically decreasing to ¢, the measures p, s, converge weakly to a measure p,. Some more work is
required to show that such a measure is unique, indeed, in some cases it is not. In the situation where G is
a geometrically finite Fuchsian group, it was proved by Sullivan that the Patterson measure is unique. So
we make the following definition.

Definition 6.1. Let G be a geometrically finite Fuchsian group with exponent of convergence ¢ and let (s;)

be a sequence of values monotonically decreasing to 6. Then the Patterson measure with base point x is

defined to be
> e—55d(z,9(0))

Y g(0)eA T
po(4) i= lim, S e gy | T o (4).
geG

We have the following proposition:

Proposition 6.2. Let G be a geometrically finite Fuchsian group with exponent of convergence §. Then the
Patterson measure i, is supported on the limit set of G.

It was shown by Patterson in [16] that the Patterson measure is a -conformal measure. That is to say,
for every Borel set E C S! and every g € G,

Holg™ () = /E Plo1(0).€)° dp(é).

Here, P(g~1(0),¢) is the Poisson kernel, introduced in Section 3.3. It follows from Lemma 3.1 that it is
equivalent to write:

polg™ () = [E 19O duo(©).

Sullivan was the first to give a geometric interpretation of the Patterson measure (for this reason, it
is sometimes referred to as the Patterson-Sullivan measure). An example of this geometric insight is the
interpretation of §-conformality in the so-called Sullivan Shadow Lemma ([22],[23], see also [15]):

Lemma 6.3. (Sullivan Shadow Lemma). For all Fuchsian groups G, A chosen large enough and for every
g€aq,
1o(IL(B(g(0), A))) = €2 (0:9(0)

The Shadow Lemma gives us a way of estimating the measure of shadows of balls around orbit points
of zero. It can also be phrased in terms of A(&), the distance of the point & from the orbit of zero.
For ¢ € L(G), and positive ¢, let b(&,e™") denote the shadow of the geodesic which intersects the ray s¢
orthogonally at the point &;. One immediately verifies that b(&;, e~?) is an arc of S! centred at the point &
with radius comparable to e~*. As long as A(&;) is bounded, which is to say that as long as we are travelling
towards a radial limit point, we can use the Shadow Lemma to estimate the measure of b(&;, e™t).

The following estimate, called the Global Measure Formula by B. Stratmann and S. Velani [21], gives a
uniform estimate for the measure of balls in S! around any limit point of G. (Note that this estimate was
first given by Sullivan in [23].) In order to state the formula, we require the following notation. Define k(&;)
to be equal to 1 if & is inside some standard horoball H, and let k(&) be equal to § otherwise.

Lemma 6.4. (Global Measure Formula). Let G be a non-elementary geometrically finite Fuchsian group
with parabolic elements. If € € L(G) and t is positive, then

po(b(&, e7)) < e e (O-FENAE),
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Figure 7: The situation for the global measure formula.

7 Weak Multifractal Spectra for the Patterson Measure

In this section we again assume that G is a non-elementary geometrically finite Fuchsian group with parabolic
elements. Recall the definitions of B(G) and ¢,(£) given in Sections 4 and 5 respectively.
Let the a-strict-Jarnik level sets for the Patterson measure pg be defined by:

- n( )
Fr= {f € L(G) : limsup IOgMO(f(f’é)t ) = a}.

We have the following theorem.
Theorem 7.1. For each o € [2§ — 1,0], we have that

dimp (F NB(G)) = Ay - fp(a),
where fp(o) == (a— (26 —1))/(1 —9).

Proof. The global measure formula for ug gives the existence of a constant ¢ > 0 (depending only on G),
such that for each £ € L(G) and every ¢t > 0 we have that

A(g) ¢ _logpuo(b(&e™)) A&)
PO TS T e :

(Here we are interested in the case that ¢t = ¢,,(£), A(&) = d,,(§) and k(&) = 1.) From this we immediately
deduce that £ € J,(G) if and only if £ € B(G) and

log 110 (b(&, e~(9)))

<5+ (5—1) +%.

lim sup =6—(1-9)86.
Consequently, if o := 6 — (1 — 0)0, the result follows by an application of Theorem 5. O

Remark 7.2. Note that in [18] a “weak multifractal analysis” of the Patterson measure was given. The
analysis there was based on investigations of the Hausdorff dimension of the associated 0-Jarnik limit set

t—o0 t -

Jo(G) = {§ € L(G) : limsup% > 6} .
In [18] (see also [19] and [12]) the result was obtained that

dimpy (Jp(G)) = (1 —0)4, for each 6 € [0,1].

In [19] it was then shown how to use this result in order to derive the following “weak multifractal spectrum”
of the Patterson measure:

0 for 0<a<2i—1
dimpg (Fo) =% 0- fpla) for 20—-1<a<d ,
6 for ao>4.
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where f, is given as before by f,(a) = ((a — (26 — 1))/(1 — §) and where F,(G) is defined by

Fu(G) = {g € L(G) : liminf log “O(Eii’(‘z)t"(g))) < a} .

The outcome here should be compared with the result in Theorem 7.1. We get the following picture:

dimu ( :F.(Cx))

2 dimy (5 (6))

[N\

25- §

Figure 8: Weak multifractal spectra for the Patterson measure.

8 Application to Continued Fractions

An expression of the form ag + o ! is called a regular or simple continued fraction. We will use the

R —— :3%
notation [ag; a1, a9, as,...]. Here, each of ag,as,as,... are positive integers, called the elements or partial
quotients of the continued fraction. The number of elements may be finite or infinite. A finite continued
fraction is the result of a finite number of rational operations, so it represents a rational number. Every
infinite continued fraction represents an irrational number. The converse of these statements is also true,
that is, every real number admits a continued fraction representation.

We now want to make the connection between continued fractions and Fuchsian groups. Consider the

group PSL4(Z), defined by

PSLy(Z) := {( CCL Z ) ta,b,c,d, € Z and ad — bc = 1}/{i]}.

This is clearly a discrete subgroup of PSLo(R) and is thus a Fuchsian group. PSLy(Z) is often called the
modular group. It is generated by the maps S : z — —% and T : z — z+ 1. The map T is a parabolic
transformation with fixed point {co}. In Figure 9, the usual fundamental domain for PSLy(Z) is shown.
Also shown, in Figure 10 below, is the so-called modular surface, the Riemann surface associated to PS Ly (Z).
The limit set of PSLo(Z) is the whole of RU {o0}.

In [17], C. Series explained how continued fractions can be viewed as geodesic movements on the modular
surface, M. Let L be the set of all oriented geodesics in H with endpoints satisfying 0 < |I_| < 1, |l4+]| > 1
and [_ -1y = —1, where [_ is the starting point and I is the ending point (for simplicity we also assume that
each endpoint is an irrational number). Then L is the set of all geodesics in H which start in the interval
(—1,0) and end in the interval (1, 00) or start in the interval (0, 1) and end in the interval (—oo, —1). The idea
is to tessellate the upper half-plane via the Farey tessellation (where the vertices of the triangles are exactly
the set QU {oo}, see Figure 11), and associate to each geodesic in L a cutting sequence, where the geodesic
is coded with either an L or an R as it travels through the triangles of the Farey tessellation depending upon
whether we see one vertex of a triangle on the left or on the right respectively. The assumption that all
endpoints are irrational means that each geodesic [ in L4 has an infinite cutting sequence associated to it.

We say that a geodesic | changes type at each point where we find the code given to two neighbouring
triangles to be of different type (for example at points xg,x1,z2 in Figure 11 above). Let the type change
point on the imaginary axis be denoted by y; (note that every geodesic [ € L& must have a type change at
the imaginary axis). We can code each | € L by its type changes as follows.

1. ...Ln—2Rr-1y LmRre il > 1,
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‘ g () % F T(F)

S(F) .
/

Figure 9: The usual fundamental domain for the modular group, PSLy(Z).

T ()

Figure 10: The modular surface, M.

2. .. R"2Ln-ig RMLNe il < —1.

The lines of the Farey tessellation project to the singular line S on M (see Figure 10 above). Every
geodesic | € L projects to a geodesic [ on M and we see that all of the type change points are projected to
the line S. Denote this projection map by w. Now consider the subset X of the unit tangent space UT (M)
consisting of all those unit tangent vectors with base point x € S which point along geodesics whose cutting
sequences change type at z. Clearly if | € Lg, then the unit tangent vector i, to [ at the point y; projects
to an element in X. This identification of L& with X is almost a homeomorphism.

Theorem 8.1. [17] The map i : Lo — X given by i(l) = w(iy,) is surjective, continuous and open. It is
injective, except that the oppositely oriented geodesics joining +1 to —1 have the same image. Moreover,
if i, € X gives rise to a geodesic with cutting sequence ...L"-2R"-1y, L™ R"> ... then | = i~ (i) has
endpoints given by

1
Iy =[ni;ne,ns,...] and — = [n_1;m_g,n_3,...].

Alternatively, if the cutting sequence is ... R"=2L"=ty, R™ L™ ... then the endpoints are given by

1
Iy = —[n1;n2,ns,...] and = [n_1;m_g,n_s,...].

So the idea is that a large continued fraction entry corresponds to a deep cusp excursion, or, in other
words, to spending a long time inside a standard horoball. If we have a finite continued fraction, i.e. a
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Figure 11: The Farey tessellation.

rational number, this corresponds to a geodesic starting or ending in the cusp, in other words, entering a
standard horoball and never leaving it again.

We can then interpret the results given in the sections above in terms of continued fractions, by letting
the group G be the modular group PSLs(Z). In Section 4, we described the 7-Good set C,(G) by saying
that & belongs to C-(G) if s¢ makes infinitely many cusp excursions and each one is at least of a depth 7. If
G := PSLy(Z), we obtain the following corollary.

Corollary 8.2. Let the set Fy be defined by

Fn :={{=[a1(¢),a2(8),...] 1 ai(§) > N for all i € N}.

Then 1
A}gnoo dimy (Fy) = 3

This result can be found in the 1941 paper [10] of I.J. Good (a student of Besicovitch). The proof in that
paper does not use Frostman’s Lemma, for although it was known at that time it does not seem to have been
very well known then. Good derives upper and lower bounds for each set Fiy, for N > 20. Determining the
exact Hausdorff dimension of any of the sets Fly is still an open problem.

We can also derive a continued fractions result from Theorem 5.1. Let G := PSLy(Z) again and define
the set K, to be

Ko = {{=[a1(§),a2(&),...] : limsup log an(€)

D (@ @) . ana (@)

It immediately follows that dimy(K,) = ﬁ
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Methods for Symmetric Key Cryptography and
Cryptanalysis

Kaisa Nyberg
Helsinki University of Technology and Nokia Research Center, Finland

Abstract

In this lecture, a brief introduction to statistical methods in cryptography will be given. When designing
a cryptographic primitive, such as a block cipher, stream cipher or hash function, the goal is to make it
resemble a random function as closely as possible. Statistical methods are used in testing test how well this
goal has been achieved. Observed statistical deviations can be used not only in distinguishing the primitive
from a truly random function, but also in recovering part of the secret key.

One of the most important statistical methods in cryptography is the linear cryptanalysis introduced by
Mitsuru Matsui in [3] for the DES block cipher. Similar linear modelling techniques had been previously
used in the analysis of stream ciphers and called as correlation attacks. In this lecture, the basic linear
cryptanalysis methods on block ciphers and certain types of stream ciphers will be given.

The linear cryptanalysis method is based on derivation of a linear relationship between the plaintext,
ciphertext and the key which holds with a probability different from 1/2. The method can be extended to
using multiple such relationships on the same data. Multidimensional extensions of linear cryptanalysis on
block ciphers allow a variety of different statistical approaches, which will be discussed based on a recent
paper by Miia Hermelin, Joo Yeon Cho and the author [2]. Finally, it will shown how a key recovery attack
using linear cryptanalysis on a stream cipher, for example the attack in [1], or a block cipher can also be
formulated as a decoding problem of a general linear code.

Draft Table of Contents
1. Cryptographic primitives
2. Linear approximation of block ciphers

Linear approximation of filter generators

> W

Linear distinguishing attacks
5. Key recovery attacks using linear cryptanalysis

6. Key recovery attack as a decoding problem
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A glance at Hyperbolic Function Theory in the Context
of Geometric Algebras: Hypergenic Operators

Sirkka-Liisa Eriksson and Heikki Orelma*
Tampere University of Technology

Abstract

In this contribution we consider hyperbolic function theory in the context of geometric algebras. In
the first part we give basic definitions, function theoretic fundamentals and integral representations. In
the second part of the contribution we define so called hypergenic operators and consider their properties.
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1 On Geometric Algebras

In this section we recall some elementary concepts of geometric algebras and geometric algebra valued
functions. All results are classical. Let {eg, e1, ..., e, } be a basis of R"T1. An arbitrary vector z € R"*! may
be written as a linear combination of the basis vectors as

r = xgeg +x1€1 + -+ Tphep
where z; € R for each i = 0,1, ...,n. The scalar product -y € R of z,y € R"™! is defined as
.Y =2xoYo +T1Y1 + -+ TnlYn.
The norm for € R"*! is defined in terms of the Euclidean scalar product by
2] = V7.

We shall assume that our basis is orthonormal, i.e., e; - e; = d;;, where d;; is the Kronecker symbol. The
geometric product (or the Clifford product) of vectors z,y, z € R"™! is defined by three basic axioms:

(A1) The associativity rule
(zy)z = x(yz).

(A2) The left and right distributivity rules
x(y+2) =zy+zz,
(x+y)z =zz+yz.

(A3) The contraction rule
z? = |z

The vector space R™t! is not closed under multiplication as the contraction rule shows. However, the addition
and the multiplication with the contraction rule of vectors in R™*! generate a free associative algebra with
unity. This algebra is denoted by C{,41 and it is called the geometric algebra. Assume i # j. Using
contraction rule for a vector x = z;e; + x;e; we obtain e? = |¢;|?> = 1 and

€i€j + €€, = 0
for unequal ¢ and j. Hence we infer the multiplication rule

€i€j + €€, = 251]

*This paper is worked out in the department of Mathematical Analysis at Ghent University during the spring 2009. Hence
the second author wishes to thank all the colleagues in the Galglaan for the nice and inspirational atmosphere.
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for each 4,7 = 0,1, ...,n. The geometric algebra C¢,; has dimension 2" and the canonical basis is given by
€A = €q, " €q, Where A= {ay,...,ap} C N ={1,...,n} and a; < --- < ay. Especially ey = 1 and ey;} = e;.
The space of k-vectors is defined by C¢%, | = Span{ey : |A| = k} and thus any a € C/, 1, has the following
multivector decomposition:

a=[alo+a]y +---+a]n

with [a], € CF ;. The space of 0-vectors and 1-vectors C£0, and Cl) ., is usually identified with R and
R"™*! respectively.

The main involution is an algebra automorphism ' : C¢,,11 — Cf, 41 satisfying e; = —e; and (ab)’ = o'’ for
each a,b € Cly 1.

If z € R™*! is a vector such that  # 0 we define its inverse by z=! = ﬁ Let us consider a mapping

f:Q — Cl, 1 where Q is an open subset of R**!. In the canonical basis it has the representation
= Z eafa.
A
A function f is called differentiable in 2 if and only if f4 is differentiable in € for each A.

The geometric product for any vectors x and y may be decomposed into symmetric and antisymmetric
parts defined by

1
Toy= 5(95214'3/33)
and
1
TNy = §(Iy—ym),

where z,y € R"1 i.e.,
Ty=x-y+arANy.

The antisymmetric part A y is called the outer product and the symmetric part x - y is called the inner
product. It is easy to prove that the inner product x - y is scalar valued and precisely the Euclidean scalar
product in above.

2 Hypergenic Functions

If f is differentiable the left Dirac operator is defined by
Dyf = —
of =) ex 2
k=0
and the right Dirac operator is defined by
D.f = —
f Z O €k
k=0
where partial derivatives operate componentwise. Denoting C¢,, the Clifford algebra generated by {eq, ..., e, }.
We may represent the Clifford algebra C¢,, as the direct sum
Clyy1 =Cl, @ eoCl,.

Let m; and 7o be the corresponding projections, i.e., m(a + epb) = a and ma(a + egb) = egb and let
p:Clyy1 — Clyyq be the involution p(a) = epa. Using the previous mappings we define

_P(] =T and Q() ‘= [ O T

Let © be an open subset of R**! contained in the upper half-space Rfrl =R N {zy > 0}. We define
the left- and right-modified Dirac operator on the open set () using the previous mappings by

HLf = Dyof - %Qoﬁ

k
Hif = Drf - ;OQf)f
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where k is an arbitrary real number. We shall also use abbreviated notations H* := H £n71 and H" := H (nfl)
for index k = n — 1. Null solutions of the previous operators are called left- and right- hypergenic functions.

As a technical tool we will need Py- and Qg-parts of the operators H ,f. and HJ, represented in the next
lemma.

Lemma 2.1 ([3]). Let f:Q — Clyni1 be a smooth function. Then
(1) Po(HLf) = DoPof + G5l = 2,Qof,

dzo
(2) Qo(H{f) = G2L — DoQof,
(3) Po((HL)?f) = APy f — L 9ot

xo Baco ’

(4) Qo((H)*f) = AQuf — &% + 5 Quof,

where Dy :ela%l“‘“"*‘en%-
The hypergenic functions are generalizations of the complex analytic functions in the following sense:

Theorem 2.2 ([1]). If Q € R™"! is an open set and f : Q — Clyi10 is a smooth function the equation
H!f =0 is equivalent to the system

0 0 Ofn k
fo 0, 0f

920 T e, T an, o=
of; Ofi _
Gati 8xj ’

fori,7=0,..,n.
We generalize the above theorem to Geometric algebra valued functions:

Theorem 2.3 ([1]). Let Q C R™™! be an open set and f : Q — Cly11,0 be a smooth function. The equation
H!f =0 is equivalent with the following system of equations

Z”: ORf | 0Qof

k
€i 8%1 axo - ;OQO.]C_(L

i=1

P f <~ 9Quf _
8$0 262 8$l =0

Assume that ) is an open subset of RT‘l. The operator

k Og

Appg =z} (Ag - 970879:0)

is the Laplace-Beltrami operator for g € C?(Q,Cl, 1) with respect to the Riemannian metric

dag + - -+ da?
ds? = 20—~ " = .
Zo

Theorem 2.4 ([1]). Let @ C R™™! be an open set and f : Q@ — Cl,1 be a k-hypergenic. The function
Pyf is a solution of the Laplace-Beltrami equation i.e. AppPof =0 and Qo f is a solution of the eigenvalue

problem ArppQof = —kQof.

Hypergenic functions and solutions of the Laplace-Beltrami operator are related as follows.

Theorem 2.5 ([3]). Let Q C R’ffl be an open set. A smooth function f :Q — Cl,y1 is hypergenic if and
only if for any a € Q there exists v > 0 satisfying B,(a) C Q and a map g : By(a) — Cly, o satisfying

f=Dg

and
ALBg = 0
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Partial derivatives with respect to xg is not generally hypergenic, but the following result holds.

Lemma 2.6 ([1]). Let @ C R be a domain and f € C?(Q,Cly41) be k-hypergenic, then

of
axi

is hypergenic for each i =1,...,n.

Proposition 2.7 ([1]). Let f € C*(Q,Cl,+1). The following are equivalent:
(1) f=0,
(2) f and fey are k-hypergenic.

The FEuler operator is defined by
n
0
E= Tim—-
Z Z@xi
=0
We see that it is a scalar operator and measures the degree of homogenicity of a function.

Theorem 2.8 ([3]). Let f: Q — Cl,y1 be a smooth function. If the function f is k-hypergenic then Ef is
k-hypergenic.

If f is a hypergenic function the previous theorem gives us a method how to construct more hypergenic
functions:

The above theorem implies that for every k-hypergenic function f : Q) — C/,, ;1 there exists the sequence of
hypergenic functions defined by
E"f.=FF---Ef
i —

m copies

for each m € N and EVf = f. This sequence {E™f : m = 0,1,...} is called the homogenized sequence of f.

As an example we consider monomials

Xi =Y (-1)aje;
=0

J

where i = 1, ...,n. Since H*X; = 0 the monomials X; are hypergenic. Moreover
EX; =X;

for each i = 1,...,n and hence the homogenized sequence of X; is just {X;}.

3 Integral Formulas for Hypergenic Functions

We recall briefly some preliminaries from integration theory. Let M be a k-dimensional manifold-with-
boundary in Riﬂ, see, e.g., [6]. The boundary of M is denoted by M. If moreover

n+1
MM =AM

p=0

is the exterior algebra over R"*! with basis {dzo, dz1, ..., dz,} we then construct the bundle C/,, 1 ®r A*M.
If w(z) is a section of the previous bundle over x € M it is of the form

w(x) = ZWAB(I)eAde
A,B

where B = {b1,....,b;} C N ={1,...,n}, dep = dxp, A--- Adxy,, and wy p are real functions. The meaning
of the symbol esdz g is clear. Let furthermore M be an oriented k-dimensional manifold-with-boundary in

R™*1, then we define
w(z) = eA/ wa,p(z)drp.
Jyetr=3ea [ wasto
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In this paper M will be (n + 1) dimensional or n-dimensional i.e. the boundary of M. The (n + 1)-form
dV =dxog ANdxy N -+ Ndxy,

on M is called the (Riemannian) volume element. In surface integrals we shall often use the n-form

n

do = Z(*l)zeld.’il

i=0
where

d:ﬁi:dajo/\dml/\-~-/\d:Ei,1/\dxi+1/\~-~/\dxn

for each i = 0,1,...,n. The exterior derivative d for Clifford algebra valued differential forms is defined
componentwise, i.e., if

w = g wa,peadrp
A,B

is a k-form then

dw = ZeAdWA,B ANdxp.
A,B

Applying the classical Stokes theorem (see [6]) it is easy to prove that:

Theorem 3.1 (Stokes). Let w be a Cl,i1-valued k-form in the oriented k-dimensional manifold-with-

boundary M. Then
/ dw:/ w.
M oM

Let us denote the interior of the subset U C R™ by U°. Next we recall Cauchy’s formula for hypergenic
functions:

Theorem 3.2 ([1]). Assume that §) is an open subset ofRT_ﬁ+1 and f : Q — Clp41 is hypergenic. Let M C Q)
be an oriented (n + 1)-dimensional manifold-with-boundary. Then

POy e N{CR I

W z —y[*= e —gnt

for each y € M°.
Cauchy’s formula can also be represented with one kernel:

Theorem 3.3 ([3]). Assume that Q is an open subset of R and f : Q@ — Cly41 is hypergenic. Let M C §
be an oriented (n + 1)-dimensional manifold-with-boundary. Then

1) = ZB [ ) (Buldo(o) (@) + Lo o)1)

Wn41 Zo

for each y € M° where

1_(/33\ -1

A y) = (z—y)~ — )

z =yl Mo -yt

For general geometric algebra-valued functions we have:

Theorem 3.4 (Borel-Pompeiu Formula, [3]). Assume that  is an open set of R and f: Q — Clyyq is
differentiable. Let M C Q be an oriented (n + 1)-dimensional manifold-with-boundary. Then

1) =28 [ { P )do(@)f @) + oot n)doa) ()}

Qpi1 Zg
n—1,n—1
+ & erol /M xgll {Po (p(a, y)H' f(2)) + e0Qo (q(%y)H‘f(x))}dV.

for each y € M° where p(xz,y) = xg_1% and q(z,y) = % are hypergenic with

respect to x.
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4 On Hypergenic Operators

We denote the class of hypergenic functions in Q by H(Q) and H := H, fn_l). In the previous section

of the paper we proved that the Euler operator and derivatives with respect to the variables z1,...,x,
preserve hypergenity. In this section we consider more generally that type of operators. Any operator
T :H(Q) — H(Q) is called a hypergenic operator, that is, T f is a hypergenic for any hypergenic function
f. We proceed algebraically. Let as consider the free associative algebra over reals with unity generated by
operators

Li: f—ef, R;: [ fe,
Di:f'_)aivifa szHxlf7
where 7 = 0,1, ...,n. The composition operation is defined by
AB---Cf:=A(B(---(Cf))).

Obviously the identity element of the algebra is the mapping f — f. The previous algebra contain all
geometric algebra valued differential operators with polynomial coefficients and denoted by P(n). Obviously
there is a subset of P(n) which contains all geometric algebra valued hypergenic operators. For the associa-
tivity we may still enrich the algebra P(n) pursuantly. Let us define, in P(n), the usual commutator relation
[,:]:P(n) x P(n) = P(n), ie., if A, B € P(n) then

[A, B] = AB — BA.

Hence the triplet (P(n),+,[,]) is obviously a Lie algebra. Any Lie subalgebra of P(n) generated by any
subset of hypergenic operators is called a hypergenic algebra. Hence we can ask usual questions related to
Lie algebras concerning subalgebras and ideals etc.

Since in the class of hypergenic functions an operator T is hypergenic if and only if HTf = THf = 0
for each hypergenic f, we obtain:
Theorem 4.1. An operator T is hypergenic if and only if [H,T] = 0 in the class of hypergenic functions.
Before some practical examples of hypergenic operators, we need to compute:
Proposition 4.2. For previous operators:
[Li, Pj] = [Di, Rj] = [P, R;] = [Li, D;] = 0.
Also immediately we obtain
Proposition 4.3. Operators R; and D; are hypergenic fori=1,....,n.
Proof. In Lemma 2.6 we saw that D, is hypergenic for any ¢ = 1,...,n. Since
Qo(fei) = Qo(FPof + eoQofei) = (Qof)ei
and D(fe;) = (Df)e; we obtain that

n—1
HR;f = D(fei) — TOQo(fez‘) =RHf,
which completes the proof. O

Hence we see that operators R; and D;, for i = 1,...,n, generate a hypergenic algebra.

We cannot give complete presentation of hypergenic operators. We shall consider only some interesting
operators. Similar methods works also for more complicated operators.

Proposition 4.4. Let A = (Ao, A1, ..., \y) € R™™L and

T)\ : f — i )\ifxiei.

1=0
Then .
[H,T)]f =Y Neifei — (n—1Dof’

i=0
for any smooth f:Q — Cl,.
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Proof. Let f:Q — Cl, be a smooth function. We need the properties

P'f, for i = 0,

Qolfer) = {(Qof)% for i # 0,

Hence
QoTaf = XozoPyf + Y Nizi(Qof)e
i=1
= Mozo(FPof — Qofeo) + ThQof
= Xowof' +TaQof
Since
D(zife;) = eifei + xi(Df)e
we get
DTyf = Aeife; + TaDf.
i=0
Thus
n—1
HT\f=DT\f — o QoTrf
= n—1 , n—1
= Neifei+TaDf — Aozo [ — ThQof
i=0 To o
=Y Neifei— (n—1Aof + ThH,
i=0
which completes the proof. O

Corollary 4.5. Let A = (Ao, A1, ..., \n) € R The operator

Ty:f > Aifzie;
1=0

is hypergenic for each A satisfying
n
Z /\ieifei — (TL — 1))\0fl =0
i=0

for each hypergenic f:Q — Cl,.

One possible and useful way to consider hypergenic operators T : H(2) — H() is to restrict the domain
set. Hence if A(Q2) C H(Q) is a nonempty subset we may consider hypergenic operators T : A(Q) — H(Q).
In the above case T is called to the restricted operator to the set A(<Q).

Restricting Th-operator to the class of real functions we may govern all possible hypergenic monomials
of the form Agxgeg + A\iz1e1 + -+ ApZTneén.

Proposition 4.6. For each (t1,...,t,) € R™ the function

T

(G et

1

n

is hypergenic, where [t| =Y. t;.

Corollary 4.7. Assume ur, = (1,...,1,=1,1,...,1) is an (n + 1)-tuple and (—1) is at the k’th place in the
tuple. Then
Xp, =T, 1.
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Proof of Proposition 4.6. . Consider the equation
Z )\Z-eifei — (’I’L — 1))\0fl =0.
i=0

For f =1 we obtain
D Ai—(n=1)X =0
1=0

which completes the proof.

Next we shall restrict the operator T to the set of hypergenic monomials

n

Xk = Z(—l)ékjl'jej

j=0
where kK =1,...,n.
Proposition 4.8. In the set of hypergenic monomials Xy, the operator Ty is hypergenic only if A = 0.

Proof. Consider the equation

[H, T\ X\ = Z Nei Xpei — (n — Do X}, = 0.

i=0
Since
e, fori=yj,
eie;e; =
T —e; for i # 7,
we obtain
n
eiXkei = Z(—l)‘s’“ijeiejei
j=0
n
= (1) mie; = Y (=1)*iae;
§=0
JFi
=2(—1)%2;e; — X.
Since X, = — X}, we infer

[H, T\ X% Ni(2(=1)% i zie; — X3) + (n — 1)Ao Xy,

I

s
I
=)

)\i2(—1)‘5’“’ixiei — Z N X+ (n — 1))\0Xk
=0

|

@
I
o

Denoting [A| = Y7, A; we have

[H, T)\]Xk = Z /\i2(—1)5ki$iei - |)\|Xk + (n — 1))\0Xk
1=0

= Z(—1)6k1(2)\1 - |)\‘ + (n - 1))\0).’)%@.
=0

The above expression vanish for each x € Q if and only if
2)\1 - |/\‘ + (Tl - 1)/\0 =0

for each 1 = 0,1, ...,n. The corresponding coefficient matrix is

A= ((nn2)]l _gT)
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where I7 = (1,1,...,1) and B = (b;;) is the matrix with coefficients b;; = 26;; — 1. Hence

n —IT

det A = 0o C

= —ndetC

where the first equality follows adding the first row to others multiplied by —(n —2)/n. Thus C' = (¢;;) is a
symmetric matrix with coeflicients ¢;; = 2d;; — 1 + ”7_2 = 20;5 — % Using induction argument with respect
to the dimension of an n-determinant it is easy to prove that if

a, fori=j,
aij = o
’ 1 for i # j,

then det (a;;) = (a +n — 1)(a — 1)"~*. Using that information one can show that the matrix A is non-
singular. 0

Corollary 4.9. The operator T is hypergenic only for X = 0.

Hence we see that the restriction is essential when we consider hypergenic operators.

Also we introduce one step more complicated operator.
Proposition 4.10. Let A = (\;;) be a real (n+ 1) x (n+ 1)-matriz and
S)\ : f — Z )\ijfxiej.
1,5=0
Then
H,S = All j — — )\z iIZO
[H, Sx\lf Z jeife; 0 ZZ:; o f

4,j=0
for any smooth f: Q — Cl,.

Proof. We need the following properties

P'f, for j =0,

Qolfes) = {(Qmej for j #0.

The properties implies that

QuSaf =Y Xjzi(Qofles + Y Niowi Py f

i=0 j=1 i=0
= > Aizi(Qof)es + Y Xiomi(Pof — Qofeo).
i,j=0 i=0
Hence
[Qo, Salf = Niowif'.
=0
Since
D(mifej) = eifej + in(Df)ej
we obtain
[D.S\f =D Aijeife;.
3,j=0
Hence
[H,S)\|f = Z Aijeife; — o ZAiOziflv
2,7=0 1=0
which completes the proof. O
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Corollary 4.11. Let A = ()\;;) be a real (n+ 1) x (n + 1)-matriz. The operator

S)\ : f — Z /\ijf$i€j-

4,5=0

is hypergenic for each A satisfying

> Aijeife; — n;) ! > Xiowif' =0
i=0

4,j=0
for any hypergenic f : Q0 — Cl,.

We leave the (possible) deeper study of the operator Sy to forthcoming papers. Finally we study a
generalization of the Euler operator.

Proposition 4.12. Let A = (Ao, A1, ..., An) € R*TL. The operator
Ex:fr— Z/\iziax,:f
i=0
is hypergenic only for A = a(1,...,1), i.e., only
E(a,...,a) =aF
is hypergenic.

Proof. Since

i=0 i=0
n
= Ni€i0a, f + ExDS
i=0
we have
[D,Ex]f =) N, [,
i=0
Computing

By ("2Quf) = 20"t Quf + "L ErQof
i) i) i)

and F)\Qo = QoFE)» we infer that

[n_olQo,E/\]f 2" Lqur.

n—
ZT Zo
Hence E) is hypergenic if

H,E\Jf =" Aieide,f — o' Qof = 0.

=0

n—
Zo

Since f is hypergenic it satisfy the equation

X

n _ 1
3 ite f — —Qof =0.
i=0 0

We obtain that \; = « € R for each ¢ = 0,1, ...,n and the proof is complete. O

Some remarks and conclusions. In the classical generalized function theory (see, e.g., [4] or [5]) the
formula H(fz) = (H f)z has significant role. But as we saw in above that in our case the operator f +— fx
is not hypergenic. Hence the preceding formula is not available in our theory in the similar form. Thus in
forthcoming studies hypergenic operators will be in essential role. We should find the restriction A(Q) C
H(€2) such that there exists a good class of (multiplicative) hypergenic operators T : A(Q2) — A(£2).
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Interaction of two charges in a uniform magnetic field:
symmetries, reduction and non-integrability of the planar
problem

D. Pinheiro*and R. S. MacKayf

Abstract

We review some recent results concerning the Hamiltonian system that describes the interaction of
two charges moving in a plane under the action of a uniform magnetic field. This is an interesting
example of the use of symmetries to reduce the phase space dimension in order to enable a clear analysis
of the corresponding Hamiltonian dynamical system?.

1 Introduction

The interaction of two charges moving in R? in a magnetic field B can be formulated as a Hamiltonian system
with 4 degrees of freedom. Assuming that the magnetic field is uniform and the interaction potential has
rotational symmetry this Hamiltonian system can be reduced to one with 2 degrees of freedom; for certain
values of the conserved quantities and choices of parameters, this system is integrable. Furthermore, when
the interaction potential is of Coulomb type, for suitable regime of parameters, there are invariant subsets
on which this system contains a suspension of a subshift of finite type. This implies non-integrability for
this system with a Coulomb type interaction. A detailed study of this problem can be found in [10]. See
also [11] for the analogous problem in three dimensional space.

In this paper we briefly review the results in [10]. In section 2 we formulate our problem as a Hamiltonian
system with a non—canonical symplectic form, making it easier to identify the system symmetries. We identify
translational and rotational symmetries of the system and the corresponding conserved quantities, as weel
as an exceptional conserved quantity when the two particles have the same gyrofrequency. In section 3 we
state a result regarding the reduction of the Hamiltonian system introduced in the previous section and
briefly point out two techniques that can be used to prove the result. In sections 4 and 5, we specialize our
analysis of the problem by choosing a specific interaction potential and build on the results of the previous
sections to study the dynamics of the Hamiltonian system previously introduced. The natural choice for the

potential V' is the Coulomb potential

€1€2 1

Vir) = dregr (1)

where r denotes the distance between the two particles, e; and es denote the values of the charges and ¢
denotes the permittivity of the vacuum. Depending on the problem other potentials would be plausible as,
for example, in [5] a logarithmic potential is chosen for the interaction of two vortices. In fact, our results are
valid for a class of potential functions that includes both the Coulomb potential and the screened Coulomb
potential. In section 5 we state two results concerning the existence of periodic and chaotic trajectories
shadowing sequences of collision orbits. Those results are based on a method introduced in [3] for a proof of
the existence of chaotic orbits of the second species for the circular restricted 3-body problem.

2 Problem Formulation

2.1 One charged particle in a magnetic field

For pedagogical reasons we start by considering the well understood case of one particle moving in a uniform
magnetic field B of norm B # 0, orthogonal to the plane of the motion and pointing upwards. A particle of
mass m > 0 and charge e moving in R? under the action of such a field is subject to a Lorentz force of the
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form Fr, = eBJv where v = (v;,v,) € R? is the particle velocity and J is the standard symplectic matrix in

R2, given by
0 1
J= ( 1o > : (2)

This system is known to be Hamiltonian with Hamiltonian function and (non-canonical) symplectic form,
given by

1
H(x,v) = §m|'v|2
w = mdzAdvu, +mdyAdv, —eBdzAdy . (3)

where = (z,y) € R? denotes the particle position (see [6]). To put the Hamiltonian system given by (3) into
canonical form it is common to introduce the canonical coordinates q = (¢, qy) € R? and p = (p,,p,) € R?,
given by

g=x, p=mv+ecA(x) , (4)

where A (z) = (A4, (z), A, (z)) € R? is a vector potential for B. The new Hamiltonian system is then given
by

H(q,p)

1 2
m |p—eA(q)]

04, 04,
— — + B | dg, Adg, .
Oy Ox * ) G 1\ Gy

w = dqudprrdqudpye(

Hence, for the system to be canonical the vector field A (x) must be chosen to verify the equation

0A, 0A,
oy o 1270

which is indeed the condition for A () to be a vector potential for B. If needed, we make the choice
A(x) = —2Jx. We consider it better, however, to use the formulation (3) because translation symmetry is
more transparent, so instead of the change of variables (4) we just make the change of variables given by

g=x, p=mv ()
obtaining the Hamiltonian system
Lo
H - =
(a,p) 5 Pl
w = dgy Ndpy +dgy Adpy + kdg, Adgy , (6)

where k = —eB. The symplectic form in (6) defines a Poisson bracket {.,.} : C> (R*) xC*> (R*) — C> (R?)
given by

(Fy— OF 9G _0G OF  OF 0G _ 0G OF (aFaG aGaF)

R — + - - i
0qy Op,  0qy Op,  Oqy Op,  Oqy Opy Opz Opy  Opy Opy

In the formulation (6) the Lorentz force effect can not be seen in the Hamiltonian function but it is present
in the kdg, A dg, term of the symplectic form and equivalent term in the Poisson bracket.

2.2 Two charged particles in a magnetic field

We now consider two particles with masses my and ms (positive) and non-zero charges e; and es, respectively,
n the same magnetic field as described in section 2.1 (uniform of norm B # 0, orthogonal to the plane of the
motion and pointing upwards). Each one of the particles moving under the action of such a field is subject to
a Lorentz force of the form Fr, = e; BJv; where v; = (v,,,v,,) € R? is the i-th particle velocity (i € {1,2})
and J is given by (2). Furthermore, we assume that the interaction of the two particles is determined by a
potential V() depending on the distance r between the two particles.

The phase space M for this problem is R® with the singular points of the interaction potential removed
(six-dimensional planes if V' is the Coulomb potential (1)). Let g; = (¢x,,qy;) € R? denote the vector position
of the i-th particle and p; = (ps,,py,) € R? denote its (non-—conjugate) momentum

pi = mu; , i€{l,2}.
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The motion of the two particles can be described by a Hamiltonian system, with Hamiltonian function
H : M — R and non—canonical symplectic form w, given by

1 2 1 2
H = — — %4 _
(q1,92,P1,P2) 9y [p1|” + 9 Ip2|” +V (lq1 — q2])
w = Y das, Adps, +dgy, Adpy, + kidgs, Adgy, (7)
i=1,2
where, for simplicity of notation, we introduce the constants k; = —e; B ;i € {1,2} . The Poisson bracket

associated with this symplectic form, {.,.} : C*°(M) x C*(M) — C°°(M), is given by

(8)

(Foy- Y OF 96 9G OF  OF 0G _ 0G OF _ .(8F oG oG 8F>
’ 5% 04z, Ops, 04w, Ops, Oqy, Opy,  Oay, Opy, " \Opx, py,  Opz, Opy,

The Hamiltonian system defined by (7) is invariant under the group generated by the following families
of symmetries

¢’u (qlanaplaPQ) = (ql +an2+U,p1,p2)
®0 (q1,92,P1,P2) = (Roqi,Req2, Rop1, Rop2) 9)

where v = (vg,vy) € R? is a translation vector and Ry is the rotation matrix in R?, given by
cosf) —sinf
RH( sin cosf ) '
We define the (signed) gyrofrequency §2; of each particle as
k.
Qi:ﬁ, ie{l,2}.

Proposition 2.1. The Hamiltonian System (7) has the following conserved quantities:
e Linear momentum P = (P, Py) = p1 + p2 + J (k1q1 + k2q2).
o Angular momentum L =3, | ,q;.Jp; — % |q1-|2
Furthermore, if the particles have equal gyrofrequencies 21 = o, there exists another conserved quantity W,
given by
W =|p + P2|2
The following commutation relations between the conserved quantities given above hold:

{P:Evpy} = k1+k27 {L,Pz} = Pya {LaPy} = _P:rv
{w,L} = 0, {w,P,} = 0, {W,P,} = 0.

We note that:

i) the conserved quantities P and L are, respectively, the usual linear and angular momenta for the two-
body problem with extra terms representing the presence of the magnetic field and hence the effect of
the Lorentz force on the particles.

ii) combining P, and P, into the conserved quantity

P=|P’=P>+P? (10)
we obtain the following commutation relations

{L,P}=0, {LW}=0, {PW}=0, (11)

which show L, P and W to be in involution.
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iii) corresponding to W there is a “hidden” symmetry in the case of equal gyrofrequencies Qy = s, given

by
R —-1d J
Q — @+ Tor ot Ko [ 2(ky+kz)d 2><2] (p1 +p2)
1
@ — G+ ——— [Ro(k+ks)s — Idaxz2| J(p1 + p2)
k1 + ko
k1
— R —-1Id
P1 — p1+ Tr + Foa [ 2(k1+ka)¢ 2><2] (p1 + p2)
ka
—— R —1d
p2 — p2+ Ty + ko [ 2(k1+k2)¢ 2><2] (p1 +p2),
where ¢ € R.

3 Reduction

In [10] we prove that the Hamiltonian system (7) can be reduced to one with 2 degrees of freedom. Fur-
thermore, when the two particles have the same gyrofrequency we use the exceptional conserved quantity to
prove integrability of this Hamiltonian system in this case. We also prove that if the sum of the two charges
is zero the dynamics in the zero sets of the linear momenta are also integrable. We do this by constructing a
set of coordinates on which the system exhibits a reduction to two degrees freedom, and integrability when
it applies. We should remark that a similar reduction is obtained in [5] for the problem of two interacting
vortices with mass moving in a plane - in that paper is also given the analogy between that problem and
the one we treat here. However, one key point of [10] is that the total change of coordinates that exhibits
the reduction is computed. This change of coordinates is just the SE(2) lift that, given the base dynamics
of the reduced Hamiltonian systems, enables us to describe the full eight-dimensional dynamics.

The following theorem provides a summary of the results in [10] concerning the reduction of the Hamil-
tonian system (7). See [10] for more details on the reduced Hamiltonian systems.

Theorem 3.1. The Hamiltonian system given by (7) always reduces to one with at most two degrees of
freedom and it is integrable in the following special cases:

o O =0,
o ki +ky=0 andPIQ—FPyQ:O.

In [9] a detailed study is done for the symplectic reduction of the Hamiltonian system (7) by its symmetry
group SE(2): the symplectic reduction is mostly regular, making it a standard non-trivial illustration of the
theory of symplectic reduction (see [1, 2, 4, 7]). There are, however, level sets of the conserved quantities
where the reduction is singular: the level sets of the form 2(ky + ko)L + |P|” = 0 in the case k; + ks # 0 and
L =0 in the case k1 + ko = 0 have conical singularities that must be removed for the reduced space to be a
smooth manifold. The symplectic reduction for the spatial version of that problem is analogous.

4 Reconstructed Dynamics for a Coulomb potential

The reduced Hamiltonian systems and the corresponding reconstruction maps obtained in [10] can be used
to provide a qualitative description of the possible types of dynamics in the full eight-dimensional phase
space in terms of the properties of the dynamics of the reduced systems. In this section we consider the

interaction potential to be Coulomb
€1€2 1

Vir)= -
(r) dmegr’
where 7 is the distance between the particles and ¢j is the permittivity of the vacuum. We should remark,

however, that the description given below still holds for a class of Coulomb-type potentials of the form

_ €1€2 (’I“)
Wir) = dmeg T

where f(r) is a positive bounded smooth function. A physically interesting particular case is the screened
Coulomb potential where f(r) = e~"/"» and rp is the Debye length.
The reduced Hamiltonian systems exhibit a rich dynamical behaviour:
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e In the integrable regimes the energy levels are foliated by periodic orbits.

e Close to the integrable regimes most of the periodic orbits cease to exist but almost all orbits in the
energy levels are quasiperiodic and hence the dynamics still look regular.

e As we will state in the next section, for opposite signs of charge (except for the case Q1 + Qs = 0)
there is chaotic dynamics which, as said in the Introduction, implies non-integrability for this system.

Using the reconstruction maps we obtain that

o If k1 + ko # 0 periodic and quasiperiodic base dynamics lift to quasiperiodic dynamics under the recon-
struction map. In this case the dynamics are, generically, quasiperiodic with 3 rationally independent
frequencies. The particles rotate with these 3 frequencies about a fixed centre determined by the linear
momenta.

e If k1 4k = 0 periodic and quasiperiodic base dynamics lift to possibly unbounded motion corresponding
to a combination of a drift and quasiperiodic dynamics. The quasiperiodic dynamics have, generically,
2 rationally independent frequencies.

e Chaotic dynamics lift to chaotic dynamics under the reconstruction maps. The motion is always
bounded if k1 + k2 # 0 and typically unbounded otherwise.

5 Nonintegrability with a Coulomb-type potential and opposite
signs of charge

In this section we state two results that imply that the Hamiltonian system (7) is not integrable for the
special case of a Coulomb-type interaction potential and opposite signs of charges with Q1 + Q5 # 0: there
exist regimes of parameters and energy for which there is an invariant subset where the system contains a
suspension of a subshift of finite type and has positive entropy. Roughly, this corresponds to the existence
of a horseshoe in the dynamics and hence, from a result in [8] we obtain that, for the two degree of freedom
reduced Hamiltonian systems in [10], there is no other analytic conserved quantity independent of the
Hamiltonian function.

Since the integrable case 2; = Q5 does not have any saddle point in its reduced phase space, there are
no possibilities for a simple use of Melnikov method to obtain chaos for nearby €1 # €2s.

The condition of opposite signs for the charges is needed to guarantee arbitrarily close approaches on
the level sets of the conserved quantities of (7). The construction of a large set of collision orbits forms an
important part in the proof of existence of chaotic orbits.

Theorem 5.1. Let e; and es be non-zero and have opposite signs. Furthermore, assume that e; + es is
non-zero and fix values £ € R of L and h > 0 of H such that

(k1 + ko)l

62 h S (0,m1 +m2) . (12)

Then,

e if Oy and Qo are rationally independent then for every £ € (0,mq + msg) there are infinitely many
non-degenerate collision trajectories of energy h and for any finite set K of them there exists dg > 0
such that for every chain (Vx,);cz, ki € K, and § € (0,00) there is a unique trajectory of energy h near
the collision chain and converging to the chain as § — 0.

o If | /Qs]| is rational, say N1/Ns in lowest terms, then

(i) if min{my, ma} > m’ and Ny > 2 (resp. No > 2) there is a subinterval (my,m*) (resp. (mg,m*))
of (0,my1 + mg) such that for all & € (my1,m*) (resp. & € (mga,m*)) there are at least 4 non-
degenerate collision trajectories of energy h, and the set of chains formed from them has positive
entropy. Furthermore, if No—2 < Ny or N1—2 < Ns there is a subinterval (m”,m') of (0,m1+ms)
such that for all € € (m”,m') there are at least 4 non-degenerate collision trajectories of energy
h, and the set of chains formed from them has positive entropy.

(i1) if mg < m' < my (resp. m1 < m' < mgy) and N1 > 2 (resp. No > 2) there is a subinterval
(m1,m*) (resp. (ma,m*)) of (0,mq1 + ma) such that for all £ € (mq,m*) (resp. & € (m2, m*))
there are at least 4 non-degenerate collision trajectories of energy h, and the set of chains formed
from them has positive entropy.
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(i) if m' < min{mq, ma} there is a subinterval (m’, min{ms,mz2}) of (0, my +ms) with 2(N1+ Nz —1)
non-degenerate collision trajectories of energy h.

Given a finite set K of non-degenerate collision trajectories, there exists dg > 0 such that for every
chain (Vr,);ez, ki € K, and 6 € (0,00) there is a unique trajectory of energy h near the collision chain
and converging to the chain as § — 0.

A similar result holds for the case e; + e; = 0.

Theorem 5.2. Let e; and ey be non-zero and assume that e + es = 0. Fiz the values p € R? of P and
h >0 of H such that

f—ﬁE(Om + mg) (13)
_2h s 1101 2) -

Then,

6

e if Oy and Qo are rationally independent then for every £ € (0,my + msg) there are infinitely many

non-degenerate collision trajectories of energy h, and for any finite set K of them there exists 69 > 0
such that for every chain (Vr,);cz, ki € K, and § € (0,00) there is a unique trajectory of energy h near
the collision chain and converging to the chain as § — 0.

o If |Q1/Qs] is rational and not equal to 1, say N1/Na in lowest terms, for all & € (0,my + ma) there

is at least one chain and for & € (0,min{my,mo}) there is a set of chains with entropy at least
log(N1+ No —1). For each finite set K of non-degenerate collision trajectories there exists g > 0 such
that for every chain (Vi,);cz, ki € K, and 6§ € (0,0¢) there is a unique trajectory of energy h near the
collision chain and converging to the chain as 6 — 0.

Conclusions

This paper provides a short survey of the main results in [10]. Namely, the Hamiltonian system (7) can
always be reduced to one with two degrees of freedom. Moreover, for interaction between the two charged
particles determined by a Coulomb potential, with opposite sign charges (except for the case 1 + Q2 = 0),
this system can not be reduced further, because it contains a suspension of a nontrivial subshift of finite
type. On the other hand it is integrable for the special case of same sign charges when the particles have
equal gyrofrequencies (equal ratio of charge to mass) and on some special submanifolds.
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On an algorithm for factoring natural numbers

Ramilya Rubtsova
Kazan State University, Russia

Abstract

Let a natural N and a set of prime numbers F = {po,p1,...,p-} called factor base be given. We
describe a method for a searching pairs (A, C) of naturals satisfying to relation C = A% mod N,
where C can be factored into a product of elements of F or their powers. Such pairs are later used to
represent N as (a unique) product of prime numbers, that is to factor N. The well known method RSA
of encryption with a public key is based on a computational hardness of this problem.

1 Introduction

Let factor base F' = {po, p1, - . ., P } be the set of the first z+1 primes. A natural N is called smooth over F, if it
factored into a product N = pg° - ..., -pS* of elements of F. Smooth numbers are in a one-one correspondence
with vectors (egp,e1,...,e;). A smooth number N is a square of another number iff all powers e; in the
corresponding vector are even. Simultaneosly with smooth numbers we work with semismooth numbers. An
integer C is called semismooth over F, if C' = A2 - B for an integer A and an F-smooth integer B.

Almost all modern methods of factorization are based on the idea of searching pairs (C, D) with D being
F-smooth satisfying to condition

C*=D mod N (1)

When a sufficiently large set M of such pairs is accumulated, a system of linear equations is formed to find
a subset M C H satisfying

A= J] ¢*= ][] P=B* modN (2)
(C,D)eM (C,D)eM

for a natural B. Then a divisor of N can be found as a greatest common divisor of N and |A £ B|.
Such pairs are searching by various methods and algorithms. We describe in the next section a new
strategy for it.

2 Definitions and Algorithms

Let natural N be given such that there exist (unknown) primes p and ¢ such that N = p-¢. Our main task
is to find divisors p and ¢q. We fix a factor base F' = {po, p1,...,p.} consisting of z 4+ 1 primes. Elements of
F are much less than p and q.

A pair of integers (A, C) satisfying (1) with F-smooth C is called equation.

A pair (P, Q) consisting of semismooth P and any integer @ is called relation (or incomplete equation) if

P=Q modN (3)
The mail task is to convert relations into equations. Below we describe a conversion algorithm.

First we fix a constant InitRel denoting the number of initial relations. We need to obtain a system of
at least z + 2 equations. Since each relation can produce a number of equations, constant InitRel is chosen
several times less than z. The work of the algorithm can be divided into two stages, stage of initialization
and stage of implementation. At the first stage we form a table of initial relations.

Stage I. Initialization.

1. For each z from 1 to InitRel calculate numbers R(z) = [v/N] + 2 and Q(z) = R(z)?> — N. For each
pair S = (R(x),Q(z)) (denoting below merely S = (R, @Q)), carry out the following actions:

2. Factor R and @ into products R = C; - By, QQ = Cs - Bs, of F-smooth factors By, By and Cy, Cy do
not containing divisors from F. Numbers B, By are stored in computer memory as z + 1-dimension vectors
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with coordinates equal to powers in factoring of By, By by F. Factors Cy, C5 are stored as arrays of 16-bits
numbers. Due to the choice of (R, @) the next relation holds:

N+ Cy-By=C}- B} (4)

or, replacing B? by Bj
C? . By =0Cy By, mod N (5)

Number Cs here we call normable divisor. The idea of our method is a step by step transformation of a
considered relation into an equation by diminishing of the normable divisor.

Consider the pair S = (Cf - B}; Cy - Bs). If coefficient Cs is equal to 1 then S is an equation and is added
to the table of equations. Otherwise, it is a relation and is added to the table of initial relations.

If coefficient C5 is equal to 1 then pair (P,Q) is an equation and is added to the table of equations.
Otherwise, we add (P, Q) to the table of relations.

The stage of initialization is completed.

Stage II. Implementation.

1. Run over the table of relations to choose a pair (P, Q), P = C?-B;, Q = Cy- By with a least coefficient
C5. It satisfies to
012 . Bl = 02 . BQ mod N (6)

2. Calculate a real number ¢t = N/C5. The main idea is to search for a semismooth number D close to
t. If such D exists then multiplying both parts of (6) by D and taking the rest of factor D * Cy by module
N we obtain in the right part a smooth number Bj and a semismooth number E in left part. Such a pair
can be transformed into an equation. But even if such factor D does not exist, in many cases we can find a
suitable D’ to obtain a new relation with less factor Cb.

3. Search for semismooth numbers D in interval [k-¢ — L; k-t + L], k € {1, 2,... Bnd} for a small
constant L and a bound Bnd. Since it is preferable to find D more close to k - ¢ the internal cycle is needed
to take on k. The searching procedure for factors D is the most problem point of the construction.

4. When a suitable D = C?% - B is found (call it normalizing factor), multiply both parts of (6) by it:

D-C? . Bi=D-Cy-By mod N (7)

5. Replace factor E = D-Cy in the right part of (7) by C4 = E mod N. Due to the choice of D it should
be a small integer (or at least less than C5). Separate smooth and nonsmooth factors in the both parts of
the relation to obtain a new relation:

(C)?*-By=Ch-By mod N (8)

Call this operation normalization of a relation. After this step common divisors of Bf and B} differing from
1 can appear, so we reduce them substracting from presentation vectors of Bf and Bj; nonzero numbers
T, = mln{Bl(z), BQ(Z)} for i, 0 < ) < z.

If after normalization factor CY is not equal to 1, we obtain a new relation such that C is less Cy with a
high probability. Otherwise, the aim is reached and a new equation can be obtained. In order to make left
part of (8) equal to a square, add 1 to both B/ (i) and Bj(i) for each 4, 0 <4 < z, such that Bj is odd.

6. Continue the cycle of item 3.
7. When the cycle is completed remove the considered pair (P, Q) from the table of relations.

8. Go to 1 and repeat items 1-7 anew. Finish when the number of found equation will exceed z + 2.
Example. Let N = 1396231. Factor base B contains 10 first primes
F=1{2 357,11, 13, 17, 19, 23, 29}

We need to find z + 2 = 12 equations. Set parameters InitRel, L, and Bnd equal to 8, 5, and 10 respectively
(these parameters are to be varied). When InitRel is increased, values of L and Bnd can be diminished.
Initialization stage.
[V/N] = 1181. Pairs (P, Q) form a set {(1182, 893), (1183, 3258), (1184, 5625), (1185, 7994),
(1186, 10365), (1187, 12738), (1188, 15113), (1189, 17490) }.
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The third pair is an equation since 5625 = 32 - 5* and we immediately add it to the table of equations.
Let us consider a pair (1183, 3258). It forms a relation like (6)

72.13*=181-2-3> mod N (9)

Corresponding Cy = 181, and t = N/Cy =~ 7713,98. A cycle of step 3 of the construction gives us three
non-trivial semismooth factors (in fact, smooth) D = 7714 = 2-7-19-29, Dy = 61710 = 2-3-5-11%2-17, D3 =
54000 = 2% -3 - 5.

Multiplying (9) by these D and taking into account that 181 * 7714 mod 1396231 = 3, 181 x 61710
mod 1396231 = —338 = —2 % 132, 181 * 54000 mod 1396231 = 383, we obtain

2.73.13%.19.29=2-3% mod 1396231, 2.3.5.72.11%2.13* . 17=-2%2.32.13% mod 1396231,

24.3.5.7%.13* = 383-2.3% mod 1396231.
The equal factors in the left and right parts can be reduced. These formulas will give us 2 new equation
and a relation:

7413197292 =3%.7-19-29 mod 1396231 — Eq = (7*-13%-19-29; 3% - 7-19 - 29)

52.7%.117-13% 177 = —2-3-5-17 mod 1396231 — Eq = (5-7-11-13-17; —2-3-5-17)
Rel = (2%-5.7%.13%; 383 . 3)
Further we carry out the same calculations again for each pair in the table of relation.

After the 14-th cycle the common number of found equations became 12 that satisfied the required
condition. Solving system using Gaussian elimination we obtain a pair of numbers (A, B) satisfying to (1):
A=1184, B=75. Using Euclid’s Algorithm we can find a greatest common divisor d = ged(N, A + B) =
9cd(1396231, 1259) = 1259. Dividing N by 1259 we find the second divisor of N equal to 1109. So
N = 1259 - 1109.

3 Conclusions

The current version of the algorithm does not ensure an essential advantage to existing methods (especially
relatively to leaders, the Quadratic Sieve and the General Number Field Sieve) but if the procedure of a
searching of normalizing factors will be improved, this method can give in many cases a better performance.
An advantage of the method is that it allows for a single relation to find several equations and this gives a
hope to make it faster.
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Abstract

In Finland there are only minor differences between girls’ and boys’ mathematics achievements in the
evaluations of comprehensive school or in the matriculation examinations arranged in upper secondary
schools. Girls tend to underestimate their math ability in school. Females do not participate in advanced
mathematics courses or in mathematics-related careers at the same level as males do. The focus of my
survey study was to examine on one hand, teachers’ beliefs about differences between boys and girls as
learners of mathematics, and on the other hand, teachers’ beliefs about gender equity in mathematics
and the means they used to promote equity. Even though many of the teachers did not express very
stereotyped beliefs, a great majority held different beliefs about girls and boys and those differences
favoured boys. A great majority of teachers did not believe that they had a responsibility to address
gender equity and they did not pay any attention to the issue. Gender equity was considered self-evident
and mathematics gender-neutral. Many teachers hold very different beliefs and expectations about girls
and boys, and at the same time, they believed that they treated a student as an individual and not as a
girl or a boy.

Key Words: gender, equity, mathematics, teacher, beliefs.

1 Introduction

A basic belief underlying my presentation is that females’ social learning and beliefs about themselves with
regard to mathematics are different from those of males. There are significant sex differences in participation
rates in mathematics and science education studies, and in related careers. In the field of mathematics a
female is still a peculiarity. Mathematics has been and continues to be a critical filter to careers and
occupations, which are interesting, challenging, have high status, and are usually well-paid. There are
also other interests than personal economic ones or the interests of economic life needing high technology
employees.

Council of Europe has defined: "Gender equality means an equal visibility, empowerment and partic-
ipation of both sexes in all spheres of public and private life. Gender equality is the opposite of gender
inequality, not of gender difference." Educational gender equity in mathematics has not been reached. Fe-
males have not elected to participate in advanced mathematics courses or in mathematics-related careers at
the same level as males have. Girls tend to underestimate their math ability in school, even though their
actual performance is just as good as or better than that of the boys. Teachers’ values, expectations and
beliefs have an influence on girls’ self-confidence in mathematics.

The entire field of mathematics might be enriched if more young females were given the opportunity
to grow into mathematical scholars and give their unique contribution. Elizabeth Fennema (1990) wrote:
"Mathematics is a unique product of human culture. Permitting females to understand this culture is
important both for their own appreciation of the beauty of mathematics and the transmission of this culture
to future generations."

2 Gender equity

In this presentation the word equity is used instead of equality. In some aspects "equality" is not synonymous
with "equity" and, thus, rather than striving for equality in the meaning of ’sameness’ amongst girls and
boys, teachers should promote equity which reflects the needs and strengths of both groups. Judgements on
educational equity have been based on three different definitions (1) equal opportunity, (2) equal treatment,
and (3) equal outcome.

(1) Equal opportunity. Many teachers believe that equity has been reached since there are no formal bor-
ders and the co-educational school system provides equal opportunity to elect mathematics. However
there are far more boys than girls in advanced math classrooms.
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(2) Equal treatment, the second definition of equity, is also problematic. Teachers may believe that they
treat boys and girls the same way. Classroom observations show that this does not prevail. Males
interact more frequently with their teachers. Teachers have different achievement expectations and
they vary their explanations for success and failures depending on the sex of the student. Even, if the
teacher strives to equal treatment of both sexes, the personal experiences are not similar; girls and
boys may perceive it differently.

(3) Gender equity as equal outcome. If equity in mathematics is defined as equal educational outcome,
there should not be gender differences in achievement or participation or in how males and females feel
about themselves and mathematics. This third definition is consistent with the definition of equality
Council of Europe has given i. e. to require equal visibility, empowerment and participation of both
sexes.

3 Results of the study on "Girls and boys and equity in mathemat-
ics

3.1 Beliefs about boys and girls as learners of mathematics

Most teachers, 86 %, believed in gender differences in mathematics. The most prominent difference concerned
working. Careful hard work is addressed to girls and boys are lazy. Secondly the use of cognitive skills
seemed different, girls tend to routines and boys use their power of reason. The third difference was found
in attitudes, boys are willing to take risks but girls lack self-confidence. The great majority of teachers
mentioned different factors for girls’ and boys’ high achievement. The characteristics of high achieving boys
were more varied and many-sided than those of girls.

Even though many of the teachers did not express very stereotyped beliefs, a great majority held different
beliefs about girls and boys and those differences favoured boys. The most emergent was the belief in girls
employing inferior cognitive skills. No differences were found between the beliefs of female and male teachers.

3.2 Beliefs about gender equity

Only one third of the teachers regarded the equity issue necessary to be brought up. Some of the teachers
refused to answer questions concerning equity and wrote: "Mathematics and teaching mathematics is gender
free." The teachers were categorized under following labels according to their answers:

1) Students have no gender. Approximately 41

3

(1)

(2) Equal treatment. 38

(3) Girls’ and boys’ needs. 21
(4)

4) Favour the weaker. The teachers of this study did not accept this principle of compensation in math
teaching and the alternative of "favouring the weaker one" was rejected by all teachers. The Finnish
law on gender equity says that it is possible to deviate from equal treatment especially in the favour
of females, if it strives to realize the aims of the law for equality. This compensation is not regarded

as discrimination.

4 Conclusions

A great majority of the teachers of this study held different beliefs about girls and boys and those differences
favoured boys. Teachers’ beliefs and (unconscious) expectations discovered a tendency to attribute boys’
success to talent and girls’ success to hard work. Some of the teachers were concerned about boys, who were
underachieving or might fall aside, but girls were supposed to manage thanks to their consciousness. Boys
attained most of teacher attention. But this situation was not seen to violate equity. Gender equity was
considered self-evident, so it’s no need to make any fuss about it and furthermore mathematics is gender-free.

Valerie Walkerdine published 1989 ’Counting Girls Out’, a book that changed perceptions about the
gender problem. The mainstream analyses of the problem had located one or other "lack’ in girls and women
as the root of the problem. In the new edition in 1998 Walkerdine writes in the afterword: "Considerable
concern is now being expressed about the relatively poor school performance of boys related to girls....Girls’
attainment in school is not celebrated as an index of cleverness, brains or intellectuality. Rather those very
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factors that [year 1976] were considered a problem in relation to Mathematics, namely rule-following, rote-
learning, neatness, good behaviour and so forth, are presented as the keys to female success, downgrading
that success, while suggesting that classrooms are too feminine and that masculinity is downgraded and
discouraged. The ideal child it seems is still a boy, a boy indeed with potential, whose success is being
thwarted by women and girls, indeed by the very notion of female success."
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On entire solutions of some inhomogeneous linear
differential equations in a Banach space

Sergey Gefter*and Tetyana Stulova'

Abstract

Let A be a closed linear operator on a Banach space having a bounded inverse operator and f be an
entire function of zero exponential type. The problem on the existence and uniqueness of some entire
solutions of the differential equation w’ = Aw + f(2) is considered in the paper. Moreover the explicit
formula for zero exponential type entire solution is founded.

1 Introduction

The present paper studies special holomorphic solutions of inhomogeneous linear differential equation

w' = Aw + f(2) (1)

in a Banach space. Here A is a closed linear operator on a Banach space E with the domain of definition
D(A) (D(A) is not necessarily dense in F), having a bounded inverse operator. These operators appear under
studying some boundary-value problems for parabolic type equations (see [1] - [4]). For example this case is
appeared in the problem on the heat conduction on the finite segment [0, ] with zero boundary condition.
In this situation we can consider E = C0,[], and operator A = % with the domain of definition D(A) =
{ue C?[0,1] : u(0) = u(l) = 0}. Studying Equation (1) we suppose that f(z) is an E-valued function, which
is holomorphic in a neighborhood of zero and under a solution of the equation we understand a holomorphic
in the neighborhood of zero E-valued function w(z), such that w(z) € D(A) and Equation (1) is fulfilled in
the same neighborhood. It is well-known that if the operator A is bounded then under any initial condition
wg € E the Cauchy problem for Equation (1)

w = Aw+ f (2)
{ w (0) = wo @)
has always a unique holomorphic solution
w(z) = g+ [ eEOF Q) dg 3)
0

(see [1], [5], and [6]). The properties of holomorphic and entire solutions of the equation
w'(z) = Aw(z) + f(2) for the case when the operator A is unbounded were studied in numerous works ( see,
for example, [1], [7] - [9])-

The main result of the paper is the existence proof and the uniqueness one of an entire solution of
zero exponential type in a case when f(z) is an entire function of zero exponential type (see Theorem
2.3). Let us recall that f(z) is of zero exponential type if for f(z) the following condition is fulfilled:
Ve >03C. >0Vz e C:|f(2)] < C.el?l. This case is even interesting for a bounded operator A, because
it is clear that the solution (3) of Cauchy problem (2) can not be of zero exponential type. Besides that
for this case we obtain an explicit formula for solution of Equation (1). Note, that we get the solution
of Equation (1) of zero exponential type under a single assumption on invertibility of A, and we do not
impose another conditions on its resolvent. The proof of the main theorem is based on studying the implicit
differential equation Tw’ + g(z) = w, where T = A~! and g(z) = —A~'f(z). The holomorphic solutions
behavior of the implicit equation mentioned above were studied with another technique in [10].

*Kharkov National University; Department of Mechanics and Mathematics, 4 sq. Svoboda, Kharkov, 61077 Ukraine
fNational AeroSpace University (KhAI), 17 st. Chkalov, Kharkov, 61070 Ukraine
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2 Main results
Let E be a Banach space and g : C — E be an entire function.

Lemma 2.1. The function g(z) is of zero exponential type if and only if ¢'(2) is of zero exponential type.
Moreover the following condition is fulfilled
Ve>03M >0Vne NU{0}: |lg") (2)]| < Menefl®l, zeC.
[ee]
Proof. Let g(z) = Y. amz™ have zero exponential type and € > 0. As /m! ||a,,|| — 0 then
m=0
JC>0Vm e N: m!ay,|| <C-e, ie. [an| < C%. Then Hg(”) (2)|| =

Joo(m—(n—1))z"""|| = Z (m —|—'n) Qman 2 || <
= ml
SZTHam+nH-\z|§Z%6+ :CEZ = Cemesl
m=0 : m=0 m=0
Conversely, let ¢’ () = 3 Br2* have zero exponential type. Then
k=0

z o0 k/
g(2)=g(0)+ [g (£)dé =g (0)+ Z k—Hz and flk' kﬁfl kkljlfk — 0, that is the function g(z) has

0 k=0
zero exponential type too. O

Let T : E — FE be an arbitrary bounded linear operator. At first consider the inhomogeneous implicit
differential equation of the form

Tw' + g(z) = w, (4)

Theorem 2.2. Let g be of zero exponential type. Then Equation (4) has a unique entire solution of zero

exponential type w (z) = Y. T"g™ ().
n=0

Proof. Let g(2) = > amz™ and 0 < e < HTl“H Then by Lemma 2.1
m=0

dC >0Vne N : ||g(" (2)|| < Cem esl?l, 2 € C. Now show that the series Z T7g(™ (2) converges uniformly

in any disk and the sum is an entire function of zero exponential type. Let |z| < R. Then

|Tmg™ (2)|| < C-|IT|" - emelsl < C||T|" e = CesFi(e - ||T|)" and ;}( el < +oc.

Therefore the series > T™g(™ (z) converges uniformly in the disk |z| < R. So the function

n=0
(o)
w(z) = . T"g™ (2) is entire and it is easy to check that w(z) is a solution of Equation (4). Besides that
n=0

lw)] < > HT"g(”) (2)| < Cesl?l S (e||ITI)™ = 1—ECHTH -efl?l| z € C. Hence w(z) has of zero exponential
n=0 n=0

o]
type. Prove the uniqueness of the entire solution of zero exponential type. Let w (z) = > ¢,2™ be an entire
n=0
solution of zero exponential type for the homogeneous equation Tw’ = w. Then one can easy show that
co = n!T"c, (see Lemma 2.1 [10]). Therefore \/||c0H < /n!en - \/||T”H As /n!||ep]l — 0 and /|77
converges to the spectral radius of T, then {/]co|| — 0 that is co = 0. Note that the function w*)(z) satisfies
the homogeneous equation Tw’ = w and it is an entire function of zero exponential type (see Lemma 2.1).
Therefore ¢, = 0, k € N, that is w = 0. Theorem is completely proved. O

Theorem 2.3. Let A be a closed linear operator on a Banach space (domain of definition D(A) of A is not
necessarily dense). Consider the following differential equation

w' = Aw + f(2). (5)
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If the operator A has a bounded inverse one and f(z) is an entire function of zero exponential type (that
isVe > 03C. >0Vz € C: |f(2)| < C.e?l), then Equation (5) has a unique entire solution of zero

[ee]
exponential type w(z) = — 3. A=+ () (2). Moreover the Cauchy problem
n=0

w (0) = wo

{ w' = Aw + f(2)

has an entire solution of zero exponential type if and only if wo + S, A=+ (") (0) = 0.

n=0
Proof. Let T = A~ and g(z) = —A~1f(z). Then D(T) = E, T is bounded, g(z) is an entire function of
zero exponential type and Equation (4) is equivalent to Equation (5). According to Theorem 2.2 Equation
(5) has the unique entire solution of zero exponential type

w(z) = Z:o Trg™ (2) = — Zo A=(HD £ (2) and w(0) = — 20 A=+ £(0) (0). Theorem is proved. [

Note that in the case when in Equation (5) the function f(z) is not entire, and it is only holomorphic in
the neighborhood of zero, then Equation (4) can not have a holomorphic in a neighborhood of zero solution
at all.

Example 2.4. Let e1,es,... be an orthonormalized basis in space. We define an operator A on the basis
vectors as Aeg = eq, Aes = 2eq, Aey = 3es, ..., Ae, = (n — 1)e,—1,n > 2. Now we extend the operator A the

following way A ( > unen) def > (n—1)upen—1 in its natural domain of definition
n=2 n=2
D(A) = {u =S upen: S (n—1)7u,|’ < +oo} . It is easy to check that A is a closed invertible
n=2 n=2
operator. If f(z) = —1%- and w(z) = ) wy, (2) en, then Equation (5) has the form as the infinity system
n=2
of differential equations
0= w2 (Z) - 1iz
wh (z) = 2ws (2)
wh () = 3w, (2)
wy (2) = dws (2)

Hence, we get the formal solution of this system

1

w2 (Z) = l—zl

w3 (2) = 572
1

wa (2) = 555y

wn(z):ﬁWM"LZ?

But w (2) is not contained in the domain of definition of the operator A, because for z = 0

= 1 1
Z (n—1)%- 7 -2 — 100
ors (n—1)7° |1-2|

The proof technique of Theorem 2.2 make possible to deduce results on an existence and uniqueness of
solution of Equation (4) for other classes of entire functions. As an example we consider the result relating
to classes of all entire functions. Here it is naturally to appear the strong restrictions to the operator 7'

Theorem 2.5. Let T : E — E be a bounded quasinilpotent linear operator (i.e. the spectrum o(T) of
oo

T reduces to the only point A = 0), Fredholm resolvent Fr (z) = > T"z"™ of T be of exponential type,
n=0

oo
and g(z) = > amz™ be an arbitrary entire function. Then Equation (4) has a unique entire solution
- m=0
w(z) =Y T"g™ (2).
n=0
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Proof. As Fr(z) is of exponential type, then M Y/n!|T™|| < oo, that is

iC; >0, M >0Vn € N: ||T”H§C'1-]\fl—;l. NowletR>O and 0 < e <
limo V| am|l = 0. Therefore 3Cy > 0Vm € N: ||ayy,|| < Co - ™. Then

s As g(2) is entire, then

g™ (2)] :‘ Z ampm(m—1)...(m—n+1)z"t"| = H Z m+n) QmiynZ H <

Z (m+n)! el - [27] < Z (m+n)lC MR 2™ = enCly Z (m+n)l( 2™ (17“5?% From here
for |z| < R we obtain

n,(n n n M” nlChe™  _ CiC Me \"
||T g™ ( H <[ Hg( ) H <Ciore (1—5\226”“ = 1o (1*€|€2|> ’

Since 1_LE‘|SZ| < 1 then the series Z T”g(") (2) converges uniformly in the disk |z| < R. So the function
n=0

o0
w(z) = Y T"g™ (2) is entire.
n=0
o0
Prove the uniqueness of the entire solution. Let w(z) = > ¢,2" be an entire solution for the homo-
n=0
geneous equation Tw’ = w. Then one can easy show that ¢g = n!T"¢, (see Lemma 2.1 [10]). Therefore

\/HCQH < Vlenl /n! HT"H As ¥/llen|| — 0, and {/n!||T™|| is bounded, then {/|col| — 0, that is ¢ = 0.

Note that the function w(®)(z) satisfies the homogeneous equation Tw’ = w and it is an entire function.
Therefore ¢, = 0, k € N, that is w = 0. Theorem is completely proved.

O
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Collective animal behaviour: coming together

David J. T. Sumpter
Mathematics Department, Uppsala University

These notes are taken from chapter 2 of the book, Collective Animal Behaviour, forthcoming
from Princeton University Press.

Animal groups vary in size from two magpies sitting on a branch to plagues of millions of locusts crossing
the desert. Not only do the sizes of groups vary between species, but they can change dramatically within
species. In some cases, a change in group size depends on changes in the environment. For example, locust
outbreaks are thought to originate where resources are patchily distributed, causing locusts to move towards
these limited resources (Collett et al., 1998; Despland et al., 2004). In other cases, individuals in similar
environments are found in very different-sized groups. Fishermen are used to such intrinsic variation in fish
school size. Some days a net contains three fish, while the next day it contains tens of thousands (Bonabeau
& Dagorn, 1995). Human settlements also show similar variety in size, from tiny villages to massive cities,
with differences in size arising without large differences in the environments in which they were originally
founded (Reed, 2001).

Can we then make general predictions about animal group sizes? In this chapter I approach the group
size question from the two directions of functional and mechanistic explanation. The functional approach
looks at how the costs and benefits of group membership can be used to calculate the optimal group size,
at which individuals maximise their fitness, and the stable group size, at which no individual can improve
its fitness by moving to another group. The mechanistic approach attempts to explain the large variation in
group sizes observed empirically. By describing the mechanisms by which individuals join and leave groups
a distribution of group sizes is predicted.

2.1 Optimal group size

There are many ways an individual can benefit from being a member of a group. The movement of a water
skater as a predator approaches both confuses the predator and alerts other skaters of its presence (Treherne
& Foster, 1981); the starling in a flock can invest less time scanning for potential danger and more time
probing the ground for food (Fernandez-Juricic et al., 2004); the homing pigeon released with members of
its roost can shorten its route home (Biro et al., 2006); the fish at the front of a school is less likely to be
attacked than a straggler outside the group (Parrish, 1989); and the pelican at the back of a v-formation
saves energy in the wake of those in front (Weimerskirch et al., 2001). These and many other experimental
observations explain why individuals form and join groups. There are also always costs associated with group
membership. While some less obvious costs, such as increased parasite burden (Brown & Brown, 1986), have
been demonstrated, they have not been studied empirically to the same degree as benefits (Krause & Ruxton,
2002). In part this is because it is reasonable to assume that as group size increases, eventually so too does
competition for local resources. For an overview and categorisation of the different costs and benefits of
group living see Krause & Ruxton (2002). For any single species, Brown & Brown’s (1996) study of cliff
swallows is probably the most comprehensive investigation of the costs and benefits of group living.

The functional approach to grouping considers how natural selection will act to shape group size. Indi-
viduals which live in groups where benefits outweigh costs will have a higher fitness, i.e. relative probability
of survival and reproduction, than those in groups where the costs outweigh benefits. Thus a starting point
for making predictions about how group sizes will evolve is to identify a group size fitness function. This
fitness function can be calculated as the benefit minus the cost for individuals in groups of different size
(figure 2.1).

The main practical consideration in determining the group size fitness function is finding a common
currency or units, such as energy intake or time budgets, in which to measure costs and benefits (Krebs &
Davis, 1993). For example, Caraco used a theoretical model of the percentage of time yellow-eyed junkos
feed, fight with each other and scan for predators to make and test predictions about how behaviour changes
with group size (Caraco, 1979b; Caraco, 1979a) and how group size changes with food supply and predation
risk (Caraco et al., 1980). Whatever the currency chosen, a general observation about the group size function
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L Benefit

Fitness

Group Size
Figure 2.1. Derivation of a theoretical group size fitness function, f(n), where n is group size. The thick
dark line is the group size fitness function. This is derived by subtracting the cost function (-.) from the
benefit function (-). The cost function in this case is 3.75/(n + 1.5) which is a typical predation dilution
curve: the rate at which an individual is attacked decreases inversely proportionally to the number of group
members. We suppose the benefit function relates to rate of food intake, and is where K = 10 is the group
size at which individuals forage with exactly half the efficiency they forage with when alone. The optimal
group size no is the value of n which gives the maximum difference between costs and benefits. The Sibly
group size n, is the maximum value of n for which f(n) > f(1).

is that as groups become very large the costs will always exceed the benefits. Eventually local competition
for resources outweighs any other benefits. The result of this observation is that the fitness function will
have at least one maximum. Figure 2.2 gives three examples of theoretical group size fitness functions. In
general, even if the group size has more than one local maximum, there is only one global maximum. This
maximum is known as the optimal group size.

045 Sibly group size (n,) 1 045 | o5 Optimal group size (n)

Optimal group size (n,)

04 Optimal group size (n)

Fitness: f(n)
Fitness: f(n)
Fitness: f(n)

Sibly group size (n)

sibly group size (n)

N 0 5 10 15 2 2 3 % 0 46 0 o 5 10 15 20 %0
Group Size: n Group Size: n Group Size: n

Figure 2.2 Theoretical group size fitness functions. (a) when there is a single maximum at a group size
of one it is never advantageous for an individual to join a group; (b) a single maximum gives the optimal
group size no, while the group size which has the same fitness as an individual on its own gives the Sibly
group size, ns; (c) the fitness function has two local maxima but the global maximum is the optimal group size.

Determining the group size fitness function directly from the energy or time budget of individual animals
for different group sizes is difficult in practice, not least because some unknown factor is easily omitted. There
are however numerous empirical studies that have been able to relate group size to a particular variable that
is likely to contribute to fitness. Pride (2005) found that stress, measured by levels of cortisol concentration,
was higher for individuals in smaller and larger groups of Lemur. Individuals in intermediate sized groups
showed lower stress (figure 2.3a). Brown and Brown (1996) found that during years where overall survival
of young was low, cliff swallows in colonies of between 30 and 80 nests produced more surviving young than
smaller or larger colonies. Due to difficulties in measuring survival of these offspring, they were unable
to give a clear estimate of survival to adulthood. Without this estimate it is difficult to measure lifetime
reproductive success, which accounts for the total number of individuals passed from one adult to the next
generation of adults and is thus the preferable measure of fitness. Female lifetime reproductive success has
been measured in social spiders (figure 2.3b) and individuals in intermediate sized groups of 23 to 107 had
highest fitness (Aviles & Tufino, 1998).
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Figure 2.3 Empirical group size fitness functions. (a) Female cortisol levels for female ring-tailed lemurs
averaged throughout the year per individual (Pride, 2005); (b) Proportion of surviving offspring per female
in the colony for the social spider Amelosimus eximius (Aviles & Tufino, 1998).

2.2 Stable group size

While a particular group size may be optimal, this does not imply that it is stable. One theoretical prediction
is that stable group sizes will usually be larger than the optimal group size. The argument for this prediction,
first proposed by Sibly (1983), is that there is a benefit for individuals on their own or in smaller groups to join
a group of optimal size, thus increasing the group size. More rigorously, this argument is made by considering
a series of individuals arriving sequentially and choosing between a number of available resource sites. We
assume their choices will be made on the basis of the fitness function, f(n), in figure 2.2b. Further assuming
there is no intrinsic difference between sites, the first arriving individual will choose a site at random. The
second arriving individual will then choose the same site as the first, since it has higher fitness there than
on its own. Further individuals will continue to make the same decision provided the fitness gained from
joining the group is larger than that of being on their own, f(n+1) > f(1). The important observation here
is the advantage to the arriving individual to join a group even after that group has exceeded the optimal
group size, no. If ng is the largest group size for which f(ns) > f(1) then, under this process, all groups will
become of size ns. For most realistic fitness functions ns > ng and the resulting group size will be larger
than the optimal size (although see Giraldeau & Gillis (1985) for an exception to this rule where ns; = ng).

The above argument has led some researchers to refer to ns as the stable or equilibrium group size
(Beauchamp & Fernandez-Juricic, 2005; Giraldeau, 2000; Clark & Mangel, 1986). This interpretation sug-
gests a paradox whereby groups reach a stable size for which membership confers no benefit over being alone,
thus calling into question how grouping can evolve under free entry (Giraldeau, 2000; Giraldeau, 1988). The
paradox arises however under three very strict, and in most cases biologically unrealistic, assumptions about
how groups are formed: individuals (a) arrive sequentially starting with empty sites; (b) are unable to leave
once they have chosen a site; and (c) are naive to the order in which they arrive.

What happens if we relax assumptions (a) and (b) and individuals are free to move between sites? Box
2.A describes a simulation model, also based on an argument first given by Sibly (1983), in which individuals
are free to leave their current resource sites and join a site with higher fitness, with fitness being determined
by the same function as in figure 2.2b. Figures 2.4a and 2.4 b show the outcome of this model, given an
initially random distribution of individuals between sites. Despite the highly variable starting distribution,
the groups quickly converge to a stable size distribution with a mean slightly larger than the optimal group
size. This stable group size distribution is not unique. Figures 2.4c and 2.4d show that if individuals are
initially distributed with sizes close to ng then the mean group size remains close to nyg.

In fact, most distributions of group sizes where all individuals are in groups of size greater than that
which is optimal quickly become stable without greatly increasing in size. So unless the initial group size
distribution has mean ng there is no reason that it should be favoured as the mean stable group size over
any other mean group size greater than no. Indeed, the simulations suggest that for a wide range of initial
group size distributions, stable group sizes will be only slightly larger than optimal.
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Figure 2.4 Outcome of Sibly’s stable group size model for r = 10 (a,b) and r = 2 (c¢,d). (a) and (c) show
the time evolution of the group size distribution for 30,000 time steps. Shading indicates proportion of
sites occupied by a particular number of individuals on a particular time step. (b) and (d) show the stable
distribution of site occupation when no further moves are possible for the simulation. Crosses show group
size fitness function and thin dotted line gives the Sibly group size, n;.

Box 2.A Sibly’s stable group size model

Consider an environment with s = 2000 available sites. Assume initially that at half the sites, « = 1 to 1000,
the number of individuals at the site, n;(0), is drawn from a uniform distribution with minimum 10 — r and
maximum 10 + r. Thus the average number of individuals at these occupied sites is 10 individuals, equal to the
optimal group size in figure 2b. The other half of the sites, ¢ = 1001 to 2000, are unoccupied, i.e. n;(0) = 0. The
unoccupied sites ensure that grouping in the model does not result simply from a limitation of available sites.
The rules of the model are as follows. On each time step t a random individual is picked. It then calculates
the fitness function for all of the sites were it to move to that site, i.e. f(n;(t) + 1) for all sites apart from
the site i that is already at. In this case we use the group size fitness function shown in figure 2.2b, which is
f(n) = nexp(n/10) If f(n;(t) +1) > f(n;(t)) for some j then the individual moves to the site which has the
maximum value of f(n;(t)+ 1). If more than one site has the same value of f(n;(t)+ 1) then one of these sites
is picked at random. This process is continued until no further moves are possible. An example outcome of this
process is shown in figure 2.4. For both wide (r = 10) and narrow (r = 2) initial distributions of group sizes,
small groups quickly reduce in size as members join larger groups. The optimal group size is unstable in both
cases and is smaller than the stable group size. The stable group size differs with r, with larger stable group
size for larger initial variation in distribution amongst sites. In no case is the stable group size as large as the

Sibly group size, ns.

There are of course many realistic situations in which individuals do arrive sequentially at a resource
site and are unable to leave without incurring a cost. A typical example is birds arriving at a nesting site.
However, before we predict stable group sizes close to ns for sequential arrival we must consider what occurs
if we remove assumption (c¢) and allow individuals to know how many individuals will arrive after them. In
this case, it is best for early arrivals to occupy empty resource sites, secure in the knowledge that it will be
best for later arrivals to join them. Given full knowledge of the sequence of arrivals it is conceivable that
the stable strategy will result in group sizes very close to the optimal. A simple example of this can be
constructed by considering four birds arriving with a group fitness function: f(1) = 1; f(2) = 3; f(3) = 2;
and f(4) = 1. To optimize its fitness the third arrival must choose a site on its own (if the second has
not already done so) thus ensuring that the fourth joins it. Turning the so-called group size paradox on
its head, we see that even if some of the early arrivals are not joined, they will still have a fitness equal to
that obtained if they ended up in a group of size ng. Thus even with a high degree of error group sizes will
in general be less than n,. Although a complete knowledge of arrival sequence is not particularly realistic,
changes in strategy dependent on arrival position are observed in birds (Brown & Brown, 1996 chapter 13).
The above discussion highlights some of the difficulties in making general predictions about stable group
sizes using the evolutionarily stable strategy models first proposed by Sibly. I would agree with the careful
conclusion of Sibly (1983): "flocks of optimal size are unstable and will tend to increase in size". However,
group sizes only slightly above optimal are stable and only under very limited set of assumptions is there a
group size paradox. I thus follow the wording of Krause & Ruxton (2002) and call ng the Sibly group size.
The stable group size lies somewhere between the optimal, ng, and the Sibly group size, ns. Group size is
likely to be highly dependent on the mechanisms through which groups form and the information available
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to potential group members about whether further individuals will join a group.

2.3 Natural group size distributions

How do the actual sizes of animal groups compare to theoretical predictions about optimal and stable group
sizes? Data to answer this question is lacking in many of the cases where group size fitness functions have
been calculated, and where it is available it is often ambiguous (Krause & Ruxton, 2002). One notable
exception is Aviles & Tufino’s (1998) study of social spiders. Figure 2.5a shows the distribution of group
sizes of spider colonies under natural conditions. Compared to the predicted optimal group size of 50 (figure
2.3b) the mean group size is 425.6. Moreover, of the approximately 18,500 individual spiders surveyed, only
300 were in the optimal group size category of between 50 and 100 spiders. There is little evidence that the
spiders usually obtain the optimal group size.
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Figure 2.5. Group size distributions for (a) social spiders (Aviles & Tufino, 1998); (b) roe deer in open
cultivated planes with population density of 16-18 deer per ha (Gerard et al., 2002) (¢) American buffalo
(Sinclair, 1977). Here the data is plotted on a log-log scale. The solid line is the best linear regression to
all points excluding the first point and gives log(frequency)= 8.76 — 1.04 - log(group size); (d) Frequency of
catches in terms of tonnes of Tuna fish caught in a net with a 2km perimeter (Bonabeau & Dagorn, 1995).
The fitted line has slope —3/2, giving a power law exponent of o = —3/2.

While these observations do provide support for the hypothesis that stable groups are larger than optimal,
the most striking feature of the spider colony size distributions is that they are highly skewed. There are lots
of small groups and a few exceptionally large groups. Similar group size distributions are seen throughout
the animal kingdom. In addition to social spiders, figure 2.5b-d shows group size distributions for two
mammalian herbivores and tuna fish schools. All these distributions have long tails corresponding to groups
that are often several scales of magnitude larger than the modal group size.

Long-tailed group size distributions are clearly not expected from stable group size theory, which predicts
a very narrow group size distribution (figure 2.4). This discrepancy between theory and data led Gerard et
al. (2002) to question the validity of the stable group size approach to predicting group size. They suggested
that although natural selection may play some yet to be established role in determining group size, the
dynamics of fission and fusion in mobile mammalian and fish groups means that the sizes of the groups
individuals find themselves in will vary widely, are seldom optimal and certainly not stable. Aviles & Tufino
(1998) are also sceptical about stable group size theory even for immobile spider aggregations. They cite
population growth and dispersal costs as reasons for a wide range of group sizes. Although I would be less
inclined than Gerard et al. to dismiss the optimal and stable group size approach entirely, it is clear from
these empirical studies that a theory is needed which explains not only why groups of particular sizes arise,
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but also why there is such a variation in the size distribution of these groups.

2.4 Power law distributions

Long tailed distributions can often be described as a power law. A simple test of whether group size
data might be power law distributed is to plot the logarithm of the group size against the logarithm of the
frequency. If the data in this log-log plot is fitted by a straight line then it suggests that the data is power law
distributed. Specifically, if the slope —a« fits the data then a group size n occurs with frequency p(n) oc n ™.
« is referred to as the exponent of the power law.

Figure 2.5¢ shows such a log-log plot for American buffalo group sizes. This data fits a power law with
exponent a = 1.04. Figure 2.5d shows that the frequency of sizes of tuna fish catches is also fitted by a
power law, with exponent o = 1.5, over several orders of magnitude. Once group sizes become very large,
frequency distributions usually tail off exponentially. The tuna fish data thus fits a truncated power law: a
power law over several orders of magnitude but then tailing off exponentially for very large groups. Since
there is usually a limit to how large a real animal group can get we expect most power laws to be truncated
at some point. Truncated power laws give a reasonably good fit to many data of animal group sizes from
spiders (Aviles & Tufino, 1998), fish (Bonabeau et al., 1999; Niwa, 1998; Niwa, 2003), seals (Sjoberg et al.,
2000), and mammalian herbivores (Sinclair, 1977; Gerard et al., 2002).

Long tails in frequency distributions cause great excitement in the minds of theoretical physicists. These
distributions are thought to characterise systems with highly non-linear dynamics or amplification of stochas-
tic fluctuations (Sornette, 2004). How are we meant to make biological sense of these ideas? We can start by
investigating the assumptions underlying mathematical models that generate power laws. Do models which
generate power laws have properties we can relate to the way individual animals interact? It turns out that
there are a number of models, each based on reasonable biological assumptions that can generate power laws
with slopes that match the data (Newman, 2005; Sornette, 2004). The problem is determining which is most
realistic and could actually account for the observations.

2.5 Merge and split models

Power law distributions can be generated from very minimal assumptions about animal behaviour. Bonabeau
& Dagorn (1995) proposed a model for animal grouping based on a single assumption: that when groups
meet they always merge to form a larger group. The model has s sites, each containing a group of size n;(t)
at time step t. On each time step of the model each group picks a new site to visit at random. If two or
more groups choose the same site then they merge, e.g. if the group at site ¢ and the group at site j both
move to site k, then ng(t 4+ 1) = n;(t) + n;(t). The resulting model is identical to a model of particles that
stick together (Takayasu et al., 1988). When these particle (or animal) groups are equally likely to pick any
of the available sites, and particles are added to the system at a constant rate, then the probability that a
group is of size n is proportional to n~3/2 (Takayasu, 1989). This was very close to the power law exponent
observed in the catch sizes of tuna (figure 2.5d).

Despite the claim that the above model might provide a universal law for fish school distributions, species
other than tropical tuna do not have exponents of —3/2. Using computer simulations and further analytical
results (Takayasu, 1989; Takayasu et al., 1991), Bonabeau (1999) argued that exponents of between —4/3
and —3/2 could be accounted for by a reduction in the spatial dimension of the fishes’ habitat. For example,
attraction to specific resource sites. However, empirically measured exponents have a much wider range of
between —0.7 and —1.8 (Bonabeau et al., 1999; Niwa, 1998). A further limitation of the model is that it
requires that individuals are continuously added, so that although the scaling rule continues to hold the
population increases to infinity with time. If this assumption is removed then the theoretical exponent is —2
and, even less realistically, local populations at sites can become negative (Takayasu et al., 1991). There may
be ways to overcome this technical limitation and recover an appropriate range of exponents, but these have
not been fully investigated. In summary, while Bonabeau and Dagorn’s work was useful in showing power
laws in group size distributions, the theoretical model they used is not particularly biologically realistic nor
a robust explanation of the available data.

Despite the limitations of early models, there does appear to be a universal scaling law for fish school sizes.
Niwa (2003) took all available data on fish school sizes and re-plotted group sizes (N;) versus frequency (W),
this time dividing the group sizes by the expected group size experienced by an individual. This expected
group size is given by
g 2
<N >,=&= 1" ]]\\f;gvvl

i=1 ViVVi
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where g is the number of group size classes. < N >, is not the same as the observed mean group size, which
is rather >7_, N;W;. Rather, < N >, is the expected group size of an individual picked at random. < N >,
is always equal to or larger than the expected group size, since we are more likely to pick an individual in a
larger group. Niwa found that by normalizing the data in this way, distributions for six different fish species
all fall on the same curve (figure 2.6a). All these distributions had exponents close to —1 until normalized
group size reaches one, at which point they tailed off exponentially.
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Figure 2.6. Niwa’s scaling of fish and mammal group size distributions (Niwa 2003). (a) Empirical dis-
tribution of pelagic fish school sizes, six different species represented by different symbols, scaled by the
average group size experienced by an individual. The solid line is equation 2.1. (b) Empirical distribution
of mammalian herbivore group sizes, six different species represented by different symbols. The solid line is
equation 2.1 and the dotted line is a modified version of equation 2.1 with one extra parameter (see Niwa
2003 for details).

The data is well fitted by the predictions of a simple model of group aggregation and breakup. The
model’s assumptions about aggregation were the same as Bonabeau and Dagorn’s - groups move on each
time step and when they meet they always merge - but Niwa further assumed that on each time step there is a
fixed probability that groups break apart, splitting in to two groups the size of which is uniformly distributed
(see Box 2.B for details of the model). The central prediction of this model is that the probability that a
site contains a group of size N is

N e N/<N>p
—1 N e
W(N) o« N e;vp[ <N, (1 5 )] (2.1)

This equation captures the qualitative observation that group size distribution at first decreases inversely
with NV, but once the group size reaches < IV >, it starts to decrease exponentially. It fits both simulations
of the above model (figure 2.7b) and the available fish data (figure 2.6a).
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Box 2.B Niwa’s merge and split model

Assume that space is divided in to s sites on which a total of m individuals are initially randomly distributed.
The n; individuals on site i are said to constitute a group. On each time step there are two stages to the model:
move and split. . First all groups move to a new site chosen uniformly at random. If two groups of size ni and
nj meet at site k then they form a new group nj = n; + n;, thus groups always merge when they meet. The
same rule applies if three or more groups meet. After moving each group with a size greater than or equal to 2
will split into a pair of groups with probability p. When a group splits the size of the two components is chosen
uniformly at random, so that all group sizes are equally likely. On the next time step the two split groups move
separately to new randomly chosen sites, as do all unsplit groups, and the process continues. Figure 2.7a shows
a time series of the number of individuals occupying a randomly chosen site for a simulation of this model for
parameters s = m = 2000 and p = 0.3. Figure 2.7b shows the distribution generated by this simulation over
100, 000 time steps.

Niwa derived equation 2.1 by expressing the above simulation model in terms of a stochastic differential equation.
He then used simulations to determine a form for the variance in these models and applied results from Richmond

2001) to integrate the model and obtain W (N) oc N~ texp | — N 1-— e N/ <N>p . Niwa further showed
<N> 2
P
that for a variety of individual based models of schooling

where A is the probability per time step that a school merges; p is the probability per time step that a school
splits; p is the population density, i.e. p = 229:1 N;W;/s; and ¢ is the proportion of the s sites occupied by a
school (see chapter 5 Box 5.A for details of spatially explicit models).
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Figure 2.7. Niwa’s merge and split model (a and b) and a Preferential attachment model (¢ and d):
(a) shows a time series of the number of individuals occupying a randomly chosen site for a simulation of
Niwa’s model (see Box 2.B for details) for parameters s = m = 2000 and p = 0.3; (b) shows the group size
distribution generated by this simulation over 100,000 time steps; (¢) shows a time series of the number of
individuals occupying a randomly chosen site for a simulation of a preferential attachment model (see Box
2.C for details) for parameters s = m = 2000 and ¢ = 1; (d) shows the group size distribution generated by
this simulation over 100,000 time steps.

Niwa’s work is remarkable in its generality. Bonabeau and Dagorn’s model of truncated power laws has 4
parameters, all of which needed to be tuned for particular species. Niwa’s model has one parameter which is
naturally measured from the data and fits all available fish size data. In theory, measuring the average group

221



size experienced by an individual allows the entire group size distribution to be predicted. Since equation
2.1 does not contain any model parameters, it is entirely independent of the rates at which groups merge
and split. This may seem strange at first, but it should be borne in mind that < N >, is determined by
these rates. Indeed, Niwa (2004) showed that < N >,oc 1/p not only for his simple model, but also for a
range of spatially explicit simulation models (see also chapter 5). Niwa has established a universal rule for
fish schooling that does not depend on specific types of interactions and environmental structure. Provided
fish schools merge when they meet and tend to split uniformly at random, we expect Niwa’s predictions to
hold.

The result does come with a couple of words of warning. When normalised so that they share at least one
point in common and stretched out on a log-log plot, very different distributions can begin to appear very
similar. A similar method of data fitting has led to misleading conclusions about invariance in life history
traits (Nee et al., 2005). Niwa’s approach does not suffer from the same deficiencies, because group size and
frequency are independent variables. The second warning is that the data used was based on fish catches
and observations at fish aggregation devices. Such data is subject to sampling errors, with catches of certain
sizes being preferred by the fishermen. With this in mind, it would be reassuring to see a confirmation of
these results for more fish species, with data collected using other measuring devices. I make these comments
not because I doubt Niwa’s findings but because, if the results were confirmed through independent field
observations, his work would stand as one of the most fundamental laws of group behaviour.

While Niwa’s model might provide a universal rule for fish schooling, it does not appear generalise to
mammalian herbivores. Figure 2.6b shows herd size distributions for six different species. Although all six
species lie on a similarly shaped curve, the data are not the same as given in equation 2.1. Niwa suggests that
mammals might not break up according to the uniform splitting rule given in his model. Another possibility
is that groups merge and split as a function of their size, and that the resulting group size distribution is a
reflection of this behaviour.

2.6 Preferential attachment

With mammalian herbivores in mind, Gueron & Levin (1995) proposed a general framework for models where
the probabilities of fission and fusion are a function of group size. They studied particular examples of this
model in which the probability of two groups of size x and y merging could be written as ¥ (z,y) = aa(z)a(y),
while the probability of a group of size x splitting as p(z) = Bzxa(z). They considered three cases: a(z) = 1;
a(z) = x; and a(z) = 1/x. The use of a(z) in both the splitting and joining probabilities produced a
mathematical symmetry which allowed them to determine a function for group size frequency (Gueron,
1998). Like Niwa’s model they predict that the frequency of larger groups decreases exponentially with
group size. This prediction was also made in Okubo’s (1986) classic review of animal grouping, where he
also argued that the available data on mammalian groups fitted an exponential model. However, closer
examination of the data in figures 2.5b & 6¢ reveals that mammalian data has a longer tail than predicted
by these models (see also Bonabeau et al. 1999). Although the framework of Gueron & Levin (1995) may
well, for particular functional forms for ¢(x,y) and p(z), produce group size distributions similar to those
seen in mammalian herbivores, the details of these forms have yet to be established. One candidate for
appropriate joining functions is preferential attachment. Preferential attachment is where the probability
of an individual joining a group increases with group size. Box 2.C gives an example of a model where the
probability of an individual joining a group is a linearly increasing function of its size, while the probability
of a group splitting is independent of group size. This particular model generates a power law distribution
of group sizes with an exponent of approximately 2.5. In this model I assumed that the population size
remains constant. This assumption is consistent with the dynamics of mobile animal groups where total
population size usually changes more slowly than the rate at which individuals leave or join groups. While
the mathematical properties of constant population models have not been extensively investigated, analysis
of preferential attachment models in which the population continues to grow suggests that, depending on
the details of the rules for attachment, power laws with exponents of greater than or equal to two can be
generated (again see Box 2.C).
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Box 2.C Preferential attachment model
Price (1976) proposed a preferential attachment model for scientific citations. In the model, papers are written
one after another with no overlap or delay in publication time and each paper cites b previous papers. When
each new paper is published, the probability that a currently existing paper ¢ is cited by this new paper is
proportional to the number of times, n;, that the existing has already been cited. In particular, the probability
it is cited is
(ni +¢)

Z;n:l(”j +c)
where m is the total number of papers and c is a constant. This model is known as preferential attachment
since the probability of attachment increases with the number of previous attachments (i.e. citations).
We let py, be the probability that under this system a paper is cited n times. Newman(2005), following a method
first developed by Simon (1955), shows that the tail of the distribution of citations is according to a power law,
i.e. for large kp, ~ k%, with

(2.C.1)

a=2+ g (2.C.2)

Empirically, we see that paper citations are distributed with a power law with slope 3.04 (figure 2.8b). Were the
model to fit the data we would thus predict that ¢ &~ b. In general, appropriate choice of ¢ and b can produce a
power law with any slope greater than 2.

The above model applies in cases where the population continues to grow, as it clearly does with scientific
papers. In modelling animal populations that do not change in total population, as in Niwa’s model, that space
is divided into s sites on which a total of m individuals are initially randomly distributed. The n; individuals on
site 7 are said to constitute a group. In the spirit of preferential attachment, on each time step we choose a site
¢ at random and remove all individuals, modeling perhaps a disturbance by a predator. We then redistribute
them between the sites according to equation 2.C.1. Figure 2.7c shows a time series of the size of the group
at the randomly chosen site and figure 2.7d shows the distribution of these group sizes on a log-log plot. This

simulation also appears to give a power law distribution.

Many of the distributions associated with human behaviour exhibit power laws with exponents greater
than or equal to two. A now classic example is the growth and connection of websites on the World Wide
Web. The frequency of the number of connections to websites follows a power law with a slope 2.1 over four
orders of magnitude (Barabasi et al., 1999; Barabasi & Albert, 1999). Figure 2.8 shows a large number of
examples of distributions that have been claimed to follow power laws. Newman (2005), who produced this
figure, emphasises that it is difficult to confirm that these data really do follow a single power law rather
than multiply overlaid power law or non-power law distributions. Furthemore, since power laws often only
hold in the tail of a distribution, a somewhat arbitrary cut-off point has to be selected above which the
exponent a is estimated. These technical limitations do not substantially detract from the ubiquity of power
laws (Ball, 2004; Buchanan, 2000). Across many different types of systems, not only those associated with
humans but also in the physical and biological world, power laws provide a good fit to the distribution of
events occurring in these systems.
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Figure 2.8. Distributions or ’'rank/frequency plots’ of twelve quantities reputed to follow power laws
(reproduced from Newman 2005, figure 3.3). Data in the shaded regions were excluded from the calculation
of the estimated power law exponents, a. (a) Numbers of occurrences of words in the novel Moby Dick by
Hermann Melville. « = 2.20. (b) Numbers of citations to scientific papers published in 1981, from time
of publication until June 1997. a = 3.04. (c) Numbers of hits on web sites by 60000 users of the America
Online Internet service for the day of 1December 1997. « = 2.40. (d) Numbers of copies of bestselling books
sold in the US between 1895 and 1965. o = 3.51. (e) Number of calls received by AT&T telephone customers
in the US for a single day. o = 2.22. (f) Magnitude of earthquakes in California between January 1910 and
May 1992. Magnitude is proportional to the logarithm of the maximum amplitude of the earthquake, and
hence the distribution obeys a power law even though the horizontal axis is linear. oz = 3.04. (g) Diameter of
craters on the moon. Vertical axis is measured per square kilometre. a = 3.14 (h) Peak gamma-ray intensity
of solar flares in counts per second, measured from Earth orbit between February 1980 and November 1989.
a = 1.83 (i) Intensity of wars from 1816 to 1980, measured as battle deaths per 10000 of the population of
the participating countries. a = 1.80 (j) Aggregate net worth in dollars of the richest individuals in the US
in October 2003. a = 2.09 (k) Frequency of occurrence of family names in the US in the year 1990. « = 1.94
(1) Populations of US cities in the year 2000. «a = 2.30

Is the ubiquity of power laws a consequence of preferential attachment mechanisms? The key question is
whether the individuals that contribute to systems with power law distributions behave in a way consistent
with preferential attachment. We can see how this could be the case with, for example, the growth of the
internet or citations of scientific papers, where the probability that we link to a web site or cite a particular
paper increases with the number of previous links or citations.
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Let’s consider preferential attachment applied to scientific citations. Assuming that the constant c¢ in
equation 2.C.1 is equal to the mean number of citations per paper then using equation 2.C.2 we recover
the power law with exponent approximately 3 seen in the science citation data (figure 2.8). In the model,
initial citations are chosen almost entirely at random then further citations are made according to how many
previous citations have been made, rather than on the basis of anything written in the papers. We are led
to the rather disturbing conclusion that citations may be due entirely to amplifications of initially random
decisions on the part of scientists and are independent of the supposed quality of the papers.

While not ruling out the above model of scientific citations it should be pointed out that it is by no means a
unique explanation. For example, although the famous bell-shaped or Normal curve is an accurate description
of the empirical distribution of IQQ near to the mean of the distribution, the tails of this distribution are much
wider than predicted by the Normal distribution (Burt, 1963). In general, large deviations in distributions
are often better characterised by power laws than the Normal approximation (Sornette, 2004). Let’s assume
that the quality of papers is proportional to author IQ and scientists working in academia come from the
upper tail of the IQ distribution (I do realise the limitations of this assumption). If papers are cited in
proportion to their quality then the distribution of citations will simply reflect the power law distribution
of the IQ of their authors. Likewise, the links to webpages might be proportional to the intelligence of their
designer or the funds possessed by their owner (Figure 2.8j).

Neither preferential attachment nor extreme 1Qs provide entirely satisfactory mechanistic explanations
of the power laws arising in figure 2.8. Indeed, there are at least a dozen distinct mathematical models-from
self-organised criticality (Bak, 1996) to highly optimised tolerance (Carlson & Doyle, 2002; Doyle & Carlson,
2000)-in which power laws can be derived (Sornette, 2004; Newman, 2005). Even the causes of power
law distributions in physical systems such as meteorite sizes and earthquakes have no generally accepted
explanations. In themselves, power laws provide a very weak predictor of the mechanisms which generate
them. We should not however be overly discouraged by these observations. Each of the mechanisms for
generating power laws has its own set of assumptions, which are experimentally testable. Further experiments
can be performed to test the various models against each other.

Bearing in mind our general caution about power laws, we can now begin to think about how to apply
our models to explaining the group size distribution of, for example, mammalian herbivores. The example
model I give in Box 2.C probably does not encompass the behavioural rules whereby buffalo groups join
and split. Furthermore, the model also gives a significantly larger exponent than o ~ 1.04 estimated from
the data in Figure 2.5c. However, the preferential attachment model incorporates realistic behavioural rules
into grouping models: individuals prefer to join larger groups which are then split by random disturbance.
With further refinement, this model may begin to capture empirically measured behaviour of real animals.
The possibility of including behavioural rules whereby individuals attempt to maximise some variable, in
this case group size, brings me back to the functional models with which I began this chapter. Power law
distributed group sizes and the instability of the optimal group size become complementary ideas. Preferential
attachment is the mechanism by which individuals are more likely to attach themselves to larger groups.
The functional reason for this strategy follows from the advantage of being in a larger group, even if that
group is larger than the optimal size.

2.7 Group size and population density

Niwa’s and Sibly’s models give different predictions about how group size changes with population density.
While keeping the same basic rules for merging and splitting, Niwa (2004) showed that, for a variety of
individual based models of schooling, the mean group size experienced by an individual, (), , was propor-
tional to the population density. Thus Niwa’s model predicts that mean group size will strictly increase with
population density. Sibly’s stable group size model (Box 2.A) predicts that, provided the total population
is larger than the Sibly group size, group size will remain constant as population density increases. Under
this model, increases in population density will lead to further groups being created, of stable group size
somewhere between the optimal and Sibly group size. Under Niwa’s model we also expect increases in group
number with population density, but this would be less pronounced than under Sibly’s model.

Laboratory experiments on killifish support the predictions of Niwa’s model (Hensor et al., 2005). Both
group size and group number increased with population density. There was no indication of the modal group
size leveling off at a particular ’stable’ number and it appears that the distribution of group sizes had a large
variance. Hensor et al. (2005) developed an individual based model, based on mechanistic principles of local
individual attraction, which gave a very good match to the experimental data.

Field experiments on killifish gave qualitatively similar results to the laboratory experiments (Hensor et
al., 2005). Both group number and group size increased with population density. Quantitatively, however,
results from laboratory and field were very different. The number of groups was much smaller and group
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sizes were much larger in the field than in the laboratory, and were no longer consistent with Hensor et
al.’s model. The differences between laboratory experiments and fieldwork may be accounted for in terms
of environmental heterogeneity. The fish may be attracted to a certain feature of their environment which
simply is not present in homogeneous laboratory conditions. Furthermore, Hensor et al. found that fish
body size has an important role in determining group size distribution. The failure of models to accurately
predict the outcome of field experiments brings me to a final word of warning about the assumptions that
underlie the models discussed in this chapter.

2.8 Alternative explanations for grouping

Most of the models discussed in this chapter assume that groups consist of genetically unrelated individuals
that have similarly shaped group size fitness functions and live in relatively homogeneous environments. One
species for which these assumptions have been explicitly tested are cliff swallows, which are not genetically
related, exhibit no relationship between site availability and group size, but do have between individual
differences in group size fitness functions (Brown & Brown, 1996). Indeed, Brown & Brown attribute these
last differences to much of the between group size variation observed in cliff swallows. In general we can’t
hope that these assumptions hold exactly for all the species we are interested in but we can expect them to
be a reasonable approximation of reality.

Particular care should be taken with the assumption of environmental homogeneity. Figure 2.8 shows
that many features of the physical world have distributions similar to those seen in animal groups. The sizes
of animal groups could then simply be attraction to particular physical features, rather than aggregation
in response to other animals. Another possibility is that the distribution of a predator species is simply a
reflection of the distribution of prey. For example, a predatory fish might gain greatest fitness foraging alone
but due to the clustered distribution of its prey it is found in group size distributions similar to that of its
prey.

Giraldeau & Caraco (2000) refer to this type of attraction to resources as a ’dispersion economy’ (group
size fitness function as in figure 2.2a) while attraction to conspecifics is referred to as an ’aggregation economy’
(group size fitness function as in figure 2.2b,c). It is usually straightforward to discern if animals are part of a
dispersion economy by testing whether individuals in homogeneous environments are attracted or repelled by
conspecifics. More difficult is separating effects of attraction to aspects of the environment from those to other
individuals in aggregation economies. If an animal is weakly attracted to a particular environmental feature
then this weak attraction can be amplified as others copy the choices made by others. One experimental
approach are binary choice tests where individuals are presented with two identical environments (Ame et
al., 2004; Goss et al., 1989). T will discuss such tests in more detail in the next chapter.

2.9 Linking mechanistic and functional approaches

There is less contradiction between mechanistic models discussed in the second half of this chapter and the
functional models than is sometimes supposed. All mechanistic models make implicit assumptions about the
group size preferred by individuals in groups. The rules of the models mean that individuals experience a
typical group size. For example, in Niwa’s model the group size experienced by an individual is < N >,oc 1/p
and this can be controlled by the individuals by adjusting the rate at which they split, i.e. changing p. What
is not investigated in these models is how an individual can adjust its probability of leaving a group in order
to increase its own fitness. Indeed, it is usually the probability of a group joining another group which is
used in these models, rather than the probability of an individual leaving or joining a group.

Surprisingly, no-one has investigated fission and fusion models within the context of optimising group size.
This is unfortunate since basic fission and fusion or joining and leaving rates can be empirically measured and
these models could be used to make predictions about what animals are trying to optimise. The approach
of Gueron & Levin (1995) would be a good starting point, but the symmetrical fusion and fission used in
their model is counter-intuitive. For example, in their model large groups are simultaneously more likely to
split and to join other groups. These assumptions are particularly strange in the light of optimal group size
theory, where we might expect merging to increase below optimal group size and splitting to increase above
optimal group size, and visa versa.

An interesting question is the circumstances under which individuals following a simple set of leaving
and joining rules will reach a group size distribution with a mean or mode close to the optimal group size.
Beauchamp & Fernandez-Juricic (2005) have made a start on this question. They assumed that individuals
decide to leave resource sites on the basis of an estimate of their food intake at that site (Bernstein et al.,
1988). The food intake is then a function that first increases but later decreases with group size (e.g figure
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2.2b). Using this model they showed that groups formed with a modal size near to that of the optimal
group size and much lower than the Sibly group size. Furthermore the distribution of group sizes had a large
variance consistent with empirical data.

More work is needed in understanding how and why groups of unrelated individuals form. Indeed, it is
quite surprising how little this basic problem of collective behaviour has been studied either theoretically
or experimentally. In comparison to aspects of how individuals act once established in groups, the process
by which they have formed has received less attention. This disparity may be due to the fact that without
understanding aspects such as information transfer, decision-making and synchronisation we cannot discern
the benefits and costs of grouping. The models presented in this chapter, and particularly the work of
Niwa, should however encourage us that it is possible to make predictions about individuals coming together
without knowing the details of what animals do once the group has formed.
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Collective animal behaviour: moving together

David J. T. Sumpter
Mathematics Department, Uppsala University

These notes are taken from chapter 5 of the book, Collective Animal Behaviour, forthcoming
from Princeton Univeristy Press.

Some of the most mesmerizing examples of collective behaviour are seen overhead every day. V-shaped
formations of migrating geese, starlings dancing in the evening sky and hungry seagulls swarming over a fish
market, are just some of the wide variety of shapes formed by bird flocks. Fish schools also come in many
different shapes and sizes: stationary swarms; predator avoiding vacuoles and flash expansions; hourglasses
and vortices; highly aligned cruising parabolas, herds and balls. These dynamic spatial patterns often provide
the examples that first come in to our heads when we think of animal groups.

While the preceding three chapters described the dynamics of animal groups, they did not explicitly
describe the spatial patterns generated by these groups. For example, the decision-making of insects and fish
was studied in situations where individuals have only two or a small number of alternative sites to choose
between. In models of these phenomena, space is represented as the number of individuals who have taken
each of these alternatives. This approach often simplifies our understanding of the underlying dynamics of
these groups, but in doing so it can fail to capture the spatial structure that characterizes them. As a simple
consequence of the fact these groups move, we need to give careful consideration to how they change position
in space as well as time.

The main tool I will use in describing the dynamics of flocking are self-propelled particle (SPP) models
(Vicsek et al., 1995; Czirok & Vicsek, 2000; Okubo, 1986). In SPP models ’particles’ move in a one, two
or three dimensional space. Each particle has a local interaction zone within which they respond to other
particles. The exact form of this interaction varies between models but typically, individuals are repulsed by,
attracted to, and/or aligned with other individuals within one or more different zones. These models allow
us to investigate the conditions under which collective patterns are produced by spatially local interactions.

5.1 Attraction

Before animals can create spatial patterns they must first come together. In chapter 2, I discussed how
and why animal groups form without specific reference to spatial structure. A good starting point for
explicitly representing space comes from Niwa (2004). His model, which is an extension of a non-spatial
model described in chapter 2, describes groups of individuals that are constrained to move on a lattice (see
Box 5.A). Each group performs a random walk and when groups meet they merge. Groups split with a fixed
probability per time step. Figure 5.1a shows an example of how composition of these groups changes through
time and space. Over time groups 'clump’ together. Sites containing large groups are usually located near
to other sites containing large groups, while sites with few individuals are surrounded by other sites with few
individuals. The position of these clumps changes through time as the groups move according to a random
walk.
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Box 5.A. Niwa’s spatial merge and split model

The basic assumptions of this model are the same as in box 2.B. A total of m individuals are initially randomly
distributed across s sites, and n; represents the number of individuals on site i. The key difference in the spatial
model is how the groups move. Here we assume that groups move on a d dimensional lattice of discrete sites,
such that each site has 2d neighbouring sites, e.g. in one dimension each site has neighbours to the left and right
and in two dimensions each site has neighbours to the north, east, south and west. The lattice is structured so
that individuals moving off, for example, the north edge of the lattice reappear at the south. Thus the lattice is
a circle in one dimension and a torus in two dimensions. On each time step, each group either moves to one of
the neighbouring sites, each chosen with equal probability 1/2d, or with probability p the group splits into two
groups, one which stays on the same site and the other which moves to a randomly chosen neighbouring site.
When a group splits the size of the two components is chosen uniformly at random, so that all group sizes are
equally likely. If two groups of size n; and n; meet at site k, then they form a new group ny = n; + n;. Thus,
groups always merge when they meet. The same rule applies if three or more groups meet.

Figure 5.1a shows a simulation of the above model in one dimension (d = 1). From an initial distribution where
each individual occupies one site, larger groups quickly form. These groups perform a random walk and increase
in size as they meet other groups. After 1000 time steps there are around five or six large groups and a number
of smaller groups. Figure 1b shows the distribution of group sizes at a randomly chosen site over 100,000 time
steps of the simulation. Niwa (2004) went on to show that the distribution of group sizes in these simulations
is characterized by exactly the same curve as in his earlier non-spatial model (Box 2.B). By finding the mean
group size experienced by an individual it is possible to give an expression for the entire distribution of group

sizes.

Time
log(Frequency)

15 2 25
Position log(Group size)

Figure 5.1. Simulation of Niwa’s spatial merge and split model. Simulation of model described in Box
5.A with s = m = 200 sites/individuals and split probability p = 0.05. Initially each site contains a single
individual, i.e. a group of size 1. (a) The time evolution of the number of individuals across the sites. Darker
shading indicates larger groups at a particular site; white indicates sites containing no individuals. (b) Shows
the distribution of the number of individuals in a randomly chosen site over 100,000 simulation time steps.
The solid line is equation 2.1 with (N/Zp estimated directly from the simulation.

The unit of description in Niwa’s model is the group. The model defines rules for how groups merge
and split. The strength of this approach is that it reproduces the empirical distribution of fish school sizes
(compare figure 5.1b and figure 2.6). The main limitation of this model is that it does not describe how
between-individual interactions produce group dynamics. Establishing such a connection is often the central
question in the study of flocking. It is here that self-propelled particle models play an important role.

In the simplest SPP model the only interaction between individual ’particles’ is attraction (Box 5.B).
Figure 5.2a shows the outcome of a one dimensional SPP model in which individuals are attracted to other
individuals within a fixed distance. As in Niwa’s model, relatively stable clusters of individuals quickly form.
Unlike Niwa’s model, larger clusters move slower than solitary individuals. This is because individuals on
the edge of the cluster are attracted inwards, resulting in a constant pull towards the centre of the cluster’s
mass. As clusters increase in size they move less and less, while solitary individuals and smaller groups move
and eventually join the clusters (Okubo, 1986). After some time a small number of large stationary clusters
form.
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Figure 5.2. Outcome of (a) simple attraction model in Box 5.B compared to (b) experiments on
cockroach aggregation and (c) Jeanson et al.’s (2005) detailed individual-based model.
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Box 5.B. Self-propelled particle models

The term self-propelled particle (SPP) was introduced by Vicsek et al. (1995), but the idea of building models
where individuals interact through zones of repulsion, attraction and alignment had been proposed independently
by a number of authors (Aoki, 1982; Reynolds, 1987; Okubo, 1986; Gueron et al., 1996; Helbing & Molnar, 1995).
This box presents some of the simplest of these models, including a model of aggregation and Vicsek and co-
workers original SPP model of alignment, as well as a more detailed model by Couzin et al. (2002) including
repulsion, attraction and alignment.

The general SPP model involves a group of N particles in a d dimensional space. Let the vectors z; and u;
represent the position and velocity of individual ¢. Let r represent the interaction radius of the individuals. On
each time step t, all individuals update their position and velocity as follows:

zi(t+ 1) = z;(t) + vou; (t + 1)

wi(t+1) = aui(t) + (1 — a)s +e,

where vg is a constant determining a baseline distance which individuals move per time step and a is the inertia
of an individual (i.e. its tendency to keep the same direction as on the previous time step). The vectors s and
e are determined on each time step for each individual. s is a vector (usually a unit vector) with a direction
that depends on the position and velocity of the set of particles, R;, which are within distance r of individual,
excluding itself. e is a random vector incorporating noise into the movement of the individual and may also be
a function of the position and velocity of ¢’s neighbours.

Attraction: To model individuals which are attracted to one another the vector s should point towards the
average position of an individual’s neighbours. In one dimension we can set

LS sign{a() — 2;(0)}.

TR
| 'L‘ jeRi

The function sign{a} returns 1 if a > 1, -1 if a < 1, and 0 if a = 0. We set e to be a number selected uniformly
at random from a range [—n/2,7n/2], where 7 is a constant. Figure 5.2a shows a simulation of this model on a
one-dimensional ring. In this model aggregations form and move more slowly as their size increases.
Alignment: Individuals align by adopting the same direction as their neighbours. In one dimension, Czirok et
al. (1999) use

il &z,
where
Glu) = (u+1)/2 foru>0’
(u—1)/2 for u <0

and e as in the attraction model above. The function G ensures that velocities of individuals equilibrate around
either -1 or 1. Figure 5.4 gives examples of simulations of this model for different numbers of individuals. As
density increases collective motion emerges in the form of a single large group of individuals all going in the
same direction.

In two dimensions, Vicsek et al. (1995) lets s + e be a unit vector with direction given by the average angle of
the vectors plus some random term. Specifically,

_( cos(Xjer, 05() +¢€)
st+e= < Sin(ZjiRi ej(t) +¢€) )

where the 0; are the directions of i’s neighbours and e is chosen uniformly at random from a range [-7/2,71/2].
Unlike the two models above, in Vicsek’s model o = 0, but the individual i is always included in the set R;
of neighbours. Thus each individual includes itself as a neighbour when averaging velocities. Figure 5.7 gives
snapshots of simulations of this model for different magnitudes of noise. Noise plays the opposite role of density:
for higher noise motion is less ordered.

Repulsion, attraction, alignment and blind angles: Couzin et al.’s (2002) model involves three zones of
interaction: an inner zone of repulsion, an intermediate zone of orientation and an outer zone of attraction (figure
5.8a). The individuals have a blind angle behind them within which they do not respond to individuals which
would otherwise be in their orientation or attraction zone. The rule for repulsion is simply that individuals move
directly away from nearby individuals. The rules for attraction and alignment are similar to those described for
the two simple models. Figure 5.8 investigates a three dimensional version of this model for different sizes of
orientation zones. Provided there is a sufficiently large blind angle, the group goes through a transition from

swarm to milling torus to a highly aligned group.

Such aggregation dynamics are seen in cockroach groups (Jeanson et al., 2005). Cockroaches interact
via antennal contact and are attracted to other cockroaches through physical contact. Thus, relative to the
size of their environment, their zone of attraction is small. Jeanson et al. (2005) placed small groups of
cockroaches in a circular arena and watched their aggregation behaviour. Since cockroaches are strongly
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attracted to walls, most of their movement is constrained to the edge of this arena. In effect, the attraction
to the arena edge means that movements of the cockroaches take place in one dimension and the aggregation
process can be visualised by plotting the angular position of the cockroaches through time (figure 5.2b). In
experiments where cockroaches were initially placed at random within the arena, a cluster quickly formed
containing nearly all of the cockroaches. As in the SPP model, cockroaches within the cluster move much
less than those outside of it.

Jeanson et al. (2005) developed a parameterised model based on experiments on groups of two to four
cockroaches. The principle underlying this model was similar to the simple aggregation SPP model, but it
included more detail of walking trajectories in different parts of the two-dimensional arena, probabilities of
individuals starting and stopping walking, and the effect of collisions from different directions such as front
and behind. The model showed that local contacts alone were sufficient for the rapid aggregation observed
in experiments (figure 5.2¢).

Whether animals aggregate depends on their environmental context (Krause, 1994; Krause & Ruxton,
2002). Larger groups provide dilution from predator attack and individuals in smaller groups get a larger
share of food discoveries (chapter 2). Hoare et al. (2004) found killifish group sizes were significantly smaller
in the presence of food odour and larger in the presence of an alarm odour. To explain the behavioural
mechanisms that produced these observations they used an SPP model of fish interactions, with terms for
repulsion, attraction and alignment. They showed that the observed change in group size distribution could
be explained solely by a change in the size of the interaction zone. The distance at which a fish is attracted
to another fish decreases in the presence of food and increases in the presence of a predator. This study
provides a nice link between mechanism and function: the regulation of group sizes to perceived risk results
directly from a change in interaction radius.

The mechanisms underlying spatial aggregation have been studied for a range of species: from midges
(Okubo & Chiang, 1974) and bark beetles (Deneubourg et al., 1990) to primates (Hemelrijk, 2000). More
than twenty years since its publication, the review by Okubo (1986) still provides the best synthesis of
mathematical and empirical aspects of aggregation.

5.2 Alignment

Attraction alone cannot explain the dynamics of most animal flocks. In particular, the aggregative clusters
formed by between-individual attraction move slower as cluster size increases (figures 5.1a and 5.2a,c).
These observations are in direct contrast to those of fish schools, locust swarms and migratory birds that,
while remaining a cohesive group, move rapidly in the same direction. Indeed, it is the rapid propagation of
directional information that characterises these groups, and poses the greatest challenge to our understanding
of them (Couzin & Krause, 2003). How is it that a bird flock or a fish school can apparently turn in unison
such that all members almost simultaneously change direction?

It was the pioneering experimental work by Radakov (1973) that first showed how changes in direction
can be rapidly propagated by local interactions alone. He used an artificial stimulus to frighten only a small
part of a school of silverside fish. The fish nearest to the stimulus changed direction to face directly away
from it. As these fish changed direction they stimulated others nearby, but further away from the artificial
stimulus, to also change direction. A "wave of agitation" spread away from the artificial stimulus (figure
5.3). This propagation of directional information was much more rapid than the displacement of the fish.
The fish nearest to the stimulus moved less than 5cm in the same time it took every fish within 150cm of
the stimulus to change direction to face away from the stimulus. Changes in direction propagated at speeds
of up to 11.8 - 15.1 metres per second over distances of between 30 and 300cm.
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Figure 5.3. Example of Radakov’s experiment where fish schools are presented with a fright stimulus. The
position of fish was filmed and projected on a wall so that a picture could be made of the position and
orientation of the fish. Reproduced from Radakov 1973.

While not directly inspired by Radakov’s work, the transfer of directional information was the key in-
gredient in the self-propelled particle models of Vicsek et al. (1995). In fact, Viecsek’s model has only two
ingredients determining the direction particles move in: alignment to nearby particles and noise (Box 5.B).
Figure 5.4a-c shows examples of these simulations in one dimension for different particle densities. A central
prediction of Vicsek’s model is that as the density of particles increases, a transition occurs from disordered
movement to highly aligned collective motion (Vicsek et al., 1995; Czirok et al., 1999; Czirok et al., 1997).
Figure 5.4d-f show how the mean direction, or the degree of alignment, of particles changes through time in
a one dimensional version of the model from Box 5.B for three different particle densities. At low densities,
the alignment remains close to zero (figure 5.4a,d). At intermediate densities, all particles adopt a common
direction for a period of time but this direction switches at random intervals (figure 5.4b,e). At high densities,
particles adopt a common direction which persists for a long period of time (figure 5.4c,f). The transition
from disorder (random motion) to order (aligned motion) occurs at a critical density, below which alignment
is zero and above which absolute alignment increases with group size (Czirok et al., 1999).
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Such a transition from disordered to ordered motion is seen in the collective motion of locusts. Buhl

et al. (2006) looked at the alignment of various densities of locusts in an experimental ring-shaped arena.
This setup effectively confined the locusts to one dimension and the degree of alignment could be measured
as the average direction of movement relative to the centre of the arena. For small populations of locusts
in the arena there was a low incidence of alignment among individuals. Where alignment did occur, it did
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Figure 5.4. Example simulations from one-dimensional SPP models. Simulation of the SPP model of
alignment in one dimension. The change in particle density through time for (a)N =10 (b) N = 50 and (c)
N = 100 particles. The alignment at time ¢ is defined as
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The average direction. The alignment is given for (d) N =10 (e) N = 50 and (f) N = 100 particles. Other
parameters are L = 150,r = 1,v =1, = 0.66 and n = 0.8.

so only after long initial periods of disordered motion (figure 5.5a). Intermediate-sized populations were
characterized by long periods of collective rotational motion with rapid spontaneous changes in direction
(figure 5.5b). At large arena populations, spontaneous changes in direction did not occur within the time
scale of the observations, and the locusts quickly adopted a common and persistent direction (figure 5.5).
As predicted by Vicsek’s model, alignment of locusts becomes non-zero above a critical density (figure 5.6).
The simplicity of Vicsek’s SPP model suggests that phase transitions should be a universal feature of moving
groups (Buhl et al., 2006). Similar transitions are observed in fish (Becco et al., 2006) and in tissue cells
(Szabo et al., 2006).
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Figure 5.5. Experiments on locusts in a ring. The alignment over the experiment of (a) 7 locusts, (b) 20
locusts and (c¢) 60 locusts. (d to f) Corresponding samples of time-space plots (3 min), where the x-axis
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represents the individuals’ angular coordinates relative to the centre of the arena, and the y-axis represents
time. Reproduced from Buhl et al (2006).
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Figure 5.6. Comparison of the mean alignment in the (a) SPP model and (b) the locust data as a function
of the number of particles (or locusts). Reproduced from Buhl et al (2006).

When extended to two or three dimensions, Vicsek’s model generates spectacular dynamical patterns that
are highly reminiscent of the movement of flocks (figure 5.7). Again the two dimensional model undergoes a

phase transition where alignment becomes non zero above a critical particle density or below a critical nose
level (Vicsek et al. 1995).
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Figure 5.7. Example of patterns from the two-dimensional SPP model with alignment. Model is as
described in Box 5.B. Parameters are n = 200,vg = 0.5, L = 25,andr = 1. The noise is varied between
simulations (a) n =3, (b) n = 1.5 and (c¢) n = 0.5.

While reproducing many of the characteristics of animal flocks, Vicsek’s model is by no means sufficient
to explain all aspects of flocking. To start with, it does not contain an attraction term of the type discussed in
the previous section. In fish, attraction between individuals has long been viewed as having equal importance
to alignment in determining group dynamics (Partridge, 1982). The omission of attraction from Vicsek’s
model means that a bounded group cannot form. In an SPP model without an attraction term, a large group
of particles moving in the same direction spreads out and particles will ’escape’ from the back of the group
(Gregoire et al., 2003). When confined to a small space this diffusion will not lead to a significant breakup
of the group because stragglers are picked up when they meet the large group again, but in an infinite (or
large) space the group will eventually break apart.

A cohesive moving group can form if both attraction and alignment terms are included in an SPP model.
Gregoire et al. (2003) drew a phase diagram for a two-dimensional SPP model which included terms for
attraction, alignment and noise. They found that when attraction was weak relative to alignment, particles
behaved as either a disordered or moving ’gas’, similar to those seen in the two-dimensional Viscek model
(figure 5.7). This gas was characterised by the proportion of particles that were members of the largest
group being less than one. When attraction was increased the proportion of particles within the largest
group tended to one, and Gregoire et al. classified this state as a liquid ’droplet’. Within this droplet two
close together particles diffused away from each other through time while remaining within this large group.
Compared to the gas in figure 5.7, in which groups split apart and reform, individuals moved around within
the single droplet but did not leave it. As the attraction term was further increased, the liquid turned in
to a solid ’crystal’ and the particles remain at a fixed position within the crystal through time. Provided
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alignment was sufficiently large relative to noise, both liquids and solid exhibited cohesive collective motion
where all particles moved as a group in the same direction.

A number of aspects of Gregoire et al.’s model resemble the motion of animal flocks. Moving crystals
and droplets both exhibit periods of ballistic flight, where the mean square displacement of the group was
proportional to (time)?, i.e. groups fly in a straight line. Furthermore, the lengths of these ballistic flights
increased with the size of the group. This is in contrast to the non-moving phases where attraction is
dominant, e.g. as in figure 5.2a. In this case, the mean square displacement of the group was proportional to
time and the lengths of ballistic flights decreased inversely proportionally to group size. Crystals and droplets
both resemble various forms of moving animal groups: crystals look roughly like highly parallel groups of fish
or birds, while the droplets possibly resemble flying locust swarms. Particularly interesting is the existence of
mesoscopic "hydrodynamical" structures, such as jets, vortices, etc., within droplets (Gregoire et al., 2003).
It is this dynamical patterning on a meso-scale within a generally coherent motion on the scale of the entire
group that might be said to best characterise the collective motion of many flocking animals. However, the
'zoology’ of these meso-scale shapes has not been fully investigated and compared to empirical observations.

5.3 Rules of motion

The attraction and alignment models discussed in the previous sections have not been calibrated against real
data of how fish, birds or locusts interact with one another. Instead, the philosophy of these models is to
provide as simple as possible model for the interaction of animals that reproduces the key features of flocks.
This philosophy is aimed at ensuring that model outcomes are not dependent on some particular biological
feature, but reveal universal properties of all flocks. The approach is also to some degree unavoidable.
Empirical determination of the detailed interactions of fish or birds is technically difficult. These groups
move in two or three dimensions and often come in close contact with each other, making automated or even
manual tracking difficult (Hale, 2008).

There are, however, a number of high quality studies of fish interactions, most notable those of Partridge
in the early 1980s. Studies of the structure of schools of saithe, cod and herring show that fish maintain
a minimum distance between each other, supporting evidence for local repulsion (Partridge et al., 1980).
By tracking individual fish, Partridge (1981) established that saithe match their swimming direction and
speed to their two nearest neighbours, but probably not to more distant neighbours. Partridge & Pitcher
(1980) found that "blindfolded’ saithe continued to match short term changes in velocity of their neighbours
using their lateral line (the motion detecting sense organ which runs down fish bodies). Vision was however
important in maintaining between neighbour distance, with blind fish having increased nearest neighbour
distances. Fish which had their lateral line disabled compensated by changing postion so they could see
direction changes by neighbours. In general, the lateral line appears to determine alignment, while vision
determines attraction and repulsion.

An impressive step forward in the understanding of both the global structure of groups moving in three
dimensions and the behaviour of individuals within these groups is the Starflag project (Cavagna et al.,
2008a; Ballerini et al., 2008a; Cavagna et al., 2008b). Using multiple cameras these researchers were able
to determine the position of most of the starlings in flocks consisting of thousands of birds. Like fish, the
starlings maintain a minimum distance from each other, i.e. have a zone of repulsion (Ballerini et al., 2008a).
Starlings are also less likely to have neighbours behind or in front of them than to have neighbours on either
side. As distance from a focal bird increases this spatial organisation disappears, so that birds further away
from a focal bird are equally likely to be at any angle.

Local spatial structure is not simply a function of distance but rather a function of neighbour number.
The nearest neighbour is much more likely to be to the side of than directly in front of or behind a focal
bird. This tendency then decreases for the second neighbour then the third neighbour and so on. After the
sixth or seventh neighbour the spatial structure vanishes and these neighbours are equally likely to be at
any angle relative to the focal bird (Ballerini et al., 2008b). This relationship is less robust when considering
only the distance between neighbours. Even when the flock is more tightly packed spatial correlations are
seen only between a fixed number of neighbours. The relationship would suggest that instead of interacting
with all or some birds within a certain fixed radius, as is assumed in most models, starlings interact with
their 6 or 7 nearest neighbours.

5.4 Complex moving patterns

The shapes of bird flocks, fish schools and locust swarms are not limited to groups of aggregated or aligned
individuals. Some of these shapes can emerge from simple interactions of repulsion, attraction and alignment
alone. For example, Couzin et al. (2002) proposed a model in which individual animals have three zones-
repulsion, alignment and attraction-of increasing size, so that individuals are attracted to neighbours over
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a larger range than they align, but decrease in priority, so that an individual always moves away from
neighbours in the repulsion zone (figure 5.8a). These individuals also have a rear blind zone within which
they cannot sense others.

(T

Figure 5.8. Transition from swarm to torus to alignment. (a) Illustration of the rules governing an
individual in the fish model. The individual is centred at the origin: zor, zone of repulsion; zoo, zone of
orientation; zoa, zone of attraction. The possible 'blind volume’ behind an individual is also shown, a, field
of perception. Collective behaviours exhibited by the model: (b) swarm, (c) torus and (d) dynamic parallel
group.

Keeping the repulsion and attraction radii constant, Couzin found that as the alignment radius increased,
individuals would go from a loosely packed stationary swarm (figure 5.8b), to a torus where individuals circle
round their centre of mass (figure 5.8¢) and, finally, to a parallel group moving in a common direction (figure
5.8d). This transition from milling to torus to departure is typical of the motion of real fish schools. The
model shows that these three very different collective patterns self-organise in response to small adjustments
to one factor: the radius over which individuals align with each other.

Other patterns seen in animal flocks may be more difficult to produce from models of identical 'mem-
oryless’ self-propelled particles interacting in a homogeneous environment. For example, Radakov (1973)
reports “feeler” structures in silverside fish during their evening migration away from the shore. A few fish
swim away from the group forming a ribbon-like structure as others follow. The leading group then reduces
speed and starts feeding, at which point a “neck” builds up as more and more fish are drawn from the main
group. In some cases this neck leads the whole group to the new feeding ground, while in others the neck
breaks off and a sub -group separates from the main group. Overall, the process gives the impression of the
school making a tentative investigation of whether it is worth moving feeding grounds.

Another common pattern in fish schools is the fountain response to the approach of a predator towards
a group of prey (Pitcher, 1985). In this response the fish fan out in front of a predator and circle round
behind it. Self-propelled particle models can reproduce this type of group response to predators (Iawad, 2001
and see section 5.6). However, Hall et al. (1986) argue that a fountain response can occur simply by each
individual prey moving away from the predator while keeping it at the edge of its field of view. Fish have a
blind angle of roughly 60°, so by keeping the predator behind them at an angle of 150° the fish are moving
away from the predator as rapidly as possible without losing sight of it. This argument appears consistent
with experimental data on the response of shoals of juvenile whiting (Hall et al., 1986), but it is not entirely
clear whether social interactions may also play a role in creating the fountain effect.

Determining the degree to which simple rules for attraction and alignment capture the shapes produced
by real animal groups remains a key problem (Parrish et al., 2002). No detailed statistical comparison has
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been made between the motion of and within real flocks and those predicted by SPP models. For example,
Uvarov (1977), describes the marching bands of locusts as having a dense front and columns that go through
an otherwise diffuse cloud of individuals. These observations have little in common with the shapes arising
from, for example, Gregoire et al.’s (2003) model. Similarly, Ballerini et al.’s (2008) observation that starling
flocks have a dense boundary and a sparser interior directly contradicts most SPP models, which predict
either homogeneous density within a group or a density which decreases with distance from the group’s
centre. Explaining the emergence of complex moving structures will require greater consideration of the
rules adopted by individuals, of how individuals interact with the environment and of between-individual
differences.

5.5 Decisions on the move

When navigating, animals in moving groups usually have access to two types of information, their own
experience or internal compass information and the direction taken by other group members. A central
problem faced by animals travelling in these groups is how to integrate this information, especially when
members cannot assess which individuals are best informed. In the context of avian navigation, two alter-
native schemes have been proposed (Wallraff, 1978). The “many wrongs” hypothesis, which is described in
more detail in section 4.3, is that individuals average their preferred direction, leading to a compromise in
route choice. The average of these many wrongs should lead to an improvement in navigational performance.
Wallraff’s alternative to the many wrongs hypothesis is the 'leadership’ hypothesis. Under this hypothesis,
one or a small number of the animals takes a leading role and the others follow.

Neither the many wrongs nor the leadership hypothesis accounts for how information is transferred
between group members through local interactions. Indeed, the many wrongs hypothesis leads to the paradox,
discussed in section 4.4, that for information to be transferred some individuals must follow others but at
the same time too much following will reduce the success of the averaging. To bypass this limitation, Biro
et al. (2006) developed a mechanistic model of navigational conflict between pairs of individuals. In the
model (described in Box 5.C), individuals interact according to two hypothesized forces: attraction to its
own target position (own information) and attraction to the partner’s current position (social information).

Box 5.C. Model of paired navigational decision-making
‘We consider a dynamic model for decision-making, where two individuals, X and Y, each decide on a real-valued
'position’, starting from initial positions x(0) and y(0). These individuals come to a final position as a result of
a combination of two forces: predisposition to move toward a target position and local attraction towards the
other individual’s current position.
Predisposition to target: X, respectively Y, is attracted to a target position with value 0, respectively d. The
rate at which an individual moves toward its predisposed choice initially increases with distance from the target,
but above a point of maximum attraction the rate decreases. For individual X, we model this rate with the
function

—zexp(—z/rqe) (equation 5.C.1),

where x is the current position and r, is the point at which the attractive force towards the target reaches a
maximum. Individuals further from the target than r, have a weaker attraction towards it due to difficulties in
perceiving the target, while individuals nearer than r, have a decreasing but positive attractive force, modelling
an increasing degree of ‘comfort’ with decreasing distance to the target.

Between-individual attraction: We model this with the function

(z—y) 2 .
(z —y) exp(—( N )?)  (equation 5.C.2),

where x and y are the current positions of the two individuals and r is the point of maximum attraction to other
individuals. Attraction only occurs locally, so that once individuals move out of the range of perception, the
rate of attraction quickly decreases. We combine the two forces acting on the individuals to give a differential
equation model of how the individuals change position:

_ 2
dax/dt = —x exp(—z/rq) — a(z — y) exp < ((9\6/57”?:)> ) (equation 5.C.3)

V27,

The parameter a determines the ratio of the maximum between-individual attraction over the maximum attrac-

_ 2
dy/dt = —B(d — y) exp(—(d — y)/ra) — a(x — y) exp < < (e y)) ) (equation 5.C.4)

tion to the target. B determines the ratio (Y : X) of the strength of the individuals’ attraction to their targets.
Figure 5.9a shows the equilibrium solutions to the model equations as a function of the distance d between the

individuals’ targets.
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Figure 5.9a shows, for the model in Box 5.C, the effect of varying the distance between the individuals’
targets, d, on the final decision reached. The model predicts that at small distances between established
routes, individuals average, with their position equilibrating at d/2. At a critical between-route distance,
of approximately twice the range at which individuals are maximally attracted to their established routes,
a bifurcation occurs. For d larger than this critical value, both individuals move closer to that of one of
the individuals. A third possible outcome is splitting, where each individual moves exclusively towards its
own target. Such outcomes occur over a wide range of d but always result from initial differences in the
individuals’ positions.
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Figure 5.9. Outcome of decision-making in pairs. (a) Prediction model in Box 5C. Equilibrium solutions of
equations 5.C.3 and 5.C.4 as a function of the distance between the individuals’ targets, d. The arrows show
how different initial positions of bird X lead to different equilibriums. The initial position of bird Y is always
d/2. The parameter values r, = 400,7b = 80 were chosen to reflect the perception ranges of real pigeons.
The other parameters o = 1 and § = 1 assume no intrinsic difference between the birds (b) Outcome of
pigeon experiments. Point by point distances between each bird’s established route and its taken route when
in a pair are made into a histogram. The largest and the second largest modes of the data are then plotted.

While the model in Box 5.C provides an abstract representation of navigational decision-making, it was
designed specifically with the behaviour of homing pigeons in mind. Predisposition to a target models the
phenomenon of route recapitulation and route loyalty by homing pigeons and between-individual attraction
models social cohesion between birds. We tested the model’s predictions against data we collected on homing
pigeons (Biro et al., 2006). We first allowed homing pigeons to each establish their own route home from
a release site. Once individuals had learnt their own routes they were released in pairs. In these paired
releases instances of many wrongs compromise and of leadership were observed, even within a single journey
of a single pair of birds.

In order to test how the distance between the birds’ 'target’ routes affected the outcome of their paired
flight, we looked point-by-point through the whole flight at how the distance between the birds’ independent
flights affected the distance between their routes. Figure 5.9b shows the largest and second largest modes
of distances between routes taken by individuals during their paired flight and the immediately preceding
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single (established) route as a function of distance between the birds’ established routes at the corresponding
point of the journey. We see a similar bifurcation in this data as we see in the model prediction (figure 5.9a).
As the distance between the birds’ targets increases a bifurcation occurs from compromise to leadership.

Our model is limited because it deals with only two individuals and abstracts away possibly important
aspects of spatial interactions. Couzin et al. (2005) proposed an SPP model where individual particles move
in a two dimensional space according to rules of attraction, alignment and repulsion. In this model a large
group of 'uninformed’ individuals interacts with two small groups of informed individuals which each move
toward different targets. As the angle between the targets increases there is a bifurcation where the group
goes from taking a direction intermediate to the two small leading groups to taking the direction preferred
by one of the two groups.

5.6 Leading the swarm

An interesting prediction of the Couzin et al. (2005) model is that a small number of informed individuals can
lead a large group. In these simulations groups of 200 uninformed individuals were almost always successfully
led to a target by groups of less than 10 leaders. Thus observations of large numbers of birds, fish or insects
moving in the same direction do not imply that even a majority of individuals know where they are going
or even know which individuals know where they are going. The Couzin et al. (2005) model thus suggests
a ’'subtle guide’ mechanism: a largely uninformed group can be led by a small group of informed ’leaders’
even when the identity of the leaders is unknown.

One of the most impressive examples of a large group of uninformed individuals being led by a small
group is the flight of honey bee swarms from their temporary bivouac on a tree branch to a new nest site
(see section 9.3). Up to around 10,000 bees of which only 2 or 3% are informed of the location of the nest
site fly as a single swarm to the site. How does such a small group lead such a large group to a small nest
site? Lindauer (1955) hypothesised that the informed individuals repeatedly ’streak’ through the swarm in
order to inform the other bees of the direction of the nest. Janson et al. (2005) formalised this hypothesis in
an SPP model and showed that 150 ’streaker bees’ could lead a swarm of 3,000 uninformed bees, and these
swarms could avoid obstacles in their path without splitting. While streaking might help guide a swarm, the
‘subtle guide’ hypothesis presented above suggests that streaking is not a requirement for a small number of
individuals to lead a large swarm. A further alternative to the ’subtle guide’ or ’streaker bee’ hypotheses is
a ’vapour trail’, where the informed bees move to the front of the swarm and release a chemical pheromone
creating a gradient which the other bees follow (Avitabile et al., 1975).

Beekman et al. (2006) tested the ’vapour trail’ hypothesis by sealing, in the bees, the glands which
release pheromone and comparing the flight of sealed gland colonies with control colonies. Gland sealing had
no significant effect on the flight speed of the swarm nor on the time it took the swarm to reach a nest box,
contradicting hypotheses based on pheromones. Beekman et al. (2006) noted that some bees in the swarm
were moving at maximum speed (9-10m/s) while the swarm as a whole moved at only 2-3 m/s, providing
evidence for the ’streaker bee’ hypothesis. Schultz et al. (2008) provided stronger evidence of streaking
by filming a swarm from below. They found that bees in a top portion of the swarm flew quickly in the
direction of the nest site and these fast moving bees were observed at the front, middle and back of the
swarm. However, while it appears clear that some bees streak along the top of the swarm and then return
through it at slower speeds, there is still no direct link between these fast flying bees and the scouts.

5.7 Evolution of flocking

Hamilton (1971) and Vine (1971) were the first researchers to look at how the geometry of an animal group
might be shaped by natural selection. They both proposed ’selfish herd’ models in which individuals in the
group are motivated to move in to the centre of the group by the risk of predation. In Hamilton’s model,
individuals live on a one-dimensional lattice and follow the rule: if the site an individual occupies has a
larger population than those to the left and right then it stays there, otherwise it moves to the neighbouring
site that is occupied by the largest number of other individuals. In contrast to the mechanistic model of
aggregation described in Box 5.A, Hamilton’s model is motivated by functional considerations. However,
the outcome of both models is similar: tightly packed clumps of individuals emerge (as they do in figure
5.2a). Vine and Hamilton both expand on this initial model and find similar results: tight aggregations are
a consequence of selfish individuals’ attempt to use other individuals as cover.

The geometrical predictions of selfish herd models hold for a wide range of species that form stationary
groups (Krause, 1994; Krause & Ruxton, 2002; Quinn & Cresswell, 2006; Rayor & Uetz, 1990). Individuals
near the centre of these groups are less likely to be attacked than those on the edge. Several studies have
revealed that when there is a predation risk, fish move closer together (Tien et al., 2004; Krause, 1993). On
the other hand, Focardi & Pecchioli (2005) found that the foraging success of deer increased with distance
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from the centre of the group. There is thus a trade-off between increased food intake on the outside of the
group and increased safety in the centre. We might then expect position in a group to be determined by
nutritional state, with well fed individuals near the centre and hungry individuals on the outside.

In moving groups it is less clear how the position in a group relates to safety from predation. Parrish
(1989) showed in laboratory experiments that while grouping silverside fish are attacked less often by sea
bass than stragglers which have recently departed from the group, if the group is attacked it is the fish in
the centre that are the subject of these attacks. Parrish suggested that this is because the predators attack
the centre of the group, which then splits in two leaving central individuals exposed. This interpretation is
supported by simulations of SPP models (Inada & Kawachi, 2002). Parrish’s study is limited however by the
fact that very few attacks by the predators were successful: only five group members were killed throughout
all experiments, three of which were in the centre and two on the periphery.

The complex dynamic patterns generated by flocking animals should convince us that a selfish desire
to be shielded by others is not the only evolutionary force that has shaped them. Group membership
may also allow individuals to gain information about the location of food (Pitcher et al., 1982) and of
predators (Treherne & Foster, 1981), to benefit in terms of energetic efficiency (Weimerskirch et al., 2001)
and even to hunt co-operatively (Partridge et al., 1983). A problem however is disentangling functional and
mechanistic explanations for dynamic patterns. Many patterns may be a consequence of the interactions
between individuals and have little or no adaptive significance (Parrish et al. 2002). For example, the
transition from disorder to order in locust marching appears to be a fundamental property of SPP models,
suggesting that rather than resulting from the fine tuning of natural selection it is simply a necessary aspect
of all grouping animals (Grunbaum, 2006). Similarly, it would be wrong to conclude that a moving fish
torus has evolved to signal between group members that departure is imminent, but rather it could be
an unavoidable consequence of all members increasing their tendency to align with each other (Couzin &
Krause, 2003).

Behaviours which produce flocking patterns are in some cases themselves subject to natural selection.
For example, one intrinsic property of SPP models is dynamic instability. Such instability was seen at
intermediate densities in experiments on locusts, with changes in direction rapidly spreading through the
entire group (figure 5.5e). If a small number of locusts spontaneously change direction, the others rapidly
change their direction in response. This spread of directional information is reminiscent of Radakov’s (1973)
experiments on fish. Information about the presence of a stimulus is rapidly transmitted through the entire
group.

Several modelling studies have investigated how the rules governing the alignment, repulsion and attrac-
tion of self-propelled particles might be optimised so as to allow the particles to avoid predation (Inada &
Kawachi, 2002; Lee, 2006; Lee et al., 2006; Zheng et al., 2005). In these studies a predator particle that
is introduced into the simulation attempts to attack the group of prey particles. Inada & Kawachi (2002)
varied the maximum number of neighbouring individuals with which each prey aligned. They showed that
if prey aligned with only one nearest neighbour then group movements were uncoordinated in response to
a predator, but if they interacted with two or three the group was able to effectively align away from the
predator. However, if prey individuals align with larger numbers of neighbours then the group would change
direction slowly in response to a predator, because the minority of individuals that had sensed the predator
and begun to move away from it would be “outvoted” by the uninformed majority that continue in their
previous direction. Zheng et al. (2005) obtained similar results to Iwada by changing a different model
parameter. They showed that there is an optimal weighting that individuals should put on aligning with
other prey relative to orienting away from the predator. By aligning with each other rather than purely
away from a predator, the prey avoid costly collisions. The collective outcome is a confusion effect, where
the predator repeatedly changes target.

Most modelling studies of predator avoidance have looked at group success, measured in terms of number
of group members captured by a predator, as a function of model parameters. From a functional viewpoint,
however, the question is how individuals regulate their propensity to align, or their interaction range, or
other aspects of their behaviour so as to minimise their own probability of being caught by the predator.
While aligning with others may increase the confusion effect for the predator, the best strategy for a focal
individual may be to move directly away from the predator. As a result a social parasitism dilemma arises:
while co-operating individuals can generate a pattern which optimises group success, a defecting individual
surrounded by co-operators can benefit to the greatest degree by not participating in the pattern. The
pattern is then not evolutionarily stable (see chapter 10).

Wood et al. (2007) investigated the evolutionary stability of self-propelled particles to predation. They
used the same model for particle movements as Couzin et al. (2002) but allowed the particles to evolve their
interaction zones in response to predation. The main parameters governing the interaction zones are the
relative size of the attraction, R, and orientation zones, R,, as well as the angle 6 over which the particles
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can ’see’ their neighbours. The total area over which a particle could monitor its neighbours, i.e. OwR2
was fixed to a constant for all particles. This constraint means that their viewing area is restricted to a
local neighbourhood of constant area. On the first generation a population of 80 individuals each with its
own values of R, R,, and 6 was simulated for a sufficient number of time steps so as to allow a dynamic
pattern to form. A predator, which attempted to capture the prey individuals, was then introduced into the
simulation. After a fixed number of time steps those surviving individuals, i.e. those which had not been
caught by the predator, went on to the next generation and those individuals that were caught were replaced
by ’offspring’ of the surviving individuals. These offspring were subject to small mutations in the parameter
values so that individuals with new values for R,, R,, and 6 entered into the population.

There was a clear pattern in the evolution of the parameters. Firstly, the angle over which the particles
could see evolved to be large, 6 ~ 280° leaving a blind angle of 80°. This is reasonably close to the blind
angle of 60° of many species of fish (Hall et al., 1986). The evolution of the small blind angle constrained
the attraction radius R, within which the orientation radius R, was then free to evolve. Two evolutionary
outcomes were possible for R, evolving either to be close to, but slightly larger than, 0 or to be close to, but
slightly smaller than, R,. In the first case the particles formed a slow moving milling group (figure 5.10a)
while in the second they formed a fast moving dynamic group (figure 5.10b). Which of these outcomes
evolves depends on the initial values of R, within the population and the rate of mutation during selection.
If R, was initially large a dynamic group would evolve and if it was initially small a slow moving mill would
evolve.

\f.&

Figure 5.10. Typical example of the two types of evolutionarily stable flock types in the Wood et al.
model. Each flock is shown before and during the attack of a predator. (a) is a compact milling torus
that responds relatively slowly to the predator while (b) is a dynamic parallel group with a high degree of
alignment but only loose between individual attraction. When a predator attacks, the group fans out to
avoid it. Prey heads are marked with a circle and the line indicates their current velocity. Predators are
larger and marked with an arrow.

While both evolving through ’'natural selection’, the dynamic group was more efficient than the slow
moving mill at avoiding predation. The dynamic group had similar responses to predators as the optimised
groups of Inada & Kawachi (2002) and of Zheng et al. (2005). It produced a confusion effect and split
to avoid predation in 60-70% of cases. On the other hand, the predator was almost always successful in
catching prey when faced with a slow moving mill. Wood et al.’s (2007) study is important because it
provides evidence that complex collective level phenomena can evolve between ’selfish’ individuals without
the need to invoke arguments based on kin selection or repeated interactions between individuals.
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Evolution of body condition-dependent dispersal under
kin competition

Margarete UtZ; Eva Kisdi and Mats Gyllenberg

Abstract

We present a model for the evolution of dispersal when dispersal probability is a function of individual
body condition. The biological motivation of this model is found in the huge amount of empirical research
that investigates body condition-dependent dispersal and in the lack of satisfying theories to explain
especially the puzzling phenomenon of dispersal of strong individuals.

Under the given assumptions, which include that stronger individuals are better competitors, dispersal
of strong individuals seems to be a common outcome of our model. Our model thus marks a first
theoretical approach to gain more insight into mechanisms that shape body condition-dependent dispersal
strategies.

This work is supported by the Graduate School in Computational Biology, Bioinformatics and Biometry
(ComBi) of the Ministry of Education in Finland and by the Academy of Finland.
The model and results presented in this article are described in detail in references [1] and [2].

1 Introduction

Dispersal plays a crucial role in the dynamics of populations and in species persistence and expansion. There
is a huge and diverse body of literature exploring the evolution of this important trait. Clearly, dispersers
are not a random subset of the population. One significant parameter that influences dispersal behaviour is
individual body condition. Differences in body condition between dispersers and non-dispersers are observed
across species and in many instances, e.g. survival during dispersal or competitive ability depend on body
condition.

The best known verbal hypothesis concerning body condition-dependent dispersal is the social dominance
hypothesis. It states that stronger individuals that dominate socially suppress weaker individuals by e.g.
defeating them in fights or denying them access to resources, whereupon the weaker individuals are forced
to leave the local territory. On the other hand, dispersal of strong individuals is barely understood.

Based on the model of Hamilton and May for dispersal under kin competition, we present a model
where the probability of dispersal is a function of individual body condition. Body condition is defined such
that stronger individuals survive dispersal with higher probability and have higher competitive ability than
weaklings.

2 The model

The underlying biological assumptions of the model are as follows. The habitat is spatially structured with
patches of different environmental qualities y e (—oo, +00) with ¢(y) being the probability density of patch
qualities. Each patch can support one (female) individual. In the beginning of the year, each patch is
typically occupied by one juvenile individual. An individual survives until maturity with probability s. The
species is semelparous, i.e., individuals die immediately after reproduction. The average number of offspring
of one individual is B. We do not consider maternal effects such that the body condition z e (—o0, +00) of
offspring depends only on the quality of the natal patch and offspring body condition in one patch follows a
distribution 3(z,y) with the patch quality y as its mean. For an offspring individual with body condition z,
let p(z,y) be the probability that it disperses from its natal patch that has quality y, and let II(z) denote
the probability of surviving dispersal such that II(z) is a non-decreasing function of z. There is no cost to
staying in the home patch. Dispersal is global such that dispersers are distributed uniformly over patches.
After dispersal, immigrants and (if present) local non-dispersers compete in each patch and one individual
establishes itself in the patch whereas all others die. Competitive ability depends on body condition such
that stronger individuals establish themselves with higher probability. At the end of the season we randomly
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reassign patch qualities, assuming that the environmental quality of the habitat fluctuates temporally and
locally such that patch qualities are independent of the past and independent of one another.

We will investigate the fate of a rare mutant that occurs in the population when the resident population
is in dynamical equilibrium by applying the theory of Adaptive Dynamics. The resident population is
automatically in equilibrium because offspring body condition is determined only by patch qualities and
therefore, at reproduction, the fraction of offspring individuals with body condition z that are born in
patches of quality y is the same every season.

A mutant offspring with body condition z disperses from a patch of quality y with probability p.,(z,y),
whereas the resident uses the strategy p(z,y). There is no other difference between the mutant and the
resident. The mutant fitness is

+oo +oo
Wipn) = [ 00) [ 5B5.0) (b (e 0)IUERE) + (L p(220) Pa(z:0)) dzdy 1)

where R(z) is the probability that one mutant offspring with body condition z establishes itself in a resident
patch given it disperses and survives dispersal. A disperser can immigrate into two kinds of patches: (i)
patches where the individual that occupied the patch in the year before survived until reproduction. In
these patches, competition is carried out between local non-dispersers and immigrants. The fraction of such
patches among all patches is s. (ii) patches where the individual in the previous year died before maturation.
There, only immigrants compete. The fraction of those patches is 1 —s. Let P;(z,y) be the probability that
an immigrant with body condition z wins competition in a patch of type (i) with environmental quality v,
and let P»(z) be the probability that an immigrant with body condition z wins competition in a patch of
type (ii) (in such patches, patch quality does not play a role since no local non-dispersers exist). Then,

+oo
RG) = [ 6w)(sPiaw) + (1= 9)Pa))dy @)
— 00

P, (z,y) in (1) is the probability that a non-dispersing mutant with body condition z retains the natal
patch, which is of quality y.

The particular forms of P;(z,y), P2(z) and P, (z,y) depend on the mechanism that determines compe-
tition. In the following section we will investigate different competition scenarios.

We are interested in finding dispersal strategies p(z,y) that are evolutionarily stable strategies (ESS),
i.e., strategies that maximize the fitness W when p(z,y) = pm(z,v) = D(z,y).

Applying the calculus of variations, Euler’s equation is a necessary condition for the functional W to
have an extremal at p = p,, = p . In our case, Euler’s equation implies that

1I(2) R(z) = Pn(2,9) 3)

has to be satisfied for all z and y such that 0 < p(z,y) < 1. This condition is known as the marginal value
theorem and balances the expected fitness of an individual with body condition z born in a patch of quality
y if it successfully dispersed (left hand side of (3)) and if it stayed in the natal patch (right hand side).

3 Examples for competition

3.1 Offspring body condition corresponds to the quality of the natal patch

Let us first assume that all offspring born in a patch have the same body condition that corresponds to the
environmental quality of the patch, i.e., the offspring condition distribution in a patch of quality y is the
point mass Bd(- — y) concentrated at y. The ESS condition (3) assumes then the form

1(z) R(2) = Pn(2) (4)

3.1.1 Weighted lottery competition

The most common way to model asymmetric competition is a weighted lottery. Let g(z) be a non-decreasing
weight function. Then

_ 9(2)
Pl(z7y) - ij»oc:g(zl)u1(zl7y) dzl (5)
= 9(2)
P G T () o
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and

Po(sy) = 9(z) .
(=:0) B [T29(2) (B(zy) (1 — pm(2,y)) + u2(2')) d2’ "

where u1(z,y) and us(2) are the body condition distribution of the resident after dispersal in a patch of
quality y and of type (i) and type (ii), respectively,

ui(z,y) = B(z,y) (1 = p(z,9)) + uz(2) (8)
+oo
up(2) = 3 o(y') s B(z,y) p(z,y) () dy’ 9)

If g(z) = €2, patch quality distribution is ¢(y) = (1/v/27)exp(—y?/2), probability of survival until maturation
is s = 0.9 and probability of survival during dispersal is II(z) = 0.6, then the evolutionarily stable dispersal
strategy is an increasing function of body condition as shown in Figure 1(a).

3.1.2 Strongest offspring wins

Another suggestive mechanism for local competition is that the strongest competitor wins. We assume that
first condition-independent mortality reduces the number of individuals to k& competitors in every patch, and
then the strongest individual among these establishes itself in the patch. These k individuals are chosen
at random, and k may vary between patches. The probabilities that a mutant with body condition z wins
competition in a patch of quality y are as follows.

N k (f_:cul(z’,y) d)’“

k
k=0 )B fj—::ul(z/a y) dz’ f+OOU1(Z/a y)dz’

— 00

o ijofu (2')dz' j;ou (2')dz'
> k
P,.(z, = Pr(X =k — .
=) kZ:o ( )ijoo Bz y) (1 = pm(2',y)) + ua2(z')) d2’
i ,

Ly 7 ua () d’ '
; <C ' > (fféf(ﬁ(%y) (1= pm(2,y) +uz(2')) dZ’)

| ( JEBE L y) (L= pm(2y)) d2! )k_l_i
J ) dz’

12
T (B ) (L= pl(y) + uz (2 "

Figure 1(b) shows the ESSs for different choices for the distribution of the parameter k when ¢(y) =
(1/v/2m)exp(—y?/2), s = 0.9 and II(z) = 0.6.

3.1.3 Mixture of weighted and fair lottery competition

Let us now assume that condition-independent mortality occurs before competition only in a fraction p of
the patches. In these patches exactly one randomly chosen individual survives as in a fair lottery, which
then establishes itself in the patch. In all other patches a weighted lottery determines competition as in the
first example.

Figure 1(c) shows the ESS for ¢(y) = (1/v27)exp(—y?/2), g(z) = €%, s = 0.9, TI(z) = 0.6 and pu = 0.1.

3.2 Offspring body condition is distributed around the quality of the natal
patch

When offspring body condition in a patch follows e.g. a normal distribution with the patch quality as its
mean, 3(z,y) = (1/v27)exp(—(z — y)?/2), the ESS condition has the form as in (3), which can generally
not be satisfied for all z and y, as both sides of the equation in (3) are functions of different dimensions.
Therefore, the fitness W is maximized for a p at the boundaries of the interval [0, 1], and p is a step function
that assumes the values 0 and 1.
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Figure 1: Evolutionarily stable dispersal strategies p(z) for different mechanisms of competition when off-
spring body condition corresponds to the environmental quality of the natal patch, 8(z,y) = §(z — y). (a)
weighted lottery (b) strongest wins: thick line: % follows a truncated Poisson distribution with A = 0.5, such
that Pr(k > 3) = 0; horizontal thin line: Pr(k = 0) = 2/3, Pr(k = 1) = 1/3 and Pr(k > 2) = 0; dotted line:
Pr(k =0) =047, Pr(k =1) = 0.23, Pr(k = 2) = 0.3 and Pr(k > 3) = 0; dashed line: k follows a truncated
Poisson distribution with A = 2.5 such that Pr(k > 7) = 0. (c¢) mixed weighted and fair lottery.

3.2.1 Lottery Competition

When local competition is determined by a (weighted or fair) lottery (cf. (5)—(7)), and patch qualities follow
a standard normal distribution (¢(y) = (1/v/27)exp(—y?/2)), then the ES dispersal strategy is

0 if 2 < z(y)

1 otherwise (13)

p(zy) = {

At which value of zy the jump from 0 to 1 happens in each patch, depends on the respective patch quality y.
When all patches have the same quality (e.g. ¢(y) = 6(y)), then

~ o 0 if z < zg
p(z) = { 1 otherwise (14)

As an example, assume that the survival probability during dispersal is the sigmoid function

0.6

II(z) = 0.2
(2) + 1+e 2

(15)

and the probability that an individual survives until maturation is s = 0.6.
With the weight function g(z) = e?, the ESS is

(16)

oy = 0 i =< 0105
PYE) =13 1 otherwise

If we assume a fair lottery for competition, i.e. g(z) = 1, then the ESS is

A(2) :{ 0 if z < —0.754 (17)

1 otherwise

4 Discussion

Our model explains dispersal of strong individuals, which is a puzzling phenomenon given that strong
individuals could easily retain the natal patch and yet are exposed to risky dispersal. A common outcome of
the present model seems to be an increasing dispersal fraction, or at least a strategy where weaklings do not
disperse at all but strong individuals surely disperse. But we also presented a mechanism for competition
that yields a non-monotone ESS.

In all examples, except in the mixture of weighted and fair lottery (see Figure 1(c)), very weak individuals
stay all in the natal patch, because their chances to survive dispersal and establish themselves in another
patch are negligible, whereas they increase the probability that one family member retains the home patch
if all offspring stay in the patch. In examples shown in Figure 1(a) and (b), with increasing body condition,
p(z) increases, as an individual’s chance to win a patch after dispersal increases with body condition, and in
families with stronger and stronger individuals less and less non-dispersers are necessary to maintain a high
probability of retaining the home patch.
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When offspring body condition follows a distribution around the natal patch quality, the ESS is a step
function. As a (weighted) lottery determines competition, it is important to keep a certain weighted mass of
offspring at home, and since stronger individuals do better during dispersal and competition than weaklings,
they are sent away and weaklings are kept at home.

The intriguing non-monotonic shape of the example depicted in Figure 1(c) is due to the fact that, in
a pure weighted lottery, selection is very weak on very weak individuals. With the introduction of a fair
lottery in a small fraction of patches, very weak individuals take the chance to disperse and hope to be able
to establish themselves in a patch where a fair lottery determines competition, i.e., where body condition
does not play a role. For intermediate and high values of z, the shape of p(z) is not affected much by the
fact that competition is random in a small part of the patches and is thus very similar to the ESS in a pure
weighted lottery (Figure 1(a)).
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Abstract

The objective of this paper is to report my educational research project based on the advantage of
learning and teaching with ICT, focusing on teaching of complex numbers. Some examples of motivational
impacts of ICT existed already within a wide literature on educational uses and outcomes of ICT in
classrooms, as well as out of school settings. The project was designed to build on such models and
investigate the issues in more detail, and to explore ways to enhance motivational impacts and outcomes.
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1 Introduction

The teaching of complex numbers has always been a challenge for teachers of mathematics, because it is very important
to understand the reason why complex numbers were invented. Next, it is extremely important that pupils become
introduced into the abstract mathematical system of complex numbers, and learn concepts which can be successfully
applied later in other mathematical topics. It is well known that the "reason" which leads to complex numbers
concerns solutions of equations. More exact, we can accept that the complex numbers were invented to provide
solutions to polynomial equations. On the other hand, complex numbers are useful abstract quantities that can be
used in calculations that result in physically meaningful solutions [13]. Today, the complex number system is so deeply
rooted in physical theory (e.g. quantum mechanics) that one could argue that the complex number system is a more
“real” description of the world than the real number system [2]. The famous physicist Roger Penrose wrote an essay
to this effect, “Nature is complex”. However, recognition of this fact is one that took a long time for mathematicians
to accept.

Usually pupils are afraid of complex numbers; they say it is a hard subject with a lot of difficult problems and lot of
calculations. Even when the lectures have been supported by powerful digital technology, it is possible that pupils are
still passive observers [5]. It is not easy to suggest teaching methods, especially in comparison to traditional lectures,
which would be effective and would engage pupils actively and generate stimulating learning. Anyway, we should
be aware of several different roles that technology, especially information and communication technology (ICT), can
play in instructions: from eliminating computational drudgery in realistic applications to providing environments for
active exploration of the properties of mathematical structures and objects, or to getting a variety of experience using
different ICT tools. So, if we want to obtain an effective teaching of mathematics in our schools, one of things what we
need is to focus our future work (or research) on implementation models of ICT in mathematics education. ICT and
“Computer Aided Teaching” have become an important part of life today, and are widely used to improve teaching and
learning techniques. Learning with implementation models of ICT, learning and teaching become more interesting
for both, pupils and teachers. Pupils can learn and practice their knowledge at home also, without repeating things
that are already familiar to them, so they can concentrate on what they don’t know [7].

A model of ICT is a concept that carries a lot of potential, but only if it’s implemented in an efficient way. It
should be more than just another way of delivering information to pupils with inserting a couple of simple animations.
It should be an environment developed in highly interactive way allowing pupils to receive knowledge, develop creative
thinking and reasoning skills. For better fulfilment of these conditions and for developing more robust online content,
for example, software Macromedia Flash MX can be used. This is currently the best choice because this software is
considered to be a leader in creating various online elements and it’s moving from being just a tool for animations, that
are inserted in HTML websites, to a tool for developing complete websites which are modern, interactive, interesting
and attract more attention [7]. There are more specific reasons why to use Flash:

e diversity — allowing the use of different graphical tools along with applying programming for complex tasks,
suitable for all elements from small animations to whole web-sites with high level of dynamics

e presence — flash player has become a necessity for a computer user, approximately 96% of all web browsers
have Flash Player installed

e suitable for any bandwidth — Flash player is suitable for any kind of bandwidth because of more than one
reason: it uses vector based graphics allowing efficient storage of the images; it has a high-performance compres-
sion facility enables Flash files to run quickly; multimedia components are downloaded partially when needed
so the bandwidth is not wasted on elements that are not used
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e platform independent — Flash files are standalone and they don’t have problems with running on any platform

e casy usage — the software itself is very easy to use with lots of beneficial features: user-friendly interface, a
variety of templates (quizzes, presentations, photo slideshows etc.), pre-built components (checkboxes, combo
boxes, push buttons, scroll bars etc.).

On the other hand, one has to be aware of the limitations of this software [7]. Concerning development of contents,
limitations of Flash are, for example:

e Flash developers must manually build support for features such as back button and book marking, otherwise
these features are not available for users

e Flash does not use browser settings for font size so text may appear tiny for some users. However, good
characteristics of Flash prevailed in making choose of software for developing mathematical contents.

Regarding to all this I have tried to implement models of ICT in teaching of complex numbers (make e-learning content
regarding complex numbers) for pupils and teachers as well. It is important to write here that I did it through the
educational research project Implementation models of ICT in Mathematics Education, which is the main scientific
framework for my master thesis. As my master thesis is still underway, models (contents) are being added frequently.
In other words, the main object of this thesis is to actually provide assistance to pupils in understanding contents
that have not been fully grasped during regular classes as well as provide more for those eager to further expand
their knowledge. In recent time we earned a lot of experience and feedbacks from our own work using implemented
models of ICT, as well as from other colleagues’ work. Using a lot of animations and with a variety of problems I've
prepared teaching and learning content on complex numbers covering the whole topic about complex numbers in the
secondary school curriculum. I’ve also tried to find problems form real world to make this closer to pupils.

The contents on complex numbers are based on the Mathematics curriculum of Bosnia and Herzegovina. Pupils
are introduced to complex numbers in the second grade of secondary school for the first time. Topics for that
grade include the set of complex numbers based on the extended set of real numbers. Pupils learn the definition of
imaginary and complex numbers, the standard form of a complex number, equality of complex numbers, arithmetic
operations with complex numbers, absolute value of complex numbers and the Gaussian (complex) plane. In the
forth grade, the complex number notation is extended to the polar form of a complex number and definitions are
based on trigonometric functions.

An important one of things that I was thinking about was what kind of language to use, in a meaning weather be
more precise or try to explain things as simply as I could. Should I use mathematical or everyday language making
my content? Complex numbers is a topic that has a lot formulas that pupils need to remember, so it is hard to escape
formal language. At the end I decided to use something between.

2 The structure of contents

My content is written in Croatian, one of the three official languages in Bosnia and Herzegovina, and it is an integral
part of a web-page which is located on the server of my Faculty [12]. So far on the web-page we can choose:

e lecture,
e interactive lessons,

e test and quizzes.

This choice is based on a similar example described by group of authors [7], and because the fact that I am a
member of this group (team). This web-page and content on it can be used for both learning and teaching. Because the
teachers should be able to help pupils use ICT to acquire the skills of searching for, managing, analyzing, integrating,
and evaluating information, the content and activities based on that content are designed in a way that engage pupils
in collaborative problem solving, research, or artistic creation. The lessons in the lecture part are similar to the
lessons in the textbooks. Every lesson is followed with solved examples. This is good for pupils, because they can
find formulas and information about things they do in school in one place. And teachers can use this content to make
classes a little bit different than in the traditional way of teaching, and also it is easier for them, because in this case
there is no necessity to write all the facts onto the blackboard.

The lecture content is followed by interactive lessons. In other words, they are covering the lecture content but
with a different approach. In this part pupils are not just supposed to read lessons, but also to fill in the blanks.
These lessons are made like a conversation between pupils and computer. The pupils go through the lesson answering
questions. In this way information is not just served to pupils like in a lecture part, but they have to search for
information. They learn about some specific topic giving a correct answer. All problems have a button Check, where
pupils can see if their solution is correct or not, and some of them have a button Solution that shows the correct
solution with explanation. This part of the web-page teachers can use to take a variety of problems and examples.
Also using this way of teaching, there is no difficulty of going further for pupils that know more and to those who
know less. Pupils can go through the page and learn by themselves on the level that they are. Next, according
to some educational researches teachers indicated that pupils were more able to reach their highest potential level
because they were less limited in terms of experiences that they could gain [9].

Test and quizzes are made for revising the knowledge from one specific topic. Here pupils can see if their solution
is correct or not, without any explanation. Teachers can use this part to check the pupils’ knowledge from each topic.
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3 The contents of complex numbers

The contents of complex numbers are based on the Mathematics curriculum of Bosnia and Herzegovina (see Table
1). Already is described when pupils are introduced complex numbers in the secondary school, and here is shortly
explained about lectures, interactive lessons, games, test and quizzes, so here it will be explained more the content
(implemented models of ICT in teaching of complex numbers).

Table 1: Contents of mathematics curriculum regarding complex numbers (B&H).

Grade Topic

ond Imaginary unit and imaginary numbers

ond Set of complex numbers

ond Complex numbers and the Gaussian (complex) plane
ond Standard form of a complex number

ond Equality of complex numbers

ond The modulus of a complex number

ond The arithmetic of complex numbers

ond Addition and subtraction of complex numbers
ond Multiplication of complex numbers

ond Conjugates of complex numbers

ond Division of complex numbers

4th The polar form of a complex number

4th Multiplication and division of complex numbers in the polar form
4th De Moivre’s theorem

2nd & 4th | Geometric interpretations of complex numbers

3.1 The Arithmetic of Complex Numbers: Multiplication of complex numbers

After this lecture the user should be able to define one of the basic arithmetic operations of complex numbers —
multiplication, know the main properties and some special cases of this operation and apply it in problem solving
exercises, which is the main aim of this lecture. Next, lecture should contain the definition of multiplication and
should explain the technique for multiplying two complex numbers. Because the complex multiplication is a more
difficult operation to understand than either an algebraic or geometric one, we will do it algebraically first. The
user will be later introduced to some special cases of multiplication, for example, multiplying a complex number
by a real number, multiplying a complex number by %, multiplication and absolute value, and the main properties
of this operation, for example commutation. At the end of the lecture, user is led to the interactive lessons to
discover techniques for multiplying two complex numbers, some special cases of multiplication, main properties of
this operation, and finding square roots of a complex number. In addition, the user will later be able to use few
bottomless worksheets of multiplying complex numbers.

The interactive lesson starts with an example, in witch the user (pupil) should enter two complex numbers, and
later be able to see techniques for multiplying these two complex numbers, or submit and check his answer. This
example also contains a bottomless worksheet.

The second example is similar to the previous one, but this time the user should determine real and imaginary
parts in a product of two random complex numbers. So, in this example he should additionally use knowledge about
equality of complex numbers. This example also contains a bottomless worksheet, worksheet number 2.

The third example is again similar to the previous two examples. The aim of these three examples is that a
user by using dynamic techniques discovers a technique for multiplying two complex numbers, and its use in various
situations. The approach is based on self discovery through observation of dynamic techniques and conclusions based
on the new lecture as well as on the previous knowledge of complex numbers, for example, equality of complex
numbers.
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The fourth example first introduces a special case of multiplication, multiplying a complex number by a real num-
ber, and later another special case, multiplication and absolute value. This example contains a simple questionnaire
for the observation data.

The fifth example introduces a second special case of multiplication, multiplying a complex number by i, and later,
again, another special case, multiplication and absolute value. Also, this example contains a simple questionnaire
for the observation data. The questionnaire is divided into a few parts. In the first part, the user uses dynamic
multiplying by ¢ to realize that multiplying a random complex number z by ¢, leads to a counter clockwise rotation
of the point z by 90° around the origin to a new point zi. Later, the user will be asked to determine the effect
of multiplying a complex number by ¢ and again by ¢, effect of multiplying complex number by —i, and effect of
multiplying by 3. In this part, the user uses dynamic multiplying by ¢ and again by 4 to realize that multiplying a
random complex number z by i and again by 7 leads to a counter clockwise rotation of the point z by 180° around
the origin to a new point zi> = —z, in other words, the user should realize that this multiplying leads to the opposite
number of number z, and get that i squared is —1. Effects of multiplying complex numbers by —i and by ° will be
explained in details. At the end of the questionnaire user is led to discover that points z, zi, —z, zi> lie on the same
circumference.

The aim of these two examples is that a user by using dynamic multiplying by a real number, dynamic multiplying
by ¢ and dynamic multiplying by ¢ and again by ¢, discovers that these multiplications lead to scaling and rotation.
Also, a user should discover a relationship between multiplication and absolute value. Approach is based on the self
discovery through observation of graphical data and conclusions based on the new lecture as well as on the previous
knowledge of complex numbers.

The sixth example, also the last example, should help the user in understanding of finding the square roots of
complex numbers. This is the most complex of the examples. It includes solving a system of previously obtained
equations and the equality of complex numbers. The test includes application of learned contents both from the
lecture and interactive lessons. It should contain exercises with multiplication of two complex numbers, determining
of real and imaginary parts of complex numbers, opposite numbers, comparing and determining the modulus of some
special complex numbers, and finding the square roots of a complex number. In this part the user shouldn’t use
dynamic technique or dynamic multiplying as it is a test of knowledge.

3.2 Geometric Interpretations of the Triangle Inequality

Here is another one lecture as a part of the developed contents based on the advantage of learning and teaching with
ICT, especially web-based learning and teaching. I chose this example because here it is very easy to see how the
availability of easy-to-use FLASH media files highlights the role of graphical representations of dots and vectors, as
well as the triangle inequality. The dynamic plane has two mobile dots, which are at the ends of vectors z & w (see
Figure 1 below). By dragging them, it’s possible to dynamically change lengths of vectors and the values of complex
numbers which are represented numerically and graphically. At the same time, the values of sums are given as a
feedback or information. This is the most important function of this interactive lesson, because giving of the values
of sums immediately has the potential to change the pupil’s activities in a very impressive manner.

I expect here that the learner finds, by exploring and observing numerical data and graphic representation, the
geometric interpretation of triangle inequality based on his or hers previous knowledge, or that there are no occasions
where it is possible in a triangle for one side of a triangle to be larger than the sum of the lengths of the other two
sides.

Teaching experiments, later kept in one secondary school in Bosnia and Herzegovina, shows that pupils were able
to accept triangle inequality very well and were enthusiastic throughout the lesson [14, 16]. Evident difference of
pupil’s activity was observed as they were motivated to actively participate during the lesson. After the experiment
teachers noted that the following issues are important pedagogically /mathematically:

e the possibility of scaling
e the possibility of meeting surprises and investigating their origins
e the possibility of a dynamic change of parameters to better appreciate a triangle inequality.

Also, they concluded that these kinds of contents properly combined with traditional methods of teaching and
pupil learning could improve pupils’ interest in mathematics, as well as their understanding of different mathematical
concepts.

4 Conclusion
The brief description of given examples in last chapter points only some of the educational potentials and possibilities
afforded with an implemented models of ICT. Although the general findings of my educational research are not

completed in this moment, because my master thesis is still underway, but the core findings of my work have shown
that:
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Figure 1: Red and blue dots can be dragged and the change of values is visible.

e motivation has been enhanced most positively in school situations where models of ICT are implemented within
a framework that considers impacts upon learning and teachings,

e pupils have positive attitudes to the use implemented models of ICT,

e implemented models of ICT are seen by pupils as a learning aid rather than a means to gain a competitive
advantage over other pupils in the class,

e ICT enables a multi-sensory approach to both teaching and learning, and many children need visual, auditory
and kinaesthetic stimulation in order to enable learning,

e ICT supports independence of pupil working and pupils feel more in control of their learning when it is used
appropriately,

e ICT can be used to extend the teaching day (by enabling pupils to work on tasks outside classrooms and in
ways that they could not do without using ICT), and supporting communications between teachers and pupils
is motivating for both teachers and pupils.

These core findings are in accordance with results of some other referred authors. It is obvious that for this result
we can thank mainly the integration and implementation of ICT in teaching of complex numbers. Technology brings
to pupils and their teachers the opportunity to individualize learning — to generate illustrative examples, as well as a
dynamic and rich presentation of a given subject, to follow interesting topics to the desire depth, to choose their own
problems and appropriate tools for solving them. Because awareness regarding huge transformations of the workplace
for teaching and learning of mathematics with ICT, the next goal in my educational research will be to examine did
developed learning and teaching contents fully improve the advantage of learning and teaching with ICT, and to
determine how to maximise the motivational impact from ICT. With these findings I will be able to close (conclude)
my master thesis, and others will be able to consider the ways in which teachers could enhance motivational impacts
of ICT for pupils, especially for those disaffected with traditional forms of learning.
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