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ABSTRACT 
 
Markus Lindroos 

ON GLUCOSE METABOLISM IN PATIENTS WITH THE m.3243A>G 

MUTATION 

 

The Department of Neurology and Turku PET Centre, University of Turku and Turku 

University Hospital, Turku, Finland  

Annales Universitatis Turkuensis Ser. D 

Painosalama Oy, Turku, Finland 2013  

 

Background: The m.3243A>G mutation in mitochondrial DNA is the most common 

cause for mitochondrial diabetes. In addition, unexpected deaths related to the 

m.3243A>G associate with encephalopathy and cardiomyopathy. Failing 

mitochondrial respiratory chain in neurons, myocytes and beta cells is considered to 

underlie the multiorgan manifestations of the m.3243A>G.  

Aims: The primary aim of the study was to characterize the organ-specific glucose 

metabolism in patients with m.3243A>G and secondly, to study patients with or 

without signs of diabetes, cardiomyopathy or encephalopathy. The insulin-stimulated 

glucose metabolism in brain, heart, skeletal muscle, adipose tissue and liver were 

measured with 2-deoxy-2-[18F]fluoro-α-D-glucose in 15 patients and 14 controls. Brain 

oxygen metabolism was assessed with [15O]oxygen and insulin secretion was modelled 

based on oral glucose tolerance test.  

Results: The glucose oxidation in brain was globally decreased in patients with or 

without clinical encephalopathy. The insulin-stimulated glucose influx to skeletal 

muscle and adipose tissue was decreased in patients with or without diabetes as the 

hepatic glucose metabolism was normal. Impaired beta cell function and myocardial 

glucose uptake were associated with the high m.3243A>G heteroplasmy.  

Conclusions: This cross-sectional study suggests that: 1) The ability of insulin to 

stimulate glucose metabolism in skeletal muscle and adipose tissue is weakened before 
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the beta cell failure results in mitochondrial diabetes. 2) Glucose oxidation defect is 

detected in otherwise unaffected cerebral regions in patients with the m.3243A>G, thus 

it likely precedes the clinical encephalopathy. 3) Uneconomical glucose 

hypometabolism during hyperinsulinemia contributes to the cardiac vulnerability in 

patients with high m.3243A>G heteroplasmy. 

 

Keywords: The m.3243A>G mutation, glucose metabolism, mitochondria
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TIIVISTELMÄ 
 

Markus Lindroos 

GLUKOOSIAINEENVAIHDUNTA m.3243A>G MUTAATION OMAAVILLA 

POTILAILLA  

 

Neurologian oppiaine ja Valtakunnallinen PET-keskus, Turun yliopisto ja Turun 

yliopistollinen keskussairaala, Turku 

Annales Universitatis Turkuensis Ser. D 

Painosalama Oy, Turku, Finland 2013 

 

Tausta: Mitokondriaalisen DNA:n m.3243A>G mutaatio on yleisin mitokondriaalisen 

sokeritaudin syy. Lisäksi m.3243A>G mutaatioon liittyvät odottamattomat kuolemat 

ovat yhteydessä aivo- ja sydänsairauteen. Mitokondriaalisen m.3243A>G mutaation 

aiheuttaman vian soluhengityksessä hermosoluissa, sydänlihassoluissa ja insuliinia 

erittävissä haimasoluissa ajatellaan johtavan tähän monielinsairauteen.  

Tavoitteet: Väitöskirjatyön ensisijaisena tavoitteena oli määrittää eri elinten 

glukoosiaineenvaihduntaa m.3243A>G mutaation omavilla potilailla. Toissijainen 

tavoite oli tutkia potilaita, joilla ei ole tai joilla on merkkejä aivo-, sydän- tai 

sokeritaudista. Viidentoista potilaan ja neljäntoista verrokin glukoosin kudoksiin 

kulkeutuminen aivoissa, sydämessä, luurankolihaksessa, rasvakudoksessa ja maksassa 

mitattiin käyttäen 2-deoxy-2-[18F]fluoro-α-D-glukoosi–positroniemissiotomografiaa 

insuliini-infuusion aikana. Aivojen hapen käyttö arvioitiin [15O]-happea käyttäen ja 

insuliinineritys mallinnettiin sokerirasitustestin avulla.  

Tulokset: Eri aivoalueiden glukoosin hapettuminen havaittiin vähentyneeksi, myös 

niillä potilailla, joilla ei ollut aivotaudin oireita. Insuliinin aktivoima glukoosinotto 

luurankolihakseen ja rasvakudokseen oli alentunut sekä sokeritautia sairastavilla että 

siltä säästyneillä potilailla, kun taas maksan glukoosiaineenvaihdunta todettiin 

tavanomaiseksi. Insuliinin eritys sekä sydänlihaksen glukoosin käyttö olivat vajavaisia, 

erityisesti potilailla, joilla on korkea m.3243A>G heteroplasmia-aste. 
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Päätelmät: Tämän poikkileikkaustutkimuksen perusteella: 1) 

Glukoosiaineenvaihdunnan insuliiniherkkyys vähenee rasvakudoksessa ja 

luurankolihaksessa jo ennen kuin haiman insuliininerityksen riittämättömyys johtaa 

mitokondriaaliseen sokeritautiin. 2) Koska glukoosin hapetus havaittiin alentuneeksi 

muuten oireettomilla aivoalueilla, niin se voi edeltää m.3243A>G potilaiden 

aivosairautta. 3). Epätaloudellisen alhainen glukoosin hyödyntäminen korkean 

insuliinipitoisuuden aikana rasittaa suuren m.3243A>G heteroplasmian omaavien 

potilaiden sydäntä. 

 

Avainsanat: m.3243A>G pistemutaatio, glukoosiaineenvaihdunta 
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1 INTRODUCTION 
 
Disorders arising from mutations in the maternally inherited mitochondrial 

deoxyribonucleic acid (mtDNA) frequently affect the central nervous system (CNS), 

cardiac muscle and other organs with high energy needs. These mutations in mtDNA 

are heteroplasmic, i.e. the proportion of the mutated mtDNA varies across tissues, in 

part contributing to heterogeneous clinical phenotypes (Mariotti et al. 1995). Decreased 

respiratory chain activity and increased glucose utilization due to the compensatory 

rise in anaerobic adenosine-5'-triphosphate (ATP) production characterizes metabolism 

in cultured cells harbouring mutated mtDNA (de Andrade et al. 2006). The 

m.3243A>G point mutation is the most common pathogenic mutation in mtDNA 

(Majamaa et al. 1998; Man et al. 2003). It was first associated with the classical 

phenotype including mitochondrial encephalomyopathy, lactic acidosis and stroke-like 

episodes (MELAS; Goto et al. 1990). The lactate is elevated both in blood and 

cerebrospinal fluid (CSF) in these patients (Kaufmann et al. 2004). The full-blown 

MELAS syndrome is a rare manifestation in adults with m.3243A>G, while other 

manifestations, such as diabetes mellitus, sensorineural hearing impairment and left 

ventricular hypertrophy (LVH) are more common (Majamaa-Voltti et al. 2006). The 

involvement of mtDNA mutations in the hereditary forms of diabetes is evident 

(Whittaker et al. 2007). The m.3243A>G mutation in mtDNA accounts for ~1% of 

adult-onset diabetes and is the most common cause of mitochondrial diabetes 

(Katulanda et al. 2008). This mutation is highly diabetogenic as most of its carriers 

develop diabetes during their lives (Guillausseau et al. 2001). Interestingly, also in the 

common form of adult-onset diabetes, changes in respiratory chain function in key 

tissues contributing to the glucose homeostasis have been suggested to underlie both 

the decrease in the insulin action in hepatic, adipose and muscle tissues and to diminish 

the glucose sensitivity of the pancreatic beta cells already before the onset of type 2 

diabetes (Phielix et al. 2008; Patti and Corvera. 2010). This renders the m.3243A>G 

mutation as a potential pathogenic model to study the role of mitochondrial failure in 

diabetes.  
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Insulin action in metabolic active tissues important for the glucose homeostasis, such 

as the liver, adipose tissue and to some extent the skeletal muscle has not been studied 

in detail in patients with the m.3243A>G mutation. Most but not all patients with the 

m.3243A>G display defects in glucose-induced insulin secretion (GIS)(Velho et al. 

1996; Hosszufalusi et al. 2009; Brändle et al. 2001). Patients with m.3243A>G also 

show a decreased oxidation capacity in their skeletal muscles as well as in isolated 

myocytes harbouring the mutation (Jeppesen et al. 2006; Vydt et al. 2007; Silvestri et 

al. 2000). The possible threshold effect of the heteroplasmy to insulin secretion or 

action has not been clarified. In the heart, the phosphocreatine to ATP ratio has been 

shown to be decreased, somewhat resembling the findings in more common diseases 

such as diabetes and sporadic LVH (Lodi et al. 2004). Apart from the genetic aetiology 

and the biochemical defect in isolated cells the metabolic pathophysiology of 

mitochondrial encephalopathies, diabetes and cardiomyopathy have been poorly 

elucidated in these patients. No controlled studies aiming to quantify cerebral glucose 

and oxygen metabolism have been carried out in order to understand the metabolic 

encephalopathy in patients carrying the m.3243A>G mutation. The purpose of this 

cross-sectional study was firstly, to quantify regional glucose and oxygen metabolism 

in the brain in patients harbouring the m.3243A>G mutation using positron emission 

tomography (PET). Secondly, the GIS was measured and modelled after glucose 

ingestion. Thirdly, the insulin-stimulated glucose uptake rate was assessed in skeletal 

muscle, subcutaneous adipose tissue, liver and myocardium by tracking the injected 

glucose analogue-tracer in the tissues with PET scanning during insulin infusion. The 

results of the organ specific glucose metabolism were then reported in the context of 

other manifestations, such as brain atrophy, glucose tolerance, physical activity, 

adipocytokine levels, liver fat content and the measures of left ventricle function.  
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2 REVIEW OF THE LITERATURE 

 
2.1 Human mitochondria 
 
2.1.1 Mitochondrial DNA basic concepts 
 
The presence of DNA within mitochondria was described in 1960s (Nass and Nass 

1963). The mitochondrial DNA (mtDNA) is a circular, double-stranded structure of 

16,569 base pairs, which is organized in discrete dynamic protein-rich nucleotides 

within the mitochondrial network (Figure 1)(Andrews et al. 1999; Garrido et al. 2003). 

Mitochondria are polyploid organelles, each mitochondrion containing two to ten 

copies of its DNA. Mitochondrial DNA is considered to be a remnant from the 

protobacteria that populated eukaryotic cells about 1.5 billion years ago. During the 

evolution the mitochondrial mtDNA became a compact molecule with contiguous 

coding sequences containing no introns or repeats. The continuous replication of 

mtDNA is seemingly independent of cell cycle i.e. relaxed (Bogenhagen and Clayton. 

1977). The mitochondria may replicate their DNA and divide in response to the energy 

needs of the cell (Hock and Kralli. 2009). The replication of mtDNA proceeds by a 

strand-coupled mechanism. It relies on nuclear-encoded proteins, such as 

mitochondrial DNA polymerase gamma (POLG), mitochondrial helicase Twinkle and 

the mitochondrial single-stranded DNA binding protein. Also the mitochondria specific 

topoisomerases and ribonucleic acid (RNA) polymerase are involved (Mao and Holt. 

2009; Pohjoismäki et al. 2010). The differences in replication rates between mutant and 

wild-type mtDNA have been proposed to partly explain the late onset and progression 

in some mitochondrial disorders (Chinnery and Samuels. 1999).  
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Figure 1. Mitochondrial DNA. The location of the genes, encoding respiratory chain complex 
protein subunits are shown. The ND1-6 and ND4L (complex I), CYT b (complex III), CO I–III 
(complex IV) and A6 and 8 (complex V, ATP synthase). Non-coding control region 
encompasses the heavy-strand and light-strand promoter proteins and includes the heavy strand 
(outer ring) origin of replication (OH). Location of some of the well known mitochondrial point 
mutations and their classical presentations are indicated: m.3243A>G, mitochondrial 
encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS), m.11778 G>A, 14484 
T>C and m.3460G>A, Leber’s hereditary optic neuropathy (LHON), 8344A>G, myoclonic 
epilepsy with ragged red fibres (MERRF), 8993T>C/G neuropathy, ataxia and retinitis 
pigmentosa (NARP). The site of common deletion, which is a frequent cause of Kearns-Sayre 
syndrome and progressive external ophthalmoplegia (PEO) is shown with a broken line. As an 
example two haplogroup markers are shown: macrohaplogroup L, 3594T (L0, L1, L2) versus 
3594C (L3, M, N), macrohaplogroup N, 8701A (versus M and L0-3, 8701G) plus 10398A 
(10398A for European lineages T/W/X/K2, and L/J/I/K1 are 10398G). mRNA = messenger 
RNA, rRNA = ribosomal RNA, and tRNA = transfer RNA. 
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Mitochondrial DNA has a slightly different genetic code as compared to nuclear DNA 

and the expression of the different code relies on the mitochondrial coded ribosomal 

RNAs 12S and 16S and to 22 transfer RNAs (Barrell et al. 1979; Clayton. 2000). 

Nuclear-encoded transcriptional factors, such as mitochondrial transcription factor A 

(TFAM) and B2 (TFB2M) co-operate with mitochondrial monomeric RNA 

polymerase and associate with promoters of the C-rich light-strand and the G-rich 

heavy-strand in the 1121-nucleotide non-coding control region. These three proteins 

are essential for basal transcription of human mtDNA. The mitochondrial transcription 

termination factor (MTERF) protein family regulates transcription termination and is 

needed for the proper translation (Litonin et al. 2010). The remaining 13 mitochondrial 

genes are transcribed to messenger RNAs to be further translated to form polypeptide 

subunits, which are structurally involved in proton-translocation in the oxidative 

respiratory chain (Figure 1 and 2). These are the mitochondrial nicotinic acid adenine 

dinucleotide (NAD) dehydrogenase subunits 1-6, 4L encoding genes (MT-ND1–6, L4), 

which encode seven of the 45 polypeptides of the respiratory chain complex I, 

cytochrome b encoding gene (MT-CYB), which encodes one of the 11 subunits of the 

complex III, mitochondrial cytochrome c oxidase subunits encoding genes (MT-

COX1–3), which encode three of the 13 polypeptides in the complex IV, additionally 

mitochondrial ATP synthase F0 subunits encoding genes (MT-ATP6 and 8) encode 

two of the sixteen subunits in the complex V (Figure 1).  

 
  
 
2.1.2 Maternal inheritance 
  

In contrast to the nuclear genes, the mitochondria and the mtDNA originate from 

mother’s oocyte. Therefore only the daughters transmit the mtDNA to the next 

generation (Giles et al. 1980). Thus, maternal inheritance is an important clue to the 

diagnosis of mtDNA-related disorders. Human sperm contains hundreds of mtDNA 

copies per cell and the number is probably downregulated in mammalian 

spermatogenesis (Rantanen et al. 2001). Thereby it becomes diluted when it is 

combined with the ca. 100,000-200,000 mtDNA copies from the oocyte (Chen et al. 
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1995). Furthermore, during spermatogenesis the sperm mitochondrial outer membrane 

proteins become ubiquitinated and just after fertilization the paternal mtDNAs are 

selectively recognized and removed (Nishimura et al. 2006). The analyses of infants 

born after intracytoplasmic sperm injection have clearly failed to identify paternal 

mtDNA with methods capable of detecting levels as low as 0.001% (Marchington et al. 

2002). However, in mammal interspecific crosses the sperm mtDNAs can occasionally 

persist (Kaneda et al. 1995). There is at least one verified case of the paternal 

inheritance in humans. This was a patient with mitochondrial myopathy and a paternal 

inherited mtDNA with microdeletion in ND2 found only in muscle. In addition, this 

case also proved that mtDNA molecules may recombine as few of the maternal and 

paternal mtDNAs had recombined in the muscle (Kraytsberg et al. 2004). This case has 

then been proven to be the exception that confirms the maternal inheritance rule as 

subsequent studies have not found more evidence of the paternal inheritance of 

mtDNA (Taylor et al. 2003a).  

 

The mtDNA sequence is well-conserved from one generation to another and intra- and 

intermolecular recombination in mtDNA seldom occurs (D'Aurelio et al. 2004). This 

lack of recombination and the strict maternal inheritance makes the mtDNA a useful 

tool in population studies, where it enables to track the maternal line through 

generations (Giles et al. 1980; Elson et al. 2001). On the other hand, the mutation rate 

in mtDNA is several times higher than that in the nuclear DNA giving the mtDNA its 

characteristic polymorphic variation (Finnilä et al. 2001). Mitochondrial DNA is 

highly polymorphic, and any two individuals differ with tens of base pairs on average 

(Finnilä et al. 2001). Based upon combinations of polymorphisms in the mtDNA 

accumulated since the last common mtDNA ancestor, the mtDNA molecules can be 

sorted to different haplotypes (Figure 1). Using these haplotypes the mutational history 

of human mtDNA as well as the geographical maternal line can be reconstructed as a 

single sequential mutational tree (Pierron et al. 2011). Interestingly, some of the 

geographic variation in mtDNA between populations is poorly explained by random 

fluctuation. Therefore, part of the non-random mtDNA variation has been suggested to 
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result from natural selection as the population has adapted to environmental factors 

such as temperature (Ruiz-Pesini et al. 2004). Haplotypes are arranged to haplogroups 

by convention and may have importance in genetic counselling. This is because some 

of the pathogenic mitochondrial mutations have a lower or higher tendency to generate 

disease manifestations i.e. low or high penetrance if they coexist with a certain 

haplogroup in mtDNA (Hudson et al. 2007).  

 
 
2.1.3 Heteroplasmy and segregation  
 
Each human cell has hundreds to thousands of mtDNAs. Usually, all mtDNA 

molecules in a cell or tissues are identical, a condition known as homoplasmy. 

However, mutations in mtDNA are characterized by the coexistence of wild type and 

mutant mtDNA in various proportions within each cell and intraindividually in 

various tissues. This situation is called heteroplasmy (Whittaker et al. 2009). In cell 

division, the human wild type and mutant mtDNAs are passed into daughter cells 

apparently at random. Thus the degree of heteroplasmy may shift and the phenotype 

may change accordingly. This mechanism resulting in an arbitrary ratio of wild type 

and mutant mtDNA into the two daughter cells is called mitotic segregation (Brown et 

al. 2001; Jenuth et al. 1996). A similar random drift partly explains the variation in 

heteroplasmy between generations, among offspring of the same mother, in various 

tissues or between individual muscle fibres in one individual (Elson et al. 2001). The 

term genetic bottleneck refers to a restriction in the number of mitochondrial genomes 

transmitted between generations. The number of mtDNA copies passed along from 

mother to child is small, five to 200 copies (Kaneda et al. 1995). Thus at the 

population level, new mtDNA mutations become segregated in few generations to 

relatively near homoplasmy and are likely to be exposed rapidly to natural selection 

(Cree et al. 2008). Otherwise the lack of recombination in combination with 

biparental inheritance pattern would allow deleterious mitochondrial mutations with a 

replicative advantage to rapidly spread throughout the population. Therefore it has 

been speculated that natural selection may prefer a uniparental, i.e. the maternal 

inheritance pattern of mtDNA (Korpelainen. 2004). Whether the genetic bottleneck 
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takes place during early oogenesis through the random segregation of the estimated 

100,000-200,000 mtDNA molecules in human oocytes or rather during postnatal 

folliculogenesis is not entirely clear (Cree et al. 2008; Wai et al. 2008). Purifying 

selection in transmission of mammalian mitochondrial DNA occurs in the female 

germ line. This reduces the impact of severe mutations at the population level (Fan et 

al. 2008; Stewart et al. 2008). The clinical implications of the segregation and 

purifying mechanism are that in case of heteroplasmic mutations a high proportion of 

mutant load in the mother relatively rarely results in a severe defect in the off-spring. 

It has been shown that the maternal transmission rate of a disease may be under 5% in 

case of large scale mtDNA deletions (Chinnery et al. 2004). 

 
 
2.1.4 Mitochondrial structure and oxidative ATP production 
 
The histological appearance of the mitochondria is a double-membrane organelle with 

faint, thread-like granular appearance located in cytoplasm. The mitochondrial shape, 

DNA organisation and proteome expression are highly tissue specific (Pohjoismäki et 

al. 2009; Mootha et al. 2003). In general, the outer mitochondrial membrane includes 

transport system proteins, such as protein pores permeable up to 5000 dalton, the 

translocase-of-the-outer-membrane for active transport of larger proteins, proteins for 

fatty acids elongation and transport, mitochondrial fusion proteins, and enzymes, such 

as monoamine oxidase (Li et al. 2009). The intermembrane milieu resembles the 

cytoplasm and it includes enzymes, such as creatine kinase. The inner mitochondrial 

membrane is protein rich containing more than 100 different polypeptides, including 

the megadalton complexes of the electron transport chain (ETC) and the ATP synthase, 

altogether equalling 1 protein to 15 membrane phospholipids (Figure 2). The inner 

mitochondrial membrane lacks porins and is highly impermeable to all molecules 

including small charged ions. Therefore transporters, such as the translocases of the 

inner membrane are required to supply the nuclear encoded proteins into the 

mitochondrial matrix (Sirrenberg et al. 1996). The intramitochondrial space, i.e. the 

mitochondrial matrix, contains approximately 2/3 of the over one thousand 

mitochondrial proteins, such as the enzymes of citric acid cycle, beta-oxidation and 
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ribosomes as well as tRNAs and mtDNAs (Figure 2)(The MitoP2 database, 

http://www.mitop.de; Zhang et al. 2008; Li et al. 2009). 

 

In the mitochondrion, the citric acid cycle oxidizes the acetyl coenzyme A (acetyl-

CoA) derived from glucose or fatty acids and reduces the cofactors NAD and flavin 

adenine dinucleotide (FAD), which then provide electrons for the ETC (Figure 2) 

(Sazanov and Jackson. 1994). ETC transfers the electrons through a series of tightly 

coupled and controlled oxidation–reduction reactions into the molecular oxygen. This 

transfer is coupled to proton export across the inner membrane. Thus, the ETC 

ultimately converts the energy from plant hydrocarbons into a hydrogen gradient 

across the inner mitochondrial membrane (Rich. 2003). The potential energy in this 

electrochemical gradient is then allocated to synthesize ATP from adenosine- 5'-

diphosphate (ADP) via complex V or to heat production via mitochondrial proteins, 

which uncouple the proton influx from ATP synthesis (Saraste. 1999; Azzu and Brand. 

2010). The importance of the mitochondrial proton gradient for natural selection 

becomes evident when the present mitochondrial genome is compared with the α-

protobacterial genome. Approximately 99% of the protomitochondrial protein coding 

genes have disappeared or have been incorporated into the nuclear DNA and at present, 

all the proteins expressed by the human mtDNA are structural subunits closely linked 

to proton transport in complexes I, III and IV and V (Adams and Palmer. 2003). 
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Figure 2. A schematic graph of the mitochondrial electron transfer chain (ETC) and glucose 
metabolism in the cell. Protein encoding genes in mitochondrial DNA (red) are transcribed to 
messenger RNAs (red) to be further translated in ribosomes with help of mitochondrial transfer 
and ribosomal RNAs (red) to form polypeptide subunits (red), which are structurally involved 
in proton-translocation in the oxidative respiratory chain (red). Respiratory chain complexes are 
indicated with I-V. Fatty acid (FA) transport is facilitated to cytosol via transport proteins such 
as translocase / the homologue of human CD36 (FAT/CD36), plasma membrane associated 
binding protein (FABPpm), and possibly via transport protein (FATP). Acyl-coenzyme A 
(CoA) is added and the hydrocarbons are further transported to mitochondria via respective 
transporters such as carnitine palmitoyltransferases I and II (CPT1 and 2) and carnitine-
acylcarnitine translocase. Acetyl-CoAs are repetitively removed and ATP is generated in the 
beta-oxidation. Transmembrane glucose transporters (GLUT1-4). GLUT4 and CD36 are 
translocated to cell surface in response to insulin or exercise. In cytosol hexokinase (HK) 
converts glucose to glucose-6-phosphate (G6P), which is the first step of both glycogen 
synthesis and glycolysis. G6P enters the anaerobic glycolysis, which produces pyruvate, lactate 
and ATP. Lactate and pyruvate transport across mitochondrial and plasma membrane is 
facilitated by monocarboxylate transporters (MCTs). Citrate synthase (CS) is the pace-making 
first step of the tricarboxylic acid (TCA) cycle. Pyruvate dehydrogenase transforms pyruvate to 
acetyl-CoA which enters to TCA cycle. TCA cycle oxidizes the acetyl-CoA and reduces 



REVIEW OF THE LITERATURE 
 
 

24 

nicotinamide adenine dinucleotide (NAD) and flavin adenine dinucleotide (FAD). NADH and 
FADH then provide electrons into molecular oxygen (oxidation) via complex I and II and the 2 

rest of the ETC. This electron flow to oxygen is coupled with proton pumping through the inner 
mitochondrial membrane and a hydrogen gradient is established. This gradient i.e. membrane 
potential can be dissipated to heat by uncoupling proteins (UCP) or converted to ATP by ATP 
synthase (V). ADP and ATP are exchanged between the mitochondrial matrix and the 
cytoplasm via Adenine nucleotide translocator (ANT). Different physiological signals such as 
cold, muscle contraction, insulin, starvation may activate mitochondrial proliferation. This 
proliferation is regulated by activating different promoters in the coactivator genes such as 
PGC-1α. Their transcripts in turn trans activate an array of transcription factors such as NRF-1, 
which in turn increases expression of proteins needed for mitochondrial structure, metabolism 
and mtDNA processing. Such proteins include for instance COX17, TOM20, TFAM and 
POLG. SIRTs exert post transcript activation of PGC-1α in response to starvation. Adiponectin 
and leptin bind to their plasmamembrane receptors and activate intracellular pathways. GS = 
Glycogen synthase. TIM = Translocase of the inner membrane. TOM = Translocase of the outer 
membrane. IRS1 = insulin receptor substrate 1, AMPK = AMP-activated protein kinase, SIRT1 
= silent information regulator T1, peroxisome proliferator-activated receptor (PPAR) gamma 
co-activator 1α (PGC-1α). β-AR = β-Adrenergic Receptor. LDH = lactate dehydrogenase. AKT 
= Protein Kinase B, FA =Fatty acid, NRF1 and 2 = Nuclear Respiratory Factors 1 and 2, PI3K 
= Phosphatidylinositol 3-kinases, cAMP= Cyclic adenosine monophosphate. FOXO = Forkhead 
box proteins O, ERR = Estrogen related receptor. 
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2.2 Mitochondrial disease 
 
2.2.1 Outlines of metabolic mitochondrial disease  
 
The first case report on a mitochondrial disease was a patient with a notable increase in 

basal metabolic rate and lack of coupling of oxidation and phosphorylation in muscle 

mitochondria (Luft et al. 1962). However, it became early evident that the failing 

respiratory chain function is the hall mark of mitochondrial diseases (Willems et al. 

1977). Besides the respiratory chain, biochemical defects in other major steps of 

mitochondrial metabolism were identified. These include the enzymes limiting 

substrate utilization, (Blass et al. 1970) substrate transport (DiMauro and DiMauro. 

1973) and turnover in Krebs cycle (Petrova-Benedict et al. 1987). Since 1988 these 

protein deficiencies have found their mutation counterparts in the human genome (Holt 

et al. 1988; Bourgeron et al. 1994; Monnot et al. 2009; Anichini et al. 2010). 

 
 
2.2.2 Large-scale rearrangements in mtDNA 
 
Variable mutations in mtDNA lead to respiratory chain failure. Large-scale 

rearrangements, more particularly a large single deletion was the first mutation to be 

associated with mitochondrial disease (Holt et al. 1988). From all the large-scale 

rearrangements, the single deletions have the highest prevalence estimates near to 1.6 

per 100 000 in an adult population (Remes et al. 2005). Approximately one-third of the 

mtDNA deletions involve an identical 4977 base-pair segment, often referred to as the 

common deletion (Figure 1). Single duplications and several duplications or deletions 

in mitochondrial tRNAs or protein-coding genes are not as prevalent (Poulton et al. 

1989). Large-scale rearrangements of mtDNA are nearly sporadic and were previously 

believed to be the result of the clonal amplification of a single mutational event in the 

oocyte (Chen et al. 1995; Chinnery et al. 2004). Besides the common Kearns-Sayre 

syndrome including ptosis, progressive external ophthalmoplegia (PEO) and salt-and-

pepper like retinal pigmentary change before the age of twenty, the clinical phenotypes 

associated with large deletions recapitulate many manifestations generally encountered 

in patients with mitochondrial disease. At least, short stature, encephalopathy, diabetes, 
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ataxia, and also cardiomyopathy, conduction block, myopathy, retinal degeneration and 

hearing loss have been reported (Aure et al. 2007). 

 
 
2.2.3 Point mutations in mtDNA 
 
The human mtDNA mutation rate is high, about 2.5 substitutions per site per million 

years, which is 10 and 20 times higher than that in the nuclear DNA rendering the 

point mutations in mtDNA relatively common (Pärsons et al. 1997). Most of the 150 

point mutations associated with human disease lead ultimately to respiratory chain 

failure primary through the transfer RNA encoding genes, which then change the 

translation of other genes. In addition, several rare pathogenic mutations in the protein 

encoding genes or ribosomal RNA genes have been identified 

(http://www.mitomap.org/). The most common pathogenic heteroplasmic point 

mutations affecting the respiratory chain are associated with specific phenotypes 

characteristic of mitochondrial disease. Often the degree of heteroplasmy determines 

largely the severity of the biochemical failure and disease. These characteristic 

phenotypes of mitochondrial disease include for instance MELAS (m.3243A>G), 

myoclonic epilepsy and ragged red fibres (MERRF, m.8344A>G), and neuropathy, 

ataxia and retinitis pigmentosa (NARP, m.8993T>C)(Figure 1)(Hirano and Pavlakis. 

1994; Shoffner et al. 1990; Mäkela-Bengs et al. 1995). However, a variety of other 

phenotype-genotype associations have been ascribed to these characteristic 

heteroplasmic point mutations in mtDNA (Austin et al. 1998; Tatuch et al. 1992; 

Chinnery et al. 1997; Majamaa et al. 1998). 

 

Part of the mtDNA point mutations leading to deficient ETC activity are homoplasmic. 

For an unknown reason the manifestations associated with homoplasmic mutations 

have typically an extremely variable penetrance. Classical nearly pathognomonic 

clinical presentations for homoplasmic mutations in mtDNA genes include: Leber’s 

hereditary optic neuropathy (LHON) in the protein subunit encoding genes of the 

complex I, (MT-ND4, m.11778G>A; MT-ND1, m.3460G>A and MT-ND6, 

m.14484T>C), maternally inherited Leigh syndrome (LS) and progressive necrotising 
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encephalopathy and non-syndromic or aminoglycoside-induced sensorineural hearing 

loss (rRNA m.1555A>G for sensorineural hearing loss)(Wallace et al. 1988; Puomila 

et al. 2007; Limongelli et al. 2004; Yamasoba et al. 2002; Estivill et al. 1998).  

 
 
2.2.4 Mitochondrial disease due to mutations in nuclear DNA 
 
Mutations in nuclear DNA disturbing the structure, translation or assembly of 

respiratory chain proteins or replication and maintenance of mtDNA result in 

biochemical defects and phenotypes characteristic of mitochondrial disease. Notably, 

the majority of the respiratory chain proteins are encoded by nuclear DNA, translated 

in cytosol and transported into the mitochondrion (Figure 2). As the corresponding 

mutations in mtDNA the nuclear DNA mutations in genes encoding structural subunits 

of the respiratory chain complexes I,II, IV and V or their assembly proteins, including 

coenzyme Q(10) biosynthesis, become commonly manifest in early childhood. These 

mutations are associated with severe respiratory chain deficiency. LS or other severe 

forms of encephalopathy are the most common phenotype (Loeffen et al. 1998b; 

Bourgeron et al. 1995; Zhu et al. 1998; Lopez et al. 2006; Cizkova et al. 2008). A 

variety of mutations in nuclear genes encoding proteins needed for mtDNA translation 

or maintenance (including ANT1 gene) or replication (including deoxyribonucleoside 

kinases and other mitochondrial proteins maintaining deoxyribonucleoside 

triphosphate pools) of mtDNA usually lead to more subtle respiratory chain defects and 

become manifest later in life. The characteristic manifestations, such as 

encephalopathy, lactic acidosis, hepatopathy, myopathy and PEO resemble those of 

mtDNA mutations (Coenen et al. 2004; Smeitink et al. 2006; Fratter et al. 2010; 

Kaukonen et al. 2000; Van Goethem et al. 2001; Naviaux and Nguyen. 2004; Mandel 

et al. 2001; Saada et al. 2001; Zanna et al. 2008; GeneReviews: POLG-Related 

Disorders[Internet]; Parini et al. 2009). Most of these mutations lead to depletion of 

mtDNA and some to accumulation of deletions in mtDNA. At present, an increasing 

number of mutations in proteins involved in mitochondrial protein import are added to 

the list of metabolic mitochondrial diseases because they ultimately lead to the 

respiratory chain failure and resembling phenotypes (Tranebjaerg et al. 2001; 
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Takakubo et al. 1995; Magen et al. 2008). Finally, molecular genetics fails to detect a 

mutation possibly in one half of the adult patients affected by biochemical and clinical 

mitochondrial disease (Zeviani and Di Donato. 2004). 

 
 
2.2.5 Metabolic aspects of mitochondrial morphology 
 

In general, insulin, cold, exercise, nutrients, extra mitochondrial calcium and starvation 

have an impact on the overall mitochondrial biogenesis and metabolism (Hock and 

Kralli. 2009). It is characteristic of mitochondria to change shape, move and form new 

networks within the cell with nucleoids able to divide and redistribute within the 

mitochondrial network (Pohjoismäki et al. 2009; Amchenkova et al. 1988; Garrido et 

al. 2003; Hollenbeck and Saxton. 2005). Mitochondria continuously replicate their 

DNA, divide, react to extra-mitochondrial calcium changes and change their crista 

morphology, and move within the cell (Bereiter-Hahn and Voth. 1994; Yi et al. 2004). 

The morphology of mitochondrial network and inner membrane cristae also reflect the 

physiological variation in mitochondrial respiration and nutritive status (Hackenbrock. 

1966; Scalettar et al. 1991; Plecita-Hlavata et al. 2008). A change in mitochondrial 

morphology and metabolism is also commonly seen in mitochondrial disease (Zanna et 

al. 2008; Kollberg et al. 2009; Kärppä et al. 2005; Carta et al. 2000). Much of the 

regulation of mitochondrial metabolism is exerted through transcription enhancing 

factors, such as nuclear respiratory factors 1 and 2, which bind to several nuclear 

mitochondrial gene promoters, such as respiratory complex subunits, TFAM, TFB2M, 

POLG subunits, mitochondrial fusion proteins, protein import complex genes. Thus the 

transcription and replication of mtDNA and ETC and the recruiting of the structural 

proteins needed for mitochondrial growth co-occur. The transcription enhancing 

factors in their turn are regulated by nuclear coactivators, such as PPAR gamma 

coactivator 1-α (PGC-1α), the promoter of which receives an array of positive and 

negative physiological signals from AKT, cAMP, Ca2+, AMPK and fatty acids (Figure 

2). The activation of PGC-1α and other nuclear coactivators also commonly induces 

gene expression needed for enhanced mitochondrial fatty acid oxidation, glucose 
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transport and uncoupling. The co-activators can be further induced by posttranslational 

regulation factors like Sirtuin 1 (Hock and Kralli. 2009).  

 
It has been recently shown that experimental manipulation of mitochondrial proteins 

which control the morphology and fission-fusion, such as mitofusin exert also an 

impact on membrane potential and glucose metabolism in insulin responsive organs 

and on apoptosis in beta cells (Sebastian et al. 2012; Pich et al. 2005; Molina et al. 

2009; John et al. 2005; Park et al. 2008a). In addition to the nuclear DNA mutations 

listed above, the aberrant mitochondrial respiration is associated with a loss of fusion 

function due to the mutations in genes encoding the involved proteins, such as the 

dynamin-related GTPase-like OPA1 protein (Zanna et al. 2008). Furthermore, 

mutations in mitofusin-2 gene repress mitochondrial fusion and the respiratory chain 

function and lead to Charcot–Marie–Tooth neuropathy and defects in central nervous 

system (Loiseau et al. 2007; Del Bo et al. 2008). Interestingly, obesity may impair the 

function of mitofusin-2 (Bach et al. 2005). Also mutations in monogenic forms of 

Parkinson's disease occur in genes that contribute to mitochondrial morphology (Deng 

et al. 2008). Finally, changes in mitochondrial morphology in affected organs have 

been commonly reported in various common diseases, such as diabetes, heart failure 

and neurodegenerative diseases. (Patti and Corvera. 2010; Ong and Hausenloy. 2010; 

Liang et al. 2008). At present, however the causal significance of these morphological 

mitochondrial changes in human disease has remained inconclusive. 

 
 
2.3 The m.3243A>G mutation in mtDNA 
 
2.3.1 Clinical presentation of the m.3243A>G mutation 
 
The m.3243A>G mutation in the gene (MT-TL1) encoding transfer RNALeu(UUR) 

was the first mutation to be associated with mitochondrial encephalopathy 

characterized by seizures and dementia, lactic acidosis, and stroke-like episodes 

(MELAS), which in turn was described as a syndrome only a few years earlier (Goto et 

al. 1990; Pavlakis et al. 1984). The MELAS phenotype and m.3243A>G have a high 



REVIEW OF THE LITERATURE 
 
 

30 

concordance (Hirano and Pavlakis. 1994). At present, several other mutations have 

been associated with the MELAS syndrome. Another common cause is the 

m.3271T>C mutation. In addition to the several point mutations in the MT-TL1 gene, 

mutations in other mitochondrial transfer RNA genes as well as in genes coding 

structural subunits in various respiratory chain complexes have been associated with 

the MELAS syndrome (Ruiz-Pesini et al. 2007; http://www.mitomap.org/). 

Furthermore, MELAS overlap syndromes have been described in the carriers of the 

mutations in respiratory chain subunit encoding genes. Especially the mutations in the 

MT-ND5 gene can result in MELAS and other phenotypes, such as the MELAS- LS, 

MELAS- LHON, MELAS-MERFF overlap syndromes (Santorelli et al. 1997; Chol et 

al. 2003; Pulkes et al. 1999; Naini et al. 2005). The reasons for the phenotype-genotype 

variation are poorly understood (van Eijsden et al. 2008).  

 

The characteristic MELAS syndrome is a rather uncommon manifestation in the 

carriers of m.3243A>G. More prevalent manifestations of m.3243A>G include 

myopathy 27%, diabetes mellitus 48%, pigmentary retinopathy 15%, sensorineural 

hearing impairment 67%, dementia 27%, epilepsy 18%, short stature 42%, neuropathy 

15%, ataxia 9% and myoclonus 8% (Chinnery et al. 1997; Majamaa-Voltti et al. 2006). 

Cardiac manifestations and migraine are also common in patients with m.3243A>G. 

(Majamaa et al. 1998; Uusimaa et al. 2007). In general, the tissues with high energy 

needs, i.e. the visual and auditory systems, neuronal tissue, heart, skeletal and smooth 

muscle, beta cells, kidney and liver appear to be the organs richest in the respiratory 

chain complexes and most vulnerable to the abnormal energy metabolism in 

mitochondrial diseases (Triepels et al. 1998; Loeffen et al. 1998a; Loeffen et al. 1999). 

However, in spite of the rich mitochondrial content in kidney and liver, renal 

manifestations, hepatopathy or other gastroenterological manifestations, such as 

recurrent vomiting, recurrent pancreatitis and gastrointestinal dysmotility are relatively 

uncommon manifestations in patients with the m.3243A>G mutation (Narbonne et al. 

2004; Hotta et al. 2001; Majamaa-Voltti et al. 2006). Intriguingly, studies in patients 

with another mitochondrial translation defect have led to propose that the hepatic 
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manifestation paradox might be due to the differences in the organization of the 

mitochondrial translation proteins system in different tissues (Antonicka et al. 2006).  

 

The level of heteroplasmy determines in part the severity of the phenotype. More 

severe phenotype is associated with higher m.3243A>G heteroplasmy as is the case for 

many other point mutations and large scale deletions in mtDNA (Chinnery et al. 1997; 

Jeppesen et al. 2006; Aure et al. 2007). Because of ongoing mitochondrial and cellular 

division the mutation load may show considerable variation among the tissues in each 

individual. In addition, for partly unknown reasons the heteroplasmy levels of 

m.3243A>G in various tissues have not a fully random hierarchy (Chinnery et al. 

1999). The m.3243A>G mutation heteroplasmy may not impair respiratory chain 

function unless it exceeds a certain threshold. This threshold effect for the biochemical 

defect can be easily demonstrated in vivo in cybrid cells or fibroblasts (Jeppesen et al. 

2006; James et al. 1996; DiFrancesco et al. 2008). The typical threshold level may vary 

in different tissues. Intriguingly, homoplasmic mutations in mtDNA leading to serious 

defects in oxidative phosphorylation (OXPHOS) often give rise to symptoms in one 

characteristic tissue, such as in the optic nerve in patients with the m.11778G>A 

mutation (Wallace et al. 1988; Sue et al. 1999). Therefore factors other than tissue 

heteroplasmy and the ensuing OXPHOS defect in cells likely explain much of the 

phenotype-genotype variation in mitochondrial disease. 

 
 
2.3.2 Epidemiology of the m.3243A>G mutation 
 
The prevalence of respiratory chain diseases due to mtDNA mutations has been initially 

estimated to be about 1 in 5,000. The prevalence of the m.3243A>G mutation was 

relatively high in a population-based study in Finland with 16.3 carriers per 100,000 

(Majamaa et al. 1998; Uusimaa et al. 2007). However, the frequency has been even 

higher in other population-based studies performed on Caucasian populations (Elliott et 

al. 2008; Manwaring et al. 2007). The m.3243A>G mutation has been estimated to be the 

most common pathogenic mtDNA mutation. The m.3243A>G mutation is thus slightly 

more prevalent than the m.11778G>A mutation causing the LHON (Elliott et al. 2008; 
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Manwaring et al. 2007; Man et al. 2003; Schaefer et al. 2008; Darin et al. 2001; Puomila 

et al. 2007). In case of mitochondrial disease caused by homoplasmic point mutations 

and Complex I deficiency, the nuclear genetic background, sex and at least smoking 

affects the penetrance of phenotypes such as LHON (Cock et al. 1998; Hudson et al. 

2005; Tsao et al. 1999; Puomila et al. 2007; Kirkman et al. 2009). In addition, variation 

of mtDNA haplogroups may modulate OXPHOS and explain why some patients with 

certain haplogroups have a high risk for LHON (Hudson et al. 2007). However, it has not 

been proved that the mtDNA haplogroups, nuclear genetic background, sex or 

environmental factors would explain the variation in disease manifestation in patients 

with m.3243A>G (Torroni et al. 2003). 

 
 
2.3.3 Pathophysiology of the m.3243A>G mutation 
 
2.3.3.1 Transcription failure 
  
The nucleotides between positions 3230-3304 in mtDNA encode transfer RNA, which 

transfers the amino acid leucine to the polypeptide chain at the ribosome during 

translation. Defects in mitochondrial protein synthesis and respiratory activity are a 

constant observation in cellular models containing mutated mtDNA similar to the 

observation in other mutations in mtDNA transfer RNA genes. The m.3243A>G 

mutation has an impact on mitochondrial translation efficiency and on the termination 

of transcription (Kirino et al. 2004; King et al. 1992; Suomalainen et al. 1993; Flierl et 

al. 1997). As a result the assembly of complexes I, IV and V are almost totally lost in 

the cybrids harbouring homoplasmic m.3234A>G mutation (Sasarman et al. 2008). 

This translation defect may be modestly overcome by increasing the availability of 

leucyl-transfer RNA synthetase or elongation factors (Sasarman et al. 2008; Li and 

Guan. 2010). 

 
 
2.3.3.2 Electron transport chain deficiency  
 
The major biochemical defect in cells with m.3243A>G is the failing complex I 

activity in the mitochondrial electron-transport chain. This has been well-
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documented in fibroblasts, myocytes, neurons and cybrid cells (James et al. 1996; 

Vydt et al. 2007; Sparaco et al. 2003; Li and Guan. 2010). The activity of complex I 

in the affected tissues has shown an inverse correlation with mutation heteroplasmy 

is some studies. On the other hand, low activity of the other complexes, particularly 

complex IV, has been reported in some tissues such as the skeletal muscle (Goto et 

al. 1992; Mariotti et al. 1995; Vydt et al. 2007). Complex I and IV gene expression 

may be compensatory induced in the presence of m.3243A>G (van Eijsden et al. 

2008). The low complex IV activity in myocytes of patients with m.3243A>G is 

associated with two paradoxes. Firstly, COX stain is predominantly positive 

indicating the presence of the protein complex and, secondly, in the few COX-

negative fibres the lack of staining is not due to the lack of wild type mtDNA at the 

site (Durham et al. 2007). A marked complex I deficiency is a rather constant 

finding also in other mitochondrial disorders. This is due to the disease-associated 

mutations in several structural subunit genes and in the assembly factor genes 

needed for complex I. Such mutations are found for instance in patients with the 

severe LS or childhood MELAS. In addition, neonatal deaths due to mitochondrial 

transfer RNA mutations leading to the near absence of the complex I activity 

emphasize the importance of the complex I function in humans (McFarland et al. 

2002; Malfatti et al. 2007). Then again, mutations leading to the complex I 

deficiency and transfer RNA synthesis defects have also been associated with much 

milder phenotypes (Taylor et al. 2003b; Brown et al. 2000). Finally, the predictory 

value of detecting isolated complex I deficiency in muscle mitochondria for the 

disease manifestations is less than that of muscle ATP generating capacity, muscle 

histochemistry or the level of blood lactate in patients with the m.3243A>G 

mutation (Wibrand et al. 2010; Janssen et al. 2008). 

 
 
2.3.3.3 Carbohydrate and calcium metabolism 
 
The homoplasmic m.3243A>G mutation in cybrid cell leads to decreased glucose 

oxidation, increased anaerobic glycolysis and several-fold accumulation of 

extracellular pyruvate and lactate. A slight increase in citrate synthase activity, a 50-
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80% decrease in oxygen consumption and a 90% decrease in ATP synthesis is 

observed in the presence of homoplasmic m.3243A>G mutation. (King et al. 1992; 

Pallotti et al. 2004). Due to the increase in anaerobic metabolism a ~2 fold rise in net 

glucose uptake is observed in these cells (de Andrade et al. 2006). The mitochondrial 

membrane potential is decreased resulting in the low oxidative ATP production 

(Sandhu et al. 2005; de Andrade et al. 2006; James et al. 1996; Antonicka et al. 

1999). Interestingly, an augmented PGC-1α or β expression in cells harbouring the 

m.3243A>G mutation is able to increase the complex I activity and oxygen uptake 

(Srivastava et al. 2009). Some cell lines present progressive decline in oxygen 

consumption due to the m.3243A>G mutation after a low heteroplasmy threshold of 

around 21% (van den Ouweland et al. 1999). Impaired respiratory chain function 

does not only affect the hydrocarbon oxidation rate but also calcium signalling due to 

the decrease in mitochondrial membrane potential (de Andrade et al. 2006). Finally, 

based on cybrid studies, glutamate turnover and synthesis rate are likely to be 

decreased in the tissues affected by the m.3243A>G mutation (DiFrancesco et al. 

2008). 

 
 
2.3.3.4 Glucose metabolism in models mimicking m.3243A>G disease 
 
Mitochondrial disease traditionally lacks animal models. Different cellular models 

compromised for their mitochondrial function mimic the metabolic changes observed 

in m.3243A>G cybrids or fibroblast. Cells survive without mitochondria and mtDNA 

by increasing glucose uptake and anaerobic glycolysis (de Andrade et al. 2006; 

Soejima et al. 1996). Further, abolishing the mitochondrial membrane potential with 

valinomycin provokes an increased 2-deoxy-2-[18F]fluoro-α-D-glucose ([18F]FDG) 

uptake in cancer cells. A similar compensatory anaerobic rise in glucose uptake by 

blocking the mitochondrial respiration with sodium azide can be demonstrated in 

cultured myocytes (Brown et al. 2008). On the other hand, various cell types including 

neurons are able to compensate complex I deficiency and maintain some of the 

mitochondrial membrane potential using ATP from anaerobic glycolysis and the 

reverse mode of F1Fo-ATP synthase (complex V, de Andrade et al. 2006; Abramov et 
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al. 2010). It is well-known that carbohydrates other than glucose limit compensatory 

anaerobic glycolysis and the viability of cells with respiratory chain defects (De Lonlay 

et al. 2002). Interestingly, no data on fatty acid metabolism, which is the essential 

substrate for heart and skeletal muscle, in cells harbouring the m.3243A>G mutation or 

mimicking models are available. It is also rather unclear how the nuclear and wild type 

mtDNA transcriptions are influenced by the m.3243A>G mutation, in different tissues. 

However, both nuclear and mtDNA gene transcripts for the ETC and glycolytic 

pathway may be somewhat upregulated in the heart, liver and in the skeletal muscle 

(Heddi et al. 1999; Srivastava et al. 2009; Durham et al. 2007). Nevertheless, changes 

in the expression of nuclear-encoded subunits of the respiratory chain and the proteins 

of the cell cycle have been reported both in the absence of mtDNA and in the presence 

of various mitochondrial mutations including m.3243A>G (Mineri et al. 2009; 

Cortopassi et al. 2006). Rodents with mutations in NADH-ubiquinone oxidoreductase 

Fe-S (Complex I) proteins develop encephalopathy and high lactate resembling LS or a 

severe MELAS phenotype. Decreased oxygen consumption in liver is present in these 

animals (Kruse et al. 2008). However, these animals do not develop diabetes or ragged 

red fibres (RRFs) characteristic for the m.3243A>G mutation. On the other hand RRFs 

are not present in all common mitochondrial diseases disturbing complex I activity 

such as LHON (Cortelli et al. 1991). A conditional tissue specific mutation expression 

in the gene encoding the TFAM, a transcription factor, creates a mouse model, where 

the affected tissues possibly best resemble mitochondrial disease due to the 

m.3243A>G mutation. These mice show decrease in complex I, III and IV activity, 

encephalopathy and myopathy with RRFs and COX deficiency mimicking most 

mitochondrial diseases (Li et al. 2000; Wang et al. 1999). The tissue-specific knockout 

(KO) of the nuclear TFAM gene in pancreas in mice presents a defect in insulin 

secretion, abnormal mitochondria in islets cells and develops later beta cell loss and 

diabetes (Silva et al. 2000). Unfortunately, the global TFAM KO is lethal in utero 

(Larsson et al. 1998). 
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2.4 Brain metabolism and mitochondrial encephalopathy  
 
2.4.1 Glucose metabolism in brain 
 
2.4.1.1 Glucose as a neuronal substrate 
 
The basal human brain metabolism has been well-characterized by analyzing arterial 

and internal carotid vein differences for various metabolites. Studies using this method 

have clearly shown that human brain is an active net consumer of glucose and oxygen. 

It has been estimated that 95% of the glucose extracted by the brain is oxidized in the 

brain providing about 90% of the energy consumed by the human brain (Graham et al. 

2002; Dalsgaard et al. 2002). Most of the glucose oxidation occurs in neurons of the 

cortical grey matter. The normal molecular ratio of the oxygen to glucose consumption 

is near to six and may be slightly decreased due to the high lactate availability and 

oxidation during intense exercise (Dalsgaard et al. 2004). Also a small fraction of free 

fatty acids (FFAs) is taken up and metabolized in human brain (Dalsgaard et al. 2002; 

Karmi et al. 2010). Extensive data suggest that these alternative substrates are 

preferentially metabolized by astrocytes and not by neurons or oligodendrocytes (Hertz 

et al. 2007; Wyss et al. 2009). In basal conditions the non-neuronal oxygen 

consumption occurs mainly in astrocytes. Oxygen consumption in astrocytes is 

proportional to their proportion of all cortical cells being as high as 30% (Hertz et al. 

2007). The astrocytic oxidative capacity per cell is therefore comparable to that in 

neurons, which is further supported by the similar mitochondrial volume fraction in the 

two cell types (Pysh and Khan. 1972).  

 
 
2.4.1.2 Immediate carbohydrate oxidation in the brain 
 
The ATP in neurons is needed for the maintenance of membrane potential, the 

synaptic activity and to balance the rapid initial rise in extracellular potassium after 

an action potential (Brown et al. 2003; Dienel et al. 2007). An increase in energy 

needs due to sensory or mental activation provokes a temporal fall in the basal 

oxygen to glucose metabolism ratio due to the temporary increase in anaerobic 
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glycolysis in order to balance the rapid ATP decrease during physiological demand 

(Dienel et al. 2007). This is followed by a compensatory increase in carbohydrate 

oxidation (Gjedde and Marrett 2001; Dienel et al. 2007). The endogenous glycogen 

storage is relatively small and predominately located in astrocytes in the brain (Cruz 

and Dienel 2002; Ghosh et al. 2005). The anatomical correlates for this instant 

energy reservoir are the glycogen storages within the thin peripheral astrocytic 

processes, which envelope the peripheral projections of the neurons (Hertz et al. 

2007). A shortage in oxygen or glucose leads to rapid depletion of this glycogen 

store. Persisting oxygen depletion leads to insufficient ATP supply of the brain, the 

electrical activity vanishes and the neuronal death ensues in few minutes (Brown et 

al. 2003; Allen et al. 1989). This in mind, it is not surprising that the regional 

metabolism in the brain is tightly coupled with the vascular supply of nutrients and 

oxygen (Paulson et al. 2010; Roland et al. 1987). The autoregulation of the brain 

perfusion pressure is part of this characteristic coupling. Further, the coupling of 

perfusion to glucose and oxygen metabolism in various brain regions and during 

different activation patterns is tight. This coupling, however can be overcome by a 

forced increase or decrease in the blood flow, implicating that the coupling 

ultimately is a blood flow response to the metabolic needs in the different neuron 

populations in the brain (Långsjö et al. 2005; Kuroda et al. 2006).  

 
 
2.4.1.3 Glucose homeostasis and brain metabolism  
 
The mammalian brain, cerebellum excluded, expresses only insulin insensitive 

glucose-specific transporter proteins 1 and 3 (GLUTl and GLUT3, Choeiri et al. 2002). 

Accordingly, acute hyperinsulinemia induces only minor changes in human brain 

glucose uptake (Hirvonen et al. 2011; Cranston et al. 1998). In contrast with insulin 

sensitive glucose transporters, insulin receptors are expressed at high levels in various 

brain areas and cell types (Baron-Van Evercooren et al. 1991). A role for neural insulin 

receptors in mammal metabolism is suggested by creating neuron-specific insulin 

receptor KO mice, which present diet-dependent susceptibility to obesity, and 

hypogonadism (Bruning et al. 2000). The density of glucose transporter proteins 
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reflects mainly the metabolic activity in various brain regions (Choeiri et al. 2002). 

Deficiency in the main glucose transporter, the GLUT1, leads to early encephalopathy 

and to a widespread glucose hypometabolism in the brain (Pascual et al. 2002). 

Diabetes or hyperglycaemia does not markedly change the glucose uptake rate in the 

brain. However GLUT1 may become downregulated and the glucose content is 

increased in various brain regions (Lutz and Pardridge. 1993; Heikkilä et al. 2009; 

Hasselbalch et al. 2001). A high availability of ketones, FFAs and lactate might  

potentially decrease glucose utilization and increase the oxidation and the turnover of 

alternative hydrocarbons in the brain (Dalsgaard et al. 2004; Pan et al. 2000; 

Bentourkia et al. 2009; LaManna et al. 2009; Chiry et al. 2006).  

 
 
2.4.1.4 Measuring human brain glucose metabolism 
 
Human data from arterio-venous difference studies as well as glucose uptake measured 

with 1-[11C]D-glucose and [18F]FDG-PET combined with brain perfusion or oxygen 

metabolism data have shown that a quantification of glucose uptake in different brain 

areas is accurate with dynamic [18F]FDG-PET scans if simultaneous arterial sampling 

is used (Dalsgaard et al. 2002; Graham et al. 2002; Frackowiak et al. 1988). Both 

[18F]FDG and glucose transport across the cell membrane are facilitated by the 

predominant GLUT1 transporter in the brain (Pascual et al. 2002; Rayner et al. 1994; 

Choeiri et al. 2002; Patlak and Blasberg. 1985). GLUT1 is the major facilitator of 

transmembrane transport of glucose both into the neurons and astrocytes (Chiry et al. 

2006). In the cytoplasm [18F]FDG and glucose are phosphorylated by a hexokinase. At 

this point, the metabolism of [18F]FDG ceases except for very slow dephosphorylation. 

Thus, the accumulation rate of [18F]FDG into the tissue is linearly proportional to the 

regional metabolic rate of glucose (rGMR). Minor differences may be attributed to the 

different transport and phosphorylation rate of the 2 hexoses in the tissue. The 

correction factor accounting for these differences is termed the lumped constant (LC,  

Graham et al. 2002; Reivich et al. 1985). 
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2.4.2 Mitochondrial encephalopathy 
 
2.4.2.1 Clinical and pathological presentation 
 
The full-blown mitochondrial encephalomyopathy, stroke-like episodes or epilepsy are 

rare CNS manifestations in adults with m.3243A>G (Majamaa et al. 1998). Mild to 

moderate cognitive decline is more common. Migraine and ataxia are also common 

traits in patients with m.3243A>G (Majamaa-Voltti et al. 2006; Fromont et al. 2009). 

The cognitive dysfunction has been attributed to the posterior regions of the brain as 

visuoconstructive problems dominate (Majamaa-Voltti et al. 2006). In addition, 

impairment in more frontally located cognitive functions, such as sustained attention, 

verbal memory and abstract reasoning have been recently reported in patients with 

m.3243A>G (Fromont et al. 2009). The clinical course of the encephalopathy is 

progressive in patients with m.3243A>G. Also the electrical activity in 

electroencephalography (EEG) gradually becomes slower in the occipito-parietal 

regions in patients with m.3243A>G and without stroke-like episodes during the 

follow-up (Majamaa-Voltti et al. 2006).  

 

Neuropathological studies have described widespread infarct-like lesions in the 

cerebral cortex and gliosis and demyelinisation in the cerebral and cerebellar white 

matter in patients with m.3243A>G and stroke-like episodes (Tanahashi et al. 2000; 

Betts et al. 2006). Characteristic features also include basal ganglia calcifications, local 

and diffuse atrophy and necrosis without intravascular thrombosis or embolus in 

intracerebral arteries (Sue et al. 1998). Conclusive neuropathological studies including 

mildly affected carriers of the m.3243A>G are lacking. On the other hand, common 

neurodegenerative pathology, such as senile plaques, neurofibrillary tangles or Lewy 

bodies are rare also in patients with severe manifestations. The ultrastructural 

assessments show typically numerous abnormally enlarged mitochondria, which are 

aggregated in blood vessels (Tanahashi et al. 2000; Betts et al. 2006). These findings 

together with the severe COX deficiency co-occuring with high heteroplasmy in the 

walls of the blood vessels have lead some authors to suggests that an angiopathy due to 

mitochondrial dysfunction may cause the stroke-like episodes (Tanahashi et al. 2000; 
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Betts et al. 2006). However, the distribution of affected blood vessels has not shown a 

clear correlation between affected and spared brain regions speaking against the 

mitochondrial angiopathy hypothesis. In contrast, reduced staining for mtDNA-

encoded subunits of the respiratory chain, has been confirmed in patients with 

m.3243A>G in the affected and non-affected brain cortex. This indirectly suggests that 

focal lesions in MELAS might be due to OXPHOS failure in neurons (Sparaco et al. 

2003). Finally, the origin of the encephalopathy including the stroke-like lesions 

remains obscure (Tanahashi et al. 2000; Betts et al. 2006).  

 
 
2.4.2.2 Imaging in mitochondrial encephalopathy 
 
Neuroimaging data on patients with m.3243A>G is mainly derived from clinical 

reports including a handful of patients who have experienced acute stroke-like 

episodes. These studies have usually reported an absence of ischemia as the perfusion 

has been normal (Nariai et al. 2001). The stroke-like events are typically associated 

with asymmetric lesions located in the occipital and parietal lobes mimicking ischemia 

but not respecting the major vascular territories. Diffusion-weighted or other magnetic 

resonance imaging (MRI) has revealed that these lesions may evolve and disappear 

during follow-up. In discordance with the non-vascular distribution of the lesions, the 

oedema in acute lesion displays characteristics of vasogenic-extracellural rather than 

cytotoxic-intracellular tissue breakdown (Abe et al. 2004; Yoneda et al. 1999; Ohshita 

et al. 2000). Besides the stroke-like lesions, non-quantitative single photon emission 

computed tomography (SPECT) has shown both patterns of normal or asymmetric 

hypoperfusion in the parieto-occipital region of patients with m.3243A>G (Suzuki et 

al. 1996; Ito et al. 2008; Thajeb et al. 2005). In contrast with rather occasional stroke-

like lesions, mild brain atrophy is frequent in patients with the m.3243A>G mutation 

(Majamaa-Voltti et al. 2006; Suzuki et al. 1996; Sue et al. 1998; Fromont et al. 2009). 

Besides the cerebellar and cerebral atrophy, relatively commonly reported non-acute 

radiological findings include basal ganglia calcifications and unspecific focal lesions in 

the grey matter in the parietal and occipital lobes and cerebellum (Sue et al. 1998).  
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2.4.2.3 Brain metabolism in mitochondrial disease 
 
A relative decrease in glucose metabolism with possible preference for occipital and 

temporal lobes has previously been found in patients with mitochondrial disease (Damian 

et al. 1998; Molnar et al. 2000). However, the most commonly reported metabolic 

findings in patients with m.3243A>G are low N-Acetyl-L-aspartic acid (NAA) signal and 

accumulation of lactate in the focal stroke-like lesions (Fromont et al. 2009; Castillo et al. 

1995). The voxel-vice [1H] magnetic resonance spectroscopy ([1H]MRS) lactate 

measurements in CSF in the lateral ventricle have also been linearly related to the 

m.3243A>G mutation heteroplasmy and to the symptoms in a large study population 

(Kaufmann et al. 2004). More elusive data on metabolic disturbances in the brain have 

been obtained using quantitative PET approach in all together 13 patients that had 

mitochondrial disease confirmed in muscle biopsy. These two studies have shown a rather 

well-preserved rGMR but a shift from aerobic glucose oxidation to anaerobic glycolysis 

as the oxygen consumption was markedly decreased in the patients (Frackowiak et al. 

1988; Shishido et al. 1996). However, no quantitative data on glucose and oxygen 

metabolism in the unaffected brain regions are available in mitochondrial disease. 

 
 
2.5 Mitochondrial failure and adult-onset diabetes 
 
2.5.1 Role of genetic background in adult-onset diabetes 
 
Twin studies propose that the risk of type 2 diabetes is inherited. These studies also 

propose that the diabetes becomes manifest only in subjects who are genetically 

predisposed to insulin resistance and who also possess defective beta cells rendering 

them unable to compensate for a decrease in insulin action (Beck-Nielsen et al. 2003). 

Defects in insulin sensitivity and beta cell function are common in the healthy 

offspring of patients with type 2 diabetes (Natali et al. 2010; Karlsson et al. 2006). 

Prospective studies show that the whole-body insulin resistance and alternation in the 

GIS precede diabetes onset by several years (Ahren. 2009). A 25-year follow-up of 155 

children of couples who both had type 2 diabetes showed that decreased insulin 

sensitivity precedes diabetes at least by ten years (Martin et al. 1992). A follow-up 
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study including two hundred non-diabetic Pima Indians, a population at a high risk of 

inherited diabetes, has shown that an early insulin resistance is the major, and an 

impaired acute insulin response is the minor diabetes precursor (Lillioja et al. 1993). 

Peripheral insulin resistance also independently predicts later cardiovascular disease 

and is strongly associated with the other risk factors for cardiovascular disease already 

in adolescents (Moran et al. 2008; Kekäläinen et al. 1999; Raitakari et al. 1995). The 

few genetic factors that have been associated repeatedly but not unambiguously with 

insulin sensitivity include the Pro(12)Ala polymorphism in the PPAR-gamma2 gene, 

which is protective in obese subjects, and the mtDNA variant m.16189T>C (Vänttinen 

et al. 2005; Poulton et al. 1998; Park et al. 2008b).  

 

Monogenetic diabetes is characterized by high penetrance. Several mutations in the 

proximity of nuclear transcription factor like genes predispose to type 2 diabetes but 

they may also cause a monogenetic form of diabetes, the maturity-onset diabetes of the 

young (MODY, Love-Gregory et al. 2004; Holmkvist et al. 2006; Grant et al. 2006; 

Silander et al. 2004; Steinthorsdottir et al. 2007). The most common cause of MODY 

is a defect in glucokinase gene, which interferes with the glucose metabolism both in 

hepatocytes and beta cells (MODY 2, Velho et al. 1992; Lorini et al. 2009). Several 

other mutations underlying the MODY phenotype affect transcription factors, for 

instance the hepatocyte nuclear factor and impair beta cell function (Yamagata et al. 

1996; Stride and Hattersley. 2002). The gain of function mutations in ATP-sensitive 

inward rectifier potassium channel 11 encoding gene, which causes neonatal diabetes, 

as well as the different types of mitochondrial diabetes are other forms of monogenic 

diabetes (Pearson et al. 2006). 

 

Association studies have shown that the common type 2 diabetes is a polygenetic 

disease. Each mutation associated with type 2 diabetes increases only modestly the risk 

for diabetes. Most of these mutations interfere with some aspect of the beta cell 

function (Perry and Frayling. 2008). For instance mutations impairing the function of 

the ATP-dependent potassium or the voltage-gated calcium channels lead to the 
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aberrant first phase of the GIS (Gloyn et al. 2003; Holmkvist et al. 2007). Mutations in 

the sulphonylnurea receptor gene have been associated with type 2 diabetes and failing 

second phase of insulin secretion (Hart et al. 2000). Interestingly, in contrast with the 

glucose-induced secretion, the argine or glucagon-like peptide-stimulated insulin 

secretion may not be associated with the major risk loci for type 2 diabetes ('t Hart et 

al. 2010). Mutations predisposing to type 2 diabetes have not been found in the nuclear 

genes regulating mitochondrial function (Segre et al. 2010). Recently, plasma 

apolipoprotein B and adiponectin have shown to have a predictive value for diabetes in 

the general population, but the role of polymorphism in the respective genes for 

diabetes risk is unclear (Salomaa et al. 2010; Dastani et al. 2012; Lindsay et al. 2002). 

Importantly, as compared with traditional risk factors, such as family history, body-

mass index, liver-enzymes and smoking, or to the measures of insulin secretion and 

action, the known mutations associated with type 2 diabetes have a poor predictive 

value for the future diabetes onset (Lyssenko et al. 2008). Therefore, a detection of a 

single associative mutation has not been very useful in order to find the individuals 

who would potentially benefit from interventions aiming to maintain beta cell function 

and mass before diabetes onset (Donath et al. 2005). 

 

 
2.5.2 Role of mitochondrial function in insulin secretion  
 
Beta cells are the main cell type in the islet of Langerhans accounting for 70% of the 

human endocrine pancreas (Jain and Lammert. 2009). The beta cells release insulin in 

response to glucose stimuli in a manner, which is modulated by other nutrients and the 

route of glucose administration (Faerch et al. 2008; Salinari et al. 2009). Glucose is 

predominantly transported via the GLUT1 transporters in human beta cells (De Vos et al. 

1995). The following phosphorylation step by glucokinase (GK) is the rate limiting step in 

glucose entry. The overexpression of the GK increases glucose influx. This in turn leads 

to higher pyruvate availability and oxidation followed by a rise in cytosolic ATP. As a 

result, the beta cell glucose sensitivity becomes elevated. Due to these observations GK 

has been considered to be the major glucose sensor of the beta cells (De Vos et al. 1995; 
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Ishihara et al. 1994; Thorens et al. 2000; Postic et al. 1999; Sayed et al. 2009; Sakura et al. 

1998). The elevated ATP is needed to increase the opening probability of the ATP 

dependent potassium channel, which in turn leads to membrane depolarisation and to the 

opening of the voltage-gated calcium channel and calcium influx (Cook and Hales. 1984). 

Finally, elevated calcium triggers the exocytose of insulin (Mariot et al. 1998).  

 

Approximately as much as 90% of the glucose entering the beta cell is oxidized (Schuit 

et al. 1997). The importance of the direct glucose oxidation to beta cell function can be 

demonstrated by overexpressing the otherwise neglect lactate dehydrogenase in beta 

cells. This upregulates anaerobic glycolysis at the expense of glucose oxidation and 

results in markedly impaired GIS (Zhao and Rutter. 1998). Therefore, the heteroplasmy 

threshold where the OXPHOS defect becomes manifest might be lower in beta cells 

than in in vivo cybrid cell models or in other tissues with potent lactate dehydrogenase 

(van den Ouweland et al. 1999; Soejima et al. 1996). It has been clearly shown that 

during excess substrate availability, it is the generation of mitochondrial membrane 

potential i.e. OXPHOS capacity, which sets the limit to the rate of the ATP production 

and the GIS (Antinozzi et al. 2002). Importantly, the mitochondrial level of uncoupling 

may regulate insulin secretion as uncoupling protein 2-deficient mice show high islet 

ATP levels and an increased GIS response (Zhang et al. 2001). In addition, 

mitochondria increase the contrasts in the intracellular calcium oscillation and thereby 

insulin exocytose by rapidly taking up calcium during cell activation (Quesada et al. 

2008). Finally, the potentiation of the GIS is partly independent of calcium 

concentration in the beta cells, but the role of mitochondria in the calcium independent 

potentiation of the GIS is unknown (Ravier et al. 2010; Salehi et al. 2010). 

 

 
2.5.3 Mitochondrial diabetes 
 
2.5.3.1 Clinical presentation 
 
Various mtDNA mutations are associated with monogenetic forms of diabetes (Hirai et 

al. 1998; Whittaker et al. 2007; Choo-Kang et al. 2002). The m.3243A>G mutation in 
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mtDNA is the most prevalent cause for mitochondrial diabetes accounting for ~1% of 

adult onset diabetes (Katulanda et al. 2008; Otabe et al. 1994; Saker et al. 1997; 

Whittaker et al. 2007; Choo-Kang et al. 2002; Martikainen et al. 2012). The average 

age of onset is around 40 years although the range is wide. It has been estimated that 

most carriers of the m.3243A>G mutation develop diabetes by the age of 70 years 

(Guillausseau et al. 2001; Laloi-Michelin et al. 2009). Patients with m.3243A>G are 

typically lean and most of them need insulin only a few years after the onset of 

diabetes (Guillausseau et al. 2001). The prevalence of retinopathy may be lower and 

the risk of renal complications may be higher than those in patients with the common 

forms of diabetes (Massin et al. 2008). Hearing impairment co-occurs often with 

mitochondrial diabetes, and the acronym maternally inherited diabetes and deafness 

(MIDD) is widely used (Laloi-Michelin et al. 2009). 

 
 
2.5.3.2 Beta cell failure 
 
In cybrid cells, homoplasmic m.3243A>G mutation leads to respiratory chain 

deficiency and to over two-fold increase in anaerobic glycolysis. The glucose oxidation 

is reduced by over 80% and the NADH production and resting mitochondrial 

membrane potential become decreased as compared to cells with wild type mtDNA. In 

addition to these key metabolic pathways involved in beta cell function, intracellular 

calcium concentrations return only slowly to the baseline after stimuli in these cells, 

probably blunting even more the beta cell response to glucose (Mariotti et al. 1995; de 

Andrade et al. 2006; Pallotti et al. 2004). However, only a few previous studies 

assessing insulin secretion in these patients are available. Six studies including 63 

subjects with m.3243A>G have revealed impaired GIS, whereas three studies 

including 41 subjects have not (Brändle et al. 2001; Suzuki et al. 1994; Suzuki et al. 

1997; Becker et al. 2002; Holmes-Walker et al. 2001; Salles et al. 2007; Velho et al. 

1996; Oka et al. 1996; Maassen et al. 2004). Two of the studies demonstrated defects 

in the GIS in altogether 10 patients displaying a normal glucose tolerance (Suzuki et al. 

1994; Velho et al. 1996). The response to arginine and glutamate has been reported to 
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be preserved (Brändle et al. 2001). Importantly, no studies have properly assessed the 

possible association between the insulin secretion and the tissue heteroplasmy. 

 
 
2.6. The role of skeletal muscle in glucose homeostasis 
 
2.6.1 Skeletal muscle metabolism 
 
2.6.1.1 Nutritive metabolism in the skeletal muscle 
  
The skeletal muscle relies mainly on FFA oxidation in the fasting state. During 

exercise the proportion of glucose oxidation increases and during high-intensity 

exercise the glycogen storage may be used for anaerobic glycolysis (Helge et al. 2007). 

Fatty acids are at least partly transported via transmembrane protein fatty acid 

translocase into the myocyte for storage and oxidation (Holloway et al. 2006). The 

magnitude of the intramuscular lipid pool that undergoes oxidation is unclear (Helge et 

al. 2007). Three fibre types can be delineated in human muscle according to the myosin 

heavy chain isoforms. Type I fast-twitch fibres are favoured by PGC-1α activation (Lin 

et al. 2002). The type IIA and IIX/IIB represent slow-twitch fibres. The maximal ATP 

and glycogen consumption capacity is high in the fast fibres as compared to slow fibres 

(Greenhaff et al. 1993). The percentage of the muscle fibre volume occupied by 

mitochondria varies from 6% in type I to 4.5% in type IIA and 2.3% in type IIX/IIB as 

the respiratory rates in isolated mitochondria are similar in the fibre types (Scheibye-

Knudsen and Quistorff. 2009; Howald et al. 1985).  

 
 
2.6.1.2 Glucose transport to skeletal muscle during hyperinsulinemia 
  
GLUT4 is the predominant glucose transporter in human skeletal muscle (Gaster et al. 

2000). The GLUT4-KO completely abolishes the insulin-stimulated glucose uptake 

and leads to impaired glucose tolerance in mice (Zisman et al. 2000). GLUT4 

translocation, hexokinase II (HK II) activity and glycogen synthase are all insulin 

responsive steps of glucose uptake in the myocyte (Mandarino et al. 1995). However, 

the GLUT4 translocation appears to be the rate limiting step of glucose transport to 
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skeletal muscle both during hyperinsulinemia and exercise activation (Wojtaszewski et 

al. 1999; Cline et al. 1999; Zisman et al. 2000; Fueger et al. 2004; Fueger et al. 2005). 

The insulin sensitive transmembrane transport step corresponding the sum of GLUT4 

and HK II step may be quantified with [18F]FDG-PET. It shows a tight correlation with 

the whole-body insulin sensitivity (Peltoniemi et al. 2000; Virkamäki et al. 1997). 

Insulin and also exercise independently increase nutritive perfusion in skeletal muscle, 

which is mainly regulated according to the metabolic needs (Newman et al. 2007; 

Hannukainen et al. 2006). Finally, muscle glycogen synthesis is the principal pathway 

of glucose uptake during hyperinsulinemia (Virkamäki et al. 1997). Insulin also 

indirectly increases glucose utilization in myocytes as it limits the FFA concentration 

in the blood by inhibiting the lipolysis in the adipose tissue and possibly within the 

skeletal muscle (Bolinder et al. 2000).  

 
 
2.6.1.3 Insulin resistance and oxidative capacity 
 
Peripheral insulin resistance can be quantified by calculating the decrease in whole-

body glucose uptake during the hyperinsulinemia (DeFronzo et al. 1982). Due to its 

availability elevated fasting insulin to glucose ratio has been used as an alternative 

marker of the insulin resistance. During physiological levels of hyperinsulinemia, the 

skeletal muscle glucose uptake accounts for the majority of the whole-body glucose 

uptake (DeFronzo et al. 1982). Some degree of peripheral insulin resistance develops 

also in type 1 diabetes and thereby it has to be taken into consideration in all patients 

with diabetes (Peltoniemi et al. 2001). Insulin enhances glucose uptake via insulin 

receptor substrate 1 tyrosine phosphorylation signalling pathway. This pathway is 

independent of exercise and insulin sensitizers (Karlsson et al. 2005). The role of 

insulin signalling pathway in myocytes during glucose intolerance has been challenged 

by the insulin receptor KO mice, which do not show any glucose intolerance (Bruning 

et al. 1998). Experiments in these mice, thus lacking the insulin signalling in muscle, 

have proposed that alternatively the downregulation of mitochondrial respiratory chain 

might have an initiating role in glucose intolerance (Yechoor et al. 2004). Previous 

associations between skeletal muscle citrate synthase activity or maximal oxygen 
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uptake (VO2 max) and insulin sensitivity in skeletal muscle would be compatible with 

this proposition (Bruce et al. 2003; Takala et al. 1999a). Large studies have further 

identified the VO2 max as an independent predictive factor for metabolic syndrome and 

diabetes (Hassinen et al. 2010; Eriksson and Lindgarde. 1996). The VO2 max by itself 

has been considered to be an inherited feature mainly reflecting the oxidative capacity 

in the skeletal muscle (Ostergard et al. 2006). Finally, the documentation of the 

decreased expression of the oxidative metabolism genes, their coactivators, ETC 

activity and thermodynamic coupling in myocytes in patients with type 2 diabetes as 

well as impaired mitochondrial activity in the offspring of patients with type 2 diabetes 

have lead to the suggestion that an initial mitochondrial dysfunction may disturb the 

insulin responsiveness in skeletal muscle (Patti and Corvera. 2010; Petersen et al. 

2004b). In contrast to this, the skeletal muscle specific TFAM KO, mimicking 

mitochondrial myopathy, leads to respiratory chain failure in muscle without any 

concomitant decrease in basal or insulin-stimulated glucose uptake in mice 

(Wredenberg et al. 2006). In summary, the observation of reduced insulin sensitivity 

and oxidative metabolism in skeletal muscle before type 2 diabetes may remain 

associative (Phielix et al. 2008). 

 
 
2.6.2 Metabolic aspects of mitochondrial myopathy 
 
Myopathy is considered to be a late-onset feature among patients with m.3243A>G 

(Kärppä et al. 2005). The frequency of peripheral neuropathy in patients with the 

m.3243A>G mutation may be as high as 25% and mild limb weakness or myopathic 

changes in muscle histology have shown a similar frequency (Kärppä et al. 2003; 

Kärppä et al. 2005). Ultrastructural variations in mitochondrial size and shape, 

intramitochondrial crystals and subsarcolemmal and intermyofibrillar collections of 

mitochondria that is RRFs in trichrome stain are common findings among patients with 

m.3243A>G and limb weakness, whereas fat infiltration is rare (Kärppä et al. 2005; 

Stadhouders et al. 1994). A slightly elevated proportion of COX negative fibres is also 

found in patients with the m.3243A>G myopathy (Kärppä et al. 2005). Interestingly, 

mild limb weakness is not tightly associated with decreased physical activity, high 
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lactate, high creatine kinase or high heteroplasmy in skeletal muscle (Kärppä et al. 

2003; Karppa et al. 2005). Nevertheless, m.3243A>G mutation load higher than ~50% 

is associated with low VO2 max and low maximal workload and prevalent pathological 

findings in the muscle biopsy (Jeppesen et al. 2006). Oxygen extraction is markedly 

impaired in exercising forearm as the increase in blood flow is nearly normal 

(Taivassalo et al. 2002). Single fibre analyses have shown that the m.3243A>G 

mutation load varies remarkably between and within the cells and that the high 

heteroplasmy is co-located with prevalent RRFs in the muscle (Kärppä et al. 2005). An 

excess complex II staining has been reported also in the skeletal muscle blood vessel 

wall (Hasegawa et al. 1991). Therefore, mitochondrial angiopathy could hypothetically 

contribute to the insulin resistance in the skeletal muscle. Finally, only two studies 

have assessed peripheral insulin sensitivity using hyperinsulinemic clamp technique in 

altogether 17 subjects with m.3243A>G. Mutation heteroplasmy was reported only in 

leucocytes in one of these two studies. The results showed a trend towards insulin 

resistance in skeletal muscle but remained inconclusive (Suzuki et al. 1997; Velho et 

al. 1996). 

 
 

2.7 Mitochondrial and glucose metabolism in adipose tissue 
 
2.7.1 Insulin action in adipose tissue 
 
Adipose tissue mainly consists of adipocytes which store energy and release fatty acids 

in fasting conditions (Coppack et al. 1990). The subcutaneous and intra-abdominal fat 

depots are often further divided into abdominal subcutaneous, retroperitoneal and 

visceral fat, which all have somewhat different metabolic relevance in human disease 

(Abate et al. 1995; Virtanen et al. 2005; Lefebvre et al. 1998). In adipocytes insulin 

stimulates glucose uptake, lipid synthesis and inhibits lipolysis (Coppack et al. 1990; 

Hagström-Toft et al. 1992). The glucose transporter GLUT4 is the rate limiting step of 

glucose uptake also in adipocytes. Insulin induces a several-fold increase in 

translocation of GLUT4 and glucose uptake in adipocytes (James et al. 1988; Green et 

al. 2006; Kraegen et al. 1986). This leads to a marked increase in glucose uptake in the 

adipose tissue (Rooyackers et al. 2004). Finally, the largest fat depot, the subcutaneous 
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adipose tissue accounts for only about 7% of the net glucose uptake during 

hyperinsulinemia in humans (Virtanen et al. 2002). 

 
 
2.7.2 Adipogenesis and insulin resistance 
 
Adipose tissue has a turnover rate close to ten years (Arner et al. 2010). The slow 

generation rate of new adipocytes is independently associated with larger adipocytes 

and systemic insulin resistance (Arner et al. 2010). Adipogenesis, the differentiation 

of mesenchymal precursor cells to mature adipocytes, is controlled by insulin 

through peroxisome proliferator-activated receptor(PPAR)gamma (Zhang et al. 

2009). Knocking out PPAR gamma or insulin signalling in fat protects from obesity 

and glucose intolerance due to caloric excess (Jones et al. 2005; Bluher et al. 2002). 

In various insulin-resistant states the ability of insulin to stimulate glucose uptake 

and to suppress lipolysis is decreased in individual adipocytes and per fat tissue 

depot (Bolinder et al. 2000; Kramer et al. 2001; Virtanen et al. 2005). In obese 

individuals, the insulin-stimulated glucose uptake per adipocyte and per tissue mass 

may be restored by caloric restriction (Park et al. 2005; Viljanen et al. 2009). The 

obese adipose tissue is also infiltrated by macrophages and the secretion of 

adipocytokines and inflammation mediators are changed (Considine et al. 1996; 

Weyer et al. 2001; Alessi et al. 2000; Harman-Boehm et al. 2007). Decreased action 

of adipocytokines, in particular that of leptin and adiponectin, may alone result in 

insulin resistance (Lindsay et al. 2002). The relevance of healthy adipose tissue in 

preventing systemic insulin resistance and glucose intolerance becomes strikingly 

obvious in mice lacking the white adipose tissue (Colombo et al. 2002). Intriguingly, 

also the GLUT4 KO in adipose tissue alone is sufficient to induce insulin resistance 

in liver and in skeletal muscle and vice versa its overexpression in adipose tissue is 

able to reverse insulin resistance outside the adipose tissue (Abel et al. 2001; 

Carvalho et al. 2005). 
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2.7.3 Mitochondria in insulin-resistant adipocytes 
 
Adipocytes from obese subjects exhibit a reduced aerobic respiration and uncoupling 

capacity (Yehuda-Shnaidman et al. 2010). The mtDNA copy number per adipocyte is 

positively related to lipogenesis and slightly decreased by increasing body mass 

index (BMI) in healthy humans (Kaaman et al. 2007). The activation of the PPAR 

gamma in the adipose tissue induces adipogenesis. It corrects the blunted insulin-

stimulated glucose uptake and adipocytokine secretion in adipose tissue and finally 

restores the systemic insulin sensitivity (Jones et al. 2005; Ahmed et al. 2010; 

Hammarstedt et al. 2005; Viljanen et al. 2005). The levels of mitochondrial DNA, 

proteins and respiration may be reduced in the adipocytes as obese animals become 

diabetic (Laye et al. 2009). Accordingly, independent of obesity the genes encoding 

the ETC are downregulated in adipose tissue in patients with type 2 diabetes 

(Dahlman et al. 2006). In addition, based on a twin study some authors have 

proposed that an acquired rather than inherited factor explains many of the obesity-

associated differences in the expression of the genes which promote mitochondrial 

biogenesis in the adipocytes (Pietiläinen et al. 2008). Intruingly, knockdown of 

TFAM in cultured adipocytes results in an impaired insulin-stimulated GLUT4 

translocation to the cell surface and a subsequent decrease in glucose transport (Shi 

et al. 2008). The impact of mtDNA mutations on human adipose tissue metabolism 

has not been studied. 

 
 
2.8 The role of liver metabolism in glucose homeostasis 
 
2.8.1 Hepatic glucose metabolism and insulin resistance 
 
2.8.1.1 Glucose metabolism in liver 
 
Glucose metabolism in the liver is characterized by repartitioning and restoring 

absorbed nutrients and the release of glucose during fasting conditions (Babcock and 

Cardell. 1975). Glucose uptake, glycogen synthesis, ATP synthesis and lipogenesis are 

activated in response to insulin after glucose ingestion or during euglycemic 
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hyperinsulinemia. The liver produces glucose endogenously (endogenous glucose 

production [EGP]) by glycogenolysis and via de novo gluconeogenesis mainly from 

lactate, alanine, pyruvate and glycerol (Jenssen et al. 1990). After fasting or exercise, 

glycolysis and increasingly gluconeogenesis accounts for the hepatic glucose release 

(Babcock and Cardell. 1975; Wahren et al. 1971; Petersen et al. 2004a). Hepatocyte-

specific insulin receptor activation is required for inhibition of hepatic glucose 

production (Fisher and Kahn. 2003). The basal EGP rate is autoregulated by glucose in 

the presence of fasting levels of insulin (Jenssen et al. 1990; Puhakainen and Yki-

Järvinen. 1993). A moderate postprandial level in circulating insulin is sufficient to 

block both the basal and glucagon-stimulated EGP in the liver (Barzilai and Rossetti. 

1993; Hartmann et al. 1987). During such hyperinsulinemia oxygen consumption is 

decreased, while glycolysis, gluconeogenesis and lipolysis are inhibited in the liver (Li 

et al. 2010; Baillet-Blanco et al. 2005; Ortmeyer et al. 1997; Simonsen et al. 2002).  

 
 
2.8.1.2 Endogenous glucose production and diabetes 
  
Hepatic glucose influx, storing and output are all regulated by insulin and other 

hormones. Patients with diabetes present with defects in these regulatory pathways 

(Probst et al. 1985; Giaccari et al. 1998; Petersen et al. 2004a). In human studies the 

EGP is calculated as a difference between the glucose-tracer plasma disappearance and 

whole-body glucose uptake. This difference mainly reflects the hepatic glucose 

production. However, liver is not the only source of the insulin suppressible EGP as the 

kidney and possibly skeletal muscle may replace the EGP in liver. Therefore the 

isotope methods assessing gluconeogenesis and glycogenolysis during euglycemic 

hyperinsulinemia have somewhat uncertain validity and liver tissue specificity 

(Battezzati et al. 2004; Huidekoper et al. 2010; Meyer et al. 2004; Lamont et al. 2003; 

Basu et al. 2008; Landau. 2001). Nevertheless, a high EGP is a common feature in both 

type 1 and type 2 diabetes and may be one of the major determinants of postprandial 

impairment in glucose tolerance (DeFronzo et al. 1982; Woerle et al. 2006). In patients 

with type 1 diabetes the basal and insulin suppressed EGP are elevated (Cline et al. 

1994; Petersen et al. 2004a; Perseghin et al. 2005). In patients with type 2 diabetes the 
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autoregulation is preserved but gluconeogenic efficiency, basal and the insulin 

suppressed gluconeogenesis and thereby EGP are increased (Toft and Jenssen. 2005; 

Groop et al. 1989). 

 
 
2.8.1.3 Measuring glucose influx to liver 
 
Liver receives oxygen and nutrients including glucose from hepatic artery and portal 

vein (Pagliassotti et al. 1992). GLUT2 is the dominant glucose transporter in the liver. 

Glucose uptake by liver plasma membranes is characterized by features of simple 

diffusion, i.e. linearity of uptake, lack of stereospecificity, and by facilitated diffusion 

(Bachmann and Challoner. 1976). Glucose transporter GLUT2 has been considered to 

be a non-rate-limiting and essentially an insulin receptor activation independent 

glucose uptake step in the hepatocytes. However, this step is important in regulating 

hepatic and system glucose homeostasis and in the mobilization of glycogen stores 

(Burcelin et al. 2000; Santer et al. 1997). The first intracellular step, the dominant liver 

hexokinase, GK is the rate limiting step in glucose uptake to hepatocytes (Ferre et al. 

1996). Extensive animal and human data have shown that the activity of the insulin-

sensitive GK enzyme is essential for hepatic glucose uptake. The GK is also an 

indicator of hepatic glucose production even if the acute changes in its activity account 

for only a small portion of the in vivo inhibition of hepatic glucose retention by insulin 

(Barzilai and Rossetti. 1993; Tappy et al. 1997; Velho et al. 1996). Importantly, the 

restoration of hepatic GK expression corrects hepatic glucose flux and system glucose 

homeostasis in diabetic rodents (Torres et al. 2009; Okamoto et al. 2007). On the other 

hand, a long-term GK overexpression is accompanied by an increase in hepatic glucose 

influx but leads finally to insulin resistance, hypertriglyceridaemia and liver steatosis 

(Ferre et al. 2003).  

 

Glucose uptake, the glycolytic pathway and the incorporation of glucose into glycogen 

are all augmented by a rise in insulin and potentiated by concurrent elevation in 

glucose (Satake et al. 2002; Massillon et al. 1995). Therefore, glucose ingestion 

increases the hepatic glucose transmembrane transport rate and the direct glycogen 
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synthesis in human liver (Petersen et al. 2001). Notably, also the glycogen synthase 

enzyme activity may only be sufficient to restore and maintain a system glucose 

homeostasis (Ros et al. 2010; Irimia et al. 2010). Dynamic [18F]FDG-PET scanning 

with arterial blood sampling allows an accurate and organ specific measurement of the 

glucose influx rate from blood to hepatic tissue through the transmembrane and GK 

steps and the measured influx should essentially be limited only by the GK activity 

(Iozzo et al. 2007). [18F]FDG-PET scans show that postprandial level of 

hyperinsulinemia doubles the hepatic glucose influx in humans. This is more than 

could be accounted for the concurrent FFA drop in blood (Moore et al. 2004; Iozzo et 

al. 2003a; Iozzo et al. 2004). The [18F]FDG-PET studies have also shown that the 

hepatic glucose uptake step is part of the hepatic insulin resistance in patients with type 

2 diabetes (Basu et al. 2001; Iozzo et al. 2003; Iozzo et al. 2007).  

 
 
2.8.2 Liver fat and hepatic failure in mitochondrial disease 
 
The availability of [1H]MRS technique has refined excess liver fat as an independent 

risk factor for type 2 diabetes and cardiovascular disease (Stefan et al. 2008). Liver fat 

has been tightly associated with the impaired insulin action on hepatic glucose uptake 

and output, and also with insulin resistance in skeletal muscle and adipose tissue in 

patients with type 2 diabetes (Kotronen et al. 2008; Borra et al. 2008). It has been 

recently suggested that the impaired hepatic ATP turnover and hepatic insulin 

resistance could precede the development of hepatic steatosis at least in patients with 

type 2 diabetes (Szendroedi et al. 2009a). On the other hand, increase in the 

intermediates of the fatty acid oxidation might impair insulin signalling and 

mitochondrial function in the liver (Patti and Corvera. 2010). From the view of 

mitochondrial disease several reports have shown microvesicular steatosis and 

periportal inflammation in the liver of patients with Alpers-Huttenlocher´s syndrome, a 

fulminate hepato-cerebellar disease. Most of the pathogenic mutations associated with 

this syndrome are attributed to the POLG gene in the nuclear DNA encoding an 

mtDNA polymerase protein. The loss of POLG activity leads to depletion of mtDNA 

and to the loss of OXPHOS and mitochondrial ATP generation due to the decreased 
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amounts of respiratory chain complexes I, III, IV and ATP synthase in liver (Kurt et al. 

2010; Tesarova et al. 2004). In addition, it has been hypothesized that high lactate 

could lead to high EGP as higher lactate flux to the liver might increase 

gluconeogenesis in mitochondrial diabetes (Maassen et al. 2004). However, the impact 

of m.3243A>G and other mitochondrial mutations to liver metabolism have been 

largely based on sporadic case reports (Takahashi et al. 2008; Szendroedi et al. 2009b).  

 
 
2.9 Glucose utilization in human heart 
 
2.9.1 Cardiac energetics 
 
2.9.1.1 Myocardial substrate oxidation 
 
Cardiomyocytes are rich in mitochondria (Bodak and Hatt. 1975). In the adult heart 

more than 90% of the ATP is provided by oxidation of acetyl coenzyme A (acetyl-

CoA) in the OXPHOS (Ferrannini et al. 1993). The heart is omnivore that is able to use 

fatty acids, lactate, glucose and ketone bodies as energy sources (Stanley et al. 2005). 

The glycogen content of cardiomyocytes is much lower than that in the skeletal muscle 

emphasizing the importance of direct substrate supply for working myocardium 

(Russell et al. 1997). Substrate utilization is increased in proportion to cardiac work 

(Bergman et al. 2009a; Bergman et al. 2009b). At rest about 25% of the capacity of the 

respiratory chain is being used and this proportion may increase up to 85% during 

exercise with a concurrent increase in myocardial glucose uptake (Kemppainen et al. 

2002; Mootha et al. 1997). Importantly, the intensity of cardiac work does not 

influence the substrate preference of the healthy heart for it is largely determined by 

the substrate availability (Ala-Rämi et al. 2005; Neglia et al. 2007). During the 

immediate postnatal period anaerobic glycolysis and lactate oxidation provide most of 

the ATP, whereas in the mature heart, fatty acid oxidation and to a lesser extent 

glucose oxidation are utilized for the ATP synthesis (Stanley et al. 2005). 

Exceptionally, high lactate oxidation may become a substantial source for ATP in 

exercising heart (Gertz et al. 1988; Kemppainen et al. 2002). The hyperinsulinemia 

ensuing carbohydrate consumption suppresses the FFA availability and the majority of 
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the acetyl-CoAs become derived from the glucose in humans (Ferrannini et al. 1993). 

Finally, ketones may suppress both glucose and FFA oxidation in myocytes, but under 

physiological conditions their contribution to the cardiac ATP production is negligible 

(Stanley et al. 2003).  

 
 
2.9.1.2 Myocardial glucose uptake during hyperinsulinemia 
 
The circulating fatty acids suppresses the glucose utilization in the heart and this 

suppression can be blocked by limiting FFAs, fatty acid transmembrane transport or 

fatty acid oxidation (Nuutila et al. 1994; Nuutila et al. 1992; Hajri et al. 2001; Abdel-

aleem et al. 1994). FFAs are taken up in proportion to their circulating levels and their 

concentration is a linear predictor of glucose uptake in heart also during 

hyperinsulinemia (Mäki et al. 1998; Ala-Rämi et al. 2005; Knuuti et al. 1995). Insulin 

decreases fatty acid availability by suppressing lipolysis in adipocytes and also in the 

heart, but the extent to which intramyocardial lipids are used as a fuel during 

hyperinsulinemia is unclear (Moberg et al. 2002; Ferrannini et al. 1993). During a 

standard hyperinsulinemic-euglycemic clamp human myocardial perfusion is increased 

by ~l0%, glucose uptake is increased by ~400% and FFA levels in blood and the 

myocardial fatty acid uptake are decreased by ~75%, whereas oxygen consumption is 

not affected (Ferrannini et al. 1993; Iozzo et al. 2002; Knuuti et al. 1995; Takala et al. 

1999b). On the other hand, an acute rise in arterial FFAs is not able to decrease the 

glucose uptake in heart by more than ~30%, thus part of the several-fold increase in 

glucose uptake during hyperinsulinemia is possibly a result of decreased lipolysis 

within the myocardium (Nuutila et al. 1992; Nuutila et al. 1994). 

 

Insulin stimulates the initial incorporation of glucose into glycogen with no change in 

the glycogen content and thus results in an increased glycogen turnover in the heart 

(Russell et al. 1997). [18F]FDG uptake parallels glucose uptake also during 

hyperinsulinemia and it may be used for quantification of glucose uptake in human 

heart (Ng et al. 1998). The insulin responsive GLUT4 is the predominant form of 

transmembrane transporter in the heart. However, GLUT1 and to a lesser extent 



REVIEW OF THE LITERATURE 
 
 

57 

GLUT3 are also expressed in the human myocardium (Gavete et al. 2002). Studies on 

rodent hearts have suggested that during hyperinsulinemia the transmembrane transport 

in general or up to a 85% reduction in the GLUT4 expression are not rate limiting for 

myocardial glucose uptake (Gavete et al. 2002; Kaczmarczyk et al. 2003). The 

relatively high importance of FFA availability on glucose uptake as compared to the 

direct insulin stimulation of the transmembrane glucose transporter translocation has 

been further demonstrated by the myocyte specific KO of insulin receptor. This leads 

to a paradoxical increase in the basal cardiac glucose uptake and to a preserved insulin-

stimulated glucose uptake rate (Belke et al. 2002). 

 

In the long term, the heart size is reduced and glucose oxidation and insulin-stimulated 

glucose uptake is increased in rodents in which mitochondrial fatty acid uptake for 

instance via carnitine palmitoyltransferase 1 is reduced due to acetyl-coenzyme A 

(CoA) carboxylase KO (Essop et al. 2008). Also, high fat feeding leads first to a 

decrease in glucose oxidation and to a decreased GLUT4 translocation, which precedes 

impaired insulin signalling (Wright et al. 2009). Interestingly, also the 85% reduction 

in GLUT4 leads to cardiac hypertrophy and impaired contractile function in 22 weeks 

(Kaczmarczyk et al. 2003; Huggins et al. 2008). The studies above may demonstrate 

the importance of undisturbed glucose transport and oxidation for a long-term cardiac 

remodelling and function. Nevertheless, the glucose is the most economical fuel for 

heart in terms of oxidation and ATP yield (Stanley et al. 2005).  

 
 
2.9.2 Mitochondrial cardiomyopathy 
 
2.9.2.1 General outlines 
 
Mutations in mtDNA or nuclear genes may result in respiratory chain deficiency and 

mitochondrial cardiomyopathy (Benit et al. 2003; Casali et al. 1999; 

www.mitomap.org). Mutations in mtDNA have been predominantly associated with 

hypertrophic concentric cardiomyopathy, even if cases with idiopathic dilated 

cardiomyopathy have also been reported (Anan et al. 1995; Limongelli et al. 2010; 
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Wahbi et al. 2010). Cardiac hypertrophy in echocardiography is a common finding in 

the absence of clinical complaints in the carriers of the mtDNA mutations (Casali et al. 

1999). 

 
 
2.9.2.2 Cardiac manifestations of the m.3243A>G mutation 
 
Cardiac abnormalities have been described in many case series including patients with 

mitochondrial disease. Sudden and unexpected cardiac death is not uncommon in 

patients with m.3243A>G, even if non-cardiac causes such as epilepsy may also 

contribute (Majamaa-Voltti et al. 2008). The m.3243A>G mutation is the most 

common mutation leading to a maternally inherited form of hypertrophic 

cardiomyopathy (Majamaa-Voltti et al. 2002). Conduction defects, including Wolff– 

Parkinson–White (WPW) syndrome, have been reported in patients with the 

m.3243A>G mutation as also with other relatively prevalent mtDNA mutations such as 

m.11778G>A and m.8344A>G (Sproule et al. 2007; Nikoskelainen et al. 1994; Wahbi 

et al. 2010). A population-based study assessing the cardiac symptoms and signs, 

electrocardiogram, Holter recording and echocardiography in patients with 

m.3243A>G has shown a LVH in 56% of patients as compared to 15% in matched 

controls, giving an odds ratio of 7.5. Left ventricular systolic or diastolic dysfunction 

was observed in 34% of the patients and frequent ventricular extrasystoles in 14%. 

Still, only one out of 36 patients had a WPW syndrome (Majamaa-Voltti et al. 2002). 

Follow-up studies have shown that thickening of left ventricle progresses and leads to 

poor left ventricular contraction and occasionally to dilated cardiomyopathy 

(Majamaa-Voltti et al. 2006; Okajima et al. 1998). 

 
 
2.9.2.3 Pathophysiology of mitochondrial cardiomyopathy 
 
The pathogenesis of the LVH has been attributed to the energetic defect due to the 

failing OXPHOS. Biopsies performed during angiography have revealed abnormal 

mitochondrial accumulation in cardiomyocytes in patients with m.3243A>G (Sato et 

al. 1994). Additionally, the phosphocreatine to the ATP ratio as measured with 
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phosphorus magnetic resonance spectroscopy is decreased as compared to healthy 

controls and it tends to be inversely associated with the mutation heteroplasmy (Lodi et 

al. 2004). In mice, the tissue-specific TFAM KO leads to mtDNA depletion and low 

respiratory chain activity before other cardiac manifestations (Hansson et al. 2004). 

Likewise, the disruption of mitochondrial adenine nucleotide translocator leads to 

hypertrophic cardiomyopathy (Graham et al. 1997). Myocardial glucose transport and 

utilization is decreased in most patients with type 1 and 2 diabetes (Rijzewijk et al. 

2009; Herrero et al. 2006). However, it is debatable if hyperglycaemia may, 

independently from FFA levels, lead to the insulin resistance of glucose transport in 

human myocytes (Peterson et al. 2008; Sondergaard et al. 2006; vom Dahl et al. 1993; 

Nuutila et al. 1993; Bugger et al. 2008; Utriainen et al. 1998). No studies on cardiac 

substrate utilization in patients with mitochondrial disease and with or without 

diabetes have been performed. 
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3 AIMS OF THE STUDY 
 
 
1. To investigate whether glucose oxidation is decreased in the brain in 

patients harbouring the m.3243A>G mutation. 

 

2. To evaluate the relative importance of the m.3243A>G heteroplasmy, 

insulin secretion and skeletal muscle insulin action for glucose 

homeostasis in mitochondrial diabetes. 

 

3 To reveal potential defects in hepatic and subcutaneous adipose tissue 

metabolism in patients with and without mitochondrial diabetes using 

imaging techniques. 

 

4. To characterize myocardial glucose metabolism during low fatty acid 

and high glucose availability using [18F]FDG-PET during euglycemic 

hyperinsulinemia in patients harbouring the m.3243A>G mutation. 
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4 SUBJECTS AND STUDY DESIGN 
 
4.1 Study subjects 
 
The study included 29 subjects. Fifteen patients with m.3243A>G were recruited, most 

of them were previously ascertained in an epidemiological study (Majamaa et al. 

1998). It was required that the m.3243A>G mutation heteroplasmy was at least 10% in 

buccal epithelium or in skeletal muscle. In the case of the 14 controls it was required 

that no diabetes was present in the first-degree relatives before the age of 55 years. In 

addition to clinical examination, the absence of m.3243A>G was assessed in buccal 

epithelium sample in the controls. For studies II-IV only controls with normal glucose  

( < 7.8 mmol/l at 2 hours) in an oral glucose tolerance test (OGTT) were included. 

Therefore one healthy control with impaired glucose tolerance 2 hours after the oral 

glucose load was excluded from studies II-IV. 

 

Inclusion criteria for patients 

 

1) The patient harbours the m.3243A>G mutation in the skeletal muscle or 

buccal epithelium 

 

Exclusion criteria for all study subjects 

 

1) Age under 20 or over 70 years  

2) BMI > 30kg/m2 

3) Severe valvular disease 

4) Blood pressure > 160/100 mmHg 

5) Hepatic disease; gamma-glutamyltransferase > 120 (U/L), alanine 

transaminase > 180 (U/L) 

6) Any renal disease; creatine > 130 (µmol/l) 

7) Metal object in region of imaging  
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8) Anaemia with haemoglobin < 100 mg/dl in men and < 90 mg/dl in 

women 

9) Oral corticosteroid treatment 

10) Untreatable or newly diagnosed malignant disease 

11) Pregnancy or lactation 

12) Eating disorder or severe mental disorder 

13) Clinical heart failure or coronary heart disease 

14) Intense exercise training 

 

Additional exclusion criteria for healthy volunteers 

 

1) Diabetes in the 75g OGTT (11.1 mmol/L at 2 hours) 

2) Presence of the m.3243A>G mutation in buccal epithelium  

3) A family history suggestive for mitochondrial disease 

 

 

4.2 Study design 
 
4.2.1 General outlines 
 
All subjects were instructed to avoid caffeine, smoking, alcohol, homeopathic 

preparations and changes in diet or in physical activity for 2 days before the study. 

Each subject underwent an OGTT and MRI and [1H]MRS protocol on the first study 

day and indirect calorimetry and hyperinsulinemic-euglycemic clamp procedure with 

PET imaging on the second study day. Calorimetry, OGTT and the euglycemic clamp 

with PET imaging were conducted after at least a 10-hour overnight fast and insulin 

cease. MRI and [1H]MRS studies were performed after at least a 6-hour fast. 

Metabolically active substances except thyroid hormone were discontinued at least 24 

hours before all studies (Table 1). Physical activity was assessed with a validated 

physical activity questionnaire (Maddison et al. 2007).  
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4.2.2 Performing PET during euglycemic hyperinsulinemia 
 

Two catheters were inserted, one in an antecubital vein for infusion of glucose and 

insulin and for injection of [15O]-water ([15O]H2O) and [18F]FDG, another in the 

opposite radial artery for blood sampling. Whole-body, skeletal muscle, myocardium, 

abdominal subcutaneous fat and liver glucose uptake were measured using PET and 

[18F]FDG during standard euglycemic-hyperinsulinemic clamp. In addition, muscle 

and brain perfusion and brain oxygen consumption were measured using [15O]H2O and 

[15O]O2 PET tracers during the euglycemic hyperinsulinemia. A skeletal muscle 

transmission scan and a PET scan in the femoral region were separately performed for 

the [15O]H2O and [18F]FDG emission scans. The first PET scan assessed femoral 

muscle perfusion using [15O]H2O at 40 min of clamp (Figure 3). The brain 

transmission scan and emission scans for perfusion, oxygen and glucose uptake were 

performed consecutively from 70 to 160 min. In order to asses glucose uptake, 

[18F]FDG (0.23-0.29 GBq) was injected at 120 min. After the brain scan myocardial, 

subcutaneous fat and the liver glucose uptake was assed with a dynamic PET scan of 

the lower part of the thorax at 160 min. The last PET scan assessed the glucose uptake 

in the femoral region at 200 min (Figure 3). 

 

Figure 3. Design of the positron emission tomography study. Each study consisted of a 220-
min normoglycemic hyperinsulinemic period. [15O]H2O was injected twice intravenously, 
followed by a bolus inhalation of [15O]O2 which was in turn followed by [18F]FDG injection. 
During the three dynamic [15O] emission scans a continuous arterial blood sampling was carried 
out by a pump in order to determine the concurrent arterial input function. During the [18F]FDG 
emission the arterial samples were drawn manually. A representative study is shown. [18F]FDG 
arterial time-activity curve was obtained by repetitive arterial blood sampling. Repetitive 
thoracic scanning was used to measure the tissue activity. The average value within the liver 
and heart regions of interest (ROI) in each consecutive time frame gave the time-activity points 
in the tissue time-activity curves. The coronal reconstructions of all thoracal time frames are 
given at the top of each other. At the fore most frame the liver is under the right lung and the 
position of the ROI is given with a red square. A green circle indicates myocardium. 
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4.2.3 Primary variables and power calculations 
 
Brain, myocardial, skeletal muscle, abdominal subcutaneous fat and liver glucose 

uptake were predefined as independent primary variables. In addition, regional cerebral 

metabolic rate of oxygen (rCMRO2), cerebral perfusion (rCBF), liver fat and beta cell 

glucose sensitivity were considered as such. The sample size was based on power 

calculations using the standard deviation (SD), sample size and results of the previous 

studies in patients with defective insulin secretion and action and a previous cerebral 

PET study in mitochondrial disease (Iozzo et al. 2003; Virtanen et al. 2005; Nuutila et 

al. 1993; Frackowiak et al. 1988). For example, the glucose disposal rate was estimated 

to be 30 ± 9 µmol · kg-1 · min-1 for patients and 43 ± 12 µmol · kg-1 · min-1 for controls. 

The other parameters used for power calculation were:  = 0.05 and  = 0.1. Here, it 
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was estimated that a sample of 11 patients with a control group including 11 subjects 

would give the power of 80%.  

 
 
4.3 Safety and ethical considerations 
 
The PET studies were performed using standard procedures. The estimated radiation 

dose for one individual was 10 mSv, which equals to a 2-year dose of background 

radiation. Pregnancy was excluded with standard urinary test in all possibly fertile 

women. If plasma glucose was elevated to over 25 mmol/l during the glucose tolerance 

test insulin was given. During euglycemic hyperinsulinemia, insulin, glucose and blood 

pressure were monitored continuously by a physician in the hospital facility. The 

potential inconvenience related to m.3243A>G testing in healthy controls as well as the 

risk related to arterial and venous cannula insertion and insulin infusion were explained 

to all study participants. This study was conducted according to the principles outlined 

in the Declaration of Helsinki. Written informed consent for the study was obtained 

from all subjects before any procedures and the study protocol was approved by the 

local ethics review committee (Ethics Committee of Southwest Finland Hospital 

District) and by the Turku PET Centre institutional review board, before 

commencement of the study.  
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5 METHODS 

 
5.1 Assessment of the mutation heteroplasmy 
 
A buccal epithelial cell sample was obtained from all the subjects (Table 1). The 

mutation heteroplasmy in skeletal muscle was previously available from 12 of the 15 

patients with the m.3243A>G mutation (Majamaa et al. 1998). The amplified 

fragments were digested with 10U of ApaI (New England Biolabs, Beverly, MA) 

overnight at 37C˚. The digestion products were electrophoresed through a 4% 

polyacrylamide gel using a model 377 DNA sequencer (Applied Biosystems, Foster 

City, CA). The acrylamide gel was dried and autoradiographed and analyzed. The 

reproducibility was controlled by including a sample with the m.3243A>G mutation in 

each electrophoresis run. The proportions of mutant and wild-type mtDNAs were 

calculated from the peak areas of cleaved and uncleaved mtDNAs (Moslemi et al. 

1998). The heteroplasmy of each sample was determined twice. A standard curve, 

constructed by mixing different proportions of cloned mutant and wild-type mtDNAs, 

was linear. The SD of the measurements had been estimated to be 0.6% (Kärppä et al. 

2005).  

 
 
5.2 Glucose tolerance test and the indices of the beta cell function 
  
After an overnight fast subjects ingested 75 g glucose for the OGTT. Blood samples 

were collected for glucose, insulin and C-peptide at 0, 15, 30, 60, 90 and 120 min. The 

glucose tolerance was defined based on the glucose value at 2 hours. It was defined 

normal when < 7.8 mmol/l, impaired when from 7.8 to 11.1 mmol/l and diabetes was 

diagnosed if the value was over 11.1 mmol/l. The insulinogenic index (IGI), the ratio 

of the rise of the insulin and glucose concentrations over the basal level at 30 min as 

well as the ratio of insulin and glucose areas under curve were calculated. Also the 

basal insulin secretion rate was calculated (BSR, pmol · min−1 · m−2). Mathematical 

modelling based on C-peptide deconvolution was used to describe GIS as the sum of 

two components: GIS = Sg(t) + Sd(t) reflecting the main components of physiological 
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beta cell response to glucose (Mari et al. 2001). The first component, Sg(t) expresses a 

static relationship between beta cell insulin secretion and glucose concentration (G) in 

a constant manner. It is mainly defined by the dose–response function of the GIS 

[f(G)]. The steepness of the f(G) slope within the observed glucose range is denoted as 

the “beta-cell glucose sensitivity” (Mari et al. 2001; Mari et al. 2002). The model 

further assumes that this beta cell dose–response function is modulated by a time-

dependent “potentiation factor” [P(t)] accounting for such modulators of insulin 

secretion as exposure to hyperglycaemia and the action of gastrointestinal hormones 

during the glucose tolerance test. Therefore the first component Sg(t) mainly 

describing the beta cell dose response function is by itself a function of two factors 

Sg(t) = P(t)f(G). The increment in potentiation during the OGTT was semi-quantified 

as the ratio of the value of the estimated potentiation at the end of the test to that at the 

beginning. The second insulin secretion component, Sd(t), represents a dynamic 

dependence of insulin secretion on the rate of the positive change (rise) in glucose 

concentration. This constant which describes the additional insulin secretion 

determined by the rate of blood glucose rise is termed as the “rate sensitivity”. The rate 

sensitivity reflects essentially the same beta cell response, which is provoked by the 

rapid rise in the intravenous glucose tolerance test, which in turn is commonly ascribed 

to reflect the rapid insulin granule release (Mari et al. 2002).  

 
 
5.3 Magnetic resonance imaging and spectroscopy 
  
The subjects were lying in a supine position during the MRI and [1H]MRS. The same 

superconducting 1.5 T MRI scanner was used for all magnetic resonance 

measurements (Gyroscan Intera Nova Dual, Philips Medical Systems, Best, The 

Netherlands). 

 
 
5.3.1 Brain magnetic resonance imaging and spectroscopy 
 
Axial T2-weighted Turbo Spin Echo [echo time (TE)/repetition time (TR) = 100/4438 

ms], coronal Fluid Attenuated Inversion Recovery [TE/TR/inversion time = 140/11 
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000/2800 ms] and 3D T1-weighted Fast Field Echo (TE/TR = 4.6/25 ms) images were 

obtained. Two neuroradiologists visually scored brain atrophy (central, cortical and 

cerebellar) and white matter changes (frontal, temporal, occipito-parietal, basal ganglia 

and infratentorial) on a four-point scale (Wahlund et al. 2001). The scoring was 

performed independently and, in the case of disagreement, a consensus was negotiated. 

The raters were not blind to clinical data. Single-voxel [1H]MRS was performed using 

Point Resolved Spectroscopy (TE/TR = 144/3000 ms and TE/TR = 288/3000 ms, 128 

measurements, voxel size 28 x 10 x 30 mm 3). The 8.4 ml single voxel was placed in 

the normal appearing white matter and was centred in the middle of capsula interna and 

inclined parallel to its fibres, avoiding cortical grey matter and CSF spaces (Study 1; 

Figure 1). All spectra were analysed using the LCModel software package 

(Provencher. 1993). In each spectrum, the choline, creatine (Cr), N-acetyl-aspartate 

(NAA) and lactate signals were identified. In order to allow semi-quantitative 

comparisons of the metabolite data, the ratios for NAA to creatine (Cr), choline to Cr 

and lactate to Cr (NAA/Cr, choline/Cr and lactate/Cr) are given in the result section. 

 

5.3.2 Cardiac magnetic resonance imaging 
 
Magnetic resonance images were acquired using a 5-element (sensitivity encoding) 

cardiac coil. The left and right ventricular functions and dimensions were measured 

from continuous short axis slices by using the balanced turbo field echo sequence 

(Koskenvuo et al. 2007). Ten to fourteen slices were acquired during serial breath 

holds and vector cardiographic retrospective gating to cover the ventricles completely 

from apex to atrium. The slice thickness was 8 mm and with no gaps between the slices 

(TR = 3.4 ms, TE = 1.7 ms, flip angle 60º and matrix 256 · 256 pixels). Cine loops 

were reviewed to identify end-diastolic and end-systolic frames. Epicardial and 

endocardial contours were outlined manually using post-processing software 

(ViewForum R5.1, Philips Medical Systems; Koskenvuo et al. 2007). Papillary 

muscles were separately outlined and included in myocardium. End-diastolic and end-

systolic volumes were calculated and used to compute cardiac output, stroke volume 
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(SV) and ejection fraction. The myocardial mass was calculated from diastolic 

volumes. An experienced observer blinded to clinical data carried out all the tracings. 

 
 
5.3.3 Abdominal fat depots 
 
A single 10 mm axial T1-weighted fast field echo image was obtained at the level of 

the intervertebral disc L2-L3 (matrix size 256 · 256 pixels). The images were analyzed 

on the screen using the region of interest (ROI) facility (Study III; Figure 1). 

Abdominal subcutaneous and intra-abdominal fat (retroperitoneal and visceral) depot 

volumes were calculated as previously described (Abate et al. 1997). The adipose 

tissue density of 0.9196 g/ml was used to convert the measured volumes into weight. 

 
 
5.3.4 Assessment of liver fat content with [1H]MRS 
 
Liver fat was measured by applying a previously validated [1H]MRS method 

(Szczepaniak et al. 1999; van Werven et al. 2010). First, a 10 mm thick axial T1 

weighted dual fast field echo anatomical reference image of the liver was obtained 

during breath hold intervals (TE = 2.3 and 4.6 ms, TR = 120 ms). Then, a 27 cm3 

single voxel was positioned in the liver outside the area of the great vessels. Data was 

acquired during breath-hold intervals using a point-resolved spectroscopy technique 

(TR = 3000 ms and TE = 25 ms). A quality check was performed manually on each 

spectrum before the final analysis using user-independent LCModel software. The fat 

and water amplitudes were corrected for different T2 decay and molar concentrations 

of 1H nuclei in fat and water as previously described in more detail (Borra et al. 2008). 

The liver fat content was expressed as fat weight in relation to the total weight of liver 

tissue (%). 

 
 
5.4 Indirect calorimetry 
 
The basal whole-body oxygen consumption and the carbon dioxide production were 

measured in a fasting state with an open-system indirect calorimeter in a quiet dimly-lit 
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room. The subject's head was placed under a plastic canopy connected to the analyzer. 

The canopy is a half-ellipsoidal hood made of 1-mm-thick transparent plastic. It is 

connected with adapters for tubing and with a wide edge of soft plastic cloth to make 

the construction airtight around the head and neck of the subject (Meriläinen. 1987). 

The difference between inspired oxygen and expired oxygen was measured with a fast-

response paramagnetic differential oxygen sensor (OM-101, Datex/Instrumentarium, 

Helsinki, Finland, Meriläinen. 1988). The expired CO2 was measured with an infrared 

CO2 sensor. Baseline CO2 in the air was utilized as a reference. The standard CO2 

production and O2 consumption rates were calculated. The O2 consumption rate was 

calculated using the Haldane transformation: O2 consumption rate = (Q/ [1-inspired 

O2]) x (Disappearance O2 - Inspired O2 x [appearance CO 2]) (Meriläinen. 1987). The 

CO2 production and O2 consumption rates were calculated from a 10-minute period 

after 20 min of initial stabilization. The whole-body energy expenditure (EE) was 

calculated from the measured rates of O2 consumption and CO2 production EE = 3.581 

x (O2 consumption +1.448) x (CO2 production - 32.4), where EE is given in kcal/d, O2 

consumption and CO2 production in l/d (Takala et al. 1989). 

 
 
5.5 Euglycemic hyperinsulinemia 
 
Subjects were lying in a supine position during hyperinsulinemic-euglycemic clamp 

and the PET-imaging. At 0 min a standard primed hyperinsulinemic-euglycemic clamp 

was started for at least 220 min using 1mU · kg-1 · min-1 intravenous insulin infusion 

(Actrapid, Novo Nordisk A/S, Bagsvaerd, Denmark, DeFronzo et al. 1982). 

Normoglycemia was maintained using variable rates of 20% glucose infusion, adjusted 

according to plasma glucose measured in every 5 – 10 minutes in arterial blood. A 

steady state was reached always before 50 min of the clamp. The whole-body glucose 

uptake per tissue weight was calculated from the glucose infusion rate between 60 to 

180 min. It was expressed as µmol · min-1 · kg-1. At 120 min [18F]FDG (0.23-0.29 GBq) 

was injected for over 15s. The EGP rate was calculated from the plasma [18F]FDG 

clearance rate as previously validated against d-[6,6-(2)H(2)]glucose tracer method 
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(Iozzo et al. 2007). Plasma lactate, serum FFA concentrations and insulin were 

measured in arterial samples obtained at 0, 30, 60, 120 and 180 minutes during 

hyperinsulinemia (Figure 3).  

 
 
5.6 PET-imaging  
 
5.6.1 Production of PET tracers 
 
For the production of [15O] (t1/2 = 123 seconds) a low energy deuteron accelerator was 

used (Cyclone 3, Ion Beam Application Inc., Louvain-la-neuve. Belgium). [15O]O2 was 

produced in the 14N(d,n) [15O] reaction using nitrogen gas as target material. The 

radiochemical purity of [15O]O2 exceeded 97%. [15O]H2O was produced based on the 

membrane technique using sterile exchangeable tubing in the device as previously 

described (Sipilä et al. 2001). Sterility and pyrogenity tests were performed to verify 

the purity of the product. [18F]FDG (t1/2 = 110 minutes) was synthesized with a 

computer-controlled apparatus according to a modified method of Hamacher et al 

(Hamacher et al. 1986). The specific radioactivity at the end of the synthesis was better 

than 70 GBq/µmol and the radiochemical purity exceeded 98%. 

 
 
5.6.2 Image acquisition 
 
All the images were acquired with the same GE Advance PET scanner (General 

Electric Medical Systems, Milwaukee, WI, U.S.A.), which gives 35 transaxial planes 

with axial resolution of 4.7 mm and with an in-plane resolution of 5.5 mm. The 

subjects were lying in a supine position during the PET protocol. After the 

hyperinsulinemic-euglycemic clamp initiation subjects were positioned and their feet 

were fixed on the scanner head rest and cushions were applied in order to minimize 

muscle activation in thighs. The correction for photon attenuation in tissue was 

determined by using transmission scanning with external circulating 68Ge rod sources. 

A transmission scan of the femoral region was obtained and after 40 min of clamp 

[15O]H2O (0.5-0.8 GBq) was injected in for over 30s using automated administration 
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(Figure 3). Femoral muscle perfusion was scanned with dynamic 6-min image 

acquisition (frames 6 · 5s, 6 · 15s and 8 · 30s). Thereafter the subjects were 

repositioned: the head was fixed to the head rest and a ~ 9-min transmission scan of the 

head was performed. At 80 min [15O]H2O (0.22–0.34 GBq) was injected (a 30s 

injection) and a 90s brain perfusion scan was obtained. After the decay of the previous 

tracer and a production of a new [15O]O2 tracer [15O]O2 (1.13–1.35 GBq) bolus was 

gathered into a plastic inhalation-bag, released by the investigator and inhaled at 

command by the study subject at 100 min. Thereafter, tissue O2 was measured with a 

5-min dynamic scan (frames: 6 · 10s, 6 · 20s and 4 · 30s). At 120 min, [18F]FDG (0.23–

0.29 GBq) bolus was injected for over 15s and a dynamic 40-min brain scan was 

started (frames: 4 · 30s, 3 · 60s and 7 · 300s). After a transmission scan a PET scan of 

lower thorax was performed (frames: 6 · 180s). This scan was performed at 160 min in 

order to obtain the tissue time activity curve for subcutaneous fat, hepatic tissue and 

myocardium. The femoral region was again scanned for transmission and at 200 min 

for [18F]FDG activity (frames: 6 · 180s). Arterial blood samples were drawn in order to 

calculate the concurrent input function for each tracer and scan. For the same purposes, 

haematocrit, gas analysis and acid–base status were determined in arterial blood before 

and after each [15O]O2 scan (Figure 3). 

 
 
5.6.3 Quantification of the PET data  
 
5.6.3.1 Tissue glucose uptake rate 
 
The PET scanner and other devices were cross-calibrated. The arterial blood [18F]FDG 

time activity curve was obtained by analyzing repeated arterial samples using an 

automated gamma counter (Wizard 1480, Wallac, Turku, Finland). The tissue time 

activity curve was obtained from [18F]FDG -PET scans with repetitive sampling frames 

(Figure 3). All [18F]FDG-PET data were normalized, corrected for decay and 

attenuation and reconstructed as a 128 · 128 pixel matrix using a planar Hann filter and 

an axial ramp filter. Plasma and tissue time-activity curves were analyzed graphically 

according to Patlak and Blasberg in order to quantify the fractional rate of tracer uptake 
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(Ki), which represents the combined tracer transmembrane transport and 

phosphorylation step from blood to tissue (Patlak and Blasberg. 1985; Nuutila et al. 

1992). For the calculation of tissue glucose uptake the three-compartment model of 

[18F]FDG kinetics was employed (Reivich et al. 1979, Sokoloff et al. 1977). Ki is equal 

to (k1 · k3 / [k2 + k3]), where k1 is the transfer coefficient from vascular space into the 

tissue, k2 is the initial clearance and efflux coefficient, and k3 is the phosphorylation 

rate constant. The rate of the glucose uptake within the ROI was obtained by 

multiplying Ki by the plasma glucose concentration divided by a lumped constant term. 

The lumped constant accounts for differences in the transport and phosphorylation of 

[18F]FDG and glucose. Based on previous validation studies in humans, the lumped 

constant of 1.2 was used for skeletal muscle and 1.14 was used for subcutaneous fat 

(Peltoniemi et al. 2000; Virtanen et al. 2001). The approximation of 1.00 was used for 

the myocardium and the liver (Ng et al. 1998; Iozzo et al. 2007). A consensus lumped 

constant of 0.8 validated against other PET techniques was used to calculate the rGMR 

(Graham et al. 2002). In skeletal muscle, liver and subcutaneous adipose tissue the 

Patlak fit was done directly on the tissue activity curve consisting of six consecutive 

sampling frames using the elapsed time from tracer injection to frames of each six time 

points (Figure 3). The tissue activity at a certain time point was the mean activity of all 

pixels within the ROI. The left ventricle myocardium data was corrected for partial 

volume and for the spillover from the left cavity based on the cardiac dimensions and 

left ventricle wall thickness in the cardiac MRI. Individual parametric images were 

computed for the brain glucose uptake giving a quantitative value for each voxel based 

on the Patlak equitation. The average brain tissue density of 1.04 g/ml was applied to 

calculate the metabolism per tissue gram (Långsjö et al. 2003). 

 

 
5.6.3.2 Muscle and brain perfusion  
 
The [15O]H2O radioactivity were decay-corrected. In order to obtain the arterial time 

activity curve (input function) the arterial radioactivity was measured. This was done 

using a two-channel coincidence detection system (GEMS, Uppsala, Sweden) on the 



METHODS 
 
 

74 

radial artery blood sampling line where 6 ml/min blood outflow was maintained with a 

pump during the [15O]H2O scan (Figure 3). The blood flow was calculated pixel-by-

pixel into flow images using a quantitative autographic method as previously described 

and validated (Huang et al. 1983; Iida et al. 1986; Ruotsalainen et al. 1997; Fischman 

et al. 2002; Howard et al. 1983). A 250s tissue integration time was used for skeletal 

muscle. In brain, the tissue activity was assessed with a 90s one-frame scan initiated 

automatically at a rapid increase in the coincidence detection rate. An estimated arterial 

[15O]H2O input-activity curve was achieved by correcting the measured blood activity 

for delay and dispersion (Iida et al. 1986). The quantification is based on a one- 

compartment model, in which the tissue tracer concentration (Ci) depends only on 

arterial concentration (Ca), venous concentration (Cv), and flow (f). In the model, the 

venous concentration is approximated. It is assumed that 1) Tissue-blood water 

equilibrium is immediate. 2) The tissue-blood water content ratio is stable, represented 

by partition coefficient (p), with a value of 0.8 in normal brain and 0.99 in skeletal 

muscle (Huang et al. 1983; Ruotsalainen et al. 1997). As a result, the venous 

concentration is also always constantly related to the tissue concentration. Using the 

PET measured tissue activity and the arterial blood activity curve from the sampling 

line, a lookup table of calculated tissue tracer activity values for a range of imaginary 

flow values is created. This conversion table is then transformed pixel-by-pixel into 

quantitative (parametric) flow images (Howard et al. 1983).  

 

 
5.6.3.3 Brain oxygen metabolism 
 

The oxygen consumption was quantified with non-linear fitting of the dynamic PET 

scans as previously described (Kaisti et al. 2003). The relationship between oxygen 

extraction fraction and blood flow, both derived from the [15O]O2 inhalation PET, 

arterial oxygen concentration [O2]a and oxygen uptake (CMRO2) is as follows: 

CMRO2 = [O2]a · oxygen extraction fraction · rCBF. For the calculation of the regional 

oxygen-to-glucose index, the unit conversion was first performed using the molar 
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volume of an ideal gas (22.4 l/mol) to obtain the rCMRO2 values in mmol · min-1· 

100g-1 and then these values were divided by the rGMR value (Okazawa et al. 2001). 

 
 
5.6.4 Tissue analysis 
 
5.6.4.1 Brain  
 
For the quantitative estimation of regional metabolic values (rCBF, rCMRO2 and 

rGMR), an automated explorative ROI analysis was conducted (Nagano et al. 2000). 

First a summation image including the total over all frames [18F]FDG activity was 

calculated for each subject. This summation image was further used to coregistrate and 

reslice the MRI scans. In order to achieve matching image planes using Statistical 

Parametric Mapping software (version 2) running under MATLAB 7.5 (The Math 

Works Inc., Natick, MA, USA). Then, each summation image was normalized using a 

ligand-specific template for [18F]FDG in order to convert them into the standard 

stereotactic space used for the statistical analysis. The resulting normalization 

parameters of each summation image conversion were then further used to convert all 

the parametric PET images as well as the MRI to PET coregistered MRI scans into the 

same standard stereotactic space. The quality of the conversion into the standard 

stereotactic space was manually assured by comparing the converted parametric and 

anatomical images with each other and with the location of the predefined ROIs. 

Standardized ROIs were defined on a template image (Montreal Neurological Institute 

database) using Imadeus software (version 1.50, Forima Inc., Turku, Finland). Eight 

predefined paired ROIs were drawn encompassing grey matter in posterior cingulate, 

frontal cortex (anterior cingulate and venterolateral frontal cortex), occipital cortex 

(extrastriate cortex), temporal cortex (superior, middle and inferior temporal gyri), 

parietal cortex (angular and supra-marginal gyrus), putamen, thalamus and cerebellum 

(cerebellar cortex) in the standard stereotactic space. In addition, a pair of ROIs was 

drawn in the white matter between the lateral ventricles and parieto-frontal cerebral 

cortex. 
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5.6.4.2 Myocardium, skeletal muscle, liver and adipose tissue 
 
Myocardium was outlined and the ROIs were defined and reviewed using semi-

automated segmentation software (Carimas 2.0, Turku PET Centre, Finland). This 

segmentation software was preferred as it allowed an automated analysis of the main 

vascular regions. It was also able to detect and outline a larger proportion of the 

ventricle wall volume as compared to manual analysis. The average left ventricle 

glucose uptake was calculated as the mean of the three regions. The tip of the left 

ventricle apex was not included in this analysis. In skeletal muscle, the regions of 

interest were drawn both in quadriceps femoris and in hamstring muscles on 3 

consecutive planes and on two axial levels of the muscle region carefully avoiding 

large blood vessels (Nuutila et al. 1993). Due to similar results, the mean of the ROIs 

in the two legs and regions was used in further analysis. The regional glucose 

extraction in muscle tissue was calculated by dividing the average glucose uptake with 

the average perfusion value within the drawn ROI. For adipose tissue a single ROI on 

three planes was defined in the subcutaneous fat in the upper abdomen (Study III; 

Figure 1). In liver an ellipsoid ROI on five consecutive planes in the major liver lobe 

and outside the area of large vessels was used (Figure 3). The localization of the 

subcutaneous, liver and skeletal muscle ROIs were verified by first defining the ROIs 

on the respective transmission image and thereafter copying in the positron emission 

image using Vinci 2.54. software (Max-Planck-Institut für neurologische Forschung, 

Cologne, Germany).  

 
 
5.7 Biochemical analyses and cytokines 
 
Plasma glucose was determined with a glucose oxidase method (GM7 Analyser, 

Analox Instruments, Hammersmith, UK). Glycosylated haemoglobin (Hb-A1C) was 

measured with an ion-exchange high performance liquid chromatography (Variant II 

Haemoglobin A1c, Bio-Rad Laboratories, CA, USA). The enzymatic method (IFCC, 

Roche Modular P analyser, Roche Diagnostics GmbH, Mannheim, Germany) was used 
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to measure plasma lactate, plasma high-density lipoprotein cholesterol and serum 

creatine kinase. Blood pyruvate was measured using an enzymatic method 

(Instruchemie, Delfzijl, The Netherlands). Plasma C-peptide and insulin were assessed 

by an electrochemiluminescense immunoassay technique (Roche Modular P analyzer, 

Roche Diagnostics GMbH, Mannheim, Germany). Serum FFA concentrations were 

measured using an enzymatic colorimetric method, plasma triglycerides with an 

enzymatic method and plasma cholesterol with an enzymatic method (Roche Modular 

P analyzer). Fasting serum samples were stored at –70°C and assayed for adiponectin, 

active plasminogen activator inhibitor-1 (PAI-1) antigen, resistin, interleukin-6 (IL-6), 

interleukin-8 (IL-8), monocyte chemoattractant protein-1 (MCP-1), nerve growth 

factor (NGF), tumour necrosis factor-α (TNF-α) and leptin using commercial methods 

with inter-assay coefficients of variation < 21% as provided by the manufacturer 

(LINCOplex Kit and Luminex200 instrument, Linco Research, St. Charles, MO, 

U.S.A.). The measured intra-assay coefficients of variation were < 8.9%. The C-

reactive protein (CRP) was determined with a Cobas Modular 6000 analyzer (F. 

Hoffmann-La Roche Ltd, Diagnostics Division, Basel, Switzerland) using reagents 

purchased from the same company (C-Reactive Protein, Latex, High Sensitive Assay).  

 
 
5.8 Statistical methods 
 
5.8.1 General analysis 
 
Before analysis, the normality of variables was assessed with Shapiro–Wilk test. 

Normalizing procedures were performed in the original publications (I-IV), but they 

were not applied in the data presented in the results section. Based on the Shapiro–

Wilk test, differences among two groups were identified using Student’s t-test or 

Mann–Whitney U-test. In the case of more than two groups, one-way analysis of 

variance (ANOVA) and Tukey-Kramer post hoc procedure were applied. In the case of 

at least three groups and continuous variables, which were not normally distributed 

Kruskal–Wallis test was performed. If the loss of power was suspected, non-parametric 

tests were performed where appropriate. For the same purpose patients were first 
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compared with the controls before any subgroup analysis. For non-parametric data post 

hoc tests were carried out by using the Mann-Whitney U test and P-values were 

corrected for multiple comparisons by the Benjamini-Hochberg method if not stated 

otherwise. A P-value of < 0.05 was considered statistically significant. In the result 

section, significant linear correlations are identified using Spearman’s correlation 

coefficients and Mean ± SD are given if not stated otherwise. 

 
 
5.8.2 Statistical approach to multiple regions of interest in brain 
 
In brain an explorative ROI analysis was conducted and altogether nine predefined 

ROIs were applied (Study I). The preliminary analysis revealed only negligible left–

right differences and, consequently, all brain ROI variables were presented as the mean 

of the left and right side. In the case of brain MRI and PET data, special care was taken 

to eliminate family-wise type I error, which could be introduced by the numerous 

simultaneous between-group comparisons performed in multiple brain regions. We 

applied Holm–Bonferroni correction to adjust P-values of all the pair-wise 

comparisons between groups, which were carried out simultaneously in multiple 

regions for each outcome. This method controls the family-wise error both for 

dependent and independent measures. For example, the atrophy scores for three groups 

were corrected for 9 (groups · regions = 3 · 3) simultaneous hypotheses. For the sake of 

clarity, an uncorrected post hoc P-value is shown in the analyses of the brain PET and 

MRI data and the significance remaining after Holm–Bonferroni correction is indicated 

separately (Study I, result section). In addition, standard z-scores were assigned for 

each ROI, in each individual, using the SD of the control group in ROIs. Thereafter, an 

average z-score for each main outcome was obtained in order to give a normal 

variation context to the detected changes.  

 

Single-measure intraclass correlation coefficients were calculated for the brain ROI 

data giving r = 0.85 for rCMRO2, (P < 0.001), r = 0.69 for rGMR (P < 0.001) and  

r = 0.77 for rCBF (P < 0.001). These figures suggested interdependency within the 
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regional data. This was true also for the regional atrophy scores (r = 0.75, P < 0.001) 

and the white matter changes (r = 0.33, P < 0.001) in the MRI data set. Due to the 

probable interdependency, the ROI data were first analyzed a priori by repeated-

measures ANOVA, using the Huynh–Feldt correction for the sphericity. The nine brain 

regions were entered as within-subject factors and the group (patients or controls) as 

the between-subject factor. The main effects and the interaction of these variables were 

modelled. Repeated-measures ANOVA indicated a major regional variability in all the 

main outcomes (P < 0.001 and Partial η2  > 0.880 for rCMRO2 as well as for rGMR and 

rCBF). Secondly, a similar repeated-measures ANOVA procedure with the presence of 

symptoms as the between-subject factor was carried out on patient data in order to 

examine if the presence of symptoms influenced the main outcomes. Thirdly, repeated-

measures ANOVA was carried out on all ROI data for confirmatory purposes and to 

examine the main between-subjects effect (patient subgroups or controls). 

 
 
5.8.3 Statistical parametric mapping approach 
 
Statistical parametric mapping was carried out as an explorative analysis covering the 

whole brain, i.e. without an a priori hypothesis concerning the location of potential 

changes in rCBF, rCMRO2 and rGMR (Study I). Based on the previous autopsy study, 

the affected cortical areas, i.e. the size of the signal, were expected to be greater than 

the resolution of the smoothed image (Sparaco et al. 2003). Therefore the normalized 

parametric images were robustly smoothed by using a 12 mm Gaussian kernel. A 

subtraction analysis with t-contrasts was used to compare the patients with the controls. 

Since the rCBF, rCMRO2, and rGMR values of parametric images are quantitative, a 

subtraction analysis with t-contrast was performed without global normalization. The 

statistical power of statistical parametric mapping is partly a function of the height 

threshold and of the signal-size-to-resolution ratio and, therefore, we also used a low 

height threshold (T) 2.4 as well as the more conventional T 3.5 as previously 

recommended (Friston et al. 1996). On the other hand, the size of the signal was 

expected to be greater than the resolution of the smoothed image and even a lower 
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threshold than 2.4 might have been acceptable. Only clusters with corrected P-values 

are shown (Study I, Figure 3). Non-significant voxels were discarded from the 

visualizations by increasing the minimum cluster size (k). In addition, the expected 

false discovery rates of the voxels were kept always < 0.05 for the whole brain for all 

visualizations (Study I; Figure 3). 
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6 RESULTS 

 

6.1 Feasibility of the study protocol (I-IV) 
 
Some minor adverse effects were noted during the two-day study. One control subject 

had large subcutaneous haematomata few days after the arterial cannulation with 

spontaneous full recovery. One of the patients had presyncopal symptoms after the 

initiation of the primed hyperinsulinemic clamp and the brain imaging PET part was 

not performed for him and due to the lack of the primary variables he was excluded 

from the brain data analysis (Study I). One of the patients (group 1) failed to lie still 

due to the back pain during the last hour of the PET protocol and no regional 

abdominal fat, liver, skeletal muscle or heart [18F]FDG data were obtained for her. Two 

of the subjects in the symptomatic group failed to inhale correctly and no [15O]O2 

emission or CMRO2 data was obtained. In addition, one patient (group 3) failed to lie 

still during the MRI due to claustrophobia and the essential part of the functional 

cardiac data was lost. One frozen plasma cytokine sample in the control group was lost 

during storing. 

 
 
6.2 Brain metabolism (I) 
 
6.2.1 Clinical encephalopathy and white matter [1H]MRS 
 
The essential clinical and metabolic characteristics of the patients are given on Table 1. 

The most common clinical manifestations were diabetes (n = 10) and sensorineural 

hearing impairment requiring a hearing aid (n = 5). Only one patient fulfilled the 

criteria for the MELAS syndrome and had had stroke-like episodes. More detailed 

clinical characteristics of the patients are given in Study I (Study I, Table 1). In six 

patients the encephalopathy was considered symptomatic as these patients had been 

diagnosed with stroke-like episodes or epilepsy or central nervous system changes 

were found in the baseline neurological examination. The remaining eight patients 

were considered asymptomatic and they all had previously performed a 
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neuropsychological test with no deviation from the normal range and no focal lesions 

were found in brain MRI (Majamaa-Voltti et al. 2006).  

 

The single voxel measurement showed that the lactate to creatine ratio was 

significantly elevated in the white matter in patients 0.43 ± 0.33 as compared to 

controls 0.11 ± 0.11 (P < 0.001). This indicated a shift towards anaerobic glucose 

metabolism in the tissue. The [1H]MRS and MRI indices of neurodegeneration showed 

that patients with cerebral symptoms had both significantly lower NAA to creatine 

ratio 2.02 ± 0.24 than the controls 2.45 ± 0.25 (P = 0.006) or the asymptomatic patients 

2.41 ± 0.18 (P = 0.012) and higher mean atrophy scores 1.2 ± 0.8 than the controls 0.0 

± 0.1 (P = 0.009) or the asymptomatic patients 0.0 ± 0.0 (P = 0.012). 

 

 

6.2.3 Oxidative glucose metabolism in the brain 
 
A decrease in cerebral metabolic rate of oxygen was detected in all the regions of 

interest in the grey matter as well as in the white matter in patients with the 

m.3243A>G mutation as compared to controls (median -27%, range -18% to -29%). 

The average rCMRO2 of the patients was 2.19 ml/100 g/min and that of the controls 

was 2.97 ml/100 g/min (P < 0.001, repeated-measures ANOVA, the main effect of the 

group [patients vs controls] on the regional values). The rGMR in patients (average 

30.8 mmol/100 g/min) tended to be slightly lower in most of the regions (Median -

10%, range -15% to + 5%) than the rGMR (average 33.8 ± 0.7 mmol/100 g/min) 

among the controls showing no or weak main effect of the group (P = 0.056 for 

rGMR). Both an absolute and relative decrease in rCMRO2 was detected in 

asymptomatic as well as in symptomatic patients and in all brain regions as compared 

to controls (Figure 4 and Study 1 result section). In line with the elevated brain lactate, 

the regional ogygen-to-glucose index was reduced in patients (median -17%, range -10 

to -28%, P < 0.001, the main effect of the group) as compared to control subjects. The 

decrease in the regional oxygen extraction fraction (median - 18%, range -16 to -26%, 

P = 0.014, main effect of the group) and quantitatively normal blood flow in regions 
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such as cerebellar cortex and periventricular white matter indicated no general 

perfusion defect in the brain tissue (Figure 4). Even if the groups were found to differ 

in rCMRO2, rGMR, regional oxygen extraction fraction and ogygen-to-glucose index, 

the patient or patient subgroup comparison with the controls showed no significant 

differences in the overall rCBF between the groups (Study I; Table 4).  

 

The decrease in rGMR was restricted to symptomatic patients and to the occipito-

tempero-parietal region. The frontal lobe, white matter and cerebellum were relatively 

spared from the glucose hypometabolism (Figure 4 and Study I; Table 4). Also the 

statistical parametric mapping showed significant glucose and oxygen hypometabolism 

in patients with the m.3243A>G mutation. In accordance to the ROI analysis no global 

change in CBF was detected and the decrease in the metabolic rate of oxygen was 

confirmed in the grey matter in the whole brain and in both patient groups. Further, as 

the ROI analysis, the statistical parametric mapping approach did not detect any 

significant decrease in glucose metabolism in the frontal areas, cerebellum and white 

matter or in asymptomatic patients (Study I; Figure 3). In addition to the characteristic 

spatial and clinical patterns of the glucose hypometabolism, the glucose metabolism 

(average rGMR) correlated both with the NAA to creatine ratio (r = 0.69, P = 0.006,  

n = 14) and with the average rCMRO2 (r = 0.77, P = 0.003, n = 12) in the patients with 

the m.3243A>G mutation. No linear coupling could be detected between the average 

rGMR and rCBF (r = 0.125, P = 0.67 and n = 14). 
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Figure 4. Quantitative regional metabolism derived from the PET studies. Absolute values of 
regional cerebral blood flow (rCBF = ml/100 g/min) and metabolic rate of oxygen (rCMRO2 = 
ml/100 g/min) and glucose metabolic rate (rGMR = µmol/100 g/min). Data are mean ± SE. 
Data from the nine region-of-interest-defined structures are shown (PC = posterior cingulate, 
WM = white matter). For illustrative purposes the nine regions of the asymptomatic and 
symptomatic patient groups were compared to those of the controls with Mann-Whitney U test 
and the resulting 18 pair-wise comparisons in the figure were then corrected for the multiple 
comparisons arising from the two groups and from the multiple regions using the false 
discovery rate method (α = 0.05). * A two-sided P-value < 0.05 vs controls after correction for 
multiple comparisons is given.  
 
 
6.3 Metabolic characteristics related to insulin secretion and action (II-IV) 
 
In metabolic studies other than the brain metabolism one healthy control subject was 

excluded due to impaired glucose tolerance in the OGTT. Patients with m.3243A>G 

were divided into three groups based on the OGTT (Table 1). Group 1: consisted of 

patients with either normal or impaired glucose tolerance in OGTT (n = 5). Group 2: 

showed new diagnosis of diabetes on the basis of high 2 hour glucose in OGTT (n = 3). 

Group 3: patients were all treated for diabetes, which had been diagnosed previously  

(n = 7). The 15 patients or the patient subgroups did not differ from the 13 healthy 

controls in age, physical activity, BMI or in resting oxygen consumption (Table 1). 

Also the fasting C-peptide, uric acid and creatine kinase, serum FFAs, triglycerides, 

HDL-cholesterol, LDL-cholesterol were similar among all groups (Study 2; Table 1 

and Study 3; Table 1). The eight subjects in groups 1 and 2 had a good glycaemic 

control (Hb-A1C ≤ 6.1 %). Some minor differences existed in the number of smokers 

and men through the study groups (Table 1). As compared to controls fasting glucose, 

pyruvate and lactate were higher among the patients (Table 1). During the steady state 

of the euglycemic hyperinsulinemia no difference in the glucose or insulin 

concentration were noted between the patients and the controls while the FFAs and 

lactate levels were higher and the whole-body glucose uptake was lower in the patients 

with the m.3243A>G mutation than in the controls (Table 1).  
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Table 1. 

Clinical and metabolic characteristics 

 m.3243A m.3243G PA m.3243G m.3243G m.3243G 
 Controls All  Group 1 Group 2 Group 3 

Clinical features    NGT-IGT DM tDM 
Men / All (N) 2/13 4/15  0/5 0/3 4/7 
Age (years) 47 ± 11 47 ± 10 0.91 48 ± 9 46 ± 9 46 ± 12 
BMI (kg/m2) 24 ± 3 23 ± 4 0.38 26 ± 3 24 ± 4 21 ± 3*1 
m.3243G (%)B 0 45 ± 17 n.d. 33 ± 23 47 ± 5 53 ± 10 
m.3243G (%)C n.d. 64 ± 21 n.d. 46 ± 19 74 ± 3 80 ± 11*1 
Physical activityD 442 ± 285 492 ± 354 0.69 655 ± 259 548 ± 272 351 ± 419 
Medication       
- Insulin - 6/15  - - 6/7 
- Metformin and 
Nateglinide 

- 1/15  - - 1/7 

- Statins - 5/15  1/5 - 4/7 
- Beta blockers - 2/15  1/5 - 1/7 
- Levothyroxine 1/13 2/15  2/5 - - 
- ACE inhibitors - 2/15  1/5 - 1/7 
- Valsartan - 2/15  - - 2/7 
Metabolic data       
Hb-A1C (%) 5.4 ± 0.3 6.6 ± 1.4 0.006 5.4 ± 0.5 6.0 ± 0.2 7.7 ± 

1.2***C*1 
Lactate (mmol/l) 0.66 ± 

0.25 
1.35 ± 
0.76 

<.001 0.84 ± 0.18 1.23 ± 0.50 1.76 ± 
0.91**C*1 

Pyruvate (μmol/l) 54 ± 15 73 ± 30 0.046 52 ± 14 83 ± 25 84 ± 35* C 
VO2 (ml·m-2)E 116 ± 11 117 ± 9 0.77 115 ± 4 117 ± 14 118 ± 10 
FFAs (mmol/l) 0.45 ± 

0.19 
0.59 ± 
0.27 

0.12 0.46 ± 0.21 0.66 ± 0.40 0.66 ± 0.26 

Liver       
Liver fat (%) 1.9 ± 2.8 3.7 ± 5.8 0.037F 6.5 ± 9.8 1.6 ± 1.0 2.5 ± 1.7 
ALP (U/l) 53 ± 15 62 ± 23 0.240 51 ± 11 51 ± 18 74 ± 28 
Clamp-procedure       
Glucose1-3h 
(mmol/l) 

5.1 ± 0.2 5.2 ± 0.5 0.90 4.9 ± 0.3 5.1 ± 0.1 5.4 ± 0.7 

Insulin1h (mU/l)  67 ± 18 69 ± 18 0.74 66 ± 14 63 ± 31 75 ± 17 
FFAs1h (mmol/l) 0.06 ± 

0.04 
0.12 ± 
0.08 

0.002 0.10 ± 0.06 0.09 ± 0.04 0.16 ± 0.09* C 

Lactate1h (mmol/l) 1.0 ± 0.2 1.8 ± 1.0 0.003 1.1 ± 0.2 1.3 ± 0.3 2.4 ± 1.2** C 
M-value1-3h 
(µmol·min-1·kg-1) 

33 ± 10 20 ± 8 0.001 24 ± 11 19 ± 6 17 ± 6**C 

 
Patients with m.3243A>G and with normal or impaired glucose tolerance (NGT-IGT, Group 1), 
patients with m.3243A>G and with newly-diagnosed diabetes mellitus (DM, Group 2), patients 
previously diagnosed and treated for diabetes (tDM, Group 3). BMI = Body-mass index, n.d. = 
not determined, BSA = body surface area, FFA, Free fatty acids, ALP = alkaline phosphatase. 
M-value = Whole-body glucose uptake, plasma insulin and plasma glucose were measured 
during the steady state of euglycemic hyperinsulinemia. AP-value, all patients with m.3243A>G 
vs controls. *A post hoc comparison between two groups after a priori P < 0.05. *C,** C,*** C 
(P < 0.05, < 0.01, < 0.001 vs controls [C = controls, 1 = group 1 and 2 = group 2]). BThe 
m.3243G heteroplasmy in skeletal muscle. CThe m.3243G heteroplasmy in buccal epithelium. 
DDaily Metabolic Equivalent estimated with the International Physical Activity Questionnaire. 
EOxygen consumption per BSA. Ft-test after log transformation  = 0.050. Data are means ± SD. 
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6.4 Insulin secretion and beta cell function (II) 
 
The basal insulin secretion was preserved in all subjects including the four subjects 

with over a 10-year diabetes history. The average C-peptide concentrations were 

identical to that in the controls. The fasting C-peptide lower range was 0.21 nmol/l in 

patients with m.3243A>G and 0.29 nmol/l in the controls. During the first 30 min of 

the OGTT absolute glucose, insulin and C-peptide concentrations were identical in the 

controls and group 1, but at 120 minutes plasma glucose was significantly higher in 

group 1 patients and the insulin levels tended to surpass those seen in the controls 

(Figure 5). Insulin secretion indices obtained in the mathematical modelling indicated 

that the beta cell glucose sensitivity was significantly lower in group 2 and 3 patients 

than that in the controls. In addition, a significant impairment in the rate sensitivity in 

group 3 was detected (Table 2). These and other indices of the beta cell function were 

not impaired in group 1 as compared to the controls. Of the several beta cell indices 

showing negative linear correlation with mutation heteroplasmy, the correlation 

between AUCI/AUCG and skeletal muscle heteroplasmy was the most robust. This 

correlation remained significant even if the patients with previous loss of glycaemic 

control and diabetes diagnosis (Group 3) were excluded (r = -0.71, P = 0.02, n = 8).  
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Figure 5. Oral glucose tolerance test in patients with the m.3243A>G mutation. A: Glucose 
concentration. B: C-peptide concentration. Controls (Con). Patients with m.3243A>G and with 
normal or impaired glucose tolerance (Group 1), patients with m.3243A>G and with newly-
diagnosed diabetes (Group 2), patients previously diagnosed and treated for diabetes (Group 3). 
Data are mean ± SD. 
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Table 2.  
Beta cell function in subjects with the m.3243A>G mutation during oral glucose tolerance test 
 

 m.3243A m.3243G PA m.3243G m.3243G m.3243G 
 Controls All  Group 1 Group 2 Group 3 
Glucose 
(mmol/l) 

5.4 ± 0.3 7.4 ± 2.5 <.001 5.4 ± 0.3 6.0 ± 0.5 9.5 ± 
2.2***C**1 

Fasting insulin 
(pmol/l) 

39 ± 14 44 ± 22 0.54 46 ± 17 69 ± 32*C 31 ± 11*2 

C-peptide 
(nmol/l)  

0.55 ± 
0.14 

0.55 ± 
0.19 

0.97 0.60 ± 
0.12 

0.72 ± 
0.20 

0.44 ± 0.17 

Insulin secretion       
BSR  
(pmol ·min−1·m−2) 

71 ± 17 76 ± 25 0.57 78 ± 17 96 ± 25 65 ± 27 

IGI  
(pmol · mmol−1) 

28 ± 29 8 ±10 0.001 17 ±12 5 ± 1*C 3 ± 4 **C*1 

AUCI/AUCG 
(nmol · mol−1) 

38 ± 16 22 ± 23 0.008 42 ± 27 23 ± 8 7 ± 9 **C*1 

Glucose sensitivity 
(pmol ·min−1 ·m−2 

·mM−1) 

137 ± 55 54 ± 50 <.001 106 ± 29 43 ± 34*C 22 ± 37***C*1 

Rate sensitivity  
(pmol · m−2 · mM−1) 

686 ± 297 529 ± 621 0.40 1147 ± 
682 

493 ± 358 103 ± 
132*C***1 

End / Start periods 
potentiation ratio 

1.9 ± 0.7 1.2 ± 0.5 0.005 1.4 ± 0.6 1.3 ± 0.6 0.9 ± 0.3*C 

 
Patients with m.3243A>G and with normal or impaired glucose tolerance (Group 1), patients 
with m.3243A>G and with newly-diagnosed diabetes (Group 2), patients previously diagnosed 
and treated for diabetes (Group 3). BSR = Basal insulin secretion rate, IGI = insulinogenic 
index, AUCI/AUCG = the ratio of insulin and glucose areas under the curve. AP-value, all 
patients with m.3243A>G vs controls. *A post hoc comparison between two groups after a 
priori P < 0.05. *C, ** C, *** C (P < 0.05, < 0.01, < 0.001 vs controls [C = controls, 1 = group 1 
and 2 = group 2]). Data are mean ± SD. 
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6.5 Skeletal muscle glucose uptake and perfusion (II) 
 
The rate of insulin-stimulated glucose uptake was two-fold lower in the femoral 

skeletal muscle per unit tissue weight in groups 1, 2 and 3 with the m.3243A>G 

mutation than in the controls (Figure 6). The skeletal muscle glucose uptake and the 

whole-body glucose disposal were linearly related in patients with the m.3243A>G 

mutation (r = 0.92, P < 0.001, n = 14). The skeletal muscle glucose uptake showed also 

a significant inverse correlation with intra-abdominal fat content in women, liver fat 

content and fasting triglycerides in patients with m.3243A>G (data not shown). 

Femoral muscle perfusion per tissue weight was similar in all groups suggesting that 

muscle insulin resistance was caused by the decreased glucose extraction rate in the 

patients with m.3243A>G as compared to the controls (Figure 6). A linear correlation 

between muscle glucose uptake and FFA concentration during hyperinsulinemia was 

shown in the pooled patient and control population (r = -0.66, P < 0.001, n = 27). No 

correlation with the muscle heteroplasmy and muscle perfusion (r= -0.22, P = 0.50,  

n = 12) or glucose uptake was noted (r = -0.39, P = 0.24, n = 11). 
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Figure 6. Skeletal muscle glucose uptake and perfusion. A: Skeletal muscle insulin-stimulated 
glucose uptake. B: Skeletal muscle blood flow per tissue weight. Controls (Con). Patients with 
m.3243A>G and with normal or impaired glucose tolerance (Group 1), patients with 
m.3243A>G and with newly-diagnosed diabetes (Group 2), patients previously diagnosed and 
treated for diabetes (Group 3). Significant post hoc comparisons are given when a priori  
P < 0.05. The horizontal line indicates the mean (A) or median (B). 
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6.6 Adipose tissue metabolism and adipocytokines (III) 
 
Parallel to the pattern in the skeletal muscle, the insulin-stimulated glucose uptake rate 

in subcutaneous fat was > 49% decreased in all groups with the m.3243A>G mutation 

as compared to the controls The differences in the glucose uptake per fat tissue weight 

remained significant between the controls and the three patient subgroups even if men 

due to their low total number were excluded (Figure 7). The expected correlation 

between the glucose uptake rate in fat and the skeletal muscle glucose uptake could be 

detected in the patients with m.3243A>G (r = 0.61, P = 0.021, n = 14). The size of the 

abdominal subcutaneous fat depot did not differ between the patient and control 

women (P = 0.24). The insulin-stimulated glucose uptake calculated for the overall 

abdominal subcutaneous fat depot was lower in women with m.3243A>G than that in 

healthy women (Figure 7). The waist to hip ratio (0.84 ± 0.05) was greater even if the 

BMI (23.9 ± 3.4) was similar in women with the m.3243A>G mutation as compared to 

control women (0.76 ± 0.06, P = 0.003; 24.1 ± 3.0, P = 0.88). Finally, the intra-

abdominal fat depot was 43 % larger in the patient than in the control women  

(P = 0.027, BSA adjusted weight). Adiponectin was significantly lower in the patients 

than in the controls (Table 3). Both leptin and the BMI were inversely related with 

mutation heteroplasmy in the buccal epithelium and in muscle (r = -0.54 to -0.72 and  

P < 0.05 for all, n = 15 for epithelium and n = 12 for muscle).  
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Figure 7. Glucose uptake in subcutaneous fat. A: Glucose uptake (GU) rate per tissue weight in 
subcutaneous abdominal fat. The P-values are shown for all patients or, in parentheses, for the 
women only. B: The insulin-stimulated GU per the abdominal fat depot in women. Controls 
(Con). Patients with m.3243A>G and with normal or impaired glucose tolerance (Group 1), 
patients with m.3243A>G and with newly-diagnosed diabetes (Group 2), patients previously 
diagnosed and treated for diabetes (Group 3). Significant post hoc comparisons are given when 
a priori P < 0.05. The horizontal line indicates the mean. 
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Table 3.  

Proteins related to insulin resistance 

 m.3243A 
Controls 

m.3243G 
All 

PA m.3243G 
Group 1 

m.3243G 
Group 2 

m.3243G 
Group 3 

N 12B 15  5 3 7 
Adiponectin 
(mg/l) 

16 ± 9 9 ± 7 0.032 10 ± 7 12 ± 11 7 ± 4 

Leptin (µg/l) 9 ± 10  10 ± 10 0.94 17 ± 13 13 ± 8 4 ± 3 
CRP (mg/l)  0.6 ± 0.4 1.3 ± 1.7 0.86 1.9 ± 1.9 0.3 ± 0.2 1.3 ± 1.9 
TNF-α (µg/L) 2.4 ± 1.1 3.3 ± 1.3 0.06 2.6 ± 1.4 3.7 ± 0.5 3.6 ± 1.4 
IL-6 (µg/l) 4.2 ± 5.0 6.7 ±12.7 0.83 1.6 ± 1.9 12.3 ± 21.3 7.8 ± 13.6 
IL-8 (µg/l) 1.7 ± 1.3 2.2 ± 1.7 0.32 1.5 ± 0.7 2.9 ± 3.2 2.3 ± 1.3 
MCP-1 (µg/l) 0.2± 0.1 0.2 ± 0.1 0.23 0.2 ± 0.1  0.2 ± 0.1 0.2 ± 0.1 
NGF (ng/l) 18 ± 20 25 ± 41 0.68 6 ± 10 46 ± 74 29 ± 39 
PAI-1 (µg/l) 5.2 ± 3.4 6.9 ± 5.4  0.35 8.3 ± 3.5 6.6 ± 4.1  6.0 ± 7.1 
Resistin (µg/l) 7.9 ± 3.3 8.5 ± 3.6  0.67 7.4 ± 4.2 5.8 ± 3.7 10.4 ± 2.0 

 

Patients with m.3243A>G and with normal or impaired glucose tolerance (Group 1), patients 
with m.3243A>G and with newly-diagnosed diabetes (Group 2), patients previously diagnosed 
and treated for diabetes (Group 3). AP-value, all patients with m.3243A>G vs controls. A post 
hoc comparison between two groups was only made when a priori P < 0.05. BOne frozen 
sample was lost. For abbreviations see methods section (5.7). Data are mean ± SD. 
 
 
6.7 Liver metabolism (III) 
 
No difference was noted in the liver enzymes between the groups (Table 1, Study 3; 

Table 1). The insulin-stimulated glucose uptake in the liver did not differ between the 

patients and the controls (Figure 8). An inverse relationship between intra-abdominal 

fat mass (BSA adjusted) and hepatic glucose uptake rate was present in women with 

m.3243A>G (r = -0.66, P = 0.038, n = 10). No differences were detected in the EGP 

during hyperinsulinemia (Figure 8). Furthermore, only three patients (20%) with 

m.3243A>G had abnormal high liver fat, defined as higher than the 5.56% cut-off. The 

median liver fat content was somewhat higher in patients with m.3243A>G than in the 

controls (P = 0.037). Among the patients or controls, no association between liver fat 

and hepatic glucose uptake was noted. In the patients with m.3243A>G, EGP 

correlated with the Hb-A1C (r = 0.83, < 0.001, n = 15) and heteroplasmy in the skeletal 

muscle (r = 0.83, P = 0.001, n = 12) and showed a somewhat paradoxical inverse 

correlation with leptin (r = -0.67, P = 0.007, n = 15).  
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Figure 8. Liver metabolism in patients with the m.3243A>G. A: Hepatic glucose uptake per 
tissue weight (HGU). B: Endogenous glucose production (EGP). EGP was higher in patients 
with previously diagnosed diabetes as compared to patients without diabetes. Controls (Con). 
Patients with m.3243A>G and with normal or impaired glucose tolerance (Group 1), patients 
with m.3243A>G and with newly-diagnosed diabetes (Group 2), patients previously diagnosed 
and treated for diabetes (Group 3). Significant post hoc comparisons are given when a priori  
P < 0.05. The horizontal line indicates the mean. 
 
 
6.8 Cardiac glucose uptake (IV) 
 
The left ventricular glucose uptake per tissue weight (LVGU) was 25% lower in 

patients with the m.3243A>G than that in the controls (P = 0.044 t-test or 0.029 Mann–

Whitney U). However, the differences between individual patients and patient 

subgroups were also evident (Figure 9). Due to the large variation in the LVGU values 

among the patients, the contribution of parameters commonly associated with the 

LVGU were assessed in patients with the m.3243A>G mutation. The LVGU was not 
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associated with the FFAs during the hyperinsulinemia (r = -0. 21, P = 0.46, n = 14) nor 

forward work (r = 0.45, P = 0.12, n = 13). In addition, the association with LVGU and 

skeletal muscle insulin sensitivity (r = 0.01, P = 0.98, n = 14) was lacking. Instead, the 

LVGU was inversely associated with glycosylated haemoglobin (r = -0.58, P = 0.029,  

n = 14). The LVGU also decreased across the glucose tolerance groups showing a 

similar pattern as the beta cell function (Figure 9 and Table 2). Unexpectedly, an 

inverse correlation between the rate pressure product and LVGU was noted (r = -0.60, 

P = 0.022, n = 14).  

 

 
Figure 9. Cardiac glucose uptake. A: The left ventricular glucose uptake per tissue weight 
(LVGU) in groups defined by glucose tolerance. Controls (Con). Patients with m.3243A>G and 
with normal or impaired glucose tolerance (Group 1), patients with m.3243A>G and with 
newly-diagnosed diabetes (Group 2), patients previously diagnosed and treated for diabetes 
(Group 3). B: Glucose uptake during hyperinsulinemia in myocardium in healthy subjects (Con) 
and in patients with low or high m.3243A>G mutation load (median 49%). Significant post hoc 
comparisons are given when a priori P < 0.05. The horizontal line indicates the mean. 
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With respect to the mitochondrial disease, the LVGU was inversely associated with 

epithelial heteroplasmy (r = -0.53, P = 0.049, n = 14) and muscle heteroplasmy  

(r = -0.63, P = 0.039, n = 11) and fasting pyruvate (r = -0.62, P = 0.019 n = 14). The 

effect of the mutation load on LVGU was further assessed by dividing the patients into 

two groups by the median heteroplasmy 49%. In this analysis, patients with mutation 

heteroplasmy < 49% in epithelium did not contribute to the low LVGU (Figure 9). This 

post hoc difference in LVGU between the low and high m.3243A>G heteroplasmy 

groups remained significant also after adjustment for Hb-A1C (P = 0.029) or FFA 

during the clamp (P = 0.009) or skeletal muscle glucose uptake (P = 0.03) or all  

(P = 0.048). No regional variation in LVGU results was detected. The patients with 

m.3243A>G compensated the low stroke volume with a high heart rate (Table 4). The 

cardiac morphology and function was essentially similar between the high and low 

m.3243A>G heteroplasmy groups (data not shown). The difference in LVGU between 

the high heteroplasmy group and the controls or the high heteroplasmy group and the 

low heteroplasmy group remained similarly significant if only the patients with 

available skeletal muscle heteroplasmy value were included and the cut-off was 

determined by the median heteroplasmy in muscle (data not shown). 
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Table 4.  
 
Cardiac function and structure assessed with magnetic resonance imaging 
 

 m.3243A 
Controls 

m.3243G 
AllB 

PA m.3243G 
Group 1 

m.3243G 
Group 2 

m.3243G 
Group 3 

N 13 15  5 3 7 

BP systolic (mmHg) 125 ± 14 126 ± 15 0.84 131 ± 7 112 ± 15 129 ± 16 

BP diastolic (mmHg) 76 ± 7 83 ± 12 0.040 80 ± 6 82 ± 2 85 ± 17 

Heart rate (beats/min) 58 ± 6 69 ± 11 0.004 64 ± 14 69 ± 1 73 ± 12*C 

RPP (mmHg 
·beats·min-1) 

7307 ± 
1083 

8696 ± 
1730 

0.029 8283 ±  
1475 

7742 ± 
 951 

9401 ± 
 2014 

Left Ventricle       

EDV/BSA (ml·m-2) 88 ± 10 77 ± 14 0.32 77 ± 16 80 ± 5 76 ± 16 

ESV/BSA (ml·m-2) 27 ± 6 27 ± 10 0.87 25 ± 10 26 ± 8 28 ± 11 

SV/BSA (ml·m-2) 61 ± 8 51 ± 7 0.002 53 ± 7 54 ± 3 48 ± 7**C 

Ejection fraction (%) 69 ± 5 67 ± 9 0.38 69 ± 8 67 ± 9 65 ± 11 

Mass/BSA (g·m-2) 54 ± 7 59 ±15 0.65 51 ± 6 56 ± 5 67 ± 21 

Posterior wall (mm) 6.7 ± 1.1 7.7 ± 1.6 0.057 7.3 ± 0.9 8.0 ± 0.6 8.0 ± 2.4 

Septum (mm) 7.8 ± 1.5 8.4 ± 2.0 0.41 7.9 ± 0.3 6.7 ± 0.8 9.8 ± 2.4 

CO/BSA (l·min-1·m-2) 3.5 ± 0.5 3.4 ± 0.5 0.49 3.3 ± 0.5 3.7 ± 0.3 3.4 ± 0.6 

Work power 
(mmHg·-1) 

776 ± 
179 

712 ± 
111 

0.27 731 ± 
 117 

685 ± 
 465 

707 ± 
 139 

Forward work power 
(J/g) 

8.3 ± 1.1 7.8 ± 1.5 0.32 8.7 ± 1.8 7.6 ± 0.5 7.1 ± 1.4 

Right Ventricle       

EDV/BSA (ml·m-2) 89 ± 15 80 ± 16 0.16 84 ± 16 81 ± 10 77 ± 21 

ESV/BSA (ml·m-2) 27 ± 10.0 31 ± 11 0.46 31 ± 11 28 ± 9 31 ± 11 

 
Patients with m.3243A>G and with normal or impaired glucose tolerance (Group 1), patients 
with m.3243A>G and with newly-diagnosed diabetes (Group 2), patients previously diagnosed 
and treated for diabetes (Group 3). AP-value, all patients with m.3243A>G vs controls. A post 
hoc comparison between two groups was only made when a priori P < 0.05. BOne patient failed 
to lie still during the cardiac magnetic resonance imaging and the respective data was lost. RPP 
= rate pressure product. *A post hoc comparison between two groups after a priori P < 0.05. *C 
and **C (P < 0.05 and < 0. 01 vs controls [C = controls]) Data are mean ± SD. 
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7 DISCUSSION 

 

7.1 Synopsis  
 
Twelve of the 15 patients with the m.3243A>G in the present study were ascertained 

previously in a population-based epidemiological study, thus reducing the selection 

bias in the present study. The study sample size was small but relevant if compared to 

the previous metabolic studies. However, I failed to recruit enough adult patients with 

normal glucose tolerance harbouring the m.3243A>G mutation. Therefore conclusions 

about the data have to be done accordingly. The novel findings of the present study 

were that 1) rCMRO2 is globally decreased including frontal lobe and other areas, 

which have not been traditionally associated with mitochondrial disease. 2) The 

decreased oxygen to glucose consumption ratio indicated increased lactate production 

within the brain also in the asymptomatic patients. 3) The insulin secretion parameters 

correlate with the m.3243A>G heteroplasmy. 4) Insulin resistance in skeletal muscle is 

a common finding in patients with m.3243A>G. This includes patients with no 

diabetes and no relevant decrease in the beta cell function or in nutritive muscle 

perfusion. 5) Insulin-stimulated adipose tissue metabolism in patients with the 

m.3243A>G mutation is disturbed. 6) A major liver steatosis or hepatic insulin 

resistance does not characterize patients with mitochondrial diabetes. 7) Cardiac 

substrate preference is uneconomical in patients with high m.3243A>G mutation 

heteroplasmy, at least in the presence of diabetes. The PET method was feasible in 

detecting significant and relevant metabolic differences between small groups of 

patients and controls in this study. Therefore, it may be a useful tool in future 

metabolic studies on rare mitochondrial disorders. The available small groups and 

subgroups resulted in a loss of power in the study and some significant changes may 

have remained undetected. The small sample size further renders this study as 

hypothesis generating and some of the new findings require confirmation in future 

studies. 
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7.2 Brain glucose oxidation in the presence of the m.3243A>G mutation  
  
A global decrease in cerebral oxygen metabolism and in oxygen to glucose index in 

patients with the m.3243A>G mutation was found in this study. A global decrease in 

the mtDNA-encoded proteins has been reported in the affected as well as in the non-

affected cerebral cortex in the brain of patients with full-blown MELAS due to the 

m.3243A>G mutation (Sparaco et al. 2003; Betts et al. 2006). We found that rCMRO2 

was decreased in all the grey and white matter regions assessed in patients with 

m.3243A>G. This was true also for the frontal lobe, which is usually spared in patients 

with mitochondrial encephalopathy (Betts et al. 2006; Molnar et al. 2000; Sue et al. 

1998). This study thus confirmed the presence of an oxidation defect, previously found 

in the cells harbouring this mutation, now in the living brain. These results extend the 

similar results in two previous studies performed with a quantitative approach in 

patients with mitochondrial disease. Firstly, because of the more advanced scanner 

technology, the concurrent MRI and [1H]MRS data with PET and the inclusion of 

asymptomatic patients with previous neuropsychological tests made the regional 

characterization more conclusive as compared to the two previous studies (Frackowiak 

et al. 1988; Shishido et al. 1996). Secondly, this study contained only patients with 

confirmed molecular genetic diagnosis and heteroplasmy data. This was not the case in 

the previous studies making it challenging to draw any parallels between the cerebral 

and cybrid cell metabolism. 

 
The low OGI ratio was detected together with high lactate in unaffected brain regions 

suggesting that the previous reports of elevated brain lactate might reflect a high in situ 

lactate production (Dalsgaard et al. 2004; Dubeau et al. 2000; Kaufmann et al. 2004). 

However, the decrease in substrate oxidation was not essentially compensated by an 

anaerobic ATP production as no absolute increase in glucose uptake was detected. 

Therefore, an increased anaerobic glucose metabolism may have no relevance to the 

neuronal survival in these patients. The glucose hypometabolism was attributed to 

patients with CNS symptoms. In general, impaired glucose tolerance is not associated 
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with glucose hypometabolism during hyperinsulinemic clamp (Hirvonen et al. 2011). 

However, approximately one third of the observed NAA decrease might have been 

explained by the presence of chronic hyperglycaemia, which should be taken into 

consideration in the future studies including patients with m.3243A>G and diabetes 

(Heikkilä et al. 2009). The overall atrophy score and decreased NAA/Cr ratio in 

[1H]MRS spectroscopy suggested a higher degree of neurodegeneration in 

symptomatic patients. The glucose hypometabolism and atrophy were more evident in 

the posterior part of the brain. The pattern of regional glucose hypometabolism was in 

accordance with a previously demonstrated hypometabolism non-quantitative 

[18F]FDG–PET study and previous electrophysiological, imaging and clinical findings 

in patients with m.3243A>G (Molnar et al. 2000; Damian et al. 1998; Majamaa-Voltti 

et al. 2006; Sue et al. 1998; Suzuki et al. 1996). Then again, the relative preservation of 

the glucose metabolism, despite the high atrophy score in the cerebellum seems not to 

be compatible with an atrophy associated hypometabolism hypothesis. Interestingly, 

the glucose uptake in the cerebellum may have its own special characteristics such as 

lack of adaptation to a chronic hyperglycaemia (Heikkilä et al. 2010).  

 

The two previous studies using a multitracer approach reported a decrease in rCMRO2 

and rOGI in severely affected patients with mitochondrial disease. The rGMR and 

rCBF were near normal (Frackowiak et al. 1988; Shishido et al. 1996). The present 

results show a ~12 % decrease in rCBF in patients with m.3243A>G. This trend of 

hypoperfusion was significant only in the thalamus. This might have been secondary to 

degenerative hypodensity and calcifications, which are commonly reported in this area 

in patients with mitochondrial disease (Sue et al. 1998). Previously, endothelial 

dysfunction has been suggested to underlie mitochondrial encephalopathy. This has 

been based mainly on histological analyses of vascular wall and few reports both in 

muscle and brain in patients with m.3243A>G reporting poor vasodilation. This 

“mitochondrial angiopathy” has been suggested to underlie both the stroke-like lesions, 

as well as the encephalopathy (Ohshita et al. 2000; Sparaco et al. 2003; Betts et al. 

2006). Previous studies employing non-quantitative single-photon emission computed 
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tomography have revealed contradictory perfusion patterns. Normal, asymmetric 

hypoperfusion or hyperperfusion in the brain have been reported in patients with 

m.3243A>G (Suzuki et al. 1996; Thajeb et al. 2005; Iizuka et al. 2007; Ito et al. 2008). 

The majority of the patients in these studies have had a history of stroke-like episodes. 

We did not measure the vascular reserve in the cerebral arteries, but the decreased 

regional oxygen extraction fraction in brain suggests a relative preservation of the 

vascular supply of oxygen (Molnar et al. 2000). Notably, the skeletal muscle perfusion 

was identical to that of the controls during the hyperinsulineamia. The insulin in its 

turn is a physiological vasodilative stimulant, enhancing the nutritive perfusion in 

muscle. Thus, the present results do not provide any further support for disturbed 

endothelial function in mitochondrial encephalopathy or myopathy (Iizuka et al. 2007; 

Molnar et al. 2000). Finally, I suggest that the primary energy imbalance in neurons 

rather than ischemia is the major cause for the encephalopathy in patients with the 

m.3243A>G mutation.  

 

It has been proposed that certain polymorphism in mtDNA and the mitochondrial 

dysfunction might predispose individuals to neurodegenerative diseases. Some 

previous epidemiological studies have suggested that variation in mitochondrial genes 

predispose to Parkinson’s disease (Autere et al. 2004). A new interest towards this 

issue has been evoked after POLG mutations were described to cause Parkinson’s 

disease and due to the discovery of disturbed mitochondrial fission and fusion 

machinery in the models of monogenetic Parkinson’s disease (Davidzon et al. 2006; 

Deng et al. 2008). At present, there is no firm evidence indicating that defective 

OXPHOS could be detected in the brains or in other tissues in patients before the onset 

of common neurodegenerative diseases (Borland et al. 2009; DiDonato et al. 1993; 

Bindoff et al. 1991). PET studies in patients with Alzheimer’s diseases have preferably 

shown local glucose or oxygen hypometabolism or hypoperfusion or reduced 

expression of energy metabolism genes (Kuwabara et al. 1995; Liang et al. 2008). In 

Alzheimer’s, Parkinson’s or Huntington’s disease no decrease in rCMRO2, regional 

oxygen extraction fraction or rOGI have been found (Kuwabara et al. 1995; Powers et 
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al. 2007; Powers et al. 2008). Based on the present study, an absolute and relative 

global decrease in oxidative metabolism characterizes only patients with mitochondrial 

disease. Thus, no shared pattern in brain metabolism linking patients harbouring the 

m.3243A>G mutation and common neurodegenerative diseases such as Parkinson’s, 

Alzheimer’s or Huntington’s disease was found in the present study.  

 

 
7.3 Insulin secretion in patients with the m.3243A>G mutation 
 
Insulin secretion was measured during OGTT and further analyzed by mathematical 

modelling based on C-peptide deconvolution. The parameters of beta cell function: the 

glucose sensitivity and the rate sensitivity were well-preserved in some patients with 

m.3243A>G. The main parameter “the beta cell glucose sensitivity” derived from this 

model has previously shown to be at least as sensitive as the intravenous glucose 

tolerance test based indices, such as acute insulin response in detecting defects in beta 

cell function in patients with normal to diabetic glucose homeostasis preserving its 

validity also in hyperglycaemic states (Mari et al. 2001; Mari et al. 2010; Mari et al. 

2008). It has also shown a good diabetes prediction potential both in lean and obese 

patient groups at high risk for diabetes (Walker et al. 2005). The slight non-significant 

decrease in glucose sensitivity in group 1 was comparable in magnitude to the 

previously reported decrement in obese subjects with normal glucose tolerance. The 

tendency to higher rate sensitivity and rate sensitivity disposal index values could also 

be compared to that of healthy obese subjects (Study2; Table 2)(Ferrannini et al. 2005). 

Both fasting glucose levels and basal insulin secretion were well-preserved in groups 1 

and 2, this also resembling obese individuals with no diabetes (Ferrannini et al. 2005). 

Studies in cybrid cells have clearly shown that the m.3243A>G mutation impairs both 

the ATP yield essential for GIS as well as blunts the calcium oscillation through the 

decreased mitochondrial membrane potential (de Andrade et al. 2006). These two 

factors may explain the impaired beta cell function in patients with m.3243A>G. 

Cybrid cell studies have shown that oxygen consumption, which is in turn related to 

the mitochondrial membrane potential and to the energy generation capacity, is 
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impaired in the function of the heteroplasmy. In the present study glucose sensitivity 

and rate sensitivity showed an inverse correlation with the heteroplasmy. Importantly, 

this correlation was significant for AUCI/AUCG index when only patients with no 

previous diabetes and GHb-1AC ≤ 6.1% (groups 1 and 2) were included. Possibly, the 

only available study in patients with m.3243A>G shows no major deviation of the beta 

cell heteroplasmy in pancreas from the mutation load in other tissues (Otabe et al. 

1999). A previous study has also suggested that the level of heteroplasmy may 

determine the age-of-onset in mitochondrial diabetes (Laloi-Michelin et al. 2009). In 

summary, the present study is the first to confirm that the insulin secretion capacity is 

defined by the m.3243A>G heteroplasmy.  

 

Previous studies have shown that insulin secretion is impaired in patients with 

m.3243A>G and diabetes even if the response to arginine and glutamate is preserved, 

which is compatible with our data (Suzuki et al. 1997; Suzuki et al. 1994; Brändle et al. 

2001). One previous OGTT study has included more m.3243A>G carriers than the 

present study. It demonstrated that the IGI was decreased in seven m.3243A>G carriers 

with normal glucose tolerance (Suzuki et al. 1994). This result is compatible with the 

similar trend seen in group 1. In some studies no defects in insulin secretion have been 

found (Holmes-Walker et al. 2001; Gebhart et al. 1996). Interestingly, two studies in 

this context report the OGTT raw data and show a similar insulin and glucose pattern 

during the 2-hour OGTT at the non-diabetic range as the patients in the present thesis 

had. Thus, C-peptide and glucose values started from a high normal range and were 

both relatively higher than the control group values during the last hour of the oral 

glucose tolerance (Holmes-Walker et al. 2001; Frederiksen et al. 2009). In these two 

studies the lack of power and modelling efforts have probably resulted in the false 

negative results and a conclusion about a normal beta cell function. On the other hand, 

the lack of heteroplasmy in skeletal muscle or epithelial tissue was the major caveat of 

all the previous studies and may also explain some of the apparently contradicting 

results. Still, even if the heteroplasmy data are available, the present cross-sectional 

study fails to explain why none of our subjects were diabetic in their early lives. 
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Oxidative stress, apoptosis and impaired protein synthesis might lead to a beta cell 

failure in mitochondrial disease (Abramov et al. 2010; van Eijsden et al. 2008; King et 

al. 1992). However, a reduced beta cell number and the absence of increased apoptosis 

have been reported in the pancreatic tissue in patients with m.3243A>G (Otabe et al. 

1999). All the seven patients with previously diagnosed diabetes in the thesis had 

disease duration longer than 5 years. Still, they all had relevant > 0.2 nmol/l fasting  

C-peptide levels in contrast to ~8% of adult-onset patients with type 1 diabetes with 

similar disease duration (Sherry et al. 2005). Nevertheless, the residual insulin 

secretion might potentially reduce hyperglycaemia and possible glucotoxicity to end 

organs (Sherry et al. 2005; Massin et al. 2008). Further follow-up studies are suggested 

to enable to characterize the natural course of beta cell function in mitochondrial 

diabetes.  

 
 
7.4 Skeletal muscle insulin resistance in mitochondrial diabetes 
 
The present study showed invariably insulin resistance in skeletal muscle (Figure 6). 

The insulin resistance in skeletal muscle was present already in the early phase of 

glucose intolerance in subjects with the m.3243A>G mutation even if the beta cell 

response to glucose and the glycaemic control were essentially preserved. The use of 

[18F]FDG-PET enabled me to measure glucose uptake directly in the skeletal muscle 

without any interference from other organs important in glucose homeostasis during 

hyperinsulinemia, such as adipose tissue and liver. Potentially, a low adipose tissue to 

muscle mass ratio or a low muscle to liver mass ratio may have decreased the 

probability to detect insulin resistance in skeletal muscle in the previous studies. The 

~50% decrease in skeletal muscle glucose uptake was quantitatively comparable to that 

previously reported in obese subjects or in patients with type 1 or 2 diabetes (Utriainen 

et al. 1998; Virtanen et al. 2002; Groop et al. 1989; Nuutila et al. 1993; Iozzo et al. 

2003). This study is the first to show that the skeletal muscle insulin sensitivity is 

decreased in patients with the m.3243A>G mutation. A standard hyperinsulinemic 

clamp technique has been used to assess skeletal muscle insulin sensitivity in two 
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previous studies both including less subjects with m.3243A>G than the present study. 

Such assessments are affected by uptake in other insulin responsive organs and the 

results in these studies should have been adjusted at least to lean body weight in order 

to allow conclusion about the skeletal muscle. In the first study seven mutation carriers 

had lower insulin sensitivity than the controls (Velho et al. 1996). The authors 

concluded that peripheral insulin resistance did not seem to precede diabetes even if 

three of the four subjects with no diabetes had insulin sensitivity, which was lower than 

the mean of the controls. In the other study insulin sensitivity within the low normal 

range, as compared to historical controls, was reported in eight m.3243A>G patients 

with diabetes and one with impaired glucose tolerance (Suzuki et al. 1997). The insulin 

sensitivity has thus been proposed to be unaffected previously. However, the raw data 

in the two largest studies assessing OGTTs in patients with m.3243A>G and no 

diabetes might propose another interpretation. These two studies namely show a 

normal but relatively high insulin secretion and normal but relatively high glucose 

during the second hour of OGTT as compared to controls. This pattern could be easily 

explained by the presence of insulin resistance in skeletal muscle (Frederiksen et al. 

2009; Holmes-Walker et al. 2001). Thus the data in the previous studies assessing the 

insulin secretion and action in patients with m.3243A>G seem not to be contradictory 

to the present thesis reporting insulin resistance in the skeletal muscle. 

 

Insulin resistance is strongly predictive for diabetes in subjects with high hereditary 

risk. In the light of the previous findings about insulin resistance in both patients with 

type 1 or 2 diabetes it would have been unexpected not to find it in patients with 

m.3243A>G and diabetes. Various previous findings in skeletal muscle, such as 

elevated intramuscular triglycerides, low OXPHOS function, fitness association with 

reduced OXPHOS gene expression and impaired lipid oxidation or the TFAM gene 

promoter methylation in blood cells either in patients with diabetes or in subjects with 

normal glucose tolerance but high predisposition to later diabetes have lead to a 

suggestion that the defective mitochondrial metabolism might have an initiating role in 

the development of insulin resistance and diabetes (Patti and Corvera. 2010; Gemma et 
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al. 2010). Furthermore, insulin sensitivity and substrate oxidation can be increased by 

overexpressing PGC-1α and PGC-1β in skeletal muscle (Patti and Corvera. 2010). 

However, the blocking of the mitochondrial respiration in myotubes or the knocking 

out of PGC-1α leads, at least initially, to increased basal and insulin-stimulated glucose 

or [18F]FDG uptake due to the elevated glycolysis comparable to the high anaerobic 

glucose utilization in cybrid cell lines harbouring the m.3243A>G mutation (Patti and 

Corvera. 2010; Brown et al. 2008; Smith and Blaylock. 2007; de Andrade et al. 2006). 

Furthermore, a mouse model of mitochondrial myopathy using tissue specific KO of 

the TFAM leads to myopathy including ragged red fibres, decreased respiratory chain 

activity in muscle and clinical exercise intolerance. Importantly, these mice show an 

increase instead of a decrease in insulin-stimulated glucose uptake in skeletal muscle, 

suggesting that a primary OXPHOS defect does not lead to insulin resistance in the 

skeletal muscle (Wredenberg et al. 2002; Wredenberg et al. 2006).  

 

The heteroplasmy data in skeletal muscle is reproductive and has a predictive value for 

instance for the phenotype and VO2 max in mitochondrial disease (Chinnery et al. 

1997; Jeppesen et al. 2006; Janssen et al. 2008). Heteroplasmy in urine sediment, 

cheek mucosa, and skin fibroblasts correlates with the m.3243A>G heteroplasmy in 

muscle and may be used as a more accessible alternative for the same purpose. Due to 

the lack of heteroplasmy data in tissues other than the leucocytes in the study of Velho 

it is difficult to deduce the contribution of the m.3243A>G mutation to insulin 

sensitivity in the previous two studies (Whittaker et al. 2009; Frederiksen et al. 2006; 

Mehrazin et al. 2009; Rajasimha et al. 2008). Importantly, the fate of glucose during 

the hyperinsulinemia is not oxidation but a glycogen synthesis in skeletal muscle 

(Virkamäki et al. 1997). Therefore it is not surprising that skeletal muscle glucose 

uptake and heteroplasmy data did not show any correlation in the present study even if 

the biochemical OXPHOS defect and the VO2 max show a good correlation with the 

heteroplasmy in muscle (Jeppesen et al. 2006; Janssen et al. 2008).  
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The structured interview on physical activity which we used did not reveal significant 

differences in the daily physical activity between patients and controls. However, a 

mild clinical myopathy is common in patients with the m.3242A>G mutation (Kärppä 

et al. 2005). It is possible that due to the lack of more objective data - that is for 

instance accelerometer measurements on physical activity, some of the observed 

differences in the skeletal muscle but probably not in cardiac glucose uptake might be 

explained by physical deconditioning of the patients in this study (Apabhai S et al.2011 

and Takala et al.1999). We found that during physiological insulin stimulus of the 

blood flow the perfusion was comparable in patients with m.3243A>G and the 

controls, suggesting no major participation of endothelial function in the glucose 

uptake results. In conclusion, after the present study it is unclear if and how a primary 

defect in mitochondrial respiratory chain due to m.3243A>G in myocyte might induce 

insulin resistance. The now reported combination of insulin resistance with preserved 

basal insulin secretion and their relation to glycaemic control, epithelial heteroplasmy 

and BMI suggests further studies on insulin sensitizers in the treatment of 

mitochondrial diabetes. 

 
 
7.5 Adipose tissue metabolism during hyperinsulinemia 
 
The patients with the m.3243A>G showed invariably a decreased insulin-stimulated 

glucose uptake in subcutaneous fat (Figure 7). Using an identical PET technique, it has 

been previously demonstrated that insulin-stimulated glucose uptake per tissue mass is 

decreased by 59% in obese subjects and by 41% in obese patients with type 2 diabetes 

as compared to lean controls. Thus, this change is seemingly independent from the 

glucose tolerance (Virtanen et al. 2005). In obese patients the insulin-stimulated 

[18F]FDG uptake per tissue weight decreases with higher depot weight. The low BMI 

has previously been shown to correlate with the degree of heteroplasmy in patients 

with the m.3243A>G mutation (Laloi-Michelin et al. 2009). In this thesis both the 

subcutaneous fat mass, BMI and leptin correlated with the mutation heteroplasmy 

(Study III, result section). The lower depot weight and possibly the lower adipocyte 
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size might mask the possibly more pronounced adipocyte dysfunction in patients with 

high heteroplasmy. Nevertheless, the low adiponectin and impaired insulin suppression 

of fatty acids in patients with m.3243A>G are in line with impaired [18F]FDG uptake 

in fat (Viljanen et al. 2009; Groop et al. 1989). Previous studies on adiponectin 

clearance and production have shown that circulating adiponectin levels are determined 

by the adipocyte dysfunction and not by the fat tissue mass or the changes in 

adiponectin clearance (Hoffstedt et al. 2004; Kadowaki et al. 2006). Variation in the 

BMI or in glucose homeostasis does not determine the adiponectin levels. For instance, 

physically active healthy lean subjects or patients with type 1 diabetes have relatively 

high adiponectin levels, whereas healthy obese and patients with type 2 diabetes and 

lean patients with lipodystrophy show similarly decreased adiponectin levels (Weyer et 

al. 2001; Perseghin et al. 2003; Sutinen et al. 2003). 

 

Interestingly, a recent report on thymidine kinase 2 deficiency in mice mimicking 

mitochondrial disease showed mitochondrial DNA depletion, reduced fat 

accumulation, significant reduction in mtDNA-encoded transcripts, a reduction of 

thermogenesis related gene expression and a severe reduction in leptin mRNA in white 

adipose tissue as the circulating levels of leptin and resistin were low (Villarroya et al. 

2011). In summary, the insulin resistance in subcutaneous fat, low adiponectin and 

high insulin suppressed FFAs in patients and the smaller subcutaneous fat depots and 

leptin levels with increasing heteroplasmy may indicate relevant adipocyte dysfunction 

in patients harbouring the m.3243A>G mutation. 

 

A role for defective mitochondrial function in obese adipose tissue has been suggested. 

Firstly, mitochondrial number correlates strongly with lipogenesis in adipocytes and 

normal energetics are required for insulin signalling suggesting their importance in fat 

storage (Patti and Corvera. 2010). Secondly, gene expression in twin studies shows 

relative downregulation of pathways activating mitochondrial biogenesis in acquired 

obesity (Pietiläinen et al. 2008). Thirdly, relative hypoperfusion in adipose tissue might 

underlie the deregulated adipocyte metabolism and decreased adiponectin production 
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due to the hypoxia upregulated C/EBP homologous protein (CHOP) as shown in the 

adipose tissue of obese mice (Hosogai et al. 2007). Fourthly, PPAR-gamma agonists 

induce adipocyte FA oxidation and decreased release of FFAs in the circulation and 

increase the mtDNA copy number and TFAM in fat (Patti and Corvera. 2010). Fifthly 

adiponectin levels are increased by these drugs, which are considered to be an indicator 

of normal adipocyte proliferation and maturation (Ahmed et al. 2010; Hammarstedt et 

al. 2005). The present study was first to evaluate the adipose tissue metabolism in 

mitochondrial diabetes. Related information about substrate preference is also limited. 

A single previous study has assessed fatty acid oxidation in patients with mitochondrial 

mutations including four subjects with m.3243A>G at rest and during exercise. No 

aberration in the whole-body fatty acid or glucose oxidation was noted as assessed by 

an indirect calorimeter (Jeppesen et al. 2009). A mouse model for mitochondrial 

myopathy has recently shown that mitochondrial defects may lead to catechsia and low 

BMI and adipocyte size (Tyynismaa et al. 2010). Interestingly, also the CHOP seems 

to be elevated in cells harbouring m.3243A>G (Fujita et al. 2007). However, the most 

potential model available for mitochondrial diabetes at present is the tissue specific 

disruption of TFAM, which leads to a mitochondrial translation defect resembling that 

in patients with the m.3243A>G mutation. Skeletal muscle specific TFAM KO mice 

show decreased, complex I, III and IV activity, exercise intolerance and RRFs as the 

insulin-stimulated glucose uptake in muscle is increased in them (Wredenberg et al. 

2006). Interestingly, the TFAM knockdown in adipocytes leads to adipocyte insulin 

resistance including decreased insulin-stimulated GLUT4 translocation and 

transmembrane glucose transport (Shi et al. 2008). The present results are preliminary 

and may have been disturbed by small defects in the glucose homeostasis. Still, these 

results would be strongly compatible with the FFA flux hypothesis, where adipocyte 

failure leads to insulin resistance in skeletal muscle, now in mitochondrial diabetes 

(Patti and Corvera. 2010). The FFA flux induction of insulin resistance in skeletal 

muscle would also potentially reconsolidate the discrepancy between the lack of 

skeletal muscle insulin resistance in muscle tissue specific TFAM KO mice and 

patients with insulin resistance and the m.3243A>G mutation.  
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7.6 The role of liver metabolism in mitochondrial diabetes 
 
The relatively low liver fat content found here in patients with m.3243A>G is in 

accordance with the more recent of the two case reports available, where one patient 

with skeletal muscle insulin resistance had no elevation in liver fat as compared to six 

controls (Szendroedi et al. 2009b). The other case report described a liver failure and 

steatosis in a patient with the m.3243A>G mutation (Takahashi et al. 2008). The 

patient having the lowest heteroplasmy in skeletal muscle and a mild PEO phenotype 

had the highest liver fat. Interestingly, in patients with m.3243A>G and PEO 

phenotype the fatty acid oxidation proteins might not be upregulated as compared to 

patients with m.3243A>G and MELAS phenotype and as assessed in myocytes (Crimi 

et al. 2005). Notably, hepatic failure and steatosis is a common fatal feature in children 

with Alper’s syndrome, which in turn is commonly due to the mtDNA depletion 

caused by mutations in the POLG gene (Kurt et al. 2010). On the contrary, the fat 

accumulation in the liver in patients with m.3243A>G was very moderate, especially 

when keeping in mind that high FFAs during hyperinsulinemia and low fasting 

adiponectin are commonly associated with high liver fat not only in obesity but also in 

lean patients with acquired lipodystrophy (Korenblat et al. 2008; Sutinen et al. 2003). 

In accordance with the present results a recent model for mitochondrial myopathy 

showed that mitochondrial disease in mice may lead to a low and diet resistant fat 

content in the liver (Tyynismaa et al. 2010). 

The insulin-stimulated hepatic glucose uptake reflects insulin sensitivity in the 

proximal part of glucose metabolism in liver (Iozzo et al. 2003a; Rijzewijk et al. 2010). 

Similarly to the ability of insulin to harness EGP, the insulin-stimulated hepatic 

glucose uptake is usually inversely related to the liver fat content and is augmented by 

metformin treatment (Rijzewijk et al. 2010; Iozzo et al. 2003b; Borra et al. 2008). 

Based on the previous studies in patients with type 2 diabetes I would have expected at 

least a 20% decrease in hepatic glucose uptake partly because of the previous 

associations between impaired glycaemic control and hepatic glucose uptake, and 

partly due to the fact that fatty acids impair insulin-mediated glucose uptake in liver 
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(Iozzo et al. 2003a; Iozzo et al. 2003; Iozzo et al. 2003; Iozzo et al. 2004). However, no 

impairment in glucose metabolism was present but the correlation between EGP and 

the Hb-A1C could be detected in the patients. The well-preserved glucose uptake in 

liver is, in addition, in accordance with the experimental liver-specific ablation of the 

mitochondrial apoptosis-inducing factor. These mice show a decrease in complex I 

activity, and an increased hepatic glucose turnover, which is protective against diet 

induced diabetes and insulin resistance (Pospisilik et al. 2007). Thus, the present 

results found no evidence that hepatic insulin resistance or steatosis would be a result 

of a decreased respiratory OXPHOS in the liver. In conclusion, high liver fat or hepatic 

metabolic dysfunction do not characterize mitochondrial diabetes.  

 
 
7.7 Metabolic aspects of mitochondrial cardiomyopathy 
 
The present work demonstrated that patients with the high m.3243A>G heteroplasmy 

and diabetes utilize less glucose in heart than the healthy controls. As the results about 

glucose uptake in skeletal muscle, the myocardial results in the thesis are somewhat 

surprising as compared to the previous results. For instance, the proteins of glycolytic 

pathway in cardiac TFAM KO mice have been shown to be upregulated before 

manifest cardiac disease. Furthermore, GLUT4 translocation and glucose uptake are 

increased in myocytes incubated with inhibitors of mitochondrial respiration (Hansson 

et al. 2004; Brown et al. 2008). Sedentary lifestyle, or small differences in rate pressure 

product, blood pressure, left ventricle thickness, the use of angiotensin-converting 

enzyme inhibitors and angiotensin II type I receptor blockers and beta blockers cannot 

readily explain the decrease in the myocardial glucose uptake during hyperinsulinemia 

in patients with m.3243A>G (Takala et al. 1999a; Nuutila et al. 1995; Wang et al. 

2003; Bottcher et al. 2002). On the contrary, an increase in cardiac work or rate 

pressure product is usually associated with an increase in substrate oxidation and 

uptake rate with no change in substrate preference (Ala-Rämi et al. 2005).  
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Cardiac disease and condition is often associated with a change in substrate preference. 

For example, slight cardiac hypertrophy in essential hypertony is associated with a 

shift from the utilization of fatty acids to increased glucose metabolism while in 

hypertrophic athlete heart the glucose uptake per tissue weight is decreased (Nuutila et 

al. 1995; Takala et al. 1999a). As the glucose uptake is unaffected in obese insulin 

resistant human subjects, the FFA uptake into the heart is markedly increased, a change 

that may be reversed by loosing weight (Peterson et al. 2004; Viljanen et al. 2009). The 

diabetic heart in its turn usually utilizes the highly available FFAs at the expense of 

glucose (Rijzewijk et al. 2009). However, chronic hyperglycaemia alone may not lead 

to decreased glucose uptake during hyperinsulinemia as shown in patients with type 1 

diabetes (Nuutila et al. 1993).  

 

When no changes in cardiac work are observed, the variation in substrate preference is 

often explained by the Randle’s cycle (Nuutila et al. 1992). This metabolic interaction 

implies that fatty acids have a restrictive effect on glucose oxidation in general in 

striated muscle. This phenomenon is prominent in cardiac muscle (Ala-Rämi et al. 

2005). The myocardial FFA uptake is largely determined by the concentration gradient 

across the plasma membrane and plasma FFA concentration, which in turn is 

influenced by the insulin-regulated peripheral lipolysis (Stanley et al. 2005). In the 

heart, fatty acid -oxidation increases the NADH/NAD and acetyl-CoA/CoA ratios 

which transform the pyruvate dehydrogenase (PDH) into its inactive form resulting in a 

decrease in carbohydrate oxidation and uptake (Stanley et al. 2005). In healthy 

subjects, >90% of the glucose entering the myocardium is immediately oxidized during 

the hyperinsulinemia (Ferrannini et al. 1993). Heteroplasmy in skeletal muscle and that 

in cardiac muscle have been shown to be comparable post mortem (Majamaa-Voltti et 

al. 2002). Cells harbouring m.3243A>G are unable to oxidize pyruvate derived from 

the entering glucose due to the failing redox potential of the respiratory chain, thus a 

step beyond the PDH step leading to the accumulation of pyruvate as a marker of 

decreased glucose oxidation (Pallotti et al. 2004). A decrease in pyruvate oxidation in 

cardiomyocytes would explain why the insulin-suppressed FFAs or the skeletal muscle 
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insulin sensitivity were not coupled with LVGU and why the LVGU was coupled with 

the blood pyruvate concentrations (reflecting the sum of glucose oxidation capacity in 

all tissues) and with the tissue heteroplasmy in patients with m.3243A>G. Further, as 

the cardiac substrate utilization linearly increases, but the substrate preference is 

unaltered at higher RPP, the observed paradoxically low glucose uptake in the presence 

of high rate pressure product and m.3243A>G would be reconsolidated if the primary 

defect would be in the myocardial oxidation of acetyl-CoA (Ala-Rämi et al. 2005). The 

precence of such a defect is supported by a recent [11C]acetate PET study which 

suggested a 27% slower citric acid cycle or myocardial oxidation in patients with a 

median myocyte heteroplasmy of 64% (Arakawa et al. 2010). 

 

The cardiac substrate utilization was shifted away from glucose in patients with the 

m.3243A>G. This change is commonly considered as an uneconomical substrate 

preference and it is coupled with a hypertrophic cardiac remodelling. However, as the 

oxygen metabolism in the heart was not measured, the decreased glucose oxidation 

hypothesis could not be confirmed in the present thesis. However, I may still conclude 

that an increased anaerobic glucose utilization, as previously suggested by Arakawa et 

al, may not compensate the failing cardiac energetics in m.3243A>G cardiomyopathy. 

FFA and lactate were highly available in the patients as compared to controls. The 

blood ketone levels were not measured. Therefore, I can only speculate on the matter if 

a cardiac oxidation defect, increased oxidation of more uneconomical substrates, 

decreased metabolic flexibility, diabetes or other comorbidities of the mitochondrial 

disease are the cause of the myocardial glucose hypometabolism. Finally, regardless of 

the aetiology, patients with a high m.3243A>G mutation load do not prefer to utilize 

glucose in the heart and they become deprived from the most economical myocardial 

fuel at postprandial levels of hyperinsulinemia. Therefore, this study adds the 

uneconomical substrate utilization as a contributing factor in the cardiac vulnerability 

in patients with mitochondrial disease.  
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8 CONCLUSIONS 
 
The aim of the thesis was to characterize tissue specific glucose metabolism in patients 

harbouring the m.3243A>G mutation. The [18F]FDG-PET method allowed a non-

invasive measurement of the transmembrane glucose uptake: firstly in brain and heart, 

where the organ manifestations are associated with the mortality among patients and 

secondly in the potential tissues maintaining glucose homeostasis before diabetes 

onset.  

 

The data in the present thesis allows the following conclusions: 

 

1. (Study I) The glucose oxidation and oxygen consumption rate are decreased in brain 

in patients with m.3243A>G. Low oxygen to glucose index in combination with the 

increased white matter lactate suggests increased lactate production in situ. This cross-

section suggests that a decrease in oxygen metabolism due to the m.3243A>G mutation 

may precede symptoms of mitochondrial encephalopathy.  

 

2. (Study II) During postprandial levels of euglycemic hyperinsulinemia, a ~50% 

decrease in glucose uptake with no decrease in bulk perfusion takes place in skeletal 

muscle in patients with m.3243A>G. This is detected also in patients, who do not fulfil 

the criteria for diabetes or have previously undiagnosed diabetes. The decline in beta 

cell function is associated with mutation heteroplasmy. The beta cell dysfunction and 

the insulin resistance in skeletal muscle together define the degree of glucose 

intolerance in patients with the m.3243A>G mutation. 

  

3. (Study III) Insulin-stimulated glucose uptake in subcutaneous fat was decreased in 

patients with m.3243A>G both per tissue weight and per depot. The adipose tissue 

metabolism is disturbed, before beta cell failure results in mitochondrial diabetes, 

whereas hepatic metabolism does not contribute to the impaired glucose homeostasis. 

  



CONCLUSIONS 
 

116 

4. (Study IV) Patients with m.3243A>G had high variability in the LVGU. Part of this 

variability is possibly explained by the differences in heteroplasmy and pyruvate 

oxidation capacity, high availability of alternative substrates or chronic 

hyperglycaemia or by all. Finally, the most affected patients as defined by the high 

glycaeted haemoglobin, phenotype or heteroplasmy showed inadequately low glucose 

utilization, which is likely to contribute to the cardiac vulnerability in such patients.  

 

In summary, the methods of the present study were able to confirm a low in vivo 

glucose oxidation in brain and insulin resistance in skeletal muscle and subcutaneous 

fat in patients with the m.3243A>G mutation. The heterogenic patient group allowed to 

conclude that the decline in insulin secretion and cardiac glucose metabolism is 

predominantly present in patients with high heteroplasmy. This cross-sectional study 

provides useful data for the planning of follow-up and intervention studies. Further 

studies are necessary in order to understand and to be able to treat the disturbed 

metabolism and its multiorgan manifestations in mitochondrial disease. 
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