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ABSTRACT

Mika H. Martikainen
Mitochondrial disease in Southwestern Finland. Population-based molecular 
genetic and clinical studies

From the the Department of Neurology, University of Turku and Turku University 
Hospital, Turku, Finland

Annales Universitatis Turkuensis Ser. D
Painosalama Oy, Turku, Finland 2012

Mitochondria are present in all eukaryotic cells. They enable these cells utilize oxygen 
in the production of adenosine triphosphate in the oxidative phosphorylation system, 
the mitochondrial respiratory chain. The concept ‘mitochondrial disease’ conventionally 
refers to disorders of the respiratory chain that lead to oxidative phosphorylation defect. 
Mitochondrial disease in humans can present at any age, and practically in any organ 
system. Mitochondrial disease can be inherited in maternal, autosomal dominant, 
autosomal recessive, or X-chromosomal fashion. One of the most common molecular 
etiologies of mitochondrial disease in population is the m.3243A>G mutation in the 
MT-TL1 gene, encoding mitochondrial tRNALeu(UUR). Clinical evaluation of patients 
with m.3243A>G has revealed various typical clinical features, such as stroke-like 
episodes, diabetes mellitus and sensorineural hearing loss. The prevalence and clinical 
characteristics of mitochondrial disease in population are not well known. This 
thesis consists of a series of studies, in which the prevalence and characteristics of 
mitochondrial disease in the adult population of Southwestern Finland were assessed. 
Mitochondrial haplogroup Uk was associated with increased risk of occipital ischemic 
stroke among young women. Large-scale mitochondrial DNA deletions and mutations 
of the POLG1 gene were the most common molecular etiologies of progressive external 
ophthalmoplegia. Around 1% of diabetes mellitus emerging between the ages 18 – 45 
years was associated with the m.3243A>G mutation. Moreover, among these young 
diabetic patients, mitochondrial haplogroup U was associated with maternal family 
history of diabetes. These studies demonstrate the usefulness of carefully planned 
molecular epidemiological investigations in the study of mitochondrial disorders.

Key words: diabetes mellitus, mitochondrial disease, molecular epidemiology, 
progressive external ophthalmoplegia, sensorineural hearing loss, stroke.
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TIIVISTELMÄ

Mika H. Martikainen
Mitokondriotautien esiintyvyys Varsinais-Suomessa. Molekyyliepidemiologinen 
tutkimus

Neurologian klinikka, Turun yliopisto ja Turun yliopistollinen keskussairaala, Turku

Annales Universitatis Turkuensis Ser. D
Painosalama Oy, Turku 2012

Mitokondrioita on kaikissa aitotumaisissa soluissa. Mitokondrioiden hengitysketjun 
avulla solut voivat hyödyntää happea soluhengityksessä ja adenosiinitrifosfaatin tuotan-
nossa. Käsite ”mitokondriotauti” viittaa tavallisesti hengitysketjun toimintahäiriöihin, 
jotka johtavat puutteelliseen soluhengitykseen. Ihmisellä mitokondriotauteja esiintyy 
kaikenikäisillä ja kaikissa elinjärjestelmissä. Mitokondriotaudit voivat periytyä äitilinjas-
sa, autosomaalisesti vallitsevasti, autosomaalisesti peittyvästi, tai X-kromosomaalisesti. 
Mitokondriaalisen leusiinin tRNA:ta koodaavan MT-TL1 –geenin pistemutaatio 
m.3243A>G on tavallisimpia mitokondriotautien molekyylitason syitä. Tämän mutaati-
on kantajien kliininen tutkimus on paljastanut useita tyypillisiä kliinisiä piirteitä, kuten 
aivoverenkiertohäiriön kaltaiset oireet, diabetes mellitus ja sensorineuraalinen kuulo-
vika. Väestötasolla mitokondriotautien esiintyvyys ja ilmenemismuodot ovat kuitenkin 
huonosti tunnettuja. Tämä väitöskirjatyö koostuu sarjasta tutkimuksia, joissa selvitettiin 
mitokondriotautien esiintyvyyttä ja ilmenemismuotoja Varsinais-Suomen aikuisväestös-
sä. Mitokondriaalisen Uk-haploryhmän todettiin nuorilla naisilla assosioituvan lisään-
tyneeseen takaraivolohkon aivoinfarktin riskiin. Mitokondriaalisen DNA:n deleetiot ja 
POLG1 –geenin pistemutaatiot todettiin yleisimmiksi progressiivisen eksternin oftal-
moplegian syiksi. Noin 1% 18 – 45 vuoden iässä ilmaantuvasta diabeteksesta liittyy 
m.3243A>G –mutaatioon. Lisäksi todettiin mitokondriaalisen U-haploryhmän liittyvän 
diabeteksen esiintymiseen äidinpuoleisessa suvussa näillä potilailla. Nämä tutkimukset 
osoittavat huolellisesti suunniteltujen molekyyliepidemiologisten tutkimusten käyttö-
kelpoisuuden mitokondriotautien tutkimuksessa.

Avainsanat: aivoinfarkti, diabetes mellitus, mitokondriotaudit, molekyyliepidemiolo-
gia, progressiivinen eksterni oftalmoplegia, sensorineuraalinen kuulovika.



6	 Table of Contents	

Table of contents

Abbreviations.........................................................................................................9

List of original publications....................................................................12

1.	I ntroduction..................................................................................................13

2.	R eview of the literature.......................................................................14
2.1	 Basics of mitochondrial biology.......................................................................14

2.1.1	 Structure of mitochondria.....................................................................14
2.1.2	 Origins of mitochondria and mitochondrial functions..........................14
2.1.3	 Mitochondrial DNA..............................................................................15
2.1.4	 Replication of mtDNA..........................................................................16
2.1.5	 Nuclear genetic control of mitochondria...............................................17
2.1.6	 Regulation of mtDNA expression.........................................................17
2.1.7	 Protein transport into mitochondria......................................................18
2.1.8	 Maintenance of mitochondrial dNTP pools..........................................19
2.1.9	 Translation of mitochondrial proteins...................................................19
2.1.10	Mitochondrial dynamics........................................................................20
2.1.11	Mitochondrial respiratory chain............................................................21
2.1.12	Mitochondrial DNA variation and mtDNA haplogroups......................22

2.2	 Mitochondrial disease – overview....................................................................23
2.2.1	 Definition of mitochondrial disease......................................................23
2.2.2	 Particularities of mitochondrial disease................................................24
2.2.3	 Investigations of suspected mitochondrial disease...............................25

2.3	 Mechanisms of oxidative phosphorylation defects..........................................26
2.3.1	 Defects in mtDNA.................................................................................26
2.3.2	 Defects in nuclear genes........................................................................27

2.4	 Important clinical syndromes mainly related to point mutations or  
large-scale deletions of mtDNA.......................................................................27
2.4.1	 Progressive external ophthalmoplegia and Kearns-Sayre syndrome....27
2.4.2	 Leber hereditary optic neuropathy........................................................27
2.4.3	 Mitochondrial encephalomyopathy, lactic acidosis and stroke-like 

episodes.................................................................................................28
2.4.4	 Myoclonus epilepsy with ragged-red fibers..........................................28
2.4.5	 Neuropathy, ataxia and retinitis pigmentosa.........................................29

2.5	 Nuclear gene defects mainly leading to secondary multiple mtDNA deletions..29
2.5.1	 POLG-associated mitochondrial disease...............................................29
2.5.2	 ANT1.....................................................................................................30
2.5.3	 PEO1.....................................................................................................30
2.5.4	 OPA1.....................................................................................................31



	 Table of Contents	 7

2.5.5	 MFN2....................................................................................................31
2.6	 Mitochondrial disease due to mtDNA depletion..............................................31

2.6.1	 Overview of mtDNA depletion syndromes...........................................31
2.6.2	 Mitochondrial neurogastrointestinal encephalomyopathy....................32
2.6.3	 RRM2B.................................................................................................32

2.7	 Leigh syndrome................................................................................................32
2.8	 Accumulation and clonal expansion of mtDNA mutations..............................33

2.8.1	 Overview...............................................................................................33
2.8.2	 Mitochondrial dysfunction in inclusion body myositis and  

inflammatory muscular disease.............................................................33
2.8.3	 Mitochondrial dysfunction in ageing and neurodegeneration...............34

2.9	 Features of m.3243A>G –associated disease...................................................35
2.9.1	 Overview...............................................................................................35
2.9.2	 Ischemic stroke, stroke-like episodes and m.3243A>G........................35
2.9.3	 Mitochondrial diabetes mellitus and m.3243A>G................................37

2.10	Sensorineural hearing loss (SNHL) due to m.1555A>G and m.3243A>G 
mutations..........................................................................................................37

2.11	PEO and mitochondria.....................................................................................38
2.12	Treatment of mitochondrial disorders..............................................................39
2.13	Genetic counseling...........................................................................................40
2.14	Clinical epidemiology......................................................................................40

2.14.1	Overview...............................................................................................40
2.14.2	Fallibility of human heuristics and intuition. The need for clinical 

epidemiological studies.........................................................................41
2.14.3	Epidemiology of neurological disease..................................................41
2.14.4	Prevalence studies in epidemiology......................................................42
2.14.5	The use of medical record data in prevalence studies...........................42
2.14.6	Prevalence studies of rare conditions....................................................42
2.14.7	Epidemiology of rare diseases, special features....................................43

2.15	Molecular epidemiology and Genetic epidemiology.......................................43
2.15.1	Overview...............................................................................................43
2.15.2	Resource-effective use of molecular genetic testing in rare disorders..44

2.16	Molecular Epidemiology of mitochondrial disease..........................................44
2.17	Genetic composition of the Finns. Implications for molecular epidemiology in 

Finland..............................................................................................................46
2.18	Why study clinical molecular epidemiology of mitochondrial disease?..........46

3.	A ims of the study..........................................................................................48

4. 	 Patients and methods................................................................................49
4.1	 Setting...............................................................................................................49
4.2	 Patient identification and clinical investigations..............................................49
4.3	 Molecular methods...........................................................................................51



8	 Table of Contents	

4.4	 Statistical methods............................................................................................52
4.5	 Ethical considerations.......................................................................................52

5.	R esults................................................................................................................53
5.1	 Clinical characteristics and investigations – Occipital stroke and  

PEO cohorts......................................................................................................53
5.2	 Clinical history of the PEO patient with POLG1 mutations............................53
5.3	 Molecular investigations – Occipital stroke and PEO cohorts.........................54
5.4	 Molecular investigations – DM and SNHL cohorts.........................................55
5.5	 Mitochondrial DNA haplogroup analyses – Occipital stroke and  

DM cohorts.......................................................................................................55

6.	D iscussion..........................................................................................................56
6.1	 Overview..........................................................................................................56
6.2	 Occipital stroke cohort.....................................................................................57
6.3	 PEO cohort.......................................................................................................57
6.4	 Mitochondrial diabetes cohort..........................................................................59
6.5	 Mitochondrial DNA haplogroups and disease..................................................61
6.6	 Results of the present studies in the population perspective............................61
6.7	 Practical implications of the present studies....................................................62
6.8	 Future directions...............................................................................................63

7.	C onclusions.....................................................................................................64

8. 	A cknowledgements...................................................................................65

9.	R eferences.......................................................................................................67

Original publications.....................................................................................87



	 Abbreviations	 9

Abbreviations

AChRab – acetylcholine receptor antibody
AF – atrial fibrillation
ANT1 – adenine nucleotide translocator 1
ADP – adenosine diphosphate
ATP – adenosine triphosphate
bp – base pair
CNS – central nervous system
CoQ(10) – coenzyme Q10, ubiquinone
COX – cytochrome c (Cyt c) oxidase
CSF – cerebrospinal fluid
CT – computed tomography
DGUOK – deoxyguanosine kinase
D-loop – displacement loop
DM – diabetes mellitus
DNA – deoxyribonucleic acid
dNTP – deoxyribonucleoside triphosphate
ECG – electrocardiography
ENMG - electroneuromyography
ER – endoplasmic reticulum
FADH – flavin adenine dinucleotide
Fe-S – iron-sulphur
GTPase – guanosine triphosphatase
HI – hearing impairment
h-mtRPOL – mitochondrial RNA polymerase
HSP – heavy strand promoter
H-strand – heavy strand
IBM – inclusion body myositis
ICD – international classification of diseases
IF – initiation factor
IMM – inner mitochondrial membrane
IMS – inter-membrane space



10	 Abbreviations	

IOSCA – infantile onset spinocerebellar ataxia
ISC – iron-sulphur cluster
KSS – Kearns-Sayre syndrome
LHON – Leber’s hereditary optic neuropathy
LS – Leigh syndrome
LSP – light strand promoter
L-strand – light strand
MFH – maternal family history of diabetes mellitus
MFN – mitofusin
MELAS – mitochondrial encephalomyopathy, lactic acidosis and stroke-like episodes
MERRF – myoclonic epilepsy with ragged-red fibers
MIA – mitochondrial intermembrane space assembly
MIDD – maternally inherited diabetes and deafness
MMSE – Mini-Mental State Examination
MNGIE – mitochondrial neurogastrointestinal encephalomyopathy
MR – magnetic resonance
MRC – mitochondrial respiratory chain
MRP – mitoribosomal protein
MS – multiple sclerosis
mtDNA – mitochondrial DNA
mtEF – mitochondrial elongation factor
MTERF – mitochondrial transcription termination factor
mtRRF – mitochondrial recycling factor
mtRF – mitochondrial release factor
mtSSB – mitochondrial single-stranded DNA binding protein
NADH – nicotinamide adenine dinucleotide
nDNA – nuclear DNA (i.e. ‘common’ DNA)
OHA – oral hypoglycaemic agent
ORL – otorhinolaryngology
OXPHOS – oxidative phosphorylation
PCR – polymerase chain reaction
PD – Parkinson’s disease
(C)PEO – (chronic-) progressive external ophthalmoplegia



	 Abbreviations	 11

PET – positron emission tomography
PFO – patent foramen ovale
POLG – mitochondrial DNA polymerase γ
POLRMT – mitochondrial RNA polymerase
RBBB – right bundle branch block
RC – (mitochondrial-) respiratory chain (i.e. MRC)
RITOLS – RNA incorporation throughout the lagging strand
RNA – ribonucleic acid
ROS – reactive oxygen species
RRF – ragged-red fiber
rRNA – ribosomal RNA
SAM – sorting and assembly machinery
SIIF – Social Insurance Institute of Finland
SNHL – sensorineural hearing loss
SNP – single nucleotide polymorphism
SSB – single-stranded DNA binding protein
TFAM – mitochondrial transcription factor A
TFB1M and TFB2M – mitochondrial transcription factors B1 and B2
TOAST – Trial of ORG 10172 in Acute Stroke
TP – thymidine phosphorylase
TYMP – thymidine phosphorylase
TIM – translocase of the inner membrane
TK2 – thymidine kinase 2
TOM – translocase of the outer membrane
tRNA – transfer RNA
TUH – Turku University Hospital



12	 List of Original Publications	

List of original publications

This thesis is based on the following original publications, which are referred to in the 
text by Roman numerals: Studies I – IV. In addition, this thesis contains unpublished 
data.

I 	 Martikainen MH, Majamaa K. Epidemiology and characteristics of occipital brain 
infarcts in young adults in Southwestern Finland. J Neurol 2010; 257: 259-263.

II 	 Martikainen MH, Hinttala R, Majamaa K. Novel POLG1 mutations in a patient 
with adult-onset progressive external ophthalmoplegia and encephalopathy. BMJ 
Case Reports 2010. doi:10.1136/bcr.01.2010.2604.

III 	 Martikainen MH, Hinttala R, Röyttä M, Jääskeläinen S, Wendelin-Saarenhovi M, 
Parkkola R, Majamaa K. Progressive External Ophthalmoplegia in Southwestern 
Finland: A Clinical and Genetic Study. Neuroepidemiology 2012; 38: 114-119.

IV 	 Martikainen MH, Rönnemaa T, Majamaa K. Prevalence of mitochondrial diabetes 
in southwestern Finland: a molecular epidemiological study. Acta Diabetol 2012 
Apr 11. [Epub ahead of print]

The original publications have been reproduced with the permission of the copyright 
holders.



	 Introduction	 13

1.	I ntroduction

Mitochondria are intra-cytosolic, intracellular organelles present in all eukaryotic cells. 
They are thought to be of bacterial origin (Sagan 1967), the result of endosymbiotic 
colonization of eukaryotic cells by aerobic bacteria more than 109 years ago. As 
reminiscent of their separate origin, mammalian mitochondria contain their own 
mitochondrial DNA (mtDNA), as well as mechanisms for RNA and protein synthesis. 
In every cell there is a variable amount (hundreds or thousands) of mitochondria, 
and in every mitochondrion there are several (~2-10) mtDNA molecules. The use of 
molecular oxygen in the conversion of the chemical energy contained in nutrients to 
adenosine triphosphate (ATP), the universal energy unit of cells, is a central function of 
mitochondria (van der Giezen and Tovar 2005). Mitochondrial respiratory chain (MRC) 
consists of a series of protein complexes located in the inner mitochondrial membrane. 
It produces ATP by oxidative phosphorylation (OXPHOS), the reduction of equivalents 
produced in the Krebs cycle and in the beta-oxidation processes (Hatefi 1985, Saraste 
1999).

The concept ‘mitochondrial disease’ conventionally refers to disorders in which the 
etiology is defective MRC resulting in OXPHOS defect. Mitochondrial disease in 
humans can present at any age, and practically in any organ system. One of the most 
common molecular etiologies of mitochondrial disease in population is the m.3243A>G 
mutation in the mitochondrial MT-TL1 gene, encoding mitochondrial tRNALeu(UUR). The 
m.3243A>G mutation is the most common mutation in the MELAS (mitochondrial 
encephalomyopathy, lactic acidosis and stroke-like episodes) syndrome (Goto et al. 
1990). Clinical evaluation of patients with m.3243A>G has revealed various phenotypes 
(Ciafaloni et al. 1992; Goto 1995; Majamaa et al. 1997 and 1998a; Kaufmann et al. 
2009), including ischemic stroke, diabetes mellitus (DM), and sensorineural hearing loss 
(SNHL).

The prevalence and clinical characteristics of mitochondrial disease in population are 
not well known. Previous studies have addressed the prevalence and the various genetic 
etiologies of mitochondrial disease, but only rare studies have been strictly population-
based. Previous experience in Finland shows that systematic search for patients with 
mitochondrial disease results in new diagnoses and increased understanding of these 
conditions (Majamaa et al. 1998a; Lehtonen et al. 2000; Hakonen et al. 2005).

We decided to perform a series of cross-sectional prevalence studies to identify patients 
with mitochondrial disease in the adult population of Southwestern Finland and to assess 
the prevalence and characteristics of mitochondrial disease, especially that associated 
with the m.3243A>G mutation, in this well-defined population. Furthermore, we 
evaluated the overall usefulness of the approach combining clinical epidemiology and 
molecular genetics in the study of mitochondrial disease in population.



14	 Review of the Literature	

2.	R eview of the literature

2.1	 Basics of mitochondrial biology

2.1.1	S tructure of mitochondria

Mitochondria are intra-cytosolic, intracellular organelles present in all eukaryotic cells. 
They are composed of outer membrane, intermembrane space, inner membrane, and 
the matrix: the region inside the inner membrane. Mitochondria have classically been 
depicted as bean-shaped, separate organelles, but more recent research suggests that 
mitochondria are interconnected, and indeed form a dynamic network, that shows an 
active balance of transforming fission and fusion activities which also allow exchange of 
genetic material between mitochondria. Moreover, mitochondria are constantly actively 
transported within cells according to local metabolic demand. (Hollenbeck and Saxton 
2005; Chen and Chan 2006; Detmer and Chan 2007; Herzig and Martinou 2008).

2.1.2	O rigins of mitochondria and mitochondrial functions

Mitochondria are thought to be of bacterial origin (Sagan 1967), the result of endosymbiotic 
colonization of eukaryotic cells by aerobic bacteria more than 109 years ago. A more 
recent elaboration of the endosymbiotic theory proposes that present-day mitochondria 
of multicellular organisms as well as anaerobic variants such as hydrogenosomes (e.g. 
in Cryptosporidium) and mitosomes (e.g. in Entamoeba) are derived from of a proto-
mitochondrial prokaryotic organelle (Martin and Müller 1998; Hackstein et al. 2006). 
Moreover, it seems that an important function to all mitochondria and mitochondria-like 
organelles is the biogenesis of Fe-S (iron-sulphur) proteins, inorganic cofactors essential 
for several cellular processes such as electron transfer, catalysis, and various regulatory 
processes (Beinert et al. 1997, Lill 2009). Downregulation of mitochondrial iron-sulphur 
cluster (ISC) biogenesis leads to nuclear genome instability (Veatch et al. 2009), and 
defective production of the ISCs by mitochondria have a role in the pathogenesis of 
several human diseases such as Friedreich’s ataxia (Campuzano et al. 1996; Rötig et 
al. 1997; Rouault and Tong 2005; Lill 2009). Mitochondria enable eukaryotic cells 
utilize oxygen in the production of ATP in the OXPHOS system, the respiratory chain. 
It produces energy with superior efficiency compared to anaerobic glycolysis. The use 
of molecular oxygen in the conversion of the chemical energy contained in nutrients to 
ATP, the universal energy unit of cells, is a central function of mitochondria (van der 
Giezen and Tovar 2005). Besides ATP production, mitochondria are involved in several 
important cellular activities, such as apoptosis, pyruvate oxidation, Krebs cycle, beta-
oxidation as well as the metabolism of amino acids, fatty acids, and steroids (Newmeyer 
and Ferguson-Miller 2003). Mitochondria are also involved in regulation of cellular 
calcium levels (Pozzan et al. 2000). Moreover, mitochondria are an important source of 
free oxygen radicals (reactive oxygen species, ROS).
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2.1.3	 Mitochondrial DNA

As reminiscent of their separate origin, mammalian mitochondria contain their own 
mitochondrial DNA, as well as mechanisms for RNA and protein synthesis. In every 
cell there is a variable amount (hundreds or thousands) of mitochondria, and in every 
mitochondrion there are several (~2-10) mtDNA molecules. The mtDNA is a 16,569 
base-pair (bp), circular, double-stranded molecule which contains 37 genes: 2 rRNA 
genes for mtDNA translation, 22 tRNA genes, and 13 structural genes that encode MRC 
subunits (Anderson et al. 1981). There are no introns in mtDNA. The only major non-
coding region in the molecule is the displacement loop (D-loop), which is a 1.1kb region 
that contains elements of mtDNA transcription and replication (Shadel and Clayton 
1997; Greaves et al. 2012). The individual strands of the mtDNA molecules are denoted 
heavy (H) and light (L) strand because of their different buoyant densities in a cesium 
chloride gradient. L-strand transcription is initiated from one single promoter (LSP), 
whereas H-strand transcription is initiated from two specific and differentially regulated 
sites, HSP1 (H1) and HSP2 (H2) (Montoya et al. 1982).

Inside mitochondria, mtDNA is organized in nucleoprotein particles called nucleoids. 
The nucleoid, considered a heritable unit of mtDNA, may contain several copies of 
the mitochondrial genome as well as several different proteins (Wang and Bogenhagen 
2006; Kucej and Butow 2007). The distribution of nucleoids during mitochondrial 
fission and fusion events and during cytokinesis affects the segregation, transmission 
and complementation of mitochondrial genomes. This has particular importance in the 
context of primary mtDNA diseases, in which heteroplasmic cells bear a mixture of 
healthy and mutated mtDNA molecules (Garrido et al. 2003). Cell fusion experiments 
have indeed demostrated that mitochondrial nucleoids and the respiratory complexes are 
mobile and diffuse efficiently into mitochondria previously devoid of mtDNA (Legros 
et al. 2004).

Mitochondrial DNA is maternally inherited, and paternal mtDNA is eliminated during 
early embryogenesis (Kaneda et al. 1995). Both selection and genetic drift are thought 
to have effect on mitochondrial DNA evolution (Elson et al. 2004; Jenuth et al. 1996 
and 1997). The precise contributions of these phenomena are not clear and are debated. 
Mitochondrial DNA undergoes frequent adaptive evolution (Bazin et al. 2006). Genetic 
draft is a result of the ‘hitchhiking’ process associated with positive selection acting 
on beneficial mutations (Meiklejohn et al. 2007). The mitochondria and so mtDNA 
molecules are distributed randomly to oocytes, but there is strong selection against 
defective mtDNA during embryogenesis (Cree et al. 2008). In a study of primary 
oocytes from a woman who harbored the m.3243A>G mtDNA mutation the frequency 
distribution of mutation load indicated that random drift is the principal mechanism that 
determines the level of mutant mtDNA within individual oocytes (Brown et al. 2001). 
Deleterious mtDNA mutations are selectively eliminated from the female germ line, a 
process which minimizes their impact on population fitness (Fan et al. 2008). A recent 
study presented direct experimental observations of the fate of random mtDNA mutations 
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in the mammalian germ line demonstrating that a purifying selection process shapes 
mitochondrial sequence diversity (Stewart et al. 2008a). The concept of a bottleneck 
mechanism governing segregation of mtDNA in the mammalian maternal germ line is 
at present considered well established. Most damaging mtDNA protein-coding gene 
mutations are removed by a process of purifying selection during oocyte development. 
The molecular mechanisms for rapid purifying selection and bottleneck segregation are, 
however, currently not fully understood (Stewart et al. 2008b).

2.1.4	R eplication of mtDNA

Mitochondrial DNA is replicated in a relaxed manner, that is, independent of the cell 
cycle (Clayton 1982). The core mtDNA replication machinery consists of the following 
components. First is the mtDNA polymerase, pol γ or POLG. It is a heterotrimer 
molecule that consists of a catalytic subunit (encoded by POLG1) and two accessory 
β-subunits (encoded by POLG2). The accessory subunits bind DNA and increase the 
processivity of POLG. Second core component is the mitochondrial helicase Twinkle 
(encoded by PEO1) that unwinds the double-stranded DNA. A third core component is 
mtSSB (encoded by SSBP1), the mitochondrial single-stranded DNA binding protein 
that enhances the functions of POLG and Twinkle (Mao and Holt 2009) and maintains 
the integrity of single-stranded DNA in replication process. Single-stranded DNA-
binding proteins (SSB) are a class of proteins that bind single-stranded DNA with high 
affinity. They are involved in DNA metabolism in all organisms and serve a vital role 
in replication, recombination and repair of DNA. Human mtSSB is a bacterial-type 
SSB that has an important role in DNA replication and recombination as well as its 
repair through binding to single-stranded DNA (Wong et al. 2009). Many molecules 
of mammalian mtDNA hold a short third strand, so-called 7S DNA, whose regulation 
is poorly understood. In addition there is a role for mtSSB in the maintenance of 7S 
DNA (Ruhanen et al. 2010). Mitochondrial DNA replication requires also several 
topoisomerases, mtDNA ligase III, RNA primers, mtDNA primase (yet unidentified), 
RNase mitochondrial RNA processing endonuclease (RNase MRP), endonuclease G, 
and RNase H1 (Smits et al. 2010).

The replication process itself is different from that of nuclear DNA, and the precise 
mechanisms remain to be elucidated. Three models of mtDNA replication have thus far 
been suggested (Holt 2009; Mao and Holt 2009). These are the strand-displacement model 
(Clayton 1982; Shadel and Clayton 1997; Brown et al. 2005), the coupled leading- and 
lagging-strand DNA synthesis model (Holt et al. 2000), and a modification of the latter, 
delayed lagging-strand DNA synthesis with RNA incorporation throughout the lagging 
strand (hence RITOLS) (Yasukawa et al. 2006). In the classical strand-displacement 
model, the replication proceeds from two unidirectional and independent origins in 
an asynchronous manner. The origin of H-strand replication in the D-loop starts the 
mtDNA synthesis, proceeding along the L-strand to produce a daughter H-strand. When 
the replication reaches the second origin, the L-strand synthesis launches to the opposite 
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direction. In the two latter, more recent models, a coupled leading and lagging-strand 
synthesis exists with the original strand-asynchronous mechanism (Smits et al. 2010).

2.1.5	N uclear genetic control of mitochondria

Mitochondria are under dual genetic control, meaning that both mtDNA genes and nuclear 
genes are needed in the proper function of mitochondria. Most of ~1200 gene products 
in mitochondria are nuclear-encoded and derived from the cytoplasm. Majority of MRC 
subunits are nuclear-encoded, as are assembly factors of the OXPHOS complexes, the 
enzymes needed in the biosynthesis of MRC cofactors and non-protein constituents such 
as ubiquinone and cardiolipin. All proteins needed in the replication, transcription and 
translation of mtDNA are nuclear-encoded. Nuclear genes are also involved in protein 
import to mitochondria, biogenesis of ISCs, mitochondrial protein metabolism, and 
mitochondrial dynamics. Moreover, it is likely that several as yet unknown nuclear 
proteins are needed for sound mitochondrial structure and function.

2.1.6	R egulation of mtDNA expression

The regulation of mtDNA expression is crucial for normal mitochondrial function. 
Despite its importance for respiratory-chain function and cell physiology, surprisingly 
little is known about the mechanisms of mitochondrial transcription and how the levels 
of transcription are regulated in response to the metabolic need of the eukaryotic cell. 
The replication of mtDNA is initiated by RNA primers that couple replication with 
transcription. The mitochondrial genome is transcribed by a specialized machinery 
that includes a monomeric RNA polymerase (POLRMT or h-mtRPOL) (Tiranti 
et al. 1997), the mitochondrial transcription factor A (TFAM) and one of the two 
mitochondrial transcription factor B paralogues, TFB1M or TFB2M, the termination 
factor MTERF (Roberti et al. 2009), and others (Spinazzola and Zeviani 2009). Human 
mtDNA transcription can be reconstituted in a pure in vitro system consisting of a 
promoter-containing DNA fragment and recombinant TFAM, POLRMT, and TFB1M or 
TFB2M (Falkenberg et al. 2002). The adequate supply of the mtDNA building blocks, 
deoxynucleotides and ribonucleotides, is needed as well. In addition, the components 
needed for the formation of mitochondrial nucleoids are essential for successful mtDNA 
replication and transcription (Spinazzola and Zeviani 2009).

Mitochondrial transcription factor A (TFAM) was the first mammalian protein 
demonstrated to regulate mtDNA copy number in vivo (Larsson et al. 1998) and 
it is essential for mitochondrial biogenesis and maintenance as well as embryonic 
development. Human TFAM is a multi-functional protein, involved in different aspects 
of maintaining mitochondrial genome integrity. It is also a regulator of mtDNA copy 
number (Ekstrand et al. 2004). TFB1M and TFB2M are dual-function proteins that not 
only support mitochondrial transcription in vitro but also act as rRNA methyltransferases 
in vivo. Both TFB1M and TFB2M can form a heterodimeric complex with POLRMT. 
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However, POLRMT in complex with TFB1M or TFB2M cannot initiate transcription in 
the absence of TFAM (Asin-Cayuela and Gustafsson 2007). There are three mitochondrial 
transcription units (those starting at HSP1, HSP2 and LSP). Transcription termination 
of the HSP1 unit is mediated by MTERF, a 39-kDa protein that binds to a 28-bp region 
at the 3′ end of the tRNALeu(UUR) gene in a sequence-specific manner (Kruse et al. 1989; 
Fernandez-Silva et al. 1997). The MTERF protein can terminate transcription in vitro 
(Yakubovskaya et al. 2010), but the functional role of the protein in vivo remains 
to be established. At present, the basic components of the transcription machinery in 
mammalian mitochondria are known and their mechanisms of action are gradually being 
established (Asin-Cayuela and Gustafsson 2007). Regulatory factors govern transcription 
levels both at the stage of initiation and termination, but the biochemical understanding 
of these processes is still largely missing.

2.1.7	 Protein transport into mitochondria

The vast majority of proteins in any eukaryotic cell are synthesized on cytosolic 
ribosomes. However, only part (~50%) of these proteins function in the cytosol; the 
rest function in the plasma membrane or in the various cellular organelles. This is why 
these proteins must be translocated across or into one of the various membranes in 
the cell. Specific targeting signals and protein translocases are needed in this sorting 
process (Wickner and Schekman 2005, Rapoport 2007). Translocases recognize the 
targeting signals and mediate the transport of proteins accordingly across or into the 
specific membranes of the organelles. The transport of proteins into mitochondria is 
a particularly demanding task as it not only requires targeting to the organelle but it 
also necessitates the proper sorting of the proteins to the correct intramitochondrial 
compartment. 99% of mitochondrial proteins are encoded by nuclear genes and imported 
into mitochondria. The mitochondrial outer membrane contains α-helical proteins and 
β-barrel proteins. Whereas the import pathways of α-helical proteins are only partly 
understood, the pathway for β-barrel proteins has been characterized and shown to 
require the translocase of the outer membrane (TOM) complex, small translocase of 
the inner membrane (TIM) chaperones of the intermembrane space and the sorting and 
assembly machinery (SAM) complex of the outer membrane. Several small proteins of 
the mitochondrial intermembrane space contain characteristic Cys motifs. Most of these 
proteins are imported and folded by the redox-dependent mitochondrial intermembrane 
space assembly (MIA) machinery. The TOM complex is the main entry for most nucleus-
encoded mitochondrial precursor proteins. Presequence-carrying preproteins are then 
imported by the presequence TIM23 complex and the presequences are proteolytically 
removed by specific processing enzymes. The precursors of hydrophobic metabolite 
carriers of the inner membrane are imported by the TOM complex. They are bound to 
small TIM chaperones in the intermembrane space. Then the precursors are inserted by 
the carrier translocase of the inner membrane (TIM22) complex. (Chacinska et al. 2009; 
Schmidt et al. 2010; Marom et al. 2011).
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2.1.8	 Maintenance of mitochondrial dNTP pools

Deoxyribonucleoside triphosphates (dNTPs) are the precursors used by DNA polymerases 
for replication and repair of nuclear and mitochondrial DNA in animal cells. Accurate 
DNA synthesis requires adequate amounts of each of the four dNTPs (deoxyadenosine-, 
deoxyguanosine-, deoxycytidine-, and thymidine triphosphate) and appropriately balanced 
dNTP pools. Both excess and deficiency of one dNTP may be detrimental (Rampazzo 
et al. 2010). Complex interlinked pathways in the cytosol and inside mitochondria 
regulate the maintenance of mitochondrial dNTP pools which in turn depend both on de 
novo production of dNTPs and the action of purine and pyrimidine salvage pathways. 
These are operated by the two mitochondrial deoxyribonucleoside kinases, thymidine 
kinase 2 (encoded by TK2) and deoxyguanosine kinase (DGUOK), the former active in 
intramitochondrial salvage of pyrimidine nucleosides, the latter in the salvage of purine 
nucleosides. In non-dividing cells, the burden of dNTP pool maintenance is on these 
enzymes, since the cytosolic thymidine kinase 1 and dNTP synthesis are down-regulated. 
(Copeland 2012). Thymidine phosphorylase (TYMP) has a role in the cytoplasmic 
breakdown of thymidine nucleosides. RRM2B gene encodes a subunit of the cytosolic 
enzyme ribonucleotide reductase that provides nucleotide precursors for nDNA repair 
and mtDNA synhesis by reducing ribonucleoside diphosphates to deoxyribonucleoside 
diphosphates. The p53-inducible form of the subunit (P53R2) is needed for basal level 
DNA repair and mtDNA synthesis in non-proliferating cells (Copeland 2012). Other 
proteins essential for dNTP pool maintenance are ANT1 (SLC25A4), adenine nucleotide 
translocator of the inner mitochondrial membrane that exchanges ATP with ADP in 
and out of the mitochondrial matrix; and the two subunits of succinyl CoA synthetase 
(SUGLG1 and SUCLA2), that are involved in the citric acid cycle (Krebs cycle) and 
nucleoside salvage. Mitochondrial phosphate carrier (SLC25A3) transports inorganic 
phosphate into mitochondrial matrix. Finally there is MPV17-encoded protein, the exact 
function of which is unknown, but which is involved in dNTP metabolism (Copeland 
2008, Smits et al. 2010, Ylikallio and Suomalainen 2012).

2.1.9	T ranslation of mitochondrial proteins

Human mitochondria contain their own genome, encoding 13 polypeptides that are 
synthesized within the organelle. The molecular mechanism of human mitochondrial 
translation has yet to be fully described. Translation of mitochondrial proteins is first 
possible when several previous steps have been successfully taken. For translation to 
take place, the replication, transcription, and maintenance of mtDNA must be intact. 
In addition, essential nuclear-encoded proteins must be successfully imported from the 
cytoplasm (Smits et al. 2010). The mitochondrial translation system has several original 
features. Firstly, mitochondria use a genetic code that differs slightly from the universal 
one. Secondly, mitochondrial mRNAs somewhat differ from cytoplasmic ones, thirdly, 
mitochondria utilize a simplified decoding in translation, and fourthly, mammalian 
mitochondria use only a single tRNAMet in initiation and elongation of translation, 
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instead of two as in prokaryotes, cytoplasmic tRNA in eukaryotes, and mitochondria in 
most lower eukaryotes (Smits et al. 2010).

The mtDNA translation machinery consists of mtDNA-encoded tRNAs and rRNAs in 
addition to nuclear-encoded intiation, elongation, and termination translation factors, 
mitochondrial ribosomal proteins, mitochondrial aminoacyl-tRNA synthetases and 
methionyl-tRNA transformylase (Smits et al. 2010). The translation machinery consists 
of two initiation factors IF2 (Ma and Spremulli 1995) and IF3 (Koc and Spremulli 2002). 
Human mitochondria have elongation factors mtEFTu, mtEFTs, and two homologs 
mtEFG1 and mtEFG2 (Hammarsund et al. 2001). MtEFGs catalyze the translocation 
step of protein biosynthesis. Transcription termination process in mitochondria is not 
completely understood. Two release factors, mtRF1 and mtRF1a as well as a recycling 
factor mtRRF have been recognized (Zhang and Spremulli 1998; Soleimanpour-Lichaei 
et al. 2007; Nozaki et al. 2008; Rorbach et al. 2008). Depletion of mtRRF in human cell 
lines is lethal. MtRRF co-immunoprecipitates a large number of mitoribosomal proteins 
attached to other mitochondrial proteins, including putative members of the mitochondrial 
nucleoid. Elongation factor mtEFG2 is also involved in ribosome recycling (Bhargava 
et al. 2004). The mitoribosome is a central component of the translation system for 
production of proteins encoded by the mitochondrial genome. Human mitoribosomes 
consist of 2 rRNAs (12S and 16S) and ~81 mitoribosomal proteins (MRPs) (Smits et al. 
2007). Alternative foldings are an inherent property of RNA and a ubiquitous problem 
in scientific investigations. Human mitochondrial tRNAs (Suzuki et al. 2011) have a 
secondary cloverleaf structure, and relatively weak tertiary structure possibly due to 
lack of multiple conserved nucleotides. The proper tertiary structure is believed to be 
achieved by post-transcriptional base modification (Helm 2006). So far, 19 mitochondrial 
aminoacyl-tRNA synthetases have been identified.

There are probably several yet unknown factors that influence mtDNA translation. 
Moreover, translation regulation is poorly understood. In order to be functional, proteins 
need to be incorporated to the OXPHOS system in the inner mitochondrial membrane 
after translation. This process utilizes various chaperones, proteases and assembly 
factors for post-translational processing (Smits et al. 2010).

2.1.10	 Mitochondrial dynamics

Contrary to common depiction in cell biology textbooks, mitochondria are not isolated 
intracellular organelles but form an interconnected network, in which mitochondria 
can be transferred to different locations inside the cell along cytoskeletal tracks 
(Hollenbeck and Saxton 2005; Detmer and Chan 2007). This movement is thought to 
reflect the energy-production needs of the cell. In addition, mitochondria themselves 
are not static but are in a continuous process of fusion and fission as well as undergo 
structural transformations (Detmer and Chan 2007; Westermann 2008; Chen and Chan 
2009); this means that mitochondria are joined together and then again divided in a 
continuous process. During this process, mtDNA molecules are also re-distributed 
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between mitochondria (Chen et al. 2010). Indeed, the hundreds of mitochondria in a 
typical cell are probably best thought as a co-operative integrated network, constantly 
morphed by the fusion and fission processes, and the exchange of their contents, 
including mtDNA molecules (Detmer and Chan 2007). Dynamins are a superfamily 
of large guanosine triphosphatases (GTPases) that promote the fission and fusion of 
membranes. These mechano-chemical proteins are thought to be of bacterial ancestry 
(Low and Löwe 2006). The molecular mechanisms of mitochondrial dynamics are 
best understood in yeast, where the core fusion machinery consists of two GTPases, 
Fzo1 and Mgm1. Fzo1 resides in the outer mitochondrial membrane, and its human 
homologues are the mitofusins MFN1 and MFN2. Mgm1 is a dynamin-related protein 
in the inner mitochondrial membrane, and its mammalian orthologue is OPA1. In yeast, 
outer membrane protein Ugo1 links Fzo1 and Mgm1 together; so far, there is no known 
mammalian orthologue of Ugo1 (Detmer and Chan 2007). In mitochondrial fission, 
dynamin-related cytosolic proteins Dnm1 in yeast and DRP1 in mammals are needed, 
with other essential proteins such as Fis1 in yeast and FIS1 in mammals, respectively 
(Detmer and Chan 2007). Because the shape, cellular distribution, and interconnectivity 
of mitochondria are functionally important, the balance and rates of fission and fusion 
are tightly controlled with elaborate mechanisms (Westermann 2008). Regulators of 
mitochondrial fusion include pro-apoptotic Bcl-2 family members Bax and Bak, which 
induce fusion by regulating MFN2. The key mammalian fission machinery component 
DRP1 is controlled by ubiquitin ligase MARCH-V (or MITOL) and ubiquitin-like 
modifier SUMO (Westermann 2008). The transport of mitochondria along cytoskeletal 
filaments is managed by energy-dependent molecular motors. Kinesin and dynein family 
member proteins have a role in anterograde and retrograde mitochondrial transport 
(Hollenbeck and Saxton 2005).

2.1.11	 Mitochondrial respiratory chain

MRC consists of a series of protein complexes located in the inner mitochondrial 
membrane. It produces ATP by the reduction of equivalents produced in the Krebs cycle 
and in the beta-oxidation processes (Hatefi 1985, Saraste 1999). MRC is composed of 
five polypeptide complexes that consist of multiple subunits: NADH dehydrogenase-
ubiquinone oxidoreductase (complex I, 45 subunits); succinate dehydrogenase-
ubiquinone oxidoreductase (complex II, 4 subunits, the only complex that is encoded 
solely by the nuclear genome); ubiquinone-cytochrome c oxidoreductase (complex III, 
11 subunits); cytochrome c oxidase (COX; complex IV, 13 subunits); and ATP synthase 
(complex V, ~16 subunits). Thirteen MRC complex subunits are mtDNA-encoded: In 
complex I, NADH dehydrogenases 1-4, 4L, 5 and 6; in complex III, cytochrome b; 
COX I-III (MTCO1-3) in complex IV; and subunits a (A6) and A6L in complex V. Most 
(>67) MRC subunits are, however, nuclear-encoded. In addition to the five complexes, 
MRC requires two electron carriers: ubiquinone (coenzyme Q10) and cytochrome c. In 
serial oxido-reduction reactions that have various flavins, nicotinamides, cytochromes, 
iron-sulphur centres and copper ions as adjuvants, electrons are transferred through the 



22	 Review of the Literature	

MRC complexes I-IV. At the same time, protons are pumped across the mitochondrial 
inner membrane from the matrix to intermembrane space at complexes I, III and IV. This 
process creates an electrochemical gradient that is in turn dissipated by ATP synthase 
that uses the influx of these protons to condensate inorganic phosphate and ADP to form 
ATP.

Figure 1. The OXPHOS system and mtDNA. Above: The OXPHOS system in a schematic, 
simplified form. Below: The circular, double-stranded human mitochondrial genome in linearized 
form starting at light-chain origin of replication (OL). Turquoise, genes encoding subunits of RC 
complex I; red, the MT-CYB gene of complex III; light green, the catalytic subunits of complex 
IV; purple, the subunits of complex V; light brown, the 12S and 16S rRNA genes; white, the 
22 tRNA genes denoted by the conventional single-letter amino acid abbreviations. The non-
coding D-loop region is shown in grey. Genes in the light strand of mtDNA are marked above 
the genome; those in the heavy strand on or below the genome. The origins of replication OL and 
OH as well as transcription promoters of the light and heavy strands (LSP and HSP, respectively) 
are marked.

2.1.12	 Mitochondrial DNA variation and mtDNA haplogroups

Mitochondrial DNA evolves rapidly compared to nuclear DNA (Brown et al. 1979 
and 1982). The mtDNA mutation rate is ~10 – 17 times higher than that of the nuclear 
DNA (Vilmi et al. 2005). This is probably due to several factors, such as the lack of 
protective histones and non-coding mtDNA, the higher error rate of the replication 
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enzyme polymerase γ compared to the nuclear polymerase α, and proximity to the 
mutagenic ROS generated by the electron transport chain (Yarham et al. 2010; Smits et 
al. 2010). This results in mtDNA sequence variants that with time result in population-
specific, recognizable patterns (Brown 1980; Denaro et al. 1981; Merriwether et al. 
1991; Di Rienzo and Wilson 1991). MtDNA haplogroups can be formed according to 
similarities and differences between individuals with respect to patterns in this variation. 
This variation can be used in reconstruction of prehistoric origins (Cann et al. 1987) 
and migrations of human populations (Torroni et al. 1993 and 1998) and in estimations 
of genetic similarity between present human populations (Torroni et al. 1996; Ingman 
et al. 2000). When data on mtDNA variation is used with additional archaeological 
and linguistic data, human prehistoric evolution can be reconstructed with increasing 
precision (Cavalli-Sforza et al. 1988; Torroni et al. 2006). Additional information on 
Y-chromosomal variation increases further the accuracy of such population genetics 
analyses (Underhill et al. 2000; Lappalainen et al. 2008). In human mitochondrial DNA 
the sequence variation between populations is mostly considered to be neutral. However, 
several studies suggest that some haplogroups might interact with pathogenic mtDNA 
mutations and modify the severity of the resulting phenotype (Wallace et al. 1999); this 
has been reported e.g. in Leber’s hereditary optic neuropathy (LHON) (Lamminen et al. 
1997; Torroni et al. 1997). Haplogroups may also predispose individuals to disorders 
common in population (Gomez-Duran et al. 2010), such as type 2 DM (Achilli et al. 
2011). A recent paper suggests that mtDNA variants might modulate the replication and 
transcription of mtDNA (Suissa et al. 2009).

A sequence variation in the major noncoding region of mtDNA was originally reported 
in patients with MELAS syndrome with the common m.3243A>G mutation (Morten et 
al. 1995; Marchington et al. 1996). In these patients, a transition at np 16 189 substituted 
a cytosine for a thymine residue creating a poly-cytosine tract which varied in length 
from 8–14 nucleotides. Later, this sequence variant has been associated with both insulin 
resistance (Poulton et al. 1998) and type 2 DM (Poulton et al. 2002), although a more 
recent study failed to support this connection (Das et al. 2007).

2.2	 Mitochondrial disease – overview

2.2.1	 Definition of mitochondrial disease

Traditionally, the concept ‘mitochondrial disease’ refers to disorder in which the etiology 
is defective MRC resulting in OXPHOS defect. Mitochondrial disease in humans can 
present at any age, and practically in any organ system. Although mtDNA is maternally 
inherited, the normal functioning of mitochondria is dependent on a manifold of 
nuclear factors; this is why mitochondrial disease – broadly defined – can be inherited 
in maternal, autosomal dominant, autosomal recessive, or X-chromosomal fashion 
(DiMauro et al. 2006). Commonly, the description of “a case of severe hypermetabolism 
of nonthyroid origin” with abnormal mitochondria and loosely coupled state of oxidative 
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phosphorylation (Luft et al. 1962) is considered as the beginning of mitochondrial 
medicine. It is peculiar that since then only one other patient with the same condition, in 
which the molecular etiology is still unknown, has been described (DiMauro and Garone 
2010).

2.2.2	 Particularities of mitochondrial disease

There are several distinct core features of mitochondrial disease due to mtDNA mutations. 
These have been described in detail in several recent reviews (DiMauro and Schon 2003; 
Taylor and Turnbull 2005; DiMauro and Schon 2008; McFarland and Turnbull 2009; 
Spinazzola and Zeviani 2009). Several basic rules of mitochondrial disease genetics 
differ from those commonly applied in disease due to nuclear genetic etiology. These 
include the concepts of heteroplasmy and threshold effect, as well as mitotic segregation, 
and maternal inheritance (DiMauro and Schon 2008). Heteroplasmy refers to the fact 
that various (i.e. not identical) types of mtDNA may be present in mitochondria of an 
individual, usually meaning some proportion of mutated mtDNA in addition to the 
normal genome. Threshold effect means that a minimum amount of mutation load (often 
~80 – 90%) is needed to cause mitochondrial dysfunction; thus the threshold is “high 
and steep” (DiMauro and Garone 2010). On the other hand, threshold effect means that 
some individuals with low proportions of detectable mutated mtDNA can be clinically 
healthy and asymptomatic. Some mitochondrial DNA disease mutations are usually 
homoplasmic (i.e., 100% mutated mtDNA), but most mtDNA abnormalities are thought 
to be incompatible with life when homoplasmic. The three common mtDNA mutations 
encoding complex I subunits causing LHON are typically encountered as homoplasmic 
(Man et al. 2002), as is the m.1555A>G mutation in the mitochondrial 12S rRNA 
gene, causing aminoglycocide-induced hearing loss and non-syndromic sensorineural 
hearing loss (SNHL) (Prezant et al. 1993, Estivill et al. 1998). As to sporadic, large-
scale mtDNA deletions, the pathogenic threshold seems to be somewhat lower (50 
– 60%) (DiMauro and Garone 2010). Since the redistribution of mitochondria in the 
mitotic segregation of cell division is stochastic, the genetic constitution of daughter 
cells as to the mutated mtDNA can vary. If in this process a certain tissue reaches the 
pathogenic threshold, a new phenotype may arise. The exact process underlying mitotic 
segregation is unclear, although several plausible mechanisms have been suggested. This 
phenomenon also explains the tremendous age-related and tissue-related variability in 
mtDNA-related disease. Basically, mitochondria and so mtDNA derive from the ovum 
and so are maternally inherited (Giles et al. 1980). There is one reported case of paternal 
inheritance of mtDNA in skeletal muscle (Schwartz and Vissing 2002). This ‘rule-
confirming exception’ was, however, encountered in association with a mitochondrial 
disorder.

A typical feature of mitochondrial disease is that tissues with high energy demands (e.g. 
brain, skeletal muscle, heart) are more sensitive to RC defects and thus these tissues 
are more prone to show clinical deficits. Common features present in patients with 
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mitochondrial disease include myopathy, including the sometimes focal presentation of 
PEO, axonal polyneuropathy, endocrinopathy (commonly DM), SNHL, ischaemic stroke 
or stroke-like episodes, cerebellar atrophy and ataxia, epilepsy, diffuse, often progressive 
encephalopathy, short stature, and others (Taylor and Turnbull 2005; McFarland et al. 
2010). Important reason behind the perceived complexity of mitochondrial disease is 
the complex relationship between genotypes and phenotypes. The same genotype may 
result in a variety of clinical manifestations in patients, and conversely, the same clinical 
phenotype may be the result of various pathological genetic abnormalities (Zifa et al. 
2007; Scaglia and Wong 2008). Generally speaking, the combination of such pathologies 
in several organ systems might lead one to consider the possibility of an underlying 
mitochondrial disorder.

2.2.3	I nvestigations of suspected mitochondrial disease

Because the genetic causes and clinical manifestations of mitochondrial disease 
are extremely variable, no straight-forward general guidelines for investigation of 
mitochondrial disease can be presented. However, there are several ways to guide the 
planning of investigations so as to make them as rational and resource-effective as 
possible (Haas et al. 2008, McFarland et al. 2010). A starting point is thus the clinical 
presentation of the patient. Sometimes the clinical features or constellation of core 
symptoms readily suggest a known mitochondrial syndrome, which in turn may guide 
molecular genetic investigations. In addition, the order of prevalence and likelihood of 
various mitochondrial disorders differ considerably depending on the patient’s age; so 
that some conditions typically affect infants, others might be more probable in a late-onset 
phenotype. Obviously, eventual positive family history of similar or other suspicious 
symptoms is of interest. Mitochondrial disease can be sporadic (i.e. caused by a de novo 
mutation) or inherited according to materal, autosomal dominant, autosomal recessive, 
or X-chromosomal pattern. Thus, mitochondrial disease per se can not be excluded on 
grounds of any inheritance pattern suggested by the family history of an individual patient. 
However, the inheritance pattern may direct suspicions to certain direction. Simply put, 
clearly autosomal patterns favor nuclear genetic etiologies of mitochondrial disease, and 
maternal family history of the condition mtDNA-related etiology. If the family history 
should suggest X-chromosomal mode of inheritance the list of potential ‘culprits’ is 
narrowed down considerably. The precise selection of investigations depends on these 
pre-diagnostic considerations, but generally analysis of muscle histopathology (Filosto 
et al. 2007), biochemical analysis of RC function (especially in the pediatric population) 
and molecular genetic testing are most useful in obtaining the conclusive diagnosis of 
a mitochondrial disorder (Haas et al. 2008; McFarland et al. 2010). In muscle biopsy, 
abnormalities suggestive of mitochondrial disorder include COX-negative fibers and 
ragged-red fibers (RRFs) (Oldfors and Tulinius 2003; Filosto et al. 2007; Greaves et 
al. 2012). In brain imaging (computed tomography or MR imaging), possible findings 
include basal ganglia calcification, cerebellar atrophy (especially in POLG-related 
disease), and temporo-parietal ischemic lesions. Obviously, the findings compatible 
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with a stroke-like lesion should raise suspicion of mitochondrial disease (Oldfors and 
Tulinius 2003; Greaves et al. 2012).

Southern blotting and long-range PCR are used to detect mtDNA deletions. The possible 
presence of mtDNA depletion is investigated using real-time PCR (McFarland et al. 2010). 
If biochemical analysis of RC function points to a defect of single RC complex activity, the 
search for an underlying mutation is tailored accordingly. Investigating for the autosomal 
mutations underlying mitochondrial disease can be performed straightforward from DNA 
extracted from leukocytes of a conventional blood sample. For primary mtDNA defects, 
however, the task is more complex as the point mutations are most often in heteroplasmic 
state, and the level of heteroplasmy may differ considerably between different tissues 
(Shanske et al. 2004), being higher in postmitotic tissues such as skeletal muscle cells, 
urinary epithelium or hair follicles than in leukocytes (Sue et al. 1998b; Blackwood et 
al. 2010). Moreover, the heteroplasmy levels in leukocytes have been shown to decrease 
with time (Rahman et al. 2001), so that in some individuals, mutations with initially 
low level heteroplasmy may not be easy to detect at more advanced age. Thus, for the 
investigations of suspected primary mtDNA disease, a postmitotic tissue sample, such as 
buccal epithelium, urinary epithelium (McDonnell et al. 2004), or skeletal muscle tissue, 
usually results in higher detected levels of mtDNA heteroplasmy than a blood sample. 
Obviously, obtaining urinary epithelial cells from a urine sample is non-invasive and 
as such considerably more convenient for the patient than a muscle biopsy. However, 
the heteroplasmy levels sufficient to cause clinical manifestations are commonly high 
(DiMauro and Schon 2008), and leukocyte DNA is generally considered appropriate e.g. 
for the detection of m.3243A>G in patients with suspected MIDD (Maassen et al. 2005). 
Some mtDNA mutations, such as the common LHON mutations and the m.1555A>G 
causing non-syndromic and aminoglycoside-induced hearing loss, are usually encountered 
in homoplasmic (i.e. 100% mutant mtDNA) state (Taylor and Turnbull 2005).

2.3	 Mechanisms of oxidative phosphorylation defects

2.3.1	D efects in mtDNA

Mitochondrial DNA abnormalities causing mitochondrial disease include several 
mechanisms (Di Donato 2009; Rötig 2010). 1. Rearrangements such as deletions 
and duplications of mtDNA (Holt et al. 1988; Poulton et al. 1989; Yamashita et al. 
2008). Typical associated phenotypes are PEO and Kearns-Sayre syndrome (KSS). 2. 
Mutations in protein-coding mtDNA genes, such as the three common point mutations 
genes encoding RC complex 1 subunits that are the most common molecular aetiologies 
of LHON (Man et al. 2002). 3. Mutations in mitochondrial tRNA genes, which are 
a prevalent cause of mitochondrial disease (Zifa et al. 2007). The most common are 
syndromes MELAS, most commonly caused by the m.3243A>G mutation in the 
tRNALeu(UUR) gene (Goto et al. 1990), and MERRF, most commonly due the m.8344A>G 
mutation in the tRNALys gene (Shoffner et al. 1990). 4. Mutations in rRNA genes, of 
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which the m.1555A>G mutation in the 12S rRNA gene, that is a common cause of 
mitochondrial sensorineural hearing loss either with or without previous exposure to 
aminoglycoside antibiotics (Prezant et al. 1993; Estivill et al. 1998).

2.3.2	D efects in nuclear genes

Several nuclear genetic defects may underlie clinical mitochondrial disorders (Di 
Donato 2009; Rötig 2010). These, in short, include: 1. Mutations in genes encoding 
MRC subunits or its ancillary proteins. 2. Mutations in genes involved in the MRC 
assembly machinery or proper MRC function. 3. Mutations in genes involved in mtDNA 
replication, maintenance and translation. These include genes like POLG1 and PEO1; 
clinical phenotypes vary considerably, and often multiple mtDNA deletions or mtDNA 
depletion is detectable. 4. Mutations in genes involved in mitochondrial dynamics. 5. 
Mutations in genes that affect MRC in an indirect manner, such as defects in biosynthetic 
enzymes for cofactors or lipids (e.g. mutations in TAZ gene that encodes proteins involved 
in the synthesis of phospholipids of the inner mitochondrial membrane.

2.4	I mportant clinical syndromes mainly related to point mutations or 
large-scale deletions of mtDNA

2.4.1	 Progressive external ophthalmoplegia and Kearns-Sayre syndrome

PEO is conventionally defined as progressive limitation of eye movements (external 
ophthalmoplegia) with normal pupils, and ptosis of the eyelids that is bilateral but not 
always symmetrical. The first clinical description of KSS dates back to 1958, when 
two patients with the symptoms of retinitis pigmentosa, external ophthalmoplegia, and 
complete heart block were described (Kearns and Sayre 1958). Later, the classical triad 
of KSS has been defined as symptom onset before age 20, pigmentary retinopathy, and 
PEO. Additionally, at least one finding of cardiac conduction block, cerebrospinal fluid 
(CSF) protein > 100mg/dl, or cerebellar ataxia, is required (DiMauro and Schon 2006). 
Many patients present with even more complex phenotypes including e.g. short stature, 
hearing loss, limb weakness, or encephalopathy (Yamashita et al. 2008). Symptom onset 
is typically in childhood with insidious ptosis and PEO, with progressive symptoms with 
age. Large-scale deletions of mtDNA were among the first mtDNA abnormalities found in 
human mitochondrial myopathies, including PEO (Holt et al. 1988 and 1989). These large-
scale deletions were also found in majority of KSS patients (Zeviani et al. 1988; Moraes 
et al. 1989). However, the mutations are commonly not detectable in DNA isolated from 
blood, so a muscle biopsy is required to detect the deletion (DiMauro and Schon 2006).

2.4.2	L eber hereditary optic neuropathy

LHON has the merit of being one of the most common forms of inherited mitochondrial 
disease, with population prevalence of ~3.2/100000 in the North East of England population 
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(Man et al. 2003). LHON was also the first human condition proven to be caused by a defect 
of mtDNA (Wallace et al. 1988). Three point mutations encoding subunit of RC complex 
I m.11778G>A (Wallace et al. 1988), m.14484T>C (Howell et al. 1991; Huoponen et al. 
1991), and m.3460G>A (Johns et al. 1992) are found in vast majority of patients with LHON 
(Mackey et al. 1996). Clinically, LHON is characterized by bilateral, subacute, painless 
visual failure due to degeneration of the retinal ganglion cells and the optic nerves (Man 
et al. 2003). Patients are typically young adults when the loss of vision occurs. In majority 
of patients, the causal mtDNA mutation is found in homoplasmic state. A notable feature 
of LHON is the incomplete penetrance and increased propensity of male mutation carriers 
compared to females of developing optic neuropathy (Harding et al. 1995; Riordan-Eva et 
al. 1995). This pattern initiated search for an X-chromosomal modifying gene, but so far 
results of research have been inconclusive (Vilkki et al. 1991; Pegoraro et al. 2003). Other 
studies suggest that mtDNA background modifies the LHON phenotype and propensity for 
developing optic atrophy (Carelli et al. 2006; Ghelli et al. 2009).

2.4.3	 Mitochondrial encephalomyopathy, lactic acidosis and stroke-like episodes

MELAS is a multisystem mitochondrial disorder that is most commonly associated 
with the m.3243A>G mutation. This point mutation affects the mitochondrial MT-TL1 
gene that encodes tRNA for leucine (UUR) (Goto et al. 1990). The typical features 
include stroke-like episodes that begin at relatively young age, typically before age 
40; encephalopathy that may present with dementia or seizures; and mitochondrial 
myopathy with histopathological features of cytochrome c oxidase (COX-) negative 
fibers or RRFs (Pavlakis et al. 1984). More detailed investigations of families with the 
m.3243A>G mutation have shown, however, that in addition to the classical MELAS 
phenotype, many patients present with DM, SNHL, low stature, exercise intolerance, 
and gastrointestinal complaints (Kaufmann et al. 2009). The clinical phenotype is related 
to the heteroplasmy level of the m.3243A>G, so that those with higher levels of mutated 
mtDNA tend to show more severe phenotypes. Classically, the stroke-like episodes have 
been considered the clinical hallmark of the MELAS syndrome. The occipital regions of 
the brain are frequently affected, and clinical signs of occipital brain dysfunction such 
as homonymous hemianopia or cortical blindness are not uncommon manifestations; 
migraine-like headaches are also relatively common in MELAS (Ciafaloni et al. 1992, 
Goto 1995). In brain imaging, the stroke-like lesions may change size and location 
with time (Iizuka and Sakai 2005). In addition to m.3243A>G, few other MT-TL1 point 
mutations have been shown to result in MELAS phenotype, and comprise less than 15% 
of the MELAS phenotype. Other causal mutations of MELAS are, according to present 
knowledge, very rare (GeneReviews: MELAS).

2.4.4	 Myoclonus epilepsy with ragged-red fibers

MERRF is one of the classical mitochondrial syndromes. Its defining characteristics 
include: myoclonus, generalized epilepsy, ataxia, and ragged-red fibers in muscle biopsy 
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(DiMauro and Schon 2006). Associated relatively common features include hearing 
impairment, axonal peripheral neuropathy, exercise intolerance, and dementia. The most 
common etiology of MERRF is the m.8344A>G point mutation in the mitochondrial 
tRNALys gene (Shoffner et al. 1990). This gene seems to be a hotspot for MERRF 
mutations, since other pathogenic point mutations in this gene resulting in MERRF 
phenotype have subsequently been described (Silvestri et al. 1992; Ozawa et al. 1997; 
Rossmanith et al. 2003). One of these, the point mutation m.8356T>C in tRNALys, has in 
addition to MERRF been described in a MERRF-MELAS overlap phenotype (Zeviani 
et al. 1993). One of these four tRNALys point mutations is found in ~90% of patients 
with MERRF phenotype. In addition, point mutation m.611G>A (Mancuso et al. 2004b) 
in the MT-TF tRNAPhe and m.15967G>A mutation in MT-TP (Blakely et al. 2009) have 
been reported to result in MERRF phenotype; in the latter with pigmentary retinopathy. 
The m.3291T>C mutation in the tRNALeu(UUR) gene has been reported in a complex 
phenotype with MERRF and KSS features (Emmanuele et al. 2011); in addition, a recent 
study reported the common MELAS mutation m.3243A>G in a 13-year-old girl with the 
classic MERRF phenotype (Brackmann et al. 2012).

2.4.5	N europathy, ataxia and retinitis pigmentosa

The syndrome of neuropathy, ataxia, and retinitis pigmentosa (NARP) is defined by the 
combination of sensory neuropathy, ataxia, seizures, dementia, and retinitis pigmentosa 
(DiMauro and Schon 2006). The most common molecular etiology of NARP is 
m.8993T>G point mutation in the MTATP6 gene encoding the ATP synthase subunit 6 
(Holt et al. 1990). The same mutation has been found quite common also in pediatric 
Leigh syndrome (Santorelli et al. 1993).

2.5	N uclear gene defects mainly leading to secondary multiple mtDNA 
deletions

2.5.1	 POLG-associated mitochondrial disease

Mitochondrial polymerase pol γ, or POLG, is the only human mtDNA polymerase 
(Clayton 1982). POLG is a 195kDa heterotrimer that consists of a 140kDa catalytic 
subunit and two accessory subunits of 55kDa size (Longley et al. 1998a and 1998b). 
The catalytic subunit is encoded by POLG1 (Ropp and Copeland 1996); the accessory 
subunits by POLG2 (Lim et al. 1999). The accessory subunits act as DNA binding 
factors, increasing the holoenzyme processivity. POLG mediates mtDNA replication 
and base-excision repair (Pinz and Bogenhagen 2000). POLG exonuclease and 
polymerase functions are essential for mtDNA maintenance (Spelbrink et al. 2000). 
Since the first report of a POLG-associated human disorder (Van Goethem et al. 
2001), rapidly increasing evidence has proven that mutations in the POLG1 gene are 
an important cause of human mitochondrial disease. Several recent reviews cover 
the wide spectrum of clinical phenotypes in POLG-associated disease (Horvath 
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et al. 2006; de Vries et al. 2007; Blok et al. 2009). Clinical phenotypes related to 
POLG mutations comprise a continuum of phenotypes that are partly overlapping. 
Broadly defined, these syndromes can be divided into the following groups 
(GeneReviews: POLG-related disorders): Alpers-Huttenlocher syndrome, spectrum 
of myocerebrohepatopathy syndromes with childhood onset, spectrum of ataxia-
neuropathy phenotypes, including the distinct mitochondrial syndromes of sensory 
ataxic neuropathy with dysarthria and ophthalmoparesis (SANDO) and spinocerebellar 
ataxia with epilepsy (SCAE); and PEO with either autosomal dominant (adPEO) or 
autosomal recessive form of inheritance (arPEO). Mutations in POLG1 are at present 
regarded as the most common autosomal dominant defect to cause PEO. In addition 
to ophthalmoplegia, several other clinical features such as parkinsonism, cerebellar 
dysfunction, dysphagia and dysphonia, can be present depending on the mutation. 
Also recessive mutations of POLG1 are prevalent etiologies of PEO, with other 
possible clinical features being parkinsonism, peripheral neuropathy, depression and 
endocrine abnormalities. Mutations in POLG2 have been reported in adPEO with 
multiple mtDNA deletions (Longley et al. 2006).

2.5.2	ANT 1

ANT1 or SLC25A4 (solute carrier family 25, member 4) encodes the isoform of 
mitochondrial adenine nucleotide translocator that is specific to skeletal muscle and 
heart (ANT1). ANT1 regulates the mitochondrial and cytosolic adenine nucleotide 
pools by exchanging ATP with ADP in and out of mitochondrial matrix. ANT1 protein 
forms a homodimer that is imbedded in the inner mitochondrial membrane (NCBI 
Gene website). Mutations of ANT1 are a rare cause of slowly progressive, autosomal 
dominant PEO (Kaukonen et al. 2000). A recessive mutation in ANT1 has been reported 
to cause hypertrophic cardiomyopathy, myopathy with exercise intolerance, RRF and 
lactic acidosis but without PEO (Palmieri et al. 2005). A patient with mutations both 
in ANT1 and POLG1 had initially PEO but later developed a more complex phenotype 
with cerebellar ataxia, peripheral neuropathy, parkinsonism and depression (Galassi et 
al. 2008).

2.5.3	 PEO1

PEO1 or C10orf2 (chromosome 10, open reading frame 2), encodes Twinkle, the sole 
mitochondrial DNA and RNA helicase, and so is centrally involved in the mtDNA 
replication alongside POLG, the mtDNA polymerase, and the mtSSB, encoded by 
SSBP1. The Twinkle helicase opens short stretches of double-stranded DNA in the 5’ to 
3’ direction (NCBI Gene website). Clinically, as the gene name suggests, mutations of 
PEO1 are mainly associated with PEO (Spelbrink et al. 2001), but also L-dopa responsive 
parkinsonism, ataxia, epilepsy, hearing loss, and optic atrophy have been described. In 
muscle biopsy, multiple mtDNA deletions are not always detectable. Mouse models 
have shown that PEO1 mutations result in multiple mtDNA deletions and a progressive 
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MRC dysfunction with COX deficiency. A specific point mutation in PEO1, Y508C, 
causes infantile-onset spinocerebellar ataxia (IOSCA) (Koskinen et al. 1994; Nikali et 
al. 2005).

2.5.4	O PA1

OPA1 gene encodes a dynamin-related GTPase-like OPA1 protein, that is involved in 
mitochondrial dynamics. OPA1 has been described in optic atrophy type 1, a dominantly 
inherited condition that results in progressive loss of visual aquity (Alexander et al. 2000; 
Delettre et al. 2000). Further studies have shown that OPA1 results also in more complex 
phenotypes (‘optic atrophy plus’) with multiple mtDNA deletions (Amati-Bonneau et al. 
2008; Yu-Wai-Man et al. 2010).

2.5.5	 MFN2

MFN2, mitofusin 2, is the human homolog for the transmembrane GTPase encoded by 
the fzo gene in yeast and Drosophila (Bach et al. 2003). It is another dynamin-like GTPase 
protein that is involved in mitochondrial dynamics. Expression of MFN2 is crucial in 
proper mitochondrial metabolism (Bach et al. 2003). MFN2 tethers endoplasmic reticulum 
(ER) to mitochondria; this contact is necessary for uptake of Ca2+ ions to mitochondria 
(de Brito and Scorrano 2008). The encoding gene MFN2 has previously been shown 
to be mutated in Charcot-Marie-Tooth 2A type hereditary neuropathy (Züchner et al. 
2004). The clinical picture of MFN2-associated disease was later shown to be more 
complex with reports of axonal neuropathy with optic atrophy (Züchner et al. 2006) 
and other complex phenotypes such as axonal neuropathy with associated cognitive 
impairment, corticospinal tract involvement, and sensorineural hearing loss (Del Bo et 
al. 2008). Quite recently mutation of MFN2 has been shown to cause optic atrophy ‘plus’ 
phenotype with multiple mtDNA deletions (Rouzier et al. 2012). At present, the exact 
mechanism that causes mtDNA deletions and their clonal expansion in the context of 
abnormalities of mitochondrial dynamics is a target of intensive investigation (Yu-Wai-
Man and Chinnery 2012).

2.6	 Mitochondrial disease due to mtDNA depletion

2.6.1	O verview of mtDNA depletion syndromes

Mitochondrial DNA depletion syndromes are autosomal recessive conditions in which 
mtDNA copy numbers are profoundly decreased in affected tissues (Spinazzola and 
Zeviani 2008). Maintenance of adequate mtDNA copy numbers is dependent of supply 
and balance of mitochondrial dNTP pools as well as on functional mtDNA replication 
system. Three main presentations include myopathic (associated with TK2 and RRM2B 
mutations), encephalomyopathic (SUCLA2, SUCLG1 mutations) and hepatocerebral 
(PEO1, POLG1, DGUOK, MPV17 mutations) (Spinazzola and Zeviani 2008). 
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Mitochondrial DNA depletion syndromes typically affect infants and children, although 
in POLG1 mutations, the age of onset may be more variable.

2.6.2	 Mitochondrial neurogastrointestinal encephalomyopathy

With the discovery that thymidine phosphorylase deficiency causes destabilization of 
mitochondrial DNA and a severe multisystemic syndrome (Nishino et al. 1999) the 
importance of dNTP pool balance was extended to mitochondria. Following that first 
discovery, mutations in other genes coding for mitochondrial or cytosolic enzymes of 
dNTP metabolism have been associated with mitochondrial DNA depletion syndromes. 
Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is an autosomal 
recessive multisystem disease, characterized by features of PEO (ptosis and external 
ophthalmoplegia), peripheral neuropathy, severe gastrointestinal dysmotility, and 
leukoencephalopathy (Hirano et al. 1994). Age of onset varies considerably (from 
infancy to 43 years, average age of onset 19 years). This disorder results from loss-
of-function mutations in TYMP, a gene encoding thymidine phosphorylase (TP). This 
enzyme catalyzes the reversible phosphorolysis of thymidine. The produced molecules 
are then utilized as carbon and energy sources or in the rescue of pyrimidine bases for 
nucleotide synthesis. In MNGIE, the defect of TP function leads to accumulation of 
thymidine and deoxyuridine, which, in turn, lead to depletion and multiple deletions of 
mtDNA, resulting in RC defect (Nishigaki et al. 2003). Thus, MNGIE can be classified 
to the group of mitochondrial disorders due to nucleotide pool imbalances (DiMauro and 
Schon 2006).

2.6.3	RR M2B

RRM2B gene encodes small subunit of the cytosolic p53-inducible ribonucleotide 
reductase. Its mutations were first shown to cause severe mtDNA depletion (Bourdon 
et al. 2007). Later, mutations in RRM2B were reported in adPEO with multiple mtDNA 
deletions (Tyynismaa et al. 2009). At present, it is not known how large a proportion 
of PEO is due to mutations in RRM2B, but a recent study suggests that these mutations 
might be frequent in familial PEO (Fratter et al. 2011). In addition, mutations of RRM2B 
have been associated with the MNGIE syndrome (Shaibani et al. 2009).

2.7	L eigh syndrome

Leigh syndrome (LS) is an extremely variable and multi-etiological entity in 
mitochondrial disease (Rahman et al. 1996; Dahl 1998). Typically, LS is a devastating 
encephalopathy of infants and children, and results from a severe defect of the 
mitochondrial OXPHOS. Clinically, characteristic features of LS include progressive 
psychomotor regression, hypotonia, ataxia, seizures, respiratory difficulties, dystonia, 
and problems with swallowing (Dahl 1998). In brain imaging, bilateral necrotizing 
lesions within the basal ganglia, thalami and in the brainstem are encountered (Lee et al. 
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2009). Lactate concentration is commonly elevated in blood and CSF. Genetic etiology 
is highly variable, and includes mutations in the nuclear SURF1 gene (Tiranti et al. 
1998), and mutations in various nuclear genes encoding for the subunits of complex I 
(Dahl 1998). The most common mitochondrial mutations causing Leigh syndrome are 
the point mutations m.8993T>G and m.8993T>C in the MTATP6 gene encoding the FO 
subunit 6 of complex V (Makino et al. 2000).

2.8	A ccumulation and clonal expansion of mtDNA mutations

2.8.1	O verview

Mitochondrial DNA mutations (most commonly, deletions) accumulate with age. These 
mutations are known to expand clonally (Moslemi et al. 1996) so that identical mutant 
molecules become prevalent in mitochondria at close proximity to each other (Nekhaeva 
et al. 2002; Bua et al. 2006, Nicholas et al. 2009). Clonal expansion of mtDNA mutations 
is a widespread process in various human tissues (Coller et al. 2002). The mechanisms 
underlying the clonal expansion of mtDNA mutations are not yet fully elucidated. This 
phenomenon is likely to be of major importance in the context of both mtDNA dysfunction 
in both neurodegenerative conditions and healthy aging (Nekhaeva et al. 2002; Khrapko 
and Vijg 2009). It has been suggested that mtDNA deletions are most likely to occur 
during repair of damaged mtDNA rather than during replication (Krishnan et al. 2008). 
The sizes of clonal expansions appear to span a wide range and thus, may affect samples 
of various sizes, from individual cells to individuals (Khrapko et al. 2003). The clonal 
expansion of a single type of mutated mtDNA might arise as a purely stochastic process 
(Elson et al. 2001) due to random drift. In addition, the mtDNA molecules with deletions 
may have replicative advantage because of their smaller size compared to wild-type 
molecules (Hayashi et al. 1991; Diaz et al. 2002).

2.8.2	 Mitochondrial dysfunction in inclusion body myositis and inflammatory 
muscular disease

The presence of COX-negative fibres and mtDNA deletions in muscle of patients with 
inclusion body myositis (IBM) was demonstrated already twenty years ago (Oldfors et 
al. 1993; Oldfors et al. 2006). PCR analysis of isolated, single muscle fibers showed 
presence of mtDNA with only one type of deletion (clonal expansion) and deficiency 
of wild-type mtDNA in each COX-deficient muscle fiber (Oldfors et al. 1995). Further 
studies indicated that common factors were involved in the development of multiple 
mtDNA deletions in IBM, autosomal dominant PEO, and aging (Moslemi et al. 1996 and 
1997). Multiple mtDNA deletions and COX-negative fibers over the amount expected 
due to normal ageing have been found as well as in patients with polymyositis and 
dermatomyositis (Chariot et al. 1996; Blume et al. 1997). Commonly these changes have 
been interpreted as secondary, but the precise mechanism that causes these changes is 
unclear.
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2.8.3	 Mitochondrial dysfunction in ageing and neurodegeneration

Mitochondrial dysfunction has been implicated in the context of normal ageing (Brierley 
et al. 1998; Kujoth et al. 2005) and in various neurodegenerative conditions (Filosto 
et al. 2011). The most robust evidence of mitochondrial dysfunction in a common 
neurodegenerative disease comes from studies in Parkinson’s disease (PD) (Schapira 
2008). Findings of multiple mtDNA deletions in the substantia nigra of patients with PD 
(Bender et al. 2006; Kraytsberg et al. 2006; Reeve et al. 2008) suggest that mitochondrial 
dysfunction might have a role in the pathogenesis of this neurodegenerative disease. 
Further, the fact that mutations in mitochondrial genes such as parkin (Kitada et al. 
1998) and PINK1 (Valente et al. 2004) result in parkinsonian phenotypes similar to 
that in idiopathic PD support the central role of mitochondrial dysfunction in both the 
hereditary parkinsonian syndromes and the idiopathic PD (Belin et al. 2008; Klein et 
al. 2009; Martin et al. 2011). Clinical parkinsonism is also encountered in association 
of other genetic defects resulting in mitochondrial dysfunction, such as mutations in 
POLG1 (Luoma et al. 2004; Orsucci et al. 2011) and mutations in mtDNA (Horvath et al. 
2007; Orsucci et al. 2011). Multiple deletions of mtDNA have been found in the cortical 
neurons of patients with secondary progressive multiple sclerosis (MS) (Campbell et 
al. 2011). These mtDNA deletions result in respiratory deficiency in the affected cells 
and probably contribute to the neurodegeneration observed in MS. In addition, signs of 
profound oxidative damage have been found in the brain cells of MS patients (Haider 
et al. 2011). Moreover, a phenotype identical to common MS has been reported in 
two patients with POLG1 mutations (Echaniz-Laguna et al. 2010). Multiple mtDNA 
deletions with impaired RC function have been reported also in Alzheimer’s disease 
(Krishnan et al. 2011). In a study of clinically typical amyotrophic lateral sclerosis 
patients, 46% had COX-negative fibers in muscle biopsy, and one had multiple mtDNA 
deletions (Crugnola et al. 2010).

The contribution of mitochondrial dysfunction (via the production of free oxygen 
radicals) as a fundamental cause of aging has been hypothesized decades ago (Harman 
1956). Mitochondrial DNA point mutations, as well as large-scale deletions, have been 
shown to associate with cytochrome c oxidase deficient muscle fibre segments in ageing. 
Their focal accumulation causes significant impairment of mitochondrial function 
in individual cells in spite of low overall levels of mitochondrial DNA mutations in 
muscle (Fayet et al. 2002). The incidence of mutations in various aged tissues may be 
on the order of one mutant per mitochondrial genome copy, and most of the cells are 
likely to be affected by intracellular clonal expansions of mitochondrial genomes. Thus 
aged tissue may be considered a mosaic of cells with different mutant mitochondrial 
genotypes (Kraytsberg et al. 2003). Studies on the interconnections of mitochondrial 
dysfunction, accumulation of somatic mtDNA mutations and aging phenotype in the 
‘mutator mouse’ (Trifunovic et al. 2004) further increased the interest in mitochondrial 
contributions to aging in health and disease. Intriguingly though, the aging phenotype 
of the mutator mouse does not seem to be caused by oxidative stress (Trifunovic et 
al. 2005). Recent deep-sequncing work on mutator mice suggests that most somatic 
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mtDNA mutations occur as replication errors during development and do not result 
from damage accumulation in adult life (Ameur et al. 2011). The premature ageing 
-like phenotype of the mutator mouse with defective mitochondrial polymerase γ and 
enhanced production of multiple mtDNA mutations (Trifunovic et al. 2004) has been 
interpreted to support the role of mitochondria also in normal ageing, but this view has 
also been contested (Khrapko and Vijg 2007; Vermulst et al. 2007; Kraytsberg et al. 
2009). To make things more complicated, the so-called ‘deletor mice’ with defective 
mtDNA helicase Twinkle (Tyynismaa et al. 2005) accumulate multiple mtDNA deletions 
that result in progressive respiratory dysfunction and chronic late-onset mitochondrial 
disease phenotype. However, the deletor mice do not show premature aging, indicating 
that the accumulation of mtDNA deletions and progressive respiratory chain dysfunction 
are not sufficient to create a phenotype of accelerated or premature aging. Indeed, other 
mouse studies have even found that COX-deficient mice did not show elevated ROS 
production and actually showed less signs of neuronal oxidative damage than healthy 
littermates (Fukui et al. 2007). The role of somatic mtDNA mutations especially in the 
context of healthy human ageing is at present not quite clear and further investigations 
are needed (Larsson 2010).

2.9	 Features of m.3243A>G –associated disease

2.9.1	O verview

The clinical features of m.3243A>G –associated disease are diverse. The classical 
phenotype of MELAS (Pavlakis et al. 1984), which was first associated with this 
mutation (Goto et al. 1990), is now considered a rather uncommon presentation among 
people with this mutation. DM, SNHL, short stature, migraine, myopathy, and PEO are 
among the reported phenotypical features. In individual cases, these features can present 
as various combinations. Generally it seems to be so that those patients with higher 
mutation heteroplasmy levels show more clinical associated features, and the full-blown 
MELAS syndrome is associated with the most severe disease. MIDD is a subtype of 
diabetes mellitus caused in most cases by the m.3243>G mutation (van den Ouweland 
et al. 1994).

2.9.2	I schemic stroke, stroke-like episodes and m.3243A>G

Ischemic stroke or stroke-like episodes occur as complications of mitochondrial 
disease (Michelson and Ashwal 2004). Ischemic stroke may be the initial or sole 
manifestation of a mitochondrial disorder (Martínez-Fernandez et al. 2001). Especially 
the posterior part of the brain is vulnerable in mitochondrial disorders that manifest 
themselves in various ways. One possible manifestation is an episodic brain dysfunction 
that resembles ischaemic stroke (stroke-like episode). This is the case especially with 
the mtDNA m.3243A>G mutation (Goto et al. 1990). Clinical evaluation of patients 
with m.3243A>G has revealed various phenotypes, including stroke because of either 
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metabolic or ischaemic vascular processes (Ciafaloni et al. 1992; Goto 1995; Majamaa 
et al. 1997 and 1998a). The m.3243A>G mutation leads to stroke-like episodes that 
have a predilection in the occipital and parietal regions of the brain (Michelson and 
Ashwal 2004; Iizuka and Sakai 2005). Headache and seizure are common presenting 
symptoms (Iizuka et al. 2002). Other features commonly seen in MELAS patients 
include migrainous headache, seizures and hemianopia or cortical blindness (Pavlakis et 
al. 1984, Montagna et al. 1988), the latter two suggesting occipital cortical involvement 
in the disease process. In acute phase of a stroke-like episode, hypodensities in brain 
computed tomography (CT) imaging and hyperintensities in both T2-weighted and 
diffusion-weighted brain MR imaging are seen (Ohshita et al. 2000; Ito et al. 2008); 
these lesions are most common in the temporo-parieto-occipital regions of the brain 
(Michelson and Ashwal 2004). The stroke-like lesions seen in brain imaging evolve and 
spread with time (Iizuka et al. 2003). Later imaging commonly reveals brain atrophy 
and gliosis (Michelson and Ashwal 2004). The exact pathophysiology of stroke-like 
episodes and the resulting stroke-like lesions has been investigated with no conclusive 
results, one major obstacle being the differences in brain imaging findings between 
hyperacute, acute, and chronic stages of stroke-like episodes. Both primary cytopathy 
and angiopathy have been suggested (Ito et al. 2011). Some recent studies suggest that 
the stroke-like lesions could be caused by vasogenic rather than cytotoxic edema with 
hyperperfusion and neuronal damage (Ohshita et al. 2000, Ito et al. 2008). Underlying 
acute defect of oxidative phosphorylation in brain vessels is suggested by the findings of 
high mutated mtDNA content in brain vessels (Tokunaga et al. 1993; Betts et al. 2006). 
Cortical spreading depression is possibly involved in the topographic progression of the 
stroke-like episode (Betts et al. 2006). 

There are few studies on the brain metabolism in patients with m.3243A>G mutation. 
In a positron emission tomography (PET) study on patients with the m.3243A>G 
mutation, the cerebral metabolic rate of oxygen was decreased in the grey as well as 
the white matter of the brain (Lindroos et al. 2009a). In the same study a decrease in 
the metabolic rate of glucose was found with predilection to the posterior part of the 
brain. These results suggest that the m.3243A>G mutation leads to a global decrease in 
oxygen consumption in the grey matter including areas where no other signs of disease 
were present.

In differential diagnostic perspective it should be noted that stroke-like episodes 
are not pathognomonic for the m.3243A>G mutation. Stroke-like episodes and 
histopathological findings of cortical brain infarcts have also been described in rare 
patients with m.8344A>G mutation, the most common mutation in the MERRF 
syndrome (Chinnery et al. 1997, Tanji et al. 2003). Recently, mutations in the 
mitochondrial polymerase g (POLG1) have been associated with occipital epilepsy. 
In 11 out of 17 patients with occipital epilepsy and with POLG1 mutations, brain MR 
imaging showed occipital cortical lesions similar to those found in MELAS patients 
(Engelsen et al. 2008).
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2.9.3	 Mitochondrial diabetes mellitus and m.3243A>G

The importance of maternal contribution to the inheritance of non-insulin dependent DM 
has been observed already 20 years ago (Alcolado and Alcolado 1991), and subsequent 
molecular genetic studies have identified maternally transmitted diabetes and deafness 
due to the m.3243A>G mutation in mtDNA (van den Ouweland et al. 1992; Reardon et al. 
1992; Remes et al. 1993; Kadowaki et al. 1994). Mitochondrial diabetes (MIDD) is now 
recognized as a distinct subtype of DM that most commonly results from the m.3243A>G 
mutation in the MT-TL1 gene (van den Ouweland et al. 1994; Maassen 2002). Previous 
studies have suggested a prevalence of ~1% for MIDD in diabetes patients (Murphy R 
et al. 2008). In a cohort of Finnish and Swedish patients with familial early-onset DM 
(Lehto et al. 1999) the m.3243A>G mutation was detected in three out of 115 families. 
In MIDD, the mean age at diagnosis of DM is around 37 years, with range from 11 to 68 
years (Guillausseau et al. 2001; Murphy R et al. 2008).

The persistent hyperglycaemia characteristic of DM can be caused by impaired insulin 
production by the beta-cells of the pancreas or it may arise as consequence of the 
increased insulin resistance of tissues, importantly the skeletal muscle. The contributions 
of pancreatic beta-cell dysfunction and insulin resistance in skeletal muscle were 
investigated in a recent PET study. The results showed that in subjects with m.3243A>G 
skeletal muscle is insulin resistant even when pancreatic beta-cell function was not 
markedly impaired or glucose control compromised. Moreover, the results of the study 
suggested that both the skeletal muscle insulin sensitivity and the beta-cell function 
are affected before the onset of the mitochondrial diabetes caused by the m.3243A>G 
mutation (Lindroos et al. 2009b).

The association of mtDNA haplogroups with DM has been studied in different 
populations, although without conclusive results. In principle, mtDNAs of different 
haplogroups might be functionally different (Wallace et al. 1999). Previous studies in the 
UK (Chinnery et al. 2007) and Finnish populations (Mohlke et al. 2005) have reported 
no definite association of mtDNA haplogroups with type 2 DM. However, the possible 
associations of mtDNA haplogroups and maternal family history of DM in young adult 
patients with DM of any type are at present not well known.

2.10	S ensorineural hearing loss (SNHL) due to m.1555A>G and 
m.3243A>G mutations

SNHL is a common clinical feature in mitochondrial disease. It is encountered in 
association with several pathologic mutations (Taylor and Turnbull 2005, McFarland 
and Turnbull 2009) and both syndromic and non-syndromic forms occur (DiDonato 
2009). Research suggests that in the population level, the most common molecular 
etiologies of mitochondrial hearing loss include the m.3243A>G and m.1555A>G 
mutations (Fischel-Ghodsian et al. 2004). A study in Japanese population found the 
m.3243A>G mutation in 3% of patients with bilateral SNHL of unknown origin (Oshima 
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et al. 1999), and a previous study in Finnish patients with matrilineal SNHL found this 
mutation in 4.3% of patients (Lehtonen et al. 2000). Prevalence of the m.1555A>G 
mutation in patients with hearing loss has been studied in different populations with 
prevalence figures around 3% (2.4 – 3.6%) (Usami et al. 2000; Østergaard et al. 2002; 
Wu et al. 2007; Nahili et al. 2010). Notably, a study of familial SNHL in Spain found 
m.1555A>G in 27.1% of the investigated families (Estivill et al. 1998). The age at onset 
of hearing loss is reported to be around 20 years in patients with m.1555A>G. The age 
range is wide being from 1 to 65 years, but ~80% of cases have age at onset before 40 
years (Estivill et al. 1998).

As to m.3243A>G, the hearing loss is of cochlear origin, typically symmetrical, and 
steadily progressive (Sue et al. 1998a) with median age of onset at 34 years with 
considerable variation (10-50 years) (Uimonen et al. 2001). Specifically in MIDD, the 
diagnosis for SNHL has been reported around age 35 years, with range from 2 to 61 
years (Guillausseau et al. 2001).

High population prevalence figure of 1 in 500 (Vandebona et al. 2009) for the 
m.1555A>G was found in an Australian adult population cohort study of 2856 subjects 
of European descent and over the age of 49 years. These subjects were not pre-selected 
for hearing loss. Similarly, a British birth cohort study of 9371 subjects resulted in a 
prevalence estimate of 1 in 520 for the m.1555A>G mutation (Bitner-Glindzicz et al. 
2009).

2.11	 PEO and mitochondria

PEO is a common manifestation of mitochondrial disease. Conventionally, PEO is 
defined as progressive limitation of eye movements (external ophthalmoplegia) with 
normal pupils, and ptosis of the eyelids that is bilateral but not always symmetrical. 
Some patients present with only ptosis without any apparent restriction of eye 
movements. Diplopia may occur. ‘PEO-plus’ patients have involvement of other organs 
as well (Van Goethem et al. 2003). Molecular etiologies of PEO include mitochondrial 
DNA (mtDNA) rearrangements such as large-scale deletions (Holt et al. 1988; Zeviani 
et al. 1988; Holt et al. 1989) and mutations in mitochondrial tRNA genes (Lauber et 
al. 1991; Moraes et al. 1993; Raffelsberger et al. 2001). Several nuclear gene defects 
may result in multiple mtDNA deletions and PEO with autosomal dominant (Zeviani 
et al. 1989) or autosomal recessive (Bohlega et al. 1996) mode of inheritance. These 
genes include PEO1, ANT1, POLG1 and POLG2 (Suomalainen et al. 1995; Spelbrink 
et al. 2001; Kaukonen et al. 2000; Van Goethem et al. 2001; Lamantea et al. 2002; 
Longley et al. 2006). Mutations in nuclear genes OPA1 and RRM2B2 have recently 
been identified as causes of multiple mtDNA deletions in patients with PEO (Amati-
Bonneau et al. 2008; Hudson et al. 2008; Stewart JD et al. 2008; Tyynismaa et al. 
2009; Fratter et al. 2011).
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2.12	T reatment of mitochondrial disorders

At present, there are few treatments that can directly affect the pathophysiologic processes 
in mitochondrial disease (Chinnery et al. 2006). The mainstay of current therapeutic 
interventions is in amelioration of symptoms as well as in providing suitable physical 
therapy, psychological support and encouragement as well as treatment of various more 
manageable conditions secondary to mitochondrial disease (e.g. DM) (Horvath et al. 
2008). Diabetes mellitus is a common feature of mitochondrial disease. The most common 
phenotype of mitochondrial DM is MIDD (van den Ouweland et al. 1994). Mitochondrial 
DM patients are commonly not overweight, and usually become insulin-dependent with 
time (Guillausseau et al. 2001; Maassen 2002; Murphy R et al. 2008). Use of metformin 
should be avoided in patients with mitochondrial DM, since it may predispose these 
patients of lactic acidosis (Mancuso et al. 2012). A notable point of concern is the risk 
of potentially fatal liver failure induced by sodium valproate antiepileptic medication in 
patients with POLG-associated disease (Tzoulis et al. 2006). Cardiomyopathy and cardiac 
conduction abnormalities are not uncommon in mitochondrial disease (Santorelli et al. 
2001; Sproule et al. 2007). Patients with cardiomyopathy benefit from beta blockers, 
angiotensin converting enzyme (ACE) inhibitors or angiotensin 2 receptor antagonists; 
patients with Wolff-Parkinson-White syndrome and conduction block may require 
ablation therapy or eventually an implanted pacing device (McFarland et al. 2010). 
ECG recording should be obtained from all patients. Patients with PEO may benefit 
from operative treatment of ptosis or strabismus (McFarland et al. 2010), although the 
progressive underlying muscle disease may compromise results.

Aerobic exercise can improve the exercise intolerance common in mitochondrial 
myopathies (Taivassalo et al. 2006), and moderate strength training is thought to 
stimulate satellite cell activation (Murphy JL et al. 2008). A recent study showed that in 
people with mitochondrial disease, level of habitual physical activity is low (Apabhai et 
al. 2011). Overall, some evidence supports beneficial effect of moderate aerobic exercise 
and strength training in patients with mitochondrial myopathy (Voet et al. 2010).

In MNGIE, loss of TP activity results in toxic accumulations of the nucleosides 
thymidine and deoxyuridine that cause deoxynucleoside triphosphate pool imbalances. 
These imbalances cause mtDNA instability that in turn results in mtDNA deletions and 
depletion. Allogeneic hematopoetic stem cell transplantation is a promising therapy for 
MNGIE since it restores TP activity and toxic metabolites are eliminated (Hirano et 
al. 2006 and 2012). Based on preliminary clinical experience, a standardized treatment 
approach has been suggested (Halter et al. 2011). In addition, early results from a murine 
model suggest that hematopoietic gene therapy may be an alternative treatment option in 
MNGIE (Torres-Torronteras et al. 2011).

Coenzyme Q10 (CoQ(10), ubiquinone) is an antioxidant and essential electron 
carrier in the mitochondrial respiratory chain. Deficiency of CoQ(10) is a clinically 
and molecularly heterogeneous, autosomal recessive syndrome. Primary CoQ(10) 
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deficiencies, due to mutations in genes required for ubiquinone biosynthesis, and 
secondary deficiencies, caused by genetic defects not directly related to CoQ(10) 
biosynthesis, often improve with CoQ(10) supplementation (Quinzii and Hirano 2010; 
Hirano et al. 2012). An analog of ubiquinone called idebenone has been investigated 
in the treatment of conditions due to mitochondrial dysfunction such as LHON and 
Friedreich’s ataxia. Two recent studies suggest that patients with LHON might benefit 
from idebenone treatment (Carelli et al. 2011; Klopstock et al. 2011). In patients with 
Friedreich’s ataxia, however, idebenone did not improve overall neurological function 
(Lynch et al. 2010) or cardiac dysfunction in patients with Friedreich-associated 
cardiomyopathy (Lagedrost et al. 2011).

2.13	 Genetic counseling

The genetic counseling of individuals and families with mitochondrial disease depends 
critically on the identification of causal genetic defect and thus the mode of inheritance. 
Since a clinical phenotype of mitochondrial disease can arise because of autosomal 
dominant, autosomal recessive, X-chromosomal, or, as for mtDNA, maternally inherited, 
genetic defect, no meaningful counseling is possible without the identified cause of 
the condition. For autosomal or X-chromosomal conditions, the form of inheritance 
is straightforward and the risk of transmitting the disease mutation to progeny can be 
calculated according to conventional methods. As to mtDNA mutations, however, things 
get decisively more complicated because of the heteroplasmy and mitotic segregation 
phenomena. It means that the proportion of mutated mtDNA in the ovum and then in the 
offspring cannot be reliably predicted by the heteroplasmy levels in the mother. Recent 
work on mitochondrial gene replacement and pronuclear transfer methods gives promise 
that possibly the risk of transmitting mutated mtDNA could be dealt with (Tachibana et 
al. 2009; Craven et al. 2010; Craven et al. 2011).

2.14	C linical epidemiology

2.14.1	O verview

Epidemiology means the study of disease occurrence in the population level (Fletcher 
and Fletcher 2005; Rothman et al. 2008). Clinical epidemiology may be defined as the 
study of determinants and consequences of clinical decisions (Spitzer 1986). As a ‘bridge 
science’, it combines clinical medicine and epidemiology in that epidemiological data 
is used to answer clinical questions. The purpose of clinical epidemiology is to provide 
clinical decision making with information that makes decisions of patient care more 
valid and less prone to systematic error and chance (Fletcher and Fletcher 2005). Since 
the improvement of clinical decisions is a proximal objective of clinical epidemiological 
work (Spitzer 1986), it stands closer to the dilemmas of the clinical physician than more 
basic biomedical research or traditional epidemiology.
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2.14.2	 Fallibility of human heuristics and intuition. The need for clinical 
epidemiological studies

In clinical practice the ability of the doctor to suspect a given condition as a cause of 
the patient’s symptoms and to rationally decide what investigations to pursue is crucial. 
Casual estimations and formulations of prevalence are highly ambiguous (Bryant and 
Norman 1980; Toogood 1980) and they do not lead to uniform practical conclusions. 
Research has shown that human thinking under uncertainty is prone to several biases 
that can lead to severe and systematic errors (Tversky and Kahneman 1974). Human 
decision making and the evaluation of probabilities and outcomes has as well been 
shown to depend strongly upon the formulation (framing) of the problem (Tversky and 
Kahneman 1981). This is why the common clinical work that often relies on heuristic 
rules such as familiarity of the condition, personal experience on a limited number of 
similar cases, and the like, may well lead to suboptimal decision making. Rational and 
cost-effective, evidence-based diagnostic algorithms instead of such ad hoc diagnostic 
decision-making are needed. Such guidelines, in turn, are based on knowledge on the 
true population prevalence and characteristics of the medical conditions, that enables 
the estimation of pre-test probabilities and planning of most prudent diagnostic testing. 
Such knowledge can be obtained via clinical epidemiological studies of disease in 
population.

2.14.3	E pidemiology of neurological disease

An early example of descriptive epidemiological study of neurological disease was 
conducted in the population of Rochester, Minnesota in the 1950s (Kurland 1958). 
Epidemiological studies in the field of neurology are particularly challenging, since 
reaching the correct diagnosis in an individual patient is not always straightforward 
(Kurtzke 1984). Due to diagnostic challenges and ascertainment bias, there is always 
some proportion of the true affected persons that are lost from the count of individuals 
recognized in an epidemiological study. Nevertheless, epidemiological studies may 
provide important information on the prevalence, incidence and clinical course of 
neurological disorders. This information is valuable when socioeconomic plans for 
adequate financial resources, facilities, and personnel are made to meet the burdens 
of illness (Kurtzke 1984). Increasing knowledge of genetic bases of neurological 
disease provides possibilities for more definite diagnoses and improved insight into the 
pathophysiological processes in various neurological conditions. An early epidemiological 
study of single-gene neurological disorders was conducted in the South Wales region of 
Great Britain (MacMillan and Harper 1991). In Scandinavian countries, reliable census 
data and communal, state-funded health-care systems provide excellent opportunities for 
conducting population-based studies. A Swedish study of the epidemiology of childhood 
neuromuscular disorders (Darin and Tulinius 2000) showed that these conditions were 
more common than was previously thought, thus representing the strength of conducting 
population-based studies instead of case series in these relatively rare conditions.
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2.14.4	 Prevalence studies in epidemiology

Why is there need for prevalence studies of medical conditions? The answer to this 
question is two-fold. Firstly, disease prevalence represents the total burden of illness in 
the population and so knowledge on prevalence helps appreciating the scope of health 
care needs of the population with respect to the condition in question. Secondly, cross-
sectional prevalence studies form the basis of rational diagnostic testing, as knowledge 
on pre-test probabilities (determined by a priori prevalence of the disease and its typical 
characteristics, enabling probability assessment on individual basis) is crucial for 
choosing what tests to perform on which patients in a reasonable and cost-efficient way 
(Fletcher and Fletcher 2005).

2.14.5	T he use of medical record data in prevalence studies

In order to make use of hospital patient records in epidemiological study, one must make 
sure that the population in question meets several requirements (Anderson et al. 1988). 
Population should be motivated to obtain medical care; relevant medical expertise 
should be available to the community; patient data should be recorded in a sufficiently 
detailed and standardized manner; the medical data should be available to investigators; 
and practically all patients of the community should be treated in the local medical care 
from which the patient data are obtained. Major drawback of using patient record data 
is that those persons with undiagnosed conditions are not included in the survey. This is 
why asymptomatic or very mildly symptomatic patients are less likely to be identified.

2.14.6	 Prevalence studies of rare conditions

Rare disease is defined as one that affects fewer than 5 people per 10,000 (Health-EU). 
A central problem in the epidemiological study of rare populations is efficient sampling. 
In a world of scarce resources, economical data collection is of importance because 
screening costs increase rapidly as the rarity of the condition increases. A resource-
effective way to estimate population prevalence of a rare condition is to use two-phase 
sampling (Kish 1965; Kalton and Anderson 1986). In this method, a relatively cheap 
but imperfect screening is performed first to select a subsample for more expensive (and 
more accurate) further investigations. The probability of a positive screening result in 
the presence of the disease (sensitivity) should be high (ideally, 1.0) and the probability 
of negative screening result in the absence of the disease (specificity) should as well be 
reasonably high (but not too high, to avoid false negatives) in the first phase of the study. 
This saves expenses (in terms of time, money, and labor) in the confirmatory second phase. 
These factors crucially affect the usefulness of the sampling method. Quite obviously, 
when a rare condition is investigated, the screening in the first phase must be carefully 
planned to be sensitive enough so that the number of false negatives in the first phase is 
negligible, otherwise the prevalence of the condition will be underestimated (Morvan et 
al. 2008). In addition to the two-phase method, multiple frames may be applied (Kish 
1965; Anderson and Kalton 1990). Sometimes the total number of identified members 



	 Review of the Literature	 43

of the rare population can be increased by using multiple selection frames that are 
complementary; i.e. they select persons from the total population based on different 
characteristics. It should be noted that overlaps (i.e., multiple identification of the same 
individual from different frames) must be taken into account when this method is used.

2.14.7	E pidemiology of rare diseases, special features

The epidemiological study of rare diseases has distinctive features due to the very 
definition of these conditions. In particular, it is difficult to establish reliable prevalence 
data with conventional epidemiological methods. The prevalence figures based on 
patients already ascertained on clinical basis may represent too conservative minimum 
estimates. Moreover, these identified patients may be those with most severe or otherwise 
noticeable (‘typical’) clinical features. So it is possible that a number of patients with less 
severe or untypical phenotypes go unnoticed. In such case, the general understanding of 
the rare condition may be hampered by the biased data, leading to false impressions on 
the prevalence and characteristics of the condition. This, in turn, hinders identification 
of those patients who do not fit the stereotype of the ‘typical’ patient. For many rare 
conditions, prevalence data do not exist or are available only for few populations. It 
is well known that in many human diseases, the population prevalence figures vary 
considerably between different populations. There is no reason to suppose that this 
should be otherwise regarding many rare disorders.

2.15	 Molecular epidemiology and Genetic epidemiology

2.15.1	O verview

Molecular epidemiology means the use of various molecular biological markers, such 
as gene mutations or polymorphisms, in the study of exposures, susceptibility, and 
outcomes in epidemiological research (Schulte and Perera 1998). Conventionally, 
genetic epidemiology refers to the study of genetic factors in the occurrence of disease in 
population level (Rothman et al. 2008). These definitions are in some ways overlapping, 
but generally genetic epidemiology refers to more large-scale association studies of 
various genetic markers with disease in population, whereas the methods of molecular 
epidemiology with respect to the use of molecular genetic data in the study of human 
disease can be applied also in studies of smaller scale.

In clinical medicine, the molecular genetic diagnosis represents a ‘golden standard’ for a 
definitive disease etiology. This type of diagnosis has obvious and important implications 
for the patient and the family. This alone is a good reason to pursue a genetic diagnosis 
when it is reasonable. The difficulties concerning the epidemiologic study of mitochondrial 
disease (there are similar difficulties in the study of any rare genetic disease) mentioned 
above are, however, practical and one may expect them to be amenable with increasing 
knowledge on mitochondrial disease. In addition, the developments in molecular genetic 
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methods allow one to carry out more extensive investigations faster and with less expense 
than before. With expanding knowledge on the molecular genetic background of several 
diseases, there are at present several thousands known genetic rare disorders (Orphanet). 
There is increasing awareness in the medical community of the group of rare diseases 
(Schieppati et al. 2008): conditions that as separate units are not significant in population 
level, but which are of self-evident importance to the affected persons and their families, 
and which as a group are not that rare.

2.15.2	R esource-effective use of molecular genetic testing in rare disorders

Individually inherited neurological (neurogenetic) disorders are rare; the typical 
prevalence being <1/10000 (Edlefsen et al. 2007). The knowledge of molecular 
genetic backgrounds of several conditions and the availability of potential molecular 
genetic testing has increased rapidly in recent years. The practical use of these tests, 
however, depends on the limited resources of both money and effort. Prudent use of 
these investigations requires primarily knowledge on the prevalence and characteristics 
of the condition in question, since these crucially influence the pre-test probabilities of 
testing (Reyna 2001). Clinical epidemiological studies of rare conditions are valuable 
in this perspective. Expert clinicians who ordered neurogenetic investigations in a 
tertiary center obtained a positive result overall in 21.5% of patients; in this material, the 
diagnostic yield for mitochondrial testing was 12.5% (Edlefsen et al. 2007). It should 
be noted that the patient material in such a tertiary center is already pre-selected in a 
way that should increase the pre-test probabilities considerably. This means that there 
is still room for improvement in the efficacy of the diagnostic processes. Importantly, 
data obtained from the patient files of such tertiary center should be used very cautiously 
when estimating the morbidity due to neurogenetic conditions in the whole population, 
since the number and characteristics of those patients who for any reason have not made 
it to the diagnostic process cannot be estimated based on such data.

2.16	 Molecular Epidemiology of mitochondrial disease

Molecular epidemiological studies of mitochondrial diseases were not possible before 
knowledge on the genetic mechanisms underlying these conditions started to accumulate. 
In the late 1980s and early 1990s, the first reports on the molecular genetic etiologies of 
mitochondrial disorders were published. Single, large-scale mtDNA deletions in patients 
with mitochondrial myopathies (Holt et al. 1988), and, in more detail, in patients with 
KSS (Zeviani et al. 1988) and PEO (Moraes et al. 1989) were accompanied by the first 
published mtDNA mutation causing LHON (Wallace et al. 1988), and the common 
mutations of the mitochondrial MELAS and MERRF syndromes (Goto et al. 1990; 
Shoffner et al. 1990, respectively). In the 1990s, 2000s and onward, the knowledge on the 
molecular genetic backgrounds of mitochondrial disease has increased in proverbially 
exponential manner.
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Mitochondrial disease as a group is today thought to represent one of the most common 
forms of inherited neuromuscular disorders. The population prevalence of mtDNA 
point mutations m.3243A>G and m.1555A>G has been estimated as high as 1:400 
(Manwaring et al. 2007; Vandebona et al. 2009; Bitner-Glindzicz et al. 2009). It should 
be noted, however, that these figures do not represent clinically manifest mitochondrial 
disease, and it is unclear how these results should affect clinical practice. The prevalence 
of mitochondrial disease due to mtDNA mutations has been estimated to be ~9.2/100 
000 (Chinnery et al. 2000; Schaefer et al. 2008). The overall prevalence of mitochondrial 
disease (of all genetic backgrounds) may be considerably higher, given that prevalence 
~1:200 for pathogenic mtDNA mutations has been reported in population (Elliott et al. 
2008).

The first population-based study on mitochondrial disease was conducted in the 
province of Osthrobothnia in Northern Finland. This study examined the prevalence 
of m.3243A>G in adult population (Majamaa et al. 1998a). In this population, several 
further studies have examined in more detail the characteristics of people with this 
mutation with respect to e.g. hearing loss (Uimonen et al. 2001) or myopathy (Kärppä et 
al. 2005). In addition, similar epidemiological approach has been used in investigating 
pediatric population with mitochondrial disease (Uusimaa et al. 2007) and patients with 
other mitochondrial genetic defects such as the m.8344A>G mutation associated with 
the MERRF syndrome (Remes et al. 2003) and mtDNA deletions (Remes et al. 2005). 
In addition, the epidemiology and characteristics of LHON have been investigated in 
the entire Finnish population, as part of the long tradition of Finnish LHON research 
(Puomila et al. 2007). Studies assessing the prevalence of mitochondrial disease have 
been carried out also in Sweden (Darin and Tulinius 2000; Darin et al. 2001), Northeast 
of England (Chinnery et al. 2000; Man et al. 2003; Schaefer et al. 2008) and Australia 
(Skladal et al. 2003).

There seems to be variation between populations in the prevalence of overall 
mitochondrial disease and also between prevalences of various molecular etiologies. 
For this reason, the results of studies performed in one population may not be directly 
applicable elsewhere. Moreover, there is lack of epidemiologically sound, population-
based studies on the prevalence of mitochondrial disease. Studies in clinical epidemiology 
are not performed for solely academic purposes. Previous experience in Finland shows 
that systematic search for patients with mitochondrial disease results in new diagnoses 
for individual patients and families as well as increased understanding of these often 
complex conditions (Majamaa et al. 1998a; Hakonen et al. 2005).

Previous studies have addressed the prevalence and the various genetic etiologies of 
PEO, but these studies have not been strictly population-based (Agostino et al. 2003; 
Hudson et al. 2006; Virgilio et al. 2008). A study in a northern Finnish adult population 
determined the prevalence of large-scale mtDNA deletions, but the prevalence of any 
nuclear gene mutations was not investigated (Remes et al. 2005).
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2.17	 Genetic composition of the Finns. Implications for molecular 
epidemiology in Finland

Finland is considered a classic example of a genetic isolate (Lao et al. 2008; Nelis et al. 
2009), and Finnish population has been thought to be genetically quite homogenous. 
However, the reality may be somewhat more complex. Several studies on mtDNA 
variation as well as Y-chromosomal variation and single nucleotide polymorphisms 
(SNPs) have revealed, somewhat contrary to previous presuppositions, substantial genetic 
differences between Finns living in the southern and western regions and Finns living in 
the northern and north-eastern parts of the country (Lappalainen et al. 2006; Salmela et 
al. 2008; Palo et al. 2009). These differences are probably due to the population history 
of Finland, i.e. the late settlement of the northern and north-eastern parts of the country 
by a relatively small founding population (Peltonen et al. 2000; Kere 2001; Norio 2003a; 
Norio 2003b). These findings highlight the fact that supposed genetic homogeneity on 
the basis of linguistic or cultural homogeneity of a population might turn out not to be 
supported by empirical evidence. In addition, prevalences of various genetic conditions 
might vary between different populations, so that, in case of Finland, previous results on 
the prevalence of mitochondrial disease in northern and north-eastern Finland might not 
be directly applicable to southern and western parts of the country. Furthermore, genetic 
studies show that the Finns, especially those from the southern and western parts of the 
country, have strong genetic similarities with other populations surrounding the Baltic 
Sea (Lappalainen et al. 2008) and as a group these populations have strongest genetic 
roots in Central Europe.

2.18	W hy study clinical molecular epidemiology of mitochondrial disease?

The benefits of accurate data on the characteristics and prevalence of any medical 
condition apply to mitochondrial disease. However, there is also a need to develop 
algorithms for the rational pursuit of a diagnosis of mitochondrial disease. Despite the 
comparative rarity of these conditions individually, as a whole mitochondrial disease 
is one of the most common causes of inherited neurological disease in population. 
Moreover, the special characteristics of mitochondrial disease complicate the molecular 
genetic diagnostics: there are large overlaps between the clinical manifestations of various 
genetic defects, there is large variety in the phenotypes caused by the same genetic defect, 
and many individual features that are typical in mitochondrial disease are not so rare in 
the general population either (e.g. diabetes mellitus). All this adds up to a situation where 
the possibility of a mitochondrial disorder might be entertained among a great many 
of patients, but the scarcity of resources (including expert consultations and referrals, 
extensive clinical and molecular genetic investigations, and the related expenses) in 
practice require that the diagnostic efforts be directed according to best possible analysis 
of pre-test probabilities of reaching a correct diagnosis of a mitochondrial disorder. Thus 
studies that combine the clinical epidemiological and molecular genetic approaches in 
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the field of mitochondrial disease may help the clinician wondering whether her patient 
might have a mitochondrial disorder, and how she should proceed in trying to find out.
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3.	A ims of the study

Few population-based, epidemiologically sound studies have investigated the prevalence 
of mitochondrial disease among patients selected by clinical features that are commonly 
encountered in mitochondrial disease. For resource-effective clinical practice it is of 
interest to know what proportion of patients with such phenotypes have a clinically 
probable mitochondrial disease and in what proportion of these patients a relevant 
molecular diagnosis of a mitochondrial disorder can be achieved. In this thesis, the 
prevalence and clinical characteristics of mitochondrial disease, particularly that related 
to the m.3243A>G mutation, were investigated in the adult population of southwestern 
Finland among patients with occipital ischemic stroke, PEO, DM, and SNHL. These 
clinical cohorts were chosen based on previous experience in Finland (Majamaa et al. 
1998a) and other previous reports on prevalent clinical features of mitochondrial disease 
(e.g. DiMauro and Schon 2003; Taylor and Turnbull 2005). In particular, the objectives 
of the study were as follows.

1. 	 To determine the prevalence of the mtDNA mutations m.3243A>G and 
m.8344A>G and common POLG1 mutations among young adults with occipital 
ischemic stroke and to study the possible associations of mtDNA haplogroups 
with occipital brain infarcts among these stroke patients.

2. 	 To determine the prevalence of large-scale mtDNA deletions, mtDNA point 
mutations m.3243A>G, m.8344A>G, and mutations in the nuclear genes ANT1, 
PEO1, POLG1, and POLG2 among patients with PEO.

3. 	 To determine the prevalence of the m.3243A>G mutation among patients with 
DM and disease onset as young adults, and to study the possible associations of 
mtDNA haplogroups with DM among these DM patients.

4. 	 To determine the prevalence of the m.1555A>G and m.3243A>G mutations 
among patients with early-onset severe SNHL.

5. 	 To assess the overall usefulness of combined clinical epidemiological and 
molecular genetic methodology in the study of mitochondrial disorders.
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4. 	 Patients and methods

4.1	S etting

In Finland, the registers of the public health care system represent well the total morbidity 
of the population. Specialized medical care is provided at provincial level, and in the 
area of Southwestern Finland, it is provided by Turku University Hospital (TUH). For 
these reasons the medical charts of TUH provide a good representation of the prevalence 
of diseases in this population. Practically all young patients with an ischemic stroke in 
this region are referred to TUH, as are patients with conditions relevant in the differential 
diagnostics of PEO, such as suspected myasthenia gravis or neuromuscular disease, 
or patients in need of neuro-ophthalmologic or eye surgery evaluation. Patients with 
hearing loss requiring a hearing aid receive this equipment from the otorhinolaryngology 
(ORL) department hearing loss unit of TUH, in which there has since 1988 been a 
computerized record of all delivered hearing aids. Since these patients are also examined 
by the otorhinolaryngologists of the same unit, the medical charts of TUH contain these 
patients’ clinical data relevant to the hearing loss.

In Finland, patients with DM receive special reimbursement for their expenses for 
both insulin and other types of medications for this condition. This reimbursement 
is provided by the Social Insurance Institution of Finland (SIIF). The reimbursement 
records of SIIF provide a good representation of the prevalence of DM in this 
population, since practically all patients with medically treated DM have this 
reimbursement benefit.

The population of Southwestern Finland was 455 584 on 31 December 2005 (the 
prevalence date for stroke and PEO cohorts), and 457,789 on 31 December 2006 (the 
prevalence date for the DM cohort).

4.2	 Patient identification and clinical investigations

In all investigated cohorts, the patient had to be of Finnish origin. For the occipital 
ischemic stroke and PEO studies, the medical charts of TUH covering the years 1987 
– 2005 were reviewed. We performed a computerized medical files search for relevant 
ICD-9 and ICD-10 diagnoses. In the occipital stroke cohort, the patients had to be aged 
18 – 45 years at the time of diagnosis; in the PEO cohort, the patients needed to be at least 
18 years of age in order to be included in the study. The medical charts of these identified 
patients were then reviewed. For the DM cohort, the reimbursement registers of SIIF 
were searched for patients that had been registered for special reimbursement for DM 
medication (insulin and all oral hypoglycaemic agents) during 1.1.1987 – 31.12.2006. 
The patients had to be 18 – 45 years old at the time of the reimbursement decision. For 
the SNHL cohort, the hearing aid records of TUH ORL hearing aid unit were searched 
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for patients that had been delivered a hearing aid during 1.1.1998 – 31.5.2009. The 
patients had to be 18 – 45 years old at the time of the hearing aid delivery.

In the stroke cohort, the patients were ascertained if they had an occipital brain infarct 
in CT or MR imaging or a homonymous hemianopia or quadrantanopia, suggesting an 
occipital infarct and with no signs of other etiology in brain imaging. We then reviewed all 
available medical charts of the ascertained patients, and data were collected concerning 
the previous medical history and risk factors for ischaemic stroke (detailed in Study I). 
The medical chart information did not allow the differentiation between migraine with 
or without aura. We used the TOAST criteria (Adams et al. 1993, Goldstein et al. 2001) 
in order to determine the etiology of ischemic stroke. We then mailed a request to all 
living identified patients, asking them to take part in the study by giving a blood sample 
for the analysis of possible mtDNA mutations. As to the PEO cohort, the patients were 
excluded, if they had diplopia because of strabismus, if they had myasthenia gravis 
and acetylcholine receptor antibodies, and if they had a single ocular muscle paresis 
or strictly unilateral ptosis. We included all patients with external ophthalmoplegia, 
multiple ocular muscle pareses, or bilateral ptosis. Also those patients in whom the 
medical record information was insufficient to confirm the exclusion criteria were 
included in the study.

All living patients in the DM cohort that were identified from the registers of SIIF were 
requested to take part in the study and to fill in a family and medical history questionnaire. 
Those patients who returned the questionnaire were then asked to give a blood sample 
for the analysis of possible mtDNA mutations. The received samples were analyzed for 
the mtDNA 3243A>G mutation and for mtDNA haplogroups. As to the SNHL cohort, 
those with conductive-type or mixed-type hearing loss were excluded by scrutinizing 
the medical records of the patients after the initial identification of patients with hearing 
aids. The remaining identified patients were asked to take part in the study and to fill 
in a family and medical history questionnaire. All patients were also asked to give a 
blood sample for the analysis of possible mtDNA mutations. The received samples were 
analyzed for the m.1555A>G and m.3243A>G mutations.

In the PEO cohort, the medical charts of the deceased subjects and those who declined 
to participate in the clinical study were reviewed to obtain the relevant clinical 
data. The living consenting patients were interviewed and examined clinically by 
a neurologist in order to determine whether the clinical features were compatible 
with mitochondrial disease. Head CT, echocardiography, 24-hour ECG recording, 
electroneuromyography (ENMG), and a set of laboratory examinations (detailed 
in Study III) were performed. Furthermore, a deltoid muscle biopsy was obtained 
for histopathological investigations and for molecular genetic diagnostics. The two-
phased screening of the patient cohorts and the numbers of patients and obtained tissue 
samples (muscle biopsy in the PEO cohort, blood sample in others) for molecular 
investigations are depicted in Table 1.
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Table 1. Original patient cohorts, number of remaining patients after first phase screening 
exclusions, and number of tissue samples obtained for molecular genetic investigations.

Original cohort Screened to second 
phase † N (%)

Samples for molecular 
investigations‡ N (%)

Occipital ischemic stroke 619 49 (7.9) 27 (64*)
PEO 620 10 (1.6) 6 (100*)
DM 1532 561 (37) 299 (53)
SNHL 379 231 (61) 52 (23 )

DM = diabetes mellitus. DNA = deoxyribonucleic acid. PEO = progressive external 
ophthalmoplegia. SNHL = sensorineural hearing loss. † = percentage of original cohort. ‡ = 
percentage of those screened to second phase. Of the 49 stroke patients screened to second 
phase, 7 were deceased. Of the 10 PEO patients screened to second phase, 4 were deceased. * = 
percentage counted from the living patients screened to second phase.

The patient described in Study II was a member of the PEO cohort (one of the deceased 
patients). The clinical and molecular investigations in this patient had been performed 
previously on clinical grounds; the case report was published post mortem. Muscle 
biopsy from the right vastus lateralis muscle had been obtained for histopatological 
investigations during life. Other clinical investigations of this patient are described in 
Study II.

4.3	 Molecular methods

Total DNA was extracted from blood by using QIAgen Blood Kit (QIAgen, Hilden, 
Germany). From muscle specimen, total DNA was extracted by using the standard 
sodium dodecyl sulfate–proteinase K method. 

The molecular methods for detecting the m. 1555A>G, m.3243A>G, and m.8344A>G 
point mutations using restriction-fragment analysis and for the determination of mtDNA 
haplogroups were as described elsewhere (Zeviani et al. 1991; Prezant et al. 1993; 
Torroni et al. 1996; Majamaa et al. 1998a). Deletions of mtDNA were analyzed by long 
range PCR (Expand Long Template PCR System kit; Roche, Mannheim, Germany). 

In the stroke cohort, the POLG1 gene (NM_002693) was analyzed for seven common 
mutations. Restriction fragment analysis was used to detect the p.T251I (BseNI), 
p.A467T (MscI), p.G517V (BstXI), and p.P587L (XmaI) mutations. The p.R722H 
mutation was detected by restriction fragment analysis using a mismatch primer that 
creates a restriction site for MlsI in the presence of the mutation. The p.W748S mutation 
and the p.Y955C mutation were detected by allele-specific amplification using primers 
with a locked nucleic acid nucleoside base at the 3’ end (Proligo LLC, Paris, France). 
The primers were designed to anneal with either the wild type sequence or the sequence 
containing the mutation. In the PEO study, muscle DNA was used as a template to amplify 
and sequence the 23 coding exons of the POLG1 gene (NM_002693) by automated 
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sequencing (ABI PRISM 3100 Genetic Analyzer, Applied Biosystems, Foster City, CA, 
U.S.A.) using the BigDye Terminator v1.1 Cycle Sequencing Kit (Applied Biosystems) 
after treatment with exonuclease I and shrimp alkaline phosphatase. The novel sequence 
variants found in POLG1 (Study II) were confirmed using restriction fragment length 
polymorphism analysis, and the the variants were additionally assessed using segregation 
analysis and PolyPhen (HumVar) and SIFT predictions. ANT1 and PEO1 genes were 
sequenced and analyzed for mutations as described elsewhere (Kaukonen et al. 2000; 
Spelbrink et al. 2001). POLG2 gene was analysed as described (Ferraris et al. 2008) with 
minor improvement to cover the whole coding region of the gene.

4.4	S tatistical methods

In the PEO cohort, Poisson confidence intervals (CI’s) were used to estimate the 
population prevalences. In the DM and SNHL cohorts, binomial confidence intervals 
(CI’s) were used for the number of identified patients with mtDNA mutations. For the 
DM cohort, modified Wald method and Fisher’s exact test with two-tailed p values were 
applied in the analysis of haplogroup frequencies.

4.5	E thical considerations

The study protocols were approved by the Ethics Committee of TUH. Permission for 
the use of the TUH patient medical chart data for this study was obtained from Finland’s 
Ministry of Social Affairs and Health. A written informed consent was obtained from all 
patients who took part in these studies. As to the case report, written informed consent 
for the publication was obtained from the late patient’s daughter.
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5.	R esults

5.1	C linical characteristics and investigations – Occipital stroke and 
PEO cohorts

In the occipital stroke cohort, we identified 49 patients (31 women) with an occipital 
brain infarct. The clinical chararcteristics and etiologic risk factors of stroke are detailed 
in Study I. The living patients in the PEO cohort fulfilling the inclusion criteria were 
examined clinically (P1 – P5) or the available medical history (P6) was reviewed. The 
clinical diagnoses of the four deceased patients (D1 – D4) were evaluated on the basis 
of available medical history information (Study III, Table 1.). Patient D2 (Study II) 
was identified in the medical record search for PEO patients, but had been investigated 
already previously on clinical grounds.

5.2	C linical history of the PEO patient with POLG1 mutations

The patient D2 was a woman with an uneventful medical history until the age of 50 years 
when she had breast cancer operated. Axillary lymph node evacuation and postoperative 
radiation therapy was performed at age 54 years. She had a history of psychiatric 
symptoms of unknown quality, and she had been on anti-depressive medication. Her 
parents had had no known medical conditions. Her father had died at age 75 years and 
her mother at age 85 years. The patient was her parents’ only child. She had two healthy 
adult daughters.

At age 64 years she was referred to ophthalmologist for surgical treatment consideration 
because of bilateral ptosis. She had no history of diplopia, headache, or difficulties with 
swallowing. At that time her medication consisted of bisoprolol, losartan, quetiapine, 
and escitalopram. The ophthalmologist confirmed bilateral ptosis, but in addition, 
external ophthalmoplegia was diagnosed. Neurological examination revealed symptoms 
of diffuse encephalopathy: The patient presented with general cognitive slowness, 
problems in understanding and following commands in clinical examination, confusion 
and disorientation. She also showed symptoms of echolalia, automatic laughter, and 
general clumsiness. There were no signs of hemiparesis. Tendon reflexes were weak but 
symmetric, and she had flexor plantar responses. The disease history and the clinical 
assessment were not suggestive of dementia of Alzheimer type. The patient had no 
history of seizures or other symptoms suggestive of epilepsy. Her Mini-Mental State 
Examination (MMSE) score at age 64 years was 27 points out of 30, which is decreased 
but not indicative of dementia. MMSE was not repeated, but later clinical notes indicated 
definite progression of the cognitive problems leading to dementia at age 67 years. At 
that time, the patient had slowly progressive symmetric limb muscle weakness. She was 
not able to move unaided and was not able to live independently. She had severe bilateral 
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ptosis and complete external ophthalmoplegia. She died from pneumonia at age 67 years 
in a nursing home.

In this patient, histological examination of a sample from the right vastus lateralis muscle 
showed abnormally frequent COX-negative fibres at age of 64 years. Electrophysiological 
examination revealed myopathic changes that were most prominent in facial muscles. 
Furthermore, a sensory more than motor, axonal neuropathy was observed. Results of 
other clinical investigations are detailed in Study II.

5.3	 Molecular investigations – Occipital stroke and PEO cohorts

We requested blood samples from the 42 living patients with occipital stroke, and 
received samples from 27 patients (21 women). None of the 27 samples harbored the 
m.3243A>G or the m.8344A>G mutation or any of the investigated common mutations 
in the POLG1 gene (0 – 13%; 95% confidence interval). As to the molecular findings 
of the investigated patients in the PEO cohort, patient P1 had been found to harbor 
the common 5-kb deletion in mtDNA and she was the only subject with a previous 
molecular genetic diagnosis. None of the patients harbored mutations in ANT1, PEO1, or 
POLG2 genes. Patients P1 and P5 were heterozygous for the c.3708G>T (p.1236Q>H) 
transversion in the POLG1 gene. This is considered a neutral polymorphism. Patient 
P2 had c.2492A>G (p.831Y>C) in POLG1 in heterozygous state. This change is also 
considered a neutral polymorphism, although it has been previously reported in patients 
with autosomal dominant PEO and parkinsonism (Mancuso et al. 2004a). None of the 
patients harbored mtDNA point mutations m.3243A>G or m.8344A>G. The long-PCR 
analysis confirmed the common 5-kb deletion in mtDNA of patient P1, but no large-scale 
or multiple mtDNA deletions were detected in the remaining patients. The deceased 
patients D1 and D3 in the PEO cohort had previously been diagnosed with KSS and a 
large-scale mtDNA deletion had been detected in Southern blotting (Study III, Table 1.).

Patient D2 of the PEO cohort had been investigated previously on clinical grounds 
because of suspected mitochondrial disease, and DNA had been extracted from muscle 
biopsy for molecular investigations. Initial analysis for the common mtDNA point 
mutations m.3243A>G, m.8344A>G, and m.8993T>C, as well as southern blot analysis 
to demonstrate large mtDNA deletions had been negative. Further molecular analysis with 
long range PCR revealed multiple mtDNA deletions. Sequencing of the entire POLG1 
gene revealed two heterozygous nucleotide substitutions, c.2993C>T (p.998S>L) and 
c.3550G>C (p.1184D>H). Both were previously unreported. PolyPhen (HumVar) and 
SIFT predictions of these changes suggested that these compound heterozygous changes 
were pathogenic and caused the patient’s phenotype. The two daughters of the patient 
as well as one child of the elder daughter harboured heterozygous p.1184D>H, but 
p.998S>L was found only in the proband. These findings confirmed that the two novel 
base exchanges in the proband were heterozygous in trans.
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In total, six of the ten patients identified in the PEO cohort (P1, P4, P5, D1, D2, and 
D3) had clinically definite PEO. Four of these six patients had a definite mitochondrial 
molecular etiology for their condition. Three patients (P1, D1, and D3), two of them with 
KSS, had large-scale mtDNA deletions. The fourth patient (D2) had multiple mtDNA 
deletions in muscle and she was a compound heterozygote with respect to two mutations 
in POLG1. Two other patients with PEO (P4 and P5) were considered to have a probable 
mitochondrial disorder on the basis of suggestive clinical features, myopathic findings in 
electrophysiological examination, and COX-negative fibers in muscle histology.

5.4	 Molecular investigations – DM and SNHL cohorts

We received blood samples from total 299 patients in the DM cohort. The analysis of 
blood samples revealed three patients (1.0%, 95%CI 0.2; 2.9) with the m.3243A>G 
mutation. One of these (Patient 1 in Study IV, Table 1) had been tested positive of 
m.3243A>G already previously on clinical grounds, the other two diagnoses were novel. 
The clinical characteristics of these identified patients in the DM cohort are presented 
in table 1 of study IV. Notably, all three patients had SNHL in addition to DM. Among 
the 231 patients of the SNHL cohort, we identified one patient with m.1555A>G and 
m.3243A>G mutations each (SNHL cohort; unpublished data).

5.5	 Mitochondrial DNA haplogroup analyses – Occipital stroke and DM 
cohorts

We analyzed mtDNA haplogroups in patients with occipital stroke (Study I) and in 
patients with DM,(Study IV) and compared them to those haplogroup frequencies 
previously reported in the Finnish population (Torroni et al. 1996). Among patients in 
the stroke cohort, haplogroup Uk was more frequent among women with stroke giving 
an odds ratio 3.06 (0.95 – 9.9, 95% confidence interval), while the frequency observed 
among men did not differ from the general population (odds ratio 1.2; 0.13 – 11.9, 
95% confidence interval). Among the 299 patients in the DM cohort, the frequencies 
of mtDNA haplogroups (Study IV, Table 2) did not differ from the general Finnish 
population. However, among the 124 patients (71 women, 57%) who reported a maternal 
family history of DM (MFH), 50 patients (40%; 95% CI 32; 49) belonged to haplogroup 
U, whereas only 39 patients out of the 175 patients with no MFH (22%; 95% CI 17; 29) 
belonged to this haplogroup (p = 0.0013 for difference).
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6.	D iscussion

6.1	O verview

In the studies of this thesis, we investigated the population prevalence of certain molecular 
genetic etiologies of OXPHOS defects among patients with several phenotypes that are 
encountered in mitochondrial disease (occipital ischemic stroke, PEO, DM, SNHL). 
The overall purpose of these studies was to systematically detect mitochondrial disease 
patients presenting with these phenotypes and to improve the estimation of pre-test 
probabilities of correctly diagnosing mitochondrial disease in a given patient with such 
clinical features. In addition, the purpose was to investigate the usefulness of carefully 
planned two-phase, population-based molecular epidemiological studies in a relatively 
rare condition such as mitochondrial disease.

We used the two-phase sampling method to investigate the prevalence of mitochondrial 
disease among the investigated clinical phenotypes. In the occipital stroke and PEO 
cohorts, the patients were initially ascertained from the computerized medical records of 
TUH during a period of 18 years using relevant ICD-9 and ICD-10 diagnoses (619 and 
620 patients respectively; population 455,584 on prevalence date). For the DM cohort, 
the SIIF reimbursement records for DM medications in Southwestern Finland were 
screened through a period of 19 years (1532 patients; population 457,789 on prevalence 
date). SNHL patients were first identified of the hearing aid registry of TUH ORL unit 
during more than 11 years (total 379 patients). After the initial screening, those patients 
deemed (using pre-set criteria) at risk of having mitochondrial disease were investigated 
further.

Ischemic stroke or stroke-like episodes are encountered in patients with mitochondrial 
disease, especially with the m.3243A>G mutation. In these events, the occipital region 
of the brain is most commonly affected. In the occipital stroke cohort, we investigated 
the clinical characteristics and the prevalence of m.3243A>G and m.8344A>G 
mutations as well as seven common POLG1 mutations in young adults with occipital 
ischemic stroke. In addition, we investigated the possible associations of mtDNA 
haplogroups with occipital stroke in these patients. PEO is a classical phenotype of 
mitochondrial disorder, and its molecular etiologies are diverse. From the original 
cohort of 620 patients, we determined a total of six patients with clinically definite 
PEO. In the DM cohort, we investigated the prevalence of MIDD among diabetic 
patients with DM onset as young adults. We concentrated the molecular studies on 
the m.3243A>G mutation, since previous research suggests that it is by far the most 
common etiology for mitochondrial DM (Tsukuda et al. 1997) and other mtDNA 
mutations reported to result in DM have been mostly in single pedigrees (Maassen et 
al. 2005). The identified cohort of young patients with severe SNHL was investigated 
for the m.1555A>G and m.3243A>G mutations, known to comprise the majority of 
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molecular etiologies of mitochondrial hearing loss (Fischel-Ghodsian et al. 2004) 
(unpublished data).

6.2	O ccipital stroke cohort

A considerable part of ischaemic strokes of young people remain etiologically unexplained 
despite thorough investigations (Kristensen et al. 1997; Putaala et al. 2009). The same 
applies to infarcts in the posterior circulation, in general and also among young patients 
(Pessin et al. 1987; Naess et al. 2004). Indeed, among patients in the occipital stroke 
cohort, the etiology of stroke according to TOAST criteria remained undetermined in 
most cases. Various prothrombotic states and cardioembolism due to PFO were found to 
be common etiologic factors, whereas those etiologic factors common in more elderly 
stroke patients such as large artery atherosclerosis and atrial fibrillation were absent. A 
fairly large proportion of the identified female stroke patients (39%) had a history of 
migraine. This finding adds to previous evidence suggesting migraine as a risk factor for 
stroke among young women (Tzourio et al. 1993 and 1995). On the basis of our results, 
it seems that young women with migraine are at increased risk of posterior circulation 
ischaemic stroke. Thus special attention should be payed to the various manageable 
risk factors of ischaemic stroke (i.e., smoking, oral contraceptives, hypertension, etc.) 
in this patient group. The large variety of etiologic factors and relatively high frequency 
of rare causes stresses the need for thorough etiologic work-up in young patients with 
occipital ischaemic stroke in order to determine the etiology as reliably as possible so 
that secondary prevention can be optimized.

Among young patients with occipital ischemic stroke we found no patients with the 
m.3243A>G or m.8344A>G mutations, nor with one of the seven common mutations of 
the POLG1 gene. This result seems to differ from the estimated frequency of 10% for 
mitochondrial disorder in young patients with occipital brain infarcts ascertained in the 
population of northern Finland (Majamaa et al. 1997). Although these results suggest that 
a difference in the prevalence of mitochondrial disease associated stroke between these 
two regions in Finland is possible, the interpretations should be cautious: the confidence 
intervals for prevalence of m.3243A>G in Study I overlap with the ones of the previous 
study (Majamaa et al. 1997).

6.3	 PEO cohort

Large-scale mtDNA deletions were found in three of the six identified patients with 
definite PEO, and multiple mtDNA deletions with two novel variations in trans in the 
POLG1 gene in one of the six patients. In addition, the remaining two patients with 
PEO were considered to have a probable mitochondrial disorder based on suggestive 
clinical features and investigations, although no definite molecular diagnosis could 
be established (Study III, Table 1). The estimated prevalence of PEO with definite or 
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probable mitochondrial etiology in southwestern Finnish population, based on these 
results, is 1.3/100,000 (95 % CI 0.5; 2.9). Further, the estimate for prevalence of PEO 
due to large-scale mtDNA deletions is 0.66/100,000 (95 % CI 0.14; 1.9). Moreover, it 
should be noted that these figures represent a minimum estimation regarding the whole 
population as they are derived from an investigation in an adult population with previous 
neurological or ophthalmological diagnoses. In a previous study in the adult population 
of North East of England, an estimate of 1.17/100,000 (95% CI 0.7; 1.9) for overall 
prevalence of large-scale mtDNA deletions was reported (Schaefer et al. 2008).

Patient D2 (reported in Study II) had an unusual ‘PEO plus’ phenotype with late-onset 
PEO and progressive encephalopathy. PEO and encephalopathy are both frequent 
clinical features in mitochondrial diseases, but in patients with POLG1 mutations, 
encephalopathic phenotypes present most often in childhood. The combination of adult-
onset PEO and encephalopathy is, however, uncommon (Horvath et al. 2006; Wong et 
al. 2008). Our patient had bilateral ptosis, external ophthalmoplegia and progressive 
encephalopathy as dominant features. Molecular genetic analysis revealed multiple 
mtDNA deletions in muscle and two novel, heterozygous in trans changes p.998S>L 
and p.1184D>H in the POLG1 gene. Another pathogenic mutation has previously been 
described in the position 1184. The p.1184D>N mutation has been described in trans 
with the exonuclease domain mutation p.227R>W in children with failure to thrive, 
mental retardation and hypotonia (de Vries et al. 2007), and in adults with a linker 
region mutation p.468N>D with PEO and tetraparesis (Gónzalez-Vioque et al. 2006). 
Both p.998S>L and p.1184D>H changes are located in the polymerase domain of pol-γ 
in positions that are evolutionarily conserved. Also SIFT and PolyPhen predictions 
suggested that these changes were pathogenic.

The results of the PEO cohort suggest that large-scale mtDNA deletions could be the 
most common etiology of PEO in the population. A previous report on a case series 
suggested that the proportion of PEO patients with major mtDNA deletions is indeed 
high (Holt et al. 1989). Previously, the prevalence of large-scale mtDNA deletions has 
been estimated to be 1.6/100,000 in the province of Northern Ostrobothnia in northern 
Finland (Remes et al. 2005). However, cases of the previous study were ascertained from 
a multitude of phenotypes, which at least partly explains the difference in the prevalence. 
Since 1989, nuclear defects have been implicated as possible etiologies of mitochondrial 
disease (Zeviani et al. 1989). Mutations of POLG1 gene are an important etiology of 
human mitochondrial disease, including both autosomal dominant and autosomal 
recessive PEO (Van Goethem et al. 2001; Lamantea et al. 2002; Hudson et al. 2006; 
Horvath et al. 2006). We found one patient with multiple mtDNA deletions and two 
novel compound heterozygous POLG1 mutations. Recent investigations have found that 
mutations in POLG1 are common among such patients with sporadic (i.e., non-familial) 
PEO with multiple mtDNA deletions, with varying reported mutation frequencies 
(between 8 and 34.6%) (Agostino et al. 2003; Hudson et al. 2006; Virgilio et al. 2008). 
Mutations in ANT1, PEO1, or POLG2 genes were not detected in our patients with PEO. 
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The reported frequencies of mutations in PEO1 are variable, but these mutations may 
be more common in PEO with autosomal dominant inheritance than in sporadic PEO 
cases (Virgilio et al. 2008). Based on current knowledge, mutations in ANT1 and POLG2 
seem to be rare causes of PEO. We found no patients with m.3243A>G or m.8344A>G 
mutations among PEO patients.

Even though we sequenced the ANT1, PEO1, POLG1, and POLG2 genes, we failed to 
confirm a molecular genetic diagnosis to one third of patients with clinically definite PEO. 
There are several other possible molecular etiologies for PEO, but these are, according 
to present knowledge, either individually very rare (e.g. other mtDNA point mutations) 
or their prevalence among PEO patients is not yet well established (e.g. mutations in 
OPA1 and RRM2B). A recent report suggests that RRM2B mutations are frequent among 
patients with familial PEO and multiple mtDNA deletions (Fratter et al. 2011), and the 
roles of RRM2B and OPA1 in PEO obviously warrant further study.

As to the patient ascertainment, we argue that with the selection criteria used in the 
PEO cohort most patients in whom the medical records information would allow an 
experienced clinician to consider the diagnosis of PEO were detected. Importantly, the 
patients with pre-existing diagnoses of PEO or KSS were not included to the study ad 
hoc but were detected from the medical records search strictly according to the pre-set 
criteria. With the criteria used in the present study, six (P1, P4, P5; D1, D2, D3) of the 
initially identified ten patients were found to have a clinically definite PEO.

6.4	 Mitochondrial diabetes cohort

Among the investigated 299 patients of the DM cohort, we detected three patients 
with MIDD and the m.3243A>G mutation. This result suggests a 1.0% prevalence of 
MIDD among patients who have started anti-diabetic medication between the ages of 
18 and 45 years. This figure is in line with the mean prevalence (0.8%) calculated from 
previous studies in European populations (Murphy R et al. 2008). Our result represents 
a minimum estimate of the prevalence of MIDD, since patients were not considered for 
the study if they had started DM medication before the age of 18 years or after the age of 
45 years. Moreover, it is plausible that extending investigations to the maternal relatives 
of the identified patients would have resulted in the identification of further cases with 
m.3243A>G.

Previous studies suggest that the age of diabetes onset varies widely in MIDD, but is 
in young adulthood in most patients (Guillausseau et al. 2001; Murphy R et al. 2008). 
The prevalence of the ‘common’ type 2 DM is considerably higher among the older age 
groups in the Finnish and many other European populations (Shaw et al. 2010). Thus, 
data on the MIDD age of onset and on the epidemiology of type 2 DM suggest that the 
a priori probability of MIDD diagnosis decreases among older DM patients. This is 
why screening older age groups means increased expenses of the study in terms of time, 
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money and labour. We decided to limit the search for MIDD to patients aged 18 – 45 
years at DM onset, since the principal aim of Study IV was to estimate the population 
prevalence of MIDD among these patients.

The clinical manifestations of the m.3243A>G mutation are diverse (Murphy R et al. 
2008) and classic phenotypes such as MELAS are probably more an exception than the 
rule. All the three patients with DM and m.3243A>G in Study IV had severe hearing 
impairment requiring use of hearing aid. Patient 1 had had migraine since her teens, and 
had suffered a cerebrovascular incident at age 51 years that was considered an ischaemic 
stroke rather than a stroke-like episode. She did not have clinically manifest myopathy or 
encephalopathy, and blood lactate levels were normal. Thus, her symptom constellation 
does not fulfill the diagnostic criteria of MELAS (Hirano et al. 1991), but seems to be on 
a continuum between MIDD and MELAS (Suzuki et al. 2003; Takeshima and Nakashima 
2005). Patient 2 had albuminuria, probably reflecting an early renal complication of 
DM, which have been reported frequently in mitochondrial DM. Proteinuria in adult 
age is a common manifestation and often there is progression to end-stage renal failure 
(Guillausseau et al. 2001; Guéry et al. 2003). Cases of m.3243A>G MIDD in patients 
with renal failure and hearing loss, but with no hematuria have been misdiagnosed as 
Alport syndrome (Jansen et al. 1997; Nakamura et al. 1999). Patient 3 had a history 
of gastrointestinal problems including diagnosed non-alcohol-induced pancreatitis and 
constipation. Gastrointestinal symptoms have been estimated to be quite common in 
mitochondrial DM (Narbonne et al. 2004).

Among the identified MIDD patients, Patient 3 did not report any relatives with either 
DM or hearing impairment, and Patient 2 did not report a definite maternal history of 
these symptoms. These examples stress the fact that mitochondrial DM is a possibility 
even in the absence of suggestive maternal history. Although both patients 2 and 3 in 
retrospect had quite typical clinical features suggestive of mitochondrial DM, they had 
not been previously genetically tested and they had not been referred to clinical genetics 
or mitochondrial specialist consultation. Such patients with ‘classical’ mitochondrial 
DM but without suggestive family history may easily go unnoticed in regular clinical 
practice.

We used blood DNA for the detection of the m.1555A>G and m.3243A>G mutations. 
This method has been used in many previous prevalence studies of mitochondrial DM 
(Katagiri et al. 1994; Newkirk et al. 1997; Tsukuda et al. 1997; Guillausseau et al. 
2001). Leukocyte DNA has generally been considered appropriate for the detection of 
m.3243A>G (Maassen et al. 2005), although it is known that mutation heteroplasmy is 
lower in leukocytes than in e.g. urinary sediment or cheek mucosa (Shanske et al. 2004), 
and that the heteroplasmy detected in leukocytes tends to decrease over time (Rahman 
et al. 2001). In MIDD patients, the leukocyte heteroplasmy levels of the m.3243A>G 
mutation vary in the range of 1 to 40% (Maassen et al. 2005).With the restriction-
fragment analysis method used in these studies, heteroplasmy levels as low as 2% are 
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reliably detected (Smith et al. 1997; Wong and Lam 1997). Thus it is possible that a 
patient with 1 – 2% heteroplasmic m.3243A>G could have gone unnoticed.

6.5	 Mitochondrial DNA haplogroups and disease

The analysis of mtDNA haplogroups in patients with occipital brain infarct showed that 
17% of men and 33% of women belonged to haplogroup Uk whereas the frequency 
of this haplogroup is 17% in a population sample best conforming to Southwestern 
Finnish population (Torroni et al. 1996). Interestingly, previous research has linked this 
haplogroup with occipital stroke in migraine (Majamaa et al. 1998b). No sex-related 
association of haplogroup Uk and occipital brain infarcts has been previously reported, 
but a recent study in the Japanese population (Nishigaki et al. 2007) found mtDNA 
haplogroup A to be a risk factor for atherothrombotic cerebral infarctions in women. Our 
findings in Study I suggest that haplogroup Uk may be a risk factor for occipital brain 
infacts in young women.

Previous studies have reported no clear associations between mtDNA haplogroups and 
DM. In the DM cohort, we found mtDNA haplogroup U to be more prevalent among 
patients who reported maternal family history of DM. Previous studies on the mtDNA 
haplogroups in DM have focused only on type 2 DM, and maternal family history has 
either not been investigated or only affected mothers have been registered. In the present 
work, all first- and second-degree maternal relatives with DM were reported, and DM 
was defined by the need for medication for DM, i.e., not differentiating between type 
1 or 2 or otherwise. Furthermore, a recent study in Italian population has found that 
mtDNA haplogroups are not associated with the risk of developing type 2 DM, but 
are associated with risk of DM complications (Achilli et al. 2011), suggesting that the 
associations between mtDNA haplogroups and DM may be even more complex.

6.6	R esults of the present studies in the population perspective

Recent studies have suggested genetic differences between Finns living in the southern 
and western regions and Finns living in the northern and northeastern parts of the country 
(Lappalainen et al. 2006; Salmela et al. 2008). These differences are probably due to the 
population history of Finland, i.e. the late settlement of the northern and northeastern 
parts of the country by a relatively small founding population (Peltonen et al. 2000; 
Kere 2001; Norio 2003a; Norio 2003b). These genetic differences between Finnish 
populations of different geographical areas might be one explanation to the fact that 
the results of these studies conducted in southwestern Finland differ in some ways from 
previous results from Ostrobothnia in northern part of Finland (Majamaa et al. 1997; 
Remes et al. 2005). On the other hand, genetic studies show that Finns from the southern 
and western parts of the country have strong genetic similarities with other populations 
surrounding the Baltic Sea (Lappalainen et al. 2008) and as a group these populations 
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have strongest genetic roots in Central Europe. Thus, the results of our studies should be 
applicable, albeit with caution, at least to other European populations around the Baltic 
Sea.

In every epidemiological study, a crucial aspect in assessing the results is how well 
they represent the true morbidity in population. Two major points in this respect are 
addressed here. Firstly, since the studies of this thesis were initially based on medical 
records information, we would have missed those patients who had not been seeking 
medical attention for their symptoms. Formal assessment of this type of selection bias in 
prevalence studies of rare conditions such as forms of mitochondrial disease is difficult, 
since identification of possible false negatives would require thorough analyses of a 
large number of individuals who were not screened in these studies. Secondly, in the 
setting of a two-phase study, the first phase selection criteria are of critical importance in 
order to minimize losing the searched patients. These criteria may always be criticized 
post hoc of not being optimal for the purposes of the study (that is, resulting in a biased 
sample not representative of the true prevalence of the investigated condition), but this 
criticism remains speculative until other studies on mitochondrial disease prevalence 
with similar overall approach but different selection criteria should prove otherwise.

6.7	 Practical implications of the present studies

Altogether, based on results in the occipital stroke cohort it seems that mitochondrial 
disease is a rare cause of occipital brain infarct in young adults, and genetic testing 
for mitochondrial disease in clinical practice should probably remain reserved for those 
stroke patients whose other clinical characteristics or family history raise the suspicion 
of mitochondrial disease. These features could be e.g. bilateral sensorineural hearing 
impairment, diabetes mellitus, hypertrophic cardiomyopathy, or epilepsy, and any 
combination of these features.

Regarding PEO, it seems reasonable to pursue a mitochondrial diagnosis in patients 
presenting with symptoms similar to those used in the ascertainment of the PEO cohort, 
since six out of ten patients in the second phase of the study met the criteria of clinically 
definite PEO. Sporadic, large-scale mtDNA deletions are, based on this study and 
others’ results, likely to be the most frequent molecular etiology of PEO. The clinical 
features of the PEO patient with novel POLG1 changes, a relatively late adult-onset 
symptom combination of PEO and progressive encephalopathy, demonstrate the wide 
phenotypic variety associated with the POLG1 mutations. For this reason, the possibility 
of a POLG-associated disease should be considered in any patient with unexplained 
or unusual neurological features (Chinnery et al. 2008). Altogether, the results of the 
PEO cohort study suggest that molecular investigation of patients with PEO, sporadic or 
familial, should commence with an analysis for mtDNA deletions, followed by analysis 
of the POLG1 gene. We advise to refer patients with negative results in these initial 
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investigations to a center specialized in mitochondrial diseases for evaluation of most 
appropriate further genetic analyses.

Based on the results in the DM cohort, some 1% of diabetes emerging between the ages 
18 – 45 years is associated with the m.3243A>G mutation. In population, these young 
patients with mitochondrial disorder are probably under-diagnosed, and we suggest 
that patients in this age group presenting with both DM and hearing impairment should 
undergo investigation for the m.3243A>G mutation. Moreover, among the patients 
with DM onset in young adulthood, mtDNA haplogroup U seems to be associated 
with maternal family history of DM. Among non-selected young patients with SNHL 
requiring hearing aid, the mutations m.1555A>G and m.3243A>G seem to present with 
~0.5% prevalence each (SNHL cohort, unpublished data).

Overall, the results of these studies suggest that a carefully planned two-phase sampling 
approach with a clinical data analysis of a large population followed by comprehensive 
investigations in selected individuals is a useful and resource-efficient method in the 
difficult task of obtaining prevalence data of rare genetic conditions, such as various 
forms of mitochondrial disease.

6.8	 Future directions

The studies of this thesis provide with material and interesting hypotheses for future 
investigations. Since in both Studies I and IV we found an association between mtDNA 
haplogroup U and occipital ischemic stroke and DM, respectively, that have been reported 
as a manifestation of a mitochondrial disorder, it would be intriguing to investigate 
whether there are some other clinical features that associate with this haplogroup, in 
population level. If haplogroup U predisposes people to mitochondrial dysfunction, 
there might be associations with e.g. general aerobic condition and healthy ageing. As to 
Study IV, it would be interesting to investigate mtDNA sequence also for other possible 
mutations apart from m.3243A>G, especially in those with both DM and SNHL, as this 
combination is quite suggestive of a mitochondrial disorder. In addition, the possible 
other associations of mtDNA haplogroups apart from the maternal family history of DM 
are probably worth investigating.
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7.	C onclusions

These studies resulted in detection of novel pathogenic mutations, new definite molecular 
genetic diagnoses for several individual patients, increased understanding of the clinical 
phenotypes associated with nuclear and mtDNA mutations causing mitochondrial 
disease as well as mtDNA haplogroups as risk factors for ischemic stroke and DM. 
In addition, we used population-based data to assess the prevalence of mitochondrial 
disease among several clinical phenotypes with more reliability than previous studies. 
This type of studies forms an important bridge between the everyday clinical work with 
suspected mitochondrial disease and the fundamental molecular genetic understanding 
of these conditions.

The specific conclusions of the studies of this thesis are as follows.

1. 	 Mitochondrial DNA point mutations m.3243A>G and m.8344A>G or common 
POLG1 mutations seem to be rare among young adults with occipital ischemic 
stroke. Mitochondrial haplogroup Uk seems to be associated with increased risk 
of occipital ischemic stroke among young women.

2. 	 Large-scale mtDNA deletions and mutations of the POLG1 gene are probably the 
most common molecular etiologies of PEO. MtDNA point mutations m.3243A>G, 
m.8344A>G and mutations in nuclear genes ANT1, PEO1, or POLG2 seem to be 
rare among PEO patients.

3. 	 Around 1% of DM emerging between the ages 18 – 45 years is associated with 
the m.3243A>G mutation. In population, these patients are probably under-
recognized. Moreover, among these young patients with DM, mtDNA haplogroup 
U seems to be associated with maternal family history of DM.

4. 	 In population, the mtDNA mutations m.1555A>G and m.3243A>G are found 
with ~0.5% prevalence among early-onset severe SNHL requiring use of hearing 
aid (unpublished data).

5. 	 Altogether, the studies of this thesis show that carefully planned studies with 
combined clinical epidemiological and molecular genetic methodology are useful 
even in the study of rare conditions, such as mitochondrial disorders.
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