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Abstract: This work contains a series of studies on the optimization of three real-world scheduling 

problems, school timetabling, sports scheduling and staff scheduling. These challenging problems 

are solved to customer satisfaction using the proposed PEAST algorithm. The customer 

satisfaction refers to the fact that implementations of the algorithm are in industry use. 

The PEAST algorithm is a product of long-term research and development. The first version of it 

was introduced in 1998. This thesis is a result of a five-year development of the algorithm. One of 

the most valuable characteristics of the algorithm has proven to be the ability to solve a wide range 

of scheduling problems. It is likely that it can be tuned to tackle also a range of other combinatorial 

problems. 

The algorithm uses features from numerous different metaheuristics which is the main reason for 

its success. In addition, the implementation of the algorithm is fast enough for real-world use. 

 

Keywords: Efficient algorithms, Metaheuristics, Scheduling, School timetabling, Sports 

scheduling, Staff scheduling. 
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1. Introduction to Scheduling Problems 

The focus of this thesis is to present general frameworks for school timetabling, sports scheduling 

and staff scheduling problems, and to show that these problems can be solved to customer 

satisfaction using intelligent heuristic algorithms. The thesis is a collection of seven publications. In 

the first two publications we analyze the algorithm presented in [Nurmi, 1998] and discuss our 

participation in making an XML format for benchmarks in high school timetabling. The next two 

publications deal with scheduling the Finnish major and 1st division ice hockey leagues. A 

framework for scheduling professional sports leagues is given in the third sports scheduling article. 

The last two publications propose an implementation-oriented staff scheduling framework and 

describe the solution of problem instance combinatorial optimization problem from a Finnish bus 

transportation company.  

This section briefly discusses the difference of hard and easy problems. A literature summary of 

the problems of the present thesis is also given. In Section 2 an introduction to metaheuristics is 

given. Our solution method is discussed as an example of these metaheuristics. Sections 3, 4 and 

5 describe the optimization problems of school timetabling, sports scheduling and staff scheduling 

respectively. Mathematical models, implementation-oriented models, practical results and 

cooperation partners are discussed in these sections. Finally, Section 6 summarizes the results of 

the research. 

School timetabling, sports scheduling and staff scheduling problems are hard combinatorial 

problems and they belong to a class called NP-hard (non-deterministic polynomial-time hard) 

problems [Garey and Johnson, 1979]. Other examples of this problem class include traveling 

salesman problem, subset sum, set partitioning, multiprocessor scheduling, graph coloring, vertex 

cover and integer linear programming. Under the best knowledge of recent days, to solve a NP-

hard problem optimally, some kind of enumerative method has to be implemented, that is, a list of 

nearly all possible solutions has to be listed and the one with the best value will finally be selected. 

The time required to solve an NP-hard problem depends exponentially on the size of the problem. 

However, no-one has been able to prove that no polynomial time algorithm for NP-hard problems 

exists. 

Intelligent heuristic algorithms need to be designed and implemented to be able to solve real-world 

instances of NP-hard problems. These heuristics find solutions in a reasonable time, but it is 

unlikely that the solutions are optimal, though probably of good quality. When developing a 

heuristic method one still has to be concerned about the running time. Even though an algorithm 

works in polynomial time it could still prove to be too slow for real-life applications. However, it is 

perfectly reasonable to run an algorithm fortnight if the solution has to be generated only once a 

year and if the customer is satisfied with the result. The customer is interested in the best possible 

value of the objective function, not in how fast this is reached. Therefore, in real-world scheduling 

the “customer satisfaction” is the most important optimality criterion. 

Scheduling problems have attracted researchers since the mid-1950s, when the first commercial 

computers where used to solve project scheduling problems. Since that time, the evolution of 

scheduling has closely tracked the development of computers. Usable practical applications began 

to show up about 15 years ago. Initially the solution methods were not able to solve any difficult 

problems − usually solutions were found for some toy-problems with little or no connection to real-

world problems. This thesis is not about how to solve challenging problems in theory. On the 

contrary, it presents how to solve these problems in practice. 
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Real-world scheduling has gained much attention among the researchers in the last decade. One 

important reason for this is that computers have evolved to such a state that they are able to 

calculate complicated and time-consuming mathematics in a reasonable amount of time. Another 

reason is that the requirements and constraints of real-world problems have become more 

complicated which makes it impossible to produce solutions manually. Public institutions and 

private companies around the world have become more aware of the possibilities for decision 

support technologies, and they no longer want to create the schedules manually. One further 

significant benefit of automating scheduling processes is the considerable amount of time saved by 

the administrative staff involved.  

Several solution approaches for many different scheduling problems have been introduced. A great 

deal of research has concentrated on examination timetabling, university timetabling and course 

timetabling [Schaerf, 1999; McCollum, 2006]. Timetabling research has achieved promising and 

practicable results. Sports scheduling and staff scheduling have also been extensively studied. 

Excellent overviews on sports scheduling can be found in [Easton et al., 2004] and [Rasmussen 

and Trick, 2008] and on staff scheduling in [Burke et al., 2004] and [Ernst et al., 2004]. 

Furthermore, vehicle scheduling [Toth and Vigo, 2001] and production line scheduling are state-of-

the-art scheduling problems. The production line scheduling derives from job-shop scheduling 

[Blazewicz et al., 1996; Jain and Meera, 1999]. The job-shop problem itself is a generalization of 

the famous traveling salesman problem, see e.g. [Applegate et al., 2007]. 

PATAT (The International Conference for the Practice and Theory of Automated Timetabling) is 

perhaps the most important scheduling conference concentrating on university timetabling, sports 

scheduling and staff scheduling. The publications of the conference give a good idea how the 

academic interest towards these scheduling problems has evolved in recent years. Another 

important scheduling conference is MISTA (Multidisciplinary International Scheduling Conference). 

MISTA concentrates on a wide variety of scheduling problems, for example on production 

scheduling. These conferences are held both in Europe and in the USA. Table 1 shows a 

classification of the scheduling publications presented in the PATAT and MISTA conferences. The 

“Transit scheduling class” includes vehicle, bus, railway and airport scheduling. The Other 

scheduling class includes e.g. production line scheduling, processor and memory scheduling and 

project and resource scheduling. 

While the main focus in the PATAT 06 conference was on university, school and exam timetabling, 

the interest in PATAT 10 has moved to sports and staff scheduling (see Table 1). Our research 

focused on school timetabling in 2006-2007, sports scheduling in 2007-2009 and staff scheduling 

in 2009-2010. In this respect the advancement of our research has followed the academic main 

stream. Our current research addresses to transit scheduling and production scheduling. At the 

time of writing, MISTA 2011 conference announced to arrange a special session on passenger 

transport and logistics systems.  
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Table 1. Classification of the scheduling publications presented in PATAT and MISTA conferences from 
years 2004 to 2009. 

 PATAT 04 PATAT 06 PATAT 08 PATAT 10 MISTA 05 MISTA 09 

University 
timetabling 

26 29 29 22 4 10 

Sports 
scheduling 

5 8 8 11 0 3 

Staff 
scheduling 

12 8 12 14 5 7 

Transit 
scheduling 

2 3 1 3 7 5 

Other 
scheduling 

10 5 6 0 77 55 

General 
methodology 

8 4 3 6 8 9 

Total 
sum 

63 57 59 56 101 89 
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2. Metaheuristics  

Intelligent heuristic algorithms need to be designed and implemented to be able to solve real-world 

instances of hard problems. Perhaps the most prominent heuristic approaches used to be neural 

networks (NN) [Kohonen, 1984; Hecht-Nielsen, 1990; Rumelhart and McClelland, 1986] and 

genetic algorithms (GA) [Goldberg 1989]. These methods use ideas from their biological 

counterparts and are related in particular to artificial learning. Neural networks are loosely modeled 

on the operation principle of the human brain and learn by themselves using a set of training 

patterns. This learning can then be applied to classification, prediction or control tasks. The 

application areas of NNs have been rapidly widening including such interesting applications as 

credit card fraud detection, handwriting recognition and financial forecasting. Neural networks have 

also been quite successful in solving different types of combinatorial problems.  

The basic idea of genetic algorithms is to use reproduction, crossover and mutation operators to 

produce good solutions. Although the idea of evolutionary computing is fascinating, its practical 

use is for the most part yet to come. There are, however, many examples of practical applications 

and future potential: criminal face-printing, network hardware development and oil exploration. 

Genetic algorithms can also be used to solve combinatorial problems, and this area has been 

steadily increasing.  

The most successful metaheuristics in solving challenging scheduling problems do not solely use 

neural networks or genetic algorithms. They most likely use mixed local search and population-

based methods. Osman and Laporte [1996] defined metaheuristic as follows: “A metaheuristic is 

an iterative generation process which guides a subordinate heuristic by combining intelligent 

concepts for exploring and exploiting the search space. Furthermore, learning strategies are used 

to structure information in order to efficiently find near-optimal solutions”. 

Blum and Roli [2003] classify metaheuristics based on five criteria: 

1) Nature-inspired algorithms are those that are inspired by some phenomenon in the nature. 

Genetic algorithms simulate natural selection, particle swarm optimization mimics the 

behavior of swarms, and so on. Nowadays many algorithms are some kind of hybrids – the 

algorithm may be nature-inspired but it can include parts that are not nature-inspired (for 

example tabu search). 

2) Population based algorithms work with many simultaneous solution candidates. This may 

lead to high-quality solutions but the computing time increases very quickly. 

3) Dynamic objective function means that the algorithm modifies the weights of the 

multiobjective function during the search. This can be of great help when the importance 

and difficulty of the objectives are not known or cannot even be guessed. 

4) One vs. various neighborhood structures. Using various neighborhood structures usually 

makes the search space larger. An algorithm can search one neighborhood for some time 

and swap into another if good solutions are not found. 

5) Memory usage means that an algorithm saves the search history while running. This helps 

the evaluation of search locations – if the search location has been visited earlier the 

algorithm can use that information. 

Metaheuristic methods guide the search process towards near-optimal solutions. The idea is to 

efficiently explore the search space with a combination of simple local search procedures and/or 

complex learning processes. The methods are usually non-deterministic and they may include 
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mechanisms to avoid getting trapped in confined areas of the search space (i.e. local minima). 

Popular metaheuristic methods include ant colony optimization [Colorni et al., 1992], cooperative 

local search [Preux and Talbi, 1999; Landa Silva, 2003], ejection chains [Glover, 1992], genetic 

algorithms, hill-climbing, hyper-heuristics [Burke et al., 2003], idwalk [Neveu et al., 2004], iterated 

local search, memetic algorithms [Moscato, 1989], particle swarm optimization [Eberhart and 

Kennedy, 1995], simulated annealing [Kirkpatrick et al., 1983], tabu search [Glover et al., 1985] 

and variable neighborhood search [Hansen et al., 2000]. A classification of these metaheuristics is 

shown in Figure 1.  

 

 
 
Figure 1. A classification of metaheuristic methods. For abbreviations, see text. 

 

 

A local search method is defined by 

1) A neighborhood structure, which is a mechanism to obtain a new set of neighbor solutions 

by applying a small perturbation to a given solution. 

2) A method of moving from one solution to another. 

3) Parameters of the method. 

Hill-Climbing (HC) is a basic local search method. The idea of the method is to accept every better 

move. This enables the algorithm to “climb up the hill” until a local optimum is reached. HC starts 

with a random solution, and iteratively makes small changes to the solution to generate a 

neighborhood solution. If the neighborhood solution is better than or equal to the current solution, 

the neighborhood solution substitutes the current solution. When the current solution can no longer 

be improved, hill-climbing terminates. Almost all other local search methods are based on hill-

climbing to some extent. 

Iterated Local Search (ILS) is a sophisticated version of hill-climbing with random restarts. Hill-

climbing with random restarts first finds a local optimum. Then it restarts the iteration from a 

random point and finds another local optimum, and so on. Finally, it returns the best optimum 

found. ILS is an extension to this procedure. It tries to stochastically hill-climb in the space of these 

local optimums. The idea is that it is more probable to find a global optimum near the local 

optimums than to restart from some random point. 

Tabu Search (TS) is one of the most cited and used metaheuristics. The main idea is to prevent a 

new move from some location back to a location which has been visited before. TS is basically a 

Metaheuristics 

Population based 

Local search 

ILS TS SA IDW

W 

VNS EC HH HC
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hill-climbing method, but it employs further strategies to avoid terminating at a local optimum, 

which often happens in hill-climbing. TS modify the neighborhood structure using a tabu list which 

is a short-term memory containing the solutions that have been visited in the recent past. TS 

exclude solutions in the tabu list from the new neighborhood. 

Hill-Climbing methods accept only improving or equally good moves. Another approach is to 

accept also deteriorating moves. These moves help to escape from the local optimum.  

In Simulated Annealing (SA) this acceptance is decreased over time so that it finally diminishes to 

zero. In a basic simulated annealing version a move is accepted with a probability exp(-Δf/T), 

where Δf gives the increase in the cost function and T is a control parameter which approaches 

zero. 

IDWalk (IDW) performs N neighborhood moves and returns the best solution found. If this solution 

is better than or equal to the current solution, it is substituted for the current solution. If no such 

solution has been found, a previously rejected solution is selected to substitute the current solution. 

The rejected solution is selected from a list of rejected solutions according to some selection 

mechanism.  

Ejection Chains (EC) are methods that generate a sequence of interrelated hill-climbing moves to 

create a more complex compound move. The compound moves allow a variable number of 

solution components to be modified within any single iteration of a local search. These 

modifications cause some solution components to be ejected from the solution space. Neighboring 

solutions obtained by an ejection chain process are created by a succession of embedded 

neighborhoods that lead to intermediate trial solutions at each level of the chain.  

In Variable Neighborhood Search (VNS) more than one neighborhood structure is considered. 

After finishing the exploration with respect to one neighborhood, the search diversifies to another 

neighborhood. The neighborhood is changed during the search if no better solutions have been 

found in the current neighborhood. In this way one hopes to escape from local optima. 

The efficiency of metaheuristics depends on the quality of the neighborhood structure. To 

overcome this problem, Hyper Heuristics (HH) use a set of simple and fast low-level heuristics. 

While Variable Neighborhood Search changes the neighborhood operator, HH changes the 

heuristic operator. The decision for selection of the heuristic during the search is based on problem 

independent measures, such as the change in the quality of solutions when the selected heuristic 

is used.  

The main difficulty for a local search algorithm is 

1) to explore promising areas in the search space to a sufficient extent, while at the same time 

2) to avoid staying stuck in these areas too long and 

3) to escape from these local optima in some systematic way. 

Population-based methods use a population of solutions in each iteration. The outcome of an 

iteration is also a population of solutions. As already mentioned, the most commonly used 

population-based method is a genetic algorithm. Genetic algorithms are good at exploring the 

search space but find it difficult to zoom-in to find better-than-good solutions.  
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Memetic Algorithm (MA) is an extension of GA incorporating a local search for each solution in 

between generations. The main purpose is to introduce problem-dependent knowledge as a way of 

speeding-up the search process. However, the loss of diversity is specifically problematic in MA as 

the local search tends to focus in a few good solutions. MA is also known as hybridized or hybrid 

genetic algorithm. 

Particle Swarm Optimization (PSO) is a population-based method which maintains a population of 

solutions called particles and moves these particles around in the search-space. Each particle 

changes its position and velocity based on the individual particle’s best found solution and the 

global best found solution. That is, while flying in the search-space, every particle updates its 

velocity and position based on its own best experience and that of the entire population. 

In a Cooperative Local Search (CLS) scheme, each individual carries out its own local search 

operator. When an individual gets stuck it asks for the cooperation of the population in order to find 

something to do to get unstuck and to continue the search from another position in the solution 

space. The results achieved by each individual may be different at different times and this 

encourages diversity within the population. 

Ant Colony Optimization (ACO) is an approach which mimics ants searching for food. The ants are 

able to quickly find the shortest path from their nest to food sources. They accomplish this by 

leaving a substance called pheromone after them. When the followers choose directions to go to, 

they pick the paths with stronger pheromone concentration. 

The described methods have been found successful in various scheduling and timetabling 

problems. Even though each of these methods works by itself, most of them best in cooperation 

with other methods. 
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3. The Scheduling Algorithm 

This section describes the algorithm developed for tackling various scheduling problems. The 

design of the new algorithm was quite a long process starting from determining the power of the 

original algorithm and ending with the analysis of the various shuffling operators. 

The Original Algorithm, h-HCGA 

The proposed algorithm, which will be used to solve school timetabling, sports scheduling and staff 

scheduling problems, has features from many metaheuristics. The foundation of the algorithm was 

established in [Nurmi, 1998]. Nurmi developed a new hybrid hill-climbing genetic algorithm (h-

HCGA) that outperformed a standard GA and questioned some components of the GA that were 

normally considered necessary parts of genetic algorithms. The basic hill-climbing method was 

boosted by adding a tabu list and a simulated annealing refinement. A combination of HC and GA 

techniques was used to solve timetabling problems. Figure 2 shows a pseudo-code of the original 

h-HCGA algorithm. It should be noted that the new improved algorithm does not use the running 

time limit – the algorithm runs for a given number of generations. The improved algorithm does not 

use marriage selection [Muhlenbein, 1989] either, because it was found ineffective (see [P1]). 

Marriage selection is a process where we randomly pick two schedules S1 and S2 and choose the 

better one of them. 

  

Set the running time limit t and the population size n 

Generate initial random population of schedules  

Set better_found = 0 

WHILE elapsed-time < t 

     REPEAT n times 

          Select a schedule S by using marriage selection 

          Apply GHCM to S to get a new schedule S’ 

          Calculate the change Δ in the objective function 

          IF Δ ≤ 0 THEN 

               Replace S with S’ 

               IF Δ < 0 THEN 

                    better_found = better_found  + 1 

                ENDIF 

          ENDIF 

     ENDREPEAT 

     IF better_found > n THEN 

          Replace the worst schedule with the best schedule 

          Set better_found = 0 

     ENDIF 

     Update the dynamic weights of the hard constraints (ADAGEN) 

     Calculate the new temperature for simulated annealing 

ENDWHILE 

Choose the best schedule from the population 
 

Figure 2. A pseudo-code of the h-HCGA timetabling algorithm [Nurmi, 1998]. 
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The algorithm uses a local search operator called GHCM (greedy hill-climbing mutation), see 

Figure 3. The operator moves an object, o1, from its old position p1 to a new position p2 and then 

moves another object, o2, from position p2 to a new position p3 and so on, ending up with a 

sequence of moves. The initial object selection is random. The new position p2 is selected by 

considering all possible positions and selecting the one that minimizes the objective function. Then, 

the new object o2 is again selected by considering all the objects in the position p2 and picking the 

one that minimizes the object function. Next, a new position p3 is selected, and so on. The 

sequence of moves stops if the last move causes an increase in the objective function value and if 

the value is larger than that of the previous non-improving move (see Figure 4). Then, a new 

sequence of moves is started. The initial solution is created randomly.  

Randomly select one game g 
Set best_cost = ∞, cumulative_cost = 0 and move_number = 1 
WHILE true 
     Select a new round r for the game among all the possible rounds so  
          that the move g to r is not in the tabu list and the cost of moving g to r is minimized 
     Update tabu list with the move g to q where q is g’s old round 
     cumulative_cost = cumulative_cost + cost (g to r) 
     IF cumulative_cost ≤ best_cost THEN 
          best_cost = cumulative_cost 
          Save the sequence of moves 
     ENDIF 
     IF cost (g to r) > 0 AND the cost function value is above the cost function value in the 
          previous non-improving move OR move_number = 10 THEN 
          EXIT WHILE 
     ENDIF 
     Remove a game u from round r among all the possible games so that u and g 
          have clashes and the cost function is minimized 
     Set g = u 
     Set move_number = move_number + 1 
ENDWHILE 
Save the sequence of moves 

 

Figure 3. A pseudo-code of the GHCM operator [Nurmi, 1998]. 

 

An example of the utilization of the GHCM operator comes from scheduling the Finnish major ice 

hockey league. The objects, o, that the operator move, are the games to be scheduled. The 

positions, p, of the games are the rounds in which they are scheduled to be played. The operator 

starts with a random game in a random round. The game is moved to the round where it minimizes 

the object function. From that round another game is chosen to be moved. Again, the game that 

minimizes the object function is chosen. These moves are repeated until no further improvement in 

the object function is expected. 
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Figure 4: The latest move (step 7 to step 8) causes the GHCM to stop because the 

increase in the cost function value is bigger than in the previous non-improving 

move (step 4 to step 5). 

 

The reproduction operation of the h-HCGA algorithm is, to a certain extent, based on the steady-

state reproduction [Syswerda, 1989]: the new schedule replaces the old one if it has a better or 

equal objective function value. Furthermore, the worst schedule is replaced with the best one when 

n better schedules have been found, where n is the size of the population. 

The algorithm uses an adaptive penalty method (ADAGEN) for multi-objective optimization. A 

traditional penalty method assigns positive weights (penalties) to the soft constraints and sums the 

violation scores to the hard constraint values to get a single value to be optimized. The ADAGEN 

method assigns dynamic weights to the hard constraints based on the weights assigned to the soft 

constraints [Nurmi, 1998]. The soft constraints are assigned constant weights according to their 

significance.  

The hard constraint’s lower bound is the same as the biggest soft constraint weight. The upper 

bound is calculated as (see [Nurmi, 1998]): 

                
 
        (2.1) 

where  

m is the number of soft constraints, 

ρmax is the biggest weight assigned to the soft constraints, 

ρi are the weights assigned to the soft constraints. 

All hard constraint weights are initially set to their lower bound. The weights are updated by -1, 0 or 

1 in each generation according to their effect on the cost function between the generations (see 

[Nurmi, 1998] for a detailed description). 
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The Improved Scheduling Algorithm, PEAST 

An improved version of the h-HCGA algorithm is proposed in this thesis. As a first step we 

determined the best configuration of the h-HCGA algorithm, see [P1]. The best values of the nine 

control parameters were found by using both brute force and statistical analyses. These 

parameters included the reproduction/selection method (as in genetic algorithms), the maximum 

length of the move sequence (as in ejection chain method), the population size, the tabu list size 

and the update frequency of the hard constraint weights. The research showed that the chosen 

parameter values were very good for the introduced real-world and artificial school timetabling 

problems. 

Next we made two changes to the h-HCGA algorithm, see [P4]. These changes aided the search 

procedure to escape from local optima as well as better explore the fitness landscape. As a result 

of these modifications the algorithm is able to solve a very challenging real-world sports scheduling 

problem instances, as discussed in [P3] and [P4]. 

The h-HCGA algorithm uses a simulated annealing refinement with a standard exponential cooling 

scheme. Test runs showed that a good strategy is to stop the cooling at some predefined 

temperature. Therefore, after a certain number of iterations m we let the algorithm accept an 

increase in the cost function with some constant probability p. The results are surprisingly good by 

choosing m equal to the maximum number of iterations with no improvement to the cost function 

and p equal to 0.0015. The new annealing schedule produced superior solutions compared to the 

well-known annealing schedules. 

The most successful modification to the h-HCGA algorithm concerned shuffling the current 

solution. As explained earlier, a hyper-heuristic is a mechanism that chooses a heuristic from a set 

of simple heuristics, applies it to the current solution, then chooses another heuristic and applies it, 

and continues this iterative cycle until the termination criterion is satisfied. The same idea is used 

in the modification algorithm, but the other way around. For this we introduced a number of simple 

heuristics that could normally be used to improve the current solution but, instead, we used them to 

shuffle the current solution - that is, worse solution candidates were allowed to replace better ones 

in the current population. Five shuffling operations were used and one random shuffling operation 

was selected in every m/20th iteration of the algorithm. The shuffling produced clearly better 

solutions than without shuffling, see [P4]. 

We tried to further improve the algorithm in [Nurmi and Kyngäs, 2009]. The GHCM operator 

normally selects the best move sequence. The operator was changed to accept the first better or 

equal move sequence and then not to continue further. In this way the greedy character of the 

moves is decreased in some degree. The idea for another potential improvement originates from 

the observations of various other researchers. Almost all variable neighborhood search methods 

and hyper-heuristics use the 2-Swap operator - that is, two components of the current solution are 

exchanged. The idea has been further extended to make a 3-Swap. The h-HCGA algorithm was 

therefore changed to perform like a hyper-heuristic by augmenting the GHCM operator with 2-swap 

and 3-swap operators. The results were clear in that selecting the first better or equal move 

sequence rather than continuing and selecting the best one did not improve the solution. Including 

the 2-Swap and 3-Swap operators did not work either, in fact the solutions deteriorated on 

average. A possible reason for this might be that the GHCM operator alone is able to capture the 

benefits of the swapping. This observation is beneficial also for the reason that swapping takes 
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some time to complete. It still remains an open question of the present thesis why the swapping 

makes the results somewhat worse. 

It is very difficult to classify the improved algorithm as one of the earlier mentioned metaheuristics. 

The basic hill-climbing step is extended to generate a sequence of moves in one step, leading from 

one solution to another as is done in the ejection chain method. The algorithm avoids staying stuck 

(i.e. the objective function value does not improve for some predefined number of generations) in 

the same solutions using tabu search and the refined simulated annealing method. The algorithm 

belongs to population-based methods in that it uses a population of solutions. This enables it to 

explore promising areas in the search space to a sufficient extent. A cooperative local search 

scheme is used in a sense that when an individual gets stuck in local minima it asks for the 

cooperation of the population in order to continue the search from another position. To escape 

from local optima the algorithm shuffles the current solution mimicing a hyper-heuristic mechanism. 

We named the improved algorithm PEAST (as Population, Ejection, Annealing, Shuffling and 

Tabu). 

The outline of the PEAST algorithm is given in Figure 5. The algorithm is able to solve very 

challenging scheduling problems. The round-robin schedules of the Finnish major ice hockey 

leagues as well as the days-off and shift schedules of certain Finnish transportation companies can 

be efficiently generated using the improved algorithm.  
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        Figure 5. The outline of the PEAST algorithm. 

 

We have recently started a profound inspection of the different heuristic features of the algorithm 

and especially the parameters used by these features. It has been noticed that to achieve the best 

solutions the algorithm must include shuffling and a tabu list. Preliminary test runs have shown that 

simulated annealing might be replaced by a faster, but very similar mechanism. The update of the 

ADAGEN method weights is also under development. In addition, we are currently studying the 

behavior of different parameter values and their combination to find out how to best apply them in 

solving real-world scheduling problems. This study has to be completed because the new PEAST 

algorithm has additional parameters compared to the h-HCGA algorithm, see [P1]. The findings will 

be reported in an upcoming publication (2011). 
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Notes on the implementation of the algorithm 

The first thing to be considered, when implementing the PEAST algorithm, was the choice of the 

programming language. The most important thing was that it should be very easy to install on the 

customers’ computers. Installing any kind of service routines can lead to a chain reaction: one 

service routine needs another service routine, which in turn needs another and so on. It was also 

decided to not use any external software or software packages because their use would lead to 

license problems and to a situation where customers would have to buy one or more additional 

programs and/or licenses. The programming language had to generate fast object code and be 

object oriented. A high priority was also given to built-in data structures. 

As a result of the above considerations the obvious choice was Java, but there were some 

suspicions of its speed. Practical tests with several programming languages revealed that Java is 

the choice. Java might not be the fastest language in any subcategory of possible speed 

measurements (CPU, memory, and so on) but it was fast enough for the implementation of the 

PEAST algorithm. Java is very easy to install and requires no service routines. It is supplied with a 

very good API-documentation and efficiently coded built-in data structures. It is fully object-based 

and it can be run without any modifications on (almost) any platform. 

The implementation of PEAST utilizes almost every built-in data structure of Java. Furthermore, 

different data structures were combined in order to get the implementation as fast as possible. 

Sometimes it has been necessary to use ”not-so-pretty” structures to reach this goal. By not-so-

pretty it is meant structures that make the code look and feel complicated. One example of such a 

case is a class holding job types, days-off types and the constraints relating to them. It is based on 

two (hard and soft constraints) HashMaps which map the types to the user defined names. These 

HashMaps are backed by two EnumMaps that contain the constraints (e.g. a late shift cannot be 

followed by an early shift). These EnumMaps contain an EnumSet because one shift type can 

have many constraints. The code does not look elegant but it is very fast. Normally one would 

never use such a complicated structure but with this structure we gained about 40% savings in the 

running time, compared to the traditional mapping done with pure Strings. 

While making optimizations like above one should be well aware that usually the most important 

thing in programming is that the code is nicely and understandably written and that proper data 

structures are used in their proper places. Thus, in most cases, a small performance gain in 

running time is not worth the cluttering of the code. Though, in time consuming programs almost 

every decrease in running time is vital, no matter how small it is. In conclusion, the code of PEAST 

is very fast but maybe not the most beautiful one to read. 
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4. School Timetabling 

In the next three sections (3, 4 and 5) we will describe school timetabling, sports scheduling and 

staff scheduling problems in detail. For each problem the mathematical model, NP-completeness 

or NP-hardness are illustrated. An implementation-oriented framework for each problem is given. 

In addition, the results of solving real-world problems are summarized. Finally, the cooperation with 

other researchers and business customers is discussed briefly. 

School timetabling can be divided into at least three subcategories: exam timetabling [Carter, 

1986], course timetabling (or university timetabling) [Tripathy, 1992] and class timetabling [de 

Werra, 1985]. In this thesis we concentrate on the class timetabling problem which occurs in 

Finnish schools and universities. The problem is to schedule teachers to classes and vice versa. 

The problem can be modified to include classrooms.  

In a simplified class timetabling problem one has to assign teacher-class pairs to periods. Assume 

that there are P periods, C classes and T teachers and the task is to assign teachers and classes 

to the periods in a way that no teacher or class is scheduled to the same period more than once. 

Let 

     = 1, if teacher tj has been preassigned class ci, otherwise 0 

      = 1, if class ci and teacher tj are assigned to period pk, otherwise 0 

and assume that each teacher-class pair occurs only once. Now the mathematical formulation of 

the basic class timetabling problem is as follows: 

 Determine the values of variables xijk for i, j and k,    (3.1) 

subject to the constraints 

              ,             

                 ,         

                 ,         

               ,             

This formulation of the problem is exactly the same as the formulation of the well-known graph 

coloring problem [de Werra, 1985]. The problem belongs to the group of NP-complete problems 

and therefore the class timetabling problem is also an NP-complete problem. 

In real-world school timetabling the scheduling must be completed in such a way that the solution 

is feasible and mostly acceptable to both school staff and teachers. A feasible solution satisfies the 

following hard constraints in the basic model (see [P1]): 

1) No teacher, class or room is scheduled to the same period more than once. 

2) No class is scheduled to the same period, if they have common students. 

3) The given teachers are scheduled to the same period. 

4) The given teachers are scheduled for predetermined periods. 

5) For each class the daily minimum and maximum number of periods is respected. 

6) A class c1 is scheduled to earlier in the week than class c2, if c1 must precede c2. 

7) A lecture cannot be scheduled to periods where the teacher, the class or the room is 

unavailable. 
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A solution is most acceptable if it satisfies the following soft constraints: 

1) The timetable of each class should have as few idle (leap) periods as possible. 

2) The school day of some given classes should not start in the first period. 

3) The school day of some given classes should end as early as possible. 

4) The timetable of some given teachers should have as few idle periods as possible. 

5) For some teachers the preferred daily minimum and maximum number of periods is given. 

6) Some teachers prefer not to be scheduled in certain time periods. 

7) Some teachers should be scheduled only on a limited number of days. 

8) The different lessons of a subject should be on different days. 

Timetabling has been done manually until the last decade when computers have been used to aid 

the task. However, intelligent algorithms and computer programs were not used in Finland in the 

year 2006 when we started to study the problem.  

Algorithms for solving timetabling problems usually use a number of parameters to guide the 

process of learning/convergence. The values of these parameters play an important role in the 

overall performance of the algorithm − some combinations of parameter values turn often out to be 

better than others. A central question is how to find the best combination of the parameters. 

In [P1] three artificial and three real-world school timetabling problem instances were solved. As 

described in Section 2, the main focus of the study was to find the best values of the parameters of 

the h-HCGA algorithm. The algorithm was controlled with seven parameters and each parameter 

could have 2-4 different values. The combination of the parameter values lead to a total of 972 

configurations. So, in a real-world situation one should perform 972 test runs just to get every 

configuration tested once. Because we wanted to do an inclusive test and there was a strict time 

limit, we choose only one data set for our analysis. The most difficult real-world problem instance 

was then used in the tests. 

For an inclusive test all the parameter combinations were considered. Real-world problems vary a 

great deal in difficulty and because there was only one problem instance, we decided to test one 

supporting method, F-Race [Birattari et al., 2002]. The method starts with all the possible 

parameter combinations and drops some of the combinations during the run. The dropping of the 

configurations is based on the Friedman test [Conover, 1999]. The results clearly implied that the 

Friedman test was suitable for choosing the parameter values. We were able to find parameter 

values that were very good for the introduced real-world and artificial school timetabling problems. 

We solved a secondary school instance, a high school instance and a college instance. Even 

though we were able to find excellent results, the school administrators were not so keen on the 

optimized timetables. One reason for this might be that the schools do not have any funds to 

allocate to this kind of projects; even though the authorities could actually save money in the long 

run. 

As a further study we created a conversion scheme for turning a curriculum-based timetabling 

problem into a school timetabling problem [Nurmi and Kyngäs, 2008]. The curriculum-based 

timetabling problem consists of the weekly scheduling of the lectures for several university courses 

within a given number of rooms and time periods. Curriculum-based timetabling differs from the 

school timetabling in that students enroll on courses and there is no student group concept. The 

motivation for the conversion was to show that a school timetabling algorithm can be used to solve 
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curriculum-based timetabling problems. As far as we know the publication was the first one on 

such a conversion scheme. The converted problem instances were solved using the h-HCGA 

school timetabling algorithm described in [P1]. The algorithm found a feasible solution within the 

given time limit for 12 of the 14 problem instances used in the 2nd International Timetabling 

Competition [McCollum and McMullan, 2010].  

We also joined an international research group of seven researchers to create an XML format for 

benchmarks in high school timetabling, see [P2]. Together we described the high school 

timetabling problems in several countries in order to state a common set of constraints and 

objectives. The main goal was to provide exchangeable benchmarks for this problem. To achieve 

this we proposed a standard data format suitable for different countries and educational systems, 

defined by an XML schema. Later, four new researchers joined the group and we presented the 

progress on the benchmarking project for high school timetabling in [Post et al., 2010]. The 

timetabling archive currently includes 15 problem instances from seven countries and an evaluator 

capable of checking the syntax of instances and evaluating the solutions. 
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5. Sports Scheduling 

Sports scheduling gained increased academic interest when the traveling tournament problem was 

introduced [Easton et al., 2001]. Before that time sports scheduling was mostly of theoretical 

nature. In the traveling tournament problem the most important goal is to minimize the total 

distance traveled by the teams. Another important goal is to avoid long home stands and away 

trips i.e. make the home and away matches vary sufficiently. The goal, minimizing the number of 

breaks, was of theoretical interest in the 1980s and 1990s (see e.g. Schreuder, 1980). Nowadays 

in practice, it is usually the most important one to minimize, regardless of other possible goals, 

excluding e.g. NHL and KHL ice hockey leagues because in these leagues the distances between 

the teams’ home venues are remarkably lengthy. 

Consider a single round robin tournament where every team plays against every other team 

exactly once. Every round has to be compact which means that every team must play on every 

round. Thus, if there are n teams, there must be exactly n-1 rounds. If n is odd a dummy team will 

be added. Each game consists of an ordered pair of teams (i, j), where team i is the home team 

and team j is the away team. 

Let T be the set of teams, P the set of rounds and cijp the cost of team i playing at home against 

team j at round p. Now the mathematical formulation of a simple sports scheduling problem is as 

follows: 

                                (4.1) 

subject to the constraints   

                   ,               

                         ,        ,       

             ,                      

The first constraint guarantees that each team plays on exactly one round. The second constraint 

guarantees that each team plays exactly once per round. The binary variable xijp is equal to 1 if and 

only if team i plays at home against team j at round p. 

This problem is called the minimum cost single round robin tournament and it has been proven to 

be NP-hard [Easton 2002], [Briskorn et al., 2006]. Therefore the general sports scheduling problem 

is also an NP-hard problem. 

In real-world sports scheduling, the games should be scheduled in rounds in such a way that the 

solution is feasible and mostly acceptable to both the league authorities and the teams. Some 

important requirements a sports league uses for its feasible schedule include (see [P3]):  

1) Every team plays exactly once in every round (if a compact schedule is required). 

2) A team cannot play at home on a certain day (e.g. a venue is unavailable). 

3) Two teams cannot play at home on the same day (e.g. they share a venue). 

4) A game must be pre-assigned to a certain round. 
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The quality of the final schedule is related to the correct optimization criteria and assignments 

given by the league. The league prefers to optimize many goals at the same time. Some important 

requests for acceptable schedules include:  

1) A team cannot have more than two consecutive home games. 

2) There must be at least k rounds before two teams meet again. 

3) A team wishes to play most of its home games on certain weekdays. 

4) Two teams do not want to play at home on the same day (e.g. they are located in the same 

region). 

Although there have been a lot of published results in the field of sports scheduling [Knust, 2010], 

practical results have been modest. Some reasons for this might be that the real-world problems 

are too complicated, the understanding of the optimization is not good enough from the customer’s 

side, and that researchers tend not to be good business men or even not interested to do 

business. At the time of writing we only know of a dozen cases where the researchers have been 

able to close a contract with a sports league owner [Nurmi et al., 2010]. 

The biggest sports leagues in various countries are big businesses. The goal for every team in a 

league, besides winning, is to maximize the income. Maximizing the income is very closely related 

to the number of spectators in games. This includes the spectators at the venue and also the 

spectators watching the game on TV. TV and other media require the attractive games to be 

scheduled at desired times. In addition, decreasing the traveling costs is important for some teams. 

Finally, professional sports leagues want to generate schedules that increase fairness; all teams 

should play under the same conditions. 

The Finnish major ice hockey league (SM-Liiga) is the biggest sports league in Finland. It has most 

spectators, the players are all professionals and the media pays much attention to the league. The 

league has had about 5000 spectators per game for several years now. The second and third most 

attracting leagues, football (soccer) and Finnish baseball, have an average of 2000-3000 

spectators per game. 

In the halfway through the decade the schedule generation for SM-Liiga had become a challenging 

task. For various reasons there have been an increasing number of venues that cannot be used 

every day during the season. Furthermore, two of the teams cannot play on the same day because 

they share the venue. An increased number of additional constraints had complicated the schedule 

generation even more which is why it became almost impossible to make the schedule manually. 

As an example of the quality of the major league schedules we generated (and 1st division 

schedules respectively), the number of rounds reduced from previous years average of 107 (96) 

down to 61 (48). As another example, the number of times a team plays three consecutive home 

games reduced from previous years average of 14 (23) down to 0 (2). Note that, as a result of the 

automated scheduler, the latest 1st division schedule had no three home games in a row. 

The good results in sports scheduling triggered us the idea to gather a group of sports scheduling 

researchers to create a framework for scheduling professional sports leagues [P5]. The 

researchers were academics that had closed a contract with a sports league owner. The 

framework was modeled from the requirements of various professional sports leagues: Argentine 

volleyball, Austrian soccer, Belgian soccer, Brazilian soccer, Chilean soccer, Finnish ice hockey, 

German soccer and German handball. We have proposed a set of artificial and real-world 
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instances derived from the actual problems solved for professional sports league owners. The best 

solutions found thus far have been published, and the sports scheduling community has been 

invited to search for solutions to the unsolved instances, see [Nurmi, 2009]. 

The research on the topic is currently going on for scheduling the Finnish national ice hockey 

league for players aged under 20 [Nurmi et al., 2011]. Our algorithm found a feasible and 

acceptable schedule for the 2009-2010 season. To obtain this schedule, four distinct combinatorial 

problems were solved. 

  



30 Jari Kyngäs 
 

  



 Solving Challenging Real-World Scheduling Problems  31 
 

6. Staff Scheduling 

Staff scheduling, and all of its subcategories, are becoming important problems in Finland and all 

around the world. A clear reason for this is that human resources are one of the most critical and 

most expensive resources for public institutions and private companies. In the past it was very 

common that the employee stayed at one company for his/her life span which made it quite easy to 

construct rosters. Nowadays the staff is under constant variation. In the past the employer dictated 

the rosters but today the employees have requirements for their rosters. Therefore, institutions and 

companies need decision support technologies for rostering. Careful planning can lead to 

significant improvements both in productivity and the welfare of the staff. Besides increasing 

employee satisfaction, effective labor scheduling can also improve customer satisfaction. 

Staff scheduling generally includes days-off scheduling and shift scheduling. Days-off scheduling is 

quite a new research area [Alfares, 2001; Costa et al.,1997; Elshafei and Alfares, 2008; Pedrosa 

and Constantino, 2001]. In days-off scheduling the goal is to schedule the off-work days for each 

staff member over a given time period. Shift scheduling [Alfares, 2004; Brunner, 2009; Ernst et al., 

2004; Lau, 1996], deals with the assignment of staff members to shifts. It can also specify the 

starting time and duration of shifts for a given day. In other words, days-off scheduling deals with 

working days and shift scheduling deals with the working times of day. 

Consider a simple case of minimizing the number of workers to be hired. Let W represent the set of 

n workers and D the set of m working days. Let wi be the number of workers needed to work on  

day i. Let A be the matrix of elements aij which are equal to 1 if worker i is available to work on day 

j, and zero otherwise. Finally, let cj be the cost of hiring the worker j. Decision variables xj indicate 

whether the worker j is hired or not. 

The function to be minimized is: 

             ,     (5.1) 

subject to constraints 

               ,        

           ,         

The first constraint guarantees that at least wi workers are working on day i. This formulation of the 

problem is the same as that of the well-known set covering problem. This problem belongs to the 

group of NP-complete problems [Beasley, 1987]. Minimizing workers at work is the foundation of 

staff scheduling. Also the very simple forms of shift scheduling are NP-hard [Lau, 1996]. 

There can be a very large number of requirements which must be met in staff scheduling. The 

coverage requirements ensure that there is a sufficient number of drivers on duty at all times. The 

regulatory requirements ensure that the driver’s work contract and government regulations are 

respected. The operational requirements ensure that employees at work have correct 

competences and that they have acceptable days-off and shift structures. Some important 

requirements a company must consider include, see [P7]:  

1) A minimum number of employees of particular competences must be assigned to each shift 

or each timeslot. 
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2) The required number of free weekends (both Saturday and Sunday free) within a timeframe 

must be respected. 

3) Employees cannot work consecutively for more than k days. 

4) At least k working days must be assigned between two separate days-off. 

5) An employee assigned to a late shift type must not be assigned to an early shift on the 

following day. 

Personnel’s requests are very important and should be met as far as possible; this leads to greater 

staff satisfaction and commitment, and reduces staff turnover. Some important requests a 

company should consider include:  

1) Single days-off and single working days should be avoided. 

2) A balanced assignment of single days-off and single working days must be guaranteed 

between the drivers. 

3) A balanced assignment of weekdays must be guaranteed between drivers. 

4) Assign a requested day-on or avoid a requested day-off. 

Most of the staff scheduling cases in which academic researchers have announced that they have 

closed a contract with a customer concern nurse rostering [Burke et al., 2004]. We started with 

shift scheduling for a Finnish bus transportation company. The company had had a lot of variation 

in the number of employees during the last couple of years. This had led to the situation where it 

had become impossible to use cyclic schedules. Cyclic schedules are such that all employees 

have the same basic schedule but start with a different day. In cyclic scheduling the goal is to find a 

schedule that is optimal for all employees. This is the current scheduling mechanism in almost all 

public institutions and private companies. Non-cyclic schedules are individual schedules, but they 

are extremely difficult to generate. Our shift scheduling research focuses on non-cyclic schedules. 

We solved the company’s shift scheduling problem, see [P7].  

However, it turned out that we should solve the days-off scheduling first. Two different days-off 

schedules were determined: one for the summer-time and one for the rest of the year. At the time 

of the scheduling the staff consisted of 65 employees. Nine employees formed three groups of 

three people. One of these groups always had to be at work. Furthermore, six employees could not 

work on weekends. These two requirements and a dozen other ones made the days-off scheduling 

quite challenging but still solvable with PEAST [Nurmi and Kyngäs, 2011]. 

As was the case in sports scheduling, the good results in staff scheduling triggered us to gather a 

small group of staff scheduling researchers to create a framework for implementation-oriented staff 

scheduling [P6]. The two researchers invited to this collaboration had solved real-world staff 

scheduling instances. The framework was modeled from the requirements of various lines of 

business and industry. We proposed a set of artificial and real-world instances derived from the 

actual problems solved for various companies. The best solutions found were published and the 

staff scheduling community was invited to challenge these results. The instances will be available 

online. 

A days-off schedule on a yearly basis and shifts on a monthly basis in one of the Finnish bus 

transportation companies are discussed in [P7]. The generated software is integrated with a third-

party vendor product. The vehicle scheduling and the driver scheduling phases turn out to be very 

interesting and hard topics of further studies. 
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7. Summary and Conclusions 

The idea of this thesis was to show that challenging school timetabling, sports scheduling and staff 

scheduling problems can be solved to customer satisfaction using an intelligent algorithm and 

sophisticated programming.  

The difference of hard and easy problems was first discussed. A literature summary was also 

given. Next, an introduction to general metaheuristics was given, followed by the description of the 

algorithm used to solve challenging scheduling problems. The algorithm is called PEAST. It owns 

features from hill-climbing, ejection chain method, tabu search, simulated annealing, population-

based methods, cooperative local search scheme and hyper-heuristics. Next, the details of the 

school timetabling, sports scheduling and staff scheduling problems were discussed. Mathematical 

models, implementation-oriented models, practical results and cooperation partners were 

presented for each problem type. 

The most important conclusion from the above considerations is that scheduling problems can be 

solved to customer satisfaction. The best action plan for implementation-oriented research is to 

cooperate both with a problem owner and with a third-party vendor. A researcher should maybe 

not work with user interfaces, financial management links, customer reports, help desks, etc. 

Instead, one should concentrate on algorithmic power. Though, this is only an opinion based on 

experience. 

It is apparent that a profound understanding of the relevant requests and requirements presented 

by customers is a prerequisite for implementing and solving real-world scheduling problems. The 

scheduling research should concentrate on the acceptance and satisfaction of both the problem 

owner (company), the managers using the implemented software and the end-users. It should be 

noted that it is not easy to incorporate the experience and expertise of the managers into a working 

scheduling system. The managers often have extremely valuable knowledge, experience and 

detailed understanding of their specific problem, which will vary from company to company. To 

formalize this knowledge to the software is not an easy task. Still, the results of this research have 

shown that it can be done successfully, and that the intelligent algorithms can produce superior 

results. 

The final conclusion is that the academics focusing on implementation-oriented research should 

create systems that 

1) generate solutions that are not too accurate compared to the input data and real-world use, 

2) generate just a few solutions to choose from, 

3) generate clearly different solutions to choose from, 

4) allow users to specify the importance of requests and requirements, 

5) minimize the scheduling time, 

6) run on any modern computer with any operating system, 

7) do not use third-party mathematical software packages with expensive licensing policies 

and 

8) are integratable with existing industry software. 
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Abstract: This paper introduces a framework for a highly constrained school timetabling problem, 
which was modeled from the requirements of various Finnish school levels. We present a success-
ful algorithm to solve real-world problems as well as artificial test problems. Moreover, we find 
the best configuration for this algorithm using brute force and statistical analyses. Finally, we pro-
pose a set of benchmark problems that we hope the researchers of the timetabling problems would 
adopt. 
 
Keywords: Evolutionary Algorithms, Heuristic Search, Real World Scheduling, Timetabling.

1. Introduction 
In recent years many solution approaches for different timetabling problems have been introduced. 
Most of the work has concentrated on examination timetabling, university timetabling and course 
timetabling [1,2,3,4,5,6]. Timetabling researchers have obtained very promising and practicable 
results in these problem areas. However, school timetabling has not been as extensively studied, 
and widely usable results are not yet available. The school timetabling problem [7] consists of as-
signing lectures to periods in such a way that no teacher, class or room is involved in more than 
one lecture at a time and other constraints (hard and soft) are satisfied. 
 
The main focus of this paper is to introduce a successful algorithm to tackle highly constrained 
school timetabling problems [8,9]. The algorithm is controlled with nine different parameters. For 
seven of these parameters we searched the best values using both brute force and statistical analy-
ses. Two different methods were mainly used because we wanted to confirm that the chosen pa-
rameter values were the best ones. Two parameters were excluded because they have a great im-
pact on the running time and therefore make the results incomparable (see Chapters 2-4). 
 
Another point of this paper is to propose a set of benchmark instances and publish them as well as 
our results on the web. We wanted to lay out the foundation of comparable results (see Chapter 5). 
This idea is presented (by Schaerf  and Di Gaspero) in [10]. 

2. Problem Description 
We describe a school timetabling problem that arises in various Finnish school levels: secondary 
school, high school and college. This problem description is representative of many timetabling 
scenarios within the area of school timetabling. The timetabling is based on the following condi-
tions: 

- The timetable frame consists of n weeks; each week has m days and each day t periods (timeslots).  
- The lecture is a predefined combination of a teacher, a class (or course), a room and the length of 

the lecture in periods. 
- The set of teachers, classes/courses and rooms is fixed. 
- More than one teacher can teach a particular class at the same time. 
- Each class should have at least a given number of periods in a day, but should not have more than 

another given number of periods. 
- The classes/courses can have common students. 
- Some classes/courses must precede other classes/courses 
- The rooms can be classified to certain room types. 
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The school timetabling problem consists of scheduling the predefined lectures in such a way that 
the solution is feasible and mostly acceptable to both school staff and teachers. A feasible solution 
satisfies the following hard constraints: 

1. No teacher, class/course or room is scheduled to the same period more than once (basic model). 
2. No class/course is scheduled to the same period, if they have common students. 
3. The given lectures are scheduled to the same period. 
4. The given lectures are scheduled for predetermined periods. 
5. For each class the daily minimum and maximum number of periods is respected. 
6. A class/course c1 is scheduled to earlier in the week than class/course c2, if c1 must precede c2. 
7. A lecture cannot be scheduled to periods where the teacher, the class or the room is unavailable. 

 
A solution is most acceptable if it satisfies the following soft constraints: 

1. The timetable of each class should have as few idle (leap) periods as possible. 
2. The school day of some classes should not start in the first period. 
3. The school day of some classes should end as early as possible. 
4. The timetable of some teachers should have as few idle periods as possible. 
5. For some teachers the preferred daily minimum and maximum number of periods is given. 
6. Some teachers prefer not to be scheduled in certain time periods. 
7. Some teachers should be scheduled only on a limited number of days. 
8. The lessons of a subject should be on different days. 

 
The above formulation covers school timetabling problems occurring in Finnish secondary 
schools, high schools and colleges. In lower school levels the problem reminds the basic school 
timetabling problem and in higher levels it is more similar to a combination of the school time-
tabling problem and the course timetabling problem [11]. 

3. The Algorithm 
The algorithm presented here is an extension of the h-HCGA algorithm presented in [12]. We have 
spent “quiet timetabling research life” since the development of the algorithm and returned to the 
problem only recently, when we were asked to schedule the timetables of one secondary school 
and one high school. First we spent quite a lot of time trying to improve our original algorithm 
with the ideas of Ant Algorithms [13, 14]. Unfortunately we were not able to find competing re-
sults. We moved into improving the parameter values of the h-HCGA algorithm. Table 1 summa-
rizes the parameters and the values from which we were searching the best configuration. Because 
two of the parameters have a great effect on computational time, we fixed their values in order to 
keep the results comparable. 
 

Extended h-HCGA parameters  
  

F. Population size 20 (fixed) 
1. Reproduction/selection Random-average, Random-best, Marriage-best 
  

F. Maximum move sequence 10 (fixed) 
2. Tabulist size for the GHCM-operator 0, 5, 10 
3. Tabulist size for overall moves 0x, 1.5x, 2x, 4x (maximum move sequence) 
  

4. Type of removal check All, Hard, Hard or Soft 
5. Fitness calculation Absolute, Weighted 
6. Update frequency of hard constraint weights 5, 10, 20 
  

7. Prevention of same lessons No, Yes 

Table 1:  Parameter summary of the extended h-HCGA algorithm. 

The algorithm is a genetic algorithm [15,16] with one mutation operator and no recombination op-
erators. The two most important features of the algorithm are the greedy hill-climbing mutation 
(GHCM) operator, which generates a new solution candidate from the current solution and the 
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adaptive genetic penalty method (ADAGEN), which is a multiobjective optimization method 
[17,18,19,20]. 
 
The GHCM operator is based on moving a lecture l1 from its old period p1 to a new period p2, 
moving another lecture l2 from period p2 to a new period p3 and so on, ending up with a sequence 
of moves. The initial lecture selection is random. The new period for the lecture is selected consid-
ering all possible periods and selecting the one which causes the least increase in the cost function 
when considering the relocation cost only. Moreover, the new lecture from that period is again se-
lected considering all the lectures in that period and picking the one for which the removal causes 
the most decrease in the cost function when considering the removal cost only. The operator stops 
if the last move causes an increase in the cost function value and if the value is larger than that of 
the previous non-improving move. 
 
We noted in [12] that we can improve the GHCM operator by introducing a tabu list, which pre-
vents reverse order moves in the same sequence of moves. We can also prevent only some of the 
moves (parameter 2). To further widen the use of the tabu list, we can prevent reverse order moves 
in consecutive move sequences (parameter 3), that is in consecutive applications of the GHCM 
operator. 
 
The ADAGEN method is an adaptive penalty method for multiobjective optimization. A tradi-
tional penalty method assigns positive weights (penalties) to the soft constraints and sums the vio-
lation scores to the hard constraint values to get a single value to be optimized. The ADAGEN 
method assigns dynamic weights to the hard constraints. The weights are updated in every kth (pa-
rameter 6) generation using a somewhat complicated formula [12].  
 
The reproduction operation [21] of the (genetic) algorithm is based to a certain extent on the 
steady-state reproduction [22]. We select randomly a timetable from the population of timetables 
for single GHCM operation. The new timetable replaces the old one if it has better or equal fitness. 
We have three variations (parameter 1). In the first one the new timetable replaces also the least fit 
in the current population if it is better than the current population average. In the second one the 
least fit is replaced with the best one, when n better timetables have been found, where n is the size 
of the population. In the third one we use the second variation but select a timetable using a mar-
riage selection [23]. 
 
When selecting a lecture to be removed from a period (parameter 4), we can consider either all the 
lectures in that period or only those that have at least one constraint violation with the lecture that 
was moved to that period previously. We can also consider only hard constraint violations. When 
calculating the best lecture to be removed and the best period to move to (parameter 5), we can use 
either absolute number of constraint violations or the weighted penalty value of the ADAGEN 
method. 
  
We also tried (parameter 7) to programmatically prevent lessons of a subject to be on the same day 
(soft constraint 8). Another possibility would have been to change it to a hard constraint. 
 
In preliminary experiments the extended h-HCGA algorithm found encouraging results. Some pa-
rameter values seemed to produce better results than others. Our next goal was to find the best con-
figuration for the parameter values. 

4.  Finding the Configuration 
We had two possible choices for the process of finding out the best configuration of parameters: 
brute force and statistical methods. The brute force approach was very attempting because we had 
the possibility to use up to 78 computers. We decided to use brute force but also analyze the runs 
using standard statistical methods. We also performed “what-if” analyses on the runs using the 
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Friedman test [24] in similar fashion to Birattari & al. [25]. We used the highly constrained 
benchmark instance C3 (see chapter 5) in our test runs. 
 
For the runs to be comparable in computing time we had to fix two parameter values (see table 1). 
The rest of the parameter values were such that they did not influence the convergence time. The 
total number of configurations was 1296 but because the tabulist size for overall moves has no ef-
fect when tabulist size for GHCM-operator is zero, we were left with 972 configurations. 
 
Our goal was to find a configuration which would minimize the hard constraints to zero. The con-
figurations were ranked according to hard constraints. We decided to run every configuration five 
times and for two hours each, on an AMD Athlon 1700+ with 512Mb of memory. For every gen-
eration of the algorithm we saved the number of hard constraint violations. 
 
At first we only considered those runs that had ended up with zero hard constraint violations ─ 218 
out of 972 runs met this criterion. 

4.1.  Choosing the Configuration 
We started analyzing the results by counting how many times each value of each parameter oc-
curred in the best runs. Table 2 summarizes the results. 
 

Parameter Values and occurrences 
1. Reproduction/selection Random-average = 38%, 

Random-best = 40%,   Marriage-best = 22% 
2. Tabulist size for GHCM-operator 0 = 20%,   5 = 42%,   10 = 38% 
3. Tabulist size for overall moves 0x = 18%,   1.5x = 25%,   2x = 26%,   4x = 31% 
4. Type of removal check All = 29%,   Hard = 63%,   Hard or soft = 8% 
5. Fitness calculation Absolute = 64%,   Weighted = 36% 
6. Update frequency of hard constraint weights 5 = 48%,   10 = 30%,   20 = 22% 
7. Prevention of same lessons No = 77%,   Yes = 23% 

Table 2: The chosen values (bolded) after brute force runs. 

 
The best value for the last four parameters could easily be chosen (tested with the t-test). The first 
three, on the other hand, required further investigation. 
 
Next we ran the chi-squared test [24] pairwise between all parameters. We were especially inter-
ested in those test cases which included the chosen parameter values. Unfortunately none of the 
chi-squared tests showed statistically significant dependencies among the parameter values. We 
enlarged the chi-squared test to include also those runs that had ended up with one hard constraint 
violation, but that did not change the test results. (These statistical tests can be obtained from us at 
request.) 
 
At this phase we were still not able to find the values for the first three parameters. However, we   
were able to reduce the number of free parameters from 972 to 16 (the combination of chosen pa-
rameter values of each parameter). For the reproduction/selection, the tabulist size for GHCM-
operator and the tabulist size for overall moves we were not able to choose one specific value. 
That strengthened our decision to use statistical methods. 

4.2.  Statistical Methods 
Birattari & al. [25] have developed a process, F-Race, in which they start with a considerable large 
population and eliminate individuals from it with the help of statistical methods. The idea is to 
eliminate an individual from the population as soon as it can be statistically significantly proven 
that the individual is not performing good enough. The process can be thought of as a race where 

389

Regular Papers



every individual competes against each other. At specific intervals the performance of each indi-
vidual is checked and the poorly performing ones are dropped out from the population. This proc-
ess is well suited for problems with extensive number of parameters. 
 
We tested this method to see how it would have worked in this case. However, we did not use the 
actual racing algorithm ─ we only tested the runs to see which ones would have dropped out after 
two hours of running. From the output of the runs we sampled ten evenly spaced observations. 
This meant that we had 972 treatments (configurations) and 10 blocks (samples) for the Friedman 
test. 
 
Table 3 summarizes the results of the Friedman test for the case of the eliminated runs. When we 
compare this with table 2 we can see that these results are very compatible with each other. For 
example, table 2 tells us that in the 218 runs 63% of the configurations had parameter type of re-
moval check set to value Hard. Table 3, on the other hand, tells us that only 7% of the eliminated 
runs included configurations where this parameter was set to value Hard. The information in the 
two tables supports each other very well. 
 

Parameter Values and occurrences 
1. Reproduction/selection Random-average = 21%, 

Random-best = 34%,   Marriage-best = 45% 
2. Tabulist size for GHCM-operator 0 = 45%,   5 = 24%,   10 = 31% 
3. Tabulist size for overall moves 0x = 29%,   1.5x = 20%,   2x = 28%,   4x = 23% 
4. Type of removal check All = 21%,   Hard = 7%,   Hard or soft = 72% 
5. Fitness calculation Absolute = 14%,   Weighted = 86% 
6. Update frequency of hard constraint weights 5 = 16%,   10 = 28%,   20 = 56% 
7. Prevention of same lessons No = 30%,   Yes = 70% 

Table 3: The chosen values (bolded) in eliminated configurations. 

In the brute force runs we were not able to choose the best values for the first three parameters. 
Here the best value for the reproduction/selection is Random-average. The difference between the 
values Random-average and Random-best is statistically significant at 0.001 level when measured 
with the t-test. Therefore we chose the value Random-average for parameter reproduc-
tion/selection. 
 
The other two parameters show no statistical difference between the values. We chose value 5 for 
the parameter tabulist size for GHCM-operator because both tables indicate that this could be the 
best value (though not statistically significantly differing from value 10). The parameter tabulist 
size for overall moves shows no difference in goodness of the values. The value was chosen to be 2 
because we felt it could be the best value. 

5. Standard Benchmark Instances 
In school timetabling we do not have a set of standard test problems, as is the case in examination 
timetabling [10]. We now introduce some test instances and hope that they will lay the foundation 
for the standard universal benchmark instances for school timetabling problems. 
 
The first set of test problems consists of all-N-problems introduced in [12]. These artificial prob-
lems have a timeframe of N days with N periods in one day totaling N2 periods. There are N teach-
ers, N classes and N rooms. All possible combinations of a teacher, a class and a room are to be 
scheduled. This will give us N3 lectures to be scheduled. The problem is quite difficult to solve 
since a feasible solution has no idle periods for any teacher, class or room. 
 
The second set of test problems consists of Abramson-N-problems introduced in [26]. These artifi-
cial problems have a timeframe of 30 periods. The lectures are built by first choosing a random 
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teacher and class and room identifiers and then placing that lecture in the first possible period. If 
the lecture cannot be placed in an available period, then it is discarded and another one is gener-
ated. This process continues until all teacher, class and room identifiers have been used. The re-
sulting timetable has again no idle periods and thus is tightly constrained. 
 
Both all-N-problems and Abramson-N-problems are excellent test instances since 

a) every single school timetabling algorithm can tackle them because they are the simplest 
version of the problem (basic model) and 

b) we can easily increase the problem difficulty by increasing N. 
 

Problem identifier B3 S3 H3 C3 
School level Artificial school Secondary school High school College 
     

#Weeks 1 1 1 1 
#Days 5 5 5 5 
#Periods per day 4 7 7 8 
     

#Teachers 21 25 18 46 
#Classes/courses 11 14 50 41 
#Rooms/room classes 3 25 13 34 
     

#Lectures 169 280 219 387 
#Periods in lectures 200 306 320 854 
     

#Clashes 
(hard constraint 1) 

3020 8590 6420 28574 

#Overlapping classes/courses 
(hard constraint 2) 

11 0 52 20 

#Unavailabilities 
(hard constraint 7) 

108 600 72 328 

     

Soft constraint 1 in use Yes Yes No Yes 
Soft constraint 4 in use Yes Yes Yes Yes 
Soft constraint 6 in use No Yes Yes No 
Soft constraint 8 in use Yes Yes Yes Yes 

Table 5:  Summary of one artificial and three real-world problems. 

The third set of problems consists of one artificial problem and three small to medium-sized real-
world problems in Finnish schools, one from each school level. Table 5 summarizes these four 
problems. The data for these problems has been published on the web [27]. In all of these prob-
lems we are searching for a feasible solution which optimizes soft constraints 1, 4, 6 and 8. Other 
soft constraints are not in use. These four problems are good test instances since 

a) most of the school timetabling algorithms should be able to tackle them because they are 
not too complicated versions of the problem, 

b) they are quite moderate-sized and 
c) they are different from each other. 

 
The C3 problem is the most constrained and thus the most interesting one. We solved six problems 
from the standard benchmark instances: All-11-problem, Abramson-15-problem, B3, S3, H3 and 
C3. We used the parameter values found in the statistical analysis. To keep the results fair we did 
no further fine-tuning to the extended h-HCGA algorithm. The test runs were performed using the 
same computers as in Chapter 4. Table 6 summarizes the results. 
 
Furthermore, we decided to run the algorithm using a simulated annealing refinement introduced 
in [12]. When the GHCM operator selects a new period for a lecture li, we apply the following se-
lection mechanism. Periods are examined in random order. A period is selected as the current best 
one if its fitness is less than the current best one or if the current annealing temperature [28] ac-
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cepts their difference. The same mechanism is used in the GHCM operator while removing a lec-
ture. Note that the GHCM operator does not accept upward (increasing cost) move sequences, 
even if a single move can be upward. Table 6 summarizes the results using the simulated annealing 
refinement. It also shows the best manual solution the staff of the schools were able to find. The 
best solutions we have found in all of our experiments can be found in [27]. 
 

Problem identifier Nbr of runs Single run time Best Median Worst Best manual 
Extended algorithm       
All-11 8 8 hours 0-0 0-0 0-0  
Abramson-15 8 8 2-0 3-1 4-0  
B3 8 8 0-3 1-0 1-6  
S3 8 8 0-2 0-2 0-3  
H3 8 8 0-3 0-3 0-3  
C3 8 8 0-2 0-4 0-6  
With SA refinement       
All-11 8 24 hours 0-0 0-0 0-0  
Abramson-15   2-0 2-0 3-1  
B3   0-2 0-5 1-1  
S3   0-2 0-2 0-2 0-8 
H3   0-3 0-3 0-3 0-12 
C3   0-1 0-1 0-3 0-10 

Table 6:  Results for standard benchmark instances and the best manual solutions. For example,  
the value 1-6 stands for one hard constraint and six soft constraint violations. 

6.  Conclusions and further work 
In this paper we considered a highly constrained school timetabling problem and presented a suc-
cessful algorithm to solve real-world problems as well as artificial test problems. Our algorithm 
performs very well in the timetabling problems presented in this paper. In order to find out if sta-
tistical methods could be of any help in solving the parameter values we ran our algorithm with all 
possible configurations and analyzed the results using the Friedman test. The Friedman test clearly 
implied that it is able to extract poor configurations in favor of the good ones. In the near future, 
we will build the racing process into our program. Our research has shown that the chosen parame-
ter values were very good for the problem C3, but we do not know if they are the best for all prob-
lems. Therefore it is best to start with as many configurations as possible and reduce them in time. 
We have developed a web page [27] that allows other researchers to download the problem de-
scription, the standard benchmark instances and the computational results.  
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1 Introduction

One of the best known timetabling problems is the High School Timetabling Problem; most
people have some experience of timetables from their school days, with probably a not
always positive opinion on it. There is an implicit belief that all High School Timetabling
instances are similar, and that a computer program can always ‘solve’ it.

In reality, the research in this area is still very active and we are nowhere near solving all
the instances of the High School Timetabling Problem to optimality. Moreover, continuous
reforms in educational systems throughout the world generate new problems to tackle. On
the literature side there are papers on general timetabling problems such as de Werra (1985),
Cooper and Kingston (1993), Schaerf (1999), Carter and Laporte (1998), de Werra (1999),
Burke and Petrovic (2002). Some of their concepts and/or methods can be used in real-
life timetabling problems. On the other hand, there are also case studies of high schools in
particular countries, some of which are mentioned in Sect. 2.

It is surprising that no standard format for exchanging datasets in the field of High School
Timetabling has emerged until now. An accepted format would greatly facilitate the progress
in the field. We try to fill in this gap by providing an XML format for existing and new High
School Timetabling datasets. As a starting point, the authors of this paper have agreed to
contribute at least one of their datasets in this XML format. These datasets will be made
available on the internet at the web site devoted to this project (Post 2008).

XML has been chosen because it is extensively used nowadays in web services, or as
a means of exchanging data between applications. The power of XML lies in the fact that
the data is structured, and therefore it can easily be adjusted to changes, unlike plain text
files. Programming languages have software libraries which make it easy to handle XML.
Mathematically speaking, XML is a rooted tree, with information attached to the nodes.
This information can contain cross references. Examples of XML are presented in Sect. 4;
see also http://www.w3schools.com/xml/; http://en.wikipedia.org/wiki/XML.

The problem of exchanging timetabling data was discussed at the first International Con-
ference on the Theory and Practice of Automated Timetabling (Cumming and Paechter
2005), where it became clear that the principal difficulty was the precise expression of the
many different kinds of constraints. There may be ten or more kinds in any one instance,
and they vary widely between institutions.

This complexity of specification has been addressed in several ways. Some papers
have tried to generalize and unify the constraints (Chand 2004; Kitagawa and Ikeda
1988). Others have adapted existing technologies in which constraints may be expressed,
such as XML and the semantic web (Custers et al. 2005; De Causmaecker et al. 2000;
De Causmaecker et al. 2002; Özcan 2005), or object-oriented modeling and frameworks
(Gröbner et al. 2003; Ranson and Ahmadi 2006). Others have expressed constraints as
logic expressions within specifically designed specification languages (Burke et al. 1998;
Kingston 2001; Monteiro da Mata et al. 1997). There has been at least one attempt to sim-
ply enumerate every possible constraint (Reis and Oliveira 2001). While much of this work
is more general than our approach (for example, the use of MathML functions in Özcan
(2005) allows essentially arbitrary constraints to be expressed in XML), none of it has led
to significant data exchange.

Another approach is to restrict the problem domain to one particular kind of timetabling,
then use judicious simplification to further reduce the specification burden while maintain-
ing the essence of the problem. The Carter data sets for examination timetabling (Carter

http://www.w3schools.com/xml/
http://en.wikipedia.org/wiki/XML
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et al. 1996) omit many details, notably all data related to rooms, and similar simplifica-
tions appear in the Traveling Tournament Problem (Easton et al. 2001) and the International
Timetabling Competition (Paechter 2003). These are some of the most successful examples
of timetabling data exchange so far. However, judicious simplification has been criticized
for contributing to the gap between research and practice (Burke et al. 2006), at least in
examination timetabling; and the data transfer has almost always been in one direction only.

2 The timetabling problem in different countries

Throughout the world, timetables are constructed for many different types of high schools.
In the following subsections we describe the situation in the schools of Australia, England,
Finland, Greece and the Netherlands. However, before getting into the details of their prob-
lems, we provide an overview of the problem and their principal differences. Not only the
problems, but also the terminology varies among countries. For more details we refer to
Sect. 3.1.

2.1 General aspects of the problem

The timetabling process in a given school is influenced by the school organization, and
specifically the handling of the three groups of resources: students, teachers, and rooms. In
the heart of the high school timetabling problem lie the students, who are usually organized
in base groups, called ‘Student divisions’ or ‘Student groups’. These base groups form a
partitioning of the students, i.e. each student belongs to exactly one base group. We may
consider two types of timetabling problems:

1. Problems for which the base groups never split up over different lessons, i.e. if two stu-
dents of a base group have a lesson at the same time, they are in the same lesson.

2. Problems for which the students of a base group may attend different lessons for some
times.

In practice not many schools will fall completely into the first category. Some schools,
for example, will split two base groups of boys and girls for gym lessons. Similarly, other
schools may split base groups for reasons such as religion, different levels of ability in a
subject, etc.

Another important difference between countries is the compactness of the students’
schedules. Compact schedules are schedules with no idle times. An idle time for a student
is a time (slot) when the student has no lesson, between others on the same day where the
student does have a lesson. In most cases compact schedules are required for the students. In
some countries this is automatic, as a student has as many lessons as there are times. How-
ever, when a school has a large variety of elective subjects it is almost impossible to achieve
compact schedules. Then the objective would be to minimize the number of idle times.

The teachers form the second most important group of resources affected by the
timetable. They are normally preassigned to lessons by the school management. The assign-
ments take into consideration all limiting constraints like the number of staff, their expertise
and other aspects which may be difficult to model for an automated system. Examples of
such difficult constraints would be assigning new teachers to lessons that take place in paral-
lel, balancing teachers assigned to a base group of students (male/female, experienced/less
experienced), or avoiding parent-child combinations in lessons.

Idle times in teachers’ schedules also form a point of differentiation among different
countries. If teachers are preassigned to lessons, it is extremely hard (except only in simple
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cases) to find schedules with no idle times for both students and teachers. When idle times
are not allowed for students, typically one can ask only to minimize the number of idles for
teachers.

Another important issue is the spread of lessons for the teachers. Sometimes, as with
students, this is almost automatic for full-time teachers. For part-time teachers, however,
particular kinds of spreading may be important. For example, a teacher with an assignment
of only 5 times per week will probably be unhappy with a schedule that spreads them over
all days of the week.

The rooms of a school form the third major group of resources. Although most lessons
will take place in a room, this does not necessarily imply that room assignment is an issue.
In many schools, a room is preassigned to each base group of students, or to each teacher.
It is also possible that the number of rooms is so large that assigning rooms is never a
problem. While in some schools this may be the case for general-purpose rooms, specialized
rooms may be scarce and in need of careful scheduling. Examples are specialized rooms for
Physical Education, Music, Arts, or Labs for physics, biology and chemistry.

We now proceed with the descriptions of the problems that the different countries face in
their schools.

2.2 Australia

Australian high schools have short school days, with correspondingly high teacher utilisa-
tions, and consequently no demand for compactness in their timetables. Most teachers (those
with no special duties) teach for 75% of the times of the cycle, and the total workload of
all teachers is almost 100% of the available workload permitted by the teachers’ workload
limits. These conditions commonly prevent teachers from being preassigned, except to a
few key subjects (e.g. the senior ones), and force some courses to be shared between two
teachers. Minimizing the number of these split assignments is a key goal. There is a very
high utilization of specialized rooms, notably Science and Computer laboratories.

The above describes the situation in government funded high schools. Privately funded
high schools are often better resourced, with lower teacher workloads and more laboratories.
However, they typically have lower student numbers and a commitment to high student
choice, leading to peculiarities such as composite classes, in which students of different
ages study a common subject together under a single teacher, creating other difficulties.

Another Australian problem concerns the number and distribution of lessons for each
subject. In the senior years this is very simple: for example, a senior student might attend six
subjects, each occupying six times per week, spread across the five days, including a double
period (i.e. two adjacent times not separated by a break) on one of the days. Student choice
is catered for by means of electives: lists of subjects running simultaneously from which
each student chooses one. In the junior years a desire to permit students to sample a wide
range of subjects leads to a chaotic curriculum from the timetabling point of view. A few
subjects (English, Mathematics, and Science) follow the senior pattern, but the remainder of
the cycle is occupied by many small subjects with more or less random numbers of times.

For previous research and additional details we refer to Abramson (1991), Kingston
(2005).

2.3 England

In English Secondary Schools students study a mixture of compulsory and optional subjects.
For the 11- to 14-year-olds all subjects are compulsory and students study 10 main subjects
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plus a modern foreign language, citizenship education, careers education and sex education.
There are fewer compulsory subjects for 14- to 16-year-olds. In addition, schools must offer
students some work-related learning during this phase.

Depending on the policy of the school, within each year group the students may be di-
vided into base groups with a designated teacher who has organizational and pastoral care
responsibilities.

Another common grouping structure used in British schools is a Band, which is a collec-
tion of several tutorial groups. Normally, all the base groups in a year are allocated to fewer
bands. The mixing of base groups is done within a band. Subjects are grouped into blocks,
which are equivalent to the Australian electives: a block consists of one or more subjects for
different groups which will be scheduled at the same time. Blocks are constructed manually
before the scheduling process starts.

Except in the Sixth Form, British school students receive compact schedules automati-
cally, since they have as many lessons as there are times.

In general there is a large variety of different length of lessons, one or two weekly
timetabling cycles, length of school day and hence different number of lessons in different
schools. This requires any timetabling system for English schools to be highly parameterised
to accommodate different patterns of delivery in different schools.

For previous research and additional details we refer to Wright (1996).

2.4 Finland

A basic goal in Finnish school timetabling is to construct a one-week schedule, which is
repeated the whole season. A timetable consists of lessons of subjects, where a lesson is
a predefined combination of a student group, a teacher, a room type and the duration of
the lesson. Every student belongs to one base group and most of the lessons are scheduled
based on this group. In addition, the student can belong to a number of optional groups,
which are built according to the enrolment of students in optional courses. Every lesson is
assigned to one and only one group, either base or optional. Base and optional groups define
a compatibility matrix, which determines which groups can or cannot have lessons at the
same time.

In all Finnish school levels teachers are preassigned to lessons. Rooms are preassigned
to most lessons, based on the preferences of the teachers.

In a typical curriculum a student attends ten subjects, each taught for two to six hours
each week. Lessons of a subject can take one, two, or (in exceptional cases) three hours.
Hence, most subjects are taught either within two, three or four days each week.

Compact schedules for the students (student groups) are necessary and idle times are
either strictly prohibited or highly inappropriate. Conversely, idle times for the teachers are
allowed, but still are very unappreciated. Several teachers also prefer not to teach more than
a given number of hours in a day.

Preassignment of teachers and rooms, a somewhat complicated structure of student
groups and the demand for compact scheduling make Finnish School Timetabling Prob-
lem a challenge for both a manual solver and a computer software. A further description of
the Finnish problem can be found in Nurmi and Kyngas (2007).

2.5 Greece

Secondary education in Greece is divided in two portions: lyceum (grades 7 to 9) and gym-
nasium (grades 10 to 12). The last two years in the lyceum are considered as preparatory for



Ann Oper Res

the higher level of education and the students are asked to choose one of three directions.
Similarly, in vocational lyceums the students are asked to choose one of several specializa-
tions.

Aspects common to the two school types are the five days of the week, the number of
times per day (six to seven), the preassignment of lessons to teachers, who may be full-time
or part-time, and the requirement for compact student schedules.

In the gymnasium all students of a given base group attend the same lessons during
most of the time in their dedicated classroom. However, for a small portion of the weekly
timetable some base groups split into sub-groups or reshuffle with some other base group and
split again for attending certain ‘special’ subjects. For these subjects it is required that two
teachers are teaching simultaneously to two different sub-groups of students, or alternatively
that two teachers are collaboratively teaching to the same group of students.

In the lyceum the general practice is to keep students in their regular base groups for a
portion of the day to attend the lessons that are common to all directions or specializations,
then reshuffle and split again based on specializations, directions or elective courses until
the end of the day.

Important objectives for the timetabling in the gymnasium are to schedule core courses
evenly during the week, preferably during the prime times, and to maintain a minimal num-
ber of idle times for the teachers. For the lyceums, however, the objectives change because
of all the scheduling considerations mentioned previously. Balanced distribution of the core
courses during the week is still important; however, the other two objectives cannot be
achieved.

For previous research and additional details we refer to Birbas et al. (1997), Valouxis and
Housos (2003).

2.6 The Netherlands

In Dutch secondary schools different levels of education are offered within one school.
Teachers are shared among these levels. In the lower years the students in a base group
follow the same courses, while in the last years, the students choose a specialization, with
some compulsory and some optional subjects. The timetable is usually weekly, and valid for
a period of 6 weeks, a trimester, semester, or the whole year. In the lower levels compact
schedules often are compulsory. In the higher levels compact schedules are impossible to re-
alize for all students, and in the opinion of the school administration not necessary. However,
avoiding idle times as much as possible for students as well as teachers is still important.

Usually the teachers are preassigned to the lessons by the school administration, to ensure
a good spreading of the teachers. The majority of the teachers work part-time. According to
collective labour agreements these teachers are entitled to one or more days off.

The rooms are generally not preassigned to lessons. A lesson requires a room of a certain
type, and lessons should be assigned such that enough rooms of each type are available.
High utilization occurs for specialized rooms, like the gyms.

Some schools have special arrangements for students good at sports, dance or ballet,
allowing them to skip lessons at the beginning or the end of some days. Some schools
experiment with large groups of students (50 to 60 students) in a learning studio. Effectively
there are two teachers visiting them in a period, of which one acts as supervisor, and the
other one teaches the subject. All these special constructions make the task of timetabling
even more challenging.

For previous research and additional details we refer to de Gans (1981), Willemen (2002),
de Haan et al. (2007).
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3 Modeling the problem

The basic game we play in modeling is between abstraction and concreteness. In an abstract
sense, we could only view events, and express all constraints in the events. For accessibility
we decided to define Times and Resources as well. Groups of times, resources and events
may be defined: TimeGroups, ResourceGroups, and EventGroups. This makes the formula-
tion of constraints much more readable and compact. For example, an instance will usually
contain the ‘AvoidClashConstraint’ as a hard constraint for all resources, i.e. for the resource
group consisting of all resources.

3.1 Times and resources

We divide the time period into times. In many constraints it is essential to know the relation
between groups of times, for example for idle times per day or week, or the number of lesson
per day. Days and weeks are time groups, which are treated on the same basis as other time
groups in the constraints. They can be introduced to make a dataset more understandable.

A resource is an entity which attends events. The most common resources in the
timetabling problem are the students, teachers, and rooms. Other kinds of resources, such as
equipment (video projectors, etc.) are possible but uncommon. Resources may be classified
into subgroups, for example rooms of certain type or student groups of a certain form. It is a
basic hard constraint of most timetabling problems that no resource may attend two events
scheduled for the same time. A violation of this constraint is called a clash.

We attach no additional properties to resources; all additional requirements will be mod-
eled with the help of the constraints, where the involved resources will be selected.

As stated before, we distinguish three main kinds of resources:

• Students. Usually a student group is preassigned to each events. Constraints that can be
important for students are controlling the number of idle times, the number of lessons per
day.

• Teachers. As mentioned earlier, in some countries teachers are preassigned to events,
while in others they are not. In the latter case the choice of assignment will be restricted
by teachers’ qualifications and workload limits. Important issues for the teachers are the
total number of idle times, the number of assigned times per day, the number of days with
events, and unavailable days or times.

• Rooms. Most events take place in a room. If rooms abound, we can disregard them, if not
they can be a bottleneck, especially for specialized rooms.

3.2 Events

Events are the basic scheduling objects. An event can represent either a single lesson, or a
set of (‘linked’) lessons, that have to be taught at the same time.

We use the term course for a collection of events taught to a group of students in a subject.
Events that refer to the same course, are called the lessons of the course. In other papers
such a set of lessons might be called a class. The most common constraint related to courses
concerns the distribution of the lessons of a given course in the week (or in different weeks).
In situations where the teachers are not preassigned to courses, an important constraint is
that all lessons of a given course should be assigned to the same teacher. In our format a
course is a specialized event group, like the day and week are specialized time groups.

Other types of events, such as staff meetings, are also permitted. An event has the fol-
lowing properties.



Ann Oper Res

• The duration, which is the number of times that have to be assigned to the event. These
times must be consecutive.

• The course related to an event.
• The time that the event is scheduled to. If the duration is larger than one, the event will

occupy some following times as well. Constructing a timetable involves assigning a time
to all events.

• The workload that the event will contribute to a teacher’s total workload. Often this is the
same as the duration. The workload is only needed when teachers are not preassigned,
and consequently total workloads must be calculated.

• The resource groups are preassigned.
• Any number of resources, either preassigned, or to be assigned. These each have a ‘role’,

used to identify them. A role might have value ‘room’, ‘teacher’, ‘senior teacher’, and so
on. A resource may be constrained to be from a particular resource group, for example a
Science laboratory or an English teacher.

3.3 Constraints

Our XML format currently defines 13 constraint types. We expect that this number will
grow in the future. A constraint can be hard (‘Required’) or soft. In both cases the constraint
generates a cost, which either contributes to the infeasibility value, or to the objective value.
The constraints describe all aspects of the scheduling, even the (elementary) assignment part.
The advantage of this approach is that we can distinguish between levels of infeasibility: if
not all events can be scheduled, we can give preferences among them. In Sect. 4.2 we give
an example how a constraint contributes to the objective function.

The cost of a schedule consists of three parts: the cost of a resource, cost of an event
group, cost of an event.

We group the constraints into three groups: constraints describing the basic scheduling
problem, other constraints for events, and constraints for resources.

3.3.1 Basic scheduling constraints

• AssignTimeConstraint (Cost per event). Assign a time to each of the selected events.
• AssignResourceConstraint (Cost per event). Assign a resource to the role in each of the

selected events.

Both constraints have a variant expressing the preference for the time, respectively the re-
source: PreferTimesConstraint and PreferResourcesConstraint.

3.3.2 Event constraints

• LinkEventsConstraint (Cost per event group). Schedule the selected event groups at the
same (starting) time.

• SpreadEventsConstraint. (Cost per event group). Schedule the events of the selected event
groups to the selected time groups between a minimum and a maximum number of times.

• AvoidSplitAssignmentsConstraint. (Cost per event group). For each selected event group,
schedule the selected role of each event of this group to the same resource.
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3.3.3 Resource constraints

Resource constraints describe the quality of the timetable of a single resource; the corre-
sponding cost is attributed to the resource.

• AvoidClashesConstraint. Schedule the selected resources without clashes. This is one of
the basic (hard) constraints.

• AvoidUnavailableTimesConstraint. Avoid that the selected resources are busy in the se-
lected times.

• LimitWorkloadConstraint. Schedule workload to the selected resources between a mini-
mum and a maximum.

• LimitIdleTimesConstraint. The number of idle times in the selected time groups should
lie between a minimum and a maximum for each of the selected resources. Typically the
time groups are a day or all days.

• LimitBusyTimesConstraint. The number of occupied times for the selected resources
should lie between a minimum and a maximum for each of the selected time groups.
Typically the time groups are the days.

• ClusterBusyTimesConstraint. The number of time groups with an assigned time should
lie between a minimum and a maximum for the selected resources. Typically the time
groups are days; for example a teacher requiring at most 3 days with lessons.

4 The XML format for benchmarks

XML (http://www.w3schools.com/xml/; http://en.wikipedia.org/wiki/XML) is a mark-up
language similar to LATEX and HTML. It is used extensively for exchanging data between ap-
plications. Most object-oriented languages, like Java, C++, C#, and Delphi, have extensive
libraries to work with XML. For this reason XML seems to be very useful for benchmarking.
For a comparable project in nurse rostering, see (Curtois 2006).

The XML format is defined by an XML schema, which is an XSD file (itself written in
XML). The schema defines what elements must be and may be present in the XML file. The
format is straightforward and to present it all would be tedious. Instead, we give three exam-
ples which should make the general flavour clear: the top-level format, one constraint, and
the format of solutions. For a complete description, see (Post 2008), where a list with terms
used can be found, as well as a detailed description of all constraints. As an introductory
example the 4x4-Sudoku formulated as timetabling problem (without preassignments, and
hence multiple solutions) is available at this website.

4.1 The top-level format

At the top level the XML file looks like this:

<HighSchoolTimetableArchive>
<Instances>

<Instance Id="Sudoku4x4">
<Times>

...
</Times>
<Resources>

...

http://www.w3schools.com/xml/
http://en.wikipedia.org/wiki/XML
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</Resources>
<Events>

...
</Events>
<Constraints>

...
</Constraints>

</Instance>
</Instances>
<SolutionGroups>

...
</SolutionGroups>

</HighSchoolTimetableArchive>

The file contains one or more instances and any number of grouped solutions. The instance
contains ‘Times’, ‘Resources’, ‘Events’, and ‘Constraints’ sections, as in the data model
(Sect. 3).

4.2 Constraints

We give one example of a constraint, penalizing idle times. An idle time is relevant to a
resource and to a group of times. If there is a time without event scheduled to the resource,
but with scheduled events before and after in the same time group, we call it an idle time for
the resource within this time group. Usually the time group will consist of all times of a day.
In the constraints section of the XML document, we could have, among other constraints,
the following:

<LimitIdleTimesConstraint Id="StudentIdleTimes">
<Name>At most three idle times for students per week</Name>
<Required>false</Required>
<Weight>10</Weight>
<CostFunction>SquareSum</CostFunction>
<AppliesTo>

<ResourceGroups>
<ResourceGroup Reference="Students"/>

<ResourceGroups>
</AppliesTo>
<TimeGroups>

<TimeGroup Reference="Monday"/>
<TimeGroup Reference="Tuesday"/>
<TimeGroup Reference="Wednesday"/>
<TimeGroup Reference="Thursday"/>
<TimeGroup Reference="Friday"/>

</TimeGroups>
<Minimum>0</Minimum>
<Maximum>3</Maximum>

</IdleTimesConstraint>

The attribute ‘Id’ and the first four fields are present in all constraints. They define a unique
reference (Id) and a display name (Name), and give information on how to interpret viola-
tions this constraint. Required = “false” means that this constraint is a soft constraint, and
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hence any cost will be added to the objective value. The Weight and CostFunction explain
how to calculate the cost for the deviation of the violation. In this constraint a violation is
that one of the students in the resource group ‘Students’ has more than 3 idle times in the
week. The deviation is the surplus (per week), so the number of idle times minus 3. If a stu-
dent has 1, 0, 2, 3, 1 idle times, on the five days of the week respectively, the total number
of idle times is 7, and the deviation is 4. Since we use a quadratic term for this cost and
multiply by the weight, we obtain the cost 160. Hence the (constraint, student) combination
adds an amount of 160 to the objective function.

This example sums the idle times per day. If we only are interested in the idle times on
Monday, we can omit the time groups for the other days.

4.3 Solutions

The solution in XML is presented as:

<Solution Id="Sudoku4x4">
<Events>

<Event Reference="Event1">
<Time Reference="Day_1"/>
<Resources>

<Resource Reference="R1">
<Role>Room</Role>

</Resource>
</Resources>

</Event>
<Event Reference="Event2">

...
</Event>

...
</Events>

</Solution>

The main thing a solution should do is tell the result of the two scheduling constraints. For
this each Event section is filled with the time and resources of the corresponding assignment
constraints. Once these aspects are known, all other information can be calculated, and a
summary can be added. For debugging purposes, we introduce the possibility to give a full
report on the violations. This report gives for each resource, event group, and event the
constraints that are violated, and for each of the violated constraints the deviation, cost, and
a text explaining the violation. At Kingston (2009) an evaluator is available which validates
the XML in the dataset, and returns the report on the submitted solutions.

5 Conclusion

The XML format advocated here has been designed in order to better model the com-
plete high school timetabling problem and facilitate data exchange between high school
timetabling researchers. We used as input the situation in five different countries, and we
think that the presented format can deal with these countries. This belief is based on sev-
eral datasets we have in our ‘old’ formats. It is hoped that researchers and practitioners will
consider adopting this format in their work and that this will lead to further discussions and
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improvements to the model. As previously stated we fully expect the number of included
constraints to expand. We actively will encourage others to contribute datasets in this for-
mat, and use the evaluator (Kingston 2009) to validate their datasets. This should not only
lead to improvements of the model but also to the development of better and/or more general
algorithms.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncommer-
cial License which permits any noncommercial use, distribution, and reproduction in any medium, provided
the original author(s) and source are credited.
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Abstract—Generating a schedule for a professional sports 

league is an extremely demanding task. Good schedules have 
many benefits for the league, such as higher incomes, lower 
costs and more interesting and fairer seasons. This paper 
presents a successful way to schedule the Finnish major ice 
hockey league. The method is a combination of local search 
heuristics and evolutionary methods. The generated schedule is 
currently in use for the 2008-2009 season.  

I. INTRODUCTION 
Many new timetabling problems have been introduced in 

recent years. Most of the timetabling research used to 
concentrate on university and school timetabling, but 
rostering and sports scheduling have been quite extensively 
studied recently. Excellent overviews of sports scheduling 
can be found in [1] and [2]. The most important theoretical 
results can be found in [3]-[11]. An extensive summary of 
the theoretical results can be found in [2].  

Successful algorithms for sports scheduling include tabu 
search [12]-[14], simulated annealing [15]-[17], graph 
coloring and branch and bound [18], constrained 
programming [19]-[22], integer linear programming [23]-
[25] and hybrid integer/constrained programming [8],[26].  

Even if quite efficient algorithms have recently been 
designed for sports scheduling problems, to the  best of our 
knowledge, there are only a few papers where academic 
researchers have announced that they have closed a contract 
with a sports league owner: the major baseball league in the 
USA [27], the major soccer league in Austria [18], 1st 
division soccer in Chile [24], the major basketball league in 
New Zealand [17], the major soccer league in Belgium [22], 
the major soccer league in Denmark [28] and the major 
volleyball league in Argentina [29]. This paper presents a 
new case: the major ice hockey league in Finland. 

There are basically three reasons for the current interest in 
sports scheduling. First, sports leagues are organized more 
professionally than before and they have realized that a good 
schedule is vital for their league’s success. Second, sports 
leagues have faced so many new requirements and requests 
that they can no longer handle the schedules manually. 
Finally, new algorithms have been developed to tackle 
intractable problems, and, at the same time, computer power 
has increased to such a level that researchers are able to 
solve real-world problems. For these reasons, the league 
authorities contact universities and researchers to make their 
league more successful and more profitable. 

Professional sports leagues are big businesses. An 
increase in revenue comes from many factors: an increased 

number of spectators both in stadiums and in TV networks, 
reduced traveling costs for teams, a more interesting 
tournament for the media and sports fans, and a fairer 
tournament for the teams. Furthermore, TV networks buy 
the rights to broadcast the games and in return want the most 
attractive games to be scheduled at certain times. 

The focus of this paper is to solve a highly constrained 
sports scheduling problem. In Section II we define a sports 
scheduling problem and introduce the necessary 
terminology. Sections III and IV detail the requirements and 
the requests of the problem and our solution method. Even if 
there is a clear tendency to use integer and constrained 
programming models, our algorithm uses a mixture of 
evolutionary and local search methods. In Sections V and VI 
we present the Finnish major ice hockey league problem and 
the difficulty of the scheduling process. Finally, in Section 
VII we report our computational results. It will be seen that 
our approach produces excellent results compared to the 
manual schedule used in the previous season. One of the 
schedules we generated was accepted by the league 
authorities and the cooperation will continue in the years to 
come. 

II. SPORTS SCHEDULING 
In a sports competition, n teams play against each other 

over a period of time according to a given timetable. The 
teams belong to a league. In general, n is assumed to be an 
even number. A dummy team is added if a league has an odd 
number of teams. The league organizes games between the 
teams. Each game consists of an ordered pair of teams (i, j). 
The first team, i, plays at home - that is, uses its own venue 
(stadium) for a game - and the second team, j, plays away. 
Games are scheduled in rounds. Each round is played on a 
given day. A schedule consists of games assigned to rounds. 
A schedule is compact if each team plays exactly one game 
in each round; otherwise it is relaxed. If a team has no game 
in a round, it is said to have a bye. If a team plays two home 
or two away games in two consecutive rounds, it is said to 
have a break. 

Most professional leagues use a round robin tournament, 
where every team plays against every other team a fixed 
number of times. Most sports leagues play a double round 
robin tournament (2RR), where the teams meet twice, but 
quadruple round robin tournaments (4RR) are also quite 
common. In a 2RR, every team plays against every other 
team once at home and once away. The number of rounds in 
a compact single round robin tournament (1RR) is n – 1 and 
the number of games is n (n – 1)/2.  
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Scheduling a 1RR without any requirements is an easy 

task. In the 1980s, a constructive method was created by 
Schreuder [3] for generating a 1RR with a minimum number 
of breaks. Later [4] he showed that if n is even, it is always 
possible to construct a schedule with n – 2 breaks, and that 
this number is the minimum. For a mirrored 2RR, it is 
always possible to construct a schedule with exactly 3n – 6 
breaks [5].  

Schreuder also presented an efficient algorithm to 
compute a minimum break schedule. However, the 
algorithm can only be used directly when no additional 
requirements exist. Professional sports leagues have many 
requirements, constraints and requests that exclude the use 
of the algorithm. 

The problem of finding a schedule with the minimum 
number of breaks and, at the same time, take additional 
requirements and requests into account is known as the 
constrained minimum break problem, see, e.g., [28]. 

The sports scheduling problem presented in this paper is 
such a problem. There are three main reasons why we have 
to minimize the number of breaks: first, the fans do not like 
long periods without home games; second, consecutive 
home games reduce gate receipts; and third, long sequences 
of home or away games might influence the team’s current 
position in the tournament. 

Table I shows an example of a compact 2RR with n = 6. 
The second part of the schedule is actually mirrored from the 
first part. The schedule has no breaks for teams 1 and 5, 
three breaks for teams 2 and 3, three-in-a-row home games 
for team 6 and five-in-a-row away games for team 4. 

 
TABLE I 

A MIRRORED DOUBLE ROUND ROBIN TOURNAMENT WITH SIX TEAMS 
R1 R2 R3 R4 R5 

1 – 6 3 – 1 1 – 5 2 – 1 1 – 4 
2 – 5 6 – 2 2 – 4 5 – 3 3 – 2 
4 – 3 5 – 4 3 – 6 6 – 4 6 – 5 
R6 R7 R8 R9 R10 

6 – 1 1 – 3 5 – 1 1 – 2 4 – 1 
5 – 2 2 – 6 4 – 2 3 – 5 2 – 3 
3 – 4 4 – 5 6 – 3 4 – 6 5 – 6 

 
When the teams do not return home after each away game 

but instead travel from one away game to the next, we are no 
longer minimizing the number of breaks. Now we have to 
design a schedule that minimizes the distances the teams 
must travel. As an academic problem it is known as the 
Traveling Tournament Problem (TTP) [8]. This paper was 
one of the reasons for the increased interest in sports 
scheduling.  

III. REQUIREMENTS AND REQUESTS 

In this section we will give an outline of typical hard and 
soft constraints of a sports scheduling problem. The problem 
is to construct a round robin tournament that minimizes the 
number of breaks and the number of soft constraint 
violations. The games should be scheduled in rounds in such 
a way that the solution is feasible and mostly acceptable to 
both the league authorities and the teams.  

A league can use some of the following requirements 
(hard constraints) for their feasible schedule: 

H1.  Every team plays exactly once in every round (if a 
compact schedule is required). 

H2.  A team cannot play at home on a certain day (e.g. a 
venue is unavailable). 

H3.  A team cannot play away on a certain day (e.g. the 
team has an anniversary). 

H4.  A team cannot play at all on a certain day (e.g. the 
team has a game in another league). 

H5.  Two teams cannot play at home on the same day 
(e.g. they share a venue). 

H6.  A team cannot play at home on two consecutive 
calendar days. 

H7.  A game must be pre-assigned to a certain round. 
H8.  A break cannot occur in the second round. 
H9.  A maximum of m games can be assigned to round r  

(if a relaxed schedule is used, i.e. there are more 
than n – 1 rounds available for scheduling). 

Furthermore, there are a wide variety of requests 
presented by the league and the teams. They prefer to 
optimize many goals at the same time. A league uses some 
of the following requests (soft constraints) for their 
acceptable schedule: 

S1.  Every round should be as compact as possible (if a 
relaxed schedule is used). 

S2.  A team cannot have more than two consecutive 
home games. 

S3.  A team cannot have more than two consecutive 
away games. 

S4.  A team wishes to play two or more consecutive 
away games (away tours). 

S5.  There must be at least k rounds before two teams 
meet again. 

S6.  Two teams play against each other at home and 
away in turn (in a 3RR or more). 

S7.  A team wishes to play most of its home games on 
certain weekdays. 

S8.  Two teams do not want to play at home on the same 
day (e.g. they are located in the same region). 

S9.  A team does not want to play at home on a certain 
day (e.g. a team in another league in the same 
region already has a home game scheduled for that 
day). 

S10. A team should not play two consecutive games 
against opponents in the same strength group. 

S11.  A game cannot be played before round r. 
S12.  The difference between the number of home games 

and the number of away games for each team 
should be as small as possible after each round. 

S13.  The difference in the number of games played 
between the teams should be as small as possible 
after each round (while playing a relaxed schedule). 

Note that if a compact schedule is not required, the hard 
constraint H1 turns into the soft constraint S1. In that case, 
we are still searching for a compact schedule, but if it turns 
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out to be impossible, we can either introduce extra rounds or 
move some games away from the incorrect rounds. Then we 
may also use the hard constraint H9.  

It should be noted here that hard and soft constraints of 
sports scheduling problems vary quite substantially 
depending on the problem instance in hand. The up-to-date 
collection of the most typical constraints can be found on the 
web [30]. 

IV. SOLUTION METHOD 

Our solution method is not dependent on a complete 
round robin tournament arrangement. Any number of games 
can be added to the tournament. Likewise, any number of 
rounds can be added to the tournament. In fact, there are no 
restrictions on the kind of tournament one wants to make. 

The solution method is a modification of the h-HCGA 
algorithm presented in [31] and further extended in [32]. The 
algorithm is a genetic algorithm [33] with one mutation 
operator and no recombination operators. The two most 
important features of the algorithm are the greedy hill-
climbing mutation (GHCM) operator, which generates a new 
solution candidate from the current solution, and the 
adaptive genetic penalty method (ADAGEN), which is a 
multi-objective optimization method. The pseudo code of 
the h-HCGA algorithm is given in Figure 1. 

 
 

Set the time limit t  and the population size n 
Generate initial population of schedules by randomly 
assigning games to rounds 
Set better_found = 0 
WHILE elapsed-time < t 
     REPEAT n times 
          Select a schedule S by using a marriage selection 
          Apply the GHCM operator to S to get a new schedule S’ 
          Calculate the change Δ in fitness value 
          IF Δ < = 0 THEN 
               Replace S with S’ 
               IF Δ < 0 THEN 
                    better_found = better_found  + 1 
               ENDIF 
          ENDIF 
     ENDREPEAT 
     IF better_found > n THEN 
          Replace the worst schedule with the best schedule 
          Set better_found = 0 
     ENDIF 
     Update the dynamic weights of the hard constraints (ADAGEN) 
ENDWHILE 
Choose the fittest schedule from the population 
 

 

Fig. 1. The pseudo code of the h-HCGA algorithm. 
 

The GHCM operator moves a game, g1, from its old 
round, r1, to a new round, r2, and then moves another game, 
g2, from round r2 to a new round, r3, and so on, ending up 
with a sequence of moves. The initial game selection is 
random. The new round for the game is selected considering 
all possible rounds and selecting the one which causes the 
least increase in the cost function value when considering 
the relocation cost only. Moreover, the new game from that 
round is again selected considering all the games in that 
round and picking the one for which the removal causes the 
most decrease in the cost function value when considering 

the removal cost only. The operator stops if the last move 
causes an increase in the cost function value and if the value 
is larger than that of the previous non-improving move. 

We improve the GHCM operator further by introducing a 
tabu list which prevents reverse order moves in the same 
sequence of moves. That is, if we move a game g from 
round r1 to round r2 we do not allow g to be moved back to 
round r1 before a new sequence of moves begins. Finally, 
the operator is fine-tuned with the following improvements: 

− sequence of moves with zero-cost are accepted 
− in the case of equal cost games (or rounds) the 

selection is made randomly 
− in the case of equal costs the longest sequence of 

moves will be used. 
The ADAGEN method is an adaptive penalty method for 

multi-objective optimization. A traditional penalty method 
assigns positive weights (penalties) to the soft constraints 
and sums the violation scores to the hard constraint values to 
get a single value to be optimized. The ADAGEN method 
assigns dynamic weights to the hard constraints. This means 
that we are searching for a solution that minimizes the 
(penalty) function 

 
Σiαifi(x) + Σigi(x) 

where  
fi(x)  = cost of hard constraint i 
gi(x) = cost of soft constraint i 
αi  = a dynamically adjusted weight  

   for hard constraint i. 
 

The weights are updated in every kth generation using a 
somewhat complicated formula given in [31].  

The reproduction operation of the algorithm is, to a 
certain extent, based on the steady-state reproduction [35]. 
We use marriage selection [34] to select a schedule from the 
population of schedules for a single GHCM operation. The 
new schedule replaces the old one if it has a better or equal 
fitness. Furthermore, the least fit is replaced with the best 
one when n better schedules have been found, where n is the 
size of the population. 

The parameters of the algorithm are the same that were 
found to work best in [32]: 

− population size = 20 
− maximum move sequence in the GHCM = 10 
− size of the tabulist = 5 
− maximum time limit = 8 hours. 

A very detailed description of the algorithm is given in [31]. 

V. THE FINNISH MAJOR ICE HOCKEY LEAGUE 

Ice hockey is the biggest sport in Finland, both in terms of 
revenue and number of spectators. The Finnish major ice 
hockey league is a private company with fifteen 
shareholders, one for each team in the league and one for the 
Finnish Ice Hockey Association. Each team is also a private 
company. The CEO of the team is responsible for getting the 
best possible schedule for his team. 

The CEO of the league is responsible for producing the 
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schedule. Prior to the 2008-2009 season, the schedule was 
produced manually. After making the schedule for the 2007-
2008 season with an increasing number of requirements and 
requests, the CEO realized that they were no longer able to 
handle the schedule manually.  

Seven of the teams in the league are located in big cities 
(over 100,000 citizens) and the rest in smaller cities. One 
team is quite a long way up north, two are located in the east 
and the rest in the south (see Figure 2). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
Fig. 2. The map of Finland and the fourteen teams in the Finnish major 
ice hockey league. 

 
The schedule format for the league has been quite stable 

for many years. The base of the schedule is a quadruple 
round robin tournament resulting in 52 games for each team. 
In addition, the teams are divided into two groups of seven 
teams to get a few more games to play. These teams play a 
single round robin tournament resulting in 6 games. 
Therefore, there are 58 games for each team and a total of 
406 games to be scheduled. The games should be scheduled 
on Tuesdays, Thursdays and Saturdays. 

The league first fixes the dates on which the rounds will 
be played. In addition to the 58 rounds/days needed to 
generate a compact schedule, only one extra round/day was 
reserved to help the scheduling process. 

Often, there are also parties other than the league and the 
teams involved in the scheduling process. Examples of such 
parties include TV networks and other leagues. In the case of 
the Finnish major ice hockey league, the TV network 
chooses the games to show from the final schedule, thus not 
affecting the scheduling process. Two of the teams also play 
in the Champions Hockey League. 

The league and the teams gave the following requirements 
for the 2008-2009 season (see Section III): 

H1.  Every team plays in every round exactly once 
(excluding one bye per team). 

H2.  35 home games are forbidden on certain days (e.g. 
one team cannot play at home in the first 13 
rounds). 

H3.  5 forbidden away games. 
H4.  2 forbidden days. 
H5.  The Tappara and Ilves teams cannot play at home 

on the same day (they share a venue). 
H6.  A team cannot play at home on two consecutive 

calendar days (some games scheduled on Thursday 
are actually played on Friday). 

H7.  45 preassigned games. 
H8.  There cannot be a break in the second round. 

In addition, the league and the teams gave the following 
requests: 

S2.  A team cannot have more than two consecutive 
home games. 

S3.  A team cannot have more than two consecutive 
away games. 

S4.  The Kärpät team (team 14, see Fig. 1) wishes to 
play as many away tours (two consecutive away 
games) as possible. We were able to construct nine 
such tours. 

S5.  There must be at least eight rounds before two 
teams meet again. 

S7.  Four teams wish to play their home games on 
Thursdays and the rest on Saturdays. 

S8.  The Jokerit and HIFK teams do not want to play at 
home on the same day. In addition, the Blues team 
must play at home in an equal number of rounds 
with Jokerit and HIFK. 

S12.  The difference between the number of home games 
and the number of away games for each team 
should be as small as possible after each round. 

S13.  The difference between the number of games 
between the teams should be as small as possible 
after each round. 

The most important requests from the league were 
assigned a larger weight in the ADAGEN method. The 
following dynamic weights were used for hard constraints: 

− 50−100 for H1 
− 5−10 for H2 to H5 
− H6 to H8 were preassigned. 

VI. THE DIFFICULTY OF THE PROCESS 

Constructing a single, double or quadruple round robin 
tournament is quite an easy task nowadays, but when we 
introduce requirements and requests, the problem becomes 
intractable. Furthermore, being able to produce an 
acceptable schedule is not only about first defining the 
requirements and requests and then developing a suitable 
solution method. An essential part of the problem is the 
process of consulting with the various parties. 

In 2007 we interviewed four team CEOs (Jokerit, Kärpät, 
Tappara and Ässät) and the CEO of the league. The teams 
were chosen so that we would get a clear picture of the 
requirements and requests: Jokerit is a big team with a home 
venue that is used for a lot of other events, Kärpät has to 
travel the most, Tappara plays at the same venue as another 
team and Ässät is a good representative of a small team 
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located in a small city. 
The interviews gave us quite a good picture of the 

different requests the teams have and might have. The rest of 
the teams gave their requests direct to the CEO of the 
league. He, in turn, sent them to us. At this stage we thought 
we knew all the requests the teams had. 

Every team CEO agreed that it is very important that the 
requirements and the requests are considered in the final 
schedule. However, when we generated the first schedule the 
team CEOs “discovered” that some of their requests had not 
been considered. The simple reason was that we were not 
aware of them. For some reason, not all of the requests had 
reached us. One reason could be that the team CEO had not 
actually given the requests to the CEO of the league. 
Another reason could be that the CEO of the league did not 
inform us.  

Therefore, we had to generate a second schedule. We 
were somewhat surprised that the same thing occurred again. 
We got some new requests, but not all of them. We believe 
that the team CEOs are used to getting an unsatisfactory 
schedule (in the past years), which they then try to modify to 
better fit their requests. We base this thought on two things: 
first, we did not get the requests from the team CEOs, and 
second, the schedules prior to this season have been not so 
good. We will have to concentrate on this problem in the 
future. We have already sent them a questionnaire 
concerning their requests and we are arranging a meeting 
with them to approach this problem. 

VII. THE SCHEDULE 

In this section we present our computational results for the 
Finnish major ice hockey league problem presented in 
Section V. We solved the problem using the algorithm 
originally presented in [31] and described in Section IV. The 
algorithm was run on an Intel Core 2 Duo PC with a 3.8GHz 
processor and 2GB of random access memory running 
Windows XP. 

Table II shows the best solution we were able to achieve 
for the 2008-2009 season and the manual solution used in 
the previous season. Our solution (best of the 100 runs) was 
found in four hours of computer time, whereas the manual 
solution took several weeks to construct. 

 
 

TABLE II 
THE MANUAL SOLUTION FOR THE 2007-2008 SEASON 
AND OUR BEST SOLUTION FOR THE 2008-2009 SEASON 

 2007-2008 
(manual) 

2008-2009 
(algorithm) 

H2,H3,H4,H7: number of forbidden  
    and preassigned games 

 
< 50 
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S1: number of rounds needed 100 59 
S2: number of 3-breaks at home 15 2 
S4: number of away tours 2 9 
S5: less than six rounds before  

          two teams meet again 
3 3 

S7: minimum number of home  
      games on weekends 

7 9 

S8: Jokerit and HIFK play at home  
          on the same day 

2 4 

 
The CEO of the league was very satisfied with the 

schedules we generated and we closed a long-term contract 
with the league. 

VIII. CONCLUSIONS AND FUTURE WORK 
We scheduled the Finnish major ice hockey league. Our 

algorithm found a feasible and acceptable schedule for the 
2008-2009 season and the generated schedule is currently in 
use. We believe this is the first paper to solve a constrained 
minimum break problem for an ice hockey league. 

Our direction for future research will be to compare our 
solution method to previously published methods. 
Furthermore, we will improve the presented algorithm. Our 
goal is to schedule the Finnish 1st division ice hockey league 
as well. 
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Abstract 
Generating a schedule for a professional sports league is an 
extremely demanding task. Good schedules have many 
benefits for the league, for example higher incomes, lower 
costs and more interesting and fairer seasons. This paper 
presents a successful solution method to schedule the Finnish 
1st division ice hockey league. The solution method is an 
improved version of the method used to schedule the Finnish 
major ice hockey league. The method is a combination of local 
search heuristics and evolutionary methods. An analyzer for 
the quality of the produced schedules will be introduced. 
Finally, we propose a set of test instances that we hope the 
researchers of the sports scheduling problems would adopt. 
The generated schedule for the Finnish 1st division ice hockey 
league is currently in use for the season 2008-2009. 

1. Introduction   
Many new timetabling problems have been introduced in 
recent years. Most of the timetabling research used to 
concentrate on university and school timetabling, but 
especially rostering and sports scheduling have been quite 
extensively studied recently. Excellent overviews on sports 
scheduling can be found in (Easton et al. 2004) and 
(Rasmussen and Trick 2008). 
 
In the last decade, the sports scheduling focus has moved 
from theoretical results to practical applications. Some of 
the most important theoretical results can be found in 
(Schreuder 1980, 1992; de Werra 1981, 1988, 1990; 
Easton et al. 2001; Elf et al. 2003; Urrutia and Ribeiro 
2004; Dinitz et al. 2007). An extensive summary of the 
theoretical results can be found in (Rasmussen and Trick, 
2008).  
 
Even if quite efficient algorithms have recently been 
designed for sports scheduling problems, to the best  of our 
knowledge, there are only a few cases where academic 
researchers have been able to close a contract with a sports 
league owner: the major baseball league in USA 
(Nemhauser and Trick 1998), the major soccer league in 
Austria (Bartsch et al. 2006), the 1st division soccer in 
Chile (Durán et al. 2006), the major basketball league in 
New Zealand (Wright 2006), the major soccer league in 
                                                 
Copyright © 200 , Association for the Advancement of Artificial 
Intelligence (www.aaai.org). All rights reserved. 
 

Belgium (Goossens and Spieksma 2006), the major soccer 
league in Denmark (Rasmussen 2008), the major volleyball 
league in Argentina (Bonomo et al. 2008) and the major 
ice hockey league in Finland (Kyngäs and Nurmi 2009). 
This paper presents a new case: the Finnish 1st division ice 
hockey league. 
 
The sports league scheduling problems solved in this paper 
are constrained minimum break problems (see e.g. 
Rasmussen 2008). The problem is to find a schedule with 
the minimum number of breaks and at the same time take 
additional requirements and requests into account. For the 
sports scheduling terminology used in this paper we refer 
to (Kyngäs and Nurmi 2009). 
 
The focus of this paper is to solve a highly constrained 
sports scheduling problem. In Section 2 we give an 
overview of our earlier sports scheduling algorithm. Then 
we present an improved version of the algorithm. Section 3 
presents the Finnish 1st division ice hockey league 
problem. The problem is extremely difficult both in terms 
of finding a feasible solution and of optimizing the 
requests from the league. Computational results are 
reported in this section. It will be seen that our algorithm 
produces excellent results compared to the manual 
schedule used in the previous season. An analyzer for the 
quality of the produced schedules will be introduced in 
Section 4. The use of the analyzer is vital in producing the 
final schedule for the league authorities. Finally in Section 
5, we propose a set of test instances that we hope the 
researchers of the sports scheduling problems will adopt. It 
will be seen that our solutions for these instances are 
competitive 

2. The Improved Algorithm 
Our basic algorithm for solving sports scheduling problems 
is presented in (Kyngäs and Nurmi 2009), (Nurmi and 
Kyngäs 2007) and (Nurmi 1998). The algorithm is a 
genetic algorithm (Goldberg 1989) with one mutation 
operator and no recombination operators. The two most 
important features of the algorithm are the greedy hill-
climbing mutation (GHCM) operator, which generates a 
new solution candidate from the current solution, and the 
adaptive genetic penalty method (ADAGEN), which is a 
multi-objective optimization method. The algorithm uses 
three mechanisms to help the search procedure to avoid 
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local optima: genetic reproduction (Syswerda 1989), tabu 
search (Glover et al. 1985) and simulated annealing 
(Kirkpatrick et al. 1983). The use of these methods differs 
somewhat from their usual application (see Nurmi 1998).  
 
The GHCM operator moves a game, g1, from its old 
round, r1, to a new round, r2, and then moves another 
game, g2, from round r2 to a new round, r3, and so on, 
ending up with a sequence of moves. The initial game 
selection is random. The new round for the game is 
selected considering all possible rounds and selecting the 
one which causes the least increase in the cost function 
value when considering the relocation cost only. Moreover, 
the new game from that round is again selected considering 
all the games in that round and picking the one for which 
the removal causes the most decrease in the cost function 
value when considering the removal cost only.  
 
The ADAGEN method is an adaptive penalty method for 
multi-objective optimization. A traditional penalty method 
assigns positive weights (penalties) to the soft constraints 
and sums the violation scores to the hard constraint values 
to get a single value to be optimized. The ADAGEN 
method assigns dynamic weights to the hard constraints.  
 
The reproduction operation of the algorithm is, to a certain 
extent, based on the steady-state reproduction (Syswerda 
1989). We use marriage selection (Ross and Ballinger 
1993)  to select a schedule from the population of 
schedules for a single GHCM operation. The new schedule 
replaces the old one if it has a better or equal fitness. 
Furthermore, the least fit is replaced with the best one 
when n better schedules have been found, where n is the 
size of the population.  
 
Next we present two changes to the original algorithm. 
These changes will help the search procedure to escape 
from local optima as well as better explore the fitness 
landscape. 
 
The original algorithm uses a simulated annealing 
refinement. The initial temperature T0 is calculated by 
 
     T0 = C+ / log(1/X0) , 
 
where X0 is the degree to which we want to accept an 
increase in the cost function (we use a value of 0.75) and 
C+ is an average increment in the cost function for 100 
random moves. This method was proposed by (van 
Laarhoven and Aarts 1987). The exponential cooling 
scheme is used to decrement the temperature: 
 
     Tk = �Tk-1 , 
 
where � is usually chosen between 0.8 and 0.995. Our new 
test runs showed that a good strategy is to stop the cooling 
at some predefined temperature. Therefore, after a certain 

number of iterations m we will continue to accept an 
increase in the cost function with some constant probability 
p. Using the initial temperature given above and the 
exponential cooling scheme, we can calculate the value: 
 
     � = (–1/( T0 log p))–m . 
 
Our preliminary test runs showed that we can get 
surprisingly good results by choosing m equal to the 
maximum number of iterations with no improvement to the 
cost function and p equal to 0.0015. The new annealing 
schedule seems to produce superior solutions compared to 
the well-known annealing schedules. The reason might be 
that it enables the search procedure to continue to escape 
from local optima. We will study this method more closely 
in our next paper. 
 
The other change to the original algorithm concerns 
shuffling the current solution. A hyperheuristic (Cowling 
et. al. 2000)  is a mechanism that chooses a heuristic from 
a set of simple heuristics, applies it to the current solution, 
then chooses another heuristic and applies it, and continues 
this iterative cycle until the termination criterion is 
satisfied. We use the same idea, but the other way around. 
We introduce a number of simple heuristics that are 
normally used to improve the current solution but, instead, 
we use them to shuffle the current solution - that is, we 
allow worse solution candidates to replace better ones in 
the current population. We use five shuffling operations: 

1. Select a random game and move it to a random 
round, and do this k1 times 

2. Swap two random games, and do this k2 times 
3. Select a random round and move k3 random 

games from that round to random rounds 
4. Swap all the games in two random rounds 
5. Select a random game A-B and swap it with the 

game B-A, and do this k4 times. 
We select one random shuffling operation in every m/20th 
iteration of the algorithm, where m equals the maximum 
number of iterations with no improvement to the cost 
function. The best results have been obtained using the 
values k1 = 3, k2 = 2, k3 = 3 and k4 = 2. The shuffling seems 
to produce better solutions than without shuffling. The 
reason might again be that it enables the search procedure 
to continue to escape from local optima. We will again 
study this method more closely in our next paper. 
 
Table 1 shows the result of the comparison between the 
original and the improved algorithms. Three different 
problems were used to compare their performance: one that 
minimizes just number of breaks, one that includes further 
restrictions (intermediate test problem) and finally a 
complex real-world problem. The improved algorithm 
using simulated annealing and shuffling refinements 
performs clearly better than the original algorithm. 
 
Our algorithm uses random initial solutions. It has been 
claimed in many different contexts that better initial 
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solutions lead to better final solutions. It has also been 
argued that it is a good idea to use canonical schedules 
(Schreuder 1980) as initial solutions for sports scheduling 
methods since canonical schedules minimize the number of 
breaks. We tested our algorithm using canonical starting 
schedules thus producing good initial solutions. We ran the 
algorithm several times using both artificial problems and 
real-world problems. The results were clear. Canonical 
schedules were unable to produce better final solutions 
than random schedules as initial solutions to our algorithm. 
 
Table 1: The percentage of the best solutions found for the 
original algorithm and for the improved algorithm. The improved 
algorithm uses simulated annealing and shuffling refinements. 
 

Problem  
type 

Original 
algorithm 

Improved 
Algorithm 

Break optimization only 1% 8% 

Intermediate test problem 13% 21% 

Complex real-world problem 7% 14% 

3. The Finnish 1st Division Ice Hockey League 
Ice hockey is the biggest sport in Finland, both in revenue 
and number of spectators. The Finnish 1st division ice 
hockey league is managed by the Finnish Ice Hockey 
Association. The Competition Manager of the league is 
responsible for producing the schedule. Prior to the 
2008�2009 season, the schedule was produced manually. 
When the manager heard that we had scheduled the major 
league (Kyngäs and Nurmi 2009), he contacted us. He told 
us that the 1st division is an even more difficult problem 
than the major league. We agreed to generate a sample 
schedule for them. 
 
The league has twelve teams. Two of the teams are located 
in big cities (over 100 000 citizens) and the rest in smaller 
cities. One team is quite far up north, one on the west 
coast, three teams are located in the east and the rest in 
Central Finland (see Figure 2).  
 
The schedule format for the league has been stable for 
many years. The basis of the schedule is a quadruple round 
robin tournament concluding in 44 games for each team. In 
addition, each team plays at home against the Finnish U20 
team (national team for players under 20 years of age). 
Therefore, there are 45 games for each team and a total of 
276 games to be scheduled. The games should be 
scheduled on Wednesdays and Saturdays. 
 
The league first fixes the dates on which the rounds will be 
played. They only fix 44 dates - that is. the basic schedule 
should be a compact schedule. The U20 games are 
preassigned to given dates.  

Often, there are also parties other than the league and the 
teams involved in the scheduling process. Examples of 
such parties include TV networks and other leagues. In the 
case of the Finnish 1st division ice hockey league the TV 
network chooses the games to show before the scheduling 
process. These games are preassigned to given rounds. The 
Finnish major ice hockey league introduces further 
requirements. Five teams in the 1st division are located in 
(or very close to) the same cities as the teams in the major 
league. The major league is scheduled first and these five 
teams should not play at home on the same days as their 
counterparts in the major league. Furthermore, three other 
teams are competing with the Finnish major basketball 
league for the same spectators. This league is again 
scheduled first, so these three teams should not play at 
home on certain days. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2: The map of Finland and the twelve teams in the Finnish 
1st division ice hockey league. 
 
For the following terminology and notation we refer to 
(Kyngäs and Nurmi 2009). The league and the teams gave 
the following requirements for the 2008�2009 season: 

H1. Every team plays in every round exactly once (a 
compact schedule). 
H2. 36 home games are forbidden on certain days. 
H6. A team cannot play at home on two consecutive 
calendar days. 
H7. 61 preassigned games. 
H8. There cannot be a break in the second round. 

In addition, the league and the teams gave the  following 
requests: 

S2. A team cannot have more than two consecutive 
home games. 
S3. A team cannot have more than two consecutive 
away games. 
S4. The LeKi, Hokki, Jokipojat, Kiekko-Vantaa and 
TuTo teams wish to play a few away tours. 
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S5. There must be at least six rounds before two 
teams meet again. 
S7. All teams wish to play their home games on 
Saturdays. 
S9. The D-Team, HeKi, Kiekko-Vantaa, LeKi and 
TuTo teams do not want to play at home on the same 
day as their major league counterparts. 
S12. The difference between the number of home 
games and the number of away games for each team 
should be as small as possible after each round. 

The most important requests from the league were assigned 
a larger weight in the ADAGEN method. The following 
weights were used for hard constraints: 

� 3-25 for H1. 
� 3-10 for H2. 
� H6 to H8 were preassigned. 

 
The construction of the schedule was quite a difficult task. 
First of all, there were a considerable number of 
restrictions � over 10% more than in the Finnish major ice 
hockey league (Kyngäs and Nurmi 2009). Secondly, the 
teams had many more wishes than the teams in the major 
league. 
 
Table 2: The manual solution for the 2007�2008 season and our 
best solution for the 2008�2009 season. Unfortunately it is not 
possible to calculate values for other constraints from the 
2007�2008 manual schedule. 
 

 2007-2008 
(manual) 

2008-2009
(algorithm) 

H1: number of rounds (does not  
       include those needed for  
       the away tours) 

64 44 

H2,H7: number of forbidden 
       and preassigned games < 60 97 

S2,S3: number of 3-breaks 
       (at home + away) 68 2 + 4 

S4: number of away tours 13 17 

S7: minimum number of home 
      games on weekends 9 12 

 
We generated two schedules as we did for the major 
league. After the generation of the first schedule the 
Competition Manager discovered that he had forgotten a 
few restrictions. We added them to the program and 
produced a second schedule. The second schedule was 
accepted and only two games were relocated both due the 
fact that the teams would have had to play three 
consecutive away games because of home venue 
unavailability. So the schedule is in use almost as 
generated. Table 2 shows our solution for the 2008�2009  

season and a comparison with the solution produced 
manually for the 2007�2008 season. The algorithm was 
run on an Intel Core 2 Duo PC with a 3.8GHz processor 
and 2GB of random access memory running Windows XP. 
Our solution (best of the 50 runs) was found in six hours of 
computer time, whereas the manual solution took several 
weeks to construct. 
 
The Competition Manager was very satisfied with the 
schedules we generated and we closed a contract with the 
league. 

4. The Analyzer 
It is very difficult to examine the quality of the generated 
schedule. Even if someone were to have the patience to do 
it, it would take quite a long time. To ease this process we 
have made an analyzer for analyzing sports schedules. 
 
Actually we have made two analyzers: one for analyzing 
the output file of our program (algorithm) and one for 
analyzing any general sports schedule. The analyzer takes 
the schedule, requirements and requests as input, given as 
text files and produces a simple text file as output, where it 
is very easy to examine the conflicts in the schedule. The 
output file details each restriction and possible conflicts for 
each team in a readable form. A few examples: 

� All breaks 
� Weekday preferences are listed day by day (given 

lower bound, given upper bound, actual value). 
� Every game that has a violation in the k-value.  

 
The output file is excellent for presenting the results to the 
customer. When we introduced our program to the 
Competition Manager we generated three somewhat 
different schedules for the first half of the season. The 
manager could very quickly see the benefits of our 
program just by inspecting the output file. We claim that 
the use of the analyzer is vital in producing the final 
schedule for the league authorities. 

5. A Set of Test Instances 
The generation of standard test problems does not receive 
much attention. Some benchmark instances for round robin 
tournaments have been introduced in Henz (2000). For the 
Traveling Tournament Problem (Easton et al. 2001), test 
instances can be found in (Trick 2008). No set of standard 
test instances exists for the constrained minimum break 
problem.  
 
Researchers quite often only solve some special artificial 
cases or one real-world case. The strength of random test 
instances is the ability to produce many problems with 
many different properties. The strength of practical cases is 
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self-explanatory. However, an algorithm performing well 
on one practical problem may not perform satisfactorily on 
another practical problem. Our future work will present a 
set of both artificial and practical test instances for the 
constrained minimum break problem. In this section we 
present a collection of test instances found in the literature 
as well as some new test instances.  
 
Table 3: Twelve 2RR test instances: R50 (1), R100 (2), B10 (3), 
B12 (4), B14 (5), B10K3 (6), B12K3 (7), B12K10 (8), 
R14K7P208 (9), B8K0P30 (10), B8K2P30 (11), B10K2C4 (12). 

 

ID n Break 
min. k #Constr. Optimal 

#breaks 
Our 

solution 

1 50 No 0 0 – found 

2 100 No 0 0 – found 

3 10 Yes 0 0 8 8 

4 12 Yes 0 0 10 10 

5 14 Yes 0 0 12 14 

6 10 Yes 3 0 ? 16 

7 12 Yes 3 0 16 22 

8 12 Yes 10 0 ? 26 

9 14 No 7 208 P – found 

10 8 Yes 0 30 P ? 10 

11 8 Yes 2 30 P ? 12 

12 10 Yes 2 4 C ? 10 
 
To the best of our knowledge, the best test instances 
presented in the literature so far are those by (Rasmussen 
and Trick 2007). We use four of their problems, two of 
which are slight modifications. All twelve test instances 
are double round robins. Table 3 shows the instances. The 
first two (abbreviated as Rn) are simple round robin 
problems where the only challenge is to find a round robin 
tournament. In the next three instances (Bn) the challenge 
is to find the minimum number of breaks. The next three 
instances (BnK) are also break minimization problems, but 
in these instances two games with the same opponents 
must be separated by at least k = 3 or k = 10 rounds. In the 
instance R14K7P208 the challenge is again just to find a 
round robin tournament, but now with k = 7. Furthermore, 
there are four home game restrictions and four away game 
restrictions in each round totaling a number of 208 
restrictions (place constraints). The next two instances (B8) 
are break minimization problems with place constraints 
and the other one with k = 2. Here we had to modify the 
original problems by (Rasmussen and Trick 2007) because 
their place constraints would have caused extra breaks to 
occur. The final instance B10K2C4 introduces 
complementary constraints – that is, two teams cannot play 

at home at the same day. The instance includes four 
complementary constraints.  
 
It should be noted that our algorithm was not designed to 
merely minimize the number of breaks but to solve 
complex real-world problems. However, we claim that our 
algorithm also works very well for the artificial test 
instances. We were able to find the best possible solution 
for five of the test instances. For three of the instances the 
optimum is not yet known. The up-to-date collection of test 
instances can be found on the web (Nurmi and Kyngäs 
2009). 

6. Conclusions and Future Work 
We scheduled the Finnish 1st division ice hockey league. 
Our algorithm found a feasible and an acceptable schedule 
for the the 2008�2009 season. The generated schedule is 
currently in use. We also proposed a set of test instances 
that we hope the researchers of the sports scheduling 
problems will adopt. Our solutions to the test instances 
were competitive. 
 
Our direction for future research will be to further study 
the improved algorithm and its various parameters. We 
will also publish an extensive set of both real-world 
instances and test instances for the constrained minimum 
break problem. We have already set up a group of 
collaborators for this goal. 

References 
Bartsch, T., Drexl, A., and Kröger, S. 2006. “Scheduling 
the professional soccer leagues of Austria and Germany”,  
Computers and Operations Research 33(7): 1907–1937. 

Bonomo, F., Burzyn, A., Cardemil, A., Durán, G., and 
Marenc, J. 2008. “An application of the traveling 
tournament problem: the Argentine volleyball league”. In 
Proc. of the 7th International Conference on the Practice 
and Theory of Automated Timetabling (PATAT), Montreal 
(Canada). 

Cowling, P., Kendall, G., and Soubeiga, E. 2000. A 
hyperheuristic Approach to Scheduling a Sales Summit. In 
Proc. of the 3rd International Conference on the Practice 
and Theory of Automated Timetabling (PATAT), 176-190. 

Dinitz, J. H. , Froncek, D. , Lamken, E. R. , and Wallis, W. 
D. 2007. “Scheduling a tournament” in The CRC 
Handbook of Combinatorial Designs, C.J. Colbourn and J. 
H. Dinitz, Eds. CRC Press Inc, Florida, USA, 591–606 
(previous edition of this book was published in 1996). 

Durán, G., Guajardo, M., Miranda, J., Sauré, D., Souyris, 
S., and Weintraub, A. 2007. “Scheduling the Chilean 

199



Soccer League by Integer Programming”, INTERFACES 
37: 539–552. 

Easton, K., Nemhauser, G., and Trick, M. 2001. “The 
traveling tournament problem: description and 
benchmarks”. In Proc. of the 7th. International Conference 
on Principles and Practice of Constraint Programming, 
Paphos, 580–584. 

Easton, K., Nemhauser G., and M. Trick. 2004. “Sports 
scheduling” in Handbook of Scheduling: Algorithms, 
Models and Performance Analysis, J. T. Leung, Ed. CRC 
Press Inc, Florida, USA, pp 1–19. 

Elf, M., Jünger, M., and Rinaldi, G. 2003. “Minimizing 
breaks by maximizing cuts”, Operations Research Letters 
31: 343–349. 

Glover, F., McMillan, C., and Novick, B. 1985. Intercative 
Decision Software and Computer Graphics for 
Architectural and Space Planning. Annals of Operations 
Research 5: 557-573. 

Goldberg, D. E. 1989. Genetic Algorithms in Search, 
Optimization and Machine Learning, Kluwer Academic 
Publishers, Boston, MA. 

Goossens, D., and Spieksma, F. C. R. 2006. “Scheduling 
the Belgian soccer league”. In Proc. of the 6th 
International Conference on the Practice and Theory of 
Automated Timetabling (PATAT), Brno, Czech Republic, 
420–422. 

Henz, M., Müller, T., Thiel, S., and van Brandenburg, M. 
(Created 2000). Benchmarks and results for round robin 
tournaments. 
http://www.comp.nus.edu.sg/˜henz/roundrobin_benchmark
s/.  

Kirkpatrick, S., Gelatt, C.D. Jr, and Vecchi, M.P. 1983. 
Optimization by Simulated Annealing. Science 220: 671-
680. 

Kyngäs, J., and Nurmi, K. 2009. Scheduling the Finnish 
Major Ice Hockey League. IEEE Symposium on 
Computational Intelligence in Scheduling, Nashville, USA, 
accepted for publication. 

van Laarhoven, P.J.M., and Aarts, E.H.L. 1987. Simulated 
annealing: Theory and applications. Kluwer Academic 
Publishers. 

Nemhauser, G., and Trick, M. 1998. Scheduling a major 
college basketball conference, Operations Research 46(1): 
1–8. 

Nurmi, K., and Kyngäs, J. (Last update 28.1.2009). Sports 
Scheduling Problem [Online]. Available: 
http://www.samk.fi/ssp. 

Nurmi, K. 1998. “Genetic Algorithms for Timetabling and 
Traveling Salesman Problems”. Ph.D. diss., Dept. of 
Applied Math., University of Turku, Finland. 

Nurmi, K., and Kyngäs, J. 2007. ”A Framework for School 
Timetabling Problem”. In Proc. of the 3rd 
Multidisciplinary Int. Scheduling Conf.: Theory and 
Applications, Paris, France, 386–393. 

Rasmussen, R. 2008. “Scheduling a triple round robin 
tournament for the best Danish soccer league”, European 
Journal of Operational Research 185(2): 795–810. 

Rasmussen, R. and Trick, M. 2007. “A Benders approach 
for the constrained minimum break problem”, European 
Journal of Operational Research 177: 198–213. 

Rasmussen, P., and Trick, M. 2008. “Round robin 
scheduling - A survey”, European Journal of Operational 
Research 188, pp. 617–636. 

Ross, P. and Ballinger, G.H. 1993. “PGA - Parallel Genetic 
Algorithm Testbed”, Department of Articial Intelligence, 
University of Edinburgh, England. 

Schreuder, J.A..M. 1980. “Constructing timetables for 
sport competitions”, Mathematical Programming Study 13, 
58–67. 

Schreuder, J. A. M. 1992. “Combinatorial aspects of 
construction of competition Dutch Professional Football 
Leagues”, Discrete Applied Mathematics 35: 301–312.  

Syswerda, G. 1989. “Uniform Crossover in Genetic 
Algorithms”. In Proc of the 3rd International Conference 
on Genetic Algorithms, 2–9. 

Trick, M. (Last update 31.7.2008). Challenge Traveling 
Tournament Instances, http://mat.gsia.cmu.edu/TOURN.  

Urrutia, S., and Ribeiro, C.C. 2004. ”Minimizing travels by 
maximizing breaks in round robin tournament schedules”, 
Electron Notes Disc Math 18-C: 227–233. 

de Werra, D. 1981. “Scheduling in sports” in Studies on 
graphs and discrete programming. Amsterdam, P. Hansen, 
Ed. North-Holland, pp. 381–95. 

de Werra, D. 1988. “Some models of graphs for scheduling 
sports competitions”, Discrete Applied Mathematics 21: 
47–65. 

de Werra, D., Jacot-Descombes, L., and Masson, P. 1990. 
“A constrained sports scheduling problem”, Discrete 
Applied Mathematics 26: 41–49. 

Wright, M.B. 2006. “Scheduling fixtures for basketball 
New Zealand”, Computers & Operations Research 33, 
1875–1893. 

200



Publication 5 

K. Nurmi, D. Goossens, T. Bartsch, F. Bonomo, D. Briskorn, G. Duran, J. 
Kyngäs, J. Marenco, C.C. Ribeiro, F. Spieksma, S. Urrutia and R. Wolf-
Yadlin, “A Framework for Scheduling Professional Sports Leagues”, in Ao, 
Sio-Iong (ed.): IAENG Transactions on Engineering Technologies Volume 5, 
Springer, USA, 2010, pp. 14-28. Reprinted with the permission from 
Springer. 

 





A Framework for Scheduling Professional 
Sports Leagues 

Kimmo Nurmia, Dries Goossensb, Thomas Bartschc, Flavia Bonomod, 
Dirk Briskorne, Guillermo Durand, Jari Kyngäsa, Javier Marencog, Celso 

C. Ribeiroh, Frits Spieksmab, Sebastián Urrutiai and Rodrigo Wolf-Yadlinf 

aSatakunta University of Applied Sciences, Tiedepuisto 3, 28600 Pori, Finland, email: 
kimmo.nurmi@samk.fi, jari.kyngas@samk.fi 

bKatholieke Universiteit Leuven, Naamsestraat 69, 3000 Leuven, Belgium, email: 
dries.goossens@econ.kuleuven.be, frits.spieksma@econ.kuleuven.be 

cSAP AG, Neurottstraße 16, 69190 Walldorf, Germany, email: thomas.bartsch@sap.com 
dCONICET and FCEN, University of Buenos Aires, UBA Ciudad Universitaria, pab I, Int. Guiraldes s/n 

(1428) Buenos Aires, Argentina, email: fbonomo@dc.uba.ar, gduran@dm.uba.ar 
eChristian-Albrechts-Universität, Olshausenstr. 40, 24098 Kiel, Germany, email: briskorn@wiso.uni-

koeln.de 
fDII, University of Chile, República 701,Santiago, Chile, email: rwolf@dii.uchile.cl 

gNational University of General Sarmiento, J. M. Gutiérrez 1150 (1613) Los Polvorines, Buenos Aires, 
Argentina, email: jmarenco@ungs.edu.ar 

hUniversidade Federal Fluminense, Department of Computer Science, Rua Passo da Pátria 156, 
Niterói, RJ 2431-240, Brazil, email: celso@ic.uff.br 

iFederal University of Minas Gerais, Av. Antônio Carlos 6627, Belo Horizonte, MG 31270-010, Brazil, 
email: surrutia@dcc.ufmg.br 

Abstract. This paper introduces a framework for a highly constrained sports scheduling problem 
which is modeled from the requirements of various professional sports leagues. We define a 
sports scheduling problem, introduce the necessary terminology and detail the constraints of the 
problem. A set of artificial and real-world instances derived from the actual problems solved for 
the professional sports league owners are proposed. We publish the best solutions we have 
found, and invite the sports scheduling community to find solutions to the unsolved instances. 
We believe that the instances will help researchers to test the value of their solution methods. 
The instances are available online.  

Keywords: Sports Scheduling, Real-World Scheduling. 
PACS: 02.10.Ox 

INTRODUCTION 

Professional sports leagues are big businesses. An increase in revenue comes from 
many factors: an increased number of spectators both in stadiums and via TV 
networks, reduced traveling costs for teams, a more interesting tournament for the 
media and sports fans, and a fairer tournament for the teams. Furthermore, TV 
networks buy the rights to broadcast the games and in return want the most attractive 
games to be scheduled at certain times. 



One major reason for the increased academic interest in sports scheduling was the 
introduction of the traveling tournament problem [1], where the total distance traveled 
by the teams is minimized. Since the 1990s the evolution of sports scheduling has 
closely tracked the development of computers. In recent years microcomputers have 
reached a level of being powerful enough for demanding computational tasks in 
practical areas of sports scheduling. This is the second of the four reasons for the 
current interest in sports scheduling. The third reason is that new efficient algorithmic 
techniques have been developed to tackle previously intractable problems, and the 
fourth is that sports leagues are now organized more professionally than before and it 
has been realized that a good schedule is vital for a league’s success. 

Excellent overviews of sports scheduling can be found in [2]-[5]. An extensive 
bibliography can be found in [6] and an annotated bibliography in [7]. Successful 
methods of solving sports scheduling problems include ant algorithms [8],[9], 
constraint programming [2],[10]-[11], evolutionary algorithms [12]-[14], integer 
programming [15]-[20], metaheuristics [21]-[23], simulated annealing [24]-[26] and 
tabu search [27]-[29]. 

To the best of our knowledge, there are not many cases where academic researchers 
have been able to close a contract with a sports league owner. We are aware of the 
following: the major soccer league in The Netherlands [30], the major baseball league 
in the USA [31], the major soccer league in Austria [32], the 1st division soccer league 
in Chile [33], the major basketball league in New Zealand [26], the major soccer 
league in Belgium [34], the major soccer league in Denmark [35], the major volleyball 
league in Argentina [36], the major and 1st division ice hockey leagues in Finland 
[37],[38] and the major soccer league in Brazil [19]. 

SPORTS SCHEDULING TERMINOLOGY 

In a sports competition, n teams play against each other over a period of time 
according to a given timetable. The teams belong to a league. In general, n is assumed 
to be an even number. A dummy team is added if a league has an odd number of 
teams. The league organizes games between the teams. Each game consists of an 
ordered pair of teams (i, j). The first team, i, plays at home - that is, uses its own venue 
(stadium) for a game - and the second team, j, plays away. Games are scheduled in 
rounds. Each round is played on a given day. A schedule consists of games assigned to 
rounds. A schedule is compact if each team plays exactly one game in each round; 
otherwise it is relaxed. If a team has no game in a round, it is said to have a bye.  

If a team plays two home or two away games in two consecutive rounds, it is said 
to have a break. In general, for reasons of fairness, breaks are to be avoided. The 
problem of finding a schedule with the minimum number of breaks is the minimum 
break problem. However, a team can prefer to have two or more consecutive away 
games if it is located far from the opponent’s venues, and the venues of these 
opponents are close to each other. A series of consecutive away games  is called an 
away tour. We call a schedule k-balanced if the numbers of home and away games for 
each team differ by at most k in any stage of the tournament. Teams can be partitioned 
into strength groups. Strength groups can be formed on the basis of the expected 
strengths of the teams. Teams can also be grouped by their location.  



In a round robin tournament every team plays against every other team a fixed 
number of times. Most sports leagues play a double round robin tournament (2RR), 
where the teams meet twice (once at home, once away), but quadruple round robin 
tournaments (4RR) are also quite common. The number of rounds in a compact single 
round robin tournament (1RR) is n – 1 and the number of games is n (n – 1)/2. If n is 
even, it is always possible to construct a schedule with n – 2 breaks, and this number 
is the minimum [30]. A mirrored double round robin tournament (M2RR) is a 
tournament where every team plays against every other team once in the first n – 1 
rounds, followed by the same games with reversed venues in the last n – 1 rounds. For 
an M2RR, it is always possible to construct a schedule with exactly 3n – 6 breaks [39]. 

Table I shows an example of a compact mirrored 2RR with n = 6. The schedule has 
no breaks for teams 1 and 5, three breaks for teams 2 and 3, three-in-a-row home 
games for team 6 and five-in-a-row away games for team 4.  

 
TABLE 1.  A compact mirrored double round robin tournament with six teams. 

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 
1 – 6 3 – 1 1 – 5 2 – 1 1 – 4 6 – 1 1 – 3 5 – 1 1 – 2 4 – 1 
2 – 5 6 – 2 2 – 4 5 – 3 3 – 2 5 – 2 2 – 6 4 – 2 3 – 5 2 – 3 
4 – 3 5 – 4 3 – 6 6 – 4 6 – 5 3 – 4 4 – 5 6 – 3 4 – 6 5 – 6 

 
If a team plays against team i in one round, and against team j in the next round, we 

say that team i gives a carry-over effect (COE) to team j. If we define cij as the number 
of carry-over effects that i gives to j, we can compute the so-called COE value of the 
schedule as ∑i,j cij². The problem of finding a schedule with the minimum COE value 
is the carry-over effects value minimization problem. A lower bound value is rn (n – 
1), where r is the number of round robins;  schedules that attain this lower bound are 
called balanced schedules. Brazil [19]. 

THE SPORTS SCHEDULING PROBLEM 

To solve a real-world sports scheduling problem it is apparent that a profound 
understanding of the relevant requests and requirements presented by the league is a 
prerequisite for developing an effective solution method. In most cases the most 
important goal is to minimize the number of breaks. There are various reasons why 
breaks should be minimized in a sports schedule: fans do not like long periods without 
home games, consecutive home games reduce gate receipts, and long sequences of 
home or away games might influence the team’s current position in the tournament. 
Apart from minimizing the number of breaks, several other issues play a role in sports 
scheduling, e.g. minimizing the total traveling distance, creating a compact schedule, 
avoiding a team playing against all the strong teams consecutively. 

We give next an outline of the typical constraints of the sports scheduling problem. 
We believe that these constraints are representative of many scheduling scenarios 
within the area of sports scheduling. We make no strict distinction between hard and 
soft constraints. They will be given by the instances themselves. The goal is to find a 
feasible solution that is the most acceptable for the sports league owner. That is, a 
solution that has no hard constraint violations and that minimizes the weighted sum of 



the soft constraint violations. The weights will also be given by the instances 
themselves. A league can use a mixture of the following constraints as a framework 
for its schedule generation. The constraints were first introduced in [40]. Here we 
group the constraints to improve the readability. 
 
Basis 

C01. There are at most R rounds available for the tournament. 
C02. A maximum of m games can be assigned to round r. 
C03. Each team plays at least m1 and at most m2 games at home. 
C22. Two teams play against each other at home and in turn away in 3RR or more. 

Home and Away 
C04. Team t cannot play at home in round r. 
C05. Team t cannot play away in round r. 
C06. Team t cannot play at all in round r. 
C07. There should be at least m1 and at most m2 home games for teams t1, t2, … on 

the same day. 
C08. Team t cannot play at home on two consecutive calendar days. 
C09. Team t wants to play at least m1 and at most m2 away tours on two consecutive 

calendar days. 
C23. Team t wishes to play at least m1 and at most m2 home games on weekday1, 

m3 – m4 on weekday2 and so on. 
Break 

C12. A break cannot occur in round r. 
C13. Teams cannot have more than k consecutive home games. 
C14. Teams cannot have more than k consecutive away games. 
C15. The total number of breaks must not be larger than k. 
C16. The total number of breaks per team must not be larger than k. 
C17. Every team must have an even number of breaks. 
C18. Every team must have exactly k number of breaks. 
C35. A break of type A/H for team t must occur between rounds r1 and r2. 

Game 
C10. Game h-team against a-team must be preassigned to round r. 
C11. Game h-team against a-team must not be assigned to round r. 
C24. Game h-team against a-team cannot be played before round r. 
C25. Game h-team against a-team cannot be played after round r. 
C34. Game h-team against a-team can only be carried out in a subset of rounds r1, 

r2, r3, ... 
Tournament quality 

C19. There must be at least k rounds between two games with the same opponents. 
C20. There must be at most k rounds between two games with the same opponents. 
C21. There must be at least k rounds between two games involving team t1 and any 

team from the subset t2, t3, ... 
C26. The difference between the number of played home and away games for each 

team must not be larger than k in any stage of the tournament (a k-balanced 
schedule). 

C27. The difference in the number of played games between the teams must not be 



larger than k in any stage of the tournament (in a relaxed schedule). 
C36. The carry-over effects value must not be larger than c. 

Strength group 
C28. Teams should not play more than k consecutive games against opponents in 

the same strength group. 
C29. Teams should not play more than k consecutive games against opponents in 

the strength group s. 
C30. At most m teams in strength group s should have a home game in round r. 
C31. There should be at most m games between the teams in strength group s 

between rounds r1 and r2. 
C32. Team t should play at least m1 and at most m2 home games against opponents 

in strength group s between rounds r1 and r2. 
C33. Team t should play at least m1 and at most m2 games against opponents in 

strength group s between rounds r1 and r2. 
 

Next we consider some examples of these constraints. If the number of available 
rounds specified in constraint C01 is higher than the minimal number of rounds 
needed to complete the tournament, a relaxed schedule is allowed, and constraint C02 
can be used to set the maximum number of games for each round. Constraint C03 is 
used when the number of home and away games is not the same for all teams (valid 
for 1RR and 3RR). A team cannot play at home (C04) if its venue is unavailable due 
to some other event. A team cannot play away (C05) if it has an anniversary on that 
day and it requests to play at home. If a team has a game in another league, it cannot 
play at all on certain round (C06). If two teams share a venue, constraint C07 can be 
used to avoid the two teams playing at home in the same round, by setting m1 = 0 and 
m2 = 1 for this pair of teams. Constraints C08 and C09 are used to schedule away 
tours. 

Some games can be preassigned to certain rounds using constraint C10. The 
constraint is also useful for preassigning away tours or preassigning special mini-
tournaments between some teams on weekends. When a game should not necessarily 
be played in a specific round, but rather in some period of the season, this can be 
expressed using constraint C34. When there is another important event on a specific 
day (round) that can compete in interest with a league game, there should not be any 
“popular” game in that round (C11). 

Even if the main goal often is to find a schedule with the minimum number of 
breaks, constraints from C12 to C18 can also be used to set requirements concerning 
the number of breaks. Furthermore, quite often a break is not allowed in the second or 
in the last round (C12). In some cases, a break is desirable in some period of the 
season, which can be enforced using constraint C35.Two games between the same 
opponents cannot usually be played on close days (C19). Constraints C19 and C20 
used together results in a mirrored schedule if k is set to n – 1. If a triple or quadruple 
round robin tournament is played, it’s common that two teams should play against 
each other at home and in turn  away (C22). 

Most of the teams prefer to play their home games at weekends to maximize the 
number of spectators. However, some teams might prefer weekdays to maximize the 
number of business spectators. Constraint C23 is used to limit a team’s number of 



home games on a weekday (e.g. Wednesday), assuming that the day on which it will 
be played is known for every round. Constraint C24 can be used in the latter 2RR 
when 4RR is solved by splitting it into two 2RRs. The constraint ensures that there are 
at least a given number of rounds between two games with the same opponents (see 
also C19). A team might also prefer home games against important opponents in the 
second half of the season, as these games are likely to be more attractive near the end 
of the competition. For the same reason, a game between local rivals might be 
preferred to be scheduled early in the season (C25). 

Minimizing the difference between the number of played home and away games for 
each team at any stage of the season (C26) is an important fairness criterion. If not all 
teams play in each round, i.e. a relaxed schedule is to be generated, another fairness 
criterion is to minimize the difference in the number of played games between the 
teams (C27). 

Another goal can be to avoid a team playing against extremely weak or extremely 
strong teams in consecutive rounds (C29), or to avoid consecutive games between 
teams located nearby (C28). A TV broadcaster might require that the most interesting 
teams should not all play at home on the same day (C30). Constraint C31 can be used 
to enforce a balanced spread of games between top teams over the season. Constraint 
C32 can be used to ensure that a team has a home game against a top team in each half 
of the season. Constraint C33 can be used to make sure that each team plays against a 
strong team in the first rounds of the season. Finally, for sports where carry-over 
effects could influence the result of the tournament, these effects can be balanced 
using constraint C36. 

We model the sports scheduling problem using a simple text file format. The file 
format consists of a header section and a constraint section. The header section has 
eight elements:  

# benchmark instance, the name of the instance 
# number of teams 
# team names 
# number of round robins 
# additional games, which can be used to set other games besides those in the round 

robins 
#  number of rounds 
#  weekdays for rounds 
#  strength groups 

The constraint section has one element for each constraint in use: 
# C04. Team t cannot play at home in round r 
# C07. There should be at least m1 and at most m2 home games for teams t1, t2, … 
# and so on. 
The detailed and up-to-date information on the file format and sample files can be 

found in [41]. We believe that this model helps researchers to evaluate, compare and 
exchange their solution methods.  

Notice that some constraints are in fact generalizations of others (e.g. constraint 
C34 is a generalization of C24 and C25), or could be expressed using a series of other 
constraints (e.g. ensuring that a team does not play at all in a particular round (C06) 
can also be done by specifying that a team does not play at home (C04) or away (C05) 



in that round). However, we chose not to reduce the set of constraints to its most 
compact form because we think these redundant constraints make it easier to 
understand what the requirements for a tournament are, and/or reduce the number of 
lines in the described text file format.  

ARTIFICIAL BENCHMARK INSTANCES 

The generation of standard benchmark problems has not received much attention. 
Some test instances for round robin tournaments have been introduced in [42]. Kyngäs 
and Nurmi [38] presented a set of artificial test instances for the constrained minimum 
break problem. For the traveling tournament problem, test instances can be found in 
[43]. No set of standard test instances has previously been published for the real-world 
constrained minimum break problem.  

Researchers quite often only solve some special artificial cases or one real-world 
case. The strength of random test instances is the ability to produce many problems 
with many different properties. Still, they should be sufficiently simple for each 
researcher to be able to use them in their test environment. The strength of practical 
cases is self-explanatory. However, an algorithm performing well on one practical 
problem may not perform satisfactorily on another practical problem; which is why we 
present a collection of test instances for both artificial and real-world cases. We start 
with artificial cases.  

Table II shows 22 test instances some of which have earlier been introduced in 
[38]. All but two must be compact schedules (see constraint C01). Most of the 
instances are double round robin tournaments (RR = 2). The number of teams (n) 
varies between 8 and 100. The challenge is to find either a round robin tournament 
(C15 = empty) or a round robin tournament that minimizes the number of breaks 
(C15 = Min). In some instances there must be at least k rounds before two teams meet 
again (see constraint C19). Additional constraints may include place constraints (see 
constraints C04 and C05) and complementary constraints (see constraint C07). The 
only soft constraints in these instances are C15, all other constraints are hard. 

Also note the following points: 
− R14K7P208 has four home game restrictions and four away game restrictions in 

each round totaling a number of 208 C04 and C05 constraints. 
− In the instances where C07 constraints exist, teams 1 and 2, teams 3 and 4, and 

so on cannot play at home at the same day - that is, m1 = 0 and m2 = 1. 
− R16P116C23 and B16K12P116C1 are constructed using data from one season 

of the Finnish major ice hockey league for players under 20 years of age. The 
games should be scheduled for 57 rounds instead of the 45 rounds needed for a 
compact schedule. Furthermore, the home teams for the third round-robin are 
given. 

− The home teams for B16C30 are given. 
The optimal number of breaks is only known for seven instances [7]. The other best 

solutions were found while preparing this article. These solutions provide a good 
starting point for communications between sports scheduling researchers. We hope 
these test instances will lay the foundation for the standard benchmark instances for 



sports scheduling problems.The next section introduces another set of instances which 
further widens these aims.  

 
TABLE 2.  Artificial benchmark instances: R14K7P208 (1), R16P116C23 (2), R100C8 (3), B8 (4), 

B8K0P30 (5), B8K2P30 (6), B10 (7), B10K2C4 (8), B10K3 (9), B12 (10), B12K3 (11), B12K8 (12), 
B12K8C4 (13), B12K8P30 (14), B12K8P30C3 (15), B12K8P30C4 (16), B12K10 (17), B14 (18), 

B16 (19), B16K3 (20), B16C30 (21), B16K12P116C1 (22). 
ID RR n C01 C15 C19 C04+05 C07 C10 Best sol 
1 2 14   7 208   found 
2 3 16 57   116 23  found 
3 2 100     8  found 
4 2 8  Min     6* 
5 2 8  Min  30   10 
6 2 8  Min 2 30   12 
7 2 10  Min     8* 
8 2 10  Min 2  4  10 
9 2 10  Min 3    16 

10 2 12  Min     10* 
11 2 12  Min 3    16* 
12 2 12  Min 8    24 
13 2 12  Min 8  4  24 
14 2 12  Min 8 30   30 
15 2 12  Min 8 30 3  34 
16 2 12  Min 8 30 4  1H+42 
17 2 12  Min 10    30 
18 2 14  Min     12* 
19 2 16  Min     14* 
20 2 16  Min 3    20* 
21 1 16  Min  30   36 
22 3 16 57 Min 12 116 1 45 30 

* known optimum 

REAL-WORLD BENCHMARK INSTANCES 

There are not many cases where academic researchers have been able to close a 
contract with a sports league owner. The real-world instances introduced in this 
section are based on such cases. In order not to reveal league secrets the instances 
might slightly differ from the actual problems solved for the league owners. The 
instances are derived from Finnish, Austrian, German, Argentine, Chilean, Belgian 
and Brazilian leagues. We give a short description of these leagues. In all the leagues 
the most important goal is to minimize the number of breaks. 

The Finnish Major Ice Hockey League (FIN1) has 14 teams. The basis of the 
schedule is a quadruple round robin tournament resulting in 52 games for each team. 
In addition, the teams are divided into two groups of seven teams to get a few more 
games to play. These teams play a single round robin tournament resulting in 6 games. 
Therefore, there are 58 games for each team and a total of 406 games to be scheduled. 
The three most important goals are to have no home games on the same day for some 
team pairs (C07), to have at least 5 rounds between two games with the same 
opponents (C19) and to have an equal number of home games on Saturdays for all 
teams (C23). For more details, refer to [37]. The Finnish 1st Division Ice Hockey 



League (FIN2) has 12 teams. The basis of the schedule is a quadruple round robin 
tournament resulting in 44 games for each team. In addition, each team plays at home 
against the Finnish U20 team (national team for players under 20 years of age). 
Therefore, there are 45 games for each team and a total of 276 games to be scheduled. 
Distances between the home venues of some of the teams are quite significant. The 
three most important goals are to generate away tours (C09), to have at least 7 rounds 
between two games with the same opponents (C19) and to have an equal number of 
home games at weekends for all teams (C23). For more details, refer to [38]. 

 
TABLE 3.  Real-world benchmark instances 

ID RR n Mirrored Hard constraints Soft constraints 

FIN1 2* 14 No, k=7 01,04,07,10,12 07,13,14,15,16,19, 
22,23,24,26,27 

FIN2 2 12 No, k=5 01,04,10,12 04,13,14,15, 
16,19,23,26 

AUS1 2 18 Yes 01,07,15, 
19,20,34 04 

GER1 2 18 Yes 01,05,07,15, 
19,20,34 04 

GER2 2 18 Yes 01,05,15,19, 
20,31,34,35 04 

ARG1 2 12 Yes 01,04,07,10,12, 
19,20,23,26 13,14,15 

CHI1 1 20 Yes 01,03,04,05,12, 
16,24,25,31 13,14 

BEL1 2 18 Yes 01,04,07,12,13,14, 
15,16,19,20,31 

04,05,07,24,25, 
29,30,32,33,34 

BEL2 2 18 Yes 01,04,07,12,13,14, 
15,16,19,20,31 

04,05,07,24,25, 
29,30,32,33,34 

BEL3 2 18 Yes 01,04,07,12,13,14, 
15,16,19,20,31 

04,05,07,24,25, 
29,30,32,33,34 

BRA1 2 20 Yes 01,03,07,13,14,15,17,18, 
24,25,28,29,31,32,34 11 

 
The basis of the schedule for the Austrian Soccer Championship (AUS1), the 

German Soccer Championship (GER1) and the German Handball Championship 
(GER2) are mirrored double round robin tournaments. The number of teams is 10, 18 
and 18, respectively. The most important goal is to reach the minimum number of 
breaks. The set of rounds teams can play at home or away may be restricted. Specific 
matches of a home team against an away team can only be carried out in a subset of 
rounds. In AUS1 some pairs of teams cannot play at home in parallel; thus one of 
them must play at home in each round. In GER1, subsets of teams cannot play an 
arbitrary number of home games in parallel in some rounds. In GER2 the number of 
matches between the six strongest teams is restricted to one per round. For more 
details, refer to [32]. 

The major volleyball league in Argentina was composed of 12 teams in 2007/2008, 
and 11 teams in 2008/2009 and 2009/2010. Although the main interest of the schedule 
design is the minimization of the global travel distances [36], the instance ARG1 has 
been adapted to suit the framework introduced in this work. Another feature of this 
league that has been simplified consists of a paired schedule design. In such a 



schedule, the teams’ respective matches are grouped into pairs called couples. Each 
weekend, one couple visits another couple, and the four possible matches between the 
corresponding teams are played. 

The Chilean first division tournament was composed of 20 teams until 2008; since 
2009, there have been just 18 teams. There are two tournaments per year: the Opening 
Tournament and the Closing Tournament. Both competitions consist of a single round 
robin tournament and then the eight teams with the highest points advance to the 
playoffs of the championship (until 2008 the teams were divided into groups and the 
best two teams in each group would advance to the playoffs). The problem has some 
constraints that are not considered in the test instance, mainly related to the Chilean 
geography. Chile is a very long and thin country, and for that reason there are 
constraints related to the trips that teams should or should not make. There are also 
constraints related to security issues and international competitions. For more details, 
refer to [33]. 

The instances BEL1, BEL2, and BEL3 represent the scheduling problem in the 
highest soccer league in Belgium for the seasons 2006-2007, 2007-2008, and 2008-
2009 respectively. This league is played as a mirrored double round robin tournament 
with 18 teams, involving 306 games that need to be played in 34 rounds. It is 
imperative that these schedules have the minimal number of 48 breaks (C15), and no 
team should start or end the league with a break (C12). Furthermore, the two teams 
that share a stadium cannot play at home in the same round (C07). Apart from that, 
there are various constraints, originating from Belgacom TV, (the company that 
broadcasts the league), the police, the clubs and the association itself. For instance, a 
mayor can forbid a game being played in his or her city in one or more rounds if 
he/she feels public safety cannot be guaranteed (C04). Clubs may have a number of 
wishes related to the fairness of the schedule, especially related to the timing of their 
encounter with strong teams: no team wishes to face all traditionally strong opponents 
in a row (C33), or likes to host a top game in the summer, when many fans are abroad 
for holidays (C24). According to Belgacom TV, one way to increase the viewing 
figures is a schedule where at least one (and preferably two) of four teams that are 
considered to be top teams plays an away game in each round (C30). The underlying 
motivation is that a top team’s home games are less interesting, since the top team 
tends to win these games without much effort. Moreover, the top games should be 
spread over the season (C31). The association itself requests, among other things, that 
every team receives a top team at home at least once in each half of the season (C32). 
For more details on the constraints that play a role, and the motivation for these 
constraints, we refer to [34]. 

Soccer is the most widely practiced sport in Brazil. The Brazilian national soccer 
tournament organized every year by the Brazilian Soccer Confederation (CBF) is the 
most important sporting event in the country. Its major sponsor is TV Globo, the 
largest media group and television network in Brazil. The most attractive games are 
those involving teams with more fans and better players, and, consequently, also with 
larger broadcast shares [19]. Games involving teams from São Paulo and Rio de 
Janeiro are of special interest for broadcasting through open TV channels due to their 
corresponding larger revenues from advertising. The competition lasts for seven 
months (from May to December) and is structured as a compact mirrored double 



round robin tournament played by 20 teams. Every team has a home city and some 
cities host more than one team. There are at most two rounds of games per week: mid-
week rounds are played on Wednesdays and Thursdays, while weekend rounds are 
played on Saturdays and Sundays. Elite teams are those with larger numbers of fans, 
better records of previous participations in the tournament, and more valuable players. 
The most important games involve elite teams and, as far as possible, should be played 
during the weekends, when they can attract larger attendances and TV audiences. The 
participating teams and the dates available for playing the games change from one 
year to the next. 

Table III shows the above mentioned eleven real-world instances. Most of the 
instances are mirrored double round robin tournaments. In non-mirrored instances 
there must be at least k rounds before two teams meet again. The number of teams 
varies between 12 and 20. The table lists all the hard and soft constraints that are in 
action for the instances.  

BEST SOLUTIONS TO FIVE REAL-WORLD INSTANCES 

In this section we publish the best solutions we have found for some of the real-
world instances introduced in Section 5. We invite the sports scheduling community to 
find solutions to the unsolved instances. We also briefly discuss our solution methods. 

The overall goal of the real-world cases is to find a feasible solution that is the most 
acceptable for the sports league owner. That is, a solution that has no hard constraint 
violations and that minimizes the weighted sum of the soft constraint violations. The 
importance of the soft constraints is handled by giving them different weights. The 
values of the weights are decided based on the negotiations with the league owner and 
the teams. We refer to [41] for what the values of the weights for the real-world 
instances were when they were solved. The constraint violations are calculated based 
on the following: 

 
C01. One violation for each round more than R. 
C02. One violation for each game more than m. 
C03. One violation for each home game less than m1 or more than m2. 
C04. A violation if team t plays at home in round r. 
C05. A violation if team t plays away in round r. 
C06. A violation if team t plays in round r. 
C07. One violation for each home game less than m1 or more than m2. 
C08. One violation for each home game on two consecutive calendar days. 
C09. One violation for each away tour less than m1 or more than m2 
C10. One violation for each game not preassigned. 
C11. One violation for each game assigned. 
C12. One violation for each break in round r. 
C13. One violation for each consecutive home game more than k. 
C14. One violation for each consecutive away game more than k. 
C15. One violation for each break more than k. 
C16. One violation for each break more than k. 
C17. One violation for each team having an odd number of breaks. 



C18. One violation for each team and each break less/more than k. 
C19. One violation for each round less than k. 
C20. One violation for each round more than k. 
C21. One violation for each round more than k. 
C22. One violation for each consecutive game pair where the home and away teams 

are the same. 
C23. One violation for each home game on weekday1 less than m1 or more than m2 

and so on. 
C24. One violation for each round less than r. 
C25. One violation for each round more than r. 
C26. One violation for each difference more than k. 
C27. One violation for each difference more than k. 
C28. One violation for each consecutive game. 
C29. One violation for each consecutive game. 
C30. One violation for each home game more than m. 
C31. One violation for each game more than m. 
C32. One violation for each home game less than m1 or more than m2. 
C33. One violation for each home game less than m1 or more than m2. 
C34. A violation if the game is not carried out in the given rounds. 
C35. A violation if there is no given break for team t in the given rounds. 
C36. One violation for each multiple of c over c. 

 
FIN1 and FIN2 were solved by a cooperative local search metaheuristic [22]. 

BEL1, BEL2, BEL3 were solved using a multiphase decomposition approach ending 
up with a mixed integer programming model that was solved using CPLEX [34]. 
Table IV shows the best solutions we have found for FIN and BEL instances. Together 
with the solutions for the artificial benchmark instances in Section 4, these solutions 
provide a good starting point for communications between sports scheduling 
researchers.  

 
TABLE 4.  Best solutions for five of the real-world benchmark instances. 

ID RR n Mirrored Hard constraints Soft constraints 

FIN1 2* 14 No, k=7 01,04,07,10,12 07,13,14,15,16,19, 
22,23,24,26,27 

FIN2 2 12 No, k=5 01,04,10,12 04,13,14,15, 
16,19,23,26 

BEL1 2 18 Yes 01,04,07,12,13,14, 
15,16,19,20,31 

04,05,07,24,25, 
29,30,32,33,34 

BEL2 2 18 Yes 01,04,07,12,13,14, 
15,16,19,20,31 

04,05,07,24,25, 
29,30,32,33,34 

BEL3 2 18 Yes 01,04,07,12,13,14, 
15,16,19,20,31 

04,05,07,24,25, 
29,30,32,33,34 

 
We also briefly mention how the other instances were originally solved. AUS1, 

GER1 and GER2 instances were solved using a combination of a graph coloring 
algorithm, a semi-greedy algorithm and a truncated branch-and-bound algorithm [32]. 
ARG1 was solved by a straightforward integer programming model, resorting to 
ILOG CPLEX for the computational solution of the model [36]. CHI1 was solved 



using a two phase approach. First, home-away patterns were created and then the 
constraint programming model was solved using CPLEX [33]. BRA1 was solved 
using a multiphase approach similar to that presented in [31]. The key to success is in 
considering the constraints as early as possible in order to reduce the number of 
patterns as much as possible, leaving the IP solver with as light a problem possible 
[20].  

CONCLUSIONS 

We defined a framework for scheduling professional sports leagues. A set of 
artificial and real-world instances were introduced. We have published the best 
solutions for the artificial instances and five of the real-world instances. The sports 
scheduling community is invited to challenge our solutions as well as to find solutions 
to the unsolved instances. The instances are available online. 
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Abstract This paper presents a general framework for an implementation-oriented, highly 
constrained staff scheduling problem that is modeled from the requirements of various lines of 
business and industry. The presented model builds up a solid foundation for wide variety of 
real-world staff scheduling scenarios. We hope the presented modeling issues assist academics 
in getting their research results implemented into commercial systems. We define a staff 
scheduling problem, introduce the necessary terminology, discuss research guidelines and 
detail the constraints of the problem. A set of artificial and real-world instances derived from 
the actual problems solved for various companies are presented. We publish the best solutions 
we have found, and invite the staff scheduling community to challenge our results. We believe 
that the instances will help researchers to test the implementation value of their solution 
methods. The instances are available online. 

1 Introduction 

Staff scheduling is a difficult and time-consuming problem that every company or institution 
that has employees working on shifts or on irregular working days must solve.  The staff 
scheduling problem has a fairly broad definition. Most of the studies focus on assigning 
employees to shifts, determining working days and rest days or constructing flexible shifts and 
their starting times. Different variations of the problem are NP-hard and NP-complete [1]-[7] 
and thus extremely hard to solve. The first mathematical formulation of the problem based on a 
generalized set covering model was proposed by Dantzig [8]. Good overviews of staff 
scheduling can be found in [9]-[11]. 

Nurse rostering [12] is by far the most studied application area in staff scheduling. Other 
successful application areas include airline crews [13], call centers [14], check-in counters 
[15], ground crews [16], nursing homes, call centers and airport ground services [17], postal 
services [18] and transport companies [19]. Recent successful algorithms for staff scheduling 
include ant colony optimization [20], dynamic programming [21], constraint programming  
[22], genetic algorithms [23], scatter search [24], hyperheuristics [25], integer programming 



[26], metaheuristics [27], simulated annealing [28], tabu search [29] and variable 
neighborhood search [30]. 

There are basically four reasons for the current interest in staff scheduling. First, public 
institutions and private companies around the world have become more aware of the 
possibilities for decision support technologies, and they no longer want to handle the schedules 
manually. Second, human resources are one of the most critical and most expensive resources 
for these organizations. Careful planning can lead to significant improvements in productivity. 
Third, good schedules are very important for the welfare of the staff. Besides increasing 
employee satisfaction, effective labor scheduling can also improve customer satisfaction. 
Finally, new algorithms have been developed to tackle previously intractable problem 
instances, and, at the same time, computer power has increased to such a level that researchers 
are able to solve large real-world problems. One further significant benefit of automating the 
scheduling process is the considerable amount of time saved by the administrative staff 
involved. 

The focus of this paper is to introduce a general framework for an implementation-
oriented, highly constrained staff scheduling problem that is modeled from the requirements of 
various lines of business and industry. The presented model builds up a solid foundation for 
wide variety of real-world staff scheduling scenarios. In Section 2 we introduce the necessary 
staff scheduling terminology. Section 3 discusses research guidelines and presents a model for 
an implementation-oriented staff scheduling problem. The next two sections show that both 
existing problems and artificial ones can be expressed by the model. In Section 4 we present a 
set of artificial test instances and in Section 5 we present real-world instances derived from the 
actual problems solved for various lines of business. We publish the best solutions we have 
found and invite the staff scheduling community to challenge our results. 

2 Staff Scheduling Terminology 

Staff scheduling consists of assigning employees to tasks and shifts over a period of time 
according to a given timetable. The planning horizon is the time interval over which the 
employees have to be scheduled. Each employee has a total working time that he/she has to 
work during the planning horizon. Furthermore, each employee has competences 
(qualifications and skills) that enable him/her to carry out certain tasks. Days are divided into 
working days (days-on) and rest days (days-off). A sequence of working days with one shift 
each day is called a work stretch. Each day is divided into periods or timeslots. A timeslot is 
the smallest unit of time. The length of a timeslot determines the granularity of the schedule. A 
shift is a contiguous set of working hours and is defined by a day and a starting period on that 
day along with a shift length (the number of occupied periods). Shifts are usually grouped in 
shift types - for example morning day and night shifts. Each shift may be composed of a 
number of tasks. A shift or a task may require the employee assigned to it to possess one or 
more competences. A combined shift is a collection of non-overlapping shifts; an employee 
assigned to a combined shift is assigned to all the shifts in the combined shift.  If the combined 
shift is composed of non-contiguous shifts it is called a split-shift. A specific sequence of shifts 
for an employee is called a stint. A work schedule for an employee over the planning horizon 
is called a roster. A roster is a combination of shifts and days-off assignments that covers a 
fixed period of time. Figure 1 clarifies the terminology. 

 
 



Figure 1: Staff scheduling terminology. 
 
Cyclic schedules are such that all employees have the same basic schedule but start with a 

different day. In cyclic scheduling the goal is to find a schedule that is optimal for all 
employees. Non-cyclic schedules are individual schedules. In non-cyclic scheduling the goal is 
to find rosters that fulfill as many requests as possible. Continuous schedules arise in 
organizations that operate 24 hours a day and seven days a week - otherwise a schedule is 
called discontinuous. Wrap-around scheduling means that after the end of the planning 
horizon, the employees are expected to work the same roster all over again. If wrap-around 
scheduling is in use, some constraints must be checked outside the planning horizon by 
extrapolating the employees’ rosters. If the process must take into consideration the shifts 
worked right before the beginning of the planning horizon, we call this initial condition 
scheduling and assume that the initial conditions are input to the problem. For example, 
decomposing a long time horizon into shorter time horizons which are solved sequentially can 
be a successful method in practical problems and would create initial conditions that must be 
handled. 

 

 
Table 1: An example and solution of staff scheduling problem. 

 
Table 1 shows a solution for a simple one-week staff scheduling problem with seven 

employees, two shifts (early and late) in a working day and one of three tasks to be completed 
within a shift. Moreover, task 1 and 2 cannot be carried out by Betty and Ellie, a late shift 



cannot be followed by an early shift on the next day, and each employee should have one day-
off. 

We classify the real-world staff scheduling process as given in Figure 2. Demand 
modeling is the process of determining the staffing levels, that is, how many employees are 
needed at different times over some planning horizon. In this presentation, demand modeling 
also includes determination of planning horizons, competence structures, regulatory 
requirements and other constraints. Demand modeling requires labor forecasting as well as 
hiring and budgeting decisions.  Shift design is the process of determining the shift structure, 
tasks to be carried out in particular shifts and the competence needed in different shifts. The 
output of the demand modeling and the shift design is a mathematical model of the staff 
scheduling problem at hand. 

 
 

Figure 2: The real-world staff scheduling process. 
 
In preference scheduling, each employee gives a list of preferences and attempts are 

made to fulfill them as well as possible. Pure self-scheduling refers to preference scheduling in 
which the employees are entirely responsible for the schedule generation. Days-off scheduling 
deals with the assignment of rest days between working days over a given planning horizon. 
Staff rostering, also referred as shift scheduling, deals with the assignment of employees to 
shifts. It can also specify the starting time and duration of shifts for a given day even though in 
most cases they are preassigned in shift design. In other words, days-off scheduling deals with 
working days and staff rostering deals with the working times of day. When days-off and shifts 
are scheduled simultaneously, the process is sometimes called tour scheduling. The name 
comes from the fact that we need to specify the hours of the day and days of the week through 
which each employee must travel. In this paper, the process of scheduling preferences, days-
off and shifts is called computational staff scheduling. Computational staff scheduling is a key 
to increased productivity, quality of services, customer satisfaction and employee satisfaction. 
Other advantages include reduced planning time, reduced payroll expenses and ensured 
regulatory compliance. 

Rescheduling deals with ad hoc changes that are necessary due to sick leaves or other no-
shows. The changes are usually carried out manually. Finally, participation in evaluation 
ranges from the individual employee, through personnel managers, to executives. A reporting 
tool should provide performance measures in such a way that the personnel managers can 
easily evaluate both the realized staffing levels and the staff satisfaction. When necessary, the 
demand modeling and/or shift design can be reprocessed and focused, and the whole staff 
scheduling process restarted. 

In the demand modeling we have to determine which phases in the computational staff 
scheduling are scheduled simultaneously. For example, scheduling days-off every tenth week 
and shifts every second week, enables the staff to plan their free time more conveniently. 
However, scheduling both at the same time every second week increases the probability of 
meeting the staffing levels without the need to hire part-time employees. The staff scheduling 
problems presented in this paper include at least two of the components of the computational 
staff scheduling. Some of them can be scheduled simultaneously. Alternatively, some of them 
can be solved first, and then the solution is given as a fixed input to the next component.  



3 A Model For Implementation-Oriented Staff Scheduling Problems 

There are hundreds of staff scheduling solutions commercially available and in widespread 
use. In that sense, the implementation-oriented staff scheduling approach is already standard 
practice in industry. However, we believe that there is still some gap between academic and 
commercial solutions. The commercial products may not include the best academic solutions. 
We define the implementation-oriented staff scheduling research as a research which raises 

1) such modeling issues that have probably precluded academics from getting their 
research results implemented to commercial advantage, and  

2) the trinity between an academic researcher, a problem owner and an industry software 
vendor. 

We have studied a significant number of theoretical and practical staff scheduling papers to 
realize the most important elements in real-world systems.  This, combined with our 
experience in implementing staff scheduling software, forms the basis to the model. We 
believe that a considerable number of real-world staff scheduling scenarios can be modeled 
using the constraints presented in this section. 

Most of the staff scheduling cases in which academic researchers have announced that 
they have closed a contract with a customer concern nurse rostering, see e.g. [27] and  [31]-
[37]. Hospitals tend to be very open about their operational details, enabling easy cooperation 
with academics who wish to publish the results of their work. We have experienced that nurse 
rostering cooperation between a commercial software vendor and academics work. The 
implemented plug-ins are a great sales pitch for the software vendors when they talk to 
potential customers.  

The interest of the academic staff scheduling community has somewhat shifted to other 
application areas. The overall interest to real-world staff scheduling has also increased: the 
number of presented staff scheduling papers has increased in two recognized scheduling 
conferences, PATAT and MISTA.  

According to our experience, the best action plan for real-world staff scheduling research 
is to cooperate both with a problem owner and with a third-party vendor. In addition, an 
academic should consider not to work with user interfaces, financial management links, 
customer reports, help desks, etc. Instead, one should concentrate on modeling issues and 
algorithmic power.  

It is apparent that a profound understanding of the relevant requests and requirements 
presented by customers is a prerequisite for implementing and solving real-world staff 
scheduling problems. The implementation should present a wide variety of real-world 
constraints and be tractable enough to enable the addition of new constraints. It is important to 
concentrate on the acceptance and satisfaction of both the staff and the personnel managers. 
Despite the fact that the algorithm should be as robust as possible, no parameter tuning should 
be expected from the end-users. On the other hand, it should be possible for the end-users to 
influence different aspects of the algorithm, like weighting between constraints or limit 
running times, if he/she wishes to. 

It should be noted that it is difficult to incorporate the experience and expertise of the 
personnel managers into a staff scheduling system. Personnel managers often have extremely 
valuable knowledge, experience and detailed understanding of their specific staffing problem, 
which will vary from company to company. To formalize this knowledge into constraints is 
not an easy task. Still, we believe that the model given in this section builds up a solid 
foundation for staff scheduling scenarios. 

The schedules in the model are non-cyclic and can be either continuous or discontinuous. 
The employees’ total working time may vary depending on the employee. Each shift has a 
fixed start and end time (for example 08:00 – 16:00). Shifts may vary in length and can 
overlap. Shifts can be classified by shift types which can be used to balance the working times 
at different times of the day between the employees. A shift is composed of a number of tasks. 
Each employee has competences that enable her/him to carry out certain tasks. Furthermore, 



each employee has preferences over certain tasks, certain shifts and shift types, and certain 
days-off.  

In some cases the most important goal is to minimize understaffing and overstaffing. 
Low-quality rosters can lead either to an undersupply of employees with a need to hire part-
time employees or an oversupply of employees with too much idle time both implicating a loss 
of business. Furthermore, it is very important to pay attention to employee requests. Kellog 
and Walczak [38] report that any academic model that does not include some opportunity for 
preference or self-scheduling will probably not be implemented. For example, nurses use 
complex decision-making skills when selecting their personal schedules. In addition, our 
experiences have shown that personal managers can generate remarkably good schedules 
without optimization tools. Therefore, academic research should explore versatile ways to 
support preference and self-scheduling. 

The overall objective is to meet daily staffing requirements and personal preferences at 
minimum penalty without violating work contracts and government regulations. We make no 
strict distinction between hard and soft constraints; that will be given by the instances 
themselves. The goal is to find a feasible solution that is most acceptable for the problem 
owner. That is, a solution that has no hard constraint violations and that minimizes the 
weighted sum of the soft constraint violations. The weights will also be given by the instances 
themselves. Still, one should bear in mind that an instance is usually just an approximation of 
practice. In reality, hard constraints can turn out to be soft, if necessary, while giving weights 
to the soft constraints can be difficult. 

We classify the constraints into coverage, regulatory and operational requirements, and 
operational and personal preferences as given in [39]. The coverage requirement ensures that 
there are a sufficient number of employees on duty at all times. The regulatory requirements 
ensure that the employee’s work contract and government regulations are respected. The 
personnel’s requests are very important and should be met as far as possible; this leads to 
greater staff satisfaction and commitment, and reduces staff turnover.  

The following constraints can be used as a framework for modeling. An academic 
researcher can examine these issues together with an industry software vendor: 

 
Coverage requirement 

(C1) An employee cannot be assigned to overlapping shifts. 
(C2) A minimum number of employees of particular competences must be guaranteed for 

each shift or each timeslot 
(C3) A maximum number of employees of particular competences cannot be exceeded 

for each shift or each timeslot 
(C4) A balanced number of surplus employees must be guaranteed in each working day 

Regulatory requirements 
(R1) The required number of working days, working hours and days-off within a 

timeframe must be respected 
(R2) The required number of holidays within a timeframe must be respected 
(R3) The required number of free weekends (both Saturday and Sunday free) within a 

timeframe must be respected 
(R4) The minimum rest time within a timeframe must be respected 
(R5) The minimum time gap of rest time between two shifts must be respected 
(R6) The number of special shifts (such as union steward duties and training sessions) for 

particular employees within a timeframe must be respected 
(R7) Employees cannot work consecutively for more than k days (the maximum length of 

a work stretch) 
(R8) Some employees cannot work on weekends or during specific hours of the day 
(R9) The maximum number of shifts in a single day must be respected 

Operational requirements 
(O1) An employee can only be assigned to a shift he/she has competence for 
(O2) At least k working days must be assigned between two separate days-off 



(O3) An employee cannot be assigned to more than k weekend days within a timeframe 
(O4) An employee cannot be assigned to more/less than k shifts of a given type within a 

timeframe 
(O5) An employee assigned to a shift type t1 must not be assigned to a shift type t2 on the 

following day (certain stints are not allowed) 
(O6) An employee must be assigned to a particular shift or on-duty or off-duty on a 

particular day or during a particular timeslot 
Operational preferences 

(E1) Single days-off should be avoided 
(E2) Single working days should be avoided 
(E3) The maximum length of consecutive days-off is k 
(E4) A balanced assignment of single days-off and single working days must be 

guaranteed between the employees 
(E5) A balanced assignment of different shift types must be guaranteed between the 

employees 
(E6) A balanced assignment of different tasks must be guaranteed between the employees 
(E7) A balanced assignment of weekdays must be guaranteed between employees 
(E8) Assign or avoid a given shift type before or after a free period (days-off, vacation) 
(E9) Assign as many wanted, and avoid as many unwanted, stints as possible 

Personal preferences 
(P1) Assign or avoid assigning given employees to the same shifts 
(P2) Assign a requested day-on or avoid a requested day-off 
(P3) Assign a requested shift or avoid an unwanted shift 
(P4)  Assign a shift (work) in a requested timeslot or assign no shift (free) to a requested 

timeslot. 
 

Often, an employee cannot be assigned to more than one shift per day, although we have 
seen applications where more than one shift per day is allowed. The definition of constraint C1 
allows two or more shifts to be assigned provided they do not overlap. Instead of using shifts 
in C2 and C3, the minimum and maximum number of on-duty staff can be assigned to 
timeslots. Quite often, a company has more employees working than are needed to cover the 
minimum number of employees each working day. The surplus employees are used to cover 
the expected sick leaves and other no-shows (see constraint C4). 

Constraints R1-R9 can be different from one employee to another, based on the 
employees’ contracts. The number of working days, working hours and days-off in constraint 
R1 need not be exact. We can allow minor deviations to working hours over the planning 
horizon because it might be impossible to meet the number of hours specified in the contract 
during the planning horizon using the predefined shifts. For example, the number of working 
hours could be given as a min-max or a ±p % range to fit this constraint. Shortage or excess is 
typically handled by the user in the next planning period. 

As an example of a work contract and operational requirements and preferences, consider 
the following. An employee should have exactly nine days-off in every four-week timeframe 
starting from the beginning of the planning horizon (R1). He/she should have at least one 
weekend off (R3). The number of working days on weekends cannot exceed four (O3). An 
employee cannot work consecutively for more than six days (R7). At least two working days 
must be assigned between two separate days-off (O2). Single days-off and single working days 
should be avoided (E1 and E2). The maximum length of consecutive days-off is three (E3). 
Some employees have a work contract that does not involve weekend work (R8). 

The working days and shifts in the sample case could be built up using the following 
rules. The number of working hours per week is 36 hours (R1). At least eleven hours of rest 
are required during any period of twenty-four consecutive hours (R4). The maximum number 
of night shifts is three in every four-week timeframe (O4). A night shift has to be followed by 
at least fourteen hours of rest (R5). An employee assigned to a late or night shift must not be 
assigned to an early shift the following day (O5). Furthermore, a night/early shift should be 



avoided before/after a free period (E8). Note, that the special shifts (R6) can be treated as 
regular shifts. 

Each employee has competences (qualifications and skills) that enable him/her to carry 
out certain tasks. A shift may require the employee assigned to it to possess one or more 
competences (O1). 

Constraint E9 can be used to model wanted and unwanted shift patterns. The user can 
input a number of wanted and unwanted stints (patterns). Examples of unwanted stints are D-
E-D (Day-Evening-Day) or E-D-E; frequently changing the time of day is stressful. The 
balanced assignments in constraints E4-E7 can be guaranteed either by using a given min-max 
range or the range can be expressed as the maximum percentage deviation from the mean. 

Constraint P1 can be used in cases when certain employee groups need to work together 
on the same shifts. Another case could be when a married couple should have the same 
working hours. 

Constraint O6 together with constraints P2, P3 and P4 build up the basis for preference 
scheduling.  The O6 constraints cover any preferences that must be satisfied while the P2, P3 
and P4 constraints represent the requests from or wishes of the employees. An efficient and 
effective preference scheduling relies on having a system whereby the employees can see the 
requirements, available shifts, an overview of the currently scheduled hours and an easy 
method of checking the regulations or possible rule violations caused by proposed changes to 
the schedule. If the schedule created by the employee preferences is close to satisfying the 
constraints and the coverage demand, it becomes easier to create a schedule that is both 
feasible with regard to the scheduling constraints and includes most of the requests and 
preferences. Therefore, it is beneficial for both the employer and the employee to have a good 
system for preference scheduling. A preference scheduling system that focuses on employee 
satisfaction should allow each employee a limited number of strict requests of type O6 to 
schedule days off for things such as doctor’s appointments, birthdays and so on, while the 
number of requests of type P2, P3 and P4 should be enough for the employees to be able to 
completely schedule all their working hours. 

In the case of staff scheduling over several entities (e.g. two departments in a hospital), 
constraints R1 and O6 may be used to model the days and working time that are “locked” by 
the other entity (department). For example, Annie is working 70 % for her home department 
and 30 % for another department. In her home department her 70 % position is modeled by R1 
(reduced numbers compared to a 100 % position) and the shifts assigned by the other 
department is modeled by O6 as pre-assigned days off. It might be necessary to also use some 
additional constraints: assume for instance that Annie is working a night shift in the other 
department on Tuesday (starting Monday 23:00 and ending Tuesday at 7:00). Tuesday is then 
a day off at her home department (O6). She most probably cannot work an evening shift in her 
home department on Monday. This can be modeled using P4 or O6 by assigning a free period 
in her home department on Monday evening. 

Finally, in cases when days-off are scheduled separately prior to staff rostering, the fixed 
days-off can be preassigned for the staff rostering phase using constraint O6. The number of 
holidays within a timeframe can also be preassigned (R2) or the holidays can be treated as 
days-off. 

At the beginning of this section we stated that academics should consider allying with 
industry software vendors. The other way around also holds. However, Kellog and Walczak 
[38] give several reasons why developers of commercial products rarely consult academics. 
For academics, it is usually more important to make publications than to make business. This 
has a consequence that the scope of the models academics create seems to be relatively small. 
Although the staff scheduling models developed by academics solve the problem instance at 
hand, they may fall short of meeting the complex needs of the customers. Academic solutions 
are often not only computer and platform dependent, but can also use commercial 
mathematical programming solvers for linear programming, mixed integer programming and 
constraint programming. However, we believe that the recent advancements made in the staff 
scheduling research are rapidly closing the research-application gap.  



We end this section by summarizing some other important factors that real-world staff 
scheduling research should consider. Based on our experience, we believe that in addition to 
being capable of presenting a wide variety of real-world constraints, a staff scheduling system 
should 

 
− generate just a few, clearly different solutions to choose from, 
− allow users to specify the importance of requests and requirements, 
− minimize the scheduling time, 
− run on any modern computer with any operating system, 
− not use third-party mathematical software packages with expensive licensing policies and 

be integratable with existing industry software. 

4 Artificial Benchmark Instances  

Researchers quite often only solve some special artificial cases or one real-world case. The 
strength of random test instances is the ability to produce many problems with many different 
properties. Still, they should be sufficiently simple for each researcher to be able to use them in 
their test environment. The strength of practical cases is self-explanatory. However, an 
algorithm performing well on one practical problem may not perform well on another practical 
problem, which is why we present a collection of test instances for both artificial and real-
world cases. We start with artificial cases. 
 

 
Table 2: Nine staff scheduling test instances (n = the total number of employees, w = the length of a 
planning horizon in weeks, d = the number of days-off in the planning horizon (R1), h = the number of 
working hours per employee within the planning horizon (R1), smax = the maximum length of a work 
stretch (R7), cmax = the maximum length of consecutive days-off (E3), E1+E2 = no single days-off and 
working days, O5+E8 = forbidden stints (N+M, N+D, N+DO), r = minimum rest time between two 
working days (R5), E7 = the number of working days between employees on any weekday must not 
differ by more than 3). The list of the shifts for the test instances can be found in (Ásgeirsson et al. 2010). 
The solutions (sol) have been found using the algorithm described in (Nurmi and Kyngäs, 2011). 
 

Table 2 shows nine staff scheduling test instances. The instances comply with the model 
presented in Section 3. The number of employees (n) varies between 50 and 112, and the 
length of the planning horizon (w) between 1 and 4 weeks. In each instance, the sum of the 
shift lengths is exactly the same as the total working hours of the employees (see constraint R1 
in Section 3). The number of working hours per employee within the planning horizon (h) is 
the same for all employees. 

The first two instances do not include days-off. For the other instances, the maximum 
length of a work stretch (R7) and the maximum length of consecutive days-off (E3) are given. 
Their minimum lengths are two (E1+E2). 

In four instances, an employee assigned to a night shift must not be assigned to a morning 
or day shift (O5) the following day, or have a day-off (E8) in the following day. In two of 
these instances, the minimum rest time between two working days is given (R5). 



Finally, in the last three instances, the number of working days between employees on 
any weekday must not differ by more than three (E7). The list of shifts for the test instances 
can be found in [40]. The challenge is to find a feasible (no hard constraint violations) solution 
that minimizes the number of soft constraint violations. All but two constraints are hard. The 
two soft constraints are:  

 
− each employee should have exactly h working hours (two violations for each minute 

above h and one violation for each minute below h) (R1) 
− certain stints are forbidden (one violation for each such case) (O5+E8). 

 
We were able to find the optimum zero solution for seven of the test instances; we do not 

know the optimum value for the other instances. We hope these test instances will help 
researchers to test the implementation value of their solution methods.  

5 Real-World Benchmark Instances  

The three real-world instances introduced in this section are based on cases we have solved. 
The understanding of the two issues raised in the beginning of Section 3 has significantly 
contributed to the quality of the solutions. The instances have been simplified and modified in 
order to make it easier for researchers to use them in their test environment. The instances are 
derived from various lines of business and industry in Finland, Iceland and Norway. The 
instances and list of shifts can be found in [40]. 

  A Finnish bus transit company has 77 bus drivers. The length of the planning horizon 
is two weeks. The days-off for the planning horizon are given - they have been scheduled 
separately prior to staff rostering. The fixed days-off can be preassigned for the staff rostering 
using constraint O6. The number of working days varies between 2 and 10. The average 
working day is 8 hours. The total number of shifts is 329 per week. The shift lengths vary 
between 4 hours 15 minutes and 11 hours 14 minutes. An average shift length is 8 hours and 1 
minute. 

  The problem is highly compact. The total number of working days in the planning 
horizon is only two less than the total number of shifts. Only two Sundays of one employee or 
one Sunday of two employees will be left empty. Furthermore, the total sum of the working 
minutes in all the shifts is only sixteen less than the total number of working minutes to be 
scheduled to the employees. 

  The challenge is to find a feasible solution that minimizes the number of the 
following soft constraint violations:  

 
− each employee should have exactly 8n working hours, where n is the number of working 

days for the employee (two violations for each minute above 8n and one violation for 
each minute below 8n) (R1) 

− a night shift should not be assigned before a day-off (ten violations for each such case) 
(E8). 

 
  We believe that mathematical programming techniques on their own, are in many 

cases too rigid to deal with the multiple and often changing, objectives and goals of the real-
world staff scheduling. This first problem was solved using the population-based cooperative 
local search method described in [41]. We were able to find a solution with 20 soft constraint 
violations. Remember that the total sum of the working minutes in all the shifts is 16 less than 
the total number of working minutes to be scheduled to the employees, that is, the theoretical 
optimum value is 16 soft constraint violations. 

  An Icelandic call center has 92 employees that must be scheduled in 30 minute 
timeslots over six weeks. Each day has around 210 possible shifts, ranging from 4 hours up to 
11 hours, and the minimum and maximum number of on-duty staff is given for every timeslot 



in the planning period. A full-time position requires 38 hours per week, but some employees 
are working half-time, 19 hours per week. The hard constraints of the problem are: one shift 
per day at most (R9); the employees must get at least one in every four weekends off (R3) and 
each employee must get at least 11 consecutive hours of rest in any 24 hour period (R4); the 
maximum number of consecutive working days is 6 (R7) and the maximum number of 
working hours in each 24-hour period is 9 hours (R1). Any requests for time off or vacations 
are treated as hard constraints (P2, P4), but each employee has only a limited number of such 
requests for each planning period. The employees can also have limitations on working hours 
included in their contracts, such as no night shifts or no work on weekends (R8). Furthermore, 
some employees have meetings or other duties that cannot be modified (O6) and some 
employees are included in the instance but are not part of the rostering process - i.e., their 
schedule must be kept unchanged (O6). 

 The soft constraints are: the coverage requirements (C2, C3) that are given for every 
timeslot should be satisfied; the total number of working hours over the planning period for 
each employee should be within a given range, usually ± 8 hours (R1). The problem input 
includes requests for shifts or working hours from the employees (P3, P4), such that most of 
the employees have requested enough hours to fulfill their working hour requirement.  The 
goal is to find a schedule that fulfills all the hard constraints while minimizing a weighted sum 
of the soft constraint violations. 

  This case was solved using multiple-stage greedy local search, with different 
operations and objectives for each stage [see 17]. 

  A Norwegian hospital ward has 20 employees that must be scheduled over four 
weeks. There is a fixed manpower plan consisting of nine different shift types, divided into 
three different categories (Day – six shift types; Evening – two shift types; Night – one shift 
type). In total, 78 shifts must be scheduled every week. The average weekly working time is 
28.5 hours, but the contracts vary between 17.75 hrs/week (50 % part-time position) to 35.5 
hrs/week (full time position). The hard constraints of the problem are: one and only one shift 
per day (R9) (shifts are assigned to the day they start); the employees must work one weekend 
each, and which one is given by the input (O6); the cover specified in the manpower plan must 
be covered exactly; the working hours over the planning horizon must not deviate by more 
than ± 2 % from the contracted amount (i.e., 142 hours. for a full-time position) (R1); some 
shifts cannot be followed by other shifts (O5) because there must be a minimum time between 
on-duties (R5). Also, a maximum weekly working time (R1) and a weekly continuous free 
period (R4) are hard constraints. The challenge is to minimize the weighted penalty associated 
with the soft constraints: a maximum number of consecutive day shifts (3), evening shifts (2) 
and night shifts (3), and a maximum five consecutive working days (R7). Furthermore, there 
should be no single day shifts or night shifts (E2), each employee should have a maximum of 
five evening shifts (O4) and a min/max of 2/6 night shifts (O4) over the planning horizon. 
Finally, single days-off should be avoided (E1).   

  This case has been solved using a hybrid approach between constraint programming 
and variable neigh-borhood descent in an iterated local search framework (Stølevik et al. 
2010). The best solution value found was 4.48.  

6 Conclusions and Future Work 

We defined an implementation-oriented staff scheduling framework. We believe that a 
considerable number of real-world staff scheduling scenarios can be modeled using the 
constraints presented in this paper. In addition, we hope the presented modeling issues assist 
academics in getting their research results implemented into commercial systems. This 
research has contributed to better systems for our industry partners. A set of artificial and real-
world instances derived from the actual problems solved for various companies were 
presented. We have published the best solutions we have found. We invite the staff scheduling 
community to challenge our results. We believe that the instances will help researchers to test 
the implementation value of their solution methods. The instances are available online. We are 



currently modeling the instances presented in this paper using the xml-based modeling format 
introduced and managed by Tim Curtois (Curtois 2010). In addition, we will present the other 
real-world instances we have been recently working with 
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Abstract—Good rosters have many benefits for an 

organization, such as lower costs, more effective utilization of 
resources and fairer workloads and distribution of shifts. The 
process of constructing optimized work timetables for the 
personnel is an extremely demanding task, hence the use of 
decision support systems for staff scheduling has become 
increasingly important for both the public sector and private 
companies. Staff scheduling, preceded by vehicle scheduling 
and driver scheduling, is the last phase in the bus transit 
scheduling process. This paper presents a successful way to 
schedule days-off on a yearly basis and shifts on a monthly 
basis in one of the Finnish bus transportation companies. The 
days-off and shifts are scheduled using an algorithm that is a 
variation of the cooperative local search method. The 
generated software will be integrated with a third-party 
vendor product. 
 

Index Terms—Real-World Scheduling, Staff Scheduling, 
Driver Rostering, Bus Transit Scheduling. 
 

I. INTRODUCTION 
Staff scheduling is a difficult and time consuming 

problem that every company or institution that has 
employees working on shifts or on irregular working days 
must solve.  The staff scheduling problem has a fairly broad 
definition. Most of the studies focus on assigning employees 
to shifts, determining working days and rest days or 
constructing flexible shifts and their starting times. Different 
variations of the problem are NP-hard and NP-complete [1]-
[7] and thus extremely hard to solve. The first mathematical 
formulation of the problem based on a generalized set 
covering model was proposed by Dantzig [8]. Good 
overviews of staff scheduling are published by Alfares [9], 
Ernst et al. [10] and Meisels and Schaerf [11]. 

Many of the staff scheduling cases concern nurse 
rostering, see e.g. [12]-[15]. Other successful application 
areas include airline crews [16], call centers [17], check-in 
counters [18], ground crews [19], nursing homes [20] and 
postal services [21]. This paper presents a case in a 
transportation company. 

There are basically four reasons for the increased interest 
in real-world staff scheduling. First, public institutions and 
private companies around the world have become more 
aware of the possibilities of decision support technologies, 
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and they no longer want to handle the schedules manually. 
Second, human resources are one of the most critical and 
most expensive resources for these organizations. Careful 
planning can lead to significant improvements in 
productivity. Third, good schedules are very important for 
the welfare of the staff. Besides increasing employee 
satisfaction, effective labor scheduling can also improve 
customer satisfaction. Finally, new algorithms have been 
developed to tackle previously intractable problem 
instances, and, at the same time, computer power has 
increased to such a level that researchers are able to solve 
real-world problems. One further significant benefit of 
automating the scheduling process is the considerable 
abount of time saved by the administrative staff involved. 

The purpose of this paper is to sequentially solve the 
days-off scheduling problem and the shift scheduling 
problem as it occurs in one of the Finnish bus transit 
companies. In Section II we define the staff scheduling 
problem and present the necessary terminology. Section III 
gives an outline of the overall scheduling process in bus 
transit companies and details the requirements and 
preferences of the staff scheduling problem. Our solution 
method is discussed in Section IV. Although there is a clear 
tendency to use integer and constrained programming 
models, our algorithm uses a mixture of evolutionary and 
local search methods. The algorithm is a variation of 
cooperative local search. In Section V we present and solve 
a scheduling problem in one of the Finnish bus 
transportation companies. It will be seen that our approach 
produces excellent results.  

II. STAFF SCHEDULING 
Staff scheduling consists of assigning employees to tasks 

and shifts over a period of time according to a given 
timetable. The planning horizon is the time interval over 
which the employees have to be scheduled. Each employee 
has a total working time that he/she has to work during the 
planning horizon. Furthermore, each employee has 
competences (qualifications and skills) that enable him/her 
to carry out certain tasks. Days are divided into working 
days (days-on) and rest days (days-off). A sequence of 
working days with one shift each day is called a work 
stretch. Each day is divided into periods or timeslots. A 
timeslot is the smallest unit of time and the length of a 
timeslot determines the granularity of the schedule. A shift 
is a contiguous set of working hours and is defined by a day 
and a starting period on that day along with a shift length 
(the number of occupied periods). Shifts are usually 
grouped in shift types, for example morning, day and night 
shifts. Each shift is composed of a number of tasks. A shift 
or a task may require the employee assigned to it to possess 
one or more competences. A specific sequence of shifts for 
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an employee is called a stint. A work schedule for an 
employee over the planning horizon is called a roster. A 
roster is a combination of shifts and days-off assignments 
that covers a fixed period of time.  

Cyclic schedules are such that all employees have the 
same basic schedule but start with a different day. In cyclic 
scheduling the goal is to find a schedule that is optimal for 
all employees. Non-cyclic schedules are individual 
schedules. In non-cyclic scheduling the goal is to find 
rosters that fulfill the requests of most employees. 
Continuous schedules arise in organizations that operate 24 
hours a day and seven days a week, otherwise a schedule is 
called discontinuous.  

Table 1 shows a solution for a simple one-week staff 
scheduling problem with seven employees, two shifts (early 
and late) in a working day and one of three tasks to be 
completed within a shift. Moreover, task 1 and 2 cannot be 
carried out by Bea and Ella, a late shift cannot be followed 
by an early shift on the next day, and each employee should 
have one day-off. 

 
Table I 

An example of a staff scheduling solution. 
 
  Alan Bea Cass Dirk Ella Fox Gary 

Mon Early 1 3  2    
Late   3   2 1 

Tue Early 1   2 3   
Late  3 1    2 

Wed Early 1    3 2  
Late  3  1   2 

Thu Early 1  2  3   
Late  3    2 1 

Fri Early   2 1 3   
Late 1     3 2 

Sat Early  3 1 2    
Late     3 2 1 

Sun Early 1 3 2     
Late    2 3 1  

 

III. PROCESS AND MODEL 
We classify the scheduling process in bus transit 

companies in six phases, as given in Figure 1. In real-world 
scheduling scenarios, vehicle scheduling, driver scheduling, 
days-off scheduling and shift scheduling are all extremely 
hard combinatorial problems of their own.  

Bus routing or Line planning is a preliminary phase in the 
development of bus service operations. In public transport 
the bus routes and their frequencies are defined by the city 
and the bus companies usually have little opportunity to 
influence them. Private transport operators create the bus 
routes based on the business opportunities. In both the 
public and private sectors, it is completely up to the 
companies to schedule their fleet of buses, roster the drivers 
and decide the days-off and working shifts of their drivers. 
An early reference on bus routing is [22]. 

Vehicle scheduling consists of scheduling a fleet of 
vehicles to cover the set of bus routes at minimum cost. The 
problem is solved for each day of the given time horizon 
separately, and the solution is a set of vehicle schedules. 

The  vehicle scheduling problem was initially introduced by 
Dantzig and Ramser [23] as the truck dispatching problem. 
The problem has been proven to be NP-hard [22]. Good 
overviews of vehicle scheduling can be found in [24] and 
[25]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The goal in driver scheduling is to partition the vehicle 

schedules into operational tasks and to define the sequences 
of these tasks as shifts. Every task must be assigned to a 
shift while minimizing the cost in such a way that the daily 
rules are respected. A task is defined as a sequence of trips 
on one vehicle without a break that can be performed by a 
single driver without interruption. The construction of shifts 
is limited by a maximum total driving time, a maximum 
number of working hours, a maximum time period spent 
driving without a break, the number and length of lunch and 
short breaks in a scheduled time-window, etc. The measure 
of efficiency may be the total number of shifts used or the 
total cost in paid hours or a combination of both. Driver 
scheduling can be modeled as a set covering problem, which 
is NP-hard [1]. Among the few papers on driver scheduling 
we mention [26] and [27]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Demand modeling is the process of determining the 

staffing levels, that is, how many drivers are needed at 
different times over some planning horizon. Demand 
modeling includes determination of planning horizons, shift 
structure, competence structures, regulatory requirements 
and other constraints. Demand modeling requires labor 

Fig. 2. An example of staffing levels in a bus transit company. 
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Fig. 1. The scheduling process in bus transit companies. 



 

forecasting as well as hiring and budgeting decisions. The 
output of the demand modeling is a mathematical model of 
the staff scheduling problem at hand. In bus transit 
scheduling, the driver scheduling phase determines the 
staffing levels. Figure 2 shows an example of staffing levels 
in a bus transit company. 

The staff scheduling phase of the transit scheduling 
process is called driver rostering. The goal is to assign 
drivers to the constructed shifts over a planning horizon. 
Driver rostering consists of days-off scheduling and shift 
scheduling. Days-off scheduling deals with the assignment 
of rest days between working days to drivers over a given 
planning horizon. Shift scheduling deals with the 
assignment of drivers to shifts. It can also specify the 
starting time and duration of shifts for a given day. In other 
words, days-off scheduling deals with working days and 
shift scheduling deals with the working times of day. When 
days-off and shifts are scheduled simultaneously, the 
process is sometimes called tour scheduling. For example, 
scheduling days-off every tenth week and shifts every 
second week, enables the staff to plan their free time more 
conveniently. However, scheduling both at the same time 
every second week increases the probability of meeting the 
staffing levels without the need to hire part-time drivers.  

Finally, participation in evaluation ranges from the 
individual driver through personnel managers to executives. 
A reporting tool should provide performance measures in 
such a way that the personnel managers can easily evaluate 
both the realized staffing levels and the staff satisfaction. 
When necessary, the vehicle scheduling, driver scheduling 
and demand modeling can be reprocessed and focused, and 
the driver rostering process restarted. 

It is apparent that a profound understanding of the 
relevant requests and requirements presented by customers 
is a prerequisite for implementing a real-world driver 
rostering problem. The implementation should present a 
wide variety of real-world constraints and be tractable 
enough to enable addition of new constraints. We are aware 
that it is difficult to incorporate the experience and expertise 
of the personnel managers into a driver rostering system. 
Personnel managers often have extremely valuable 
knowledge, experience, and detailed understanding of their 
specific staffing problem, which will vary from company to 
company. To formalize this knowledge into constraints is 
not an easy task. Still, we believe that the model given in 
this section is applicable in bus transit scheduling scenarios. 
The model is based on the framework for implementation-
oriented staff scheduling given in [28]. 

The schedules in the model are non-cyclic and can be 
either continuous or discontinuous. Drivers’ total working 
time may vary depending on the driver. Each shift has a 
fixed start and end time (for example 07:15 – 16:30). Shifts 
may vary in length and they overlap. Shifts can be classified 
by shift types, which can be used to balance the working 
times at different times of the day between the drivers. Each 
driver has competences that enable him/her to carry out 
certain shifts. 

In most cases the most important goal is to minimize 
understaffing and overstaffing. Low-quality rosters can lead 
either to an undersupply of drivers with a need to hire part-

time drivers, or an oversupply of drivers with too much idle 
time, both implicating a loss of business. The overall 
objective is to meet daily staffing requirements at minimum 
penalty without violating work contracts and government 
regulations. 

We next give an outline of the typical constraints of the 
driver rostering problem. The hard and soft constraints of 
the problem vary somewhat depending on the problem 
instance at hand. However, in most cases the hard 
constraints consist of coverage, regulatory and operational 
requirements and the soft constraints consist of operational 
and personal preferences. The coverage requirements ensure 
that there are a sufficient number of drivers on duty at all 
times. The regulatory requirements ensure that the driver’s 
work contract and government regulations are respected. 
The personnel’s requests are very important and should be 
met as far as possible; this leads to greater staff satisfaction 
and commitment, and reduces staff turnover. A bus transit 
company can use a mixture of the following requirements 
and preferences as a framework for its driver rostering 
generation:  

 
Coverage requirement 

(C1) A driver cannot be assigned to overlapping shifts. 
(C2) A minimum number of drivers of particular 

competences must be guaranteed for each shift or 
each timeslot 

(C3) A balanced number of surplus drivers must be 
guaranteed in each working day 

Regulatory requirements 
(R1) The required number of working days, working 

hours and days-off within a timeframe must be 
respected 

(R2) The required number of holidays within a 
timeframe must be respected 

(R3) The required number of free weekends (both 
Saturday and Sunday free) within a timeframe 
must be respected 

(R4) The required number of special shifts (such as 
union steward duties) for particular drivers within 
a timeframe must be respected 

(R5) Drivers cannot work consecutively for more than 
k days (the maximum length of a work stretch) 

(R6) Some drivers cannot work on weekends or during 
specific hours of the day 

Operational requirements 
(O1) A driver can only be assigned to a shift he/she 

has competence for 
(O2) At least k working days must be assigned 

between two separate days-off 
(O3) A driver cannot be assigned to more than k 

weekend days within a timeframe 
(O4) A driver assigned to a shift type t1 must not be 

assigned to a shift type t2 on the following day 
(certain stints are not allowed) 

(O5) An employee must be assigned to a particular 
shift or off-duty on a particular day or during a 
particular timeslot 

Operational preferences 
(E1) Single days-off should be avoided 
(E2) Single working days should be avoided 
(E3) The maximum length of consecutive days-off is k 



 

(E4) A balanced assignment of single days-off and 
single working days must be guaranteed between 
the drivers 

(E5) A balanced assignment of different shift types 
must be guaranteed between the drivers 

(E6) A balanced assignment of weekdays must be 
guaranteed between drivers 

Personal preferences 
(P1) Assign or avoid assigning given drivers to the 

same shifts 
(P2) Assign a requested day-on or avoid a requested 

day-off 
(P3) Assign or avoid a given shift type before or after 

a free period (days-off, vacation). 
 
Generally, a driver cannot be assigned to more than one 

shift per day. The definition of constraint C1 allows two or 
more shifts to be assigned provided they do not overlap. 
Instead of using shifts in C2, the minimum number of on-
duty staff can be assigned to timeslots. Quite often a 
company has more drivers working than is needed to cover 
the minimum number of drivers each working day. The 
surplus drivers are used to cover the expected sick leaves 
and other no-shows (see constraint C3). Constraints R1-R6 
can be different from one driver to another, based on the 
employee’s contract. 

IV. THE SOLUTION METHOD 
Our driver rostering algorithm is a population-based local 

search method. As we know, the main difficulty for a local 
search is 

 
1) To explore promising areas in the search space to a 

sufficient extent, while at the same time, 
2) to avoid staying stuck in these areas too long, 
3) to escape from these local optima in a systematic 

way. 
 
The heart of the algorithm is based on ideas similar to the 

Lin-Kernighan procedures [29] and ejection chains [30]. 
The basic hill-climbing step is extended to generate a 
sequence of moves in one step, leading from one solution 
candidate to another. Our main heuristic operator is the 
greedy hill-climbing mutation (GHCM). A recent 
description of GHCM can be found in [31] and a very 
detailed description in [32]. 

The GHCM operator moves an object, o1, from its old 
position, p1, to a new position, p2, and then moves another 
object, o2, from position p2 to a new position, p3, and so on, 
ending up with a sequence of moves. In shift scheduling, 
each position corresponds to a day, and an object is a shift.  

The initial solution is created by setting the shifts to 
random days. The starting shift (shift 1) for the GHCM 
operator is selected randomly. The new day to which shift 1 
is moved is selected considering all possible days on the 
time horizon and selecting the day that causes the least 
increase in the objective function when considering just the 
relocation cost. Then, shift 2 in the new day is selected such 
that the removal cost of shift 2 (after adding shift 1) causes 
the highest decrease in the objective function. Next, a new 

day is selected for shift 2, and so on. The sequence of moves 
stops if the last move causes an increase in the objective 
function value and the value is larger than that of the 
previous non-improving move, or if the maximum length 
(set to 10) is reached. In those cases a new starting shift for 
the GHCM operator is selected. 

The population-based method uses a population of 
solutions in each iteration. Population-based methods are 
good to escape from local optima. Our algorithm is similar 
to the cooperative local search introduced by Preux and 
Talbi [33]. In the cooperative local search scheme, each 
individual carries out its own local search, in our case the 
GHCM operator. When the operator gets stuck it asks for 
the cooperation of the population in order to find a direction 
to move in and continues the search from another point in 
the solution space. The results in each individual may be 
different at different times and this encourages diversity 
within the population. We use a population size of 20. 

Our algorithm introduces a mechanism to avoid staying 
stuck in a not-so-promising search area for too long. After 
being stuck for a given number of iterations, we shuffle the 
current solution, that is, we allow worse solutions to replace 
better ones in the current population. We use the five simple 
shuffling operators described in [34]. 

The reproduction operation of the algorithm is, to a 
certain extent, based on the steady-state reproduction: the 
new schedule replaces the old one if it has a better or equal 
objective function value. Furthermore, the least fit is 
replaced with the best one when n better schedules have 
been found, where n is the size of the population. The 
pseudo code of the algorithm is given in Figure 3. 

 
 

Set the time limit t, no_change limit m and the population size n 
Generate initial population of schedules by randomly 
assigning shifts to days 
Set no_change = 0 and better_found = 0 
WHILE elapsed-time < t 
     REPEAT n times 
          Select a schedule S by using a marriage selection 
          Apply GHCM to S to get a new schedule S’ 
          Calculate the change Δ in fitness value 
          IF Δ < = 0 THEN 
               Replace S with S’ 
               IF Δ < 0 THEN 
                    better_found = better_found  + 1 
                    no_change = 0 
               ENDIF 
          ELSE 
               no_change = no_change + 1 
          ENDIF 
     ENDREPEAT 
     IF better_found > n THEN 
          Replace the worst schedule with the best schedule 
          Set better_found = 0 
     ENDIF 
     IF no_change > m THEN 
          Apply shuffling operators 
          Set no_change = 0 
     ENDIF 
     Update the dynamic weights of the hard constraints (ADAGEN) 
ENDWHILE 
Choose the best schedule from the population 
 

 

Fig. 3. The pseudo code of the driver rostering algorithm. 
 
The traditional penalty method assigns positive weights 

(penalties) to the soft constraints and sums the violation 



 

scores to the hard constraint values to get a single value to 
be optimized. In our research we use the ADAGEN method 
[32] which assigns dynamic weights to the hard constraints. 

A very detailed description of the algorithm is given in 
[32]. The parameters of the algorithm (maximum length of 
the mutation sequence and population size) are those that 
were found to work best in [35]. 

Many researchers have argued that the quality of the 
solution (strongly) depends on the initial solution. However, 
the initial solution does not have to be good. On the 
contrary, it has been argued that very good initial solutions 
are hard to improve on with the method at hand. We note 
here, that our test runs have shown that our algorithm works 
best with a random initial population. 

V. THE PROBLEM IN A FINNISH TRANSIT COMPANY 
In our previous studies we have successfully scheduled 

the Finnish major ice hockey league [36] and the Finnish 1st 
division ice hockey league [34]. When the CEO of Turku 
Transport Services Ltd. heard that we had scheduled these 
leagues, he contacted us. Turku Transport Services Ltd. is a 
bus transportation company in the City of Turku. They 
currently have 58 full-time, eight part-time and four retired-
but-still-active bus drivers. Two part-time drivers count as 
one full-time driver. 

Prior to the year 2010, rosters for bus drivers were 
produced by a cyclic shift scheduling software that was 
quite out-of-date. The current number of drivers and the 
current way of doing business had outgrown the limits of 
the current system. The old system had led to an oversupply 
of bus drivers with too much idle time. Furthermore, the old 
system also required far too much manual work. For 
example, the days-off scheduling was done completely 
manually. The CEO was interested in a more effective and 
sophisticated way of constructing days-off and shifts and 
avoiding overstaffing. 

The driver rostering problem in the company is non-
cyclic and discontinuous and must be divided into two 
separate phases: days-off scheduling and shift scheduling. 
The drivers must know their days-off a year beforehand 
while the working times in a day must be known only four 
weeks beforehand. 

  
The days-off scheduling problem 

 
The company has n (62) full-time-equivalent drivers. 

Over the planning horizon of one year (13 timeframes with 
a timeframe of four weeks totaling 364 days), we must find 
n such sequences of days-on and days-off that satisfy the 
following hard constraints (see Section IV): 

 
− A minimum number of drivers (see Table II) must be 

guaranteed for each working day (C2). 
− A balanced number of surplus drivers must be 

guaranteed in each working day (C3). 
− Each driver should have nine days-off in every four-

week timeframe (R1). 
− Drivers cannot work consecutively for more than six 

days (R5). 

− Six drivers cannot work on weekends (R6). 
− At least two working days must be assigned between 

two separate days-off (O2). 
− The number of days-off per weekday between 

drivers should not differ by more than 10% (E6). 
− The same sequence within each of the three driver 

groups with three drivers must be guaranteed (P1). 
  
Moreover, the following soft constraints are considered: 

 
− Single days-off should be minimized (two violations 

for each single day-off) (E1). 
− Single working days should be avoided (one 

violation for each single working day) (E2). 
− The maximum length of consecutive days-off is three 

(ten violations for each day more than three) (E3). 
− The number of single days-off and single working 

days between drivers should not differ by more than 
25% (five violations for each unit of percentage over 
25) (E4).  

 
Table II 

The minimum number of drivers needed per day of week. 
 
 Mon Tue Wed Thu Fri Sat Sun 
Drivers 47 47 47 47 50 27 10 

 
The company has more drivers working than is needed to 

cover the minimum number of drivers each working day. 
The surplus drivers are used to cover the expected sick days. 
 In addition, retired-but-still-active drivers can be used if 
necessary. The average number of surplus drivers is 
calculated as follows. Per week we need 275 drivers (see 
Table II), hence the number of man-days needed over the 
planning horizon is 52 × 275 = 14,300. The drivers work 
28 ‒ 9 = 19 days in four weeks, hence the man-days 
available is 62 × 19 × 13 = 15,314. Hence we have an 
absolute surplus of 1014, and a surplus of 7.1% per man-
day needed. 

The average surplus of drivers on the different days of the 
week is calculated proportionally, giving 3.3, 3.3, 3.3, 3.3, 
3.6, 1.9 and 0.7. The second hard constraint (C3) can now 
be rephrased as “On Mondays, Tuesdays, Wednesdays, 
Thursdays and Fridays either three or four, on Saturdays 
either one or two, and on Sundays either zero or one surplus 
drivers must be guaranteed”. 

 
Table III 

The constant weights for the soft constraints and the maximum 
values for the hard constraints (minimum is 1). 

 
E1 E2 E3 E4 C3 R1 R5 R6 O2 E6 P1 

2 1 10 5 50 50 50 50 20 30 70 
 
The objective is to find a solution that has no hard 

constraint violations and minimizes the weighted sum of the 
soft constraint violations. We use the adaptive penalty 
method for multi-objective optimization (see Section IV). 
The importance of the soft constraints is handled by giving 
them different constant weights. Hard constraint weights are 



 

dynamically calculated according to the ADAGEN method. 
The values of the weights, given in Table III, were decided 
based on the information from the company. Note that hard 
constraint C1 is not listed in the table because the algorithm 
uses the exact number of employees as given in Table II. 

We generated ten days-off schedules and selected the best 
one. This schedule has no hard constraint violations and 443 
single days-off and 513 single working days. Thus, an 
average driver has a single working day in every seventh 
week, and a single working day in every sixth week. The 
number of single days-off and single working days between 
drivers does not differ by more than 25%. Every days-off 
sequence is at most three. As a result, the weighted sum of 
the soft constraint violations is 2 × 443 + 1 × 513 = 1399. 
The algorithm was run on an Intel Core 2 Extreme QX9775 
PC with a 3.2GHz processor and 4GB of random access 
memory running 64bit Windows Vista Business Edition. 
The best solution was found in 16 hours of computer time. 
The time may appear to be long. However, the point here is 
not to find a solution fast enough and with sufficient quality, 
but to find a solution of the best quality. The planning 
horizon is one year, so it is worth running the algorithm 
overnight. 

 
The shift scheduling problem 

 
A driver roster is a combination of shifts and days-off 

assignments that covers a fixed period of time. In our case, 
the days-off are scheduled separately prior to shift 
scheduling.  

In Section III we stated that the driver scheduling phase 
partitions the vehicle schedules into pieces of work and 
defines the sequences of these pieces of work as shifts. A 
piece of work was defined as a sequence of trips on one 
vehicle without a break that can be performed by a single 
driver without interruption. A shift includes several different 
bus routes. The shift length is determined by the time 
needed to complete all the routes. The length varies between 
4 hours 55 minutes and 9 hours 23 minutes. The company 
uses six different shift types: early, late, night, school, peak 
and service. Mondays, Tuesdays, Wednesdays and 
Thursdays have an equal shift structure. Fridays, Saturdays 
and Sundays each have unique shift structures. The total 
number of shifts is 275 per week (see Table II). 

The solution of the days-off scheduling problem is the 
input to the shift scheduling problem. Over the planning 
horizon of four weeks, given a days-off schedule and a set 
of predetermined shifts, the problem is to find a roster for 
each driver that satisfies the following hard constraints: 

 
− A driver can only be assigned to a shift he/she has 

competence for (O1). 
− A driver assigned to a late or night shift must not be 

assigned to an early shift on the following day (O4). 
− An employee must be assigned to an off-duty shift 

(day-off) on a particular day (O5). 
 
Moreover, the following soft constraints are considered: 

 
− The number of working hours for each driver should 

be 153 (one violation for each partial hour below or 
above 153) (R1) 

− The number of different shift types between drivers 
should not differ by more than 25% (five violations 
for each unit of percentage over 25)  (E5) 

− Assign an early shift before a day-off or a vacation 
and a late or night shift after a day-off or a vacation 
(one violation for each such assignment) (P3). 

 
The objective again is to find a solution that has no hard 

constraint violations and minimizes the weighted sum of the 
soft constraint violations. The rosters with less than 153 
hours are considered as bad as the rosters with more than 
153 hours. For some companies the most important goal 
could be to reduce idle time for employees. The values of 
the three hard constraint weights are all between one and 
five.  

We solved the problem using exactly the same algorithm 
and the same computer as for the days-off scheduling 
problem. We generated ten shift schedules for the first four-
week planning horizon and selected the best one. The best 
solution was found in four hours of computer time. The time 
is in line with the fact that the planning horizon is four 
weeks. The best schedule has no hard constraint violations. 
Sixteen drivers have exactly 153 working hours, 31 drivers 
have a maximum of 152 working hours and 15 drivers have 
a maximum of 151 working hours. Thus, an average driver 
has about one hour idle time, less than 1%. Note that the 
total sum of the working hours in all the shifts was 61 less 
than the total number of working hours to be scheduled to 
the drivers in the days-off scheduling. 

The number of different shift types between drivers did 
not differ by more than 25%. Two other than early shifts 
were assigned before a day-off or a vacation and no late or 
night shifts after a day-off or a vacation. As a result, the 
weighted sum of the soft constraint violations is 1 × 31 + 
2 × 15 + 1 × 2 = 63. 

The company is very satisfied with our results. In their 
opinion the days-off scheduling algorithm could run for 
days because it is generated only once a year. As explained 
before, they are interested in the best possible value of the 
objective function, not in how fast this is reached. The shift 
scheduling algorithm can be run overnight. It is perfectly 
reasonable to run it for up to 15 hours, again because it is 
generated only once per month. 

The company listed a number of advantages and savings 
as a result of switching to the developed system: the reduced 
time for developing rosters, the fairer and more balanced 
days-off and shifts, and the reduced idle time for bus 
drivers. The system also produces rosters that are more 
stable with regard to small changes, both in the operational 
environment and in the employees’ work contracts. One 
further significant benefit is that the system can be used as a 
planning tool for future scenarios. The company actually 
demonstrated the effect of using different planning horizons 
and different vacation patterns. 

The company wants to integrate our algorithms into their 
operational systems. However, our system does not include 
an adequate user interface nor financial management links 
and customer reports. For this reason, we contacted the 



 

major bus transit software vendor in Finland. This vendor 
had no optimization in their product and was very interested 
in cooperating with us. After four months of further coding 
and fine-tuning, the generated driver rostering software was 
ready to be integrated into the third-party vendor product. 
The software 

 
− Allows users to specify the importance of requests 

and requirements. 
− Minimizes the scheduling time required by users. 
− Runs on any modern desktop computer. 
− Does not use third-party mathematical software 

packages with expensive licensing policies. 
− Generates just a few solutions to choose from. 

Generates clearly different solutions to choose from. 
 
The company, the third-party vendor and we were all 

very pleased with how the project ended. We do not have to 
work on user interfaces, financial management links, 
customer reports, help desks etc. Instead, we can 
concentrate on our core competence: development of 
algorithms that are useful in real-world applications. 

VI. CONCLUSIONS AND FUTURE WORK 
We scheduled the staff in a Finnish bus transit company. 

Our algorithm found feasible and acceptable solutions to 
their days-off scheduling and shift scheduling problems. 
The generated software will be integrated into a third-party 
vendor product. 

Our direction for future research will be to solve the 
vehicle scheduling and driver scheduling problems that 
precede the driver rostering problem solved in this paper. 
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