
Turku Centre for Computer Science

TUCS Dissertations
No 140, November 2011

Jari Kyngäs

Solving Challenging Real-World
Scheduling Problems

Solving Challenging Real-World

Scheduling Problems

by

Jari Kyngäs

To be presented, with the permission of the Faculty of Mathematics and Natural Sciences of the University of

Turku, for public criticism in Auditorium Pub3 on 11th November 2011, at 12 noon.

University of Turku

Department of Information Technology

Turku 2011

Supervisors

Professor Olli Nevalainen

Department of Information Technology

University of Turku

Turku, Finland

Research Director Kimmo Nurmi

Satakunta University of Applied Sciences

Pori, Finland

Reviewers

Professor Pasi Fränti

University of Eastern Finland

Joensuu, Finland

Professor Miklos Kresz

University of Szeged

Szeged, Hungary

Opponent

Professor Jyrki Nummenmaa

School of Information Sciences

Tampere, Finland

ISBN 978-952-12-2633-5 (printed)

ISBN 978-952-12-2634-2 (electronic)

ISSN 1239-1883

Uniprint, Suomen Yliopistopaino Oy

List of publications

[P1.] K. Nurmi and J. Kyngäs, ”A Framework for School Timetabling Problem” in Proc of the
3rd Multidisciplinary Int. Scheduling Conf.: Theory and Applications (MISTA), Paris,
France, 2007, pp. 386-393.

[P2.] G. Post, S. Ahmadi, S. Daskalaki, J. H. Kingston, J. Kyngäs, K. Nurmi, D. Ranson and H.
Ruizenaar, “An XML Format for Benchmarks in High School Timetabling”, Annals of
Operations Research, Springer, USA, 2010.

[P3.] J. Kyngäs and K. Nurmi, “Scheduling the Finnish Major Ice Hockey League”, in Proc of
the IEEE Symposium on Computational Intelligence in Scheduling, Nashville, USA,
2009, pp. 84-89.

[P4.] J. Kyngäs and K. Nurmi, “Scheduling the Finnish 1st Division Ice Hockey League”, in
Proc of the 22nd Florida Artificial Intelligence Research Society Conference, Florida,
USA, 2009, pp. 195-200.

[P5.] K. Nurmi, D. Goossens, T. Bartsch, F. Bonomo, D. Briskorn, G. Duran, J. Kyngäs, J.
Marenco, C.C. Ribeiro, F. Spieksma, S. Urrutia and R. Wolf-Yadlin, “A Framework for
Scheduling Professional Sports Leagues”, in Ao, Sio-Iong (ed.): IAENG Transactions on
Engineering Technologies Volume 5, Springer, USA, 2010, pp. 14-28.

[P6.] E.I. Ásgeirsson, J. Kyngäs, K. Nurmi and M. Stølevik, “A Framework for Implementation-
Oriented Staff Scheduling”, in Proc of the 5th Multidisciplinary Int. Scheduling Conf.:
Theory and Applications (MISTA), Phoenix, USA, 2011. (submitted for publication)

[P7.] K. Nurmi, J. Kyngäs and G.Post, “Staff Scheduling for Bus Transit Companies”, Lecture
Notes in Engineering and Computer Science: Proceedings of The International
MultiConference of Engineers and Computer Scientists, Hong Kong, 2011. (in press)

Abstract: This work contains a series of studies on the optimization of three real-world scheduling

problems, school timetabling, sports scheduling and staff scheduling. These challenging problems

are solved to customer satisfaction using the proposed PEAST algorithm. The customer

satisfaction refers to the fact that implementations of the algorithm are in industry use.

The PEAST algorithm is a product of long-term research and development. The first version of it

was introduced in 1998. This thesis is a result of a five-year development of the algorithm. One of

the most valuable characteristics of the algorithm has proven to be the ability to solve a wide range

of scheduling problems. It is likely that it can be tuned to tackle also a range of other combinatorial

problems.

The algorithm uses features from numerous different metaheuristics which is the main reason for

its success. In addition, the implementation of the algorithm is fast enough for real-world use.

Keywords: Efficient algorithms, Metaheuristics, Scheduling, School timetabling, Sports

scheduling, Staff scheduling.

Content

1. Introduction to Scheduling Problems ... 7

2. Metaheuristics ... 11

3. The Scheduling Algorithm ... 15

The Original Algorithm, h-HCGA .. 15

The Improved Scheduling Algorithm, PEAST .. 18

Notes on the implementation of the algorithm .. 21

4. School Timetabling ... 23

5. Sports Scheduling .. 27

6. Staff Scheduling.. 31

7. Summary and Conclusions ... 33

References ... 34

6 Jari Kyngäs

 Solving Challenging Real-World Scheduling Problems 7

1. Introduction to Scheduling Problems

The focus of this thesis is to present general frameworks for school timetabling, sports scheduling

and staff scheduling problems, and to show that these problems can be solved to customer

satisfaction using intelligent heuristic algorithms. The thesis is a collection of seven publications. In

the first two publications we analyze the algorithm presented in [Nurmi, 1998] and discuss our

participation in making an XML format for benchmarks in high school timetabling. The next two

publications deal with scheduling the Finnish major and 1st division ice hockey leagues. A

framework for scheduling professional sports leagues is given in the third sports scheduling article.

The last two publications propose an implementation-oriented staff scheduling framework and

describe the solution of problem instance combinatorial optimization problem from a Finnish bus

transportation company.

This section briefly discusses the difference of hard and easy problems. A literature summary of

the problems of the present thesis is also given. In Section 2 an introduction to metaheuristics is

given. Our solution method is discussed as an example of these metaheuristics. Sections 3, 4 and

5 describe the optimization problems of school timetabling, sports scheduling and staff scheduling

respectively. Mathematical models, implementation-oriented models, practical results and

cooperation partners are discussed in these sections. Finally, Section 6 summarizes the results of

the research.

School timetabling, sports scheduling and staff scheduling problems are hard combinatorial

problems and they belong to a class called NP-hard (non-deterministic polynomial-time hard)

problems [Garey and Johnson, 1979]. Other examples of this problem class include traveling

salesman problem, subset sum, set partitioning, multiprocessor scheduling, graph coloring, vertex

cover and integer linear programming. Under the best knowledge of recent days, to solve a NP-

hard problem optimally, some kind of enumerative method has to be implemented, that is, a list of

nearly all possible solutions has to be listed and the one with the best value will finally be selected.

The time required to solve an NP-hard problem depends exponentially on the size of the problem.

However, no-one has been able to prove that no polynomial time algorithm for NP-hard problems

exists.

Intelligent heuristic algorithms need to be designed and implemented to be able to solve real-world

instances of NP-hard problems. These heuristics find solutions in a reasonable time, but it is

unlikely that the solutions are optimal, though probably of good quality. When developing a

heuristic method one still has to be concerned about the running time. Even though an algorithm

works in polynomial time it could still prove to be too slow for real-life applications. However, it is

perfectly reasonable to run an algorithm fortnight if the solution has to be generated only once a

year and if the customer is satisfied with the result. The customer is interested in the best possible

value of the objective function, not in how fast this is reached. Therefore, in real-world scheduling

the “customer satisfaction” is the most important optimality criterion.

Scheduling problems have attracted researchers since the mid-1950s, when the first commercial

computers where used to solve project scheduling problems. Since that time, the evolution of

scheduling has closely tracked the development of computers. Usable practical applications began

to show up about 15 years ago. Initially the solution methods were not able to solve any difficult

problems − usually solutions were found for some toy-problems with little or no connection to real-

world problems. This thesis is not about how to solve challenging problems in theory. On the

contrary, it presents how to solve these problems in practice.

8 Jari Kyngäs

Real-world scheduling has gained much attention among the researchers in the last decade. One

important reason for this is that computers have evolved to such a state that they are able to

calculate complicated and time-consuming mathematics in a reasonable amount of time. Another

reason is that the requirements and constraints of real-world problems have become more

complicated which makes it impossible to produce solutions manually. Public institutions and

private companies around the world have become more aware of the possibilities for decision

support technologies, and they no longer want to create the schedules manually. One further

significant benefit of automating scheduling processes is the considerable amount of time saved by

the administrative staff involved.

Several solution approaches for many different scheduling problems have been introduced. A great

deal of research has concentrated on examination timetabling, university timetabling and course

timetabling [Schaerf, 1999; McCollum, 2006]. Timetabling research has achieved promising and

practicable results. Sports scheduling and staff scheduling have also been extensively studied.

Excellent overviews on sports scheduling can be found in [Easton et al., 2004] and [Rasmussen

and Trick, 2008] and on staff scheduling in [Burke et al., 2004] and [Ernst et al., 2004].

Furthermore, vehicle scheduling [Toth and Vigo, 2001] and production line scheduling are state-of-

the-art scheduling problems. The production line scheduling derives from job-shop scheduling

[Blazewicz et al., 1996; Jain and Meera, 1999]. The job-shop problem itself is a generalization of

the famous traveling salesman problem, see e.g. [Applegate et al., 2007].

PATAT (The International Conference for the Practice and Theory of Automated Timetabling) is

perhaps the most important scheduling conference concentrating on university timetabling, sports

scheduling and staff scheduling. The publications of the conference give a good idea how the

academic interest towards these scheduling problems has evolved in recent years. Another

important scheduling conference is MISTA (Multidisciplinary International Scheduling Conference).

MISTA concentrates on a wide variety of scheduling problems, for example on production

scheduling. These conferences are held both in Europe and in the USA. Table 1 shows a

classification of the scheduling publications presented in the PATAT and MISTA conferences. The

“Transit scheduling class” includes vehicle, bus, railway and airport scheduling. The Other

scheduling class includes e.g. production line scheduling, processor and memory scheduling and

project and resource scheduling.

While the main focus in the PATAT 06 conference was on university, school and exam timetabling,

the interest in PATAT 10 has moved to sports and staff scheduling (see Table 1). Our research

focused on school timetabling in 2006-2007, sports scheduling in 2007-2009 and staff scheduling

in 2009-2010. In this respect the advancement of our research has followed the academic main

stream. Our current research addresses to transit scheduling and production scheduling. At the

time of writing, MISTA 2011 conference announced to arrange a special session on passenger

transport and logistics systems.

 Solving Challenging Real-World Scheduling Problems 9

Table 1. Classification of the scheduling publications presented in PATAT and MISTA conferences from
years 2004 to 2009.

 PATAT 04 PATAT 06 PATAT 08 PATAT 10 MISTA 05 MISTA 09

University
timetabling

26 29 29 22 4 10

Sports
scheduling

5 8 8 11 0 3

Staff
scheduling

12 8 12 14 5 7

Transit
scheduling

2 3 1 3 7 5

Other
scheduling

10 5 6 0 77 55

General
methodology

8 4 3 6 8 9

Total
sum

63 57 59 56 101 89

10 Jari Kyngäs

 Solving Challenging Real-World Scheduling Problems 11

2. Metaheuristics

Intelligent heuristic algorithms need to be designed and implemented to be able to solve real-world

instances of hard problems. Perhaps the most prominent heuristic approaches used to be neural

networks (NN) [Kohonen, 1984; Hecht-Nielsen, 1990; Rumelhart and McClelland, 1986] and

genetic algorithms (GA) [Goldberg 1989]. These methods use ideas from their biological

counterparts and are related in particular to artificial learning. Neural networks are loosely modeled

on the operation principle of the human brain and learn by themselves using a set of training

patterns. This learning can then be applied to classification, prediction or control tasks. The

application areas of NNs have been rapidly widening including such interesting applications as

credit card fraud detection, handwriting recognition and financial forecasting. Neural networks have

also been quite successful in solving different types of combinatorial problems.

The basic idea of genetic algorithms is to use reproduction, crossover and mutation operators to

produce good solutions. Although the idea of evolutionary computing is fascinating, its practical

use is for the most part yet to come. There are, however, many examples of practical applications

and future potential: criminal face-printing, network hardware development and oil exploration.

Genetic algorithms can also be used to solve combinatorial problems, and this area has been

steadily increasing.

The most successful metaheuristics in solving challenging scheduling problems do not solely use

neural networks or genetic algorithms. They most likely use mixed local search and population-

based methods. Osman and Laporte [1996] defined metaheuristic as follows: “A metaheuristic is

an iterative generation process which guides a subordinate heuristic by combining intelligent

concepts for exploring and exploiting the search space. Furthermore, learning strategies are used

to structure information in order to efficiently find near-optimal solutions”.

Blum and Roli [2003] classify metaheuristics based on five criteria:

1) Nature-inspired algorithms are those that are inspired by some phenomenon in the nature.

Genetic algorithms simulate natural selection, particle swarm optimization mimics the

behavior of swarms, and so on. Nowadays many algorithms are some kind of hybrids – the

algorithm may be nature-inspired but it can include parts that are not nature-inspired (for

example tabu search).

2) Population based algorithms work with many simultaneous solution candidates. This may

lead to high-quality solutions but the computing time increases very quickly.

3) Dynamic objective function means that the algorithm modifies the weights of the

multiobjective function during the search. This can be of great help when the importance

and difficulty of the objectives are not known or cannot even be guessed.

4) One vs. various neighborhood structures. Using various neighborhood structures usually

makes the search space larger. An algorithm can search one neighborhood for some time

and swap into another if good solutions are not found.

5) Memory usage means that an algorithm saves the search history while running. This helps

the evaluation of search locations – if the search location has been visited earlier the

algorithm can use that information.

Metaheuristic methods guide the search process towards near-optimal solutions. The idea is to

efficiently explore the search space with a combination of simple local search procedures and/or

complex learning processes. The methods are usually non-deterministic and they may include

12 Jari Kyngäs

mechanisms to avoid getting trapped in confined areas of the search space (i.e. local minima).

Popular metaheuristic methods include ant colony optimization [Colorni et al., 1992], cooperative

local search [Preux and Talbi, 1999; Landa Silva, 2003], ejection chains [Glover, 1992], genetic

algorithms, hill-climbing, hyper-heuristics [Burke et al., 2003], idwalk [Neveu et al., 2004], iterated

local search, memetic algorithms [Moscato, 1989], particle swarm optimization [Eberhart and

Kennedy, 1995], simulated annealing [Kirkpatrick et al., 1983], tabu search [Glover et al., 1985]

and variable neighborhood search [Hansen et al., 2000]. A classification of these metaheuristics is

shown in Figure 1.

Figure 1. A classification of metaheuristic methods. For abbreviations, see text.

A local search method is defined by

1) A neighborhood structure, which is a mechanism to obtain a new set of neighbor solutions

by applying a small perturbation to a given solution.

2) A method of moving from one solution to another.

3) Parameters of the method.

Hill-Climbing (HC) is a basic local search method. The idea of the method is to accept every better

move. This enables the algorithm to “climb up the hill” until a local optimum is reached. HC starts

with a random solution, and iteratively makes small changes to the solution to generate a

neighborhood solution. If the neighborhood solution is better than or equal to the current solution,

the neighborhood solution substitutes the current solution. When the current solution can no longer

be improved, hill-climbing terminates. Almost all other local search methods are based on hill-

climbing to some extent.

Iterated Local Search (ILS) is a sophisticated version of hill-climbing with random restarts. Hill-

climbing with random restarts first finds a local optimum. Then it restarts the iteration from a

random point and finds another local optimum, and so on. Finally, it returns the best optimum

found. ILS is an extension to this procedure. It tries to stochastically hill-climb in the space of these

local optimums. The idea is that it is more probable to find a global optimum near the local

optimums than to restart from some random point.

Tabu Search (TS) is one of the most cited and used metaheuristics. The main idea is to prevent a

new move from some location back to a location which has been visited before. TS is basically a

Metaheuristics

Population based

Local search

ILS TS SA IDW

W

VNS EC HH HC

 GA PSO ACO CLS MA

 Solving Challenging Real-World Scheduling Problems 13

hill-climbing method, but it employs further strategies to avoid terminating at a local optimum,

which often happens in hill-climbing. TS modify the neighborhood structure using a tabu list which

is a short-term memory containing the solutions that have been visited in the recent past. TS

exclude solutions in the tabu list from the new neighborhood.

Hill-Climbing methods accept only improving or equally good moves. Another approach is to

accept also deteriorating moves. These moves help to escape from the local optimum.

In Simulated Annealing (SA) this acceptance is decreased over time so that it finally diminishes to

zero. In a basic simulated annealing version a move is accepted with a probability exp(-Δf/T),

where Δf gives the increase in the cost function and T is a control parameter which approaches

zero.

IDWalk (IDW) performs N neighborhood moves and returns the best solution found. If this solution

is better than or equal to the current solution, it is substituted for the current solution. If no such

solution has been found, a previously rejected solution is selected to substitute the current solution.

The rejected solution is selected from a list of rejected solutions according to some selection

mechanism.

Ejection Chains (EC) are methods that generate a sequence of interrelated hill-climbing moves to

create a more complex compound move. The compound moves allow a variable number of

solution components to be modified within any single iteration of a local search. These

modifications cause some solution components to be ejected from the solution space. Neighboring

solutions obtained by an ejection chain process are created by a succession of embedded

neighborhoods that lead to intermediate trial solutions at each level of the chain.

In Variable Neighborhood Search (VNS) more than one neighborhood structure is considered.

After finishing the exploration with respect to one neighborhood, the search diversifies to another

neighborhood. The neighborhood is changed during the search if no better solutions have been

found in the current neighborhood. In this way one hopes to escape from local optima.

The efficiency of metaheuristics depends on the quality of the neighborhood structure. To

overcome this problem, Hyper Heuristics (HH) use a set of simple and fast low-level heuristics.

While Variable Neighborhood Search changes the neighborhood operator, HH changes the

heuristic operator. The decision for selection of the heuristic during the search is based on problem

independent measures, such as the change in the quality of solutions when the selected heuristic

is used.

The main difficulty for a local search algorithm is

1) to explore promising areas in the search space to a sufficient extent, while at the same time

2) to avoid staying stuck in these areas too long and

3) to escape from these local optima in some systematic way.

Population-based methods use a population of solutions in each iteration. The outcome of an

iteration is also a population of solutions. As already mentioned, the most commonly used

population-based method is a genetic algorithm. Genetic algorithms are good at exploring the

search space but find it difficult to zoom-in to find better-than-good solutions.

14 Jari Kyngäs

Memetic Algorithm (MA) is an extension of GA incorporating a local search for each solution in

between generations. The main purpose is to introduce problem-dependent knowledge as a way of

speeding-up the search process. However, the loss of diversity is specifically problematic in MA as

the local search tends to focus in a few good solutions. MA is also known as hybridized or hybrid

genetic algorithm.

Particle Swarm Optimization (PSO) is a population-based method which maintains a population of

solutions called particles and moves these particles around in the search-space. Each particle

changes its position and velocity based on the individual particle’s best found solution and the

global best found solution. That is, while flying in the search-space, every particle updates its

velocity and position based on its own best experience and that of the entire population.

In a Cooperative Local Search (CLS) scheme, each individual carries out its own local search

operator. When an individual gets stuck it asks for the cooperation of the population in order to find

something to do to get unstuck and to continue the search from another position in the solution

space. The results achieved by each individual may be different at different times and this

encourages diversity within the population.

Ant Colony Optimization (ACO) is an approach which mimics ants searching for food. The ants are

able to quickly find the shortest path from their nest to food sources. They accomplish this by

leaving a substance called pheromone after them. When the followers choose directions to go to,

they pick the paths with stronger pheromone concentration.

The described methods have been found successful in various scheduling and timetabling

problems. Even though each of these methods works by itself, most of them best in cooperation

with other methods.

 Solving Challenging Real-World Scheduling Problems 15

3. The Scheduling Algorithm

This section describes the algorithm developed for tackling various scheduling problems. The

design of the new algorithm was quite a long process starting from determining the power of the

original algorithm and ending with the analysis of the various shuffling operators.

The Original Algorithm, h-HCGA

The proposed algorithm, which will be used to solve school timetabling, sports scheduling and staff

scheduling problems, has features from many metaheuristics. The foundation of the algorithm was

established in [Nurmi, 1998]. Nurmi developed a new hybrid hill-climbing genetic algorithm (h-

HCGA) that outperformed a standard GA and questioned some components of the GA that were

normally considered necessary parts of genetic algorithms. The basic hill-climbing method was

boosted by adding a tabu list and a simulated annealing refinement. A combination of HC and GA

techniques was used to solve timetabling problems. Figure 2 shows a pseudo-code of the original

h-HCGA algorithm. It should be noted that the new improved algorithm does not use the running

time limit – the algorithm runs for a given number of generations. The improved algorithm does not

use marriage selection [Muhlenbein, 1989] either, because it was found ineffective (see [P1]).

Marriage selection is a process where we randomly pick two schedules S1 and S2 and choose the

better one of them.

Set the running time limit t and the population size n

Generate initial random population of schedules

Set better_found = 0

WHILE elapsed-time < t

 REPEAT n times

 Select a schedule S by using marriage selection

 Apply GHCM to S to get a new schedule S’

 Calculate the change Δ in the objective function

 IF Δ ≤ 0 THEN

 Replace S with S’

 IF Δ < 0 THEN

 better_found = better_found + 1

 ENDIF

 ENDIF

 ENDREPEAT

 IF better_found > n THEN

 Replace the worst schedule with the best schedule

 Set better_found = 0

 ENDIF

 Update the dynamic weights of the hard constraints (ADAGEN)

 Calculate the new temperature for simulated annealing

ENDWHILE

Choose the best schedule from the population

Figure 2. A pseudo-code of the h-HCGA timetabling algorithm [Nurmi, 1998].

16 Jari Kyngäs

The algorithm uses a local search operator called GHCM (greedy hill-climbing mutation), see

Figure 3. The operator moves an object, o1, from its old position p1 to a new position p2 and then

moves another object, o2, from position p2 to a new position p3 and so on, ending up with a

sequence of moves. The initial object selection is random. The new position p2 is selected by

considering all possible positions and selecting the one that minimizes the objective function. Then,

the new object o2 is again selected by considering all the objects in the position p2 and picking the

one that minimizes the object function. Next, a new position p3 is selected, and so on. The

sequence of moves stops if the last move causes an increase in the objective function value and if

the value is larger than that of the previous non-improving move (see Figure 4). Then, a new

sequence of moves is started. The initial solution is created randomly.

Randomly select one game g
Set best_cost = ∞, cumulative_cost = 0 and move_number = 1
WHILE true
 Select a new round r for the game among all the possible rounds so
 that the move g to r is not in the tabu list and the cost of moving g to r is minimized
 Update tabu list with the move g to q where q is g’s old round
 cumulative_cost = cumulative_cost + cost (g to r)
 IF cumulative_cost ≤ best_cost THEN
 best_cost = cumulative_cost
 Save the sequence of moves
 ENDIF
 IF cost (g to r) > 0 AND the cost function value is above the cost function value in the
 previous non-improving move OR move_number = 10 THEN
 EXIT WHILE
 ENDIF
 Remove a game u from round r among all the possible games so that u and g
 have clashes and the cost function is minimized
 Set g = u
 Set move_number = move_number + 1
ENDWHILE
Save the sequence of moves

Figure 3. A pseudo-code of the GHCM operator [Nurmi, 1998].

An example of the utilization of the GHCM operator comes from scheduling the Finnish major ice

hockey league. The objects, o, that the operator move, are the games to be scheduled. The

positions, p, of the games are the rounds in which they are scheduled to be played. The operator

starts with a random game in a random round. The game is moved to the round where it minimizes

the object function. From that round another game is chosen to be moved. Again, the game that

minimizes the object function is chosen. These moves are repeated until no further improvement in

the object function is expected.

 Solving Challenging Real-World Scheduling Problems 17

Figure 4: The latest move (step 7 to step 8) causes the GHCM to stop because the

increase in the cost function value is bigger than in the previous non-improving

move (step 4 to step 5).

The reproduction operation of the h-HCGA algorithm is, to a certain extent, based on the steady-

state reproduction [Syswerda, 1989]: the new schedule replaces the old one if it has a better or

equal objective function value. Furthermore, the worst schedule is replaced with the best one when

n better schedules have been found, where n is the size of the population.

The algorithm uses an adaptive penalty method (ADAGEN) for multi-objective optimization. A

traditional penalty method assigns positive weights (penalties) to the soft constraints and sums the

violation scores to the hard constraint values to get a single value to be optimized. The ADAGEN

method assigns dynamic weights to the hard constraints based on the weights assigned to the soft

constraints [Nurmi, 1998]. The soft constraints are assigned constant weights according to their

significance.

The hard constraint’s lower bound is the same as the biggest soft constraint weight. The upper

bound is calculated as (see [Nurmi, 1998]):

 (2.1)

where

m is the number of soft constraints,

ρmax is the biggest weight assigned to the soft constraints,

ρi are the weights assigned to the soft constraints.

All hard constraint weights are initially set to their lower bound. The weights are updated by -1, 0 or

1 in each generation according to their effect on the cost function between the generations (see

[Nurmi, 1998] for a detailed description).

18 Jari Kyngäs

The Improved Scheduling Algorithm, PEAST

An improved version of the h-HCGA algorithm is proposed in this thesis. As a first step we

determined the best configuration of the h-HCGA algorithm, see [P1]. The best values of the nine

control parameters were found by using both brute force and statistical analyses. These

parameters included the reproduction/selection method (as in genetic algorithms), the maximum

length of the move sequence (as in ejection chain method), the population size, the tabu list size

and the update frequency of the hard constraint weights. The research showed that the chosen

parameter values were very good for the introduced real-world and artificial school timetabling

problems.

Next we made two changes to the h-HCGA algorithm, see [P4]. These changes aided the search

procedure to escape from local optima as well as better explore the fitness landscape. As a result

of these modifications the algorithm is able to solve a very challenging real-world sports scheduling

problem instances, as discussed in [P3] and [P4].

The h-HCGA algorithm uses a simulated annealing refinement with a standard exponential cooling

scheme. Test runs showed that a good strategy is to stop the cooling at some predefined

temperature. Therefore, after a certain number of iterations m we let the algorithm accept an

increase in the cost function with some constant probability p. The results are surprisingly good by

choosing m equal to the maximum number of iterations with no improvement to the cost function

and p equal to 0.0015. The new annealing schedule produced superior solutions compared to the

well-known annealing schedules.

The most successful modification to the h-HCGA algorithm concerned shuffling the current

solution. As explained earlier, a hyper-heuristic is a mechanism that chooses a heuristic from a set

of simple heuristics, applies it to the current solution, then chooses another heuristic and applies it,

and continues this iterative cycle until the termination criterion is satisfied. The same idea is used

in the modification algorithm, but the other way around. For this we introduced a number of simple

heuristics that could normally be used to improve the current solution but, instead, we used them to

shuffle the current solution - that is, worse solution candidates were allowed to replace better ones

in the current population. Five shuffling operations were used and one random shuffling operation

was selected in every m/20th iteration of the algorithm. The shuffling produced clearly better

solutions than without shuffling, see [P4].

We tried to further improve the algorithm in [Nurmi and Kyngäs, 2009]. The GHCM operator

normally selects the best move sequence. The operator was changed to accept the first better or

equal move sequence and then not to continue further. In this way the greedy character of the

moves is decreased in some degree. The idea for another potential improvement originates from

the observations of various other researchers. Almost all variable neighborhood search methods

and hyper-heuristics use the 2-Swap operator - that is, two components of the current solution are

exchanged. The idea has been further extended to make a 3-Swap. The h-HCGA algorithm was

therefore changed to perform like a hyper-heuristic by augmenting the GHCM operator with 2-swap

and 3-swap operators. The results were clear in that selecting the first better or equal move

sequence rather than continuing and selecting the best one did not improve the solution. Including

the 2-Swap and 3-Swap operators did not work either, in fact the solutions deteriorated on

average. A possible reason for this might be that the GHCM operator alone is able to capture the

benefits of the swapping. This observation is beneficial also for the reason that swapping takes

 Solving Challenging Real-World Scheduling Problems 19

some time to complete. It still remains an open question of the present thesis why the swapping

makes the results somewhat worse.

It is very difficult to classify the improved algorithm as one of the earlier mentioned metaheuristics.

The basic hill-climbing step is extended to generate a sequence of moves in one step, leading from

one solution to another as is done in the ejection chain method. The algorithm avoids staying stuck

(i.e. the objective function value does not improve for some predefined number of generations) in

the same solutions using tabu search and the refined simulated annealing method. The algorithm

belongs to population-based methods in that it uses a population of solutions. This enables it to

explore promising areas in the search space to a sufficient extent. A cooperative local search

scheme is used in a sense that when an individual gets stuck in local minima it asks for the

cooperation of the population in order to continue the search from another position. To escape

from local optima the algorithm shuffles the current solution mimicing a hyper-heuristic mechanism.

We named the improved algorithm PEAST (as Population, Ejection, Annealing, Shuffling and

Tabu).

The outline of the PEAST algorithm is given in Figure 5. The algorithm is able to solve very

challenging scheduling problems. The round-robin schedules of the Finnish major ice hockey

leagues as well as the days-off and shift schedules of certain Finnish transportation companies can

be efficiently generated using the improved algorithm.

20 Jari Kyngäs

 Figure 5. The outline of the PEAST algorithm.

We have recently started a profound inspection of the different heuristic features of the algorithm

and especially the parameters used by these features. It has been noticed that to achieve the best

solutions the algorithm must include shuffling and a tabu list. Preliminary test runs have shown that

simulated annealing might be replaced by a faster, but very similar mechanism. The update of the

ADAGEN method weights is also under development. In addition, we are currently studying the

behavior of different parameter values and their combination to find out how to best apply them in

solving real-world scheduling problems. This study has to be completed because the new PEAST

algorithm has additional parameters compared to the h-HCGA algorithm, see [P1]. The findings will

be reported in an upcoming publication (2011).

 Solving Challenging Real-World Scheduling Problems 21

Notes on the implementation of the algorithm

The first thing to be considered, when implementing the PEAST algorithm, was the choice of the

programming language. The most important thing was that it should be very easy to install on the

customers’ computers. Installing any kind of service routines can lead to a chain reaction: one

service routine needs another service routine, which in turn needs another and so on. It was also

decided to not use any external software or software packages because their use would lead to

license problems and to a situation where customers would have to buy one or more additional

programs and/or licenses. The programming language had to generate fast object code and be

object oriented. A high priority was also given to built-in data structures.

As a result of the above considerations the obvious choice was Java, but there were some

suspicions of its speed. Practical tests with several programming languages revealed that Java is

the choice. Java might not be the fastest language in any subcategory of possible speed

measurements (CPU, memory, and so on) but it was fast enough for the implementation of the

PEAST algorithm. Java is very easy to install and requires no service routines. It is supplied with a

very good API-documentation and efficiently coded built-in data structures. It is fully object-based

and it can be run without any modifications on (almost) any platform.

The implementation of PEAST utilizes almost every built-in data structure of Java. Furthermore,

different data structures were combined in order to get the implementation as fast as possible.

Sometimes it has been necessary to use ”not-so-pretty” structures to reach this goal. By not-so-

pretty it is meant structures that make the code look and feel complicated. One example of such a

case is a class holding job types, days-off types and the constraints relating to them. It is based on

two (hard and soft constraints) HashMaps which map the types to the user defined names. These

HashMaps are backed by two EnumMaps that contain the constraints (e.g. a late shift cannot be

followed by an early shift). These EnumMaps contain an EnumSet because one shift type can

have many constraints. The code does not look elegant but it is very fast. Normally one would

never use such a complicated structure but with this structure we gained about 40% savings in the

running time, compared to the traditional mapping done with pure Strings.

While making optimizations like above one should be well aware that usually the most important

thing in programming is that the code is nicely and understandably written and that proper data

structures are used in their proper places. Thus, in most cases, a small performance gain in

running time is not worth the cluttering of the code. Though, in time consuming programs almost

every decrease in running time is vital, no matter how small it is. In conclusion, the code of PEAST

is very fast but maybe not the most beautiful one to read.

22 Jari Kyngäs

 Solving Challenging Real-World Scheduling Problems 23

4. School Timetabling

In the next three sections (3, 4 and 5) we will describe school timetabling, sports scheduling and

staff scheduling problems in detail. For each problem the mathematical model, NP-completeness

or NP-hardness are illustrated. An implementation-oriented framework for each problem is given.

In addition, the results of solving real-world problems are summarized. Finally, the cooperation with

other researchers and business customers is discussed briefly.

School timetabling can be divided into at least three subcategories: exam timetabling [Carter,

1986], course timetabling (or university timetabling) [Tripathy, 1992] and class timetabling [de

Werra, 1985]. In this thesis we concentrate on the class timetabling problem which occurs in

Finnish schools and universities. The problem is to schedule teachers to classes and vice versa.

The problem can be modified to include classrooms.

In a simplified class timetabling problem one has to assign teacher-class pairs to periods. Assume

that there are P periods, C classes and T teachers and the task is to assign teachers and classes

to the periods in a way that no teacher or class is scheduled to the same period more than once.

Let

 = 1, if teacher tj has been preassigned class ci, otherwise 0

 = 1, if class ci and teacher tj are assigned to period pk, otherwise 0

and assume that each teacher-class pair occurs only once. Now the mathematical formulation of

the basic class timetabling problem is as follows:

 Determine the values of variables xijk for i, j and k, (3.1)

subject to the constraints

 ,

 ,

 ,

 ,

This formulation of the problem is exactly the same as the formulation of the well-known graph

coloring problem [de Werra, 1985]. The problem belongs to the group of NP-complete problems

and therefore the class timetabling problem is also an NP-complete problem.

In real-world school timetabling the scheduling must be completed in such a way that the solution

is feasible and mostly acceptable to both school staff and teachers. A feasible solution satisfies the

following hard constraints in the basic model (see [P1]):

1) No teacher, class or room is scheduled to the same period more than once.

2) No class is scheduled to the same period, if they have common students.

3) The given teachers are scheduled to the same period.

4) The given teachers are scheduled for predetermined periods.

5) For each class the daily minimum and maximum number of periods is respected.

6) A class c1 is scheduled to earlier in the week than class c2, if c1 must precede c2.

7) A lecture cannot be scheduled to periods where the teacher, the class or the room is

unavailable.

24 Jari Kyngäs

A solution is most acceptable if it satisfies the following soft constraints:

1) The timetable of each class should have as few idle (leap) periods as possible.

2) The school day of some given classes should not start in the first period.

3) The school day of some given classes should end as early as possible.

4) The timetable of some given teachers should have as few idle periods as possible.

5) For some teachers the preferred daily minimum and maximum number of periods is given.

6) Some teachers prefer not to be scheduled in certain time periods.

7) Some teachers should be scheduled only on a limited number of days.

8) The different lessons of a subject should be on different days.

Timetabling has been done manually until the last decade when computers have been used to aid

the task. However, intelligent algorithms and computer programs were not used in Finland in the

year 2006 when we started to study the problem.

Algorithms for solving timetabling problems usually use a number of parameters to guide the

process of learning/convergence. The values of these parameters play an important role in the

overall performance of the algorithm − some combinations of parameter values turn often out to be

better than others. A central question is how to find the best combination of the parameters.

In [P1] three artificial and three real-world school timetabling problem instances were solved. As

described in Section 2, the main focus of the study was to find the best values of the parameters of

the h-HCGA algorithm. The algorithm was controlled with seven parameters and each parameter

could have 2-4 different values. The combination of the parameter values lead to a total of 972

configurations. So, in a real-world situation one should perform 972 test runs just to get every

configuration tested once. Because we wanted to do an inclusive test and there was a strict time

limit, we choose only one data set for our analysis. The most difficult real-world problem instance

was then used in the tests.

For an inclusive test all the parameter combinations were considered. Real-world problems vary a

great deal in difficulty and because there was only one problem instance, we decided to test one

supporting method, F-Race [Birattari et al., 2002]. The method starts with all the possible

parameter combinations and drops some of the combinations during the run. The dropping of the

configurations is based on the Friedman test [Conover, 1999]. The results clearly implied that the

Friedman test was suitable for choosing the parameter values. We were able to find parameter

values that were very good for the introduced real-world and artificial school timetabling problems.

We solved a secondary school instance, a high school instance and a college instance. Even

though we were able to find excellent results, the school administrators were not so keen on the

optimized timetables. One reason for this might be that the schools do not have any funds to

allocate to this kind of projects; even though the authorities could actually save money in the long

run.

As a further study we created a conversion scheme for turning a curriculum-based timetabling

problem into a school timetabling problem [Nurmi and Kyngäs, 2008]. The curriculum-based

timetabling problem consists of the weekly scheduling of the lectures for several university courses

within a given number of rooms and time periods. Curriculum-based timetabling differs from the

school timetabling in that students enroll on courses and there is no student group concept. The

motivation for the conversion was to show that a school timetabling algorithm can be used to solve

 Solving Challenging Real-World Scheduling Problems 25

curriculum-based timetabling problems. As far as we know the publication was the first one on

such a conversion scheme. The converted problem instances were solved using the h-HCGA

school timetabling algorithm described in [P1]. The algorithm found a feasible solution within the

given time limit for 12 of the 14 problem instances used in the 2nd International Timetabling

Competition [McCollum and McMullan, 2010].

We also joined an international research group of seven researchers to create an XML format for

benchmarks in high school timetabling, see [P2]. Together we described the high school

timetabling problems in several countries in order to state a common set of constraints and

objectives. The main goal was to provide exchangeable benchmarks for this problem. To achieve

this we proposed a standard data format suitable for different countries and educational systems,

defined by an XML schema. Later, four new researchers joined the group and we presented the

progress on the benchmarking project for high school timetabling in [Post et al., 2010]. The

timetabling archive currently includes 15 problem instances from seven countries and an evaluator

capable of checking the syntax of instances and evaluating the solutions.

26 Jari Kyngäs

 Solving Challenging Real-World Scheduling Problems 27

5. Sports Scheduling

Sports scheduling gained increased academic interest when the traveling tournament problem was

introduced [Easton et al., 2001]. Before that time sports scheduling was mostly of theoretical

nature. In the traveling tournament problem the most important goal is to minimize the total

distance traveled by the teams. Another important goal is to avoid long home stands and away

trips i.e. make the home and away matches vary sufficiently. The goal, minimizing the number of

breaks, was of theoretical interest in the 1980s and 1990s (see e.g. Schreuder, 1980). Nowadays

in practice, it is usually the most important one to minimize, regardless of other possible goals,

excluding e.g. NHL and KHL ice hockey leagues because in these leagues the distances between

the teams’ home venues are remarkably lengthy.

Consider a single round robin tournament where every team plays against every other team

exactly once. Every round has to be compact which means that every team must play on every

round. Thus, if there are n teams, there must be exactly n-1 rounds. If n is odd a dummy team will

be added. Each game consists of an ordered pair of teams (i, j), where team i is the home team

and team j is the away team.

Let T be the set of teams, P the set of rounds and cijp the cost of team i playing at home against

team j at round p. Now the mathematical formulation of a simple sports scheduling problem is as

follows:

 (4.1)

subject to the constraints

 ,

 , ,

 ,

The first constraint guarantees that each team plays on exactly one round. The second constraint

guarantees that each team plays exactly once per round. The binary variable xijp is equal to 1 if and

only if team i plays at home against team j at round p.

This problem is called the minimum cost single round robin tournament and it has been proven to

be NP-hard [Easton 2002], [Briskorn et al., 2006]. Therefore the general sports scheduling problem

is also an NP-hard problem.

In real-world sports scheduling, the games should be scheduled in rounds in such a way that the

solution is feasible and mostly acceptable to both the league authorities and the teams. Some

important requirements a sports league uses for its feasible schedule include (see [P3]):

1) Every team plays exactly once in every round (if a compact schedule is required).

2) A team cannot play at home on a certain day (e.g. a venue is unavailable).

3) Two teams cannot play at home on the same day (e.g. they share a venue).

4) A game must be pre-assigned to a certain round.

28 Jari Kyngäs

The quality of the final schedule is related to the correct optimization criteria and assignments

given by the league. The league prefers to optimize many goals at the same time. Some important

requests for acceptable schedules include:

1) A team cannot have more than two consecutive home games.

2) There must be at least k rounds before two teams meet again.

3) A team wishes to play most of its home games on certain weekdays.

4) Two teams do not want to play at home on the same day (e.g. they are located in the same

region).

Although there have been a lot of published results in the field of sports scheduling [Knust, 2010],

practical results have been modest. Some reasons for this might be that the real-world problems

are too complicated, the understanding of the optimization is not good enough from the customer’s

side, and that researchers tend not to be good business men or even not interested to do

business. At the time of writing we only know of a dozen cases where the researchers have been

able to close a contract with a sports league owner [Nurmi et al., 2010].

The biggest sports leagues in various countries are big businesses. The goal for every team in a

league, besides winning, is to maximize the income. Maximizing the income is very closely related

to the number of spectators in games. This includes the spectators at the venue and also the

spectators watching the game on TV. TV and other media require the attractive games to be

scheduled at desired times. In addition, decreasing the traveling costs is important for some teams.

Finally, professional sports leagues want to generate schedules that increase fairness; all teams

should play under the same conditions.

The Finnish major ice hockey league (SM-Liiga) is the biggest sports league in Finland. It has most

spectators, the players are all professionals and the media pays much attention to the league. The

league has had about 5000 spectators per game for several years now. The second and third most

attracting leagues, football (soccer) and Finnish baseball, have an average of 2000-3000

spectators per game.

In the halfway through the decade the schedule generation for SM-Liiga had become a challenging

task. For various reasons there have been an increasing number of venues that cannot be used

every day during the season. Furthermore, two of the teams cannot play on the same day because

they share the venue. An increased number of additional constraints had complicated the schedule

generation even more which is why it became almost impossible to make the schedule manually.

As an example of the quality of the major league schedules we generated (and 1st division

schedules respectively), the number of rounds reduced from previous years average of 107 (96)

down to 61 (48). As another example, the number of times a team plays three consecutive home

games reduced from previous years average of 14 (23) down to 0 (2). Note that, as a result of the

automated scheduler, the latest 1st division schedule had no three home games in a row.

The good results in sports scheduling triggered us the idea to gather a group of sports scheduling

researchers to create a framework for scheduling professional sports leagues [P5]. The

researchers were academics that had closed a contract with a sports league owner. The

framework was modeled from the requirements of various professional sports leagues: Argentine

volleyball, Austrian soccer, Belgian soccer, Brazilian soccer, Chilean soccer, Finnish ice hockey,

German soccer and German handball. We have proposed a set of artificial and real-world

 Solving Challenging Real-World Scheduling Problems 29

instances derived from the actual problems solved for professional sports league owners. The best

solutions found thus far have been published, and the sports scheduling community has been

invited to search for solutions to the unsolved instances, see [Nurmi, 2009].

The research on the topic is currently going on for scheduling the Finnish national ice hockey

league for players aged under 20 [Nurmi et al., 2011]. Our algorithm found a feasible and

acceptable schedule for the 2009-2010 season. To obtain this schedule, four distinct combinatorial

problems were solved.

30 Jari Kyngäs

 Solving Challenging Real-World Scheduling Problems 31

6. Staff Scheduling

Staff scheduling, and all of its subcategories, are becoming important problems in Finland and all

around the world. A clear reason for this is that human resources are one of the most critical and

most expensive resources for public institutions and private companies. In the past it was very

common that the employee stayed at one company for his/her life span which made it quite easy to

construct rosters. Nowadays the staff is under constant variation. In the past the employer dictated

the rosters but today the employees have requirements for their rosters. Therefore, institutions and

companies need decision support technologies for rostering. Careful planning can lead to

significant improvements both in productivity and the welfare of the staff. Besides increasing

employee satisfaction, effective labor scheduling can also improve customer satisfaction.

Staff scheduling generally includes days-off scheduling and shift scheduling. Days-off scheduling is

quite a new research area [Alfares, 2001; Costa et al.,1997; Elshafei and Alfares, 2008; Pedrosa

and Constantino, 2001]. In days-off scheduling the goal is to schedule the off-work days for each

staff member over a given time period. Shift scheduling [Alfares, 2004; Brunner, 2009; Ernst et al.,

2004; Lau, 1996], deals with the assignment of staff members to shifts. It can also specify the

starting time and duration of shifts for a given day. In other words, days-off scheduling deals with

working days and shift scheduling deals with the working times of day.

Consider a simple case of minimizing the number of workers to be hired. Let W represent the set of

n workers and D the set of m working days. Let wi be the number of workers needed to work on

day i. Let A be the matrix of elements aij which are equal to 1 if worker i is available to work on day

j, and zero otherwise. Finally, let cj be the cost of hiring the worker j. Decision variables xj indicate

whether the worker j is hired or not.

The function to be minimized is:

 , (5.1)

subject to constraints

 ,

 ,

The first constraint guarantees that at least wi workers are working on day i. This formulation of the

problem is the same as that of the well-known set covering problem. This problem belongs to the

group of NP-complete problems [Beasley, 1987]. Minimizing workers at work is the foundation of

staff scheduling. Also the very simple forms of shift scheduling are NP-hard [Lau, 1996].

There can be a very large number of requirements which must be met in staff scheduling. The

coverage requirements ensure that there is a sufficient number of drivers on duty at all times. The

regulatory requirements ensure that the driver’s work contract and government regulations are

respected. The operational requirements ensure that employees at work have correct

competences and that they have acceptable days-off and shift structures. Some important

requirements a company must consider include, see [P7]:

1) A minimum number of employees of particular competences must be assigned to each shift

or each timeslot.

32 Jari Kyngäs

2) The required number of free weekends (both Saturday and Sunday free) within a timeframe

must be respected.

3) Employees cannot work consecutively for more than k days.

4) At least k working days must be assigned between two separate days-off.

5) An employee assigned to a late shift type must not be assigned to an early shift on the

following day.

Personnel’s requests are very important and should be met as far as possible; this leads to greater

staff satisfaction and commitment, and reduces staff turnover. Some important requests a

company should consider include:

1) Single days-off and single working days should be avoided.

2) A balanced assignment of single days-off and single working days must be guaranteed

between the drivers.

3) A balanced assignment of weekdays must be guaranteed between drivers.

4) Assign a requested day-on or avoid a requested day-off.

Most of the staff scheduling cases in which academic researchers have announced that they have

closed a contract with a customer concern nurse rostering [Burke et al., 2004]. We started with

shift scheduling for a Finnish bus transportation company. The company had had a lot of variation

in the number of employees during the last couple of years. This had led to the situation where it

had become impossible to use cyclic schedules. Cyclic schedules are such that all employees

have the same basic schedule but start with a different day. In cyclic scheduling the goal is to find a

schedule that is optimal for all employees. This is the current scheduling mechanism in almost all

public institutions and private companies. Non-cyclic schedules are individual schedules, but they

are extremely difficult to generate. Our shift scheduling research focuses on non-cyclic schedules.

We solved the company’s shift scheduling problem, see [P7].

However, it turned out that we should solve the days-off scheduling first. Two different days-off

schedules were determined: one for the summer-time and one for the rest of the year. At the time

of the scheduling the staff consisted of 65 employees. Nine employees formed three groups of

three people. One of these groups always had to be at work. Furthermore, six employees could not

work on weekends. These two requirements and a dozen other ones made the days-off scheduling

quite challenging but still solvable with PEAST [Nurmi and Kyngäs, 2011].

As was the case in sports scheduling, the good results in staff scheduling triggered us to gather a

small group of staff scheduling researchers to create a framework for implementation-oriented staff

scheduling [P6]. The two researchers invited to this collaboration had solved real-world staff

scheduling instances. The framework was modeled from the requirements of various lines of

business and industry. We proposed a set of artificial and real-world instances derived from the

actual problems solved for various companies. The best solutions found were published and the

staff scheduling community was invited to challenge these results. The instances will be available

online.

A days-off schedule on a yearly basis and shifts on a monthly basis in one of the Finnish bus

transportation companies are discussed in [P7]. The generated software is integrated with a third-

party vendor product. The vehicle scheduling and the driver scheduling phases turn out to be very

interesting and hard topics of further studies.

 Solving Challenging Real-World Scheduling Problems 33

7. Summary and Conclusions

The idea of this thesis was to show that challenging school timetabling, sports scheduling and staff

scheduling problems can be solved to customer satisfaction using an intelligent algorithm and

sophisticated programming.

The difference of hard and easy problems was first discussed. A literature summary was also

given. Next, an introduction to general metaheuristics was given, followed by the description of the

algorithm used to solve challenging scheduling problems. The algorithm is called PEAST. It owns

features from hill-climbing, ejection chain method, tabu search, simulated annealing, population-

based methods, cooperative local search scheme and hyper-heuristics. Next, the details of the

school timetabling, sports scheduling and staff scheduling problems were discussed. Mathematical

models, implementation-oriented models, practical results and cooperation partners were

presented for each problem type.

The most important conclusion from the above considerations is that scheduling problems can be

solved to customer satisfaction. The best action plan for implementation-oriented research is to

cooperate both with a problem owner and with a third-party vendor. A researcher should maybe

not work with user interfaces, financial management links, customer reports, help desks, etc.

Instead, one should concentrate on algorithmic power. Though, this is only an opinion based on

experience.

It is apparent that a profound understanding of the relevant requests and requirements presented

by customers is a prerequisite for implementing and solving real-world scheduling problems. The

scheduling research should concentrate on the acceptance and satisfaction of both the problem

owner (company), the managers using the implemented software and the end-users. It should be

noted that it is not easy to incorporate the experience and expertise of the managers into a working

scheduling system. The managers often have extremely valuable knowledge, experience and

detailed understanding of their specific problem, which will vary from company to company. To

formalize this knowledge to the software is not an easy task. Still, the results of this research have

shown that it can be done successfully, and that the intelligent algorithms can produce superior

results.

The final conclusion is that the academics focusing on implementation-oriented research should

create systems that

1) generate solutions that are not too accurate compared to the input data and real-world use,

2) generate just a few solutions to choose from,

3) generate clearly different solutions to choose from,

4) allow users to specify the importance of requests and requirements,

5) minimize the scheduling time,

6) run on any modern computer with any operating system,

7) do not use third-party mathematical software packages with expensive licensing policies

and

8) are integratable with existing industry software.

34 Jari Kyngäs

References

Alfares H.K. 2001. Efficient optimization of cyclic labor days-off scheduling. OR Spektrum 23, 283-
294.

Alfares H.K. 2004. Survey, categorization and comparison of recent tour scheduling literature,
Annals of Operations Research 127, 145-175.

Applegate D., Bixby R.E. and Cook W.J. 2007. The Traveling Salesman Problem: A Computational
Study, Princeton University Press, Princeton, NJ.

Beasley J.E. 1987. An algorithm for set covering problem. European Journal of Operational
Research 31, 85-93.

Birattari M., Stützle T., Paquete L., Varrentrapp K. 2002. A racing algorithm for configuring
metaheuristics. Proceedings of the Genetic and Evolutionary Computation Conference, Morgan
Kaufmann, San Francisco, CA, USA, 11-18.

Blazewicz J., Domschke W. and Pesch E., 1996. Job Shop Scheduling Problem: Conventional and
New Solution Techniques, European Journal of Operational Research 93, 1-33.

Blum C., Roli A. 2003. Metaheuristics in Combinatorial Optimization: Overview and Conceptual
Comparison, ACM Computing Surveys 35(3), 268-308.

Briskorn D., Drexl A., Spieksma F.C.R. 2006. Round robin tournaments and three index
assignment, Working Paper.

Brunner J.O., Bard J.F., and Kolisch R. 2009. Flexible shift scheduling of physicians, Health Care
Management Science 12(3), 285-305.

Burke E.K., De Causmaecker P. and van den Berghe G. 2004. The State of the Art of Nurse
Rostering, Journal of Scheduling 7, 441-499.

Burke E.K., Hart E., Kendall G., Newall J., Ross P., and Schulenburg S. 2003. Hyper-heuristics: An
emerging direction in modern search technology, Handbook of Metaheuristics (F. Glover and G.
Kochenberger, eds.), Kluwer, 457–474.

Carter M.W. 1986. A Survey of Practical Applications of Examination Timetabling Algorithms. OR
Practice 34, 193-202.

Colorni A., Dorigo M., Maniezzo V. 1992. Distributed Optimization by Ant Colonies. In F. J. Varela
and P. Bourgine, editors, Towards a Practice of Autonomous Systems: Proceedings of the First
European Conference on Artificial Life, 134-142. MIT Press, Cambridge, MA.

Conover W.J. 1999. Practical nonparametric statistics, John Wiley & Sons, USA.

Costa M.C., Jarray F., Picouleau C. 2006. An acyclic days-off scheduling problem, 4 OR 4, 73-85.

Easton K. 2002. Using integer programming and constraint programming to solve sports
scheduling problems, Ph.D. thesis, Georgia Institute of Technology, USA.

Easton K., Nemhauser G. and Trick M. 2001. The Traveling Tournament Problem: description and
benchmarks. Proceedings of the 7th. International Conference on Principles and Practice of
Constraint Programming, 580–584, Paphos.

Easton K., Nemhauser G. and Trick M. 2004. Sports scheduling. In Handbook of Scheduling:
Algorithms, Models and Performance Analysis (Leung, Ed.), CRC Press Inc, Florida, USA, 1–19.

 Solving Challenging Real-World Scheduling Problems 35

Eberhart R.C., Kennedy J. 1995. A New Optimizer Using Particle Swarm Theory, Proceedings of
the Sixth International Symposium on Micromachine and Human Science, Nagoya, Japan, 39-43.

Elshafei M., Alfares H.K. 2008. A dynamic programming algorithm for days-off scheduling with
sequence dependent labor costs, J Sched 11, 85-93.

Ernst A. T., Jiang H., Krishnamoorthy M. and Sier D. 2004. Staff scheduling and rostering: A
review of applications, methods and models, European Journal of Operational Research 153, 3-27.

Garey M.R., Johnson D.S. 1979. Computers and Intractability - A Guide to NP-completeness. W.H.
Freeman.

Glover F., McMillan C., Novick B. 1985. Interactive Decision Software and Computer Graphics for
Architectural and Space Palnning, Annals of Operations Research 5, 557-573.

Glover F. 1992. New ejection chain and alternating path methods for traveling salesman problems.
In Computer Science and Operations Research: New Developments in Their Interfaces, edited by
Sharda, Balci and Zenios, Elsevier, 449–509.

Goldberg D.E. 1989. Genetic Algorithms in Search, Optimization and Machine Learning, Kluwer
Academic Publishers, Boston, MA, USA.

Hansen P., Mladenovi´c N. 2001. Variable neighbourhood search: Principles and applications.
European Journal of Operations Research 130, 449–467.

Hecht-Nielsen R. 1990. Neurocomputing. Addison Wesley.

Holland J.H. 1975. Adaption in Natural and Artificial Systems, University of Michigan Press.

Jain A.S. and Meeran S. 1999. Deterministic Job-Shop Scheduling: Past, Present and Future,
European Journal of Operational Research 113, 390-434.

Kirkpatrick S., Gelatt C.D. Jr., Vecchi M.P. 1983. Optimization by Simulated Annealing, Science
220, 671-680.

Kennedy J., Eberhart R.C. 1995. Particle Swarm Optimization. Proceedings of IEEE International
Conference on Neural Networks, Piscataway, 1942-1948.

Kohonen T. 1984. Self-organization and Associative Memory. Springer-Verlag: New York. (2nd
Edition: 1988; 3rd edition: 1989).

Knust S. (Last update 12.10.2010). Classification of Literature on Sports Scheduling [Online],
Available: http://www.informatik.uni-osnabrueck.de/knust/sportlit_class/, Accessed 3.1.2011.

Landa Silva J.D. 2003. Metaheuristic and Multiobjective Approaches for Space Allocation, Ph.D.
Dissertation, School of Computer Science and Information Technology, University of Nottingham,
UK.

Lau H.C. 1996. On the Complexity of Manpower Shift Scheduling, Computers and Operations
Research 23(1), 93-102.

McCollum B. 2006. University Timetabling: Bridging the Gap between Research and Practice,
Proceedings of the 6th International Conference on the Practice and Theory of Automated
Timetabling, Brno, Czech Republic, 15-35.

McCollum B. and McMullan P. (Last update 10.5.2010). The 2nd International Timetabling
Competition [Online], Available: http://www.cs.qub.ac.uk/itc2007/. Accessed 3.1.2011.

http://www.informatik.uni-osnabrueck.de/knust/sportlit_class/

36 Jari Kyngäs

Moscato P. 1989. On evolution, search, optimization, genetic algorithms and martial arts: Towards
memetic algorithms, Technical Report 826, California Institute of Technology, Pasadena,
California.

Muhlenbein H. 1989. Parallel genetic algorithms, population genetics and ombinatorial
optimization. Proceedings of the Third International Conference on Genetic Algorithms, 416-421.

Neveu B., Trombettoni G. and Glover F. 2004. Idwalk : A candidate list strategy with a simple

diversification device. Lecture Notes in Computer Science 3258, 423–437.

Nurmi K. 1998. Genetic Algorithms for Timetabling and Traveling Salesman Problems, Ph.D.
dissertation, Dept. Applied Math., University of Turku, Finland.

Nurmi K. and Kyngäs J. 2008. A Conversion Scheme for Turning a Curriculum-based Timetabling

Problem into a School Timetabling Problem in Proc of the 7th Conference on the Practice and

Theory of Automated Timetabling (PATAT), Montreal, Canada.

Nurmi K. 2009. Sports Scheduling Problem [Online]. Available: http://www.samk.fi/ssp/, Accessed

11.1.2011.

Nurmi K. and Kyngäs J. 2009. Improving the Schedule of the Finnish Major Ice Hockey League in

Proc of the 2nd International Conference on the Mathematics in Sport, Groningen, Netherlands.

Nurmi K., Goossens D. and Kyngäs J. 2011. Scheduling a Triple Round Robin Tournament for the

Finnish National Ice Hockey League for Players Under 20 in Proc of the IEEE Symposium on

Computational Intelligence in Scheduling, Paris, France.

Nurmi K. and Kyngäs J. Days-off Scheduling for a Bus Transportation Staff, International Journal of

Innovative Computing and Applications, Inderscience, UK, to be published 2011.

Osman I.H., Laporte G. 1996. Metaheuristics: A bibliography, Annals of Operations Research 63,

513-623.

Pedrosa D. and Constantino M. 2001. Days-off scheduling in public transport companies,
Computer-aided scheduling of public transport, Voß, S. et al (eds.), Lect. Notes Econ. Math. Syst.
505, 215-232.

Post G., Kingston J. H., Ahmadi S., Daskalaki S., Gogos C., Kyngäs J., Nurmi K., Santos H., Rorije

B. and Schaerf A. 2010. An improved XML format and benchmark problems for High School

Timetabling in Proc of the 8th Conference on the Practice and Theory of Automated Timetabling

(PATAT), Belfast, Ireland.

Preux Ph., Talbi E-G. 1999. Towards Hybrid Evolutionary Algorithms, International Transactions in

Operational Research 6, 557-570.

Rasmussen P. and Trick M. 2008. Round robin scheduling - A survey. European Journal of
Operational Research 188, 617–636.

Rumelhart D.E. and McClelland J.L. 1986. Parallel Distributed Processing: Explorations in
Microstructure of Cognition (volumes 1 & 2), MIT Press.

Schaerf A. 1999. A Survey of Automated Timetabling. Artificial Intelligence Review 13/2, 87-127.

Schreuder J.A.M. 1980. Constructing timetables for sport competitions, Mathematical
Programming Study 13, 58–67.

http://www.samk.fi/ssp/

 Solving Challenging Real-World Scheduling Problems 37

Syswerda G. 1989. Uniform Crossover in Genetic Algorithms. In Proceedings of the 3rd
International Conference on Genetic Algorithms, 2-9.

Toth P. and Vigo D. 2001. The Vehicle Routing Problem, Monographs on Discrete Mathematics
and Applications, SIAM, Philadelphia.

Tripathy A. 1992. Computerised Decision Aid for Timetabling – A Case Analysis. Discrete Applied
Mathematics 35, 313-323.

de Werra D. (1985): An introduction to timetabling. European Journal of Operations Research 19,
151-162.

Publication 1

K. Nurmi and J. Kyngäs, ”A Framework for School Timetabling Problem”. In
Proc of the 3rd Multidisciplinary Int. Scheduling Conf.: Theory and
Applications (MISTA), Paris, France, 2007, pp. 386-393.

A Framework for School Timetabling Problem

Kimmo Nurmi, Jari Kyngäs
Satakunta University of Applied Sciences, Finland, Tiedepuisto 3, FIN-28600 Pori

{kimmo.nurmi, jari.kyngas}@samk.fi

Abstract: This paper introduces a framework for a highly constrained school timetabling problem,
which was modeled from the requirements of various Finnish school levels. We present a success-
ful algorithm to solve real-world problems as well as artificial test problems. Moreover, we find
the best configuration for this algorithm using brute force and statistical analyses. Finally, we pro-
pose a set of benchmark problems that we hope the researchers of the timetabling problems would
adopt.

Keywords: Evolutionary Algorithms, Heuristic Search, Real World Scheduling, Timetabling.

1. Introduction
In recent years many solution approaches for different timetabling problems have been introduced.
Most of the work has concentrated on examination timetabling, university timetabling and course
timetabling [1,2,3,4,5,6]. Timetabling researchers have obtained very promising and practicable
results in these problem areas. However, school timetabling has not been as extensively studied,
and widely usable results are not yet available. The school timetabling problem [7] consists of as-
signing lectures to periods in such a way that no teacher, class or room is involved in more than
one lecture at a time and other constraints (hard and soft) are satisfied.

The main focus of this paper is to introduce a successful algorithm to tackle highly constrained
school timetabling problems [8,9]. The algorithm is controlled with nine different parameters. For
seven of these parameters we searched the best values using both brute force and statistical analy-
ses. Two different methods were mainly used because we wanted to confirm that the chosen pa-
rameter values were the best ones. Two parameters were excluded because they have a great im-
pact on the running time and therefore make the results incomparable (see Chapters 2-4).

Another point of this paper is to propose a set of benchmark instances and publish them as well as
our results on the web. We wanted to lay out the foundation of comparable results (see Chapter 5).
This idea is presented (by Schaerf and Di Gaspero) in [10].

2. Problem Description
We describe a school timetabling problem that arises in various Finnish school levels: secondary
school, high school and college. This problem description is representative of many timetabling
scenarios within the area of school timetabling. The timetabling is based on the following condi-
tions:

- The timetable frame consists of n weeks; each week has m days and each day t periods (timeslots).
- The lecture is a predefined combination of a teacher, a class (or course), a room and the length of

the lecture in periods.
- The set of teachers, classes/courses and rooms is fixed.
- More than one teacher can teach a particular class at the same time.
- Each class should have at least a given number of periods in a day, but should not have more than

another given number of periods.
- The classes/courses can have common students.
- Some classes/courses must precede other classes/courses
- The rooms can be classified to certain room types.

386

MISTA 2007

The school timetabling problem consists of scheduling the predefined lectures in such a way that
the solution is feasible and mostly acceptable to both school staff and teachers. A feasible solution
satisfies the following hard constraints:

1. No teacher, class/course or room is scheduled to the same period more than once (basic model).
2. No class/course is scheduled to the same period, if they have common students.
3. The given lectures are scheduled to the same period.
4. The given lectures are scheduled for predetermined periods.
5. For each class the daily minimum and maximum number of periods is respected.
6. A class/course c1 is scheduled to earlier in the week than class/course c2, if c1 must precede c2.
7. A lecture cannot be scheduled to periods where the teacher, the class or the room is unavailable.

A solution is most acceptable if it satisfies the following soft constraints:

1. The timetable of each class should have as few idle (leap) periods as possible.
2. The school day of some classes should not start in the first period.
3. The school day of some classes should end as early as possible.
4. The timetable of some teachers should have as few idle periods as possible.
5. For some teachers the preferred daily minimum and maximum number of periods is given.
6. Some teachers prefer not to be scheduled in certain time periods.
7. Some teachers should be scheduled only on a limited number of days.
8. The lessons of a subject should be on different days.

The above formulation covers school timetabling problems occurring in Finnish secondary
schools, high schools and colleges. In lower school levels the problem reminds the basic school
timetabling problem and in higher levels it is more similar to a combination of the school time-
tabling problem and the course timetabling problem [11].

3. The Algorithm
The algorithm presented here is an extension of the h-HCGA algorithm presented in [12]. We have
spent “quiet timetabling research life” since the development of the algorithm and returned to the
problem only recently, when we were asked to schedule the timetables of one secondary school
and one high school. First we spent quite a lot of time trying to improve our original algorithm
with the ideas of Ant Algorithms [13, 14]. Unfortunately we were not able to find competing re-
sults. We moved into improving the parameter values of the h-HCGA algorithm. Table 1 summa-
rizes the parameters and the values from which we were searching the best configuration. Because
two of the parameters have a great effect on computational time, we fixed their values in order to
keep the results comparable.

Extended h-HCGA parameters

F. Population size 20 (fixed)
1. Reproduction/selection Random-average, Random-best, Marriage-best

F. Maximum move sequence 10 (fixed)
2. Tabulist size for the GHCM-operator 0, 5, 10
3. Tabulist size for overall moves 0x, 1.5x, 2x, 4x (maximum move sequence)

4. Type of removal check All, Hard, Hard or Soft
5. Fitness calculation Absolute, Weighted
6. Update frequency of hard constraint weights 5, 10, 20

7. Prevention of same lessons No, Yes

Table 1: Parameter summary of the extended h-HCGA algorithm.

The algorithm is a genetic algorithm [15,16] with one mutation operator and no recombination op-
erators. The two most important features of the algorithm are the greedy hill-climbing mutation
(GHCM) operator, which generates a new solution candidate from the current solution and the

387

Regular Papers

adaptive genetic penalty method (ADAGEN), which is a multiobjective optimization method
[17,18,19,20].

The GHCM operator is based on moving a lecture l1 from its old period p1 to a new period p2,
moving another lecture l2 from period p2 to a new period p3 and so on, ending up with a sequence
of moves. The initial lecture selection is random. The new period for the lecture is selected consid-
ering all possible periods and selecting the one which causes the least increase in the cost function
when considering the relocation cost only. Moreover, the new lecture from that period is again se-
lected considering all the lectures in that period and picking the one for which the removal causes
the most decrease in the cost function when considering the removal cost only. The operator stops
if the last move causes an increase in the cost function value and if the value is larger than that of
the previous non-improving move.

We noted in [12] that we can improve the GHCM operator by introducing a tabu list, which pre-
vents reverse order moves in the same sequence of moves. We can also prevent only some of the
moves (parameter 2). To further widen the use of the tabu list, we can prevent reverse order moves
in consecutive move sequences (parameter 3), that is in consecutive applications of the GHCM
operator.

The ADAGEN method is an adaptive penalty method for multiobjective optimization. A tradi-
tional penalty method assigns positive weights (penalties) to the soft constraints and sums the vio-
lation scores to the hard constraint values to get a single value to be optimized. The ADAGEN
method assigns dynamic weights to the hard constraints. The weights are updated in every kth (pa-
rameter 6) generation using a somewhat complicated formula [12].

The reproduction operation [21] of the (genetic) algorithm is based to a certain extent on the
steady-state reproduction [22]. We select randomly a timetable from the population of timetables
for single GHCM operation. The new timetable replaces the old one if it has better or equal fitness.
We have three variations (parameter 1). In the first one the new timetable replaces also the least fit
in the current population if it is better than the current population average. In the second one the
least fit is replaced with the best one, when n better timetables have been found, where n is the size
of the population. In the third one we use the second variation but select a timetable using a mar-
riage selection [23].

When selecting a lecture to be removed from a period (parameter 4), we can consider either all the
lectures in that period or only those that have at least one constraint violation with the lecture that
was moved to that period previously. We can also consider only hard constraint violations. When
calculating the best lecture to be removed and the best period to move to (parameter 5), we can use
either absolute number of constraint violations or the weighted penalty value of the ADAGEN
method.

We also tried (parameter 7) to programmatically prevent lessons of a subject to be on the same day
(soft constraint 8). Another possibility would have been to change it to a hard constraint.

In preliminary experiments the extended h-HCGA algorithm found encouraging results. Some pa-
rameter values seemed to produce better results than others. Our next goal was to find the best con-
figuration for the parameter values.

4. Finding the Configuration
We had two possible choices for the process of finding out the best configuration of parameters:
brute force and statistical methods. The brute force approach was very attempting because we had
the possibility to use up to 78 computers. We decided to use brute force but also analyze the runs
using standard statistical methods. We also performed “what-if” analyses on the runs using the

388

MISTA 2007

Friedman test [24] in similar fashion to Birattari & al. [25]. We used the highly constrained
benchmark instance C3 (see chapter 5) in our test runs.

For the runs to be comparable in computing time we had to fix two parameter values (see table 1).
The rest of the parameter values were such that they did not influence the convergence time. The
total number of configurations was 1296 but because the tabulist size for overall moves has no ef-
fect when tabulist size for GHCM-operator is zero, we were left with 972 configurations.

Our goal was to find a configuration which would minimize the hard constraints to zero. The con-
figurations were ranked according to hard constraints. We decided to run every configuration five
times and for two hours each, on an AMD Athlon 1700+ with 512Mb of memory. For every gen-
eration of the algorithm we saved the number of hard constraint violations.

At first we only considered those runs that had ended up with zero hard constraint violations ─ 218
out of 972 runs met this criterion.

4.1. Choosing the Configuration
We started analyzing the results by counting how many times each value of each parameter oc-
curred in the best runs. Table 2 summarizes the results.

Parameter Values and occurrences
1. Reproduction/selection Random-average = 38%,

Random-best = 40%, Marriage-best = 22%
2. Tabulist size for GHCM-operator 0 = 20%, 5 = 42%, 10 = 38%
3. Tabulist size for overall moves 0x = 18%, 1.5x = 25%, 2x = 26%, 4x = 31%
4. Type of removal check All = 29%, Hard = 63%, Hard or soft = 8%
5. Fitness calculation Absolute = 64%, Weighted = 36%
6. Update frequency of hard constraint weights 5 = 48%, 10 = 30%, 20 = 22%
7. Prevention of same lessons No = 77%, Yes = 23%

Table 2: The chosen values (bolded) after brute force runs.

The best value for the last four parameters could easily be chosen (tested with the t-test). The first
three, on the other hand, required further investigation.

Next we ran the chi-squared test [24] pairwise between all parameters. We were especially inter-
ested in those test cases which included the chosen parameter values. Unfortunately none of the
chi-squared tests showed statistically significant dependencies among the parameter values. We
enlarged the chi-squared test to include also those runs that had ended up with one hard constraint
violation, but that did not change the test results. (These statistical tests can be obtained from us at
request.)

At this phase we were still not able to find the values for the first three parameters. However, we
were able to reduce the number of free parameters from 972 to 16 (the combination of chosen pa-
rameter values of each parameter). For the reproduction/selection, the tabulist size for GHCM-
operator and the tabulist size for overall moves we were not able to choose one specific value.
That strengthened our decision to use statistical methods.

4.2. Statistical Methods
Birattari & al. [25] have developed a process, F-Race, in which they start with a considerable large
population and eliminate individuals from it with the help of statistical methods. The idea is to
eliminate an individual from the population as soon as it can be statistically significantly proven
that the individual is not performing good enough. The process can be thought of as a race where

389

Regular Papers

every individual competes against each other. At specific intervals the performance of each indi-
vidual is checked and the poorly performing ones are dropped out from the population. This proc-
ess is well suited for problems with extensive number of parameters.

We tested this method to see how it would have worked in this case. However, we did not use the
actual racing algorithm ─ we only tested the runs to see which ones would have dropped out after
two hours of running. From the output of the runs we sampled ten evenly spaced observations.
This meant that we had 972 treatments (configurations) and 10 blocks (samples) for the Friedman
test.

Table 3 summarizes the results of the Friedman test for the case of the eliminated runs. When we
compare this with table 2 we can see that these results are very compatible with each other. For
example, table 2 tells us that in the 218 runs 63% of the configurations had parameter type of re-
moval check set to value Hard. Table 3, on the other hand, tells us that only 7% of the eliminated
runs included configurations where this parameter was set to value Hard. The information in the
two tables supports each other very well.

Parameter Values and occurrences
1. Reproduction/selection Random-average = 21%,

Random-best = 34%, Marriage-best = 45%
2. Tabulist size for GHCM-operator 0 = 45%, 5 = 24%, 10 = 31%
3. Tabulist size for overall moves 0x = 29%, 1.5x = 20%, 2x = 28%, 4x = 23%
4. Type of removal check All = 21%, Hard = 7%, Hard or soft = 72%
5. Fitness calculation Absolute = 14%, Weighted = 86%
6. Update frequency of hard constraint weights 5 = 16%, 10 = 28%, 20 = 56%
7. Prevention of same lessons No = 30%, Yes = 70%

Table 3: The chosen values (bolded) in eliminated configurations.

In the brute force runs we were not able to choose the best values for the first three parameters.
Here the best value for the reproduction/selection is Random-average. The difference between the
values Random-average and Random-best is statistically significant at 0.001 level when measured
with the t-test. Therefore we chose the value Random-average for parameter reproduc-
tion/selection.

The other two parameters show no statistical difference between the values. We chose value 5 for
the parameter tabulist size for GHCM-operator because both tables indicate that this could be the
best value (though not statistically significantly differing from value 10). The parameter tabulist
size for overall moves shows no difference in goodness of the values. The value was chosen to be 2
because we felt it could be the best value.

5. Standard Benchmark Instances
In school timetabling we do not have a set of standard test problems, as is the case in examination
timetabling [10]. We now introduce some test instances and hope that they will lay the foundation
for the standard universal benchmark instances for school timetabling problems.

The first set of test problems consists of all-N-problems introduced in [12]. These artificial prob-
lems have a timeframe of N days with N periods in one day totaling N2 periods. There are N teach-
ers, N classes and N rooms. All possible combinations of a teacher, a class and a room are to be
scheduled. This will give us N3 lectures to be scheduled. The problem is quite difficult to solve
since a feasible solution has no idle periods for any teacher, class or room.

The second set of test problems consists of Abramson-N-problems introduced in [26]. These artifi-
cial problems have a timeframe of 30 periods. The lectures are built by first choosing a random

390

MISTA 2007

teacher and class and room identifiers and then placing that lecture in the first possible period. If
the lecture cannot be placed in an available period, then it is discarded and another one is gener-
ated. This process continues until all teacher, class and room identifiers have been used. The re-
sulting timetable has again no idle periods and thus is tightly constrained.

Both all-N-problems and Abramson-N-problems are excellent test instances since

a) every single school timetabling algorithm can tackle them because they are the simplest
version of the problem (basic model) and

b) we can easily increase the problem difficulty by increasing N.

Problem identifier B3 S3 H3 C3
School level Artificial school Secondary school High school College

#Weeks 1 1 1 1
#Days 5 5 5 5
#Periods per day 4 7 7 8

#Teachers 21 25 18 46
#Classes/courses 11 14 50 41
#Rooms/room classes 3 25 13 34

#Lectures 169 280 219 387
#Periods in lectures 200 306 320 854

#Clashes
(hard constraint 1)

3020 8590 6420 28574

#Overlapping classes/courses
(hard constraint 2)

11 0 52 20

#Unavailabilities
(hard constraint 7)

108 600 72 328

Soft constraint 1 in use Yes Yes No Yes
Soft constraint 4 in use Yes Yes Yes Yes
Soft constraint 6 in use No Yes Yes No
Soft constraint 8 in use Yes Yes Yes Yes

Table 5: Summary of one artificial and three real-world problems.

The third set of problems consists of one artificial problem and three small to medium-sized real-
world problems in Finnish schools, one from each school level. Table 5 summarizes these four
problems. The data for these problems has been published on the web [27]. In all of these prob-
lems we are searching for a feasible solution which optimizes soft constraints 1, 4, 6 and 8. Other
soft constraints are not in use. These four problems are good test instances since

a) most of the school timetabling algorithms should be able to tackle them because they are
not too complicated versions of the problem,

b) they are quite moderate-sized and
c) they are different from each other.

The C3 problem is the most constrained and thus the most interesting one. We solved six problems
from the standard benchmark instances: All-11-problem, Abramson-15-problem, B3, S3, H3 and
C3. We used the parameter values found in the statistical analysis. To keep the results fair we did
no further fine-tuning to the extended h-HCGA algorithm. The test runs were performed using the
same computers as in Chapter 4. Table 6 summarizes the results.

Furthermore, we decided to run the algorithm using a simulated annealing refinement introduced
in [12]. When the GHCM operator selects a new period for a lecture li, we apply the following se-
lection mechanism. Periods are examined in random order. A period is selected as the current best
one if its fitness is less than the current best one or if the current annealing temperature [28] ac-

391

Regular Papers

cepts their difference. The same mechanism is used in the GHCM operator while removing a lec-
ture. Note that the GHCM operator does not accept upward (increasing cost) move sequences,
even if a single move can be upward. Table 6 summarizes the results using the simulated annealing
refinement. It also shows the best manual solution the staff of the schools were able to find. The
best solutions we have found in all of our experiments can be found in [27].

Problem identifier Nbr of runs Single run time Best Median Worst Best manual
Extended algorithm
All-11 8 8 hours 0-0 0-0 0-0
Abramson-15 8 8 2-0 3-1 4-0
B3 8 8 0-3 1-0 1-6
S3 8 8 0-2 0-2 0-3
H3 8 8 0-3 0-3 0-3
C3 8 8 0-2 0-4 0-6
With SA refinement
All-11 8 24 hours 0-0 0-0 0-0
Abramson-15 2-0 2-0 3-1
B3 0-2 0-5 1-1
S3 0-2 0-2 0-2 0-8
H3 0-3 0-3 0-3 0-12
C3 0-1 0-1 0-3 0-10

Table 6: Results for standard benchmark instances and the best manual solutions. For example,
the value 1-6 stands for one hard constraint and six soft constraint violations.

6. Conclusions and further work
In this paper we considered a highly constrained school timetabling problem and presented a suc-
cessful algorithm to solve real-world problems as well as artificial test problems. Our algorithm
performs very well in the timetabling problems presented in this paper. In order to find out if sta-
tistical methods could be of any help in solving the parameter values we ran our algorithm with all
possible configurations and analyzed the results using the Friedman test. The Friedman test clearly
implied that it is able to extract poor configurations in favor of the good ones. In the near future,
we will build the racing process into our program. Our research has shown that the chosen parame-
ter values were very good for the problem C3, but we do not know if they are the best for all prob-
lems. Therefore it is best to start with as many configurations as possible and reduce them in time.
We have developed a web page [27] that allows other researchers to download the problem de-
scription, the standard benchmark instances and the computational results.

References
[1] E.K. Burke and P. De Causmaecker (2003). The Practice and Theory of Automated Time-

tabling IV: Revised Selected Papers from the 4th International conference, Gent 2002,
Springer Lecture Notes in Computer Science, vol. 2740, Springer.

[2] E.K. Burke and M. Trick (2005). The Practice and Theory of Automated Timetabling V: Re-
vised Selected Papers from the 5th International conference, Pittsburgh 2004, Springer Lecture
Notes in Computer Science, vol. 3616, Springer.

[3] E.K. Burke and Hana Rudová (2006). Proceedings of the 6th International Conference on the
Practice and Theory of Automated Timetabling, Masaryk University.

[4] A. Schaerf (1999), A Survey of Automated Timetabling, Artificial Intelligence Review 13(2),
87 – 127.

[5] E.K. Burke and S. Petrovic (2002). Recent Research Directions in Automated Timetabling,
European Journal of Operational Research 140(2), 266 – 280.

392

MISTA 2007

[6] B. McCollum (2006). University Timetabling: Bridging the Gap between Research and Prac-
tice. In Proc. of the 6th Int. Conf. on the Practice and Theory of Automated Timetabling, 15 –
35.

[7] D de Werra D (1985). An Introduction to Timetabling. European Journal of Operations Re-
search 19, 151–162.

[8] S. Even, A. Itai, and A. Shamir (1976). On the complexity of timetable and multicommodity
flow problems. SIAM Journal on Computing 5, 691 – 703.

[9] T.B. Cooper and J.H. Kingston (1996). The Complexity of Timetable Construction Problems,
in the Practice and Theory of Automated Timetabling, ed. E.K. Burke and P. Ross, Springer-
Verlag (Lecture Notes in Computer Science), 283 – 295.

[10] A. Schaerf and L. Di Gaspero (2006). Measurability and Reproducibility in Timetabling Re-
search: State-of-the-Art and Discussion. In Proc. of the 6th Int. Conf. on the Practice and The-
ory of Automated Timetabling, 53 – 62.

[11] A. Schaerf (1999). A Survey of Automated Timetabling. Artificial Intelligence Review 13(2),
87 – 127.

[12] K. Nurmi (1998). Genetic Algorithms for Timetabling and Traveling Salesman Problems.
Ph.D. dissertation, University of Turku, Finland.

[13] M. Dorigo, V. Maniezzo, and A. Colorni (1996). The Ant System: Optimization by a Colony
of Cooperating Agents. IEEE Transactions on Systems, Man, and Cybernetics – Part B, 26(1),
29 – 41.

[14] M. Dorigo, G. Di Caro, and L. M. Gambardella (1999). Ant Algorithms for Discrete Optimi-
zation. Artificial Life, 5(2), 137 – 172.

[15] Goldberg, David E (1989), Genetic Algorithms in Search, Optimization and Machine Learn-
ing, Kluwer Academic Publishers, Boston, MA.

[16] Vose, Michael D (1999). The Simple Genetic Algorithm: Foundations and Theory, MIT
Press, Cambridge, MA.

[17] J.D. Landa Silva, E.K. Burke and S. Petrovic (2004). An Introduction to Multiobjective
Metaheuristics for Scheduling and Timetabling, MetaHeuristics for Multiobjective Optimisa-
tion (edited by X.Gandibleux, M.Sevaux, K.Sorensen and V.T'Kindt), Springer Lecture Notes
in Economics and Mathematical Systems Vol. 535, 91 – 129.

[18] Fonseca C.M, Fleming P.J (1995). An Overview of Evolutionary Algorithms in Multiobjec-
tive Optimization. Evolutionary Computation 3(1), 1 – 16.

[19] Smith A.E, Tate D.M (1993). Genetic Optimisation using a Penalty Function. In Proceedings
of the 5th International Conference on Genetic Algorithms, 499 – 503.

[20] Richardson J.T, Palmer M.R, Liepins G, Hilliard M (1989). Some Guidelines for Genetic Al-
gorithms with Penalty Functions. In Proceedings of the 3rd International Conference on Ge-
netic Algorithms, 191 – 197.

[21] D Goldberg (1989). Genetic Algorithms in Search, Optimization, and Machine Learning. Ad-
dison-Wesley, Reading, MA.

[22] G Syswerda (1989). Uniform Crossover in Genetic Algorithms. In Proceedings of the 3rd
International Conference on Genetic Algorithms, 2 – 9.

[23] P. Ross and G.H Ballinger (1993) PGA - Parallel Genetic Algorithm Testbed. Department of
Articial Intelligence. University of Edinburgh.

[24] W.J. Conover (1999), Practical Nonparametric Statistics, John Wiley & Sons, New York.
[25] M. Birattari & al. (2002). A racing algorithm for configuring metaheuristics. In Proceedings

of the Genetic and Evolutionary Computation Conference, 11– 18.
[26] D. Abramson, M. Krishnamoorthy M, H. Dang (1999). Simulated Annealing Cooling Sched-

ules for the School Timetabling Problem. Asia-Pacific Journal of Operational Research 16, 1 –
22.

[27] K. Nurmi, J.Kyngäs (2007). School Timetabling Problem – Formulation, Instances and Com-
putional Results. URL: www.samk.fi/sttp.

[28] P.J.M van Laarhoven, E.H.L Aarts E.H.L (1987). Simulated annealing: Theory and applica-
tions. Kluwer Academic Publishers.

393

Regular Papers

Publication 2

G. Post, S. Ahmadi, S. Daskalaki, J. H. Kingston, J. Kyngäs, K. Nurmi, D.
Ranson and H. Ruizenaar, “An XML Format for Benchmarks in High School
Timetabling”, Annals of Operations Research, Springer, USA, 2010.
Reprinted with the permission from Springer.

Ann Oper Res
DOI 10.1007/s10479-010-0699-9

An XML format for benchmarks in High School
Timetabling

Gerhard Post · Samad Ahmadi · Sophia Daskalaki ·
Jeffrey H. Kingston · Jari Kyngas · Cimmo Nurmi ·
David Ranson

© The Author(s) 2010. This article is published with open access at Springerlink.com

Abstract The High School Timetabling Problem is amongst the most widely used
timetabling problems. This problem has varying structures in different high schools even
within the same country or educational system. Due to lack of standard benchmarks and
data formats this problem has been studied less than other timetabling problems in the liter-
ature. In this paper we describe the High School Timetabling Problem in several countries
in order to find a common set of constraints and objectives. Our main goal is to provide ex-
changeable benchmarks for this problem. To achieve this we propose a standard data format
suitable for different countries and educational systems, defined by an XML schema. The
schema and datasets are available online.

This research has been supported by BSIK grant 03018 (BRICKS: Basic Research in Informatics
for Creating the Knowledge Society).

G. Post (�)
Department of Applied Mathematics, University of Twente, P.O. Box 217, 7500 AE Enschede,
The Netherlands
e-mail: g.f.post@math.utwente.nl

G. Post
ORTEC, Groningenweg 6k, 2803 PV Gouda, The Netherlands

S. Ahmadi
School of Computer Science, De Montfort University, The Gateway, Leicester, LE1 9BH, UK

S. Daskalaki
Engineering Sciences Department, University of Patras, 26500 Rio Patras, Greece

J.H. Kingston
School of Information Technologies, The University of Sydney, Sydney, Australia

J. Kyngas · C. Nurmi
Satakunta University of Applied Sciences, Tiedepuisto 3, 28600 Pori, Finland

D. Ranson
Department of Informatics, University of Sussex, Falmer, Brighton, BN1 9QH, UK

mailto:g.f.post@math.utwente.nl

Ann Oper Res

Keywords Timetabling · High school · Benchmark · Xml · Scheduling

1 Introduction

One of the best known timetabling problems is the High School Timetabling Problem; most
people have some experience of timetables from their school days, with probably a not
always positive opinion on it. There is an implicit belief that all High School Timetabling
instances are similar, and that a computer program can always ‘solve’ it.

In reality, the research in this area is still very active and we are nowhere near solving all
the instances of the High School Timetabling Problem to optimality. Moreover, continuous
reforms in educational systems throughout the world generate new problems to tackle. On
the literature side there are papers on general timetabling problems such as de Werra (1985),
Cooper and Kingston (1993), Schaerf (1999), Carter and Laporte (1998), de Werra (1999),
Burke and Petrovic (2002). Some of their concepts and/or methods can be used in real-
life timetabling problems. On the other hand, there are also case studies of high schools in
particular countries, some of which are mentioned in Sect. 2.

It is surprising that no standard format for exchanging datasets in the field of High School
Timetabling has emerged until now. An accepted format would greatly facilitate the progress
in the field. We try to fill in this gap by providing an XML format for existing and new High
School Timetabling datasets. As a starting point, the authors of this paper have agreed to
contribute at least one of their datasets in this XML format. These datasets will be made
available on the internet at the web site devoted to this project (Post 2008).

XML has been chosen because it is extensively used nowadays in web services, or as
a means of exchanging data between applications. The power of XML lies in the fact that
the data is structured, and therefore it can easily be adjusted to changes, unlike plain text
files. Programming languages have software libraries which make it easy to handle XML.
Mathematically speaking, XML is a rooted tree, with information attached to the nodes.
This information can contain cross references. Examples of XML are presented in Sect. 4;
see also http://www.w3schools.com/xml/; http://en.wikipedia.org/wiki/XML.

The problem of exchanging timetabling data was discussed at the first International Con-
ference on the Theory and Practice of Automated Timetabling (Cumming and Paechter
2005), where it became clear that the principal difficulty was the precise expression of the
many different kinds of constraints. There may be ten or more kinds in any one instance,
and they vary widely between institutions.

This complexity of specification has been addressed in several ways. Some papers
have tried to generalize and unify the constraints (Chand 2004; Kitagawa and Ikeda
1988). Others have adapted existing technologies in which constraints may be expressed,
such as XML and the semantic web (Custers et al. 2005; De Causmaecker et al. 2000;
De Causmaecker et al. 2002; Özcan 2005), or object-oriented modeling and frameworks
(Gröbner et al. 2003; Ranson and Ahmadi 2006). Others have expressed constraints as
logic expressions within specifically designed specification languages (Burke et al. 1998;
Kingston 2001; Monteiro da Mata et al. 1997). There has been at least one attempt to sim-
ply enumerate every possible constraint (Reis and Oliveira 2001). While much of this work
is more general than our approach (for example, the use of MathML functions in Özcan
(2005) allows essentially arbitrary constraints to be expressed in XML), none of it has led
to significant data exchange.

Another approach is to restrict the problem domain to one particular kind of timetabling,
then use judicious simplification to further reduce the specification burden while maintain-
ing the essence of the problem. The Carter data sets for examination timetabling (Carter

http://www.w3schools.com/xml/
http://en.wikipedia.org/wiki/XML

Ann Oper Res

et al. 1996) omit many details, notably all data related to rooms, and similar simplifica-
tions appear in the Traveling Tournament Problem (Easton et al. 2001) and the International
Timetabling Competition (Paechter 2003). These are some of the most successful examples
of timetabling data exchange so far. However, judicious simplification has been criticized
for contributing to the gap between research and practice (Burke et al. 2006), at least in
examination timetabling; and the data transfer has almost always been in one direction only.

2 The timetabling problem in different countries

Throughout the world, timetables are constructed for many different types of high schools.
In the following subsections we describe the situation in the schools of Australia, England,
Finland, Greece and the Netherlands. However, before getting into the details of their prob-
lems, we provide an overview of the problem and their principal differences. Not only the
problems, but also the terminology varies among countries. For more details we refer to
Sect. 3.1.

2.1 General aspects of the problem

The timetabling process in a given school is influenced by the school organization, and
specifically the handling of the three groups of resources: students, teachers, and rooms. In
the heart of the high school timetabling problem lie the students, who are usually organized
in base groups, called ‘Student divisions’ or ‘Student groups’. These base groups form a
partitioning of the students, i.e. each student belongs to exactly one base group. We may
consider two types of timetabling problems:

1. Problems for which the base groups never split up over different lessons, i.e. if two stu-
dents of a base group have a lesson at the same time, they are in the same lesson.

2. Problems for which the students of a base group may attend different lessons for some
times.

In practice not many schools will fall completely into the first category. Some schools,
for example, will split two base groups of boys and girls for gym lessons. Similarly, other
schools may split base groups for reasons such as religion, different levels of ability in a
subject, etc.

Another important difference between countries is the compactness of the students’
schedules. Compact schedules are schedules with no idle times. An idle time for a student
is a time (slot) when the student has no lesson, between others on the same day where the
student does have a lesson. In most cases compact schedules are required for the students. In
some countries this is automatic, as a student has as many lessons as there are times. How-
ever, when a school has a large variety of elective subjects it is almost impossible to achieve
compact schedules. Then the objective would be to minimize the number of idle times.

The teachers form the second most important group of resources affected by the
timetable. They are normally preassigned to lessons by the school management. The assign-
ments take into consideration all limiting constraints like the number of staff, their expertise
and other aspects which may be difficult to model for an automated system. Examples of
such difficult constraints would be assigning new teachers to lessons that take place in paral-
lel, balancing teachers assigned to a base group of students (male/female, experienced/less
experienced), or avoiding parent-child combinations in lessons.

Idle times in teachers’ schedules also form a point of differentiation among different
countries. If teachers are preassigned to lessons, it is extremely hard (except only in simple

Ann Oper Res

cases) to find schedules with no idle times for both students and teachers. When idle times
are not allowed for students, typically one can ask only to minimize the number of idles for
teachers.

Another important issue is the spread of lessons for the teachers. Sometimes, as with
students, this is almost automatic for full-time teachers. For part-time teachers, however,
particular kinds of spreading may be important. For example, a teacher with an assignment
of only 5 times per week will probably be unhappy with a schedule that spreads them over
all days of the week.

The rooms of a school form the third major group of resources. Although most lessons
will take place in a room, this does not necessarily imply that room assignment is an issue.
In many schools, a room is preassigned to each base group of students, or to each teacher.
It is also possible that the number of rooms is so large that assigning rooms is never a
problem. While in some schools this may be the case for general-purpose rooms, specialized
rooms may be scarce and in need of careful scheduling. Examples are specialized rooms for
Physical Education, Music, Arts, or Labs for physics, biology and chemistry.

We now proceed with the descriptions of the problems that the different countries face in
their schools.

2.2 Australia

Australian high schools have short school days, with correspondingly high teacher utilisa-
tions, and consequently no demand for compactness in their timetables. Most teachers (those
with no special duties) teach for 75% of the times of the cycle, and the total workload of
all teachers is almost 100% of the available workload permitted by the teachers’ workload
limits. These conditions commonly prevent teachers from being preassigned, except to a
few key subjects (e.g. the senior ones), and force some courses to be shared between two
teachers. Minimizing the number of these split assignments is a key goal. There is a very
high utilization of specialized rooms, notably Science and Computer laboratories.

The above describes the situation in government funded high schools. Privately funded
high schools are often better resourced, with lower teacher workloads and more laboratories.
However, they typically have lower student numbers and a commitment to high student
choice, leading to peculiarities such as composite classes, in which students of different
ages study a common subject together under a single teacher, creating other difficulties.

Another Australian problem concerns the number and distribution of lessons for each
subject. In the senior years this is very simple: for example, a senior student might attend six
subjects, each occupying six times per week, spread across the five days, including a double
period (i.e. two adjacent times not separated by a break) on one of the days. Student choice
is catered for by means of electives: lists of subjects running simultaneously from which
each student chooses one. In the junior years a desire to permit students to sample a wide
range of subjects leads to a chaotic curriculum from the timetabling point of view. A few
subjects (English, Mathematics, and Science) follow the senior pattern, but the remainder of
the cycle is occupied by many small subjects with more or less random numbers of times.

For previous research and additional details we refer to Abramson (1991), Kingston
(2005).

2.3 England

In English Secondary Schools students study a mixture of compulsory and optional subjects.
For the 11- to 14-year-olds all subjects are compulsory and students study 10 main subjects

Ann Oper Res

plus a modern foreign language, citizenship education, careers education and sex education.
There are fewer compulsory subjects for 14- to 16-year-olds. In addition, schools must offer
students some work-related learning during this phase.

Depending on the policy of the school, within each year group the students may be di-
vided into base groups with a designated teacher who has organizational and pastoral care
responsibilities.

Another common grouping structure used in British schools is a Band, which is a collec-
tion of several tutorial groups. Normally, all the base groups in a year are allocated to fewer
bands. The mixing of base groups is done within a band. Subjects are grouped into blocks,
which are equivalent to the Australian electives: a block consists of one or more subjects for
different groups which will be scheduled at the same time. Blocks are constructed manually
before the scheduling process starts.

Except in the Sixth Form, British school students receive compact schedules automati-
cally, since they have as many lessons as there are times.

In general there is a large variety of different length of lessons, one or two weekly
timetabling cycles, length of school day and hence different number of lessons in different
schools. This requires any timetabling system for English schools to be highly parameterised
to accommodate different patterns of delivery in different schools.

For previous research and additional details we refer to Wright (1996).

2.4 Finland

A basic goal in Finnish school timetabling is to construct a one-week schedule, which is
repeated the whole season. A timetable consists of lessons of subjects, where a lesson is
a predefined combination of a student group, a teacher, a room type and the duration of
the lesson. Every student belongs to one base group and most of the lessons are scheduled
based on this group. In addition, the student can belong to a number of optional groups,
which are built according to the enrolment of students in optional courses. Every lesson is
assigned to one and only one group, either base or optional. Base and optional groups define
a compatibility matrix, which determines which groups can or cannot have lessons at the
same time.

In all Finnish school levels teachers are preassigned to lessons. Rooms are preassigned
to most lessons, based on the preferences of the teachers.

In a typical curriculum a student attends ten subjects, each taught for two to six hours
each week. Lessons of a subject can take one, two, or (in exceptional cases) three hours.
Hence, most subjects are taught either within two, three or four days each week.

Compact schedules for the students (student groups) are necessary and idle times are
either strictly prohibited or highly inappropriate. Conversely, idle times for the teachers are
allowed, but still are very unappreciated. Several teachers also prefer not to teach more than
a given number of hours in a day.

Preassignment of teachers and rooms, a somewhat complicated structure of student
groups and the demand for compact scheduling make Finnish School Timetabling Prob-
lem a challenge for both a manual solver and a computer software. A further description of
the Finnish problem can be found in Nurmi and Kyngas (2007).

2.5 Greece

Secondary education in Greece is divided in two portions: lyceum (grades 7 to 9) and gym-
nasium (grades 10 to 12). The last two years in the lyceum are considered as preparatory for

Ann Oper Res

the higher level of education and the students are asked to choose one of three directions.
Similarly, in vocational lyceums the students are asked to choose one of several specializa-
tions.

Aspects common to the two school types are the five days of the week, the number of
times per day (six to seven), the preassignment of lessons to teachers, who may be full-time
or part-time, and the requirement for compact student schedules.

In the gymnasium all students of a given base group attend the same lessons during
most of the time in their dedicated classroom. However, for a small portion of the weekly
timetable some base groups split into sub-groups or reshuffle with some other base group and
split again for attending certain ‘special’ subjects. For these subjects it is required that two
teachers are teaching simultaneously to two different sub-groups of students, or alternatively
that two teachers are collaboratively teaching to the same group of students.

In the lyceum the general practice is to keep students in their regular base groups for a
portion of the day to attend the lessons that are common to all directions or specializations,
then reshuffle and split again based on specializations, directions or elective courses until
the end of the day.

Important objectives for the timetabling in the gymnasium are to schedule core courses
evenly during the week, preferably during the prime times, and to maintain a minimal num-
ber of idle times for the teachers. For the lyceums, however, the objectives change because
of all the scheduling considerations mentioned previously. Balanced distribution of the core
courses during the week is still important; however, the other two objectives cannot be
achieved.

For previous research and additional details we refer to Birbas et al. (1997), Valouxis and
Housos (2003).

2.6 The Netherlands

In Dutch secondary schools different levels of education are offered within one school.
Teachers are shared among these levels. In the lower years the students in a base group
follow the same courses, while in the last years, the students choose a specialization, with
some compulsory and some optional subjects. The timetable is usually weekly, and valid for
a period of 6 weeks, a trimester, semester, or the whole year. In the lower levels compact
schedules often are compulsory. In the higher levels compact schedules are impossible to re-
alize for all students, and in the opinion of the school administration not necessary. However,
avoiding idle times as much as possible for students as well as teachers is still important.

Usually the teachers are preassigned to the lessons by the school administration, to ensure
a good spreading of the teachers. The majority of the teachers work part-time. According to
collective labour agreements these teachers are entitled to one or more days off.

The rooms are generally not preassigned to lessons. A lesson requires a room of a certain
type, and lessons should be assigned such that enough rooms of each type are available.
High utilization occurs for specialized rooms, like the gyms.

Some schools have special arrangements for students good at sports, dance or ballet,
allowing them to skip lessons at the beginning or the end of some days. Some schools
experiment with large groups of students (50 to 60 students) in a learning studio. Effectively
there are two teachers visiting them in a period, of which one acts as supervisor, and the
other one teaches the subject. All these special constructions make the task of timetabling
even more challenging.

For previous research and additional details we refer to de Gans (1981), Willemen (2002),
de Haan et al. (2007).

Ann Oper Res

3 Modeling the problem

The basic game we play in modeling is between abstraction and concreteness. In an abstract
sense, we could only view events, and express all constraints in the events. For accessibility
we decided to define Times and Resources as well. Groups of times, resources and events
may be defined: TimeGroups, ResourceGroups, and EventGroups. This makes the formula-
tion of constraints much more readable and compact. For example, an instance will usually
contain the ‘AvoidClashConstraint’ as a hard constraint for all resources, i.e. for the resource
group consisting of all resources.

3.1 Times and resources

We divide the time period into times. In many constraints it is essential to know the relation
between groups of times, for example for idle times per day or week, or the number of lesson
per day. Days and weeks are time groups, which are treated on the same basis as other time
groups in the constraints. They can be introduced to make a dataset more understandable.

A resource is an entity which attends events. The most common resources in the
timetabling problem are the students, teachers, and rooms. Other kinds of resources, such as
equipment (video projectors, etc.) are possible but uncommon. Resources may be classified
into subgroups, for example rooms of certain type or student groups of a certain form. It is a
basic hard constraint of most timetabling problems that no resource may attend two events
scheduled for the same time. A violation of this constraint is called a clash.

We attach no additional properties to resources; all additional requirements will be mod-
eled with the help of the constraints, where the involved resources will be selected.

As stated before, we distinguish three main kinds of resources:

• Students. Usually a student group is preassigned to each events. Constraints that can be
important for students are controlling the number of idle times, the number of lessons per
day.

• Teachers. As mentioned earlier, in some countries teachers are preassigned to events,
while in others they are not. In the latter case the choice of assignment will be restricted
by teachers’ qualifications and workload limits. Important issues for the teachers are the
total number of idle times, the number of assigned times per day, the number of days with
events, and unavailable days or times.

• Rooms. Most events take place in a room. If rooms abound, we can disregard them, if not
they can be a bottleneck, especially for specialized rooms.

3.2 Events

Events are the basic scheduling objects. An event can represent either a single lesson, or a
set of (‘linked’) lessons, that have to be taught at the same time.

We use the term course for a collection of events taught to a group of students in a subject.
Events that refer to the same course, are called the lessons of the course. In other papers
such a set of lessons might be called a class. The most common constraint related to courses
concerns the distribution of the lessons of a given course in the week (or in different weeks).
In situations where the teachers are not preassigned to courses, an important constraint is
that all lessons of a given course should be assigned to the same teacher. In our format a
course is a specialized event group, like the day and week are specialized time groups.

Other types of events, such as staff meetings, are also permitted. An event has the fol-
lowing properties.

Ann Oper Res

• The duration, which is the number of times that have to be assigned to the event. These
times must be consecutive.

• The course related to an event.
• The time that the event is scheduled to. If the duration is larger than one, the event will

occupy some following times as well. Constructing a timetable involves assigning a time
to all events.

• The workload that the event will contribute to a teacher’s total workload. Often this is the
same as the duration. The workload is only needed when teachers are not preassigned,
and consequently total workloads must be calculated.

• The resource groups are preassigned.
• Any number of resources, either preassigned, or to be assigned. These each have a ‘role’,

used to identify them. A role might have value ‘room’, ‘teacher’, ‘senior teacher’, and so
on. A resource may be constrained to be from a particular resource group, for example a
Science laboratory or an English teacher.

3.3 Constraints

Our XML format currently defines 13 constraint types. We expect that this number will
grow in the future. A constraint can be hard (‘Required’) or soft. In both cases the constraint
generates a cost, which either contributes to the infeasibility value, or to the objective value.
The constraints describe all aspects of the scheduling, even the (elementary) assignment part.
The advantage of this approach is that we can distinguish between levels of infeasibility: if
not all events can be scheduled, we can give preferences among them. In Sect. 4.2 we give
an example how a constraint contributes to the objective function.

The cost of a schedule consists of three parts: the cost of a resource, cost of an event
group, cost of an event.

We group the constraints into three groups: constraints describing the basic scheduling
problem, other constraints for events, and constraints for resources.

3.3.1 Basic scheduling constraints

• AssignTimeConstraint (Cost per event). Assign a time to each of the selected events.
• AssignResourceConstraint (Cost per event). Assign a resource to the role in each of the

selected events.

Both constraints have a variant expressing the preference for the time, respectively the re-
source: PreferTimesConstraint and PreferResourcesConstraint.

3.3.2 Event constraints

• LinkEventsConstraint (Cost per event group). Schedule the selected event groups at the
same (starting) time.

• SpreadEventsConstraint. (Cost per event group). Schedule the events of the selected event
groups to the selected time groups between a minimum and a maximum number of times.

• AvoidSplitAssignmentsConstraint. (Cost per event group). For each selected event group,
schedule the selected role of each event of this group to the same resource.

Ann Oper Res

3.3.3 Resource constraints

Resource constraints describe the quality of the timetable of a single resource; the corre-
sponding cost is attributed to the resource.

• AvoidClashesConstraint. Schedule the selected resources without clashes. This is one of
the basic (hard) constraints.

• AvoidUnavailableTimesConstraint. Avoid that the selected resources are busy in the se-
lected times.

• LimitWorkloadConstraint. Schedule workload to the selected resources between a mini-
mum and a maximum.

• LimitIdleTimesConstraint. The number of idle times in the selected time groups should
lie between a minimum and a maximum for each of the selected resources. Typically the
time groups are a day or all days.

• LimitBusyTimesConstraint. The number of occupied times for the selected resources
should lie between a minimum and a maximum for each of the selected time groups.
Typically the time groups are the days.

• ClusterBusyTimesConstraint. The number of time groups with an assigned time should
lie between a minimum and a maximum for the selected resources. Typically the time
groups are days; for example a teacher requiring at most 3 days with lessons.

4 The XML format for benchmarks

XML (http://www.w3schools.com/xml/; http://en.wikipedia.org/wiki/XML) is a mark-up
language similar to LATEX and HTML. It is used extensively for exchanging data between ap-
plications. Most object-oriented languages, like Java, C++, C#, and Delphi, have extensive
libraries to work with XML. For this reason XML seems to be very useful for benchmarking.
For a comparable project in nurse rostering, see (Curtois 2006).

The XML format is defined by an XML schema, which is an XSD file (itself written in
XML). The schema defines what elements must be and may be present in the XML file. The
format is straightforward and to present it all would be tedious. Instead, we give three exam-
ples which should make the general flavour clear: the top-level format, one constraint, and
the format of solutions. For a complete description, see (Post 2008), where a list with terms
used can be found, as well as a detailed description of all constraints. As an introductory
example the 4x4-Sudoku formulated as timetabling problem (without preassignments, and
hence multiple solutions) is available at this website.

4.1 The top-level format

At the top level the XML file looks like this:

<HighSchoolTimetableArchive>
<Instances>

<Instance Id="Sudoku4x4">
<Times>

...
</Times>
<Resources>

...

http://www.w3schools.com/xml/
http://en.wikipedia.org/wiki/XML

Ann Oper Res

</Resources>
<Events>

...
</Events>
<Constraints>

...
</Constraints>

</Instance>
</Instances>
<SolutionGroups>

...
</SolutionGroups>

</HighSchoolTimetableArchive>

The file contains one or more instances and any number of grouped solutions. The instance
contains ‘Times’, ‘Resources’, ‘Events’, and ‘Constraints’ sections, as in the data model
(Sect. 3).

4.2 Constraints

We give one example of a constraint, penalizing idle times. An idle time is relevant to a
resource and to a group of times. If there is a time without event scheduled to the resource,
but with scheduled events before and after in the same time group, we call it an idle time for
the resource within this time group. Usually the time group will consist of all times of a day.
In the constraints section of the XML document, we could have, among other constraints,
the following:

<LimitIdleTimesConstraint Id="StudentIdleTimes">
<Name>At most three idle times for students per week</Name>
<Required>false</Required>
<Weight>10</Weight>
<CostFunction>SquareSum</CostFunction>
<AppliesTo>

<ResourceGroups>
<ResourceGroup Reference="Students"/>

<ResourceGroups>
</AppliesTo>
<TimeGroups>

<TimeGroup Reference="Monday"/>
<TimeGroup Reference="Tuesday"/>
<TimeGroup Reference="Wednesday"/>
<TimeGroup Reference="Thursday"/>
<TimeGroup Reference="Friday"/>

</TimeGroups>
<Minimum>0</Minimum>
<Maximum>3</Maximum>

</IdleTimesConstraint>

The attribute ‘Id’ and the first four fields are present in all constraints. They define a unique
reference (Id) and a display name (Name), and give information on how to interpret viola-
tions this constraint. Required = “false” means that this constraint is a soft constraint, and

Ann Oper Res

hence any cost will be added to the objective value. The Weight and CostFunction explain
how to calculate the cost for the deviation of the violation. In this constraint a violation is
that one of the students in the resource group ‘Students’ has more than 3 idle times in the
week. The deviation is the surplus (per week), so the number of idle times minus 3. If a stu-
dent has 1, 0, 2, 3, 1 idle times, on the five days of the week respectively, the total number
of idle times is 7, and the deviation is 4. Since we use a quadratic term for this cost and
multiply by the weight, we obtain the cost 160. Hence the (constraint, student) combination
adds an amount of 160 to the objective function.

This example sums the idle times per day. If we only are interested in the idle times on
Monday, we can omit the time groups for the other days.

4.3 Solutions

The solution in XML is presented as:

<Solution Id="Sudoku4x4">
<Events>

<Event Reference="Event1">
<Time Reference="Day_1"/>
<Resources>

<Resource Reference="R1">
<Role>Room</Role>

</Resource>
</Resources>

</Event>
<Event Reference="Event2">

...
</Event>

...
</Events>

</Solution>

The main thing a solution should do is tell the result of the two scheduling constraints. For
this each Event section is filled with the time and resources of the corresponding assignment
constraints. Once these aspects are known, all other information can be calculated, and a
summary can be added. For debugging purposes, we introduce the possibility to give a full
report on the violations. This report gives for each resource, event group, and event the
constraints that are violated, and for each of the violated constraints the deviation, cost, and
a text explaining the violation. At Kingston (2009) an evaluator is available which validates
the XML in the dataset, and returns the report on the submitted solutions.

5 Conclusion

The XML format advocated here has been designed in order to better model the com-
plete high school timetabling problem and facilitate data exchange between high school
timetabling researchers. We used as input the situation in five different countries, and we
think that the presented format can deal with these countries. This belief is based on sev-
eral datasets we have in our ‘old’ formats. It is hoped that researchers and practitioners will
consider adopting this format in their work and that this will lead to further discussions and

Ann Oper Res

improvements to the model. As previously stated we fully expect the number of included
constraints to expand. We actively will encourage others to contribute datasets in this for-
mat, and use the evaluator (Kingston 2009) to validate their datasets. This should not only
lead to improvements of the model but also to the development of better and/or more general
algorithms.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncommer-
cial License which permits any noncommercial use, distribution, and reproduction in any medium, provided
the original author(s) and source are credited.

References

Abramson, D. (1991). Constructing school timetables using simulated annealing: sequential and parallel al-
gorithms. Management Science, 37, 98–113.

Birbas, T., Daskalaki, S., & Housos, E. (1997). Timetabling for Greek high schools. Journal of the Opera-
tional Research Society, 48, 1191–1200.

Burke, E. K., & Petrovic, S. (2002). Recent research directions in automated timetabling. European Journal
of Operational Research, 140, 266–280.

Burke, E. K., Kingston, J. H., & Pepper, P. A. (1998). A standard data format for timetabling instances. In
E. Burke & M. Carter (Eds.), Lecture notes in computer science: Vol. 1408. Practice and theory of
automated timetabling II (pp. 213–222). Berlin: Springer.

Burke, E. K., McCollum, B., McMullan, P., & Qu, R. (2006). Examination timetabling: a new formulation.
In: Proceedings of the sixth international conference of the practice and theory of automated timetabling
(PATAT 2006), Brno, 2006 (pp. 373–375).

Carter, M., Laporte, G., & Lee, S. T. (1996). Examination timetabling: algorithmic strategies and applications.
Journal of the Operational Research Society, 47, 373–383.

Carter, M. W., & Laporte, G. (1998). Recent developments in practical course timetabling. In E. Burke
& M. Carter (Eds.), Lecture notes in computer science: Vol. 1408. Practice and theory of automated
timetabling II (pp. 3–19). Berlin: Springer.

Chand, A. (2004). A constraint based generic model for representing complete university timetabling data.
In: Proceedings of the fifth international conference on the practice and theory of automated timetabling
(PATAT 2004), Pittsburgh, 2004 (pp. 125–148).

Cooper, T. B., & Kingston, J. (1993). The solution of real instances of the timetabling problem. The Computer
Journal, 36, 645–653.

Cumming, A., & Paechter, B. (2005). Standard formats for timetabling data. Unpublished discussion session
at the first international conference on the practice and theory of automated timetabling, Edinburgh,
2005.

Curtois, T. (2006). Nurse rostering web site. http://www.cs.nott.ac.uk/~tec/NRP/.
Custers, N., De Causmaecker, P., Demeester, P., & Vanden Berghe, G. (2005). Semantic components for

timetabling. In E. Burke & M. Trick (Eds.), Lecture notes in computer science: Vol. 3616. Practice and
Theory of Automated Timetabling V’ (pp. 17–33). Berlin: Springer.

De Causmaecker, P., Demeester, P., De Pauw-Waterschoot, P., & Vanden Berghe, G. (2000). Ontology for
timetabling. In: Proceedings of the third international conference on the practice and theory of auto-
mated timetabling (PATAT 2000), Konstanz, 2000 (pp. 481–482).

De Causmaecker, P., Demeester, P., Lu, Y., & Vanden Berghe, G. (2002). Using web standards for timetabling.
In: Proceedings of the fourth international conference on the practice and theory of automated
timetabling (PATAT 2002), Gent, 2002 (pp. 238–257).

de Gans, O. B. (1981). A computer timetabling system for secondary schools in the Netherlands. European
Journal of Operational Research, 7, 175–182.

de Haan, P., Landman, R., Post, G., & Ruizenaar, H. (2007). A case study for timetabling in a Dutch secondary
school. In E. Burke & H. Rudová (Eds.), Lecture notes in computer science: Vol. 3867. Practice and
theory of automated timetabling VI (pp. 267–279). Berlin: Springer.

de Werra, D. (1985). An introduction to timetabling. European Journal of Operational Research, 19, 151–
162.

de Werra, D. (1999). On a multiconstrained model for chromatic scheduling. Discrete Applied Mathematics,
94, 171–180.

Easton, K., Nemhauser, G. L., & Trick, M. A. (2001). The travelling tournament problem: description and
benchmarks. In Lecture notes in computer science: Vol. 2239. Principles and practice of constraint
programming (CP 2001) (pp. 580–585). Berlin: Springer.

http://www.cs.nott.ac.uk/~tec/NRP/

Ann Oper Res

Gröbner, M., Wilke, P., & Büttcher, S. (2003). A standard framework for timetabling problems. In E. Burke
& P. De Causmaecker (Eds.), Lecture notes in computer science: Vol. 2740. Practice and theory of
automated timetabling IV (pp. 24–38). Berlin: Springer.

Kingston, J. H. (2001). Modelling timetabling problems with STTL. In E. K. Burke & W. Erben (Eds.),
Lecture notes in computer science: Vol. 2079. Practice and theory of automated rimetabling III (pp.
309–321). Berlin: Springer.

Kingston, J. H. (2005). A tiling algorithm for high school timetabling. In E. Burke & M. Trick (Eds.), Lecture
notes in computer science: Vol. 3616. Practice and theory of automated timetabling V (pp. 208–225).
Berlin: Springer.

Kingston, J. H. (2009). The HSEval High School Timetable Evaluator. http://www.it.usyd.edu.au/~jeff/
hseval.cgi.

Kitagawa, F., & Ikeda, H. (1988). An existential problem of a weight-controlled subset and its application to
school timetable construction’. Discrete Mathematics, 72, 195–211.

Monteiro da Mata, J., Luiz de Senna, A., & Augusto de Andrade, M. (1997). Towards a language for the
specification of timetabling problems. In Proceedings of the second international conference on the
practice and theory of automated timetabling (PATAT’97), Toronto, 1997 (pp. 330–333).

Nurmi, K., & Kyngas, J. (2007). A framework for school timetabling problem. In: Proceedings of the 3rd
multidisciplinary international scheduling conference: theory and applications, Paris, 2007 (pp. 386–
393).

Özcan, E. (2003). Towards an XML-based standard for timetabling problems: TTML, multidisciplinary
Scheduling: theory and applications. In First international conference, MISTA ’03, Nottingham, Se-
lected Papers (2005) (pp. 163–185).

Paechter, B. (2003). International timetabling competition. http://www.idsia.ch/Files/ttcomp2002/.
Post, G. (2008). High school timetabling web site. http://wwwhome.math.utwente.nl/~postgf/

BenchmarkSchoolTimetabling/.
Ranson, D., & Ahmadi, S. (2006). An extensible modelling framework for the examination timetabling prob-

lem. In E. Burke & H. Rudová (Eds.) Lecture notes in computer science: Vol. 3867. Practice and theory
of automated timetabling VI (pp. 383–393). Berlin: Springer.

Reis, L. P., & Oliveira, E. (2001). A language for specifying complete timetabling problems. In E. K. Burke
& W. Erben (Eds.) Lecture notes in computer science: Vol. 2079. Practice and theory of automated
timetabling III (pp. 322–341). Berlin: Springer.

Schaerf, A. (1999). A survey of automated timetabling. Artificial Intelligence Review, 13(2), 87–127.
Valouxis, C., & Housos, E. (2003). Constraint programming approach for school timetabling. Computers &

Operations Research, 30, 1555–1572.
Willemen, R. J. (2002). School timetable construction; algorithms and complexity. PhD thesis, Technical

University Eindhoven, The Netherlands.
Wright, M. (1996). School timetabling using heuristic search. Journal of Operational Research Society, 47,

347–357.

http://www.it.usyd.edu.au/~jeff/hseval.cgi
http://www.it.usyd.edu.au/~jeff/hseval.cgi
http://www.idsia.ch/Files/ttcomp2002/
http://wwwhome.math.utwente.nl/~postgf/BenchmarkSchoolTimetabling/
http://wwwhome.math.utwente.nl/~postgf/BenchmarkSchoolTimetabling/

Publication 3

J. Kyngäs and K. Nurmi, “Scheduling the Finnish Major Ice Hockey League”,
in Proc of the IEEE Symposium on Computational Intelligence in
Scheduling, Nashville, USA, 2009, pp. 84-89.

Abstract—Generating a schedule for a professional sports

league is an extremely demanding task. Good schedules have
many benefits for the league, such as higher incomes, lower
costs and more interesting and fairer seasons. This paper
presents a successful way to schedule the Finnish major ice
hockey league. The method is a combination of local search
heuristics and evolutionary methods. The generated schedule is
currently in use for the 2008-2009 season.

I. INTRODUCTION
Many new timetabling problems have been introduced in

recent years. Most of the timetabling research used to
concentrate on university and school timetabling, but
rostering and sports scheduling have been quite extensively
studied recently. Excellent overviews of sports scheduling
can be found in [1] and [2]. The most important theoretical
results can be found in [3]-[11]. An extensive summary of
the theoretical results can be found in [2].

Successful algorithms for sports scheduling include tabu
search [12]-[14], simulated annealing [15]-[17], graph
coloring and branch and bound [18], constrained
programming [19]-[22], integer linear programming [23]-
[25] and hybrid integer/constrained programming [8],[26].

Even if quite efficient algorithms have recently been
designed for sports scheduling problems, to the best of our
knowledge, there are only a few papers where academic
researchers have announced that they have closed a contract
with a sports league owner: the major baseball league in the
USA [27], the major soccer league in Austria [18], 1st
division soccer in Chile [24], the major basketball league in
New Zealand [17], the major soccer league in Belgium [22],
the major soccer league in Denmark [28] and the major
volleyball league in Argentina [29]. This paper presents a
new case: the major ice hockey league in Finland.

There are basically three reasons for the current interest in
sports scheduling. First, sports leagues are organized more
professionally than before and they have realized that a good
schedule is vital for their league’s success. Second, sports
leagues have faced so many new requirements and requests
that they can no longer handle the schedules manually.
Finally, new algorithms have been developed to tackle
intractable problems, and, at the same time, computer power
has increased to such a level that researchers are able to
solve real-world problems. For these reasons, the league
authorities contact universities and researchers to make their
league more successful and more profitable.

Professional sports leagues are big businesses. An
increase in revenue comes from many factors: an increased

number of spectators both in stadiums and in TV networks,
reduced traveling costs for teams, a more interesting
tournament for the media and sports fans, and a fairer
tournament for the teams. Furthermore, TV networks buy
the rights to broadcast the games and in return want the most
attractive games to be scheduled at certain times.

The focus of this paper is to solve a highly constrained
sports scheduling problem. In Section II we define a sports
scheduling problem and introduce the necessary
terminology. Sections III and IV detail the requirements and
the requests of the problem and our solution method. Even if
there is a clear tendency to use integer and constrained
programming models, our algorithm uses a mixture of
evolutionary and local search methods. In Sections V and VI
we present the Finnish major ice hockey league problem and
the difficulty of the scheduling process. Finally, in Section
VII we report our computational results. It will be seen that
our approach produces excellent results compared to the
manual schedule used in the previous season. One of the
schedules we generated was accepted by the league
authorities and the cooperation will continue in the years to
come.

II. SPORTS SCHEDULING
In a sports competition, n teams play against each other

over a period of time according to a given timetable. The
teams belong to a league. In general, n is assumed to be an
even number. A dummy team is added if a league has an odd
number of teams. The league organizes games between the
teams. Each game consists of an ordered pair of teams (i, j).
The first team, i, plays at home - that is, uses its own venue
(stadium) for a game - and the second team, j, plays away.
Games are scheduled in rounds. Each round is played on a
given day. A schedule consists of games assigned to rounds.
A schedule is compact if each team plays exactly one game
in each round; otherwise it is relaxed. If a team has no game
in a round, it is said to have a bye. If a team plays two home
or two away games in two consecutive rounds, it is said to
have a break.

Most professional leagues use a round robin tournament,
where every team plays against every other team a fixed
number of times. Most sports leagues play a double round
robin tournament (2RR), where the teams meet twice, but
quadruple round robin tournaments (4RR) are also quite
common. In a 2RR, every team plays against every other
team once at home and once away. The number of rounds in
a compact single round robin tournament (1RR) is n – 1 and
the number of games is n (n – 1)/2.

Scheduling the Finnish Major Ice Hockey League

Jari Kyngäs, Kimmo Nurmi

978-1-4244-2757-4/09/$25.00 ©2009 IEEE 84

Scheduling a 1RR without any requirements is an easy

task. In the 1980s, a constructive method was created by
Schreuder [3] for generating a 1RR with a minimum number
of breaks. Later [4] he showed that if n is even, it is always
possible to construct a schedule with n – 2 breaks, and that
this number is the minimum. For a mirrored 2RR, it is
always possible to construct a schedule with exactly 3n – 6
breaks [5].

Schreuder also presented an efficient algorithm to
compute a minimum break schedule. However, the
algorithm can only be used directly when no additional
requirements exist. Professional sports leagues have many
requirements, constraints and requests that exclude the use
of the algorithm.

The problem of finding a schedule with the minimum
number of breaks and, at the same time, take additional
requirements and requests into account is known as the
constrained minimum break problem, see, e.g., [28].

The sports scheduling problem presented in this paper is
such a problem. There are three main reasons why we have
to minimize the number of breaks: first, the fans do not like
long periods without home games; second, consecutive
home games reduce gate receipts; and third, long sequences
of home or away games might influence the team’s current
position in the tournament.

Table I shows an example of a compact 2RR with n = 6.
The second part of the schedule is actually mirrored from the
first part. The schedule has no breaks for teams 1 and 5,
three breaks for teams 2 and 3, three-in-a-row home games
for team 6 and five-in-a-row away games for team 4.

TABLE I

A MIRRORED DOUBLE ROUND ROBIN TOURNAMENT WITH SIX TEAMS
R1 R2 R3 R4 R5

1 – 6 3 – 1 1 – 5 2 – 1 1 – 4
2 – 5 6 – 2 2 – 4 5 – 3 3 – 2
4 – 3 5 – 4 3 – 6 6 – 4 6 – 5
R6 R7 R8 R9 R10

6 – 1 1 – 3 5 – 1 1 – 2 4 – 1
5 – 2 2 – 6 4 – 2 3 – 5 2 – 3
3 – 4 4 – 5 6 – 3 4 – 6 5 – 6

When the teams do not return home after each away game

but instead travel from one away game to the next, we are no
longer minimizing the number of breaks. Now we have to
design a schedule that minimizes the distances the teams
must travel. As an academic problem it is known as the
Traveling Tournament Problem (TTP) [8]. This paper was
one of the reasons for the increased interest in sports
scheduling.

III. REQUIREMENTS AND REQUESTS

In this section we will give an outline of typical hard and
soft constraints of a sports scheduling problem. The problem
is to construct a round robin tournament that minimizes the
number of breaks and the number of soft constraint
violations. The games should be scheduled in rounds in such
a way that the solution is feasible and mostly acceptable to
both the league authorities and the teams.

A league can use some of the following requirements
(hard constraints) for their feasible schedule:

H1. Every team plays exactly once in every round (if a
compact schedule is required).

H2. A team cannot play at home on a certain day (e.g. a
venue is unavailable).

H3. A team cannot play away on a certain day (e.g. the
team has an anniversary).

H4. A team cannot play at all on a certain day (e.g. the
team has a game in another league).

H5. Two teams cannot play at home on the same day
(e.g. they share a venue).

H6. A team cannot play at home on two consecutive
calendar days.

H7. A game must be pre-assigned to a certain round.
H8. A break cannot occur in the second round.
H9. A maximum of m games can be assigned to round r

(if a relaxed schedule is used, i.e. there are more
than n – 1 rounds available for scheduling).

Furthermore, there are a wide variety of requests
presented by the league and the teams. They prefer to
optimize many goals at the same time. A league uses some
of the following requests (soft constraints) for their
acceptable schedule:

S1. Every round should be as compact as possible (if a
relaxed schedule is used).

S2. A team cannot have more than two consecutive
home games.

S3. A team cannot have more than two consecutive
away games.

S4. A team wishes to play two or more consecutive
away games (away tours).

S5. There must be at least k rounds before two teams
meet again.

S6. Two teams play against each other at home and
away in turn (in a 3RR or more).

S7. A team wishes to play most of its home games on
certain weekdays.

S8. Two teams do not want to play at home on the same
day (e.g. they are located in the same region).

S9. A team does not want to play at home on a certain
day (e.g. a team in another league in the same
region already has a home game scheduled for that
day).

S10. A team should not play two consecutive games
against opponents in the same strength group.

S11. A game cannot be played before round r.
S12. The difference between the number of home games

and the number of away games for each team
should be as small as possible after each round.

S13. The difference in the number of games played
between the teams should be as small as possible
after each round (while playing a relaxed schedule).

Note that if a compact schedule is not required, the hard
constraint H1 turns into the soft constraint S1. In that case,
we are still searching for a compact schedule, but if it turns

85

out to be impossible, we can either introduce extra rounds or
move some games away from the incorrect rounds. Then we
may also use the hard constraint H9.

It should be noted here that hard and soft constraints of
sports scheduling problems vary quite substantially
depending on the problem instance in hand. The up-to-date
collection of the most typical constraints can be found on the
web [30].

IV. SOLUTION METHOD

Our solution method is not dependent on a complete
round robin tournament arrangement. Any number of games
can be added to the tournament. Likewise, any number of
rounds can be added to the tournament. In fact, there are no
restrictions on the kind of tournament one wants to make.

The solution method is a modification of the h-HCGA
algorithm presented in [31] and further extended in [32]. The
algorithm is a genetic algorithm [33] with one mutation
operator and no recombination operators. The two most
important features of the algorithm are the greedy hill-
climbing mutation (GHCM) operator, which generates a new
solution candidate from the current solution, and the
adaptive genetic penalty method (ADAGEN), which is a
multi-objective optimization method. The pseudo code of
the h-HCGA algorithm is given in Figure 1.

Set the time limit t and the population size n
Generate initial population of schedules by randomly
assigning games to rounds
Set better_found = 0
WHILE elapsed-time < t
 REPEAT n times
 Select a schedule S by using a marriage selection
 Apply the GHCM operator to S to get a new schedule S’
 Calculate the change Δ in fitness value
 IF Δ < = 0 THEN
 Replace S with S’
 IF Δ < 0 THEN
 better_found = better_found + 1
 ENDIF
 ENDIF
 ENDREPEAT
 IF better_found > n THEN
 Replace the worst schedule with the best schedule
 Set better_found = 0
 ENDIF
 Update the dynamic weights of the hard constraints (ADAGEN)
ENDWHILE
Choose the fittest schedule from the population

Fig. 1. The pseudo code of the h-HCGA algorithm.

The GHCM operator moves a game, g1, from its old
round, r1, to a new round, r2, and then moves another game,
g2, from round r2 to a new round, r3, and so on, ending up
with a sequence of moves. The initial game selection is
random. The new round for the game is selected considering
all possible rounds and selecting the one which causes the
least increase in the cost function value when considering
the relocation cost only. Moreover, the new game from that
round is again selected considering all the games in that
round and picking the one for which the removal causes the
most decrease in the cost function value when considering

the removal cost only. The operator stops if the last move
causes an increase in the cost function value and if the value
is larger than that of the previous non-improving move.

We improve the GHCM operator further by introducing a
tabu list which prevents reverse order moves in the same
sequence of moves. That is, if we move a game g from
round r1 to round r2 we do not allow g to be moved back to
round r1 before a new sequence of moves begins. Finally,
the operator is fine-tuned with the following improvements:

− sequence of moves with zero-cost are accepted
− in the case of equal cost games (or rounds) the

selection is made randomly
− in the case of equal costs the longest sequence of

moves will be used.
The ADAGEN method is an adaptive penalty method for

multi-objective optimization. A traditional penalty method
assigns positive weights (penalties) to the soft constraints
and sums the violation scores to the hard constraint values to
get a single value to be optimized. The ADAGEN method
assigns dynamic weights to the hard constraints. This means
that we are searching for a solution that minimizes the
(penalty) function

Σiαifi(x) + Σigi(x)

where
fi(x) = cost of hard constraint i
gi(x) = cost of soft constraint i
αi = a dynamically adjusted weight

 for hard constraint i.

The weights are updated in every kth generation using a
somewhat complicated formula given in [31].

The reproduction operation of the algorithm is, to a
certain extent, based on the steady-state reproduction [35].
We use marriage selection [34] to select a schedule from the
population of schedules for a single GHCM operation. The
new schedule replaces the old one if it has a better or equal
fitness. Furthermore, the least fit is replaced with the best
one when n better schedules have been found, where n is the
size of the population.

The parameters of the algorithm are the same that were
found to work best in [32]:

− population size = 20
− maximum move sequence in the GHCM = 10
− size of the tabulist = 5
− maximum time limit = 8 hours.

A very detailed description of the algorithm is given in [31].

V. THE FINNISH MAJOR ICE HOCKEY LEAGUE

Ice hockey is the biggest sport in Finland, both in terms of
revenue and number of spectators. The Finnish major ice
hockey league is a private company with fifteen
shareholders, one for each team in the league and one for the
Finnish Ice Hockey Association. Each team is also a private
company. The CEO of the team is responsible for getting the
best possible schedule for his team.

The CEO of the league is responsible for producing the

86

schedule. Prior to the 2008-2009 season, the schedule was
produced manually. After making the schedule for the 2007-
2008 season with an increasing number of requirements and
requests, the CEO realized that they were no longer able to
handle the schedule manually.

Seven of the teams in the league are located in big cities
(over 100,000 citizens) and the rest in smaller cities. One
team is quite a long way up north, two are located in the east
and the rest in the south (see Figure 2).

Fig. 2. The map of Finland and the fourteen teams in the Finnish major
ice hockey league.

The schedule format for the league has been quite stable

for many years. The base of the schedule is a quadruple
round robin tournament resulting in 52 games for each team.
In addition, the teams are divided into two groups of seven
teams to get a few more games to play. These teams play a
single round robin tournament resulting in 6 games.
Therefore, there are 58 games for each team and a total of
406 games to be scheduled. The games should be scheduled
on Tuesdays, Thursdays and Saturdays.

The league first fixes the dates on which the rounds will
be played. In addition to the 58 rounds/days needed to
generate a compact schedule, only one extra round/day was
reserved to help the scheduling process.

Often, there are also parties other than the league and the
teams involved in the scheduling process. Examples of such
parties include TV networks and other leagues. In the case of
the Finnish major ice hockey league, the TV network
chooses the games to show from the final schedule, thus not
affecting the scheduling process. Two of the teams also play
in the Champions Hockey League.

The league and the teams gave the following requirements
for the 2008-2009 season (see Section III):

H1. Every team plays in every round exactly once
(excluding one bye per team).

H2. 35 home games are forbidden on certain days (e.g.
one team cannot play at home in the first 13
rounds).

H3. 5 forbidden away games.
H4. 2 forbidden days.
H5. The Tappara and Ilves teams cannot play at home

on the same day (they share a venue).
H6. A team cannot play at home on two consecutive

calendar days (some games scheduled on Thursday
are actually played on Friday).

H7. 45 preassigned games.
H8. There cannot be a break in the second round.

In addition, the league and the teams gave the following
requests:

S2. A team cannot have more than two consecutive
home games.

S3. A team cannot have more than two consecutive
away games.

S4. The Kärpät team (team 14, see Fig. 1) wishes to
play as many away tours (two consecutive away
games) as possible. We were able to construct nine
such tours.

S5. There must be at least eight rounds before two
teams meet again.

S7. Four teams wish to play their home games on
Thursdays and the rest on Saturdays.

S8. The Jokerit and HIFK teams do not want to play at
home on the same day. In addition, the Blues team
must play at home in an equal number of rounds
with Jokerit and HIFK.

S12. The difference between the number of home games
and the number of away games for each team
should be as small as possible after each round.

S13. The difference between the number of games
between the teams should be as small as possible
after each round.

The most important requests from the league were
assigned a larger weight in the ADAGEN method. The
following dynamic weights were used for hard constraints:

− 50−100 for H1
− 5−10 for H2 to H5
− H6 to H8 were preassigned.

VI. THE DIFFICULTY OF THE PROCESS

Constructing a single, double or quadruple round robin
tournament is quite an easy task nowadays, but when we
introduce requirements and requests, the problem becomes
intractable. Furthermore, being able to produce an
acceptable schedule is not only about first defining the
requirements and requests and then developing a suitable
solution method. An essential part of the problem is the
process of consulting with the various parties.

In 2007 we interviewed four team CEOs (Jokerit, Kärpät,
Tappara and Ässät) and the CEO of the league. The teams
were chosen so that we would get a clear picture of the
requirements and requests: Jokerit is a big team with a home
venue that is used for a lot of other events, Kärpät has to
travel the most, Tappara plays at the same venue as another
team and Ässät is a good representative of a small team

87

located in a small city.
The interviews gave us quite a good picture of the

different requests the teams have and might have. The rest of
the teams gave their requests direct to the CEO of the
league. He, in turn, sent them to us. At this stage we thought
we knew all the requests the teams had.

Every team CEO agreed that it is very important that the
requirements and the requests are considered in the final
schedule. However, when we generated the first schedule the
team CEOs “discovered” that some of their requests had not
been considered. The simple reason was that we were not
aware of them. For some reason, not all of the requests had
reached us. One reason could be that the team CEO had not
actually given the requests to the CEO of the league.
Another reason could be that the CEO of the league did not
inform us.

Therefore, we had to generate a second schedule. We
were somewhat surprised that the same thing occurred again.
We got some new requests, but not all of them. We believe
that the team CEOs are used to getting an unsatisfactory
schedule (in the past years), which they then try to modify to
better fit their requests. We base this thought on two things:
first, we did not get the requests from the team CEOs, and
second, the schedules prior to this season have been not so
good. We will have to concentrate on this problem in the
future. We have already sent them a questionnaire
concerning their requests and we are arranging a meeting
with them to approach this problem.

VII. THE SCHEDULE

In this section we present our computational results for the
Finnish major ice hockey league problem presented in
Section V. We solved the problem using the algorithm
originally presented in [31] and described in Section IV. The
algorithm was run on an Intel Core 2 Duo PC with a 3.8GHz
processor and 2GB of random access memory running
Windows XP.

Table II shows the best solution we were able to achieve
for the 2008-2009 season and the manual solution used in
the previous season. Our solution (best of the 100 runs) was
found in four hours of computer time, whereas the manual
solution took several weeks to construct.

TABLE II
THE MANUAL SOLUTION FOR THE 2007-2008 SEASON
AND OUR BEST SOLUTION FOR THE 2008-2009 SEASON

 2007-2008
(manual)

2008-2009
(algorithm)

H2,H3,H4,H7: number of forbidden
 and preassigned games

< 50

87

S1: number of rounds needed 100 59
S2: number of 3-breaks at home 15 2
S4: number of away tours 2 9
S5: less than six rounds before

 two teams meet again
3 3

S7: minimum number of home
 games on weekends

7 9

S8: Jokerit and HIFK play at home
 on the same day

2 4

The CEO of the league was very satisfied with the

schedules we generated and we closed a long-term contract
with the league.

VIII. CONCLUSIONS AND FUTURE WORK
We scheduled the Finnish major ice hockey league. Our

algorithm found a feasible and acceptable schedule for the
2008-2009 season and the generated schedule is currently in
use. We believe this is the first paper to solve a constrained
minimum break problem for an ice hockey league.

Our direction for future research will be to compare our
solution method to previously published methods.
Furthermore, we will improve the presented algorithm. Our
goal is to schedule the Finnish 1st division ice hockey league
as well.

REFERENCES
[1] K. Easton, G. Nemhauser and M. Trick, “Sports scheduling” in

Handbook of Scheduling: Algorithms, Models and Performance
Analysis, J. T. Leung, Ed. CRC Press Inc, Florida, USA, 2004, pp 1–
19.

[2] R. Rasmussen and M. Trick, “Round robin scheduling - A survey”,
European Journal of Operational Research 188, 2008, pp. 617–636.

[3] J.A..M. Schreuder, “Constructing timetables for sport competitions”,
Mathematical Programming Study 13, 1980, 58–67.

[4] J. A. M. Schreuder, “Combinatorial aspects of construction of
competition Dutch Professional Football Leagues”, Discrete Applied
Mathematics 35, 1992, pp. 301–312.

[5] D. de Werra, “Scheduling in sports” in Studies on graphs and discrete
programming. Amsterdam, P. Hansen, Ed. North-Holland, 1981, pp.
381–95.

[6] D. de Werra, “Some models of graphs for scheduling sports
competitions”, Discrete Applied Mathematics 21, 1988, pp. 47–65.

[7] D. de Werra, L. Jacot-Descombes, and P. Masson, “A constrained
sports scheduling problem”, Discrete Applied Mathematics 26, 1990,
pp. 41–49.

[8] K. Easton, G. Nemhauser, and M. Trick “The traveling tournament
problem: description and benchmarks” in Proc of the 7th.
International Conference on Principles and Practice of Constraint
Programming, Paphos, 2001, pp. 580–584.

[9] M. Elf, M. Jünger, and G. Rinaldi, “Minimizing breaks by maximizing
cuts”, Operations Research Letters 31, 2003, pp. 343–349.

[10] S. Urrutia and C.C. Ribeiro, ”Minimizing travels by maximizing
breaks in round robin tournament schedules”, Electron Notes Disc
Math 18-C, 2004, pp. 227–233.

[11] J. H. Dinitz, D. Froncek, E. R. Lamken and W. D. Wallis, “Scheduling
a tournament” in The CRC Handbook of Combinatorial Designs, C.J.
Colbourn and J. H. Dinitz, Eds. CRC Press Inc, Florida, USA,
(previous edition of this book was published in 1996), 2007, pp. 591–
606.

[12] M.B. Wright, “Timetabling county cricket fixtures using a form of
tabu search”, Journal of the Operational Research Society 45(7),
1994, pp. 758–770.

[13] D. Costa, “An evolutionary tabu search algorithm and the NHL
scheduling problem”, INFOR 33 (3), 1995, pp. 161–178.

[14] J.P. Hamiez and J.K. Hao, “Solving the sports league scheduling
problem with tabu search” in Lecture Notes in Artificial Intelligence
2148, 2001, pp. 24–36.

[15] P. Van Hentenryck and Y. Vergados, “Minimizing Breaks in Sport
Scheduling with Local Search” in Proceedings of ICAPS’05,
Monterey, CA, USA, 2005, pp. 22–29.

[16] A. Anagnostopoulos, L. Michel, P. Van Hentenryck, Y. Vergados, “A
Simulated Annealing Approach to the Traveling Tournament
Problem”, Journal of Scheduling 9(2), 2006, pp. 177–193.

[17] M.B. Wright, “Scheduling fixtures for basketball New Zealand”,
Computers & Operations Research 33, 2006, pp. 1875–1893.

88

[18] T. Bartsch, A. Drexl, S. Kröger, “Scheduling the professional soccer
leagues of Austria and Germany”, Computers and Operations
Research 33(7), 2006, pp. 1907–1937.

[19] A. Schaerf, “Scheduling sport tournaments using constraint logic
programming”, Constraints 4, 1999, pp. 43–65.

[20] M. Henz, "Scheduling a Major College Basketball Conference:
Revisited", Operations Research 49, 2001, pp. 163-168.

[21] J.C. Régin, “Minimization of the number of breaks in sports
scheduling problems using constraint programming”, DIMACS Series
in Discrete Mathematics and Theoretical Computer Science 57, 2001,
pp. 115–130.

[22] D. Goossens and F. C. R. Spieksma, “Scheduling the Belgian soccer
league” in Proc of the 6th International Conference on the Practice
and Theory of Automated Timetabling (PATAT), Brno, Czech
Republic, 2006, pp. 420 - 422.

[23] F. D. Croce and D. Oliveri, “Scheduling the Italian football league: an
ILP-based approach”, Computers and Operations Research 33(7),
2006, pp. 1963–1974.

[24] G. Durán, M. Guajardo, J. Miranda, D. Sauré, S. Souyris, A.
Weintraub, “Scheduling the Chilean Soccer League by Integer
Programming”, INTERFACES 37, 2007, pp. 539—552.

[25] R. A. Melo, S. Urrutia, C. C. Ribeiro, “Scheduling single round robin
tournaments with fixed venues” in Proc of the 3rd Multidisciplinary
International Conference on Scheduling: Theory and Applications,
Paris, 2007, pp. 431–438.

[26] R. Rasmussen and M. Trick, “A Benders approach for the constrained
minimum break problem”, European Journal of Operational Research
177, 2007, pp. 198–213.

[27] G. Nemhauser and M. Trick. Scheduling a major college basketball
conference, Operations Research 46(1), 1998, pp. 1-8.

[28] R. Rasmussen, “Scheduling a triple round robin tournament for the
best Danish soccer league”, European Journal of Operational
Research 185(2), 2008, pp. 795-810.

[29] F. Bonomo, A. Burzyn, A. Cardemil, G. Durán, J. Marenc, “An
application of the traveling tournament problem: the Argentine
volleyball league” in Proc of the 7th International Conference on the
Practice and Theory of Automated Timetabling (PATAT), Montreal
(Canada), 2008.

[30] K. Nurmi et. al. (2008, December 28). Sports Scheduling Problem
[Online]. Available: http://www.samk.fi/ssp.

[31] K. Nurmi, “Genetic Algorithms for Timetabling and Traveling
Salesman Problems”, Ph.D. dissertation, Dept. Applied Math.,
University of Turku, Finland, 1998.

[32] K. Nurmi and J. Kyngäs, ”A Framework for School Timetabling
Problem” in Proc of the 3rd Multidisciplinary Int. Scheduling Conf.:
Theory and Applications, Paris, France, 2007, pp. 386-393.

[33] D. E. Goldberg, Genetic Algorithms in Search, Optimization and
Machine Learning, Kluwer Academic Publishers, Boston, MA, 1989.

[34] P. Ross and G.H. Ballinger, “PGA - Parallel Genetic Algorithm
Testbed”, Department of Articial Intelligence, University of
Edinburgh, England, 1993.

[35] G. Syswerda, “Uniform Crossover in Genetic Algorithms” in Proc of
the 3rd International Conference on Genetic Algorithms, 1989, pp. 2-
9.

89

Publication 4

J. Kyngäs and K. Nurmi, “Scheduling the Finnish 1st Division Ice Hockey
League”, in Proc of the 22nd Florida Artificial Intelligence Research Society
Conference, Florida, USA, 2009, pp. 195-200. Reprinted with the permission
from the American Association for Artificial Intelligence.

Scheduling the Finnish 1st Division Ice Hockey League
Jari Kyngäs, Kimmo Nurmi

Satakunta University of Applied Sciences

Tiedepuisto 3, 28600 Pori, Finland
jari.kyngas@samk.fi, cimmo.nurmi@samk.fi

Abstract
Generating a schedule for a professional sports league is an
extremely demanding task. Good schedules have many
benefits for the league, for example higher incomes, lower
costs and more interesting and fairer seasons. This paper
presents a successful solution method to schedule the Finnish
1st division ice hockey league. The solution method is an
improved version of the method used to schedule the Finnish
major ice hockey league. The method is a combination of local
search heuristics and evolutionary methods. An analyzer for
the quality of the produced schedules will be introduced.
Finally, we propose a set of test instances that we hope the
researchers of the sports scheduling problems would adopt.
The generated schedule for the Finnish 1st division ice hockey
league is currently in use for the season 2008-2009.

1. Introduction
Many new timetabling problems have been introduced in
recent years. Most of the timetabling research used to
concentrate on university and school timetabling, but
especially rostering and sports scheduling have been quite
extensively studied recently. Excellent overviews on sports
scheduling can be found in (Easton et al. 2004) and
(Rasmussen and Trick 2008).

In the last decade, the sports scheduling focus has moved
from theoretical results to practical applications. Some of
the most important theoretical results can be found in
(Schreuder 1980, 1992; de Werra 1981, 1988, 1990;
Easton et al. 2001; Elf et al. 2003; Urrutia and Ribeiro
2004; Dinitz et al. 2007). An extensive summary of the
theoretical results can be found in (Rasmussen and Trick,
2008).

Even if quite efficient algorithms have recently been
designed for sports scheduling problems, to the best of our
knowledge, there are only a few cases where academic
researchers have been able to close a contract with a sports
league owner: the major baseball league in USA
(Nemhauser and Trick 1998), the major soccer league in
Austria (Bartsch et al. 2006), the 1st division soccer in
Chile (Durán et al. 2006), the major basketball league in
New Zealand (Wright 2006), the major soccer league in

Copyright © 200 , Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Belgium (Goossens and Spieksma 2006), the major soccer
league in Denmark (Rasmussen 2008), the major volleyball
league in Argentina (Bonomo et al. 2008) and the major
ice hockey league in Finland (Kyngäs and Nurmi 2009).
This paper presents a new case: the Finnish 1st division ice
hockey league.

The sports league scheduling problems solved in this paper
are constrained minimum break problems (see e.g.
Rasmussen 2008). The problem is to find a schedule with
the minimum number of breaks and at the same time take
additional requirements and requests into account. For the
sports scheduling terminology used in this paper we refer
to (Kyngäs and Nurmi 2009).

The focus of this paper is to solve a highly constrained
sports scheduling problem. In Section 2 we give an
overview of our earlier sports scheduling algorithm. Then
we present an improved version of the algorithm. Section 3
presents the Finnish 1st division ice hockey league
problem. The problem is extremely difficult both in terms
of finding a feasible solution and of optimizing the
requests from the league. Computational results are
reported in this section. It will be seen that our algorithm
produces excellent results compared to the manual
schedule used in the previous season. An analyzer for the
quality of the produced schedules will be introduced in
Section 4. The use of the analyzer is vital in producing the
final schedule for the league authorities. Finally in Section
5, we propose a set of test instances that we hope the
researchers of the sports scheduling problems will adopt. It
will be seen that our solutions for these instances are
competitive

2. The Improved Algorithm
Our basic algorithm for solving sports scheduling problems
is presented in (Kyngäs and Nurmi 2009), (Nurmi and
Kyngäs 2007) and (Nurmi 1998). The algorithm is a
genetic algorithm (Goldberg 1989) with one mutation
operator and no recombination operators. The two most
important features of the algorithm are the greedy hill-
climbing mutation (GHCM) operator, which generates a
new solution candidate from the current solution, and the
adaptive genetic penalty method (ADAGEN), which is a
multi-objective optimization method. The algorithm uses
three mechanisms to help the search procedure to avoid

9

195

Proceedings of the Twenty-Second International FLAIRS Conference (2009)

local optima: genetic reproduction (Syswerda 1989), tabu
search (Glover et al. 1985) and simulated annealing
(Kirkpatrick et al. 1983). The use of these methods differs
somewhat from their usual application (see Nurmi 1998).

The GHCM operator moves a game, g1, from its old
round, r1, to a new round, r2, and then moves another
game, g2, from round r2 to a new round, r3, and so on,
ending up with a sequence of moves. The initial game
selection is random. The new round for the game is
selected considering all possible rounds and selecting the
one which causes the least increase in the cost function
value when considering the relocation cost only. Moreover,
the new game from that round is again selected considering
all the games in that round and picking the one for which
the removal causes the most decrease in the cost function
value when considering the removal cost only.

The ADAGEN method is an adaptive penalty method for
multi-objective optimization. A traditional penalty method
assigns positive weights (penalties) to the soft constraints
and sums the violation scores to the hard constraint values
to get a single value to be optimized. The ADAGEN
method assigns dynamic weights to the hard constraints.

The reproduction operation of the algorithm is, to a certain
extent, based on the steady-state reproduction (Syswerda
1989). We use marriage selection (Ross and Ballinger
1993) to select a schedule from the population of
schedules for a single GHCM operation. The new schedule
replaces the old one if it has a better or equal fitness.
Furthermore, the least fit is replaced with the best one
when n better schedules have been found, where n is the
size of the population.

Next we present two changes to the original algorithm.
These changes will help the search procedure to escape
from local optima as well as better explore the fitness
landscape.

The original algorithm uses a simulated annealing
refinement. The initial temperature T0 is calculated by

 T0 = C+ / log(1/X0) ,

where X0 is the degree to which we want to accept an
increase in the cost function (we use a value of 0.75) and
C+ is an average increment in the cost function for 100
random moves. This method was proposed by (van
Laarhoven and Aarts 1987). The exponential cooling
scheme is used to decrement the temperature:

 Tk = �Tk-1 ,

where � is usually chosen between 0.8 and 0.995. Our new
test runs showed that a good strategy is to stop the cooling
at some predefined temperature. Therefore, after a certain

number of iterations m we will continue to accept an
increase in the cost function with some constant probability
p. Using the initial temperature given above and the
exponential cooling scheme, we can calculate the value:

 � = (–1/(T0 log p))–m .

Our preliminary test runs showed that we can get
surprisingly good results by choosing m equal to the
maximum number of iterations with no improvement to the
cost function and p equal to 0.0015. The new annealing
schedule seems to produce superior solutions compared to
the well-known annealing schedules. The reason might be
that it enables the search procedure to continue to escape
from local optima. We will study this method more closely
in our next paper.

The other change to the original algorithm concerns
shuffling the current solution. A hyperheuristic (Cowling
et. al. 2000) is a mechanism that chooses a heuristic from
a set of simple heuristics, applies it to the current solution,
then chooses another heuristic and applies it, and continues
this iterative cycle until the termination criterion is
satisfied. We use the same idea, but the other way around.
We introduce a number of simple heuristics that are
normally used to improve the current solution but, instead,
we use them to shuffle the current solution - that is, we
allow worse solution candidates to replace better ones in
the current population. We use five shuffling operations:

1. Select a random game and move it to a random
round, and do this k1 times

2. Swap two random games, and do this k2 times
3. Select a random round and move k3 random

games from that round to random rounds
4. Swap all the games in two random rounds
5. Select a random game A-B and swap it with the

game B-A, and do this k4 times.
We select one random shuffling operation in every m/20th
iteration of the algorithm, where m equals the maximum
number of iterations with no improvement to the cost
function. The best results have been obtained using the
values k1 = 3, k2 = 2, k3 = 3 and k4 = 2. The shuffling seems
to produce better solutions than without shuffling. The
reason might again be that it enables the search procedure
to continue to escape from local optima. We will again
study this method more closely in our next paper.

Table 1 shows the result of the comparison between the
original and the improved algorithms. Three different
problems were used to compare their performance: one that
minimizes just number of breaks, one that includes further
restrictions (intermediate test problem) and finally a
complex real-world problem. The improved algorithm
using simulated annealing and shuffling refinements
performs clearly better than the original algorithm.

Our algorithm uses random initial solutions. It has been
claimed in many different contexts that better initial

196

solutions lead to better final solutions. It has also been
argued that it is a good idea to use canonical schedules
(Schreuder 1980) as initial solutions for sports scheduling
methods since canonical schedules minimize the number of
breaks. We tested our algorithm using canonical starting
schedules thus producing good initial solutions. We ran the
algorithm several times using both artificial problems and
real-world problems. The results were clear. Canonical
schedules were unable to produce better final solutions
than random schedules as initial solutions to our algorithm.

Table 1: The percentage of the best solutions found for the
original algorithm and for the improved algorithm. The improved
algorithm uses simulated annealing and shuffling refinements.

Problem
type

Original
algorithm

Improved
Algorithm

Break optimization only 1% 8%

Intermediate test problem 13% 21%

Complex real-world problem 7% 14%

3. The Finnish 1st Division Ice Hockey League
Ice hockey is the biggest sport in Finland, both in revenue
and number of spectators. The Finnish 1st division ice
hockey league is managed by the Finnish Ice Hockey
Association. The Competition Manager of the league is
responsible for producing the schedule. Prior to the
2008�2009 season, the schedule was produced manually.
When the manager heard that we had scheduled the major
league (Kyngäs and Nurmi 2009), he contacted us. He told
us that the 1st division is an even more difficult problem
than the major league. We agreed to generate a sample
schedule for them.

The league has twelve teams. Two of the teams are located
in big cities (over 100 000 citizens) and the rest in smaller
cities. One team is quite far up north, one on the west
coast, three teams are located in the east and the rest in
Central Finland (see Figure 2).

The schedule format for the league has been stable for
many years. The basis of the schedule is a quadruple round
robin tournament concluding in 44 games for each team. In
addition, each team plays at home against the Finnish U20
team (national team for players under 20 years of age).
Therefore, there are 45 games for each team and a total of
276 games to be scheduled. The games should be
scheduled on Wednesdays and Saturdays.

The league first fixes the dates on which the rounds will be
played. They only fix 44 dates - that is. the basic schedule
should be a compact schedule. The U20 games are
preassigned to given dates.

Often, there are also parties other than the league and the
teams involved in the scheduling process. Examples of
such parties include TV networks and other leagues. In the
case of the Finnish 1st division ice hockey league the TV
network chooses the games to show before the scheduling
process. These games are preassigned to given rounds. The
Finnish major ice hockey league introduces further
requirements. Five teams in the 1st division are located in
(or very close to) the same cities as the teams in the major
league. The major league is scheduled first and these five
teams should not play at home on the same days as their
counterparts in the major league. Furthermore, three other
teams are competing with the Finnish major basketball
league for the same spectators. This league is again
scheduled first, so these three teams should not play at
home on certain days.

Figure 2: The map of Finland and the twelve teams in the Finnish
1st division ice hockey league.

For the following terminology and notation we refer to
(Kyngäs and Nurmi 2009). The league and the teams gave
the following requirements for the 2008�2009 season:

H1. Every team plays in every round exactly once (a
compact schedule).
H2. 36 home games are forbidden on certain days.
H6. A team cannot play at home on two consecutive
calendar days.
H7. 61 preassigned games.
H8. There cannot be a break in the second round.

In addition, the league and the teams gave the following
requests:

S2. A team cannot have more than two consecutive
home games.
S3. A team cannot have more than two consecutive
away games.
S4. The LeKi, Hokki, Jokipojat, Kiekko-Vantaa and
TuTo teams wish to play a few away tours.

197

S5. There must be at least six rounds before two
teams meet again.
S7. All teams wish to play their home games on
Saturdays.
S9. The D-Team, HeKi, Kiekko-Vantaa, LeKi and
TuTo teams do not want to play at home on the same
day as their major league counterparts.
S12. The difference between the number of home
games and the number of away games for each team
should be as small as possible after each round.

The most important requests from the league were assigned
a larger weight in the ADAGEN method. The following
weights were used for hard constraints:

� 3-25 for H1.
� 3-10 for H2.
� H6 to H8 were preassigned.

The construction of the schedule was quite a difficult task.
First of all, there were a considerable number of
restrictions � over 10% more than in the Finnish major ice
hockey league (Kyngäs and Nurmi 2009). Secondly, the
teams had many more wishes than the teams in the major
league.

Table 2: The manual solution for the 2007�2008 season and our
best solution for the 2008�2009 season. Unfortunately it is not
possible to calculate values for other constraints from the
2007�2008 manual schedule.

 2007-2008
(manual)

2008-2009
(algorithm)

H1: number of rounds (does not
 include those needed for
 the away tours)

64 44

H2,H7: number of forbidden
 and preassigned games < 60 97

S2,S3: number of 3-breaks
 (at home + away) 68 2 + 4

S4: number of away tours 13 17

S7: minimum number of home
 games on weekends 9 12

We generated two schedules as we did for the major
league. After the generation of the first schedule the
Competition Manager discovered that he had forgotten a
few restrictions. We added them to the program and
produced a second schedule. The second schedule was
accepted and only two games were relocated both due the
fact that the teams would have had to play three
consecutive away games because of home venue
unavailability. So the schedule is in use almost as
generated. Table 2 shows our solution for the 2008�2009

season and a comparison with the solution produced
manually for the 2007�2008 season. The algorithm was
run on an Intel Core 2 Duo PC with a 3.8GHz processor
and 2GB of random access memory running Windows XP.
Our solution (best of the 50 runs) was found in six hours of
computer time, whereas the manual solution took several
weeks to construct.

The Competition Manager was very satisfied with the
schedules we generated and we closed a contract with the
league.

4. The Analyzer
It is very difficult to examine the quality of the generated
schedule. Even if someone were to have the patience to do
it, it would take quite a long time. To ease this process we
have made an analyzer for analyzing sports schedules.

Actually we have made two analyzers: one for analyzing
the output file of our program (algorithm) and one for
analyzing any general sports schedule. The analyzer takes
the schedule, requirements and requests as input, given as
text files and produces a simple text file as output, where it
is very easy to examine the conflicts in the schedule. The
output file details each restriction and possible conflicts for
each team in a readable form. A few examples:

� All breaks
� Weekday preferences are listed day by day (given

lower bound, given upper bound, actual value).
� Every game that has a violation in the k-value.

The output file is excellent for presenting the results to the
customer. When we introduced our program to the
Competition Manager we generated three somewhat
different schedules for the first half of the season. The
manager could very quickly see the benefits of our
program just by inspecting the output file. We claim that
the use of the analyzer is vital in producing the final
schedule for the league authorities.

5. A Set of Test Instances
The generation of standard test problems does not receive
much attention. Some benchmark instances for round robin
tournaments have been introduced in Henz (2000). For the
Traveling Tournament Problem (Easton et al. 2001), test
instances can be found in (Trick 2008). No set of standard
test instances exists for the constrained minimum break
problem.

Researchers quite often only solve some special artificial
cases or one real-world case. The strength of random test
instances is the ability to produce many problems with
many different properties. The strength of practical cases is

198

self-explanatory. However, an algorithm performing well
on one practical problem may not perform satisfactorily on
another practical problem. Our future work will present a
set of both artificial and practical test instances for the
constrained minimum break problem. In this section we
present a collection of test instances found in the literature
as well as some new test instances.

Table 3: Twelve 2RR test instances: R50 (1), R100 (2), B10 (3),
B12 (4), B14 (5), B10K3 (6), B12K3 (7), B12K10 (8),
R14K7P208 (9), B8K0P30 (10), B8K2P30 (11), B10K2C4 (12).

ID n Break
min. k #Constr. Optimal

#breaks
Our

solution

1 50 No 0 0 – found

2 100 No 0 0 – found

3 10 Yes 0 0 8 8

4 12 Yes 0 0 10 10

5 14 Yes 0 0 12 14

6 10 Yes 3 0 ? 16

7 12 Yes 3 0 16 22

8 12 Yes 10 0 ? 26

9 14 No 7 208 P – found

10 8 Yes 0 30 P ? 10

11 8 Yes 2 30 P ? 12

12 10 Yes 2 4 C ? 10

To the best of our knowledge, the best test instances
presented in the literature so far are those by (Rasmussen
and Trick 2007). We use four of their problems, two of
which are slight modifications. All twelve test instances
are double round robins. Table 3 shows the instances. The
first two (abbreviated as Rn) are simple round robin
problems where the only challenge is to find a round robin
tournament. In the next three instances (Bn) the challenge
is to find the minimum number of breaks. The next three
instances (BnK) are also break minimization problems, but
in these instances two games with the same opponents
must be separated by at least k = 3 or k = 10 rounds. In the
instance R14K7P208 the challenge is again just to find a
round robin tournament, but now with k = 7. Furthermore,
there are four home game restrictions and four away game
restrictions in each round totaling a number of 208
restrictions (place constraints). The next two instances (B8)
are break minimization problems with place constraints
and the other one with k = 2. Here we had to modify the
original problems by (Rasmussen and Trick 2007) because
their place constraints would have caused extra breaks to
occur. The final instance B10K2C4 introduces
complementary constraints – that is, two teams cannot play

at home at the same day. The instance includes four
complementary constraints.

It should be noted that our algorithm was not designed to
merely minimize the number of breaks but to solve
complex real-world problems. However, we claim that our
algorithm also works very well for the artificial test
instances. We were able to find the best possible solution
for five of the test instances. For three of the instances the
optimum is not yet known. The up-to-date collection of test
instances can be found on the web (Nurmi and Kyngäs
2009).

6. Conclusions and Future Work
We scheduled the Finnish 1st division ice hockey league.
Our algorithm found a feasible and an acceptable schedule
for the the 2008�2009 season. The generated schedule is
currently in use. We also proposed a set of test instances
that we hope the researchers of the sports scheduling
problems will adopt. Our solutions to the test instances
were competitive.

Our direction for future research will be to further study
the improved algorithm and its various parameters. We
will also publish an extensive set of both real-world
instances and test instances for the constrained minimum
break problem. We have already set up a group of
collaborators for this goal.

References
Bartsch, T., Drexl, A., and Kröger, S. 2006. “Scheduling
the professional soccer leagues of Austria and Germany”,
Computers and Operations Research 33(7): 1907–1937.

Bonomo, F., Burzyn, A., Cardemil, A., Durán, G., and
Marenc, J. 2008. “An application of the traveling
tournament problem: the Argentine volleyball league”. In
Proc. of the 7th International Conference on the Practice
and Theory of Automated Timetabling (PATAT), Montreal
(Canada).

Cowling, P., Kendall, G., and Soubeiga, E. 2000. A
hyperheuristic Approach to Scheduling a Sales Summit. In
Proc. of the 3rd International Conference on the Practice
and Theory of Automated Timetabling (PATAT), 176-190.

Dinitz, J. H. , Froncek, D. , Lamken, E. R. , and Wallis, W.
D. 2007. “Scheduling a tournament” in The CRC
Handbook of Combinatorial Designs, C.J. Colbourn and J.
H. Dinitz, Eds. CRC Press Inc, Florida, USA, 591–606
(previous edition of this book was published in 1996).

Durán, G., Guajardo, M., Miranda, J., Sauré, D., Souyris,
S., and Weintraub, A. 2007. “Scheduling the Chilean

199

Soccer League by Integer Programming”, INTERFACES
37: 539–552.

Easton, K., Nemhauser, G., and Trick, M. 2001. “The
traveling tournament problem: description and
benchmarks”. In Proc. of the 7th. International Conference
on Principles and Practice of Constraint Programming,
Paphos, 580–584.

Easton, K., Nemhauser G., and M. Trick. 2004. “Sports
scheduling” in Handbook of Scheduling: Algorithms,
Models and Performance Analysis, J. T. Leung, Ed. CRC
Press Inc, Florida, USA, pp 1–19.

Elf, M., Jünger, M., and Rinaldi, G. 2003. “Minimizing
breaks by maximizing cuts”, Operations Research Letters
31: 343–349.

Glover, F., McMillan, C., and Novick, B. 1985. Intercative
Decision Software and Computer Graphics for
Architectural and Space Planning. Annals of Operations
Research 5: 557-573.

Goldberg, D. E. 1989. Genetic Algorithms in Search,
Optimization and Machine Learning, Kluwer Academic
Publishers, Boston, MA.

Goossens, D., and Spieksma, F. C. R. 2006. “Scheduling
the Belgian soccer league”. In Proc. of the 6th
International Conference on the Practice and Theory of
Automated Timetabling (PATAT), Brno, Czech Republic,
420–422.

Henz, M., Müller, T., Thiel, S., and van Brandenburg, M.
(Created 2000). Benchmarks and results for round robin
tournaments.
http://www.comp.nus.edu.sg/˜henz/roundrobin_benchmark
s/.

Kirkpatrick, S., Gelatt, C.D. Jr, and Vecchi, M.P. 1983.
Optimization by Simulated Annealing. Science 220: 671-
680.

Kyngäs, J., and Nurmi, K. 2009. Scheduling the Finnish
Major Ice Hockey League. IEEE Symposium on
Computational Intelligence in Scheduling, Nashville, USA,
accepted for publication.

van Laarhoven, P.J.M., and Aarts, E.H.L. 1987. Simulated
annealing: Theory and applications. Kluwer Academic
Publishers.

Nemhauser, G., and Trick, M. 1998. Scheduling a major
college basketball conference, Operations Research 46(1):
1–8.

Nurmi, K., and Kyngäs, J. (Last update 28.1.2009). Sports
Scheduling Problem [Online]. Available:
http://www.samk.fi/ssp.

Nurmi, K. 1998. “Genetic Algorithms for Timetabling and
Traveling Salesman Problems”. Ph.D. diss., Dept. of
Applied Math., University of Turku, Finland.

Nurmi, K., and Kyngäs, J. 2007. ”A Framework for School
Timetabling Problem”. In Proc. of the 3rd
Multidisciplinary Int. Scheduling Conf.: Theory and
Applications, Paris, France, 386–393.

Rasmussen, R. 2008. “Scheduling a triple round robin
tournament for the best Danish soccer league”, European
Journal of Operational Research 185(2): 795–810.

Rasmussen, R. and Trick, M. 2007. “A Benders approach
for the constrained minimum break problem”, European
Journal of Operational Research 177: 198–213.

Rasmussen, P., and Trick, M. 2008. “Round robin
scheduling - A survey”, European Journal of Operational
Research 188, pp. 617–636.

Ross, P. and Ballinger, G.H. 1993. “PGA - Parallel Genetic
Algorithm Testbed”, Department of Articial Intelligence,
University of Edinburgh, England.

Schreuder, J.A..M. 1980. “Constructing timetables for
sport competitions”, Mathematical Programming Study 13,
58–67.

Schreuder, J. A. M. 1992. “Combinatorial aspects of
construction of competition Dutch Professional Football
Leagues”, Discrete Applied Mathematics 35: 301–312.

Syswerda, G. 1989. “Uniform Crossover in Genetic
Algorithms”. In Proc of the 3rd International Conference
on Genetic Algorithms, 2–9.

Trick, M. (Last update 31.7.2008). Challenge Traveling
Tournament Instances, http://mat.gsia.cmu.edu/TOURN.

Urrutia, S., and Ribeiro, C.C. 2004. ”Minimizing travels by
maximizing breaks in round robin tournament schedules”,
Electron Notes Disc Math 18-C: 227–233.

de Werra, D. 1981. “Scheduling in sports” in Studies on
graphs and discrete programming. Amsterdam, P. Hansen,
Ed. North-Holland, pp. 381–95.

de Werra, D. 1988. “Some models of graphs for scheduling
sports competitions”, Discrete Applied Mathematics 21:
47–65.

de Werra, D., Jacot-Descombes, L., and Masson, P. 1990.
“A constrained sports scheduling problem”, Discrete
Applied Mathematics 26: 41–49.

Wright, M.B. 2006. “Scheduling fixtures for basketball
New Zealand”, Computers & Operations Research 33,
1875–1893.

200

Publication 5

K. Nurmi, D. Goossens, T. Bartsch, F. Bonomo, D. Briskorn, G. Duran, J.
Kyngäs, J. Marenco, C.C. Ribeiro, F. Spieksma, S. Urrutia and R. Wolf-
Yadlin, “A Framework for Scheduling Professional Sports Leagues”, in Ao,
Sio-Iong (ed.): IAENG Transactions on Engineering Technologies Volume 5,
Springer, USA, 2010, pp. 14-28. Reprinted with the permission from
Springer.

A Framework for Scheduling Professional
Sports Leagues

Kimmo Nurmia, Dries Goossensb, Thomas Bartschc, Flavia Bonomod,
Dirk Briskorne, Guillermo Durand, Jari Kyngäsa, Javier Marencog, Celso

C. Ribeiroh, Frits Spieksmab, Sebastián Urrutiai and Rodrigo Wolf-Yadlinf

aSatakunta University of Applied Sciences, Tiedepuisto 3, 28600 Pori, Finland, email:
kimmo.nurmi@samk.fi, jari.kyngas@samk.fi

bKatholieke Universiteit Leuven, Naamsestraat 69, 3000 Leuven, Belgium, email:
dries.goossens@econ.kuleuven.be, frits.spieksma@econ.kuleuven.be

cSAP AG, Neurottstraße 16, 69190 Walldorf, Germany, email: thomas.bartsch@sap.com
dCONICET and FCEN, University of Buenos Aires, UBA Ciudad Universitaria, pab I, Int. Guiraldes s/n

(1428) Buenos Aires, Argentina, email: fbonomo@dc.uba.ar, gduran@dm.uba.ar
eChristian-Albrechts-Universität, Olshausenstr. 40, 24098 Kiel, Germany, email: briskorn@wiso.uni-

koeln.de
fDII, University of Chile, República 701,Santiago, Chile, email: rwolf@dii.uchile.cl

gNational University of General Sarmiento, J. M. Gutiérrez 1150 (1613) Los Polvorines, Buenos Aires,
Argentina, email: jmarenco@ungs.edu.ar

hUniversidade Federal Fluminense, Department of Computer Science, Rua Passo da Pátria 156,
Niterói, RJ 2431-240, Brazil, email: celso@ic.uff.br

iFederal University of Minas Gerais, Av. Antônio Carlos 6627, Belo Horizonte, MG 31270-010, Brazil,
email: surrutia@dcc.ufmg.br

Abstract. This paper introduces a framework for a highly constrained sports scheduling problem
which is modeled from the requirements of various professional sports leagues. We define a
sports scheduling problem, introduce the necessary terminology and detail the constraints of the
problem. A set of artificial and real-world instances derived from the actual problems solved for
the professional sports league owners are proposed. We publish the best solutions we have
found, and invite the sports scheduling community to find solutions to the unsolved instances.
We believe that the instances will help researchers to test the value of their solution methods.
The instances are available online.

Keywords: Sports Scheduling, Real-World Scheduling.
PACS: 02.10.Ox

INTRODUCTION

Professional sports leagues are big businesses. An increase in revenue comes from
many factors: an increased number of spectators both in stadiums and via TV
networks, reduced traveling costs for teams, a more interesting tournament for the
media and sports fans, and a fairer tournament for the teams. Furthermore, TV
networks buy the rights to broadcast the games and in return want the most attractive
games to be scheduled at certain times.

One major reason for the increased academic interest in sports scheduling was the
introduction of the traveling tournament problem [1], where the total distance traveled
by the teams is minimized. Since the 1990s the evolution of sports scheduling has
closely tracked the development of computers. In recent years microcomputers have
reached a level of being powerful enough for demanding computational tasks in
practical areas of sports scheduling. This is the second of the four reasons for the
current interest in sports scheduling. The third reason is that new efficient algorithmic
techniques have been developed to tackle previously intractable problems, and the
fourth is that sports leagues are now organized more professionally than before and it
has been realized that a good schedule is vital for a league’s success.

Excellent overviews of sports scheduling can be found in [2]-[5]. An extensive
bibliography can be found in [6] and an annotated bibliography in [7]. Successful
methods of solving sports scheduling problems include ant algorithms [8],[9],
constraint programming [2],[10]-[11], evolutionary algorithms [12]-[14], integer
programming [15]-[20], metaheuristics [21]-[23], simulated annealing [24]-[26] and
tabu search [27]-[29].

To the best of our knowledge, there are not many cases where academic researchers
have been able to close a contract with a sports league owner. We are aware of the
following: the major soccer league in The Netherlands [30], the major baseball league
in the USA [31], the major soccer league in Austria [32], the 1st division soccer league
in Chile [33], the major basketball league in New Zealand [26], the major soccer
league in Belgium [34], the major soccer league in Denmark [35], the major volleyball
league in Argentina [36], the major and 1st division ice hockey leagues in Finland
[37],[38] and the major soccer league in Brazil [19].

SPORTS SCHEDULING TERMINOLOGY

In a sports competition, n teams play against each other over a period of time
according to a given timetable. The teams belong to a league. In general, n is assumed
to be an even number. A dummy team is added if a league has an odd number of
teams. The league organizes games between the teams. Each game consists of an
ordered pair of teams (i, j). The first team, i, plays at home - that is, uses its own venue
(stadium) for a game - and the second team, j, plays away. Games are scheduled in
rounds. Each round is played on a given day. A schedule consists of games assigned to
rounds. A schedule is compact if each team plays exactly one game in each round;
otherwise it is relaxed. If a team has no game in a round, it is said to have a bye.

If a team plays two home or two away games in two consecutive rounds, it is said
to have a break. In general, for reasons of fairness, breaks are to be avoided. The
problem of finding a schedule with the minimum number of breaks is the minimum
break problem. However, a team can prefer to have two or more consecutive away
games if it is located far from the opponent’s venues, and the venues of these
opponents are close to each other. A series of consecutive away games is called an
away tour. We call a schedule k-balanced if the numbers of home and away games for
each team differ by at most k in any stage of the tournament. Teams can be partitioned
into strength groups. Strength groups can be formed on the basis of the expected
strengths of the teams. Teams can also be grouped by their location.

In a round robin tournament every team plays against every other team a fixed
number of times. Most sports leagues play a double round robin tournament (2RR),
where the teams meet twice (once at home, once away), but quadruple round robin
tournaments (4RR) are also quite common. The number of rounds in a compact single
round robin tournament (1RR) is n – 1 and the number of games is n (n – 1)/2. If n is
even, it is always possible to construct a schedule with n – 2 breaks, and this number
is the minimum [30]. A mirrored double round robin tournament (M2RR) is a
tournament where every team plays against every other team once in the first n – 1
rounds, followed by the same games with reversed venues in the last n – 1 rounds. For
an M2RR, it is always possible to construct a schedule with exactly 3n – 6 breaks [39].

Table I shows an example of a compact mirrored 2RR with n = 6. The schedule has
no breaks for teams 1 and 5, three breaks for teams 2 and 3, three-in-a-row home
games for team 6 and five-in-a-row away games for team 4.

TABLE 1. A compact mirrored double round robin tournament with six teams.

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10
1 – 6 3 – 1 1 – 5 2 – 1 1 – 4 6 – 1 1 – 3 5 – 1 1 – 2 4 – 1
2 – 5 6 – 2 2 – 4 5 – 3 3 – 2 5 – 2 2 – 6 4 – 2 3 – 5 2 – 3
4 – 3 5 – 4 3 – 6 6 – 4 6 – 5 3 – 4 4 – 5 6 – 3 4 – 6 5 – 6

If a team plays against team i in one round, and against team j in the next round, we

say that team i gives a carry-over effect (COE) to team j. If we define cij as the number
of carry-over effects that i gives to j, we can compute the so-called COE value of the
schedule as ∑i,j cij². The problem of finding a schedule with the minimum COE value
is the carry-over effects value minimization problem. A lower bound value is rn (n –
1), where r is the number of round robins; schedules that attain this lower bound are
called balanced schedules. Brazil [19].

THE SPORTS SCHEDULING PROBLEM

To solve a real-world sports scheduling problem it is apparent that a profound
understanding of the relevant requests and requirements presented by the league is a
prerequisite for developing an effective solution method. In most cases the most
important goal is to minimize the number of breaks. There are various reasons why
breaks should be minimized in a sports schedule: fans do not like long periods without
home games, consecutive home games reduce gate receipts, and long sequences of
home or away games might influence the team’s current position in the tournament.
Apart from minimizing the number of breaks, several other issues play a role in sports
scheduling, e.g. minimizing the total traveling distance, creating a compact schedule,
avoiding a team playing against all the strong teams consecutively.

We give next an outline of the typical constraints of the sports scheduling problem.
We believe that these constraints are representative of many scheduling scenarios
within the area of sports scheduling. We make no strict distinction between hard and
soft constraints. They will be given by the instances themselves. The goal is to find a
feasible solution that is the most acceptable for the sports league owner. That is, a
solution that has no hard constraint violations and that minimizes the weighted sum of

the soft constraint violations. The weights will also be given by the instances
themselves. A league can use a mixture of the following constraints as a framework
for its schedule generation. The constraints were first introduced in [40]. Here we
group the constraints to improve the readability.

Basis

C01. There are at most R rounds available for the tournament.
C02. A maximum of m games can be assigned to round r.
C03. Each team plays at least m1 and at most m2 games at home.
C22. Two teams play against each other at home and in turn away in 3RR or more.

Home and Away
C04. Team t cannot play at home in round r.
C05. Team t cannot play away in round r.
C06. Team t cannot play at all in round r.
C07. There should be at least m1 and at most m2 home games for teams t1, t2, … on

the same day.
C08. Team t cannot play at home on two consecutive calendar days.
C09. Team t wants to play at least m1 and at most m2 away tours on two consecutive

calendar days.
C23. Team t wishes to play at least m1 and at most m2 home games on weekday1,

m3 – m4 on weekday2 and so on.
Break

C12. A break cannot occur in round r.
C13. Teams cannot have more than k consecutive home games.
C14. Teams cannot have more than k consecutive away games.
C15. The total number of breaks must not be larger than k.
C16. The total number of breaks per team must not be larger than k.
C17. Every team must have an even number of breaks.
C18. Every team must have exactly k number of breaks.
C35. A break of type A/H for team t must occur between rounds r1 and r2.

Game
C10. Game h-team against a-team must be preassigned to round r.
C11. Game h-team against a-team must not be assigned to round r.
C24. Game h-team against a-team cannot be played before round r.
C25. Game h-team against a-team cannot be played after round r.
C34. Game h-team against a-team can only be carried out in a subset of rounds r1,

r2, r3, ...
Tournament quality

C19. There must be at least k rounds between two games with the same opponents.
C20. There must be at most k rounds between two games with the same opponents.
C21. There must be at least k rounds between two games involving team t1 and any

team from the subset t2, t3, ...
C26. The difference between the number of played home and away games for each

team must not be larger than k in any stage of the tournament (a k-balanced
schedule).

C27. The difference in the number of played games between the teams must not be

larger than k in any stage of the tournament (in a relaxed schedule).
C36. The carry-over effects value must not be larger than c.

Strength group
C28. Teams should not play more than k consecutive games against opponents in

the same strength group.
C29. Teams should not play more than k consecutive games against opponents in

the strength group s.
C30. At most m teams in strength group s should have a home game in round r.
C31. There should be at most m games between the teams in strength group s

between rounds r1 and r2.
C32. Team t should play at least m1 and at most m2 home games against opponents

in strength group s between rounds r1 and r2.
C33. Team t should play at least m1 and at most m2 games against opponents in

strength group s between rounds r1 and r2.

Next we consider some examples of these constraints. If the number of available
rounds specified in constraint C01 is higher than the minimal number of rounds
needed to complete the tournament, a relaxed schedule is allowed, and constraint C02
can be used to set the maximum number of games for each round. Constraint C03 is
used when the number of home and away games is not the same for all teams (valid
for 1RR and 3RR). A team cannot play at home (C04) if its venue is unavailable due
to some other event. A team cannot play away (C05) if it has an anniversary on that
day and it requests to play at home. If a team has a game in another league, it cannot
play at all on certain round (C06). If two teams share a venue, constraint C07 can be
used to avoid the two teams playing at home in the same round, by setting m1 = 0 and
m2 = 1 for this pair of teams. Constraints C08 and C09 are used to schedule away
tours.

Some games can be preassigned to certain rounds using constraint C10. The
constraint is also useful for preassigning away tours or preassigning special mini-
tournaments between some teams on weekends. When a game should not necessarily
be played in a specific round, but rather in some period of the season, this can be
expressed using constraint C34. When there is another important event on a specific
day (round) that can compete in interest with a league game, there should not be any
“popular” game in that round (C11).

Even if the main goal often is to find a schedule with the minimum number of
breaks, constraints from C12 to C18 can also be used to set requirements concerning
the number of breaks. Furthermore, quite often a break is not allowed in the second or
in the last round (C12). In some cases, a break is desirable in some period of the
season, which can be enforced using constraint C35.Two games between the same
opponents cannot usually be played on close days (C19). Constraints C19 and C20
used together results in a mirrored schedule if k is set to n – 1. If a triple or quadruple
round robin tournament is played, it’s common that two teams should play against
each other at home and in turn away (C22).

Most of the teams prefer to play their home games at weekends to maximize the
number of spectators. However, some teams might prefer weekdays to maximize the
number of business spectators. Constraint C23 is used to limit a team’s number of

home games on a weekday (e.g. Wednesday), assuming that the day on which it will
be played is known for every round. Constraint C24 can be used in the latter 2RR
when 4RR is solved by splitting it into two 2RRs. The constraint ensures that there are
at least a given number of rounds between two games with the same opponents (see
also C19). A team might also prefer home games against important opponents in the
second half of the season, as these games are likely to be more attractive near the end
of the competition. For the same reason, a game between local rivals might be
preferred to be scheduled early in the season (C25).

Minimizing the difference between the number of played home and away games for
each team at any stage of the season (C26) is an important fairness criterion. If not all
teams play in each round, i.e. a relaxed schedule is to be generated, another fairness
criterion is to minimize the difference in the number of played games between the
teams (C27).

Another goal can be to avoid a team playing against extremely weak or extremely
strong teams in consecutive rounds (C29), or to avoid consecutive games between
teams located nearby (C28). A TV broadcaster might require that the most interesting
teams should not all play at home on the same day (C30). Constraint C31 can be used
to enforce a balanced spread of games between top teams over the season. Constraint
C32 can be used to ensure that a team has a home game against a top team in each half
of the season. Constraint C33 can be used to make sure that each team plays against a
strong team in the first rounds of the season. Finally, for sports where carry-over
effects could influence the result of the tournament, these effects can be balanced
using constraint C36.

We model the sports scheduling problem using a simple text file format. The file
format consists of a header section and a constraint section. The header section has
eight elements:

benchmark instance, the name of the instance
number of teams
team names
number of round robins
additional games, which can be used to set other games besides those in the round

robins
number of rounds
weekdays for rounds
strength groups

The constraint section has one element for each constraint in use:
C04. Team t cannot play at home in round r
C07. There should be at least m1 and at most m2 home games for teams t1, t2, …
and so on.
The detailed and up-to-date information on the file format and sample files can be

found in [41]. We believe that this model helps researchers to evaluate, compare and
exchange their solution methods.

Notice that some constraints are in fact generalizations of others (e.g. constraint
C34 is a generalization of C24 and C25), or could be expressed using a series of other
constraints (e.g. ensuring that a team does not play at all in a particular round (C06)
can also be done by specifying that a team does not play at home (C04) or away (C05)

in that round). However, we chose not to reduce the set of constraints to its most
compact form because we think these redundant constraints make it easier to
understand what the requirements for a tournament are, and/or reduce the number of
lines in the described text file format.

ARTIFICIAL BENCHMARK INSTANCES

The generation of standard benchmark problems has not received much attention.
Some test instances for round robin tournaments have been introduced in [42]. Kyngäs
and Nurmi [38] presented a set of artificial test instances for the constrained minimum
break problem. For the traveling tournament problem, test instances can be found in
[43]. No set of standard test instances has previously been published for the real-world
constrained minimum break problem.

Researchers quite often only solve some special artificial cases or one real-world
case. The strength of random test instances is the ability to produce many problems
with many different properties. Still, they should be sufficiently simple for each
researcher to be able to use them in their test environment. The strength of practical
cases is self-explanatory. However, an algorithm performing well on one practical
problem may not perform satisfactorily on another practical problem; which is why we
present a collection of test instances for both artificial and real-world cases. We start
with artificial cases.

Table II shows 22 test instances some of which have earlier been introduced in
[38]. All but two must be compact schedules (see constraint C01). Most of the
instances are double round robin tournaments (RR = 2). The number of teams (n)
varies between 8 and 100. The challenge is to find either a round robin tournament
(C15 = empty) or a round robin tournament that minimizes the number of breaks
(C15 = Min). In some instances there must be at least k rounds before two teams meet
again (see constraint C19). Additional constraints may include place constraints (see
constraints C04 and C05) and complementary constraints (see constraint C07). The
only soft constraints in these instances are C15, all other constraints are hard.

Also note the following points:
− R14K7P208 has four home game restrictions and four away game restrictions in

each round totaling a number of 208 C04 and C05 constraints.
− In the instances where C07 constraints exist, teams 1 and 2, teams 3 and 4, and

so on cannot play at home at the same day - that is, m1 = 0 and m2 = 1.
− R16P116C23 and B16K12P116C1 are constructed using data from one season

of the Finnish major ice hockey league for players under 20 years of age. The
games should be scheduled for 57 rounds instead of the 45 rounds needed for a
compact schedule. Furthermore, the home teams for the third round-robin are
given.

− The home teams for B16C30 are given.
The optimal number of breaks is only known for seven instances [7]. The other best

solutions were found while preparing this article. These solutions provide a good
starting point for communications between sports scheduling researchers. We hope
these test instances will lay the foundation for the standard benchmark instances for

sports scheduling problems.The next section introduces another set of instances which
further widens these aims.

TABLE 2. Artificial benchmark instances: R14K7P208 (1), R16P116C23 (2), R100C8 (3), B8 (4),

B8K0P30 (5), B8K2P30 (6), B10 (7), B10K2C4 (8), B10K3 (9), B12 (10), B12K3 (11), B12K8 (12),
B12K8C4 (13), B12K8P30 (14), B12K8P30C3 (15), B12K8P30C4 (16), B12K10 (17), B14 (18),

B16 (19), B16K3 (20), B16C30 (21), B16K12P116C1 (22).
ID RR n C01 C15 C19 C04+05 C07 C10 Best sol
1 2 14 7 208 found
2 3 16 57 116 23 found
3 2 100 8 found
4 2 8 Min 6*
5 2 8 Min 30 10
6 2 8 Min 2 30 12
7 2 10 Min 8*
8 2 10 Min 2 4 10
9 2 10 Min 3 16

10 2 12 Min 10*
11 2 12 Min 3 16*
12 2 12 Min 8 24
13 2 12 Min 8 4 24
14 2 12 Min 8 30 30
15 2 12 Min 8 30 3 34
16 2 12 Min 8 30 4 1H+42
17 2 12 Min 10 30
18 2 14 Min 12*
19 2 16 Min 14*
20 2 16 Min 3 20*
21 1 16 Min 30 36
22 3 16 57 Min 12 116 1 45 30

* known optimum

REAL-WORLD BENCHMARK INSTANCES

There are not many cases where academic researchers have been able to close a
contract with a sports league owner. The real-world instances introduced in this
section are based on such cases. In order not to reveal league secrets the instances
might slightly differ from the actual problems solved for the league owners. The
instances are derived from Finnish, Austrian, German, Argentine, Chilean, Belgian
and Brazilian leagues. We give a short description of these leagues. In all the leagues
the most important goal is to minimize the number of breaks.

The Finnish Major Ice Hockey League (FIN1) has 14 teams. The basis of the
schedule is a quadruple round robin tournament resulting in 52 games for each team.
In addition, the teams are divided into two groups of seven teams to get a few more
games to play. These teams play a single round robin tournament resulting in 6 games.
Therefore, there are 58 games for each team and a total of 406 games to be scheduled.
The three most important goals are to have no home games on the same day for some
team pairs (C07), to have at least 5 rounds between two games with the same
opponents (C19) and to have an equal number of home games on Saturdays for all
teams (C23). For more details, refer to [37]. The Finnish 1st Division Ice Hockey

League (FIN2) has 12 teams. The basis of the schedule is a quadruple round robin
tournament resulting in 44 games for each team. In addition, each team plays at home
against the Finnish U20 team (national team for players under 20 years of age).
Therefore, there are 45 games for each team and a total of 276 games to be scheduled.
Distances between the home venues of some of the teams are quite significant. The
three most important goals are to generate away tours (C09), to have at least 7 rounds
between two games with the same opponents (C19) and to have an equal number of
home games at weekends for all teams (C23). For more details, refer to [38].

TABLE 3. Real-world benchmark instances

ID RR n Mirrored Hard constraints Soft constraints

FIN1 2* 14 No, k=7 01,04,07,10,12 07,13,14,15,16,19,
22,23,24,26,27

FIN2 2 12 No, k=5 01,04,10,12 04,13,14,15,
16,19,23,26

AUS1 2 18 Yes 01,07,15,
19,20,34 04

GER1 2 18 Yes 01,05,07,15,
19,20,34 04

GER2 2 18 Yes 01,05,15,19,
20,31,34,35 04

ARG1 2 12 Yes 01,04,07,10,12,
19,20,23,26 13,14,15

CHI1 1 20 Yes 01,03,04,05,12,
16,24,25,31 13,14

BEL1 2 18 Yes 01,04,07,12,13,14,
15,16,19,20,31

04,05,07,24,25,
29,30,32,33,34

BEL2 2 18 Yes 01,04,07,12,13,14,
15,16,19,20,31

04,05,07,24,25,
29,30,32,33,34

BEL3 2 18 Yes 01,04,07,12,13,14,
15,16,19,20,31

04,05,07,24,25,
29,30,32,33,34

BRA1 2 20 Yes 01,03,07,13,14,15,17,18,
24,25,28,29,31,32,34 11

The basis of the schedule for the Austrian Soccer Championship (AUS1), the

German Soccer Championship (GER1) and the German Handball Championship
(GER2) are mirrored double round robin tournaments. The number of teams is 10, 18
and 18, respectively. The most important goal is to reach the minimum number of
breaks. The set of rounds teams can play at home or away may be restricted. Specific
matches of a home team against an away team can only be carried out in a subset of
rounds. In AUS1 some pairs of teams cannot play at home in parallel; thus one of
them must play at home in each round. In GER1, subsets of teams cannot play an
arbitrary number of home games in parallel in some rounds. In GER2 the number of
matches between the six strongest teams is restricted to one per round. For more
details, refer to [32].

The major volleyball league in Argentina was composed of 12 teams in 2007/2008,
and 11 teams in 2008/2009 and 2009/2010. Although the main interest of the schedule
design is the minimization of the global travel distances [36], the instance ARG1 has
been adapted to suit the framework introduced in this work. Another feature of this
league that has been simplified consists of a paired schedule design. In such a

schedule, the teams’ respective matches are grouped into pairs called couples. Each
weekend, one couple visits another couple, and the four possible matches between the
corresponding teams are played.

The Chilean first division tournament was composed of 20 teams until 2008; since
2009, there have been just 18 teams. There are two tournaments per year: the Opening
Tournament and the Closing Tournament. Both competitions consist of a single round
robin tournament and then the eight teams with the highest points advance to the
playoffs of the championship (until 2008 the teams were divided into groups and the
best two teams in each group would advance to the playoffs). The problem has some
constraints that are not considered in the test instance, mainly related to the Chilean
geography. Chile is a very long and thin country, and for that reason there are
constraints related to the trips that teams should or should not make. There are also
constraints related to security issues and international competitions. For more details,
refer to [33].

The instances BEL1, BEL2, and BEL3 represent the scheduling problem in the
highest soccer league in Belgium for the seasons 2006-2007, 2007-2008, and 2008-
2009 respectively. This league is played as a mirrored double round robin tournament
with 18 teams, involving 306 games that need to be played in 34 rounds. It is
imperative that these schedules have the minimal number of 48 breaks (C15), and no
team should start or end the league with a break (C12). Furthermore, the two teams
that share a stadium cannot play at home in the same round (C07). Apart from that,
there are various constraints, originating from Belgacom TV, (the company that
broadcasts the league), the police, the clubs and the association itself. For instance, a
mayor can forbid a game being played in his or her city in one or more rounds if
he/she feels public safety cannot be guaranteed (C04). Clubs may have a number of
wishes related to the fairness of the schedule, especially related to the timing of their
encounter with strong teams: no team wishes to face all traditionally strong opponents
in a row (C33), or likes to host a top game in the summer, when many fans are abroad
for holidays (C24). According to Belgacom TV, one way to increase the viewing
figures is a schedule where at least one (and preferably two) of four teams that are
considered to be top teams plays an away game in each round (C30). The underlying
motivation is that a top team’s home games are less interesting, since the top team
tends to win these games without much effort. Moreover, the top games should be
spread over the season (C31). The association itself requests, among other things, that
every team receives a top team at home at least once in each half of the season (C32).
For more details on the constraints that play a role, and the motivation for these
constraints, we refer to [34].

Soccer is the most widely practiced sport in Brazil. The Brazilian national soccer
tournament organized every year by the Brazilian Soccer Confederation (CBF) is the
most important sporting event in the country. Its major sponsor is TV Globo, the
largest media group and television network in Brazil. The most attractive games are
those involving teams with more fans and better players, and, consequently, also with
larger broadcast shares [19]. Games involving teams from São Paulo and Rio de
Janeiro are of special interest for broadcasting through open TV channels due to their
corresponding larger revenues from advertising. The competition lasts for seven
months (from May to December) and is structured as a compact mirrored double

round robin tournament played by 20 teams. Every team has a home city and some
cities host more than one team. There are at most two rounds of games per week: mid-
week rounds are played on Wednesdays and Thursdays, while weekend rounds are
played on Saturdays and Sundays. Elite teams are those with larger numbers of fans,
better records of previous participations in the tournament, and more valuable players.
The most important games involve elite teams and, as far as possible, should be played
during the weekends, when they can attract larger attendances and TV audiences. The
participating teams and the dates available for playing the games change from one
year to the next.

Table III shows the above mentioned eleven real-world instances. Most of the
instances are mirrored double round robin tournaments. In non-mirrored instances
there must be at least k rounds before two teams meet again. The number of teams
varies between 12 and 20. The table lists all the hard and soft constraints that are in
action for the instances.

BEST SOLUTIONS TO FIVE REAL-WORLD INSTANCES

In this section we publish the best solutions we have found for some of the real-
world instances introduced in Section 5. We invite the sports scheduling community to
find solutions to the unsolved instances. We also briefly discuss our solution methods.

The overall goal of the real-world cases is to find a feasible solution that is the most
acceptable for the sports league owner. That is, a solution that has no hard constraint
violations and that minimizes the weighted sum of the soft constraint violations. The
importance of the soft constraints is handled by giving them different weights. The
values of the weights are decided based on the negotiations with the league owner and
the teams. We refer to [41] for what the values of the weights for the real-world
instances were when they were solved. The constraint violations are calculated based
on the following:

C01. One violation for each round more than R.
C02. One violation for each game more than m.
C03. One violation for each home game less than m1 or more than m2.
C04. A violation if team t plays at home in round r.
C05. A violation if team t plays away in round r.
C06. A violation if team t plays in round r.
C07. One violation for each home game less than m1 or more than m2.
C08. One violation for each home game on two consecutive calendar days.
C09. One violation for each away tour less than m1 or more than m2
C10. One violation for each game not preassigned.
C11. One violation for each game assigned.
C12. One violation for each break in round r.
C13. One violation for each consecutive home game more than k.
C14. One violation for each consecutive away game more than k.
C15. One violation for each break more than k.
C16. One violation for each break more than k.
C17. One violation for each team having an odd number of breaks.

C18. One violation for each team and each break less/more than k.
C19. One violation for each round less than k.
C20. One violation for each round more than k.
C21. One violation for each round more than k.
C22. One violation for each consecutive game pair where the home and away teams

are the same.
C23. One violation for each home game on weekday1 less than m1 or more than m2

and so on.
C24. One violation for each round less than r.
C25. One violation for each round more than r.
C26. One violation for each difference more than k.
C27. One violation for each difference more than k.
C28. One violation for each consecutive game.
C29. One violation for each consecutive game.
C30. One violation for each home game more than m.
C31. One violation for each game more than m.
C32. One violation for each home game less than m1 or more than m2.
C33. One violation for each home game less than m1 or more than m2.
C34. A violation if the game is not carried out in the given rounds.
C35. A violation if there is no given break for team t in the given rounds.
C36. One violation for each multiple of c over c.

FIN1 and FIN2 were solved by a cooperative local search metaheuristic [22].

BEL1, BEL2, BEL3 were solved using a multiphase decomposition approach ending
up with a mixed integer programming model that was solved using CPLEX [34].
Table IV shows the best solutions we have found for FIN and BEL instances. Together
with the solutions for the artificial benchmark instances in Section 4, these solutions
provide a good starting point for communications between sports scheduling
researchers.

TABLE 4. Best solutions for five of the real-world benchmark instances.

ID RR n Mirrored Hard constraints Soft constraints

FIN1 2* 14 No, k=7 01,04,07,10,12 07,13,14,15,16,19,
22,23,24,26,27

FIN2 2 12 No, k=5 01,04,10,12 04,13,14,15,
16,19,23,26

BEL1 2 18 Yes 01,04,07,12,13,14,
15,16,19,20,31

04,05,07,24,25,
29,30,32,33,34

BEL2 2 18 Yes 01,04,07,12,13,14,
15,16,19,20,31

04,05,07,24,25,
29,30,32,33,34

BEL3 2 18 Yes 01,04,07,12,13,14,
15,16,19,20,31

04,05,07,24,25,
29,30,32,33,34

We also briefly mention how the other instances were originally solved. AUS1,

GER1 and GER2 instances were solved using a combination of a graph coloring
algorithm, a semi-greedy algorithm and a truncated branch-and-bound algorithm [32].
ARG1 was solved by a straightforward integer programming model, resorting to
ILOG CPLEX for the computational solution of the model [36]. CHI1 was solved

using a two phase approach. First, home-away patterns were created and then the
constraint programming model was solved using CPLEX [33]. BRA1 was solved
using a multiphase approach similar to that presented in [31]. The key to success is in
considering the constraints as early as possible in order to reduce the number of
patterns as much as possible, leaving the IP solver with as light a problem possible
[20].

CONCLUSIONS

We defined a framework for scheduling professional sports leagues. A set of
artificial and real-world instances were introduced. We have published the best
solutions for the artificial instances and five of the real-world instances. The sports
scheduling community is invited to challenge our solutions as well as to find solutions
to the unsolved instances. The instances are available online.

REFERENCES

1. K. Easton, G. Nemhauser and M. Trick, “The traveling tournament problem: description and
benchmarks”, Proc of the 7th. International Conference on Principles and Practice of
Constraint Programming, Paphos, pp. 580-584 (2001).

2. K. Easton, G. Nemhauser and M. Trick, “Sports scheduling”, in Handbook of Scheduling, edited
by Leung, Florida, USA: CRC Press, 2004, pp 52.1-52.19.

3. J.H. Dinitz, D. Froncek, E.R. Lamken and W.D. Wallis, “Scheduling a tournament”, in
Handbook of Combinatorial Designs, edited by Colbourn and Dinitz, Florida, USA: CRC Press,
2006, pp. 591-606.

4. A. Drexl and S. Knust, “Sports league scheduling: graph- and resource-based models”, Omega
35, pp. 465-471 (2007).

5. P. Rasmussen and M. Trick, “Round robin scheduling - A survey”, European Journal of
Operational Research 188, pp. 617-636 (2008).

6. S. Knust, “Sports Scheduling Bibliography” [Online], Available:
http://www.inf.uos.de/knust/sportssched/sportlit_class/, (Last update 31.05.2010).

7. G. Kendall, S. Knust, C.C. Ribeiro and S. Urrutia, “Scheduling in Sports: An annotated
bibliography”, Computers and Operations Research 37, pp. 1-19 (2010).

8. M. Adriaen, N. Custers and G. Vanden Berghe, “An agent based metaheuristic for the traveling
tournament problem”, Working Paper, KaHo Sint-Lieven, Gent, Belgium, 2003.

9. H. Crauwels and D. Van Oudheusden, “Ant colony optimization and local improvement”,
Workshop of Real-Life Applications of Metaheuristics, Antwerp, Belgium, 2003.

10. A. Aggoun and A. Vazacopoulos, “Solving sports scheduling and timetabling problems with
constraint programming” in Economics, Management and Optimization in Sports, edited by
Butenko et al., Springer, 2004, pp. 243-264.

11. R.A. Russell and T.I. Urban, “A constraint programming approach to the multiple-venue sport-
scheduling problem”, Computers and Operations Research 33, pp. 1895-1906 (2006).

12. D. Costa, “An evolutionary tabu search algorithm and the NHL scheduling problem”, INFOR
33, pp. 161-178 (1995).

13. H.-D. Huang, J.T. Yang, S. Shen and J.-T. Horng, “An evolutionary strategy to solve sports
scheduling problems”, Proc of the Genetic and Evolutionary Computation Conference, Los
Altos, CA (1999).

14. J. Schönberger, D.C. Mattfeld and H. Kopfer, “Memetic algorithm timetabling for non-
commercial sport leagues”, European Journal of Operational Research 153, pp. 102-116
(2004).

15. F. Della Croce and D. Oliveri, “Scheduling the Italian Football League: an ILP-based
approach”, Computers and Operations Research 33, pp. 1963-1974 (2006).

16. T.F. Noronha, C.C. Ribeiro, G. Duran, S. Souyris and A. Weintraub, “A branch-and-cut
algorithm for scheduling the highly-constrained Chilean soccer tournament”, Lecture Notes in
Computer Science 3867, pp. 174-186 (2007).

17. R. Rasmussen and M. Trick, “A Benders approach for the constrained minimum break
problem”, European Journal of Operational Research 177, pp. 198–213 (2007).

18. D. Briskorn and A. Drexl, “Scheduling sport leagues using branch-and-price”, Journal of the
Operational Research Society 60, pp. 84-93 (2009).

19. C.C. Ribeiro and S. Urrutia, “Scheduling the Brazilian soccer tournament by integer
programming maximising audience shares under fairness constraints”, Proc. of the 2nd
International Conference on the Mathematics in Sport, Groningen, Netherlands (2009).

20. C.C. Ribeiro and S. Urrutia, “Bicriteria integer programming approach for scheduling the
Brazilian national soccer tournament”, Proc of the Third International Conference on
Management Science and Engineering Management, Bangkok, pp. 46-49 (2009).

21. E.K. Burke, D. Werra, J.D. de Landa Silva and C. Raess, “Applying heuristic methods to
schedule sports competitions on multiple venues”, Proc. of the 5th International Conference on
the Practice and Theory of Automated Timetabling, Pittsburgh, USA, pp. 441-444 (2004).

22. K. Nurmi and J. Kyngäs, “Improving the Schedule of the Finnish Major Ice Hockey League”,
Proc. of the 2nd International Conference on the Mathematics in Sport, Groningen, Netherlands
(2009).

23. M. Yavuz, U.H. Inan and A. Figlali, “Fair referee assignments for professional football
leagues”, Computers and Operations Research 35, pp. 2937-2951 (2008).

24. A. Anagnostopoulos, L. Michel, P. Van Hentenryck and Y. Vergados, “A Simulated Annealing
Approach to the Traveling Tournament Problem”, Journal of Scheduling 9(2), pp. 177-193
(2006).

25. A. Lim, B. Rodrigues and X. Zhang, “Scheduling sports competitions at multiple venues –
revisited”, European Journal of Operational Research 175, pp. 171-186 (2006).

26. M.B. Wright, “Scheduling fixtures for basketball New Zealand”, Computers & Operations
Research 33, pp. 1875–1893 (2006).

27. J.P. Hamiez and J.K. Hao, “Solving the sports league scheduling problem with tabu search”
Lecture Notes in Artificial Intelligence 2148, pp 24–36 (2001).

28. J.H. Lee, Y.H., Lee and Y.H. Lee, “Mathematical modeling and tabu search heuristic for the
traveling tournament problem”, Lecture Notes in Computer Science 3982, pp 875-884 (2006).

29. L. Di Gasper and A. Schaerf, “A composite-neighborhood tabu search approach to the traveling
tournament problem”, Journal of Heuristics 13, pp. 189-207 (2007).

30. J.A.M. Schreuder, “Combinatorial aspects of construction of competition Dutch Professional
Football Leagues”, Discrete Applied Mathematics 35, pp. 301–312 (1992).

31. G. Nemhauser and M. Trick, “Scheduling a major college basketball conference”, Operations
Research 46(1), pp. 1-8 (1998).

32. T. Bartsch, A. Drexl and S. Kröger, “Scheduling the professional soccer leagues of Austria and
Germany”, Computers and Operations Research 33(7), pp. 1907-1937 (2006).

33. G. Duran, M. Guajardo, J. Miranda, D. Saure, S. Souyris, A. Weintraub and R. Wolf,
“Scheduling the Chilean soccer league by integer programming”, Interfaces 37, pp. 539-552
(2007).

34. D. Goossens and F.C.R. Spieksma, “Scheduling the Belgian soccer league”, Interfaces 39(2),
pp. 109-118 (2009).

35. R. Rasmussen, “Scheduling a triple round robin tournament for the best Danish soccer league”,
European Journal of Operational Research 185(2), pp. 795–810 (2008).

36. F. Bonomo, A. Burzyn, A. Cardemil, G. Durán and J. Marenc, “An application of the traveling
tournament problem: the Argentine volleyball league”, Proc. of the 7th International
Conference on the Practice and Theory of Automated Timetabling, Montreal, Canada (2008).

37. J. Kyngäs and K. Nurmi, “Scheduling the Finnish Major Ice Hockey League”, Proc. of the
IEEE Symposium on Computational Intelligence in Scheduling, Nashville, USA (2009).

38. J. Kyngäs and K. Nurmi, “Scheduling the Finnish 1st Division Ice Hockey League”, Proc. of
the 22nd Florida Artificial Intelligence Research Society Conference, Florida, USA (2009).

39. D. de Werra, “Scheduling in sports”, in Studies on graphs and discrete programming, edited by
Amsterdam and Hansen, 1981, pp. 381-395.

40. K. Nurmi, D. Goossens, T. Bartsch, F. Bonomo, D. Briskorn, G. Durán, J. Kyngäs, J. Marenco,
C.C. Ribeiro, F. Spieksma, S. Urrutia and R. Wolf, “A Framework for a Highly Constrained
Sports Scheduling Problem”, Lecture Notes in Engineering and Computer Science: Proc of The
International MultiConference of Engineers and Computer Scientists 2010, IMECS 2010, 17-19
March, 2010, Hong Kong, pp. 1991-1997 (2010).

41. K. Nurmi et. al., “Sports Scheduling Problem” [Online], Available: http://www.samk.fi/ssp,
(Last update 28.11.2009).

42. M. Henz, T. Müller, S. Thiel and M. van Brandenburg, “Benchmarks and results for round robin
tournaments” [Online], Available: http://www.comp.nus.edu.sg/˜henz/roundrobin_benchmarks/.
(Created 2000).

43. M. Trick, “Challenge Traveling Tournament Instances” [Online], Available:
http://mat.gsia.cmu.edu/TOURN, (Last update 4.8.2009).

Publication 6

E.I. Ásgeirsson, J. Kyngäs, K. Nurmi and M. Stølevik, “A Framework for
Implementation-Oriented Staff Scheduling”, in Proc of the 5th
Multidisciplinary Int. Scheduling Conf.: Theory and Applications (MISTA),
Phoenix, USA, 2011 (submitted for publication).

Eyjólfur Ingi Ásgeirsson
Reykjavik University, School of Science and Engineering, Iceland
E-mail: eyjo@hr.is

Jari Kyngäs
Satakunta University of Applied Sciences, Finland
E-mail: jari.kyngas@samk.fi

Kimmo Nurmi
Satakunta University of Applied Sciences, Finland
E-mail: cimmo.nurmi@samk.fi

Martin Stølevik
SINTEF ICT, Department of Applied Mathematics, Norway
E-mail: martin.stolevik@sintef.no

MISTA 2011

A Framework for Implementation-Oriented Staff Scheduling

Eyjólfur Ingi Ásgeirsson • Jari Kyngäs • Kimmo Nurmi • Martin Stølevik

Abstract This paper presents a general framework for an implementation-oriented, highly
constrained staff scheduling problem that is modeled from the requirements of various lines of
business and industry. The presented model builds up a solid foundation for wide variety of
real-world staff scheduling scenarios. We hope the presented modeling issues assist academics
in getting their research results implemented into commercial systems. We define a staff
scheduling problem, introduce the necessary terminology, discuss research guidelines and
detail the constraints of the problem. A set of artificial and real-world instances derived from
the actual problems solved for various companies are presented. We publish the best solutions
we have found, and invite the staff scheduling community to challenge our results. We believe
that the instances will help researchers to test the implementation value of their solution
methods. The instances are available online.

1 Introduction

Staff scheduling is a difficult and time-consuming problem that every company or institution
that has employees working on shifts or on irregular working days must solve. The staff
scheduling problem has a fairly broad definition. Most of the studies focus on assigning
employees to shifts, determining working days and rest days or constructing flexible shifts and
their starting times. Different variations of the problem are NP-hard and NP-complete [1]-[7]
and thus extremely hard to solve. The first mathematical formulation of the problem based on a
generalized set covering model was proposed by Dantzig [8]. Good overviews of staff
scheduling can be found in [9]-[11].

Nurse rostering [12] is by far the most studied application area in staff scheduling. Other
successful application areas include airline crews [13], call centers [14], check-in counters
[15], ground crews [16], nursing homes, call centers and airport ground services [17], postal
services [18] and transport companies [19]. Recent successful algorithms for staff scheduling
include ant colony optimization [20], dynamic programming [21], constraint programming
[22], genetic algorithms [23], scatter search [24], hyperheuristics [25], integer programming

[26], metaheuristics [27], simulated annealing [28], tabu search [29] and variable
neighborhood search [30].

There are basically four reasons for the current interest in staff scheduling. First, public
institutions and private companies around the world have become more aware of the
possibilities for decision support technologies, and they no longer want to handle the schedules
manually. Second, human resources are one of the most critical and most expensive resources
for these organizations. Careful planning can lead to significant improvements in productivity.
Third, good schedules are very important for the welfare of the staff. Besides increasing
employee satisfaction, effective labor scheduling can also improve customer satisfaction.
Finally, new algorithms have been developed to tackle previously intractable problem
instances, and, at the same time, computer power has increased to such a level that researchers
are able to solve large real-world problems. One further significant benefit of automating the
scheduling process is the considerable amount of time saved by the administrative staff
involved.

The focus of this paper is to introduce a general framework for an implementation-
oriented, highly constrained staff scheduling problem that is modeled from the requirements of
various lines of business and industry. The presented model builds up a solid foundation for
wide variety of real-world staff scheduling scenarios. In Section 2 we introduce the necessary
staff scheduling terminology. Section 3 discusses research guidelines and presents a model for
an implementation-oriented staff scheduling problem. The next two sections show that both
existing problems and artificial ones can be expressed by the model. In Section 4 we present a
set of artificial test instances and in Section 5 we present real-world instances derived from the
actual problems solved for various lines of business. We publish the best solutions we have
found and invite the staff scheduling community to challenge our results.

2 Staff Scheduling Terminology

Staff scheduling consists of assigning employees to tasks and shifts over a period of time
according to a given timetable. The planning horizon is the time interval over which the
employees have to be scheduled. Each employee has a total working time that he/she has to
work during the planning horizon. Furthermore, each employee has competences
(qualifications and skills) that enable him/her to carry out certain tasks. Days are divided into
working days (days-on) and rest days (days-off). A sequence of working days with one shift
each day is called a work stretch. Each day is divided into periods or timeslots. A timeslot is
the smallest unit of time. The length of a timeslot determines the granularity of the schedule. A
shift is a contiguous set of working hours and is defined by a day and a starting period on that
day along with a shift length (the number of occupied periods). Shifts are usually grouped in
shift types - for example morning day and night shifts. Each shift may be composed of a
number of tasks. A shift or a task may require the employee assigned to it to possess one or
more competences. A combined shift is a collection of non-overlapping shifts; an employee
assigned to a combined shift is assigned to all the shifts in the combined shift. If the combined
shift is composed of non-contiguous shifts it is called a split-shift. A specific sequence of shifts
for an employee is called a stint. A work schedule for an employee over the planning horizon
is called a roster. A roster is a combination of shifts and days-off assignments that covers a
fixed period of time. Figure 1 clarifies the terminology.

Figure 1: Staff scheduling terminology.

Cyclic schedules are such that all employees have the same basic schedule but start with a

different day. In cyclic scheduling the goal is to find a schedule that is optimal for all
employees. Non-cyclic schedules are individual schedules. In non-cyclic scheduling the goal is
to find rosters that fulfill as many requests as possible. Continuous schedules arise in
organizations that operate 24 hours a day and seven days a week - otherwise a schedule is
called discontinuous. Wrap-around scheduling means that after the end of the planning
horizon, the employees are expected to work the same roster all over again. If wrap-around
scheduling is in use, some constraints must be checked outside the planning horizon by
extrapolating the employees’ rosters. If the process must take into consideration the shifts
worked right before the beginning of the planning horizon, we call this initial condition
scheduling and assume that the initial conditions are input to the problem. For example,
decomposing a long time horizon into shorter time horizons which are solved sequentially can
be a successful method in practical problems and would create initial conditions that must be
handled.

Table 1: An example and solution of staff scheduling problem.

Table 1 shows a solution for a simple one-week staff scheduling problem with seven

employees, two shifts (early and late) in a working day and one of three tasks to be completed
within a shift. Moreover, task 1 and 2 cannot be carried out by Betty and Ellie, a late shift

cannot be followed by an early shift on the next day, and each employee should have one day-
off.

We classify the real-world staff scheduling process as given in Figure 2. Demand
modeling is the process of determining the staffing levels, that is, how many employees are
needed at different times over some planning horizon. In this presentation, demand modeling
also includes determination of planning horizons, competence structures, regulatory
requirements and other constraints. Demand modeling requires labor forecasting as well as
hiring and budgeting decisions. Shift design is the process of determining the shift structure,
tasks to be carried out in particular shifts and the competence needed in different shifts. The
output of the demand modeling and the shift design is a mathematical model of the staff
scheduling problem at hand.

Figure 2: The real-world staff scheduling process.

In preference scheduling, each employee gives a list of preferences and attempts are

made to fulfill them as well as possible. Pure self-scheduling refers to preference scheduling in
which the employees are entirely responsible for the schedule generation. Days-off scheduling
deals with the assignment of rest days between working days over a given planning horizon.
Staff rostering, also referred as shift scheduling, deals with the assignment of employees to
shifts. It can also specify the starting time and duration of shifts for a given day even though in
most cases they are preassigned in shift design. In other words, days-off scheduling deals with
working days and staff rostering deals with the working times of day. When days-off and shifts
are scheduled simultaneously, the process is sometimes called tour scheduling. The name
comes from the fact that we need to specify the hours of the day and days of the week through
which each employee must travel. In this paper, the process of scheduling preferences, days-
off and shifts is called computational staff scheduling. Computational staff scheduling is a key
to increased productivity, quality of services, customer satisfaction and employee satisfaction.
Other advantages include reduced planning time, reduced payroll expenses and ensured
regulatory compliance.

Rescheduling deals with ad hoc changes that are necessary due to sick leaves or other no-
shows. The changes are usually carried out manually. Finally, participation in evaluation
ranges from the individual employee, through personnel managers, to executives. A reporting
tool should provide performance measures in such a way that the personnel managers can
easily evaluate both the realized staffing levels and the staff satisfaction. When necessary, the
demand modeling and/or shift design can be reprocessed and focused, and the whole staff
scheduling process restarted.

In the demand modeling we have to determine which phases in the computational staff
scheduling are scheduled simultaneously. For example, scheduling days-off every tenth week
and shifts every second week, enables the staff to plan their free time more conveniently.
However, scheduling both at the same time every second week increases the probability of
meeting the staffing levels without the need to hire part-time employees. The staff scheduling
problems presented in this paper include at least two of the components of the computational
staff scheduling. Some of them can be scheduled simultaneously. Alternatively, some of them
can be solved first, and then the solution is given as a fixed input to the next component.

3 A Model For Implementation-Oriented Staff Scheduling Problems

There are hundreds of staff scheduling solutions commercially available and in widespread
use. In that sense, the implementation-oriented staff scheduling approach is already standard
practice in industry. However, we believe that there is still some gap between academic and
commercial solutions. The commercial products may not include the best academic solutions.
We define the implementation-oriented staff scheduling research as a research which raises

1) such modeling issues that have probably precluded academics from getting their
research results implemented to commercial advantage, and

2) the trinity between an academic researcher, a problem owner and an industry software
vendor.

We have studied a significant number of theoretical and practical staff scheduling papers to
realize the most important elements in real-world systems. This, combined with our
experience in implementing staff scheduling software, forms the basis to the model. We
believe that a considerable number of real-world staff scheduling scenarios can be modeled
using the constraints presented in this section.

Most of the staff scheduling cases in which academic researchers have announced that
they have closed a contract with a customer concern nurse rostering, see e.g. [27] and [31]-
[37]. Hospitals tend to be very open about their operational details, enabling easy cooperation
with academics who wish to publish the results of their work. We have experienced that nurse
rostering cooperation between a commercial software vendor and academics work. The
implemented plug-ins are a great sales pitch for the software vendors when they talk to
potential customers.

The interest of the academic staff scheduling community has somewhat shifted to other
application areas. The overall interest to real-world staff scheduling has also increased: the
number of presented staff scheduling papers has increased in two recognized scheduling
conferences, PATAT and MISTA.

According to our experience, the best action plan for real-world staff scheduling research
is to cooperate both with a problem owner and with a third-party vendor. In addition, an
academic should consider not to work with user interfaces, financial management links,
customer reports, help desks, etc. Instead, one should concentrate on modeling issues and
algorithmic power.

It is apparent that a profound understanding of the relevant requests and requirements
presented by customers is a prerequisite for implementing and solving real-world staff
scheduling problems. The implementation should present a wide variety of real-world
constraints and be tractable enough to enable the addition of new constraints. It is important to
concentrate on the acceptance and satisfaction of both the staff and the personnel managers.
Despite the fact that the algorithm should be as robust as possible, no parameter tuning should
be expected from the end-users. On the other hand, it should be possible for the end-users to
influence different aspects of the algorithm, like weighting between constraints or limit
running times, if he/she wishes to.

It should be noted that it is difficult to incorporate the experience and expertise of the
personnel managers into a staff scheduling system. Personnel managers often have extremely
valuable knowledge, experience and detailed understanding of their specific staffing problem,
which will vary from company to company. To formalize this knowledge into constraints is
not an easy task. Still, we believe that the model given in this section builds up a solid
foundation for staff scheduling scenarios.

The schedules in the model are non-cyclic and can be either continuous or discontinuous.
The employees’ total working time may vary depending on the employee. Each shift has a
fixed start and end time (for example 08:00 – 16:00). Shifts may vary in length and can
overlap. Shifts can be classified by shift types which can be used to balance the working times
at different times of the day between the employees. A shift is composed of a number of tasks.
Each employee has competences that enable her/him to carry out certain tasks. Furthermore,

each employee has preferences over certain tasks, certain shifts and shift types, and certain
days-off.

In some cases the most important goal is to minimize understaffing and overstaffing.
Low-quality rosters can lead either to an undersupply of employees with a need to hire part-
time employees or an oversupply of employees with too much idle time both implicating a loss
of business. Furthermore, it is very important to pay attention to employee requests. Kellog
and Walczak [38] report that any academic model that does not include some opportunity for
preference or self-scheduling will probably not be implemented. For example, nurses use
complex decision-making skills when selecting their personal schedules. In addition, our
experiences have shown that personal managers can generate remarkably good schedules
without optimization tools. Therefore, academic research should explore versatile ways to
support preference and self-scheduling.

The overall objective is to meet daily staffing requirements and personal preferences at
minimum penalty without violating work contracts and government regulations. We make no
strict distinction between hard and soft constraints; that will be given by the instances
themselves. The goal is to find a feasible solution that is most acceptable for the problem
owner. That is, a solution that has no hard constraint violations and that minimizes the
weighted sum of the soft constraint violations. The weights will also be given by the instances
themselves. Still, one should bear in mind that an instance is usually just an approximation of
practice. In reality, hard constraints can turn out to be soft, if necessary, while giving weights
to the soft constraints can be difficult.

We classify the constraints into coverage, regulatory and operational requirements, and
operational and personal preferences as given in [39]. The coverage requirement ensures that
there are a sufficient number of employees on duty at all times. The regulatory requirements
ensure that the employee’s work contract and government regulations are respected. The
personnel’s requests are very important and should be met as far as possible; this leads to
greater staff satisfaction and commitment, and reduces staff turnover.

The following constraints can be used as a framework for modeling. An academic
researcher can examine these issues together with an industry software vendor:

Coverage requirement

(C1) An employee cannot be assigned to overlapping shifts.
(C2) A minimum number of employees of particular competences must be guaranteed for

each shift or each timeslot
(C3) A maximum number of employees of particular competences cannot be exceeded

for each shift or each timeslot
(C4) A balanced number of surplus employees must be guaranteed in each working day

Regulatory requirements
(R1) The required number of working days, working hours and days-off within a

timeframe must be respected
(R2) The required number of holidays within a timeframe must be respected
(R3) The required number of free weekends (both Saturday and Sunday free) within a

timeframe must be respected
(R4) The minimum rest time within a timeframe must be respected
(R5) The minimum time gap of rest time between two shifts must be respected
(R6) The number of special shifts (such as union steward duties and training sessions) for

particular employees within a timeframe must be respected
(R7) Employees cannot work consecutively for more than k days (the maximum length of

a work stretch)
(R8) Some employees cannot work on weekends or during specific hours of the day
(R9) The maximum number of shifts in a single day must be respected

Operational requirements
(O1) An employee can only be assigned to a shift he/she has competence for
(O2) At least k working days must be assigned between two separate days-off

(O3) An employee cannot be assigned to more than k weekend days within a timeframe
(O4) An employee cannot be assigned to more/less than k shifts of a given type within a

timeframe
(O5) An employee assigned to a shift type t1 must not be assigned to a shift type t2 on the

following day (certain stints are not allowed)
(O6) An employee must be assigned to a particular shift or on-duty or off-duty on a

particular day or during a particular timeslot
Operational preferences

(E1) Single days-off should be avoided
(E2) Single working days should be avoided
(E3) The maximum length of consecutive days-off is k
(E4) A balanced assignment of single days-off and single working days must be

guaranteed between the employees
(E5) A balanced assignment of different shift types must be guaranteed between the

employees
(E6) A balanced assignment of different tasks must be guaranteed between the employees
(E7) A balanced assignment of weekdays must be guaranteed between employees
(E8) Assign or avoid a given shift type before or after a free period (days-off, vacation)
(E9) Assign as many wanted, and avoid as many unwanted, stints as possible

Personal preferences
(P1) Assign or avoid assigning given employees to the same shifts
(P2) Assign a requested day-on or avoid a requested day-off
(P3) Assign a requested shift or avoid an unwanted shift
(P4) Assign a shift (work) in a requested timeslot or assign no shift (free) to a requested

timeslot.

Often, an employee cannot be assigned to more than one shift per day, although we have
seen applications where more than one shift per day is allowed. The definition of constraint C1
allows two or more shifts to be assigned provided they do not overlap. Instead of using shifts
in C2 and C3, the minimum and maximum number of on-duty staff can be assigned to
timeslots. Quite often, a company has more employees working than are needed to cover the
minimum number of employees each working day. The surplus employees are used to cover
the expected sick leaves and other no-shows (see constraint C4).

Constraints R1-R9 can be different from one employee to another, based on the
employees’ contracts. The number of working days, working hours and days-off in constraint
R1 need not be exact. We can allow minor deviations to working hours over the planning
horizon because it might be impossible to meet the number of hours specified in the contract
during the planning horizon using the predefined shifts. For example, the number of working
hours could be given as a min-max or a ±p % range to fit this constraint. Shortage or excess is
typically handled by the user in the next planning period.

As an example of a work contract and operational requirements and preferences, consider
the following. An employee should have exactly nine days-off in every four-week timeframe
starting from the beginning of the planning horizon (R1). He/she should have at least one
weekend off (R3). The number of working days on weekends cannot exceed four (O3). An
employee cannot work consecutively for more than six days (R7). At least two working days
must be assigned between two separate days-off (O2). Single days-off and single working days
should be avoided (E1 and E2). The maximum length of consecutive days-off is three (E3).
Some employees have a work contract that does not involve weekend work (R8).

The working days and shifts in the sample case could be built up using the following
rules. The number of working hours per week is 36 hours (R1). At least eleven hours of rest
are required during any period of twenty-four consecutive hours (R4). The maximum number
of night shifts is three in every four-week timeframe (O4). A night shift has to be followed by
at least fourteen hours of rest (R5). An employee assigned to a late or night shift must not be
assigned to an early shift the following day (O5). Furthermore, a night/early shift should be

avoided before/after a free period (E8). Note, that the special shifts (R6) can be treated as
regular shifts.

Each employee has competences (qualifications and skills) that enable him/her to carry
out certain tasks. A shift may require the employee assigned to it to possess one or more
competences (O1).

Constraint E9 can be used to model wanted and unwanted shift patterns. The user can
input a number of wanted and unwanted stints (patterns). Examples of unwanted stints are D-
E-D (Day-Evening-Day) or E-D-E; frequently changing the time of day is stressful. The
balanced assignments in constraints E4-E7 can be guaranteed either by using a given min-max
range or the range can be expressed as the maximum percentage deviation from the mean.

Constraint P1 can be used in cases when certain employee groups need to work together
on the same shifts. Another case could be when a married couple should have the same
working hours.

Constraint O6 together with constraints P2, P3 and P4 build up the basis for preference
scheduling. The O6 constraints cover any preferences that must be satisfied while the P2, P3
and P4 constraints represent the requests from or wishes of the employees. An efficient and
effective preference scheduling relies on having a system whereby the employees can see the
requirements, available shifts, an overview of the currently scheduled hours and an easy
method of checking the regulations or possible rule violations caused by proposed changes to
the schedule. If the schedule created by the employee preferences is close to satisfying the
constraints and the coverage demand, it becomes easier to create a schedule that is both
feasible with regard to the scheduling constraints and includes most of the requests and
preferences. Therefore, it is beneficial for both the employer and the employee to have a good
system for preference scheduling. A preference scheduling system that focuses on employee
satisfaction should allow each employee a limited number of strict requests of type O6 to
schedule days off for things such as doctor’s appointments, birthdays and so on, while the
number of requests of type P2, P3 and P4 should be enough for the employees to be able to
completely schedule all their working hours.

In the case of staff scheduling over several entities (e.g. two departments in a hospital),
constraints R1 and O6 may be used to model the days and working time that are “locked” by
the other entity (department). For example, Annie is working 70 % for her home department
and 30 % for another department. In her home department her 70 % position is modeled by R1
(reduced numbers compared to a 100 % position) and the shifts assigned by the other
department is modeled by O6 as pre-assigned days off. It might be necessary to also use some
additional constraints: assume for instance that Annie is working a night shift in the other
department on Tuesday (starting Monday 23:00 and ending Tuesday at 7:00). Tuesday is then
a day off at her home department (O6). She most probably cannot work an evening shift in her
home department on Monday. This can be modeled using P4 or O6 by assigning a free period
in her home department on Monday evening.

Finally, in cases when days-off are scheduled separately prior to staff rostering, the fixed
days-off can be preassigned for the staff rostering phase using constraint O6. The number of
holidays within a timeframe can also be preassigned (R2) or the holidays can be treated as
days-off.

At the beginning of this section we stated that academics should consider allying with
industry software vendors. The other way around also holds. However, Kellog and Walczak
[38] give several reasons why developers of commercial products rarely consult academics.
For academics, it is usually more important to make publications than to make business. This
has a consequence that the scope of the models academics create seems to be relatively small.
Although the staff scheduling models developed by academics solve the problem instance at
hand, they may fall short of meeting the complex needs of the customers. Academic solutions
are often not only computer and platform dependent, but can also use commercial
mathematical programming solvers for linear programming, mixed integer programming and
constraint programming. However, we believe that the recent advancements made in the staff
scheduling research are rapidly closing the research-application gap.

We end this section by summarizing some other important factors that real-world staff
scheduling research should consider. Based on our experience, we believe that in addition to
being capable of presenting a wide variety of real-world constraints, a staff scheduling system
should

− generate just a few, clearly different solutions to choose from,
− allow users to specify the importance of requests and requirements,
− minimize the scheduling time,
− run on any modern computer with any operating system,
− not use third-party mathematical software packages with expensive licensing policies and

be integratable with existing industry software.

4 Artificial Benchmark Instances

Researchers quite often only solve some special artificial cases or one real-world case. The
strength of random test instances is the ability to produce many problems with many different
properties. Still, they should be sufficiently simple for each researcher to be able to use them in
their test environment. The strength of practical cases is self-explanatory. However, an
algorithm performing well on one practical problem may not perform well on another practical
problem, which is why we present a collection of test instances for both artificial and real-
world cases. We start with artificial cases.

Table 2: Nine staff scheduling test instances (n = the total number of employees, w = the length of a
planning horizon in weeks, d = the number of days-off in the planning horizon (R1), h = the number of
working hours per employee within the planning horizon (R1), smax = the maximum length of a work
stretch (R7), cmax = the maximum length of consecutive days-off (E3), E1+E2 = no single days-off and
working days, O5+E8 = forbidden stints (N+M, N+D, N+DO), r = minimum rest time between two
working days (R5), E7 = the number of working days between employees on any weekday must not
differ by more than 3). The list of the shifts for the test instances can be found in (Ásgeirsson et al. 2010).
The solutions (sol) have been found using the algorithm described in (Nurmi and Kyngäs, 2011).

Table 2 shows nine staff scheduling test instances. The instances comply with the model
presented in Section 3. The number of employees (n) varies between 50 and 112, and the
length of the planning horizon (w) between 1 and 4 weeks. In each instance, the sum of the
shift lengths is exactly the same as the total working hours of the employees (see constraint R1
in Section 3). The number of working hours per employee within the planning horizon (h) is
the same for all employees.

The first two instances do not include days-off. For the other instances, the maximum
length of a work stretch (R7) and the maximum length of consecutive days-off (E3) are given.
Their minimum lengths are two (E1+E2).

In four instances, an employee assigned to a night shift must not be assigned to a morning
or day shift (O5) the following day, or have a day-off (E8) in the following day. In two of
these instances, the minimum rest time between two working days is given (R5).

Finally, in the last three instances, the number of working days between employees on
any weekday must not differ by more than three (E7). The list of shifts for the test instances
can be found in [40]. The challenge is to find a feasible (no hard constraint violations) solution
that minimizes the number of soft constraint violations. All but two constraints are hard. The
two soft constraints are:

− each employee should have exactly h working hours (two violations for each minute

above h and one violation for each minute below h) (R1)
− certain stints are forbidden (one violation for each such case) (O5+E8).

We were able to find the optimum zero solution for seven of the test instances; we do not

know the optimum value for the other instances. We hope these test instances will help
researchers to test the implementation value of their solution methods.

5 Real-World Benchmark Instances

The three real-world instances introduced in this section are based on cases we have solved.
The understanding of the two issues raised in the beginning of Section 3 has significantly
contributed to the quality of the solutions. The instances have been simplified and modified in
order to make it easier for researchers to use them in their test environment. The instances are
derived from various lines of business and industry in Finland, Iceland and Norway. The
instances and list of shifts can be found in [40].

 A Finnish bus transit company has 77 bus drivers. The length of the planning horizon
is two weeks. The days-off for the planning horizon are given - they have been scheduled
separately prior to staff rostering. The fixed days-off can be preassigned for the staff rostering
using constraint O6. The number of working days varies between 2 and 10. The average
working day is 8 hours. The total number of shifts is 329 per week. The shift lengths vary
between 4 hours 15 minutes and 11 hours 14 minutes. An average shift length is 8 hours and 1
minute.

 The problem is highly compact. The total number of working days in the planning
horizon is only two less than the total number of shifts. Only two Sundays of one employee or
one Sunday of two employees will be left empty. Furthermore, the total sum of the working
minutes in all the shifts is only sixteen less than the total number of working minutes to be
scheduled to the employees.

 The challenge is to find a feasible solution that minimizes the number of the
following soft constraint violations:

− each employee should have exactly 8n working hours, where n is the number of working

days for the employee (two violations for each minute above 8n and one violation for
each minute below 8n) (R1)

− a night shift should not be assigned before a day-off (ten violations for each such case)
(E8).

 We believe that mathematical programming techniques on their own, are in many

cases too rigid to deal with the multiple and often changing, objectives and goals of the real-
world staff scheduling. This first problem was solved using the population-based cooperative
local search method described in [41]. We were able to find a solution with 20 soft constraint
violations. Remember that the total sum of the working minutes in all the shifts is 16 less than
the total number of working minutes to be scheduled to the employees, that is, the theoretical
optimum value is 16 soft constraint violations.

 An Icelandic call center has 92 employees that must be scheduled in 30 minute
timeslots over six weeks. Each day has around 210 possible shifts, ranging from 4 hours up to
11 hours, and the minimum and maximum number of on-duty staff is given for every timeslot

in the planning period. A full-time position requires 38 hours per week, but some employees
are working half-time, 19 hours per week. The hard constraints of the problem are: one shift
per day at most (R9); the employees must get at least one in every four weekends off (R3) and
each employee must get at least 11 consecutive hours of rest in any 24 hour period (R4); the
maximum number of consecutive working days is 6 (R7) and the maximum number of
working hours in each 24-hour period is 9 hours (R1). Any requests for time off or vacations
are treated as hard constraints (P2, P4), but each employee has only a limited number of such
requests for each planning period. The employees can also have limitations on working hours
included in their contracts, such as no night shifts or no work on weekends (R8). Furthermore,
some employees have meetings or other duties that cannot be modified (O6) and some
employees are included in the instance but are not part of the rostering process - i.e., their
schedule must be kept unchanged (O6).

 The soft constraints are: the coverage requirements (C2, C3) that are given for every
timeslot should be satisfied; the total number of working hours over the planning period for
each employee should be within a given range, usually ± 8 hours (R1). The problem input
includes requests for shifts or working hours from the employees (P3, P4), such that most of
the employees have requested enough hours to fulfill their working hour requirement. The
goal is to find a schedule that fulfills all the hard constraints while minimizing a weighted sum
of the soft constraint violations.

 This case was solved using multiple-stage greedy local search, with different
operations and objectives for each stage [see 17].

 A Norwegian hospital ward has 20 employees that must be scheduled over four
weeks. There is a fixed manpower plan consisting of nine different shift types, divided into
three different categories (Day – six shift types; Evening – two shift types; Night – one shift
type). In total, 78 shifts must be scheduled every week. The average weekly working time is
28.5 hours, but the contracts vary between 17.75 hrs/week (50 % part-time position) to 35.5
hrs/week (full time position). The hard constraints of the problem are: one and only one shift
per day (R9) (shifts are assigned to the day they start); the employees must work one weekend
each, and which one is given by the input (O6); the cover specified in the manpower plan must
be covered exactly; the working hours over the planning horizon must not deviate by more
than ± 2 % from the contracted amount (i.e., 142 hours. for a full-time position) (R1); some
shifts cannot be followed by other shifts (O5) because there must be a minimum time between
on-duties (R5). Also, a maximum weekly working time (R1) and a weekly continuous free
period (R4) are hard constraints. The challenge is to minimize the weighted penalty associated
with the soft constraints: a maximum number of consecutive day shifts (3), evening shifts (2)
and night shifts (3), and a maximum five consecutive working days (R7). Furthermore, there
should be no single day shifts or night shifts (E2), each employee should have a maximum of
five evening shifts (O4) and a min/max of 2/6 night shifts (O4) over the planning horizon.
Finally, single days-off should be avoided (E1).

 This case has been solved using a hybrid approach between constraint programming
and variable neigh-borhood descent in an iterated local search framework (Stølevik et al.
2010). The best solution value found was 4.48.

6 Conclusions and Future Work

We defined an implementation-oriented staff scheduling framework. We believe that a
considerable number of real-world staff scheduling scenarios can be modeled using the
constraints presented in this paper. In addition, we hope the presented modeling issues assist
academics in getting their research results implemented into commercial systems. This
research has contributed to better systems for our industry partners. A set of artificial and real-
world instances derived from the actual problems solved for various companies were
presented. We have published the best solutions we have found. We invite the staff scheduling
community to challenge our results. We believe that the instances will help researchers to test
the implementation value of their solution methods. The instances are available online. We are

currently modeling the instances presented in this paper using the xml-based modeling format
introduced and managed by Tim Curtois (Curtois 2010). In addition, we will present the other
real-world instances we have been recently working with

References

1. Garey M.R. and Johnson D.S., Computers and Intractability. A Guide to the Theory of
NP Completeness. Freeman (1979)

2. Bartholdi, J.J., “A Guaranteed-Accuracy Round-off Algorithm for Cyclic Scheduling and
Set Covering”, Operations Research 29, pp 501–510 (1981).

3. Tien J. and Kamiyama A., “On Manpower Scheduling Algorithms”, SIAM Rev. 24(3), pp.
275–287 (1982).

4. Lau, H. C., “On the Complexity of Manpower Shift Scheduling”, Computers and
Operations Research 23(1), pp. 93-102 (1996).

5. Kragelund L. and Kabel T., Employee Timetabling. An Empirical Study. Master’s
Thesis, Department of Computer Science, University of Aarhus, Denmark (1998).

6. Fukunaga, A., Hamilton, E., Fama, J., Andre, D., Matan, O. and Nourbakhsh, I., “Staff
scheduling for inbound call and customer contact centers”, AI Magazine 23(4), pp 30-40
(2002).

7. Marx, D., “Graph coloring problems and their applications in scheduling”, Periodica
Polytechnica Ser. El. Eng. 48, pp. 5–10 (2004).

8. Dantzig, G.B., “A comment on Edie’s traffic delays at toll booths”, Operations Research
2, pp 339–341 (1954).

9. Alfares, H.K., “Survey, categorization and comparison of recent tour scheduling
literature”, Annals of Operations Research 127, pp. 145-175 (2004).

10. Ernst, A. T., Jiang H., Krishnamoorthy, M., and Sier, D., "Staff scheduling and rostering:
A review of applications, methods and models", European Journal of Operational
Research 153 (1), pp 3-27 (2004).

11. Meisels, A. and Schaerf, A., “Modelling and solving employee timetabling problems”,
Annals of Mathematics and Artificial Intelligence 39, pp. 41-59 (2003).

12. Burke, E.K., De Causmaecker P., Petrovic S. and Vanden Berghe G., “Variable
neighborhood search for nurse rostering problems”. In Resende and de Sousa, Editors,
Metaheuristics: Computer Decision-Making, Kluwer, pp. 153–172 (2004).

13. Dowling, D., Krishnamoorthy, M., Mackenzie, H. and Sier, D., “Staff rostering at a large
international airport”, Annals of Operations Research 72, pp 125-147 (1997).

14. Beer, A., Gaertner, J., Musliu, N., Schafhauser, W. and Slany, W., “Scheduling breaks in
shift plans for call centers”. In Proc. of the 7th Int. Conf. on the Practice and Theory of
Automated Timetabling, Montréal, Canada (2008).

15. Stolletz, R., “Operational workforce planning for check-in counters at airports”.
Transportation Research Part E 46, pp. 414-425 (2010).

16. Lusby T., Dohn A., Range T. and Larsen J., ”Ground Crew Rostering with Work Patterns
at a Major European Airlines”. In Proc of the 8th Conference on the Practice and Theory
of Automated Timetabling (PATAT), Belfast, Ireland (2010).

17. Ásgeirsson, E. I., ”Bridging the gap between self schedules and feasible schedules in staff
scheduling”. In Proc of the 8th Conference on the Practice and Theory of Automated
Timetabling (PATAT), Belfast, Ireland (2010).

18. Bard, J. F., Binici, C. and Desilva, A. H., “Staff Scheduling at the United States Postal
Service”, Computers & Operations Research 30, pp 745-771 (2003).

19. Nurmi K. and Kyngäs J., “Days-off Scheduling for a Bus Transportation Staff”,
International Journal of Innovative Computing and Applications, Inderscience, UK, (to
be published 2011).

20. Seçkiner, S.U. and Kurt, M., “Ant colony optimization for the job rotation scheduling
problem”, Applied Mathematics and Computation 201(1-2), pp. 149-160 (2008).

21. Elshafei M. and Alfares H., "A dynamic programming algorithm for days-off scheduling
with sequence dependent labor costs", Journal of Scheduling 11(2), pp 85-93 (2008).

22. Qu R. and He F., “A hybrid constraint programming approach for nurse rostering
problems”. In Allen, Ellis, and Petridis, Editors, Applications and Innovations in
Intelligent Systems XVI, Cambridge, UK, pp. 211-224 (2008).

23. Dean J., “Staff Scheduling by a Genetic Algorithm with a Two-Dimensional
Chromosome Structure”. In Proc of the 7th Conference on the Practice and Theory of
Automated Timetabling, Montreal, Canada (2008).

24. Burke, E.K., Curtois, T., Qu, R. and Vanden Berghe, G., “A scatter search methodology
for the nurse rostering problem”, Journal of the Operational Research Society (to be
published 2010).

25. Remde, S., Cowling, P. I., Dahal, K. P. and Colledge, N., “Exact/Heuristic Hybrids
Using rVNS and Hyperheuristics for Workforce Scheduling”, In Proc. of the 7th
Evolutionary Computation in Combinatorial Optimization, Lecture Notes in Computer
Science 4446, Springer, pp. 188-197 (2007).

26. Brunner, J.O., Bard, J.F., and Kolisch, R., “Flexible shift scheduling of physicians”,
Health Care Management Science. 12(3), pp 285-305 (2009).

27. Burke, E., De Causmaecker P., Petrovic S., and Vanden Berghe G., “Metaheuristics for
Handling Time Interval Coverage Constraints in Nurse Scheduling”, Applied Artificial
Intelligence, pp 743-766 (2006).

28. Goodale, J. and Thompson, G., “A Comparison of Heuristics for Assigning Individual
Employees to Labor Tour Schedules”, Annals of Operations Research 128(1), pp 47-63
(2004).

29. Musliu, N., “Heuristic Methods for Automatic Rotating Workforce Scheduling”,
International Journal of Computational Intelligence Research 2(4), pp. 309-326 (2006).

30. Burke, E.K., Curtois, T., Post, G.F., Qu, R. and Veltman, B., “A hybrid heuristic ordering
and variable neighbourhood search for the nurse rostering problem”, European Journal of
Operational Research 188(2), pp 330-341 (2008).

31. Bard, J. and Purnomo H., “Hospital-wide reactive scheduling of nurses with preference
considerations”, IIE Trans. 37(7) 589–608 (2005).

32. Beddoe, G.R., Petrovic, S. and Li, J, “A Hybrid Metaheuristic Case-based Reasoning
System for Nurse Rostering”, Journal of Scheduling 12, pp 99–119 (2009).

33. Bilgin, B., De Causmaecker, P., Rossie, B. and Vanden Berghe G., “Local Search
Neighbourhoods to Deal with a Novel Nurse Rostering Model”. In Proc. of the 7th Int.
Conf. on the Practice and Theory of Automated Timetabling, Montréal, Canada (2008).

34. Diaz, T., Ferber, D., deSouza C. and Moura A., “Constructing nurse schedules at large
hospitals”, Internat. Trans. Oper. Res. 10(3), pp. 245–265, (2003).

35. Kawanaka, H., Yoshikawa T., Shinogi T. and Tsuruoka S., “Constraints and search
efficiency in nurse scheduling problem”. In Proc. Internat. Sympos. Comput. Intelligence
Robotics Automation 1, pp. 312–317 (2003).

36. Meyer auf’m Hofe, H., “Solving rostering tasks by generic methods for constraint
optimization”. Internat. J. Foundations Comput. Sci. 12(5), pp. 671–693 (2001).

37. Van Wezel, W. and Jorna R., “Scheduling in a generic perspective: Knowledge-based
decision support by domain analysis and cognitive task analysis”, Internat. J. Expert
Systems 9(3), pp. 357–381 (1996).

38. Kellogg D.L. and Walczak S., “Nurse Scheduling: From Academia to Implementation or
Not”, Interfaces 37(4), pp. 355-369 (2007).

39. Bellanti, F., Carello, G., Della Croce F., and Tadei R., “A greedy-based neighborhood
search approach to a nurse rostering problem”, European Journal of Operational
Research, 153(1), pp. 28–40 (2004).

40. Ásgeirsson, E.I., Kyngäs J., Nurmi, K. and Stølevik, M. (Last update ?.?.2011).
“Implementation-Oriented Staff Scheduling Problem” [Online], Available:
http://www.samk.fi/iossp.

41. Nurmi K. and Kyngäs J., “Improving the Schedule of the Finnish Major Ice Hockey
League”. In Proc. of the 2nd International Conference on the Mathematics in Sport,
Groningen, Netherlands (2009).

42. Stølevik, M, Nordlander T. E., Riise, A. and Frøyseth, H., “An efficient hybrid approach
that solves real world nurse rostering problems, using constraint programming and
variable neighborhood descent” (preprint submitted to Engineering Applications of
Artificial Intelligence 2010).

43. Curtois, T. (Last update August 2010). “Staff Rostering Benchmark Data Sets” [Online].
Available: http://www.cs.nott.ac.uk/~tec/NRP/

Publication 7

K. Nurmi, J. Kyngäs and G.Post, “Staff Scheduling for Bus Transit
Companies”, Lecture Notes in Engineering and Computer Science:
Proceedings of The International MultiConference of Engineers and
Computer Scientists, Hong Kong, 2011 (in press).

Abstract—Good rosters have many benefits for an

organization, such as lower costs, more effective utilization of
resources and fairer workloads and distribution of shifts. The
process of constructing optimized work timetables for the
personnel is an extremely demanding task, hence the use of
decision support systems for staff scheduling has become
increasingly important for both the public sector and private
companies. Staff scheduling, preceded by vehicle scheduling
and driver scheduling, is the last phase in the bus transit
scheduling process. This paper presents a successful way to
schedule days-off on a yearly basis and shifts on a monthly
basis in one of the Finnish bus transportation companies. The
days-off and shifts are scheduled using an algorithm that is a
variation of the cooperative local search method. The
generated software will be integrated with a third-party
vendor product.

Index Terms—Real-World Scheduling, Staff Scheduling,
Driver Rostering, Bus Transit Scheduling.

I. INTRODUCTION
Staff scheduling is a difficult and time consuming

problem that every company or institution that has
employees working on shifts or on irregular working days
must solve. The staff scheduling problem has a fairly broad
definition. Most of the studies focus on assigning employees
to shifts, determining working days and rest days or
constructing flexible shifts and their starting times. Different
variations of the problem are NP-hard and NP-complete [1]-
[7] and thus extremely hard to solve. The first mathematical
formulation of the problem based on a generalized set
covering model was proposed by Dantzig [8]. Good
overviews of staff scheduling are published by Alfares [9],
Ernst et al. [10] and Meisels and Schaerf [11].

Many of the staff scheduling cases concern nurse
rostering, see e.g. [12]-[15]. Other successful application
areas include airline crews [16], call centers [17], check-in
counters [18], ground crews [19], nursing homes [20] and
postal services [21]. This paper presents a case in a
transportation company.

There are basically four reasons for the increased interest
in real-world staff scheduling. First, public institutions and
private companies around the world have become more
aware of the possibilities of decision support technologies,

K. Nurmi is with the Satakunta University of Applied Sciences, Pori,
Finland (phone: +358 44 710 3371; fax: +358 2 620 3030; e-mail:
cimmo.nurmi@samk.fi).

J. Kyngäs is with the Satakunta University of Applied Sciences, Pori,
Finland (e-mail: jari.kyngas@samk.fi).

G. Post is with the University of Twente, Department of Applied
Mathematics, Faculty of EEMCS, Twente, The Netherlands (e-mail:
g.f.post@ewi.utwente.nl).

and they no longer want to handle the schedules manually.
Second, human resources are one of the most critical and
most expensive resources for these organizations. Careful
planning can lead to significant improvements in
productivity. Third, good schedules are very important for
the welfare of the staff. Besides increasing employee
satisfaction, effective labor scheduling can also improve
customer satisfaction. Finally, new algorithms have been
developed to tackle previously intractable problem
instances, and, at the same time, computer power has
increased to such a level that researchers are able to solve
real-world problems. One further significant benefit of
automating the scheduling process is the considerable
abount of time saved by the administrative staff involved.

The purpose of this paper is to sequentially solve the
days-off scheduling problem and the shift scheduling
problem as it occurs in one of the Finnish bus transit
companies. In Section II we define the staff scheduling
problem and present the necessary terminology. Section III
gives an outline of the overall scheduling process in bus
transit companies and details the requirements and
preferences of the staff scheduling problem. Our solution
method is discussed in Section IV. Although there is a clear
tendency to use integer and constrained programming
models, our algorithm uses a mixture of evolutionary and
local search methods. The algorithm is a variation of
cooperative local search. In Section V we present and solve
a scheduling problem in one of the Finnish bus
transportation companies. It will be seen that our approach
produces excellent results.

II. STAFF SCHEDULING
Staff scheduling consists of assigning employees to tasks

and shifts over a period of time according to a given
timetable. The planning horizon is the time interval over
which the employees have to be scheduled. Each employee
has a total working time that he/she has to work during the
planning horizon. Furthermore, each employee has
competences (qualifications and skills) that enable him/her
to carry out certain tasks. Days are divided into working
days (days-on) and rest days (days-off). A sequence of
working days with one shift each day is called a work
stretch. Each day is divided into periods or timeslots. A
timeslot is the smallest unit of time and the length of a
timeslot determines the granularity of the schedule. A shift
is a contiguous set of working hours and is defined by a day
and a starting period on that day along with a shift length
(the number of occupied periods). Shifts are usually
grouped in shift types, for example morning, day and night
shifts. Each shift is composed of a number of tasks. A shift
or a task may require the employee assigned to it to possess
one or more competences. A specific sequence of shifts for

Staff Scheduling for Bus Transit Companies
K. Nurmi, J. Kyngäs and G. Post

an employee is called a stint. A work schedule for an
employee over the planning horizon is called a roster. A
roster is a combination of shifts and days-off assignments
that covers a fixed period of time.

Cyclic schedules are such that all employees have the
same basic schedule but start with a different day. In cyclic
scheduling the goal is to find a schedule that is optimal for
all employees. Non-cyclic schedules are individual
schedules. In non-cyclic scheduling the goal is to find
rosters that fulfill the requests of most employees.
Continuous schedules arise in organizations that operate 24
hours a day and seven days a week, otherwise a schedule is
called discontinuous.

Table 1 shows a solution for a simple one-week staff
scheduling problem with seven employees, two shifts (early
and late) in a working day and one of three tasks to be
completed within a shift. Moreover, task 1 and 2 cannot be
carried out by Bea and Ella, a late shift cannot be followed
by an early shift on the next day, and each employee should
have one day-off.

Table I

An example of a staff scheduling solution.

 Alan Bea Cass Dirk Ella Fox Gary

Mon Early 1 3 2
Late 3 2 1

Tue Early 1 2 3
Late 3 1 2

Wed Early 1 3 2
Late 3 1 2

Thu Early 1 2 3
Late 3 2 1

Fri Early 2 1 3
Late 1 3 2

Sat Early 3 1 2
Late 3 2 1

Sun Early 1 3 2
Late 2 3 1

III. PROCESS AND MODEL
We classify the scheduling process in bus transit

companies in six phases, as given in Figure 1. In real-world
scheduling scenarios, vehicle scheduling, driver scheduling,
days-off scheduling and shift scheduling are all extremely
hard combinatorial problems of their own.

Bus routing or Line planning is a preliminary phase in the
development of bus service operations. In public transport
the bus routes and their frequencies are defined by the city
and the bus companies usually have little opportunity to
influence them. Private transport operators create the bus
routes based on the business opportunities. In both the
public and private sectors, it is completely up to the
companies to schedule their fleet of buses, roster the drivers
and decide the days-off and working shifts of their drivers.
An early reference on bus routing is [22].

Vehicle scheduling consists of scheduling a fleet of
vehicles to cover the set of bus routes at minimum cost. The
problem is solved for each day of the given time horizon
separately, and the solution is a set of vehicle schedules.

The vehicle scheduling problem was initially introduced by
Dantzig and Ramser [23] as the truck dispatching problem.
The problem has been proven to be NP-hard [22]. Good
overviews of vehicle scheduling can be found in [24] and
[25].

The goal in driver scheduling is to partition the vehicle

schedules into operational tasks and to define the sequences
of these tasks as shifts. Every task must be assigned to a
shift while minimizing the cost in such a way that the daily
rules are respected. A task is defined as a sequence of trips
on one vehicle without a break that can be performed by a
single driver without interruption. The construction of shifts
is limited by a maximum total driving time, a maximum
number of working hours, a maximum time period spent
driving without a break, the number and length of lunch and
short breaks in a scheduled time-window, etc. The measure
of efficiency may be the total number of shifts used or the
total cost in paid hours or a combination of both. Driver
scheduling can be modeled as a set covering problem, which
is NP-hard [1]. Among the few papers on driver scheduling
we mention [26] and [27].

Demand modeling is the process of determining the

staffing levels, that is, how many drivers are needed at
different times over some planning horizon. Demand
modeling includes determination of planning horizons, shift
structure, competence structures, regulatory requirements
and other constraints. Demand modeling requires labor

Fig. 2. An example of staffing levels in a bus transit company.

Demand
Modeling

Vehicle
Scheduling

Evaluation

Driver
Scheduling

Days-Off
Scheduling

Shift
Scheduling

Driver Rostering

Fig. 1. The scheduling process in bus transit companies.

forecasting as well as hiring and budgeting decisions. The
output of the demand modeling is a mathematical model of
the staff scheduling problem at hand. In bus transit
scheduling, the driver scheduling phase determines the
staffing levels. Figure 2 shows an example of staffing levels
in a bus transit company.

The staff scheduling phase of the transit scheduling
process is called driver rostering. The goal is to assign
drivers to the constructed shifts over a planning horizon.
Driver rostering consists of days-off scheduling and shift
scheduling. Days-off scheduling deals with the assignment
of rest days between working days to drivers over a given
planning horizon. Shift scheduling deals with the
assignment of drivers to shifts. It can also specify the
starting time and duration of shifts for a given day. In other
words, days-off scheduling deals with working days and
shift scheduling deals with the working times of day. When
days-off and shifts are scheduled simultaneously, the
process is sometimes called tour scheduling. For example,
scheduling days-off every tenth week and shifts every
second week, enables the staff to plan their free time more
conveniently. However, scheduling both at the same time
every second week increases the probability of meeting the
staffing levels without the need to hire part-time drivers.

Finally, participation in evaluation ranges from the
individual driver through personnel managers to executives.
A reporting tool should provide performance measures in
such a way that the personnel managers can easily evaluate
both the realized staffing levels and the staff satisfaction.
When necessary, the vehicle scheduling, driver scheduling
and demand modeling can be reprocessed and focused, and
the driver rostering process restarted.

It is apparent that a profound understanding of the
relevant requests and requirements presented by customers
is a prerequisite for implementing a real-world driver
rostering problem. The implementation should present a
wide variety of real-world constraints and be tractable
enough to enable addition of new constraints. We are aware
that it is difficult to incorporate the experience and expertise
of the personnel managers into a driver rostering system.
Personnel managers often have extremely valuable
knowledge, experience, and detailed understanding of their
specific staffing problem, which will vary from company to
company. To formalize this knowledge into constraints is
not an easy task. Still, we believe that the model given in
this section is applicable in bus transit scheduling scenarios.
The model is based on the framework for implementation-
oriented staff scheduling given in [28].

The schedules in the model are non-cyclic and can be
either continuous or discontinuous. Drivers’ total working
time may vary depending on the driver. Each shift has a
fixed start and end time (for example 07:15 – 16:30). Shifts
may vary in length and they overlap. Shifts can be classified
by shift types, which can be used to balance the working
times at different times of the day between the drivers. Each
driver has competences that enable him/her to carry out
certain shifts.

In most cases the most important goal is to minimize
understaffing and overstaffing. Low-quality rosters can lead
either to an undersupply of drivers with a need to hire part-

time drivers, or an oversupply of drivers with too much idle
time, both implicating a loss of business. The overall
objective is to meet daily staffing requirements at minimum
penalty without violating work contracts and government
regulations.

We next give an outline of the typical constraints of the
driver rostering problem. The hard and soft constraints of
the problem vary somewhat depending on the problem
instance at hand. However, in most cases the hard
constraints consist of coverage, regulatory and operational
requirements and the soft constraints consist of operational
and personal preferences. The coverage requirements ensure
that there are a sufficient number of drivers on duty at all
times. The regulatory requirements ensure that the driver’s
work contract and government regulations are respected.
The personnel’s requests are very important and should be
met as far as possible; this leads to greater staff satisfaction
and commitment, and reduces staff turnover. A bus transit
company can use a mixture of the following requirements
and preferences as a framework for its driver rostering
generation:

Coverage requirement

(C1) A driver cannot be assigned to overlapping shifts.
(C2) A minimum number of drivers of particular

competences must be guaranteed for each shift or
each timeslot

(C3) A balanced number of surplus drivers must be
guaranteed in each working day

Regulatory requirements
(R1) The required number of working days, working

hours and days-off within a timeframe must be
respected

(R2) The required number of holidays within a
timeframe must be respected

(R3) The required number of free weekends (both
Saturday and Sunday free) within a timeframe
must be respected

(R4) The required number of special shifts (such as
union steward duties) for particular drivers within
a timeframe must be respected

(R5) Drivers cannot work consecutively for more than
k days (the maximum length of a work stretch)

(R6) Some drivers cannot work on weekends or during
specific hours of the day

Operational requirements
(O1) A driver can only be assigned to a shift he/she

has competence for
(O2) At least k working days must be assigned

between two separate days-off
(O3) A driver cannot be assigned to more than k

weekend days within a timeframe
(O4) A driver assigned to a shift type t1 must not be

assigned to a shift type t2 on the following day
(certain stints are not allowed)

(O5) An employee must be assigned to a particular
shift or off-duty on a particular day or during a
particular timeslot

Operational preferences
(E1) Single days-off should be avoided
(E2) Single working days should be avoided
(E3) The maximum length of consecutive days-off is k

(E4) A balanced assignment of single days-off and
single working days must be guaranteed between
the drivers

(E5) A balanced assignment of different shift types
must be guaranteed between the drivers

(E6) A balanced assignment of weekdays must be
guaranteed between drivers

Personal preferences
(P1) Assign or avoid assigning given drivers to the

same shifts
(P2) Assign a requested day-on or avoid a requested

day-off
(P3) Assign or avoid a given shift type before or after

a free period (days-off, vacation).

Generally, a driver cannot be assigned to more than one

shift per day. The definition of constraint C1 allows two or
more shifts to be assigned provided they do not overlap.
Instead of using shifts in C2, the minimum number of on-
duty staff can be assigned to timeslots. Quite often a
company has more drivers working than is needed to cover
the minimum number of drivers each working day. The
surplus drivers are used to cover the expected sick leaves
and other no-shows (see constraint C3). Constraints R1-R6
can be different from one driver to another, based on the
employee’s contract.

IV. THE SOLUTION METHOD
Our driver rostering algorithm is a population-based local

search method. As we know, the main difficulty for a local
search is

1) To explore promising areas in the search space to a

sufficient extent, while at the same time,
2) to avoid staying stuck in these areas too long,
3) to escape from these local optima in a systematic

way.

The heart of the algorithm is based on ideas similar to the

Lin-Kernighan procedures [29] and ejection chains [30].
The basic hill-climbing step is extended to generate a
sequence of moves in one step, leading from one solution
candidate to another. Our main heuristic operator is the
greedy hill-climbing mutation (GHCM). A recent
description of GHCM can be found in [31] and a very
detailed description in [32].

The GHCM operator moves an object, o1, from its old
position, p1, to a new position, p2, and then moves another
object, o2, from position p2 to a new position, p3, and so on,
ending up with a sequence of moves. In shift scheduling,
each position corresponds to a day, and an object is a shift.

The initial solution is created by setting the shifts to
random days. The starting shift (shift 1) for the GHCM
operator is selected randomly. The new day to which shift 1
is moved is selected considering all possible days on the
time horizon and selecting the day that causes the least
increase in the objective function when considering just the
relocation cost. Then, shift 2 in the new day is selected such
that the removal cost of shift 2 (after adding shift 1) causes
the highest decrease in the objective function. Next, a new

day is selected for shift 2, and so on. The sequence of moves
stops if the last move causes an increase in the objective
function value and the value is larger than that of the
previous non-improving move, or if the maximum length
(set to 10) is reached. In those cases a new starting shift for
the GHCM operator is selected.

The population-based method uses a population of
solutions in each iteration. Population-based methods are
good to escape from local optima. Our algorithm is similar
to the cooperative local search introduced by Preux and
Talbi [33]. In the cooperative local search scheme, each
individual carries out its own local search, in our case the
GHCM operator. When the operator gets stuck it asks for
the cooperation of the population in order to find a direction
to move in and continues the search from another point in
the solution space. The results in each individual may be
different at different times and this encourages diversity
within the population. We use a population size of 20.

Our algorithm introduces a mechanism to avoid staying
stuck in a not-so-promising search area for too long. After
being stuck for a given number of iterations, we shuffle the
current solution, that is, we allow worse solutions to replace
better ones in the current population. We use the five simple
shuffling operators described in [34].

The reproduction operation of the algorithm is, to a
certain extent, based on the steady-state reproduction: the
new schedule replaces the old one if it has a better or equal
objective function value. Furthermore, the least fit is
replaced with the best one when n better schedules have
been found, where n is the size of the population. The
pseudo code of the algorithm is given in Figure 3.

Set the time limit t, no_change limit m and the population size n
Generate initial population of schedules by randomly
assigning shifts to days
Set no_change = 0 and better_found = 0
WHILE elapsed-time < t
 REPEAT n times
 Select a schedule S by using a marriage selection
 Apply GHCM to S to get a new schedule S’
 Calculate the change Δ in fitness value
 IF Δ < = 0 THEN
 Replace S with S’
 IF Δ < 0 THEN
 better_found = better_found + 1
 no_change = 0
 ENDIF
 ELSE
 no_change = no_change + 1
 ENDIF
 ENDREPEAT
 IF better_found > n THEN
 Replace the worst schedule with the best schedule
 Set better_found = 0
 ENDIF
 IF no_change > m THEN
 Apply shuffling operators
 Set no_change = 0
 ENDIF
 Update the dynamic weights of the hard constraints (ADAGEN)
ENDWHILE
Choose the best schedule from the population

Fig. 3. The pseudo code of the driver rostering algorithm.

The traditional penalty method assigns positive weights

(penalties) to the soft constraints and sums the violation

scores to the hard constraint values to get a single value to
be optimized. In our research we use the ADAGEN method
[32] which assigns dynamic weights to the hard constraints.

A very detailed description of the algorithm is given in
[32]. The parameters of the algorithm (maximum length of
the mutation sequence and population size) are those that
were found to work best in [35].

Many researchers have argued that the quality of the
solution (strongly) depends on the initial solution. However,
the initial solution does not have to be good. On the
contrary, it has been argued that very good initial solutions
are hard to improve on with the method at hand. We note
here, that our test runs have shown that our algorithm works
best with a random initial population.

V. THE PROBLEM IN A FINNISH TRANSIT COMPANY
In our previous studies we have successfully scheduled

the Finnish major ice hockey league [36] and the Finnish 1st
division ice hockey league [34]. When the CEO of Turku
Transport Services Ltd. heard that we had scheduled these
leagues, he contacted us. Turku Transport Services Ltd. is a
bus transportation company in the City of Turku. They
currently have 58 full-time, eight part-time and four retired-
but-still-active bus drivers. Two part-time drivers count as
one full-time driver.

Prior to the year 2010, rosters for bus drivers were
produced by a cyclic shift scheduling software that was
quite out-of-date. The current number of drivers and the
current way of doing business had outgrown the limits of
the current system. The old system had led to an oversupply
of bus drivers with too much idle time. Furthermore, the old
system also required far too much manual work. For
example, the days-off scheduling was done completely
manually. The CEO was interested in a more effective and
sophisticated way of constructing days-off and shifts and
avoiding overstaffing.

The driver rostering problem in the company is non-
cyclic and discontinuous and must be divided into two
separate phases: days-off scheduling and shift scheduling.
The drivers must know their days-off a year beforehand
while the working times in a day must be known only four
weeks beforehand.

The days-off scheduling problem

The company has n (62) full-time-equivalent drivers.

Over the planning horizon of one year (13 timeframes with
a timeframe of four weeks totaling 364 days), we must find
n such sequences of days-on and days-off that satisfy the
following hard constraints (see Section IV):

− A minimum number of drivers (see Table II) must be

guaranteed for each working day (C2).
− A balanced number of surplus drivers must be

guaranteed in each working day (C3).
− Each driver should have nine days-off in every four-

week timeframe (R1).
− Drivers cannot work consecutively for more than six

days (R5).

− Six drivers cannot work on weekends (R6).
− At least two working days must be assigned between

two separate days-off (O2).
− The number of days-off per weekday between

drivers should not differ by more than 10% (E6).
− The same sequence within each of the three driver

groups with three drivers must be guaranteed (P1).

Moreover, the following soft constraints are considered:

− Single days-off should be minimized (two violations

for each single day-off) (E1).
− Single working days should be avoided (one

violation for each single working day) (E2).
− The maximum length of consecutive days-off is three

(ten violations for each day more than three) (E3).
− The number of single days-off and single working

days between drivers should not differ by more than
25% (five violations for each unit of percentage over
25) (E4).

Table II

The minimum number of drivers needed per day of week.

 Mon Tue Wed Thu Fri Sat Sun
Drivers 47 47 47 47 50 27 10

The company has more drivers working than is needed to

cover the minimum number of drivers each working day.
The surplus drivers are used to cover the expected sick days.
 In addition, retired-but-still-active drivers can be used if
necessary. The average number of surplus drivers is
calculated as follows. Per week we need 275 drivers (see
Table II), hence the number of man-days needed over the
planning horizon is 52 × 275 = 14,300. The drivers work
28 ‒ 9 = 19 days in four weeks, hence the man-days
available is 62 × 19 × 13 = 15,314. Hence we have an
absolute surplus of 1014, and a surplus of 7.1% per man-
day needed.

The average surplus of drivers on the different days of the
week is calculated proportionally, giving 3.3, 3.3, 3.3, 3.3,
3.6, 1.9 and 0.7. The second hard constraint (C3) can now
be rephrased as “On Mondays, Tuesdays, Wednesdays,
Thursdays and Fridays either three or four, on Saturdays
either one or two, and on Sundays either zero or one surplus
drivers must be guaranteed”.

Table III

The constant weights for the soft constraints and the maximum
values for the hard constraints (minimum is 1).

E1 E2 E3 E4 C3 R1 R5 R6 O2 E6 P1

2 1 10 5 50 50 50 50 20 30 70

The objective is to find a solution that has no hard

constraint violations and minimizes the weighted sum of the
soft constraint violations. We use the adaptive penalty
method for multi-objective optimization (see Section IV).
The importance of the soft constraints is handled by giving
them different constant weights. Hard constraint weights are

dynamically calculated according to the ADAGEN method.
The values of the weights, given in Table III, were decided
based on the information from the company. Note that hard
constraint C1 is not listed in the table because the algorithm
uses the exact number of employees as given in Table II.

We generated ten days-off schedules and selected the best
one. This schedule has no hard constraint violations and 443
single days-off and 513 single working days. Thus, an
average driver has a single working day in every seventh
week, and a single working day in every sixth week. The
number of single days-off and single working days between
drivers does not differ by more than 25%. Every days-off
sequence is at most three. As a result, the weighted sum of
the soft constraint violations is 2 × 443 + 1 × 513 = 1399.
The algorithm was run on an Intel Core 2 Extreme QX9775
PC with a 3.2GHz processor and 4GB of random access
memory running 64bit Windows Vista Business Edition.
The best solution was found in 16 hours of computer time.
The time may appear to be long. However, the point here is
not to find a solution fast enough and with sufficient quality,
but to find a solution of the best quality. The planning
horizon is one year, so it is worth running the algorithm
overnight.

The shift scheduling problem

A driver roster is a combination of shifts and days-off

assignments that covers a fixed period of time. In our case,
the days-off are scheduled separately prior to shift
scheduling.

In Section III we stated that the driver scheduling phase
partitions the vehicle schedules into pieces of work and
defines the sequences of these pieces of work as shifts. A
piece of work was defined as a sequence of trips on one
vehicle without a break that can be performed by a single
driver without interruption. A shift includes several different
bus routes. The shift length is determined by the time
needed to complete all the routes. The length varies between
4 hours 55 minutes and 9 hours 23 minutes. The company
uses six different shift types: early, late, night, school, peak
and service. Mondays, Tuesdays, Wednesdays and
Thursdays have an equal shift structure. Fridays, Saturdays
and Sundays each have unique shift structures. The total
number of shifts is 275 per week (see Table II).

The solution of the days-off scheduling problem is the
input to the shift scheduling problem. Over the planning
horizon of four weeks, given a days-off schedule and a set
of predetermined shifts, the problem is to find a roster for
each driver that satisfies the following hard constraints:

− A driver can only be assigned to a shift he/she has

competence for (O1).
− A driver assigned to a late or night shift must not be

assigned to an early shift on the following day (O4).
− An employee must be assigned to an off-duty shift

(day-off) on a particular day (O5).

Moreover, the following soft constraints are considered:

− The number of working hours for each driver should

be 153 (one violation for each partial hour below or
above 153) (R1)

− The number of different shift types between drivers
should not differ by more than 25% (five violations
for each unit of percentage over 25) (E5)

− Assign an early shift before a day-off or a vacation
and a late or night shift after a day-off or a vacation
(one violation for each such assignment) (P3).

The objective again is to find a solution that has no hard

constraint violations and minimizes the weighted sum of the
soft constraint violations. The rosters with less than 153
hours are considered as bad as the rosters with more than
153 hours. For some companies the most important goal
could be to reduce idle time for employees. The values of
the three hard constraint weights are all between one and
five.

We solved the problem using exactly the same algorithm
and the same computer as for the days-off scheduling
problem. We generated ten shift schedules for the first four-
week planning horizon and selected the best one. The best
solution was found in four hours of computer time. The time
is in line with the fact that the planning horizon is four
weeks. The best schedule has no hard constraint violations.
Sixteen drivers have exactly 153 working hours, 31 drivers
have a maximum of 152 working hours and 15 drivers have
a maximum of 151 working hours. Thus, an average driver
has about one hour idle time, less than 1%. Note that the
total sum of the working hours in all the shifts was 61 less
than the total number of working hours to be scheduled to
the drivers in the days-off scheduling.

The number of different shift types between drivers did
not differ by more than 25%. Two other than early shifts
were assigned before a day-off or a vacation and no late or
night shifts after a day-off or a vacation. As a result, the
weighted sum of the soft constraint violations is 1 × 31 +
2 × 15 + 1 × 2 = 63.

The company is very satisfied with our results. In their
opinion the days-off scheduling algorithm could run for
days because it is generated only once a year. As explained
before, they are interested in the best possible value of the
objective function, not in how fast this is reached. The shift
scheduling algorithm can be run overnight. It is perfectly
reasonable to run it for up to 15 hours, again because it is
generated only once per month.

The company listed a number of advantages and savings
as a result of switching to the developed system: the reduced
time for developing rosters, the fairer and more balanced
days-off and shifts, and the reduced idle time for bus
drivers. The system also produces rosters that are more
stable with regard to small changes, both in the operational
environment and in the employees’ work contracts. One
further significant benefit is that the system can be used as a
planning tool for future scenarios. The company actually
demonstrated the effect of using different planning horizons
and different vacation patterns.

The company wants to integrate our algorithms into their
operational systems. However, our system does not include
an adequate user interface nor financial management links
and customer reports. For this reason, we contacted the

major bus transit software vendor in Finland. This vendor
had no optimization in their product and was very interested
in cooperating with us. After four months of further coding
and fine-tuning, the generated driver rostering software was
ready to be integrated into the third-party vendor product.
The software

− Allows users to specify the importance of requests

and requirements.
− Minimizes the scheduling time required by users.
− Runs on any modern desktop computer.
− Does not use third-party mathematical software

packages with expensive licensing policies.
− Generates just a few solutions to choose from.

Generates clearly different solutions to choose from.

The company, the third-party vendor and we were all

very pleased with how the project ended. We do not have to
work on user interfaces, financial management links,
customer reports, help desks etc. Instead, we can
concentrate on our core competence: development of
algorithms that are useful in real-world applications.

VI. CONCLUSIONS AND FUTURE WORK
We scheduled the staff in a Finnish bus transit company.

Our algorithm found feasible and acceptable solutions to
their days-off scheduling and shift scheduling problems.
The generated software will be integrated into a third-party
vendor product.

Our direction for future research will be to solve the
vehicle scheduling and driver scheduling problems that
precede the driver rostering problem solved in this paper.

REFERENCES
[1] Garey M.R. and Johnson D.S., Computers and Intractability. A Guide

to the Theory of NP-Completeness, Freeman, 1979.
[2] Bartholdi, J.J., A Guaranteed-Accuracy Round-off Algorithm for

Cyclic Scheduling and Set Covering, Operations Research 29, 501–
510, 1981.

[3] Tien J. and Kamiyama A., On Manpower Scheduling Algorithms. In
SIAM Rev. 24 (3), 275–287, 1982.

[4] Lau, H. C., On the Complexity of Manpower Shift Scheduling,
Computers and Operations Research 23(1), 93-102, 1996.

[5] Kragelund L. and Kabel T., Employee Timetabling. An Empirical
Study, Master’s Thesis, Department of Computer Science, University
of Aarhus, Denmark, 1998.

[6] Fukunaga, A., Hamilton, E., Fama, J., Andre, D., Matan, O. and
Nourbakhsh, I, Staff scheduling for inbound call and customer contact
centers, AI Magazine 23(4), 30-40, 2002.

[7] Marx, D., Graph coloring problems and their applications in
scheduling, Periodica Polytechnica Ser. El. Eng. 48, 5–10, 2004.

[8] Dantzig, G.B., A comment on Edie’s traffic delays at toll booths,
Operations Research 2, 339–341, 1954.

[9] Alfares, H.K., Survey, categorization and comparison of recent tour
scheduling literature, Annals of Operations Research 127, 145-175,
2004.

[10] Ernst, A. T., Jiang H., Krishnamoorthy, M., and Sier, D., Staff
scheduling and rostering: A review of applications, methods and
models, European Journal of Operational Research 153 (1), 3-27,
2004.

[11] Meisels, A. and Schaerf, A. 2003, Modelling and solving employee
timetabling problems, Annals of Mathematics and Artificial
Intelligence 39, 41-59, 2003.

[12] Bard, J. and H. Purnomo, Hospital-wide reactive scheduling of nurses
with preference considerations, IIE Trans. 37(7), 589–608, 2005.

[13] Beddoe, G.R., Petrovic, S. and Li, J., A Hybrid Metaheuristic Case-
based Reasoning System for Nurse Rostering, Journal of Scheduling
12, 99–119, 2009.

[14] Bilgin, B., De Causmaecker, P., Rossie, B. and Vanden Berghe G.,
Local Search Neighbourhoods to Deal with a Novel Nurse Rostering
Model. In Proc. of the 7th Int. Conf. on the Practice and Theory of
Automated Timetabling, Montréal, Canada, 2008.

[15] Burke, E., P. De Causmaecker, S. Petrovic, and G.Vanden Berghe,
Metaheuristics for Handling Time Interval Coverage Constraints in
Nurse Scheduling, Applied Artificial Intelligence, 743-766, 2006.

[16] Dowling, D., Krishnamoorthy, M., Mackenzie, H. and Sier, D., Staff
rostering at a large international airport”, Annals of Operations
Research 72, 125-147, 1997.

[17] Beer, A., Gaertner, J., Musliu, N., Schafhauser, W. and Slany, W.,
Scheduling breaks in shift plans for call centers. In Proc. of the 7th
Int. Conf. on the Practice and Theory of Automated Timetabling,
Montréal, Canada, 2008.

[18] Stolletz, R., Operational workforce planning for check-in counters at
airports. Transportation Research Part E 46, 414-425, 2010.

[19] Lusby, R., Dohn, A., Range, T. and Larsen, J., Ground Crew
Rostering with Work Patterns at a Major European Airlines. In Proc
of the 8th Conference on the Practice and Theory of Automated
Timetabling (PATAT), Belfast, Ireland, 2010.

[20] Ásgeirsson, E.I., Bridging the gap between self schedules and feasible
schedules in staff scheduling. In Proc of the 8th Conference on the
Practice and Theory of Automated Timetabling (PATAT), Belfast,
Ireland, 2010.

[21] Bard, J. F., Binici, C. and Desilva, A. H., Staff Scheduling at the
United States Postal Service, Computers & Operations Research 30,
745-771. 2003.

[22] Bertossi, A.A., Carraresi, P., Gallo, G., On some matching problems
arising in vehicle scheduling models, Networks 17, 271–281, 1987.

[23] Dantzig, G.B., and Ramser, J.H., The truck dispatching problem,
Management Science 6, 81-91, 1959.

[24] Desaulniers, G and Hickman, M., Public transit. Handbooks in
Operations Research and Management Science, Transportation, Vol.
14, G. Laporte and C. Barnhart (eds), Elsevier, Amsterdam, 69-127,
2007.

[25] Bunte, S., & Kliewer, N., An overview on vehicle scheduling models.
Journal of Public Transport 1(4), 299-317, 2009.

[26] Wren, A; Fores, S; Kwan, A; Kwan, R; Parker, M; Proll, L., A
flexible system for scheduling drivers, Journal of Scheduling 6, 437-
455, 2003.

[27] Li J. and Kwan R.S.K., A Self-Adjusting Algorithm for Driver
Scheduling, Journal of Heuristics 11 (4), 351-367, 2005.

[28] Ásgeirsson, E.I., Kyngäs, J., Nurmi, K. and Stølevik, M., A
Framework for Implementation-Oriented Staff Scheduling, In Proc of
the 21st International Conference on Automated Planning and
Scheduling (ICAPS), Freiburg, Germany, 2011. Submitted to
publication.

[29] Lin, S. and Kernighan B. W., An effective heuristic for the traveling
salesman problem, Operations Research 21, 498–516, 1973.

[30] Glover, F., New ejection chain and alternating path methods for
traveling salesman problems. In Computer Science and Operations
Research: New Developments in Their Interfaces, edited by Sharda,
Balci and Zenios, Elsevier, 449–509, 1992.

[31] Nurmi, K. and Kyngäs, J., Days-off Scheduling for a Bus
Transportation Staff. In Proc of the 4th International Conference on
Bioinspired Optimization Methods and their Applications, Ljubljana,
Slovenia, 2010.

[32] Nurmi, K., Genetic Algorithms for Timetabling and Traveling
Salesman Problems, Ph.D. dissertation, Dept. of Applied Math.,
University of Turku, Finland, 1998. Available:
http://www.bit.spt.fi/cimmo.nurmi/

[33] Preux, P. and Talbi, E-G., Towards Hybrid Evolutionary Algorithms
International Transactions in Operational Research 6, 557-570, 1999.

[34] Kyngäs, J. and Nurmi, K., Scheduling the Finnish 1st Division Ice
Hockey League. In Proc. of the 22nd Florida Artificial Intelligence
Research Society Conference, Florida, USA, 2009.

[35] Nurmi, K. and Kyngäs, J., A Framework for School Timetabling
Problem. In Proc. of the 3rd Multidisciplinary International
Scheduling Conference: Theory and Applications, Paris, France,
2007.

[36] Kyngäs, J. and Nurmi, K., Scheduling the Finnish Major Ice Hockey
League. In Proc. of the IEEE Symposium on Computational
Intelligence in Scheduling, Nashville, USA, 2009.

Turku Centre for Computer Science

TUCS Dissertations

108. Tero Säntti, A Co-Processor Approach for Efficient Java Execution in Embedded

Systems
109. Kari Salonen, Setup Optimization in High-Mix Surface Mount PCB Assembly
110. Pontus Boström, Formal Design and Verification of Systems Using Domain-

Specific Languages
111. Camilla J. Hollanti, Order-Theoretic Methods for Space-Time Coding: Symmetric

and Asymmetric Designs
112. Heidi Himmanen, On Transmission System Design for Wireless Broadcasting
113. Sébastien Lafond, Simulation of Embedded Systems for Energy Consumption

Estimation
114. Evgeni Tsivtsivadze, Learning Preferences with Kernel-Based Methods
115. Petri Salmela, On Communication and Conjugacy of Rational Languages and the

Fixed Point Method
116. Siamak Taati, Conservation Laws in Cellular Automata
117. Vladimir Rogojin, Gene Assembly in Stichotrichous Ciliates: Elementary

Operations, Parallelism and Computation
118. Alexey Dudkov, Chip and Signature Interleaving in DS CDMA Systems
119. Janne Savela, Role of Selected Spectral Attributes in the Perception of Synthetic

Vowels
120. Kristian Nybom, Low-Density Parity-Check Codes for Wireless Datacast Networks
121. Johanna Tuominen, Formal Power Analysis of Systems-on-Chip
122. Teijo Lehtonen, On Fault Tolerance Methods for Networks-on-Chip
123. Eeva Suvitie, On Inner Products Involving Holomorphic Cusp Forms and Maass

Forms
124. Linda Mannila, Teaching Mathematics and Programming – New Approaches with

Empirical Evaluation
125. Hanna Suominen, Machine Learning and Clinical Text: Supporting Health

Information Flow
126. Tuomo Saarni, Segmental Durations of Speech
127. Johannes Eriksson, Tool-Supported Invariant-Based Programming
128. Tero Jokela, Design and Analysis of Forward Error Control Coding and Signaling

for Guaranteeing QoS in Wireless Broadcast Systems
129. Ville Lukkarila, On Undecidable Dynamical Properties of Reversible One-

Dimensional Cellular Automata
130. Qaisar Ahmad Malik, Combining Model-Based Testing and Stepwise Formal

Development
131. Mikko-Jussi Laakso, Promoting Programming Learning: Engagement, Automatic

Assessment with Immediate Feedback in Visualizations
132. Riikka Vuokko, A Practice Perspective on Organizational Implementation of

Information Technology
133. Jeanette Heidenberg, Towards Increased Productivity and Quality in Software

Development Using Agile, Lean and Collaborative Approaches
134. Yong Liu, Solving the Puzzle of Mobile Learning Adoption
135. Stina Ojala, Towards an Integrative Information Society: Studies on Individuality

in Speech and Sign
136. Matteo Brunelli, Some Advances in Mathematical Models for Preference Relations
137. Ville Junnila, On Identifying and Locating-Dominating Codes
138. Andrzej Mizera, Methods for Construction and Analysis of Computational Models

in Systems Biology. Applications to the Modelling of the Heat Shock Response and
the Self-Assembly of Intermediate Filaments.

139. Csaba Ráduly-Baka, Algorithmic Solutions for Combinatorial Problems in
Resource Management of Manufacturing Environments

140. Jari Kyngäs, Solving Challenging Real-World Scheduling Problems

Joukahaisenkatu 3-5 B, 20520 Turku, Finland | www. tucs.fi

Turku
Centre for
Computer
Science

University of Turku
Faculty of Mathematics and Natural Sciences
 • Department of Information Technology
 • Department of Mathematics
Turku School of Economics
 • Institute of Information Systems Science

Åbo Akademi University
Division for Natural Sciences and Technology
 • Department of Information Technologies

ISBN 978-952-12-2634-2
ISSN 1239-1883

Jari Kyngäs

Jari Kyngäs
S
olving C

hallenging Real-W
orld S

cheduling Problem
s

S
olving C

hallenging Real-W
orld S

cheduling Problem
s

