
TURUN YLIOPISTON JULKAISUJA
ANNALES UNIVERSITATIS TURKUENSIS

SARJA - SER. A I OSA - TOM. 429

ASTRONOMICA - CHEMICA - PHYSICA - MATHEMATICA

TURUN YLIOPISTO
UNIVERSITY OF TURKU

Turku 2011

Exploring Adaptive Implementation
of On-Chip Networks

by

Masoud Daneshtalab

From the Laboratory of Embedded Computer Systems
Department of Information Technology
University of Turku
Turku, Finland
 &
Graduate School in Electronics, Telecommunication and Automation (GETA)
Aalto University
Helsinki, Finland

Supervisors
Professor Hannu Tenhunen
Adjunct Professor Juha Plosila
Adjunct Professor Pasi Liljeberg
Department of Information Technology
University of Turku
Turku, Finland

Reviewers
Professor José Flich
School of Engineering in Computer Science
Technical University of Valencia
Valencia, Spain

Professor Timo D. Hämäläinen
Department of Computer Systems
Technical University of Tampere
Tampere, Finland

Opponent
Professor Thomas Hollstein
Department of Computer Engineering
Tallin University of Technology
Tallin, Estonia

ISBN 978-951-29-4786-7 (PRINT)
ISBN 978-951-29-4787-4 (PDF)
ISSN 0082-7002
Painosalama Oy – Turku, Finland 2011

i

Abstract

As technology geometries have shrunk to the deep submicron regime, the communication
delay and power consumption of global interconnections in high performance Multi-
Processor Systems-on-Chip (MPSoCs) are becoming a major bottleneck. The Network-on-
Chip (NoC) architecture paradigm, based on a modular packet-switched mechanism, can
address many of the on-chip communication issues such as performance limitations of long
interconnects and integration of large number of Processing Elements (PEs) on a chip. The
choice of routing protocol and NoC structure can have a significant impact on performance
and power consumption in on-chip networks. In addition, building a high performance, area
and energy efficient on-chip network for multicore architectures requires a novel on-chip
router allowing a larger network to be integrated on a single die with reduced power
consumption. On top of that, network interfaces are employed to decouple computation
resources from communication resources, to provide the synchronization between them,
and to achieve backward compatibility with existing IP cores.
Three adaptive routing algorithms are presented as a part of this thesis. The first presented
routing protocol is a congestion-aware adaptive routing algorithm for 2D mesh NoCs which
does not support multicast (one-to-many) traffic while the other two protocols are adaptive
routing models supporting both unicast (one-to-one) and multicast traffic. A streamlined
on-chip router architecture is also presented for avoiding congested areas in 2D mesh NoCs
via employing efficient input and output selection. The output selection utilizes an adaptive
routing algorithm based on the congestion condition of neighboring routers while the input
selection allows packets to be serviced from each input port according to its congestion
level. Moreover, in order to increase memory parallelism and bring compatibility with
existing IP cores in network-based multiprocessor architectures, adaptive network interface
architectures are presented to use multiple SDRAMs which can be accessed
simultaneously. In addition, a smart memory controller is integrated in the adaptive
network interface to improve the memory utilization and reduce both memory and network
latencies.
Three Dimensional Integrated Circuits (3D ICs) have been emerging as a viable candidate
to achieve better performance and package density as compared to traditional 2D ICs. In
addition, combining the benefits of 3D IC and NoC schemes provides a significant
performance gain for 3D architectures. In recent years, inter-layer communication across
multiple stacked layers (vertical channel) has attracted a lot of interest. In this thesis, a
novel adaptive pipeline bus structure is proposed for inter-layer communication to improve
the performance by reducing the delay and complexity of traditional bus arbitration. In
addition, two mesh-based topologies for 3D architectures are also introduced to mitigate the
inter-layer footprint and power dissipation on each layer with a small performance penalty.

ii

iii

Acknowledgments

“Life is like riding a bicycle. To keep your balance you must keep moving.”
“Imagination is more important than knowledge. Knowledge is limited. Imagination
 encircles the world.”

 Albert Einstein

The research work presented in this thesis has been carried out in the department of
Information Technology, University of Turku from September 2008 to November 2011.
This work would not have been possible in three years without the support of many people.
First of all, I would like to express my deepest gratitude to my supervisors, Prof. Hannu
Tenhunen, Adj. Prof. Juha Plosila, and Adj. Prof. Pasi Liljeberg, for their excellent
guidance, patience, and providing me with an excellent atmosphere for doing research.

I share the credit of this work with my wonderful wife, Masoumeh Ebrahimi, for being a
collaborator on almost all my publications and giving the necessary comments and
criticism. Moreover, without her love, encouragement, and patience over the years, I would
not be able to finish this research work. She is always the first one I would go to whenever I
need support, and the first one to share my happiness on my success.
It gives me great pleasure in acknowledging Prof. José Flich from Polytechnic University
of Valencia and Prof. Timo D. Hämäläinen from Technical University of Tampere for the
detailed reviews and the constructive comments on the manuscript.

I greatly appreciate the financial support for my doctoral studies from the Graduate School
in Electronics, Telecommunication and Automation (GETA). This research work was also
financially supported by the Nokia Foundation, ST-Micro, and Ulla Tuominen Foundation.

Finally, I would like to thank my parents for their constant love, support, and prayers and
dedicate this thesis to them.

Turku, November 2011
Masoud Daneshtalab

iv

v

List of Publications

The work presented in this thesis is based on the following publications:

Journal publications:
M. Daneshtalab, M. Ebrahimi, P. Liljeberg, Juha Plosila, and H. Tenhunen, “Memory-
Efficient On-Chip Network with Adaptive Interfaces,” IEEE Transaction on Computer-
Aided Design of Integrated Circuits and Systems (IEEE TCAD) - (To appear).
M. Daneshtalab, M. Ebrahimi, T. C. Xu, P. Liljeberg, and H. Tenhunen, “A generic
adaptive path-based routing method for MPSoCs,” Journal of Systems Architecture (JSA-
elsevier), Vol. 57, No. 1, pp. 109-120, 2011.

M. Daneshtalab, M. Kamali, M. Ebrahimi, S. Mohammadi, A. Afzali-Kusha, and J.
Plosila, “Adaptive Input-output Selection Based On-Chip Router Architecture,” Journal
of Low Power Electronics (JOLPE) - (To appear).
M. Daneshtalab, M. Ebrahimi, S. Mohammadi, and A. Afzali-Kusha, “Low distance path-
based multicast algorithm in NOCs,” Journal of the Institute of Engineering and
Technology (IET - Computers and Digital Techniques), Special issue on NoC, Vol. 3,
Issue 5, pp. 430-442, Sep 2009.
P. Lotfi-kamran, A. Rahmani, M. Daneshtalab, A. Afzali-Kusha, and Z. Navabi, “EDXY
- A Smart Congestion-Aware and Link Failure Tolerant Routing Algorithm for Network-
on-Chips,” Journal of Systems Architecture (JSA-elsevier), Vol. 56, No. 7, pp. 256-264,
Jul 2010.

Conference publications:
M. Daneshtalab, M. Ebrahimi, P. Liljeberg, J. Plosila, and H. Tenhunen, “Cluster-based
Topologies for 3D Stacked Architectures,” in Proceedings of ACM International
Conference on Computing Frontiers (CF), pp. 1-3, May 2011, Italy.

M. Daneshtalab, M. Ebrahimi, P. Liljeberg, J. Plosila, and H. Tenhunen, “High-
Performance On-Chip Network Platform for Memory-on-Processor Architectures,” in
Proceedings of IEEE International Symposium on Reconfigurable Communication-
centric Systems-on-Chip (ReCoSoC), pp. 1-6, June 2011, France.

M. Daneshtalab, M. Ebrahimi, P. Liljeberg, Juha Plosila, and H. Tenhunen, “CMIT- A
Novel Cluster-based Topology for 3D Stacked Architectures,” in Proceedings of 2nd
IEEE International 3D System Integration Conference (3DIC), pp. 1-5, Nov 2010,
Germany.

vi

M. Daneshtalab, M. Ebrahimi, P. Liljeberg, J. Plosila, and H. Tenhunen, “Input-Output
Selection Based Router for Networks-on-Chip,” in Proceedings of 9th IEEE International
Symposium on VLSI (ISVLSI), pp. 92-97, July 2010, Greece.
M. Daneshtalab, M. Ebrahimi, P. Liljeberg, Juha Plosila, and H. Tenhunen, “A Low-
Latency and Memory-Efficient On-hip Network,” in Proceedings of 4th IEEE/ACM
International Symposium on Network-on-Chip (NOCS), pp. 99-106, May 2010, France.

M. Ebrahimi, M. Daneshtalab, P. Liljeberg, and H. Tenhunen, “HAMUM – A Novel
Routing Protocol for Unicast and Multicast Traffic in MPSoCs,” in Proceedings of 18th
IEEE Euromicro Conference on Parallel, Distributed and Network-Based Computing
(PDP), pp. 525-532, February 2010, Italy.

M. Ebrahimi, M. Daneshtalab, P. Liljeberg, J. Plosila, and H. Tenhunen, “A High-
Performance Network Interface Architecture for NoCs Using Reorder Buffer Sharing,” in
Proceedings of 18th IEEE Euromicro Conference on Parallel, Distributed and Network-
Based Computing (PDP), pp. 547-550, February 2010, Italy.

M. Daneshtalab, M. Ebrahimi, P. Liljeberg, J. Plosila, and H. Tenhunen, “Pipeline-Based
Interlayer Bus Structure for 3D Networks-on-Chip,” in Proceedings of 15th International
Symposium on Computer Architecture and Digital Systems (CADS), IEEE Press, pp. 41-
47, Sept 2010, Iran.

M. Ebrahimi, M. Daneshtalab, N. Sreejesh, P. Liljeberg, Juha Plosila, and H. Tenhunen,
“Efficient Network Interface Architecture for Network-on-Chips,” in Proceedings of 27th
IEEE Norchip Conference, pp. 1-4, Nov 2009, Norway.
M. Ebrahimi, M. Daneshtalab, P. Liljeberg, and H. Tenhunen, “An Efficient
Unicast/Multicast Routing Protocol for MPSoCs,” in Proceedings of 12th IEEE
Euromicro Conference On Digital System Design (DSD), pp. 203-206, August 2009,
Greece.
M. Ebrahimi, M. Daneshtalab, S. Mohammadi, Juha Plosila, and H. Tenhunen, “An
Efficent Dynamic Multicast Routing Protocol for Distributing Traffic in NOCs,” in
Proceedings of 12th IEEE/ACM Design, Automation, and Test in Europe (DATE), pp.
1064-1069, April 2009, France.
P. Lotfi-Kamran, M. Daneshtalab, Z. Navabi, and C. Lucas, “BARP- A Dynamic Routing
Protocol for Balanced Distribution of Traffic in NoCs to Avoid Congestion,” in
Proceedings of 11th ACM/IEEE Design, Automation, and Test in Europe Conference
(DATE), pp. 1408-1413, Mar 2008, Germany.
M. Daneshtalab, A. Pedram, M. H. Neishaburi, M. Riazati, A. Afzali-Kusha, and S.
Mohammadi, “Distributing Congestions in NoCs through a Dynamic Routing Algorithm
based on Input and Output Selections,” in Proceedings of 20th IEEE International
Conference on VLSI Design (VLSID), pp. 546-550, Jan 2007, India.

vii

Workshop publications:
M. Daneshtalab, M. Ebrahimi, P. Liljeberg, J. Plosila, and H. Tenhunen, “An Efficient
Topology for 3D Stacked Architectures,” 3D Integration Workshop, The Design,
Automation, and Test in Europe conference (DATE), March 2011, France.
M. Daneshtalab, M. Ebrahimi, P. Liljeberg, J. Plosila, and H. Tenhunen, “High-
Performance TSV Architecture for 3-D ICs,” in Proceedings of 9th IEEE International
Symposium on VLSI (ISVLSI), PhD-Forum, pp. 467-468, May 2010, Greece.
M. Daneshtalab, M. Ebrahimi, P. Liljeberg, Juha Plosila, and H. Tenhunen, “A Novel
Interlayer Bus Architecture for Three-Dimensional Network-on-Chips,” 3D Integration
Workshop, The Design, Automation, and Test in Europe (DATE) conference, March
2010, Germany.

viii

ix

CONTENTS

1 INTRODUCTION 1
1.1 THE ADVANTAGES OF ON-CHIP NETWORKS ... 2

1.1.1 Energy Efficiency ... 2
1.1.2 Reliability ... 3
1.1.3 Reusability.. 3
1.1.4 Scalability ... 4
1.1.5 Flexibility ... 4

1.2 THREE-DIMENSIONAL ICS ... 4
1.2.1 3D IC Technology Overview .. 5
1.2.2 3D NoC .. 6

1.3 ADAPTIVE ON-CHIP NETWORK .. 6
1.4 THESIS CONTRIBUTIONS .. 7
1.5 THESIS ORGANIZATION ... 8

2 ON-CHIP NETWORKS 9
2.1 NETWORK TOPOLOGY ... 9
2.2 SWITCHING MECHANISM ... 10

2.2.1 Store-and-Forward .. 12
2.2.2 Virtual Cut-Through ... 12
2.2.3 Wormhole ... 12

2.3 VIRTUAL CHANNELS ... 13
2.4 OUTPUT SCHEDULING.. 14
2.5 ROUTING ALGORITHM ... 14

2.5.1 Source versus Distributed Routing .. 14
2.5.2 Deterministic versus Adaptive Routing ... 15
2.5.3 Minimal versus Non-Minimal Routing .. 15
2.5.4 Unicast and Multicast Routing Protocols .. 15
2.5.5 Deadlock and Livelock ... 16
2.5.6 Turn Model Routing ... 17

2.6 NETWORK-ON-CHIP ARCHITECTURE .. 18
2.7 SUMMARY ... 19

3 ADAPTIVE ROUTING PROTOCOLS IN NETWORKS-ON-CHIP 21
3.1 UNICAST ROUTING PROTOCOLS ... 21

x

3.1.1 XY Routing Scheme ... 21
3.1.2 DyAD Routing Scheme .. 22
3.1.3 DyXY Routing Scheme .. 24
3.1.4 EDXY Routing Scheme .. 25
3.1.5 Experimental Results .. 28

3.2 MULTICAST ROUTING PROTOCOLS ... 34
3.2.1 Unicast-based Multicast Routing .. 34
3.2.2 Tree-based Multicast Routing ... 34
3.2.3 Hamiltonian Path-based Multicast Routing Algorithm 36
3.2.4 Hamiltonian Adaptive Multicast Unicast Method (HAMUM) 41
3.2.5 Hardware Implementation ... 48
3.2.6 Experimental Results .. 51

3.3 SUMMARY ... 58

4 ADAPTIVE ON-CHIP ROUTER ARCHITECTURE 61
4.1 ADAPTIVE INPUT-SELECTION AND OUTPUT-SELECTION METHODS 61
4.2 MINIMAL AND NON-MINIMAL IMPLEMENTATIONS OF HAMUM 62

4.2.1 Deadlock Avoidance ... 64
4.3 THE AIOS ROUTER ARCHITECTURE ... 66

4.3.1 Message Format.. 66
4.3.2 Router Structure.. 66

4.4 EXPERIMENTAL RESULTS .. 71
4.4.1 Performance Evaluation .. 72
4.4.2 Power Dissipation ... 76
4.4.3 Hardware Overhead .. 76

4.5 SUMMARY ... 77

5 ADAPTIVE NETWORK INTERFACE ARCHITECTURE 79
5.1 DRAM STRUCTURE .. 80

5.1.1 Memory Access Scheduling .. 81
5.2 RELATED WORK.. 83
5.3 PROPOSED NETWORK INTERFACE ARCHITECTURE .. 84

5.3.1 Master-side Network Interface .. 85
5.3.2 Slave-side Network Interface .. 90
5.3.3 Hybrid Network Interface ... 90

5.4 PRIORITY-BASED ROUTER ARCHITECTURE ... 91
5.4.1 The Proposed Priority-based Router .. 93

5.5 ORDER SENSITIVE MEMORY SCHEDULER ... 94
5.6 EXPERIMENTAL RESULTS .. 96

5.6.1 System Configuration ... 97
5.6.2 Performance Evaluation .. 99

xi

5.6.3 Hardware Overhead ...102
5.7 SUMMARY ..102

6 THREE-DIMENSIONAL NETWORKS-ON-CHIP 105
6.1 3D NOC ARCHITECTURE ..106
6.2 CONSTRAINT ON THE NUMBER OF TSVS ..107
6.3 RELATED WORK...108
6.4 PIPELINE BUS ARCHITECTURE ...109

6.4.1 Transfer Stage Micro-Architecture ...111
6.4.2 Weight-based Arbitration ...112
6.4.3 Non-blocking Scheme ..113
6.4.4 Synchronizing FIFO ..114

6.5 CLUSTER ARCHITECTURES ...116
6.5.1 CIT (Concentrated Inter-layer Topology) ...116
6.5.2 CMIT (Cluster Mesh Inter-layer Topology) ...117
6.5.3 Routing Algorithm ...118

6.6 EXPERIMENTAL RESULTS ...119
6.6.1 System Configuration ..120
6.6.2 Performance Comparison ...121
6.6.3 Power Analysis ..125
6.6.4 Physical Analysis ...127

6.7 SUMMARY ..127

7 CONCLUSION 129
7.1 THESIS CONTRIBUTIONS ...129
7.2 FUTURE DIRECTIONS ..130

REFERENCES 133

A HARDWARE PROTOTYPING 142

xii

xiii

List of Figures

 1-1. Tile-based 2D-Mesh topology. .. 2
 1-2. (a) Homogeneous and (b) Heterogeneous 3-D Network-on-Chip structures using

Through Silicon Vias (TSVs) technology to connect stacked layers vertically. 5
 2-1. Network topologies of Shared-bus, Ring, Crossbar, Mesh, Torus, and Butterfly. 11
 2-2. A typical router using VCs. ... 13
 2-3. Using VC for avoiding deadlock. .. 14
 2-4. Deadlock scenario with four packets [68]. ... 16
 2-5. All possible turns in (a) XY routing (b) Negative-First (c) West-First (d) North-Last

(The solid lines indicate the allowable turns and the dash lines indicate the
unallowable turns). ... 17

 2-6. The Odd-Even turn model rules: (a) prohibited turns in even columns (b) prohibited
turns in odd columns. 18

 2-7. Tile-based 2D-Mesh topology. .. 19

 3-1. Illustration of different routing schemes. ... 22
 3-2. Structure of the XY router. . .. 23
 3-3. Structure of the DyAD router. ... 23
 3-4. (a) A 3 4 mesh physical network and the corresponding (b) increasing and (c)

decreasing subnetworks. ... 24
 3-5. A simple NoC with mesh structure. 25
 3-6. An EDXY router implementation. ... 26
 3-7. EDXY routing algorithm. .. 27
 3-8. Latency vs. packet injection rate for EDXY, DyXY, and XY for a 7 × 7 2D mesh for 9-

flit packets with virtual channel. (a) transpose traffic, (b) uniform random traffic, (c)
hotspot 5%, and (d) hotspot 10%. 29

 3-9. Average latency across SPLASH-2 benchmarks normalized to latency of XY. 31
 3-10. Latency vs. packet injection rate for 15 × 15 mesh with virtual channel under

transpose traffic profile using 9-flit packets. ... 32
3-11. Average latency vs. packet injection rate on a 7 × 7 2D mesh for 15-flit packets with

virtual channel. (a) transpose traffic, (b) uniform random traffic, (c) hotspot 5%, and
(d) hotspot 10%. 33

3-12. Latency vs. packet injection rate on a 5 × 5 2D mesh without virtual channel. (a)
transpose traffic, (b) uniform random traffic, (c) hotspot 5%, and (d) hotspot 10%. .. 33

3-13. Example of tree-based multicast routing in 5×5 2D-mesh. 35
3-14. A 3 4 mesh physical network with the label assignment and the corresponding (b) up

channel and (c) down channel networks. The solid lines indicate the Hamiltonian path

xiv

and dashed lines indicate the links that could be used to reduce the path length in
routing.. 36

 3-15. Examples of (a) Dual-path (DP), (b) Multi-path (MP), (c) Column-Path (CP), and (d)
Low-Distance (LD) multicast routing from (2, 3). The unused links are not indicated.
 ... 38

3-16. Message header construction for Low Distance (LD) multicast routing. 40
3-17. The pseudo code of HAMUM. .. 42
 3-18. All of the possible minimal paths from the source nodes 63, 56, 7, and 0 to the

destination node 27 in (a) the Odd-Even model, and (b) the unicast aspect of
HAMUM. .. 43

 3-19. Eight different location states in the up channel subnetwork. 45
3-20. The Odd-Even turn model rules: (a) prohibited turns in even columns (b) prohibited

turns in odd columns. ... 46
3-21. (a) Multi-Path (MP), (b) Adaptive Multi-Path (AMP), (c) Column-Path (CP), and

Adaptive Column-Path (ACP) routing algorithms. .. 47
3-22. Multicast message format for the proposed technique.. 48
3-23. The proposed router structure. ... 49
3-24. Deadlock due to the delivery channel contention [81]. .. 50
 3-25. Performance evaluation of LD under different loads in 8×8 2D-mesh with (a) 10

destinations, (b) 25 destinations and in 16×16 2D-mesh with (c) 10 destinations, (d) 25
destinations under multicast traffic model. .. 52

3-26. Performance evaluation of HAMUM under different loads in 8×8 2D-mesh with (a)
10 destinations, (b) 25 destinations and in 16×16 2D-mesh with (c) 10 destinations, (d)
25 destinations under multicast traffic model. ... 53

3-27. Performance evaluation of LD under different loads in 8×8 2D-mesh with (a) 10
destinations, (b) 25 destinations under mixed traffic (20% multicast and 80% unicast)
while unicast traffic is based on the uniform traffic model. 54

3-28. Performance evaluation of HAMUM under different loads in 8×8 2D-mesh with (a)
10 destinations, (b) 25 destinations under mixed traffic (20% multicast and 80%
unicast) while unicast traffic is based on the uniform traffic model. 54

3-29. Performance evaluation of LD under different loads in 8×8 2D-mesh with (a) 10
destinations, (b) 25 destinations under mixed traffic (20% multicast and 80% unicast).
Unicast traffic is based on the hotspot traffic model with a single hotspot node (4, 4).
The hotspot percentage is 10%. . .. 54

3-30. Performance evaluation of HAMUM under different loads in 8×8 2D-mesh with (a)
10 destinations, (b) 25 destinations under mixed traffic (20% multicast and 80%
unicast). Unicast traffic is based on the hotspot traffic model with a single hotspot
node (4, 4). The hotspot percentage is 10%... 55

3-31. Performance under different application benchmarks for multi-path (left) and column-
path (right) routing algorithms. ... 56

xv

 3-32. Average power dissipation of the proposed, the DP, the MP and the CP algorithms in
16×16 2D-mesh with (a) 10 destinations and (b) 25 destinations under multicast
traffic. . .. 56

3-33. Maximum power dissipation of the proposed, the DP, the MP and the CP algorithms
in 16×16 2D-mesh with (a) 10 destinations and (b) 25 destinations under multicast
traffic. ... 56

3-34. Area cost of routers for implementing different multicast routing algorithms. 58

 4-1. The pseudo VHDL code of modified HAMUM including the non-minimal routing. . 63
 4-2. An example of modified HAMUM. .. 64
 4-3. All possible turns of HAMUM and modified HAMUM. .. 66
 4-4. The proposed routing structure. ... 67
 4-5. Congestion detection circuit for the input buffer. ... 68
 4-6. Congestion level computation and transmission scheme. 68
4-7. Routing unit circuit. . .. 69
4-8.The procedure of selecting the suitable output port. .. 70
4-9. Block diagram of a round-robin arbiter. ... 70
 4-10. Block diagram of a weighted round robin arbiter. .. 71
4-11. Performance results in 8×8 2D-mesh under multicast traffic profile with (a) 10

destinations, (b) 20 destinations. ... 72
4-12. Performance with different loads in 8×8 2D-mesh under mixed traffic (20% multicast

and 80% unicast). Unicast traffic in (a) is based on the uniform pattern and in (b) is
based on the hotspot pattern with h=10%. ... 74

 4-13. Performance with different loads in 8×8 2D-mesh under unicast traffic: (a) the
uniform pattern and (b) the hotspot pattern. ... 74

4-14.The VOPD block diagram, with communication BW annotated (in MB/s) and its
mapping onto mesh topology. .. 75

4-15. The performance of different algorithms under VOPD traffic model. 75
 4-16. (a) Average and (b) Maximum power dissipation results in 8×8 2D-mesh under mixed

traffic profile. .. 76
 4-17. Area cost of routers for implementing different input-output selections. 77

5-1. High-level structure of an SDRAM. ... 81
 5-2. Memory access scheduling of four memory requests with (a) in-order and (b) with out-

of-order access scheduling. ... 82
5-3. Master-side network interface architecture. .. 85
 5-4. Slave-side network interface architecture. .. 85
 5-5. Status-Table of the reorder unit. ... 87
 5-6. Dynamic buffer allocation. .. 89
 5-7. Hybrid network interface architecture. ... 90
5-8. 4×4 NoC where master core 0 sends requests A, B and C to memories 6, 13 and 15,

respectively. .. 91

xvi

5-9. Comparing (a) round-robin and (b) priority-based arbitration schemes in serializing the
packets. ... 92

5-10. The router architecture. .. 93
5-11. Pseudo VHDL code of the priority-based router. .. 94
5-12. The proposed memory controller integrated in the slave-side network interface. 95
 5-13. Pseudo VHDL code of the arbiter in the memory controller. 96
5-14. Request selector circuit. ... 97
 5-15. The layout of the system configuration A. .. 98
 5-16. Performance evaluation of both configurations under (a) uniform and (b) non-uniform

traffic models. ... 99
5-17. Performance impact of using the priority-based router under the (a) uniform and (b)

non-uniform traffic models. ... 99
5-18. Performance impact of using the order sensitive memory controller under the (a)

uniform and (b) non-uniform traffic models. ...100
 5-19. Effect of reorder buffer size on the performance under the uniform traffic model. ...101

6-1. Mesh-based NoC architectures: (a) 3D-symmetric NoC (b) 3D NoC-Bus Hybrid

structures. ...106
 6-2. (a) Proposed bus architecture and (b) the micro-architecture of the transfer stage. ...110
6-3. Pseudo VHDL code of the weight-based arbitration for multiplexers: M1, M2, and M3

 ..112
6-4. A blocking situation. ...113
 6-5. Bi-Sync FIFO structure. ..115
 6-6. Clustering approaches: (a) CIT and (b) CMIT. ..117
 6-7. (a) The packet format in CIT and (b) the header format in CMIT. 118
 6-8. 4 4 4 stacked mesh layout. ...119
6-9. Performance impact of using the presented bus in (a) hybrid, (b) CMIT, and (c) CIT

networks under uniform traffic profile. ...121
 6-10. Performance impact of using the presented bus in (a) hybrid, (b) CMIT, and (c) CIT

networks under non-uniform traffic profile. ..122
6-11. Performance comparison of different 3D structures for (a) the uniform, (b) non-

uniform, and (c) hotspot traffic profiles using dTDMA. ..123
 6-12. Performance comparison of different 3D structures for (a) the uniform, (b) non-

uniform, and (c) hotspot traffic profiles using the presented bus. 124
 6-13. Performance impact of topologies using presented bus with different local loads. ..124
 6-14. Performance for application traces normalized to CIT. ..125
 6-15. Average power dissipation results under (a) uniform and (b) non-uniform traffic

profiles. ..126

xvii

List of Tables

 3-1. Baseline network configuration and variation. ... 28
 3-2. System configuration parameters. ... 30
 3-3. Area comparison of XY, DyXY, and EDXY. ... 34
 3-4. Power consumption of DyXY and EDXY routing under the uniform traffic profile

(mW). .. 34
3-5. Eight different location states of the source and destination nodes. 43
 3-6. Comparative average power dissipation of LD with other algorithms in 16×16 2D-

mesh. ... 57
 3-7. Comparative maximum power dissipation of LD with other algorithms in 16×16 2D-

mesh. ... 57
3-8. Comparative average power dissipation of the adaptive schemes using HAMUM

model with the conventional schemes. ... 57
 3-9. Comparative maximum power dissipation of the adaptive schemes using HAMUM

model with the conventional schemes. ... 57

4-1. Structure of other four routers. ... 72

5-1. Hardware implementation details. ..102

 6-1. Description of Bi-Sync FIFO signals. ...115
6-2. Number of routers, cluster routers and vertical channels of the described topologies in

a (4×4×3) 3D architecture..117

xviii

xix

List of Abbreviations

3D-IC Three Dimensional Integrated Circuit
ACP Adaptive Column-Path
AIOS Adaptive Input-Output Selection
AMBA Advanced Microcontroller Bus Architecture
AMP Adaptive Multi-Path
AXI Advanced eXtensible Interface
B2B Back-to-Back
BOM Begin Of Message
CAIS Contention-Aware Input Selection
CAM Content Addressable Memory
CARS Contention Aware Routing Selection
CF Congestion Flag
CIT Concentrated Inter-layer Topology
CMIT Clustered Mesh Inter-layer Topology
CL Congestion Level
CMOS Complementary Metal–Oxide–Semiconductor
CMP Chip-Multiprocessor
CP Column-Path
CS Congestion Status
DA Destination Address
DoA Degree of Adaptiveness
DOR Dimension Order Routing
DP Dual-Path
DRAM Dynamic Random Access Memory
dTDMA Dynamic Time Division Multiple Access
DTL Device Transaction Level
DU Depacketizer Unit
DyAD Dynamic Adaptive Deterministic
DyXY Dynamic XY
ECC Error Correcting Codes
EDXY Enhanced Dynamic XY
EOM End Of Message
F2B Face-to-Back
F2F Face-to-Face
FCFS First Come First Service
FIFO First In First Out

xx

FLIT FLow control digIT
FPGA Field Programmable Gate Array
GALS Globally Asynchronous Locally Synchronous
GEMS General Execution-driven Multiprocessor Simulator
HAMUM Hamiltonian Adaptive Multicast Unicast Method
HoL Head of Line blocking
IP Intellectual Property
ITRS International Technology Roadmap for Semiconductors
LD Low Distance
MESI Modified Exclusive Shared Invalid
MH Multiple Hop
MID Message IDentifier
MLBS Multi-Layer Buried Structures
MOESI Modified Owned Exclusive Shared Invalid
MP Multi-Path
MPSoC Multi-Processor System-on-Chip
NF Negative-First
NI Network Interface
NMOS N-Channel Metal–Oxide–Semiconductor
NL North-Last
NoC Network-on-Chip
OCP Open Core Protocol
OE Odd-Even
OS Order Sensitive
PARSEC Princeton Application Repository for Shared-Memory Computers
PB Path-Based
PCI Peripheral Component Interconnect
PE Processing Element
PPE Programmable Priority Encoder
PR Priority-based Router
PU Packetizer Unit
QoS Quality-of-Service
RAM Random Access Memory
RF Row First
ROM Read Only Memory
RR Round-Robin
RTL Register Transfer Level
RU Reorder Unit
SA Source Address
SAMBA Single Arbitration Multiple Bus Accesses
SDRAM Synchronous Dynamic Random Access Memory
SH Single Hop

xxi

SIA Semiconductor Industry Association
SNUCA Static Non-Uniform Cache Architecture
SoC Systems-on-Chip
SPARC Scalable Processor ARChitecture
SPLASH Stanford Parallel Applications for Shared Memory
STL Standard Template Libraries
SV Stress Value
TB Tree-Based
TR Typical Router
TS Transfer Stage
TSV Through Silicon Via
UB Unicast-Based
VC Virtual Channels
VCT Virtual Circuit Table
VCTM Virtual Circuit Tree Multicasting
VHDL VHSIC hardware description language
VHSIC Very-High-Speed Integrated Circuits
VLSI Very Large Scale Integration
VOPD Video Object Plane Decoder
WF West-First
WRR Weighted Round Robin

xxii

1

Chapter 1

1 Introduction

As indicated by several researchers and the International Technology Roadmap for
Semiconductors (ITRS), nanometer Systems-on-Chip (SoCs) will most likely not have an
economic yield if all transistors must be functional [1] [2]. Besides, it is expected that
Moore’s law will continue to hold for another five to fifteen years where billion gates can
be integrated in a chip. This capacity will allow integration of several tens to hundred
resources like processor cores, DSP cores, and interface circuits (like Blue-tooth or
Ethernet adapter), FPGA blocks, analog blocks, and memory blocks (any kind such as
RAM, ROM and CAM). Thereby, it is possible to integrate more than one Processing
Element (PE) in a SoC, being known as Multi-Processor System-on-Chip (MPSoC).
MPSoCs have been widely used in high performance embedded systems, such as web
servers, network processors, and parallel media processors. They combine the advantages
of data processing parallelism of multi-processors and the high level integration of SoCs.
The continuously increasing number of cores for such multi-billion transistor SoCs calls for
a new communication architecture as traditional bus-based architectures are inherently non-
scalable, making communication a bottleneck [1] [2] [3].
The Network-on-Chip (NoC) architecture paradigm, based on a modular packet-switched
mechanism, can address many of the on-chip communication design issues such as
performance limitations of long interconnects, and integration of high number of PE on a
chip [1] [2] [3] [4] [5]. Notable examples of this architecture include Intel’s 80-core Teraflops
Research Chip [6] and Tilera’s TILE64 [7].
A tiled-based 2D-mesh NoC based system, where one or more cores and other resources
are encapsulated into a tile, is shown in Fig. 1-1. It consists of Routers (R), PE, and
Network Interfaces (NI). PEs may be intellectual property (IP) blocks or embedded
memories. Each PE is connected to the corresponding router port using the network
interface. This enables to use packets for transferring information between PEs without
requiring dedicated wirings for point to point connection. In brief, NoCs not only offer a
scalable performance needed by systems which grow with each new generation [1] [2], but
also allow to mitigate the energy consumption by avoiding the use of long global wires.
Since all links in the NoC can operate simultaneously on different data packets, a high level

Chapter 1 Introduction

2

of parallelism is making it attractive for replacing previous communication architectures
like dedicated point-to-point signal wires, shared buses, or segmented buses with bridges.
Furthermore, NoCs are reusable templates and aid to reduce the so called design
productivity gap. Finally, none of the current on-chip interconnect approaches (buses and
dedicated point-to-point channels) will meet all the requirements of future SoCs, as NoCs
could potentially fulfill.

NI NI NI

NI NI NI

NI NI NI

Fig. 1-1. Tile-based 2D-Mesh topology.

1.1 The Advantages of On-Chip Networks
Energy efficiency, reliability, reusability, scalability, and flexibility are the most important
benefits of NoC from other on-chip communication approaches.

1.1.1 Energy Efficiency
According to the International Technology Roadmap for Semiconductors (ITRS) [8] and
Semiconductor Industry Association (SIA) [9] roadmaps, clock frequency and number of
on-chip devices are increased. That is, much tighter power budgets for all system
components are required. Based on the roadmaps, as computation and storage components
benefit from device scaling, the energy for global communication does not scale down.
Hence, communication-energy minimization will be a growing concern in future

Chapter 1 Introduction

3

technologies. The on-chip networks aim to reduce this problem by scaling wires. This new
model allows the decoupling of the PEs from the network. The need for global
synchronization can thereby disappear. This new approach employs explicit parallelism,
exhibits modularity to minimize the use of global wires, and utilizes locality for power
minimization [10] [11]. Furthermore, network traffic control and monitoring can help in
better managing the power consumed by networked computational resources. For instance,
clock speed and voltage of end nodes can be varied according to available network
bandwidth. The emphasis on energy minimization creates a sleuth of novel challenges that
have not been addressed by traditional high-performance network designers [10] [11].

1.1.2 Reliability
As the geometries of the transistors reach the physical limits of operation, it becomes
increasingly difficult for the hardware components to achieve reliable operation. The
variability in process manufacturing, issues of thermal hotspots and effects of various noise
sources, such as power supply fluctuations, pose major challenges for the reliable operation
of current and future NoC-based MPSoCs. NoCs are particularly suited for implementation
of fault-tolerant techniques, due to their inherent parallelism and potential for re-
configurability. Fault-tolerant techniques can be implemented at different levels, from
hardware redundancy to software-based error recovery schemes. Adaptive routing
algorithms combined with error detection mechanisms show great promise in achieving
fault-tolerant on-chip communication. If data is sent on an unreliable channel in packets,
error detection and recovery is easier, because the effect of errors is contained by packet
boundaries, and error recovery can be carried out on a packet-by-packet basis. Error
correction can be achieved by using standard error correcting codes (ECC), whereas robust
and fault-tolerant routing algorithms can route around faulty regions [12].

1.1.3 Reusability
PEs are usually obtained from internal sources or third parties, and integrated on a single
chip. These reusable PEs may include embedded processors, memory blocks, interface
blocks, analog blocks, and components that handle application specific processing
functions. Corresponding software components are also provided in a reusable form and
may include real-time operating systems and kernels, library functions, and device drivers.
That is, PEs are reusable in nature if they conform to a common interface and
synchronization mechanisms with the on-chip network. Using a standard interface such as
AXI [13], OCP [14], and DTL [15], in on-chip networks facilitates the employment of
reusable components. In fact, employing a standard interface does not change the way PEs
are developed, since they will still be developed for a certain protocol. What changes is that
a public domain protocol is used and accepted by the industry as a standard, like the PCI
standard for microcomputer manufacturers. Accordingly, not only the PEs reusability
becomes higher but also the design time is reduced [16]. In addition, on-chip routers are
generic in nature and the communication can be employed with any conforming PE.

Chapter 1 Introduction

4

1.1.4 Scalability
NoC platform is composed of on-chip routers and communication links that are basically
distributed and independent. Each PE is added into the network along with a dedicated
router having a unique address or coordinate in the network. The communication exploits
the packet switching scheme while there is no central arbitration mechanism of the
communication platform. Therefore, the performance in this communication architecture is
not constrained or degraded by the addition of PEs. This is the essential characteristic of a
scalable and modular architecture [1] [2] [3]. Indeed, on-chip interconnection network plays
an important role in providing scalability to integrate hundreds or even thousands of
processing elements in a single billion-transistor chip and alleviate design productivity
gap [17]. In fact, using data packets for communication, a high level of parallelism is
achieved as all channels can be operated simultaneously. Thereby, on-chip network
improves the scalability in comparison with previous communication structures such as
shared buses or segmented buses.

1.1.5 Flexibility
Utilizing common buses between the communicating resources in SoCs will not give any
flexibility since the needs of the communication have to be thought of every time a design
is made. However, they suffer from low scalability [1]- [5]. NoC solves their shortcomings
by implementing a communication network of routers and resources. NoC is a very flexible
communication infrastructure allowing the same physical link to be shared by many
different connections. As future SoC platforms are expected to contain hundreds of PEs,
NoC needs to support an even larger number of connections and many connections span a
large number of routers. This leads the same SoC platform to be used in a wide range of
different applications and thereby increases the production volume. As the same SoC
platform is to be used for many different applications, the NoC must be able to support a
wide range of bandwidth and Quality-of-Service (QoS) requirements. The requirements of
the applications can be very different, and the NoC must therefore be very flexible.

1.2 Three-Dimensional ICs
Two-dimensional (2D) chip fabrication technology is facing lots of challenges in the deep
submicron regime even by utilizing NoC architectures [18] [19], e.g. designing the clock-
tree network for a large chip, limited floor-planning choices, increasing the wire delay and
power consumption, integrating various components that are digital, analog, MEMS, RF,
etc. The Three Dimensional (3D) integration has emerged as a potent solution to address
these problems and the design complexity of MPSoC in 2D Integration Circuits (IC). 3D
ICs reduce the interconnect delay problem by stacking vertically active silicon layers as
well as offering a number of advantages over the traditional 2D chip [18] [19] [20] [21] [22]:
(1) shorter global interconnects; (2) higher performance; (4) high memory bandwidth; (3)
lower interconnect power consumption due to wire-length reduction; (4) higher packing

Chapter 1 Introduction

5

density and smaller footprint; and (5) support for the implementation of mixed-technology
chips, e.g. NMOS DRAM stacking on top of CMOS processor cores. However, thermal
problem is still an important challenge for 3D IC circuit design.

1.2.1 3D IC Technology Overview
There are many technologies for die stacking being pursued by industry and academia.
Wafer-Bonding [30] [31] and Multi-Layer Buried Structures (MLBS) [32] [33] are the most
promising ones. The details of these processes are described in [18]. Wafer-to-wafer
bonding appears to be the leading contender in industry and many recent academic studies
have assumed this type of 3D stacking technology [18]- [23] [34]. Wafers can be stacked
either Face-to-Face (F2F) or Face-to-Back (F2B) and both have pros and cons. While the
former provides the greatest layer-to-layer via density, it is suitable for two-layers; and
additional layers would have to employ Back-to-Back (B2B) placement using larger and
longer vias. On the other hand, Face-To-Back provides uniform scalability to an arbitrary
number of layers, despite a reduced inter-layer via density [27]- [35]. Layers, stacked on top
of each other, are connected via vertical interconnects tunneling through them. Wire
bonding, micro-bump, contactless, and Through Silicon Via (TSV) are some of the vertical
interconnect (Inter-layer communication) technologies that have been used in stacked
structures [32]. The distance between wafers can range from 5 m to 50 m [22] [24], which
is much shorter than the wire length between cores on a tier, and the pitches of a TSV can
range from 1 m to 10 m square [22] [24]. That is, the wire delay, power consumption and
chip form factor are significantly reduced [25] [26] [28]. Thus, the TSV interconnection has
the potential to offer the greatest vertical interconnect density and is the most promising
one among these vertical interconnect technologies [27]- [35]. In this thesis, we assumed the
F2B method with TSV interconnects to provide more scalability when more than two layers
are employed.

(a) (b)

Fig. 1-2. (a) Homogeneous and (b) Heterogeneous 3-D Network-on-Chip structures using Through
Silicon Vias (TSVs) technology to connect stacked layers vertically.

Chapter 1 Introduction

6

1.2.2 3D NoC
Combining the benefits of 3D ICs and NoCs schemes provides a significant performance
gain for 3D architectures. 3D NoC topologies not only create scalable networks to provide
communication requirements in 3D ICs [19]- [22], but also are a crucial factor of 3D chips
in terms of performance, cost, and energy consumption [19]. Various on-chip network
topologies have been studied for 3D NoCs [19]- [23] [25] [27] [29]. Mesh-based structures
are popularly used in 3D systems (Fig. 1-2), because their grid-based regular structure is
intuitively considered to be matched to the 2D VLSI layout for each stack
layer [19] [20] [21] [22] [25]. Nevertheless, if the number of IP-cores and memories increases
in each layer, more TSVs are necessitated to handle the inter-layer communication.
Inasmuch as each TSV employs a pad for bonding, the area footprint of TSVs in each layer
is augmented significantly [22] [29].

1.3 Adaptive On-Chip Network
NoC is flexible to dynamically support the communication among modules in a system
with heavily varying workloads. To augment resource utilization and flexibility, the
architecture of NoC needs to be integrated with novel adaptive methodologies employing
resource multiplexing mechanisms at varying workloads. In the scope of this thesis, several
novel adaptive schemes for the on-chip network architecture are presented to exploit all the
benefits that can be obtained. Each component of on-chip network platform can be
implemented adaptively to increase the utilization and performance. In order to route data
packets to the non-congested area and/or give the priority to a packet passing through a
congested area of the network to ease the congestion faster, respectively. Network
interfaces can handle in-order delivery which is a practical approach when exploiting an
adaptive routing algorithm for distributing packets through the network or when exploiting
dynamic memory access scheduling in memory controller to reorder memory requests.
Adaptive on-chip network interface architectures are utilized to increase the resource
utilization and system performance.
In the realm of 3D NoCs, the router-based and bus-based organizations are the two
dominant architectures for utilizing TSVs as inter-layer communication channel. The
former suffers from poor scalability and deteriorates the performance at high injection
rates, and the latter consumes more area and power. Using adaptive inter-layer
communication structure not only can reduce the delay and complexity of traditional
arbitration but also reduces the area overhead of TSVs, which can impact designing 3D
architectures with a large number of TSVs.

Chapter 1 Introduction

7

1.4 Thesis Contributions
Multicore designers have moved from a bus-based view of design to a network-based view
to overcome several problems outlined above. NoC architectures are emerging as a scalable
and modular solution to global communication within large MPSoCs. NoCs diminish the
emerging wire-delay problem and address the need for substantial interconnect bandwidth
by replacing shared buses with packet-switched on-chip router networks. The idea of on-
chip network creates many new research opportunities. In particular, this thesis has
explored the adaptive implementation of on-chip network and communication design
spaces in the following directions:
 Adaptive on-chip communication routing protocols
 Adaptive on-chip router
 Adaptive network interface
 Adaptive inter-layer communication structure for 3D NoCs

This thesis contains several key ideas to support on-chip communication in the realm of 2D
and 3D NoCs. The contributions of this dissertation with a brief summary are as follows:
 An adaptive unicast routing algorithm in the realm of 2D-mesh NoCs is presented [36].

The routing algorithm, based on Dynamic XY (DyXY), is called Enhanced Dynamic
XY (EDXY). It is an adaptive congestion-aware routing algorithm implemented by
adding two congestion wires (one in each direction) between each two cores which
indicate the existence of congestion in a row and a column. These signals enable the
routing algorithm to avoid these paths when there are other paths between the source
and destination pair.

 For both unicast and multicast traffic, two adaptive routing protocols are presented. The
proposed routing protocols, named Low Distance (LD) [37] [38] and Hamiltonian
Adaptive Multicast Unicast Method (HAMUM) [39] [40], maximize the degree of
adaptiveness of the routing functions while guaranteeing deadlock freedom. The
presented routing protocols invoke non-congested paths in routing the messages to
prevent creating highly congested areas. This is achieved by considering the congestion
condition of the input ports. Furthermore, both unicast and multicast aspects of the
presented methods have been widely investigated separately.

 To reduce the power consumption and improve the performance of on-chip networks, a
novel on-chip router architecture is proposed. The router architecture, named Adaptive
Input-Output Selection (AIOS), is for avoiding congested areas in 2D-mesh NoCs via
employing efficient input and output selection [41] [42] [43]. The output selection
utilizes an adaptive routing algorithm based on the congestion condition of neighboring
routers while the input selection allows packets to be serviced from each input port
according to its congestion level.

 To achieve higher memory bandwidth and increasing memory parallelism in network-
based multiprocessor architectures, multiple SDRAMs can be accessed simultaneously.
In such architectures, not only resource utilization and latency are the critical issues but
also a reordering mechanism is required to deliver the response transactions of

Chapter 1 Introduction

8

concurrent memory accesses in-order. To cope with these issues in this thesis, an
adaptive on-chip network interface architecture is presented [44] [45] [46] [47]. The
proposed network interface exploits an efficient reordering mechanism to handle the in-
order delivery and utilizes the AXI transaction based protocol to bring compatibility
with existing IP cores. On top of that, a smart memory controller is integrated in this
network interface to improve the memory utilization and reduce both memory and
network latencies.

 To diminish the area overhead of TSVs and power dissipation on each layer with
minimal performance penalty, two stacked structures for 3D architectures are
proposed [48] [49]. The presented schemes benefit of clustering the mesh topology in
order to mitigate TSV footprint on each stacked layer. On top of that, to improve the
performance of vertical channels, a new bus architecture is introduced [50]- [55]. The
proposed bus architecture overcomes the drawbacks of previously presented buses,
designed for vertical channels, and improves the performance by reducing the delay and
complexity of traditional bus arbitration.

1.5 Thesis Organization
This thesis is organized as follows. Chapter 2 gives a general overview of on-chip networks
while Chapter 3 introduces three adaptive routing protocols, whereas the first one is related
to the unicast traffic and the other two routing protocols are associated with unicast and
multicast traffic. Two low latency and power efficient router architectures are presented in
Chapter 4, while the adaptive network interface architecture for on-chip networks is
described in Chapter 5. Concerning 3D architectures, two cluster-based topologies along
with a novel pipeline bus architecture are explained in Chapter 6. The idea of the balance
partitioning as well as multiple partitioning methods, supported by an adaptive routing
model, is also presented in this chapter. Finally, the thesis is concluded in Chapter 7.

9

Chapter 2

2 On-Chip Networks

On-chip networks are emerged as a highly scalable, reliable, and modular interconnect
fabric for MPSoCs [1] [2] [3] [4] [5]. As the network fabric takes up a substantial portion of
system power budget [10], and power is one of the most important constraint in billion-
transistor chips, in addition to network delay and area, the interconnect power consumption
should be taken into consideration. Therefore, on-chip interconnection networks should be
accommodated into the limited silicon area using efficient topology, routing algorithm, and
router implementation.
In this chapter, concepts of on-chip networks including network topologies, switching
techniques, flow control mechanisms, virtual channels, output selection, routing algorithms,
and a general network-on-chip architecture are presented.

2.1 Network Topology
The network topology is the study of the arrangement and connectivity of the routers. In
other words, it defines the various channels and the connection pattern that are available for
the data transfer across the network. Performance, cost, and scalability are the important
factors in the selection of the appropriate topology. Shared-Bus, Crossbar, Butterfly Fat-
Tree, Ring, Torus, and 2D-Mesh are the most popular topologies for on-chip interconnects
which have been commercially used [2] [60].
Direct networks have at least one PE attached to each router of the network so that routers
may regularly spread between PEs. This helps to simplify the physical implementation. The
shared-bus, ring, and 2D mesh/torus topologies (Fig. 2-1) are examples of direct networks,
and provide tremendous improvement in performance, but at a cost of hardware overhead,
typically increasing as the square of the number of PEs. On the other hand, indirect
networks have a subset of routers not connected to any PE. All tree-based topologies where
PEs are connected only to the leaf routers (e.g. the butterfly topology) as well as crossbar
switch (Fig. 2-1) are indirect networks.

Chapter 2 On-Chip Networks

10

The shared-bus topology is the simplest using a shared link common to all PEs where they
compete for exclusive access to the bus. For communication intensive applications it is
necessary to overcome the bandwidth limitations of the shared-bus topology and move to
scalable networks. However, this topology scales very poorly as the number of PEs
increases. A small modification to the shared-bus topology to allow more concurrent
transactions is to create the ring topology where every PE has exactly two neighbors. In this
topology, messages hop along intermediate PEs until they arrive at the final destination.
This causes the ring to saturate at a low injection rate for most traffic patterns. The crossbar
topology is a fully connected one which allows every PE to directly communicate with any
other PE. Hence, each topology has its own advantages and disadvantages.
The fat-tree topologies suffer from the fact that the number of routers exceeds the number
of PEs, when the amount of PEs increases. This incurs an important network overhead. For
the on-chip interconnects the network overhead is more critical than for the off-chip
networks, and the design scalability is more essential. Because of the simple connection
and easy routing provided by adjacency, mesh and torus networks are widely used in
multiprocessor architectures. Both torus and mesh topologies are fully scalable. Although
torus provides a better performance, the regularity, better utilization of links, and lower
network overhead are some of the preferences for mesh. That is, the mesh topology is more
economic scheme since the routers on the borders are smaller.

2.2 Switching Mechanism
The switching mechanism determines how messages traverse a route in a network. The goal
is to effectively share the network resources among messages traversing the network.
Basically, circuit switching and packet switching form the two extremes of switching
mechanisms.
In circuit switching a connection from a source to a destination is established prior to the
transmission of data and exclusively reserved until the message is completely transferred,
i.e. as in telephone networks that set up a circuit through possibly many routers for each
call. This mechanism has low delay and guaranteed bandwidths, but suffers from channel
utilization, low throughput, and long initialization time to setup a connection.
Packet switching is an alternative mechanism where data is not transmitted on a predefined
circuit. A message can be divided into packets which share channels with other packets.
Each packet consists of a header which contains routing and control information, data
payload, and possibly a tail. The data payload follows the channel reserved by header while
the tail releases the channel reservation. Packets are individually and independently routed
through the network, and at the destination the packets are assembled into the original
message. If a message is divided into several packets, the order of packets at arrival PE
must be the same as departure. Therefore, in-order delivery is an essential part that should
be supported by on-chip networks. The packet switching mechanism improves channel
utilization and network throughput.

Chapter 2 On-Chip Networks

11

Shared-bus

Ring

TorusMesh

Butterfly Fat Tree

Crossbar

Fig. 2-1. Network topologies of Shared-bus, Ring, Crossbar, Mesh, Torus, and Butterfly.

Chapter 2 On-Chip Networks

12

In the packet switching domain, buffered flow control defines the mechanism that deals
with the allocation of channels and buffers for the packets traversing between source and
destination. The flow control mechanism is necessary when two or more packets compete
to use the same channel, at the same time. Commonly three different buffered flow control
strategies are used: store-and-forward, virtual cut through, and wormhole. When these
mechanisms are implemented in on-chip networks, they have different performance metrics
along with different requirements on hardware resources.

2.2.1 Store-and-Forward
The store-and-forward mechanism is the simplest flow control mechanism. In this
approach, each router along the path stores the entire packet in the buffer and then, the
packet is forwarded to a selected neighboring router if the chosen neighboring router has
enough empty buffering space available to hold the whole packet. This mechanism requires
a large amount of buffering space (at least the size of the largest packet) in each router of
the network, which can increase the implementation cost dramatically. On top of that,
network latency increases significantly because a packet cannot be forwarded to the next
router until the whole packet is received and stored in the current router. Consequently, the
store-and-forward approach is impractical in large-scale Networks-on-Chip.

2.2.2 Virtual Cut-Through
The virtual cut-through mechanism was proposed to address the large network latency
problem in the store-and-forward strategy by reducing the packet delays at each routing
stage. In this approach, one packet can be forwarded to the next stage before its entirety is
received by the current route which reduces the store-and-forward delays. However, when
the next stage router is not available, similar to the store-and-forward, the virtual cut-
through approach also requires a large buffering space at each router to store the whole
packet.

2.2.3 Wormhole
In this mechanism, a packet is divided into smaller segments called FLITs (FLow control
digIT) [59]. Then, the flits are routed through the network one after another, in a pipelined
fashion. The first flit in a packet (header) reserves the channel of each router, the body
(payload) flits will then follow the reserved channel, and the tail flit will later release the
channel reservation. The wormhole mechanism does not require the complete packet to be
stored in the router while waiting for the header flit to route to the next stages. One packet
may occupy several intermediate routers at the same time. That is, the wormhole approach
is similar to the virtual cut-through, but here the channel and buffer allocation is done on a
flit-basis rather than packet-basis. Accordingly, the wormhole approach requires much less
buffer space, thus, enabling small, compact and fast router designs. Because of these
advantages, the wormhole mechanism is an ideal flow control candidate for on-chip
networks.

Chapter 2 On-Chip Networks

13

2.3 Virtual Channels
There is a possibility of blocking in the wormhole network when a packet reserves a
channel along a path which is prevented to be used by other packets. The use of Virtual
Channels (VCs) overcomes the problem of blockages in the wormhole network via
allowing blocked packets to be passed by other packets. This is accomplished by assigning
several VCs, each with a separate flit queue, to each physical channel. For each VC, when
the header flit arrives, a buffer will be assigned to the incoming packet, and is reserved until
the trailer flit is transmitted. If a packet holding a VC gets blocked, other packets from
other VCs can still traverse the physical channel.

Fig. 2-2. A typical router using VCs.

As depicted in Fig. 2-2, at an input port the incoming flits are stored in distinct channel
buffers which are multiplexed together again onto the output ports. If one of the channels is
blocked, the other channels can access the outputs. Also, with VCs a network can be
divided into multiple disjoint subnetworks which have been explained in Chapter 3. VCs
were introduced to solve the deadlock avoidance problem, and to improve network latency
and throughput. Fig. 2-3(a) shows how a packet A blocked between routers 3 and 4 which
also blocks the packet B when the network is not equipped with VCs. As illustrated in
Fig. 2-3(b), using VCs allows dual utilization of the physical channel between routers 3 and

Chapter 2 On-Chip Networks

14

4 where the packet B can pass the router 3. However, although employing VCs improves
the performance and reduces head of line blocking (HoL) efforts in the network, it
increases design complexity of the link controller and flow control mechanisms.

2.4 Output Scheduling
When multiple packets request for an output port, the need of an output scheduling
algorithm that determines the priority order of candidate packets to advance emerges. In
fact, the scheduler gives a priority order to each packet, and then the output ports select the
highest-ordered packets to be forwarded. There is a variety of solutions with different
implementation complexity and different performance characteristics, e.g. round-robin,
first-come first-served, etc. The starvation prevention is the main concern that must be
considered in the scheduler.

Packet A

Packet B

(a)

(b)

Fig. 2-3. Using VC for avoiding deadlock.

2.5 Routing Algorithm
Routing is the process that are used to forward the packets along appropriate directions in
the network between a source and a destination. Routing algorithms not only affect the
transmission time but also can impact the power consumption and congestion conditions in
the network.

2.5.1 Source versus Distributed Routing
Routing can be utilized either at the source router or with a distributed manner by routers
along the path. In the source routing scheme the entire route of a packet is decided by the
source router stacking the exact router-to-router itinerary of a packet in the header. As the

Chapter 2 On-Chip Networks

15

packet traverses in the network this information is used by each router on the path to
navigate the packet towards the destination. This scheme is a simple solution for on-chip
networks while the problem of the routing information overhead is the drawback of this
scheme, i.e. for a network with a diameter of k, each packet requires at most k routing
information stacked on the header of the packet. Accordingly, if the network grows the
header overhead becomes significant which is impractical for on-chip networks. In contrast,
in the distributed routing approach the routing decision is taken by the individual routers
depending on different parameters while the header of a packet has to include only the
destination address. Each intermediate router examines the destination address and decides
along which channel to forward the packet. However, the router complexity of the latter
scheme is higher than the former scheme.

2.5.2 Deterministic versus Adaptive Routing
Distributed routing scheme can be classified as deterministic and adaptive. Deterministic
routing algorithms route packets in a fixed path between the source and destination routers.
Implementations of deterministic routing algorithms are simple but they are not able to
balance the load across the links in non-uniform or bursty traffic [61] [62]. Adaptive routing
algorithms are proposed to address these limitations. By better distributing load across
links, adaptive algorithms improve network performance and also provide tolerance if link
or router failure occurs. In adaptive routing algorithms, path of a packet from the source to
the destination is determined by network conditions. An adaptive routing algorithm
decreases the probability of passing a packet from a congested or malfunction link. While
deterministic routing algorithms are the best choice for uniform or regular traffic patterns,
the adaptive schemes are preferable in presence of irregular traffic (non-uniform or bursty
traffic) or in networks with unreliable routers and links. Furthermore, since packets may
arrive to the destination from different paths and with different latencies an adaptive
routing could not guarantee the order of packets. To achieve in-order delivery property, a
hardware reordering module is required. These requirements increase both design
complexity, and likely communication latency.

2.5.3 Minimal versus Non-Minimal Routing
Adaptive routing algorithms can either be minimal or non-minimal. Minimal routing
algorithms allow only shortest paths to be chosen, while non-minimal routing algorithms
also allow longer paths. Besides, a minimal fully adaptive routing algorithm can route
packets along any shortest path adaptively; and a minimal partially adaptive routing
algorithm cannot route packets along every shortest path.

2.5.4 Unicast and Multicast Routing Protocols
The communication in on-chip networks can be either unicast (one-to-one) or
multicast/broadcast (one-to-many) [58]. In the unicast communication, a packet (message)
is sent from a source router to a single destination router, while in the multicast

Chapter 2 On-Chip Networks

16

communication a packet is transmitted from a source router to an arbitrary set of destination
routers. Thus, the former is a special case of the latter. These protocols are described in the
next chapter.
The multicast communication is frequently employed in many application of MPSoC such
as replication [70], barrier synchronization [71], cache coherency in distributed shared-
memory architectures [72], and clock synchronization [73]. Although the multicast
communication can be implemented by multiple unicast communications, it produces
significant amount of unnecessary traffic increasing the latency and congestion in the
network [74].

Fig. 2-4. Deadlock scenario with four packets [68].

2.5.5 Deadlock and Livelock
Deadlock is a situation that occurs when a cycle of packets are waiting for one another to
release a shared channel in a circular dependency. Fig. 2-4 shows a deadlock scenario with
four packets routed in a circular manner. Each packet is holding a flit buffer while
requesting the buffer held by another packet. The packet 1 occupying channel 1 is
requesting for the channel 2 allocated to the packet 2 which wants to use the channel 3. But
that channel is occupied by the packet 3 requesting the channel 4 which is held by the
packet 4. The packet 4 completes the circle by waiting for the channel 1 so that no packet

Chapter 2 On-Chip Networks

17

can advance since the required resource is already held by another packet and will never be
released.
Livelock is a condition where a packet keeps circulating within the network without ever
reaching its destination. It is the result of using a non-minimal adaptive routing algorithm.
A livelock free routing algorithm has to guarantee forward progress of each packet, where
after each hop the packet is in one step closer to its destination.

Fig. 2-5. All possible turns in (a) XY routing (b) Negative-First (c) West-First (d) North-Last (The solid lines
indicate the allowable turns and the dash lines indicate the unallowable turns).

2.5.6 Turn Model Routing
Turn Model routing scheme based on wormhole switching mechanism provides deadlock
and livelock freedom in the two-dimensional mesh topology [64] [97]. This model is also
chosen as a representative of minimal and partial adaptive routing. In the turn model,
deadlock can be avoided by prohibiting just enough turns to break all the cycles. Four well-
known turn models are XY, Negative-First(NF), West-First(WF) and North-Last(NL) as
shown in Fig. 2-5. Although the XY routing algorithm prohibits four turns to avoid
deadlock, the other models avoid only two turns out of eight turns.
The Odd-Even model is one of the most popular partial adaptive wormhole routing
algorithms in 2D mesh on-chip interconnection network [64] without virtual channels.
Unlike the turn model which prohibits certain turns in all locations of the network, in the
Odd-Even model some turns are restricted only in even columns and some other turns are
prohibited in odd columns. Therefore, the degree of adaptiveness provided by this model is
higher than the other turn models. Odd-Even rules can be described by the following rules:

Rule 1: East-North and East-South turns cannot be taken in even columns (Fig. 2-6(a)).
Rule 2: North-West and South-West turns cannot be taken in odd columns (Fig. 2-6(b)).

Chapter 2 On-Chip Networks

18

Fig. 2-6. The Odd-Even turn model rules: (a) prohibited turns in even columns (b) prohibited turns in odd
columns.

2.6 Network-on-Chip Architecture
As described previously, 2D-mesh has many desirable properties for NoCs, including
scalability, high bandwidth, and the fixed degree of routers [83]. A 2D-mesh NoC based
system is shown in Fig. 2-7. As mentioned earlier, NoC consists of Routers (R), Processing
Elements (PE), and Network Interfaces (NI). PEs may be intellectual property (IP) blocks
or embedded memories. Each core is connected to the corresponding router port using the
network interface. To be compatible with existing transaction-based IP-cores, the AMBA
AXI protocol is used. AMBA AXI is an interfacing protocol, having advanced functions
such as a multiple outstanding address function and data interleaving function [13]. AXI,
providing such advanced functions, can be implemented on NoCs as an interface protocol
between each PE and router to avoid the structural limitations in SoCs due to the bus
architecture. The protocol can achieve very high speed of data transmission between
PEs [13]. In the AXI transaction-based model [13] [108], IP cores can be classified as
master (active) and slave (passive) IP cores [109] [111]. Master IP cores initiate transactions
by issuing read and write requests and one or more slaves (memories) receive and execute
each request. Subsequently, a response issued by a slave can be either an acknowledgment
(corresponding to the write request) or data (corresponding to the read request) [109]. The
AXI protocol provides a “transaction ID” field assigned to each transaction. Transactions
from the same master IP core, but with different IDs have no ordering restriction while
transactions with the same ID must be completed in-order. Thus, a reordering mechanism
in the network interface is needed to afford this ordering requirement [13] [14] [112]. The
network interface lies between a PE and the corresponding attached router. This unit forms
the foundation of the generic nature of the architecture as it prevents the PEs from directly
interacting with the rest of the network components in the NoC.
A generic network interface architecture is shown in Fig. 2-7. The network interface
consists of input buffers (forward and reverse directions), a Packetizer Unit (PU), a
Depacketizer Unit (DU), and a Reorder Unit (RU). A data burst coming from a PE is
latched into the input buffer of the corresponding network interface. PU is configured to
packetize the burst data stored in the input buffer and transfer the packet to the router.

Chapter 2 On-Chip Networks

19

Similarly, data packets coming from the router are latched into the input buffer located in
the reverse path. DU is configured to restore original data format, required for the PE, from
the packet provided by the router. The RU performs a packet reordering to meet the in-
order requirement of each PE.
As master IP-cores may operate at high clock frequencies and slave IP-cores operates at
low clock frequencies, an interface between the IP-cores and on-chip network is required
for crossing two clock domains.

Fig. 2-7. Tile-based 2D-Mesh topology.

2.7 Summary
In this chapter, some of the most important concepts in the domain of NoC design that help
to describe the thesis were presented. We have discussed various topologies for direct and
indirect networks. Different switching, flow control mechanisms along with using virtual
channels, routing schemes, output selection technique, and a general network-on-chip
architecture were also described. These concepts presented here are further mentioned in
various places in the rest of this thesis.

Chapter 2 On-Chip Networks

20

21

Chapter 3

3 Adaptive Routing Protocols in
Networks-on-Chip

On-chip networks like computer networks may take advantage of data packetization to
ensure the fairness of communication [56] [57]. Since on-chip networks should use lighter
and faster protocol layers, they do not need to follow all the standard schemes for the
communication in computer networks.
In this chapter, we consider NoCs with 2D mesh topologies which offer many desirable
properties including better parallelism and scalability, low cross-section bandwidth, and
fixed degree of nodes compared to many other topologies for MPSoC interconnection [59].
Besides, meshes are suitable for a variety of applications including matrix computation,
image processing and problems whose task graphs can be embedded naturally into the
topology [60]. An m n 2D mesh consists of N (= m n) nodes where each node has an
associated integer coordinate pair (x, y) such that 0 x < n and 0 y < m. Two nodes with
coordinates (xi, yi) and (xj, yj) are connected by a communication channel if and only if |xi –
xj| + |yi – yj| =1.

3.1 Unicast Routing Protocols
In NoCs, routing algorithms are used to determine a path of a packet from source node to
destination node. In this chapter, some of the related routing algorithms are also described.

3.1.1 XY Routing Scheme
XY, a deterministic routing algorithm for 2D meshes, is introduced in [2] [61] [63]. As
shown in Fig. 3-1(a), in this routing algorithm, each packet first travels along the X and
then the Y direction to reach the destination. For this scheme, deadlock never occurs but no
adaptivity exists in this algorithm.

Chapter 3 Adaptive Routing Protocols in Networks-on-Chips

22

Fig. 3-1. Illustration of different routing schemes.

Except for the boundary routers, XY routers have five input/output ports (four connected to
the neighboring routers and one for the local core). Main architectural elements of an XY
router include the input FIFO for each port, route computation unit, Virtual Channel (VC)
allocation unit (if any), crossbar control logic, and the crossbar. To minimize the delay and
the required resources, the wormhole method is used for the switching. A flit enters into the
router through one of the ports and is stored in its FIFO. If the flit is a header, indicating the
start of a new packet, it proceeds to the routing unit, which determines the output port that
the packet should use. The header flit attempts to acquire a channel (maybe virtual) for the
next hop. Upon a successful channel allocation, the header flit enters the router arbitration
stage, where it competes for the output port with other flits from the other input ports. Once
the crossbar passage is granted, the flit traverses the router and enters the channel.
Subsequent flits belonging to the same packet can proceed directly to the crossbar and go to
the output port. The main architectural element of an XY router is shown in Fig. 3-2.

3.1.2 DyAD Routing Scheme
A partial adaptive routing algorithm, named Odd–Even turn model, is proposed in [64]. The
Odd-Even turn model prohibits the east to north and east to south (north to west and south
to west) turns at any routers located in an even (odd) column. This makes the technique as a
partial adaptive deadlock-free scheme employing minimum paths.

Chapter 3 Adaptive Routing Protocols in Networks-on-Chips

23

Fig. 3-2. Structure of the XY router.

Since it is deadlock-free, there is no need for implementing virtual channels in the router to
prevent the deadlock problem but virtual channels can be employed to gain the
performance. Considering the Odd-Even example, illustrated in Fig. 3-1(b), all the possible
minimal routing paths (10 paths) for packets from source node (0, 0) to destination node (4,
3) have been exhibited. DyAD, dubbed from Dynamic Adaptive Deterministic switching, is
a partial adaptive routing scheme, based on the Odd-Even [65]. It is a combination of
deterministic (XY) and adaptive (Odd–Even) routing schemes [65]. Depending on the
congestion condition of the network, one of the routing schemes is invoked. More
precisely, when the network is not congested, the DyAD router works in a deterministic
mode, and when the network becomes congested, the DyAD router uses the adaptive
routing mode and thus avoids the congested links by exploiting other routing paths [65].
Hence, the main difference between the DyAD/Odd-Even and the XY routers is that,
depending on the network condition, the routing unit may select different paths at different
times for the same source and destination pair. For this to happen, a pre-port selection unit
is added to the router to select the best candidate for every adjacent ports (i.e., North vs.
East, North vs. West, South vs. East, and South vs. West) and provide routing unit this
information (Fig. 3-3). One of the factors for choosing an output port is the number of free
buffers at the corresponding input port in the next hop [66]. This technique has been used in
the several adaptive routing schemes where the free buffer count at a downstream node is
used for congestion estimation. To transfer the count information, which can be considered
as a stress value, some wires are added between adjacent routers.

Routing Unit VC Allocation

VC0

VCn

Pre-port
Selection

VC0 Stress Value

VCn Stress Value

Fig. 3-3. Structure of the DyAD router.

Chapter 3 Adaptive Routing Protocols in Networks-on-Chips

24

3.1.3 DyXY Routing Scheme
As addressed earlier, routing packets along any shortest path are called fully adaptive. The
Dynamic XY (DyXY) routing scheme is a well-known minimal fully adaptive routing
algorithm [2] [3] [67]. Due to the fact that in each node, packets can be routed in both X and
Y directions without restriction, this routing algorithm needs a mechanism to guarantee
deadlock avoidance. In networks having virtual channels (general case), usually the
following method is used to guarantee deadlock avoidance. Virtual channels in Y
dimensions are divided into two parts, thereby, as illustrated in Fig. 3-4, The network is
partitioned into two subnetworks called +X subnetwork and X subnetwork each having
half of the channels in the Y dimension.

Fig. 3-4. (a) A 3 4 mesh physical network and the corresponding (b) increasing and (c) decreasing

subnetworks.

If the destination node is to the right of the source, the packet will be routed through the +X
subnetwork. If the destination node is to the left of the source, the packet will be routed
through the X subnetwork. Otherwise that packet can be routed using either
subnetwork [68], thus, DyXY is deadlock-free. Inasmuch as the subnetworks are acyclic,
packets can be adaptively routed along shortest paths meaning at an intermediate node, a
packet may be routed along either dimension. Fig. 3-1(c) also shows the possible minimal
paths of DyXY, i.e. 35

!4!3
!43 possible paths [64]. The router structure of DyXY is

identical to DyAD router shown in Fig. 3-3.
Now, we discuss a weakness of the DyXY algorithm in routing packets from routers whose
X position (Y position) is one unit apart from that of the destination. Let us consider the
simple example shown in Fig. 3-5 where (1, 2) and (4, 1) are the source and destination
routers. In the DyXY routing, router (1, 2) compares the current length of the west queue of
router (2, 2) and the north queue of router (1, 1) and the packet is sent to the direction
containing more empty buffer space. Note that if router (1, 1) is selected, the entire path has
been determined and hence routers (2, 1) and (3, 1) are the next hops without any choice. If

Chapter 3 Adaptive Routing Protocols in Networks-on-Chips

25

they are congested, the DyXY algorithm has selected a wrong path-based on local
information. However, if router (2, 2) is selected, there are other choices for the next hops,
and hence, the congestion may be avoided. Note that this undesired effect may occur when
routing from a router whose X (or Y) position is just one unit apart from that of the
destination and the congestion is taking place further away from the current hop.

Fig. 3-5. A simple NoC with mesh structure.

3.1.4 EDXY Routing Scheme
The objective of the proposed routing scheme, named Enhanced Dynamic XY (EDXY), is
to solve the problem of enhance the DyXY algorithm. This is achieved by using a flag
which indicates congestion along the path of a row (or column). This flag propagates in a
row (or column) and indicates to the adjacent rows (or columns) that this row (or column)
is near saturation and should be avoided. As congestion flag should propagate along a row
(or column), each router transparently propagates its prior router congestion flag. Besides,
each router monitors its input buffers; if the number of occupied slots of a buffer is larger
than a threshold value, the router will activate its congestion flag. To track the congestion
condition efficiently, two flags are added to each row (or column): one informs left hand
side routers of congestion in a right hand side router and the other one informs right hand
side routers of congestion in a left hand side router in the row. For this purpose, between
every two adjacent routers, two congestion wires, one in each direction, are added. The
congestion wires are grouped with wires which are employed to transmit the free buffer
count (stress value) to the adjacent routers. The congestion flag transmitted by a router is
obtained by ORing its flag and that of the previous router (to transparently propagate prior
routers congestion flag). Therefore, if the flag is active, it shows that either the current or at
least one of the previous routers is congested.

Chapter 3 Adaptive Routing Protocols in Networks-on-Chips

26

In EDXY routing, if a router is one hop apart from the destination in a row (or column), the
congestion flag in the destination column (or row) is used in routing decision. If the
congestion flag is one, the algorithm uses the other path to route the packet. For the
example shown in Fig. 3-5, the congestion wire in the destination row is passed to router
(1, 2) by router (1, 1). Therefore, the packet will be routed to router (2, 2).

Fig. 3-6. An EDXY router implementation.

In EDXY, every router first looks at the destination address of the received packet. If the
router address is not one hop apart from that of the destination in either the X or Y
direction, the EDXY algorithm ignores the congestion wire and routes the packet the same
way as the DyXY algorithm does. However, if the destination address is just one hop apart
from the router in either the X or Y direction, one of the congestion wires (based on the
position of the destination) is also used for routing. That is, the congestion value is
employed as the most significant bit of the stress value. In these cases, we refer to the port
which is one hop apart from the destination in either X or Y directions as critical port while
the other port is called non-critical port. For the non-critical port, we ignore congestion flag
value and a zero is used for the congestion value to favor this port against the other port.
It should be noted that congestion wires may report false information because they do not
provide information regarding the location of the congestion node in a row (or column). We
compare shared congestion wires with the general case in which the position of the
congestion node is also propagated in a row or column. The results show only slight
differences between these two mechanisms. We proposed shared congestion wires because
they are simple and have the desired characteristics for reducing latency. In cases where the
congestion wire should be used in the decision making process, a function of the queue
length and the congestion wire value can be used to return the stress value. In order to

SV

SV

W
estern Input

B
uffer C

ontroller

QL

North Downstream Switch

South Downstream Switch

SV

East Downstream
Switch

SV

West Downstream
Switch

Congestion
Detection

Eastern Input
B

uffer C
ontroller

Congestion
Detection

 West Flow
Congestion
Detection CF

Congestion
Detection

Congestion
Detection

 East Flow
Congestion
Detection

Northern Input
Buffer Controller

Southern Input
Buffer Controller

 CF

Congestion
Detection

 CF

Congestion
Detection

 South Flow
Congestion
Detection

Congestion
Detection

Congestion
Detection

 North Flow
Congestion
Detection

 CF

 CF : Congestion Flag
 QL : Queue Length

QL

QL

QL

 SV : Stress Value

Chapter 3 Adaptive Routing Protocols in Networks-on-Chips

27

simplify the hardware implementation, we used the congestion wire as the MSB of the
queue length to form the stress value.

Fig. 3-7. EDXY routing algorithm.

For the implementation of the EDXY routing algorithm, an extra hardware should be added
to the DyXY router. This extra hardware is divided into two parts. An extra unit is needed
in each router to drive the congestion signals in four directions. In addition, each router
should have logic to use the congestion signals in the routing decisions. In each direction,
the output congestion wire is set either if the input congestion signal due to the congestion
in the previous routers in that direction is set or the occupied part of the input buffer for
routing in that direction is larger than the threshold value. For implementing this logic, a
comparator and an OR gate are used. The comparator is used to compare the queue length
with the predefined threshold value. In the case of exceeding the threshold value, the output
of the comparator, integrated inside the input controller, becomes one. As shown in
Fig. 3-6, the output congestion signal is the result of ORing the output of the comparator
and the input congestion signal. The routing algorithm should also be modified to use the
new information (i.e., congestion wires) in routing decisions. The EDXY routing algorithm
is shown in Fig. 3-7. Compared to the DyXY routing architecture, extra hardware (SV) is

Xdiff =Xc - Xd
Ydiff = Yc - Yd
If (one destination port) Then
 Use that port to route the packet;
Else
 If (ABS(Xdiff) = 1) Then
 If (Ydiff > 0) Then
 S_ValueX = {I_queue_lengthX, C_WireUpToDown};
 Else
 S_ValueX = {I_queue_lengthX, C_WireDowntoUp};
 End If;
 Else
 S_ValueX = I_queue_lengthX;
 End if;
 If (ABS(Ydiff) = 1) Then
 If (Xdiff > 0) Then
 S_ValueY = {I_queue_lengthY, C_WireRightToLeft};
 Else
 S_ValueY = {I_queue_lengthY, C_WireLeftToRight};
 End If;
 Else
 S_ValueY = I_queue_lengthY;
 End If;
 Use S_ValueX and S_ValueY to choose the destination port.
End If;

Chapter 3 Adaptive Routing Protocols in Networks-on-Chips

28

needed to produce the stress value for two competing ports from their queue length and the
values of the congestion signals.

3.1.5 Experimental Results
For assessing the efficiency of EDXY, three other routing algorithms were also
implemented. These algorithms included the XY, Odd–Even turn-model (DyAD), and
DyXY. A NoC simulator was developed in VHDL to model all major components of the
on-chip network and simulations were carried out to determine the latency characteristic of
each network. For all the routers, the data width was set to 32 bits. Each input virtual
channel had a buffer (FIFO) with the size of 6 flits. The congestion threshold value (for
EDXY routing) was set to 4 meaning that the congestion condition was considered when 4
out of 6 buffer slots were occupied.
As a performance metric, we used latency defined as the number of cycles between the
initiation of a message transmission issued by a PE and the time when the message is
completely delivered to the destination PE. The request rate is defined as the ratio of the
successful message injections into the network interface over the total number of injection
attempts. The simulator was warmed up for 3,000 cycles and then the average performance
was measured over another 100,000 cycles.
The router used the minimal fully adaptive reserved VC deadlock avoidance technique
discussed in [68]. Four synthetic traffic profiles of transpose, uniform random, hotspot 5%,
and hotspot 10% and SPLASH-2 benchmark traces were used. Table 3-1 shows the
baseline network configuration, and the variations used in the sensitivity studies.

Table 3-1. Baseline network configuration and variation.

Characteristics Baseline Variations
Topology 7 × 7 2D Mesh 15 × 15 2D Mesh

Routing XY, DyXY, and EDXY Odd-Even

Virtual channels/port 2 0

Flit buffers/VC 6 -

Packet length (flits) 9 15

Traffic workload Transpose, uniform, hotspot SPLASH-2 traces

Simulated packets/node 3000 -

A. First set of experiments

In the first set, 7 × 7 2D meshes and packets with a length of 9 flits were used. The average
packet latency for different traffic profiles are shown in Fig. 3-8.

Chapter 3 Adaptive Routing Protocols in Networks-on-Chips

29

Transpose traffic profile
In the transpose traffic profile, for a n × n mesh network, a core at position (i,j)(i,j [0,n))
only sends a data packet to another core at position (n 1 i, n 1 j). This traffic
pattern is similar to the concept of transposing a matrix [64] [65]. In these simulations, each
core generates packets and injects them into the network using the time intervals
determined using the exponential distribution. This traffic profile leads to a non-uniform
traffic distribution with heavy traffic for the central nodes of the mesh. Therefore, close to
the center of the network hotspots may be created. As shown in Fig. 3-8(a), if the data
packet injection rate is very low, hotspots are not created and the routing scheme behave
similarly. As the injection rate increases and congestion is created in the mesh, the EDXY
algorithm leads to smaller average delays.

Fig. 3-8. Latency vs. packet injection rate for EDXY, DyXY, and XY for a 7 × 7 2D mesh for 9-flit
packets with virtual channel. (a) transpose traffic, (b) uniform random traffic, (c) hotspot 5%, and (d)

hotspot 10%.

Uniform traffic profile
In this traffic profile, each node sends several messages to other nodes in the network
where a uniform distribution is used to construct the destination set of each
message [2] [64] [65]. The average communication delay as a function of the average
message injection rate has been plotted in Fig. 3-8(b). For this case, the XY scheme leads to
lower latencies because uniform traffic is balanced under XY routing [69].

Chapter 3 Adaptive Routing Protocols in Networks-on-Chips

30

Hotspot traffic profiles
The same as the uniform traffic profile, each node sends several messages to other nodes in
the network while nodes (2, 2), (2, 4), (4, 2), and (4, 4) receives 5% and 10% more packets
in hotspot 5% and 10% traffic profiles, respectively. The average communication delays as
a function of average packet injection rate for hotspot 5% and 10% traffic profiles have
been plotted in Fig. 3-8(c) and (d), respectively. As observed from these figures, the
proposed scheme has lower delay compared to other schemes for both hotspot percentages.
This reveals that the proposed scheme can distribute the traffic among minimal paths more
efficiently.

Table 3-2. System configuration parameters.

Processor Configuration
Instruction set architecture SPARC
Number of processors 16
Issue width 1
Cache configuration

L1 cache
Private, split instruction and data cache,
each cache is 16KB. 4-way associative,
64-bit line, 3-cycle access time

L2 cache Shared, unified 48MB (48 banks, each
1MB). 64-bit line, 6-cycle access time

Cache coherence protocol MESI
Cache hierarchy SNUCA
Memory configuration
Size 4GB DRAM
Access latency 260 cycles
Requests per processor 16 outstanding
Network configuration
Router scheme Wormhole
Flit size 32 bits

SPLASH-2 benchmark traffic
In order to know the real impact of EDXY, traces are generated from SPLASH-2 [87] using
the GEMS simulator [90]. We configured a 64-node on-chip network which models a
single-chip CMP for our experiments. A full system simulation environment with 16
processors and 48 L2 cache nodes has been implemented. The simulations were run on the
Solaris 9 operating system based on SPARC instruction set in-order issue structure. Each
processor is attached to a wormhole router and has a private write-back L1 cache. The L2
cache shared by all processors is split into banks. The size of each cache bank node is 1MB.
Hence, the total size of shared L2 cache is 48MB. The simulated memory/cache

Chapter 3 Adaptive Routing Protocols in Networks-on-Chips

31

architecture mimics static non-uniform cache architecture (SNUCA) [91] [92] while the
cache coherence protocol for generating the traces is MESI [91]. The detailed
configurations of processor, cache and memory configurations can be found in Table 3-2.
Fig. 3-9 shows the average packet latency across five SPLASH-2 benchmark traces,
normalized to XY. Contention is the cause of significant packet latency in lu, fft, and
raytrace; thus adaptive routing has an opportunity to improve performance. Although
EDXY provides equal or lower latency than other schemes, EDXY shows the greatest
benefit on raytrace with 36% reduction in latency. On average EDXY provides a latency
reduction of 20% across all benchmarks vs. XY and 12% vs. DyXY.

Fig. 3-9. Average latency across SPLASH-2 benchmarks normalized to latency of XY.

B. Second set of experiments
In this section, we change some of the NoC parameters considered in the first set of
experiments.

NoC size
Fig. 3-10 shows the latency vs. the packet injection rate for a 15 × 15 mesh NoC under the
transpose traffic profile with 9-flit packets. For this large network, adaptive approaches do
not perform as well as XY. That is, when the network size increases, the effect of the
congestion information reduces.

Packet length
Fig. 3-11 shows the latency for long packets (15 flits) in a 7 × 7 2D mesh under different
traffic profiles. As can be seen, the average packet latencies of all routing schemes using
long packets are higher than other schemes with short packets. The increased average
latency is a known characteristic of wormhole routing with long packets. The reason is that

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

water-spatial water-nsquared lu fft raytrace

La
te

nc
y

(N
or

m
al

iz
ed

 a
ga

in
st

 X
Y)

DyXY EDXY

Chapter 3 Adaptive Routing Protocols in Networks-on-Chips

32

for long packets, an imbalance in the resource utilization occurs because packets hold
resources over multiple routers. Similar to the case of 9-flit packets, the EDXY scheme
performs better than DyXY and XY over all traffic patterns except for the uniform traffic
profile.

Fig. 3-10. Latency vs. packet injection rate for 15 × 15 mesh with virtual channel under transpose traffic

profile using 9-flit packets.

Network without virtual channel
Fig. 3-12 shows latency vs. packet injection rate for Odd–Even, DyXY, and EDXY routers
without virtual channels. In this case, we consider a 5 × 5 2D mesh with 5-flit packets. The
buffer size of each channel is 6 flits. Odd–Even turn-model [64] is a technique for avoiding
deadlock in NoCs without virtual channel. In this section, for the deadlock avoidance in
DyXY and EDXY, Odd–Even turn-model is used. Actually, when the Odd–Even provides
more than one output ports, in the Odd–Even router, the port in the Y direction is chosen
while in the DyXY and EDXY routers, the stress value is examined to choose one of the
ports. For these simulations, core (2, 2) receives 5% and 10% more packets in hotspot 5%
and 10% traffic profiles, respectively. As the results show, EDXY continues to perform
better than other routing algorithms in a network without virtual channel with transpose,
uniform, hotspot 5%, and hotspot 10% traffic profiles.

C. Hardware overhead
To evaluate the area overhead of EDXY, the VHDL reference model was synthesized with
Synopsys Design Compiler using a standard cell CMOS library. For all routers, the data
width was set to 32 bits (flit size), and each channel had two virtual channels with a buffer
size of 6 flits. In order to achieve better performance/power characteristics, the FIFOs were
implemented using registers.

0

50

100

150

200

250

300

2 3 4 5 6 7 8 9

La
te

nc
y

(C
yc

le
)

Injection Rate (%)

XY

DyXY

EDXY

Chapter 3 Adaptive Routing Protocols in Networks-on-Chips

33

Fig. 3-11. Average latency vs. packet injection rate on a 7 × 7 2D mesh for 15-flit packets with virtual
channel. (a) transpose traffic, (b) uniform random traffic, (c) hotspot 5%, and (d) hotspot 10%.

Fig. 3-12. Latency vs. packet injection rate on a 5 × 5 2D mesh without virtual channel. (a) transpose

traffic, (b) uniform random traffic, (c) hotspot 5%, and (d) hotspot 10%.

Chapter 3 Adaptive Routing Protocols in Networks-on-Chips

34

Table 3-3 compares the areas of the routers. As the table reveals, the area overhead of the
EDXY compared to that of the XY (DyXY) is 3.6% (1.5%).

Table 3-3. Area comparison of XY, DyXY, and EDXY.

 XY DyXY EDXY
Area (m2) 86,107 87,881 89,281

D. Power dissipation
The power dissipation of EDXY and DyXY routing algorithms were calculated and
compared under the uniform traffic profile using Synopsys PrimePower. Each core in the
NoC generated packets based on the uniform random traffic profile with the same average
flit injection rate. The typical clock of 1 GHz is applied to the system. Since the post
synthesis simulation is very slow, router (3, 3) which is close to the center of a 7 × 7 2D
mesh was synthesized while for the other routers, the RTL models were used. The results
for the power consumption are given in Table 3-4. As observed from this table, the power
consumptions of both schemes are about the same.

Table 3-4. Power consumption of DyXY and EDXY routing under the uniform traffic profile (mW).

 DyXY EDXY
Power consumption (mW) 27.3 27.7

3.2 Multicast Routing Protocols
The multicast communication has been exploited in multicomputers (see,
e.g., [70] [71] [72] [73] [74]). Multicast routing algorithms can be classified as unicast-
based [75] [76], tree-based [76], and path-based [74].

3.2.1 Unicast-based Multicast Routing
Unicast-Based (UB) is a simple multicast routing algorithm where multiple copies of the
same message, as a unicast message, are routed independently toward every destination or
to a subset of destinations [75]. The drawback of this scheme is that multiple copies of the
same message are injected into the network, increasing the network traffic. Furthermore,
each copy of the message suffers from considerable startup latency at the source.

3.2.2 Tree-based Multicast Routing
In tree-based multicast routing approach, the destination set is partitioned at the source and
separate copies of the message are sent through one or more outgoing channels. Here, a
spanning tree is constructed where the source is considered as the root and the messages are

Chapter 3 Adaptive Routing Protocols in Networks-on-Chips

35

sent down the tree [76]. This way, a message might be replicated at some of the
intermediate nodes and forwarded along the multiple outgoing channels toward disjoint
subsets of destinations. Since there is no message buffering at routers, if one branch of the
tree is blocked, all are blocked [77]. If the message is not proceeded forward, many
channels may be in lockstep for extended periods, resulting in increased network
contention [77]. Although the tree-based multicasting scheme can be used efficiently in
networks employing store-and-forward and virtual cut-through switching, it incurs high
congestion in wormhole networks [74]. A tree-based routing algorithm which supports
multicasting in NoCs is called virtual circuit tree multicasting (VCTM) [59]. By using
virtual circuit table (VCT) and content addressable memory (CAM), and sending separate
unicast setup messages (look ahead signals) for each destination, it builds several virtual
circuit trees toward the destinations before the multicast messages are injected into the
network. The method, however, has some shortcomings. First, its complexity, and hence,
hardware overhead strongly depends on the network size. Second, the VCTM is an efficient
algorithm mostly for low injection rate network conditions while for high injection rate
conditions (or workloads near saturation), the path-based algorithms are more
efficient [59]. Third, for updating the virtual circuit table, discrete unicast setup messages
per destination should be sent by the source node. If the number of destinations grows, the
number of unicast setup messages will be increased, thereby reducing the performance.
Therefore, the VCTM scheme is more efficient for applications using a small percentage of
multicasts [59]. An example includes token coherence protocol which uses one-to-all
communication and has a very few distinct multicast combinations [59]. Finally, the tree-
based multicasting may cause a message to hold many channels for extended periods,
thereby increasing network contention, and hence, degrading the performance [60].
However, in this approach, cyclic dependencies are avoided by using the dimension-order
routing algorithm for each pair of source and destination nodes [59] [60].

Fig. 3-13. Example of tree-based multicast routing in 5×5 2D-mesh.

An example of a tree-based multicast routing in 5 5 2D-mesh is shown in Fig. 3-13 where
the source node (2, 3) is selected as the root and a spanning tree is formed with respect to it.

Chapter 3 Adaptive Routing Protocols in Networks-on-Chips

36

When the flits enter the routers at the branch point (nodes (1, 3) and (3, 3)), they are
duplicated and forwarded to multiple output channels. Since there is no message buffering
in the routers, if one branch of the tree is blocked, all are blocked. Therefore, this scheme
might lead to increased network contention.

3.2.3 Hamiltonian Path-based Multicast Routing Algorithm
To overcome the disadvantages of the tree-based approaches, one may use path-based
multicast wormhole routing algorithms. In this method, a source node prepares a message
for delivery to a set of destinations by first sorting the addresses of the destination in the
order in which they are to be delivered, and then placing this sorted list in the header of the
message. When the header enters a router with the address A, the router checks to see if A
is the next address in the header. If so, the address A is removed from the message header
and a copy of data flits will be delivered to the local core and the flits are forwarded to the
next node on the path. Otherwise, the message is forwarded only to the next node on the
path. In this way, the message is eventually delivered to every destination in the header. A
number of studies have shown that a path-based exhibit superior performance characteristic
over their unicast-based and tree-based counterparts [77] [78] [79].

Fig. 3-14. A 3 4 mesh physical network with the label assignment and the corresponding [78] (b) up

channel and (c) down channel networks. The solid lines indicate the Hamiltonian path and dashed lines
indicate the links that could be used to reduce the path length in routing.

The path-based routing algorithms are based on Hamiltonian path where a undirected
Hamiltonian path of the network is constructed [74]. A Hamiltonian path visits every node
in a graph exactly once [80]. For each node in an m n mesh, a label L(x, y) is assigned as

(,)

1
y n x if y is even

L x y
y n n x if y is odd

where x and y are the coordinates of the node.

Chapter 3 Adaptive Routing Protocols in Networks-on-Chips

37

As exhibited in Fig. 3-14, two directed Hamiltonian paths (or two subnetworks) are
constructed by labeling the nodes [74]. The up channel subnetwork (HU) starts at (0, 0)
while the down channel subnetwork (HD) ends at (0, 0). If the label of the destination node
is greater than the label of the source node, the routing always takes place in the HU
subnetwork; otherwise, it takes place in the HD subnetwork. The destinations are placed
into two groups. One group contains all the destinations that could be reached using the HU
subnetwork and the other contains the remaining destinations that could be reached using
the HD subnetwork. To reduce the path length the vertical channels that are not part of the
Hamiltonian path (the dashed lines in the Fig. 3-14) could be used in appropriate directions.
In fact, if in a routing algorithm all packets in the up channel (down channel) subnetwork
follow paths in strictly ascending (descending) order (either in Hamiltonian path or not), no
cyclic dependency can be formed among channels; thus the routing algorithm is deadlock-
free.
Next, dual-path (DP) [74], multi-path (MP) [74], and column-path (CP) [78] multicast
routing algorithms along with the proposed multicast routing schemes, LD and HAMUM,
are described.

A. Dual-Path (DP) and Multi-Path (MP) Multicast Routing Algorithms
In Dual-Path (DP) routing algorithm, the destination node set is partitioned into two subsets
of DU and DD [74]. Every node in DU has a higher label than that of the source node and
every node in DD has a lower label than that of the source node. DU and DD are then sorted
in ascending order and descending order, respectively, as the label of each node is used as
the key for the sorting. Thus, multicast messages from the source node will be sent to the
destination nodes in DU using the HU subnetwork and to the destination nodes in DD using
the HD subnetwork. Consider the example shown in Fig. 3-15(a) for a 6 6 mesh network
where node (2, 3) will send its multicast messages to destinations (2, 0), (4, 0), (0, 1), (2, 1),
(4, 1), (0, 4), (5, 4), (3, 5), and (5, 5). Two subsets are organized. The first subset (DU),
which contains all the destinations that could be reached from the source node using HU
subnetwork, includes (0, 4), (5, 4), (5, 5) and (3, 5) in sequence. The second subset (DD),
which has the remaining destinations that all could be reached using the HD subnetwork,
includes (2, 0), (4, 0), (4, 1), (2, 1) and (0, 1). Some of the vertical links that are not part of
the Hamiltonian paths are used properly, for minimizing the paths.
To reduce the path lengths, the multi-path (MP) multicast routing algorithm has been
proposed in [74]. In this scheme, as most nodes have four output channels in the 2D mesh,
up to four independent paths can be used to deliver a message. Thus, the dual-path
destination sets of DU and DD are also partitioned. The set DU is divided into two subsets.
One consists of the nodes whose x coordinates are greater than or equal to that of the source
and the other subset contains the remaining nodes in DU. The set DD is partitioned in a
similar way. Hence, all the destinations of the multicast message are grouped into four
disjoint subsets such that all the destinations in a subset are in one of the four quadrants
when the source is taken as the origin. For the multi-path example shown in Fig. 3-15(b), at

Chapter 3 Adaptive Routing Protocols in Networks-on-Chips

38

source (2, 3) the destination set is first divided into two sets of DU = {(0, 4),(5, 4),(3, 5),(5,
5)} and DD = {(2, 0),(4, 0),(4, 1),(2, 1), (0, 1)}. As exhibited in Fig. 3-15(a), DU is divided
into two subsets of DU1 = {(0, 4)} and DU2 = {(5, 4), (3, 5), (5, 5)}. In the same way, DD is
divided into two subsets of DD1 = {(0, 1), (2, 1), (2, 0)} and DD2 = {(4, 0), (4, 1)}. The dual-
path and multi-path are both deadlock-free and could be used for unicast and multicast
routing simultaneously [74].

Fig. 3-15. Examples of (a) Dual-path (DP), (b) Multi-path (MP), (c) Column-Path (CP), and (d) Low-
Distance (LD) multicast routing from (2, 3). The unused links are not indicated.

Chapter 3 Adaptive Routing Protocols in Networks-on-Chips

39

B. Column-Path (CP) Multicast Routing
In this method, the destination node set is partitioned into 2k subsets where k is the number
of columns in the mesh. In this method, at most two messages will be copied to each
column. If a column of the mesh has one or more destinations in the rows above that of the
source, then one copy of the message is sent to service all those destinations. Similarly, if a
column has one or more destinations in the rows below that of the source, then another
copy of the message is sent to service all those destinations. One copy of the message is
sent to a column if all destinations in that column are either below or above the source
node. Fig. 3-15(c) shows an example where a multicast message is sent to destinations (2,
0), (4, 0), (0, 1), (2, 1), (4, 1), (0, 4), (5, 4), (3, 5), and (5, 5) from source node (2, 3) using
the column-path (CP) routing algorithm. Six copies of the message are used to achieve the
desired multicast operation. The routing algorithm used by this scheme is based on the XY
routing algorithm which is deadlock-free and livelock-free. However, since the CP routing,
similar to the unicast-based routing method, produces too many messages (i.e. at most 2k
copies of the message in the CP routing and at most 4 and 2 in the MP, and DP routings,
respectively), it suffers from high network latencies for latter copies of the messages due to
the excessive number of start-up delays before them. In addition, because many multicast
messages would be sent through the columns by each source node, the performance of the
network is degraded.

C. Low-Distance (LD) Path-based Multicast Routing
In this part, the proposed adaptive path-based multicast routing, LD, is described. Three
features have been incorporated in this scheme.

1) It utilizes a network partitioning similar to multi-path multicast routing technique
where up to four destination groups could be formed.

2) The ordering of the destinations in the path should be optimized to shorten the
distance of the multicast path. This is achieved at the cost of a small hardware
overhead and improves the performance of the algorithm compared to those of
previous path-based multicast routing algorithms. For this propose, a sorting
algorithm shown in Fig. 3-16 is proposed. In this algorithm, for each node a label
obtained from L(x, y) = y × n + x is assigned. Similar to the multi-path multicast
algorithm, the destination node set is partitioned into four subsets of DU1, DU2, DD1,
and DD2. The subsets are then sorted in the low-distance order with the distance
vector of each node used as its key for the sorting. The distance vector of each node
is computed as k = |y – y0| + |x – x0|. To sort the destinations to the low-distance
order, first the node (v) which has the lowest distance vector to the source node (u0)
is placed in the Temp_set and is removed from the subset. Then, the selected node
will be considered as the source node. While the original subset is not empty, this
sequence will be repeated; otherwise, the Temp_set which contains the sorted
destination subset is placed in the original subset. If there are two nodes with an
equal distance vector compared to the source node, the one with the smaller x

Chapter 3 Adaptive Routing Protocols in Networks-on-Chips

40

dimension relative to that of the source node will be selected first. Subsequently, the
original updated subset will be placed in the message header.

3) For routing the messages to the destinations, the algorithm utilizes the Odd-Even
turn model [64] [65]. The Odd-Even turn model prohibits the east to north and east
to south (north to west and south to west) turns at any routers located in an even
(odd) column. This makes the technique as an adaptive deadlock-free algorithm
which uses the shortest path. Since it is deadlock-free, there is no need for
implementing virtual channels in the router to prevent deadlock. Adding virtual
channels is costly since the complexity and latency of the controller increase with
the number of virtual channels due to increased buffering and arbitration
requirements [68].

Fig. 3-16. Message header construction for Low Distance (LD) multicast routing.

In some cases, explained in the below, for routing a multicast message from one destination
to the next destination via a minimal path, a forbidden turn is required to be taken. To
prevent a possible deadlock in these cases, the message is first absorbed by the first

Algorithm: Ordering and partitioning the destination set
 Inputs: Destination set D; source node (x0, y0); distance table T;
 Outputs: Sorted destination sets DU1, DU2, DD1, DD2 for 4 multicast paths.
Begin

1. For every node assign a label as: L(x, y) = y × n + x
2.
3.

4. For sorting DU1 in Low-distance order:

While DU1 is not empty do the following:
 Begin

(a)

(b)

(c) Add node v to Temp_set; Remove node v from DU1;
(d) u = v;

 End.
DU1 = Temp_set;

 Do the same algorithm for sorting DU2, DD1 and DD2;
5. Construct four messages which each one containing one of the four subsets (DU1, DU2, DD1 and DD2) as

part of the header.
End.

Chapter 3 Adaptive Routing Protocols in Networks-on-Chips

41

destination and then a copy of the message will be retransmitted to the next destination
address through the consumption channels discussed in Subsection 3.2.5. In this method,
for absorb and retransmission mechanism, we take advantage of a similar approach as the
proposed TM_FAR method [81] [82]. Fig. 3-15(d) shows an example of the paths used for
the message when the proposed multicast routing algorithm is used.

3.2.4 Hamiltonian Adaptive Multicast Unicast Method (HAMUM)
Several path-based multicast routing algorithms based on the Hamiltonian path were
proposed to guarantee deadlock freedom [74] [78]. But the traditional path-based algorithms
are deterministic for both unicast and multicast traffic which degrades the performance
significantly. This was the motivation to propose a path-based method to bring adaptivity
for both unicast and multicast traffic without using virtual channels. To improve the path-
based method, an adaptive, deadlock-free method is presented to bring adaptivity for all of
Hamiltonian based models. In fact, unlike other adaptive models in communication
networks which are applicable only for unicast traffic, the proposed method handles both
unicast and multicast traffic adaptively.
In traditional path-based routing models such as MP and CP, for both unicast and multicast
messages according to the current and the next destination nodes positions, only a single
shortest path is used by the routing algorithm. Therefore, the network performance is
degraded by employing these routing algorithms. HAMUM can solve this problem in the
path-based routing algorithms by routing both of the unicast and multicast messages
adaptively through destination(s).
In this method, the locations where certain directions can be taken are restricted, so
deadlock will be avoided. The rules regulating the proposed scheme are categorized in the
up channel subnetwork and down channel subnetwork as follows:
All the nodes in even rows have lower labels than their neighboring nodes in north and east
directions; while the nodes in odd rows have lower labels than their neighbors in north and
west directions. Therefore, for the up channel subnetwork:

 Rule1: North and East directions are allowed in even rows.
 Rule2: North and West directions are allowed in odd rows.

Similarly, all the nodes in even rows have higher labels than their neighboring nodes in
south and west directions; while the nodes in odd rows have higher labels than their
neighbors in south and east directions. So, for the down channel subnetwork:

 Rule1: South and West directions are allowed in even rows.
 Rule2: South and East directions are allowed in odd rows.

Notice that a message will be forwarded to the destination as in the deterministic
Hamiltonian strategy, when the current node is located one row to the south (north) of the

Chapter 3 Adaptive Routing Protocols in Networks-on-Chips

42

destination row in the up channel subnetwork (down channel subnetwork). Fig. 3-17 shows
the pseudo code of the HAMUM model which is executed in each router when a new
packet arrives. Inasmuch as the rules keep the messages traveling in strictly ascending order
(up channel subnetwork) and descending order (down channel subnetwork), it prevents the
occurrence of deadlock.

Fig. 3-17. The pseudo code of HAMUM.

Algorithm HAMUM is
-- (Cx,Cy) : Current node , (Dx,Dy) : Destination node
Begin
 If (Dy = Cy) then --Current & Dest. are in the same row
 If (Dx = Cx) then --Current& Dest. are in the same column
 direction <= Local; --Packet sends to the Local direction
 Elsif (Dx > Cx) then --Dest. is to the East of the Current
 direction <= East; --Dest. is to the West of the Current
 Else direction <= West;
 End if;
 Elsif (Dy > Cy) then -- up channel Subnetwork
 If (Cy mod 2 = 0) then --rule1 in the even rows
 If (Dx > Cx) and (Dy - Cy > 1) then --Dest. is in the East & more than 1 row to Current
 direction <= North or East --North or East direction can be chosen
 Elsif (Dx > Cx) and (Dy - Cy = 1) then --Dest. is in the East & 1 row to the Current
 direction <= East; --Packet sends to the East direction
 Else direction <= North; --IF Dest. is in the West of the Current, select North
 End if;
 Elsif (Cy mod 2 /= 0) then --rule2 in odd rows
 If (Dx < Cx) and (Dy - Cy > 1) then --Dest. is in the West & more than 1 row to Current
 direction <= North or West --North or West direction can be chosen
 Elsif (Dx < Cx) and (Dy - Cy = 1) then --Dest. is in the West & 1 row to the Current
 direction <= West; --Packet sends to the West direction
 Else direction <= North; --IF Dest. is in the West of the Current, select North
 End if;
 End if;
 Elsif (Dy < Cy) then -- down channel Subnetwork
 If (Cy mod 2 = 0) then --rule1 in even rows
 If (Dx < Cx) and (Cy - Dy > 1) then --Dest. is in the West & more than 1 row to Current
 direction <= South or West --South or West direction can be chosen
 Elsif (Dx < Cx) and (Cy - Dy = 1) then --Dest. is in the West & 1 row to the Current
 direction <= West; --Packet sends to the West direction
 Else direction <= South; --IF Dest. is in the West of the Current, select South
 End If;
 Elsif (Cy mod 2 /= 0) then --rule2 in odd rows
 If (Dx > Cx) and (Cy - Dy > 1) then --Dest. is in the East & more than 1 row to Current
 direction <= South or East --South or East direction can be chosen
 Elsif (Dx > Cx) and (Cy - Dy = 1)then --Dest. is in the East & 1 row to the Current
 direction <= East; --Packet sends to the East direction
 Else direction <= South; --IF Dest. is in the West of the Current, select South
 End if;
 End if;
 End if;
End HAMUM;

Chapter 3 Adaptive Routing Protocols in Networks-on-Chips

43

Fig. 3-18. All of the possible minimal paths from the source nodes 63, 56, 7, and 0 to the destination node
27 in (a) the Odd-Even model, and (b) the unicast aspect of HAMUM.

Table 3-5. Eight different location states of the source and destination nodes.

State
Source position
(odd/even row)

Destination
position
(odd/even row)

Destination
direction
(left/right)

1 even even right (east)
2 even odd right (east)
3 even even left (west)
4 even odd left (west)
5 odd even right (east)
6 odd odd right (east)
7 odd even left (west)
8 odd odd left (west)

Unicast Aspect of HAMUM:
Based on the proposed method, any intermediate node must first determine set of directions
toward which a packet may be forwarded for the next hop based on Rule 1 and Rule 2. As
mentioned previously, according to the source and destination labels, the routing may take
place in up or down channel subnetwork. Consider a case where the destination of a
message is to the west of its source in the up channel subnetwork (e.g. source node 7 and
destination 27 in Fig. 3-18(b)). If the current node is in an odd row, the router can route the
message to the west or north direction because of the Hamiltonian up channel subnetwork

Chapter 3 Adaptive Routing Protocols in Networks-on-Chips

44

network strategy. If the current node is in an even row, at first the message should be routed
to the north direction (to reach the odd row), and then, it could be routed via the west or
north direction. Note that in the up channel subnetwork, using the Hamiltonian path, the
packet can choose west or north direction in odd rows and east or north direction in even
rows. Additionally, if the current node is located one row to the south of the destination row
in the up channel subnetwork, the message will be routed to the west or north direction if
the current node is in the odd row, and if the current node is in the even row the packet will
be routed to the north direction. In Fig. 3-18(b), all the possible minimal routing paths of
HAMUM for four messages in 8x8 2D-mesh have been shown. At least one minimal path
always can be selected by the proposed method for any source and destination pair. Since
the Odd-Even model is one of the most popular wormhole-based adaptive unicast routing
algorithms in on-chip interconnection networks, we compare the unicast aspect of our
method with the Odd-Even model. All of the possible routing paths for the Odd-Even
model are indicated in Fig. 3-18(a). In order to compare the two algorithms with each other,
we use the Degree of Adaptiveness (DoA) factor [2] [61] [64], which is the number of
minimal paths can be taken by a message to travel from a source node (Sx,Sy) to a
destination node (Dx,Dy). Suppose that x, y are defined as x = Dx – Sx and y = Dy – Sy
and dx=| x|, and dy=| y|. The degree of adaptiveness for a fully adaptive algorithm is given
by:

!!
!)(

)(,
yx

yx
ds dd

dd
routingadaptivefullyDoA

Based on the Hamiltonian Path, there can be eight different location states according to the
source node position (even or odd row), destination node position (even or odd row), and
the direction of the destination node (left or right side of the source node). The states have
been summarized in Table 3-5.
First, we compute the DoA for unicast messages in the up channel subnetwork, then we use
the similar way to compute the DoA for the down channel subnetwork. As can be seen in
Fig. 3-19, the DoA of the state 1 and 8 is equal and can be computed as:

!!
!)(

)1(, Dd
Dd

DoA
x

x
ds Where |

2
| yd

D

For the other states, the DoA function is calculated as:

!!
!)(

)2(, Dd
Dd

DoA
x

x
ds Where |

2

1
|

yd
D

These equations can be summarized as:
DoA of the up channel subnetwork:

otherwiseDoA
andstatesforDoA

channelupDoA
ds

ds
ds

,

,
,)2(

81)1(
)(

DoA of the down channel subnetwork:

Chapter 3 Adaptive Routing Protocols in Networks-on-Chips

45

otherwiseDoA
andstatesforDoA

channeldownDoA
ds

ds
ds

,

,
,)2(

63)1(
)(

The Odd-Even model [64] restricts the locations where some types of turns can be taken.
While HAMUM rules are based on the mesh rows, the rules of the Odd-Even model are
based on the columns. Odd-Even rules are described as follow:

Rule 1: East-North and East-South turns cannot be taken in even columns (Fig. 3-20(a)).
Rule 2: North-West and South-West turns cannot be taken in odd columns (Fig. 3-20(b)).

Fig. 3-19. Eight different location states in the up channel subnetwork.

Chapter 3 Adaptive Routing Protocols in Networks-on-Chips

46

The degree of adaptiveness for the Odd-Even turn model is computed as [64]:
When the destination node is in the right side of the source node (x>0):

otherwiseDoA
columnoddinisndestinatio

columnallowableaniscolumnsnodesourceifDoA
DoA

ds

ds

ds

,

,

,

)1(

,')2(
)0x(

When the destination node is to the left side of the source node (x<0):

otherwiseDoA
xandcolumnallowableaniscolumnsnodesourceifDoA

xDoA
ds

ds
ds

,

,
,)2(

0,')1(
)0(

Fig. 3-20. The Odd-Even turn model rules: (a) prohibited turns in even columns (b) prohibited turns in

odd columns.
Considering the above analysis, the degree of adaptiveness of HAMUM and the Odd-Even
models is about the same. Since the Odd-Even model cannot be utilized for the multicast
traffic, described in the motivation, HAMUM not only is compatible with multicast traffic
but also provides adaptivity for both unicast and multicast traffic.

Multicast Aspect of HAMUM:
In this section, we describe how the proposed adaptive method affects the path-based
multicast routing algorithms. For this purpose, we apply HAMUM on the Multi-Path (MP)
and Column-Path (CP) algorithms.

1) Adaptive Multi-Path (AMP) Routing Algorithm
Fig. 3-21(a) shows an example of MP where source node 27 (3, 4) generates a multicast
message to be sent towards destinations 31, 9, 59, 8, 50, 57, 26, 19, 62, 37, 0, 63, 1, 7, 32,
55. Accordingly, two subsets are organized. The first subset (DU) has all the destinations
with higher label and the second one (DD) has the remaining destinations. Afterward, DU is
divided into two subsets, DU1= {31, 32, 50, 62, 63} and DU2= {37, 55, 57, 59}. In the same
way DD is divided into two subsets, DD1= {19, 1, 0} and DD2= {26, 9, 8, 7}. Finally, one
packet per subset should be created and sent from the source node to the network. All
packets must follow the Hamiltonian path and reach to destinations in the arranged order
deterministically.
AMP, Adaptive MP, is the adaptive model of the MP algorithm after the proposed adaptive
model is applied in the MP algorithm. Consider the example used for MP in Fig. 3-21(b),
the multicast message can be forwarded in three different ways from the node 37 to the
node 55 (32 to 50, 19 to 1, and 26 to 8).

Chapter 3 Adaptive Routing Protocols in Networks-on-Chips

47

Fig. 3-21. (a) Multi-Path (MP), (b) Adaptive Multi-Path (AMP), (c) Column-Path (CP), and Adaptive
Column-Path (ACP) routing algorithms.

2) Adaptive Column-Path (ACP) Routing Algorithm
We use the same example in Fig. 3-21(a) for CP. Thirteen copies of the message are used to
achieve the desired multicast operation (Fig. 3-21(c)). Though destinations 1 and 62 are in

Chapter 3 Adaptive Routing Protocols in Networks-on-Chips

48

the same column, two message copies are sent to this column, since one of the destinations
are above the source node’s row and the other below.
The ACP, stood for the Adaptive CP is the adaptive method of the original CP by taking
advantage of the proposed adaptive model. To indicate how the adaptive scheme affects the
CP algorithm, as illustrated in Fig. 3-21(d), again thirteen copies of the multicast message
must be used to achieve the desired multicast operation. But in this figure for simplicity, we
only consider two subsets DU2 and DD6. Due to utilizing the proposed adaptive scheme in
the CP, each multicast messages can be delivered to its subset through different paths
indicated by dashed lines.

3.2.5 Hardware Implementation

A. Topology and Switching Method
As mentioned before, we make use of an n n network of interconnected tiles with a mesh
topology. Each tile is composed of a PE (Processing Element) and a router connected to its
four adjacent routers in addition to the PE of the tile through a set of channels [83]. Two
unidirectional point-to-point links form the channel. To minimize the delay and the
required resources, the wormhole method is chosen for the switching mechanism [59].

Fig. 3-22. Multicast message format for the proposed technique.

B. Message Format
The multicast message format is shown in the Fig. 3-22. It includes one or several header
flits and a parametric number of payload flits. The number of flits depends on the number
of destinations and the flit width in the network. Each flit is n bit wide where the nth bit is

Chapter 3 Adaptive Routing Protocols in Networks-on-Chips

49

the EOM (End Of Message) sign and the (n - 1)th bit is the BOM (Begin Of Message) sign.
In the header, the third field, which is represented by T, is used to describe the type of the
message. There are two types of message which are unicast (T = 0) and multicast (T = 1).
The address of the source address (SA), the pointer counter (P), and the destination node
address(es) (DA) are placed in the last fields of the header, respectively, and the content of
the message is located in the rest of the flits (payload). We have used all-destination
encoding scheme [60] in which all destination addresses are carried by the header flits.
The pointer in each header flit points to the address of the next destination in the current
header flit, and the message identifier (MID) is used for the message ordering. The header
flits are removed as the multicast messages advances, so that if a multicast message is
arrived to all destination nodes included in a header flit, the flit is removed from the
message.

Fig. 3-23. The proposed router structure.

C. Router Architecture
The implementation details of the on-chip router are described more precisely in
Section 4.3.2. As shown in Fig. 3-23, each input port has a controller for handshaking and
an input buffer for the temporary storage of flits. The wormhole switching method

Chapter 3 Adaptive Routing Protocols in Networks-on-Chips

50

implemented in the controller unit, is based on on/off flow control mechanism [61]. After
receiving the message header, first the routing unit determines which output should be used
for routing the message and then the arbiter gives grant to the requests coming from input
ports which leads to inject the message from the input port to a proper output port using the
crossbar switch. The router has a crossbar which establishes the connection from an input
port to an output port. When a new message reaches the input port, it waits until the
previously arrived messages leave the port. Then, the new message header is delivered to
the routing unit where it is routed to the appropriate output port. The Congestion Flag
(CF) [38] of the buffer becomes active when the number of empty cells of the buffer is less
than a threshold value. In this case, for warning about the full status, the signal CF is
activated indicating that most buffer cells are occupied. Each input port has a CF through
which it informs its adjacent routers about its congestion condition. Therefore, the router
which uses that input port for forwarding a message to the next router should consider this
router as a congested one (hotspot) and should not send messages to this router until the
congestion is over.
In the path-based multicast mechanism, when multiple delivery channels (consumption
channels) are occupied by one message along the multicast path, cyclic dependencies on the
delivery channels may occur [61] [78] [84] [85]. In fact, a message cannot be delivered to
two different output channels simultaneously, unless the message should be sent to a
consumption channel and an output channel. As illustrated in Fig. 3-24, the multicast
message A destined to nodes 2 and 3 is generated by node 1. Simultaneously, node 4
generates the message B destined to the same set of destinations. As a result, due to the
delivery channel contention, this cyclic wait creates a deadlock. To prevent deadlocks in
delivery channels, the upper bound of the number of delivery channels required to avoid
such deadlocks is equal to 2nv where n is the network dimension and v is the number of
virtual channels per input port [78] [85]. As a result, at least two delivery channels are
necessary and sufficient for DP, MP, CP, AMP, and ACP algorithms and four delivery
channels are enough to support deadlock-free multicasting mechanism under the LD model
in 2D meshes when the base routing is either XY, Odd-Even, or the other turn model
routing algorithms [81] [85].

Fig. 3-24. Deadlock due to the delivery channel contention [81].

Chapter 3 Adaptive Routing Protocols in Networks-on-Chips

51

The router employs a routing unit which decodes the header of the message coming from
an input port. If the header belongs to a unicast message (T = 0), the minimal path adaptive
routing algorithms based on the Odd-Even turn model is used to determine the output port
to which the message should be sent. In the Odd-Even adaptive routing algorithm there
could be more than one minimal output direction to route the message. In this case, the
address decoder will choose the direction in which the corresponding downstream router
has not raised its congestion flag. For instance, if a message with a given source and
destination could be routed to both output ports of p1 (CF = 0) and p2 (CF = 1), then it will
be routed to p1. If p1 and p2 happen to have both their congestion flags raised, the message
will be routed to p1. On the other hand, if the header type is a multicast message (T = 1),
the routing unit fetches the destination address specified by the pointer in the header. If the
destination address is the current node, the routing unit will request the local output port.
Otherwise, the routing unit fetches the next destination address from the header and runs
the Odd-Even procedure to determine the output port(s) corresponding to the next
destination address. Also, after fetching, the routing unit increases the pointer value of the
header, and if it is overflowed, it means that the multicast message has been sent to all the
destination addresses in this header flit, the routing unit will remove the corresponding
header flit from the message.
It should be noted that as a result of exploiting the adaptive Odd-Even routing algorithm,
the messages of the same data may traverse different paths reaching at the destination out-
of-order. Hence, a technique may be needed to reorder the messages at the destination. In
the proposed technique in this chapter, the messages that reach the destination node have
the information about the message source node (SA) and the message order (MID). Using
the SA and MID, the destination core may store each message in its proper location in the
core memory such that the original source order can be achieved with negligible overhead.
Note that the data in the memory might not be processed by the core unless all parts of the
data are received. This is also true for deterministic multicast routing algorithms. Also, the
use of the source address enables the destination to concurrently handle data coming from
different sources.

3.2.6 Experimental Results
To assess the efficiency of the proposed Low Distance (LD) path-based multicast routing
algorithm, Dual-Path (DP), Multi-Path (MP), Column-Path (CP), and UB (Unicast-Based)
algorithms are implemented. MP and CP are also used to evaluate the HAMUM routing
model. We have developed a cycle accurate wormhole NoC simulator. The simulator
calculates the average delay and the power consumption for the message transmission. The
simulator inputs include the array size, the operating frequency, the routing algorithm, the
link width, and the traffic type. The simulator can generate different traffic profiles. To
calculate the power consumption, we have used Orion library functions [86]. For all
routers, the data width and the frequency were set to 32 bits and 1GHz, respectively, which
led to a bandwidth of 32 Gb/s. Each input channel has a buffer (FIFO) size of 8 flits with
the congestion threshold set at 75% of the total buffer capacity. The message size was

Chapter 3 Adaptive Routing Protocols in Networks-on-Chips

52

assumed to be 16 flits. In addition, we also assumed that the 2D mesh topology was regular
and the delays on wires would not exceed the clock period. For the performance metric, we
use the multicast latency defined as the number of cycles between the initiation of the
multicast message operation and the time when the tail of the multicast message reaches all
the destinations. The CP has the most complicated procedure to prepare the multicast
messages, while the DP has the easiest procedure [78]. The preparation mechanism consists
of partitioning the destination set into appropriate subsets and creating multiple copies of
the message. For computing the preparation time, several sets of multicast destinations have
been run by the simulator. Under these test sets, the average preparation time to complete
multicast messages in the DP, MP, LD, and CP algorithms were 35, 46, 46, and 82 cycles,
respectively. Because the DP algorithm generates only 2 multicast messages, it is the best
among the other algorithms and the CP is the worst in terms of the startup latency.

A. Multicast Traffic Profile
The first sets of simulations were performed for a random traffic profile. In these
simulations, the PEs generate data messages and inject them into the network using the
time intervals which are obtained using the exponential distribution. Two mesh sizes of 8×8
and 16×16 have been considered. In the multicast traffic profile, each PE sends a message
to a set of destinations. A uniform distribution was used to construct the destination set of
each multicast message [74]. The number of destinations was set to 10 and 25.

Fig. 3-25. Performance evaluation of LD under different loads in 8×8 2D-mesh with (a) 10 destinations,
(b) 25 destinations and in 16×16 2D-mesh with (c) 10 destinations, (d) 25 destinations under multicast

traffic model.

0
50

100
150
200
250
300
350
400

0 0.1 0.2 0.3

A
ve

ra
ge

 L
at

en
cy

 (c
yc

le
)

Message Injection Rate (Flits/cycles)
(a)

DP

LD

MP

CP

UB
0

50
100
150
200
250
300
350
400

0 0.1 0.2 0.3

A
ve

ra
ge

 L
at

en
cy

 (c
yc

le
)

Message Injection Rate (Flits/cycles)
(b)

DP

LD

MP

CP

UB

0
50

100
150
200
250
300
350
400

0 0.1 0.2 0.3A
ve

ra
ge

 L
at

en
cy

 (c
yc

le
)

Message Injection Rate (Flits/cycles)
(c)

DP
LD
MP
CP
UB

0
50

100
150
200
250
300
350
400

0 0.1 0.2 0.3

A
ve

ra
ge

 L
at

en
cy

 (c
yc

le
)

Message Injection Rate (Flits/cycles)
(d)

DP
LD
MP
CP
UB

Chapter 3 Adaptive Routing Protocols in Networks-on-Chips

53

Fig. 3-26. Performance evaluation of HAMUM under different loads in 8×8 2D-mesh with (a) 10
destinations, (b) 25 destinations and in 16×16 2D-mesh with (c) 10 destinations, (d) 25 destinations under

multicast traffic model.

In Fig. 3-25 the average communication delay as a function of the average flit injection rate
is shown. As the results show, the proposed LD multicast routing algorithm leads to the
lowest latency among all the three multicast routing algorithms even at high traffic loads or
with a large number of destinations (25 destinations). Fig. 3-26 also shows the performance
gain of using HAMUM with different number of destinations and mesh sizes. As observed
from the results, the proposed adaptive mechanism which has been applied to the MP and
CP schemes even in high traffic loads or with a large number of destinations leads to lower
delay.

B. Unicast and Multicast (Mixed) Traffic Profiles
In these simulations, we employed a mixture of unicast and multicast traffic where 80% of
the injected messages are unicast messages and the remaining 20% are multicast messages.
This pattern may represent the traffic in a distributed shared-memory multiprocessor where
updates and invalidation produce multicast messages and cache misses are served by
unicast messages [76] [78]. For this set, the simulation parameters were similar to the
previous simulations in terms of the number of destinations and array sizes. The unicast
messages are also routed using the Odd-Even turn model. Uniform and hotspot [64] were
the two different traffic profiles considered for the unicast traffic generation. In the uniform
traffic profile, each PE sends a message to any other PE with an equal probability.
Therefore, the destinations are determined randomly using a uniform distribution. Under
the hotspot traffic pattern, one or more nodes are chosen as hotspots receiving an extra

0
50

100
150
200
250
300
350
400

0 0.1 0.2 0.3

Av
er

ag
e

La
te

nc
y

(c
yc

le
)

Message Injection Rate (Flits/cycles)
(a)

AMP

ACP

MP

CP

0
50

100
150
200
250
300
350
400

0 0.1 0.2 0.3

Av
er

ag
e

La
te

nc
y

(c
yc

le
)

Message Injection Rate (Flits/cycles)
(b)

AMP

ACP

MP

CP

0
50

100
150
200
250
300
350
400

0 0.1 0.2 0.3

A
ve

ra
ge

 L
at

en
cy

 (c
yc

le
)

Message Injection Rate (Flits/cycles)
(c)

AMP

ACP

MP

CP

0
50

100
150
200
250
300
350
400

0 0.1 0.2 0.3

Av
er

ag
e

La
te

nc
y

(c
yc

le
)

Message Injection Rate (Flits/cycles)
(d)

AMP

ACP

MP

CP

Chapter 3 Adaptive Routing Protocols in Networks-on-Chips

54

portion of the traffic in addition to the regular uniform traffic. In Fig. 3-27, the average
communication latencies versus the message injection rate for different algorithms under
the uniform traffic model for unicast traffic profile are shown. As these figures reveal, for
this traffic profile, LD outperforms the other algorithms. Regarding HAMUM, as depicted
in Fig. 3-28, the adaptive routing algorithms perform better under the presented traffic.

Fig. 3-27. Performance evaluation of LD under different loads in 8×8 2D-mesh with (a) 10 destinations, (b)
25 destinations under mixed traffic (20% multicast and 80% unicast) while unicast traffic is based on the

uniform traffic model.

Fig. 3-28. Performance evaluation of HAMUM under different loads in 8×8 2D-mesh with (a) 10

destinations, (b) 25 destinations under mixed traffic (20% multicast and 80% unicast) while unicast traffic is
based on the uniform traffic model.

Fig. 3-29. Performance evaluation of LD under different loads in 8×8 2D-mesh with (a) 10 destinations, (b)
25 destinations under mixed traffic (20% multicast and 80% unicast). Unicast traffic is based on the hotspot

traffic model with a single hotspot node (4, 4). The hotspot percentage is 10 percent.

0
50

100
150
200
250
300
350
400

0 0.1 0.2 0.3

A
ve

ra
ge

 L
at

en
cy

 (c
yc

le
)

Message Injection Rate (Flits/cycles)
(a)

DP
LD
MP
CP
UB

0
50

100
150
200
250
300
350
400

0 0.1 0.2 0.3

A
ve

ra
ge

 L
at

en
cy

 (c
yc

le
)

Message Injection Rate (Flits/cycles)
(b)

DP
LD
MP
CP
UB

0
50

100
150
200
250
300
350
400

0 0.1 0.2 0.3

A
ve

ra
ge

 L
at

en
cy

 (c
yc

le
)

Message Injection Rate (Flits/cycles)
(a)

AMP

ACP

MP

CP

0
50

100
150
200
250
300
350
400

0 0.1 0.2 0.3

A
ve

ra
ge

 L
at

en
cy

 (c
yc

le
)

Message Injection Rate (Flits/cycles)
(b)

AMP

ACP

MP

CP

0
50

100
150
200
250
300
350
400

0 0.1 0.2 0.3A
ve

ra
ge

 L
at

en
cy

 (c
yc

le
)

Message Injection Rate (Flits/cycles)
(a)

DP
LD
MP
CP
UB

0
50

100
150
200
250
300
350
400

0 0.1 0.2 0.3A
ve

ra
ge

 L
at

en
cy

 (c
yc

le
)

Message Injection Rate (Flits/cycles)
(b)

DP
LD
MP
CP
UB

Chapter 3 Adaptive Routing Protocols in Networks-on-Chips

55

Fig. 3-30. Performance evaluation of HAMUM under different loads in 8×8 2D-mesh with (a) 10

destinations, (b) 25 destinations under mixed traffic (20% multicast and 80% unicast). Unicast traffic is based
on the hotspot traffic model with a single hotspot node (4, 4). The hotspot percentage is 10 percent.

Under the hotspot traffic model with the hotspot percentage of h, a newly generated
message is directed to each hotspot node with an additional h percent probability. In our
simulations, we assumed a single hotspot node (node (4, 4)). Fig. 3-29 shows the average
latencies of the algorithms for the 8×8 2D mesh topologies when h = 10%. As the figures
show, LD considerably outperforms the other algorithms for different number of
destinations under various message injection rates. Inasmuch as HAMUM brings adaptivity
to the conventional multicast routing algorithms, Fig. 3-30 reveals the performance gains of
the adaptive schemes under the hotspot traffic model.

C. Application Traffic Profile
To show the impact of the proposed model, traces from some application benchmark suites
selected from SPLASH-2 [87] and PARSEC [88] [89] are used. Traces are generated from
SPLASH and PARSEC using the GEMS simulator [90]. We used the x264 application of
PARSEC and the Radix, Ocean, and fft applications from SPALSH-2 for our simulation.
Table 3-2 summarizes our full system configuration. It is noteworthy that the token-based
MOESI protocol [92] is heavily based on multicast. On account of our analysis on average
95% of token-based MOESI traffic is multicast.
As can be seen from Fig. 3-31, the proposed adaptive model diminishes the average delay
of MP and CP significantly under all benchmarks. That is, adaptive routing has an
opportunity to improve performance. Under the fft application the adaptive model indicates
17% and 21% reduction in latency for MP and CP, respectively.

D. Power Dissipation
The power dissipation of DP, MP, CP, UB, and the proposed LD routing algorithms were
calculated and compared under the multicast traffic model. The results for the average and
maximum power under this traffic are shown in Fig. 3-32 and Fig. 3-33, respectively.

0
50

100
150
200
250
300
350
400

0 0.1 0.2 0.3

A
ve

ra
ge

 L
at

en
cy

 (c
yc

le
)

Message Injection Rate (Flits/cycles)
(a)

AMP

ACP

MP

CP

0
50

100
150
200
250
300
350
400

0 0.1 0.2 0.3

Av
er

ag
e

La
te

nc
y

(c
yc

le
)

Message Injection Rate (Flits/cycles)
(b)

AMP

ACP

MP

CP

Chapter 3 Adaptive Routing Protocols in Networks-on-Chips

56

Fig. 3-31. Performance under different application benchmarks for multi-path (left) and column-path

(right) routing algorithms.

Fig. 3-32. Average power dissipation of the proposed, the DP, the MP and the CP algorithms in 16×16

2D-mesh with (a) 10 destinations and (b) 25 destinations under multicast traffic.

Fig. 3-33. Maximum power dissipation of the proposed, the DP, the MP and the CP algorithms in 16×16

2D-mesh with (a) 10 destinations and (b) 25 destinations under multicast traffic.

As the results presented in Table 3-6 for 10 destinations reveal, the average power
dissipation of the network with the LD algorithm is 25%, 3.5%, 33%, and 63% less than
those of the DP, MP, CP, and UB algorithms under the multicast traffic model,
respectively. Also, the results of Table 3-7 for 10 destinations indicate that the maximum
power of the LD algorithm is 27%, 8%, 44%, and 70% less than those of the DP, MP, CP,
and UB algorithms, respectively, under the multicast traffic model. Similar power savings

0.4

0.5
0.6

0.7
0.8

0.9
1

x264 Radix Ocean fft

N
or

m
al

ize
d

av
er

ag
e

la
te

nc
y

MP AMP

0.4

0.5
0.6

0.7
0.8

0.9
1

x264 Radix Ocean fft

N
or

m
al

ize
d

av
er

ag
e

la
te

nc
y

CP ACP

0.00

0.01

0.01

0.02

0.02

0.03

0.03

0.05 0.1 0.15 0.2

A
ve

ra
ge

 P
ow

er
(W

)

Message Injection Rate(Flits/Cycle)
(a)

DP
MP
LD
CP
UB

0.00

0.01

0.01

0.02

0.02

0.03

0.03

0.05 0.1 0.15 0.2

A
ve

ra
ge

 P
ow

er
(W

)

message Injection Rate(Flits/Cycle)
(b)

DP
MP
LD
CP
UB

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.05 0.1 0.15 0.2

M
ax

im
um

 P
ow

er
(W

)

Message Injection Rate(Flits/Cycle)
(a)

DP
MP
LD
CP
UB

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

0.05 0.1 0.15 0.2

M
ax

im
um

 P
ow

er
(W

)

Message Injection Rate(Flits/Cycle)
(b)

DP
MP
LD
CP
UB

Chapter 3 Adaptive Routing Protocols in Networks-on-Chips

57

are obtained for 25 destinations. The power reduction for the LD algorithm is achieved by
smoothly distributing the power consumption over the network using the adaptive routing
scheme which reduces the number of the hotspots, and hence, lowering both the average
power and the maximum power. Table 3-8 reveals the average power dissipation of the
network with the ACP algorithm is 5% less than that of the CP algorithm and the average
power dissipation of the AMP is 3.5% less than that of the MP algorithm. The results of
Table 3-8 indicate that the maximum power of the ACP and AMP algorithms is 15% and
11% less than that of the CP and MP algorithms, respectively under the multicast traffic
model. We can notice that the average power and the maximum power of the proposed
adaptive models are lower.

Table 3-6. Comparative average power dissipation of LD with other algorithms in 16×16 2D-mesh.

Average Power Dissipation DP MP CP UB

With 10 Destinations -25% -3.5% -33% -63%
With 25 Destinations -32% -8.5% -13% -51%

Table 3-7. Comparative maximum power dissipation of LD with other algorithms in 16×16 2D-mesh.

Maximum Power Dissipation DP MP CP UB

With 10 Destinations -27% -8% -44% -70%
With 25 Destinations -43% -12% -33% -64%

Table 3-8. Comparative average power dissipation of the adaptive schemes using HAMUM model with the
conventional schemes.

Average Power Dissipation AMP/MP ACP/CP

With 25 Destinations 3.5% 5%

Table 3-9. Comparative maximum power dissipation of the adaptive schemes using HAMUM model with the
conventional schemes.

Maximum Power Dissipation AMP/MP ACP/CP

With 25 Destinations 11% 15%

E. Hardware Overhead
To evaluate the area overhead of the LD algorithm, we designed the routers based on the
multicast routing schemes including the additional hardware required for each scheme as
described in the previous section, i.e. consumption channels. The routers were described in
VHDL for a 16×16 2D mesh NoC environment, and synthesized with the Leonardo-

Chapter 3 Adaptive Routing Protocols in Networks-on-Chips

58

Spectrum ASIC using a 0.25 m standard cell library. In addition, the destination sorting
algorithms were included in the hardware overhead. For all the routers, the data width was
set to 32 bits (flit size) and each input channel had a buffer size of 8 flits. As discussed in
earlier, for the DP, MP, and CP routers, two delivery channels, and for the LD router four
delivery channels are employed, respectively. In order to achieve better performance/power
efficiency, the FIFOs were implemented using registers. Fig. 3-34 shows the area of the
routers. While the same router structure was used for the CP, MP, and DP multicasting
schemes, different number of registers were employed in implementing their sorting
mechanisms leading to different areas. Comparing the area of the LD router with the UB,
DP, MP, and CP routers indicates an additional overhead of 11%, 6.4%, 5%, and 6%,
respectively. In addition, the hardware overhead of implementing HAMUM in both of the
MP and CP routers is less than 0.5% and that can be considered negligible.

Fig. 3-34. Area cost of routers for implementing different multicast routing algorithms.

3.3 Summary
Routing protocols can have a large impact on performance and power consumption in on-
chip networks. Therefore, three adaptive routing algorithms were presented in this chapter.
The routing protocols in NoCs can be either unicast (one-to-one) or multicast (one-to-
many). The first presented routing protocol was a congestion-aware adaptive routing
algorithm for two-dimensional mesh NoCs which does not support multicast traffic while
the other two presented protocols are adaptive routing models supporting both unicast and
multicast traffic.
The first routing algorithm was an adaptive routing algorithm, called EDXY, which
improves the DyXY routing algorithm. In this technique, two congestion wires were added
to the router architecture to flag the row or column congestion further away from the
current switch. This enabled avoiding the congested path, and thus decreasing the latency
of the algorithm. Moreover, two adaptive routing protocols (LD and HAMUM) were
presented for mesh-based on-chip networks. LD used network partitioning, optimized
destination ordering, and the Odd-Even turn model adaptive algorithm for routing both the
multicast and unicast messages through the network. Additionally, the adaptive routing

18580

19700
20010

19800

21050

17000

17500

18000

18500

19000

19500

20000

20500

21000

21500

UB DP MP CP LD

N
um

be
r o

f g
at

es

Chapter 3 Adaptive Routing Protocols in Networks-on-Chips

59

algorithm used the congestion condition of the input ports to route the messages through
non-congested paths. However, exploiting the unicast routing algorithms for multicast
traffic may increase the latency. HAMUM was presented as an adaptive routing method for
both unicast and multicast traffic which maximizes the degree of adaptiveness of the
routing functions which are based on the Hamiltonian path.

Chapter 3 Adaptive Routing Protocols in Networks-on-Chips

60

61

Chapter 4

4 Adaptive On-Chip Router
Architecture

The performance and efficiency of NoCs largely depend on the output-selection and input-
selection methods exploited by on-chip routers. The output-selection method, using a
routing algorithm, determines which output channel should be chosen for a packet arrived
from an input channel. The input-selection method chooses one of input channels to get
access to the output channel, which is performed by an arbitration process.
In this chapter, a novel router architecture, named Adaptive Input-Output Selection (AIOS),
is presented. AIOS employs adaptive input-selection and output-selection methods in the
routing process. The adaptive output-selection method of AIOS uses either minimal or non-
minimal path for unicast and multicast messages depending on the congestion condition of
the network. The adaptive input-selection method exploits the Weighted Round Robin
(WRR) [93] arbitration mechanism which can prevent starvation and improve the
performance. To evaluate AIOS, we compare it with the other router schemes under several
synthetic traffic profiles along with Video Object Plane Decoder (VOPD), i.e. an example
of a real traffic profile.

4.1 Adaptive Input-selection and Output-selection Methods
In this section, we review the previous works on adaptive input-selection (arbitration) and
output-selection (routing) methods. Choosing one of input channels to get access to the
output channel is performed by an input-selection method using an arbitration mechanism.
The arbiter could follow either non-priority or priority scheme [65] [94] [95]. In the non-
priority scheme when there are multiple input port requests for the same available output
port, the arbiter does not consider the traffic condition of the input channels to grant access
to one input port. First-Come-First-Served (FCFS) [65] [96] and Round-Robin
(RR) [65] [94] are two approaches using non-priority arbitration. Therefore, these methods
can avoid starvation on different ports. Unlike the non-priority scheme, in the priority
scheme when there are multiple input port requests for the same available output port, the

Chapter 4 Adaptive On-Chip Router Architecture

62

arbiter would grant access to the input port request which has the highest priority level, e.g.
Contention-Aware Input Selection (CAIS) [95]. In CAIS, the busiest input channel obtains
the highest priority to access the output channel. The input channel is given priority
proportional to the number of requests arrived from the upstream routers. Thus, the traffic
can be kept flowing from busy channels to avoid the network congestion. This scheme
increases the possibility of the starvation so that in this chapter, we have presented an
efficient arbitration mechanism using WRR. The presented input-selection method is able
to avoid starvation while serving each input channel according to its traffic condition.
As described in the previous chapter, the routing algorithms, employed by the output-
selection method, are classified as deterministic (e.g. XY) or adaptive (Odd-Even, DyAD,
DyXY, EDXY, etc.). Some adaptive routings, like Hot-potato, can also select non-minimal
paths during the routing process. Hot-potato (or deflection routing) [96] [99] is based on the
idea of delivering a packet to an output channel at each cycle. If all the minimal path
channels are occupied, then the packet is misrouted. When contention occurs and the
desired channel is not available, the packet, instead of waiting, will pick any alternative
available channels (minimal or non-minimal) to continue moving to the next router;
therefore the router does not need buffers. In the hot-potato routing, if the number of input
channels is equal to the number of output channels at every router node, packets can always
find an exit channel and thus, the routing is deadlock-free. However, livelock is a potential
problem in this routing such that message latency increases significantly. Accordingly,
performance of hot-potato is not as efficient as other adaptive routing algorithms [60]. All
the aforementioned adaptive routing algorithms are utilized without using virtual channels.
However, virtual channels can be employed to gain performance.
Regarding the multicast routing, if turn model algorithms are adopted to route multicast
packets, some forbidden turns might occur [78] [81]. To cope with the forbidden turns the
absorb-and-retransmission mechanism is required [78] [81]. However this technique
degrades the performance significantly. In [37] authors utilized the Odd-Even routing
algorithm to route multicast packets. The more frequently forbidden turns occur the more
performance is degraded. Accordingly, the Hamiltonian Adaptive Multicast and Unicast
Model (HAMUM), presented in the previous chapter, is proposed to support both unicast
and multicast traffic adaptively [39]. The adaptivity of HAMUM is identical to the
adaptivity of Odd-Even for the unicast traffic while for the multicast traffic the adaptivity
of HAMUM is higher than conventional multicast routing algorithms [39]. Hence,
HAMUM is exploited as the output-selection method for AIOS because it provides
adaptivity for both unicast and multicast traffic efficiently.

4.2 Minimal and Non-Minimal Implementations of HAMUM
As presented in subsection 3.2.4, HAMUM is a minimal path routing algorithm for unicast
and multicast traffic [37]. According to the rules given by HAMUM, it provides several
directions to deliver a packet from a node.

Chapter 4 Adaptive On-Chip Router Architecture

63

Fig. 4-1. The pseudo VHDL code of modified HAMUM including the non-minimal routing.

Algorithm modified_HAMUM is
-- (Cx,Cy) : Current node , (Dx,Dy) : Destination node
MinPath1=NULL; MinPath2=NULL; NonminPath=NULL;
Begin
 If (Dy = Cy) then --Current & Dest. are in the same row
 If (Dx = Cx) then --Current& Dest. are in the same column
 MinPath1 <= Local; --Packet sends to the Local direction
 Elsif (Dx > Cx) then
 MinPath1 <= East; --Dest. is to the East of the Current node
 Else
 MinPath1 <= West; --Dest. is to the West of the Current node
 End if;
 Elsif (Dy > Cy) then --up channel Subnetwork
 If (Cy mod 2 = 0) then --rule1 in the even rows
 If (Dx > Cx) and (Dy - Cy = 1) then --Dest. is in the East & 1 row to the Current node
 MinPath1 <= East; --One minimal path is suggested
 Elsif (Dx > Cx) and (Dy - Cy > 1) then --Dest. is in the East of the Current node
 MinPath1 <= East; --Two minimal paths are suggested
 MinPath2 <= North;
 Else --Dest. is in the West of the Current node
 MinPath1 <= North; --One minimal and One non-minimal path are suggested
 NonminPath <= East;
 End if;
 Elsif (Cy mod 2 /= 0) then --rule2 in odd rows
 If (Dx < Cx) and (Dy - Cy = 1) then --Dest. is in the West & 1 row to the Current node
 MinPath1 <= West; --One minimal path is suggested
 Elsif (Dx < Cx) and (Dy - Cy > 1) then --Dest. is in the West of the Current node
 MinPath1 <= West; --Two minimal paths are suggested
 MinPath2 <= North;
 Else --Dest. is in the East of the Current node
 MinPath1 <= North; --One minimal and One non-minimal path are suggested
 NonminPath <= West;
 End if;
 End if;
 Elsif (Dy < Cy) then --down channel Subnetwork
 If (Cy mod 2 = 0) then --rule1 in even rows
 If (Dx < Cx) and (Cy - Dy = 1) then --Dest. is in the West & 1 row to the Current node
 MinPath1 <= West; --One minimal path is suggested
 Elsif (Dx < Cx) and (Cy - Dy > 1) then --Dest. is in the West of the Current node
 MinPath1 <= West; --Two minimal paths are suggested
 MinPath2 <= South;
 Else --Dest. is in the East of the Current node
 MinPath1 <= South; --One minimal and One non-minimal path are suggested
 NonminPath <= West;
 End If;
 Elsif (Cy mod 2 /= 0) then --rule2 in odd rows
 If (Dx > Cx) and (Cy - Dy = 1)then --Dest. is in the East & 1 row to the Current node
 MinPath1 <= East; --One minimal path is suggested
 Elsif (Dx > Cx) and (Cy - Dy > 1) then --Dest. is in the East of the Current node
 MinPath1 <= East; --Two minimal paths are suggested
 MinPath2 <= South;
 Else --Dest. is in the West of the Current node
 MinPath1 <= South; --One minimal and One non-minimal path are suggested
 NonminPath <= East;
 End if;
 End if;
 End if;
End modified_HAMUM ;

Chapter 4 Adaptive On-Chip Router Architecture

64

In the up channel subnetwork, the packets arriving from the south direction at the nodes in
even (odd) rows are not allowed to turn into the west (east) direction. In contrast, in the
down channel subnetwork, the packets coming from the north direction at the nodes in even
rows (odd) rows are not allowed to turn into the east (west) direction.
HAMUM can be extended to support the non-minimal path routing in the network. Fig. 4-1
depicts the implementation of the modified HAMUM. Once the presented algorithm is
performed, three output variables, MinPath1, MinPath2, and NonMinPath, are evaluated.
The variables of MinPath1 and MinPath2 are the minimal directions that can be chosen by
a packet while the NonMinPath indicates the allowable non-minimal direction. For
example, if the source node is located in the even row and the destination node is in the
northeast position of the source node, two minimal directions (i.e. east and north) are
suggested by the algorithm; while in the similar case, if the source node is located in the
odd row, one minimal direction (i.e. north) and one non-minimal direction (i.e. west) are
supplied by the algorithm.
Two examples of the modified HAMUM, using minimal and non-minimal directions, are
shown in Fig. 4-2. In the first example, the source node 1 sends a message to destination 23
while the nodes 11 and 18 are faulty or congested. The modified HAMUM allows the
packet to route around the congested areas by selecting the non-minimal path at node 8. As
another example in Fig. 4-2, a packet can turn around the congested region when traveling
from the source node 2 to the destination 16.

Fig. 4-2. An example of modified HAMUM.

4.2.1 Deadlock Avoidance
Deadlock is a situation where network resources continuously wait for each other to be
released. To show that the proposed algorithms are deadlock-free, it is required to prove
that there is no cyclic dependency between channels [101].

Chapter 4 Adaptive On-Chip Router Architecture

65

The modified HAMUM is deadlock-free:

At the source node, the network is divided into two disjoint subnetworks, up channel (GU)
and down channel (GD). Since each of the up channel and down channel subnetworks uses
separate sets of channels, no cyclic dependency will be created among channels. If we
could prove that the message routing algorithm in the up channel subnetwork is deadlock-
free, that would be sufficient to establish that the down channel subnetwork is also
deadlock-free, and since GU GD= , the whole network will be free of deadlocks. So, we
take the up channel subnetwork into consideration.
A network can be represented by a connected graph G = (V,E), where V denotes a set of
vertices (routers or node) and E a set of edges (communication links). A pair (u,v) E form
an edge of the graph, if u is physically connected to v via a communication link. A path is a
sequence of non-repeated nodes such that for a given i, 0 i<n-1 there exists a
communication link from vi to vi+1, i.e. (vi, vi+1) E. The unicast message can be expressed
by Unicast=(u,d) where u V and d V. The multicast message can be represented by
Multicast=(u,D), where u V is the source node, D = {d1,d2, . . . ,dx} is the set of ordered
destination nodes, and x is the number of destination nodes. Each node in the graph has a
label (L) determined by the Hamiltonian path labeling mechanism.
Since a unicast message is the special case of a multicast message, we prove that the
algorithm is deadlock-free for the multicast messages, and then it is obvious for the unicast
messages.
Given a source node u and a set of destination D, let Path(u,D) denote the multicast
message path from u to all destinations of D. As already mentioned, in the up channel
subnetwork, the destination nodes are ordered in ascending order, so
L(u)<L(d1)<L(d2)<…<L(dx). If we suppose that a minimal or non-minimal multicast
message path is Path(u,D)=(u,a1,a2,…,ax,d1,ax+1,ax+2,…,ay,d2,ay+1,ay+2,…,az,dx), then
intermediate nodes (either in the minimal or non-minimal paths) must be selected in a way
that the packet follows the path only in ascending order, so:

L(v0) L(u) L(a1) L(a2) … L(ax) < L(d1) L(ax+1) L(ax+2) … L(ay) < L(d2)

 L(ay+1) L(ay+2) … L(az) < L(dx) L(an-1)

Note that the Hamiltonian path guarantees the existence of at least one possible path
between each pair of nodes. According to the above facts, there cannot exist any link like
(ai,ai+1), where L(ai)>L(ai+1), so no cyclic dependency can occur between channels for a
single packet. Moreover all unicast and multicast packets in the up channel subnetwork are
routed in entirely ascending order, thus the traveled paths of all packets cannot create any
dependency cycles. The similar proof can be applied to the down channel subnetwork.
Fig. 4-3 shows all possible turns that can be created in the network by unicast and multicast
messages. No combination of the turns can form a cycle; this can be used as another proof
that the proposed algorithm is deadlock-free.

Chapter 4 Adaptive On-Chip Router Architecture

66

Fig. 4-3. All possible turns of HAMUM and modified HAMUM.

4.3 The AIOS Router Architecture
The underlying idea of the proposed router architecture is to spread the traffic to prevent
congestion. Using adaptive input-selection and output-selection methods can improve the
network performance significantly. The output-selection method utilizes both the minimal
and non-minimal schemes of HAMUM. When congestion (hotspot) is formed close to a
router, a non-minimal direction is selected to deliver a packet while a minimal direction is
taken when there is no congestion. In AIOS, the input selection exploits the Weighted
Round Robin (WRR) policy which makes the routing algorithm non vulnerable to
starvation. Also, WRR increases the performance of the network by monitoring the traffic
condition. We consider a n n network of interconnected tiles with a mesh topology using
wormhole scheme for the switching [68].

4.3.1 Message Format
The message format utilized in this architecture is similar to one described in Section 3.2.5.

4.3.2 Router Structure
As shown in Fig. 4-4, each input channel has a routing unit, a controller for handshaking
and an input buffer. The flits of the packets are stored in the input buffer. The routing unit
determines the output channel to route packets. The controller controls the buffer status
including empty and full states as well as detects the sign of the rate at which the buffer is
becoming occupied. A positive rate indicates that the buffer is becoming full while a
negative rate reveals that the buffer is becoming empty.
Each input channel has a Congestion Flag (CF) signal (i.e. ECF, WCF, NCF, SCF and LCF
corresponding to East, West, North, South and Local input channel, respectively) to inform
its adjacent routers about its congestion condition so that the congested input channel
should not be selected by the upstream router until the congestion condition is ceased.
The router has a crossbar to establish a connection path from an input port to an output port.
For each output port the router uses an arbiter for selecting among simultaneous input
requests to access the same output port. In order to detect whether the buffer status is
critical or not, the flit arrival and departure rates of the buffer should be measured. For this
purpose, the circuit shown in Fig. 4-5 is used. Nnew is the number of occupied slots of the

Chapter 4 Adaptive On-Chip Router Architecture

67

input buffer in the current cycle of the router clock and Nold is the same number but in the
previous cycle of the router clock. To determine the rate at which the buffer becomes full,
the number of filled buffer cells at each rising edge of the router internal clock (Nnew) is
compared to that of the previous rising edge (Nold). If Nnew > Nold (Nold > Nnew), it shows
that the buffer is becoming full (empty). The sign is compared to the buffer status to
activate the CF.

Fig. 4-4. The proposed routing structure.

The status signal of the buffer becomes full when the number of occupied cells of the buffer
is more than a threshold value. In this case, for warning the full status, the signal W_Full is
activated indicating that most buffer cells are full. This suggests that the congestion
condition is traced using the signal W_Full to indicate the filling of the buffer.

Chapter 4 Adaptive On-Chip Router Architecture

68

Fig. 4-5. Congestion detection circuit for the input buffer.

As shown in Fig. 4-5, CF is asserted when both the W_Full signal and the positive rate for
occupying the input buffer slots (Nnew > Nold) are detected. The Congestion Level (CL) of
each router is computed by a module called Contention Aware Routing Selection (CARS).
The CL is a 3-bit binary number as a result of summing up four CF values from four input
ports (see Fig. 4-4 and Fig. 4-6). The CL for each router indicates its load level. For
example, if the north and east input buffers of the router are congested (NCF = 1 and ECF =
1), then the CL value of the router will be equal to “010”. As illustrated in Fig. 4-6, the
output of the CARS module is sent to the corresponding input channels of its adjacent
routers (downstream routers).

Fig. 4-6. Congestion level computation and transmission scheme.

Chapter 4 Adaptive On-Chip Router Architecture

69

A. Output-Selection
In the output-selection method, each input channel has a routing unit decoding the header
flit of incoming packets. The modified HAMUM, based on the minimal and non-minimal
paths, is used to determine the output port to deliver packets. If the route(s) determined
from the minimal path routing is(are) congested, the routing unit uses instead the non-
minimal path.
First, based on the modified HAMUM in Fig. 4-1, the output port(s) specified by the
minimal path (MinPath1 and MinPath2) are examined and if the congestion flag of the
neighboring routers of the selected output ports is active, the congestion condition of the
non-minimal path is checked. If the non-minimal direction is not congested, the packet is
sent to the output port determined by the non-minimal path (NonMinPath). If the
neighboring routers are not congested, the packet will be sent through the first minimal path
output port (MinPath1). Fig. 4-7 shows the address decoder circuit.

Fig. 4-7. Routing unit circuit.

The procedure of selecting the suitable output port among all output ports that have been
specified by the routing unit (Fig. 4-1) is exhibited in Fig. 4-8. In fact, the routing unit
chooses the direction in which the corresponding downstream router has not raised its
congestion flag. For instance, if a packet with a given source and destination could be
routed to both output ports p1 (CF = 1) and p2 (CF = 0), then it will be routed to p2. If p1
and p2 happen to have both their congestion flag raised, and if the routing unit has specified
a non-minimal path, p3, the packet will be routed to p3 (if it is not congested), otherwise it
will be routed to p1. On top of that, if both p1 and p2 are minimal output directions and the
congestion flags of their corresponding downstream router have not risen, the routing unit
will route the packet to p1 direction. Moreover, if the header type is a multicast message,
the routing unit fetches the destination address from the header. After fetching the
destination address from the header, if the destination address is the current node, the
routing unit will request the local output port. Meanwhile, the routing unit fetches the next
destination address from the header and runs the adaptive routing procedure to determine
the output port(s) corresponding to the next destination address.

Chapter 4 Adaptive On-Chip Router Architecture

70

Fig. 4-8.The procedure of selecting the suitable output port.

B. Input-Selection
The proposed arbiter uses the Weighted Round Robin (WRR) scheme derived from the
Round Robin (RR) policy for the input-selection method. The presented scheme allows a
weight to be assigned to each input port. The weight of each input port, which specifies the
number of packets to be transmitted, is proportional to the CL of the upstream router. This
will assign different weights to the input channels of the routers for accessing the output
channels through the arbitration process.

Fig. 4-9. Block diagram of a round-robin arbiter.

The arbiter provides services for each input channel in turn in the round robin order. If the
input channel buffer is empty, it will be skipped without being serviced. Fig. 4-9 shows a
block diagram of a round robin arbiter [102] [103] [104]. The arbiter uses a Programmable
Priority Encoder (PPE) unit to choose the highest priority request from n incoming requests
(Req bus). In every arbitration cycle, PPE, which takes n 1-bit-wide requests and the logn-
bit-wide pointer (P_enc) pointing to the current highest-priority request as its inputs,
chooses the first nonzero request value beyond (and including) Req[P_enc]. The output of
the PPE is an n-bit-wide Gnt (grant) which has at most one nonzero bit and a 1-bit wide
anyGnt signal which indicates if there has been at least one request. For updating the
pointer, Gnt is loaded and rotated right one bit in rr1 unit (rotate right 1-bit register) whose
output is encoded using the Enc unit and then latched for storing the next P_enc.
Fig. 4-10 shows a block diagram of the Weighted Round Robin arbiter derived from the
Round Robin scheme. The main difference between two schemes is that WRR serves to the
input port based on its CL. There are five registers four out of five registers contain the CL

If (CF(MinPath1) = ’0’) then
 Select <= MinPath1;
Elsif (MinPath2 /= NULL and CF(MinPath2) = ’0’) then
 Select <= MinPath2;
Elsif (NonminPath /= NULL and CF(NonminPath) = ’0’) then
 Select <= NonminPath;
Else
 Select <= MinPath1;
End if;

Chapter 4 Adaptive On-Chip Router Architecture

71

of their upstream routers and one register is for the local router. The registers have three
inputs and one output. If the register enable (En) is set, then the new CL value, which
shows the CL of the upstream router, will be loaded in the register. After loading, the
register operates as the down-counter for the service provided for this input port. While the
zero signal (Zero) is not set (i.e., the register value has not reached zero) the register value
will be decremented in each packet transmission cycle. When the register value reaches
zero or the register enable (En) is reset, then the zero signal (Zero) will be set and
subsequently the Enable of the rr1 unit is activated starting the update process for P_enc as
was performed for the RR scheme. In the situations where there are multiple input requests
to the same output channel, each output channel arbiter will service the incoming requests
according to their CL (weight). This mechanism resolves any possible starvation that might
occur in arbiters based on priority scheme such as in CAIS [95].

Fig. 4-10. Block diagram of a weighted round robin arbiter.

4.4 Experimental Results
To assess the efficiency of AIOS, four other routers, defined in Table 4-1, are also
implemented. We have developed a flit level event driven wormhole NoC simulator
implemented in C++ based on standard template libraries (STL), running under Fedora
Linux OS. The simulator computes the average latency and the power consumption for the
packet transmission. As a performance metric, we use latency defined as the number of

Chapter 4 Adaptive On-Chip Router Architecture

72

cycles between the initiation of a message operation issued by a PE and the time when the
message is completely delivered to the destination PE. The request rate is defined as the
ratio of the successful message injections into the network interface over the total number
of injection attempts.

Table 4-1. Structure of other four routers.

Router P-OE P-MP RR-OE RR-MP

Input-Selection Priority (CAIS) Priority (CAIS) Round Robin Round Robin

Output-Selection Odd-Even Multi-Path Odd-Even Multi-Path

A 2D mesh configuration has been used for the NoC. Each router consists of 8
unidirectional channels (four incoming and four outgoing channels). The simulator inputs
include the array size, the router operation frequency, the input and output selection
methods, the link width, and the traffic type.
To estimate the power consumption, we have used Orion library functions [86]. Since some
components such as routing unit and WRR circuits have not been modeled in Orion, we
have modified the Orion library for computing their power consumptions. The data width
and the frequency were set to 32 bits and 1GHz, respectively, which leads to a bandwidth
of 32 Gb/s. Each input channel has a buffer (FIFO) size of 8 flits with the congestion
threshold set at 75% of the total buffer capacity. The packet size was assumed to be 5 flits.
The time needed to generate multicast messages (packets) is not considered, because we
assumed the multicast messages are generated in the processing elements. The array size of
8×8 has been considered.

Fig. 4-11. Performance results in 8×8 2D-mesh under multicast traffic profile with (a) 10 destinations, (b) 20

destinations.

4.4.1 Performance Evaluation

A. Multicast Traffic Profile
This simulation is performed using a uniform-based multicast traffic profile pattern. Each
PE generates messages and injects them into the network using the time intervals which are

0
50

100
150
200
250
300
350
400
450
500

0.05 0.15 0.25 0.35

A
ve

ra
ge

 L
at

en
cy

 (c
yc

le
)

Injection Rate (flits/node/cycle)
(a)

AIOS
P-OE
P-MP
RR-OE
RR-MP

0
50

100
150
200
250
300
350
400
450
500

0.05 0.15 0.25 0.35

Av
er

ag
e

La
te

nc
y

(c
yc

le
)

Injection Rate (flits/node/cycle)
(b)

AIOS
P-OE
P-MP
RR-OE
RR-MP

Chapter 4 Adaptive On-Chip Router Architecture

73

obtained using the exponential distribution. In the multicast traffic profile, each PE sends a
message to a set of destinations. A uniform distribution is used to construct the destination
set of each multicast message [78]. The number of destinations has been set to 10 and 20.
The average latency as a function of the average flit injection rate is shown in Fig. 4-11(a)
and (b). As shown in the results, AIOS leads to the lowest delay particularly not only in
high traffic loads but also when the number of multicast destinations increases. As
described before and can be seen from Fig. 4-11(a) and (b), unicast-based routing
algorithms, e.g. Odd-Even, are not efficient for multicast traffic [78] [81].

B. Unicast and Multicast (Mixed) Traffic Profile
In this experiment, we have employed a mixture of unicast and multicast traffic, where 80%
of injected messages are unicast messages and the remaining 20% are multicast messages.
This pattern may be representative of the traffic in a distributed shared-memory
multiprocessor where updates and invalidation produce multicast messages and cache
misses are served by unicast messages [78]. Both unicast and multicast messages are routed
using HAMUM. The number of destinations for multicast messages is set to 10 and the
array size of the network is equal to the previous traffic profile. Uniform and hotspot
synthetic traffic patterns [64] [105] are used to generate the unicast traffic in the network. In
the uniform traffic profile, each PE sends a message to any other PE with an equal
probability. This probability is determined randomly using a uniform distribution. Under
the hotspot traffic pattern, one or more nodes are chosen as hotspots receiving an extra
portion of the traffic in addition to the regular uniform traffic. In Fig. 4-12(a) the average
communication latency of different routers under the uniform traffic model for unicast
traffic are shown. In this traffic, AIOS performs better than the other three algorithms.
Under the hotspot traffic model, given a hotspot percentage of h, a newly generated
message is directed to each hotspot node with an additional h percent probability. We
simulate hotspot traffic with a single hotspot node. The hotspot node is chosen to be node
(4, 4) in the 8×8 2D-Mesh with h=10%. As observed from Fig. 4-12(b), AIOS shows
considerably smaller delays compared to the other router models.

C. Unicast Traffic Profile
For appraising the unicast efficiency of AIOS, the uniform and hotspot traffic profiles,
where 100% of injected messages are unicast messages have been considered. Fig. 4-13(b)
and (b) show the simulation results for the uniform and hotspot traffic profiles. As depicted,
when the injection rate is increased, AIOS is superior to the other schemes. In brief, as the
injection rate increases, AIOS leads to smaller average delays. This is due to the fact that
the input selection uses WRR scheme which allows packet flows coming from congested
paths to be serviced more often according to their congestion level. In contrast, in the RR
scheme no matter how congested a path is, all packet flows are serviced equally. In the
mechanism based on CAIS (priority), congested input channels which have higher numbers

Chapter 4 Adaptive On-Chip Router Architecture

74

of request are serviced more often while the input channels with lower traffic may not be
serviced leading to the starvation problem.

Fig. 4-12. Performance with different loads in 8×8 2D-mesh under mixed traffic (20% multicast and 80%
unicast). Unicast traffic in (a) is based on the uniform pattern and in (b) is based on the hotspot pattern with

h=10%.

Fig. 4-13. Performance with different loads in 8×8 2D-mesh under unicast traffic: (a) the uniform pattern and

(b) the hotspot pattern.

D. Video Object Plane Decoder (VOPD) Traffic Profile
To evaluate the performance of AIOS under more realistic traffic loads, we have used
Video Object Plane Decoder (VOPD) traffic profile [106]. Although our algorithm is not
proposed for real-time applications, we have only used VOPD traffic profile as an example
of real traffic profile without considering its real-time constraints. The mesh array size was
assumed to be 6 5. In Fig. 4-14, we show the core graph and its mapping onto the mesh for
the VOPD. The other cores around the grey box generate uniform traffic, where each PE
generates 5-flit packets and injects them into the network in the uniform manner. As the
results shown in Fig. 4-15 reveal, for this traffic model, in the central areas of the chip,
congestion may occur. Therefore, since the presented routers are based on the adaptive
routing algorithms, they do not send packets in the central areas when these areas are

0
50

100
150
200
250
300
350
400
450
500

0.05 0.15 0.25 0.35

A
ve

ra
ge

 L
at

en
cy

 (c
yc

le
)

Injection Rate (flits/node/cycle)
(a)

AIOS
P-OE
P-MP
RR-OE
RR-MP

0
50

100
150
200
250
300
350
400
450
500

0.05 0.15 0.25 0.35

A
ve

ra
ge

 L
at

en
cy

 (c
yc

le
)

Injection Rate (flits/node/cycle)
(b)

AIOS
P-OE
P-MP
RR-OE
RR-MP

0
50

100
150
200
250
300
350
400

0.05 0.15 0.25 0.35

Av
er

ag
e

La
te

nc
y

(c
yc

le
)

Injection Rate (flits/node/cycle)
(a)

AIOS
P-OE
P-MP
RR-OE
RR-MP

0
50

100
150
200
250
300
350
400

0.05 0.15 0.25 0.35

A
ve

ra
ge

 L
at

en
cy

 (c
yc

le
)

Injection Rate (flits/node/cycle)
(b)

AIOS
P-OE
P-MP
RR-OE
RR-MP

Chapter 4 Adaptive On-Chip Router Architecture

75

congested and thus distribute the traffic over the rest of the chip area. This strategy reduces
the average delay of the packet transportation.

Fig. 4-14.The VOPD block diagram, with communication BW annotated (in MB/s) and its mapping onto
mesh topology.

Fig. 4-15. The performance of different algorithms under VOPD traffic model.

0

50

100

150

200

250

300
350

400

0.05 0.15 0.25 0.35

A
ve

ra
ge

 L
at

en
cy

 (c
yc

le
)

Injection Rate (flits/node/cycle)

AIOS
P-OE
P-MP
RR-OE
RR-MP

Chapter 4 Adaptive On-Chip Router Architecture

76

4.4.2 Power Dissipation
Using the simulator, the power dissipation of each scheme is calculated and compared
under the mixed traffic profile. The results for the average and the maximum power under
mixed traffic are shown in Fig. 4-16(a) and (b), respectively. Both average and maximum
power values are computed near the saturation point, 0.23 (flits/cycle), under mixed traffic.
We can notice that the maximum power, compared to other routers, is considerably lowered
in our proposed router. This is achieved by smoothly distributing the power consumption
over the network using the output selection scheme which reduces the number of the
hotspots and, hence, lowering the maximum power.

Fig. 4-16. (a) Average and (b) Maximum power dissipation results in 8×8 2D-mesh under mixed traffic

profile.

4.4.3 Hardware Overhead
To evaluate the area overhead of the presented model and demonstrate the
performance/area trade-off, RTL models of aforementioned routers have been implemented
with four different input-output selection schemes using VHDL. The routers were described
in VHDL and synthesized with Synopsys D.C. using the CMOS STMicroelectronic 65nm
technology. For all routers, the data width was set to 32 bits, and each input channel has a
buffer size of 10 flits. The FIFOs were implemented in our design using registers in order

0.173
0.179 0.182 0.180

0.174

0.1
0.11
0.12
0.13
0.14
0.15
0.16
0.17
0.18
0.19
0.2

P-OE RR-OE AIOS RR-MP P-MP

A
ve

ra
ge

 P
ow

er
 (W

)

(a)

0.226
0.212

0.194

0.245
0.237

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

P-OE RR-OE AIOS RR-MP P-MP

M
ax

im
um

 P
ow

er
 (W

)

(b)

Chapter 4 Adaptive On-Chip Router Architecture

77

to achieve better performance/power efficiency. We performed place-and-route via
Cadence SoC-Encounter for more accurate area estimation. Fig. 4-17 shows the area cost of
the switches. Comparing the area cost of AIOS with P-MP, P-OE, RR-MP and RR-OE
introduces 2.4%, 2.1%, 1.6% and 1.3% additional overhead respectively. A test chip with a
2×2 lightweight NoC based on the presented router architecture has been fabricated which
can be found in Appendix A.

Fig. 4-17. Area cost of routers for implementing different input-output selections.

4.5 Summary
In this chapter, a router architecture based on the adaptive input and output selection is
presented. The output selection of the presented router utilizes an adaptive routing
algorithm supporting both unicast and multicast traffic while the input selection part of the
router uses the weighted round robin arbitration. Also, the adaptive output selection
algorithm supporting both minimal and non-minimal paths uses congestion flags to route
packets through non-congested paths and consequently helps balance the traffic. The WRR
input selection also assists in relieving nodes where congestion is formed. A simulator was
used to evaluate the efficiency of the proposed router. Under the multicast, unicast, mixed,
and VOPD traffic models and in high flit injection rates, the proposed architecture has the
lowest average communication delay in comparison with the other router models. It also
reduces the maximum power dissipation of the network compared to other models under
mixed traffic model.

19601 19652 19755 19808
20088

18000

19000

20000

21000

P-MP P-OE RR-MP RR-OE AIOS

N
um

be
r o

f g
at

es

Chapter 4 Adaptive On-Chip Router Architecture

78

79

Chapter 5

5 Adaptive Network Interface
Architecture

NoCs are composed of routers connecting PEs, to deliver the data (packets) from one place
to another [94], and Network Interfaces (NI) acting as communication interfaces between
each PE and corresponding router. The fundamental function of network interfaces is to
provide data transaction between PEs and the network infrastructure. That is, one of the
practical approaches of network interfaces is to translate the protocol between the PE and
router based on a standard communication protocol such as AXI [13], OCP [14], and
DTL [15].
In MPSoCs, in-order delivery is a practical approach which should be handled when
exploiting an adaptive routing algorithm for distributing packets through the network [107],
when obtaining memory access parallelization by sending requests from a master IP core to
multiple slave memories [108] [109], or when exploiting dynamic memory access
scheduling in memory controller to reorder memory requests [110].
In this chapter, we present a memory-efficient on-chip network with adaptive interfaces not
only to cope with the in-order delivery but also to improve the network performance. The
key ideas are threefold.
1) The first idea is to deal with out-of-order handling in such a way that when a master

IP-core sends requests to different memories, the responses might be required to
return in the same order in which the master issued the addresses. Therefore, we
introduce an adaptive network interface architecture using a reordering mechanism
for the proposed on-chip network. In addition, resource utilization of reorder buffers,
implemented in network interfaces, is significantly inefficient, inasmuch as
conventional buffer management is not efficient enough for network resources. Thus,
a streamlined adaptive reordering mechanism via resourceful management of buffers
is implemented in the network interface.

2) As in traditional reordering mechanisms routers do not play any role in the reordering
procedure, employing routers in the reordering procedure is very useful to increase
utilization and reduce the average delay of on-chip networks. Thus, the second idea is

Chapter 5 Adaptive Network Interface Architecture

80

an on-chip router architecture, called priority-based router, which assigns a priority
value for each packet according to the sequence number and distance between source
and destination.

3) The third idea is a dynamic memory controller that is integrated into the proposed
network interface. The presented memory controller is able to reorder memory
requests adaptively to improve memory utilization and reduce both memory and
network latencies.

Based on the introduced network interface architecture, a hybrid network interface
architecture is designed to integrate both memory and processor in a tile. Furthermore, the
presented on-chip network exploits the AMBA AXI protocol to allow backward
compatibility with existing IP cores [13]. We also present micro-architectures of the
proposed ideas, particularly the reordering mechanism.

5.1 DRAM Structure
DRAM is designed to provide high memory depth and bandwidth. Fig. 5-1 shows a
simplified three dimensional architecture of an DRAM memory chip with the dimensions
of bank, row, and column [110] [113] [114]. A DRAM chip is composed of multiple
independent memory banks such that memory requests to different banks can be serviced in
parallel. Hence, a benefit of a multibank architecture is that commands to different banks
can be pipelined. Each bank is formed as a two dimensional array of DRAM cells that are
accessed an entire row at a time. Thus, a location in the DRAM is identified by an address
consisting of bank, row, and column fields. A complete DRAM access may require three
commands (transactions) in addition to the data transfer: bank precharge, row activation,
and column access (read/write). A bank precharge charges and prepares the bank, while a
row-activation command (with the bank and row address) is used to copy all data in the
selected row into the row buffer, i.e. sense amplifier. The row buffer serves as a cache to
reduce the latency of subsequent accesses to that row. Once a row is in the row buffer, then
column commands (read/write) can be issued to read/write data from/into the memory
addresses (columns) contained in the row. To prepare the bank for a next row activation
after completing the column accesses, the cached row must be written back to the bank
memory array by the precharge command [110]. Also, the timing constraints associated
with bank precharge, row activation, and column access are tRP, tRCD, and tCL
respectively [110] [113] [114]. Since the latency of a memory request depends on whether
the requested row is in the row buffer of a bank or not, a memory request could be a row
hit, row conflict, or row empty with different latencies [115]. A row hit occurs when a
request is accessing a row currently in the row buffer and only a read or a write command is
needed. It has the lowest bank access latency (tCL) as only a column access is required. A
row conflict occurs when the access is to a row different from the one currently in the row
buffer. The contents of the row buffer first need to be written back into the memory array
using the precharge command. Afterward, the required row should be opened and accessed

Chapter 5 Adaptive Network Interface Architecture

81

using the activation and read/write commands. The row conflict has the highest bank access
latency (tRP +tRCD +tCL). If the bank is closed (precharged) or there is no row in the row
buffer then a row empty occurs. An activation command should be issued to open the row
followed by read or write command(s). The bank access latency in this case is tRCD +tCL.

Fig. 5-1. High-level structure of an SDRAM.

5.1.1 Memory Access Scheduling
The memory controller lies between processors and the DRAM to generate the required
commands for each request and to schedule them on the DRAM buses. The memory
controller consists of a request table, request buffers, and a memory access scheduler. A
request table is used to store the state of each memory request, e.g. valid, address,
read/write, header pointer to the data buffer and any additional state necessary for memory
scheduling. The data of outstanding requests are stored in read and write buffers. The read
and write buffers (request buffers) are implemented as linked lists. Each memory request
(read and write) allocates an entry in its respective buffer until the request is completely

Chapter 5 Adaptive Network Interface Architecture

82

serviced. Among all pending memory requests, based on the state of the DRAM banks and
the timing constraints of the DRAM, the memory scheduler decides which DRAM
command should be issued. The average memory access latency can be reduced and the
memory bandwidth utilization can be improved if an efficient memory scheduler is
employed [110] [113] [114]. Fig. 5-2 reveals how the memory access scheduling affects the
performance. As shown in the figure, the sequence of four memory requests is considered.
Request 1 and 3 are row empties, and request 2 and 4 are row conflicts. Timing constraints
of a DDR2-512MB used as example throughout this chapter are 2-2-2 (tRP-tRCD-tCL) [116].
As depicted in Fig. 5-2(a), if the controller schedules the memory requests in-order, it will
take 22 memory cycles to complete them. In Fig. 5-2(b) the same four requests are
scheduled out-of-order. As can be seen, request 4 is scheduled before request 2 and 3 to
turn request 4 from a row conflict to a row hit. In addition, request 3 is pipelined after
request 1, called bank interleaving, since it has the different bank address from the bank
address of request 1. As a result, only 14 memory cycles are needed to complete the four
requests. Thus, how the memory scheduler can improve the memory performance has been
shown by this example where the memory utilization of the in-order scheduler and the out-
of-order are 4(data)/22(cycle) = 18% and 4/14= 29%, respectively. In this chapter, we
present an optimized memory controller that is integrated into the proposed network
interface to improve the memory utilization and reduce both memory and network
latencies.

Fig. 5-2. Memory access scheduling of four memory requests with (a) in-order and (b) out-of-order access
scheduling.

Chapter 5 Adaptive Network Interface Architecture

83

5.2 Related Work
Due to the fact that most of the recently published studies have focused on design and
description of NoC architectures, there has been relatively little attention to network
interface designs particularly when supporting out-of-order mechanisms [111]. The authors
in [108] present ideas of transaction ID renaming and distributed soft arbitration in the
context of distributed shared memories. In such a system, because of using global
synchronization in the on-chip network, the performance might be degraded and the cost of
hardware overhead for the on-chip network is too high. In addition, the implementation of
ID renaming and reorder buffer can suffer from low resource utilization. This idea has been
improved in [112] by moving reorder buffer resources from the network interface into
network routers. In spite of increasing the resource utilization, the delay of release packets
recalling data from distributed reordering buffer can significantly degrade the performance
when the size of the network increases [112]. Moreover, the proposed architecture is
restricted to deterministic routing algorithms, and thus, it is not a suitable method for an
adaptive routing. However, neither [104] nor [112] has presented a micro-architecture of
the network interface. An efficient on-chip network interface supporting shared memory
abstraction and flexible network configuration is presented by Radulescu et al. [109]. The
proposed architecture has the advantage of improving reuse of IP cores, and offers ordering
messages via channel implementation. Nevertheless, the performance is penalized because
of increasing latency, and besides, the packets are routed on the same path in the NoC,
which forces routers to use the deterministic routing. Yang et al. proposed NISAR [107], a
network interface architecture using the AXI protocol capable of packet reordering based
on a look up table; NISAR has been implemented under the assumption of fixed message
size and enjoys simple control logic and design. However such a mechanism would lead to
an inefficient use of network resources for applications that generate periodic variable-size
messages (burst mode). Moreover, NISAR suffers from several disadvantages described as
follows. First, it permits only a limited number of transaction IDs to send several packets to
the network so that some requests with different transaction IDs are prevented to be
serviced for a long period. Second, NISAR uses a statically partitioned reorder buffer
suffering from low resource utilization. Third, NISAR presented only a hybrid interface
where the master and slave IP-cores are integrated into a single node; however it imposes
significant hardware and delay overhead when the master and slave IP-cores are not
integrated into a single node.
In routers, the arbitration process is performed to choose one of multiple input channels to
access an output channel. The arbiter could follow either a non-priority or a priority
scheme. In the non-priority method, when there are multiple input port requests for the
same available output port, the arbiter uses the First-Come-First-Served (FCFS) [65], also
called First-In-First-Out (FIFO), or Round-Robin (RR) [97] policy to grant access to an
input port. In this way the starvation on a particular port is avoided (fair). On the other
hand, in the priority method when there are multiple input port requests for the same
available output port, the arbiter would grant access to the input port request which has the
highest priority level [95]. The problem with the priority method is that starvation could

Chapter 5 Adaptive Network Interface Architecture

84

occur (unfair). In this chapter, we introduce a fair priority-based router to improve the
network performance with low hardware overhead.
Regarding the memory scheduler, several memory scheduling mechanisms were presented
to improve the memory utilization and to reduce the memory latency. The key idea of these
mechanisms is on the scheduler for reordering memory accesses. The memory access
scheduler proposed in [110] reorders memory accesses to achieve high bandwidth and low
average latency. In this scheme, called bank-first scheduling, memory accesses to different
banks are issued before those to the same bank. Shao et al. [134] proposed the burst
scheduling mechanism based on the row-first scheduling scheme. In this scheme, memory
requests that might access the same row within a bank are formed as a group to be issued
sequentially, i.e. as a burst. Increasing the row hit rate and maximizing the memory data
bus utilization are the major design goals of burst scheduling. The core-aware memory
scheduler reveals that it is reasonable to schedule the requests by taking into consideration
the source of the requests because the requests from the same source exhibit better
locality [114]. In [113], the authors introduced an SDRAM-aware router to send one of the
competing packets toward an SDRAM using a priority-based arbitration. An adaptive
history-based memory scheduler which tracks the access patterns of recently scheduled
accesses and selects memory accesses matching the pattern of requests is proposed in [135]
and [136]. As NoCs are strongly emerging as a communication platform for chip-
multiprocessors, the major limitation of presented memory scheduling mechanisms is that
none of them did take the order of the memory requests into consideration. As discussed
earlier, requests with the same transaction ID from the same master must be completed
(turn back) in-order. While requests would be issued out-of-order in memories (slave-
sides), the average network latency might be increased significantly due to the out-of-order
mechanism in master sides. Therefore, it is necessary to consider the order of memory
requests for making an optimal memory scheduling.
The major contribution of this chapter is to propose an adaptive network interface
architecture within a dynamic buffer allocation mechanism for the reorder buffer to
increase the utilization and overall performance. That is, using dynamic buffer allocation to
get more free slots in the reorder buffer may lead more messages to be entered to the
network. On top of that, an efficient memory scheduler mechanism based on the order of
requests is introduced and integrated in our network interface to diminish both the memory
and network latencies. We also present a novel router architecture for incorporating
network resources to help in serializing the packets while they progress towards their
destinations.

5.3 Proposed Network Interface Architecture
Since IP cores are classified into masters and slaves, the network interface is also divided
into the master network interface (Fig. 5-3) and slave network interface (Fig. 5-4). Both
network interfaces are partitioned into two paths: forward and reverse. The forward path
transmits the AXI transactions received from an IP core to a router; and the reverse path

Chapter 5 Adaptive Network Interface Architecture

85

receives the packets from the router and converts them to AXI transactions. The proposed
network interfaces for both master and slave sides are described in detail as follows.

Fig. 5-3. Master-side network interface architecture.

Fig. 5-4. Slave-side network interface architecture.

5.3.1 Master-side Network Interface
As shown in Fig. 5-3, the forward path of the master network interface transferring requests
to the network is composed of an AXI-Queue, a Packetizer unit, and a Reorder unit, while
the reverse path, receiving the responses from the network, is composed by a Packet-

Chapter 5 Adaptive Network Interface Architecture

86

Queue, a Depacketizer unit, and the Reorder unit. The Reorder unit is a shared module
between the forward and reverse paths.
AXI-Queue: the AXI master transmits write address, write data, or read address to the
network interface through channels. The AXI-Queue unit performs the arbitration between
write and read transaction channels and stores requests in either write or read request
buffer. The request messages are sent to the packetizer unit if admitted by the reorder unit,
and on top of that a sequence number (SN) for each request should be prepared by the
reorder unit after the admittance.
Packetizer: it converts incoming messages from the AXI-Queue unit into header and data
flits, and delivers the produced flits to the router. Since a message is composed of several
parts, the data is stored in the data buffer and the rest of the message is loaded in
corresponding registers of the header builder unit. After the mapping unit converts the AXI
address into a network address by using an address decoder, based on the request
information loaded on related registers and the sequence number provided by the reorder
buffer, the header of the packet can be assembled. Afterward, the flit controller wraps up
the packet for transmission.
Packet-Queue: this unit receives packets from the router; and according to the decision of
the reorder unit a packet is delivered to the depacketizer unit or reorder buffer. In fact,
when a new packet arrives, the sequence number and transaction ID of the packet are sent
to the reorder unit. Based on the decision of the reorder unit, if the packet is out-of-order, it
is transmitted to the reorder buffer, and otherwise it is delivered to the depacketizer unit
directly.
Depacketizer: the main functionality of the Depacketizer unit is to restore packets coming
from either the packet queue unit or reorder buffer into the original data format of the AXI
master core.
Reorder unit: it is the most influential part of the network interface including a Status-
Table, a Reorder-Buffer, and a Reorder-Table. In the forward path, preparing the sequence
number for corresponding transaction ID and avoiding overflow of the reorder buffer (by
an admittance mechanism), are provided by this unit. On the other side, in the reverse path,
this unit determines where the outstanding packets from the packet queue should be
transmitted (reorder buffer or depacketizer), and when the packets in the reorder buffer
should be released to the depacketizer unit.
Status-Table: the state of outstanding messages is kept in a table named Status-Table. The
Status-Table has n entries where each entry corresponds to a transaction ID and n is the
number of AXI transaction IDs. Each entry contains the information of outstanding
messages associated with that transaction ID and includes NM, ES, and LMS fields. The
NM (Number of outstanding Messages) field reveals that how many messages of the given
T-ID are inside the network. This value is incremented when a new message with the same
T-ID enters the network, and is decremented when the response message comes back to the
master core. The ES (Expecting Sequence number) field points out the sequence number of
the message expected to be delivered to the master core.

Chapter 5 Adaptive Network Interface Architecture

87

Fig. 5-5. Status-Table of the reorder unit.

As the master core expects to receive the first message first, the ES field is set to 0 at the
initialization time and it is increased by receiving in-order messages. As already mentioned,
each message has a sequence number (SN) indicating the order of the message within the
transaction ID. This value is produced by the reorder unit, if the admittance is given.
Finally, the LMS field defines the reserved buffer space for the last message. The Status-
Table might be updated in both forward and reverse paths described as follows. Suppose
that in the forward path, the first message of a transaction ID requests to enter the network.
The corresponding row of the transaction ID is initiated such that the NM, ES and LMS
fields are set to 1, 0, and the message size, respectively, and the value of SN is initialized to
0. However, as no ordering mechanism is required for a single outstanding message of the
given transaction ID, no buffer space needs to be reserved for this message (Procedure A,
Fig. 5-5(a)). For the second (or the rest of) admitted requests of the given transaction ID,
the NM field is increased by +1, the ES field remains unchanged, and the LMS field is set to
the required buffer size of the new message. Subsequently, the value of SN is obtained by
adding the values of NM and ES. Since more than one message with the same transaction
ID is issued (NM 2), the out-of-order handling mechanism is required. Therefore, in order
to prevent overflow of the reorder buffer, the buffer space required by the new message is
compared with the available space of the reorder buffer. If there is enough space for the
new message (MsgSize), the required space is allocated in the reorder buffer (Procedure B,
Fig. 5-5(b)). The RsrvSize indicates the required space of all outstanding transactions in the
network. Indeed, this register reserves the number of buffer slots required by outstanding
messages of different transaction IDs.
Procedure A:(sending first msg. of T_ID to network)
1 S_Table(T_ID)(NM) <= “0001”;
2 S_Table(T_ID)(ES) <= (others =>’0’);
3 S_Table(T_ID)(LMS) <= MsgSize;
4 SN <= (others =>’0’);
5 RsrvSize <= RsrvSize;

Chapter 5 Adaptive Network Interface Architecture

88

Procedure B:(sending other msgs. of T_ID to network)
1 S_Table(T_ID)(NM) <= S_Table(T_ID)(NM) + 1;
2 S_Table(T_ID)(ES) <= S_Table(T_ID)(ES);
3 S_Table(T_ID)(LMS) <= MsgSize;
4 SN <= S_Table(T_ID)(NM) + S_Table(T_ID)(ES);
5 RsrvSize <= RsrvSize + MsgSize;

In the reverse path, the transaction ID and sequence number of the arriving response
message are sent to the reorder unit to find the related row in the Status-Table. In the
corresponding row of the transaction ID, if the sequence number of the incoming packet is
equal to the value of ES, the packet is an expected packet (in-order) and it should be
delivered to the depacketizer unit. Thereafter, the received message size (RecvMsgSize) is
reduced from the RsrvSize, and the values of ES and NM are added by +1 and -1,
respectively (Procedure C, Fig. 5-5(c)). However, if the sequence number of the packet is
not equal to the value of ES, the packet is out-of-order and should be delivered to the
reorder buffer. In case that the message is delivered to the depacketizer unit and the value
of NM becomes 1, the reserved buffer space for the last message (i.e. LMS) can be
deallocated. If the value of NM reaches 0, the transaction is terminated (Procedure D,
Fig. 5-5(d)).

Procedure C: (arriving expected packet)
1 S_Table(T_ID)(NM) <= S_Table(T_ID)(NM) - 1;
2 S_Table(T_ID)(ES) <= S_Table(T_ID)(ES) + 1;
3 S_Table(T_ID)(LMS) <= S_Table(T_ID)(LMS);
4 RsrvSize <= IF NM/=1 THEN RsrvSize – RecvMsgSize;
 ELSE RsrvSize – RecvMsgSize - LMS;

Procedure D: (arriving last packet)
1 S_Table(T_ID)(NM) <= S_Table(T_ID)(NM) - 1;
2 S_Table(T_ID)(ES) <= (others =>’0’);
3 S_Table(T_ID)(LMS) <= (others =>’0’);
4 RsrvSize <= RsrvSize;

Reorder-Table and Reorder-Buffer: As shown in Fig. 5-6, each row of the Reorder-
Table corresponds to an out-of-order packet stored in the Reorder-Buffer. This table
includes the valid tag (v), the transaction ID (T-ID), the sequence number (SN) as well as
the head pointer (P). In the Reorder-Buffer, the flits of each packet are maintained by a
linked list structure providing high resource efficiency with a little hardware overhead. On
top of that, the goal of using the shared Reorder-Buffer is to support variable packet sizes
and improve the buffer utilization which can also increase the performance by feeding more
packets into the network. Fig. 5-6 exhibits a pointer field adopted to indicate the next flit
position in the Reorder-Buffer. Using the proposed structure in Fig. 5-6, each out-of-order
packet updates the Reorder-Table and Reorder-Buffer according to the procedure E and F.

Chapter 5 Adaptive Network Interface Architecture

89

Procedure E: (updating Reorder-Table)
1 ReorderTable(FreeRow)(V) <= ‘1’;
2 ReorderTable(FreeRow)(T-ID) <= HeaderFlit(T-ID);
3 ReorderTable(FreeRow)(SN) <= HeaderFlit(SN);
4 ReorderTable(FreeRow)(P) <= Current_Free_Slot;

The first three operations in the procedure E, stores the transaction ID and sequence
number from the header flit of the out-of-order packet to the available slot indicated by
FreeRow in the Reorder-Table; and the last operation in the procedure E updates the pointer
to point to the available slot in the Reorder-Buffer.

Procedure F: (updating Reorder-Buffer)
1 ReorderBuf(Current_Free_Slot)(V) <= ‘1’;
2 ReorderBuf(Current_Free_Slot)(Data) <= flit;
3 ReorderBuf(Current_Free_Slot)(P) <= Next_Free_Slot;
4 Current_Free_Slot <= Next_Free_Slot;

The procedure F is intended to store the incoming flits into the Reorder-Buffer. While
Current_Free_Slot shows the current free location in the Reorder-Buffer to store the
current flit, Next_Free_Slot returns an available slot for the next flit. By repeating the
operations in the procedure F, all the payload flits are stored in the Reorder-Buffer. The tail
flit can be determined by extracting header flit information. Whenever an in-order packet
delivered to the depacketizer unit, the depacketizer controller checks the Reorder-Table for
the validity of any stored packet with the same transaction ID and next sequence number. If
so, the stored packet(s) is (are) released from the reorder unit to the depacketizer unit.

Fig. 5-6. Dynamic buffer allocation.

If master cores, slave cores, and the network operate at different frequencies, bi-
synchronous FIFOs are deployed between network interfaces and cores. Bi-synchronous
FIFOs are widely used in multi-clock systems to synchronize signals from different

Chapter 5 Adaptive Network Interface Architecture

90

clock/frequency domains. Each domain is synchronous to its own clock signal but can be
asynchronous with respect to others in either clock frequency or phase [117]. The
challenges of designing bi-synchronous FIFOs include the enhancement of reliability and
reducing latency and power/area cost. We identify the bi-synchronous FIFOs structure
presented in [118] suitable to be used in the interfaces.

5.3.2 Slave-side Network Interface
A slave IP core cannot operate independently. It receives requests from master cores and
responds to them. Hence, using reordering mechanism in the slave network interface is
completely meaningless. To avoid losing the order of header information (transaction ID,
sequence number, and etc.) carried by arriving requests, a FIFO has been considered. After
processing a request in the slave core, the response packet should be created by the
packetizer. As can be seen from Fig. 5-4, to generate the response packet, after the header
content of the corresponding request is invoked from the FIFO, and some parameters of the
header (destination address, and packet size, and etc) are modified by the adapter, the
response packet can be formed. However, the components of slave-side interface in both
forward and reverse paths are similar to the master-side interface components, except the
reorder unit.

Depacketizer

Packetizer

Reorder Unit

Packet-Queue

Ctrl

Detector

Ctrl

Packet Buffer

Ctrl Bits
Read Addr
Write Addr
Write Data

Write Req
Read Req

Write Resp
Read Data

Read Resp
Write Resp

Header Builder

Data Builder

Header Register

Header FIFO

Ctrl

Adapter

Flit Ctrl

AXI Write Addr

AXI Read Addr

AXI Write Data

AXI Read Data

AXI Write Resp

AXI Write Resp

AXI Read Data

AXI Write Addr

AXI Read Addr

AXI Write Data

Req

Resp

Req

Resp

AXI-Queue Ctrl

Ctrl

Ctrl
Ctrl

Depacketizer

AXI-Queue

Fig. 5-7. Hybrid network interface architecture.

5.3.3 Hybrid Network Interface
The hybrid model is formed by combining the master-side and slave-side network
interfaces. As illustrated in Fig. 5-7, based on the type of incoming packet (Req/Resp) the
detector unit determines the target unit (Slave-side Queue/Master-side Queue). Regarding
the MPSoC’s configuration, if each node is supposed to integrate a dedicated processor and

Chapter 5 Adaptive Network Interface Architecture

91

memory, instead of using two network interfaces (master and slave), the hybrid model is
more beneficial, particularly in terms of area and power costs. This architecture also
prevents the local requests to enter the network such that local requests can access the local
memory directly. A round-robin arbitration scheme is used between the local requests and
global requests coming from the network.

5.4 Priority-based Router Architecture
In this part, we present a novel method for incorporating network resources in serializing
the packets while they traverse inside the network. Fig. 5-8 shows a 4×4 tile architecture
where the master core 0 accesses three memory modules 6, 13 and 15. Assume that the
master core generates three requests, A, B and C, with a same transaction ID and sends
request A to memory 15, request B to memory 13 and request C to memory 6. Due to the
in-order requirement of the AXI protocol, response A needs to be delivered to the master
core first and then responses B and C, respectively. For simplicity, we assume that the
memory modules return responses with zero latency and we also assume that a round-robin
arbiter is used in each router such that on average three cycles are needed for a packet to
win arbitration in a router.

Fig. 5-8. 4×4 NoC where master core 0 sends requests A, B and C to memories 6, 13 and 15, respectively.

As shown in Fig. 5-9(a), the master network interface sends requests A, B and C at time 0
to the network. According to the proposed network interface architecture, buffer space
should be reserved for requests B and C. By considering three cycles waiting time at each
router, requests C and B access the memory modules 6 and 13, respectively, at cycles 9 and
12. At cycle 18, request A accesses the memory 15 and meanwhile the response C reaches
the master network interface. Response C cannot be served by the master core before
responses A and B, so it has to be stored in the reorder buffer. At cycle 24, response B is
received by the master network interface and stored in the reorder buffer as it cannot be
served earlier than response A. Response A is received by the master network interface at

Chapter 5 Adaptive Network Interface Architecture

92

time 36 and it can be sent directly to the master core. Finally, the stored responses B and C
are released from the reorder buffer and delivered to the master core at cycles 37 and 38,
respectively. However, when response B is delivered to the master core, the allocated
buffer space for both requests B and C is released.
The idea behind our method is to give better chance to the long-distance packets with low
ordering values to win arbitration in routers. By this approach, in the same example as
Fig. 5-9(a) the number of waiting times of request A in arbitration phases is probably less
than that of requests B and C (similarly the number of waiting cycles of request B is
probably less than request C). The possibility of benefits from the idea of priority-based
router can be found in the case of Fig. 5-9(b) in which the requests experience different
waiting periods at routers and they are supposed to be 1.5, 3 and 6 cycles for requests A, B
and C, respectively (these values are chosen such that the results could be compared with
the example shown in Fig. 5-9(a)).

Fig. 5-9. Comparing (a) round-robin and (b) priority-based arbitration schemes in serializing the packets.

As illustrated in Fig. 5-9(b), requests A and B access their memories at cycles 9 and 12,
respectively. At cycle 18, request C accesses the memory while response A is received by
the master network interface. Since response A is arrived in-order, it can be served
immediately and delivered to the master core. At cycle 24, response B can also be directly
sent to the master core. Upon arrival of this response not only the required space for request
B is released but also the reserved buffer space for request C is released. Finally, the
response C reaches the master network interface at cycle 36 and it is delivered to the master
core directly. According to the examples in Fig. 5-9(a) and Fig. 5-9(b), latencies can be
considerably reduced by applying the idea of priority-based router, i.e. in Fig. 5-9(b)
responses A, B and C are delivered to the master core at cycles 18, 24 and 36 which are
earlier than in Fig. 5-9(a) where responses are served at cycles 36, 37 and 38, respectively.
This reduction is mainly from the fact that responses arrive at the master network interface
in-order, and thus can be served immediately. Another advantage of using priority-based

Chapter 5 Adaptive Network Interface Architecture

93

router is that the corresponding reserved buffer space in the reorder buffer can be released
sooner as the responses are mainly reaching the master network interface in-order, i.e. in
Fig. 5-9(b) the reserved buffer space for requests B and C are released at cycle 24 while in
Fig. 5-9(a) they are freed at cycle 37. The idea of priority-based router can further improve
the performance by allowing more pending requests to enter the network, thereby reducing
the overall latencies of packets.

North Port

East Port

South Port

West Port

Local Port

Credit_out
IC - North

IC - East

IC - Local

IC - West

Credit_inVC Allocator

Requests Buffer
Flits in

Input Channel (IC)

IC - South

Responses Buffer

Credit_out
VC-ID

Switch Allocator

Credit_out

Credit_out

Credit_out

Credit_out

Crossbar
Switch

Routing Unit
VC Controller

Fig. 5-10. The router architecture.

5.4.1 The Proposed Priority-based Router
The architecture of the priority-based router (PR), depicted in Fig. 5-10, has a typical state-
of-the-art structure including input buffers, a VC (Virtual Channel) allocator, a routing unit,
a switch allocator and a crossbar. Each router has 5 input/output ports, and each input port
of the router has 2 VCs. Packets of different message types (request and response) are
assigned to corresponding VCs to avoid message dependency deadlock [119]. The
arbitration scheme of the switch allocator in the typical router (TR) structure is round-robin.
The round-robin scheme is a fair policy when all packets have the same priority; otherwise
priority-based methods are more beneficial. As already mentioned, each packet is assigned
a sequence number and packets might be returned back out-of-order due to the different
path length and different memory response time. The priority-based router assigns a

Chapter 5 Adaptive Network Interface Architecture

94

priority to each packet such that long-distance packets with low sequence numbers have
better chance to win the arbitration in routers. Accordingly, the packet priority is computed
by summing up two values. The first one is the distance the packet must traverse between
the master and slave while the second one is obtained by subtracting the MaxSeqNum value
(the maximum sequence number value that can be generated by the network interface) from
the PacketSeqNum value (packet sequence number). The result is stored in the packet’s
header and used by router arbiters. By using the priority-based router, packets can proceed
inside the network with different speeds according to their priority values.

Fig. 5-11. Pseudo VHDL code of the priority-based router.

Fig. 5-11 shows the algorithm in which the process, Find_MaxPriority, is activated when
the output channel is available and there are multiple messages. It examines all messages
and the priority value of the corresponding input packets and grants a message with the
highest priority value. In order to prevent starvation, each time after finding the highest
value, the priorities of defeated packets are incremented.

5.5 Order Sensitive Memory Scheduler
The architecture of the proposed memory controller, dubbed OS from Order Sensitive, is
depicted in Fig. 5-12. As illustrated in the figure, the proposed memory controller is
integrated in the slave-side network interface. After arriving to the network interface on the
edge of the network, requests are stored in the respective queues based on their target
banks. The data associated with write requests is stored in the write queue. The queues are
implemented as the linked list structure which has been described earlier. Depending on the
sequence number, received requests in each bank queue obtain a priority value to access the

i : i(th) input channel
P(i) : priority value of i(th) input channel
 = (MaxSeqNum – PacketSeqNum + Distance)
WP(i): waiting periods + P(i)

process Find_MaxPriority is
begin
 MaxValue <= 0;
 for ‘i=0 to all Reqs in the output port’ loop
 if Req is a new packet then
 WP(i) <= P(i);
 else
 WP(i) <= WP(i) + 1;
 end if;
 if WP(i) > MaxValue then
 MaxValue <= WP(i);
 select <= i;
 end if;
 end loop;
end process;

Chapter 5 Adaptive Network Interface Architecture

95

memory. Here we have the same scenario as in the priority-based router. The priority value
of each packet is based on the sequence number, which helps to deliver the packets to the
master network interface in-order such that the corresponding reserved buffer space in the
reorder buffer can be released sooner.

Fig. 5-12. The proposed memory controller integrated in the slave-side network interface.

Once a new request enters a queue, the process input_queue, shown in Fig. 5-13, updates
the priority value of each request in the queue. The packet’s sequence number of received
request is assigned as a priority value for this request. In addition, to prevent starvation, the
priority values of existing requests in the queue are incremented at every input_queue
event. As mentioned earlier, each bank arbiter selects a request from the queue with the
highest priority value based on the bank timing constraints as the first level of scheduling
procedure. Since the row-first policy has better memory utilization in comparison with the
other bank arbitration policies, the bank arbiters of the presented memory controller also
takes advantage of the row-first policy. The bank arbitration policy in our memory
controller is shown in Fig. 5-13. Whenever the arbiter process is activated, it tries to find a
request which is a row hit and has a higher priority value. If there are not any row hits, the
bank arbiter selects the highest priority request which is a row conflict from the queue and
issues the SDRAM commands to service the selected request. Fig. 5-14 depicts the circuit
of finding the suitable request in the request buffer which is described in the arbiter process
of Fig. 5-13. In the second level of the scheduling procedure, at each memory cycle the
memory scheduler decides which request from all bank arbiters should be issued. To
simplify the hardware implementation and provide the bank interleaving, round-robin
mechanism is utilized by the memory scheduler.

Chapter 5 Adaptive Network Interface Architecture

96

Fig. 5-13. Pseudo VHDL code of the arbiter in the memory controller.

5.6 Experimental Results
In this section, we evaluate the proposed on-chip network architecture in terms of average
network latency, memory latency, and memory utilization compared with the baseline
architecture under different traffic patterns. Also, we discuss the area and power

[1] RA(i) : row address of i(th) request.
[2] CRA : current row address issued prior.
[3] P(i) : priority value of i(th) request
[4] =(MaxSeqNum – PacketSeqNum)
[5] W(i) : waiting periods + prioriy
[6] of i(th) request in the queue.
[7] ----------------
[8] Process(input_queue)
[9] Begin
[10] For ‘i:1 to number of Reqs in input queue’ loop
[11] If Req is a new packet then
[12] W(i) <= P(i);
[13] Else
[14] W(i) <= W(i)+1;
[15] End if;
[16] End loop;
[17] End process;
[18] ----------------
[19] Process(arbiter)
[20] Begin
[21] MaxValue1 <=0; select1 <=0;
[22] MaxValue2 <=0; select2 <=0;
[23] For ‘i:1 to all requests in input queue’ loop
[24] If RA(i)= CRA then
[25] If W(i)>= MaxValue1 then
[26] select1 <= i;
[27] MaxValue1 <= W(i);
[28] End if;
[29] Else
[30] If W(i)>= MaxValue2 then
[31] select2 <= i;
[32] MaxValue2 <= W(i);
[33] End if;
[34] End if;
[35] End loop;
[36] If select1 /= 0 then
[37] select <= select1;
[38] Else
[39] select <= select2;
[40] End if;
[41]End process;

Chapter 5 Adaptive Network Interface Architecture

97

consumption of the proposed NoC components: network interface, priority-based router,
and order sensitive memory scheduler. Consequently, a 2D NoC simulator is implemented
with VHDL to model all major components of the NoC.

Fig. 5-14. Request selector circuit.

5.6.1 System Configuration
We use a 25-node (5 5) 2D mesh on-chip network with two different configurations for the
entire architecture. In the first configuration (A), illustrated in Fig. 5-15, out of 25 nodes, 10
nodes are assumed to be processors (master cores, connected by master NIs) and remaining
15 nodes are memories (slave cores, connected by slave NIs). For the second configuration
(B), each node is considered to have a processor and a memory (master and slave cores,
connected by a hybrid NI). The processors are 32b-AXI and the memories specified in
subsection 5.1, are DDR2-256MB (tRP-tRCD-tCL=2-2-2, 32b, 4 banks) [116]. We assume that
the memories are integrated on a separate die which is stacked on top of the processor
layer [35] [120] [121]. Inasmuch as the memories are now stacked on top of the processors
layer, the front-side bus and memory controller operate at the same speed as the processors.
The timing of each stacked DRAM module is still the same as in a traditional DRAM
memory (tCAS, tRAS, etc. are unchanged) [35] [120] [121]. We adopt a commercial memory
controller with memory interface, DDR2SPA module from Gaisler ip-cores [122]. Along
with the proposed order sensitive (OS) memory scheduler, another memory scheduler with
row-first (RF) policy is also implemented as the default scheduler for the memory
controller. The network of each configuration that has been considered for experimental
results is formed either by Typical Router (TR) or by Priority-based Routers (PR).

Chapter 5 Adaptive Network Interface Architecture

98

Fig. 5-15. The layout of the system configuration A.

The array size, routing algorithm, link width, number of VCs, buffer depth of each VC, and
traffic type are the other parameters which must be specified for the simulator. The routers
adopt the XY routing algorithm [64] [60] and utilize wormhole switching. For all routers,
the data width (flit size) is set to 32 bits, and the buffer depth of each VC to 5 flits. Message
structures for the AXI protocol are defined in [109] [115]. For the request, the command and
all its control bits (flags) are included in the first flit of the packet, the memory address is
set in the second flit, and the write data (in the case of a write command) is appended at the
end. For the response message, the control bits are included in the first flit while the read
data is appended at the end if the response relates to a read request. Hence, the packet
length for write responses and read requests is 1 flit and 2 flits, respectively, while the
packet length for data messages, representative of read responses and write requests, is
variable and depends on the write request/read response length (burst size) produced by a
master/slave core. As a performance metric, we use latency defined as the number of cycles
between the initiation of a request operation issued by a master (processor) and the time
when the response is completely delivered to the master from the slave (memory). The
request rate is defined as the ratio of the successful read/write request injections into the
network interface over the total number of injection attempts. All the cores and routers are
assumed to operate at 1GHz; and for fair comparison, we keep the bisection bandwidth
constant in all configurations. All memories (slave cores) can be accessed simultaneously
by each master core continuously generating memory requests. Furthermore, the size of
each queue (and FIFO) in the network is set to 8×32 bits and the size of the reorder buffer
is set to 48 words. If the maximum burst size is set to 8, the baseline architecture utilizing a
statically partitioned reorder buffer [107] can support at most 6 outstanding read requests in
a 48-word reorder buffer (regardless of the exact size of the requests), while the proposed
approach is able to embed as many requests as can be reserved in the reorder buffer, i.e. at
most 48 and at least 6 outstanding read requests.

Chapter 5 Adaptive Network Interface Architecture

99

5.6.2 Performance Evaluation
To evaluate the performance of the proposed schemes, uniform and non-uniform/localized
synthetic traffic patterns are considered separately for both configurations (A and B). These
workloads provide insight into the strengths and weaknesses of the different buffer
management mechanisms in the interconnection networks, and we expect applications
stand between these two synthetic traffic patterns [123] [124]. The random traffic represents
the most generic case, where each processor sends in-order read/write requests to memories
with a uniform probability. Hence, the target memory and request type (read or write) are
selected randomly. Eight burst sizes, from 1 to 8, are stochastically chosen according to the
data length of the request. In the non-uniform mode, 70% of the traffic is local requests,
where the destination memory is one hop away from the master core, and the rest 30% of
the traffic is uniformly distributed to the non-local memory modules. We also consider the
hotspot traffic pattern where four memory nodes are chosen as hotspots receiving an extra
portion of the traffic (10%) in addition to the regular uniform traffic [64] [60]. For the
uniform and hotspot traffic profiles, we obtained very similar performance gains in each
configuration so that they are not presented.

Fig. 5-16. Performance evaluation of both configurations under (a) uniform and (b) non-uniform traffic models.

Fig. 5-17. Performance impact of using the priority-based router under the (a) uniform and (b) non-uniform

traffic models.

0

50

100

150

200

250

300

350

0 0.2 0.4 0.6 0.8 1

Av
er

ag
e

La
te

nc
y

(c
yc

le
)

Request Rate (fraction of capacity)
(a)

Baseline (config A)
MS - TR (config A)
Baseline (config B)
H - TR (config B)

0

50

100

150

200

250

300

350

0 0.2 0.4 0.6 0.8 1

A
ve

ra
ge

 L
at

en
cy

 (c
yc

le
)

Request Rate (fraction of capacity)
(b)

Baseline (config A)
MS - TR (config A)
Baseline (config B)
H - TR (config B)

0

50

100

150

200

250

300

350

0 0.2 0.4 0.6 0.8 1

A
ve

ra
ge

 L
at

en
cy

 (c
yc

le
)

Request Rate (fraction of capacity)
(a)

MS - TR (config A)
MS - PR (config A)
H - TR (config B)
H - PR (config B)

0

50

100

150

200

250

300

350

0 0.2 0.4 0.6 0.8 1

A
ve

ra
ge

 L
at

en
cy

 (c
yc

le
)

Request Rate (fraction of capacity)
(b)

MS - TR (config A)
MS - PR (config A)
H - TR (config B)
H - PR (config B)

Chapter 5 Adaptive Network Interface Architecture

100

Fig. 5-18. Performance impact of using the order sensitive memory controller under the (a) uniform and (b)

non-uniform traffic models.

Fig. 5-16(a) and (b) show the simulation results under the uniform and non-uniform traffic
models, respectively. In each configuration, the on-chip network utilizing the proposed
network interface, denoted by MS (Master/Slave NI) and H (Hybrid NI), is compared with
the network equipped with the baseline network interface. As demonstrated in both figures,
compared with the baseline architecture, the NoC using the proposed network interface
reduces the average latency when the request rate increases under the uniform and non-
uniform traffic models. The foremost reason for such an improvement is due to employing
the shared reorder buffer in the network interface which allows more messages to enter the
network, i.e. this leads more requests to be released from the injection queue.
Regarding the configuration B, using the master-side and slave-side network interfaces
instead of the hybrid network interface when each node is composed of a dedicated
processor and memory gives a better performance but as discussed in the next subsection it
is not a cost efficient approach. The Hybrid structure deteriorates the performance because
the buffer resources are shared. However, the performance given by the hybrid structure
close to the saturation point is around 34% and 18% less than the other structure under the
uniform and non-uniform traffic models, respectively. The performance penalty under the
non-uniform traffic model is not significant compared to the uniform traffic model because
the hybrid network interface allows the local requests to access the local memory directly.
Fig. 5-17(a) and (b) depicts the performance gain of the presented priority-based router
architecture under uniform and non-uniform traffic models, respectively. In each
configuration the network formed by the priority-based routers (PR) reduces the average
latency as compared with the network formed by typical routers (TR). The performance
gain near the saturation point (0.6) under the uniform traffic model for configuration A and
B is about 15% and 13%, respectively, while the hardware overhead of this router is less
than 2% in comparison with the typical router. This reveals that giving priority to packets
according to their sequence number and remaining distance helps to deliver the packets to
the master network interface in-order. Therefore, the corresponding reserved buffer space
in the reorder buffer can be released sooner and master cores can receive responses earlier
than using the typical routers.

0

50

100

150

200

250

300

350

0 0.2 0.4 0.6 0.8 1

Av
er

ag
e

La
te

nc
y

(c
yc

le
)

Request Rate (fraction of capacity)
(a)

MS - TR/RF (config A)
MS - TR/OS (config A)
H - TR/RF (config B)
H - TR/OS (config B)

0

50

100

150

200

250

300

350

0 0.2 0.4 0.6 0.8 1

Av
er

ag
e

La
te

nc
y

(c
yc

le
)

Request Rate (fraction of capacity)
(b)

MS - TR/RF (config A)
MS - TR/OS (config A)
H - TR/RF (config B)
H - TR/OS (config B)

Chapter 5 Adaptive Network Interface Architecture

101

Fig. 5-19. Effect of reorder buffer size on the performance under the uniform traffic model.

To explore the impact of the proposed Order Sensitive (OS) memory scheduler, we
compare the network equipped with the OS scheduler with the one using the default
scheduler (Row-First (RF)) where both networks are formed by the typical routers.
Fig. 5-18(a) and (b) present the performance comparison between the two networks for
each configuration under the uniform and non-uniform traffic models. Compared with the
RF scheme, the network utilizing OS scheduler gives significant improvements in average
network latency. The performance gain of the OS scheduler close to the saturation rate
under the uniform traffic model for configuration A and B is up to 17% and 16%,
respectively. The average memory utilization and average memory latency are also
computed near the saturation rate under the uniform traffic profile for the configuration A.
According to our observation, at least half of the request buffers of each memory controller
are occupied under the uniform traffic model with the given injection rate, which keeps the
memory controller busy all the time. As a result, compared with the RF scheme, the
average utilization of memories is improved by 22% while the average memory latency is
reduced by 19%. Compared with RF, the hardware overhead of the OS scheme is negligible
since both of them have similar request and data queues, buffer management, and bank
interleaving arbiter. In addition, near the saturation rate under the uniform traffic profile for
the configuration A the number of average and maximum buffer occupancy of reorder
buffers is around 70% and above 90%, respectively. The number of average and maximum
outstanding messages in the system is around 160 and 230, respectively.
We also vary the reorder buffer size to show how relative reorder buffer size affects the
performance. Fig. 5-19 illustrates the average network latency of both configurations near
the saturation point (0.6) under the uniform traffic profile. It reveals that as the reorder
buffer size increases, the average network latency reduces. Given the same reorder buffer
size, the proposed network interface achieves better performance gain, e.g. when the
reorder buffer size is 48, the performance gain for the configuration A and B is up to 16%
and 21%, respectively. The proposed scheme not only achieves significant performance
gain but also enables reducing the area overhead of reorder buffer by more than 60%. For
instance, the proposed scheme in the configuration A with a reorder buffer size of 32 offers
a better performance than a reorder buffer size of 80 in the baseline method.

50

100

150

200

250

300

350

400

0 16 32 48 64 80 96

A
ve

ra
ge

 L
at

en
cy

 (c
yc

le
)

Reorder Buffer Size (word)

Baseline (config A)
MS - TR (config A)
Baseline (config B)
H - TR (config B)

Chapter 5 Adaptive Network Interface Architecture

102

Table 5-1. Hardware implementation details.

Components Area
(mm2)

Power
(mW)

Slave-side 0.0428 17
Master-side 0.0755 26

Hybrid 0.1014 37
Memory controller (OS) 0.0807 31
Memory controller (RF) 0.0798 27

Typical Router 0.1853 65
Priority-based Router 0.1881 68

5.6.3 Hardware Overhead
For appraising the area overhead of the proposed architectures, each scheme is synthesized
by Synopsys D.C. using the UMC 90nm technology with an operating point of 1GHz and
supply voltage 1V. We perform place-and-route, using Cadence Encounter, to have precise
power and area estimations. The power dissipation of each scheme, including both dynamic
and leakage power, is also calculated near the saturation point (0.6) under the uniform
traffic model using Synopsys PrimePower. In addition to the aforementioned configuration
of the network interface, the T-ID and SN are set to 4-bit and 3-bit, respectively. The layout
areas and power consumptions of the master-side, slave-side, hybrid interfaces, different
memory controller and routers are listed in Table 5-1. As can be seen from the table, using
the hybrid architecture for the latter configuration (B) is more beneficial (in terms of power
and area) than using the master-side and slave-side models when each node is composed of
a dedicated processor and memory. That is, using a hybrid NI model reduces 14.3% and
13.8% in hardware area and power dissipation respectively. Because all queues (and
FIFOs) are equal in size, they do not affect the comparison. On the other hand, the master-
side and slave-side network interface architectures are more cost efficient if each node
consists of a dedicated processor or memory as in the former configuration (A). Also,
comparing the area cost of the baseline model to each proposed network interface indicates
that the hardware overheads of implementing the proposed network interface schemes are
less than 0.5%. Furthermore, for the slave-side interface within the memory controller,
since each of the memory modules utilized in this thesis has 4 banks, 4 bank queues have
been implemented in the memory controller.

5.7 Summary
In this chapter, we presented a high performance network interface with a novel dynamic
buffer allocation and a priority-based router model to improve the resource utilization, and
overall on-chip network performance. In addition to the resource utilization of the network
interface and on-chip network, the utilization of memories considerably affects the network

Chapter 5 Adaptive Network Interface Architecture

103

latency. Therefore, we have developed an optimized scheduling method for the DRAM
memories and integrated it in the network interface such that the network and memory
latencies were reduced significantly in comparison with the baseline architecture. The
micro-architectures of the proposed network interfaces which are compatible with the
AMBA AXI protocol have been presented. A cycle-accurate simulator was used to evaluate
the efficiency of the proposed architecture. Under both uniform and non-uniform traffic
models, in high traffic load, the proposed network interface architecture has lower average
delay in comparison with the baseline architecture.

Chapter 5 Adaptive Network Interface Architecture

104

105

Chapter 6

6 Three-Dimensional Networks-on-Chip

As mentioned earlier, two-dimensional (2D) chip fabrication technology is facing several
challenges in the deep submicron regime such as designing the clock-tree network for a
large chip, limited floor-planning choices, increasing the wire delay and power
consumption, integrating diversity components that are digital, analog, MEMS RF, etc.
The Three Dimensional (3D) integration has emerged as a potential solution to address
these problems and the design complexity of MPSoC in 2D Integrated Circuits (IC). 3D ICs
reduce the interconnect delay by stacking vertically active silicon layers as well as offering
a number of advantages over the traditional 2D chip [19] [20] [21] [22]: (1) shorter global
interconnects; (2) higher performance; (3) lower interconnect power consumption due to
wire-length reduction; (4) higher packing density and smaller footprint; and (5) support for
the implementation of mixed-technology chips. In this chapter we focused on wafer
stacking technology. In wafer-to-wafer bonding technology, one of the popular options for
3D integrations, dies are vertically stacked. Short, fat, and vertical Through-Silicon-Vias
(TSVs) are exploited for inter-layer communication. The distance between wafers can
range from 5 m to 50 m [22] [24], which is much shorter than the wire length between
cores on a tier, and the pitches of TSVs can range from 1 m to 10 m square [22] [24]. That
is, the wire delay, power consumption and chip form factor are significantly
reduced [25] [26] [28].
3D ICs have emerged as a viable candidate to achieve better performance and packaging
density as compared to traditional two dimensional (2D) ICs. 3D NoC topologies not only
enable scalable networks to provide communication requirements in 3D ICs [19]- [23] but
also are a crucial factor of 3D chips in terms of performance, cost, and energy
consumption [19]. Various on-chip network topologies have been studied for 3D
NoCs [19]- [23] [25] [27] [29]. Mesh-based structures are popularly used in 3D systems,
because their grid-based regular architecture is intuitively considered to be matched to the
2D VLSI layout for each stack layer [19]- [23]. Nevertheless, if the number of IP-cores and
memories increases in each layer, more TSVs are necessitated to handle the inter-layer
communication. Inasmuch as each TSV employs a pad for bonding, the area footprint of
TSVs in each layer is augmented significantly [22] [29]. The main contributions of this
chapter are twofold.

Chapter 6 Three-Dimensional Networks-on-Chip

106

First, in order to improve performance of vertical channels, a novel pipeline bus structure is
introduced. The proposed bus structure overcomes the drawbacks of previously presented
bus structures for vertical channels and improves the performance by reducing the delay
and complexity of traditional bus arbitration which is the foremost impediment in bus
communications. In addition, the presented pipeline bus structure can utilize bi-
synchronous FIFO for synchronization between stacked layers, if each layer is fabricated
by different technologies.
Second, we present two novel stacked mesh topologies to reduce the area overhead of
TSVs and power dissipation with a small performance penalty. The proposed stacked mesh
topologies, named Clustered Mesh Inter-layer Topology (CMIT) and Concentrated Inter-
layer Topology (CIT), benefit of clustering the mesh topology for each layer. Each cluster
of the presented topologies has its dedicated vertical channel, composed of a set of TSVs.
CMIT and CIT preserve the advantages of the clustered mesh topology and mitigates both
power density and TSV area footprint on each layer.

Fig. 6-1. Mesh-based NoC architectures: (a) 3D-symmetric NoC (b) 3D NoC-Bus Hybrid structures.

6.1 3D NoC Architecture
3D-Symmetric NoC and 3D NoC-Bus Hybrid (stacked mesh) structures are popularly used
in 3D systems, because their grid-based regular structure is intuitively considered to match
the 2D VLSI layout for each layer [19]- [23] [25] [27] [29]. The 3D-symmetric NoC structure,

Chapter 6 Three-Dimensional Networks-on-Chip

107

shown in Fig. 6-1(a), is an extension of 2D mesh by adding two additional physical ports to
each baseline-router (one for up and one for down) in the popular 2D mesh-based
system [19] [22]. Adding two additional ports requires larger crossbar incurring significant
area and power overhead and increases the blocking probability occurring inside the router.
Since TSVs are shorter and wider than intra-layer interconnects, they have lower resistance
and can support higher signaling speeds [19] [22]. As router latencies may dominate the fast
vertical interconnects, this has led the researchers to propose 3D NoC-Bus Hybrid
structures using a bus with a centralized arbiter for each vertical channel, which allows
single hop latency for packets between any layers [19]- [22]. As depicted in Fig. 6-1(b), on-
chip routers in this structure have at most 6 ports, one to the IP-core, one to the bus, and
four for cardinal directions. According to [19] the 3D-hybrid structure was observed to be
better than the 3D symmetric for the vertical interconnection as long as the number of
device layers was less than 9. This has motivated us to present an efficient pipeline bus to
overcome drawbacks of the conventional bus that has been employed for inter-layer
communication.

6.2 Constraint on the number of TSVs
A relatively high area penalty due to via blockage may impose limitations on the number of
TSVs that can be utilized for inter-layer communication due to the following reasons. First,
the move from 2D to 3D architecture could accentuate the thermal concerns due to the
increased power densities resulting from placing one logic block over another in the
multilayered 3D stack. An efficient solution for cooling 3D ICs is to employ either thermal
TSVs [29] [125], establishing a thermal path from the core of a chip to the heat sink or
liquid cooling based on fluidic TSVs [125]. This can take at least 10-20% of total chip area
to create thermal or liquid -efficient 3D ICs [29] [125] [126] [127]. Second, conventionally in
3D ICs the input clock signal, at the center of the clock tree, is fed to each layer via TSV
and each layer has its own clock tree with associated clock buffers implemented in the
corresponding active layer. However, the obvious disadvantage of this scheme is the design
overhead, both in terms of resources and design efforts required for the layer customization.
Moreover, because of the separate customization of the different layers, the skew between
terminals in different layers may be high even if the skew is low in the same layer. The
alternative scheme, named via topology, implements the clock tree with the clock buffers
on a single layer and using TSVs the clock signals from the terminals of the clock tree are
passed to all other layers [128]. This scheme provides uniform skew compensation across
layers since the same terminal clock signals are transmitted across layers with less design
overhead, i.e. approximately N times less area and power than the conventional scheme,
where N is the number of layers in the 3D clock tree. The only shortcoming of this scheme
is the high number of TSVs required for passing the clock signals from terminals to all
other layers. Third, if we consider signal TSVs and power/ground TSVs separately, since
each signal TSV uses the minimal allowable TSV size and microprocessors typically
require a few hundred I/O signals, signal TSVs occupy a very small area on stacked dies.

Chapter 6 Three-Dimensional Networks-on-Chip

108

On the other hand, microprocessors dies typically need tens or few hundreds of amperes
current, which causes power consumption overhead for power TSVs due to the resistance
of TSVs. Thus, we have to increase the aggregate size of those power TSVs so that the area
overhead induced through power TSV network is considerably high [129]. However, not
only the area overhead of TSVs is quite high, but also floor planning and routing is
extremely challenging since TSVs are distributed in each layer. In this chapter, we present
two area-efficient stacked architectures to reduce the TSV footprint with a small
performance overhead though the presented bus architecture diminished the TSVs overhead
in compared to conventional buses.

6.3 Related Work
Design techniques and methodologies for 3D architectures have been investigated to
efficiently exploit the benefits of 3D technologies. Several NoC topologies for 3D systems
have been exhaustively investigated in [19]- [22] [27] [133]. The authors in [19] demonstrate
that besides reducing the footprint in a fabricated design, 3D systems provide a better
performance compared to traditional 2D systems. They have also demonstrated that both
mesh and tree topologies for 3D systems achieve better performance compared to
traditional 2D systems. However, the mesh topology shows significant performance gains
in terms of throughput, average latency, and energy dissipation with a small area
overhead [19]. In [133] different 3D mesh-based architectures have been compared in the
zero-load latency, but the performance of the network with different traffic patterns and
loads is also necessary to be evaluated.
To construct an optimistic 3D mesh-based system, several 3D structures have been
presented. Baseline-routers in 2D mesh-based systems have 5 ports, i.e. 4 ports to adjacent
routers and one for the resource node. The straightforward extension for 3D mesh-based
systems (3D-symmetric NoC) is to utilize routers with two additional inter-layer links by
adding two physical ports to baseline-routers (one for up and one for
down) [19] [22] [25] [27] [137]. As mentioned earlier, the 3D structure using such routers, not
only increases the area and power overhead of the routers but also contention in the routers
may arise. The electrical behavior of the relatively short and wide TSV, i.e. the low
resistance, and supporting much higher signaling speeds led the authors of [22] to propose
the 3D-hybrid structure. This 3D structure exploits the Dynamic Time Division Multiple
Access (dTDMA) bus [132] with a centralized arbiter for the vertical communication link.
Thus, moving from one layer to any of the other layers takes only one hop. However,
contention issues in the bus limit the attainable performance gains [19]. That is, such
structures inherently suffer from the limitation of buses since only one transmission is
allowed each time over a vertical bus.
In [21], the DimDe router for 3D architectures has been proposed. The presented router
uses a full 3D crossbar and a simple bus structure spanning all layers of the chip and fusing
them into a single router entity. This router can minimize vertical traversal to one hop

Chapter 6 Three-Dimensional Networks-on-Chip

109

between any layers, but requires huge number of vertical connections and significantly
complicates the control and arbiter of the router.
A multilayered 3D router architecture, named MIRA, is introduced for 3D systems by D.
Park et al [20]. The router components are classified as separable components (buffers,
crossbar, and inter-router links) and non-separable components (arbiter and routing
modules). The separable components are laid out across multiple layers to save chip area
and reduce power by dynamically shutting down some inactive layers. However, such
routers are too aggressive in the current technology [138].
To reduce the area footprint of TSVs, a serialization scheme for vertical channels has been
presented in [29], but this scheme is only applicable with 3D-hybrid structures where each
node has a dedicated vertical channel.
Due to the above concerns, in this chapter, we have focused on both the 3D-symmetric
structure (7-port switch design) and the 3D-hybrid structure (bus-based vertical
interconnect). As described in [27], the 3D-hybrid structure is shown to perform the worst
compared to the other structures in terms of scalability under local traffic. Although shown
to be weak in [27] [138], the bus may be appropriated for hotspot traffic injection where
many packets may need to be sent through several layers to a hotspot frequently. This may
be akin to a processor on one layer, and a memory stack directly above it. Hence, in 3D
architectures, the 3D-hybrid structure performance degrades as the number of layers and
number of processing nodes increase [27], thereby the 3D-symmetric structure is more
feasible, mature, and more efficient than the 3D-hybrid structure as network size
increases [139]. However, our proposed stacked architectures are applicable for both 3D-
hybrid and 3D-symmetric structures where a group of nodes can share a vertical channel as
an inter-layer interconnection. We also introduce a novel bus architecture which is more
efficient than the conventional buses utilized for inter-layer communications in terms of
scalability and performance.

6.4 Pipeline bus Architecture
Traditionally, a bus is described as a shared link which can be owned by one attached
subsystem at a time. Parallelism can be added to the structure by partitioning the bus into
segments with bridges and allowing these segments to operate concurrently [130].
However, on one side, the overall system performance in such designs is still limited by the
lack of parallel bus transactions, and on the other hand, because of using many control
wires for the central arbitration in such segmented buses, it is not a suitable approach for
vertical bus in 3D ICs. Our solution for these bottlenecks for vertical buses is to consider
the system bus with a bidirectional pipeline which is capable of transferring data
concurrently from one or more sources to several destinations. As the proposed architecture
is illustrated in Fig. 6-1(a), the system is partitioned into a set of modules each of which is
used to connect the corresponding layer to the pipeline bus. As the system is based on
Globally Asynchronous Locally Synchronous (GALS) design paradigm, the layers can
internally operate at different clock frequencies. The layers are independent of each other,

Chapter 6 Three-Dimensional Networks-on-Chip

110

in case there are some inter-layer transactions, the layers exchange data synchronously or
asynchronously through the pipelined system bus, a segmented communication link which
allows simultaneous transfer in both directions. The layers can concurrently access the bus
without waiting for any grant signals, because of the pipelined structure of the proposed bus
architecture. The interface module acts as a synchronizer between the router and the
pipeline bus. To construct the pipelined bus, the physical wires that implement the bus are
divided into a set of segments separated from each other by Transfer Stages (TS), one
attached to each layer (Fig. 6-1(a)).

Router

Layer-4

Layer-3

Layer-2

Layer-1

Router

Router

Router

(a)

to up

to down

to Cluster-core

to Router

Interface

Router

Ctrl

D1

D2

M1

M2
Bi-Sync FIFO

Bi-Sync FIFO

1 2

21

SH_Status

MH_Status

SH_Status

MH_Status Header Flit
Data Flit
Data Flit

Tail Flit

1
0

3
2

X

..

1
1
1

1

V PData

2
3
X

-...

.P

1 S 1
1 M Y
..

V T.
A

2
3

(b)

Fig. 6-2. (a) Proposed bus architecture and (b) the micro-architecture of the transfer stage.

Chapter 6 Three-Dimensional Networks-on-Chip

111

Each transfer stage contains internal FIFO queues for pipelining the data flow, and a bus
segment between adjacent stages consists of two separate unidirectional point-to-point
interconnects which transfer data synchronously (or asynchronously) between the stages in
opposite directions. These two links of a segment can operate in parallel, and due to
pipelining, all segments of the bus can transfer data simultaneously. Each layer has a
unique address for inter-layer communication. Furthermore, each IP-core/memory in a
layer has its own address which makes addressing of a specific module in a given layer
possible. Hence, a datagram propagating along the bus has a header containing both the
layer address and the IP-core/memory address. The former is analyzed at each transfer
stage, and the latter is decoded by routers in each layer.

6.4.1 Transfer Stage Micro-Architecture
The micro-architecture of the transfer stage is illustrated in Fig. 6-1(b) where it includes
two identical pipelines transferring data to the opposite directions. Each pipeline contains
multiple slots to pipeline packets between slots. Apart from the pipelines the interface
contains FIFO queues used as input and output buffers of the host port. Their capacity has
to be chosen according to the speed of the bus interface and the estimated data rate of the
attached router. Each transfer stage also contains three multiplexers (M1, M2 and M3) and
three de-multiplexers (D1, D2 and D3) to establish a communication between inputs and
outputs of the transfer stage. On top of that, each transfer stage has the following functions:
1- It forwards incoming packets from the preceding stage to the next stage through a buffer,
in both directions. That is, if the incoming packet from the upper stage (lower stage) is
intended to be forwarded to the lower stage (upper stage), D1 and M2 (D2 and M1) will
provide the required connections.
2- If an incoming packet from an adjacent transfer stage is intended to be processed by the
router, the transfer stage delivers the packet to the interface module of the layer through a
FIFO queue, i.e. D1 and M3 (D2 and M3) establishes the required connections to deliver
the incoming packet from the upper stage (lower stage) to the router.
3- When a data is sent to another layer, the transfer stage operates as an output buffer. This
means that it takes care of first receiving data from the interface module of the attached
layer through a FIFO queue and then sending this data to one of the two adjacent transfer
stages, depending on the direction in which, the target layer is located. Namely, D3 and M1
(D3 and M2) will be responsible for the required connections when the router decides to
send a packet to upper layer (lower layer). When a packet arrives at a transfer stage, the
header flit is sent to the controller unit to determine in which direction the packet should be
sent. Based on the controller decision, it will be either forwarded to the next stage or
transferred to the host router via the interface. Also, an arbitration in the controller module
has to be performed to prevent the two parallel operating pipelines from writing
simultaneously to the FIFO in the interface. In addition, because the electrical behavior of
short and wide TSVs provides much higher signaling speeds, the credit-based flow
control [2] has been implemented for the transmission protocol on a segment between
transfer stages.

Chapter 6 Three-Dimensional Networks-on-Chip

112

Fig. 6-3. Pseudo VHDL code of the weight-based arbitration for multiplexers: M1, M2, and M3.

6.4.2 Weight-based Arbitration
Arbiters in the controller may use a round-robin policy to arbitrate between the inputs of
the multiplexers. However by using round-robin arbitration policy in the transfer stage of
the pipeline bus architecture, fairness can become a problem. Fairness is not an issue when
the traffic load is low, but as the traffic load approaches saturation, fairness can become a
bottleneck. Let us consider an example to illustrate the unfairness problem where three

-- Multiplexers M1
w1= number of lower layers
w2= 1 (connected to one layer)
Process
Begin
 If input1=’1’ and counter w1 then
 service <= input1;
 counter <= counter + 1;
 Elsif input2=’1’ then
 service <= input2;
 counter <= 1;
 Else
 service <= input1;
 counter <= 1;
 End If;
End;

-- Multiplexers M2
w1= number of upper layers
w2= 1 (connected to one layer)
Process
Begin
 If input1=’1’ and counter w1 then
 service <= input1;
 counter <= counter + 1;
 Elsif input2=’1’ then
 service <= input2;
 counter <= 1;
 Else
 service <= input1;
 counter <= 1;
 End If;
End;

-- Multiplexers M3
w1= number of lower layers
w2= number of upper layers
Process
Begin
 If input1=’1’ and counter w1 then
 service <= input1;
 counter <= counter + 1;
 Elsif input2=’1’ then
 service <= input2;
 If counter =w1+w2 then
 counter <= 1;
 Else
 counter <= counter+1;
 End If;
 Else
 service <= input1;
 counter <= 1;
 End If;
End;

Chapter 6 Three-Dimensional Networks-on-Chip

113

layers 1, 2 and 3 have large amounts of packets to be sent to the layer 4. Contention might
occur in layers 2 and 3 as the packets must share the same channel resources. For instance,
in the layer 3 there are two flows of packets competing for the bandwidth of the output.
One flow is comprised of the packets being generated in the layer 3, and the packets in the
other flow are arrived from the layer 1 and layer 2.
In other words, the layer closest to the destination layer, layer 3, will get the most
bandwidth, 1/2 of the available bandwidth. The remaining half of the bandwidth is
allocated to the layers 1 and 2, so each can receive 1/4 of the total bandwidth. Therefore,
the allocation of the available bandwidth to the competing flows is not fair if round-robin
policy is used. To overcome this limitation, a weight-based arbitration is employed so that
the weight of each input port is determined by the number of upstream layers connected to
that input port through the pipeline bus. In the above example at the layer 3, the weight of
one input port is two as it can accept packets from two lower layers (w1=2), and the weight
of the other input port is one since it can receive data only from the current layer (w2=1).
As a result, the arbiter transmits the maximum of w1 packets (if any) from the first flow and
then allows the other flow to forward up to w2 packets (if any) to the output and the process
is repeated for the rest of the packets. By this approach, in each layer the total bandwidth is
equally shared among packets from different layers. This simple weighted round robin
arbitration achieves a fair forwarding policy with a very low hardware overhead. Fig. 6-3 is
the pseudo code of the weight-based arbitration for multiplexers M1, M2 and M3.

Fig. 6-4. A blocking situation.

6.4.3 Non-blocking Scheme
The proposed pipeline structure allows simultaneous transmissions without using
centralized bus arbitration, which considerably reduces arbitration complexity and
improves bandwidth. However in the pipeline bus architecture, a single blocked packet

Chapter 6 Three-Dimensional Networks-on-Chip

114

might obstruct the subsequent packets so that increasing the communication latency. A
blocking situation is shown in Fig. 6-4 where the packet A and packet B destined for the
layer 3 and layer 4, respectively. When the packet A is blocked, the packet B can be
obstructed behind the packet A. In order to prevent this blocking situation, we introduce
two types of packet, Single-Hop (SH) packet and Multiple-Hop (MH) packet. SH packet
destinations are located in one of the neighboring layers while MH packets require passing
several layers. However, a MH packet changes its type to SH once the destination is one
layer away.
In each transfer stage, the incoming packets are de-multiplexed into two separate paths: one
path delivers the SH packets to the interface (SH path) while the other path forwards the
MH packets to the next stage (MH path). That is, packets are de-multiplexed to either the
TS unit or interface. The point is that if one of these two paths gets blocked, the remaining
flows from the upstream stage cannot pass through the other path if it is idle. This blocking
probability can be considerably reduced by considerably increasing the size of both the
interface and TS unit buffers, which is an expensive solution for such systems. The idea is
to reduce the blocking probability with a low hardware cost. Therefore, each stage adopts
congestion condition of its downstream transfer stage buffers (interface and TS unit
buffers) so that it can decide to deliver a packet to the less congested path of the next stage.
The congestion condition of SH and MH paths, indicating the stress value of the interface
and TS unit buffers, can be transmitted from one layer to another through two separate
inter-layer signals (MH_Status and SH_Status). These signals are employed by the TS unit
of the upstream transfer stage to forward a non-blocking packet, i.e. send a MH packet if
the SH path is congested/blocked or send a SH packet if the MH path is congested/blocked.
As depicted in Fig. 6-2(b), each TS unit is composed of a table and a buffer. Each row of
the table corresponds to a packet and includes a valid tag (v), a packet type (T), a packet
age (A) and a header pointer (P). In the buffer, the flits of each packet are stored with a
linked list structure providing high resource efficiency with a little hardware overhead.
Fig. 6-2(b) exhibits a pointer field adopted to indicate the next flit position in the buffer. As
multiple packets might be stored in the buffer, an arbitration mechanism is needed to
determine which packet is allowed to be transmitted. The TS unit arbitration decision is
based on the stress value of MH and SH paths. This arbiter selects the oldest packet
(highest age) requesting an available path with the lowest stress value. Afterward, the age
value of each packet having the same type as the selected one is increased by the arbiter to
prevent starvation.

6.4.4 Synchronizing FIFO
Bi-synchronous (Bi-Sync) FIFOs are widely used in multi-clock systems to synchronize
signals from different clock/frequency domains. Each domain is synchronous to its own
clock signal but can be asynchronous with respect to others in either clock frequency or
phase [117]. The challenges of designing Bi-Sync FIFOs include the enhancement of
reliability and reducing latency and power/area cost. We identify the Bi-Sync FIFO
structure presented in [118] as a suitable synchronizer to be used in the interfaces.

Chapter 6 Three-Dimensional Networks-on-Chip

115

The structure of the Bi-Sync FIFO is depicted in Fig. 6-5. The FIFO implementation uses
two pointers, one defining the next writing position and another defining the next reading
position. The FIFO state is either full or empty when both pointers refer to the same
address. Thus, it is necessary to compare the pointers. Although this procedure is trivial in
synchronous circuits, it implies some complexity in the Bi-Sync FIFO, because the pointers
are generated by different clocks.

FIFO Memory
(Dual-port RAM)

write_data

write_enable

FIFO Write
Controller

full

write_addr

write_ptr

FIFO Read
Controller

empty

read_addr

read_ptr

w_req r_reqwrite_addr read_addr

read_clkwrite_clk
synchronizer synchronizer

read_prt write_ptr

write_req

write_data read_data read_data

full empty

write_req

Fig. 6-5. Bi-Sync FIFO structure.

Table 6-1. Description of Bi-Sync FIFO signals.

Signal Description
write_data Data to be written in the FIFO
write_req Write request
write_clk Clock signal in the write domain

full Signal to indicate the FIFO is full and no
more data can be received

read_data Data to be read from the FIFO
read_req Read request
read_clk Clock signal in the read domain

empty Signal to indicate the FIFO is empty and
henceno data can be read

A common solution to this problem is to transfer and synchronize the writing pointer
(reading pointer) with the receiver clock domain (the sender clock domain) which generates
the empty signal (the full signal). Exchanging the pointers (write_ptr and read_ptr) via a

Chapter 6 Three-Dimensional Networks-on-Chip

116

handshake protocol implies additional latency. Therefore, two synchronizers are utilized for
exchanging the pointers [118]. The addresses are converted to the gray code which
guarantees that consecutive addresses are at a Hamming distance of 1. In this way, the
metastability problem is confined to a single bit and synchronizers can be employed
without handshake. Utilizing the Bi-Sync FIFO in the interfaces, allows each layer to work
with its own clock source. Table 6-1 lists the input and output signals and their
functionalities of the Bi-Sync FIFO.

6.5 Cluster Architectures
As mentioned earlier, both 3D-symmetric and 3D-hybrid structures require a large number
of TSV interconnections for inter-layer communication. In addition, each TSV requires a
pad (around 5µ×5µ) with the pitch of around 8µ for bonding to a wafer, thereby, the area
overhead of TSVs impose constraints on the number of TSVs [22] [29] [131]. In order to
reduce vertical channels, we present two novel topologies, named CIT (Concentrated Inter-
layer Topology) and CMIT (Clustered Mesh Inter-layer Topology). Although both of the
presented topologies can be implemented as the 3D-symmetric (7-port router with vertical
packet switched interconnection) and 3D-hybrid (vertical bus with an interface at each 6-
port router) structures, we describe these topologies based on the 3D-hybrid scheme which
is more efficient than the 3D-symmetric structure [22] [29]. To compensate the performance
loss due to using the bus as the vertical interconnect, each vertical channel is composed of
two unidirectional channels in opposite directions to propagate the inter-layer data.

6.5.1 CIT (Concentrated Inter-layer Topology)
Unlike the mesh topology where each IP-core is connected to a router, CIT forms a scalable
architecture by sharing a router between multiple nodes (IP-cores and memories). CIT
reduces the number of routers decreasing the number of vertical channels and hop counts.
A 3×3 CIT with 36 nodes is shown in Fig. 6-6(a), where four nodes are grouped into a
cluster, thereby forming 9 clusters in the network. Each cluster has a router with at most 9
ports (10 ports for 3D-symmetric structure): one connected to the bus, four to IP-
cores/memories and the other four ports to neighbor routers. Communication channels in
CIT can be classified as intra-layer channels (horizontal channels) and inter-layer channels
(vertical channels). As illustrated in Fig. 6-6, the inter-layer communication is achieved by
the cluster nodes. Each cluster node has a cluster core to establish the vertical connection
via an interface to the vertical bus.
Due to the fact that each CIT router has larger number of input ports than the symmetric
and hybrid routers, it consumes more area and power in comparison with conventional
routers in the two other structures. In addition, the larger number of input ports becomes a
performance bottleneck in terms of increased router complexity and contention probability
inside the router (i.e. there are more input ports competing for an output port) [22] [27].
Nonetheless, as the number of routers is decreased by the clustering approach in CIT, it not
only reduces the area and power dissipation of the network but also the TSV area footprint

Chapter 6 Three-Dimensional Networks-on-Chip

117

is considerably diminished on each layer. Besides, the distance between two nodes of the
same cluster in CIT is only one router so that the data transmission between nodes of the
same cluster can be very fast. That is, the latency in CIT for distant nodes is more than that
in the mesh-based 3D structures, but for nearby nodes the latency in CIT is smaller.

Fig. 6-6. Clustering approaches: (a) CIT and (b) CMIT.

Table 6-2. Number of routers, cluster routers and vertical channels of the described topologies in a (4×4×3)
3D architecture.

Topology # of
routers

of cluster
routers

of vertical
channels

3D-hybrid 64 0 64
CIT 0 16 16

CMIT 64 16 16

6.5.2 CMIT (Cluster Mesh Inter-layer Topology)
The structure of CMIT, depicted in Fig. 6-6(b), is basically similar to that of the mesh
topology, except that for every layer the number of vertical channels has been reduced by
sharing a vertical bus among routers of each cluster. That is, even preserving the advantage
of the mesh on each layer, CMIT diminishes the number of inter-layer interconnection to
meet constraints on the number of TSVs.
In CMIT, each router has at most 6 ports: one to the node (IP-core/memory), one to the bus
(cluster router), and four for neighbors. Fig. 6-6(b) exhibits CMIT with 64 nodes, in which

Chapter 6 Three-Dimensional Networks-on-Chip

118

every four routers are grouped into a cluster on each layer. Even though CMIT achieves
better area and power efficiency than the typical 3D mesh structure due to reducing the
number of vertical channels, since several routers are connected to a shared vertical bus, the
performance may be degraded when the inter-layer traffic is augmented. The specification
of the three described architectures has been summarized in Table 6-2. The arbiter should
be placed in the middle layer of the chip to keep wire lengths as uniform as possible. The
number of control wires of each arbiter increases with the number of nodes attached to the
vertical channel (bus). As a result, the presence of a centralized arbiter is the reason why
the number of vertical channels in the chip should be kept low [22] [29]. We believe that,
the proposed topology can keep the number of vertical channels low with a negligible
performance penalty.

Fig. 6-7. (a) The packet format in CIT and (b) the header format in CMIT.

6.5.3 Routing Algorithm
For the presented CIT, we employ the dimension order routing (DOR) algorithm which
guarantees the network is deadlock-free. DOR is a minimal deterministic routing scheme in
which the message is first forwarded along the X-dimension, then along the Y-dimension,
and, finally, along the Z-dimension. Fig. 6-7(a) shows the packet format of the CIT
network. The header flit is n-bit wide and the nth bit is the EOM (End Of Message) sign and

Chapter 6 Three-Dimensional Networks-on-Chip

119

the (n-1)th bit is the BOM (Begin Of Message) sign. The third field indicates the address of
the destination cluster and the next one is used for the IP-core/memory address inside the
cluster. The content of the message is located in the rest of the flits (Payload). As can be
seen from Fig. 6-7(b), the packet format of the CMIT network only has one destination
address field (i.e. IPAN) similar to the mesh network. In CIT, the cluster routers perform
the routing mechanism, while in CMIT the routing is performed by typical routers. That is,
cluster routers are only employed for the purpose of inter-layer communication in CMIT.

Fig. 6-8. 4 4 4 stacked mesh layout.

6.6 Experimental Results
In this section, we compare the presented topologies with the conventional structures in
terms of latency, power consumption, and area cost. Also, the impact of using the novel
pipelined bus has been explored. Hence, a cycle-accurate 3D NoC simulator is developed to
assess the efficiency of the proposed architectures. The simulator models all major
components of the NoC such as network interfaces, routers, and wires along with vertical
channels.

Chapter 6 Three-Dimensional Networks-on-Chip

120

6.6.1 System Configuration
We configure a 64-node (4 4 4) 3D stacked architecture. In this configuration, illustrated
in Fig. 6-8, out of 64 nodes, 16 nodes are assumed to be processors and other 48 nodes are
memory blocks, i.e. DRAMs. The processors are 32b AXI compatible core and the memory
blocks are DDR2-256MB (tRP-tRCD-tCL=2-2-2, 32b, 4 banks) [116]. Three different 3D on-
chip network topologies are considered for experiment: 3D-hybrid structure, CIT, and
CMIT. The 3D-hybrid and CMIT networks are formed by a typical state-of-the-art router
structure including input buffers, a VC (Virtual Channel) allocator, a routing unit, a switch
allocator, and a crossbar as well as an interface unit connecting the router to either a
vertical channel (bus) or a cluster router. Typical routers of 3D-hybrid and CMIT have at
most six input/output ports. Every cluster router of CMIT has five input/output ports, i.e.
four for local routers and one for the vertical channel interface, while cluster routers of CIT
have at most nine input/output ports, i.e. four for local IP-cores/memories connections, at
most four for neighboring cluster routers, and one for the vertical channel interface. Each
input port of router has 2 VCs where packets of different message types (request and
response) are assigned to corresponding VCs to avoid message dependency deadlock [119].
The arbitration scheme of the switch allocator in the typical router structure is round-robin.
The array size, routing algorithm, link width, number of VCs, buffer depth of each VC, and
traffic type are the other parameters which must be specified for the simulator. The routers
adopt the DOR routing scheme and utilize wormhole switching. For all routers, the data
width (flit) was set to 32 bits, and the buffer depth of each VC is 5 flits. As mentioned
earlier, to compensate the performance loss due to using the bus as the vertical
interconnect, each vertical channel is composed of two unidirectional channels in opposite
directions to propagate the inter-layer data. Thus, 32 bits of the channel is allocated to
upward direction and the other 32 bits of the channel is employed for the downward
direction. Each channel has its arbiter module and bus controller [22] [132]. The depth of
buffers in the transfer stage is 6 flits.
The presented configuration uses 1 flit for messages related to read requests and write
responses, and the size of read request messages typically depends on the network size and
memory capacity of the configured system. The message size of the read responses and
write requests is variable and depends on the request/response length produced by a
master/slave core (burst size 1:8). As for the performance metric, we use latency defined as
the number of cycles between the initiation of a request operation issued by a master
(processor) and the time when the response is completely delivered to the master from a
slave (memory). The request rate is defined as the ratio of the successful read/write request
injections into the network interface over the total number of injection attempts. All the
cores and routers are assumed to operate at 1 GHz. For fair comparison, we keep the
bisection bandwidth constant in all configurations. All memories (slave cores) can be
accessed simultaneously by each master core with continuously generating memory
requests. To estimate the power consumption of networks, we have used Orion [86]
(estimate both dynamic and static power) as well as the power and delay values of vertical
links in [133].

Chapter 6 Three-Dimensional Networks-on-Chip

121

6.6.2 Performance Comparison
To assess the performance of the presented pipeline bus architecture, the uniform and non-
uniform synthetic traffic patterns have been considered separately and we expect realistic
applications stand between these two synthetic traffic patterns. The random traffic
represents the most generic case, where each processor sends in-order read/write requests to
memories with the uniform probability, and the memories and request type (read or write)
are selected randomly. Eight burst sizes, from 1 to 3, are stochastically chosen according to
the data length of the request. In the non-uniform mode, 70% of the traffic is local requests,
where the destination memory is one hop away from the master core, and the rest 30% of
the traffic is uniformly distributed to the non-local memory modules.

Fig. 6-9. Performance impact of using the presented bus in (a) hybrid, (b) CMIT, and (c) CIT networks under

uniform traffic profile.

Here, we explore the average latency of using the presented pipeline bus architecture. Two
conventional baseline buses, dTDMA [22] [132] and SAMBA [130], have been considered
to be used for vertical channels. Fig. 6-9 and Fig. 6-10 show the performance gain of
employing the pipeline bus architecture for vertical channels in the 3D-hybrid, CMIT and
CIT networks under uniform and non-uniform traffic profiles, respectively. This is
achieved due to having a small local arbiter in the transfer stage such that the arbitration
delay is reduced significantly.

0

50

100

150

200

250

300

350

0 0.2 0.4 0.6 0.8

Av
er

ag
e

La
te

nc
y

(c
yc

le
)

Request Rate (fraction of capacity)
(a)

hybrid-dTDMA
hybrid-SAMBA
hybrid-Pipeline

0

50

100

150

200

250

300

350

0 0.2 0.4 0.6 0.8

Av
er

ag
e

La
te

nc
y

(c
yc

le
)

Request Rate (fraction of capacity)
(b)

CMIT-dTDMA
CMIT-SAMBA
CMIT-Pipeline

0

50

100

150

200

250

300

350

0 0.2 0.4 0.6 0.8

Av
er

ag
e

La
te

nc
y

(c
yc

le
)

Request Rate (fraction of capacity)
(c)

CIT-dTDMA
CIT-SAMBA
CIT-Pipeline

Chapter 6 Three-Dimensional Networks-on-Chip

122

Fig. 6-10. Performance impact of using the presented bus in (a) hybrid, (b) CMIT, and (c) CIT networks

under non-uniform traffic profile.

To explore the efficiency of the two presented topologies without considering the pipeline
bus (employing dTDMA), the simulation results under the uniform, non-uniform, and
hotspot traffic profiles are depicted in Fig. 6-11. In the hotspot traffic pattern, one or more
nodes are designated as hotspot nodes receiving an extra portion of the traffic in addition to
the regular uniform traffic. Newly generated packets are directed to each hotspot node with
an additional H percent probability. We simulate hotspot traffic with four hotspot nodes.
Four hotspot nodes are chosen at the center of each layer, (2, 2, 1), (3, 3, 2), (2, 3, 3), (3, 2,
4), with equal probability of H=20%.
As demonstrated in Fig. 6-11(a) and (c), CIT has the lowest average latency in the low
traffic load (<0.2), one of the foremost reasons for such an improvement is that CIT reduces
the average hop count and improves load balance across the channels. But in high traffic
load the performance of CIT degrades considerably since the network bandwidth in CIT is
lower than that of mesh-based structures. That is, the number of links in CIT is much
smaller than that of mesh-based structures. Therefore, in the high traffic load, the traffic in
CIT links is much higher than in mesh-based structures. Another subtle point regarding
clustered topology is that the latency in CIT for distant destinations is significantly larger
than that of mesh-based structures due to the high router complexity and contention
probability, while for nearby destinations the latency of CIT is smaller. Thus, CIT might
have better performance in applications where most of requests are issued among

0

50

100

150

200

250

300

350

0 0.2 0.4 0.6 0.8

Av
er

ag
e

La
te

nc
y

(c
yc

le
)

Request Rate (fraction of capacity)
(a)

hybrid-dTDMA

hybrid-SAMBA

hybrid-Pipeline

0

50

100

150

200

250

300

350

0 0.2 0.4 0.6 0.8

Av
er

ag
e

La
te

nc
y

(c
yc

le
)

Request Rate (fraction of capacity)
(b)

CMIT-dTDMA

CMIT-SAMBA

CMIT-Pipeline

0

50

100

150

200

250

300

350

0 0.2 0.4 0.6 0.8

Av
er

ag
e

La
te

nc
y

(c
yc

le
)

Request Rate (fraction of capacity)
(c)

CIT-dTDMA
CIT-SAMBA
CIT-Pipeline

Chapter 6 Three-Dimensional Networks-on-Chip

123

neighboring nodes under low traffic load. This can be seen from the results in Fig. 6-11(b)
where each processor sends requests to the memories based on the non-uniform traffic
profile. CIT outperforms the others in terms of latency when the request rate is below the
saturation point and most of the traffic is local. The average latency of each presented
topology has been computed near saturation point (0.5) under the non-uniform traffic
profile. As a result, compared with the 3D-hybrid and CMIT, the average latency of CIT is
reduced by 20% and 30%, respectively.

Fig. 6-11. Performance comparison of different 3D structures for (a) the uniform, (b) non-uniform, and (c)

hotspot traffic profiles using dTDMA.

Fig. 6-12(a)-(c) demonstrate the performance impact of the pipeline bus on different
topologies for uniform, non-uniform, and hotspot traffic profiles. As illustrated, employing
the pipeline bus for the hybrid structure outperforms the 3D symmetric structure where
each router includes 7 ports. This performance gain is due to the fact that the pipeline
scheme is inspired from typical router which is optimized for inter-layer communication
and can benefit from the weight-based arbitration and the non-blocking scheme.
Additionally, to illustrate how local traffic under the non-uniform profile can affect the
performance, we scale the amount of local traffic from 0 to 100%. The results obtained at
rate 0.5 (near the saturation point) are shown in Fig. 6-13 where CIT, CMIT, and hybrid
utilize the proposed pipeline bus. Like in the previous non-uniform experiments, CIT

0

50

100

150

200

250

300

350

0 0.2 0.4 0.6

Av
er

ag
e

La
te

nc
y

(c
yc

le
)

Request Rate (fraction of capacity)
(a)

CMIT
CIT
3D hybrid

0

50

100

150

200

250

300

350

0 0.2 0.4 0.6 0.8

Av
er

ag
e

La
te

nc
y

(c
yc

le
)

Request Rate (fraction of capacity)
(b)

CMIT
CIT
3D hybrid

0

50

100

150

200

250

300

350

0 0.2 0.4 0.6

Av
er

ag
e

La
te

nc
y

(c
yc

le
)

Request Rate (fraction of capacity)
(c)

CMIT
CIT
3D hybrid

Chapter 6 Three-Dimensional Networks-on-Chip

124

achieves significant latency reduction when the amount of local traffic is increased,
particularly from 40%.
In order to explore the real impact of the proposed inter-layer scheme, we use traces
generated using the GEMS simulator from SPLASH-2. We use the Radix, Ocean, and FFT
applications from SPALSH-2 for our simulations.

Fig. 6-12. Performance comparison of different 3D structures for (a) the uniform, (b) non-uniform, and (c)

hotspot traffic profiles using the presented bus.

Fig. 6-13. Performance impact of topologies using presented bus with different local loads.

0

50

100

150

200

250

300

350

0 0.2 0.4 0.6 0.8

Av
er

ag
e

La
te

nc
y

(c
yc

le
)

Request Rate (fraction of capacity)
(a)

CMIT
CIT
3D hybrid
3D symmetric

0

50

100

150

200

250

300

350

0 0.2 0.4 0.6 0.8 1
Av

er
ag

e
La

te
nc

y
(c

yc
le

)
Request Rate (fraction of capacity)

(b)

CMIT
CIT
3D hybrid
3D symmetric

0

50

100

150

200

250

300

350

0 0.1 0.2 0.3 0.4 0.5 0.6

Av
er

ag
e

La
te

nc
y

(c
yc

le
)

Request Rate (fraction of capacity)
(c)

CMIT
CIT
3D hybrid
3D symmetric

0

50

100

150

200

250

300

0% 20% 40% 60% 80% 100%

Av
er

ag
e

La
te

nc
y

Locality %

CIT

CMIT

3D symmetric

3D hybrid

Chapter 6 Three-Dimensional Networks-on-Chip

125

Table 3-2 summarizes our full system configuration where the cache coherence protocol is
MESI. We configure a 64-node on-chip network (4×4×4) that four layers are stacked on top
of each other, i.e. out of the 64 nodes, 16 nodes are processors and other 48 nodes are L2
caches. L2 caches are distributed in the bottom three layers, while all the processors are
placed in the top layer close to a heat sink so that the best heat dissipation capability is
achieved. The simulator produces, as output, the communication latency for cache access.
The CIT, CMIT, and hybrid configurations are equipped with the pipeline bus. Fig. 6-14
shows the average network latency of the real workload traces collected from the
aforementioned system configurations. We can see that the hybrid configuration
consistently reduces the average network latency across all tested benchmarks. It shows a
steady reduction amount: 12%~25% (hybrid/CIT), 4%~16% (hybrid/CMIT), and 3%~13%
(hybrid/symmetric) with the average of 19%, 10%, and 7%, respectively.

Fig. 6-14. Performance for application traces normalized to CIT.

6.6.3 Power Analysis
Using the simulator, the average power consumption of the presented topologies was
calculated and compared under uniform and non-uniform traffic patterns close to the
saturation point. The results are shown in Fig. 6-15(a) and (b). According to Fig. 6-11(a)
and (b), the saturation points that have been considered for computing the average power
values are 0.3 for uniform traffic and 0.5 for non-uniform traffic. As presented in
Fig. 6-15(a), under the uniform traffic profile, the average power dissipation of the CIT
scheme is 30%, 16%, and 10% less than those of the 3D-symmetric, 3D-hybrid and CMIT
schemes, respectively. Furthermore, the results in Fig. 6-15(b) indicate that the average
power of CIT, under the non-uniform traffic profile, is 39%, 35%, and 30% less than that of

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

fmm Radix Ocean fft cholesky

N
or

m
al

ize
d

av
er

ag
e

la
te

nc
y

CIT

CMIT

3D symmetric

3D hybrid

Chapter 6 Three-Dimensional Networks-on-Chip

126

the 3D-symmetric, 3D-hybrid, and CMIT schemes, respectively. We can notice that
although the power consumption of every cluster router is about 1.5 times more than the
power consumption of a typical router, the average power in the CIT network, compared to
other schemes, is considerably lower under non-uniform traffic profile since the average
number of hops between two arbitrary nodes is less than in the other presented schemes.
Also, to illustrate how the proposed pipeline bus affects the power dissipation, we compute
the average power of each network close to its saturation point under the uniform traffic
profile. Based on the achieved results, the average power consumption of the pipeline bus
in the hybrid network is diminished by 10% and 12% compared with SAMBA and
dTDMA, respectively. The average power reduction of using pipeline bus in the CMIT
network is 6% and 9% compared with SAMBA and dTDMA, respectively, while in the
CIT network, it is 5% and 10%. In fact, this power saving is obtained because of the
following reasons. First, the hardware overhead of the pipeline bus is smaller than that of
SAMBA and dTDMA. Second, central arbiters, employed in SAMBA and dTDMA, cause
a lot of switching compared to small local arbiters used in pipeline bus so that the power
dissipation of those two buses are higher than that of the pipeline bus.

Fig. 6-15. Average power dissipation results under (a) uniform and (b) non-uniform traffic profiles.

16.21

13.65
15.31

17.75

0
2
4
6
8

10
12
14
16
18
20

3D hybrid CIT CMIT 3D
symmetric

A
ve

ra
ge

 P
ow

er
 (W

)

(a)

12.91

8.33

11.75
13.60

0
2
4
6
8

10
12
14
16
18
20

3D hybrid CIT CMIT 3D symmetric

A
ve

ra
ge

 P
ow

er
 (

W
)

(b)

Chapter 6 Three-Dimensional Networks-on-Chip

127

6.6.4 Physical Analysis
The number of routers and vertical channels in a chip affects the area and implementation
cost. Thus, to compute the network area for each topology, we estimate the area of routers,
cluster routers, and vertical channels. The network platform of each topology with the
aforementioned configuration is synthesized using Synopsys Design Compiler with the
UMC 0.09 m technology, while the backend is performed with the Cadence Encounter
tool. Depending on the technology and manufacturing process, the pitch of TSVs can range
from 1 m to 10 m [22] [23] [28]. The pad size for TSVs is assumed to be 5 m square with
pitch of around 8µ, the flit-width is set to 32 bits, and each vertical channel requires 3×14
control wires for arbitration in four-stacked layers [22]. Hence, after the TSV area is
calculated with the given values, the TSV footprint has been reduced from 0.41 mm2 in 3D-
hybrid to 0.1 mm2 in CIT and CMIT, resulting in about 75% area saving for the TSV
footprint. 3D-hybrid occupies a larger network area than CIT and CMIT, because each
router in 3D-hybrid has a transceiver module to interface with the vertical channel
(bus) [22] and each bus should have its own arbiter module. Like 3D-hybrid, the transceiver
and arbiter modules are only integrated in cluster routers of CIT and CMIT. On the other
hand, the total network area used by CIT is significantly smaller than that of the other
architectures (37% and 42% less than that of CMIT and 3D-hybrid respectively) since the
network is formed only by cluster routers.
Using the pipeline bus reduces the TSV footprint for each vertical channel. As each vertical
channel, i.e. two unidirectional 32-bit dTDMA buses, occupies 6400 m2 and the required
area for each vertical channel using the pipeline bus is 4096 m2, the proposed bus scheme
can save more than 35% of the TSV area footprint with a performance gain. Hence, after
considering the TSV footprint area, the hardware overhead of the pipeline bus is
approximately 10% and 8% less than that of the conventional dTDMA and SAMBA buses,
respectively. In addition, comparing the cost of the network using the presented pipeline
bus with the 3D symmetric network reveals that the area overhead of the 3D symmetric
network is about 10%. This is because a 7-port router is larger than a 6-port router.

6.7 Summary
3D stacked architectures provide significant benefits in performance, footprint and yield. It
has been demonstrated that combining 3D ICs and on-chip networks can be a promising
option for designing large multiprocessor architectures. One critical issue in 3D design is
that the vertical interconnections are very fast and fat such that the area overhead of TSVs
impose constraints on the number of TSVs for existing 3D architectures. In this chapter,
two cluster-based topologies have been presented to deal with constraints on the number of
TSVs. Also, a novel pipeline bus structure for vertical channels is introduced not only to
mitigate the drawbacks of existing bus structures in terms of power and performance, but
also to reduce the number of required inter-layer arbiter control signals. Experimental
results revealed that the on-chip network formed by the two presented topologies (CIT and

Chapter 6 Three-Dimensional Networks-on-Chip

128

CMIT) reduces the number of TSVs significantly with low performance penalty under
uniform traffic, but under non-uniform traffic which is more realistic case, CIT
outperformed the other network structures in terms of the average network latency.

129

Chapter 7

7 Conclusion

In the last chapter of this thesis, it is the intention of the author to summarize and integrate
all chapter concluding remarks in order to present a consistent overall picture of the
achievements. A few remaining open problems and some interesting future research ideas
are also detailed here. This is done to show that there are options to continue this thesis.

7.1 Thesis Contributions
As one of the main contribution of this thesis, three adaptive routing protocols have been
presented where the first one is a unicast-based routing while the other two are unicast- and
multicast-based routing schemes. The unicast-based scheme is a congestion-aware adaptive
routing protocol in which two congestion wires (one in each direction) between any two
routers are added to indicate the existence of congestion in a row (column). That is, two
congestion wires are added to each router to flag a row or column congestion further away
from the current switch. These signals enable the routing protocol to avoid these paths
when there are other paths between the source and destination pair, and thus decreasing the
latency of the routing protocol. Exploiting the unicast routing protocols for multicast
communication increases the likelihood of deadlock and congestion. In order to avoid
deadlock for multicast communication, the Hamiltonian path strategy was introduced. The
traditional Hamiltonian path routing protocols supporting both unicast and multicast traffic
are based on deterministic models, leading to lower performance. In this thesis, two
adaptive routing schemes for both unicast and multicast communications without using
virtual channels have been proposed. The presented routing schemes invoke non-congested
paths for routing the messages to prevent creating highly congested areas.
In this thesis, a router architecture based on the adaptive input and output selection is
proposed. The output selection of the router utilizes an adaptive routing algorithm
supporting both unicast and multicast traffic while the input selection part of the router uses
the weighted round robin arbitration. Also, the adaptive output selection algorithm
supporting both minimal and non-minimal paths uses congestion flags to route packets

Chapter 7 Conclusion

130

through non-congested paths and consequently helps balance the traffic. The weighted
round robin input selection also assists in relieving nodes where congestion is formed.
In order to increase the memory bandwidth in network-based multiprocessor architectures
multiple memory modules can be accessed in parallel. On top of resource utilization and
latency, a reordering mechanism is required to deliver the response transactions of
concurrent memory accesses in-order. Therefore, in this thesis, we presented a high
performance network interface with a novel dynamic buffer allocation and a priority-based
router model to improve the resource utilization, and overall on-chip network performance.
In addition to the resource utilization of the network interface and on-chip network, also the
utilization of memories considerably affects the network latency. Accordingly, an
optimized scheduling method for the DRAM memories is developed and integrated in the
network interface such that the network and memory latencies were reduced significantly in
comparison with the baseline architecture. The micro-architectures of the proposed network
interfaces which are compatible with the AMBA AXI protocol have been presented.
Three-Dimensional (3D) stacked architectures provide significant benefits in performance,
footprint and yield. It has been demonstrated that combining 3D ICs and on-chip networks
can be a promising option for designing large multiprocessor architectures. One critical
issue in 3D design is that the vertical interconnections are very fast and thick such that the
area overhead of Through-Silicon-Vias (TSVs) imposes constraints on the number of TSVs
for existing 3D architectures. In this dissertation, two cluster-based topologies have been
presented to deal with constraints on the number of TSVs. Also, a novel pipeline bus
structure for vertical channels is introduced not only to mitigate the drawbacks of existing
bus structures in terms of power and performance, but also to reduce the number of
required inter-layer arbiter control signals. Experimental results revealed that the on-chip
network formed by the two presented topologies, Concentrated Inter-layer Topology (CIT)
and Cluster Mesh Inter-layer Topology (CMIT), reduces the number of TSVs significantly
with a low performance penalty under uniform traffic, but under non-uniform traffic which
is more realistic case, CIT outperformed the other network structures in terms of the
average network latency.

7.2 Future Directions
Some interesting open problems that are tightly related to the work in this thesis are as
follows.
3D chip stacking technology is emerging as a viable candidate to address the memory
bandwidth problem, memory wall, by stacking multiple DRAM layers on top of a
multiprocessor layer (logic layer) to reduce wire delay and energy consumption between
them. In addition, combining the benefits of 3D memory-on-processor stacking architecture
and on-chip networks provides a significant performance gain. To fully exploit the benefits
of the 3D stacked memory-on-processor architectures, efficient on-chip communication
platforms are required to be explored for different stacked layers. Also, to guarantee low-

Chapter 7 Conclusion

131

latency access to the stacked DRAM layers, adaptive memory controllers may need to be
designed.
Achieving higher performance along with reducing the network latency can be obtained by
applying efficient communication protocols in 3D NoC-based CMPs. As the multicast
communication is utilized commonly in various parallel applications, the performance can
be significantly improved by supporting multicast operations at the hardware level. Various
partitioning methods can be developed to distribute the multicast traffic among several
subsets. Furthermore, several factors of efficiency such as average unicast latency, average
multicast latency and average startup latency can be studied by analytical models.

Chapter 7 Conclusion

132

133

References

[1] L. Benini, G. De Micheli, “Networks on Chips: A New SoC Paradigm,” IEEE Computer, pp.
70-78, January 2002.

[2] A. Jantsch and H. Tenhunen, “Networks on Chip,” Kluwer Academic Publishers, 2003.
[3] W. J. Dally and B. Towles, “Route Packets, Not Wires: On-Chip Interconnection Networks,”

In Proc. of Design Automation Conference (DAC), pp. 684-689, June 2001.
[4] A. Hemani, A. Jantsch, S. Kumar, A. Postula, J. Oberg, M. Millberg, and D. Lindqvist.

“Network on chip: An architecture for billion transistor era,” In Proc. of the IEEE Norchip
Conf., pp. 120-124, November 2000.

[5] S. Kumar, A. Jantsch, M. Millberg, J. Oberg, J. Soininen, M. Forsell, K. Tiensyrj, and A.
Hemani. “A network on chip architecture and design methodology,” In Proc. Symposium on
VLSI, pp. 117-124, April 2002.

[6] S. Vangal et al., “An 80-tile 1.28TFlops Network-on-Chip in 65nm CMOS,” In Proceedings
of ISSCC’07, pp. 98-100, 2007.

[7] Tilera. http://www.tilera.com, 2008.
[8] Semiconductor Association. The International Technology Roadmap for Semiconductors

(ITRS).
[9] Semiconductor Association. Semiconductor Industry Association (SIA).
[10] G. D. Micheli, L. Benini, “Powering Networks on Chips: Energy-Efficient and Reliable

Interconnect Design for SoCs,” in Proceedings of the 14th international ieee symposium on
Systems synthesis (ISSS '01), pp.33-38, 2001.

[11] F. Moraes , A. Mello, L. Moller, L. Ost, and N. Calazans, “A Low Area Overhead Packet-
switched Network on Chip: Architecture and Prototyping,” in Proc. of International
Conference on Very Large Scale Integration (VLSI-SoC), Germany, pp. 318-323, 2003.

[12] A. A. Chen, and J. H. Kim, “Planar-Adaptive routing: Low-cost adaptive networks for
multiprocessors,” In Proc. of 19th Ann Int’l Symp Computer Architecture, pp. 268–277,
1992.

[13] ARM, AMBA AXI Protocol Specification, Mar. 2004.
[14] OCP International Partnership, Open Core Protocol Specification. 2.0 Release Candidate,

2003.
[15] Philips Semiconductors, Device Transaction Level (DTL) Protocol Specification. Version

2.2, Jul. 2002.
[16] D. Atienza, F. Angiolini, S. Murali, A. Pullini, L. Benini, G. De Micheli, “Network-On-Chip

Design and Synthesis Outlook,” Integration-The VLSI journal, vol. 41, no. 3, pp. 340-359,
2008.

134

[17] J. Henkel, W. Wolf, S. Chakradhar, “On-chip networks: A scalable, communication-centric
embedded system design paradigm,” in proc. of 17th International Conference on VLSI
Design (VLSID), pp.845, India, 2004.

[18] K. Banerjee, S. J. Souri, P. Kapur, K. C. Saraswat, “3D ICs: A Novel Chip Design for
Improving Deep-Submicrometer Interconnect Performance and Systems-on-Chip
Integration”, Proc. of the IEEE, 89(5):602-633, May 2001.

[19] B. S. Feero, P. P. Pande, “Networks-on-Chip in a Three-Dimensional Environment: A
Performance Evaluation,” IEEE Transactions on Computers, vol. 58, no. 1, pp. 32-45, Jan.
2009.

[20] D. Park, S. Eachempati, R. Das, A. K. Mishra, Y. Xie, N. Vijaykrishnan, and C. R. Das,
“MIRA: A Multi-Layered On-Chip Interconnect Router Architecture”, ISCA 2008, pp. 251-
261, Pennsylvania State, USA.

[21] J. Kim, C. Nicopoulos, D. Park, R. Das, Y. Xie, V. Narayanan, and C. R. Das, “A novel
dimensionally-decomposed router for on chip communication in 3D architectures,” in Proc.
of the ISCA, pp. 138-149, Boston, USA, 2007.

[22] F. Li, C. Nicopoulos, T. Richardson, Y. Xie, V. Narayanan, and M. Kandemir, “Design and
Management of 3D Chip Multiprocessors Using Network-in-Memory,” In 33rd International
Symposium on Computer Architecture (ISCA), pp. 130–141, 2006.

[23] I. Loi and L. Benini, “An Efficient Distributed Memory Interface for Many-Core Platform
with 3D Stacked DRAM,” in Proc. of the DATE Conference, Germany, pp. 99-104, 2010.

[24] W. R. Davis, J. Wilson, S. Mick, J. Xu, H. Hua, C. Mineo, A. M. Sule, M. Steer, and P. D.
Franzon, “Demystifying 3D ICs: The Pros and Cons of Going Vertical,” IEEE Design and
Test of Computers, 22(6):498–510, Nov. 2005.

[25] I. Loi, F. Angiolini, L. Benini, “Supporting vertical links for 3D networks on chip: toward an
automated design and analysis flow,” in Proc. Nanonets, 2007.

[26] K. Snoeckx, E. Beyne, and B. Swinnen, “Copper-nail TSV technology for 3D-stacked IC
integration,” Solid State Technology, Vol. 50, No. 5, pp.53-55, 2007.

[27] A. Y. Weldezion, M. Grange, D. Pamuwa, Z. Lu, A. Jantsch, R. Weerasekera, and H.
Tenhunen. Scalability of the Network-on-Chip communication architecture for 3D meshes.
In International Symposium on Networks-on-Chip (NoCS), pp. 114-123, 2009.

[28] I. Savidis, S. M. Alam, A. Jain, S. Pozder, R. E. Jones, R. Chatterjee, “Electrical modeling
and characterization of through-silicon vias (TSVs) for 3D integrated circuits,”
Microelectronics Journal, Vol. 41(1), pp. 9-16, 2010.

[29] S. Pasricha, “Exploring Serial Vertical Interconnects for 3D ICs,” in Proc. IEEE/ACM DAC,
pp. 581-586, 2009.

[30] S. Das, A. Chandrakasan, R. Reif, “Three Dimensional Integrated Circuits: Performance,
Design, Methodology and CAD tools,” in proc. of ISVLSI, pp. 13–18, 2003.

[31] S. Das et al., “Technology, Performance, and Computer Aided Design of Three-Dimensional
Integrated Circuits,” In Proc. International Symposium on Physical Design, USA, pp. 108-
115, 2004.

135

[32] Y. Xie, G. H. Loh, B. Black, K. Bernstein, “Design Space Exploration for 3D
Architectures,” ACM Journal on Emerging Technologies in Computing Systems 2, pp. 65–
103, 2006.

[33] S.-M. Jung et al., “The revolutionary and truly 3-dimensional 25F2 SRAM technology with
the smallest S3 cell, 0.16um2, and SSTFT for ultra high density SRAM,” in IEEE Symp.
VLSI Tech., pp. 228-229, 2004.

[34] B. Black, M. Annavaram, N. Brekelbaum, J. Devale, L. Jiang, G. H. Loh, D. Mccauley, P.
Morrow, D. W. Nelson, D. Pantuso, P. Reed, J. Rupley, S. Shankar, J. Shen, C. Webb, “Die-
Stacking (3D) Microarchitecture,” in Proceedings of MICRO-39, pp. 469-479, 2006.

[35] G. H. Loh, “3D-Stacked Memory Architectures for Multi-core Processors,” in proc. of
International Symposium on Computer Architecture (ISCA), pp. 453–464, 2008.

[36] P. Lotfi-kamran, A. Rahmani, M. Daneshtalab, A. Afzali-Kusha, Z. Navabi, “EDXY - A
Smart Congestion-Aware and Link Failure Tolerant Routing Algorithm for Network-on-
Chips,” Journal of Systems Architecture (JSA-elsevier), Vol. 56, No. 7, pp. 256-264, Jul
2010.

[37] M. Daneshtalab, M. Ebrahimi, S. Mohammadi, A. Afzali-Kusha, “Low distance path-based
multicast algorithm in NOCs,” IET (IEE) Special issue on NoC, Vol. 3, Issue 5, pp. 430-
442, Sep 2009.

[38] M. Ebrahimi, M. Daneshtalab, S. Mohammadi, Juha Plosila, H. Tenhunen, “An Efficent
Dynamic Multicast Routing Protocol for Distributing Traffic in NOCs,” in Proc. of 12th
IEEE/ACM Design, Automation, and Test in Europe (DATE), pp. 1064-1069, April 2009,
France.

[39] M. Daneshtalab, M. Ebrahimi, T. C. Xu, P. Liljeberg, and H. Tenhunen, “A Generic
Adaptive path-based routing method for MPSoCs," Journal of Systems Architecture (JSA-
elsevier), Vol. 57, No. 1, pp. 109-120, 2011.

[40] M. Ebrahimi, M. Daneshtalab, P. Liljeberg, H. Tenhunen, “HAMUM – A Novel Routing
Protocol for Unicast and Multicast Traffic in MPSoCs,” in Proceedings of 18th IEEE
Euromicro Conference on Parallel, Distributed and Network-Based Computing (PDP), pp.
525-532, February 2010, Italy.

[41] M. Daneshtalab, M. Ebrahimi, P. Liljeberg, J. Plosila, and H. Tenhunen, “Input-Output
Selection Based Router for Networks-on-Chip,” in Proceedings of 9th IEEE International
Symposium on VLSI (ISVLSI), pp. 92-97, July 2010, Greece.

[42] M. Daneshtalab, M. Kamali, M. Ebrahimi, S. Mohammadi, A. Afzali-Kusha, and J. Plosila,
“Adaptive Input-output Selection Based On-Chip Router Architecture,” Journal of Low
Power Electronics (JOLPE) - (To appear).

[43] M. Rahmani, M. Daneshtalab, P. Liljeberg, H. Tenhunen, “Power-Aware NoC Router Using
Central Forecasting-Based Dynamic Virtual Channel Allocation,” in Proceedings of IEEE
International Symposium on Circuits and Systems (ISCAS), pp. 3224-3227, May 2010,
France.

[44] M. Daneshtalab, M. Ebrahimi, P. Liljeberg, Juha Plosila, and H. Tenhunen, “Memory-
Efficient On-Chip Network with Adaptive Interfaces,” To appear in IEEE Transaction on
Computer Aided Design (IEEE TCAD).

136

[45] M. Daneshtalab, M. Ebrahimi, P. Liljeberg, Juha Plosila, and H. Tenhunen, “A Low-Latency
and Memory-Efficient On-hip Network,” in Proceedings of 4th IEEE/ACM International
Symposium on Network-on-Chip (NOCS), pp. 99-106, May 2010, France.

[46] M. Ebrahimi, M. Daneshtalab, P. Liljeberg, J. Plosila, H. Tenhunen, “A High-Performance
Network Interface Architecture for NoCs Using Reorder Buffer Sharing,” in Proceedings of
18th IEEE Euromicro Conference on Parallel, Distributed and Network-Based Computing
(PDP), pp. 547-550, February 2010, Italy.

[47] M. Ebrahimi, M. Daneshtalab, N. Sreejesh, P. Liljeberg, Juha Plosila, H. Tenhunen,
“Efficient Network Interface Architecture for Network-on-Chips,” in Proc. of 27th IEEE
Norchip, pp. 1-4, Nov 2009, Norway.

[48] M. Daneshtalab, M. Ebrahimi, P. Liljeberg, Juha Plosila, H. Tenhunen, “CMIT- A Novel
Cluster-based Topology for 3D Stacked Architectures,” in Proc. Of 2nd IEEE International
3D System Integration Conference (3DIC), Nov 2010, Germany.

[49] M. Daneshtalab, M. Ebrahimi, P. Liljeberg, Juha Plosila, H. Tenhunen, “Efficient Inter-layer
Bus Architecture for 3D Cluster-based Networks-on-Chip,” submitted The Journal of
Computer and System Sciences (JCSS-elsevier).

[50] M. Daneshtalab, M. Ebrahimi, P. Liljeberg, J. Plosila, and H. Tenhunen, “Pipeline-Based
Interlayer Bus Structure for 3D Networks-on-Chip,” in Proceedings of 15th International
Symposium on Computer Architecture & Digital Systems (CADS), IEEE Press, pp. 41-47,
Sept 2010, Iran.

[51] M. Daneshtalab, M. Ebrahimi, P. Liljeberg, J. Plosila, and H. Tenhunen, “High-Performance
TSV Architecture for 3-D ICs,” in Proceedings of 9th IEEE International Symposium on
VLSI (ISVLSI), PhD-Forum, pp. 467-468, May 2010, Greece.

[52] M. Daneshtalab, M. Ebrahimi, P. Liljeberg, Juha Plosila, H. Tenhunen, “A Novel Interlayer
Bus Architecture for Three-Dimensional Network-on-Chips,” 3D Integration Workshop, The
Design, Automation, and Test in Europe (DATE) conference, March 2010, Germany.

[53] M. Ebrahimi, M. Daneshtalab, P. Liljeberg, H. Tenhunen, “Partitioning Methods for
Unicast/Multicast Traffic in 3D-NoC Architecture,” in Proceedings of 13th IEEE
International Symposium on Design & Diagnostics of Electronic Circuits & Systems
(DDECS), pp. 127-132, April 2010, Austria.

[54] M. Ebrahimi, M. Daneshtalab, P. Liljeberg, and H. Tenhunen, “Performance Analysis of 3D
NoCs Partitioning Methods,” in Proceedings of 9th IEEE International Symposium on VLSI
(ISVLSI), PhD-Forum, pp. 467-468, May 2010, Greece.

[55] M. Ebrahimi, M. Daneshtalab, P. Liljeberg, H. Tenhunen, “Exploring Partitioning Methods
for 3D Networks-on-Chip Utilizing Adaptive Routing Model,” in Proceedings of 5th
ACM/IEEE International Symposium on Networks-on-Chip (NOCS), pp. 73-80, May 2011,
USA.

[56] W. O. Cesario, D. Lyonnard, G. Nicolescu, Y. Paviot, S. Yoo, A. A. Jerraya, L. Gauthier, M.
Diaz-Nava, “Multiprocessor SoC platforms: a component-based design approach,” in proc.
of IEEE Design and Test of Computers, pp. 52–63, 2002, France.

[57] E. Rijpkema, K.G.W. Goossens, A. Radulescu, J. Dielissen, J. van Meerbergen, P. Wielage,
and E. Waterlander, “Trade offs in the design of a router with both guaranteed and best-

137

effort services for networks on chip,” in proc. of IEEE Design Automation and Test
Conference in Europe (DATE), pp. 350–355, Germany 2003.

[58] Z. Lu, B. Yin, and A. Jantsch, “Connection-oriented Multicasting in Wormhole-switched
Networks on Chip,” in proc. of IEEE Symposium on VLSI (ISVLSI), pp. 205-211, Germany
2006.

[59] N. E. Jerger, L. S. Peh, and M. H. Lipasti, “Virtual Circuit Tree Multicasting: A Case for
On-Chip Hardware Multicast Support,” in proc. of International Symposium Computer
Architecture (ISCA), pp. 229-240, China 2008.

[60] J. Duato, S. Yalamanchili, N. Lionel, “Interconnection networks: an engineering approach”
(Morgan Kaufmann Publishers, 2003)

[61] W. J. Dally and B. Towles, “Principles and Practices of Interconnection Networks,” Morgan
Kaufmann, 2004.

[62] D. Bertsekas and R. Gallager, Data Networks, Prentice Hall, 1992.
[63] Intel Corporation, A touchstone delta system description, in: Intel Advanced Information,

1991.
[64] G. M. Chiu, “The odd-even turn model for adaptive routing,” IEEE Trans. on Parallel and

Distributed Systems, vol. 11, pp. 729 – 738, 2000.
[65] J.C. Hu, R. Marculescu, “DyAD–smart routing for networks-on-chip,” in proc. of the Design

Automation Conference (DAC), pp. 260–263, USA 2004.
[66] J. Kim, D. Park, T. Theocharides, N. Vijaykkrishnan, and C.R. Das, “A low latency router

supporting adaptivity for on-chip interconnects,” in proc. of International Symposium on
Computer Architecture, pp. 150–161, USA 2005.

[67] M. Li, Q.-A. Zeng, and W.-B. Jone, “DyXY - a proximity congestion-aware deadlock-free
dynamic routing method for network on chip,” in Proc. of Design Automation Conference,
pp. 849–852, 2006.

[68] L.M. Ni, P.K. McKinley, “A survey of wormhole routing techniques in direct networks,”
IEEE Computer, Vol. 26, No. 2, pp. 62–76, 1993.

[69] P. Gratz, B. Grot, S.W. Keckler, “Regional congestion awareness of load balance in
network-on-chips,” in proc. International Symposium on High Performance Computer
Architecture, pp. 203–214, February 2008.

[70] P. K. McKinley, H. Xu, E. Kalns, and L. M. Ni, “CompaSS: Efficient communication
services for scalable architectures,” in proc. of int. conf. supercomputing, pp. 478-487, USA
1992.

[71] H. Xu, P. K. McKinley, E. Kalns, and L. M. Ni, “Efficient implementation of barrier
synchronization in wormhole-routed hypercube multicomputers,” Journal of Parallel and
Distributed Computing, Vol. 16, pp. 172-184, 1992.

[72] K. Li, and R. Schaefer, “A Hypercube Shared Virtual Memory,” in proc. of int. conf. ICPP,
pp. 125-132, USA 1989.

[73] M. Azevedo, and D. Blough, “Fault-Tolerant Clock Synchronization of Large
Multicomputers via Multistep Interactive Convergence,” in proc. of int. conf. ICDCS, pp.
249-257, Hong Kong 1996.

138

[74] X. Lin, and L. M. Ni, “Multicast Communication in Multicomputer Networks,” IEEE
Transactions on Parallel and Distributed Systems, 4, pp. 1105-1117, 1993.

[75] P. McKinely, H. Xu, A. H. Esfahanian, and L. Ni, “Unicast-based multicast communication
in wormhole-routed networks,” IEEE Trans. of Parallel and Distributed Systems, Vol. 5, pp.
1252-1265, 1994.

[76] M.P. Malumbres, J. Duato, and J. Torrellas, “An Efficient Implementation of Tree-Based
Multicast Routing for Distributed Shared-Memory Multiprocessors,” in proc. of SPDP, pp.
186-190, USA, 1996.

[77] A. Al-Dubai, I. Romdhani, “A Performance Study of Path Based Multicast Communication
Algorithms,” in proc. int. conf. PARELEC, Bialystok, Poland, pp. 245-250, 2006.

[78] R. V. Boppana, , S. Chalasani, C.S. Raghavendra, “Resource deadlock and performance of
wormhole multicast routing algorithms,” IEEE Transactions on Parallel and Distributed
Systems, 9, pp. 535-549, 1998,

[79] A. Al-Dubai, M. Ould-Khaoua, and L. M. Mackenzie “An Efficient Path-Based Multicast
Algorithm for Mesh Networks,” in proc. of IPDPS, pp. 1—8, 2003.

[80] F. Harary, ‘Graph Theory’ (Readings, Massachusetts: Addson-Wesley, 1972)
[81] P. Mohapatra, V. Varavithya, “A Hardware Multicast Routing Algorithm for Two-

Dimensional Meshes,” in proc. int. conf. SPDP, New Orleans, pp. 198-205, 1996.
[82] W.C. Tsai, K.C. Chu, S.J. Chen, and Y.H. Hu, “TM-FAR: Turn-Model based Fully Adaptive

Routing for Networks on Chip,” in proc. of VLSI_SoC, pp. 19-24, 2010.
[83] J. Liang, S. Swaminathan, and R. Tessier, “aSOC: a scalable, single-chip communication

architectures,” in proc. int. conf. PACT, Oregon, USA, pp. 37–46, 2000.
[84] E. Carara, and F. G. Moraes, “Deadlock-Free Multicast Routing Algorithm for Wormhole-

Switched Mesh Networks-on-Chip,” in proc. int. conf. ISVLSI, France, pp. 341-346, 2008.
[85] D. K. Panda, S. Singal, and R. Kesavan, “Multidestination message passing in wormhole k-

ary n-cube networks with base routing conformed paths,” IEEE Transactions on Parallel and
Distributed Systems, 10, pp. 76–96, 1999.

[86] A. Kahng, B. Li, L.-S. Peh, and K. Samadi, “Orion 2.0: A fast and accurate noc power and
area model for early-stage design space exploration,” in proc. of DATE, pp. 423-428, 2009.

[87] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta, “The splash-2 programs:
Characterization and methodological considerations,” in Proceedings of the 22nd
International Symposium on Computer Architecture (ISCA), pp. 24–36, 1995.

[88] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The parsec benchmark suite: characterization
and architectural implications,” in Proceedings of the 17th international conference on
Parallel architectures and compilation techniques, pp. 72–81, 2008.

[89] C. Bienia, S. Kumar, and K. Li, “Parsec vs. splash-2: A quantitative comparison of two
multithreaded benchmark suites on chipmultiprocessors,” in IEEE International Symposium
on Workload Characterization, pp. 47–56, 2008.

[90] M.M.K. Martin, et al. “Multifacet's general executiondriven multiprocessor simulator
(GEMS) toolset,” SIGARCH Computer Architecture News, Vol. 33, No. 4, pp.92-99.
November 2005.

139

[91] A. Patel and K. Ghose, “Energy-efficient mesi cache coherence with pro-active snoop
filtering for multicore microprocessors,” in Proceeding of the thirteenth international
symposium on Low power electronics and design, pp. 247–252, August 2008.

[92] M. Martin, M. Hill, and D. Wood, “Token coherence: decoupling performance and
correctness,” in proceeding of 30th Annual International Symposium on Computer
Architecture (ISCA), pp. 182-193, 2003.

[93] A. Demers, S. Keshav and S. Shenkar, “Analysis and Simulation of a Fair Queuing
Algorithms,” Proceedings of SIGCOMM ’89, pp. 3-12, August 1989.

[94] C. A. Zeferino, M. E. Kreutz, and A. A. Susin, “RASoC: A router soft-core for Networks-
on-Chip,” Designers Forum - DATE, pp. 198-203, France, 2004.

[95] D. Wu, B. M. Al-Hashimi, and M. T. Schmitz, “Improving Routing Efficiency for Network-
on-Chip through Contention-Aware Input Selection,” In Proc. of 11th ASP-DAC, pp. 36 –
41, 2006.

[96] E. Nilsson, M. Millberg, J. Oberg, and A. Jantsch, “Load distribution with the proximity
congestion awareness in a network on chip,” DATE, pp. 1126-1127, Germany, 2003.

[97] C. J. Glass and L. M. Ni, “The Turn Model for Adaptive Routing,” Proc, Symp, Computer
Architecture, pp. 278-287, May 1992.

[98] T. T. Ye, L. Benini, and G. De Micheli, “Packetization and routing analysis of on-chip
multiprocessor networks,” Journal of Systems Architecture, vol. 50, pp. 81-104, 2004.

[99] U. Feige, P. Raghavan, “Exact analysis of hot-potato routing,” in Proceedings of the 33rd
Annual Symposium on Foundations of Computer Science, pp. 553–562, 1992.

[100] P. Abad, V. Puente and J. Á. Gregorio, “MRR: Enabling Fully Adaptive Multicast Routing
for CMP Interconnection Networks,” High Performance Computer Architecture (HPCA), pp.
355-366, 2009.

[101] X. Li, P.K. Mckinley, and L.M. Ni, “Deadlock-free multicast wormhole routing in 2-D mesh
multicomputers“, IEEE transactions on Parallel and Distributed Systems, v.5, i.8,pp. 793-
804, 1994.

[102] P. Gupta, N. McKeown, “Designing and Implementing a Fast Crossbar Scheduler,” IEEE
Computer Society Press, pp 20-28, Jan. 1999.

[103] K. Lee, S. Lee, and H. Yoo, “A distributed crossbar switch scheduler for on-chip networks,”
in IEEE Int. Conf. on CICCS, pp. 671–674, Sept. 2003.

[104] D. C. Stephens, J. C.R. Bennet, and H. Zhang, “Implementing scheduling algorithms in
high-speed networks,” IEEE Journal on Selected Areas in Communications, vol. 17, pp.
1145-1158, June 1999.

[105] R. V. Boppana and S. Chalasani, “A Comparison of Adaptive Wormhole Routing
Algorithms,” Proc. Int'l. Symp. Computer Architecture, pp. 351–360, May 1993.

[106] E.B. Van der Tol and E.G.T. Jaspers, “Mapping of MPEG-4 Decoding on a Flexible
Architecture Platform,” Proc. SPIE 2002, pp. 1–13, Jan. 2002.

[107] X. Yang, Z. Qing-li, F. Fang-fa, Y. Ming-yan, L. Cheng, “NISAR: An AXI compliant on-
chip NI architecture offering transaction reordering processing,” in Proc. ASICON, pp. 890-
893, 2007, Greece.

140

[108] W. Kwon, S. Yoo, S. Hong, B. Min, K. Choi, and S. Eo, “A Practical Approach of Memory
Access Parallelization to Exploit Multiple Off-chip DDR Memories”, Proc. DAC, 2008.

[109] A. Radulescu, and et al., “An Efficient On-Chip NI Offering Guaranteed Services, Shared-
Memory Abstraction, and Flexible Network Configuration”, in Proc IEEE TCAD, 24(1),
January 2005.

[110] S. Rixner, W. J. Dally, U. J. Kapasi, P. Mattson, and J. D. Owens, “Memory access
scheduling,” In Proc. of ISCA’00, pp. 128-138, US, 2000.

[111] S. E. Lee, J. H. Bahn, Y. S. Yang, and N. Bagherzadeh, “A Generic Network Interface
Architecture for a Networked Processor Array (NePA)”, In proc. ARCS’08, pp. 247-260,
2008.

[112] W. Kwon, S. Yoo, J. Um, and S. Jeong, “In-network reorder buffer to improve overall NoC
performance while resolving the in-order requirement problem”, In proc. DATE’09, pp.
1058 – 1063, France, 2009.

[113] W. Jang and D. Z. Pan, “An SDRAM-Aware Router for Networks-on-Chip,” in proc. of
DAC’09, pp. 800-805, US, 2009.

[114] Z. Fang, X. H. Sun, Y. Chen, and S. Byna, “Core-aware memory access scheduling
schemes,” In Proc. of IEEE International Symposium on Parallel & Distributed Processing
(IPDPS’09), pp. 1-12, Italy, 2009.

[115] H. G. Rotithor, R. B. Osborne, and N. Aboulenein, “Method and Apparatus for Out of Order
Memory Scheduling,” United States Patent 7127574, Intel Corporation, October 2006.

[116] Micron Technology, Inc. Micron 512Mb: x4, x8, x16 DDR2 SDRAM Datasheet, 2006.
[117] T. Ono, M. Greenstreet, “A modular synchronizing FIFO for NoCs,” in proc. of the 3rd

ACM/IEEE International Symposium on Networks-on-Chip, USA, pp. 224-233, 2009.
[118] C. E. Cumings, “Simulation and Synthesis Techniques for Asynchronous FIFO Design”. In:

SNUG, 2002.
[119] S. Murali, and et al. “Designing message-dependent deadlock free networks on chips for

application-specific systems on chips,” In Proc. VLSI-SoC, pages 158-163, 2006.
[120] T. Kgil, A. G. Saidi, N. L. Binkert, S. K. Reinhardt, K. Flautner, and T. N. Mudge,

“PicoServer: Using 3D stacking technology to build energy efficient servers,” in ACM
Journal on Emerging Technologies in Computing Systems (JETC), Vol. 4, No. 4, 2008.

[121] G. L. Loi, B. Agarwal, N. Srivastava, S.-C. Lin, and T. Sherwood, “A Thermally-Aware
Performance Analysis of Vertically Integrated (3-D) Processor-Memory Hierarchy,” In
Proceedings of the 43rd Design Automation Conf., pp.991-996, 2006.

[122] Gaisler IP Cores, http://www.gaisler.com/products/grlib/, 2009.
[123] R. Das, S. Eachampati, A. K. Mishra, N. Vijaykrishnan, and C. R Das, “Design and

Evaluation of a Hierarchical On-Chip Interconnect for Next-Generation CMPs,” in proc. of
15th International Symposium on High-Performance Computer Architecture (HPCA), pp.
175-186, 2009.

[124] P. P. Pande, C. Grecu, M. Jones, A. Ivanov, R. Saleh, “Performance Evaluation and Design
Trade-offs for Network on Chip Interconnect Architectures,” IEEE Transactions on
Computers, vol. 54, no. 8, pp. 1025-1040, 2005.

141

[125] Young-Joon Lee, Yoon Jo Kim, Gang Huang, Muhannad Bakir, Yogendra Joshi, Andrei
Fedorov, and Sung Kyu Lim, “Co-Design of Signal, Power, and Thermal Distribution
Networks for 3D ICs,” Design, Automation & Test in Europe Conference & Exhibition
(DATE), pp. 610-615, 2009.

[126] B. Goplen and S. Sapatnekar, “Thermal via placement in 3D ICs”, Proc. ISPD 2005, pp.
167-174, USA.

[127] Z. Li, et al., “Efficient thermal-oriented 3D floorplanning and thermal via planning for two-
stacked-die integration”, ACM TODAES 11:2, pp. 325-345, 2006.

[128] M. Mondal, A. Ricketts, S. Kirolos, T. Ragheb, G. Link, V. Narayanan and Y. Massoud,
“Thermally Robust Clocking Schemes for 3D Integrated Circuits,” Proceedings of the IEEE
Design Automation and Test in Europe (DATE), Nice, France, pp. 1-6, 2007.

[129] Q. Wu, K. Rose, J.-Q. Lu, and T. Zhang, “Impacts of though-DRAM vias in 3D processor-
DRAM integrated systems,” in IEEE Int’ 3D System Integration Conf. (3DIC), pp. 1–6,
2009.

[130] R. Lu, A. Cao, and C. Koh, “SAMBA-Bus: A High Performance Bus Architecture for
System- on-Chips”, IEEE Transactions on VLSI Systems, Vol. 15, Issue 1, pp. 69-79, Jan
2007.

[131] M. Grange et al., “Physical mapping and performance study of a multi-clock 3-Dimensional
Network-on-Chip mesh,” in Proc. IEEE International Conference on 3D System Integration
(3D IC), 2009, San Francisco, USA, pp. 1-7, 2009.

[132] T. Richardson, C. Nicopoulos, D. Park, V. Narayanan, Y. Xie, C. Das, and V. Degalahal, “A
hybrid SoC interconnect with dynamic TDMA-based transaction-less buses and on-chip
networks”, In Proc. VLSID, pp. 8-15, 2006.

[133] V.F. Pavlidis and E.G. Friedman, “3D Topologies for Networks-on-Chip,” IEEE
Transactions on Very Large Scale Integration Systems, 15(10):1081, 2007.

[134] J. Shao and B. T. Davis, “A Burst Scheduling Access Reordering Mechanism”, Proceedings
of the 13th International Symposium on High-Performance Computer Architecture, pp. 285-
294, 2007.

[135] D. E. Culler, J. P. Singh, and A. Gupta, “Parallel Computer Architecture: A
Hardware/Software Approach,” Morgan Kaufmann Press, 1998.

[136] I. Hur and C. Lin, “Memory scheduling for modern microprocessors,” ACM Trans. on
Computer Systems, vol. 25, no. 4, Dec. 2007.

[137] S. Murali, C. Seiculescu, L. Benini, and G. D. Micheli, “Synthesis of networks on chips for
3D systems on chips,” In Proceedings of the 14th Asia and South Pacific Design Automation
Conference (ASPDAC’09), pp. 242-247, Jan. 2009.

[138] Y. Qian, Z. Lu and W. Dou, “From 2D to 3D NoCs: A Case Study on Worst-Case
Communication Performance,” In. Proc. of the International Conference on Computer-Aided
Design (ICCAD), pp. 555-562, 2009.

[139] A. Y. Weldezion, Z. Lu, R. Weerasekera, and H. Tenhunen, “3D Memory Organization and
Performance Analysis for Multi-processor Network-On-Chip Architecture,” in Proc. of IEEE
International 3D System Integration Conference, San Francisco, USA, pp. 1-7, 2009.

142

Appendix A

8 Hardware Prototyping

A configurable on-chip network platform is developed with VHDL during this thesis work.
Different hardware parts and their functionalities are already discussed in Chapters 3, 4,
and 5. The platform exploits the adaptive router described in Chapter 4 where the router is
configurable to use different routing protocols introduced in Chapter 3. It employs the
network interface described in Chapter 5 to connect AXI-based processors to the network.
Here, a lightweight prototype of the platform is presented. As illustrated in Fig. A-1, the
prototype is composed of four routers each of which contains an AXI-based network
interface. The agent cluster adjusts the frequency and voltage based on the congestion
value.

Fig. A-1. The test chip architecture.

143

The VHDL implementation of the platform is simulated using the ModelSim simulator
from Mentor graphic and synthesized by Synopsys Design Compiler. Different tools from
Synopsys (for frontend) and Cadence (for backend), e.g. Synopsys Design Compiler,
Synopsys PrimePower, Cadence Encounter, and Cadence Virtuoso, are used for hardware
analysis and layout. A test chip from the lightweight platform (Fig. A-1) was fabricated
using the ST 65nm CMOS technology with Low Power Low Voltage Standard Cell Library
at 1 V supply voltage. The hardware layout of the platform is shown in Fig. A-2. The
0.07mm2 design contains 5520 cells along with 146 IOs with chip maximum operating
frequency of 2 GHz. Finally, Fig. A-3 depicts the targeted prototype board. The platform is
supposed to connect four AXI-based processors while voltage and frequency are adapted
based on the agent decision integrated in the network.

Fig. A-2. The test chip layout.

Fig. A-3. The prototype board.

 HistoryItem_V1
 Nup

 Create a new document
 Trim unused space from sheets: no
 Allow pages to be scaled: yes
 Margins and crop marks: none
 Sheet size: 6.929 x 9.843 inches / 176.0 x 250.0 mm
 Sheet orientation: tall
 Scale by 100.00 %
 Align: top left
 Bleed handling: Prompt

 0.0000
 Prompt
 10.0000
 20.0000
 0
 Corners
 0.3000
 ToFit
 1
 1
 1.0000
 0
 0
 1
 0.0000
 1

 D:20111109102342
 708.6614
 B 5 oikea
 Blank
 498.8976

 Tall
 439
 286
 0.0000
 TL
 0

 CurrentAVDoc

 0.0000
 0
 2
 0
 1
 0

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9b
 Quite Imposing Plus 2
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 6.929 x 9.843 inches / 176.0 x 250.0 mm
 Shift: move down by 2.13 points
 Normalise (advanced option): 'original'

 32

 D:20110914120745
 708.6614
 B 5 oikea
 Blank
 498.8976

 Tall
 1
 0
 No
 475
 324

 Fixed
 Down
 2.1260
 0.0000

 Both
 1
 AllDoc
 2

 CurrentAVDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9b
 Quite Imposing Plus 2
 1

 0
 167
 166
 167

 1

 HistoryList_V1
 qi2base

