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Abstract 

As technology geometries have shrunk to the deep submicron regime, the communication 
delay and power consumption of global interconnections in high performance Multi-
Processor Systems-on-Chip (MPSoCs) are becoming a major bottleneck. The Network-on-
Chip (NoC) architecture paradigm, based on a modular packet-switched mechanism, can 
address many of the on-chip communication issues such as performance limitations of long 
interconnects and integration of large number of Processing Elements (PEs) on a chip. The 
choice of routing protocol and NoC structure can have a significant impact on performance 
and power consumption in on-chip networks. In addition, building a high performance, area 
and energy efficient on-chip network for multicore architectures requires a novel on-chip 
router allowing a larger network to be integrated on a single die with reduced power 
consumption. On top of that, network interfaces are employed to decouple computation 
resources from communication resources, to provide the synchronization between them, 
and to achieve backward compatibility with existing IP cores.   
Three adaptive routing algorithms are presented as a part of this thesis. The first presented 
routing protocol is a congestion-aware adaptive routing algorithm for 2D mesh NoCs which 
does not support multicast (one-to-many) traffic while the other two protocols are adaptive 
routing models supporting both unicast (one-to-one) and multicast traffic. A streamlined 
on-chip router architecture is also presented for avoiding congested areas in 2D mesh NoCs 
via employing efficient input and output selection. The output selection utilizes an adaptive 
routing algorithm based on the congestion condition of neighboring routers while the input 
selection allows packets to be serviced from each input port according to its congestion 
level. Moreover, in order to increase memory parallelism and bring compatibility with 
existing IP cores in network-based multiprocessor architectures, adaptive network interface 
architectures are presented to use multiple SDRAMs which can be accessed 
simultaneously. In addition, a smart memory controller is integrated in the adaptive 
network interface to improve the memory utilization and reduce both memory and network 
latencies. 
Three Dimensional Integrated Circuits (3D ICs) have been emerging as a viable candidate 
to achieve better performance and package density as compared to traditional 2D ICs. In 
addition, combining the benefits of 3D IC and NoC schemes provides a significant 
performance gain for 3D architectures. In recent years, inter-layer communication across 
multiple stacked layers (vertical channel) has attracted a lot of interest. In this thesis, a 
novel adaptive pipeline bus structure is proposed for inter-layer communication to improve 
the performance by reducing the delay and complexity of traditional bus arbitration. In 
addition, two mesh-based topologies for 3D architectures are also introduced to mitigate the 
inter-layer footprint and power dissipation on each layer with a small performance penalty. 
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Chapter 1 

1 Introduction 

As indicated by several researchers and the International Technology Roadmap for 
Semiconductors (ITRS), nanometer Systems-on-Chip (SoCs) will most likely not have an 
economic yield if all transistors must be functional  [1] [2]. Besides, it is expected that 
Moore’s law will continue to hold for another five to fifteen years where billion gates can 
be integrated in a chip. This capacity will allow integration of several tens to hundred 
resources like processor cores, DSP cores, and interface circuits (like Blue-tooth or 
Ethernet adapter), FPGA blocks, analog blocks, and memory blocks (any kind such as 
RAM, ROM and CAM). Thereby, it is possible to integrate more than one Processing 
Element (PE) in a SoC, being known as Multi-Processor System-on-Chip (MPSoC). 
MPSoCs have been widely used in high performance embedded systems, such as web 
servers, network processors, and parallel media processors. They combine the advantages 
of data processing parallelism of multi-processors and the high level integration of SoCs. 
The continuously increasing number of cores for such multi-billion transistor SoCs calls for 
a new communication architecture as traditional bus-based architectures are inherently non-
scalable, making communication a bottleneck  [1] [2] [3].  
The Network-on-Chip (NoC) architecture paradigm, based on a modular packet-switched 
mechanism, can address many of the on-chip communication design issues such as 
performance limitations of long interconnects, and integration of high number of PE on a 
chip  [1] [2] [3] [4] [5]. Notable examples of this architecture include Intel’s 80-core Teraflops 
Research Chip  [6] and Tilera’s TILE64  [7].  
A tiled-based 2D-mesh NoC based system, where one or more cores and other resources 
are encapsulated into a tile, is shown in Fig.  1-1. It consists of Routers (R), PE, and 
Network Interfaces (NI). PEs may be intellectual property (IP) blocks or embedded 
memories. Each PE is connected to the corresponding router port using the network 
interface. This enables to use packets for transferring information between PEs without 
requiring dedicated wirings for point to point connection. In brief, NoCs not only offer a 
scalable performance needed by systems which grow with each new generation  [1] [2], but 
also allow to mitigate the energy consumption by avoiding the use of long global wires. 
Since all links in the NoC can operate simultaneously on different data packets, a high level 
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of parallelism is making it attractive for replacing previous communication architectures 
like dedicated point-to-point signal wires, shared buses, or segmented buses with bridges. 
Furthermore, NoCs are reusable templates and aid to reduce the so called design 
productivity gap. Finally, none of the current on-chip interconnect approaches (buses and 
dedicated point-to-point channels) will meet all the requirements of future SoCs, as NoCs 
could potentially fulfill. 
 

NI NI NI

NI NI NI

NI NI NI

 
Fig.  1-1. Tile-based 2D-Mesh topology. 

 

1.1 The Advantages of On-Chip Networks 
Energy efficiency, reliability, reusability, scalability, and flexibility are the most important 
benefits of NoC from other on-chip communication approaches.  

1.1.1 Energy Efficiency  
According to the International Technology Roadmap for Semiconductors (ITRS)  [8] and 
Semiconductor Industry Association (SIA)  [9] roadmaps, clock frequency and number of 
on-chip devices are increased. That is, much tighter power budgets for all system 
components are required. Based on the roadmaps, as computation and storage components 
benefit from device scaling, the energy for global communication does not scale down. 
Hence, communication-energy minimization will be a growing concern in future 
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technologies. The on-chip networks aim to reduce this problem by scaling wires. This new 
model allows the decoupling of the PEs from the network. The need for global 
synchronization can thereby disappear. This new approach employs explicit parallelism, 
exhibits modularity to minimize the use of global wires, and utilizes locality for power 
minimization  [10] [11]. Furthermore, network traffic control and monitoring can help in 
better managing the power consumed by networked computational resources. For instance, 
clock speed and voltage of end nodes can be varied according to available network 
bandwidth. The emphasis on energy minimization creates a sleuth of novel challenges that 
have not been addressed by traditional high-performance network designers  [10] [11].  

1.1.2 Reliability 
As the geometries of the transistors reach the physical limits of operation, it becomes 
increasingly difficult for the hardware components to achieve reliable operation. The 
variability in process manufacturing, issues of thermal hotspots and effects of various noise 
sources, such as power supply fluctuations, pose major challenges for the reliable operation 
of current and future NoC-based MPSoCs. NoCs are particularly suited for implementation 
of fault-tolerant techniques, due to their inherent parallelism and potential for re-
configurability. Fault-tolerant techniques can be implemented at different levels, from 
hardware redundancy to software-based error recovery schemes. Adaptive routing 
algorithms combined with error detection mechanisms show great promise in achieving 
fault-tolerant on-chip communication. If data is sent on an unreliable channel in packets, 
error detection and recovery is easier, because the effect of errors is contained by packet 
boundaries, and error recovery can be carried out on a packet-by-packet basis. Error 
correction can be achieved by using standard error correcting codes (ECC), whereas robust 
and fault-tolerant routing algorithms can route around faulty regions  [12].     

1.1.3 Reusability 
PEs are usually obtained from internal sources or third parties, and integrated on a single 
chip. These reusable PEs may include embedded processors, memory blocks, interface 
blocks, analog blocks, and components that handle application specific processing 
functions. Corresponding software components are also provided in a reusable form and 
may include real-time operating systems and kernels, library functions, and device drivers. 
That is, PEs are reusable in nature if they conform to a common interface and 
synchronization mechanisms with the on-chip network. Using a standard interface such as 
AXI  [13], OCP  [14], and DTL  [15], in on-chip networks facilitates the employment of 
reusable components. In fact, employing a standard interface does not change the way PEs 
are developed, since they will still be developed for a certain protocol. What changes is that 
a public domain protocol is used and accepted by the industry as a standard, like the PCI 
standard for microcomputer manufacturers. Accordingly, not only the PEs reusability 
becomes higher but also the design time is reduced  [16]. In addition, on-chip routers are 
generic in nature and the communication can be employed with any conforming PE.  
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1.1.4 Scalability 
NoC platform is composed of on-chip routers and communication links that are basically 
distributed and independent. Each PE is added into the network along with a dedicated 
router having a unique address or coordinate in the network. The communication exploits 
the packet switching scheme while there is no central arbitration mechanism of the 
communication platform. Therefore, the performance in this communication architecture is 
not constrained or degraded by the addition of PEs. This is the essential characteristic of a 
scalable and modular architecture  [1] [2] [3]. Indeed, on-chip interconnection network plays 
an important role in providing scalability to integrate hundreds or even thousands of 
processing elements in a single billion-transistor chip and alleviate design productivity 
gap  [17]. In fact, using data packets for communication, a high level of parallelism is 
achieved as all channels can be operated simultaneously. Thereby, on-chip network 
improves the scalability in comparison with previous communication structures such as 
shared buses or segmented buses.   

1.1.5 Flexibility  
Utilizing common buses between the communicating resources in SoCs will not give any 
flexibility since the needs of the communication have to be thought of every time a design 
is made. However, they suffer from low scalability  [1]- [5]. NoC solves their shortcomings 
by implementing a communication network of routers and resources. NoC is a very flexible 
communication infrastructure allowing the same physical link to be shared by many 
different connections. As future SoC platforms are expected to contain hundreds of PEs, 
NoC needs to support an even larger number of connections and many connections span a 
large number of routers. This leads the same SoC platform to be used in a wide range of 
different applications and thereby increases the production volume. As the same SoC 
platform is to be used for many different applications, the NoC must be able to support a 
wide range of bandwidth and Quality-of-Service (QoS) requirements. The requirements of 
the applications can be very different, and the NoC must therefore be very flexible.  
 

1.2 Three-Dimensional ICs 
Two-dimensional (2D) chip fabrication technology is facing lots of challenges in the deep 
submicron regime even by utilizing NoC architectures  [18] [19], e.g. designing the clock-
tree network for a large chip, limited floor-planning choices, increasing the wire delay and 
power consumption, integrating various components that are digital, analog, MEMS, RF, 
etc. The Three Dimensional (3D) integration has emerged as a potent solution to address 
these problems and the design complexity of MPSoC in 2D Integration Circuits (IC). 3D 
ICs reduce the interconnect delay problem by stacking vertically active silicon layers as 
well as offering a number of advantages over the traditional 2D chip  [18] [19] [20] [21] [22]: 
(1) shorter global interconnects; (2) higher performance; (4) high memory bandwidth; (3) 
lower interconnect power consumption due to wire-length reduction; (4) higher packing 
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density and smaller footprint; and (5) support for the implementation of mixed-technology 
chips, e.g. NMOS DRAM stacking on top of CMOS processor cores. However, thermal 
problem is still an important challenge for 3D IC circuit design. 

1.2.1 3D IC Technology Overview 
There are many technologies for die stacking being pursued by industry and academia. 
Wafer-Bonding  [30] [31] and Multi-Layer Buried Structures (MLBS)  [32] [33] are the most 
promising ones. The details of these processes are described in  [18]. Wafer-to-wafer 
bonding appears to be the leading contender in industry and many recent academic studies 
have assumed this type of 3D stacking technology  [18]- [23] [34]. Wafers can be stacked 
either Face-to-Face (F2F) or Face-to-Back (F2B) and both have pros and cons. While the 
former provides the greatest layer-to-layer via density, it is suitable for two-layers; and 
additional layers would have to employ Back-to-Back (B2B) placement using larger and 
longer vias. On the other hand, Face-To-Back provides uniform scalability to an arbitrary 
number of layers, despite a reduced inter-layer via density  [27]- [35]. Layers, stacked on top 
of each other, are connected via vertical interconnects tunneling through them. Wire 
bonding, micro-bump, contactless, and Through Silicon Via (TSV) are some of the vertical 
interconnect (Inter-layer communication) technologies that have been used in stacked 
structures  [32]. The distance between wafers can range from 5 m to 50 m  [22] [24], which 
is much shorter than the wire length between cores on a tier, and the pitches of a TSV can 
range from 1 m to 10 m square  [22] [24]. That is, the wire delay, power consumption and 
chip form factor are significantly reduced  [25] [26] [28]. Thus, the TSV interconnection has 
the potential to offer the greatest vertical interconnect density and is the most promising 
one among these vertical interconnect technologies  [27]- [35]. In this thesis, we assumed the 
F2B method with TSV interconnects to provide more scalability when more than two layers 
are employed.  
 
 

 
(a)                                                                    (b)  

Fig.  1-2. (a) Homogeneous and (b) Heterogeneous 3-D Network-on-Chip structures using Through 
Silicon Vias (TSVs) technology to connect stacked layers vertically. 
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1.2.2 3D NoC  
Combining the benefits of 3D ICs and NoCs schemes provides a significant performance 
gain for 3D architectures. 3D NoC topologies not only create scalable networks to provide 
communication requirements in 3D ICs  [19]- [22], but also are a crucial factor of 3D chips 
in terms of performance, cost, and energy consumption  [19]. Various on-chip network 
topologies have been studied for 3D NoCs  [19]- [23] [25] [27] [29]. Mesh-based structures 
are popularly used in 3D systems (Fig.  1-2), because their grid-based regular structure is 
intuitively considered to be matched to the 2D VLSI layout for each stack 
layer  [19] [20] [21] [22] [25]. Nevertheless, if the number of IP-cores and memories increases 
in each layer, more TSVs are necessitated to handle the inter-layer communication. 
Inasmuch as each TSV employs a pad for bonding, the area footprint of TSVs in each layer 
is augmented significantly  [22] [29]. 
 
1.3 Adaptive On-Chip Network 
NoC is flexible to dynamically support the communication among modules in a system 
with heavily varying workloads. To augment resource utilization and flexibility, the 
architecture of NoC needs to be integrated with novel adaptive methodologies employing 
resource multiplexing mechanisms at varying workloads. In the scope of this thesis, several 
novel adaptive schemes for the on-chip network architecture are presented to exploit all the 
benefits that can be obtained. Each component of on-chip network platform can be 
implemented adaptively to increase the utilization and performance. In order to route data 
packets to the non-congested area and/or give the priority to a packet passing through a 
congested area of the network to ease the congestion faster, respectively. Network 
interfaces can handle in-order delivery which is a practical approach when exploiting an 
adaptive routing algorithm for distributing packets through the network or when exploiting 
dynamic memory access scheduling in memory controller to reorder memory requests. 
Adaptive on-chip network interface architectures are utilized to increase the resource 
utilization and system performance. 
In the realm of 3D NoCs, the router-based and bus-based organizations are the two 
dominant architectures for utilizing TSVs as inter-layer communication channel. The 
former suffers from poor scalability and deteriorates the performance at high injection 
rates, and the latter consumes more area and power. Using adaptive inter-layer 
communication structure not only can reduce the delay and complexity of traditional 
arbitration but also reduces the area overhead of TSVs, which can impact designing 3D 
architectures with a large number of TSVs.  
 



Chapter 1 Introduction 
 

7 
 

1.4 Thesis Contributions 
Multicore designers have moved from a bus-based view of design to a network-based view 
to overcome several problems outlined above. NoC architectures are emerging as a scalable 
and modular solution to global communication within large MPSoCs. NoCs diminish the 
emerging wire-delay problem and address the need for substantial interconnect bandwidth 
by replacing shared buses with packet-switched on-chip router networks. The idea of on-
chip network creates many new research opportunities. In particular, this thesis has 
explored the adaptive implementation of on-chip network and communication design 
spaces in the following directions: 
 Adaptive on-chip communication routing protocols 
 Adaptive on-chip router  
 Adaptive network interface 
 Adaptive inter-layer communication structure for 3D NoCs 

This thesis contains several key ideas to support on-chip communication in the realm of 2D 
and 3D NoCs. The contributions of this dissertation with a brief summary are as follows: 
 An adaptive unicast routing algorithm in the realm of 2D-mesh NoCs is presented  [36]. 

The routing algorithm, based on Dynamic XY (DyXY), is called Enhanced Dynamic 
XY (EDXY). It is an adaptive congestion-aware routing algorithm implemented by 
adding two congestion wires (one in each direction) between each two cores which 
indicate the existence of congestion in a row and a column. These signals enable the 
routing algorithm to avoid these paths when there are other paths between the source 
and destination pair.   

 For both unicast and multicast traffic, two adaptive routing protocols are presented. The 
proposed routing protocols, named Low Distance (LD)  [37] [38] and Hamiltonian 
Adaptive Multicast Unicast Method (HAMUM)  [39] [40], maximize the degree of 
adaptiveness of the routing functions while guaranteeing deadlock freedom. The 
presented routing protocols invoke non-congested paths in routing the messages to 
prevent creating highly congested areas. This is achieved by considering the congestion 
condition of the input ports. Furthermore, both unicast and multicast aspects of the 
presented methods have been widely investigated separately. 

 To reduce the power consumption and improve the performance of on-chip networks, a 
novel on-chip router architecture is proposed. The router architecture, named Adaptive 
Input-Output Selection (AIOS), is for avoiding congested areas in 2D-mesh NoCs via 
employing efficient input and output selection  [41] [42] [43]. The output selection 
utilizes an adaptive routing algorithm based on the congestion condition of neighboring 
routers while the input selection allows packets to be serviced from each input port 
according to its congestion level.  

 To achieve higher memory bandwidth and increasing memory parallelism in network-
based multiprocessor architectures, multiple SDRAMs can be accessed simultaneously. 
In such architectures, not only resource utilization and latency are the critical issues but 
also a reordering mechanism is required to deliver the response transactions of 
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concurrent memory accesses in-order. To cope with these issues in this thesis, an 
adaptive on-chip network interface architecture is presented  [44] [45] [46] [47]. The 
proposed network interface exploits an efficient reordering mechanism to handle the in-
order delivery and utilizes the AXI transaction based protocol to bring compatibility 
with  existing  IP  cores.  On  top  of  that,  a  smart  memory  controller  is  integrated  in  this  
network interface to improve the memory utilization and reduce both memory and 
network latencies.  

 To diminish the area overhead of TSVs and power dissipation on each layer with 
minimal performance penalty, two stacked structures for 3D architectures are 
proposed  [48] [49]. The presented schemes benefit of clustering the mesh topology in 
order to mitigate TSV footprint on each stacked layer. On top of that, to improve the 
performance of vertical channels, a new bus architecture is introduced  [50]- [55]. The 
proposed bus architecture overcomes the drawbacks of previously presented buses, 
designed for vertical channels, and improves the performance by reducing the delay and 
complexity of traditional bus arbitration.  
 
 

1.5 Thesis Organization  
This thesis is organized as follows. Chapter 2 gives a general overview of on-chip networks 
while Chapter 3 introduces three adaptive routing protocols, whereas the first one is related 
to the unicast traffic and the other two routing protocols are associated with unicast and 
multicast traffic. Two low latency and power efficient router architectures are presented in 
Chapter 4, while the adaptive network interface architecture for on-chip networks is 
described in Chapter 5. Concerning 3D architectures, two cluster-based topologies along 
with a novel pipeline bus architecture are explained in Chapter 6. The idea of the balance 
partitioning as well as multiple partitioning methods, supported by an adaptive routing 
model, is also presented in this chapter. Finally, the thesis is concluded in Chapter 7. 

 



9 
 

Chapter 2 

2 On-Chip Networks  

 
On-chip networks are emerged as a highly scalable, reliable, and modular interconnect 
fabric for MPSoCs  [1] [2] [3] [4] [5]. As the network fabric takes up a substantial portion of 
system power budget  [10], and power is one of the most important constraint in billion-
transistor chips, in addition to network delay and area, the interconnect power consumption 
should be taken into consideration. Therefore, on-chip interconnection networks should be 
accommodated into the limited silicon area using efficient topology, routing algorithm, and 
router implementation. 
In this chapter, concepts of on-chip networks including network topologies, switching 
techniques, flow control mechanisms, virtual channels, output selection, routing algorithms, 
and a general network-on-chip architecture are presented.  

2.1 Network Topology 
The network topology is the study of the arrangement and connectivity of the routers. In 
other words, it defines the various channels and the connection pattern that are available for 
the data transfer across the network. Performance, cost, and scalability are the important 
factors in the selection of the appropriate topology. Shared-Bus, Crossbar, Butterfly Fat-
Tree, Ring, Torus, and 2D-Mesh are the most popular topologies for on-chip interconnects 
which have been commercially used  [2] [60].  
Direct networks have at least one PE attached to each router of the network so that routers 
may regularly spread between PEs. This helps to simplify the physical implementation. The 
shared-bus, ring, and 2D mesh/torus topologies (Fig.  2-1) are examples of direct networks, 
and provide tremendous improvement in performance, but at a cost of hardware overhead, 
typically increasing as the square of the number of PEs. On the other hand, indirect 
networks have a subset of routers not connected to any PE. All tree-based topologies where 
PEs are connected only to the leaf routers (e.g. the butterfly topology) as well as crossbar 
switch (Fig.  2-1) are indirect networks.  
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The shared-bus topology is the simplest using a shared link common to all PEs where they 
compete for exclusive access to the bus. For communication intensive applications it is 
necessary to overcome the bandwidth limitations of the shared-bus topology and move to 
scalable networks. However, this topology scales very poorly as the number of PEs 
increases. A small modification to the shared-bus topology to allow more concurrent 
transactions is to create the ring topology where every PE has exactly two neighbors. In this 
topology, messages hop along intermediate PEs until they arrive at the final destination. 
This causes the ring to saturate at a low injection rate for most traffic patterns. The crossbar 
topology is a fully connected one which allows every PE to directly communicate with any 
other PE. Hence, each topology has its own advantages and disadvantages.  
The fat-tree topologies suffer from the fact that the number of routers exceeds the number 
of PEs, when the amount of PEs increases. This incurs an important network overhead. For 
the on-chip interconnects the network overhead is more critical than for the off-chip 
networks, and the design scalability is more essential. Because of the simple connection 
and easy routing provided by adjacency, mesh and torus networks are widely used in 
multiprocessor architectures. Both torus and mesh topologies are fully scalable. Although 
torus provides a better performance, the regularity, better utilization of links, and lower 
network overhead are some of the preferences for mesh. That is, the mesh topology is more 
economic scheme since the routers on the borders are smaller.  

2.2 Switching Mechanism 
The switching mechanism determines how messages traverse a route in a network. The goal 
is to effectively share the network resources among messages traversing the network. 
Basically, circuit switching and packet switching form the two extremes of switching 
mechanisms. 
In circuit switching a connection from a source to a destination is established prior to the 
transmission of data and exclusively reserved until the message is completely transferred, 
i.e. as in telephone networks that set up a circuit through possibly many routers for each 
call. This mechanism has low delay and guaranteed bandwidths, but suffers from channel 
utilization, low throughput, and long initialization time to setup a connection. 
Packet switching is an alternative mechanism where data is not transmitted on a predefined 
circuit. A message can be divided into packets which share channels with other packets. 
Each packet consists of a header which contains routing and control information, data 
payload, and possibly a tail. The data payload follows the channel reserved by header while 
the tail releases the channel reservation. Packets are individually and independently routed 
through the network, and at the destination the packets are assembled into the original 
message. If a message is divided into several packets, the order of packets at arrival PE 
must be the same as departure. Therefore, in-order delivery is an essential part that should 
be supported by on-chip networks. The packet switching mechanism improves channel 
utilization and network throughput.  
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Fig.  2-1. Network topologies of Shared-bus, Ring, Crossbar, Mesh, Torus, and Butterfly. 
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In the packet switching domain, buffered flow control defines the mechanism that deals 
with the allocation of channels and buffers for the packets traversing between source and 
destination. The flow control mechanism is necessary when two or more packets compete 
to use the same channel, at the same time. Commonly three different buffered flow control 
strategies are used: store-and-forward, virtual cut through, and wormhole. When these 
mechanisms are implemented in on-chip networks, they have different performance metrics 
along with different requirements on hardware resources. 

2.2.1 Store-and-Forward 
The store-and-forward mechanism is the simplest flow control mechanism. In this 
approach, each router along the path stores the entire packet in the buffer and then, the 
packet is forwarded to a selected neighboring router if the chosen neighboring router has 
enough empty buffering space available to hold the whole packet. This mechanism requires 
a large amount of buffering space (at least the size of the largest packet) in each router of 
the network, which can increase the implementation cost dramatically. On top of that, 
network latency increases significantly because a packet cannot be forwarded to the next 
router until the whole packet is received and stored in the current router. Consequently, the 
store-and-forward approach is impractical in large-scale Networks-on-Chip.  

2.2.2 Virtual Cut-Through 
The virtual cut-through mechanism was proposed to address the large network latency 
problem in the store-and-forward strategy by reducing the packet delays at each routing 
stage. In this approach, one packet can be forwarded to the next stage before its entirety is 
received by the current route which reduces the store-and-forward delays. However, when 
the next stage router is not available, similar to the store-and-forward, the virtual cut-
through approach also requires a large buffering space at each router to store the whole 
packet. 

2.2.3 Wormhole 
In this mechanism, a packet is divided into smaller segments called FLITs (FLow control 
digIT)  [59]. Then, the flits are routed through the network one after another, in a pipelined 
fashion. The first flit in a packet (header) reserves the channel of each router, the body 
(payload) flits will then follow the reserved channel, and the tail flit will later release the 
channel reservation. The wormhole mechanism does not require the complete packet to be 
stored in the router while waiting for the header flit to route to the next stages. One packet 
may occupy several intermediate routers at the same time. That is, the wormhole approach 
is similar to the virtual cut-through, but here the channel and buffer allocation is done on a 
flit-basis rather than packet-basis. Accordingly, the wormhole approach requires much less 
buffer space, thus, enabling small, compact and fast router designs. Because of these 
advantages, the wormhole mechanism is an ideal flow control candidate for on-chip 
networks. 
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2.3 Virtual Channels 
There is a possibility of blocking in the wormhole network when a packet reserves a 
channel along a path which is prevented to be used by other packets. The use of Virtual 
Channels (VCs) overcomes the problem of blockages in the wormhole network via 
allowing blocked packets to be passed by other packets. This is accomplished by assigning 
several VCs, each with a separate flit queue, to each physical channel. For each VC, when 
the header flit arrives, a buffer will be assigned to the incoming packet, and is reserved until 
the trailer flit is transmitted. If a packet holding a VC gets blocked, other packets from 
other VCs can still traverse the physical channel. 
 

 
 

Fig.  2-2. A typical router using VCs. 

As depicted in Fig.  2-2, at an input port the incoming flits are stored in distinct channel 
buffers which are multiplexed together again onto the output ports. If one of the channels is 
blocked, the other channels can access the outputs. Also, with VCs a network can be 
divided into multiple disjoint subnetworks which have been explained in Chapter 3. VCs 
were introduced to solve the deadlock avoidance problem, and to improve network latency 
and throughput. Fig.  2-3(a) shows how a packet A blocked between routers 3 and 4 which 
also blocks the packet B when the network is not equipped with VCs. As illustrated in 
Fig.  2-3(b), using VCs allows dual utilization of the physical channel between routers 3 and 
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4 where the packet B can pass the router 3. However, although employing VCs improves 
the performance and reduces head of line blocking (HoL) efforts in the network, it 
increases design complexity of the link controller and flow control mechanisms. 

2.4 Output Scheduling  
When multiple packets request for an output port, the need of an output scheduling 
algorithm that determines the priority order of candidate packets to advance emerges. In 
fact, the scheduler gives a priority order to each packet, and then the output ports select the 
highest-ordered packets to be forwarded. There is a variety of solutions with different 
implementation complexity and different performance characteristics, e.g. round-robin, 
first-come first-served, etc. The starvation prevention is the main concern that must be 
considered in the scheduler.  
 

Packet A

Packet B

(a)

(b)

 

Fig.  2-3. Using VC for avoiding deadlock. 
 

2.5 Routing Algorithm 
Routing is the process that are used to forward the packets along appropriate directions in 
the network between a source and a destination. Routing algorithms not only affect the 
transmission time but also can impact the power consumption and congestion conditions in 
the network.  

2.5.1 Source versus Distributed Routing 
Routing can be utilized either at the source router or with a distributed manner by routers 
along the path. In the source routing scheme the entire route of a packet is decided by the 
source router stacking the exact router-to-router itinerary of a packet in the header. As the 



Chapter 2 On-Chip Networks 
 

15 
 

packet traverses in the network this information is used by each router on the path to 
navigate the packet towards the destination. This scheme is a simple solution for on-chip 
networks while the problem of the routing information overhead is the drawback of this 
scheme, i.e. for a network with a diameter of k, each packet requires at most k routing 
information stacked on the header of the packet. Accordingly, if the network grows the 
header overhead becomes significant which is impractical for on-chip networks. In contrast, 
in the distributed routing approach the routing decision is taken by the individual routers 
depending on different parameters while the header of a packet has to include only the 
destination address. Each intermediate router examines the destination address and decides 
along which channel to forward the packet. However, the router complexity of the latter 
scheme is higher than the former scheme. 

2.5.2 Deterministic versus Adaptive Routing  
Distributed routing scheme can be classified as deterministic and adaptive. Deterministic 
routing algorithms route packets in a fixed path between the source and destination routers. 
Implementations of deterministic routing algorithms are simple but they are not able to 
balance the load across the links in non-uniform or bursty traffic  [61] [62]. Adaptive routing 
algorithms are proposed to address these limitations. By better distributing load across 
links, adaptive algorithms improve network performance and also provide tolerance if link 
or router failure occurs. In adaptive routing algorithms, path of a packet from the source to 
the destination is determined by network conditions. An adaptive routing algorithm 
decreases the probability of passing a packet from a congested or malfunction link. While 
deterministic routing algorithms are the best choice for uniform or regular traffic patterns, 
the adaptive schemes are preferable in presence of irregular traffic (non-uniform or bursty 
traffic) or in networks with unreliable routers and links. Furthermore, since packets may 
arrive to the destination from different paths and with different latencies an adaptive 
routing could not guarantee the order of packets. To achieve in-order delivery property, a 
hardware reordering module is required. These requirements increase both design 
complexity, and likely communication latency. 

2.5.3 Minimal versus Non-Minimal Routing 
Adaptive routing algorithms can either be minimal or non-minimal. Minimal routing 
algorithms allow only shortest paths to be chosen, while non-minimal routing algorithms 
also allow longer paths. Besides, a minimal fully adaptive routing algorithm can route 
packets along any shortest path adaptively; and a minimal partially adaptive routing 
algorithm cannot route packets along every shortest path. 

2.5.4 Unicast and Multicast Routing Protocols 
The communication in on-chip networks can be either unicast (one-to-one) or 
multicast/broadcast (one-to-many)  [58]. In the unicast communication, a packet (message) 
is sent from a source router to a single destination router, while in the multicast 
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communication a packet is transmitted from a source router to an arbitrary set of destination 
routers. Thus, the former is a special case of the latter. These protocols are described in the 
next chapter. 
The multicast communication is frequently employed in many application of MPSoC such 
as replication  [70], barrier synchronization  [71], cache coherency in distributed shared-
memory architectures  [72], and clock synchronization  [73]. Although the multicast 
communication can be implemented by multiple unicast communications, it produces 
significant amount of unnecessary traffic increasing the latency and congestion in the 
network  [74].  
 

 
Fig.  2-4. Deadlock scenario with four packets  [68]. 

2.5.5 Deadlock and Livelock 
Deadlock is a situation that occurs when a cycle of packets are waiting for one another to 
release a shared channel in a circular dependency. Fig.  2-4 shows a deadlock scenario with 
four packets routed in a circular manner. Each packet is holding a flit buffer while 
requesting the buffer held by another packet. The packet 1 occupying channel 1 is 
requesting for the channel 2 allocated to the packet 2 which wants to use the channel 3. But 
that channel is occupied by the packet 3 requesting the channel 4 which is held by the 
packet 4. The packet 4 completes the circle by waiting for the channel 1 so that no packet 
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can advance since the required resource is already held by another packet and will never be 
released. 
Livelock is a condition where a packet keeps circulating within the network without ever 
reaching its destination. It is the result of using a non-minimal adaptive routing algorithm. 
A livelock free routing algorithm has to guarantee forward progress of each packet, where 
after each hop the packet is in one step closer to its destination. 
 
 

 
 

Fig.  2-5. All possible turns in (a) XY routing (b) Negative-First (c) West-First (d) North-Last (The solid lines 
indicate the allowable turns and the dash lines indicate the unallowable turns). 

 

2.5.6 Turn Model Routing 
Turn Model routing scheme based on wormhole switching mechanism provides deadlock 
and livelock freedom in the two-dimensional mesh topology  [64] [97]. This model is also 
chosen as a representative of minimal and partial adaptive routing. In the turn model, 
deadlock can be avoided by prohibiting just enough turns to break all the cycles. Four well-
known turn models are XY, Negative-First(NF), West-First(WF) and North-Last(NL) as 
shown in Fig.  2-5. Although the XY routing algorithm prohibits four turns to avoid 
deadlock, the other models avoid only two turns out of eight turns.  
The Odd-Even model is one of the most popular partial adaptive wormhole routing 
algorithms in 2D mesh on-chip interconnection network  [64] without virtual channels. 
Unlike the turn model which prohibits certain turns in all locations of the network, in the 
Odd-Even model some turns are restricted only in even columns and some other turns are 
prohibited in odd columns. Therefore, the degree of adaptiveness provided by this model is 
higher than the other turn models. Odd-Even rules can be described by the following rules: 

 
Rule 1: East-North and East-South turns cannot be taken in even columns (Fig.  2-6(a)).  
Rule 2: North-West and South-West turns cannot be taken in odd columns (Fig.  2-6(b)). 
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Fig.  2-6. The Odd-Even turn model rules: (a) prohibited turns in even columns (b) prohibited turns in odd 
columns. 

 

2.6 Network-on-Chip Architecture 
As described previously, 2D-mesh has many desirable properties for NoCs, including 
scalability, high bandwidth, and the fixed degree of routers  [83]. A 2D-mesh NoC based 
system is shown in Fig.  2-7. As mentioned earlier, NoC consists of Routers (R), Processing 
Elements (PE), and Network Interfaces (NI). PEs may be intellectual property (IP) blocks 
or embedded memories. Each core is connected to the corresponding router port using the 
network interface. To be compatible with existing transaction-based IP-cores, the AMBA 
AXI protocol is used. AMBA AXI is an interfacing protocol, having advanced functions 
such as a multiple outstanding address function and data interleaving function  [13]. AXI, 
providing such advanced functions, can be implemented on NoCs as an interface protocol 
between  each  PE  and  router  to  avoid  the  structural  limitations  in  SoCs  due  to  the  bus  
architecture. The protocol can achieve very high speed of data transmission between 
PEs  [13]. In the AXI transaction-based model  [13] [108], IP cores can be classified as 
master (active) and slave (passive) IP cores  [109] [111]. Master IP cores initiate transactions 
by issuing read and write requests and one or more slaves (memories) receive and execute 
each request. Subsequently, a response issued by a slave can be either an acknowledgment 
(corresponding to the write request) or data (corresponding to the read request)  [109]. The 
AXI protocol provides a “transaction ID” field assigned to each transaction. Transactions 
from the same master IP core, but with different IDs have no ordering restriction while 
transactions with the same ID must be completed in-order. Thus, a reordering mechanism 
in the network interface is needed to afford this ordering requirement  [13] [14] [112]. The 
network interface lies between a PE and the corresponding attached router. This unit forms 
the foundation of the generic nature of the architecture as it prevents the PEs from directly 
interacting with the rest of the network components in the NoC.  
A generic network interface architecture is shown in Fig.  2-7. The network interface 
consists of input buffers (forward and reverse directions), a Packetizer Unit (PU), a 
Depacketizer  Unit  (DU),  and  a  Reorder  Unit  (RU).  A  data  burst  coming  from  a  PE  is  
latched into the input buffer of the corresponding network interface. PU is configured to 
packetize the burst data stored in the input buffer and transfer the packet to the router. 
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Similarly, data packets coming from the router are latched into the input buffer located in 
the reverse path. DU is configured to restore original data format, required for the PE, from 
the packet provided by the router. The RU performs a packet reordering to meet the in-
order requirement of each PE.  
As master IP-cores may operate at high clock frequencies and slave IP-cores operates at 
low clock frequencies, an interface between the IP-cores and on-chip network is required 
for crossing two clock domains. 
 
 

 
Fig.  2-7. Tile-based 2D-Mesh topology. 

2.7 Summary  
In this chapter, some of the most important concepts in the domain of NoC design that help 
to describe the thesis were presented. We have discussed various topologies for direct and 
indirect networks. Different switching, flow control mechanisms along with using virtual 
channels, routing schemes, output selection technique, and a general network-on-chip 
architecture were also described. These concepts presented here are further mentioned in 
various places in the rest of this thesis. 
 
 
 
 
 
 
 
 
 



Chapter 2 On-Chip Networks 
 

20 
 

 



21 
 

Chapter 3 

3 Adaptive Routing Protocols in 
Networks-on-Chip 

On-chip networks like computer networks may take advantage of data packetization to 
ensure the fairness of communication  [56] [57]. Since on-chip networks should use lighter 
and faster protocol layers, they do not need to follow all the standard schemes for the 
communication in computer networks.  
In this chapter, we consider NoCs with 2D mesh topologies which offer many desirable 
properties including better parallelism and scalability, low cross-section bandwidth, and 
fixed degree of nodes compared to many other topologies for MPSoC interconnection  [59]. 
Besides, meshes are suitable for a variety of applications including matrix computation, 
image processing and problems whose task graphs can be embedded naturally into the 
topology  [60]. An m  n 2D mesh consists of N (= m  n) nodes where each node has an 
associated integer coordinate pair (x, y) such that 0  x < n and 0  y < m. Two nodes with 
coordinates (xi, yi) and (xj, yj) are connected by a communication channel if and only if |xi – 
xj| + |yi – yj| =1. 
 

3.1 Unicast Routing Protocols 
In NoCs, routing algorithms are used to determine a path of a packet from source node to 
destination node. In this chapter, some of the related routing algorithms are also described. 

3.1.1 XY Routing Scheme 
XY, a deterministic routing algorithm for 2D meshes, is introduced in  [2] [61] [63]. As 
shown in Fig.  3-1(a), in this routing algorithm, each packet first travels along the X and 
then the Y direction to reach the destination. For this scheme, deadlock never occurs but no 
adaptivity exists in this algorithm.  
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Fig.  3-1. Illustration of different routing schemes.  
 
Except for the boundary routers, XY routers have five input/output ports (four connected to 
the neighboring routers and one for the local core). Main architectural elements of an XY 
router include the input FIFO for each port, route computation unit, Virtual Channel (VC) 
allocation unit (if any), crossbar control logic, and the crossbar. To minimize the delay and 
the required resources, the wormhole method is used for the switching. A flit enters into the 
router through one of the ports and is stored in its FIFO. If the flit is a header, indicating the 
start of a new packet, it proceeds to the routing unit, which determines the output port that 
the packet should use. The header flit attempts to acquire a channel (maybe virtual) for the 
next hop. Upon a successful channel allocation, the header flit enters the router arbitration 
stage, where it competes for the output port with other flits from the other input ports. Once 
the crossbar passage is granted, the flit traverses the router and enters the channel. 
Subsequent flits belonging to the same packet can proceed directly to the crossbar and go to 
the output port. The main architectural element of an XY router is shown in Fig.  3-2. 

3.1.2 DyAD Routing Scheme 
A partial adaptive routing algorithm, named Odd–Even turn model, is proposed in  [64]. The 
Odd-Even turn model prohibits the east to north and east to south (north to west and south 
to west) turns at any routers located in an even (odd) column. This makes the technique as a 
partial adaptive deadlock-free scheme employing minimum paths. 
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Fig.  3-2. Structure of the XY router. 
 

Since it is deadlock-free, there is no need for implementing virtual channels in the router to 
prevent the deadlock problem but virtual channels can be employed to gain the 
performance. Considering the Odd-Even example, illustrated in Fig.  3-1(b), all the possible 
minimal routing paths (10 paths) for packets from source node (0, 0) to destination node (4, 
3) have been exhibited. DyAD, dubbed from Dynamic Adaptive Deterministic switching, is 
a partial adaptive routing scheme, based on the Odd-Even  [65]. It is a combination of 
deterministic (XY) and adaptive (Odd–Even) routing schemes  [65]. Depending on the 
congestion condition of the network, one of the routing schemes is invoked. More 
precisely, when the network is not congested, the DyAD router works in a deterministic 
mode, and when the network becomes congested, the DyAD router uses the adaptive 
routing mode and thus avoids the congested links by exploiting other routing paths  [65]. 
Hence, the main difference between the DyAD/Odd-Even and the XY routers is that, 
depending on the network condition, the routing unit may select different paths at different 
times for the same source and destination pair. For this to happen, a pre-port selection unit 
is added to the router to select the best candidate for every adjacent ports (i.e., North vs. 
East, North vs. West, South vs. East, and South vs. West) and provide routing unit this 
information (Fig.  3-3). One of the factors for choosing an output port is the number of free 
buffers at the corresponding input port in the next hop  [66]. This technique has been used in 
the several adaptive routing schemes where the free buffer count at a downstream node is 
used for congestion estimation. To transfer the count information, which can be considered 
as a stress value, some wires are added between adjacent routers. 
 

Routing Unit VC Allocation

VC0

VCn

Pre-port 
Selection

VC0  Stress Value

VCn Stress Value  
 

Fig.  3-3. Structure of the DyAD router. 
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3.1.3 DyXY Routing Scheme 
As addressed earlier, routing packets along any shortest path are called fully adaptive. The 
Dynamic XY (DyXY) routing scheme is a well-known minimal fully adaptive routing 
algorithm  [2] [3] [67]. Due to the fact that in each node, packets can be routed in both X and 
Y directions without restriction, this routing algorithm needs a mechanism to guarantee 
deadlock avoidance. In networks having virtual channels (general case), usually the 
following method is used to guarantee deadlock avoidance. Virtual channels in Y 
dimensions are divided into two parts, thereby, as illustrated in Fig.  3-4, The network is 
partitioned into two subnetworks called +X subnetwork and X subnetwork each having 
half of the channels in the Y dimension.  
 

 
Fig.  3-4. (a) A 3 4 mesh physical network and the corresponding (b) increasing and (c) decreasing 

subnetworks.  

If the destination node is to the right of the source, the packet will be routed through the +X 
subnetwork. If the destination node is to the left of the source, the packet will be routed 
through the X subnetwork. Otherwise that packet can be routed using either 
subnetwork  [68], thus, DyXY is deadlock-free. Inasmuch as the subnetworks are acyclic, 
packets can be adaptively routed along shortest paths meaning at an intermediate node, a 
packet may be routed along either dimension. Fig.  3-1(c) also shows the possible minimal 
paths of DyXY, i.e. 35

!4!3
!43 possible paths  [64]. The router structure of DyXY is 

identical to DyAD router shown in Fig.  3-3.   
Now, we discuss a weakness of the DyXY algorithm in routing packets from routers whose 
X position  (Y position)  is  one  unit  apart  from that  of  the  destination.  Let  us  consider  the  
simple example shown in Fig.  3-5 where (1, 2) and (4, 1) are the source and destination 
routers. In the DyXY routing, router (1, 2) compares the current length of the west queue of 
router (2, 2) and the north queue of router (1, 1) and the packet is sent to the direction 
containing more empty buffer space. Note that if router (1, 1) is selected, the entire path has 
been determined and hence routers (2, 1) and (3, 1) are the next hops without any choice. If 
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they are congested, the DyXY algorithm has selected a wrong path-based on local 
information. However, if router (2, 2) is selected, there are other choices for the next hops, 
and hence, the congestion may be avoided. Note that this undesired effect may occur when 
routing from a router whose X (or Y) position is just one unit apart from that of the 
destination and the congestion is taking place further away from the current hop. 

 

 
 

Fig.  3-5. A simple NoC with mesh structure. 

 

3.1.4 EDXY Routing Scheme 
The objective of the proposed routing scheme, named Enhanced Dynamic XY (EDXY), is 
to solve the problem of enhance the DyXY algorithm. This is achieved by using a flag 
which indicates congestion along the path of a row (or column). This flag propagates in a 
row (or column) and indicates to the adjacent rows (or columns) that this row (or column) 
is near saturation and should be avoided. As congestion flag should propagate along a row 
(or column), each router transparently propagates its prior router congestion flag. Besides, 
each router monitors its input buffers; if the number of occupied slots of a buffer is larger 
than a threshold value, the router will activate its congestion flag. To track the congestion 
condition efficiently, two flags are added to each row (or column): one informs left hand 
side routers of congestion in a right hand side router and the other one informs right hand 
side routers of congestion in a left hand side router in the row. For this purpose, between 
every two adjacent routers, two congestion wires, one in each direction, are added. The 
congestion wires are grouped with wires which are employed to transmit the free buffer 
count (stress value) to the adjacent routers. The congestion flag transmitted by a router is 
obtained by ORing its flag and that of the previous router (to transparently propagate prior 
routers congestion flag). Therefore, if the flag is active, it shows that either the current or at 
least one of the previous routers is congested. 
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In EDXY routing, if a router is one hop apart from the destination in a row (or column), the 
congestion flag in the destination column (or row) is used in routing decision. If the 
congestion flag is one, the algorithm uses the other path to route the packet. For the 
example shown in Fig.  3-5, the congestion wire in the destination row is passed to router 
(1, 2) by router (1, 1). Therefore, the packet will be routed to router (2, 2). 
 

 
Fig.  3-6. An EDXY router implementation. 

 
In EDXY, every router first looks at the destination address of the received packet. If the 
router address is not one hop apart from that of the destination in either the X or Y 
direction, the EDXY algorithm ignores the congestion wire and routes the packet the same 
way as the DyXY algorithm does. However, if the destination address is just one hop apart 
from the router in either the X or Y direction, one of the congestion wires (based on the 
position of the destination) is also used for routing. That is, the congestion value is 
employed as the most significant bit of the stress value. In these cases, we refer to the port 
which is one hop apart from the destination in either X or Y directions as critical port while 
the other port is called non-critical port. For the non-critical port, we ignore congestion flag 
value and a zero is used for the congestion value to favor this port against the other port.  
It should be noted that congestion wires may report false information because they do not 
provide information regarding the location of the congestion node in a row (or column). We 
compare shared congestion wires with the general case in which the position of the 
congestion node is also propagated in a row or column. The results show only slight 
differences between these two mechanisms. We proposed shared congestion wires because 
they are simple and have the desired characteristics for reducing latency. In cases where the 
congestion wire should be used in the decision making process, a function of the queue 
length and the congestion wire value can be used to return the stress value. In order to 
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simplify the hardware implementation, we used the congestion wire as the MSB of the 
queue length to form the stress value.  

 

 
Fig.  3-7. EDXY routing algorithm. 

 
For the implementation of the EDXY routing algorithm, an extra hardware should be added 
to the DyXY router. This extra hardware is divided into two parts. An extra unit is needed 
in each router to drive the congestion signals in four directions. In addition, each router 
should have logic to use the congestion signals in the routing decisions. In each direction, 
the output congestion wire is set either if the input congestion signal due to the congestion 
in the previous routers in that direction is set or the occupied part of the input buffer for 
routing in that direction is larger than the threshold value. For implementing this logic, a 
comparator and an OR gate are used. The comparator is used to compare the queue length 
with the predefined threshold value. In the case of exceeding the threshold value, the output 
of the comparator, integrated inside the input controller, becomes one. As shown in 
Fig.  3-6, the output congestion signal is the result of ORing the output of the comparator 
and the input congestion signal. The routing algorithm should also be modified to use the 
new information (i.e., congestion wires) in routing decisions. The EDXY routing algorithm 
is shown in Fig.  3-7. Compared to the DyXY routing architecture, extra hardware (SV) is 

Xdiff =Xc - Xd 
Ydiff = Yc - Yd 
If (one destination port) Then 
     Use that port to route the packet; 
Else 
     If (ABS(Xdiff) = 1) Then 
          If (Ydiff > 0) Then 
               S_ValueX = {I_queue_lengthX, C_WireUpToDown}; 
          Else 
               S_ValueX = {I_queue_lengthX, C_WireDowntoUp}; 
          End If; 
     Else 
          S_ValueX = I_queue_lengthX; 
     End if; 
     If (ABS(Ydiff) = 1) Then 
          If (Xdiff > 0) Then 
               S_ValueY = {I_queue_lengthY, C_WireRightToLeft}; 
          Else 
               S_ValueY = {I_queue_lengthY, C_WireLeftToRight}; 
          End If; 
     Else 
          S_ValueY = I_queue_lengthY; 
     End If; 
     Use S_ValueX and S_ValueY to choose the destination port. 
End If; 
 



Chapter 3 Adaptive Routing Protocols in Networks-on-Chips 
 

28 
 

needed to produce the stress value for two competing ports from their queue length and the 
values of the congestion signals. 

 

3.1.5 Experimental Results 
For assessing the efficiency of EDXY, three other routing algorithms were also 
implemented. These algorithms included the XY, Odd–Even turn-model (DyAD), and 
DyXY. A NoC simulator was developed in VHDL to model all major components of the 
on-chip network and simulations were carried out to determine the latency characteristic of 
each  network.  For  all  the  routers,  the  data  width  was  set  to  32  bits.  Each  input  virtual  
channel had a buffer (FIFO) with the size of 6 flits. The congestion threshold value (for 
EDXY routing) was set to 4 meaning that the congestion condition was considered when 4 
out of 6 buffer slots were occupied.  
As a performance metric, we used latency defined as the number of cycles between the 
initiation of a message transmission issued by a PE and the time when the message is 
completely delivered to the destination PE. The request rate is defined as the ratio of the 
successful message injections into the network interface over the total number of injection 
attempts. The simulator was warmed up for 3,000 cycles and then the average performance 
was measured over another 100,000 cycles. 
The router used the minimal fully adaptive reserved VC deadlock avoidance technique 
discussed in  [68]. Four synthetic traffic profiles of transpose, uniform random, hotspot 5%, 
and hotspot 10% and SPLASH-2 benchmark traces were used. Table  3-1 shows the 
baseline network configuration, and the variations used in the sensitivity studies. 
 

Table  3-1. Baseline network configuration and variation. 

Characteristics Baseline Variations 
Topology 7 × 7 2D Mesh 15 × 15 2D Mesh 

Routing XY, DyXY, and EDXY Odd-Even 

Virtual channels/port 2 0 

Flit buffers/VC 6 - 

Packet length (flits) 9 15 

Traffic workload Transpose, uniform, hotspot SPLASH-2 traces 

Simulated packets/node 3000 - 

A. First set of experiments 

In the first set, 7 × 7 2D meshes and packets with a length of 9 flits were used. The average 
packet latency for different traffic profiles are shown in Fig.  3-8. 
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Transpose traffic profile 
In the transpose traffic profile, for a n × n mesh network, a core at position (i,j)(i,j [0,n)) 
only sends a data packet to another core at position (n  1  i, n  1  j). This traffic 
pattern is similar to the concept of transposing a matrix  [64] [65]. In these simulations, each 
core generates packets and injects them into the network using the time intervals 
determined using the exponential distribution. This traffic profile leads to a non-uniform 
traffic distribution with heavy traffic for the central nodes of the mesh. Therefore, close to 
the center of the network hotspots may be created. As shown in Fig.  3-8(a), if the data 
packet injection rate is very low, hotspots are not created and the routing scheme behave 
similarly. As the injection rate increases and congestion is created in the mesh, the EDXY 
algorithm leads to smaller average delays. 

 

 
 

Fig.  3-8. Latency vs. packet injection rate for EDXY, DyXY, and XY for a 7 × 7 2D mesh for 9-flit 
packets with virtual channel. (a) transpose traffic, (b) uniform random traffic, (c) hotspot 5%, and (d) 

hotspot 10%. 
 

Uniform traffic profile 
In this traffic profile, each node sends several messages to other nodes in the network 
where a uniform distribution is used to construct the destination set of each 
message  [2] [64] [65]. The average communication delay as a function of the average 
message injection rate has been plotted in Fig.  3-8(b). For this case, the XY scheme leads to 
lower latencies because uniform traffic is balanced under XY routing  [69]. 
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Hotspot traffic profiles 
The same as the uniform traffic profile, each node sends several messages to other nodes in 
the network while nodes (2, 2), (2, 4), (4, 2), and (4, 4) receives 5% and 10% more packets 
in hotspot 5% and 10% traffic profiles, respectively. The average communication delays as 
a function of average packet injection rate for hotspot 5% and 10% traffic profiles have 
been plotted in Fig.  3-8(c) and (d), respectively. As observed from these figures, the 
proposed scheme has lower delay compared to other schemes for both hotspot percentages. 
This reveals that the proposed scheme can distribute the traffic among minimal paths more 
efficiently.  
 

Table  3-2. System configuration parameters. 

Processor Configuration 
Instruction set architecture SPARC 
Number of processors 16 
Issue width 1 
Cache configuration 

L1 cache 
Private, split instruction and data cache, 
each cache is 16KB. 4-way associative, 
64-bit line, 3-cycle access time 

L2 cache Shared, unified 48MB (48 banks, each 
1MB). 64-bit line, 6-cycle access time 

Cache coherence protocol MESI 
Cache hierarchy SNUCA 
Memory configuration 
Size  4GB DRAM 
Access latency  260 cycles 
Requests per processor  16 outstanding 
Network configuration 
Router scheme Wormhole 
Flit size 32 bits 

 
 

SPLASH-2 benchmark traffic 
In order to know the real impact of EDXY, traces are generated from SPLASH-2  [87] using 
the GEMS simulator  [90]. We configured a 64-node on-chip network which models a 
single-chip CMP for our experiments. A full system simulation environment with 16 
processors and 48 L2 cache nodes has been implemented. The simulations were run on the 
Solaris 9 operating system based on SPARC instruction set in-order issue structure. Each 
processor is attached to a wormhole router and has a private write-back L1 cache. The L2 
cache shared by all processors is split into banks. The size of each cache bank node is 1MB. 
Hence, the total size of shared L2 cache is 48MB. The simulated memory/cache 
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architecture mimics static non-uniform cache architecture (SNUCA)  [91] [92] while the 
cache coherence protocol for generating the traces is MESI  [91]. The detailed 
configurations of processor, cache and memory configurations can be found in Table  3-2. 
Fig.  3-9 shows the average packet latency across five SPLASH-2 benchmark traces, 
normalized to XY. Contention is the cause of significant packet latency in lu, fft, and 
raytrace; thus adaptive routing has an opportunity to improve performance. Although 
EDXY provides equal or lower latency than other schemes, EDXY shows the greatest 
benefit on raytrace with 36% reduction in latency. On average EDXY provides a latency 
reduction of 20% across all benchmarks vs. XY and 12% vs. DyXY. 
 

 
Fig.  3-9. Average latency across SPLASH-2 benchmarks normalized to latency of XY. 

B. Second set of experiments 
In this section, we change some of the NoC parameters considered in the first set of 
experiments. 

NoC size 
Fig.  3-10 shows the latency vs. the packet injection rate for a 15 × 15 mesh NoC under the 
transpose traffic profile with 9-flit packets. For this large network, adaptive approaches do 
not perform as well as XY. That is, when the network size increases, the effect of the 
congestion information reduces.  

Packet length 
Fig.  3-11 shows the latency for long packets (15 flits) in a 7 × 7 2D mesh under different 
traffic profiles. As can be seen, the average packet latencies of all routing schemes using 
long packets are higher than other schemes with short packets. The increased average 
latency is a known characteristic of wormhole routing with long packets. The reason is that 
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for long packets, an imbalance in the resource utilization occurs because packets hold 
resources over multiple routers. Similar to the case of 9-flit packets, the EDXY scheme 
performs better than DyXY and XY over all traffic patterns except for the uniform traffic 
profile. 
 

 
Fig.  3-10. Latency vs. packet injection rate for 15 × 15 mesh with virtual channel under transpose traffic 

profile using 9-flit packets. 
 

 

Network without virtual channel 
Fig.  3-12 shows latency vs. packet injection rate for Odd–Even, DyXY, and EDXY routers 
without virtual channels. In this case, we consider a 5 × 5 2D mesh with 5-flit packets. The 
buffer size of each channel is 6 flits. Odd–Even turn-model  [64] is a technique for avoiding 
deadlock in NoCs without virtual channel. In this section, for the deadlock avoidance in 
DyXY and EDXY, Odd–Even turn-model is used. Actually, when the Odd–Even provides 
more than one output ports,  in the Odd–Even router,  the port  in the Y direction is  chosen 
while in the DyXY and EDXY routers, the stress value is examined to choose one of the 
ports. For these simulations, core (2, 2) receives 5% and 10% more packets in hotspot 5% 
and 10% traffic profiles, respectively. As the results show, EDXY continues to perform 
better than other routing algorithms in a network without virtual channel with transpose, 
uniform, hotspot 5%, and hotspot 10% traffic profiles. 

 

C. Hardware overhead 
To evaluate the area overhead of EDXY, the VHDL reference model was synthesized with 
Synopsys Design Compiler using a standard cell CMOS library. For all routers, the data 
width was set to 32 bits (flit size), and each channel had two virtual channels with a buffer 
size of 6 flits. In order to achieve better performance/power characteristics, the FIFOs were 
implemented using registers.  

0

50

100

150

200

250

300

2 3 4 5 6 7 8 9

La
te

nc
y 

(C
yc

le
)

Injection Rate (%)

XY

DyXY

EDXY



Chapter 3 Adaptive Routing Protocols in Networks-on-Chips 
 

33 
 

 
     

Fig.  3-11. Average latency vs. packet injection rate on a 7 × 7 2D mesh for 15-flit packets with virtual 
channel. (a) transpose traffic, (b) uniform random traffic, (c) hotspot 5%, and (d) hotspot 10%. 

 

 

 
Fig.  3-12. Latency vs. packet injection rate on a 5 × 5 2D mesh without virtual channel. (a) transpose 

traffic, (b) uniform random traffic, (c) hotspot 5%, and (d) hotspot 10%. 
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Table  3-3 compares the areas of the routers. As the table reveals, the area overhead of the 
EDXY compared to that of the XY (DyXY) is 3.6% (1.5%). 
 

Table  3-3. Area comparison of XY, DyXY, and EDXY. 

 XY DyXY EDXY 
Area ( m2) 86,107 87,881 89,281 

 

D. Power dissipation 
The power dissipation of EDXY and DyXY routing algorithms were calculated and 
compared under the uniform traffic profile using Synopsys PrimePower. Each core in the 
NoC generated packets based on the uniform random traffic profile with the same average 
flit injection rate. The typical clock of 1 GHz is applied to the system. Since the post 
synthesis  simulation  is  very  slow,  router  (3,  3)  which  is  close  to  the  center  of  a  7  ×  7  2D  
mesh was synthesized while for the other routers, the RTL models were used. The results 
for the power consumption are given in Table  3-4. As observed from this table, the power 
consumptions of both schemes are about the same. 
 

Table  3-4. Power consumption of DyXY and EDXY routing under the uniform traffic profile (mW). 

 DyXY EDXY 
Power consumption (mW) 27.3 27.7 

 

3.2 Multicast Routing Protocols 
The multicast communication has been exploited in multicomputers (see, 
e.g.,  [70] [71] [72] [73] [74]). Multicast routing algorithms can be classified as unicast-
based  [75] [76], tree-based  [76], and path-based  [74]. 

3.2.1 Unicast-based Multicast Routing  
Unicast-Based (UB) is a simple multicast routing algorithm where multiple copies of the 
same message, as a unicast message, are routed independently toward every destination or 
to a subset of destinations  [75]. The drawback of this scheme is that multiple copies of the 
same message are injected into the network, increasing the network traffic. Furthermore, 
each copy of the message suffers from considerable startup latency at the source. 

3.2.2 Tree-based Multicast Routing  
In tree-based multicast routing approach, the destination set is partitioned at the source and 
separate copies of the message are sent through one or more outgoing channels. Here, a 
spanning tree is constructed where the source is considered as the root and the messages are 
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sent down the tree  [76]. This way, a message might be replicated at some of the 
intermediate nodes and forwarded along the multiple outgoing channels toward disjoint 
subsets of destinations. Since there is no message buffering at routers, if one branch of the 
tree is blocked, all are blocked  [77]. If the message is not proceeded forward, many 
channels may be in lockstep for extended periods, resulting in increased network 
contention  [77]. Although the tree-based multicasting scheme can be used efficiently in 
networks employing store-and-forward and virtual cut-through switching, it incurs high 
congestion in wormhole networks  [74]. A tree-based routing algorithm which supports 
multicasting in NoCs is called virtual circuit tree multicasting (VCTM)  [59]. By using 
virtual circuit table (VCT) and content addressable memory (CAM), and sending separate 
unicast setup messages (look ahead signals) for each destination, it builds several virtual 
circuit trees toward the destinations before the multicast messages are injected into the 
network. The method, however, has some shortcomings. First, its complexity, and hence, 
hardware overhead strongly depends on the network size. Second, the VCTM is an efficient 
algorithm mostly for low injection rate network conditions while for high injection rate 
conditions (or workloads near saturation), the path-based algorithms are more 
efficient  [59]. Third, for updating the virtual circuit table, discrete unicast setup messages 
per destination should be sent by the source node. If the number of destinations grows, the 
number of unicast setup messages will be increased, thereby reducing the performance. 
Therefore, the VCTM scheme is more efficient for applications using a small percentage of 
multicasts  [59]. An example includes token coherence protocol which uses one-to-all 
communication and has a very few distinct multicast combinations  [59]. Finally, the tree-
based multicasting may cause a message to hold many channels for extended periods, 
thereby increasing network contention, and hence, degrading the performance  [60]. 
However, in this approach, cyclic dependencies are avoided by using the dimension-order 
routing algorithm for each pair of source and destination nodes  [59] [60]. 
 

 
Fig.  3-13. Example of tree-based multicast routing in 5×5 2D-mesh. 

 
An example of a tree-based multicast routing in 5 5 2D-mesh is shown in Fig.  3-13 where 
the source node (2, 3) is selected as the root and a spanning tree is formed with respect to it. 
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When the flits enter the routers at the branch point (nodes (1, 3) and (3, 3)), they are 
duplicated and forwarded to multiple output channels. Since there is no message buffering 
in the routers, if one branch of the tree is blocked, all are blocked. Therefore, this scheme 
might lead to increased network contention. 

3.2.3 Hamiltonian Path-based Multicast Routing Algorithm 
To overcome the disadvantages of the tree-based approaches, one may use path-based 
multicast wormhole routing algorithms. In this method, a source node prepares a message 
for  delivery  to  a  set  of  destinations  by  first  sorting  the  addresses  of  the  destination  in  the  
order in which they are to be delivered, and then placing this sorted list in the header of the 
message. When the header enters a router with the address A, the router checks to see if A 
is the next address in the header. If so, the address A is removed from the message header 
and a copy of data flits will be delivered to the local core and the flits are forwarded to the 
next node on the path. Otherwise, the message is forwarded only to the next node on the 
path. In this way, the message is eventually delivered to every destination in the header. A 
number of studies have shown that a path-based exhibit superior performance characteristic 
over their unicast-based and tree-based counterparts  [77] [78] [79].  
 

 
Fig.  3-14. A 3 4 mesh physical network with the label assignment and the corresponding  [78] (b) up 

channel and (c) down channel networks. The solid lines indicate the Hamiltonian path and dashed lines 
indicate the links that could be used to reduce the path length in routing. 

 
The path-based routing algorithms are based on Hamiltonian path where a undirected 
Hamiltonian path of the network is constructed  [74]. A Hamiltonian path visits every node 
in a graph exactly once  [80]. For each node in an m  n mesh, a label L(x, y) is assigned as 
 

 
( , )

1
y n x if y is even

L x y
y n n x if y is odd

 

 
where x and y are the coordinates of the node.  
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As exhibited in Fig.  3-14, two directed Hamiltonian paths (or two subnetworks) are 
constructed by labeling the nodes  [74]. The up channel subnetwork (HU) starts at (0, 0) 
while the down channel subnetwork (HD ) ends at (0, 0).  If the label of the destination node 
is greater than the label of the source node, the routing always takes place in the HU 
subnetwork; otherwise, it takes place in the HD subnetwork. The destinations are placed 
into two groups. One group contains all the destinations that could be reached using the HU 
subnetwork and the other contains the remaining destinations that could be reached using 
the HD subnetwork. To reduce the path length the vertical channels that are not part of the 
Hamiltonian path (the dashed lines in the Fig.  3-14) could be used in appropriate directions. 
In fact, if in a routing algorithm all packets in the up channel (down channel) subnetwork 
follow paths in strictly ascending (descending) order (either in Hamiltonian path or not), no 
cyclic dependency can be formed among channels; thus the routing algorithm is deadlock-
free. 
Next, dual-path (DP)  [74], multi-path (MP)  [74], and column-path (CP)  [78] multicast 
routing algorithms along with the proposed multicast routing schemes, LD and HAMUM, 
are described. 

A. Dual-Path (DP) and Multi-Path (MP) Multicast Routing Algorithms 
In Dual-Path (DP) routing algorithm, the destination node set is partitioned into two subsets 
of DU and DD  [74]. Every node in DU has a higher label than that of the source node and 
every node in DD has a lower label than that of the source node. DU and DD are then sorted 
in ascending order and descending order, respectively, as the label of each node is used as 
the key for the sorting. Thus, multicast messages from the source node will be sent to the 
destination nodes in DU using the HU subnetwork and to the destination nodes in DD using 
the HD subnetwork. Consider the example shown in Fig.  3-15(a) for a 6 6 mesh network 
where node (2, 3) will send its multicast messages to destinations (2, 0), (4, 0), (0, 1), (2, 1), 
(4, 1), (0, 4), (5, 4), (3, 5), and (5, 5). Two subsets are organized. The first subset (DU), 
which contains all the destinations that could be reached from the source node using HU 
subnetwork, includes (0, 4), (5, 4), (5, 5) and (3, 5) in sequence. The second subset (DD), 
which has the remaining destinations that all could be reached using the HD subnetwork, 
includes (2, 0), (4, 0), (4, 1), (2, 1) and (0, 1). Some of the vertical links that are not part of 
the Hamiltonian paths are used properly, for minimizing the paths. 
To reduce the path lengths, the multi-path (MP) multicast routing algorithm has been 
proposed in  [74]. In this scheme, as most nodes have four output channels in the 2D mesh, 
up to four independent paths can be used to deliver a message. Thus, the dual-path 
destination sets of DU and DD are also partitioned. The set DU is divided into two subsets. 
One consists of the nodes whose x coordinates are greater than or equal to that of the source 
and the other subset contains the remaining nodes in DU.  The  set  DD is partitioned in a 
similar way. Hence, all the destinations of the multicast message are grouped into four 
disjoint subsets such that all the destinations in a subset are in one of the four quadrants 
when the source is taken as the origin. For the multi-path example shown in Fig.  3-15(b), at 
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source (2, 3) the destination set is first divided into two sets of DU = {(0, 4),(5, 4),(3, 5),(5, 
5)} and DD = {(2, 0),(4, 0),(4, 1),(2, 1), (0, 1)}. As exhibited in Fig.  3-15(a), DU is divided 
into two subsets of DU1 = {(0, 4)} and DU2 = {(5, 4), (3, 5), (5, 5)}. In the same way, DD is 
divided into two subsets of DD1 = {(0, 1), (2, 1), (2, 0)} and DD2 = {(4, 0), (4, 1)}. The dual-
path and multi-path are both deadlock-free and could be used for unicast and multicast 
routing simultaneously  [74]. 
 
 

 
 

Fig.  3-15. Examples of (a) Dual-path (DP), (b) Multi-path (MP), (c) Column-Path (CP), and (d) Low-
Distance (LD) multicast routing from (2, 3). The unused links are not indicated. 
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B. Column-Path (CP) Multicast Routing 
In this method, the destination node set is partitioned into 2k subsets where k is the number 
of columns in the mesh. In this method, at most two messages will be copied to each 
column. If a column of the mesh has one or more destinations in the rows above that of the 
source, then one copy of the message is sent to service all those destinations. Similarly, if a 
column has one or more destinations in the rows below that of the source, then another 
copy of the message is sent to service all those destinations. One copy of the message is 
sent to a column if all destinations in that column are either below or above the source 
node. Fig.  3-15(c) shows an example where a multicast message is sent to destinations (2, 
0), (4, 0), (0, 1), (2, 1), (4, 1), (0, 4), (5, 4), (3, 5), and (5, 5) from source node (2, 3) using 
the column-path (CP) routing algorithm. Six copies of the message are used to achieve the 
desired multicast operation. The routing algorithm used by this scheme is based on the XY 
routing algorithm which is deadlock-free and livelock-free. However, since the CP routing, 
similar to the unicast-based routing method, produces too many messages (i.e. at most 2k 
copies of the message in the CP routing and at  most 4 and 2 in the MP, and DP routings,  
respectively), it suffers from high network latencies for latter copies of the messages due to 
the excessive number of start-up delays before them. In addition, because many multicast 
messages would be sent through the columns by each source node, the performance of the 
network is degraded. 

C. Low-Distance (LD) Path-based Multicast Routing 
In this part, the proposed adaptive path-based multicast routing, LD, is described. Three 
features have been incorporated in this scheme.  

1) It utilizes a network partitioning similar to multi-path multicast routing technique 
where up to four destination groups could be formed.  

2) The ordering of the destinations in the path should be optimized to shorten the 
distance of the multicast path. This is achieved at the cost of a small hardware 
overhead and improves the performance of the algorithm compared to those of 
previous path-based multicast routing algorithms. For this propose, a sorting 
algorithm  shown  in  Fig.   3-16  is  proposed.  In  this  algorithm,  for  each  node  a  label  
obtained from L(x, y) = y × n + x is assigned. Similar to the multi-path multicast 
algorithm, the destination node set is partitioned into four subsets of DU1, DU2, DD1, 
and DD2. The subsets are then sorted in the low-distance order with the distance 
vector of each node used as its key for the sorting. The distance vector of each node 
is computed as k =  |y – y0|  +  |x – x0|. To sort the destinations to the low-distance 
order, first the node (v) which has the lowest distance vector to the source node (u0) 
is placed in the Temp_set and is removed from the subset. Then, the selected node 
will be considered as the source node. While the original subset is not empty, this 
sequence will be repeated; otherwise, the Temp_set which contains the sorted 
destination subset is placed in the original subset. If there are two nodes with an 
equal distance vector compared to the source node, the one with the smaller x 
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dimension relative to that of the source node will be selected first. Subsequently, the 
original updated subset will be placed in the message header.  

3) For routing the messages to the destinations, the algorithm utilizes the Odd-Even 
turn model  [64] [65]. The Odd-Even turn model prohibits the east to north and east 
to  south  (north  to  west  and  south  to  west)  turns  at  any  routers  located  in  an  even  
(odd) column. This makes the technique as an adaptive deadlock-free algorithm 
which uses the shortest path. Since it is deadlock-free, there is no need for 
implementing virtual channels in the router to prevent deadlock. Adding virtual 
channels is costly since the complexity and latency of the controller increase with 
the number of virtual channels due to increased buffering and arbitration 
requirements  [68].  

 

 
Fig.  3-16. Message header construction for Low Distance (LD) multicast routing. 

 
In some cases, explained in the below, for routing a multicast message from one destination 
to the next destination via a minimal path, a forbidden turn is required to be taken. To 
prevent a possible deadlock in these cases, the message is first absorbed by the first 

Algorithm: Ordering and partitioning the destination set 
  Inputs: Destination set D;  source node (x0, y0); distance table T;  
  Outputs: Sorted destination sets DU1, DU2, DD1, DD2 for 4 multicast paths. 
Begin 

1. For every node assign a label as: L(x, y) = y × n + x 
2.   
3.   
     
4. For sorting DU1 in Low-distance order:   

While DU1 is not empty do the following: 
    Begin 

(a)  

(b)  

    

 

(c) Add node v to Temp_set;   Remove node v from DU1; 
(d) u = v; 

     End. 
DU1 = Temp_set; 

      Do the same algorithm for sorting DU2, DD1 and DD2; 
5. Construct four messages which each one containing one of the four subsets (DU1, DU2, DD1 and DD2) as 

part of the header.  
End. 
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destination and then a copy of the message will be retransmitted to the next destination 
address through the consumption channels discussed in Subsection  3.2.5. In this method, 
for absorb and retransmission mechanism, we take advantage of a similar approach as the 
proposed TM_FAR method  [81] [82]. Fig.  3-15(d) shows an example of the paths used for 
the message when the proposed multicast routing algorithm is used. 
 

3.2.4 Hamiltonian Adaptive Multicast Unicast Method (HAMUM) 
Several path-based multicast routing algorithms based on the Hamiltonian path were 
proposed to guarantee deadlock freedom  [74] [78]. But the traditional path-based algorithms 
are deterministic for both unicast and multicast traffic which degrades the performance 
significantly. This was the motivation to propose a path-based method to bring adaptivity 
for both unicast and multicast traffic without using virtual channels. To improve the path-
based method, an adaptive, deadlock-free method is presented to bring adaptivity for all of 
Hamiltonian based models. In fact, unlike other adaptive models in communication 
networks which are applicable only for unicast traffic, the proposed method handles both 
unicast and multicast traffic adaptively. 
In traditional path-based routing models such as MP and CP, for both unicast and multicast 
messages according to the current and the next destination nodes positions, only a single 
shortest path is used by the routing algorithm. Therefore, the network performance is 
degraded by employing these routing algorithms. HAMUM can solve this problem in the 
path-based routing algorithms by routing both of the unicast and multicast messages 
adaptively through destination(s).  
In this method, the locations where certain directions can be taken are restricted, so 
deadlock will be avoided. The rules regulating the proposed scheme are categorized in the 
up channel subnetwork and down channel subnetwork as follows:   
All the nodes in even rows have lower labels than their neighboring nodes in north and east 
directions; while the nodes in odd rows have lower labels than their neighbors in north and 
west directions. Therefore, for the up channel subnetwork: 
 

 Rule1: North and East directions are allowed in even rows. 
 Rule2: North and West directions are allowed in odd rows. 

 
Similarly, all the nodes in even rows have higher labels than their neighboring nodes in 
south and west directions; while the nodes in odd rows have higher labels than their 
neighbors in south and east directions. So, for the down channel subnetwork: 
 

 Rule1: South and West directions are allowed in even rows.  
 Rule2: South and East directions are allowed in odd rows. 

 
Notice that a message will be forwarded to the destination as in the deterministic 
Hamiltonian strategy, when the current node is located one row to the south (north) of the 
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destination row in the up channel subnetwork (down channel subnetwork). Fig.  3-17 shows 
the pseudo code of the HAMUM model which is executed in each router when a new 
packet arrives. Inasmuch as the rules keep the messages traveling in strictly ascending order 
(up channel subnetwork) and descending order (down channel subnetwork), it prevents the 
occurrence of deadlock. 
 
 

 
Fig.  3-17. The pseudo code of HAMUM. 

Algorithm HAMUM  is  
-- (Cx,Cy) : Current  node , (Dx,Dy) : Destination node 
Begin 
        If (Dy = Cy) then                --Current & Dest. are in the same row 
                If (Dx = Cx) then    --Current& Dest. are in the same column 
                          direction <= Local;   --Packet sends to the Local direction 
                Elsif (Dx > Cx) then   --Dest. is to the East of the Current 
                          direction <= East;   --Dest. is to the West of the Current 
                Else   direction <= West;  
                End if; 
        Elsif (Dy > Cy) then               -- up channel Subnetwork 
                If ( Cy mod 2 = 0 ) then   --rule1 in the even rows  
                        If ( Dx > Cx ) and ( Dy - Cy > 1 ) then --Dest. is in the East & more than 1 row to Current 
                                  direction <= North or East  --North or East direction can be chosen 
                        Elsif ( Dx > Cx ) and ( Dy - Cy = 1 ) then  --Dest. is in the East & 1 row to the Current 
                                  direction <= East;  --Packet sends to the East direction 
                        Else   direction <= North;   --IF Dest. is in the West of the Current, select North 
                        End if;  
                Elsif ( Cy mod 2 /= 0 ) then         --rule2 in odd rows  
                        If ( Dx < Cx ) and ( Dy - Cy > 1 ) then       --Dest. is in the West & more than 1 row to Current 
                                  direction <= North or West      --North or West direction can be chosen 
                        Elsif ( Dx < Cx ) and ( Dy - Cy = 1 ) then  --Dest. is in the West & 1 row to the Current 
                                  direction <= West;  --Packet sends to the West direction 
                        Else   direction <= North;   --IF Dest. is in the West of the Current, select North 
                        End if;        
                End if;         
        Elsif ( Dy < Cy ) then                                             -- down channel Subnetwork 
                If ( Cy mod 2 = 0 ) then                  --rule1 in even rows 
                        If ( Dx < Cx ) and ( Cy - Dy > 1 ) then --Dest. is in the West & more than 1 row to Current 
                                  direction <= South or West  --South or West direction can be chosen 
                        Elsif ( Dx < Cx ) and ( Cy - Dy = 1 ) then  --Dest. is in the West & 1 row to the Current 
                                  direction <= West;  --Packet sends to the West direction 
                        Else   direction <= South;   --IF Dest. is in the West of the Current, select South 
                        End If;  
                Elsif ( Cy mod 2 /= 0 ) then            --rule2 in odd rows 
                        If ( Dx > Cx ) and ( Cy - Dy > 1 ) then       --Dest. is in the East & more than 1 row to Current 
                                  direction <= South or East  --South or East direction can be chosen 
                        Elsif ( Dx > Cx ) and ( Cy - Dy = 1 )then  --Dest. is in the East & 1 row to the Current 
                                 direction <= East;             --Packet sends to the East direction 
                        Else  direction <= South;   --IF Dest. is in the West of the Current, select South 
                        End if;           
                End if;  
        End if;  
End HAMUM; 
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Fig.  3-18. All of the possible minimal paths from the source nodes 63, 56, 7, and 0 to the destination node 
27 in (a) the Odd-Even model, and (b) the unicast aspect of HAMUM.  

 

Table  3-5. Eight different location states of the source and destination nodes. 

State 
Source position  
(odd/even row) 

Destination 
position 
(odd/even row) 

Destination 
direction 
(left/right) 

1 even even right (east) 
2 even odd right (east) 
3 even even left (west) 
4 even odd left (west) 
5 odd even right (east) 
6 odd odd right (east) 
7 odd even left (west) 
8 odd odd left (west) 

 

Unicast Aspect of HAMUM: 
Based on the proposed method, any intermediate node must first determine set of directions 
toward which a packet may be forwarded for the next hop based on Rule 1 and Rule 2. As 
mentioned previously, according to the source and destination labels, the routing may take 
place in up or down channel subnetwork. Consider a case where the destination of a 
message is to the west of its source in the up channel subnetwork (e.g. source node 7 and 
destination 27 in Fig.  3-18(b)). If the current node is in an odd row, the router can route the 
message to the west or north direction because of the Hamiltonian up channel subnetwork 
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network strategy. If the current node is in an even row, at first the message should be routed 
to the north direction (to reach the odd row), and then, it could be routed via the west or 
north direction. Note that in the up channel subnetwork, using the Hamiltonian path, the 
packet can choose west or north direction in odd rows and east or north direction in even 
rows. Additionally, if the current node is located one row to the south of the destination row 
in the up channel subnetwork, the message will be routed to the west or north direction if 
the current node is in the odd row, and if the current node is in the even row the packet will 
be routed to the north direction. In Fig.  3-18(b), all the possible minimal routing paths of 
HAMUM for four messages in 8x8 2D-mesh have been shown. At least one minimal path 
always can be selected by the proposed method for any source and destination pair. Since 
the Odd-Even model is one of the most popular wormhole-based adaptive unicast routing 
algorithms in on-chip interconnection networks, we compare the unicast aspect of our 
method with the Odd-Even model. All of the possible routing paths for the Odd-Even 
model are indicated in Fig.  3-18(a). In order to compare the two algorithms with each other, 
we use the Degree of Adaptiveness (DoA) factor  [2] [61] [64], which is the number of 
minimal paths can be taken by a message to travel from a source node (Sx,Sy)  to  a  
destination node (Dx,Dy). Suppose that x, y are defined as x = Dx – Sx and y = Dy – Sy 
and dx=| x|, and dy=| y|. The degree of adaptiveness for a fully adaptive algorithm is given 
by: 
 

!!
!)(

)( ,
yx

yx
ds dd

dd
routingadaptivefullyDoA

 
 

Based on the Hamiltonian Path, there can be eight different location states according to the 
source node position (even or odd row),  destination node position (even or odd row),  and 
the direction of the destination node (left or right side of the source node). The states have 
been summarized in Table  3-5. 
First, we compute the DoA for unicast messages in the up channel subnetwork, then we use 
the similar way to compute the DoA for the down channel subnetwork. As can be seen in 
Fig.  3-19, the DoA of the state 1 and 8 is equal and can be computed as: 

!!
!)(

)1( , Dd
Dd

DoA
x

x
ds    Where |

2
| yd

D  

For the other states, the DoA function is calculated as:  
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These equations can be summarized as: 
DoA of the up channel subnetwork: 

otherwiseDoA
andstatesforDoA

channelupDoA
ds
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,
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DoA of the down channel subnetwork: 
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otherwiseDoA
andstatesforDoA

channeldownDoA
ds

ds
ds

,

,
, )2(

63)1(
)(   

The Odd-Even model  [64] restricts the locations where some types of turns can be taken. 
While HAMUM rules are based on the mesh rows, the rules of the Odd-Even model are 
based on the columns. Odd-Even rules are described as follow:  
 

Rule 1: East-North and East-South turns cannot be taken in even columns (Fig.  3-20(a)).  
Rule 2: North-West and South-West turns cannot be taken in odd columns (Fig.  3-20(b)). 

 

 
 

Fig.  3-19. Eight different location states in the up channel subnetwork. 
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The degree of adaptiveness for the Odd-Even turn model is computed as  [64]:  
When the destination node is in the right side of the source node ( x>0): 

otherwiseDoA
columnoddinisndestinatio

columnallowableaniscolumnsnodesourceifDoA
DoA

ds

ds

ds

,

,

,

)1(

,')2(
)0x(  

When the destination node is to the left side of the source node ( x<0): 

otherwiseDoA
xandcolumnallowableaniscolumnsnodesourceifDoA

xDoA
ds

ds
ds

,

,
, )2(

0,')1(
)0(  

 
 

 
Fig.  3-20. The Odd-Even turn model rules: (a) prohibited turns in even columns (b) prohibited turns in 

odd columns. 
Considering the above analysis, the degree of adaptiveness of HAMUM and the Odd-Even 
models is about the same. Since the Odd-Even model cannot be utilized for the multicast 
traffic, described in the motivation, HAMUM not only is compatible with multicast traffic 
but also provides adaptivity for both unicast and multicast traffic. 

Multicast Aspect of HAMUM: 
In this section, we describe how the proposed adaptive method affects the path-based 
multicast routing algorithms. For this purpose, we apply HAMUM on the Multi-Path (MP) 
and Column-Path (CP) algorithms. 

 
1) Adaptive Multi-Path (AMP) Routing Algorithm 
Fig.  3-21(a) shows an example of MP where source node 27 (3, 4) generates a multicast 
message to be sent towards destinations 31, 9, 59, 8, 50, 57, 26, 19, 62, 37, 0, 63, 1, 7, 32, 
55. Accordingly, two subsets are organized. The first subset (DU) has all the destinations 
with higher label and the second one (DD) has the remaining destinations. Afterward, DU is 
divided into two subsets, DU1= {31, 32, 50, 62, 63} and DU2= {37, 55, 57, 59}. In the same 
way DD is divided into two subsets, DD1= {19, 1, 0} and DD2= {26, 9, 8, 7}. Finally, one 
packet per subset should be created and sent from the source node to the network. All 
packets must follow the Hamiltonian path and reach to destinations in the arranged order 
deterministically.  
AMP, Adaptive MP, is the adaptive model of the MP algorithm after the proposed adaptive 
model is applied in the MP algorithm. Consider the example used for MP in Fig.  3-21(b), 
the multicast message can be forwarded in three different ways from the node 37 to the 
node 55 (32 to 50, 19 to 1, and 26 to 8). 



Chapter 3 Adaptive Routing Protocols in Networks-on-Chips 
 

47 
 

 
 
 

Fig.  3-21. (a) Multi-Path (MP), (b) Adaptive Multi-Path (AMP), (c) Column-Path (CP), and Adaptive 
Column-Path (ACP) routing algorithms. 

 
2) Adaptive Column-Path (ACP) Routing Algorithm 
We use the same example in Fig.  3-21(a) for CP. Thirteen copies of the message are used to 
achieve the desired multicast operation (Fig.  3-21(c)). Though destinations 1 and 62 are in 
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the same column, two message copies are sent to this column, since one of the destinations 
are above the source node’s row and the other below.  
The ACP, stood for the Adaptive CP is the adaptive method of the original CP by taking 
advantage of the proposed adaptive model. To indicate how the adaptive scheme affects the 
CP algorithm, as illustrated in Fig.  3-21(d), again thirteen copies of the multicast message 
must be used to achieve the desired multicast operation. But in this figure for simplicity, we 
only  consider  two subsets  DU2 and  DD6. Due to utilizing the proposed adaptive scheme in 
the CP, each multicast messages can be delivered to its subset through different paths 
indicated by dashed lines.  

3.2.5 Hardware Implementation 

A. Topology and Switching Method 
As mentioned before, we make use of an n  n network of interconnected tiles with a mesh 
topology. Each tile is composed of a PE (Processing Element) and a router connected to its 
four adjacent routers in addition to the PE of the tile through a set of channels  [83]. Two 
unidirectional point-to-point links form the channel. To minimize the delay and the 
required resources, the wormhole method is chosen for the switching mechanism  [59]. 
 
 

 
Fig.  3-22. Multicast message format for the proposed technique. 

B. Message Format 
The multicast message format is shown in the Fig.  3-22. It includes one or several header 
flits and a parametric number of payload flits. The number of flits depends on the number 
of destinations and the flit  width in the network. Each flit  is  n bit wide where the nth bit is 
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the EOM (End Of Message) sign and the (n - 1)th bit is the BOM (Begin Of Message) sign. 
In the header, the third field, which is represented by T, is used to describe the type of the 
message. There are two types of message which are unicast (T = 0) and multicast  (T = 1).  
The address of the source address (SA), the pointer counter (P), and the destination node 
address(es) (DA) are placed in the last fields of the header, respectively, and the content of 
the message is located in the rest of the flits (payload). We have used all-destination 
encoding scheme  [60] in which all destination addresses are carried by the header flits.  
The pointer in each header flit points to the address of the next destination in the current 
header flit, and the message identifier (MID) is used for the message ordering. The header 
flits are removed as the multicast messages advances, so that if a multicast message is 
arrived to all destination nodes included in a header flit, the flit is removed from the 
message. 
 

 
Fig.  3-23. The proposed router structure. 

 

C. Router Architecture 
The implementation details of the on-chip router are described more precisely in 
Section  4.3.2. As shown in Fig.  3-23, each input port has a controller for handshaking and 
an input buffer for the temporary storage of flits. The wormhole switching method 
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implemented in the controller unit, is based on on/off flow control mechanism  [61]. After 
receiving the message header, first the routing unit determines which output should be used 
for routing the message and then the arbiter gives grant to the requests coming from input 
ports which leads to inject the message from the input port to a proper output port using the 
crossbar switch. The router has a crossbar which establishes the connection from an input 
port to an output port. When a new message reaches the input port, it waits until the 
previously arrived messages leave the port. Then, the new message header is delivered to 
the routing unit where it is routed to the appropriate output port. The Congestion Flag 
(CF)  [38] of the buffer becomes active when the number of empty cells of the buffer is less 
than a threshold value. In this case, for warning about the full status, the signal CF is 
activated indicating that most buffer cells are occupied. Each input port has a CF through 
which it informs its adjacent routers about its congestion condition. Therefore, the router 
which uses that input port for forwarding a message to the next router should consider this 
router as a congested one (hotspot) and should not send messages to this router until the 
congestion is over. 
In the path-based multicast mechanism, when multiple delivery channels (consumption 
channels) are occupied by one message along the multicast path, cyclic dependencies on the 
delivery channels may occur  [61] [78] [84] [85]. In fact, a message cannot be delivered to 
two different output channels simultaneously, unless the message should be sent to a 
consumption channel and an output channel. As illustrated in Fig.  3-24, the multicast 
message A destined to nodes 2 and 3 is generated by node 1. Simultaneously, node 4 
generates the message B destined to the same set of destinations. As a result, due to the 
delivery channel contention, this cyclic wait creates a deadlock. To prevent deadlocks in 
delivery channels, the upper bound of the number of delivery channels required to avoid 
such deadlocks is equal to 2nv where n is the network dimension and v is the number of 
virtual channels per input port  [78] [85]. As a result, at least two delivery channels are 
necessary  and  sufficient  for  DP,  MP,  CP,  AMP,  and  ACP  algorithms  and  four  delivery  
channels are enough to support deadlock-free multicasting mechanism under the LD model 
in 2D meshes when the base routing is either XY, Odd-Even, or the other turn model 
routing algorithms  [81] [85].  
 

 
Fig.  3-24. Deadlock due to the delivery channel contention  [81]. 
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The router employs a routing unit which decodes the header of the message coming from 
an input port.  If the header belongs to a unicast message (T = 0), the minimal path adaptive 
routing algorithms based on the Odd-Even turn model is used to determine the output port 
to which the message should be sent. In the Odd-Even adaptive routing algorithm there 
could be more than one minimal output direction to route the message. In this case, the 
address decoder will choose the direction in which the corresponding downstream router 
has not raised its congestion flag. For instance, if a message with a given source and 
destination could be routed to both output ports of p1 (CF = 0) and p2 (CF = 1), then it will 
be routed to p1. If p1 and p2 happen to have both their congestion flags raised, the message 
will be routed to p1. On the other hand, if the header type is a multicast message (T = 1), 
the routing unit fetches the destination address specified by the pointer in the header. If the 
destination address is the current node, the routing unit will request the local output port. 
Otherwise, the routing unit fetches the next destination address from the header and runs 
the Odd-Even procedure to determine the output port(s) corresponding to the next 
destination address. Also, after fetching, the routing unit increases the pointer value of the 
header, and if it is overflowed, it means that the multicast message has been sent to all the 
destination addresses in this header flit, the routing unit will remove the corresponding 
header flit from the message.  
It should be noted that as a result of exploiting the adaptive Odd-Even routing algorithm, 
the messages of the same data may traverse different paths reaching at the destination out-
of-order. Hence, a technique may be needed to reorder the messages at the destination. In 
the proposed technique in this chapter, the messages that reach the destination node have 
the information about the message source node (SA) and the message order (MID). Using 
the SA and MID, the destination core may store each message in its proper location in the 
core memory such that the original source order can be achieved with negligible overhead. 
Note that the data in the memory might not be processed by the core unless all parts of the 
data are received. This is also true for deterministic multicast routing algorithms. Also, the 
use of the source address enables the destination to concurrently handle data coming from 
different sources.  

3.2.6 Experimental Results 
To assess the efficiency of the proposed Low Distance (LD) path-based multicast routing 
algorithm, Dual-Path (DP), Multi-Path (MP), Column-Path (CP), and UB (Unicast-Based) 
algorithms are implemented. MP and CP are also used to evaluate the HAMUM routing 
model. We have developed a cycle accurate wormhole NoC simulator. The simulator 
calculates the average delay and the power consumption for the message transmission. The 
simulator inputs include the array size, the operating frequency, the routing algorithm, the 
link width, and the traffic type. The simulator can generate different traffic profiles. To 
calculate the power consumption, we have used Orion library functions  [86]. For all 
routers, the data width and the frequency were set to 32 bits and 1GHz, respectively, which 
led to a bandwidth of 32 Gb/s. Each input channel has a buffer (FIFO) size of 8 flits with 
the congestion threshold set at 75% of the total buffer capacity. The message size was 
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assumed to be 16 flits. In addition, we also assumed that the 2D mesh topology was regular 
and the delays on wires would not exceed the clock period. For the performance metric, we 
use the multicast latency defined as the number of cycles between the initiation of the 
multicast message operation and the time when the tail of the multicast message reaches all 
the destinations. The CP has the most complicated procedure to prepare the multicast 
messages, while the DP has the easiest procedure  [78]. The preparation mechanism consists 
of partitioning the destination set into appropriate subsets and creating multiple copies of 
the message. For computing the preparation time, several sets of multicast destinations have 
been run by the simulator. Under these test sets, the average preparation time to complete 
multicast messages in the DP, MP, LD, and CP algorithms were 35, 46, 46, and 82 cycles, 
respectively. Because the DP algorithm generates only 2 multicast messages, it is the best 
among the other algorithms and the CP is the worst in terms of the startup latency.  

A. Multicast Traffic Profile 
The first sets of simulations were performed for a random traffic profile. In these 
simulations, the PEs generate data messages and inject them into the network using the 
time intervals which are obtained using the exponential distribution. Two mesh sizes of 8×8 
and 16×16 have been considered. In the multicast traffic profile, each PE sends a message 
to a set of destinations. A uniform distribution was used to construct the destination set of 
each multicast message  [74]. The number of destinations was set to 10 and 25.  
 

  

  
Fig.  3-25. Performance evaluation of LD under different loads in 8×8 2D-mesh with (a) 10 destinations, 
(b) 25 destinations and in 16×16 2D-mesh with (c) 10 destinations, (d) 25 destinations under multicast 

traffic model. 
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Fig.  3-26. Performance evaluation of HAMUM under different loads in 8×8 2D-mesh with (a) 10 
destinations, (b) 25 destinations and in 16×16 2D-mesh with (c) 10 destinations, (d) 25 destinations under 

multicast traffic model. 

In Fig.  3-25 the average communication delay as a function of the average flit injection rate 
is  shown.  As  the  results  show,  the  proposed  LD  multicast  routing  algorithm  leads  to  the  
lowest latency among all the three multicast routing algorithms even at high traffic loads or 
with a large number of destinations (25 destinations). Fig.  3-26 also shows the performance 
gain of using HAMUM with different number of destinations and mesh sizes. As observed 
from the results, the proposed adaptive mechanism which has been applied to the MP and 
CP schemes even in high traffic loads or with a large number of destinations leads to lower 
delay. 

B. Unicast and Multicast (Mixed) Traffic Profiles 
In these simulations, we employed a mixture of unicast and multicast traffic where 80% of 
the injected messages are unicast messages and the remaining 20% are multicast messages. 
This pattern may represent the traffic in a distributed shared-memory multiprocessor where 
updates and invalidation produce multicast messages and cache misses are served by 
unicast messages  [76] [78]. For this set, the simulation parameters were similar to the 
previous simulations in terms of the number of destinations and array sizes. The unicast 
messages are also routed using the Odd-Even turn model. Uniform and hotspot  [64] were 
the two different traffic profiles considered for the unicast traffic generation. In the uniform 
traffic profile, each PE sends a message to any other PE with an equal probability. 
Therefore, the destinations are determined randomly using a uniform distribution. Under 
the hotspot traffic pattern, one or more nodes are chosen as hotspots receiving an extra 
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portion of the traffic in addition to the regular uniform traffic. In Fig.  3-27, the average 
communication latencies versus the message injection rate for different algorithms under 
the uniform traffic model for unicast traffic profile are shown. As these figures reveal, for 
this traffic profile, LD outperforms the other algorithms. Regarding HAMUM, as depicted 
in Fig.  3-28, the adaptive routing algorithms perform better under the presented traffic. 
 

  
 

Fig.  3-27. Performance evaluation of LD under different loads in 8×8 2D-mesh with (a) 10 destinations, (b) 
25 destinations under mixed traffic (20% multicast and 80% unicast) while unicast traffic is based on the 

uniform traffic model. 

  
Fig.  3-28. Performance evaluation of HAMUM  under different loads in 8×8 2D-mesh with (a) 10 

destinations, (b) 25 destinations under mixed traffic (20% multicast and 80% unicast) while unicast traffic is 
based on the uniform traffic model. 

 

  
Fig.  3-29. Performance evaluation of LD under different loads in 8×8 2D-mesh with (a) 10 destinations, (b) 
25 destinations under mixed traffic (20% multicast and 80% unicast). Unicast traffic is based on the hotspot 

traffic model with a single hotspot node (4, 4). The hotspot percentage is 10 percent. 
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Fig.  3-30. Performance evaluation of HAMUM under different loads in 8×8 2D-mesh with (a) 10 

destinations, (b) 25 destinations under mixed traffic (20% multicast and 80% unicast). Unicast traffic is based 
on the hotspot traffic model with a single hotspot node (4, 4). The hotspot percentage is 10 percent. 

 
Under the hotspot traffic model with the hotspot percentage of h, a newly generated 
message is directed to each hotspot node with an additional h percent probability. In our 
simulations, we assumed a single hotspot node (node (4, 4)). Fig.  3-29 shows the average 
latencies of the algorithms for the 8×8 2D mesh topologies when h = 10%. As the figures 
show, LD considerably outperforms the other algorithms for different number of 
destinations under various message injection rates. Inasmuch as HAMUM brings adaptivity 
to the conventional multicast routing algorithms, Fig.  3-30 reveals the performance gains of 
the adaptive schemes under the hotspot traffic model.  
 

C. Application Traffic Profile 
To show the impact of the proposed model, traces from some application benchmark suites 
selected from SPLASH-2  [87] and PARSEC  [88] [89] are used. Traces are generated from 
SPLASH and PARSEC using the GEMS simulator  [90]. We used the x264 application of 
PARSEC and the Radix, Ocean, and fft applications from SPALSH-2 for our simulation. 
Table  3-2 summarizes our full system configuration. It is noteworthy that the token-based 
MOESI protocol  [92] is heavily based on multicast. On account of our analysis on average 
95% of token-based MOESI traffic is multicast.  
As can be seen from Fig.  3-31, the proposed adaptive model diminishes the average delay 
of MP and CP significantly under all benchmarks. That is, adaptive routing has an 
opportunity to improve performance. Under the fft application the adaptive model indicates 
17% and 21% reduction in latency for MP and CP, respectively.  
 

D. Power Dissipation 
The power dissipation of DP, MP, CP, UB, and the proposed LD routing algorithms were 
calculated and compared under the multicast traffic model. The results for the average and 
maximum power under this traffic are shown in Fig.  3-32 and Fig.  3-33, respectively.  
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Fig.  3-31. Performance under different application benchmarks for multi-path (left) and column-path 

(right) routing algorithms. 
 

  
Fig.  3-32. Average power dissipation of the proposed, the DP, the MP and the CP algorithms in 16×16 

2D-mesh with (a) 10 destinations and (b) 25 destinations under multicast traffic. 
 

    
Fig.  3-33. Maximum power dissipation of the proposed, the DP, the MP and the CP algorithms in 16×16 

2D-mesh with (a) 10 destinations and (b) 25 destinations under multicast traffic. 
 
As the results presented in Table  3-6 for 10 destinations reveal, the average power 
dissipation of the network with the LD algorithm is 25%, 3.5%, 33%, and 63% less than 
those  of  the  DP,  MP,  CP,  and  UB  algorithms  under  the  multicast  traffic  model,  
respectively. Also, the results of Table  3-7 for 10 destinations indicate that the maximum 
power of the LD algorithm is 27%, 8%, 44%, and 70% less than those of the DP, MP, CP, 
and UB algorithms, respectively, under the multicast traffic model. Similar power savings 
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are obtained for 25 destinations. The power reduction for the LD algorithm is achieved by 
smoothly distributing the power consumption over the network using the adaptive routing 
scheme which reduces the number of the hotspots, and hence, lowering both the average 
power and the maximum power. Table  3-8 reveals the average power dissipation of the 
network with the ACP algorithm is 5% less than that  of the CP algorithm and the average 
power  dissipation  of  the  AMP  is  3.5%  less  than  that  of  the  MP  algorithm.  The  results  of  
Table  3-8 indicate that the maximum power of the ACP and AMP algorithms is 15% and 
11% less than that of the CP and MP algorithms, respectively under the multicast traffic 
model. We can notice that the average power and the maximum power of the proposed 
adaptive models are lower. 
 
 

 
Table  3-6. Comparative average power dissipation of LD with other algorithms in 16×16 2D-mesh. 

Average Power Dissipation DP MP CP UB 

With 10 Destinations -25% -3.5% -33% -63% 
With 25 Destinations -32% -8.5% -13% -51% 

 
 

Table  3-7. Comparative maximum power dissipation of LD with other algorithms in 16×16 2D-mesh. 

Maximum Power Dissipation DP MP CP UB 

With 10 Destinations -27% -8% -44% -70% 
With 25 Destinations -43% -12% -33% -64% 

 
 

Table  3-8. Comparative average power dissipation of the adaptive schemes using HAMUM model with the 
conventional schemes. 

Average Power Dissipation AMP/MP ACP/CP 

With 25 Destinations 3.5% 5% 

 

Table  3-9. Comparative maximum power dissipation of the adaptive schemes using HAMUM model with the 
conventional schemes. 

Maximum Power Dissipation AMP/MP ACP/CP 

With 25 Destinations 11% 15% 

E. Hardware Overhead 
To evaluate the area overhead of the LD algorithm, we designed the routers based on the 
multicast routing schemes including the additional hardware required for each scheme as 
described in the previous section, i.e. consumption channels. The routers were described in 
VHDL for a 16×16 2D mesh NoC environment, and synthesized with the Leonardo-
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Spectrum ASIC using a 0.25 m standard cell library. In addition, the destination sorting 
algorithms were included in the hardware overhead. For all the routers, the data width was 
set to 32 bits (flit size) and each input channel had a buffer size of 8 flits. As discussed in 
earlier, for the DP, MP, and CP routers, two delivery channels, and for the LD router four 
delivery channels are employed, respectively. In order to achieve better performance/power 
efficiency, the FIFOs were implemented using registers. Fig.  3-34 shows the area of the 
routers. While the same router structure was used for the CP, MP, and DP multicasting 
schemes, different number of registers were employed in implementing their sorting 
mechanisms leading to different areas. Comparing the area of the LD router with the UB, 
DP, MP, and CP routers indicates an additional overhead of 11%, 6.4%, 5%, and 6%, 
respectively. In addition, the hardware overhead of implementing HAMUM in both of the 
MP and CP routers is less than 0.5% and that can be considered negligible. 
 

 
Fig.  3-34. Area cost of routers for implementing different multicast routing algorithms. 

3.3 Summary  
Routing protocols can have a large impact on performance and power consumption in on-
chip networks. Therefore, three adaptive routing algorithms were presented in this chapter. 
The routing protocols in NoCs can be either unicast (one-to-one) or multicast (one-to-
many). The first presented routing protocol was a congestion-aware adaptive routing 
algorithm for two-dimensional mesh NoCs which does not support multicast traffic while 
the other two presented protocols are adaptive routing models supporting both unicast and 
multicast traffic.  
The first routing algorithm was an adaptive routing algorithm, called EDXY, which 
improves the DyXY routing algorithm. In this technique, two congestion wires were added 
to the router architecture to flag the row or column congestion further away from the 
current switch. This enabled avoiding the congested path, and thus decreasing the latency 
of the algorithm. Moreover, two adaptive routing protocols (LD and HAMUM) were 
presented for mesh-based on-chip networks. LD used network partitioning, optimized 
destination ordering, and the Odd-Even turn model adaptive algorithm for routing both the 
multicast and unicast messages through the network. Additionally, the adaptive routing 
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algorithm used the congestion condition of the input ports to route the messages through 
non-congested paths. However, exploiting the unicast routing algorithms for multicast 
traffic may increase the latency. HAMUM was presented as an adaptive routing method for 
both unicast and multicast traffic which maximizes the degree of adaptiveness of the 
routing functions which are based on the Hamiltonian path. 
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Chapter 4 

4 Adaptive On-Chip Router 
Architecture 

The performance and efficiency of NoCs largely depend on the output-selection and input-
selection methods exploited by on-chip routers. The output-selection method, using a 
routing algorithm, determines which output channel should be chosen for a packet arrived 
from an input channel. The input-selection method chooses one of input channels to get 
access to the output channel, which is performed by an arbitration process. 
In this chapter, a novel router architecture, named Adaptive Input-Output Selection (AIOS), 
is presented. AIOS employs adaptive input-selection and output-selection methods in the 
routing process. The adaptive output-selection method of AIOS uses either minimal or non-
minimal path for unicast and multicast messages depending on the congestion condition of 
the network. The adaptive input-selection method exploits the Weighted Round Robin 
(WRR)  [93] arbitration mechanism which can prevent starvation and improve the 
performance. To evaluate AIOS, we compare it with the other router schemes under several 
synthetic traffic profiles along with Video Object Plane Decoder (VOPD), i.e. an example 
of a real traffic profile.  

4.1 Adaptive Input-selection and Output-selection Methods 
In this section, we review the previous works on adaptive input-selection (arbitration) and 
output-selection (routing) methods. Choosing one of input channels to get access to the 
output channel is performed by an input-selection method using an arbitration mechanism. 
The arbiter could follow either non-priority or priority scheme  [65] [94] [95]. In the non-
priority scheme when there are multiple input port requests for the same available output 
port, the arbiter does not consider the traffic condition of the input channels to grant access 
to one input port. First-Come-First-Served (FCFS)  [65] [96] and Round-Robin 
(RR)  [65] [94] are two approaches using non-priority arbitration. Therefore, these methods 
can avoid starvation on different ports. Unlike the non-priority scheme, in the priority 
scheme when there are multiple input port requests for the same available output port, the 
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arbiter would grant access to the input port request which has the highest priority level, e.g. 
Contention-Aware Input Selection (CAIS)  [95]. In CAIS, the busiest input channel obtains 
the highest priority to access the output channel. The input channel is given priority 
proportional to the number of requests arrived from the upstream routers. Thus, the traffic 
can be kept flowing from busy channels to avoid the network congestion. This scheme 
increases the possibility of the starvation so that in this chapter, we have presented an 
efficient arbitration mechanism using WRR. The presented input-selection method is able 
to avoid starvation while serving each input channel according to its traffic condition. 
As described in the previous chapter, the routing algorithms, employed by the output-
selection method, are classified as deterministic (e.g. XY) or adaptive (Odd-Even, DyAD, 
DyXY, EDXY, etc.). Some adaptive routings, like Hot-potato, can also select non-minimal 
paths during the routing process. Hot-potato (or deflection routing)  [96] [99] is based on the 
idea of delivering a packet to an output channel at each cycle. If all the minimal path 
channels are occupied, then the packet is misrouted. When contention occurs and the 
desired channel is not available, the packet, instead of waiting, will pick any alternative 
available channels (minimal or non-minimal) to continue moving to the next router; 
therefore the router does not need buffers. In the hot-potato routing, if the number of input 
channels is equal to the number of output channels at every router node, packets can always 
find an exit channel and thus, the routing is deadlock-free. However, livelock is a potential 
problem in this routing such that message latency increases significantly. Accordingly, 
performance of hot-potato is not as efficient as other adaptive routing algorithms  [60]. All 
the aforementioned adaptive routing algorithms are utilized without using virtual channels. 
However, virtual channels can be employed to gain performance. 
Regarding the multicast routing, if turn model algorithms are adopted to route multicast 
packets, some forbidden turns might occur  [78] [81]. To cope with the forbidden turns the 
absorb-and-retransmission mechanism is required  [78] [81]. However this technique 
degrades the performance significantly. In  [37] authors utilized the Odd-Even routing 
algorithm to route multicast packets. The more frequently forbidden turns occur the more 
performance is degraded. Accordingly, the Hamiltonian Adaptive Multicast and Unicast 
Model (HAMUM), presented in the previous chapter, is proposed to support both unicast 
and multicast traffic adaptively  [39]. The adaptivity of HAMUM is identical to the 
adaptivity of Odd-Even for the unicast traffic while for the multicast traffic the adaptivity 
of HAMUM is higher than conventional multicast routing algorithms  [39]. Hence, 
HAMUM is exploited as the output-selection method for AIOS because it provides 
adaptivity for both unicast and multicast traffic efficiently. 

4.2 Minimal and Non-Minimal Implementations of HAMUM 
As presented in subsection  3.2.4, HAMUM is a minimal path routing algorithm for unicast 
and multicast traffic [37]. According to the rules given by HAMUM, it provides several 
directions to deliver a packet from a node. 
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Fig.  4-1. The pseudo VHDL code of modified HAMUM including the non-minimal routing. 

Algorithm modified_HAMUM  is 
-- (Cx,Cy) : Current  node , (Dx,Dy) : Destination node 
MinPath1=NULL; MinPath2=NULL; NonminPath=NULL;  
Begin 
        If (Dy = Cy) then                     --Current & Dest. are in the same row 
                If (Dx = Cx) then     --Current& Dest. are in the same column 
                          MinPath1 <= Local;    --Packet sends to the Local direction 
                Elsif (Dx > Cx) then   
                          MinPath1 <= East;   --Dest. is to the East of the Current node 
                Else    
                          MinPath1 <= West;   --Dest. is to the West of the Current node 
                End if; 
        Elsif (Dy > Cy) then                  --up channel Subnetwork 
                If ( Cy mod 2 = 0 ) then                 --rule1 in the even rows                                              
                        If ( Dx > Cx ) and ( Dy - Cy = 1 ) then   --Dest. is in the East & 1 row to the Current node 
                                  MinPath1 <= East;   --One minimal path is suggested  
                        Elsif ( Dx > Cx ) and ( Dy - Cy > 1 ) then --Dest. is in the East of the Current node 
                                   MinPath1 <= East;   --Two minimal paths are suggested  
                                   MinPath2 <= North;                                    
                        Else     --Dest. is in the West of the Current node 
                                   MinPath1     <= North;                    --One minimal and One non-minimal path are suggested  
                                   NonminPath <= East;  
                        End if;  
                Elsif ( Cy mod 2 /= 0 ) then          --rule2 in odd rows  
                        If ( Dx < Cx ) and ( Dy - Cy = 1 ) then   --Dest. is in the West & 1 row to the Current node 
                                  MinPath1 <= West;   --One minimal path is suggested 
                        Elsif ( Dx < Cx ) and ( Dy - Cy > 1 ) then --Dest. is in the West of the Current node 
                                  MinPath1 <= West;   --Two minimal paths are suggested 
                                  MinPath2 <= North; 
                        Else     --Dest. is in the East of the Current node 
                                  MinPath1     <= North;   --One minimal and One non-minimal path are suggested 
                                  NonminPath <= West;                       
                        End if;        
                End if;         
        Elsif ( Dy < Cy ) then                  --down channel Subnetwork 
                If ( Cy mod 2 = 0 ) then   --rule1 in even rows                                  
                        If ( Dx < Cx ) and ( Cy - Dy = 1 ) then  --Dest. is in the West & 1 row to the Current node 
                                  MinPath1 <= West;   --One minimal path is suggested 
                        Elsif ( Dx < Cx ) and ( Cy - Dy > 1 ) then              --Dest. is in the West of the Current node 
                                  MinPath1 <= West;   --Two minimal paths are suggested 
                                  MinPath2 <= South; 
                        Else     --Dest. is in the East of the Current node 
                                  MinPath1     <= South;   --One minimal and One non-minimal path are suggested 
                                  NonminPath <= West;  
                        End If;  
                Elsif ( Cy mod 2 /= 0 ) then   --rule2 in odd rows                         
                        If ( Dx > Cx ) and ( Cy - Dy = 1 )then  --Dest. is in the East & 1 row to the Current node 
                                  MinPath1 <= East;   --One minimal path is suggested                                   
                        Elsif ( Dx > Cx ) and ( Cy - Dy > 1 ) then                 --Dest. is in the East of the Current node 
                                  MinPath1 <= East;   --Two minimal paths are suggested 
                                  MinPath2 <= South; 
                        Else     --Dest. is in the West of the Current node 
                                  MinPath1     <= South;   --One minimal and One non-minimal path are suggested 
                                  NonminPath <= East; 
                        End if;           
                End if;  
        End if;  
End modified_HAMUM  ; 
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In the up channel subnetwork, the packets arriving from the south direction at the nodes in 
even (odd) rows are not allowed to turn into the west (east) direction. In contrast, in the 
down channel subnetwork, the packets coming from the north direction at the nodes in even 
rows (odd) rows are not allowed to turn into the east (west) direction. 
HAMUM can be extended to support the non-minimal path routing in the network. Fig.  4-1 
depicts the implementation of the modified HAMUM. Once the presented algorithm is 
performed, three output variables, MinPath1, MinPath2, and NonMinPath, are evaluated. 
The variables of MinPath1 and MinPath2 are the minimal directions that can be chosen by 
a packet while the NonMinPath indicates the allowable non-minimal direction. For 
example, if the source node is located in the even row and the destination node is in the 
northeast position of the source node, two minimal directions (i.e. east and north) are 
suggested by the algorithm; while in the similar case, if the source node is located in the 
odd row, one minimal direction (i.e. north) and one non-minimal direction (i.e. west) are 
supplied by the algorithm. 
Two examples of the modified HAMUM, using minimal and non-minimal directions, are 
shown in Fig.  4-2. In the first example, the source node 1 sends a message to destination 23 
while the nodes 11 and 18 are faulty or congested. The modified HAMUM allows the 
packet to route around the congested areas by selecting the non-minimal path at node 8. As 
another example in Fig.  4-2, a packet can turn around the congested region when traveling 
from the source node 2 to the destination 16.  
 
 

 
Fig.  4-2. An example of modified HAMUM. 

 

4.2.1 Deadlock Avoidance 
Deadlock is a situation where network resources continuously wait for each other to be 
released. To show that the proposed algorithms are deadlock-free, it is required to prove 
that there is no cyclic dependency between channels  [101].  
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The modified HAMUM is deadlock-free:  

At the source node, the network is divided into two disjoint subnetworks, up channel (GU) 
and down channel (GD). Since each of the up channel and down channel subnetworks uses 
separate sets of channels, no cyclic dependency will be created among channels. If we 
could prove that the message routing algorithm in the up channel subnetwork is deadlock-
free, that would be sufficient to establish that the down channel subnetwork is also 
deadlock-free, and since GU GD= , the whole network will be free of deadlocks. So, we 
take the up channel subnetwork into consideration.  
A network can be represented by a connected graph G = (V,E), where V denotes  a  set  of  
vertices (routers or node) and E a set of edges (communication links). A pair (u,v)  E form 
an edge of the graph, if u is physically connected to v via a communication link. A path is a 
sequence of non-repeated nodes such that for a given i, 0 i<n-1 there exists a 
communication link from vi to vi+1, i.e. (vi, vi+1)  E. The unicast message can be expressed 
by Unicast=(u,d) where u  V and d  V. The multicast message can be represented by 
Multicast=(u,D), where u  V is the source node, D = {d1,d2, . . . ,dx} is the set of ordered 
destination nodes, and x is the number of destination nodes. Each node in the graph has a 
label (L) determined by the Hamiltonian path labeling mechanism. 
Since a unicast message is the special case of a multicast message, we prove that the 
algorithm is deadlock-free for the multicast messages, and then it is obvious for the unicast 
messages. 
Given a source node u and a set of destination D, let Path(u,D) denote the multicast 
message path from u to  all  destinations  of  D. As already mentioned, in the up channel 
subnetwork, the destination nodes are ordered in ascending order, so 
L(u)<L(d1)<L(d2)<…<L(dx). If we suppose that a minimal or non-minimal multicast 
message path is Path(u,D)=(u,a1,a2,…,ax,d1,ax+1,ax+2,…,ay,d2,ay+1,ay+2,…,az,dx), then  
intermediate nodes (either in the minimal or non-minimal paths) must be selected in a way 
that the packet follows the path only in ascending order, so:  
 
L(v0)  L(u)  L(a1)  L(a2)   …  L(ax) < L(d1)  L(ax+1)  L(ax+2)   …  L(ay) < L(d2) 

 L(ay+1)  L(ay+2)   …  L(az) < L(dx)  L(an-1)  
 
Note that the Hamiltonian path guarantees the existence of at least one possible path 
between each pair of nodes. According to the above facts, there cannot exist any link like 
(ai,ai+1),  where  L(ai)>L(ai+1), so no cyclic dependency can occur between channels for a 
single packet. Moreover all unicast and multicast packets in the up channel subnetwork are 
routed in entirely ascending order, thus the traveled paths of all packets cannot create any 
dependency cycles. The similar proof can be applied to the down channel subnetwork. 
Fig.  4-3 shows all possible turns that can be created in the network by unicast and multicast 
messages. No combination of the turns can form a cycle; this can be used as another proof 
that the proposed algorithm is deadlock-free. 
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Fig.  4-3. All possible turns of HAMUM and modified HAMUM. 

4.3 The AIOS Router Architecture 
The underlying idea of the proposed router architecture is to spread the traffic to prevent 
congestion. Using adaptive input-selection and output-selection methods can improve the 
network performance significantly. The output-selection method utilizes both the minimal 
and non-minimal schemes of HAMUM. When congestion (hotspot) is formed close to a 
router, a non-minimal direction is selected to deliver a packet while a minimal direction is 
taken when there is no congestion. In AIOS, the input selection exploits the Weighted 
Round Robin (WRR) policy which makes the routing algorithm non vulnerable to 
starvation. Also, WRR increases the performance of the network by monitoring the traffic 
condition. We consider a n n network of interconnected tiles with a mesh topology using 
wormhole scheme for the switching  [68].  

4.3.1 Message Format 
The message format utilized in this architecture is similar to one described in Section  3.2.5. 
 

4.3.2 Router Structure 
As shown in Fig.  4-4, each input channel has a routing unit, a controller for handshaking 
and an input buffer. The flits of the packets are stored in the input buffer. The routing unit 
determines the output channel to route packets. The controller controls the buffer status 
including empty and full states as well as detects the sign of the rate at which the buffer is 
becoming occupied. A positive rate indicates that the buffer is becoming full while a 
negative rate reveals that the buffer is becoming empty.  
Each input channel has a Congestion Flag (CF) signal (i.e. ECF, WCF, NCF, SCF and LCF 
corresponding to East, West, North, South and Local input channel, respectively) to inform 
its adjacent routers about its congestion condition so that the congested input channel 
should not be selected by the upstream router until the congestion condition is ceased.  
The router has a crossbar to establish a connection path from an input port to an output port. 
For each output port the router uses an arbiter for selecting among simultaneous input 
requests to access the same output port. In order to detect whether the buffer status is 
critical or not, the flit arrival and departure rates of the buffer should be measured. For this 
purpose, the circuit shown in Fig.  4-5 is used. Nnew is the number of occupied slots of the 
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input buffer in the current cycle of the router clock and Nold is the same number but in the 
previous cycle of the router clock. To determine the rate at which the buffer becomes full, 
the number of filled buffer cells at each rising edge of the router internal clock (Nnew) is 
compared to that of the previous rising edge (Nold). If Nnew >  Nold (Nold >  Nnew), it shows 
that the buffer is becoming full (empty). The sign is compared to the buffer status to 
activate the CF. 
 
 

 
Fig.  4-4. The proposed routing structure. 

 
The status signal of the buffer becomes full when the number of occupied cells of the buffer 
is more than a threshold value. In this case, for warning the full status, the signal W_Full is 
activated indicating that most buffer cells are full. This suggests that the congestion 
condition is traced using the signal W_Full to indicate the filling of the buffer.  
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Fig.  4-5. Congestion detection circuit for the input buffer. 

 
As shown in Fig.  4-5, CF is asserted when both the W_Full signal and the positive rate for 
occupying the input buffer slots (Nnew >  Nold) are detected. The Congestion Level (CL) of 
each router is computed by a module called Contention Aware Routing Selection (CARS). 
The CL is a 3-bit binary number as a result of summing up four CF values from four input 
ports  (see  Fig.   4-4  and  Fig.   4-6).  The  CL  for  each  router  indicates  its  load  level.  For  
example, if the north and east input buffers of the router are congested (NCF = 1 and ECF = 
1), then the CL value of the router will be equal to “010”. As illustrated in Fig.  4-6, the 
output of the CARS module is sent to the corresponding input channels of its adjacent 
routers (downstream routers).  
 

 
Fig.  4-6. Congestion level computation and transmission scheme. 
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A. Output-Selection  
In the output-selection method, each input channel has a routing unit decoding the header 
flit of incoming packets. The modified HAMUM, based on the minimal and non-minimal 
paths, is used to determine the output port to deliver packets. If the route(s) determined 
from the minimal path routing is(are) congested, the routing unit uses instead the non-
minimal path.  
First, based on the modified HAMUM in Fig.  4-1, the output port(s) specified by the 
minimal path (MinPath1 and MinPath2) are examined and if the congestion flag of the 
neighboring routers of the selected output ports is active, the congestion condition of the 
non-minimal path is checked. If the non-minimal direction is not congested, the packet is 
sent to the output port determined by the non-minimal path (NonMinPath). If the 
neighboring routers are not congested, the packet will be sent through the first minimal path 
output port (MinPath1). Fig.  4-7 shows the address decoder circuit. 
 

 

Fig.  4-7. Routing unit circuit. 
 

The procedure of selecting the suitable output port among all output ports that have been 
specified by the routing unit (Fig.  4-1) is exhibited in Fig.  4-8. In fact, the routing unit 
chooses the direction in which the corresponding downstream router has not raised its 
congestion flag. For instance, if a packet with a given source and destination could be 
routed to both output ports p1 (CF = 1) and p2 (CF = 0), then it will be routed to p2. If p1 
and p2 happen to have both their congestion flag raised, and if the routing unit has specified 
a non-minimal path, p3, the packet will be routed to p3 (if it is not congested), otherwise it 
will be routed to p1. On top of that, if both p1 and p2 are minimal output directions and the 
congestion flags of their corresponding downstream router have not risen, the routing unit 
will route the packet to p1 direction. Moreover, if the header type is a multicast message, 
the routing unit fetches the destination address from the header. After fetching the 
destination address from the header, if the destination address is the current node, the 
routing unit will request the local output port. Meanwhile, the routing unit fetches the next 
destination address from the header and runs the adaptive routing procedure to determine 
the output port(s) corresponding to the next destination address.  
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Fig.  4-8.The procedure of selecting the suitable output port. 

B. Input-Selection 
The proposed arbiter uses the Weighted Round Robin (WRR) scheme derived from the 
Round Robin (RR) policy for the input-selection method. The presented scheme allows a 
weight to be assigned to each input port. The weight of each input port, which specifies the 
number of packets to be transmitted, is proportional to the CL of the upstream router. This 
will assign different weights to the input channels of the routers for accessing the output 
channels through the arbitration process.  
 

 
Fig.  4-9. Block diagram of a round-robin arbiter. 

 
The arbiter provides services for each input channel in turn in the round robin order. If the 
input channel buffer is empty, it will be skipped without being serviced. Fig.  4-9 shows a 
block diagram of a round robin arbiter  [102] [103] [104]. The arbiter uses a Programmable 
Priority Encoder (PPE) unit to choose the highest priority request from n incoming requests 
(Req bus). In every arbitration cycle, PPE, which takes n 1-bit-wide requests and the logn-
bit-wide pointer (P_enc) pointing to the current highest-priority request as its inputs, 
chooses the first nonzero request value beyond (and including) Req[P_enc]. The output of 
the PPE is an n-bit-wide Gnt (grant) which has at most one nonzero bit and a 1-bit wide 
anyGnt signal which indicates if there has been at least one request. For updating the 
pointer, Gnt is loaded and rotated right one bit in rr1 unit (rotate right 1-bit register) whose 
output is encoded using the Enc unit and then latched for storing the next P_enc.  
Fig.  4-10 shows a block diagram of the Weighted Round Robin arbiter derived from the 
Round Robin scheme. The main difference between two schemes is that WRR serves to the 
input port based on its CL. There are five registers four out of five registers contain the CL 

If ( CF(MinPath1) = ’0’) then 
 Select <= MinPath1; 
Elsif (MinPath2 /= NULL and CF(MinPath2) = ’0’) then 
 Select <= MinPath2; 
Elsif (NonminPath /= NULL and CF(NonminPath) = ’0’) then 
 Select <= NonminPath; 
Else 
 Select <= MinPath1; 
End if; 
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of their upstream routers and one register is for the local router. The registers have three 
inputs and one output. If the register enable (En) is set, then the new CL value, which 
shows the CL of the upstream router, will be loaded in the register. After loading, the 
register operates as the down-counter for the service provided for this input port. While the 
zero signal (Zero) is not set (i.e., the register value has not reached zero) the register value 
will be decremented in each packet transmission cycle. When the register value reaches 
zero or the register enable (En) is reset, then the zero signal (Zero) will be set and 
subsequently the Enable of the rr1 unit is activated starting the update process for P_enc as 
was performed for the RR scheme. In the situations where there are multiple input requests 
to the same output channel, each output channel arbiter will service the incoming requests 
according to their CL (weight). This mechanism resolves any possible starvation that might 
occur in arbiters based on priority scheme such as in CAIS  [95]. 
 

 
Fig.  4-10. Block diagram of a weighted round robin arbiter. 

4.4 Experimental Results 
To assess the efficiency of AIOS, four other routers, defined in Table  4-1, are also 
implemented. We have developed a flit level event driven wormhole NoC simulator 
implemented in C++ based on standard template libraries (STL), running under Fedora 
Linux OS. The simulator computes the average latency and the power consumption for the 
packet transmission. As a performance metric, we use latency defined as the number of 
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cycles between the initiation of a message operation issued by a PE and the time when the 
message is completely delivered to the destination PE. The request rate is defined as the 
ratio of the successful message injections into the network interface over the total number 
of injection attempts. 

Table  4-1. Structure of other four routers. 

Router P-OE P-MP RR-OE RR-MP 

Input-Selection Priority (CAIS)  Priority (CAIS) Round Robin  Round Robin  

Output-Selection Odd-Even Multi-Path  Odd-Even Multi-Path  

 
A  2D  mesh  configuration  has  been  used  for  the  NoC.  Each  router  consists  of  8  
unidirectional channels (four incoming and four outgoing channels). The simulator inputs 
include the array size, the router operation frequency, the input and output selection 
methods, the link width, and the traffic type.  
To estimate the power consumption, we have used Orion library functions  [86]. Since some 
components such as routing unit and WRR circuits have not been modeled in Orion, we 
have modified the Orion library for computing their power consumptions. The data width 
and the frequency were set to 32 bits and 1GHz, respectively, which leads to a bandwidth 
of 32 Gb/s. Each input channel has a buffer (FIFO) size of 8 flits with the congestion 
threshold set at 75% of the total buffer capacity. The packet size was assumed to be 5 flits. 
The time needed to generate multicast messages (packets) is not considered, because we 
assumed the multicast messages are generated in the processing elements. The array size of 
8×8 has been considered. 
 

 
Fig.  4-11. Performance results in 8×8 2D-mesh under multicast traffic profile with (a) 10 destinations, (b) 20 

destinations. 
 

4.4.1 Performance Evaluation 

A. Multicast Traffic Profile 
This simulation is performed using a uniform-based multicast traffic profile pattern. Each 
PE generates messages and injects them into the network using the time intervals which are 
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obtained using the exponential distribution. In the multicast traffic profile, each PE sends a 
message to a set of destinations. A uniform distribution is used to construct the destination 
set of each multicast message  [78]. The number of destinations has been set to 10 and 20. 
The average latency as a function of the average flit injection rate is shown in Fig.  4-11(a) 
and  (b).  As  shown  in  the  results,  AIOS  leads  to  the  lowest  delay  particularly  not  only  in  
high traffic loads but also when the number of multicast destinations increases. As 
described before and can be seen from Fig.  4-11(a) and (b), unicast-based routing 
algorithms, e.g. Odd-Even, are not efficient for multicast traffic  [78] [81]. 
 

B. Unicast and Multicast (Mixed) Traffic Profile 
In this experiment, we have employed a mixture of unicast and multicast traffic, where 80% 
of injected messages are unicast messages and the remaining 20% are multicast messages. 
This pattern may be representative of the traffic in a distributed shared-memory 
multiprocessor where updates and invalidation produce multicast messages and cache 
misses are served by unicast messages  [78]. Both unicast and multicast messages are routed 
using  HAMUM.  The  number  of  destinations  for  multicast  messages  is  set  to  10  and  the  
array size of the network is equal to the previous traffic profile. Uniform and hotspot 
synthetic traffic patterns  [64] [105] are used to generate the unicast traffic in the network. In 
the uniform traffic profile, each PE sends a message to any other PE with an equal 
probability. This probability is determined randomly using a uniform distribution. Under 
the hotspot traffic pattern, one or more nodes are chosen as hotspots receiving an extra 
portion of the traffic in addition to the regular uniform traffic. In Fig.  4-12(a) the average 
communication latency of different routers under the uniform traffic model for unicast 
traffic are shown. In this traffic, AIOS performs better than the other three algorithms. 
Under the hotspot traffic model, given a hotspot percentage of h, a newly generated 
message is directed to each hotspot node with an additional h percent probability. We 
simulate hotspot traffic with a single hotspot node. The hotspot node is chosen to be node 
(4, 4) in the 8×8 2D-Mesh with h=10%. As observed from Fig.  4-12(b), AIOS shows 
considerably smaller delays compared to the other router models. 
 

C. Unicast Traffic Profile 
For appraising the unicast efficiency of AIOS, the uniform and hotspot traffic profiles, 
where 100% of injected messages are unicast messages have been considered. Fig.  4-13(b) 
and (b) show the simulation results for the uniform and hotspot traffic profiles. As depicted, 
when the injection rate is increased, AIOS is superior to the other schemes. In brief, as the 
injection rate increases, AIOS leads to smaller average delays. This is due to the fact that 
the input selection uses WRR scheme which allows packet flows coming from congested 
paths to be serviced more often according to their congestion level. In contrast, in the RR 
scheme no matter how congested a path is, all packet flows are serviced equally. In the 
mechanism based on CAIS (priority), congested input channels which have higher numbers 
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of request are serviced more often while the input channels with lower traffic may not be 
serviced leading to the starvation problem.  
 
 

 

Fig.  4-12. Performance with different loads in 8×8 2D-mesh under mixed traffic (20% multicast and 80% 
unicast). Unicast traffic in (a) is based on the uniform pattern and in (b) is based on the hotspot pattern with 

h=10%. 

 
Fig.  4-13. Performance with different loads in 8×8 2D-mesh under unicast traffic: (a) the uniform pattern and 

(b) the hotspot pattern. 
 

D. Video Object Plane Decoder (VOPD) Traffic Profile 
To evaluate the performance of AIOS under more realistic traffic loads, we have used 
Video Object Plane Decoder (VOPD) traffic profile  [106]. Although our algorithm is not 
proposed for real-time applications, we have only used VOPD traffic profile as an example 
of real traffic profile without considering its real-time constraints. The mesh array size was 
assumed to be 6 5. In Fig.  4-14, we show the core graph and its mapping onto the mesh for 
the VOPD. The other cores around the grey box generate uniform traffic, where each PE 
generates 5-flit packets and injects them into the network in the uniform manner. As the 
results shown in Fig.  4-15 reveal, for this traffic model, in the central areas of the chip, 
congestion may occur. Therefore, since the presented routers are based on the adaptive 
routing algorithms, they do not send packets in the central areas when these areas are 
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congested and thus distribute the traffic over the rest of the chip area. This strategy reduces 
the average delay of the packet transportation. 
 

 
 

Fig.  4-14.The VOPD block diagram, with communication BW annotated (in MB/s) and its mapping onto 
mesh topology. 

 

 
Fig.  4-15. The performance of different algorithms under VOPD traffic model. 
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4.4.2 Power Dissipation 
Using the simulator, the power dissipation of each scheme is calculated and compared 
under the mixed traffic profile. The results for the average and the maximum power under 
mixed traffic are shown in Fig.  4-16(a) and (b), respectively. Both average and maximum 
power values are computed near the saturation point, 0.23 (flits/cycle), under mixed traffic. 
We can notice that the maximum power, compared to other routers, is considerably lowered 
in our proposed router. This is achieved by smoothly distributing the power consumption 
over the network using the output selection scheme which reduces the number of the 
hotspots and, hence, lowering the maximum power. 

 

 
Fig.  4-16. (a) Average and (b) Maximum power dissipation results in 8×8 2D-mesh under mixed traffic 

profile. 

4.4.3 Hardware Overhead 
To evaluate the area overhead of the presented model and demonstrate the 
performance/area trade-off, RTL models of aforementioned routers have been implemented 
with four different input-output selection schemes using VHDL. The routers were described 
in VHDL and synthesized with Synopsys D.C. using the CMOS STMicroelectronic 65nm 
technology. For all routers, the data width was set to 32 bits, and each input channel has a 
buffer size of 10 flits. The FIFOs were implemented in our design using registers in order 
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to achieve better performance/power efficiency. We performed place-and-route via 
Cadence SoC-Encounter for more accurate area estimation. Fig.  4-17 shows the area cost of 
the switches. Comparing the area cost of AIOS with P-MP, P-OE, RR-MP and RR-OE 
introduces 2.4%, 2.1%, 1.6% and 1.3% additional overhead respectively. A test chip with a 
2×2 lightweight NoC based on the presented router architecture has been fabricated which 
can be found in Appendix A. 
 
 

 

Fig.  4-17. Area cost of routers for implementing different input-output selections. 
 

4.5 Summary 
In this chapter, a router architecture based on the adaptive input and output selection is 
presented. The output selection of the presented router utilizes an adaptive routing 
algorithm supporting both unicast and multicast traffic while the input selection part of the 
router uses the weighted round robin arbitration. Also, the adaptive output selection 
algorithm supporting both minimal and non-minimal paths uses congestion flags to route 
packets through non-congested paths and consequently helps balance the traffic. The WRR 
input selection also assists in relieving nodes where congestion is formed. A simulator was 
used to evaluate the efficiency of the proposed router. Under the multicast, unicast, mixed, 
and VOPD traffic models and in high flit injection rates, the proposed architecture has the 
lowest average communication delay in comparison with the other router models. It also 
reduces the maximum power dissipation of the network compared to other models under 
mixed traffic model.  
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Chapter 5 

5 Adaptive Network Interface 
Architecture 

NoCs are composed of routers connecting PEs, to deliver the data (packets) from one place 
to another  [94], and Network Interfaces (NI) acting as communication interfaces between 
each PE and corresponding router. The fundamental function of network interfaces is to 
provide data transaction between PEs and the network infrastructure. That is, one of the 
practical approaches of network interfaces is to translate the protocol between the PE and 
router based on a standard communication protocol such as AXI  [13], OCP  [14], and 
DTL  [15].  
In MPSoCs, in-order delivery is a practical approach which should be handled when 
exploiting an adaptive routing algorithm for distributing packets through the network  [107], 
when obtaining memory access parallelization by sending requests from a master IP core to 
multiple slave memories  [108] [109], or when exploiting dynamic memory access 
scheduling in memory controller to reorder memory requests  [110].  
In this chapter, we present a memory-efficient on-chip network with adaptive interfaces not 
only to cope with the in-order delivery but also to improve the network performance. The 
key ideas are threefold.  
1) The first  idea is  to deal with out-of-order handling in such a way that  when a master 

IP-core sends requests to different memories, the responses might be required to 
return in the same order in which the master issued the addresses. Therefore, we 
introduce an adaptive network interface architecture using a reordering mechanism 
for the proposed on-chip network. In addition, resource utilization of reorder buffers, 
implemented in network interfaces, is significantly inefficient, inasmuch as 
conventional buffer management is not efficient enough for network resources. Thus, 
a streamlined adaptive reordering mechanism via resourceful management of buffers 
is implemented in the network interface. 

2) As in traditional reordering mechanisms routers do not play any role in the reordering 
procedure, employing routers in the reordering procedure is very useful to increase 
utilization and reduce the average delay of on-chip networks. Thus, the second idea is 
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an on-chip router architecture, called priority-based router, which assigns a priority 
value for each packet according to the sequence number and distance between source 
and destination.  

3) The third idea is a dynamic memory controller that is integrated into the proposed 
network interface. The presented memory controller is able to reorder memory 
requests adaptively to improve memory utilization and reduce both memory and 
network latencies.  

Based on the introduced network interface architecture, a hybrid network interface 
architecture is designed to integrate both memory and processor in a tile. Furthermore, the 
presented on-chip network exploits the AMBA AXI protocol to allow backward 
compatibility with existing IP cores  [13]. We also present micro-architectures of the 
proposed ideas, particularly the reordering mechanism.  
 

5.1 DRAM Structure 
DRAM is designed to provide high memory depth and bandwidth. Fig.  5-1 shows a 
simplified three dimensional architecture of an DRAM memory chip with the dimensions 
of bank, row, and column  [110] [113] [114]. A DRAM chip is composed of multiple 
independent memory banks such that memory requests to different banks can be serviced in 
parallel. Hence, a benefit of a multibank architecture is that commands to different banks 
can be pipelined. Each bank is formed as a two dimensional array of DRAM cells that are 
accessed an entire row at a time. Thus, a location in the DRAM is identified by an address 
consisting of bank, row, and column fields. A complete DRAM access may require three 
commands (transactions) in addition to the data transfer: bank precharge, row activation, 
and column access (read/write). A bank precharge charges and prepares the bank, while a 
row-activation command (with the bank and row address) is used to copy all data in the 
selected row into the row buffer, i.e. sense amplifier. The row buffer serves as a cache to 
reduce the latency of subsequent accesses to that row. Once a row is in the row buffer, then 
column commands (read/write) can be issued to read/write data from/into the memory 
addresses (columns) contained in the row. To prepare the bank for a next row activation 
after completing the column accesses, the cached row must be written back to the bank 
memory array by the precharge command  [110]. Also, the timing constraints associated 
with bank precharge, row activation, and column access are tRP,  tRCD,  and  tCL 
respectively  [110] [113] [114]. Since the latency of a memory request depends on whether 
the requested row is in the row buffer of a bank or not,  a memory request  could be a row 
hit, row conflict, or row empty with different latencies  [115]. A row hit occurs when a 
request is accessing a row currently in the row buffer and only a read or a write command is 
needed. It has the lowest bank access latency (tCL) as only a column access is required. A 
row conflict occurs when the access is to a row different from the one currently in the row 
buffer. The contents of the row buffer first need to be written back into the memory array 
using the precharge command. Afterward, the required row should be opened and accessed 
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using the activation and read/write commands. The row conflict has the highest bank access 
latency (tRP +tRCD +tCL).  If  the  bank  is  closed  (precharged)  or  there  is  no  row  in  the  row  
buffer then a row empty occurs. An activation command should be issued to open the row 
followed by read or write command(s). The bank access latency in this case is tRCD +tCL. 
 

 
Fig.  5-1. High-level structure of an SDRAM. 

5.1.1 Memory Access Scheduling  
The memory controller lies between processors and the DRAM to generate the required 
commands for each request and to schedule them on the DRAM buses. The memory 
controller consists of a request table, request buffers, and a memory access scheduler. A 
request table is used to store the state of each memory request, e.g. valid, address, 
read/write, header pointer to the data buffer and any additional state necessary for memory 
scheduling. The data of outstanding requests are stored in read and write buffers. The read 
and write buffers (request buffers) are implemented as linked lists. Each memory request 
(read and write) allocates an entry in its respective buffer until the request is completely 



Chapter 5 Adaptive Network Interface Architecture 
 

82 
 

serviced. Among all pending memory requests, based on the state of the DRAM banks and 
the timing constraints of the DRAM, the memory scheduler decides which DRAM 
command should be issued. The average memory access latency can be reduced and the 
memory bandwidth utilization can be improved if an efficient memory scheduler is 
employed  [110] [113] [114]. Fig.  5-2 reveals how the memory access scheduling affects the 
performance. As shown in the figure, the sequence of four memory requests is considered. 
Request 1 and 3 are row empties, and request 2 and 4 are row conflicts. Timing constraints 
of a DDR2-512MB used as example throughout this chapter are 2-2-2 (tRP-tRCD-tCL)  [116]. 
As depicted in Fig.  5-2(a), if the controller schedules the memory requests in-order, it will 
take 22 memory cycles to complete them. In Fig.  5-2(b) the same four requests are 
scheduled out-of-order. As can be seen, request 4 is scheduled before request 2 and 3 to 
turn  request  4  from  a  row  conflict  to  a  row  hit.  In  addition,  request  3  is  pipelined  after  
request 1, called bank interleaving, since it has the different bank address from the bank 
address of request 1. As a result, only 14 memory cycles are needed to complete the four 
requests. Thus, how the memory scheduler can improve the memory performance has been 
shown by this example where the memory utilization of the in-order scheduler and the out-
of-order are 4(data)/22(cycle) = 18% and 4/14= 29%, respectively. In this chapter, we 
present an optimized memory controller that is integrated into the proposed network 
interface to improve the memory utilization and reduce both memory and network 
latencies.  
 

 
 

Fig.  5-2. Memory access scheduling of four memory requests with (a) in-order and (b) out-of-order access 
scheduling. 
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5.2 Related Work 
Due to the fact that most of the recently published studies have focused on design and 
description of NoC architectures, there has been relatively little attention to network 
interface designs particularly when supporting out-of-order mechanisms  [111]. The authors 
in  [108] present ideas of transaction ID renaming and distributed soft arbitration in the 
context of distributed shared memories. In such a system, because of using global 
synchronization in the on-chip network, the performance might be degraded and the cost of 
hardware overhead for the on-chip network is too high. In addition, the implementation of 
ID renaming and reorder buffer can suffer from low resource utilization. This idea has been 
improved in  [112] by moving reorder buffer resources from the network interface into 
network routers. In spite of increasing the resource utilization, the delay of release packets 
recalling data from distributed reordering buffer can significantly degrade the performance 
when the size of the network increases  [112]. Moreover, the proposed architecture is 
restricted to deterministic routing algorithms, and thus, it is not a suitable method for an 
adaptive routing. However, neither [104] nor  [112] has presented a micro-architecture of 
the network interface. An efficient on-chip network interface supporting shared memory 
abstraction and flexible network configuration is presented by Radulescu et al.  [109]. The 
proposed architecture has the advantage of improving reuse of IP cores, and offers ordering 
messages via channel implementation. Nevertheless, the performance is penalized because 
of increasing latency, and besides, the packets are routed on the same path in the NoC, 
which forces routers to use the deterministic routing. Yang et al. proposed NISAR  [107], a 
network interface architecture using the AXI protocol capable of packet reordering based 
on a look up table; NISAR has been implemented under the assumption of fixed message 
size and enjoys simple control logic and design. However such a mechanism would lead to 
an inefficient use of network resources for applications that generate periodic variable-size 
messages (burst mode). Moreover, NISAR suffers from several disadvantages described as 
follows. First, it permits only a limited number of transaction IDs to send several packets to 
the network so that some requests with different transaction IDs are prevented to be 
serviced for a long period. Second, NISAR uses a statically partitioned reorder buffer 
suffering from low resource utilization. Third, NISAR presented only a hybrid interface 
where the master and slave IP-cores are integrated into a single node; however it imposes 
significant hardware and delay overhead when the master and slave IP-cores are not 
integrated into a single node. 
In routers, the arbitration process is performed to choose one of multiple input channels to 
access an output channel. The arbiter could follow either a non-priority or a priority 
scheme. In the non-priority method, when there are multiple input port requests for the 
same available output port, the arbiter uses the First-Come-First-Served (FCFS)  [65], also 
called First-In-First-Out (FIFO), or Round-Robin (RR)  [97] policy to grant access to an 
input port. In this way the starvation on a particular port is avoided (fair). On the other 
hand, in the priority method when there are multiple input port requests for the same 
available output port, the arbiter would grant access to the input port request which has the 
highest priority level  [95]. The problem with the priority method is that starvation could 
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occur (unfair). In this chapter, we introduce a fair priority-based router to improve the 
network performance with low hardware overhead.  
Regarding the memory scheduler, several memory scheduling mechanisms were presented 
to improve the memory utilization and to reduce the memory latency. The key idea of these 
mechanisms is on the scheduler for reordering memory accesses. The memory access 
scheduler proposed in  [110] reorders memory accesses to achieve high bandwidth and low 
average latency. In this scheme, called bank-first scheduling, memory accesses to different 
banks are issued before those to the same bank. Shao et al.  [134] proposed the burst 
scheduling mechanism based on the row-first scheduling scheme. In this scheme, memory 
requests that might access the same row within a bank are formed as a group to be issued 
sequentially, i.e. as a burst. Increasing the row hit rate and maximizing the memory data 
bus utilization are the major design goals of burst scheduling. The core-aware memory 
scheduler reveals that it is reasonable to schedule the requests by taking into consideration 
the source of the requests because the requests from the same source exhibit better 
locality  [114]. In  [113], the authors introduced an SDRAM-aware router to send one of the 
competing packets toward an SDRAM using a priority-based arbitration. An adaptive 
history-based memory scheduler which tracks the access patterns of recently scheduled 
accesses and selects memory accesses matching the pattern of requests is proposed in  [135] 
and  [136]. As NoCs are strongly emerging as a communication platform for chip-
multiprocessors, the major limitation of presented memory scheduling mechanisms is that 
none of them did take the order of the memory requests into consideration. As discussed 
earlier, requests with the same transaction ID from the same master must be completed 
(turn back) in-order. While requests would be issued out-of-order in memories (slave-
sides), the average network latency might be increased significantly due to the out-of-order 
mechanism in master sides. Therefore, it is necessary to consider the order of memory 
requests for making an optimal memory scheduling.  
The major contribution of this chapter is to propose an adaptive network interface 
architecture within a dynamic buffer allocation mechanism for the reorder buffer to 
increase the utilization and overall performance. That is, using dynamic buffer allocation to 
get more free slots in the reorder buffer may lead more messages to be entered to the 
network. On top of that, an efficient memory scheduler mechanism based on the order of 
requests is introduced and integrated in our network interface to diminish both the memory 
and network latencies. We also present a novel router architecture for incorporating 
network resources to help in serializing the packets while they progress towards their 
destinations. 

5.3 Proposed Network Interface Architecture 
Since IP cores are classified into masters and slaves, the network interface is also divided 
into the master network interface (Fig.  5-3) and slave network interface (Fig.  5-4). Both 
network interfaces are partitioned into two paths: forward and reverse. The forward path 
transmits the AXI transactions received from an IP core to a router; and the reverse path 



Chapter 5 Adaptive Network Interface Architecture 
 

85 
 

receives the packets from the router and converts them to AXI transactions. The proposed 
network interfaces for both master and slave sides are described in detail as follows. 
 

 
Fig.  5-3. Master-side network interface architecture. 

 
Fig.  5-4. Slave-side network interface architecture. 

 

5.3.1 Master-side Network Interface 
As shown in Fig.  5-3, the forward path of the master network interface transferring requests 
to the network is composed of an AXI-Queue, a Packetizer unit, and a Reorder unit, while 
the reverse path, receiving the responses from the network, is composed by a Packet-
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Queue, a Depacketizer unit, and the Reorder unit. The Reorder unit is a shared module 
between the forward and reverse paths. 
AXI-Queue: the AXI master transmits write address, write data, or read address to the 
network interface through channels. The AXI-Queue unit performs the arbitration between 
write and read transaction channels and stores requests in either write or read request 
buffer. The request messages are sent to the packetizer unit if admitted by the reorder unit, 
and on top of that a sequence number (SN) for each request should be prepared by the 
reorder unit after the admittance. 
Packetizer: it converts incoming messages from the AXI-Queue unit into header and data 
flits, and delivers the produced flits to the router. Since a message is composed of several 
parts, the data is stored in the data buffer and the rest of the message is loaded in 
corresponding registers of the header builder unit. After the mapping unit converts the AXI 
address into a network address by using an address decoder, based on the request 
information loaded on related registers and the sequence number provided by the reorder 
buffer, the header of the packet can be assembled. Afterward, the flit controller wraps up 
the packet for transmission. 
Packet-Queue: this unit receives packets from the router; and according to the decision of 
the reorder unit a packet is delivered to the depacketizer unit or reorder buffer. In fact, 
when a new packet arrives, the sequence number and transaction ID of the packet are sent 
to the reorder unit. Based on the decision of the reorder unit, if the packet is out-of-order, it 
is transmitted to the reorder buffer, and otherwise it is delivered to the depacketizer unit 
directly.  
Depacketizer: the main functionality of the Depacketizer unit is to restore packets coming 
from either the packet queue unit or reorder buffer into the original data format of the AXI 
master core. 
Reorder unit: it is the most influential part of the network interface including a Status-
Table, a Reorder-Buffer, and a Reorder-Table. In the forward path, preparing the sequence 
number for corresponding transaction ID and avoiding overflow of the reorder buffer (by 
an admittance mechanism), are provided by this unit. On the other side, in the reverse path, 
this unit determines where the outstanding packets from the packet queue should be 
transmitted (reorder buffer or depacketizer), and when the packets in the reorder buffer 
should be released to the depacketizer unit. 
Status-Table: the state of outstanding messages is kept in a table named Status-Table. The 
Status-Table has n entries where each entry corresponds to a transaction ID and n is  the  
number of AXI transaction IDs. Each entry contains the information of outstanding 
messages associated with that transaction ID and includes NM, ES, and LMS fields. The 
NM (Number of outstanding Messages) field reveals that how many messages of the given 
T-ID are inside the network. This value is incremented when a new message with the same 
T-ID enters the network, and is decremented when the response message comes back to the 
master core. The ES (Expecting Sequence number) field points out the sequence number of 
the message expected to be delivered to the master core.  
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Fig.  5-5. Status-Table of the reorder unit. 

As the master core expects to receive the first message first, the ES field is  set  to 0 at  the 
initialization time and it is increased by receiving in-order messages. As already mentioned, 
each message has a sequence number (SN) indicating the order of the message within the 
transaction ID. This value is produced by the reorder unit, if the admittance is given. 
Finally, the LMS field defines the reserved buffer space for the last message. The Status-
Table might be updated in both forward and reverse paths described as follows. Suppose 
that in the forward path, the first message of a transaction ID requests to enter the network. 
The corresponding row of the transaction ID is initiated such that the NM, ES and LMS 
fields are set to 1, 0, and the message size, respectively, and the value of SN is initialized to 
0. However, as no ordering mechanism is required for a single outstanding message of the 
given transaction ID, no buffer space needs to be reserved for this message (Procedure A, 
Fig.  5-5(a)). For the second (or the rest of) admitted requests of the given transaction ID, 
the NM field is increased by +1, the ES field remains unchanged, and the LMS field is set to 
the required buffer size of the new message. Subsequently, the value of SN is obtained by 
adding the values of NM and ES. Since more than one message with the same transaction 
ID is issued (NM  2), the out-of-order handling mechanism is required. Therefore, in order 
to prevent overflow of the reorder buffer, the buffer space required by the new message is 
compared with the available space of the reorder buffer. If there is enough space for the 
new message (MsgSize), the required space is allocated in the reorder buffer (Procedure B, 
Fig.  5-5(b)). The RsrvSize indicates the required space of all outstanding transactions in the 
network. Indeed, this register reserves the number of buffer slots required by outstanding 
messages of different transaction IDs. 
Procedure A:(sending first msg. of T_ID to network) 
1   S_Table(T_ID)(NM)  <= “0001”; 
2   S_Table(T_ID)(ES)  <= (others =>’0’); 
3   S_Table(T_ID)(LMS) <=  MsgSize; 
4   SN  <= (others =>’0’); 
5   RsrvSize  <=  RsrvSize; 
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Procedure B:(sending other msgs. of T_ID to network) 
1   S_Table(T_ID)(NM) <= S_Table(T_ID)(NM) + 1; 
2   S_Table(T_ID)(ES) <= S_Table(T_ID)(ES); 
3   S_Table(T_ID)(LMS) <= MsgSize; 
4   SN  <= S_Table(T_ID)(NM) +  S_Table(T_ID)(ES); 
5   RsrvSize  <= RsrvSize + MsgSize; 

 
In the reverse path, the transaction ID and sequence number of the arriving response 
message are sent to the reorder unit to find the related row in the Status-Table. In the 
corresponding row of the transaction ID, if the sequence number of the incoming packet is 
equal to the value of ES, the packet is an expected packet (in-order) and it should be 
delivered to the depacketizer unit. Thereafter, the received message size (RecvMsgSize) is 
reduced from the RsrvSize, and the values of ES and NM are added by +1 and -1, 
respectively (Procedure C, Fig.  5-5(c)). However, if the sequence number of the packet is 
not  equal  to  the  value  of  ES, the packet is out-of-order and should be delivered to the 
reorder buffer. In case that the message is delivered to the depacketizer unit and the value 
of NM becomes 1, the reserved buffer space for the last message (i.e. LMS) can be 
deallocated. If the value of NM reaches 0, the transaction is terminated (Procedure D, 
Fig.  5-5(d)).  
 
Procedure C: (arriving expected packet) 
1   S_Table(T_ID)(NM) <= S_Table(T_ID)(NM) - 1;  
2   S_Table(T_ID)(ES)    <= S_Table(T_ID)(ES) + 1; 
3   S_Table(T_ID)(LMS)   <= S_Table(T_ID)(LMS); 
4   RsrvSize   <= IF NM/=1 THEN RsrvSize – RecvMsgSize; 
         ELSE RsrvSize – RecvMsgSize - LMS; 
 
Procedure D: (arriving last packet) 
1   S_Table(T_ID)(NM)    <= S_Table(T_ID)(NM) - 1;  
2   S_Table(T_ID)(ES)    <= (others =>’0’); 
3   S_Table(T_ID)(LMS)   <= (others =>’0’); 
4   RsrvSize              <= RsrvSize; 
 
Reorder-Table and Reorder-Buffer: As  shown  in  Fig.   5-6,  each  row  of  the  Reorder-
Table corresponds to an out-of-order packet stored in the Reorder-Buffer. This table 
includes the valid tag (v),  the  transaction  ID (T-ID), the sequence number (SN) as well as 
the head pointer (P). In the Reorder-Buffer, the flits of each packet are maintained by a 
linked list structure providing high resource efficiency with a little hardware overhead. On 
top of that, the goal of using the shared Reorder-Buffer is to support variable packet sizes 
and improve the buffer utilization which can also increase the performance by feeding more 
packets into the network. Fig.  5-6 exhibits a pointer field adopted to indicate the next flit 
position in the Reorder-Buffer. Using the proposed structure in Fig.  5-6, each out-of-order 
packet updates the Reorder-Table and Reorder-Buffer according to the procedure E and F. 



Chapter 5 Adaptive Network Interface Architecture 
 

89 
 

Procedure E: (updating Reorder-Table)  
1   ReorderTable(FreeRow)(V)   <= ‘1’; 
2   ReorderTable(FreeRow)(T-ID) <= HeaderFlit(T-ID); 
3   ReorderTable(FreeRow)(SN)   <= HeaderFlit(SN); 
4   ReorderTable(FreeRow)(P)   <= Current_Free_Slot; 
 
The first three operations in the procedure E, stores the transaction ID and sequence 
number from the header flit of the out-of-order packet to the available slot indicated by 
FreeRow in the Reorder-Table; and the last operation in the procedure E updates the pointer 
to point to the available slot in the Reorder-Buffer. 
 
Procedure F: (updating Reorder-Buffer) 
1   ReorderBuf(Current_Free_Slot)(V)    <= ‘1’; 
2   ReorderBuf(Current_Free_Slot)(Data) <= flit; 
3   ReorderBuf(Current_Free_Slot)(P) <= Next_Free_Slot;                        
4   Current_Free_Slot                 <= Next_Free_Slot; 
 
The procedure F is intended to store the incoming flits into the Reorder-Buffer. While 
Current_Free_Slot shows the current free location in the Reorder-Buffer to store the 
current flit, Next_Free_Slot returns an available slot for the next flit. By repeating the 
operations in the procedure F, all the payload flits are stored in the Reorder-Buffer. The tail 
flit can be determined by extracting header flit information. Whenever an in-order packet 
delivered to the depacketizer unit, the depacketizer controller checks the Reorder-Table for 
the validity of any stored packet with the same transaction ID and next sequence number. If 
so, the stored packet(s) is (are) released from the reorder unit to the depacketizer unit. 
 

 
Fig.  5-6. Dynamic buffer allocation. 

 
If master cores, slave cores, and the network operate at different frequencies, bi-
synchronous FIFOs are deployed between network interfaces and cores. Bi-synchronous 
FIFOs are widely used in multi-clock systems to synchronize signals from different 
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clock/frequency domains. Each domain is synchronous to its own clock signal but can be 
asynchronous with respect to others in either clock frequency or phase  [117]. The 
challenges of designing bi-synchronous FIFOs include the enhancement of reliability and 
reducing latency and power/area cost. We identify the bi-synchronous FIFOs structure 
presented in  [118] suitable to be used in the interfaces. 

5.3.2 Slave-side Network Interface 
A slave IP core cannot operate independently. It receives requests from master cores and 
responds to them. Hence, using reordering mechanism in the slave network interface is 
completely meaningless. To avoid losing the order of header information (transaction ID, 
sequence number, and etc.) carried by arriving requests, a FIFO has been considered. After 
processing a request in the slave core, the response packet should be created by the 
packetizer. As can be seen from Fig.  5-4, to generate the response packet, after the header 
content of the corresponding request is invoked from the FIFO, and some parameters of the 
header (destination address, and packet size, and etc) are modified by the adapter, the 
response packet can be formed. However, the components of slave-side interface in both 
forward and reverse paths are similar to the master-side interface components, except the 
reorder unit. 
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Fig.  5-7. Hybrid network interface architecture. 

 

5.3.3 Hybrid Network Interface 
The hybrid model is formed by combining the master-side and slave-side network 
interfaces. As illustrated in Fig.  5-7, based on the type of incoming packet (Req/Resp) the 
detector unit determines the target unit (Slave-side Queue/Master-side Queue). Regarding 
the MPSoC’s configuration, if each node is supposed to integrate a dedicated processor and 
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memory, instead of using two network interfaces (master and slave), the hybrid model is 
more beneficial, particularly in terms of area and power costs. This architecture also 
prevents the local requests to enter the network such that local requests can access the local 
memory directly. A round-robin arbitration scheme is used between the local requests and 
global requests coming from the network.  

5.4 Priority-based Router Architecture 
In this part, we present a novel method for incorporating network resources in serializing 
the packets while they traverse inside the network. Fig.  5-8 shows a 4×4 tile architecture 
where the master core 0 accesses three memory modules 6, 13 and 15. Assume that the 
master core generates three requests, A, B and C, with a same transaction ID and sends 
request A to memory 15, request B to memory 13 and request C to memory 6. Due to the 
in-order requirement of the AXI protocol, response A needs to be delivered to the master 
core first and then responses B and C, respectively. For simplicity, we assume that the 
memory modules return responses with zero latency and we also assume that a round-robin 
arbiter is used in each router such that on average three cycles are needed for a packet to 
win arbitration in a router.  
 

 
Fig.  5-8. 4×4 NoC where master core 0 sends requests A, B and C to memories 6, 13 and 15, respectively.  

 
As shown in Fig.  5-9(a), the master network interface sends requests A, B and C at time 0 
to the network. According to the proposed network interface architecture, buffer space 
should be reserved for requests B and C. By considering three cycles waiting time at each 
router, requests C and B access the memory modules 6 and 13, respectively, at cycles 9 and 
12. At cycle 18, request A accesses the memory 15 and meanwhile the response C reaches 
the master network interface. Response C cannot be served by the master core before 
responses A and B, so it  has to be stored in the reorder buffer.  At cycle 24,  response B is 
received by the master network interface and stored in the reorder buffer as it cannot be 
served earlier than response A. Response A is received by the master network interface at 
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time 36 and it can be sent directly to the master core. Finally, the stored responses B and C 
are released from the reorder buffer and delivered to the master core at cycles 37 and 38, 
respectively. However, when response B is delivered to the master core, the allocated 
buffer space for both requests B and C is released.  
The idea behind our method is to give better chance to the long-distance packets with low 
ordering values to win arbitration in routers. By this approach, in the same example as 
Fig.   5-9(a)  the  number  of  waiting  times  of  request  A in  arbitration  phases  is  probably  less  
than that of requests B and C (similarly the number of waiting cycles of request B is 
probably less than request C). The possibility of benefits from the idea of priority-based 
router can be found in the case of Fig.  5-9(b) in which the requests experience different 
waiting periods at routers and they are supposed to be 1.5, 3 and 6 cycles for requests A, B 
and C, respectively (these values are chosen such that the results could be compared with 
the example shown in Fig.  5-9(a)). 
 

 

Fig.  5-9. Comparing (a) round-robin and (b) priority-based arbitration schemes in serializing the packets. 
 
As illustrated in Fig.  5-9(b), requests A and B access their memories at cycles 9 and 12, 
respectively. At cycle 18, request C accesses the memory while response A is received by 
the master network interface. Since response A is arrived in-order, it can be served 
immediately and delivered to the master core. At cycle 24, response B can also be directly 
sent to the master core. Upon arrival of this response not only the required space for request 
B is released but also the reserved buffer space for request C is released. Finally, the 
response C reaches the master network interface at cycle 36 and it is delivered to the master 
core directly. According to the examples in Fig.  5-9(a) and Fig.  5-9(b), latencies can be 
considerably reduced by applying the idea of priority-based router, i.e. in Fig.  5-9(b) 
responses A, B and C are delivered to the master core at cycles 18, 24 and 36 which are 
earlier than in Fig.  5-9(a) where responses are served at cycles 36, 37 and 38, respectively. 
This reduction is mainly from the fact that responses arrive at the master network interface 
in-order, and thus can be served immediately. Another advantage of using priority-based 
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router is that the corresponding reserved buffer space in the reorder buffer can be released 
sooner as the responses are mainly reaching the master network interface in-order, i.e. in 
Fig.  5-9(b) the reserved buffer space for requests B and C are released at cycle 24 while in 
Fig.  5-9(a) they are freed at cycle 37. The idea of priority-based router can further improve 
the performance by allowing more pending requests to enter the network, thereby reducing 
the overall latencies of packets. 
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Fig.  5-10. The router architecture. 

 

5.4.1 The Proposed Priority-based Router 
The architecture of the priority-based router (PR), depicted in Fig.  5-10, has a typical state-
of-the-art structure including input buffers, a VC (Virtual Channel) allocator, a routing unit, 
a switch allocator and a crossbar. Each router has 5 input/output ports, and each input port 
of the router has 2 VCs. Packets of different message types (request and response) are 
assigned to corresponding VCs to avoid message dependency deadlock  [119]. The 
arbitration scheme of the switch allocator in the typical router (TR) structure is round-robin. 
The round-robin scheme is a fair policy when all packets have the same priority; otherwise 
priority-based methods are more beneficial. As already mentioned, each packet is assigned 
a sequence number and packets might be returned back out-of-order due to the different 
path length and different memory response time. The priority-based router assigns a 
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priority to each packet such that long-distance packets with low sequence numbers have 
better chance to win the arbitration in routers. Accordingly, the packet priority is computed 
by summing up two values. The first one is the distance the packet must traverse between 
the master and slave while the second one is obtained by subtracting the MaxSeqNum value 
(the maximum sequence number value that can be generated by the network interface) from 
the PacketSeqNum value (packet sequence number). The result is stored in the packet’s 
header and used by router arbiters. By using the priority-based router, packets can proceed 
inside the network with different speeds according to their priority values.  
 

 
Fig.  5-11. Pseudo VHDL code of the priority-based router. 

 
Fig.  5-11 shows the algorithm in which the process, Find_MaxPriority, is activated when 
the output channel is available and there are multiple messages. It examines all messages 
and the priority value of the corresponding input packets and grants a message with the 
highest priority value. In order to prevent starvation, each time after finding the highest 
value, the priorities of defeated packets are incremented. 

5.5 Order Sensitive Memory Scheduler 
The architecture of the proposed memory controller, dubbed OS from Order Sensitive, is 
depicted in Fig.  5-12. As illustrated in the figure, the proposed memory controller is 
integrated in the slave-side network interface. After arriving to the network interface on the 
edge of the network, requests are stored in the respective queues based on their target 
banks. The data associated with write requests is stored in the write queue. The queues are 
implemented as the linked list structure which has been described earlier. Depending on the 
sequence number, received requests in each bank queue obtain a priority value to access the 

i    : i(th) input channel 
P(i) : priority value of i(th) input channel  
       = (MaxSeqNum – PacketSeqNum + Distance) 
WP(i): waiting periods + P(i) 

---------------- 
process Find_MaxPriority is 
begin  
  MaxValue <= 0; 
  for ‘i=0 to all Reqs in the output port’ loop 
   if Req is a new packet then 
        WP(i) <= P(i); 
   else 
        WP(i) <= WP(i) + 1; 
    end if; 
    if WP(i) > MaxValue then 
     MaxValue <= WP(i); 
      select   <= i; 
    end if; 
  end loop; 
end process; 
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memory. Here we have the same scenario as in the priority-based router. The priority value 
of each packet is based on the sequence number, which helps to deliver the packets to the 
master network interface in-order such that the corresponding reserved buffer space in the 
reorder buffer can be released sooner. 
 
 

 
Fig.  5-12. The proposed memory controller integrated in the slave-side network interface. 

 
Once a new request enters a queue, the process input_queue, shown in Fig.  5-13, updates 
the priority value of each request in the queue. The packet’s sequence number of received 
request is assigned as a priority value for this request. In addition, to prevent starvation, the 
priority values of existing requests in the queue are incremented at every input_queue 
event. As mentioned earlier, each bank arbiter selects a request from the queue with the 
highest priority value based on the bank timing constraints as the first level of scheduling 
procedure. Since the row-first policy has better memory utilization in comparison with the 
other bank arbitration policies, the bank arbiters of the presented memory controller also 
takes advantage of the row-first policy. The bank arbitration policy in our memory 
controller is shown in Fig.  5-13. Whenever the arbiter process is activated, it tries to find a 
request which is a row hit and has a higher priority value. If there are not any row hits, the 
bank arbiter selects the highest priority request which is a row conflict from the queue and 
issues the SDRAM commands to service the selected request. Fig.  5-14 depicts the circuit 
of finding the suitable request in the request buffer which is described in the arbiter process 
of Fig.  5-13. In the second level of the scheduling procedure, at each memory cycle the 
memory scheduler decides which request from all bank arbiters should be issued. To 
simplify the hardware implementation and provide the bank interleaving, round-robin 
mechanism is utilized by the memory scheduler. 
 



Chapter 5 Adaptive Network Interface Architecture 
 

96 
 

 
Fig.  5-13. Pseudo VHDL code of the arbiter in the memory controller. 

5.6 Experimental Results   
In this section, we evaluate the proposed on-chip network architecture in terms of average 
network latency, memory latency, and memory utilization compared with the baseline 
architecture under different traffic patterns. Also, we discuss the area and power 

[1] RA(i) : row address of i(th) request. 
[2] CRA   : current row address issued prior. 
[3] P(i)  : priority value of i(th) request  
[4]         =(MaxSeqNum – PacketSeqNum) 
[5] W(i)  : waiting periods + prioriy  
[6]         of i(th) request in the queue. 
[7] ---------------- 
[8] Process(input_queue) 
[9] Begin 
[10] For ‘i:1 to number of Reqs in input queue’ loop 
[11]   If Req is a new packet then 
[12]      W(i) <= P(i); 
[13]     Else 
[14]      W(i) <= W(i)+1;   
[15]     End if; 
[16]  End loop; 
[17] End process; 
[18] ---------------- 
[19] Process(arbiter) 
[20] Begin 
[21]  MaxValue1 <=0; select1 <=0;     
[22]  MaxValue2 <=0; select2 <=0; 
[23]  For ‘i:1 to all requests in input queue’ loop     
[24]    If RA(i)= CRA then 
[25]      If W(i)>= MaxValue1 then 
[26]        select1 <= i; 
[27]        MaxValue1 <= W(i); 
[28]      End if; 
[29]    Else 
[30]      If W(i)>= MaxValue2 then 
[31]        select2 <= i; 
[32]        MaxValue2 <= W(i); 
[33]      End if; 
[34]     End if; 
[35]  End loop; 
[36]  If select1 /= 0 then 
[37]     select <= select1; 
[38]  Else 
[39]     select <= select2; 
[40] End if; 
[41]End process; 
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consumption of the proposed NoC components: network interface, priority-based router, 
and order sensitive memory scheduler. Consequently, a 2D NoC simulator is implemented 
with VHDL to model all major components of the NoC. 
 
 

 
Fig.  5-14. Request selector circuit. 

 

5.6.1 System Configuration 
We use a 25-node (5 5) 2D mesh on-chip network with two different configurations for the 
entire architecture. In the first configuration (A), illustrated in Fig.  5-15, out of 25 nodes, 10 
nodes are assumed to be processors (master cores, connected by master NIs) and remaining 
15 nodes are memories (slave cores, connected by slave NIs). For the second configuration 
(B), each node is considered to have a processor and a memory (master and slave cores, 
connected by a hybrid NI). The processors are 32b-AXI and the memories specified in 
subsection  5.1, are DDR2-256MB (tRP-tRCD-tCL=2-2-2, 32b, 4 banks)  [116]. We assume that 
the memories are integrated on a separate die which is stacked on top of the processor 
layer  [35] [120] [121]. Inasmuch as the memories are now stacked on top of the processors 
layer, the front-side bus and memory controller operate at the same speed as the processors. 
The timing of each stacked DRAM module is still the same as in a traditional DRAM 
memory (tCAS,  tRAS, etc. are unchanged)  [35] [120] [121]. We adopt a commercial memory 
controller with memory interface, DDR2SPA module from Gaisler ip-cores  [122]. Along 
with the proposed order sensitive (OS) memory scheduler, another memory scheduler with 
row-first (RF) policy is also implemented as the default scheduler for the memory 
controller. The network of each configuration that has been considered for experimental 
results is formed either by Typical Router (TR) or by Priority-based Routers (PR).  



Chapter 5 Adaptive Network Interface Architecture 
 

98 
 

 
Fig.  5-15. The layout of the system configuration A. 

 
The array size, routing algorithm, link width, number of VCs, buffer depth of each VC, and 
traffic type are the other parameters which must be specified for the simulator. The routers 
adopt the XY routing algorithm  [64] [60] and utilize wormhole switching. For all routers, 
the data width (flit size) is set to 32 bits, and the buffer depth of each VC to 5 flits. Message 
structures for the AXI protocol are defined in  [109] [115]. For the request, the command and 
all  its  control  bits  (flags)  are  included  in  the  first  flit  of  the  packet,  the  memory  address  is  
set in the second flit, and the write data (in the case of a write command) is appended at the 
end. For the response message, the control bits are included in the first flit while the read 
data is appended at the end if the response relates to a read request. Hence, the packet 
length for write responses and read requests is 1 flit and 2 flits, respectively, while the 
packet length for data messages, representative of read responses and write requests, is 
variable and depends on the write request/read response length (burst size) produced by a 
master/slave core. As a performance metric, we use latency defined as the number of cycles 
between the initiation of a request operation issued by a master (processor) and the time 
when the response is completely delivered to the master from the slave (memory). The 
request rate is defined as the ratio of the successful read/write request injections into the 
network interface over the total number of injection attempts. All the cores and routers are 
assumed to operate at 1GHz; and for fair comparison, we keep the bisection bandwidth 
constant in all configurations. All memories (slave cores) can be accessed simultaneously 
by each master core continuously generating memory requests. Furthermore, the size of 
each queue (and FIFO) in the network is set to 8×32 bits and the size of the reorder buffer 
is set to 48 words. If the maximum burst size is set to 8, the baseline architecture utilizing a 
statically partitioned reorder buffer  [107] can support at most 6 outstanding read requests in 
a 48-word reorder buffer (regardless of the exact size of the requests), while the proposed 
approach is able to embed as many requests as can be reserved in the reorder buffer, i.e. at 
most 48 and at least 6 outstanding read requests. 
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5.6.2 Performance Evaluation 
To evaluate the performance of the proposed schemes, uniform and non-uniform/localized 
synthetic traffic patterns are considered separately for both configurations (A and B). These 
workloads provide insight into the strengths and weaknesses of the different buffer 
management mechanisms in the interconnection networks, and we expect applications 
stand between these two synthetic traffic patterns  [123] [124]. The random traffic represents 
the most generic case, where each processor sends in-order read/write requests to memories 
with a uniform probability. Hence, the target memory and request type (read or write) are 
selected randomly. Eight burst sizes, from 1 to 8, are stochastically chosen according to the 
data length of the request. In the non-uniform mode, 70% of the traffic is local requests, 
where the destination memory is one hop away from the master core, and the rest 30% of 
the traffic is uniformly distributed to the non-local memory modules. We also consider the 
hotspot traffic pattern where four memory nodes are chosen as hotspots receiving an extra 
portion of the traffic (10%) in addition to the regular uniform traffic  [64] [60]. For the 
uniform and hotspot traffic profiles, we obtained very similar performance gains in each 
configuration so that they are not presented. 
 

 
Fig.  5-16. Performance evaluation of both configurations under (a) uniform and (b) non-uniform traffic models. 

  
Fig.  5-17. Performance impact of using the priority-based router under the (a) uniform and (b) non-uniform 

traffic models. 
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Fig.  5-18. Performance impact of using the order sensitive memory controller under the (a) uniform and (b) 

non-uniform traffic models. 

Fig.  5-16(a) and (b) show the simulation results under the uniform and non-uniform traffic 
models, respectively. In each configuration, the on-chip network utilizing the proposed 
network interface, denoted by MS (Master/Slave NI) and H (Hybrid NI), is compared with 
the network equipped with the baseline network interface. As demonstrated in both figures, 
compared with the baseline architecture, the NoC using the proposed network interface 
reduces the average latency when the request rate increases under the uniform and non-
uniform traffic models. The foremost reason for such an improvement is due to employing 
the shared reorder buffer in the network interface which allows more messages to enter the 
network, i.e. this leads more requests to be released from the injection queue.  
Regarding the configuration B, using the master-side and slave-side network interfaces 
instead of the hybrid network interface when each node is composed of a dedicated 
processor and memory gives a better performance but as discussed in the next subsection it 
is not a cost efficient approach. The Hybrid structure deteriorates the performance because 
the buffer resources are shared. However, the performance given by the hybrid structure 
close to the saturation point is around 34% and 18% less than the other structure under the 
uniform and non-uniform traffic models, respectively. The performance penalty under the 
non-uniform traffic model is not significant compared to the uniform traffic model because 
the hybrid network interface allows the local requests to access the local memory directly. 
Fig.  5-17(a) and (b) depicts the performance gain of the presented priority-based router 
architecture under uniform and non-uniform traffic models, respectively. In each 
configuration the network formed by the priority-based routers (PR) reduces the average 
latency as compared with the network formed by typical routers (TR). The performance 
gain near the saturation point (0.6) under the uniform traffic model for configuration A and 
B is about 15% and 13%, respectively, while the hardware overhead of this router is less 
than 2% in comparison with the typical router. This reveals that giving priority to packets 
according to their sequence number and remaining distance helps to deliver the packets to 
the master network interface in-order. Therefore, the corresponding reserved buffer space 
in the reorder buffer can be released sooner and master cores can receive responses earlier 
than using the typical routers.  
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Fig.  5-19. Effect of reorder buffer size on the performance under the uniform traffic model. 

To explore the impact of the proposed Order Sensitive (OS) memory scheduler, we 
compare the network equipped with the OS scheduler with the one using the default 
scheduler (Row-First (RF)) where both networks are formed by the typical routers. 
Fig.  5-18(a) and (b) present the performance comparison between the two networks for 
each configuration under the uniform and non-uniform traffic models. Compared with the 
RF scheme, the network utilizing OS scheduler gives significant improvements in average 
network latency. The performance gain of the OS scheduler close to the saturation rate 
under  the  uniform  traffic  model  for  configuration  A  and  B  is  up  to  17%  and  16%,  
respectively. The average memory utilization and average memory latency are also 
computed near the saturation rate under the uniform traffic profile for the configuration A. 
According to our observation, at least half of the request buffers of each memory controller 
are occupied under the uniform traffic model with the given injection rate, which keeps the 
memory controller busy all the time. As a result, compared with the RF scheme, the 
average utilization of memories is improved by 22% while the average memory latency is 
reduced by 19%. Compared with RF, the hardware overhead of the OS scheme is negligible 
since both of them have similar request and data queues, buffer management, and bank 
interleaving arbiter. In addition, near the saturation rate under the uniform traffic profile for 
the configuration A the number of average and maximum buffer occupancy of reorder 
buffers is around 70% and above 90%, respectively. The number of average and maximum 
outstanding messages in the system is around 160 and 230, respectively.  
We also vary the reorder buffer size to show how relative reorder buffer size affects the 
performance. Fig.  5-19 illustrates the average network latency of both configurations near 
the saturation point (0.6) under the uniform traffic profile. It reveals that as the reorder 
buffer size increases, the average network latency reduces. Given the same reorder buffer 
size, the proposed network interface achieves better performance gain, e.g. when the 
reorder buffer size is 48, the performance gain for the configuration A and B is up to 16% 
and 21%, respectively. The proposed scheme not only achieves significant performance 
gain but also enables reducing the area overhead of reorder buffer by more than 60%. For 
instance, the proposed scheme in the configuration A with a reorder buffer size of 32 offers 
a better performance than a reorder buffer size of 80 in the baseline method.  

50

100

150

200

250

300

350

400

0 16 32 48 64 80 96

A
ve

ra
ge

 L
at

en
cy

 (c
yc

le
)

Reorder Buffer Size (word)

Baseline (config A)
MS - TR (config A)
Baseline (config B)
H - TR (config B)



Chapter 5 Adaptive Network Interface Architecture 
 

102 
 

  
Table  5-1. Hardware implementation details. 

Components Area 
(mm2) 

Power 
(mW) 

Slave-side 0.0428 17 
Master-side 0.0755 26 

Hybrid 0.1014 37 
Memory controller (OS) 0.0807 31 
Memory controller (RF) 0.0798 27 

Typical Router 0.1853 65 
Priority-based Router 0.1881 68 

 

5.6.3 Hardware Overhead 
For appraising the area overhead of the proposed architectures, each scheme is synthesized 
by Synopsys D.C. using the UMC 90nm technology with an operating point of 1GHz and 
supply voltage 1V. We perform place-and-route, using Cadence Encounter, to have precise 
power and area estimations. The power dissipation of each scheme, including both dynamic 
and leakage power, is also calculated near the saturation point (0.6) under the uniform 
traffic model using Synopsys PrimePower. In addition to the aforementioned configuration 
of the network interface, the T-ID and SN are set to 4-bit and 3-bit, respectively. The layout 
areas and power consumptions of the master-side, slave-side, hybrid interfaces, different 
memory controller and routers are listed in Table  5-1. As can be seen from the table, using 
the hybrid architecture for the latter configuration (B) is more beneficial (in terms of power 
and area) than using the master-side and slave-side models when each node is composed of 
a dedicated processor and memory. That is, using a hybrid NI model reduces 14.3% and 
13.8% in hardware area and power dissipation respectively. Because all queues (and 
FIFOs) are equal in size, they do not affect the comparison. On the other hand, the master-
side and slave-side network interface architectures are more cost efficient if each node 
consists of a dedicated processor or memory as in the former configuration (A). Also, 
comparing the area cost of the baseline model to each proposed network interface indicates 
that the hardware overheads of implementing the proposed network interface schemes are 
less than 0.5%. Furthermore, for the slave-side interface within the memory controller, 
since each of the memory modules utilized in this thesis has 4 banks, 4 bank queues have 
been implemented in the memory controller. 

5.7 Summary  
In this chapter, we presented a high performance network interface with a novel dynamic 
buffer allocation and a priority-based router model to improve the resource utilization, and 
overall on-chip network performance. In addition to the resource utilization of the network 
interface and on-chip network, the utilization of memories considerably affects the network 
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latency. Therefore, we have developed an optimized scheduling method for the DRAM 
memories and integrated it in the network interface such that the network and memory 
latencies were reduced significantly in comparison with the baseline architecture. The 
micro-architectures of the proposed network interfaces which are compatible with the 
AMBA AXI protocol have been presented. A cycle-accurate simulator was used to evaluate 
the efficiency of the proposed architecture. Under both uniform and non-uniform traffic 
models, in high traffic load, the proposed network interface architecture has lower average 
delay in comparison with the baseline architecture. 
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Chapter 6 

6 Three-Dimensional Networks-on-Chip 

As mentioned earlier, two-dimensional (2D) chip fabrication technology is facing several 
challenges in the deep submicron regime such as designing the clock-tree network for a 
large chip, limited floor-planning choices, increasing the wire delay and power 
consumption, integrating diversity components that are digital, analog, MEMS RF, etc. 
The Three Dimensional (3D) integration has emerged as a potential solution to address 
these problems and the design complexity of MPSoC in 2D Integrated Circuits (IC). 3D ICs 
reduce the interconnect delay by stacking vertically active silicon layers as well as offering 
a number of advantages over the traditional 2D chip  [19] [20] [21] [22]: (1) shorter global 
interconnects; (2) higher performance; (3) lower interconnect power consumption due to 
wire-length reduction; (4) higher packing density and smaller footprint; and (5) support for 
the implementation of mixed-technology chips. In this chapter we focused on wafer 
stacking technology. In wafer-to-wafer bonding technology, one of the popular options for 
3D integrations, dies are vertically stacked. Short, fat, and vertical Through-Silicon-Vias 
(TSVs) are exploited for inter-layer communication. The distance between wafers can 
range from 5 m to 50 m  [22] [24], which is much shorter than the wire length between 
cores on a tier, and the pitches of TSVs can range from 1 m to 10 m square  [22] [24]. That 
is, the wire delay, power consumption and chip form factor are significantly 
reduced  [25] [26] [28].  
3D ICs have emerged as a viable candidate to achieve better performance and packaging 
density as compared to traditional two dimensional (2D) ICs. 3D NoC topologies not only 
enable scalable networks to provide communication requirements in 3D ICs  [19]- [23] but 
also are a crucial factor of 3D chips in terms of performance, cost, and energy 
consumption  [19]. Various on-chip network topologies have been studied for 3D 
NoCs  [19]- [23] [25] [27] [29]. Mesh-based structures are popularly used in 3D systems, 
because their grid-based regular architecture is intuitively considered to be matched to the 
2D VLSI layout for each stack layer  [19]- [23]. Nevertheless, if the number of IP-cores and 
memories increases in each layer, more TSVs are necessitated to handle the inter-layer 
communication. Inasmuch as each TSV employs a pad for bonding, the area footprint of 
TSVs in each layer is augmented significantly  [22] [29]. The main contributions of this 
chapter are twofold.  



Chapter 6 Three-Dimensional Networks-on-Chip 
 

106 
 

First, in order to improve performance of vertical channels, a novel pipeline bus structure is 
introduced. The proposed bus structure overcomes the drawbacks of previously presented 
bus structures for vertical channels and improves the performance by reducing the delay 
and complexity of traditional bus arbitration which is the foremost impediment in bus 
communications. In addition, the presented pipeline bus structure can utilize bi-
synchronous FIFO for synchronization between stacked layers, if each layer is fabricated 
by different technologies. 
Second, we present two novel stacked mesh topologies to reduce the area overhead of 
TSVs and power dissipation with a small performance penalty. The proposed stacked mesh 
topologies, named Clustered Mesh Inter-layer Topology (CMIT) and Concentrated Inter-
layer Topology (CIT), benefit of clustering the mesh topology for each layer. Each cluster 
of the presented topologies has its dedicated vertical channel, composed of a set of TSVs. 
CMIT and CIT preserve the advantages of the clustered mesh topology and mitigates both 
power density and TSV area footprint on each layer.  
 

 
 

Fig.  6-1. Mesh-based NoC architectures: (a) 3D-symmetric NoC (b) 3D NoC-Bus Hybrid structures. 
 

6.1 3D NoC Architecture 
3D-Symmetric NoC and 3D NoC-Bus Hybrid (stacked mesh) structures are popularly used 
in 3D systems, because their grid-based regular structure is intuitively considered to match 
the 2D VLSI layout for each layer  [19]- [23] [25] [27] [29]. The 3D-symmetric NoC structure, 
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shown in Fig.  6-1(a), is an extension of 2D mesh by adding two additional physical ports to 
each baseline-router (one for up and one for down) in the popular 2D mesh-based 
system  [19] [22]. Adding two additional ports requires larger crossbar incurring significant 
area and power overhead and increases the blocking probability occurring inside the router. 
Since TSVs are shorter and wider than intra-layer interconnects, they have lower resistance 
and can support higher signaling speeds  [19] [22]. As router latencies may dominate the fast 
vertical interconnects, this has led the researchers to propose 3D NoC-Bus Hybrid 
structures using a bus with a centralized arbiter for each vertical channel, which allows 
single hop latency for packets between any layers  [19]- [22]. As depicted in Fig.  6-1(b), on-
chip routers in this structure have at  most 6 ports,  one to the IP-core,  one to the bus,  and 
four for cardinal directions. According to  [19] the 3D-hybrid structure was observed to be 
better than the 3D symmetric for the vertical interconnection as long as the number of 
device layers was less than 9. This has motivated us to present an efficient pipeline bus to 
overcome drawbacks of the conventional bus that has been employed for inter-layer 
communication. 

6.2 Constraint on the number of TSVs 
A relatively high area penalty due to via blockage may impose limitations on the number of 
TSVs that can be utilized for inter-layer communication due to the following reasons. First, 
the move from 2D to 3D architecture could accentuate the thermal concerns due to the 
increased power densities resulting from placing one logic block over another in the 
multilayered 3D stack. An efficient solution for cooling 3D ICs is to employ either thermal 
TSVs   [29]  [125],  establishing  a  thermal  path  from  the  core  of  a  chip  to  the  heat  sink  or  
liquid cooling based on fluidic TSVs  [125]. This can take at least 10-20% of total chip area 
to create thermal or liquid -efficient 3D ICs  [29] [125] [126] [127]. Second, conventionally in 
3D ICs the input clock signal, at the center of the clock tree, is fed to each layer via TSV 
and each layer has its own clock tree with associated clock buffers implemented in the 
corresponding active layer. However, the obvious disadvantage of this scheme is the design 
overhead, both in terms of resources and design efforts required for the layer customization. 
Moreover, because of the separate customization of the different layers, the skew between 
terminals in different layers may be high even if the skew is low in the same layer. The 
alternative scheme, named via topology, implements the clock tree with the clock buffers 
on a single layer and using TSVs the clock signals from the terminals of the clock tree are 
passed to all other layers  [128]. This scheme provides uniform skew compensation across 
layers since the same terminal clock signals are transmitted across layers with less design 
overhead, i.e. approximately N times less area and power than the conventional scheme, 
where N is the number of layers in the 3D clock tree. The only shortcoming of this scheme 
is  the  high  number  of  TSVs  required  for  passing  the  clock  signals  from  terminals  to  all  
other layers. Third, if we consider signal TSVs and power/ground TSVs separately, since 
each signal TSV uses the minimal allowable TSV size and microprocessors typically 
require a few hundred I/O signals, signal TSVs occupy a very small area on stacked dies. 
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On the other hand, microprocessors dies typically need tens or few hundreds of amperes 
current, which causes power consumption overhead for power TSVs due to the resistance 
of TSVs. Thus, we have to increase the aggregate size of those power TSVs so that the area 
overhead induced through power TSV network is considerably high  [129]. However, not 
only the area overhead of TSVs is quite high, but also floor planning and routing is 
extremely challenging since TSVs are distributed in each layer. In this chapter, we present 
two area-efficient stacked architectures to reduce the TSV footprint with a small 
performance overhead though the presented bus architecture diminished the TSVs overhead 
in compared to conventional buses. 

6.3 Related Work 
Design techniques and methodologies for 3D architectures have been investigated to 
efficiently exploit the benefits of 3D technologies. Several NoC topologies for 3D systems 
have been exhaustively investigated in  [19]- [22] [27] [133]. The authors in  [19] demonstrate 
that besides reducing the footprint in a fabricated design, 3D systems provide a better 
performance compared to traditional 2D systems. They have also demonstrated that both 
mesh and tree topologies for 3D systems achieve better performance compared to 
traditional 2D systems. However, the mesh topology shows significant performance gains 
in terms of throughput, average latency, and energy dissipation with a small area 
overhead  [19]. In  [133] different 3D mesh-based architectures have been compared in the 
zero-load latency, but the performance of the network with different traffic patterns and 
loads is also necessary to be evaluated.  
To construct an optimistic 3D mesh-based system, several 3D structures have been 
presented. Baseline-routers in 2D mesh-based systems have 5 ports, i.e. 4 ports to adjacent 
routers and one for the resource node. The straightforward extension for 3D mesh-based 
systems (3D-symmetric NoC) is to utilize routers with two additional inter-layer links by 
adding two physical ports to baseline-routers (one for up and one for 
down)  [19] [22] [25] [27] [137]. As mentioned earlier, the 3D structure using such routers, not 
only increases the area and power overhead of the routers but also contention in the routers 
may arise. The electrical behavior of the relatively short and wide TSV, i.e. the low 
resistance, and supporting much higher signaling speeds led the authors of  [22] to propose 
the 3D-hybrid structure. This 3D structure exploits the Dynamic Time Division Multiple 
Access (dTDMA) bus  [132] with a centralized arbiter for the vertical communication link. 
Thus,  moving  from  one  layer  to  any  of  the  other  layers  takes  only  one  hop.  However,  
contention issues in the bus limit the attainable performance gains  [19]. That is, such 
structures  inherently  suffer  from  the  limitation  of  buses  since  only  one  transmission  is  
allowed each time over a vertical bus.  
In  [21], the DimDe router for 3D architectures has been proposed. The presented router 
uses a full 3D crossbar and a simple bus structure spanning all layers of the chip and fusing 
them into a single router entity. This router can minimize vertical traversal to one hop 
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between any layers, but requires huge number of vertical connections and significantly 
complicates the control and arbiter of the router.  
A multilayered 3D router architecture, named MIRA, is introduced for 3D systems by D. 
Park et al  [20]. The router components are classified as separable components (buffers, 
crossbar, and inter-router links) and non-separable components (arbiter and routing 
modules). The separable components are laid out across multiple layers to save chip area 
and reduce power by dynamically shutting down some inactive layers. However, such 
routers are too aggressive in the current technology  [138].  
To reduce the area footprint of TSVs, a serialization scheme for vertical channels has been 
presented in  [29], but this scheme is only applicable with 3D-hybrid structures where each 
node has a dedicated vertical channel. 
Due to the above concerns, in this chapter, we have focused on both the 3D-symmetric 
structure (7-port switch design) and the 3D-hybrid structure (bus-based vertical 
interconnect). As described in  [27], the 3D-hybrid structure is shown to perform the worst 
compared to the other structures in terms of scalability under local traffic. Although shown 
to be weak in  [27] [138], the bus may be appropriated for hotspot traffic injection where 
many packets may need to be sent through several layers to a hotspot frequently. This may 
be akin to a processor on one layer, and a memory stack directly above it. Hence, in 3D 
architectures, the 3D-hybrid structure performance degrades as the number of layers and 
number of processing nodes increase  [27], thereby the 3D-symmetric structure is more 
feasible, mature, and more efficient than the 3D-hybrid structure as network size 
increases  [139]. However, our proposed stacked architectures are applicable for both 3D-
hybrid and 3D-symmetric structures where a group of nodes can share a vertical channel as 
an inter-layer interconnection. We also introduce a novel bus architecture which is more 
efficient than the conventional buses utilized for inter-layer communications in terms of 
scalability and performance.  

6.4 Pipeline bus Architecture 
Traditionally, a bus is described as a shared link which can be owned by one attached 
subsystem at a time. Parallelism can be added to the structure by partitioning the bus into 
segments with bridges and allowing these segments to operate concurrently  [130]. 
However, on one side, the overall system performance in such designs is still limited by the 
lack of parallel bus transactions, and on the other hand, because of using many control 
wires for the central arbitration in such segmented buses, it is not a suitable approach for 
vertical bus in 3D ICs. Our solution for these bottlenecks for vertical buses is to consider 
the system bus with a bidirectional pipeline which is capable of transferring data 
concurrently from one or more sources to several destinations. As the proposed architecture 
is illustrated in Fig.  6-1(a), the system is partitioned into a set of modules each of which is 
used to connect the corresponding layer to the pipeline bus. As the system is based on 
Globally Asynchronous Locally Synchronous (GALS) design paradigm, the layers can 
internally operate at different clock frequencies. The layers are independent of each other, 
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in case there are some inter-layer transactions, the layers exchange data synchronously or 
asynchronously through the pipelined system bus, a segmented communication link which 
allows simultaneous transfer in both directions. The layers can concurrently access the bus 
without waiting for any grant signals, because of the pipelined structure of the proposed bus 
architecture. The interface module acts as a synchronizer between the router and the 
pipeline bus. To construct the pipelined bus, the physical wires that implement the bus are 
divided into a set of segments separated from each other by Transfer Stages (TS), one 
attached to each layer (Fig.  6-1(a)).  
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Fig.  6-2. (a) Proposed bus architecture and (b) the micro-architecture of the transfer stage. 
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Each transfer stage contains internal FIFO queues for pipelining the data flow, and a bus 
segment between adjacent stages consists of two separate unidirectional point-to-point 
interconnects which transfer data synchronously (or asynchronously) between the stages in 
opposite directions. These two links of a segment can operate in parallel, and due to 
pipelining, all segments of the bus can transfer data simultaneously. Each layer has a 
unique address for inter-layer communication. Furthermore, each IP-core/memory in a 
layer has its own address which makes addressing of a specific module in a given layer 
possible. Hence, a datagram propagating along the bus has a header containing both the 
layer address and the IP-core/memory address. The former is analyzed at each transfer 
stage, and the latter is decoded by routers in each layer. 

6.4.1 Transfer Stage Micro-Architecture 
The micro-architecture of the transfer stage is illustrated in Fig.  6-1(b) where it includes 
two identical pipelines transferring data to the opposite directions. Each pipeline contains 
multiple slots to pipeline packets between slots. Apart from the pipelines the interface 
contains FIFO queues used as input and output buffers of the host port. Their capacity has 
to be chosen according to the speed of the bus interface and the estimated data rate of the 
attached router. Each transfer stage also contains three multiplexers (M1, M2 and M3) and 
three de-multiplexers (D1, D2 and D3) to establish a communication between inputs and 
outputs of the transfer stage. On top of that, each transfer stage has the following functions:   
1- It forwards incoming packets from the preceding stage to the next stage through a buffer, 
in both directions. That is, if the incoming packet from the upper stage (lower stage) is 
intended to be forwarded to the lower stage (upper stage), D1 and M2 (D2 and M1) will 
provide the required connections.  
2- If an incoming packet from an adjacent transfer stage is intended to be processed by the 
router, the transfer stage delivers the packet to the interface module of the layer through a 
FIFO queue, i.e. D1 and M3 (D2 and M3) establishes the required connections to deliver 
the incoming packet from the upper stage (lower stage) to the router.  
3- When a data is sent to another layer, the transfer stage operates as an output buffer. This 
means that it takes care of first receiving data from the interface module of the attached 
layer through a FIFO queue and then sending this data to one of the two adjacent transfer 
stages, depending on the direction in which, the target layer is located. Namely, D3 and M1 
(D3 and M2) will be responsible for the required connections when the router decides to 
send a packet to upper layer (lower layer). When a packet arrives at a transfer stage, the 
header flit is sent to the controller unit to determine in which direction the packet should be 
sent. Based on the controller decision, it will be either forwarded to the next stage or 
transferred to the host router via the interface. Also, an arbitration in the controller module 
has to be performed to prevent the two parallel operating pipelines from writing 
simultaneously to the FIFO in the interface. In addition, because the electrical behavior of 
short and wide TSVs provides much higher signaling speeds, the credit-based flow 
control  [2] has been implemented for the transmission protocol on a segment between 
transfer stages.  
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Fig.  6-3. Pseudo VHDL code of the weight-based arbitration for multiplexers: M1, M2, and M3. 

6.4.2 Weight-based Arbitration 
Arbiters in the controller may use a round-robin policy to arbitrate between the inputs of 
the multiplexers. However by using round-robin arbitration policy in the transfer stage of 
the pipeline bus architecture, fairness can become a problem. Fairness is not an issue when 
the traffic load is low, but as the traffic load approaches saturation, fairness can become a 
bottleneck. Let us consider an example to illustrate the unfairness problem where three 

-- Multiplexers M1 
w1= number of lower layers 
w2= 1 (connected to one layer) 
Process 
Begin 
     If input1=’1’ and counter  w1 then  
          service <= input1; 
          counter <= counter + 1; 
     Elsif input2=’1’ then            
          service <= input2; 
          counter <= 1; 
     Else 
          service <= input1; 
          counter <= 1;     
     End If; 
End; 
 

-- Multiplexers M2 
w1= number of upper layers 
w2= 1 (connected to one layer)  
Process 
Begin 
     If input1=’1’ and counter  w1 then  
          service <= input1; 
          counter <= counter + 1; 
     Elsif input2=’1’ then 
          service <= input2; 
          counter <= 1; 
     Else 
          service <= input1; 
          counter <= 1;     
     End If; 
End; 
 

-- Multiplexers M3 
w1= number of lower layers 
w2= number of upper layers 
Process 
Begin 
     If input1=’1’ and counter  w1 then  
          service <= input1; 
          counter <= counter + 1;  
     Elsif input2=’1’ then 
          service <= input2; 
          If counter =w1+w2 then 
               counter <= 1; 
          Else 
               counter <= counter+1; 
          End If; 
     Else 
          service <= input1; 
          counter <= 1; 
     End If; 
End; 
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layers 1, 2 and 3 have large amounts of packets to be sent to the layer 4. Contention might 
occur in layers 2 and 3 as the packets must share the same channel resources. For instance, 
in the layer 3 there are two flows of packets competing for the bandwidth of the output. 
One flow is comprised of the packets being generated in the layer 3, and the packets in the 
other flow are arrived from the layer 1 and layer 2.  
In other words, the layer closest to the destination layer, layer 3, will get the most 
bandwidth, 1/2 of the available bandwidth. The remaining half of the bandwidth is 
allocated to the layers 1 and 2, so each can receive 1/4 of the total bandwidth. Therefore, 
the allocation of the available bandwidth to the competing flows is not fair if round-robin 
policy is used. To overcome this limitation, a weight-based arbitration is employed so that 
the weight of each input port is determined by the number of upstream layers connected to 
that input port through the pipeline bus. In the above example at the layer 3, the weight of 
one input port is two as it can accept packets from two lower layers (w1=2), and the weight 
of the other input port is one since it can receive data only from the current layer (w2=1). 
As a result, the arbiter transmits the maximum of w1 packets (if any) from the first flow and 
then allows the other flow to forward up to w2 packets (if any) to the output and the process 
is repeated for the rest of the packets. By this approach, in each layer the total bandwidth is 
equally shared among packets from different layers. This simple weighted round robin 
arbitration achieves a fair forwarding policy with a very low hardware overhead. Fig.  6-3 is 
the pseudo code of the weight-based arbitration for multiplexers M1, M2 and M3. 
 
 

 
Fig.  6-4. A blocking situation. 

 

6.4.3 Non-blocking Scheme  
The proposed pipeline structure allows simultaneous transmissions without using 
centralized bus arbitration, which considerably reduces arbitration complexity and 
improves bandwidth. However in the pipeline bus architecture, a single blocked packet 
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might obstruct the subsequent packets so that increasing the communication latency. A 
blocking situation is shown in Fig.  6-4 where the packet A and packet B destined for the 
layer 3 and layer 4, respectively. When the packet A is blocked, the packet B can be 
obstructed behind the packet A. In order to prevent this blocking situation, we introduce 
two types of packet, Single-Hop (SH) packet and Multiple-Hop (MH) packet. SH packet 
destinations are located in one of the neighboring layers while MH packets require passing 
several layers. However, a MH packet changes its type to SH once the destination is one 
layer away.  
In each transfer stage, the incoming packets are de-multiplexed into two separate paths: one 
path delivers the SH packets to the interface (SH path) while the other path forwards the 
MH packets to the next stage (MH path). That is, packets are de-multiplexed to either the 
TS unit or interface. The point is that if one of these two paths gets blocked, the remaining 
flows from the upstream stage cannot pass through the other path if it is idle. This blocking 
probability can be considerably reduced by considerably increasing the size of both the 
interface and TS unit buffers, which is an expensive solution for such systems. The idea is 
to reduce the blocking probability with a low hardware cost. Therefore, each stage adopts 
congestion condition of its downstream transfer stage buffers (interface and TS unit 
buffers) so that it can decide to deliver a packet to the less congested path of the next stage. 
The congestion condition of SH and MH paths, indicating the stress value of the interface 
and TS unit buffers, can be transmitted from one layer to another through two separate 
inter-layer signals (MH_Status and SH_Status). These signals are employed by the TS unit 
of the upstream transfer stage to forward a non-blocking packet, i.e. send a MH packet if 
the SH path is congested/blocked or send a SH packet if the MH path is congested/blocked.  
As depicted in Fig.  6-2(b), each TS unit is composed of a table and a buffer. Each row of 
the table corresponds to a packet and includes a valid tag (v), a packet type (T), a packet 
age (A) and a header pointer (P). In the buffer, the flits of each packet are stored with a 
linked list structure providing high resource efficiency with a little hardware overhead. 
Fig.  6-2(b) exhibits a pointer field adopted to indicate the next flit position in the buffer. As 
multiple packets might be stored in the buffer, an arbitration mechanism is needed to 
determine which packet is allowed to be transmitted. The TS unit arbitration decision is 
based on the stress value of MH and SH paths. This arbiter selects the oldest packet 
(highest age) requesting an available path with the lowest stress value. Afterward, the age 
value of each packet having the same type as the selected one is increased by the arbiter to 
prevent starvation. 

6.4.4 Synchronizing FIFO 
Bi-synchronous (Bi-Sync) FIFOs are widely used in multi-clock systems to synchronize 
signals from different clock/frequency domains. Each domain is synchronous to its own 
clock signal but can be asynchronous with respect to others in either clock frequency or 
phase  [117]. The challenges of designing Bi-Sync FIFOs include the enhancement of 
reliability and reducing latency and power/area cost. We identify the Bi-Sync FIFO 
structure presented in  [118] as a suitable synchronizer to be used in the interfaces.  
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The structure of the Bi-Sync FIFO is depicted in Fig.  6-5. The FIFO implementation uses 
two pointers, one defining the next writing position and another defining the next reading 
position. The FIFO state is either full or empty when both pointers refer to the same 
address. Thus, it is necessary to compare the pointers. Although this procedure is trivial in 
synchronous circuits, it implies some complexity in the Bi-Sync FIFO, because the pointers 
are generated by different clocks.  
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Fig.  6-5. Bi-Sync FIFO structure. 
 

Table  6-1. Description of Bi-Sync FIFO signals. 

Signal Description 
write_data Data to be written in the FIFO 
write_req Write request 
write_clk Clock signal in the write domain 

full Signal to indicate the FIFO is full and no 
more data can be received 

read_data Data to be read from the FIFO 
read_req Read request 
read_clk Clock signal in the read domain 

empty Signal to indicate the FIFO is empty and 
henceno data can be read 

 
A common solution to this problem is to transfer and synchronize the writing pointer 
(reading pointer) with the receiver clock domain (the sender clock domain) which generates 
the empty signal (the full signal). Exchanging the pointers (write_ptr and read_ptr) via a 
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handshake protocol implies additional latency. Therefore, two synchronizers are utilized for 
exchanging the pointers  [118]. The addresses are converted to the gray code which 
guarantees that consecutive addresses are at a Hamming distance of 1. In this way, the 
metastability problem is confined to a single bit and synchronizers can be employed 
without handshake. Utilizing the Bi-Sync FIFO in the interfaces, allows each layer to work 
with its own clock source. Table  6-1 lists the input and output signals and their 
functionalities of the Bi-Sync FIFO. 

6.5 Cluster Architectures 
As mentioned earlier, both 3D-symmetric and 3D-hybrid structures require a large number 
of TSV interconnections for inter-layer communication. In addition, each TSV requires a 
pad (around 5µ×5µ) with the pitch of around 8µ for bonding to a wafer,  thereby, the area 
overhead of TSVs impose constraints on the number of TSVs  [22] [29] [131]. In order to 
reduce vertical channels, we present two novel topologies, named CIT (Concentrated Inter-
layer Topology) and CMIT (Clustered Mesh Inter-layer Topology). Although both of the 
presented topologies can be implemented as the 3D-symmetric (7-port router with vertical 
packet switched interconnection) and 3D-hybrid (vertical bus with an interface at each 6-
port router) structures, we describe these topologies based on the 3D-hybrid scheme which 
is more efficient than the 3D-symmetric structure  [22] [29]. To compensate the performance 
loss due to using the bus as the vertical interconnect, each vertical channel is composed of 
two unidirectional channels in opposite directions to propagate the inter-layer data.  

6.5.1 CIT (Concentrated Inter-layer Topology) 
Unlike the mesh topology where each IP-core is connected to a router, CIT forms a scalable 
architecture by sharing a router between multiple nodes (IP-cores and memories). CIT 
reduces the number of routers decreasing the number of vertical channels and hop counts. 
A 3×3 CIT with 36 nodes is shown in Fig.  6-6(a), where four nodes are grouped into a 
cluster, thereby forming 9 clusters in the network. Each cluster has a router with at most 9 
ports (10 ports for 3D-symmetric structure): one connected to the bus, four to IP-
cores/memories and the other four ports to neighbor routers. Communication channels in 
CIT can be classified as intra-layer channels (horizontal channels) and inter-layer channels 
(vertical channels). As illustrated in Fig.  6-6, the inter-layer communication is achieved by 
the cluster nodes. Each cluster node has a cluster core to establish the vertical connection 
via an interface to the vertical bus. 
Due to the fact that each CIT router has larger number of input ports than the symmetric 
and hybrid routers, it consumes more area and power in comparison with conventional 
routers in the two other structures. In addition, the larger number of input ports becomes a 
performance bottleneck in terms of increased router complexity and contention probability 
inside the router (i.e. there are more input ports competing for an output port)  [22] [27]. 
Nonetheless, as the number of routers is decreased by the clustering approach in CIT, it not 
only reduces the area and power dissipation of the network but also the TSV area footprint 
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is considerably diminished on each layer. Besides, the distance between two nodes of the 
same cluster in CIT is only one router so that the data transmission between nodes of the 
same cluster can be very fast. That is, the latency in CIT for distant nodes is more than that 
in the mesh-based 3D structures, but for nearby nodes the latency in CIT is smaller.  
 

 
 

Fig.  6-6. Clustering approaches: (a) CIT and (b) CMIT. 

Table  6-2. Number of routers, cluster routers and vertical channels of the described topologies in a (4×4×3) 
3D architecture. 

Topology # of 
routers 

# of cluster 
routers 

# of vertical 
channels 

3D-hybrid 64 0 64 
CIT 0 16 16 

CMIT 64 16 16 

6.5.2 CMIT (Cluster Mesh Inter-layer Topology) 
The structure of CMIT, depicted in Fig.  6-6(b), is basically similar to that of the mesh 
topology, except that for every layer the number of vertical channels has been reduced by 
sharing a vertical bus among routers of each cluster. That is, even preserving the advantage 
of the mesh on each layer, CMIT diminishes the number of inter-layer interconnection to 
meet constraints on the number of TSVs. 
In CMIT, each router has at most 6 ports: one to the node (IP-core/memory), one to the bus 
(cluster router), and four for neighbors. Fig.  6-6(b) exhibits CMIT with 64 nodes, in which 
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every four routers are grouped into a cluster on each layer. Even though CMIT achieves 
better area and power efficiency than the typical 3D mesh structure due to reducing the 
number of vertical channels, since several routers are connected to a shared vertical bus, the 
performance may be degraded when the inter-layer traffic is augmented. The specification 
of the three described architectures has been summarized in Table  6-2. The arbiter should 
be placed in the middle layer of the chip to keep wire lengths as uniform as possible. The 
number of control wires of each arbiter increases with the number of nodes attached to the 
vertical channel (bus). As a result, the presence of a centralized arbiter is the reason why 
the number of vertical channels in the chip should be kept low  [22] [29]. We believe that, 
the proposed topology can keep the number of vertical channels low with a negligible 
performance penalty. 
 

 
 

Fig.  6-7. (a) The packet format in CIT and (b) the header format in CMIT. 
 

6.5.3 Routing Algorithm 
For the presented CIT, we employ the dimension order routing (DOR) algorithm which 
guarantees the network is deadlock-free. DOR is a minimal deterministic routing scheme in 
which the message is first forwarded along the X-dimension, then along the Y-dimension, 
and,  finally,  along  the  Z-dimension.  Fig.   6-7(a)  shows  the  packet  format  of  the  CIT  
network. The header flit is n-bit wide and the nth bit is the EOM (End Of Message) sign and 
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the (n-1)th bit is the BOM (Begin Of Message) sign. The third field indicates the address of 
the destination cluster and the next one is used for the IP-core/memory address inside the 
cluster. The content of the message is located in the rest of the flits (Payload). As can be 
seen from Fig.  6-7(b), the packet format of the CMIT network only has one destination 
address field (i.e. IPAN) similar to the mesh network. In CIT, the cluster routers perform 
the routing mechanism, while in CMIT the routing is performed by typical routers. That is, 
cluster routers are only employed for the purpose of inter-layer communication in CMIT. 
 

 
Fig.  6-8. 4 4 4 stacked mesh layout. 

 

6.6 Experimental Results 
In this section, we compare the presented topologies with the conventional structures in 
terms of latency, power consumption, and area cost. Also, the impact of using the novel 
pipelined bus has been explored. Hence, a cycle-accurate 3D NoC simulator is developed to 
assess the efficiency of the proposed architectures. The simulator models all major 
components of the NoC such as network interfaces, routers, and wires along with vertical 
channels. 
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6.6.1 System Configuration 
We configure a 64-node (4 4 4) 3D stacked architecture. In this configuration, illustrated 
in Fig.  6-8, out of 64 nodes, 16 nodes are assumed to be processors and other 48 nodes are 
memory blocks, i.e. DRAMs. The processors are 32b AXI compatible core and the memory 
blocks are DDR2-256MB (tRP-tRCD-tCL=2-2-2, 32b, 4 banks)  [116]. Three different 3D on-
chip network topologies are considered for experiment: 3D-hybrid structure, CIT, and 
CMIT. The 3D-hybrid and CMIT networks are formed by a typical state-of-the-art router 
structure including input buffers, a VC (Virtual Channel) allocator, a routing unit, a switch 
allocator, and a crossbar as well as an interface unit connecting the router to either a 
vertical channel (bus) or a cluster router. Typical routers of 3D-hybrid and CMIT have at 
most six input/output ports. Every cluster router of CMIT has five input/output ports, i.e. 
four for local routers and one for the vertical channel interface, while cluster routers of CIT 
have at most nine input/output ports, i.e. four for local IP-cores/memories connections, at 
most four for neighboring cluster routers, and one for the vertical channel interface. Each 
input port of router has 2 VCs where packets of different message types (request and 
response) are assigned to corresponding VCs to avoid message dependency deadlock  [119]. 
The arbitration scheme of the switch allocator in the typical router structure is round-robin. 
The array size, routing algorithm, link width, number of VCs, buffer depth of each VC, and 
traffic type are the other parameters which must be specified for the simulator. The routers 
adopt the DOR routing scheme and utilize wormhole switching. For all routers, the data 
width (flit) was set to 32 bits, and the buffer depth of each VC is 5 flits. As mentioned 
earlier, to compensate the performance loss due to using the bus as the vertical 
interconnect, each vertical channel is composed of two unidirectional channels in opposite 
directions to propagate the inter-layer data. Thus, 32 bits of the channel is allocated to 
upward direction and the other 32 bits of the channel is employed for the downward 
direction. Each channel has its arbiter module and bus controller  [22] [132]. The depth of 
buffers in the transfer stage is 6 flits. 
The presented configuration uses 1 flit for messages related to read requests and write 
responses, and the size of read request messages typically depends on the network size and 
memory capacity of the configured system. The message size of the read responses and 
write requests is variable and depends on the request/response length produced by a 
master/slave core (burst size 1:8). As for the performance metric, we use latency defined as 
the number of cycles between the initiation of a request operation issued by a master 
(processor) and the time when the response is completely delivered to the master from a 
slave (memory). The request rate is defined as the ratio of the successful read/write request 
injections into the network interface over the total number of injection attempts. All the 
cores and routers are assumed to operate at 1 GHz. For fair comparison, we keep the 
bisection bandwidth constant in all configurations. All memories (slave cores) can be 
accessed simultaneously by each master core with continuously generating memory 
requests. To estimate the power consumption of networks, we have used Orion  [86] 
(estimate both dynamic and static power) as well as the power and delay values of vertical 
links in  [133]. 
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6.6.2 Performance Comparison  
To assess the performance of the presented pipeline bus architecture, the uniform and non-
uniform synthetic traffic patterns have been considered separately and we expect realistic 
applications stand between these two synthetic traffic patterns. The random traffic 
represents the most generic case, where each processor sends in-order read/write requests to 
memories with the uniform probability, and the memories and request type (read or write) 
are selected randomly. Eight burst sizes, from 1 to 3, are stochastically chosen according to 
the data length of the request. In the non-uniform mode, 70% of the traffic is local requests, 
where the destination memory is one hop away from the master core, and the rest 30% of 
the traffic is uniformly distributed to the non-local memory modules.  
 

 
Fig.  6-9. Performance impact of using the presented bus in (a) hybrid, (b) CMIT, and (c) CIT networks under 

uniform traffic profile. 
 
Here, we explore the average latency of using the presented pipeline bus architecture. Two 
conventional baseline buses, dTDMA  [22] [132] and SAMBA  [130], have been considered 
to be used for vertical channels. Fig.  6-9 and Fig.  6-10 show the performance gain of 
employing the pipeline bus architecture for vertical channels in the 3D-hybrid, CMIT and 
CIT networks under uniform and non-uniform traffic profiles, respectively. This is 
achieved due to having a small local arbiter in the transfer stage such that the arbitration 
delay is reduced significantly. 
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Fig.  6-10. Performance impact of using the presented bus in (a) hybrid, (b) CMIT, and (c) CIT networks 

under non-uniform traffic profile. 

To explore the efficiency of the two presented topologies without considering the pipeline 
bus (employing dTDMA), the simulation results under the uniform, non-uniform, and 
hotspot traffic profiles are depicted in Fig.  6-11. In the hotspot traffic pattern, one or more 
nodes are designated as hotspot nodes receiving an extra portion of the traffic in addition to 
the regular uniform traffic. Newly generated packets are directed to each hotspot node with 
an additional H percent probability. We simulate hotspot traffic with four hotspot nodes. 
Four hotspot nodes are chosen at the center of each layer, (2, 2, 1), (3, 3, 2), (2, 3, 3), (3, 2, 
4), with equal probability of H=20%. 
As demonstrated in Fig.  6-11(a) and (c), CIT has the lowest average latency in the low 
traffic load (<0.2), one of the foremost reasons for such an improvement is that CIT reduces 
the average hop count and improves load balance across the channels. But in high traffic 
load the performance of CIT degrades considerably since the network bandwidth in CIT is 
lower than that of mesh-based structures. That is, the number of links in CIT is much 
smaller than that of mesh-based structures. Therefore, in the high traffic load, the traffic in 
CIT links is much higher than in mesh-based structures. Another subtle point regarding 
clustered topology is that the latency in CIT for distant destinations is significantly larger 
than that of mesh-based structures due to the high router complexity and contention 
probability, while for nearby destinations the latency of CIT is smaller. Thus, CIT might 
have better performance in applications where most of requests are issued among 
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neighboring nodes under low traffic load. This can be seen from the results in Fig.  6-11(b) 
where each processor sends requests to the memories based on the non-uniform traffic 
profile. CIT outperforms the others in terms of latency when the request rate is below the 
saturation point and most of the traffic is local. The average latency of each presented 
topology has been computed near saturation point (0.5) under the non-uniform traffic 
profile. As a result, compared with the 3D-hybrid and CMIT, the average latency of CIT is 
reduced by 20% and 30%, respectively.  
 

 
Fig.  6-11. Performance comparison of different 3D structures for (a) the uniform, (b) non-uniform, and (c) 

hotspot traffic profiles using dTDMA. 
 
Fig.  6-12(a)-(c) demonstrate the performance impact of the pipeline bus on different 
topologies for uniform, non-uniform, and hotspot traffic profiles. As illustrated, employing 
the pipeline bus for the hybrid structure outperforms the 3D symmetric structure where 
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achieves significant latency reduction when the amount of local traffic is increased, 
particularly from 40%.  
In order to explore the real impact of the proposed inter-layer scheme, we use traces 
generated using the GEMS simulator from SPLASH-2. We use the Radix, Ocean, and FFT 
applications from SPALSH-2 for our simulations. 
 

  

 
Fig.  6-12. Performance comparison of different 3D structures for (a) the uniform, (b) non-uniform, and (c) 

hotspot traffic profiles using the presented bus. 
 

 
Fig.  6-13. Performance impact of topologies using presented bus with different local loads. 
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Table  3-2 summarizes our full system configuration where the cache coherence protocol is 
MESI. We configure a 64-node on-chip network (4×4×4) that four layers are stacked on top 
of each other, i.e. out of the 64 nodes, 16 nodes are processors and other 48 nodes are L2 
caches. L2 caches are distributed in the bottom three layers, while all the processors are 
placed in the top layer close to a heat sink so that the best heat dissipation capability is 
achieved. The simulator produces, as output, the communication latency for cache access. 
The CIT, CMIT, and hybrid configurations are equipped with the pipeline bus. Fig.  6-14 
shows the average network latency of the real workload traces collected from the 
aforementioned system configurations. We can see that the hybrid configuration 
consistently reduces the average network latency across all tested benchmarks. It shows a 
steady reduction amount: 12%~25% (hybrid/CIT), 4%~16% (hybrid/CMIT), and 3%~13% 
(hybrid/symmetric) with the average of 19%, 10%, and 7%, respectively.  
 

 
Fig.  6-14. Performance for application traces normalized to CIT. 
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the 3D-symmetric, 3D-hybrid, and CMIT schemes, respectively. We can notice that 
although the power consumption of every cluster router is about 1.5 times more than the 
power consumption of a typical router, the average power in the CIT network, compared to 
other schemes, is considerably lower under non-uniform traffic profile since the average 
number of hops between two arbitrary nodes is less than in the other presented schemes. 
Also, to illustrate how the proposed pipeline bus affects the power dissipation, we compute 
the average power of each network close to its saturation point under the uniform traffic 
profile. Based on the achieved results, the average power consumption of the pipeline bus 
in the hybrid network is diminished by 10% and 12% compared with SAMBA and 
dTDMA, respectively. The average power reduction of using pipeline bus in the CMIT 
network is 6% and 9% compared with SAMBA and dTDMA, respectively, while in the 
CIT network, it is 5% and 10%. In fact, this power saving is obtained because of the 
following reasons. First, the hardware overhead of the pipeline bus is smaller than that of 
SAMBA and dTDMA. Second, central arbiters, employed in SAMBA and dTDMA, cause 
a lot of switching compared to small local arbiters used in pipeline bus so that the power 
dissipation of those two buses are higher than that of the pipeline bus. 
 
 

  

        
 

Fig.  6-15. Average power dissipation results under (a) uniform and (b) non-uniform traffic profiles. 
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6.6.4 Physical Analysis 
The number of routers and vertical channels in a chip affects the area and implementation 
cost. Thus, to compute the network area for each topology, we estimate the area of routers, 
cluster routers, and vertical channels. The network platform of each topology with the 
aforementioned configuration is synthesized using Synopsys Design Compiler with the 
UMC 0.09 m technology, while the backend is performed with the Cadence Encounter 
tool. Depending on the technology and manufacturing process, the pitch of TSVs can range 
from 1 m to 10 m  [22] [23] [28]. The pad size for TSVs is assumed to be 5 m square with 
pitch of around 8µ, the flit-width is set to 32 bits, and each vertical channel requires 3×14 
control wires for arbitration in four-stacked layers  [22]. Hence, after the TSV area is 
calculated with the given values, the TSV footprint has been reduced from 0.41 mm2 in 3D-
hybrid to 0.1 mm2 in  CIT  and  CMIT,  resulting  in  about  75%  area  saving  for  the  TSV  
footprint. 3D-hybrid occupies a larger network area than CIT and CMIT, because each 
router in 3D-hybrid has a transceiver module to interface with the vertical channel 
(bus)  [22] and each bus should have its own arbiter module. Like 3D-hybrid, the transceiver 
and arbiter modules are only integrated in cluster routers of CIT and CMIT. On the other 
hand, the total network area used by CIT is significantly smaller than that of the other 
architectures (37% and 42% less than that of CMIT and 3D-hybrid respectively) since the 
network is formed only by cluster routers.    
Using the pipeline bus reduces the TSV footprint for each vertical channel. As each vertical 
channel, i.e. two unidirectional 32-bit dTDMA buses, occupies 6400 m2 and the required 
area for each vertical channel using the pipeline bus is 4096 m2, the proposed bus scheme 
can save more than 35% of the TSV area footprint with a performance gain. Hence, after 
considering the TSV footprint area, the hardware overhead of the pipeline bus is 
approximately 10% and 8% less than that of the conventional dTDMA and SAMBA buses, 
respectively. In addition, comparing the cost of the network using the presented pipeline 
bus with the 3D symmetric network reveals that the area overhead of the 3D symmetric 
network is about 10%. This is because a 7-port router is larger than a 6-port router. 
 

6.7 Summary 
3D stacked architectures provide significant benefits in performance, footprint and yield. It 
has been demonstrated that combining 3D ICs and on-chip networks can be a promising 
option for designing large multiprocessor architectures. One critical issue in 3D design is 
that the vertical interconnections are very fast and fat such that the area overhead of TSVs 
impose constraints on the number of TSVs for existing 3D architectures. In this chapter, 
two cluster-based topologies have been presented to deal with constraints on the number of 
TSVs. Also, a novel pipeline bus structure for vertical channels is introduced not only to 
mitigate the drawbacks of existing bus structures in terms of power and performance, but 
also to reduce the number of required inter-layer arbiter control signals. Experimental 
results revealed that the on-chip network formed by the two presented topologies (CIT and 
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CMIT) reduces the number of TSVs significantly with low performance penalty under 
uniform traffic, but under non-uniform traffic which is more realistic case, CIT 
outperformed the other network structures in terms of the average network latency. 
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Chapter 7 

7 Conclusion 

In the last chapter of this thesis, it is the intention of the author to summarize and integrate 
all chapter concluding remarks in order to present a consistent overall picture of the 
achievements. A few remaining open problems and some interesting future research ideas 
are also detailed here. This is done to show that there are options to continue this thesis.  
 

7.1 Thesis Contributions 
As one of the main contribution of this thesis, three adaptive routing protocols have been 
presented where the first one is a unicast-based routing while the other two are unicast- and 
multicast-based routing schemes. The unicast-based scheme is a congestion-aware adaptive 
routing protocol in which two congestion wires (one in each direction) between any two 
routers are added to indicate the existence of congestion in a row (column). That is, two 
congestion wires are added to each router to flag a row or column congestion further away 
from the current switch. These signals enable the routing protocol to avoid these paths 
when there are other paths between the source and destination pair, and thus decreasing the 
latency of the routing protocol. Exploiting the unicast routing protocols for multicast 
communication increases the likelihood of deadlock and congestion. In order to avoid 
deadlock for multicast communication, the Hamiltonian path strategy was introduced. The 
traditional Hamiltonian path routing protocols supporting both unicast and multicast traffic 
are based on deterministic models, leading to lower performance. In this thesis, two 
adaptive routing schemes for both unicast and multicast communications without using 
virtual channels have been proposed. The presented routing schemes invoke non-congested 
paths for routing the messages to prevent creating highly congested areas.  
In this thesis, a router architecture based on the adaptive input and output selection is 
proposed. The output selection of the router utilizes an adaptive routing algorithm 
supporting both unicast and multicast traffic while the input selection part of the router uses 
the weighted round robin arbitration. Also, the adaptive output selection algorithm 
supporting both minimal and non-minimal paths uses congestion flags to route packets 
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through non-congested paths and consequently helps balance the traffic. The weighted 
round robin input selection also assists in relieving nodes where congestion is formed. 
In order to increase the memory bandwidth in network-based multiprocessor architectures 
multiple memory modules can be accessed in parallel. On top of resource utilization and 
latency, a reordering mechanism is required to deliver the response transactions of 
concurrent memory accesses in-order. Therefore, in this thesis, we presented a high 
performance network interface with a novel dynamic buffer allocation and a priority-based 
router model to improve the resource utilization, and overall on-chip network performance. 
In addition to the resource utilization of the network interface and on-chip network, also the 
utilization of memories considerably affects the network latency. Accordingly, an 
optimized scheduling method for the DRAM memories is developed and integrated in the 
network interface such that the network and memory latencies were reduced significantly in 
comparison with the baseline architecture. The micro-architectures of the proposed network 
interfaces which are compatible with the AMBA AXI protocol have been presented. 
Three-Dimensional (3D) stacked architectures provide significant benefits in performance, 
footprint and yield. It has been demonstrated that combining 3D ICs and on-chip networks 
can be a promising option for designing large multiprocessor architectures. One critical 
issue in 3D design is that the vertical interconnections are very fast and thick such that the 
area overhead of Through-Silicon-Vias (TSVs) imposes constraints on the number of TSVs 
for existing 3D architectures. In this dissertation, two cluster-based topologies have been 
presented to deal with constraints on the number of TSVs. Also, a novel pipeline bus 
structure for vertical channels is introduced not only to mitigate the drawbacks of existing 
bus structures in terms of power and performance, but also to reduce the number of 
required inter-layer arbiter control signals. Experimental results revealed that the on-chip 
network formed by the two presented topologies, Concentrated Inter-layer Topology (CIT) 
and Cluster Mesh Inter-layer Topology (CMIT), reduces the number of TSVs significantly 
with a low performance penalty under uniform traffic, but under non-uniform traffic which 
is more realistic case, CIT outperformed the other network structures in terms of the 
average network latency. 
 

7.2 Future Directions 
Some interesting open problems that are tightly related to the work in this thesis are as 
follows. 
3D chip stacking technology is emerging as a viable candidate to address the memory 
bandwidth problem, memory wall, by stacking multiple DRAM layers on top of a 
multiprocessor layer (logic layer) to reduce wire delay and energy consumption between 
them. In addition, combining the benefits of 3D memory-on-processor stacking architecture 
and on-chip networks provides a significant performance gain. To fully exploit the benefits 
of the 3D stacked memory-on-processor architectures, efficient on-chip communication 
platforms are required to be explored for different stacked layers. Also, to guarantee low-
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latency access to the stacked DRAM layers, adaptive memory controllers may need to be 
designed.  
Achieving higher performance along with reducing the network latency can be obtained by 
applying efficient communication protocols in 3D NoC-based CMPs. As the multicast 
communication is utilized commonly in various parallel applications, the performance can 
be significantly improved by supporting multicast operations at the hardware level. Various 
partitioning methods can be developed to distribute the multicast traffic among several 
subsets. Furthermore, several factors of efficiency such as average unicast latency, average 
multicast latency and average startup latency can be studied by analytical models. 
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Appendix A 

8 Hardware Prototyping 

A configurable on-chip network platform is developed with VHDL during this thesis work. 
Different hardware parts and their functionalities are already discussed in Chapters 3, 4, 
and 5. The platform exploits the adaptive router described in Chapter 4 where the router is 
configurable to use different routing protocols introduced in Chapter 3. It employs the 
network interface described in Chapter 5 to connect AXI-based processors to the network. 
Here, a lightweight prototype of the platform is presented. As illustrated in Fig. A-1, the 
prototype is composed of four routers each of which contains an AXI-based network 
interface. The agent cluster adjusts the frequency and voltage based on the congestion 
value. 
 

 
Fig. A-1. The test chip architecture. 
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The VHDL implementation of the platform is simulated using the ModelSim simulator 
from Mentor graphic and synthesized by Synopsys Design Compiler. Different tools from 
Synopsys (for frontend) and Cadence (for backend), e.g. Synopsys Design Compiler, 
Synopsys PrimePower, Cadence Encounter, and Cadence Virtuoso, are used for hardware 
analysis and layout. A test chip from the lightweight platform (Fig. A-1) was fabricated 
using the ST 65nm CMOS technology with Low Power Low Voltage Standard Cell Library 
at 1 V supply voltage. The hardware layout of the platform is shown in Fig. A-2. The 
0.07mm2 design contains 5520 cells along with 146 IOs with chip maximum operating 
frequency of 2 GHz. Finally, Fig. A-3 depicts the targeted prototype board. The platform is 
supposed to connect four AXI-based processors while voltage and frequency are adapted 
based on the agent decision integrated in the network. 

 

 
 

Fig. A-2. The test chip layout. 
 

     
 

Fig. A-3. The prototype board. 
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