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ABSTRACT	
Jami	Rekola	
Wood	as	a	model	material	for	medical	biomaterials	
In	vivo	and	in	vitro	studies	with	bone	and	Betula	pubescens	Ehrh.	
	
From	the	Institute	of	Dentistry,	Biomaterials	Science	and	Department	of	Otorhinolaryngology	
and	Head	and	Neck	Surgery,	University	of	Turku,	Turku,	Finland	
Annales	Universitatis	Turkuensis	Ser.	D	
Painosalama	Oy	–	Turku,	Finland	2011	
	
Novel	biomaterials	are	needed	to	fill	the	demand	of	tailored	bone	substitutes	required	by	
an	 ever‐expanding	 array	 of	 surgical	 procedures	 and	 techniques.	 Wood,	 a	 natural	 fiber	
composite,	modified	with	 heat	 treatment	 to	 alter	 its	 composition,	may	 provide	 a	 novel	
approach	to	the	further	development	of	hierarchically	structured	biomaterials.		
	
The	suitability	of	wood	as	a	model	biomaterial	as	well	as	the	effects	of	heat	treatment	on	the	
osteoconductivity	 of	 wood	was	 studied	 by	 placing	 untreated	 and	 heat‐treated	 (at	 220C,	
200	and	140	for	2	h)	birch	implants	(size	4	x	7mm)	into	drill	cavities	in	the	distal	femur	of	
rabbits.	The	follow‐up	period	was	4,	8	and	20	weeks	in	all	in	vivo	experiments.	The	flexural	
properties	of	wood	as	well	as	dimensional	changes	and	hydroxyl	apatite	formation	on	the	
surface	of	wood	(untreated,	140C	and	200	C	heat‐treated	wood)	were	tested	using	3‐point	
bending	and	compression	 tests	 and	 immersion	 in	 simulated	body	 fluid.	The	 effect	 of	pre‐
measurement	 grinding	 and	 the	 effect	 of	 heat	 treatment	 on	 the	 surface	 roughness	 and	
contour	of	wood	were	tested	with	contact	stylus	and	non‐contact	profilometry.	The	effects	
of	heat	treatment	of	wood	on	its	interactions	with	biological	fluids	was	assessed	using	two	
different	test	media	and	real	human	blood	in	liquid	penetration	tests.		
	
The	results	of	the	 in	vivo	experiments	showed	implanted	wood	to	be	well	tolerated,	with	
no	implants	rejected	due	to	foreign	body	reactions.	Heat	treatment	had	significant	effects	
on	 the	biocompatibility	of	wood,	 allowing	host	bone	 to	grow	 into	 tight	 contact	with	 the	
implant,	with	occasional	bone	ingrowth	into	the	channels	of	the	wood	implant.	The	results	
of	the	liquid	immersion	experiments	showed	hydroxyl	apatite	formation	only	in	the	most	
extensively	 heat‐treated	 wood	 specimens,	 which	 supported	 the	 results	 of	 the	 in	 vivo	
experiments.	 Parallel	 conclusions	 could	 be	 drawn	 based	 on	 the	 results	 of	 the	 liquid	
penetration	 test	where	 human	 blood	 had	 the	most	 favorable	 interaction	with	 the	most	
extensively	 heat‐treated	wood	 of	 the	 compared	materials	 (untreated,	 140C	 and	 200C	
heat‐treated	wood).	 The	 increasing	 biocompatibility	was	 inferred	 to	 result	mainly	 from	
changes	in	the	chemical	composition	of	wood	induced	by	the	heat	treatment,	namely	the	
altered	 arrangement	 and	 concentrations	 of	 functional	 chemical	 groups.	 However,	 the	
influence	of	microscopic	changes	in	the	cell	walls,	surface	roughness	and	contour	cannot	
be	totally	excluded.	The	heat	treatment	was	hypothesized	to	produce	a	functional	change	
in	 the	 liquid	 distribution	 within	 wood,	 which	 could	 have	 biological	 relevance.	 It	 was	
concluded	that	the	highly	evolved	hierarchical	anatomy	of	wood	could	yield	 information	
for	 the	 future	 development	 of	 bulk	 bone	 substitutes	 according	 to	 the	 ideology	 of	
bioinspiration.	Furthermore,	 the	 results	of	 the	biomechanical	 tests	established	 that	heat	
treatment	 alters	 various	 biologically	 relevant	 mechanical	 properties	 of	 wood,	 thus	
expanding	the	possibilities	of	wood	as	a	model	material,	which	could	include	e.g.	scaffold	
applications,	bulk	bone	applications	and	serving	as	a	tool	for	both	mechanical	testing	and	
for	further	development	of	synthetic	fiber	reinforced	composites.	



Tiivistelmä	

Avainsanat:	 puu,	 lämpökäsittely,	 biomateriaali,	 mallimateriaali,	 osteokonduktiivisuus,	
mekaaniset	testit,	pinnan	karheus,	nesteinteraktio.		
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Uusia	biomateriaaleja	tarvitaan	tyydyttämään	alati	kehittyvien	kirurgisten	toimenpiteiden	
ja	 tekniikoiden	 synnyttämä	 tarve	 tilannekohtaisesti	 räätälöillyille	 luun	korvikkeille.	Puu,	
luonnon	 kuitukomposiitti,	 saattaa	 lämpökäsittelyllä	 muokattuna	 tarjota	 uuden	
lähestymistavan	rakenteellisesti	hierarkkisten	biomateriaalien	kehittämiseen.			
	
Puun	 soveltuvuutta	 mallimateriaaliksi	 ja	 puun	 lämpökäsittelyn	 vaikutusta	
osteokonduktiivisuuteen	tutkittiin	implantoimalla	käsittelemättömästä	ja	220C,	200C	ja	
140C	 lämpötiloissa	 2	 tunnin	 ajan	 lämpökäsitellystä	 koivusta	 tehtyjä	 4	 x	 7mm	kokoisia	
implantteja	kanin	 reisiluun	distaalipäähän	 tehtyyn	porareikään.	 Seuranta‐aika	oli	4,	8	 ja	
20	 viikkoa.	 Puun	 taivutusominaisuuksia	 ja	 hydroksiapatiitin	 kertymistä	 tutkittiin	 3‐
pistetaivutus‐	 ja	 puristuskokein	 sekä	upottamalla	materiaalit	 kudosnesteitä	 simuloivaan	
liuokseen.	 Hiontaesikäsittelyn	 ja	 puun	 lämpökäsittelyn	 vaikutusta	 sen	 pinnan	
ominaisuuksiin	 tutkittiin	 käyttäen	 sekä	 kontaktillista	 että	 kontaktitonta	
pintaprofilointimenetelmää.	 Puun	 vuorovaikutusta	 biologisten	 nesteiden	 kanssa	 ja	
lämpökäsittelyn	 vaikutusta	 siihen	 tutkittiin	 nestepenetraatiotestillä	 käyttäen	 kahta	
simuloitua	liuosta	ja	oikeaa	ihmisen	verta.	
	
Implantoitu	 puu	 siedettiin	 luukudoksessa	 hyvin.	 Yhdessäkään	 implantissa	 ei	 ollut	
hylkimiseen	 johtavaa	 vierasesinereaktiota.	 Lämpökäsittelyn	 todettiin	 parantavan	
merkittävästi	puun	bioyhteensopivuutta.	Se	edisti	luun	kasvua	kiinteään	kontaktiin	puun	
pinnan	 kanssa	 sekä	 paikoitellen	 kanavarakenteiden	 sisään.	Nesteupotuskokeen	 tulokset	
tukivat	eläinkokeiden	tuloksia,	sillä	hydroksiapatiitin	muodostusta	puun	pintaan	todettiin	
ainoastaan	 eniten	 lämpökäsitellyssä	 puussa.	 Samaan	 suuntaan	 viittasivat	 myös	
nestepenetraatiotestin	 tulokset.	Oikea	veri	käyttäytyi	puun	pinnan	kanssa	 suotuisimmin	
nimenomaan	 eniten	 lämpökäsitellyllä	 puulla,	 kun	 verrattavina	 olivat	 käsittelemätön	 ja	
140C	 ja	 200C	 lämpökäsitelty	 puu.	 Bioyhteensopivuuden	 lisääntymisen	 pääteltiin	 ensi	
sijassa	 johtuvan	 lämpökäsittelyn	 aiheuttamista	 muutoksista	 puun	 kemiallisessa	
rakenteessa,	 koskien	 etenkin	 funktionaalisten	 kemiallisten	 ryhmien	 järjestäytymistä	 ja	
pitoisuuksia.	 Sitä,	 onko	 havaituilla	 mikrotason	 muutoksilla	 puun	 soluseinissä,	 pinnan	
karheudessa	ja	muodossa	vaikutusta	asiaan,	ei	voida	kuitenkaan	täysin	poissulkea.	
Lämpökäsittelyn	 pääteltiin	 vaikuttavan	 puumateriaalin	 rakenteen	 sisäiseen	
nestejakaumaan.	 Myös	 tällä	 saattaa	 olla	 myös	 biologista	 merkitystä.	 Pitkälle	 kehittynyt	
puun	 hierarkkinen	 rakenne	 saattaa	 bioinspiraatioperiaatteen	 mukaisesti	 auttaa	
kehittämään	 mm.	 nestekierrollisesti	 toimivampia	 biomateriaaleja.	 Biomekaaniset	 testit	
osoittivat	 lämpökäsittelyn	 lisäksi	 muuttavan	 useita	 puumateriaalin	 biologisesti	
merkittäviä	 mekaanisia	 ominaisuuksia.	 Tämä	 lisää	 entisestään	 mahdollisuuksia	 käyttää	
puuta	 mallimateriaalina	 esimerkiksi	 kehikkosovellutuksissa	 (scaffold),	 kantavien	
luupuutosten	korvikeaineiden	sovellutuksissa	sekä	työkaluna	biomekaanisissa	testeissä	ja	
synteettisten	kuitukomposiittien	kehittämisessä.		
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PREFACE	
	
On	wood	
	
This	 thesis	 partially	 concerns	 wood,	 a	 natural	 composite	 material	 with	 a	 multitude	 of	
applications.	Wood	has	played	an	essential	part	in	human	history,	from	the	time	when	the	
first	 humans	 learned	 to	 use	 firewood	 for	 cooking	 and	 warmth	 to	 modern	 times	 when	
wood	is	a	basis	for	several	branches	of	industry.	Virtually	every	living	human	being	has	a	
personal	connection	with	wood.	The	number	of	ways	people	have	learned	to	use	wood	is	
astonishing:	 as	 a	 construction	 material	 for	 everything	 from	 houses	 to	 instruments,	 to	
usage	 energy,	 as	 aliment,	 as	 paper	 raw	material,	 as	 decorative	 material	 and	 even	 as	 a	
substitute	for	a	lost	limb	in	the	form	of	a	peg	leg.	A	knowledge	of	the	anatomy	of	wood	has	
provided	 guidance	 for	 further	 developments	 in	 engineering,	 and	 a	 knowledge	 of	 the	
chemical	composition	of	wood	has	yielded	unprecedented	applications.	It	is	on	this	basis	
that	 the	 present	 thesis	 is	 founded.	Maybe	wood	 still	 has	 information	 or	 applications	 to	
offer	 to	 us.	 The	 use	 of	 wood	 as	 a	 model	 material	 for	 further	 development	 of	 medical	
biomaterials	is	a	novel	idea,	and	by	elaborating	on	this	idea,	this	thesis	aims	to	expand	the	
chapter	in	the	book	of	knowledge	that	is	written	on	wood.		
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1.	INTRODUCTION	
	
There	 is	 a	 growing	 demand	 for	 bone	 substitute	materials	 in	modern	medicine.	 Several	
factors	 contribute	 to	 this.	 Novel	 surgical	 techniques	 and	 operations	 require	 more	
sophisticated	and	tailor‐made	materials.	A	need	for	bone	augmentation	may	emerge,	 for	
example,	 on	 the	 basis	 of	 trauma,	 infections,	malignancy,	 congenital	 defects	 or	 cosmetic	
desires.	 The	most	 commonly	 used	methods	 for	 bone	 substitution	 today	 are	 autologous	
bone	transfer	and	allografts,	 i.e.	harvested	bone	from	deceased	donors.	Autologous	bone	
transfer	 suffer	 from	 varying	 quality,	 limited	 availability	 and	 formability	 as	 well	 as	
morbidity	 to	 the	patient	due	 to	 the	 secondary	 operation	 (Aho	 et	 al.,	 1994;	 Laurie	 et	 al.,	
1984).	Allografts	on	 the	other	hand	may	 involve	 ethical	 concerns,	may	 require	 complex	
consent	 procedures,	 involve	 risks	 associated	 with	 transmissible	 diseases	 and	
immunological	 complications,	 and	 demand	 expensive	 and	 complex	 preservation	
procedures	(Aho	et	al.,	1994).	Furthermore,	a	growing	number	of	surgical	situations	call	
for	 biomaterials	 with	 properties	 exceeding	 those	 currently	 available	 with	 the	
aforementioned	methods.	While	various	biomaterials	have	been	introduced	to	respond	to	
this	need,	 it	 is	considered	impossible	to	develop	a	biomaterial	to	fulfill	the	requirements	
to	 all	 desired	 applications.	A	 common	concept	 is	 to	 tailor‐make	materials	 for	particular	
situations.	 For	 instance,	 granules	 with	 a	 large	 active	 surface	 area,	 but	 no	 mechanical	
support	properties,	may	be	used	in	applications	with	no	need	for	loading	support,	e.g.	to	
fill	 cavitary	 defects.	 Bulk	 bone	 substitutes,	 must	 adapt	 to	 the	 multivariate	 mechanical	
environment	of	living	bone,	because	a	mismatch	in	biomechanics	between	an	implant	and	
the	surrounding	bone	may	induce	periprosthetic	osteolysis	(Engh	et	al.,	1992;	Huiskes	et	
al.,	 1989).	 There	 are	 numerous	 other	 aspects	 to	 consider.	 For	 instance,	 synthetic	 non‐
metallic	 biomaterials	 have	 an	 advantage	 over	 traditional	 metallic	 bone	 substitutes	
because	 they	do	not	 interfere	with	 the	use	of	many	types	of	modern	diagnostic	 imaging	
modalities	 (Moseley,	1994).	To	 conclude,	 there	 is	 an	 increased	medical	need	 to	develop	
novel	 biomaterials	 with	 various	 properties,	 produced	 with	 innovative	 ideologies	 and	
multidisciplinary	approaches.	
	
Biomimetism	(biomimicry)	and	bioinspiration	are	new	concepts	that	are	now	widely	used	
in	 the	 life	 sciences.	 They	 are	 defined	 as	 the	 examination	of	 nature,	 its	models,	 systems,	
processes,	and	elements	in	order	to	solve	a	human	problem	(Benyus,	1997;	Sanchez	et	al.,	
2005).	These	concepts	are	already	being	used	in	biomaterials	science,	in	which	they	offer	
a	formidable	instrument	for	the	development	of	novel	ideas	and	approaches.	
	
In	 the	 present	 thesis,	 wood,	 a	 natural	 fiber	 composite,	 which	 has	 both	 structural	 and	
mechanical	similarities	to	bone,	is	investigated	as	a	model	material.	Although	a	single	tree	
species,	 downy	 birch	 or	 European	 white	 birch	 (Betula	 pubescens	 Ehrh.)	 has	 been	 the	
object	of	this	work,	wood	as	a	natural	composite	material	is	the	real	focus	of	the	study.	A	
heat	 treatment	 preservation	 method,	 introduced	 by	 the	 wood	 industry	 to	 improve	 the	
endurance	 of	 wood	 against	 the	 elements,	 has	 been	 applied	 to	 alter	 the	 composition	 of	
wood.	The	effects	of	heat	treatment	on	the	biologically	relevant	properties	of	wood	may	
yield	information	on	several	aspects	contributing	to	the	biocompatibility	of	materials.	This	
information	 may	 be	 useful	 when	 composing	 new	 synthetic	 fiber‐reinforced	 composite	
materials,	 biomaterials	 with	 highly	 ductile	 properties	 already	 in	 clinical	 use	 in	 several	
applications.		
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The	present	work	assessed	the	usability	of	heat‐treated	wood	 in	 in	vitro	experiments	by	
evaluating	the	biological	responses	of	the	host	bone	to	wood	implants	(studies	I	and	II).	
Cellular	responses,	including	foreign	body	reactions,	osteoconductivity	and	other	adjacent	
tissue	 regeneration	 and	 differentiation	 properties,	 were	 assessed	 to	 evaluate	 the	
biocompatibility	of	heat‐treated	wood.	Untreated	wood	was	used	as	a	control	material	to	
which	 comparisons	 were	 made	 to	 illustrate	 the	 effects	 of	 heat	 treatment.	 To	 further	
explore	 the	 biological	 behavior	 of	 wood,	 specimens	 were	 immersed	 in	 simulated	 body	
fluid	 (study	 III)	 to	 observe	 possible	 hydroxylapatite	 formation.	 During	 the	 same	
immersion	 experiments,	 dimensional	 changes	 were	 recorded	 to	 evaluate	 the	 effects	 of	
heat	treatment	on	the	dimensional	stability	of	wood.	Several	mechanical	properties	were	
measured	 from	 differently	 heat‐treated	 wood	 samples	 in	 both	 dry	 and	 wet	 conditions	
(study	 III).	 The	 aim	 was	 to	 characterize	 the	 biomechanics	 of	 wood,	 and	 to	 record	 the	
possible	 mechanical	 alterations	 provided	 by	 the	 heat	 treatment	 method.	 Surface	
profilometry	was	 performed	 (study	 IV)	with	 two	different	methods	 to	 characterize	 and	
illustrate	 the	 ductility	 of	 the	 surface	 properties	 of	 heat‐treated	 wood	 as	 well	 as	 fiber	
composites	in	general.	The	morphology	of	wood	was	characterized	and	discussed	(studies	
I	–	IV)	 to	provide	 information	on	 its	hierarchical	structure,	 to	allow	biomimetism	in	 the	
further	development	of	biomaterials.	The	effects	of	heat	treatment	on	wood	morphology	
and	 liquid	 influx	 into	wood	were	 studied	with	 scanning	electron	microscopy	 (SEM)	and	
liquid	penetration	tests	(study	IV)	to	assess	their	potential	biological	relevance.		
	
Although	at	the	beginning	of	the	present	studies,	heat‐treated	wood	was	solely	seen	as	a	
bone	substitute	candidate	(Rekola	et	al.,	2001),	the	concept	of	wood	as	a	model	material	
encompasses	more	 than	 just	 investigating	 the	material	 for	 the	 purpose	 of	 being	 a	 bone	
substitute.	It	also	includes	the	ideas	of	biomimetism	and	bioinspiration.	This	may	lead	to	
novel	concepts	in	the	development	of	biomaterials	as	well	as	open	up	possibilities	for	new	
utilities	for	various	experimental	models	both	in	vivo	and	in	vitro.		
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2.	REVIEW	OF	THE	LITERATURE	
	

2.1	Bone	
	
Bone	is	specialized	connective	tissue	that	works	as	a	supportive	framework	for	the	human	
body.	 It	 is	a	dynamic	 living	tissue	that	also	works	as	an	 important	storage	compartment	
for	calcium	and	phosphate	that	are	needed	to	maintain	cell	homeostasis.	Bone	also	hosts	
deposits	 of	 bone	marrow,	 a	 tissue	with	precious	pluripotent	 cells	 essential	 for	 survival.	
Roughly	 20	%	 of	 the	 bone	 tissue	 in	 the	 human	 body	 is	 in	 the	 form	 of	 cancellous	 bone,	
which	has	a	large	surface	area,	weak	biomechanical	properties	and	high	metabolic	activity	
(Safadi	 et	 al.,	 2009).	 The	 rest	 of	 the	 total	 bone	mass	 is	 in	 compact	 cortical	 form	 and	 is	
mainly	responsible	for	the	biomechanical	functions	of	the	skeleton.		
	

2.1.1	Bone	composition	
	
Living	bone	 is	 composed	of	 roughly	30	%	organic	material,	 60	%	 inorganic	mineralized	
matrix	 and	10	%	water.	 Specialized	bone	 cells	 comprise	 only	 2	%	of	 the	 tissue	 and	 are	
embedded	 in	 a	 solid	 extracellular	 matrix	 (Bonucci,	 2000).	 The	 organic	 extracellular	
material	 consists	 mainly	 of	 type	 I	 collagen	 and	 non‐collagenous	 proteins	 (Carter	 and	
Spengler,	1978).	The	composition	of	bone	is	illustrated	in	more	detail	in	Table	2.1.		
	

2.1.2	Bone	formation	and	activity	
	
In	normal	development,	bone	is	formed	in	two	distinctive	ways.	In	intramembranous	bone	
formation,	 mesenchymal	 cells	 transform	 directly	 into	 bone	 forming	 osteoblasts	 in	
ossification	centers	(Burkitt	et	al.,	1993).	The	flat	bones	of	the	scull	and	face,	part	of	the	
clavicle	 and	 the	 periosteal	 column	 of	 long	 bones	 are	 formed	 in	 this	 way	 (Bucca	 et	 al.,	
2010).	In	endochondral	development,	bone	is	formed	in	a	complicated	multi‐step	process	
involving	a	cartilaginous	blastema,	a	cell	mass,	as	an	interphase.	Cartilaginous	structures	
are	 formed	and	degraded	as	templates	 for	developing	bones.	The	 longitudinal	growth	of	
long	bones	occurring	 in	 the	epiphyseal	plates	and	the	 formation	of	 the	condylar	head	of	
the	mandible	are	also	endochondral	(Carini	et	al.,	2007).	
	
Bone	cells	are	derived	from	stem	cells	located	in	bone	marrow.	Pluripotent	cells	migrate	
to	reside	in	the	gambium	layer	of	the	periosteum.	These	cells	are	further	developed	into	
specialized	bone	cells	(Table	2.2).		
	
Cell	 activity	 is	 regulated	 both	 systemically	 and	 locally.	 Parathyroid	 hormone	 (PTH),	
calcitonin	and	vitamin	D	regulate	the	formation	and	degradation	of	the	skeletal	system	as	
a	whole.	 This	 regulatory	 system	 is	 controlled	 by	 negative	 feedback	 and	 it	 is	 intimately	
linked	to	the	control	of	the	calcium	ion	concentration	of	the	blood.	The	constant	formation	
and	 disintegration	 of	 bone	 leads	 constant	 renewal	 of	 bone	 tissue	 (Stevens	 and	 Lowe,	
1997).	The	theoretical	time	it	takes	for	bone	tissue	to	be	reborn	is	called	its	turnover	rate,	
and	 is	about	10	years	 in	adults	(Väänänen,	1993).	The	effects	of	systemic	hormones	are	
mediated	by	cytokines	that	locally	regulate	bone	cell	functions.		
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Table	2.1	
The	composition	of	living	bone	(Posner,	1969;	Safadi	et	al.,	2009;	Young,	2003)	
	
	
 BONE	   

Organic	matrix	
(30%) 

Collagen	(90‐95%)	
Type	I	(95%)	

Types	V,	VI,	VIII,	XI	and	
XII	(5%) 

 
 

 

Non‐collagenous	
proteins	(5%)	

Glycosaminoglycans
Fibronectin

Matrix	gla‐protein
Vitronectin
Osteocalcin
Osteopontin

Thrombospondin
Osteonectin
Sialoprotein
Collagenase

Growth	factors

 

Inorganic	
matrix	60% 

Main	minerals	

  
Calcium	(Ca2+) In	the	form	of	

Phosphate	(PO42‐) calcium	phosphates	

Carbonate	(CO32‐)	
	
	
	

Citrate	(C6H5O73‐)	

 

 

Additional	minerals	

Magnesium	(Mg2+)	
	

Sodium	(Na+)	
	

Chloride	(Cl‐)	
	

Fluoride	(F‐)	
	

Potassium	(K+) 

 
 

 

 

 

 

Water	(10%) 
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Table	2.2	
Cells	of	living	bone	tissue	(Burra	et	al.,	2010;	Caplan,	2007;	Miller,	1986;	Mundy,	1999;	Owen,	1994)	
	

Bone	cells	 Derived	from	 Function	 	 	 	

Osteoprogenitor	cells	
/Mesenchymal	stem	

cells	
Undifferentiated	bone	marrow	cells	

Trophic	activity;	
participate	in	tissue	injury	

repair	by	secreting	
paracrine	factors	

   

Osteoblasts	 Osteoprogenitor	cells	/	Gambium	layer Synthesize	the	matrix	and	
mineralize	the	bone	

   

Bone‐lining	cells	 Osteoblasts	 Inactive	    

Osteocytes	 Osteoblasts	

Calcium	and	mineral	
exchange	with	body	fluids,	
Sense	mechanical	forces	
and	control	the	bone	

remodelling	

   

Osteoclasts	
Osteoprogenitor	cells,	mononuclear	

phagocytes	or	circulating	mononuclear	
cells	

Resorb	bone	
   

Other	 Bone	marrow,	bone	environment	 Mediate	cell	functions	and	
turnover	

	   

	
Modern	 biomaterials	 research	 takes	 into	 account	 the	 physiological	 control	 and	 and	 the	
possibility	of	interventions	to	alter	the	concentrations	and	localizations	of	these	cytokines,	
for	example	bone	morphogenic	protein	(BMP)	(Burg	et	al.,	2000).	One	of	the	difficulties	in	
this	field,	however,	is	the	complexity	of	the	regulatory	system,	which	makes	it	difficult	to	
extrapolate	in	vitro	results	to	the	in	vivo	situation	(Zheng	et	al.,	1992).	
	

2.1.3	Crystals	of	the	extracellular	matrix	
	
The	cells	of	bone	tissue	are	capable	of	concentrating	and	excreting	calcium	ions	and	thus	
regulating	 the	 composition	 of	 the	 extracellular	 matrix	 (Lehninger,	 1970).	 The	 mineral	
salts	 of	 the	 inorganic	 portion	 of	 the	 extracellular	 matrix	 are	 in	 both	 crystallized	 and	
amorphous	form,	about	60	%	and	40	%,	respectively	(Harper	and	Posner,	1966;	Ravaglioli	
et	al.,	1996).	The	main	 inorganic	components	of	bone	are	calcium	and	phosphate.	These	
components	 are	 in	 a	 heterogenous	mix	 of	 crystallized	 forms,	with	 the	main	 part	 in	 the	
form	 of	 hydroxylapatite,	 Ca10(PO4)6(OH)2.	 Other	 main	 forms	 are	 tricalcium	 phosphate,	
Ca3(PO4)2,	 octacalcium	 phosphate,	 Ca8H2(PO4)65(H2O)	 and	 whitlockite,	
Ca9(Mg,Fe++)(PO4)6(PO3OH).	 The	 presence	 of	 these	 different	 kinds	 of	 calcium	
compositions	give	the	crystallized	portion	of	bone	a	molar	Ca:P	ratio	less	than	that	of	pure	
hydroxylapatite	(1.67)	(Posner,	1969).		
	
Crystals	of	the	size	of	2	‐	5	x	20	‐	60	nm	(Aho,	1966;	Arsenault	and	Grynpas,	1988;	Bonar	et	
al.,	1983)	are	generally	arranged	parallel	to	the	collagen	fibers,	although	in	a	developing	
callus	 at	 a	 bone	 fracture	 site,	 the	 crystals	 have	 been	 reported	 to	 also	 be	 in	 a	 form	 of	
needle‐like	 clusters	 with	 multiple	 directions	 (Aho,	 1966).	 The	 crystal	 surfaces	 are	 the	
main	 platform	 of	 ion	 exchange	 and	 the	 chemical	 activity	 of	 the	 bone	 mineral.	 With	 a	
surface	area	of	roughly	100	to	200	m2/g,	in	a	normal	adult	they	yield	a	total	active	surface	
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area	of	440‐550	x	103	m2	(Howell,	1971).	The	understanding	of	mineral	composition	and	
arrangement	is	a	prerequisite	for	the	study	of	osseointegration	of	biomaterials.	
	

2.1.4	Structure	of	bone	
	
Bone	has	a	highly	organized	structure	on	the	macroscopic	and	microscopic	levels.	As	in	all	
human	 tissues,	 the	 structure	 of	 bone	 is	 appropriate	 for	 purpose.	 The	 structure	 of	 bone	
tissue	yields	good	biomechanical	attributes	as	well	 as	enables	 the	 tissue	 to	adapt	 to	 the	
ever‐changing	physical	and	chemical	environment	that	is	the	living	human	body.	
	
Microscopically,	bone	tissue	can	be	divided	into	mature	or	lamellar	bone	and	immature	or	
woven	 bone.	 During	 bone	 maturation,	 the	 collagen	 fibers	 are	 arranged	 in	 a	 lamellar	
formation,	 a	 characteristic	 difference	 between	 the	 aforementioned	 bone	 types.	 During	
bone	 formation,	 lamellar	 bone	 is	 almost	 always	 preceded	 by	 immature	 bone.	 During	
maturation,	the	cell	content	of	the	bone	tissue	turns	from	the	osteoblast‐rich	environment	
of	woven	bone	to	a	relatively	higher	count	of	osteocytes	in	mature	bone.	At	the	same	time,	
the	mineral	content	 is	 increased.	Osteons	or	Haversian	systems	are	 formed	during	bone	
maturation.	These	are	the	basic	metabolic	and	functional	units	of	bone.	Osteons	consist	of	
a	wall	of	concentric	lamellae	(Burkitt	et	al.,	1993;	Manson,	1994)	and	are	oriented	parallel	
to	 one	 another.	 The	 lamellae	 contain	 unidirectional	 fibers.	 The	 directions	 of	 the	 fibers	
differ	 in	 each	 adjacent	 lamellum	 resulting	 in	 a	 biomechanically	 strong	 structure.	
Haversian	 canals	 run	 in	 the	middle	 of	 the	 osteons.	 They	 contain	 1	 or	 2	 capillary	 blood	
vesssels	 and	nerve	 fibers,	 and	are	 lined	with	osteocytes.	Volkmann’s	 canals	 connect	 the	
Haversian	canals	tangentially,	creating	a	network	of	blood	and	fluid	supply	(Safadi	et	al.,	
2009).	The	biomechanical	attributes	of	mature	bone	are	dependent	on	the	orientation	of	
the	osteons,	which	differs	from	one	location	to	another	within	a	bone	and	from	cortical	to	
cancellous	 bone.	 The	 structure	 of	 bone	 is	 depicted	 in	 Figure	 2.1	 Bone	 tissue	 has	 a	
remodelling	capacity	that	enables	bone	to	alter	its	composition	and	orientation	of	osteons	
and	 extracellular	 collagen	 fibers	 of	 already	 matured	 bone	 to	 adapt	 to	 changes	 in	
biomechanical	conditions.	In	this	remodelling,	mineralized	tissue	is	formed	in	association	
with	mature	collagen	according	to	Wolff’s	law	(Aho,	1966;	Safadi	et	al.,	2009;	Wolff,	1892)	
	

2.1.5	Biomechanical	properties	of	bone	
	
Mature	 cortical	 bone	 has	 anisotrophic	 biomechanics	 with	 the	 mechanical	 properties	
directionally	 dependent	 in	 such	 a	way	 that	 compression	 and	 tensile	 strength	 can	 be	 as	
much	 as	 90	%	 stronger	 in	 the	 direction	 of	 the	 osteons	 than	 in	 a	 transverse	 direction.	
Immature	and	trabecular	bone	may	be	mechanically	considered	to	be	more	like	a	cellular	
solid	 (Gibson,	 2005).	 Biomechanically,	 bone	may	 be	 conceived	 as	 a	 composite	material.	
The	mineral	matrix	of	bone	has	good	compressive	strength	and	stiffness,	but	low	tensile	
strength.	Collagen	fibers	are	responsible	for	tension	strength,	but	since	they	do	not	stretch,	
they	 have	 very	 low	 elasticity.	 Bone,	 having	 both	 of	 these	 components,	 is	 mechanically	
stronger	 than	 the	 individual	 components	 that	 it	 is	 made	 of,	 a	 feature	 characteristic	 of	
composite	materials.	
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Figure	2.1	
Illustration	of	 the	 structure	of	 lamellar	bone.	The	osteon	 consists	 of	 concentric	 lamellae	 (A)	with	 a	Haversian	
canal	 (B)	 running	 down	 the	 middle.	 Tangentially	 oriented	 Volkmann’s	 channels	 (C)	 connect	 the	 parallel	
Haversian	 canals	 to	 form	a	 structured	 liquid	 and	 nutrient	 conveyance	 system.	 Illustration	by	 author,	 adapted	
from	various	anatomy	books.	
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Assignment	 of	 exact	mechanical	 values	 to	 a	 bone	material	 is	 demanding	 because	 of	 the	
large	variations	in	this	living	tissue.	The	mechanical	values	of	a	bone	material	vary	within	
any	anatomical	bone,	and	for	example,	the	compressive	strength	of	the	femur	is	different	
in	 the	shaft	 (diaphysis)	and	 in	 the	head	 (caput).	The	mechanical	properties	of	any	bone	
material	 are	 also	 dependent	 on	 the	 age,	 diseases,	 bone	mineral	 content,	 location	 of	 the	
bone,	structure	variations	(for	example	after	trauma)	and	species.	These	are	aspects	to	be	
considered	when	 comparing	bone	mechanics	with	 those	of	 an	 inert	non‐living	material.	
Reference	 values	 of	 the	 biomechanical	 properties	of	 bone	 reported	 in	 the	 literature	 are	
reviewed	in	Table	2.3.		
	
	
Table	2.3	
Rough	estimates	of	the	mechanical	properties	of	bone	found	in	the	literature	(Audekerecke	and	Martens,	1984;	
Evans	and	King,	1961;	Kokubo	et	al.,	2003)		
	
 	 Strength	(MPa)		

(mean	stress)	
 

 Flexural	modulus	
(stiffness)(GPa)	

Compressive	 Bending	  

Cortical	bone	 7‐30	 100‐230	 50‐150	  

Cancellous	bone 0.05‐0.5	 2‐12	 n/a	  

	

2.1.6	Bone	repair	and	healing	
	
Bone,	being	a	living	tissue,	can	repair	itself	after	trauma.	Due	to	its	remodelling	properties,	
bone	can	achieve	 its	original	 integrity	without	post‐traumatic	 imprint	or	scar	formation.	
In	cases	where	a	fracture	lacks	rigid	fixation,	the	spontaneous	fracture	healing	process	is	
called	secondary	bone	healing	(Sfeir	et	al.,	2005).	The	healing	process	may	be	divided	into	
phases,	of	which	the	most	commonly	used	are	the	inflammatory,	the	reparative	(soft	and	
then	hard	callus	formation)	and	the	remodelling	phase	(Frost,	1989;	Marsh	and	Li,	1999;	
Martin	 et	 al.,	 1998).	 The	 healing	 process	 is	 a	 self‐controlling	 cascade	 triggered	 by	 the	
onset	of	distress	signals	released	from	traumatized	bone	and	surrounding	tissues.		
	
Bone	healing	includes	an	inflammatory	phase,	triggered	by	the	substances	in	the	trauma‐
induced	 hematoma	 (Bolander,	 1992).	 In	 the	 early	 stages	 of	 the	 healing	 process,	 the	
fracture	environment	is	hypoxic	and	acidic.	This	is	optimal	for	polymorphonuclear	(PMN)	
leucocytes	and	tissue	macrophage	activity	(Hollinger	and	Wong,	1996).	The	inflammatory	
phase	overlaps	the	reparative	phase	as	 illustrated	in	 figure	2.2.	During	this	early	phase,	
loose	connective	tissue	is	formed.	Collagen	fibers	appear	and	start	to	mature	and	organize.	
The	bone	 formation	stimulus	of	 the	 traumatized	bone	 then	activates	 the	preosteoblasts,	
which,	after	maturation	to	osteoblasts,	start	to	form	the	mineral	matrix	(Aho,	1966;	Tonna	
and	 Cronkite,	 1961).	 Especially	 in	 fractures	 of	 the	 long	 bones,	 a	 soft	 callus	 is	 formed	
around	the	trauma	area.	The	reparative	phase	is	characterized	by	a	neutral,	and	finally	by	
a	 slightly	 alkaline	 environment.	 This	 is	 ideal	 for	 alkaline	 phosphatase	 activity	 and	 the	
mineralization	of	 the	callus	(Buckwalter	et	al.,	1996).	After	maturation,	 the	soft	callus	 is	
transformed	 to	more	mineralized	hard	callus,	 and	 finally,	during	 the	 remodelling	phase,	
the	callus	is	resorbed.	It	is	notable	that	in	fractures	of	facial	bones,	direct	bone	formation	
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without	 callus	 formation	 usually	 occurs.	 Fibrous	 bone	 healing	 is	 usually	 predominant	
where	there	is	a	large	gap	between	the	fracture	surfaces,	the	fracture	is	poorly	fixated	or	
there	 is	soft	tissue	protruding	 into	the	fracture	(LaTrenta	et	al.,	1989;	Sfeir	et	al.,	2005).	
The	complex	healing	process	varies	according	to	trauma	type	and	location.	The	hematoma	
and	inflammatory	phases	are	versatile,	depending	on	the	scale	of	the	trauma	(Buckwalter	
et	al.,	1996).	
	

	
	
Figure	2.2	
Timeline	illustrating	the	relation	of	the	different	phases	of	a	normal	bone	healing	process.	Illustration	by	author,	
adapted	from	(Heikkilä,	1996).	
	
In	cases	where	the	trauma	does	not	cause	a	gap	between	the	fractured	components	of	the	
bone,	 primary	 contact	 healing	 can	 occur.	 In	 contact	 healing,	 Haversian	 remodellation	
restores	 the	 original	 composition	 of	 the	 bone	 (Perren,	 1979).	 Healing	 of	 this	 kind	 can	
occur	in	so	called	greenstick	fractures	of	children.	In	cases	where	there	is	a	gap	between	
the	surfaces	of	the	fracture,	primary	gap	healing	occurs.	If	the	gap	is	less	than	0.3	mm	wide,	
the	reparative	phase	consists	of	direct	 lamellar	bone	formation	(Schenk,	1987).	 In	cases	
where	 the	gap	 is	0.3	 ‐	 1.0	mm,	 the	 reparative	phase	 can	 include	woven	bone	 formation	
before	the	maturation	to	lamellar	bone	within	the	trabecular	spaces	(Johner,	1972).	

2.1.7	Bone	healing	in	cavitary	defects	
	
In	cases	where	for	example	a	disease	process	or	the	removal	of	pathological	bone	tissue	
leaves	 a	 large	 cavity,	 a	 specific	kind	of	 bone	healing	occurs.	 In	 cavitary	defects,	 there	 is	
always	a	wide	fracture	gap.	Similar	to	fracture	healing,	the	defect	is	 initially	filled	with	a	
blood	 clot,	which	 is	 transformed	 into	 fibrous	 tissue	by	 fibroblasts.	New	bone	 formation	
may	 occur	 through	 mineralization	 of	 loose	 connective	 tissue	 (Aro	 and	 Chao,	 1993).	 In	
larger	defects,	bone	formation	in	the	middle	of	the	defect	is	slow	or	nonexistent.	In	cases	
where	the	defect	size	is	so	large	that	it	theoretically	does	not	heal	within	the	lifetime	of	the	
individual,	 the	 term	 critical	 size	 defect	 (CSD)	 is	 applied	 (Hollinger	 and	 Kleinschmidt,	
1990).	The	CSD	is	dependent	on	the	individual’s	age,	the	location	of	the	defect	and,	on	the	
animal	 species.	 For	 instance,	 the	 CSD	 of	 the	 rabbit	 femur	 is	 approximately	 4	 mm	 (Le	
Guehennec	et	 al.,	 2005).	Cavitary	defects	were	 the	 first	 situations	 in	which	 the	need	 for	
bone	 substitutes,	 i.e.	 biomaterials,	was	 established.	At	 the	 end	of	 the	19th	 century,	 Senn	
published	 an	 article	 in	which	 he	 presented	 decalcified	 bone	 as	 an	 absorbable,	 firm	 and	
antiseptic	material	for	promoting	bone	healing	in	cavitary	defects	(Senn,	1889).		
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2.2	Bone	substitutes	
	
Bone	 defects	may	 result	 from	 numerous	 situations.	 Iatrogenic	 etiologies	 include	 tumor	
surgery,	 post‐infectional	 revision	 surgery	 and	 osteoradionecrosis	 following	 radiation	
therapy.	 Bone	 defects	 can	 also	 occur	 after	 trauma	 or	 osteitis	 or	 can	 be	 congenital.	 In	
situations	where	a	bone	defect	exceeds	the	capabilities	of	the	natural	healing	process	or	
when	the	defect	is	in	a	location	that	the	function	of	the	bone	has	to	be	substituted	during	
the	healing	process,	bone	augmentation	is	needed.	Autologous	implants	and	allografts	are	
widely	 used	 for	 bone	 augmentation.	 Autologous	 bone	 tissue	 is	 taken	 from	 the	 patient’s	
own	bone,	for	example	from	the	iliac	crest.	This	usually	requires	a	second	operation	and	
contributes	to	the	morbidity	of	the	patient.	The	quality	and	the	amount	of	bone	available	
are	 also	 limited	 (Aho	 et	 al.,	 1994;	 Laurie	 et	 al.,	 1984).	 Allograft	 tissue	 is	 taken	 from	
deceased	 donors.	 Whereas	 this	 method	 may	 provide	 sufficient	 amounts	 of	 bone	
augmentation	 material	 for	 even	 large‐scale	 reconstructive	 surgery,	 it	 also	 has	 its	
downsides.	Ethical	concerns,	risk	of	 transmitting	diseases	(albeit	how	minimal),	consent	
procedures	as	well	as	the	need	for	expensive	preservation	systems	decrease	the	appeal	of	
allografts	as	a	bone	augmentation	option	(Aho	et	al.,	1994).		
	
The	 definition	 of	 a	 biomaterial	 has	 changed	 during	 the	 years.	 In	 the	 beginning	 of	
biomaterials	research,	 it	was	taught	that	a	biomaterial	must	be	as	 inert	as	possible.	This	
view	 has	 gradually	 changed	 to	 one	 encompassing	 active	 biomaterials,	 i.e.	materials	 that	
interact	with	the	host	tissue	in	a	positive,	biocompatible	manner	(Sutherland	and	Bostrom,	
2005).	A	biomaterial	is	presently	defined	as	“a	nonviable	material	used	in	a	medical	device,	
intended	to	interact	with	biological	systems”.	Biocompatibility	is	defined	as	“the	ability	of	
a	 material	 to	 perform	 with	 an	 appropriate	 host	 response	 in	 a	 specific	 application”	
(Williams,	1999).	
	

2.2.1	Properties	of	biomaterials	
	
The	modern	 concept	 of	 a	 biomaterial	 calls	 for	 the	material	 to	 be	 tailor‐made	 to	 fit	 the	
intended	use.	Biologically,	it	should	be	incorporated	seamlessly	into	the	host	tissue,	with	
as	little	systemic	impact	as	possible.	With	regard	to	bone	substitutes,	a	biomaterial	should	
also	 biomechanically	 respond	 to	 the	 multivariate	 environment	 of	 living	 bone	 tissue.	
Properties	of	an	ideal	bone	substitute	may	be	listed	as:		
(1)	 Non‐toxic	 (2)	 Biocompatible;	 (3)	 Biomechanical	 strength	 to	 withstand	 the	 forces	
subjected	to	the	original	bone;	(4)	Bioactive;	(5)	Osteoinductive	and	osteoconductive;	(6)	
Composition	 that	 allows	 bone	 ingrowth	 and	 ongrowth;	 (7)	 Evanescence	 speed	 equal	 to	
the	 speed	 of	 bone	 formation;	 (8)	 Flexural	 modulus	 equal	 to	 that	 of	 the	 host	 bone;	 (9)	
Manageable;	 (10)	 Moldable	 or	 shapeable	 perioperatively	 (Aho	 and	 Heikkilä,	 1997;	
Nordström	 and	 Sánchez	 Muñoz,	 2001).	 As	 these	 properties	 are	 all	 but	 impossible	 to	
combine	 in	 a	 single	 material,	 the	 solution	 has	 been	 to	 develop	 various	 materials	
corresponding	to	specific	situations	and	demands.		
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2.2.2	Biomaterial	–	bone	interface	
	
Where	the	implant	material	and	the	host	bone	meet,	an	interface	is	formed.	The	reactions	
that	occur	in	the	interface	define	much	of	the	biomaterial’s	capability	to	serve	as	a	 load‐
bearing	 bone	 substitute.	 Biomaterials	 may	 be	 divided	 in	 accordance	 with	 their	 tissue	
reactions	into	biotolerant,	bioinert	and	bioactive	materials	(Heimke,	1990).	In	biotolerant	
materials,	 the	 interface	 is	 comprised	 of	 fibrous	 tissue,	 while	 by	 definition	 the	 bioinert	
materials	have	direct	contact	with	the	host	bone.	Bioactive	materials,	affect	the	interface	
in	such	a	way	that	chemical	bonding	occurs.		
	

2.2.3	Osteoconductivity	and	the	osseointegration	process	
	
Osteoconductivity,	osseointegration	and	bone	bonding	are	terms	used	in	the	literature	to	
describe	 the	behavior	of	 a	 bioactive	 implant	 in	vivo.	 The	 terms	are	 slightly	 overlapping,	
but	in	general	it	can	be	considered	that	bone	bonding	depicts	the	osseointegration	process	
at	the	bone‐implant	interface	level.	Albrektsson	et	al.	define	an	osteoconductive	surface	as	
one	that	allows	the	host	bone	to	grow	on	the	implant	surface	and	into	its	pores,	channels	
and	 pipes	 (Albrektsson	 and	 Johansson,	 2001).	 The	 osteoconductivity	 phenomenon	 is	 a	
prerequisite	to	osseointegration,	and	thus	always	precedes	it.	
	
The	 osseointegration	 process	 was	 first	 described	 by	 Brånemark	 et	 al.,	 and	 was	 later	
defined	by	Albrektsson	et	al.	(Albrektsson	et	al.,	1981;	Brånemark	et	al.,	1977).	It	was	used	
to	describe	 the	processes	 leading	to	 the	 fixation	of	a	dental	 titanium	implant	 in	alveolar	
crests	 of	 the	 jaw.	 Osseointegration	 is	 a	 biological	 response	 of	 bone	 tissue	 to	 an	 active	
biomaterial.	It	is	defined	as	a	direct	structural	and	functional	contact	between	the	implant	
material	 and	 living	 bone	 tissue	 (Albrektsson	 and	 Sennerby,	 1990).	 Complete	
osseointegration	can	also	be	described	as	the	anchoring	of	an	 implant	to	a	host	bone	by	
the	formation	of	bone	tissue	around	the	implant,	without	the	presence	of	fibrous	tissue	at	
the	 bone‐implant	 interface.	 The	 biology	 of	 osseointegration	 is	 similar	 to	 that	 of	 normal	
bone	 healing.	 The	 post‐implantation	 bone	 healing	 and	 osseointegration	 process	 is	
illustrated	in	Figure	2.3.		
	
Bone	 bonding	 is	 a	 converging	 term	 to	 osseointegration	 as	 it	 encompasses	 the	
phenomenon	more	on	the	interfacial	level.	Bone	bonding	is	defined	as	“the	establishment,	
by	 physico‐chemical	 processes,	 of	 continuity	 between	 an	 implant	 and	 bone	 matrix”	
(Williams,	 1999).	 The	 classical	 explanation	 of	 the	 bonding	 phenomenon	 explains	 the	
formation	of	a	chemical	interfacial	reaction	layer	of	implant	origin	as	the	driving	force	of	
osteogenesis	 (Cao	 and	 Hench,	 1996).	 Another	 explanation	 considers	 the	 bonding	
phenomenon	 as	 a	 continuation	 of	 normal	 bone	 remodelling	 through	 the	 presence	 of	 a	
non‐collagenous	 “cement‐line”	 created	by	 osteoclast	 and	osteoblast	 activity.	 If	 a	 cement	
line	 is	 introduced	 to	 a	 topographically	 applicable	 and	 sufficiently	 stable	 surface	 (be	 it	 a	
surface	of	a	remodelling	bone	or	an	implant),	it	can	interlock	as	the	cement	line	is	matured	
through	 collagen	 synthesis	 and	 mineralization	 (Davies,	 2007).	 The	 first	 explanation	 is	
biomaterial‐driven,	 whereas	 the	 latter	 tries	 to	 explain	 the	 phenomenon	 more	 through	
host	tissue	processes.	The	debate	whether	bone	bonding	biomaterials	are	such	that	they	
can	 actively	 elicit	 bone	 bonding	 or	whether	 they	merely	 possess	 attributes	 that	 permit	
bone	to	bond	to	them,	is	still	continuing	in	the	literature.	That	being	said,	the	majority	of	
the	biomaterials	community	subscribes	to	the	first	of	the	two	dogmata.						
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A)A blood clot with inflammatorycells (B) is formed betweenimplant and the host bone.Bone forming stimulus isreleased from the damaged bone,which initiates an intramembranousbone formation process.(Aro and Chao, 1993)

B)Fibroblasts and osteoprogenitorcells form connective tissue (C). After approximately 5-7 days osteoblastsare present, and start to mineralizehydroxylapatite according to thecollagen fibril orientation. (Aho 1966). 

C)After a period of 3 to 6 months inunloaded conditions, bone formationand re-organization produce atight contact with bioactive materialand  vital bone tissue. (Brånemark 1983)

BoneImplant

B

C

Interface

	
	
Figure	2.3	
A	 schematic	 illustrating	 the	 three	 stages	 leading	 to	 osseointegration	 and	 bone	 bonding	 (images	 by	 author),	
source	of	information	in	the	text	as	cited.		
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The	process	of	osseointegration	and	bone	bonding	is	 influenced	by	the	properties	of	the	
biomaterial,	 including	 the	 surface	 characteristics,	 chemical	 composition	 and	
biomechanical	 attributes.	 Periprosthetic	 osteolysis	 can	 occur	 if	 the	 implant	 has	 very	
different	 biomechanical	 properties	 to	 bone	 (Engh	 et	 al.,	 1992;	Huiskes	 et	 al.,	 1989).	 An	
example	of	this	is	the	“stress‐shielding”	of	titanium	prostheses	in	the	proximal	femur.	The	
operative	 success	 also	 affects	 bonding	 and	 integration,	 and	poor	 fixation	of	 the	 implant	
can	 undermine	 the	 osseointegration	 process.	 The	 first	 six	weeks	 after	 implantation	 are	
critical	in	this	respect	(Aro	and	Chao,	1993).			
	

2.2.4	Implant	surface	and	liquid	interaction	characteristics	
	
The	 contour	 and	 the	 roughness	 of	 a	 biomaterial	 surface	 have	 an	 effect	 on	 the	
osseointegration	of	an	implanted	biomaterial.	Surface	roughness	correlates	with	a	positive	
biological	 bone	 response,	which	 leads	 to	 increased	 osteoconductivity	 (Aho	 et	 al.,	 2004;	
Mattila	 et	 al.,	 2009).	 Rough	 surfaces	 increase	 mechanical	 interlocking,	 changes	 the	
wettability	of	the	surface	and	increases	the	active	surface	area	(Hansson,	2000;	Hansson	
and	Norton,	1999;	Mattila	et	al.,	2006).	The	influence	of	of	surface	modifications	are	well	
documented	 in	 the	 literature	 (Albrektsson	 and	 Wennerberg,	 2004a,	 b;	 Cooper,	 2000;	
Ivanoff	 et	 al.;	 Rasmusson	 et	 al.,	 2005).	 The	 contour	 of	 the	 surface	 has	 an	 effect	 on	 the	
osseointegration	 process,	 and	 in	 some	 situations	 outweighs	 surface	 roughness	 effects.	
Whereas	roughness	increases	the	active	contact	surface,	the	contour	of	the	surface	has	a	
significant	effect	on	the	distribution	of	shear	forces	(Hansson,	2006).	
		
Interactions	 between	 biomaterials	 and	 body	 fluids	 define	 some	 osteoconductive	
properties	of	biomaterials.	Hydrophilicity	and	wettability	of	a	biomaterial	surface	have	a	
positive	 impact	on	cell	adhesion	and	spreading	(LaPorte,	1997;	Ruardy	et	al.,	1997),	but		
hydrophilic	surfaces	are	more	prone	to	bacterial	colonization	(Su	et	al.,	2009).		
	
Wetting	is	a	concept	describing	the	interaction	of	a	liquid	with	a	solid	surface.	For	smooth	
and	 impermeable	 surfaces,	 cohesive	 and	 adhesive	 intermolecular	 forces,	 i.e.	 the	 surface	
tension,	 define	 the	 wetting	 phenomenon;	 with	 the	 hydrophilicity	 of	 the	 solid	 material	
playing	an	important	part.	The	wetting	concept	on	fibrous	porous	surfaces	is,	however,	a	
more	complex	entity	as	adhesion	and	adsorbtion	onto	the	fiber	surface,	the	orientation	of	
the	 fibers	 and	 capillary	 penetration	 also	 play	 a	 role	 (Kissa,	 1996).	 Wettability	 is	 also	
influenced	 by	 surface	 roughness.	 As	 roughness	 increases	 the	 active	 surface,	 it	 also	
intensifies	 the	 effects	 of	 the	 surface	 properties;	 hydrophilic	 materials	 become	 more	
hydrophilic	 and	 hydrophobic	 materials	 become	 more	 hydrophobic	 (de	 Gennes	 et	 al.,	
2004).	
	
For	a	bulk	bone	substitute	 to	osseointegrate	with	 the	host	bone	 it	has	 to	have	adequate	
liquid	 conveyance	 features.	 The	 penetration	 and	 flow	 of	 body	 fluids	 through	 the	 bulk	
material	 is	a	prerequisite	 for	bone	 formation	and	 immunological	 regulation	 in	 the	 inner	
structures	 of	 the	 implant.	 As	 the	 adequate	 flow	 of	 fluids	 enables	 desirable	 biological	
activity,	it	also	diminishes	the	possibility	of	bacterial	colonization	of	the	implant.		
	
The	 first	 step	of	 liquid	 influx,	 that	 is	 to	 say	 the	absorption	 and	drainage	of	 fluids	 into	 a	
fibrous	 porous	 material,	 is	 called	 wicking.	 An	 everyday	 example	 of	 the	 wicking	
phenomenon	 is	 the	 absorption	 of	 a	 liquid	 into	 a	 paper	 towel.	 At	 the	 surface	 level,	 the	
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wicking	phenomenon	may	be	simplified	to	result	from	capillary	action.	In	fibrous	porous	
materials,	 the	 interfiber	 spaces	 act	 as	 capillary	 tubes.	 Several	 variables	 of	 both	 the	
interacting	fluid	as	well	as	the	material	influence	the	wicking	phenomenon.	The	affecting	
factors	 and	 their	 relationships	 can	 be	 explained	with	 a	mathematical	model	 (Batchelor,	
2000):		

	

,		

	
where	 h	 is	 the	 rise	 in	 the	 capillary	 (the	 force	 of	 liquid	
penetration	 into	 the	 capillary);	 r	 is	 the	 radius	 of	 the	
capillary,	 i.e.	 the	size	of	 the	pore	or	 interfiber	space;	ρ	 is	
the	density	of	the	liquid,	e.g.	extracellular	fluid,	blood,	etc.;	
g	 is	 the	 acceleration	 against	 gravity,	 a	 variable	 in	 this	
mathematical	model,	which	in	in	vivo	can	be	considered	to	
include	all	of	the	factors	opposing	the	influx	of	the	liquid;	
θ	 is	 the	 contact	 angle,	 which	 is	 largely	 dictated	 by	 the		

surface	properties	of	the	material	and	γ	is	the	liquid‐air	surface	tension,	an	attribute	of	the	
liquid	in	question.	The	aforementioned	variables	are	illustrated	in	the	adjacent	scheme.	
	
The	 aforementioned	 model	 works	 only	 at	 the	 surface	 level	 as	 the	 liquid	 conveyance	
system	 becomes	 more	 complex	 with	 increasing	 depths,	 especially	 because	 of	 possible	
interconnectivity	between	the	pores.	All	variables	included	in	the	model	still	play	a	part	in	
the	more	intricate	physics	of	the	inner	structure	liquid	influx.	
				

2.2.5	Biomaterials	in	use	
	
The	amount	of	biomaterials	in	use	is	large	and	ever	growing.	Bone	substitutes	in	use	are	
categorized	in	Table	2.4.	Two	or	more	of	these	materials	can	be	combined	to	produce	a	
material	encompassing	the	best	properties	of	each	material.	Materials	consisting	of	two	or	
more	distinct	phases	are	referred	to	as	composite	materials.		
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Table	2.4		
Coarse	categorization	of	the	biomaterials	in	clinical	use	(information	collected	from	various	sources).	
	
	

Material	category	 Examples	of	materials	  

Bone	and	bone‐derived	materials	

Autograft	 	
Allograft	 	
Xenograft	 	

Demineralised	bone	matrix	(DMB)	 	

Metals	
Titanium	 	
Steel	alloys	 	

Glass	and	glass‐ceramics	 Bioactive	glass	
	
	

Calcium‐derived	materials	

Calcium	sulphate	
‐	Plaster	of	Paris	

	
Hydroxylapatites	(HA)	

‐	Bone	derived	
‐	Synthetic	ceramics	

‐	Coralline	HA	
‐	HA‐composites	

‐	Tricalcium	phosphate	
	

Calsium	carbonates	
‐	Natural	Coral	

	
	
	
	
	
	
	
	
	
	
	

Polymers	

Resin	composites	
Reinforced	composites	

‐	particle	reinforced	composites	
‐	fiber	reinforced	composites	

	
	
	
	
	
	
	

	

2.2.6	Fiber‐reinforced	composites	
	
Fibers	 may	 be	 used	 to	 reinforce	 the	 biomechanical	 properties	 of	 synthetic	 materials.	
Collagen	fibers	account	for	the	fiber	component	in	living	bone	tissue,	as	described	earlier.	
Fiber‐reinforced	 composites	 (FRC),	 in	 which	 the	 fibers	 are	 embedded	 in	 a	 synthetic	
polymer	 matrix,	 have	 numerous	 applications	 in	 many	 industries.	 Fiber	 reinforcement	
provides	 materials	 with	 increased	 and	 more	 manageable	 mechanical	 properties	 for	 an	
associated	weight	loss.	The	formability	of	the	mechanical	properties	of	FRCs	is	the	aspect	
most	interesting	with	regard	to	load‐bearing	biomaterial	solutions.		
	
The	strength,	stiffness,	toughness	and	fatigue	resistance	of	FRCs	depend	on	the	geometry	
of	the	reinforcing	fibers	(Migliaresi	and	Alexander,	2004).	In	unidirectional	FRCs,	stiffness	
and	strength	can	be	comparable	with	steel	when	loaded	along	the	fibers,	but	weaker	than	



Review	of	the	Literature	

	

27

the	polymeric	matrix	it	is	composed	of	when	loaded	transversally	(Lakes,	2000).	Also	the	
effect	of	unidirectional	fibers	is	higher	when	positioned	on	the	tension	side	of	a	bending	
material	(Dyer	et	al.,	2004).	Fibers	could	also	be	positioned	randomly,	or	in	two	directions,	
if	 the	 mechanical	 properties	 of	 the	 application	 such	 require,	 but	 in	 doing	 so,	 some	
reinforcement	is	lost.	Overall,	increasing	the	fiber	content	of	the	composite	increases	the	
modulus	of	elasticity	and	flexural	strength	(Vallittu,	1998).		
	
Resin	 fiber	 reinforced	 composites	 are	 designed	 such	 that	 the	 reinforcement	 material	
increases	 the	mechanical	properties	of	a	resin	system,	while	 the	resin	as	a	matrix	binds	
the	 fibers	 and	 protects	 from	 external	 environmental	 moisture	 (Vallittu,	 1995).	 In	 the	
literature,	glass	(Vallittu,	1997,	1999a,	b;	Vallittu	and	Sevelius,	2000),	aramid	(Bae	et	al.,	
2001;	Chen	et	al.,	2001),	ultra‐high	molecular	weight	polyethylene	(UHMWPE)	(Karaman	
et	al.,	2002;	Spyrides	and	Bastian,	2004)	and	carbon	fibers	(Björk	et	al.,	1986;	Drummond	
and	 Bapna,	 2003)	 have	 been	 used	 for	 reinforcement.	 The	 list	 of	 resin	matrices	 is	 even	
more	 comprehensive	 including	 bisphenol‐A‐glycidyl	 dimethacrylate	 (bis‐GMA)	
(Lastumäki	 et	 al.,	 2002;	 Peutzfeldt,	 1997),	 triethyleneglycol	 dimethacrylate	 (TEGDMA)	
(Asmussen	and	Peutzfeldt,	2003;	Imazato	et	al.,	2001;	Marquardt	et	al.,	2009),	polymethyl	
methacrylate	(PMMA)	(Aho	et	al.,	2004;	Hautamäki	et	al.,	2008;	Lassila	et	al.,	2010)	and	
combinations	of	the	aforementioned	resin	matrices.		
	
In	 addition	 to	 the	 individual	 properties	 of	 the	 resins	 and	 the	 fibers	 used,	 the	
manufacturing	and	fiber‐to‐resin	bonding	determine	the	properties	of	the	final	composite	
material.	The	search	for	optimal	resin	and	fiber	combinations,	the	placement	of	the	fibers	
within	 the	 system	 and	 the	 best	 way	 to	 compile	 the	material	 are	 key	 questions	 of	 FRC	
research.		
	
Besides	 developing	 novel	 composite	 materials,	 fiber	 reinforcement	 can	 be	 used	 to	
optimize	 established	 biomaterials.	 Fibers	 can	 be	 used	 to	 compensate	 the	 loss	 of	
mechanical	 properties	 due	 to	 manufactured	 porosity	 in	 bone	 cements.	 In	 addition	 to	
mechanical	 improvement,	 bioactive	 fibers	 (i.e.	 bioactive	 glass)	 can	 increase	 the	
osteoconductivity	of	a	material	(Puska	et	al.,	2006;	Vakiparta	et	al.,	2005).		
	
FRCs	are	already	in	clinical	use	in	dentistry	and	under	development	for	non‐metallic	load‐
bearing	orthopaedic	implants	(Aho	et	al.,	2004;	Hautamäki	et	al.,	2008),	cranial	implants	
(Tuusa	et	al.,	2008;	Tuusa	et	al.,	2007)	and	dental	implants	(Ballo	et	al.,	2009;	Zhao	et	al.,	
2009).	
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2.3	Wood	
	
Trees	are	perennial	seed‐bearing	plants	(spermatophytae)	that	have	spread	widely	across	
the	globe	and	can	be	 found	 in	any	region	capable	of	sustaining	tree	growth.	Birch	wood	
used	in	this	study	has	a	large	natural	distribution	area	in	Eurasia,	with	the	most	abundant	
birch	resources	in	the	temperate	climate	of	northern	Europe	(Hynynen	et	al.,	2010).	Trees	
can	be	classified	roughly	 into	hardwoods	(angiosperms)	and	softwoods	(gymnosperms).	
Softwoods	 are	 also	 referred	 to	 as	 coniferous	 trees,	 because	 they	 bear	 seeds	 in	 cones.	
Hardwoods	are	often	called	deciduous	trees,	as	they	shed	their	leaves	at	the	end	of	every	
growing	period.	There	are	approximately	30000	to	35000	different	hardwood	species	and	
about	 1000	 softwood	 species.	 Each	 tree	 species	 may	 be	 differentiated	 by	 the	 types	 of	
woody	 cells,	 their	 percentage	 and	 arrangement	 (Alén,	 2000).	 Wood	 cells	 function	 as	
mechanical	 support	 and	 are	 responsible	 for	 water	 transport	 and	 part	 of	 them	 are	
metabolically	active,	even	if	much	of	the	mass	of	xylem	consists	of	dead	cells.	Wood	cells	
consist	 of	 a	 polymeric	 matrix	 of	 carbohydrates	 and	 lignin,	 which	 are	 also	 termed	
structural	components.		
	
	

2.3.1	Structure	of	wood	
	
The	 typical	 cross‐sectional	 structure	 of	 a	 tree	 can	 be	 separated	 into	 three	 distinctive	
components.	The	outer	layer	is	the	bark,	which	consists	of	two	layers,	a	cork	or	rhytidome	
layer	 on	 the	 outside	 and	 a	 phloem	 layer	 on	 the	 inside.	 The	wood	material	 is	 called	 the	
xylem.	A	thin	layer	between	the	bark	and	the	xylem	is	called	the	cambium,	and	it	consists	
of	living	cells,	which	form	annually	new	layers	of	xylem	and	phloem.	The	xylem	portion	of	
the	tree	can	be	divided	into	two	different	wood	types.	The	outer	and	lighter	colored	wood	
is	called	sapwood.	It	consists	of	mainly	dead	cells,	although	some	living	parenchyma	cells	
exist	in	this	layer.	Sapwood	transfers	water	and	nutrients	from	the	roots	to	the	foliage	of	
the	tree,	acts	as	food	storage	and	gives	support	to	the	tree.	The	inner,	darker	portion	of	the	
xylem	is	called	the	heartwood.	It	consists	entirely	of	dead	cells,	which	act	as	a	supporting	
structure	 and	 do	 not	 take	 part	 in	 the	 transport	 of	 nutrients.	 The	 division	 between	
sapwood	 and	 heartwood	 is	 most	 plainly	 seen	 usually	 in	 coniferous	 trees	 whereas	 for	
instance	in	birch	the	outer	and	inner	wood	of	the	xylem	do	not	differ	in	color	in	any	way	
(Fagerstedt	et	al.,	2005).	
	
Softwood	cells	 are	mainly	 fibrous	and	are	 called	 tracheids.	 In	 comparison	 to	hardwood,	
tracheids	of	softwood	are	well	organized	and	evenly	distributed.	The	hardwood	structure	
is	more	complex	with	various	cell	types,	vessels	and	parenchymal	cells.	Most	of	the	cells	in	
xylem	are	dead	and	hollow,	and	 thus	 the	composition	of	wood	 tissue	consists	mainly	of	
cell	 walls	 and	 empty	 spaces	 inside	 the	 cells,	 i.e.	 the	 lumen.	 Tracheids	 and	 vessels	 are	
vertically	and	 transversally	 interconnected	with	structures	called	perforation	plates	and	
pits.	 These	 are	 small	 openings,	 which	 allow	 and	 actively	 control	 horizontal	 liquid	
transportation.	
	
There	are	four	types	of	hardwood	cells.	Supportive	fibers	are	oriented	longitudinally,	and	
comprise	approximately	55	%	of	the	xylem.	Depending	on	the	species,	their	length	is	0.4	‐
1.6	mm	 and	width	 10	 ‐	 40	 μm.	 Vessel	 elements	 are	 longitudinally	 oriented,	 water	 and	
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nutrient‐conductive	cells,	and	depending	on	the	wood	species,	they	make	up	about	30	%	
of	the	xylem,	with	lengths	that	vary	between	0.2	‐	0.6	mm	and	widths	between	10	‐	300	
μm.	There	are	two	different	types	of	parenchymal	cells,	which	are	responsible	for	storage	
of	 nutrients.	 Longitudinal	 parenchymal	 cells	 are	 oriented	 longitudinally	 as	 the	 name	
suggests,	and	ray	parenchymal	cells	are	oriented	transversally.	Depending	on	the	species,	
about	 15	%	 of	 the	 xylem	 is	made	 up	 of	 ray	 parenchymal	 cells,	 whereas	 the	 amount	 of	
longitudinal	parenchymal	 cells	 is	normally	 less	 than	5	%	(Alén,	2000;	Evert,	2006).	The	
cell	types	of	birch	are	depicted	in	figure	2.4		
	
	

Figure	2.4	
Birch	 cell	 types.	 The vessel element (A) is the main 
conducting unit in birch. End walls of vessels are partially 
hydrolysed and  bar-like (scalariform) structures are 
remaining. Thus, vessel cells form long channels for water 
transport. The structure of perforation plate vary between 
species and therefore are used for species identification. The 
most abundant cells in birch parenchyma (xylem) are the 
fibers, of which the two main elements are the libriform 
fibers (B) and tracheids (C). They provide the main support 
to the structure and do not participate in nutrient conveyance. 
Horizontally oriented ray parenchymal cells (D) are the main 
storage units. They are perpendicularly connected with the 

nutrient conducting vessels, through small holes called pits. Besides functioning as storage, rays enable tangential water 
transport. (Ilvessalo-Pfäffli, 1977) (Drawings by author, adapted from SEM images and from (Evert, 2006; Ilvessalo-
Pfäffli, 1977)).	
	
The	elementary	fibril	is	the	smallest	cellulose	strand	found	in	the	plant	cell	wall,	with	an	
average	width	of	3.5	nm.	The	fibrils	form	strands	(5	‐	30	nm	wide),	known	as	microfibrils,	
which	in	turn	form	greater	fibrils	and	lamellae.	The	lamellae	form	layers,	which	combine	
to	form	cell	walls.	Microfibrils	are	oriented	in	different	directions	in	each	wall	layer	of	the	
cell	and	are	greatly	responsible	 for	 the	mechanical	properties	of	wood.	The	structure	of	
the	cell	wall	is	illustrated	in	Figure	2.5	
	
Trees	 have	 the	 ability	 to	 alter	 the	 chemical	 composition	 and	 structure	 of	 the	 xylem	 in	
response	to	loading	forces.	The	altered	wood	is	called	reaction	wood,	and	can	be	divided	
into	 compression	 and	 tension	wood	 (Shmulsky	 and	 Jones,	 2011).	 Compression	wood	 is	
found	 in	 softwoods	 at	 the	 lower	 side	 of	 inclined	 stem	 or	 lower	 side	 of	 a	 branch	where	
constant	 compression	 is	present.	 In	 compression	wood,	 the	cells	have	 thicker	walls	 and	
are	 shorter	 than	 in	 conventional	 (non‐reaction)	 wood	 and	 are	 rich	 in	 lignin.	 The	
microfibrils	of	the	S2	layer	of	the	cells	are	oriented	at	an	angle	of	30	‐	50	degrees,	whereas	
in	conventional	wood	the	angle	is	smaller,	less	than	10	degrees.	The	upper	side	of	braches	
and	inclined	stems	or	trunks	is	exposed	to	tension	forces.	 In	such	places	hardwoods	can	
form	tension	wood.	The	xylem	of	tension	wood	has	fewer	vessels	than	conventional	wood.	
The	 cells	of	 tension	wood	also	 form	a	 loose	gelatinous	 layer	 in	 cell	wall	 to	adapt	 to	 the	
tension	forces	(Daniel	et	al.,	2006).	This	layer	consists	mainly	of	crystalline	cellulose	and	
replaces	the	S3	layer	and	partially	or	wholly	the	S2	layer	(Clair	et	al.,	2005).	The	microfibril	
orientation	 of	 this	 layer	 is	 close	 to	 zero,	 i.e.	aligned	 along	 the	 cell	 axis.	 Tension	 wood	
shows	 a	 large	 longitudinal	 shrinkage	 compared	 to	 normal	 wood	 (Shmulsky	 and	 Jones,	
2011).	
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Figure	2.5	
The	structure	of	the	wood	cell	wall	resembles	closely	the	concentric	lamellar	formation	found	in	the	osteons	of	
mature	bone.	(Illustration	by	author,	idea	adapted	and	information	acquired	from	various	textbooks)	
	
	
2.3.2	Chemical	composition	of	wood	
	
The	water	content	of	living	wood	varies	largely	depending	on	the	species,	season	and	even	
time	 of	 day,	 but	 is	 typically	 about	 40	 ‐	 50	 %.	 Dry	 wood	 is	 mostly	 composed	 of	
polysaccharides.	Cellulose	comprises	about	40	%	and	hemicellulose	about	30	‐	35	%	of	the	
dry	mass	of	birchwood.	The	proportion	of	lignin	in	birchwood	is	approximately	20	–	25	%.	
Softwood	 has	 relatively	 more	 lignin	 and	 the	 quantities	 of	 hemicellulose	 and	 lignin	 are	
more	 or	 less	 equal	 in	 softwoods.	 In	 summary,	 dry	 hardwood	 from	 temperate	 zones	 is	
95	 %	 composed	 of	 organic	 macromolecular	 substances.	 The	 remaining	 5	 %	 is	 mainly	
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extractive	materials,	proteins	and	inorganic	substances	with	silica	oxide	(SiO2)	as	the	most	
abundant	inorganic	substance.		
	
Cellulose,	the	main	component	of	xylem,	consists	of	linked	D‐glucose	units.	The	chemical	
formula	of	cellulose	 is	(C6H10O5)n	where	n	can	vary	from	several	hundreds	to	more	than	
ten	thousand.	A	scheme	of	cellulose	composition	is	given	in	Figure	2.6.		
	
Whereas	 cellulose	 is	 comprised	 solely	 of	 glucose,	 hemicellulose	 is	 derived	 from	 several	
sugars	 including	 glucose,	 xylose,	 mannose,	 galactose,	 rhamnose	 and	 arabinose.	 The	
random,	 branched	 and	 amorphous	 structure	 of	 hemicellulose	 is	 composed	 of	 chains	 of	
approximately	 200	 monosaccharide	 units.	 Hemicellulose	 is	 structurally	 weaker	 than	
cellulose	and	more	susceptible	to	hydrolysis.	The	third	main	component	of	xylem	is	lignin,		
a	hydrophobic	aromatic	macromolecule	with	a	molecular	weight	greater	than	10000	Da.	
The	lignin	structure	is	cross‐linked,	racemic	and	heterogenic	by	nature	and	an	example	is	
shown	in	Figure	2.7.		
	

	
	
Figure	2.6		
Cellulose	is	comprised	of	linked	D‐glucose	units.	
	
	
	

Figure	2.7	
An	example	of	a	lignin	molecule	(Crawford,	1981).	
Lignin	 is	 highly	 heterogenous	 and	 cross‐linked,	
which	 is	 depicted	 in	 this	 illustration	 by	 covalent	
bonds	between	lignin	entities.	

2.3.3	Heat	treatment	
	
Wood	can	be	modified	with	various	treatments	to	endure	the	elements	and	high‐pressure	
preservation	 with	 toxic	 chemicals	 is	 one	 of	 the	 most	 commonly	 used	 treatments.	
Historically,	man	has	used	heat	treatment	to	this	end.	People	have	burnt	the	tips	of	fence	
stakes	to	prevent	them	rotting	in	the	soil.	Modern	wood	industry	has	also	been	interested	
in	 the	 non‐toxic	 preservation	 of	 wood.	 In	 Finland,	 a	 treatment	 technique	 has	 been	
developed	where	wood	is	heated	in	the	presence	of	water	vapor	to	prevent	ignition.	This	
changes	the	color	of	the	wood,	lessens	the	equilibrium	moisture	content	and	enhances	the	
biological	 durability	 (Viitaniemi	 and	 Jämsä,	 1996;	Viitaniemi	 et	 al.,	 2001/02).	A	 scheme	
illustrating	the	basics	of	the	heat	treatment	procedure	is	given	in	figure	2.8.	The	effects	of	
the	heat	treatment	depend	on	the	temperature	and	treatment	time.	
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2.3.4	Effects	of	heat	treatment	on	wood	composition	
	
When	wood	is	heated,	a	continuum	of	chemical	transformations	takes	place.	At	treatment	
temperatures	of	0C	to	100°C,	wood	dries	as	the	absorbed	water	evaporates.	From	100°C	
to	150°C,	 the	chemical	composition	of	wood	starts	to	disintegrate	as	the	polymer	chains	
start	to	break	up	by	hydrolysis.	At	temperatures	exceeding	150°C	and	up	to	200°C,	a	series	
of	chemical	reactions	exponentially	speed	up	the	degradation	process	of	the	carbohydrate	
polymers	 cellulose	 and	 hemicellulose.	 At	 these	 treatment	 temperatures,	 some	 gaseous	
components	are	also	 formed	and	released	and	some	 lignin	modifications	starts	 to	occur	
(Windeisen	et	al.,	2009).	At	200°C	to	290°C,	 the	degradation	of	carbohydrates	continues	
together	with	 an	 increasing	 degradation	 rate	 of	 lignin.	 At	 290°C,	wood	 finally	 starts	 to	
pyrolyze,	 where	 carbon‐containing	 organic	 compounds	 are	 degraded,	 the	 end	 product	
being	pure	carbon	(carbonization).	(Pecina	and	Paprzycki,	1988)	

	
Figure	2.8	
A	schematic	illustration	depicting	the	heat	treatment	procedure	that	is	used	in	the	present	study.	Illustration	by	
the	author,	information	gathered	from	Viitaniemi	and	Jämsä,	1996.	
	
The	presence	of	water	 vapor	 at	high	 temperatures	 leads	 to	 the	 formation	of	 acetic	 acid	
(CH3COOH)	 from	 the	 acyl	 (aceto)	 groups	 (CH3CO–)	 of	 hemicellulose.	 The	 acetic	 acid	
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depolymerizes	 the	 microfibrils	 of	 cellulose	 of	 the	 amorphous	 region.	 Degradation	 of	
cellulose	 and	 hemicellulose	 occurs	 when	 the	 acid	 hydrolyses	 the	 bonds	 connecting	 the	
glucose	units	(Hillis,	1975;	Mitchell,	1988).	Depolymerization	is	a	catalytic	reaction,	where	
acetic	 acid	 functions	 as	 the	main	 catalyst	 (Kollman	 and	 Fengel,	 1965;	 Tjeerdsma	 et	 al.,	
1998).	Smaller	 fragments	of	polymer	chains	as	well	as	soluble	monosaccharides	such	as	
glucose	 and	 xylose	 are	 created.	 Cross‐linking	 of	 polymer	 fragments	 alter	 the	 overall	
composition	 of	 the	 cellular	 walls.	 Some	 of	 the	 created	 compounds	 such	 as	 quinones,	
contain	double	bonds	and	are	somewhat	chromoforic	and	therefore	they	change	the	color	
of	 the	 wood	 (Hillis,	 1975;	 Tjeerdsma	 et	 al.,	 1998).	 Since	 the	 formation	 of	 chromoforic	
compounds	 is	 an	 indication	 of	 the	 degradation	 process,	 the	 overall	 color	 of	 the	 treated	
wood	serves	as	an	indirect	indicator	of	the	extent	of	the	process.	The	exponential	increase	
in	the	heat	treatment	reaction	at	temperatures	above	150°C	is	witnessed	as	a	darkening	of	
the	 wood	 color.	 Evidence	 of	 cellulose	 crystallization	 has	 been	 reported	 at	 treatment	
temperatures	 of	 120C	 to	 160	 °C,	 but	 this	 seems	 to	 diminish	 again	 at	 higher	 treatment	
temperatures	(Andersson	et	al.,	2005;	Roffael	and	Schaller,	1971).		
	
The	 temperature	 in	 the	 treated	wood	 specimen	 is	 not	 uniform	 throughout	 the	 process.	
Increased	 core	 temperatures	 can	 be	 expected	 above	 150C	 due	 to	 the	 onset	 of	
thermogenic	 chemical	 reactions.	 After	 this,	 the	 core	 temperature	 equilibrates	 with	 the	
surface	 temperature,	 resulting	 in	 a	 uniform	 temperature	distribution	within	 the	 sample	
(Poncsak	et	al.,	2006).	The	introduction	of	water	vapor	into	the	treatment	chamber	has	an	
equalizing	effect	on	the	temperature	distribution.	
	
As	wood	dries	during	the	heat	treatment	process,	the	cell	walls	shrink.	This	shrinkage	is	
different	 in	each	wall	 layer	resulting	 in	small	cracks	and	tears	especially	between	the	S1	
and	S2	layers	(Boutelje,	1962).	The	bonding	forces	between	the	S1	and	S2	layers	diminish	
in	 birch	 at	 temperatures	of	 120°C	 to	160°C	 (Fillo	 and	Peres,	 1970).	 In	 SEM	 studies,	 the	
changes	 in	the	S1	and	S2	 layers	have	been	reported	to	result	 in	breakage	of	 the	cell	wall	
into	small	strips	and	lamellae	(Viitaniemi	and	Jämsä,	1996).	It	was	notable	in	these	studies	
that	 the	heat	 treatment	had	 little	effect	on	 the	S3	or	 the	middle	 layer	and	 the	 tangential	
pores	were	also	unaltered.	
	
Heat	treatment	also	reduces	the	amount	of	hydroxyl	(–OH)	groups	in	the	treated	material,	
which	results	in	a	smaller	equilibrium	moisture	content	and	smaller	dimensional	changes,	
i.e.	swelling,	in	an	aqueous	environment	(Kollman	and	Schneider,	1963).	The	contact	angle	
measurement	characterizes	the	hydrophobicity	of	a	surface.	The	larger	the	contact	angle,	
the	more	hydrophobic	is	the	surface.	Untreated	wood	has	a	contact	angle	of	less	than	90°	
implying	 a	 strong	 reaction	 between	 water	 and	 the	 hydroxyl	 groups.	 Heat	 treatment	
increases	 the	 contact	 angle	 up	 to	 temperatures	 of	 190°C.	 Interestingly,	 at	 higher	
temperatures,	the	formation	of	other	hydrophilic	substances	begin	to	reduce	the	contact	
angle	 (Pecina	 and	 Paprzycki,	 1988).	 There	 is	 evidence	 that	 the	 contact	 angle	 evolution	
during	heat	treatment	is	not	in	direct	relation	with	the	weight	loss	of	the	wood,	indicating	
that	 the	 change	 of	 wettability	 is	 not	 altogether	 due	 to	 the	 decomposition	 of	 main	
composites	 of	 cellulose	 and	 hemicellulose.	 Especially	 in	 lower	 treatment	 temperatures	
(160C	 to	 190)	 the	 significant	 increase	 in	 wood	 hydrophobicity	 may	 be	 due	 to	 the	
conformational	modifications	of	 the	polysaccharide	and	glycosidic	 components	 (Hakkou	
et	al.,	2005).	
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2.3.5	Analogy	between	wood,	synthetic	composites	and	bone	
	
The	similarity	of	the	structures	of	wood	and	bone	is	by	no	means	a	new	observation.	The	
pioneer	 of	 microscopy,	 Antonie	 van	 Leeuwenhoek	 (1632‐1723),	 described	 the	 analogy	
between	 osteoid	 bone	 structure	 and	 the	 fiber	 structure	 of	 wood	 tissue	 (van	
Leeuwenhoeck,	1693).	The	analogy	of	bone	and	wood	may	be	described	as	macroscopic,	
microscopic	and	mechanical.		
	
Bone,	 wood	 and	 fiber‐reinforced	 composite	 materials	 share	 similar	 biomechanical	
properties.	All	yield	stronger	biomechanical	performance	than	the	solids	from	which	they	
are	 made	 and	 all	 have	 an	 anisotropic	 structure	 (Gibson,	 2005).	 Biomechanically	 and	
structurally,	wood	can	be	considered	an	intermediate	between	bone	tissue	and	synthetic	
FRCs.	The	mechanical	properties	of	wood	and	FRCs	may	be	modified.	Although	the	fiber	
structure	 of	 wood	 consists	 of	 hollow	 fiber	 cells,	 while	 FRCs	 have	 thin,	 basically	 2‐
dimensional	 fibers	 embedded	 in	 surrounding	 matrix,	 the	 wireframe	 models	 of	 the	
biomechanical	properties	of	wood	and	FRC	materials	are	similar.	Table	2.5	presents	some	
of	the	similarities	between	wood,	bonez	and	FRC	materials.	
	
	
	
Table	2.5	
Some	of	the	factors	linking	wood,	bone	and	FRCs	in	terms	of	composition	and	structure.	
	

Wood 

Cellulose fibers in a matrix of hemicellulose and lignin

Anisotropic bulk material

Specialized liquid conveyance system with interconnected channels

Biomechanical properties can be modified by choosing the wood species, and with heat treatment 

Bone 

Organic material (cells) embedded in an extracellular matrix

Anisotropic bulk material

Haversian and Volkmann’s channels for liquid transportation

Variable biomechanical properties

  Variable fibers embedded in various matrices, depending on the desired properties

FRC  Anisotropic material, possibility for bulk applications

  Porosity can be obtained with manufacturing techniques

  Biomechanical properties can be modified by choosing the materials and manufacturing technique  
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2.3.6	Wood	as	a	biomimetic	model	material	
	
Biomimetics	 and	 bioinspiration	 are	 considered	 important	 tools	 in	 the	 development	 of	
novel	biomaterials.	This	means	the	design	and	synthesis	of	novel	materials	using	nature‐
derived	 materials	 as	 a	 model	 or	 a	 template	 to	 achieve	 optimized	 interactions	 with	
biological	 tissues	 and	 the	 environment	 (Roveri	 and	 Iafisco,	 2010).	 Biomimetic	material	
design	 is	 a	multilevel	 endeavor.	The	 levels	 of	 interest	 from	small	 to	 large	 scale	 include:	
chemical	 composition,	 nanoscale	 structure,	 structural	 organization,	 morphology	 and	
surface	 and	mechanical	 properties.	 There	 are	 two	different	 approaches	 to	 biomimetics:	
Directly	 copying	 the	desired	 structure	 (biotemplating)	 or	 by	 copying	 and	 learning	 from	
the	 design	principles	 of	 natural	materials	 for	 the	 benefit	 of	 designing	 novel	 bioinspired	
materials	(Paris	et	al.,	2010).		
	
The	Max	Planck	institute	of	Colloids	and	Interfaces	has	a	program	studying	biomimetics,	
with	 one	 of	 the	 study	 programs	 concentrating	 in	 the	 observation	 on	 the	 similarities	
between	wood	and	bone	(Max	Planck	Institute,	2010).	The	study	program	overview	states	
three	 potential	 goals	 for	 the	 research	 of	 natural	 materials:	 1.	 Design	 concepts	 for	 new	
materials	 may	 be	 improved	 by	 learning	 from	 nature.	 2.	 The	 understanding	 of	 basic	
mechanisms	by	which	the	structure	of	bone	or	connective	tissue	is	optimized	can	lead	to	
new	concepts	 in	 studying	diseases	and	 treatment	 strategies.	3.	Nature	grown	structures	
can	be	transformed	into	technically	relevant	materials.	(Max	Planck	Institute,	2010)	
	
The	 similarity	 between	wood	 and	 bone	 can	 be	 considered	 through	 hierarchical	 system,	
from	nanoscale	to	a	macroscopic	unit	(Fratzl,	2004).		The	hierarchy	of	bone	structure	can	
be	roughly	described	as:	1.	Molecular	components	(HA,	water	etc.)	and	biological	crystal	
structures;	 2.	 Collagen	 fibrils,	 and	 their	 intrinsic	 organization	 (bundles,	 arrays,	 parallel	
structures	 and	 plywood‐like	 arrangements	 and	 concentric	 lamellae);	 3.	 Osteons,	
Haversian	 and	 Volkmann’s	 channels	 and	 the	 structure	 of	 trabecular	 bone	 and	 4.	
macroscopic	bone	(e.g.	femur,	tibia,	etc.).	Wood	resembles	bone	on	the	second,	third	and	
partly	 on	 the	 fourth	 level.	 Both	 wood	 and	 bone	 result	 from	 natural	 evolution,	 and	 the	
hierarchical	organization	of	collagen	fibers	and	the	structure	of	wood	cells	are	similar.	The	
similarity	 of	 intrinsic	 organizations	 leads	 to	 similar	 properties,	 for	 instance	 anisotropy	
and	 other	 biomechanical	 attributes	 as	 well	 as	 liquid	 conveyance	 systems.	 These	
properties	can	 lead	to	similar	biological	responses	 including	the	ability	to	relay	external	
forces	 for	 the	 benefit	 of	 remodelling	 processes,	 and	 conformity	 to	mechanical	 strain	 to	
minimize	shielding	under	stress.		
	
Macroscopically,	a	bone	and	a	tree	have	little	in	common,	however	they	still	have	similar	
properties	at	the	highest	level	of	hierarchy,	because	of	the	similarity	in	function	(namely	
support	 and	 nutrient	 conveyance).	 Examples	 of	 the	 functional	 similarities	 include	 the	
ability	 to	change	 inner	structure	 to	conform	to	changing	external	 forces	(remodelling	 in	
bone	and	reaction	wood	in	trees),	the	localization	of	the	cell	formation	(cambium	layer	in	
both	bone	and	trees)	and	the	constant	formation	of	new	substance.	In	the	case	of	the	last	
example,	it	has	to	be	noted	that	bone	is	in	dynamic	equilibrium,	as	bone	mass	is	constantly	
being	lost	by	osteoclast	activity	and	gained	by	osteoblast	activity,	whereas	in	the	tree	the	
“excess”	wood	dies	and	remains	as	a	supporting	structure	in	the	heartwood	or	inner	wood	
of	the	tree,	thus	increasing	the	trees	mass	constantly				
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Fundamental	knowledge	of	nature’s	solutions	to	a	similar	structure‐function	demand	may	
be	transferable	to	technical	applications.	It	is	notable	though,	that	this	biomimetic	bottom‐
up	 approach	 does	 not	 mean,	 that	 the	 end	 product	 will	 have	 to	 resemble	 the	 nature’s	
source	of	inspiration	(Paris	et	al.,	2010).	
	
As	a	model	material	 for	bone	 substitutes,	wood	 is	 versatile.	By	choosing	different	wood	
species,	 such	 properties	 as	 porosity,	 morphology,	 hierarchical	 composition	 and	
biomechanical	 attributes	 can	 be	 varied.	 The	 heat	 treatment	 used	 in	 this	 thesis	 further	
expands	 the	 possibilities,	 as	 the	 effects	 of	 different	 physico‐chemical	 alterations	 can	 be	
studied	within	 the	 same	wood	 species,	which	 enables	 the	 direct	 study	 of	 the	 impact	 of	
chemical	and	physical	variables	that	affect	for	instance	osteoconductivity.		
	

2.3.7	Wood	as	a	model	material	for	mechanical	testing	
	
Wood	 is	 widely	 used	 as	 a	 model	 material	 for	 the	 mechanical	 testing	 of	 orthopedic	
implants	 (Murdoch	 et	 al.,	 2004).	 Beech	 and	 other	 hardwood	 species	 have	 been	 used	 to	
optimize	 the	configuration	of	acetabular	 fixation	with	cement	keyholes	and	 for	studying	
the	factors	that	influence	the	acetabular	cup	fixation	in	total	hip	replacements	(Mburu	et	
al.,	 1999;	 Oh,	 1983;	 Oh	 et	 al.,	 1984).	 Although	 beech	 wood	 has	 a	 similar	 modulus	 for	
tension,(12.6	GPa),	compared	with	cortical	bone	(15.2	GPa),	the	compression	moduli	are	
different	(2.6	GPa	for	wood	and	27.0	GPa	for	cortical	bone)	to	use	beech	wood	as	a	model	
material	in	all	situations	(Murdoch	et	al.,	2004).	No	reference	to	heat‐treated	wood	being	
used	 as	 a	 model	 material	 for	 mechanical	 testing	 was	 uncovered	 by	 the	 author	 in	 the	
literature.			
	

2.3.8	Wood	as	a	medical	biomaterial	
	
Cellulose,	the	main	ingredient	of	wood	xylem,	has	been	studied	and	used	as	a	soft	tissue	
biomaterial,	 to	 enhance	 wound	 healing,	 and	 as	 a	 tissue	 engineering	 scaffold	 (Hoenich,	
2006;	Solway	et	al.,	2010).	The	biocompatibility	of	cellulose	sponges	with	bone	tissue	has	
been	 reported.	 In	 an	 in	vivo	study	with	 rats,	 cellulose	 sponges	were	 implanted	 into	 the	
bone	marrow	after	curettage	of	 the	 femoral	cavities.	 It	was	found	that	cellulose	sponges	
were	biocompatible,	allowing	osseous	ingrowth	into	the	sponge	matrix,	but	the	presence	
of	the	cellulose	material	slowed	down	bone	formation	from	2	weeks	to	4	weeks	(Martson	
et	 al.,	 1998).	 In	 spite	 of	 the	 reduced	 speed	 of	 bone	 formation,	 it	 was	 concluded	 that	
cellulose	sponges	could	be	used	as	a	scaffold	material	in	bone	tissue	engineering	(Martson	
et	al.,	1998).	
	
Very	few	in	vivo	studies	have	used	wood	as	a	bone	substitute	material.	In	one	of	the	initial	
studies,	 transcortical	 tibia	 implants	 were	 made	 from	 birch	 and	 ash	 wood.	 The	 wood	
materials	 were	 pre‐treated	with	 ethanol	 to	 extract	 the	 exudates	 of	 wood.	With	 control	
times	of	3,	5,	14	and	32	weeks,	 it	was	found	that	 in	spite	of	a	 foreign	body	reaction,	 the	
bone	grew	into	the	pores	of	the	wood	that	were	300	μm	in	size.	It	was	concluded	that	both	
wood	 species	were	 suitable	 for	 implantation	 into	 bone	 tissue	 (Kristen	 et	 al.,	 1977).	 To	
further	 study	 the	 effect	 of	 the	 ethanol	 treatment,	 the	 same	 material	 was	 used	 for	 soft	
tissue	 implantation.	 In	vivo	 studies	 using	 rabbits	 with	 control	 times	 of	 2,	 6,	 12	 and	 30	
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weeks	concluded	that	the	ethanol	extraction	was	not	sufficient	as	a	pre‐treatment	method	
to	prevent	a	foreign	body	reaction	(Bösch	et	al.,	1979).	However,	alcohol	pre‐treated	ash	
wood	was	 used	 successfully	 to	 study	 intracalcaneal	 implantation.	 Cylindrical	 specimens	
were	 implanted	 into	 the	dorsal	part	of	 the	calcaneus	of	 rabbits,	 the	Achilles	 tendon	was	
initially	severed	and	then	reinserted	into	the	projecting	part	of	the	implant.	The	animals	
were	 allowed	 to	 load	 freely	 post‐operatively	 and	 the	 implants	 were	 removed	 and	
examined	at	5	and	14	weeks.	At	the	site	of	tendon	implantation,	soft	tissue	grew	into	the	
pores	 of	 the	wood,	with	 occasional	 differentiated	 cartilage	 tissue	 evident.	 The	 implants	
had	remained	firmly	in	the	bone.	Direct	bone	contact	and	bone	ingrowth	into	the	pores	of	
the	wood	was	reported.	In	conclusion,	ash	wood	was	identified	to	be	a	feasible	solution	for	
isoelastic	 bone	 substitution,	 with	 good	 tolerance	 to	 post‐operative	 loading	 evident	
(Kristen	 et	 al.,	 1979).	 A	 different	 pre‐treatment	 method	 was	 used	 when	 wood	 from	
Clematis	alba	was	 carbonized	at	850°C	 for	5	hours	 for	 an	 in	vivo	 study	 in	 rabbits.	 Small	
carbonized	 wood	 implants	 were	 incorporated	 into	 the	 host	 bone	 tissue,	 with	 bone	
growing	 into	 the	 pores	 of	 the	material	 (Colville	 et	 al.,	 1979).	 The	 study	 concluded	 that	
carbonized	wood	could	work	as	matrix	for	bone	generation,	but	the	complete	loss	of	the	
mechanical	properties	of	the	wood	was	seen	as	a	contraindication	of	the	pre‐treatment.		
	
The	 biological	 responses	 of	 bone	 to	 different	 wood	 species	 were	 evaluated	 when	
untreated	ash,	fir,	birch,	willow	and	lime	wood	were	used	in	an	in	vivo	study	using	rabbits.	
Implants	(20	x	3	mm)	made	from	the	aforementioned	wood	species	were	used	for	fracture	
fixation	 in	 the	 femur.	 Fir,	 birch	 and	 ash	 were	 well	 tolerated,	 while	 lime	 and	 willow	
produced	acute	inflammatory	reactions	and	were	rejected	by	the	bone	tissue	(Horsky	et	
al.,	 1987).	 The	 reason	 for	 the	 different	 biological	 responses	 was	 believed	 to	 lie	 in	 the	
different	 soluble	 components	 of	 the	 woods,	 some	 resulting	 in	 poor	 integration.	 In	
untreated	wood,	there	may	also	be	additional	components	that	individually	produce	acute	
inflammatory	 responses,	 for	 example	 fungi	 (Meyer	 and	 Hood,	 1977).	 In	 the	 search	 of	
isoelastic	biomaterials,	bamboo	has	also	been	studied	as	an	implant	material.	Bamboo	is	a	
woody	plant	of	the	grass	family,	with	elastic	properties.	In	an	in	vivo	study	it	was	used	as	
an	intramedullary	rod	in	the	tibia	of	rabbits	with	follow‐up	until	6	months.	The	implanted	
carbonized	bamboo	had	good	bone	contact	and	bone	penetrated	into	the	larger	pores	of	
material	(Kosuwon	et	al.,	1994).	
	
A	 comprehensive	 study	 of	 the	 use	 of	 juniper	 wood	 (Juniperus	communis)	 as	 a	 possible	
implant	 material	 has	 been	 published	 (Gross	 and	 Ezerietis,	 2003).	 Five	 hip	 prostheses	
made	 from	 juniper	wood,	 pre‐treated	with	 immersion	 in	 boiling	water	 for	 10	minutes,	
were	placed	in	the	proximal	femur	of	rabbits	after	total	removal	of	the	femoral	head.	The	
bone	surrounding	these	hemiarthroplasties	was	evaluated	at	3,	6,	18	and	36	months.	At	3	
months,	connective	tissue	capsules	surrounded	the	implants,	with	no	signs	of	foreign	body	
reactions.	At	6	months,	the	surrounding	bone	tissue	had	grown	in	contact	with	the	implant	
material	with	some	penetration	into	the	outer	tracheids	of	the	wood	and	connective	tissue	
still	abundantly	present.	At	1.5	years,	the	bone	was	in	tight	contact	with	the	wood	and	the	
wood	cells	close	to	the	 interface	had	been	slightly	compressed	as	a	result	of	mechanical	
forces.	 Three	 years	 after	 implantation,	 the	 implants	 were	 fully	 functional,	 with	 bone	
ingrowth	observed	with	secondary	Haversian	bone	formation	adjacent	to	the	implant.	The	
oils	of	juniper	wood	were	also	studied	for	toxicity	in	rats.	The	authors	concluded	that	rats	
tolerated	the	extracts	of	juniper	wood,	especially	when	slowly	administered,	as	would	be	
the	case	in	an	implanted	wood	(Gross	and	Ezerietis,	2003).		
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The	 intricate	 structure	 of	 wood	 has	 inspired	 studies	 on	 its	 applicability	 as	 a	 possible	
scaffold	material.	One	innovative	method	included	the	pyrolysis	of	wood	to	form	a	carbon	
matrix	(Singh,	2000),	which	 is	 infiltrated	with	molten	silicon	and	reacts	with	the	carbon	
template	 to	 form	 silicon	 carbide	 (SiC).	 The	 final	 product,	 called	 ecoceramic,	 is	 a	
biomorphic	material	 that	 “mimics	 the	 fibrous	microstructure	of	 the	wood	 that	has	been	
perfected	by	natural	evolution”	(González	et	al.,	2003).	Ecoceramic	coated	with	bioactive	
glass	 has	 been	manufactured	 from	 beech	wood.	 During	 the	 pyrolysis	 pretreatment,	 the	
wood	material	lost	approximately	60	%	of	its	volume	and	75	%	of	its	weight.	A	bioactive	
glass	 coating	was	achieved	with	pulsed	 laser	deposition.	The	material	 showed	bioactive	
properties	by	obtaining	a	dense	apatite	layer	during	immersion	in	simulated	body	fluid.	In	
biomechanical	 testing,	 it	 was	 concluded	 that	 the	 SiC	 ceramic	 had	 higher	 strength	 than	
titanium	alloy	while	having	 less	 than	40	%	of	 its	density.	 It	was	also	concluded	that	 the	
biomechanical	requirements	of	the	material	could	be	tailored	by	choosing	an	appropriate	
wood	precursor	 (González	 et	 al.,	 2003).	The	 elastic	modulus	 values	 that	 are	possible	 to	
obtain	by	this	method	were	not,	however	reported	by	the	authors.	An	in	vitro	study	on	the	
behavior	of	MG‐63	osteoblast‐like	 cells	has	also	been	 conducted	on	 the	 aforementioned	
material.	 The	 authors	 concluded	 that	 coated	 SiC	 ceramic	 showed	 similar	 biological	
response	than	Ti6A14V	and	bulk	bioactive	glass	used	as	reference	materials	(de	Carlos	et	
al.,	2006).		
	
Further	study	using	wood	as	a	scaffold	for	bone	substitution	got	the	attention	of	the	media	
even	outside	of	the	academic	community.	The	aptly	named	article	“From	wood	to	bone:	a	
multi‐step	 process	 to	 convert	 wood	 hierarchical	 structures	 into	 biomimetic	
hydroxyapatite	 scaffolds	 for	 bone	 tissue	 engineering”	 describes	 the	 manufacturing	
process	 of	 a	 bulk	 bone	 substitute	 (Tampieri	 et	 al.,	 2009).	 Pine	 and	 rattan	 wood	 were	
chosen	for	the	process	for	their	overall	porosity	(70	%	and	85	%,	respectively).	The	multi‐
step	 process	 consisted	 of	 pyrolysis,	 carburization,	 oxidation,	 carbonization	 and	
phosphatization.	At	the	end,	a	material	consisting	purely	of	hydroxylapatite	(HA)	with	the	
hierarchical	 channel	 structure	 of	 the	 bone	 was	 achieved.	 A	 Fourier	 transform	 infrared	
spectroscopy	analysis	suggested	that	the	constitution	of	the	HA	of	the	material	was	similar	
to	 that	 of	 natural	 HA	 of	 human	 bone.	 Preliminary	 biomechanical	 tests	 showed	
compression	 values	 of	 2.5	 ‐	 4.0	 MPa	 parallel	 and	 0.5	 –	 1.0	 MPa	 perpendicular	 to	 the	
channels.	 It	 was	 concluded	 that	 these	 values	 were	 close	 to	 those	 of	 an	 isotropic	 bone	
scaffold	material	 (Engipore®	with	 a	 compression	 value	 of	 3.5	MPa	 in	 all	 directions)	 and	
cancellous	 bone,	 but	 are	 far	 too	 weak	 for	 cortical	 bone.	 Preliminary	 in	 vivo	 tests	 are	
ongoing,	using	sheep	as	test	animals,	but	the	results	have	yet	to	be	published	in	scientific	
literature.	
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3.	AIMS	OF	THE	PRESENT	STUDY	
	
The	 concept	 of	 using	 heat‐treated	 wood	 as	 a	 model	 material	 to	 promote	 biomaterials	
research	 in	 the	 field	 of	 fiber‐reinforced	 composites	 was	 considered.	 It	 included	 an	
investigation	of	wood	as	a	biomaterial,	 and	 the	effects	of	heat	 treatment	on	 the	various	
biologically	 relevant	 properties	 of	 wood.	 As	 wood	 shares	 structural	 and	 biomechanical	
similarities	with	both	bone	and	synthetic	fiber‐reinforced	composites,	knowledge	of	wood	
biocompatibility	may	yield	further	information	for	the	development	of	tailored	synthetic	
biomaterials.	By	changing	the	composition	of	wood	with	heat	treatment,	the	determinants	
affecting	the	biocompatibility	can	be	investigated.	The	biologically	relevant	properties	of	
wood	 can	 also	 be	 used	 as	 bioinspiration	 for	 biomaterials	 research.	 To	 investigate	 the	
hypothesis	 of	 heat‐treated	 wood	 as	 a	 model	 material	 for	 biomaterials	 research,	 the	
following	practical	objectives	were	chosen:		
	
	

1. To	 investigate	 the	 biological	 responses	 of	 host	 environment	 to	 implanted	
untreated	and	heat‐treated	wood	and	to	assess	the	overall	applicability	of	wood	
as	a	model	material	in	in	vivo	experiments.	
	

2. To	 evaluate	 the	 effect	 of	 heat	 treatment	 on	 the	 possible	 osteoconductivity	 of	
wood	in	vivo		
	

3. To	characterize	relevant	biomechanical	properties	of	untreated	and	heat‐treated	
birch	wood	in	both	dry	and	aqueous	environment.	
	

4. To	 study	 the	 effect	 of	 heat	 treatment	 on	 sorption	 and	 dimensional	 stability	 of	
birch	wood	in	simulated	body	fluid	
	

5. To	 illustrate	 the	 hierarchically	 structured	 anatomy	 of	 wood	 and	 to	 study	 the	
effect	of	heat	treatment	on	the	quality	of	the	wood	surface.	
	

6. To	evaluate	the	effect	of	heat	treatment	of	wood	on	wettability	and	penetration	of	
simulated	and	human	blood	
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4.	MATERIALS	AND	METHODS	

4.1	Wood	
	
A	 single	 source	 of	wood	material	was	 used	 for	 all	 of	 the	 studies	 of	 this	 thesis	 (I‐IV).	 A	
European	white	birch	tree	(Betula	pubescens	Ehrh.)	was	cut	from	a	forest	in	southwestern	
Finland	 (Hynynen	 et	 al.,	 2010).	 Blocks	 of	 approximately	 30	 x	 10	 x	 5cm	 of	 size	 were	
manufactured	from	the	outer	part	of	the	tree.	Some	of	the	wood	blocks	were	heat‐treated	
for	 2	 hours	 at	 220C,	 200C	 or	 140C,	 using	 a	method	 described	 on	 page	 32	 and	 some	
were	 left	 untreated.	 The	 heat	 treatment	 was	 performed	 at	 the	 Helsinki	 University	 of	
Technology	in	Otaniemi,	Espoo.	These	wood	blocks	were	used	as	the	source	material	for	
all	of	the	implants	and	test	specimens	used	in	this	thesis.	

4.2	Animal	experiments	(I	and	II)	
	
New	Zealand	white	female	rabbits	were	used	as	test	animals	in	the	animal	experiments	(I‐
II).	The	study	protocol	for	the	animal	experiments	was	approved	by	the	Ethical	Committee	
of	 the	 State	 Provincial	 Office	 of	 Western	 Finland	 (Permissions	 No.	 954/1999	 and	
1345/2003).	
	
Cone‐shaped	implants	(7	mm	length	and	4	mm	diameter)	were	handcrafted	using	a	lathe	
from	 untreated	wood	 and	wood	 heat‐treated	 at	 220C	 for	 study	 I,	 and	 from	 untreated	
wood	and	wood	heat‐treated	at	140C	and	200C	for	study	II.	One	or	two	implants	were	
placed	in	each	animal	 .In	study	I,	a	total	number	of	31	implants	(19	implants	with	wood	
heat‐treated	at	220C	and	12	untreated	wood	implants)	were	implanted	into	18	rabbits.	In	
study	II,	a	total	number	of	62	implants	(27	wood	heat‐	treated	at	200C,	20	heat‐treated	at	
140C	and	15	untreated	wood)	were	implanted	into	50	rabbits.	
	
Prior	to	implantation,	the	implants	were	sterilized	by	dipping	them	into	70‐vol	%	ethanol	
(Ethanol	anhydricum,	Primalco,	Helsinki,	Finland)	for	2‐5	minutes,	and	then	rinsing	with	
sterile	deionized	water	(milli‐Q,	Millipore).	Even	if	in	practice	heat	treatment	sterilizes	the	
wood,	 all	 of	 the	 implants	were	 subjected	 to	 the	 same	 sterilization	 process	 to	 prevent	 a	
methodological	bias.	
	

4.2.1	Operational	procedure	
	
The	 operational	 procedure	 was	 identical	 for	 studies	 I	 and	 II.	 The	 operations	 were	
performed	 in	 an	 operating	 room	 in	 a	 laboratory	 animal	 unit	 under	 surgical	 sterility	
protocols.	 General	 anesthesia	 was	 employed.	 Intramuscular	 injections	 of	 midazolam	
(Dormicum®,	Hoffman	La	Roche,	Germany)	were	first	used	to	sedate	the	animals.	General	
anesthesia	 with	 spontaneous	 breathing	 was	 achieved	 with	 intramuscular	 injections	 of	
ketamine	 (Ketalar®,	 Pfizer,	 USA)	 and	 medetomidine	 hydrochloride	 (Domitor®,	 Orion,	
Finland).		
	
A	medial	 incision	was	made	proximally	of	 the	knee,	 followed	by	blunt	 dissection	of	 the	
fascia	and	periosteum.	Hemostasis	was	achieved	by	compression	and	with	ligation	when	
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necessary.	 A	 cone‐shaped	 drill	 was	 used	 to	 make	 anterior	 and	 medial	 holes	 into	 the	
trabecular	bone	of	the	distal	femur	(Figure	4.1).	Sterile	physiological	saline	solution	was	
used	as	coolant	to	prevent	thermal	necrosis.	The	implants	were	fitted	into	the	holes	using	
an	orthopaedic	press‐fit	technique.	When	only	one	implantation	was	used	only	an	anterior	
hole	 was	 made.	 After	 the	 implantation,	 the	 incision	 was	 closed	 in	 layers.	 After	 the	
operation,	the	animals	were	placed	back	into	their	boxes,	where	they	could	move	freely.	
Pain	medication	(buprenorphine)	was	administered	for	3	days	post‐operatively.	
	

Figure	4.1	
Illustration	depicting	the	operative	procedure	
(I)	
A	 defect	 is	made	with	 a	 cone	 shaped	 drill	
into	 the	 anterior	 intercondylar	 region	 (1)	
of	 the	 distal	 portion	 of	 rabbit	 femur	 (A).	
This	 implantation	 site	 is	 through	 the	
hyaline	cartilage	of	the	knee	(B).	The	other	
implantation	 site	 is	 in	 the	medial	 condyle	
(2).	

	

	

	

	

	
	

4.2.2	Macroscopic	evaluation	
	
After	the	operation,	the	animals	were	observed	for	systemic	and	local	adverse	reactions.	
For	studies	I	and	II,	the	animals	were	sacrificed	following	implantation	with	an	overdose	
of	 pentobarbital	 (Mebumat®,	 Orion,	 Finland)	 at	 4,	 8	 or	 20	 weeks	 .	 The	 femurs	 were	
dissected	clean	of	 soft	 tissue,	while	observing	any	relevant	 reactions	 in	 the	 tissues	near	
the	implantation	site.	Some	of	the	femurs	were	photographed	for	illustrative	purposes.		

4.2.3	Microscopic	evaluation	
	
The	 implantation	 sites	 were	 cut	 out	 of	 the	 femurs	 with	 a	 margin	 and	 histological	
sections	 were	 prepared	 using	 a	method	 for	 hard	 tissue	 (Donath	 and	 Breuner,	 1982).	
After	 the	 extraction,	 the	 specimens	were	 fixed	 in	 formalin	 for	minimum	 of	 48	 hours.	
They	were	then	sawed	cutting	 the	 implant	 longitudinally.	 	After	being	dehydrated	 in	a	
rising	 ethanol	 series	 (70%,	 80%	 and	 98%,	 two	 days	 per	 each)	 the	 specimens	 were	
embedded	 in	 methacrylate	 using	 Technovit®	 (Technovit,	 Kulzer	 GmbH,	 Wehrheim,	
Germany).	 Histological	 sections	 were	 manufactured	 using	 a	 cutting‐grinding	 method	
developed	 for	 undecalcified	 hard	 tissue	 (Exakt‐Apparetebau,	 Hamburg,	 FRG).	 Van	
Gieson	and	Masson‐Goldner	stains	were	prepared	for	studies	I	and	II.	Toluidine	stains	
were	 also	 prepared	 for	 study	 II.	 The	 use	 of	 three	 different	 stains	 facilitated	 a	 larger	
basis	 for	 the	 evaluation	 of	 the	 histological	 samples.	 Van	 Gieson	 stain	 is	 good	 for	
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assessing	 the	 distribution	 and	 the	 quality	 of	 collagen	 and	 other	 connective	 tissue.	
Masson‐Goldner	 is	 also	used	 to	 examine	 connective	 tissue	as	well	 as	muscles.	 It	has	a	
different	contrast	than	Van	Gieson	regarding	the	staining	of	cell	nucleus	and	cytoplasm.	
Toluidine	stains	wood	(lignin)	dark,	it	is	has	a	good	contrast	for	cytoplasm	and	thus	it	is	
good	for	detecting	for	instance	monocytic	large‐	cells.	 	The	samples	were	histologically	
evaluated	 using	 conventional	 light	 microscopy.	 Foreign	 body	 reactions,	 indicated	 by	
inflammation	 and	 the	 presence	 of	 giant	 cells,	 as	well	 as	 the	 distribution	 of	 new	 bone	
formation	and	connective	tissue	were	registered	using	all	of	the	aforementioned	stains.	
The	 thickness	 of	 the	 adjacent	 fibrous	 tissue	 layer	was	 evaluated	 in	 study	 II.	 Bone‐to‐
implant	 contact	 was	 measured	 using	 a	 computer	 assisted	 histometrical	 evaluation	
system	 (Image	 Analysis	 System,	 MicroScale	 TC,	 Digithurst,	 Royston,	 UK).	 Three	
individual	 investigators,	 sharing	 common	 inclusion	 criteria	 for	 the	 presence	 of	 bone	
contact,	made	the	observations.	The	bone‐to‐implant	contact	was	considered	tight	when	
the	 wood	 fibers	 were	 in	 direct	 contact	 with	 the	 adjacent	 host	 bone	 with	 no	 visually	
detectable	fibrous	tissue	evident	between	the	wood	and	host	bone.	The	analyzers	were	
unaware	 of	 the	 heat	 treatment	 of	 the	materials,	 although	 the	 220C	 and	 200C	 heat‐
treated	 woods	 differed	 in	 color	 from	 the	 140C	 heat‐treated	 and	 untreated	 woods	
enough	 to	 be	 recognized.	The	 area	of	 the	measurement	was	 the	 entire	prepared	bone	
defect,	even	though	some	of	the	drill	holes	were	partially	outside	of	the	trabecular	bone	
and	 in	 the	 bone	 marrow.	 The	 bone	 contact	 was	 measured	 from	 all	 histological	
specimens.	 The	 bone	 contact	 value	 of	 each	 implant	 was	 the	 average	 bone	 contact	
calculated	from	all	histochemically	stained	sections	(2	for	each	implant	in	study	I	and	2	
or	3	for	each	implant	in	study	II).		
	

4.3	Simulated	body	fluid	immersion	(III)	
	
Cylindrical	 specimens	were	manufactured	 from	 the	 surface	wood	heat‐treated	 at	 200C	
and	140C	and	from	untreated	wood.	The	specimens	(4	mm	diameter	and	70	mm	length)	
had	longitudinal	fiber	orientation	achieved	with	a	lathe.	Six	specimens	from	each	material	
(untreated,	heat‐treated	at	140C	and	heat‐treated	at	200C)	were	stored	individually	 in	
120	 ml	 of	 simulated	 body	 fluid	 (SBF)	 for	 63	 days	 at	 37C	 (Kokubo	 et	 al.,	 1992).	 The	
specimens	were	 stored	 vertically	 in	 large	 polypropylene	 test	 tubes,	 placed	 in	 a	 stirring	
device	 for	 the	duration	of	 the	 immersion	 test.	The	SBF	was	not	 changed	during	 the	 test	
period.	 The	 weight	 of	 the	 wood	 specimens	 was	 measured	 with	 a	 precision	 balance	
(Mettler	A30;	Mettler	Instrument	Co.,	Highstone,	NJ,	USA)	with	an	accuracy	of	0.1	mg.	The	
diameter	and	length	of	the	specimens	was	measured	with	a	caliper	at	a	precision	of	10	μm.	
The	weight	and	dimensions	of	the	specimens	were	measured	at	baseline	and	after	1,	2,	3,	
4,	 7,	 14,	 21,	 28,	 35,	 42,	 49	 and	 63	 days	 immersion.	 The	 weight	 change	 was	 used	 as	 a	
measure	of	absorbed	(and	adsorbed;	therefore,	the	term	sorption	is	used	below)	SBF	(Ww)	
following	the	procedure	specified	in	the	ISO	10466	standard	(ISO,	1992).	
	

SBF	sorption	=	
Wwx Wd 
Wd
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Expressed	as	relative	change,	this	is	expressed	as	
	

Wt% Wwx Wd

Wd

100%,		

where	 x	 is	 days	 of	 SBF	 immersion,	 Wwx	 is	 the	 weight	 of	 the	 specimen	 on	 day	 x	 of	
immersion	 and	Wd	 is	 the	 baseline	 weight	 of	 the	 specimen.	 	 The	 relative	 dimensional	
changes	of	the	specimens	were	measured	as	
	

Lt%  Llx  Ld
Ld

100% ,		

where	x	is	days	of	SBF	immersion,	Llx	is	the	length	of	the	specimen	on	day	x	of	immersion	
and	Ld	is	the	baseline	length	of	the	specimen.	
	

4.4	Biomechanical	testing	(III)	
	
Twelve	 cylindrical	 shaped	 specimens	 (4.0	 –	 4.6	 mm	 diameter)	 from	 each	 wood	 type	
(untreated,	 140C	 and	 200C	 heat‐treated)	were	 used	 for	 flexural	 strength	 and	 flexural	
modulus	 determination	 according	 to	 the	 ISO	 1567:2001	 standard	 (ISO,	 2001).	 For	 the	
flexural	testing,	half	the	specimens	were	immersed	in	SBF	for	63	to	65	days.	The	testing	
was	conducted	over	a	period	of	2	days,	during	which	the	specimens	were	still	stored	in	the	
SBF.	 Altogether	 12	 specimens	 were	 tested	 of	 each	 type	 of	 material;	 six	 after	 the	 SBF	
immersion	and	six	dry,	stored	at	room	temperature.	The	flexion	test	involved	using	a	span	
of	50	mm	and	a	cross‐head	speed	of	1.0	mm/min.	.		
	
A	universal	testing	machine	(Lloyd	LRX;	Lloyd	Instruments	Ltd.,	Fareham,	UK)	was	used	
for	all	biomechanical	tests,	the	testing	was	conducted	at	room	temperature	(221C)	and	
the	 load‐deflection	 curves	were	 recorded	with	 dedicated	 computer	 software	 (Nexygen;	
Lloyd	Instruments).		
	
The	 fracture	 load	was	measured.	Flexural	 strength	 (f),	 toughness	and	 flexural	modulus	
(Ef)	were	calculated	from	the	formulae	(Torbjörner	et	al.,	1996):	
	

 f 
8Fmaxl
d3

,		

	

Toughness	 
0

 f d 	
	

Ef 
S4l 3

3d4
,		

	
where	Fmax	is	the	applied	load	(N)	at	the	highest	point	of	the	load‐deflection	curve,	l	is	the	
span	 length	(50.0	mm),	d	 is	 the	diameter	of	 the	specimens,	S=F/D	 is	 the	stiffness	(N/m)	



Materials	and	Methods	

	

44

and	D	is	the	deflection	corresponding	to	load	F	at	a	point	in	the	linear	portion	of	the	trace.	
Further,	ε	is	strain,	εf	is	the	strain	upon	fracture	and	σ	is	stress.	
	
Seven	cylindrical	specimens	of	8.25	mm	in	length	and	4.1	mm	in	diameter	from	each	type	
of	material	(untreated,	140C	and	200	C	heat‐treated)	were	used	for	compression	tests	
In	the	compression	test,	specimens	were	placed	vertically	between	the	plates	of	 the	test	
machine	in	such	a	manner	that	the	applied	force	was	parallel	to	the	longitudinal	axis	of	the	
specimen.	The	compression	strength	(CS)	was	calculated	using	the	following	formula	(ISO,	
1984):	

CS 4F
d2

	

where	F	is	the	maximum	applied	load	(N)	and	d	is	the	diameter	of	the	specimen	(mm).	

4.5	Surface	profilometry	(IV)	
	
Altogether	21	wood	specimens,	approximately	5	x	5	x	7mm	in	size,	were	prepared	from	
each	type	of	wood	(untreated,	140C	and	200C	heat‐treated)	and	the	surface	roughness	
of	20	of	the	specimens	from	each	test	group	was	measured	with	contact	profilometry.	To	
enable	 methodological	 comparisons,	 one	 specimen	 from	 each	 material	 was	 also	 tested	
employing	a	non‐contact	methodological	approach.	For	contact	profilometry,	the	surfaces	
of	 the	 specimens	 were	 ground	 along	 the	 orientation	 of	 the	 fibers	 with	 silicon	 carbide	
paper	(grit	180)	using	a	disc	grinder	(LaboPol‐21,	Struers,	Westlake,	OH,	USA).	An	equal	
pressure	was	applied	to	the	specimens	over	a	grinding	disc	with	a	rotation	speed	of	300	
rpm.	Pre‐measurement	grinding	aimed	to	remove	any	protruding	fibers	that	could	hinder	
the	 contact	 profilometric	 analysis.	 The	 specimens	 for	 the	 non‐contact	 method	 were	
ground	manually	 with	 a	 rotational	movement	 with	 silicon	 carbide	 grinding	 paper	 (grit	
180)	with	no	specific	attention	given	to	the	orientation	of	the	fibers.		
	
The	 contact	method	 approach	 of	 surface	 roughness	 testing	 was	 accomplished	with	 the	
Surftest	 301	 device	 (Mitutoyo	 Corporation,	 Kawasaki,	 Japan).	 The	 measurements	 were	
made	in	three	directions	depending	on	the	orientation	of	the	fibers	(Figure	4.2).		

	
	
	
	
	
Figure	4.2	
Illustration	 depicting	 the	 directions	 used	 in	
contact	stylus	profilometry	
	
	
	

	
For	measurement	along	the	longitudinal	direction	(A)	and	for	the	ends	of	the	fibers	(C),	a	
0.8	mm	sample	 length	was	used.	For	the	tangential	direction	(B),	the	sample	 length	was	
0.4	mm.	Ten	specimens	from	each	wood	were	measured	longitudinally	and	tangentially	to	
the	fiber	orientation.	The	ends	of	the	samples	were	tested	using	five	different	specimens	
from	each	material.	The	specimens	were	measured	five	times	and	ground	between	every	
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measurement.	With	 every	measurement	 consisting	of	 five	 sequential	 runs	 (of	0.8	or	0.4	
mm	 sample	 length),	 the	 total	 number	 of	measuring	 events	was	 50	 for	 longitudinal	 and	
tangential	 directions	 and	 125	 for	 the	 end	 surface	 of	 the	 specimen.	 An	 average	 was	
calculated	 from	 the	 results	 of	 the	 surface	 roughness	measurements	 for	 the	 longitudinal	
(RaA)	and	tangential	(RaB)	directions,	and	used	as	the	roughness	value,	 i.e.	 the	arithmetic	
mean	deviation	(Ra)	for	the	side	surfaces	of	the	specimens:		

Ra 
RaA RaB

2
.	

For	 the	 non‐contact	 approach,	 a	 non‐contact	 optical	 profilometer	 (Talysurf	 CLI	 2000,	
Taylor‐Hobson	Precision,	Leicester,	England)	was	used.	The	side	of	the	samples	(A+B)	was	
measured.	A	 chromatic	 length	 aberration	 gauge	 of	 3	mm	was	 employed.	 The	 resolution	
was	40	nm	in	the	vertical	orientation	(z‐direction)	and	measurements	were	noted	every	
10	 μm	 (x‐directions)	 and	 every	 2	 μm	 (y‐directions).	 The	 specimens	were	 scanned	 at	 a	
speed	 of	 1	 mm/s	 over	 an	 area	 of	 3	 x	 5	 mm2.	 Mean	 surface	 roughness	 (Ra	 value)	 and	
standard	 deviations	 were	 calculated	 using	 the	 TalyMap	 analysis	 software	 package	
(Taylor‐Hobson	Precision,	Leicester,	England).	

4.6	Liquid	penetration	(IV)	
	
The	 predominantly	 capillary	 force‐driven	 penetration	 of	 liquids	 into	 each	 wood	 type	
(untreated,	 140C	 and	 200C	 heat‐treated)	 was	 determined	 by	 dipping	 specimens	 into	
three	 different	 liquids.	 A	 starch	 solution	 was	 prepared	 by	 mixing	 150	 ml	 of	 deionized	
water	with	3	g	of	starch,	rapidly	heated	to	100C	and	boiled	for	three	minutes.	Methylene	
blue	was	added	for	color,	after	the	liquid	was	allowed	to	cool	slowly.	A	glycerol‐ethanol‐
water	solution	(GEW)	was	prepared	by	mixing	33.9	ml	of	water	with	103.5	g	of	glycerol	
and	21.9	g	of	ethanol	and	a	small	amount	of	methylene	blue.	For	biological	applicability,	
human	 blood	 was	 used	 as	 the	 third	 test	 liquid.	 Surplus	 blood	 was	 obtained	 from	 the	
Finnish	Red	Cross	(allowance	53/2010,	valid	until	44/2011).	The	pooled	blood	consisted	
of	blood	from	17	A+	donors	(with	an	average	haemoglobin	of	154	g/l)	and	was	supplied	in	
10	ml	BD	vacutainer	tubes	with	K2EDTA	as	the	anticoagulant.	The	viscosities	of	the	liquids	
were	measured	with	an	automated	microviscometer,	Anton	Paar	AMVn	(Anton	Paar	High‐
precision	instruments,	Ashland,	VA,	USA)	and	analysed	with	VisioLab	for	AMVn.	A	digital	
density	meter,	APDMA45	(Anton‐Paar	High‐precision	instuments,	Ashland,	VA,	USA),	was	
used	to	determine	the	densities	of	the	solutions.	
	
Six	 cylindrical	 specimens	 (25	 mm	 length	 and	 4.1	 mm	 diameter)	 from	 each	 wood	 type	
(untreated,	140C	and	200C	heat‐treated)	were	cut	with	a	dental	burr.	The	cut	surfaces	
were	ground	first	with	180	grit	and	then	1200	grit	SiC	grinding	paper	using	a	disc	grinder	
(LaboPol‐21,	Struers,	Westlake,	OH,	USA).	The	samples	were	dipped	into	the	test	 liquids	
vertically	 for	one	minute	(Figure	4.3).	Ambient	 temperature	was	used	for	 testing	 in	the	
starch	 and	GEW	solutions	 and	 37C	was	 used	 for	 the	blood.	 Pictures	were	 taken	of	 the	
dipped	specimens	and	the	liquid	penetration	depth	was	assessed	with	an	Image	J	analyzer	
using	a	scale	of	1568	pixels	/10	mm	in	25%	zoom	view.	
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Figure	4.3	
Schematic	illustration	of	the	test	arrangement	(illustration	by	S.	Nganga)	
	

4.7	SEM,	EDS	and	radiological	evaluation	(I	‐	IV)	
	
To	 evaluate	 implant	 placement,	 bone	 formation	 and	 bone	 quality	 around	 the	 implants,	
conventional	 radiographic	 images	 (X‐rays)	 were	 taken	 from	 five	 femurs	 that	 had	 been	
implanted	(II).	Standard	soft‐tissue	techniques	were	used	(35	kV	and	175	mAs).	
	
High	vacuum	scanning	electron	microscopy	 (SEM)	was	used	 for	 imaging	 in	studies	 I,	 III	
and	 IV.	 All	 specimens	 were	 dried	 and	 carbon	 sputtered	 (SCD	 050;	 Bal‐Tec,	 Balzers,	
Liechtenstein).	 In	 study	 I,	 Scanning	 electron	 micrographs	were	 taken	 from	 specimens	
prepared	 for	histological	evaluation	to	observe	the	behavior	of	 the	 implants	 in	 the	bone	
tissue.	In	study	III,	wood	specimens	used	in	the	SBF	absorption	test	(see	4.3)	were	imaged	
with	 SEM.	 Two	 specimens	were	 prepared	 from	 each	wood	 type	 (untreated,	 140C	 and	
200C	heat‐treated).	A	10	mm	length	was	cut	out	from	the	specimens	and	in	addition,	one	
of	the	200C	specimens	was	cut	in	half	longitudinally.	The	specimens	were	briefly	rinsed	
with	 deionized	water	 and	 dried	 in	 a	 desiccator	 for	 2	months	 before	 carbon	 coating.	 In	
study	 IV,	 several	 pieces	 of	 wood	 (approximately	 10	 mm	 x	 5	 mm	 x	 5	 mm)	 from	 each	
material	 (untreated,	 140C	 and	 200C	 heat‐treated)	 were	 cut	 in	 half	 and	 dried	 in	 a	
desiccator	before	carbon	coating.	SEM	images	were	taken	to	evaluate	the	morphology	and	
microstructure	 of	 the	 surface	 and	 sub‐surface	 of	 the	 wood	 specimens	 and	 the	 heat–
induced	changes	in	them.	
	
Energy	dispersion	X‐ray	spectroscopy	(EDS)	was	used	in	studies	I	and	III.	In	study	I,	the	
EDS	 analysis	 was	 conducted	 on	 three	 implant	 specimens	 after	 implant	 extraction	 to	
confirm	the	presence	of	the	elemental	composition	of	bone,	identified	by	microscopy	to	be	
located	 in	 the	 inner	 structures	 i.e.	in	 the	channels	of	 the	wood	 implant.	 In	 study	 III,	 the	
EDS	analysis	was	conducted	to	evaluate	the	suspected	precipitation	of	hydroxylapatite	on	
the	 surface	 of	 the	 200C	 heat‐treated	wood	 specimens	 dipped	 in	 SBF	 for	 63	 days.	 The	
analysis	 was	 carried	 out	 using	 an	 acceleration	 voltage	 of	 20kV	 under	 vacuum,	 with	 a	
working	distance	of	20	mm.	A	liquid	nitrogen	cooled	lithium‐drifted	silicon	detector	with	
an	 active	 area	 of	 30	 mm2	 was	 used	 to	 collect	 the	 data.	 In	 both	 studies,	 five	 parallel	
analyses	were	made	of	1.14	x	0.84	mm2	sample	areas	and	position‐tagged	spectrometry	
mode	was	selected	to	study	the	elemental	distribution.	Oxygen	was	deconvoluted	from	the	
spectra	to	achieve	the	Ca:P	ratio.		
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4.8	Statistical	methods	(I‐IV)	
	
The	 statistical	 analysis	 was	 performed	 using	 SPSS	 13.0	 for	 Windows	 (release	 13.0.1,	
copyright	SPSS	 Inc.,	 1989‐2004)	 for	 the	 in	vivo	 tests	 (I	and	 II),	 biomechanical	 tests	 (III)	
and	SBF	absorption	tests	(III).	SPSS	16.0	for	Mac	(release	16.0.1,	copyright	SPSS	Inc.,	1987	
–	 2007)	 was	 used	 for	 the	 surface	 profilometry	 and	 liquid	 penetration	 tests	 (IV).	 In	 all	
studies	normality	and	homogeneity	of	the	data	was	tested	using	the	Shapiro‐Wilk	test	and	
Levene’s	test.	In	the	in	vivo	tests	(I	and	II),	the	amount	of	bone	contact	was	considered	the	
dependent	variable,	whereas	material	(untreated	and	220C	heat‐treated	wood	in	study	I	
and	 untreated,	 140C	 and	 200C	 heat‐treated	wood	 in	 study	 II)	 and	 time	 (4,	 8	 and	 20	
weeks)	were	used	as	fixed	factors.	In	study	I,	Mann‐Whitney’s	U	test	was	used	to	test	the	
differences	 between	 groups.	 A	 two‐tailed	 asymptotic	 p‐value	 of	 0.05	 was	 considered	 a	
criterion	 for	 statistical	 significance.	 In	 studies	 II	and	 IV,	 univariate	 analysis	 of	 variance	
(ANOVA)	 and	 post	hoc	Bonferroni	 tests	 were	 conducted	where	 applicable	 and	 Kruskal‐
Wallis	and	Mann‐Whitney	U	tests	were	used	for	non‐parametric	analysis.		
	
Parametric	 one‐	 and	 two‐way	 ANOVAs,	 followed	 by	 Bonferroni‐corrected	 post	 hoc	 t‐
contrasts,	were	used	in	the	case	of	normally	distributed	data	in	study	III.	When	the	data	
were	non‐normally	distributed,	 the	 findings	 from	ANOVA	were	confirmed	with	 the	non‐
parametric	Kruskal‐Wallis	test.	A	p‐value	of	less	than	0.05	was	considered	a	criterion	for	
statistical	 significance.	 In	 the	 SBF‐absorption	 test	 (III),	 time‐dependent	 variables	 were	
analyzed	by	fitting	one‐	and	two‐phase	exponential	equations	to	the	data.	The	statistical	
differences	were	analyzed	by	assessing	the	association	rates	and	asymptotes	between	the	
different	 wood	 types	 (untreated,	 140C	 and	 200C	 heat‐treated).	 The	 equations	 used	
were:		

Y Ymax(1ekx ) 	for	the	one‐phase	exponential	association,	and		
Y Ymax1

(1ek1x)Ymax2
(1ek2x)	for	the	two‐phase	exponential	association.	 In	study	

IV,	the	results	of	non‐contact	profilometry	were	not	statistically	analyzed;	the	method	was	
used	for	illustrative	purposes	and	there	was	only	one	specimen	for	each	wood	type.	
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5.	RESULTS	

5.1	Wood	anatomy	(I,	III	and	IV)	
	
The	anatomy	or	microscopic	structure	of	wood	was	reported	 in	studies	 I,	II	and	IV.	The	
anatomical	entities	described	 in	 the	 literature	were	easily	 identifiable	 (Figure	5.1).	The	
influence	of	heat	treatment	of	birch	wood	was	studied	with	SEM.	The	changes	induced	by	
heat	treatment	in	the	structure	of	wood	were	inconspicuous.	At	smaller	magnification,	the	
structure	appeared	identical	for	all	wood	types	(untreated,	140C,	200C	and	220C	heat‐
treated).	Some	cracking	of	 the	cell	walls	was	observed,	but	 larger	modifications,	such	as	
complete	 disintegration	 of	 cells	 or	 cell	 walls,	 was	 not	 observed	 (I	 and	 IV).	 At	 larger	
magnification,	 however,	 the	 cell	 walls	 seemed	 to	 form	 lamellae	 after	 heat	 treatment	 at	
200C	(Figure	5.2).	The	formation	of	lamellae,	seen	only	in	places	where	the	cut	surface	of	
the	specimen	was	perfectly	perpendicular	to	the	fiber	orientation,	was	very	sporadic.	This	
was	the	only	observation	of	differences	by	SEM	in	the	dry	morphology	of	untreated,	and	
140C,	200C	and	220C	heat‐treated	wood.		
	
Heat	treatment	changed	the	color	of	the	wood	and	while	no	distinctive	difference	in	color	
was	observed	between	the	untreated	and	140C	heat‐treated	wood,	the	200C	and	220C	
heat‐treated	wood	was	clearly	darker	in	color	(Figure	5.3).	

	
	
	
Figure	5.3	
Examples	 of	 the	 implants	 used	 in	 this	 study.	 From	
left	 to	 right:	 untreated,	 140C	 and	 200C	 heat‐
treated	wood.	(II)	
	
	
	
	
		
	

5.2	Animal	experiments	(I	and	II)	
	
The	 animals	 survived	 the	 operations	 although	 one	 rabbit	 did	 die	 during	 surgery,	 most	
likely	because	of	complications	with	anesthesia.	During	the	follow‐up	period	(4,	8	and	20	
weeks	 post‐operative),	 no	 systemic	 symptoms	 due	 to	 the	 implantations	were	 observed	
and	no	wound	infections	were	recorded.	All	of	the	animals	continued	to	use	the	implanted	
joints	 during	 the	 follow‐up	 period,	 albeit	 this	 observation	 is	 based	 on	 the	 restricted	
movement	of	the	animals	in	their	respective	living	quarters	and	to	a	weekly	outing	on	the	
floor	of	their	accommodation.			
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Figure	5.1	
	
The	functional	units	of	birch:	
‐The	vessel	element	(A)	
‐Ray	parenchyma	cells	(B)	
‐Supporting	fibers;	both	libriform		
fibers	and	tracheids	(C)	
‐perforation	 plates	 Scalariform	
structures	joining	
the	vessel	elements	together	(*)	
‐Pits	between	horizontal		
ray	 parenchyma	 cells	 and	 the	
vessel	elements	(+)	
	
The	 lower	 picture	 is	 a	
magnification	from	the	upper	one	
(location	 is	 indicated	 by	 a	 white	
box)	(IV)	

	

	

	

	
	
	
	
	
	
	
Figure	5.2	
The	 cell	 walls	 of	 the	 200C	 heat‐treated	 birch	 sample	
seemed	 to	 occasionally	 form	 strips	 or	 lamellae	 (white	
arrow).	(IV)	
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5.1.1.	Macroscopic	evaluation	and	radiological	findings	
	
During	the	operations,	the	implants	were	pressed	into	the	cavities	drilled	in	to	the	bone.	A	
difference	was	 evident	 in	 resistance	 to	 compression	under	 finger	 pressure	between	 the	
wood	types	(untreated	and	wood	heat‐treated	at	140C,	200C	and	220C).	The	untreated	
wood	felt	the	softest	and	consequently	was	the	easiest	to	place	tightly	into	the	bone	defect.	
Gross	evaluation	of	 the	success	 in	 implantation	 indicated	that	 the	untreated	wood	fitted	
into	the	defect	most	comfortably	of	all	the	wood	types.	The	200C	and	220C	heat‐treated	
wood	implants	did	not	compress	as	easily	and	where	the	defect	hole	was	not	completely	
the	same	shape	as	the	 implant,	small	gaps	between	the	 implant	and	the	host	bone	were	
evident	 in	places.	The	behavior	of	 the	140C	heat‐treated	wood	was	 intermediate	to	 the	
untreated	and	the	200C	heat‐treated	wood	implants.	
	
Macroscopic	 inspection	 of	 the	 harvested	 implanted	 femurs	 showed	 some	 degree	 of	
synovial	 irritation	 in	 all	 wood	 groups	 at	 4	 weeks,	 most	 likely	 due	 to	 the	 operative	
procedure	 itself	 and	 was	 not	 seen	 at	 later	 time	 points.	 Anatomical	 inspection	 of	 the	
implant	sites	showed	that	all	implants	stayed	in	place	during	the	follow‐up	period.	In	the	
case	of	the	anterior	 implantation	site,	where	the	defect	penetrated	the	joint	cartilage,	all	
implants	were	covered	with	light	fibrous‐like	tissue.	At	the	medial	implantation	site,	there	
were	 differences	 between	 the	 groups.	 The	 untreated	 wood	 implants	 were	 without	
exception	 covered	with	 opalesque	 fibrous‐like	 tissue.	 For	 the	 140C	 heat‐treated	wood	
implants,	similar	fibrous‐like	tissue	was	observed,	albeit	thinner	than	that	evident	in	the	
untreated	 implants.	Some	of	 the	200C	heat‐treated	 implants	were	so	well	 incorporated	
into	the	host	bone	that	the	implantation	site	was	difficult	to	detect.			
	

	
Figure	5.4	
X‐ray	 images	 of	 the	 200C	 heat‐treated	 wood	 implant.	 Normal	 trabecular	 bone	 (TB)	 formation	 can	 be	 seen	
surrounding	 the	 implantation	 site.	 A	 more	 compact	 osseous	 capsule‐like	 formation	 (arrows)	 is	 closely	
surrounding	the	implant.	Wood	material	is	more	translucent	to	X‐rays	than	bone,	and	thus	allows	un‐interfered	
evaluation	of	the	tissues	adjacent	to	the	implant	(II).		
	
Radiographic	 images	 (X‐rays)	 showed	 the	 implants	 in	 the	 trabecular	bone	 region	of	 the	
distal	 femur	 (Figure	 5.4).	 The	 adjacent	 bone	 formation	 was	 normal.	 Osteitis	 was	 not	
observed	 in	 any	 X‐rays.	 An	 osseous	 capsule‐like	 formation	 was	 evident	 around	 the	
implants;	 this	 observation	 is	 described	 in	more	 detail	 in	 the	 context	 of	 the	 histological	
evaluation	of	the	results.				
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In	study	I,	SEM	images	revealed	small	sporadic	islets	of	bone‐like	tissue	formation	in	the	
channel	structures	of	implanted	220C	heat‐treated	wood	specimens	collected	after	8	and	
20	 weeks	 post‐operation	 (Figure	 5.5).	 In	 the	 same	 study,	 the	 EDS	 analysis	 revealed	
calcium	 and	 phosphorus	 at	 the	 wood‐bone	 interface	 as	 well	 as	 in	 the	 aforementioned	
islets	 in	 the	 channel	 structures	 (Figure	 5.6).	 The	 Ca:P	 ratio	 was	 calculated	 to	 be	
approximately	1.7.	The	presence	of	silicon	(Si)	was	also	noted.	

	
	
Figure	5.5	
SEM	pictures	 of	 220C	heat‐treated	
wood	 after	 20	 weeks.	 Scale	 bar	 in	
each	figure	is	100	μm	
	
Pictures	 A	 and	 B	 show	 the	 vessel	
structures	 also	 depicted	 in	 figure	
5.1.	(Arrows)		
	
Pictures	 C	 and	 D	 show	 a	 cross	
section	 of	 the	 wood	 implant	
structure.	 Bone	 ingrowth	 in	 the	
vessel	 elements	 is	 visible	 (arrows).		
(I)	
	
	
	
	
	
	
	
	
	
	

	
	
	
Figure	5.6	
The	EDXA	graph	shows	peaks	of	Ca	and	P	with	
a	 Ca:P	 ratio	 of	 1.7	 consistent	 with	 hydroxyl	
apatite	of	bone	(I)	

	
	
	

5.1.2.	Histological	evaluation	
	
Connective	tissue	and	bone	formation	were	observed	adjacent	to	the	implanted	wood	in	
all	 groups	 (untreated,	 140C,	 200C	 and	 220C	 heat‐treated).	 Cells	 indicating	 an	
inflammatory	response,	such	as	inflammatory	round	cells,	granulocytes,	macrophages	and	
giant	cells,	were	observed	in	all	treatment	groups	4	weeks	after	implantation,	although	the	
amount	of	the	cells	indicative	of	an	inflammatory	response	varied	between	wood	groups.	
A	clear	foreign	body	reaction	was	only	seen	in	animals	with	untreated	implants,	where	the	
presence	of	 large	monocytic	cells	was	more	pronounced	4	weeks	after	 implantation	(II)	
(Figure	5.7).	 Some	solitary	giant	 cells	were	observed	 in	animals	with	140C	and	200C	
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heat‐treated	 wood	 implants	 at	 4	 weeks	 and	 in	 animals	 with	 140C	 heat‐treated	 wood	
implants	at	8	weeks	(Figure	5.8).	
	
	
	
	

	
Figure	5.7	
Untreated	 wood	 implant	 4	 weeks	
after	 implantation.[Masson‐Goldner].	
An	 exceptionally	 severe	 foreign	
body	 reaction	 can	 be	 seen	 (white	
arrow).	Reactions	of	this	magnitude	
were	 seen	 in	 only	 very	 few	
histological	 samples	 of	 untreated	
wood	implants.	
	
	
	
	
	
	
	
	

	
	
	
	

	
	
	
Figure	5.8	
140C	heat‐treated	birch	 implant	4	
weeks	after	implantation.	[Masson‐
Goldner].	 Some	monocytic	 (arrow)	
cells	 can	 be	 seen	 adjacent	 to	 the	
implant.	 This	 kind	 of	 foreign	 body	
reaction	 was	 seen	 in	 some	
specimens	 of	 140C	 implants	 at	 4	
weeks.	 Reactions	 of	 this	 severity	
were	 not	 seen	 in	 the	 animals	with	
200C	implants	at	any	time	point	or	
in	the	animals	with	140C	implants	
at	8	weeks.		
	
	
	
	

	
	



Results	

	

53

The	 thickness	 of	 the	 connective	 tissue	 layer	 varied	 between	 individual	 specimens	 and	
wood	types	(untreated,	140C	and	200C	heat‐treated).	The	general	impression	from	the	
histological	 samples	was	 that	an	adjacent	bone	capsule	was	separated	 from	the	 implant	
with	 a	 connective	 tissue	 layer	 (Figures	5.9	 and	5.10).	 In	 places,	 the	 connective	 tissue	
layer	was	absent	and	the	implanted	wood	was	in	direct	contact	with	the	surrounding	bone.	
	

	
Figures	5.9	(both	above)	
Untreated	 wood	 at	 20	 weeks.	 [Masson‐Goldner	 (fig.	 left);	 Van	 Gieson	 (fig.Right)].	 Usually,	 no	 foreign	 body	
reaction	was	seen	at	20	weeks.	In	this	sample,	some	solitary	giants	cells	are,	however,	still	seen	adjacent	to	the	
implant	(white	arrow).	The	thickness	of	the	adjacent	fibrous	tissue	(black	arrow)	is	approximately	0.3‐0.5mm.	A	
surrounding	bone	capsule	is	observed	(B)	(II)	

	
	

	
	
	
Figures	5.10		
140C	heat‐treated	wood	implants	at	8	weeks.	
[Masson‐Goldner	(figs.	a,	b);	Van	Gieson	(fig.	c)].	
A	 thin	 fibrous	 layer	 (black	 arrow)	 is	 seen	
surrounding	 the	 implant	 (W).	 The	 bone	 formation	
(white	 B)	 is	 visibly	 closer	 than	 in	 the	 untreated	
samples	at	this	time	point.	Some	incidental	contacts	
(white	 arrow)	 are	 seen	 between	 the	 implant	 and	
bone.	A	wedge	of	differentiating	 cartilage	 (dC)	 can	
be	 seen	 growing	 on	 the	 surface	 of	 one	 of	 the	
implants	(fig.	a)(figs.	b	and	c	are	from	study	II)	
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The	thickness	of	the	fibrous	layer	and	the	amount	of	tight	bone	contacts	seemed	to	have	a	
reciprocal	relation,	a	notion	that	was	confirmed	in	the	histometric	evaluation	(II).	Overall,	
the	 thinnest	 connective	 tissue	 layer	 was	 found	 around	 the	 200C	 heat‐treated	 wood	
implants,	whereas	 the	 layer	 around	 the	 untreated	wood	 implants	was	 the	 thickest.	 The	
connective	 tissue	 layer	 appeared	 to	 grow	 thinner	 with	 time,	 but	 the	 histometric	
evaluations	showed,	this	only	had	an	effect	on	the	bone	contacts	in	the	200C	heat‐treated	
wood	 implants.	A	summary	of	 the	visual	evaluation	of	 the	 foreign	body	reactions	and	of	
the	thickness	of	the	connective	tissue	layer	are	presented	in	Table	5.1.	
	
	
	
Table	5.1	
The	 foreign	body	 reaction	 in	 this	 summary	 is	 an	average	observation	 from	all	 time	points,	 although	all	of	 the	
foreign	body	reactions	were	seen	at	the	earlier	time	points,	namely	4	and	8	weeks.	(II)	
	
	
	
	
	
	
+	 means	 that	 the	 connective	 tissue	 layer	
was	very	thin,	seen	only	at	larger	magnifications	and	approximately	only	tenths	of	a	mm	thick.	++	means	that	the	
connective	 tissue	 layer	was	 thicker	 than	+,	but	 less	 than	0.2mm.	+++	means	a	clearly	visible	connective	 tissue	
layer	of	more	than	0.2	mm	thickness.	
	
Bone	formation	in	the	channel	structures,	as	seen	with	SEM,	was	also	observed	with	light	
microscopy	 (Figure	5.11).	Bone	was	observed	as	 small	 islets	 inside	 the	 channels	of	 the	
wood.	 This	 observation	 was	 made	 only	 in	 the	 200C	 and	 220C	 heat‐treated	 wood	
implants	 at	 both	 8	 and	 20	weeks	 (Figure	5.11).	 However,	 the	 observations	 were	 very	
scarce	 and	 therefore	 no	 quantitative	 evaluation	 was	 applied.	 Another	 sporadic	
observation	that	was	noted,	and	not	measured	further	because	of	the	scope	of	the	studies,	
was	the	occasional	differentiation	of	the	fibrous	tissue	on	the	top	surface	of	the	implants.	
In	the	anterior	defects,	the	surface	surrounding	the	hole	consisted	of	hyaline	cartilage	of	
the	 knee	 joint.	 Where	 the	 implant	 depth	 was	 approximately	 0.5	 –	 1.0	 mm	 below	 the	
surface,	a	fibrous	layer	grew	from	the	sides	on	top	of	the	implant.	This	layer	was	usually	
regular	 fibrous	 connective	 tissue	 also	 seen	 adjacent	 to	 the	 implants	 elsewhere	 in	 the	
defect	 hole.	 However,	 in	 random	 cases,	 differentiation	 towards	 fibrous	 cartilage	 with	
some	chondroblasts	and	mature	chondrocytes	was	observed.	This	random	event	occurred	
only	in	association	with	the	140C,	200C	and	220C	heat‐treated	implants	at	both	8	and	
20	weeks	(Figures	5.12	–	5.14).		
	

	 Material	
Observation	 Untreated	 140	C	 200	C	

Fibrous	capsule	 +++	 ++	 +	
Foreign	body	reaction	 ++	 +/0	 0	
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Figure	5.11	
200C	 heat‐treated	 wood	 (on	 the	 left)	 [Masson‐Goldner]	 and	 220C	 heat‐treated	 wood	 (on	 the	 right)	 [Van	
Gieson]	after	20	weeks	of	 implantation.	Novel	bone	 formation	(arrows)	can	be	seen	 in	 the	 larger	channels	 i.e.	
vessel	 elements.	 This	 observation	 was	 confirmed	 with	 EDS.	 (black	 bar	 on	 the	 right	 side	 picture	 =	 100	 μm).	
(image	on	the	right	from	study	I)	
	

5.1.3.	Histometric	evaluation	
	
The	bone	contacts	of	the	implants	were	assessed	in	both	study	I	(between	untreated	and	
220C	heat‐treated	wood)	and	study	II	(between	untreated,	140C	and	200C	heat‐treated	
wood).	 In	 study	 I,	 the	 amount	 of	 bone	 contacts	 in	 the	 220C	 heat‐treated	 wood	 was	
significantly	 higher	 at	 all	 time	 points	 when	 compared	 with	 the	 untreated	 wood.	 The	
average	amount	of	bone	contacts	in	the	220C	heat‐treated	implants	was	10.4%	(SD	7.7,	
n=7)	at	4	weeks,	12.9%	(12.3,	n=9)	at	8	weeks	and	21.4%	(13.4,	n=3)	at	20	weeks	after	
implantation.	In	the	untreated	implants,	the	respective	results	were	0.7%	(2.1,	n=6)	at	4	
weeks,	1.2%	(1.7,	n=3)	at	8	weeks	and	1.9	(2.2,	n=3)	at	20	weeks	after	implantation.	Due	
to	 large	 standard	 deviations	 and	 small	 sample	 numbers	 of	 individual	 implants	 for	 each	
time	 point,	 comparisons	were	made	 only	 between	 study	 groups	 and	 not	 between	 time	
points.	
	
The	average	amount	of	bone	contacts	 for	each	wood	treatment	group	(untreated,	140C	
and	 200C	 heat‐treated)	 at	 different	 time	 points	 (II)	 can	 be	 seen	 in	 Figure	 5.15.	 The	
number	 of	 implants	 and	 the	 number	 of	 respective	 histological	 samples	 from	which	 the	
averages	of	 the	bone	contacts	 for	each	 implant	were	calculated	are	shown	 in	Table	5.2.		
The	 data	 of	 the	 untreated	 wood	 implants	 was	 non‐normally	 distributed	 (p=0.001),	
whereas	the	data	of	the	heat‐treated	140C	and	200C	implants	were	normally	distributed	
(p=0.072	 and	p=0.131,	 respectively).	 The	main	 effect	 of	 implant	 type	 on	 the	 amount	 of	
bone	 contact	 was	 significant	 (F=21.6,	 p<0.001),	 with	 the	 200C	 heat‐treated	 implants	
having	 the	 highest	 amount	 of	 bone	 contacts,	 followed	 by	 the	 140C	 and	 the	 untreated	
implants.	 Non‐parametric	 statistical	 analysis	 confirmed	 this,	 showing	 the	 differences	
between	the	implant	types	to	be	statistically	significant	(2=33.0,	p<0.001).	
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Figure	5.12	
200C	 heat‐treated	 wood	 20	 weeks	 after	 implantation.	 [Masson‐Goldner].	 Differentiating	 cartilage	 (dC)	 with	
immature	chondroblasts	(arrow)	can	be	seen	on	the	top	(joint)	surface	of	the	implant.	
	

	
Figure	5.13	
220C	 heat‐treated	 wood	 implant	 20	 weeks	
after	 implantation.	 [Masson‐Goldner].	
Differentiating	 cartilage	 (DC)	 with	 spherical,	
polyhedral	cells	resembling	a	mature	phase	of	
the	host	cartilage	(HC)	can	be	seen	on	the	top	
(joint)	 surface	 of	 the	 implant	 (W).	 White	
arrows	 point	 out	 tight	 contacts	 between	 the	
host	bone	(B)	and	the	wood	implant.	(I)	
(Black	bar	=	500	μm)	
	
	
	
	
	

	
Figure	5.14	
200C	 heat‐treated	 wood	 implant	 8	
weeks	 after	 implantation.	 [Van	 Gieson].	
Differentiating	cartilage	(dC)	can	be	seen	
forming	 on	 top	 of	 the	 implant.	 Normal	
cartilage	 (C)	 can	 be	 seen	 elsewhere	 on	
the	 joint	 surface.	 A	 tight	 contact	 can	 be	
seen	 (black	 arrow)	 between	 the	 host	
bone	and	the	implant.	
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The	differences	between	 the	200C	heat‐treated	and	untreated	 implants	was	 significant	
(U=25.5,	 p<0.001),	 as	 was	 the	 difference	 between	 the	 200C	 and	 140C	 heat‐treated	
implants	 (U=109.0,	 p<0.001).	 The	 average	 bone	 contact	 of	 the	 140C	 heat‐treated	
implants	seemed	to	be	higher	than	the	untreated	implants,	but	the	Bonferroni‐corrected	
post	 hoc	 test	 was	 not	 significant	 (p=0.362),	 however,	 the	 non‐parametric	 U‐test	 test	
showed	the	difference	to	be	significant	(U=61,	p<0.001).	
	
Tight	contacts	between	the	fibrous	connective	tissue	and	the	implant	were	abundant	in	all	
places	were	no	loose	connective	tissue	was	evident,	although	the	amount	of	contacts	were	
not	measured.	Figures	5.16	 and	5.17	 illustrate	 typical	 samples	 seen	 in	 the	 histological	
and	histometric	evaluation.		
	
Table	5.2	
The	number	of	implants	harvested	at	different	time	points.	(II)	
The	values	are	expressed	as	the	number	of	implants		(histological	sections).	
	
	
	
	
	
	
	

	 Materials	
Time	 Untreated 140C 200C
4	weeks	 6	(14)	 5	(9)	 7	(13)	

8	weeks	 4	(10)	 10	(20)	 12	(26)	

20 weeks 5	(15)	 5	(13)	 8	(19)	
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Figure	5.16	
220C	heat‐treated	wood	at	20	weeks	after	
implantation.	 [Van	 Gieson].	 The	 bone	
formation	 (B)	 surrounding	 the	 implant	 is	
in	tight	contact	in	several	locations	(white	
arrows)	with	the	wood	implant.	The	upper	
surface	 (black	 arrow)	 shows	 cartilage	
formation	 growing	 from	 the	 edge	 of	 the	
drill	 defect.	 In	 figure	 b,	 cartilage	 can	 be	
seen	 in	 two	 differentiation	 stages;	 as	
fibrocartilage	 (FC)	 and	 more	 mature	
cartilage	(DC)	with	spherical	cells.	Figure	
c	 shows	 a	 bone	 islet	 surrounded	 by	 a	
split	 channel	 of	 wood	 (arrowheads)	 in	
tight	 contact	 (black	 arrow)	 with	 the	
implant	 (W).	 Figure	 d	 shows	 a	 tight	
structural	 tissue	 contact	 at	 the	 interface	
between	 bone	 (B)	 and	 the	 implant	 (W)	
(arrows).	Black	bars	in	figures	b‐d	=	100	
μm.	Figure	a	 is	an	8‐times	magnification.	
(I)	
	
	
	
	

	
	
	
	
	
	
	
	
	
Figure	 5.17:	 200C	
heat‐treated	 wood	
implant	 at	 20	 weeks.	
[Masson‐Goldner].	The	
adjacent	 osseous	
capsule	 (B	 and	 black	
arrows	 in	 fig.	 a)	 is	 in	
tight	 contact	 with	 the	
implant	 in	 several	
locations	 (white	
arrows	 in	 fig	 a,	 black	
arrows	 in	 figs.	 b‐d).	
Mature	 osteocytes	 (O)	
are	seen	(fig.	c).	A	 few	
plump,	 basophilic	
stained	 osteoblasts	
(Ob)	 are	 found	 at	 the	
interface,	 suggesting	
an	 active	 bone	
interaction	(fig.	c).	(II)	
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5.3	Simulated	body	fluid	storage	(III)	

5.3.1.	Dimensional	changes	
	
The	 diameter	 and	 length	 of	 all	 specimens	 increased	 during	 SBF	 immersion	 in	 all	wood	
types	(untreated,	140C	and	200C	heat‐treated).	There	was	a	rapid	increase	in	specimen	
dimension	 in	 the	 initial	 days	 of	 immersion,	 followed	 by	 a	 stable	 phase	 of	 no	 apparent	
further	 change	 (Figure	5.18).	 The	 diameter	 of	 the	 200C	 heat‐treated	 wood	 increased	
significantly	 less	 than	 the	 140	 heat‐treated	 and	 untreated	 wood	 types	 (p<0.001	 using	
ANOVA	 with	 Bonferroni‐corrected	 post	hoc	 tests	 for	 between‐group	 comparison	 at	 all	
time	points	 after	day	1).	The	 length	of	 the	200C	heat‐treated	wood	was	also	 increased	
significantly	 less	 than	 the	 140C	 heat‐treated	 and	 untreated	 wood.(p<0.001	 for	 main	
ANOVA	effect	and	Bonferroni‐corrected	post	hoc	comparisons	at	all	time	points	from	day	3	
until	day	42,	excluding	days	14	and	28).	The	significance	of	 the	differences	between	the	
different	 materials	 was	 confirmed	 by	 fitting	 one‐phase	 exponential	 equations	 to	 the	
datasets.	For	the	200C	heat‐treated	wood,	the	Ymax	for	diameter	(0.19;	95%	CI	0.17‐0.20)	
and	length	(0.16;	95%	CI	0.12‐0.19)	were	significantly	reduced	compared	with	those	for	
the	140C	heat‐treated	(0.32;	95%	CI	0.32‐0.33	for	diameter	and	0.30;	95%	CI	0.26‐0.34	
for	length)	and	the	untreated	wood	(0.38;	95%	CI	0.36‐0.40	for	diameter	and	0.43;	95%	
CI	0.38‐0‐48	for	length).	
	

	
Figure	5.18	
Dimensional	 changes	 in	 the	
test	 samples	 during	 the	 SBF	
immersion	 (III).	 The	 change	
in	 length	 (lower	 set	 of	 plots)	
is	 significantly	 less	 than	 the	
relative	change	in	diameter.	

	

	

	

5.3.2.	Sorption	
	
Visual	 inspection	of	 the	 sorption	 test	 results	 suggests	 that,	 in	 line	with	 the	dimensional	
change	data,	all	materials	rapidly	increased	in	weight	during	the	initial	immersion	period	
(Figure	5.19).	 After	 14	 days,	 the	 weight	 gain	 of	 the	 untreated	 and	 140C	 heat‐treated	
wood	 appeared	 to	 reach	 a	 plateau,	whereas	 the	 200C	 heat‐treated	wood	 continued	 to	
increase.	The	relative	weight	compared	with	day	14	 immersion	for	each	wood	type	was	
considered	 for	subsequent	days	and	Bonferroni	post	hoc	 test	corrected	ANOVA	revealed	
the	relative	weight	was	significantly	greater	 in	 the	200C	heat‐treated	wood	 than	 in	 the	
untreated	and	140C	heat‐treated	wood	on	every	day	following	day	14	(all	p<0.001).	One‐
phase	 exponential	 equations	were	 fitted	 to	 the	 datasets	 and	 the	 association	 rate	 of	 the	
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untreated	 (0.41;	 0.31‐0.51)	 and	 the	 140C	 heat‐treated	 wood	 (0.46;	 0.33‐0.58)	 was	
significantly	 greater	 than	 that	 of	 the	 200C	 heat‐treated	wood	 (0.17;	 0.13‐0.22),	 which	
corresponded	to	significantly	more	rapid	liquid	uptake	(calculated	half‐times	in	days:	1.7;	
1.4‐2.3	for	untreated,	1.5;	1.2‐2.1	for	the	140C		heat‐treated	and	4.1;	3.2‐5.5	for	the	200C	
heat‐treated	wood).	The	appearance	of	the	200C	heat‐treated	wood	curve	suggested	that	
the	weight	gain	had	a	 secondary	phase	of	 increasing	values,	whereas	 the	untreated	and	
140C	heat‐treated	wood	 reached	a	plateau	after	 the	 initial	 rapid	weight	gain.	This	was	
further	confirmed	when	the	200C	heat‐treated	wood	data	provided	an	acceptable	fit	to	a	
two‐phase	 equation.	 The	 aforementioned	 analysis	 methodologies	 suggested	 that	 the	
200C	heat‐treated	wood	continued	to	increase	its	weight	after	the	day	14	of	immersion	in	
SBF,	and	 therefore	significantly	 longer	 than	 the	untreated	and	140C	heat‐treated	wood	
materials.		

	
	
	
	
	
	
	
	
	
	
	

Figure	5.19	
Weight	 gain	 of	 the	 test	 samples	 during	 the	 SBF	 immersion	 (III).	 The	 untreated	 and	140C	heat‐treated	wood	
seem	to	reach	a	plateau	after	day	14	of	immersion,	whereas	the	200C	heat‐treated	wood	still	continues	to	gain	
weight.		

5.3.3.	Hydroxyl	apatite	formation	
	
SEM	 images	 from	 the	 immersed	 specimens	 revealed	 that	 the	 200C	 heat‐treated	wood	
material	was	covered	with	a	layer	of	pebble‐like	structures	of	10‐15	m,	consistent	with	
the	precipitated	hydroxyl	apatite.	The	HA	 layer	was	approximately	100	m	thick	on	the	
outer	surface	of	the	specimen	(Figure	5.20).	Some	pebble‐like	formations	were	also	found	
inside	 the	 larger	 inner	 channels	 (vessels)	 of	 a	 split	 specimen.	 EDS	 analysis	 showed	 a	
spectrum	with	calcium	and	phosphorus	peaks	and	the	stoichiometric	Ca:P	ratio	was	1.64	
(data	not	shown),	which	is	close	to	that	of	hydroxyl	apatite	(Figure	5.21).			
	

	
	
Figure	5.21	
Example	 of	 an	 EDS	 spectrum	
from	a	layer	found	on	the	200C	
heat‐treated	 wood	 specimens	
after	 immersion	 in	 SBF.	 This	
spectrum	is	 from	the	middle	of	
the	 surface	 depicted	 in	 figure	
5.20.	 The	 stoichiometric	 Ca/P	
ratio	was	1.64,	which	is	close	to	
that	of	hydroxyl	apatite	(III).	
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Figure	5.20	
SEM	pictures	of	a	200C	heat‐treated	wood	specimen	after	immersion	in	SBF	solution	for	63	days.	All	surfaces	
were	coated	with	a	layer	which	in	EDS	analysis	(see	figure	5.21)	fitted	that	of	hydroxyl	apatite.	The	appearance	
of	the	layer,	consisting	of	small	pebble	like	structures	of	approximately	10	μm	in	diameter	(fig	d),	also	fits	that	of	
hydroxyl	 apatite.	 The	 layer	was	 circa	100	μm	 in	depth	 on	 the	 outer	 surfaces	 (white	 arrow	 in	 fig	 b).	 Sporadic	
hydroxyl	apatite‐like	formation	was	also	observed	in	the	vessel	elements	of	a	split	sample	(figure	c).	The	pores	of	
the	tangential	rays	are	also	visible	(white	arrows	in	fig	c)	(figs.	a‐c	are	from	study	III).	

5.4	Biomechanical	testing	(III)	
	
The	graphs	illustrating	the	results	of	the	mechanical	testing	are	presented	in	Figure	5.21.	
The	maximum	deflection,	bending	stress,	toughness	and	flexural	modulus	were	normally	
distributed	 for	 the	 wood	 types	 (untreated,	 140C	 and	 200C	 heat‐treated)	 in	 22	 of	 24	
cases,	and	parametric	statistical	analysis	methods	were	therefore	applied.	The	maximum	
deflection	 test	 showed	 a	 significant	 interaction	 between	 heat	 treatment	 and	 SBF	
immersion	(F=54.1,	p<0.001),	suggesting	that	heat	treatment	had	an	influence	on	how	the	
material	 reacted	to	SBF	 immersion.	The	effect	of	SBF	 immersion	was	studied	within	 the	
wood	 types	 (untreated,	 140C	 and	 200C	 heat‐treated)	 and	 both	 untreated	 (t=‐10.6,	
p<0.001)	 and	 140C	 heat‐treated	 wood	 (t=‐7.6,	 p<0.001)	 deflected	 significantly	 more	
following	SBF	immersion,	while	immersion	had	no	effect	on	200C	heat‐treated	wood	(t=‐
0.55,	p=0.596).		
	
A	 significant	 interaction	between	heat	 treatment	and	SBF	 immersion	was	also	observed	
for	 the	 maximum	 bending	 strength	 (F=7.9,	 p=0.002).	 All	 materials	 had	 smaller	 values	
following	immersion	(t=18.27,	p<0.001;	t=16.29,	p<0.001;	t=6.50,	p<0.001	for	untreated,	
140C	and	200C	heat‐treated	wood	types,	respectively).		
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Figure	5.21	
	
Graphs	 illustrating	 the	 results	 of	 the	 biomechanical	 testing.	 The	 upper	 four	 graphs	 represent	 the	 different	
flexural	properties	between	differently	heat‐treated	woods,	both	dry	and	following	63	days	of	SBF	immersion.	
The	two	lower	graphs	show	the	results	of	the	compression	testing.	(III)	
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Heat	treatment	had	a	significant	effect	on	toughness	(F=19.68,	p<0.001)	with	200C	heat‐
treated	 wood	 less	 tough	 than	 140C	 heat‐treated	 (t=5.68,	 p<0.001)	 or	 untreated	 wood	
(t=5.85,	 p<0.001),	 with	 no	 significant	 difference	 between	 the	 140C	 heat‐treated	 and	
untreated	 wood	 (t=‐0.98,	 p=0.337).	 However,	 unlike	 maximum	 deflection	 and	 bending	
strength	tests,	SBF	immersion	had	no	effect	on	toughness	(F=0.17,	p=0.687).		
	
SBF	immersion	had	a	significant	effect	on	flexural	modulus	(F=393.11,	p<0.001),	and	heat	
treament	 (F=10.58,	 p<0.001).	 The	 200C	 heat‐treated	 wood	 had	 the	 highest	 flexural	
modulus	 of	 the	 immersion‐treated	 materials	 (F=12.13,	 p<0.001;	 post‐hoc	 vs.	 untreated	
p<0.001,	 vs.	 140C	 p=0.012).	 The	 influence	 of	 heat	 treatment	 on	 flexural	modulus	 was	
evident	 but	 not	 statistically	 significant	 in	 the	 unimmersed	 samples	 (F=2.45,	 p=0.120).	
SBF‐immersed	 samples	 had	 lower	 modulus	 irrespective	 of	 heat	 treatment	 (t=16.0,	
p<0.001).		
	
In	 the	 compression	 tests,	 the	 mean	maximum	 load	 and	 mean	 stress	 at	 maximum	 load	
tended	 to	 increase	 following	 heat	 treatment,	 but	 the	 differences	 did	 not	 reach	
conventional	levels	of	statistical	significance	(F=3.06,	p=0.072	and	Kruskal‐Wallis	p=0.118	
for	both	variables).	A	 similar	pattern,	 albeit	 to	a	 lesser	 extent,	was	observed	 in	Young’s	
modulus	(ANOVA	F=0.47,	p=0.632	and	Kruskal‐Wallis	p=0.507).	

5.5	Surface	profilometry	(IV)	
	
The	 surface	 roughness	 values	 of	 the	 specimens	 decreased	 with	 heat	 treatment	 when	
measured	 using	 a	 contact	 method.	 The	 arithmetic	 mean	 (Ra	 value)	 and	 the	 associated	
standard	 deviation	 of	 the	 side	 surfaces	 was	 3.53	 (1.36)	 μm	 for	 untreated	 wood,	 	 2.57	
(0.89)	 μm	 for	 140C	 heat‐treated	wood	 and	 2.02	 (0.58)	 μm	 for	 the	 200C	 heat‐treated	
wood.	 A	 non‐parametric	 Kruskal‐Wallis	 test	 showed	 significant	 differences	 in	 the	 Ra	
values	 between	 the	 heat	 treatments	 (2=22.89,	p<0.001).	 All	 individual	 between‐group	
differences	 were	 significant	 in	 Mann‐Whitney‐U	 tests	 with	 correction	 for	 multiple	
comparisons.	The	trend	of	decreasing	Ra	values	associated	with	heat	treatment	was	also	
seen	 in	 the	 end	 surfaces	 of	 the	 specimens,	 but	 the	 values	 were	 lower	 than	 the	 side	
surfaces.	The	mean	Ra	value	was	2.20	(0.81)	μm	for	the	untreated	wood,	1.57	(0.62)	μm	
for	the	140	C	and	1.25	(0.38)	μm	for	the	200C	heat‐treated	wood.	The	differences	in	the	
Ra	 values	were	 significant	 across	 all	wood	 groups	 (2=23.50,	p<0.001),	 as	were	 also	 all	
individual	group	differences.		
	
The	graphical	 illustrations	of	 the	 surface	 topography	 (Figure	5.22)	 clearly	demonstrate	
the	 differences	 between	 the	 contours	 of	 the	 surfaces.	 The	 longitudinal	 grooves	 of	 the	
normal	 fibrillar	 orientation	 of	wood	 are	 clearly	 identifiable	 in	 the	 untreated	 and	 140C	
heat‐treated	wood.	 In	 the	200C	heat‐treated	wood,	 the	grooves	have	been	obscured	by	
the	 abundance	 of	 spikes,	most	 likely	 representative	 of	 protruding	 fibers.	 The	numerical	
values	of	the	mean	roughness	are	consistent	with	the	graphical	illustrations;	the	mean	Ra	
value	was	 highest,	 24.33	 (3.28)	 μm	 in	 specimens	 that	were	 heat‐treated	 at	 200C.	 The	
140C	material	had	a	mean	Ra	value	of	13.93	(1.58)	μm	whereas	 the	untreated	material	
had	the	lowest	mean	Ra	value	of	4.24	(0.59)	μm.		
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Figure	5.22	
Graphical	illustrations	of	the	
surface	topography	of	wood.	(IV)	
	
	
	
	
	
	

	
	

	

	

	

5.6	Liquid	penetration	(IV)	
	
Examples	of	the	dipped	specimens	are	illustrated	in	figure	5.23.	A	gross	analysis	shows	
the	penetration	of	all	liquids	maximal	near	the	surface	(less	than	0.5	mm)	of	the	samples.	
Cut	surface	pictures	show	penetration	of	the	GEW	solution	into	the	channel	structures	of	
all	materials,	although	it	was	harder	to	visualize	against	the	background	of	the	200C	heat‐
treated	wood.	Human	blood	also	penetrates	the	larger	channel	structures	of	all	specimens,	
albeit	 to	a	 lesser	extent	 than	 the	GEW	solution.	The	blue	coloration	was	separated	 from	
the	simulated	blood	solutions,	because	of	a	mismatch	 in	 the	penetration	speed	between	
the	methylene	blue	and	the	rest	of	the	solutions.	The	level	of	the	methylene	blue	was	the	
penetration	depth,	because	the	penetration	depth	of	the	clear	portion	of	the	solution	was	
too	 difficult	 to	 determine.	 It	 was	 also	 concluded	 that	 the	 penetration	 depth	 of	 the	
methylene	blue	was	proportionally	related	 to	 the	penetration	depth	of	 the	 liquid.	 In	 the	
GEW	solution,	the	clear	portion	of	the	liquid	reached	the	upper	ends	of	the	samples	in	all	
materials.	 The	 penetration	 depths	 measured	 from	 the	 outer	 surface	 are	 illustrated	 in	
Figure	5.24.		

	
	
	
	
	
	
	
	

Figure	5.23	
200C	heat‐treated	(A),	140C	heat‐treated	(B)	and	untreated	(C)	wood	specimens	after	 the	dipping	 test.	Test	
liquids:	Starch	(1),	GEW	(2)	and	human	blood	(3).		Longitudinally	bisected	and	intact	specimens	are	shown.	(IV)	
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The	results	of	 the	penetration	of	 the	GEW	solution	were	analyzed	using	non‐parametric	
testing.	 Differences	 between	 all	 wood	 types	 showed	 statistical	 significance	 (χ2=7.94,	
p=0.019).	 Individual	 between‐group	 comparisons	 showed	 a	 statistically	 significant	
difference	between	the	200C	heat‐treated	and	the	140C	heat‐treated	wood	(p=0.010)	as	
well	 as	 the	 200C	 and	 the	 untreated	 materials	 (p=0.025).	 No	 statistically	 significant	
differences	were	observed	between	the	140C	and	the	untreated	materials.	
	
Starch	solution	penetration	depth	results	were	analyzed	using	a	one‐way	ANOVA,	which	
showed	 significant	 differences	 between	 the	 groups	 (F=11.511,	p=0.001).	 In	 Bonferroni‐
corrected	between‐group	post	hoc	analysis,	 the	difference	between	the	200C	and	140C	
heat‐treated	wood	was	evident,	although	not	statistically	significant.(p=0.096),	as	was	the	
case	 also	 between	 the	 200C	 heat‐treated	 and	 the	 untreated	 wood	 (p=0.083).	 Similar	
analysis	 between	 the	 140C	 heat‐treated	 and	 the	 untreated	 wood,	 however,	 showed	
statistical	significance	(p=0.001).	
	
The	 penetration	 of	 human	 blood	 results	 was	 analyzed	 with	 one‐way	 ANOVA	 and	
statistically	 significant	 differences	 were	 evident	 between	 the	 materials	 (F=27.850,	
p<0.001).	 Bonferroni‐corrected	 post	 hoc	 comparisons	 revealed	 statistically	 significant	
differences	 between	 the	 200C	 heat‐treated	 and	 both140C	 heat‐treated	 and	 the	
untreated	wood.	However,	no	significant	difference	between	the	140C	heat‐treated	and	
the	untreated	wood	was	detected.	
	

	
Figure	5.24	
The	results	of	the	liquid	penetration	tests	showing	arithmetic	means	and	SD	(IV).	The	liquid	penetration	of	
the	 140C	 heat‐treated	 and	 untreated	 wood	was	 very	 similar	 except	 for	 the	 starch	 solution.	 The	 liquid	
penetration	of	the	200C	heat‐treated	wood	was	highest	for	both	GEW	and	human	blood.		
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6.	DISCUSSION	

6.1	Selecting	the	material	
	
Birch	(Betula	pubescens	Ehrh.,	European	white	birch)	was	chosen	for	a	number	of	reasons.	
It	is	known	that	heat	treatment	influences	the	wood	of	deciduous	trees	more	than	that	of	
coniferous	trees,	making	leaf‐bearing	trees	a	more	informative	source	material.	The	inner	
structure	of	 the	wood	of	deciduous	 trees	 is	more	complex	 than	 that	of	coniferous	 trees.	
Hardwood	 has	 a	more	 hierarchical	 structure	with	 specialized	 cells	 for	 support,	 storage	
and	 nutrient	 conveyance,	 and	 thus	 more	 variables	 to	 yield	 information.	 The	 heat	
treatment	 method	 used	 in	 this	 study	 was	 developed	 in	 Finland	 (Viitaniemi	 and	 Jämsä,	
1996).	Developers	of	the	treatment	and	the	wood	processing	industry	have	acquired	large	
amounts	 of	 data	 on	 the	 behavior	 of	 birch.	 Birch‐derived	 sugars	 (pentoses,	 xylitol)	 have	
been	 extensively	 studied	 (Makinen	 et	 al.,	 1996;	 Scheinin,	 1993).	 The	 results	 of	 our	
preliminary	 in	vivo	tests,	which	were	conducted	using	pine,	aspen	and	birch,	steered	the	
decision	towards	birch.	Some	preliminary	work	has	also	been	conducted	with	oak	wood	
using	 the	 same	 in	vivo	method	 as	 in	 the	 current	 study.	 Oak	 has	 larger	 vessel	 cells	 than	
birch	 (up	 to	 400	 μm),	 which	 could	 better	 facilitate	 the	 migration	 of	 undifferentiated	
mesenchymal	cells	into	the	wood	structure.	The	results	to	date	are	preliminary	and	have	
not	been	published.		
	
The	heat	treatment	temperatures	were	chosen	based	on	knowledge	of	the	heat	treatment	
kinetics.	 The	 effects	 of	 heat	 treatment	 are	 not	 linear	 with	 regard	 to	 temperature.	 The	
speed	of	hydrolysis	and	the	changes	induced	greatly	increase	at	temperatures	exceeding	
150C	(Pecina	and	Paprzycki,	1988).	On	the	other	hand,	 it	 is	known	that	the	mechanical	
properties	 of	 wood	 start	 to	 rapidly	 decline	 with	 loss	 of	 mass	 at	 heat	 treatment	
temperatures	exceeding	220C	(Viitaniemi	and	Jämsä,	1996).	The	chosen	heat	treatment	
temperatures	 (140C,	 200C	 and	 220C)	 enabled	 the	 isolation	 of	 the	 effects	 of	 the	 heat	
treatment	on	the	attributes	under	investigation	while	maintaining	the	order	of	magnitude	
in	the	biomechanical	properties	between	the	heat	treatments.	It	could	be	argued	that	the	
extent	 of	 microbial	 sterilization	 between	 the	 140C	 and	 200C	 heat‐treated	 wood	 is	
approximately	similar,	and	thus	the	differences	in	biological	responses	are	most	likely	due	
to	other	effects	of	the	heat	treatment.		
	
Despite	 partly	 resembling	 bone	 tissue,	 wood,	 being	 a	 natural	 fiber	 composite,	 also	
resembles	 synthetic	 fiber‐reinforced	 composite	 materials	 and	 offers	 a	 platform	 for	
extrapolating	 information	 from	 studies	 on	 wood	 to	 further	 development	 of	 FRCs.	
Assessing	the	effects	of	heat	treatment	of	wood	on	the	biological	responses	of	bone	tissue	
can	 yield	 useful	 information	 on	 what	 properties	 to	 strive	 for	 when	 manufacturing	
synthetic	 FRCs.	 Synthetic	 FRCs	 are	 extremely	 versatile,	 and	 can	 comply	 to	 various	
demands,	if	appropriate	information	of	the	required	qualities	exist.		

6.2	Biological	responses	
	
The	 biological	 responses	 of	 bone	 tissue	 to	 implanted	 untreated	 and	 heat‐treated	wood	
was	 assessed	 in	 studies	 I	 and	 II.	 Macroscopic	 findings	 and	 the	 well	 being	 of	 the	 test	
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animals	during	 the	 follow‐up	period	 indicated	that	the	materials	were	 tolerated	and	the	
experimental	model	was	applicable	in	this	respect.		
	
The	 foreign	body	 reactions	observed	 in	all	 implant	 treatment	groups	 (untreated,	140C,	
200C	 and	 220C	 heat‐treated	 wood)	 did	 not	 lead	 to	 total	 rejection	 of	 the	 implanted	
material	 in	any	of	 the	 test	animals.	The	 intensity	of	 foreign	body	reaction	was	 inversely	
associated	with	the	thickness	of	the	adjacent	fibrous	tissue	and	bone	contacts	at	later	time	
points,	however	the	relationship	was	not	linear.	The	foreign	body	reaction	at	4	weeks	was	
stronger	 in	 the	 group	with	 untreated	 implants	 than	 in	 the	 animals	with	 implants	 heat‐
treated	at	140C,	but	 the	measured	amount	of	bone	contact	was	only	 slightly	greater	 in	
the	 140C	 heat‐treated	 group	 at	 8	 and	 20	 weeks.	 Furthermore,	 the	 amount	 of	
inflammatory	 round	 cells	was	 observed	 to	 be	 slightly	 greater	 in	 the	140C	heat‐treated	
group	than	in	the	200C	heat‐treated	group	at	4	weeks,	whereas	at	20	weeks,	the	amount	
of	bone	contacts	of	the	implants	heat‐treated	at	200C	was	considerably	greater	than	that	
of	the	implants	heat‐treated	at	140C.	These	observations	suggest	the	amount	of	foreign	
body	reaction	at	early	stages	of	implantation	cannot	unambiguously	predict	the	amount	of	
bone	contacts	at	subsequent	time	points.	However,	the	two	phenomena	seem	to	be	loosely	
associated.	 Furthermore,	 the	 results	 of	 studies	 I	 and	 II	 indicated	 that	 the	 presence	 of	
inflammatory	 round	 cells	 at	 the	 early	 phases	 of	 osseointegration	 did	 not	 exclude	 the	
osteoconductivity	of	the	material.		
	
The	 cellular	 activity	 leading	 to	 bonding	 between	 a	 biomaterial	 and	 bone	 begins	
immediately	on	 implantation.	An	 initial	 inflammatory	 response	 is	 triggered	by	 chemical	
reactions	of	the	trauma	and	the	accumulation	of	polymorphonuclear	inflammatory	round	
cells	 and	 macrophages	 represents	 a	 normal	 stage	 in	 the	 physiological	 wound‐healing	
process	 (Fong	 and	 Lowry,	 1994;	 Scott	 Adzick,	 1997).	 As	 the	 cascade	 continues,	 a	
monocyte‐fibroblast‐osteoblast	differentiation	commences.	Collagen	matrix	is	synthesized	
by	the	differentiated	fibroblasts.	Osteoblasts	concentrate	and	secrete	calcium	ions	to	form	
crystals,	needles	around	and	within	the	collagen	fibers,	and	thus	the	mineralization	of	the	
collagen	matrix	is	initiated.	Hydroxyl	groups	are	considered	important	in	forming	bridges	
between	 hydroxyl	 apatite	 crystals	 and	 collagen	 (Karlsson,	 2004).	 Bonding	 occurs	 as	
collagen	 fibers	 attach	 to	 osteoconductive	 surfaces	 of	 the	 material	 (Hench	 et	 al.,	 1971;	
Jarcho	et	al.,	1977).				
	
The	appositional	cartilage	 formation	observed	 in	some	 in	vivo	 samples	of	 the	200C	and	
140C	 heat‐treated	 wood	 implants	 implied	 that	 the	 environment	 was	 supportive	 to	
chondroblasts	 and	 differentiating	 fibroblasts.	 The	 phenomenon	 was	 seen	 in	 several	
specimens,	where	the	implantation	site	was	medially	through	the	knee	hyaline	cartilage	to	
an	 appropriate	 depth.	 Although	 there	 were	 enough	 observations	 to	 assume,	 that	 the	
phenomenon	 is	 real,	 the	presence	 of	differentiating	 cartilage	was	not	 rigidly	 quantified,	
and	thus	no	scientific	conclusion	can	be	made.	A	previous	study	by	Kristen	et	al	in	which	
differentiating	 cartilage	 was	 found	 associated	 with	 a	 calcaneal	 ash‐wood	 implant	 in	
rabbits	(Kristen	et	al.,	1979),	supports	our	observation	of	appositional	cartilage	formation.	
The	underlying	theory	of	why	the	cartilage	formation	is	possible	could	include	the	liquid	
penetration	 features	 of	 the	 wood	 implant,	 which	 would	 enable	 sufficient	 amount	 of	
nutrients	 to	 diffuse	 to	 the	 cartilage	 formation	 site	 through	 the	 implant.	 Surface	
characteristics	 and	 chemical	 composition	 of	 the	 wood	 implant	 could	 also	 affect	 this	
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phenomenon.	Cellulose	in	itself	however	does	not	seem	to	be	reason	for	this	phenomenon;	
In	 a	 study,	 where	 cellulose	 based	 scaffold	 was	 coated	 with	 calcium	 phosphate,	 the	
cartilage	cell	 response	of	 the	coated	scaffold	was	significantly	better	when	compared	 to	
untreated	 cellulose	 fabric	 (Muller	 et	 al.,	 2006).	 The	 hydroxyl	 apatite	 formation	 on	 the	
surface	of	200C	heat‐treated	wood	in	SBF	solution	observed	in	this	study	may	be	linked	
to	 this	 aforementioned	 observation.	 	 With	 a	 great	 need	 for	 biomaterials	 capable	 of	
sustaining	cartilage	and	enabling	cartilage	ongrowth,	the	aforementioned	notion	warrants	
further	studies	on	the	possibilities	of	heat‐treated	wood	as	a	biomaterial.					
	
Biological	responses	and	the	behavior	of	 implanted	heat‐treated	wood	on	time	points	 in	
excess	 of	 20	weeks	 are	 yet	 to	 be	 determined.	 Reports	 in	 the	 literature	 suggest	 juniper	
wood,	which	is	biomechanically	quite	similar	to	birch,	withstands	the	mechanical	loading	
of	 the	 proximal	 femur	 of	 rabbits	 for	 up	 to	 three	 years	 (Gross	 and	 Ezerietis,	 2003).	 In	
nature,	wood	decays	because	of	 the	enzymatic	activity	of	microorganisms,	mainly	 fungi.	
Whereas	the	partial	pressure	of	oxygen	in	bone	tissue	would	facilitate	this	deterioration	
(Kiaer	et	al.,	1992;	Swift	et	al.,	1979),	however	the	sterilization	of	the	wood	and	especially	
the	 heat	 treatment	 should	 result	 in	 no	 fungi	 being	 present	 (Viitaniemi	 et	 al.,	 2001/02).	
The	absence	of	 foreign	body	reactions	at	20	weeks	 in	the	140C,	200C	and	220C	heat‐
treated	 wood	 materials	 implied	 no	 cellular	 activity	 to	 disperse	 the	 implanted	 wood	
material.	On	the	basis	of	this	study	and	the	literature,	it	seems	that	there	is	no	conceivable	
process	 that	 would	 remove	 implanted	 heat‐treated	 wood	 from	 living	 bone	 during	 a	
human	lifetime.	
	
One	 possible	 outcome	of	 a	 long‐lasting	 implantation	 of	 heat‐treated	wood	 is	 the	partial	
integration	of	the	wood	into	the	bone	tissue,	with	no	apparent	impact	on	the	functionality	
of	 the	host	bone.	The	presence	of	bone	 tissue,	although	scarce,	 in	 the	 larger	channels	of	
200C	and	220C	heat‐treated	wood	in	our	in	vivo	studies	(I	and	II)	could	suggest	a	more	
comprehensive	 osseointegration	 with	 bone	 tissue	 growth	 and	 calcium	 phosphate	
mineralization	in	the	channel	structures	of	the	wood	over	time.		
	

6.2.1	Osteoconductivity	
	
The	amount	of	bone	bonding	represented	in	this	study	by	the	presence	of	tight	wood‐to‐
bone	contacts	was	significantly	greater	in	the	200C	and	220C	heat‐treated	wood	than	in	
the	untreated	and	140C	heat‐treated	wood.	The	amount	of	bone	contacts	appeared	to	be	
associated	with	 the	amount	of	 changes	 induced	by	 the	heat	 treatment	of	 the	wood.	The	
non‐linear	kinetics	of	the	heat	treatment,	as	explained	earlier,	make	the	physico‐chemical	
properties	of	the	140C	heat‐treated	wood	closer	to	those	of	untreated	wood	than	those	of	
200C	or	 220C	heat‐treated	wood.	The	 amount	of	 bone	 contacts	 appeared	 to	 correlate	
well	with	this	notion.		
	
Bone	 contacts	were	 slightly	more	 abundant	 in	 samples	 of	 220C	 heat‐treated	wood	 (I)	
than	in	implants	treated	at	200C	(II)	at	4	and	8	weeks,	and	noticeably	more	numerous	at	
20	weeks.	Due	to	the	small	number	of	samples	in	the	220C	group,	especially	at	20	weeks	
(only	three),	and	the	large	variation	inherent	to	in	vivo	studies,	statistical	analysis	was	not	
feasible.	The	small	number	of	the	220C	samples	was	due	to	the	descriptive	nature	of	the	
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part	of	study	I,	where	the	aim	was	to	establish	heat‐treated	wood	as	a	possible	candidate	
material	 for	 biomaterials	 research	 and	 not	 to	 conduct	 comparative	 studies	 between	
batches	of	wood	with	different	heat	treatments.	
	
Comparisons	of	the	amounts	of	bone‐to‐wood	contacts	in	different	materials	reported	in	
the	literature	are	very	difficult	to	perform.	With	differences	in	operative	procedures	and	
the	methods	of	 analysis	make	direct	 comparisons	 impossible.	 The	 literature	 shows	 that	
there	 are	 variations	 in	 the	 inclusion	 of	 the	 surface	 to	 be	 analyzed	 and	 it	 is	 common	
practice	to	analyze	only	a	segment	of	the	surface	(Götz	et	al.,	2004).	In	our	studies	(I	and	
II),	 some	 of	 the	 implants	were	 partly	 implanted	 in	 the	 bone	marrow	 part	 of	 the	 distal	
femur.	On	these	interfaces,	the	bone	contact	was	naturally	less	abundant.	Nevertheless,	all	
of	 the	 implants	were	measured	without	 taking	 this	 into	 account	 to	 ensure	 an	 unbiased	
evaluation	 of	 all	 implants,	 as	 it	 was	 considered	 that	 partial	 marrow	 implantation	 is	 a	
common	 event	 in	 both	 in	vivo	 studies	 as	well	 as	 in	 clinical	 applications	 of	 biomaterials.	
Whereas	 this	 total	 inclusion	of	 samples	 lessened	 the	 relative	amount	of	 contacts,	 it	 also	
provided	 a	 neutral	 comparison	between	groups,	 because	 the	 event	 influenced	all	 of	 the	
treatment	groups	equally.		
		
The	amount	of	bone	contact	also	depends	on	the	location	of	the	implanted	material.	Bone	
contact	values	acquired	 from	materials	 implanted	 into	cortical	bone	are	not	comparable	
with	those	implanted	into	trabecular	bone.	Trabecular	bone	is	a	spongeous	structure	with	
an	abundance	of	cavities	and	does	not	yield	as	much	of	interface	area	as	lamellar	bone.	
	
Even	when	accounting	for	the	aforementioned	factors,	the	bone‐to‐implant	contact	values	
of	 the	220C	and	 the	200C	heat‐treated	wood	 implants	were	 significantly	 smaller	 than	
surface‐modified	titanium	at	similar	time	points	(Lee	et	al.,	2009).	It	can	be	argued	that,	as	
such,	 heat‐treated	 wood	 exposed	 to	 the	 temperatures	 used	 in	 this	 study,	 is	 not	 as	
osteoconductive	as	the	load‐bearing	bone	substitute	biomaterials	routinely	used	clinically.				
	
The	fibrous	capsule	seen	adjacent	to	the	implanted	wood	in	all	groups	(untreated,	140C,	
200C	 and	 220C	 heat‐treated)	 was	 observed	 to	 be	 in	 tight	 contact	 with	 the	 wood	
implants.	The	study	did	not	encompass	a	time	span	to	evaluate	how	much	of	the	fibrous	
tissue	later	differentiated	to	bone	according	to	a	normal	late	bone‐healing	process.	It	can	
be	 cautiously	 considered	 that	 the	 increasing	 trend	 seen	 with	 200C	 and	 220C	 heat‐
treated	wood	with	regard	to	the	amount	of	bone	contacts	would	predict	the	differentiation	
of	 fibrous	tissue	 into	bone	at	 later	time	points,	whereas	no	such	trend	was	evident	with	
the	untreated	and	the	140C	heat‐treated	wood.		
	
The	 amount	 of	 bone	 contact	 and	 the	 appearance	 of	 adjacent	 bone	 and	 fibrous	 tissue	
formation	 suggest	 that	 heat	 treatment	 induces	 osteoconductivity	 in	 birch	 wood.	 To	
further	 investigate	 this	 claim,	 push‐out	 tests	 and	 nanoscale	 analysis	 of	 the	 interface	
should	be	conducted.	
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6.3	Chemical	interface	model	
	
The	 bonding	 process	 between	 wood,	 an	 organic	 polymer,	 and	 inorganic	 bone	 can	 be	
contemplated	both	in	terms	of	of	molecular	chemical	activity	and	as	a	cascade	of	cellular	
activity.	 The	 presence	 of	 chemical	 substances	 and	 more	 closely	 the	 availability	 of	
functional	groups	at	the	interphase	dictate	the	quality	of	the	nanoscale	interactions.		
	
The	trauma	caused	by	drilling	(in	studies	I	and	II)	corresponds	to	that	of	a	bone	fracture,	
and	 thus	 the	 healing	 processes	 may	 be	 regarded	 as	 similar	 in	 terms	 of	 immediate	
physiological	 responses.	 Chemical	 modulators	 of	 the	 bonding	 phenomenon	 emerge	
through	 hemorrhage	 and	 blood	 clot	 dissolution	 initiated	 by	 trauma	 and	 through	 the	
healing	 process	 cascade,	 encompassing	 body	 fluids	 with	 an	 array	 of	 proteins,	 peptides	
such	as	fibrin,	cytokines	and	collagens	(Scott	Adzick,	1997).		
	
Chemical	contact	 leading	to	bone	bonding	has	been	partly	explained	by	the	formation	of	
active	groups	and	ions,	such	as	hydroxyl	(–OH),	carbonyl	(=CO)	and	hydrogen	(H+)	on	the	
surface	of	bioactive	ceramics,	glasses	and	titanium	(Hench	and	Andersson,	1993;	Karlsson,	
2004;	Kokubo	et	al.,	2004;	LeGeros	and	Daculsi,	1990).	The	appearance	of	hydroxyl	and	
carbonyl	 groups	 on	 the	 wood	 surface,	 due	 to	 gradual	 hydrolysis	 of	 cellulose	 and	
hemicellulose,	is	illustrated	in	figure	6.1.	In	addition	to	the	amount	of	functional	groups,	
the	 concentration	 and	 structural	 arrangement	 of	 these	 functional	 groups	 has	 been	
observed	to	influence	the	precipitation	of	hydroxyl	apatite	(Kokubo	et	al.,	2003).		
	
An	 outline	 of	 the	 bonding	 process	 between	 wood	 and	 bone	 can	 be	 formed	 using	 the	
bonding	between	bone	and	hydroxyl	apatite	and	bioactive	glass	based	on	the	SiO2–CaO–
Na2O–P2O5	 system	 (Earth	 oxides)	 described	 in	 the	 literature	 (Andersson	 et	 al.,	 1990;	
Hench	 et	 al.,	 1971;	 Karlsson,	 2004).	 The	 architecture	 of	 the	 chemical	 bonding	 strength	
system	 depicts	 the	 interactions	 between	 the	 ions	 and	 reaction	 groups	 existing	 in	 the	
interphase,	 namely	 the	 strong	 ionic	 bonding	 between	 H+,	 –COO‐,	 Ca2+	 and	 PO43‐	 and	
covalent	bonding	(–C–O–,	–C–C–,	–Si–O–),	weaker	hydrogen	bonding	(–NH2,	–OH	and	=CO)	
as	well	as	dipole‐dipole	and	cohesive	London	forces	(van	der	Waals	forces)	(Laitinen	and	
Toivonen,	 1987;	 Shriver	 and	 Atkins,	 2001).	 The	 occurrence	 of	 the	 aforementioned	
interactions	is	illustrated	in	Figure	6.2.		
	
In	 the	 early	 stages	 of	 the	 process,	 phosphate	 ions	 precipitate	 calcium	 ions	 from	 body	
fluids;	 the	 presence	 of	 a	 super‐saturated	 solution	 of	 calcium	 is	 derived	 from	 the	
breakdown	 of	 the	 hydroxyl	 apatite	 of	 the	 damaged	 bone,	 from	 clotted	 blood	 and	
extracellular	 fluids	 (Fong	and	Lowry,	1994;	Nordström	and	Sánchez	Muñoz,	2001;	Rose	
and	Marzi,	1998).	The	complexity	of	the	bonding	system	is	 increased	by	the	presence	of	
oxygen	 radicals	 and	 negatively	 charged	 ions	 interacting	 with	 calcium	 at	 the	 surface	 of	
osteoconductive	materials	(Kokubo	et	al.,	2004;	Rose	and	Marzi,	1998).		
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Figure	6.1	
A	simplified	presentation	of	the	presence,	formation	and	the	re‐organization	of	reactive	groups	during	the	heat	
treatment	process.	Note	 the	appearance	of	 carbonyl	 (=CO)	and	 the	 re‐arrangement	of	hydroxyl	 (–OH)	groups.	
The	amount	of	acetyl	groups	defines	the	speed	of	the	hydrolysis;	the	more	acetyl	groups	are	present,	the	more	
catalytic	acetic	acid	is	formed.	The	amount	of	acetyl	groups	depends	of	the	cellulose/hemicellulose	ratio	of	the	
xylem.	(Fengel	and	Wegener,	1989)(I)	
	
	
	
	

	
	
				
Mineralized	collagen	matrix,	Ca10(PO4)6(OH)2	
	

	

	
	

	
	
	
	
	
	
	
	
	

Figure	6.2	
A	 simplified	 illustration	 of	 the	 chemical	 interface	 model	 (CIM)	 depicting	 the	 functional	 chemistry	 at	 the	
interphase	between	wood	and	bone.	(I)	
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6.4	Physical	properties	
	
The	influence	of	heat	treatment	on	the	biomechanical	properties	of	wood	is	summarized	
in	 Table	 6.1.	 One	 of	 the	 main	 observations	 was	 the	 reduction	 in	 swelling	 with	 heat	
treatment.	In	study	III,	the	kinetics	of	the	dimensional	changes	appeared	to	be	similar	in	
all	tested	materials	(untreated,	140C	and	200C	heat‐treated	wood).	There	was	a	marked	
increase	in	dimensions	(i.e.	swelling)	during	the	first	seven	days	of	SBF	immersion.	After	
this,	 no	 further	 significant	 changes	were	 observed.	 The	 slight	 downward	 curve	 after	 40	
days,	 in	 the	 illustration	 of	 dimensional	 changes	 (Figure	 5.18),	 was	 most	 likely	
measurement	error	due	to	the	slight	softening	of	the	surface	of	the	wood.	The	amount	of	
swelling	 observed	 was	 inversely	 correlated	 to	 the	 heat	 used	 in	 the	 heat	 treatment.	
Dimensional	stability	or	controlled	dimensional	variability	is	an	important	feature	in	bone	
substitute	materials.	Dimensional	stability	can	 influence	 the	gap	(diastasis)	between	 the	
implanted	material	and	the	host	bone,	a	factor	that	largely	defines	the	speed	and	quality	of	

the	 osseointegration.	 A	 slight	 increase	 in	
dimension	 after	 implantation	 can	 enhance	 the	
success	of	the	implantation	procedure.	As	a	result	
of	 immense	 forces	 associated	 with	 swelling	
(figure	6.3),	excessive	post‐implantation	swelling	
might	also	have	adverse	effects	and	reports	in	the	
literature	 suggest	 a	 possibility	 of	 implant	
compression	 necrosis	 due	 to	 unwarranted	
compression	 forces	 or	 excessive	 compression	
during	implant	placement	(Bashutski	et	al.,	2009).	
To	achieve	an	optimal	level	of	compression	at	the	
interface	 is	 interplay	 between	 the	 properties	 of	
the	biomaterial	and	the	operative	procedure.		
	

	
	
Figure	6.3	
A	photo	showing	the	method	used	by	Incas	to	split	a	rock.	A	line	of	small	holes	was	made.	Wooden	plugs	were	
inserted	 into	 the	holes	 and	 then	wetted.	 The	 splitting	 of	 a	 huge	block	 of	 rock	 is	 a	 good	demonstration	of	 the	
forces	associated	with	the	swelling	of	wood.	(Photo	by	author)	
	
Table	6.1.		
A	table	presenting	the	results	of	the	biomechanical	tests.	The	reference	values	for	bone	and	FRCs	are	from	the	
literature	(Audekerecke	and	Martens,	1984;	Bonfield,	1984;	Evans	and	King,	1961;	Kokubo	et	al.,	2003;	Vallittu,	
1999a)	(III).	
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The	possibility	to	modify	the	biomechanical	properties	is	a	prerequisite	for	a	biomaterial	
to	conform	to	the	multivariate	mechanical	environment	of	living	bone.	Flexural	properties	
are	 used	 to	 depict	 biomechanical	 attributes	 of	 candidate	 biomaterials.	 Heat	 treatment	
hydrolyzes	 cellulose	 and	 hemicellulose	 strands	 (Stamm,	 1956).	 Cross‐linking	 alters	 the	
chemical	composition	of	 the	wood	cell	walls.	Overall,	 the	effects	of	heat	 treatment	make	
wood	 harder,	 less	 flexible	 and	more	 brittle.	 The	 effects	 are	 similar	 to	 the	 quenching	 of	
steel.	 To	 better	 understand	 the	 effects	 of	 heat	 treatment	 on	 the	 behavior	 of	wood	 in	 a	
biological	 environment,	 the	 materials	 were	 tested	 dry	 and	 after	 SBF	 immersion.	 In	
summary,	heat	treatment	lessens	the	effects	of	SBF	immersion	on	the	flexural	properties	
of	wood.	The	differences	in	biomechanical	attributes	after	SBF	immersion	are	depicted	in	
Figure	6.4.	The	behavior	of	a	biomaterial	in	a	biological	system	is	more	difficult	to	predict	
with	materials	 that	have	significant	differences	 in	biomechanical	attributes	between	dry	
and	 aqueous	 environments.	 Heat	 treatment	 of	 wood	 diminishes	 the	 effect	 of	 SBF	
immersion	 on	 the	 biomechanical	 properties,	 and	 thus	 has	 a	 positive	 effect	 on	 the	
predictability	of	the	mechanical	behavior	of	wood	in	vivo.			

	
Figure	6.4	
A	diagram	 illustrating	 the	 effects	 of	 heat	 treatment	 on	 flexural	 properties	 of	wood.	 The	wood	materials	were	
immersed	 in	 SBF	 for	 63	 days.	 The	 200C	 heat‐treated	 material	 (a)	 reached	 the	 maximum	 load	 fastest	 and	
therefore	 has	 the	 highest	modulus.	 Unlike	 the	 untreated	wood	 (c)	 and	 the	 140C	 (b)	 heat‐treated	wood,	 the	
200C	heat‐treated	wood	material	did	not	bend	greatly	even	after	SBF	immersion,	which	is	illustrated	by	the	fast	
drop	of	the	curve	after	the	peak	load,	i.e.	at	this	point	the	material	breaks.	The	area	under	the	curve	represents	
the	mechanical	 attribute	 of	 toughness,	which	 is	 greater	 in	 the	materials	 that	 bend	during	 loading,	 even	 if	 the	
maximum	tolerated	load	is	lesser.	(III).	
		
	
The	 compressive	 and	 bending	 strength	 of	 birch,	 regardless	 of	 heat	 treatment,	 was	 less	
than	 human	 cortical	 bone	 (Evans	 and	 King,	 1961).	 The	 flexural	 modulus	 of	 birch	
represented	 that	 of	 brittle	 osteoporotic	 cortical	 bone	 when	 measured	 dry,	 and	 was	
reduced	 further	 after	 SBF	 immersion.	 It	 can	 be	 hypothesized	 that	 the	 effect	 of	 possible	
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mineralization	 of	 bone	 into	 the	 channel	 structures	 of	 wood	 in	vivo	would	 increase	 the	
flexural	modulus	of	an	implanted	wood	material.	The	biomechanics	of	FRCs	cover	more	or	
less	 every	 biomechanical	 value	 of	 living	 bone	 tissue.	 The	 formability	 of	 FRCs	 is	 a	
formidable	asset	when	considering	 the	 range	of	bone	substitute	applications.	Therefore,	
further	processing	and	analysis	of	wood	materials	could	yield	more	information	that	could	
be	beneficial	for	wood‐derived	biomaterial	applications	as	well	as	for	the	development	of	
biomechanically	optimized	synthetic	FRCs.	
	
The	contact	profilometry	results	indicated	that	heat	treatment	reduced	the	mean	surface	
roughness	 of	 birch.	 The	 result	 was	 in	 line	 with	 previous	 reports,	 where	 similar	 test	
methods	 have	 been	 used	 with	 other	 wood	 species	 and	 different	 heat	 treatment	
methodologies	 (Ayrilmis	 and	Winandy,	 2009;	 Gunduz	 et	 al.,	 2008;	 Korkut	 et	 al.,	 2008;	
Korkut	and	Budakci,	2010).	The	mechanism	that	reduces	roughness	is	not	known.	It	has	
been	suggested	that	lignin	is	altered	at	high	temperatures	to	a	thermoplastic	form,	which	
makes	the	cell	surfaces	more	dense	(Korkut	et	al.,	2008).	The	partial	disintegration	of	the	
cell	walls	associated	with	high	temperature,	also	observed	in	current	study	(IV),	may	also	
have	 an	 influence.	 Increased	 surface	 roughness	 means	 a	 larger	 available	 surface	 area,	
which	 in	 general	 is	 beneficial	 for	 surface	 interactions	 such	 as	 osteoconductivity.	
Additionally,	 the	contour	or	nanoscale	architecture	of	 the	surface	has	a	significant	effect	
on	 the	 distribution	 of	 shear	 forces,	 which	 in	 turn	 affects	 the	 osseointegration	 process	
(Hansson,	2006).	The	surface	contour	of	the	materials	(untreated,	140C	and	200C	heat‐
treated	wood)	as	well	the	influence	of	pre‐measurement	grinding,	was	studied	with	non‐
contact	profilometry.	 It	 is	difficult	 to	conduct	measurements	of	 the	surface	roughness	of	
wood	in	a	reproducible	manner	because	of	the	fibrillar	composition	of	the	material.	Pre‐
measurement	 grinding	must	 be	 therefore	 performed	 to	 minimize	 the	 effects	 of	 sample	
preparation	since	sawing	for	example	can	have	a	major	impact	on	the	surface	roughness	
of	 a	 specimen.	 The	 grinding	 method	 should	 be	 uniform	 between	 specimens,	 and	 the	
number	 of	measurements	 should	 be	 high	 to	 further	 emphasize	 the	 effect	 of	 the	 surface	
properties	of	the	material	over	the	pre‐treatment	method	used	in	the	analysis.	The	effect	
of	 grinding	 was	 illustrated	 by	 the	 observations	 in	 non‐contact	 profilometry.	 Rotational	
manual	grinding	with	silicon	carbide	abrasive	paper	changed	the	gross	profile	of	the	heat‐
treated	wood	and	 increased	the	mean	roughness	significantly.	The	wood	heat‐treated	at	
200C	 seemed	 to	 be	 the	most	 influenced	 by	 grinding	method.	 The	 biomechanical	 tests	
conducted	 in	 this	 study	 (III)	 could	 suggest	 that	 the	 fibers	of	birch	wood	heat‐treated	at	
200C	were	less	likely	to	withstand	the	forces	of	grinding	when	applied	across	the	grain,	
and	 therefore	 were	 more	 likely	 to	 break,	 forming	 protruding	 fibers.	 These	 broken	
protruding	fibers	would	explain	the	high	mean	surface	roughness		(Ra	value)	of	the	200C	
heat‐treated	wood	 and	 the	 change	 in	 the	 surface	 contour,	 as	 depicted	with	 non‐contact	
profilometry.	 It	 can	 be	 argued	 that	 the	 results	 of	 the	 non‐contact	 surface	 profilometry	
illustrate	 how	 easy	 it	 is	 to	 modify	 the	 surface	 characteristics	 of	 wood,	 which	 can	 be	
beneficial	for	a	biomaterial	and	for	a	model	material	for	the	development	of	biomaterials.	
	
The	contact	stylus	method	appears	to	be	the	gold	standard	in	wood	surface	profilometry	
in	 the	 literature.	 For	 the	 purposes	 of	 the	wood	 industry	 and	 for	 large	 surfaces,	 it	 is	 an	
accurate	and	reliable	methodological	approach.	In	biological	applications,	the	scale	of	the	
necessary	measurements	and	 the	need	 for	 contour	 characterization	of	 the	 surfaces	may	
sometimes	 call	 for	 a	 non‐contact	 method	 (or	 a	 very	 sophisticated	 three‐dimensional	
contact	method).	In	fibrous	materials,	the	contact	stylus	method	may	have	shortcomings.	
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Small	micro‐scale	protruding	fibers,	which	can	impact	on	the	biological	responses	of	the	
material,	 can	 bend	 under	 the	 stylus.	 This	 can	 partially	 explain	 the	 marked	 differences	
between	 the	 results	 obtained	 with	 the	 contact	 and	 non‐contact	 methodologies	 in	 this	
study.	 The	 area	 of	 the	 analyzed	 surface	 as	 well	 as	 the	 aforementioned	 pre‐treatment	
grinding	also	have	obvious	impact.	The	accuracy	and	the	applicability	of	the	stylus	method	
are	greatly	dependent	on	the	sophistication	of	 the	 instrumentation,	and	sometimes	both	
methods	 may	 be	 required	 to	 achieve	 an	 accurate	 characterization	 of	 the	 surface	
properties	of	a	biomaterial.	
	
Surface	topography	has	significant	effects	on	cell	behavior	and	host	bone	reactions	(Grew	
et	al.,	2008).	The	effects	of	heat	treatment	induced	microscale	changes	in	the	wood	surface	
structure	 	may	have	 important	consequences	 in	terms	of	 the	host	tissue	response.	 If	 the	
implant	surface	 topography	has	microscale	 features	resembling	 those	of	mature	bone	at	
bone	remodelling	sites,	it	may	lead	to	bone	bonding	phenomena	according	to	the	“cement	
line”	 bonding	 theory	 (Davies,	 2007).	 This	 notion	 has	 a	 prerequisite	 of	 a	 stable	 surface,	
which	 is	 a	 feature	 that	 biomechanical	 tests	 show	 to	 increase	 during	 heat	 treatment	 of	
wood	
	
In	 this	study,	 it	was	concluded	that	heat	 treatment	of	birch	wood	 influences	 the	surface	
roughness.	However,	the	absolute	changes	in	mean	surface	roughness	were	so	small	that	
they	 may	 be	 considered	 to	 be	 of	 	 little	 if	 any	 biological	 significance.	 The	 role	 of	
topographical	 changes	at	 the	micrometer	 level	 and	 the	possible	 presence	 and	biological	
effects	of	protruding	fibers	on	the	surface	of	heat‐treated	wood	were	not	within	the	scope	
of	this	study,	but	should	be	taken	into	account	in	future	studies.	

6.5	Liquid	interactions	
	
The	 diameters	 of	 the	 open	 channels	 and	 pores	 in	 a	 biomaterial	 determine	much	 of	 the	
quality	 of	 the	 tissue	 that	 grows	 into	 them.	 Many	 reports	 in	 the	 literature	 suggest	 the	
optimal	pore	size	allowing	in‐growth	of	mineralized	bone	 is	approximately	100‐400	μm,	
although	even	smaller	pore	sizes	of	50‐125	μm	have	been	found	to	be	sufficient	for	bone	
in‐growth	(Itälä	et	al.,	2001).	The	vessel	size	of	birch	wood	(100	μm)	is	within	the	suitable	
range,	whereas	the	diameters	of	the	luminae	of	the	tracheids	and	libriform	fibers		(10‐40	
μm)	are	smaller.	It	is	also	important	to	appreciate	the	interconnectivity	of	wood	channels,	
a	 feature,	 which	 facilitates	 cell	 penetration	 into	 the	 implant	 and	 is	 considered	 very	
important	for	a	porous	biomaterial	and	scaffold	designs.	
	
The	results	of	this	study	corroborate	observations	in	the	literature	that	gross	hierarchical	
composition	of	dried	wood	does	not	change	during	heat	treatment.	At	a	smaller	scale,	the	
observed	cracking	of	 the	cell	walls	 in	all	 investigated	wood	types	(untreated,	140C	and	
200C	heat‐treated)	is	in	line	with	observations	in	the	literature	concerning	the	drying	of	
wood.	 The	 sporadic	 observation	 of	 lamellar	 breaking	 of	 cell	 walls	 is	 also	 in	 agreement	
with	the	literature.	During	heat	treatment,	the	lamellae	comprising	the	cell	walls	may	be	
loosened	and	break	(Fillo	and	Peres,	1970).	The	protruding	lamellar	flaps	can	be	thought	
to	yield	an	increased	interactive	surface	area,	and	even	affect	the	cell	responses,	although	
these	possibilities	have	not	been	directly	investigated	in	this	study.	
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The	nature	of	 the	high‐vacuum	SEM	approach	used	 to	 study	 the	microscale	 structure	of	
wood	demands	the	specimens	to	be	as	dry	as	possible.	Although	it	was	observed	that	heat	
treatment	does	not	alter	the	morphology	and	structure	of	the	cell	walls	of	the	dried	wood,	
the	absorption	 tests	carried	out	 in	 this	study	(III)	suggest	 that	 this	 is	not	 the	case	 in	an	
aqueous	environment.	Heat	treatment	reduces	the	amount	of	swelling	by	diminishing	the	
amount	 of	water	 absorbed	 into	 the	 cell	walls	 (Kollman	 and	 Schneider,	 1963).	 The	wet‐
state	 morphology	 of	 heat‐treated	 wood	 presumably	 differs	 from	 untreated	 wood.	 The	
swelling	 of	 wood	 does	 not	 alter	 significantly	 the	 diameter	 of	 the	 luminae	 of	 the	 fibers	
(Stamm,	 1935).	 	 The	 most	 notable	 difference	 in	 configuration	 between	 untreated	 and	
heat‐treated	wood	in	an	aqueous	environment	may	be	considered	to	be	the	proportion	of	
liquid	within	 the	channel	structures	compared	with	 the	amount	of	 liquid	within	 the	cell	
walls.	 It	 may	 be	 considered	 that	 heat	 treatment	 increases	 the	 similarity	 of	 liquid	
conveyance	 features	 of	 wood	 and	 living	 bone,	 and	 that	 the	 free‐flowing	 liquid	 of	 the	
channels	 is	biologically	more	available	than	the	“stored”	water	within	the	cell	walls.	The	
biological	 relevance	of	 this	 phenomenon	 is,	 however,	 unclear	 and	 cannot	 be	 adequately	
estimated	without	additional	studies.	The	hierarchical	canalicular	structure	of	wood	has	
been	perfected	by	evolution	to	facilitate	effective	liquid	transport,	allowing	trees	to	grow	
to	heights	of	over	100	meters,	a	remarkable	feat	considering	that	the	theoretical	 lift	of	a	
standard	mechanical	vacuum	pump	is	less	than	10	meters.	The	liquid	conveyance	system	
of	wood	thus	holds	a	considerable	amount	of	information	to	be	understood	for	the	benefit	
of	biomaterials	research	employing	biomimetism	and	bioinspiration.	
	
In	the	liquid	penetration	tests	(IV),	the	short	dipping	times	excluded	the	effects	of	cell	wall	
swelling,	such	that	the	viscosity	of	the	solutions	and	the	hydrophilic/hydrophobic	nature	
of	the	wood	and	the	solutions	were	the	determining	factors.	The	results	are	a	combination	
of	 both	 wetting	 and	 wicking	 phenomena.	 Heat	 treatment	 is	 known	 to	 reduce	 the	
hydrophilicity	of	wood	(Bryne	and	Walinder,	2010;	Kocaefe	et	al.,	2008).	Untreated	wood	
can	be	considered	highly	hydrophilic.	The	degradation	and	cross‐linking	of	cellulose	and	
hemicellulose	and	conformational	modification	 in	 lignin	and	polysaccharide	components	
reduce	the	hydrophilicity	of	wood	up	to	heat	treatment	temperature	of	190C,	after	which	
the	 formation	 of	 hydrophilic	 degradation	 products	 seems	 to	 again	 transform	 the	wood	
towards	being	more	hydrophilic	 (Hakkou	et	al.,	2005;	Pecina	and	Paprzycki,	1988).	The	
glycerol	in	the	GEW	solution	caused	the	solution	to	act	in	a	hydrophobic	manner,	whereas	
the	 starch	 solution	 was	 hydrophilic.	 In	 terms	 of	 hydrophilicity,	 human	 blood	 is	
intermediate	 between	 the	 GEW	 and	 the	 starch	 solution.	 This	 is	 in	 agreement	 with	 the	
results	of	the	liquid	penetration	tests.	The	hydrophilic	starch	solution	interacted	best	with	
the	untreated	wood,	whereas	the	penetration	of	human	blood	was	best	in	the	200C	heat‐
treated	wood.	The	liquid	interactions	of	140C	heat‐treated	wood	were	closer	to	those	of	
untreated	 wood	 than	 those	 of	 200C	 heat‐treated	 wood,	 which	 agrees	 with	 previous	
reports	on	heat	treatment	dynamics	(Pecina	and	Paprzycki,	1988;	Viitaniemi	and	Jämsä,	
1996).	Biologically,	the	most	relevant	results	concern	the	penetration	of	human	blood,	as	
this	is	essential	for	the	early‐stage	reactions	of	bone	healing.	The	ability	of	the	material	to	
adsorb	 blood	 is	 likely	 to	 influence	 extracellular	 interfacial	 reactions	 that	 can	 lead	 to	
favorable	host	tissue	responses	in	the	form	of	bone	bonding	(Cao	and	Hench,	1996)	
	
The	results	of	the	SBF	immersion	tests	(III)	provided	further	support	that	heat	treatment	
induces	 biologically	 relevant	 changes	 in	 the	 liquid	 interactions	 of	 birch	 wood	 in	vitro.	
Formation	of	hydroxyl	apatite	crystals,	which	occurred	only	 in	 the	wood	heat‐treated	at	
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200C	 (compared	 with	 untreated	 and	 140C	 heat‐treated	 wood),	 suggests	 that	 heat	
treatment	produces	favorable	physico‐chemical	changes	in	the	composition	of	wood	with	
regard	 to	 biological	 bone	 responses.	 Changes	 in	 the	 concentration	 and	 structural	
arrangement	 of	 functional	 groups	 are	 the	 most	 likely	 to	 account	 for	 the	 behavior.	
Regarding	 the	 effects	 of	 physical	 alterations,	 modified	 liquid	 influx	 may	 alter	 the	
concentration	 distribution	 of	 the	 interacting	 fluids,	 namely	 body	 fluids,	 and	 the	
microstructural	alterations	of	the	wood	cell	walls	may	have	an	effect	on	the	crystallization	
of	apatite	as	well	as	on	the	cellular	responses	in	vivo.	However,	when	considering	the	role	
of	 liquid	 interactions	 in	 the	 process	 of	 osseointegration	 and	 osteoconductivity,	 the	
influence	of	the	aforementioned	physical	changes	may	be	limited.	

6.6	Methodological	considerations	
	
It	could	be	argued	that	the	scope	of	the	current	study	was	too	narrow,	however	as	a	result	
of	 resources	 available,	 in	 terms	of	manpower,	materials	 and	 instrumentation,	 the	 study	
was	 limited	 to	 include	 the	 important	 focus	 areas.	 The	 study	 concentrated	 on	 the	 novel	
idea	of	wood	as	a	model	biomaterial,	and	thus	had	a	main	focus	on	large	concepts,	namely	
overall	biological	responses,	osteoconductivity	and	gross	biomechanical	attributes,	as	well	
as	 liquid	 interactions	 in	 vitro.	 The	 experimental	 aspects	 studied	 were	 chosen	 for	 the	
purpose	of	establishing	a	foundation	on	which	to	build	upon	in	future	research.	However,	
the	success	 in	the	choice	of	the	aspects	of	 interest	 in	a	novel	study	area	is	unfortunately	
partly	 left	 to	chance.	The	concept	of	a	model	material	used	 in	 this	study	consists	of	 two	
distinct	 ideas;	 research	on	wood	as	an	 independent	biomaterial,	 and	characterization	of	
the	features	that	may	favorably	influence	the	biological	responses	of	the	host	tissue	for	the	
purpose	of	the	future	development	of	biomaterials.		
	
The	next	topics	of	interest	when	expanding	the	scope	of	the	present	studies	could	include:	
1.	 Comparisons	 between	 different	 tree	 species:	 specifically	 the	 characterization	 of	 the	
channel	structures,	biomechanical	properties	and	the	susceptibility	to	heat	treatment;	2.	
Detailed	characterization	of	the	changes	induced	by	heat	treatment	in	the	composition	of	
wood,	 especially	 regarding	 the	 functional	 chemical	 groups;	 3.	 Further	 evaluation	 of	 the	
interfacial	reactions	between	wood	and	bone	using	push‐out	tests	and	Fourier	transform	
infrared	microscopy.	 The	 assumption	 of	 bone	 bonding	 in	 this	 study	was	 based	 on	 light	
microscopic	evaluations	of	histological	samples	and	EDS	analysis,	and	 there	needs	 to	be	
more	comprehensive	experimentation	for	the	observations	to	be	validated;	4.	Assessment	
of	the	biologically	relevant	effects	of	different	heat	treatment	temperatures	and	treatment	
times;	5.	Additional	 in	vivo	 tests	with	 implantation	sites	 in	 load‐bearing	cortical	bone,	 in	
soft	tissues	and	in	the	head	and	neck	region,	where	there	is	an	increased	medical	need	for	
novel	 biomaterials	 evolution	 and	 development;	 6.	 Additional	 in	 vitro	 tests	 for	 further	
physical	characterization	of	wood	materials	(porosity,	rotational	mechanical	 tests,	 liquid	
interaction	and	influx,	wet‐state	morphology,	etc.);	7.	Cell	culture	and	bacterial	adhesion	
tests	to	evaluate	important	safety	aspects.	The	current	list	is	incomplete	and	will	probably	
be	expanded	with	increased	knowledge	gain,	Some	aspects	that	did	not	fit	the	scope	of	this	
thesis,	but	can	still	be	regarded	of	 future	 interest	and	essential	 to	 the	 idea	of	wood	as	a	
model	biomaterial	are	discussed	in	the	chapter	8.	Future	prospects.			
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6.6.1	In	vivo	tests	
	
During	the	histological	evaluation,	occasional	morphologically	empty	narrow	spaces	were	
observed	 at	 the	 interface	 between	 bone	 and	 the	 implanted	 material.	 These	 were	
considered	 as	 likely	 to	 be	 artifacts	 caused	 by	 either	 histological	 fixation	 or	 sawing	
methods.	It	is	possible	that	in	places	due	to	a	mismatch	in	the	reactions	to	embedding,	the	
sawing	 separated	 the	 wood	 material	 from	 bone,	 causing	 an	 empty	 space	 not	 actually	
present	in	living	bone	tissue	(Figure	6.5).	Similar	observations	have	been	made	in	other	
research	studying	wood	in	vivo	(Gross	and	Ezerietis,	2003).		
	
As	 is	 usual	 in	 animal	 experimentation,	 operative	 limitations	 existed	 and	 sometimes,	 the	
shape	of	 the	handcrafted	 implant	did	not	exactly	match	that	of	 the	drill	hole.	The	shape	
mismatch	 could	have	 led	 to	 inadequate	 contact	 between	 the	host	 bone	and	 the	 implant	
during	 the	 press‐fit	 implantation,	 namely	 the	 development	 of	 a	 gap,	 and	 consequently	
could	have	 resulted	 in	possibly	 slower	bone	healing	process	and	 lesser	bone‐to‐implant	
contact	at	given	time	points.	The	saline	solution	used	as	the	coolant	during	the	operation	
did	not	always	sufficiently	flush	the	drilling	surface	at	all	times,	possibly	leading	to	minor	
thermal	 damage	 to	 the	walls	 of	 the	drill	 cavity	 in	 the	bone	 and	 thereby	 influencing	 the	
implantation	negatively.		
	
The	 aforementioned	 factors	may	 have	worsened	 the	 results	 of	 the	 study.	 However	 the	
problems	were	rare	and	sporadic	and	their	impact	on	the	results	is	not	likely	to	have	been	
great.	 Since	 any	 methodological	 or	 operational	 variables	 probably	 influenced	 all	 of	
implant	materials	 in	an	equal	manner,	 they	 should	not	have	caused	any	 systematic	bias	
that	would	impact	upon	the	treatment	group	comparisons.	
	
While	 the	main	 purpose	 of	 the	 in	vivo	experimentation	 in	 this	 study	 was	 to	 determine	
differences	 in	 osteoconductivity	 between	 birch	wood	 implants	 heat‐treated	 at	 different	
temperatures,	no	other	biomaterial	was	used	for	comparison.	Untreated	wood	was	used	
as	the	internal	control,	and	was	considered	the	baseline	material	to	which	heat	treatment	
effects	 were	 compared.	 The	 decision	 to	 omit	 another	 biomaterial	 for	 comparison	 also	
reduced	 the	number	of	animals	and	operations	required,	a	considerable	asset,	given	 the	
large	sample	size	and	the	prospective	study	design.		
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Figure	6.5	
200C	heat‐treated	wood	implant	20	weeks	after	implantation.	[Masson‐Goldner	(fig	on	the	left),	Van	Gieson	(fig	
on	 the	 right)].	 	Wood	 fibers	 are	 in	 tight	 contact	 with	 the	 host	 bone	 (black	 arrows),	 but	 probably	 during	 the	
histologic	sample	preparation,	 the	 implant	has	been	separated	 from	the	bone,	 leaving	an	empty	space	(e),	not	
normally	seen	in	tissues,	between	the	host	bone	and	the	implant.	
	
	
6.6.2	In	vitro	tests	
	
While	 the	 sample	 sizes	 in	 the	 biomechanical	 and	 liquid	 penetration	 tests	 were	 small,	
statistical	significance	was	reached	in	many	between‐group	comparisons.	The	number	of	
specimens	 can	 also	 be	 justified	 by	 the	 reproducibility	 of	 the	 experimental	 results.	 The	
nature	of	 the	aforementioned	studies	was	descriptive	and	directional,	and	therefore	can	
be	argued	to	have	less	need	for	rigorous	statistical	evidence	of	effect	sizes.			
	
The	 separation	 of	 the	 methylene	 blue	 coloration	 from	 the	 test	 liquids	 caused	 some	
difficulties	 in	 the	 evaluation	 of	 the	 liquid	 penetration	 tests.	 The	 results	were	 evaluated	
based	 on	 the	 penetration	 of	 methylene	 blue,	 because	 it	 was	 observed	 to	 be	 linearly	
proportional	 to	 the	 penetration	 of	 the	 clear	 portion	 of	 the	 liquid	 and	 the	 observation	
method	 thus	 enabled	 valid	 between‐group	 comparisons.	 However,	 if	 more	 quantitative	
and	academically	comparable	measurements	were	required,	the	coloration	marker	of	the	
liquids	 should	 not	 separate	 from	 the	 clear	 portion.	 Contact	 angle	 measurements	 could	
have	 been	 performed	 to	 enable	 a	 more	 accurate	 analysis	 of	 the	 changes	 in	 the	
hydrophilicity	of	wood.	However,	as	a	result	of	 the	descriptive	and	directional	nature	of	
the	study,	these	measurements	were	omitted	and	the	adequate	prior	knowledge	available	
in	the	literature	was	used.	
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7.	CONCLUSIONS	
	
The	following	general	conclusions	may	be	drawn	from	the	studies	presented	in	this	thesis:	
	

	
1. Heat	 treatment	of	wood	has	 significant	 influence	 on	 the	biological	 responses	of	

the	 host	 environment	 to	 implanted	 wood	 and	 favorable	 effects	 on	 the	
osteoconductivity	and	biocompatibility	of	wood.	
	

2. Heat	 treatment	 has	 a	 significant	 impact	 on	 several	 biologically	 relevant	
mechanical	 attributes	 (namely	 modulus,	 bending	 strength	 and	 toughness)	 of	
wood,	 while	 mechanical	 and	 dimensional	 stability	 in	 a	 biological	 environment	
increases.		
	

3. Heat	 treatment	 significantly	 affects	 the	 behavior	 of	 wood	 in	 aqueous	
environments	and	has	effects	that	can	be	considered	positive	on	the	interactions	
between	wood	and	biological	fluids	that	are	relevant	to	bone	healing	processes.	

	
4. Wood	can	be	used	as	a	model	material	 for	biomaterials	 research	 in	both	 in	vivo	

and	in	vitro	experiments,	offering	a	platform	for	further	studies.		
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8.	FUTURE	PROSPECTS	
	
The	 future	 for	 wood	 in	 biomaterials	 research	 applications	 is	 very	 much	 untapped.	
According	to	the	biomimetic	model	material	concept,	future	research	on	the	use	of	heat‐
treated	 and/or	 otherwise	 modified	 wood	 as	 a	 hierarchically	 structured	 biomaterial	 is	
warranted.	Equally,	the	use	of	wood	as	a	source	of	bioinspiration	and	a	model	material	for	
further	 development	 of	 synthetic	 biomaterials,	 especially	 FRCs,	 is	 an	 applicable	 idea.	
There	are	many	feasible	and	interesting	concepts	in	both	ideologies.		
	
Research	on	the	use	of	wood	as	a	scaffold	for	hierarchically	structured	bone	substitutes	is	
already	in	full	motion.	The	scaffold	concept	could	be	extended	also	to	include	heat‐treated	
wood.	A	scaffold	with	useful	biomechanical	properties	 could	be	 tailored	with	 the	use	of	
heat	 treatment	 and	 a	 careful	 choice	 of	 the	 wood.	 The	 scaffold	 could	 then	 be	 further	
modified	to	enhance	biocompatibility	by	including	cell	culture,	growth	factors,	stem	cells	
and	other	aspects	of	tissue	engineering.	The	amendment	of	other	materials	to	heat‐treated	
wood	 scaffold	 could	 also	 be	 useful.	 Materials	 that	 have	 already	 been	 proven	 to	 be	
biocompatible,	 namely	 bioactive	 glass	 could	 substantially	 increase	 the	 osteoconductive	
properties	of	wood	scaffolds.	The	optimization	of	wood	with	heat	treatment	alone	could	
also	 prove	 to	 be	 a	 sufficient	 modification	 to	 make	 a	 feasible	 bulk	 bone	 substitution	
material,	 with	 selected	 wood	 species.	 The	 concept	 could	 produce	 an	 affordable	
biomaterial	 solution	 for	 applications	 where	 large	 quantities	 of	materials	 are	 needed	 in	
health	care	environments	with	limited	resources.	This	concept	has	already	been	described	
in	 the	 literature	 using	 bamboo	 (Kosuwon	 et	 al.,	 1994).	Wood	 has	many	 properties	 that	
make	it	a	feasible	candidate	for	use	as	a	bulk	bone	substitute;	it	is	readily	available,	easy	to	
handle,	 shapeable	both	pre‐	 and	 intraoperatively,	 has	biomechanical	properties	 close	 to	
those	of	bone	and	appears	to	be	osteoconductive	when	heat‐treated.	
	
Heat‐treated	wood	 could	 be	 used	 as	 a	 testing	material	 for	 biomechanically	 challenging	
biomaterial	applications.	As	observed	in	this	study,	heat	treatment	can	be	used	to	modify	
the	biomechanical	properties	of	wood	to	mimic	various	biomechanical	situations	found	in	
living	bone	tissue.	Because	heat‐treated	wood	is	easily	obtainable	and	affordable,	it	could	
be	used	to	facilitate	biomechanical	testing	of	other	biomaterial	applications,	screws,	hooks,	
plates,	etc.	For	instance,	the	effects	of	the	shape	of	the	thread	of	a	screw	on	various	moduli	
could	 be	 tested	 in	vitro,	 when	 placing	 the	 screw	 in	 differently	 heat‐treated	woods.	 The	
plasticity	of	wood	biomechanics	could	also	facilitate	the	use	of	wood	as	a	bone	substitute	
when	conducting	 investigations	on	experimental	 traumata.	The	structure	of	wood	could	
be	used	as	 inspiration	when	designing	the	porosity	and	interconnectivity	of	the	pores	in	
synthetic	 fiber	 reinforced	 biomaterials.	 The	 use	 of	 cellulose	 as	 reinforcement	 fiber	 in	 a	
synthetic	bioactive	matrix	is	also	a	notion	worthy	of	further	studies.	Much	information	is	
still	 needed	 to	 effectively	 tailor	 a	 biomaterial	 for	 the	 altering	 demands	 of	 living	 bone	
tissue.	Information	from	wood	biomaterials	research	could	prove	useful	for	the	attributes	
influencing	 biocompatibility	 and	 this	 information	 could	 be	 adapted	 to	 further	 develop	
biomaterials	in	ways,	which	may	not	even	be	conceivable	at	the	current	time.			
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