
i

TURUN YLIOPISTON JULKAISUJA
ANNALES UNIVERSITATIS TURKUENSIS

SARJA - SER. A I OSA - TOM. 465

ASTRONOMICA - CHEMICA - PHYSICA - MATHEMATICA

TURUN YLIOPISTO
UNIVERSITY OF TURKU

Turku 2013

ADAPTIVE ROUTING APPROACHES FOR
NETWORKED MANY-CORE SYSTEMS

by

Masoumeh Ebrahimi

ii

From the Laboratory of Embedded Computer and Electronic Systems, ECES
Department of Information Technology
University of Turku
Turku, Finland
&
Graduate School in Electronics, Telecommunications and Automation, GETA
Aalto University
Helsinki, Finland

Supervisors
Professor Hannu Tenhunen
Associate Professor Juha Plosila
Associate Professor Pasi Liljeberg
Department of Information Technology
University of Turku
Turku, Finland

Reviewers
Professor Nader Bagherzadeh
Department of Electrical Engineering and Computer Science
University of California
Irvine, US

Professor Thomas Hollstein
Department of Computer Engineering
Tallin University of Technology
Tallin, Estonia

Opponent
Professor Paolo Ernesto Prinetto
Department of Control and Computer Engineering
Polytechnic University of Turin
Turin, Italy

ISBN 978-951-29-5453-7
ISSN 0082-7002
Painosalama Oy-Turku, Finland 2012

i

Abstract

Through advances in technology, System-on-Chip design is moving towards integrating
tens to hundreds of intellectual property blocks into a single chip. In such a many-core
system, on-chip communication becomes a performance bottleneck for high performance
designs. Network-on-Chip (NoC) has emerged as a viable solution for the communication
challenges in highly complex chips. The NoC architecture paradigm, based on a modular
packet-switched mechanism, can address many of the on-chip communication challenges
such as wiring complexity, communication latency, and bandwidth. Furthermore, the
combined benefits of 3D IC and NoC schemes provide the possibility of designing a high
performance system in a limited chip area. The major advantages of 3D NoCs are the
considerable reductions in average latency and power consumption.

There are several factors degrading the performance of NoCs. In this thesis, we
investigate three main performance-limiting factors: network congestion, faults, and the
lack of efficient multicast support. We address these issues by the means of routing
algorithms.

Congestion of data packets may lead to increased network latency and power
consumption. Thus, we propose three different approaches for alleviating such congestion
in the network. The first approach is based on measuring the congestion information in
different regions of the network, distributing the information over the network, and utilizing
this information when making a routing decision. The second approach employs a learning
method to dynamically find the less congested routes according to the underlying traffic.
The third approach is based on a fuzzy-logic technique to perform better routing decisions
when traffic information of different routes is available.

Faults affect performance significantly, as then packets should take longer paths in order
to be routed around the faults, which in turn increases congestion around the faulty regions.
We propose four methods to tolerate faults at the link and switch level by using only the
shortest paths as long as such path exists. The unique characteristic among these methods is
the toleration of faults while also maintaining the performance of NoCs. To the best of our
knowledge, these algorithms are the first approaches to bypassing faults prior to reaching
them while avoiding unnecessary misrouting of packets.

Current implementations of multicast communication result in a significant performance
loss for unicast traffic. This is due to the fact that the routing rules of multicast packets limit
the adaptivity of unicast packets. We present an approach in which both unicast and
multicast packets can be efficiently routed within the network. While suggesting a more
efficient multicast support, the proposed approach does not affect the performance of
unicast routing at all. In addition, in order to reduce the overall path length of multicast
packets, we present several partitioning methods along with their analytical models for
latency measurement. This approach is discussed in the context of 3D mesh networks.

ii

iii

Acknowledgements

It has been a great privilege to make my doctoral studies at the Department of Information
Technology, university of Turku, Finland since March 2009. I would like to express my
deepest appreciation to all those who have made some contributions in this way. The
valuable experience that I have gained in this period is tightly connected to all people
around me as my wonderful supervisors, helpful staff, friendly colleagues, and my lovely
husband-colleague.

Special gratitude I give to my supervisors, Professor Hannu Tenhunen, Associate
professor Juha Plosila, and Associate professor Pasi Liljeberg for their excellent guidance,
continuous support, patience against any issues, and providing me with an excellent
atmosphere for doing research. There are much more appreciations but I fall short of words.
I would really mean by saying that I could have ever imagined having better supervisors
than them! Beside my supervisors, I would also like to acknowledge the crucial role of
Doctor Masoud Daneshtalab for his valuable comments, advice, and insight throughout my
work. This thesis would not have been possible without his stimulating suggestions and
encouragement throughout these years.

I wish to thank the pre-examiners, Professor Nader Bagherzadeh and Professor Thomas
Hollstein for their constructive comments and suggestions on the thesis. Special thanks go
to Professor Paolo Prinetto for accepting to act as my opponent.

The research was mainly funded by the graduate school in Electronics,
Telecommunications, and Automation (GETA). I would like to thank GETA and its staff
for the financial, academic, and technical support. In addition, I greatly appreciate the
financial support by Nokia and Elisa Foundation. Furthermore, I would like to acknowledge
the Business and Innovation Development (BID) and European Institute of Innovation and
Technology (EIT ICT Labs) for their support to follow the MBA program along with the
doctoral studies and being involved in ICT innovation and entrepreneurship activities.

I have had an opportunely to do a research visit at the University of Toronto, Canada. I
wish to thank Professor Natalie Jerger for the invitation and valuable discussions.

I wish to thank my parents and family for their continuous love and inspiration. I could
say the most difficult part of this thesis was to be far from them! They are the most valuable
things to me. I wish I could express how much I love and appreciate them.

I would like to thank Masoud again, but this time as my beloved one. He has supported
me throughout the entire process not only by his academic guidance and encouragement but
also spiritually by his pure love! Masoud is the one who made my dreams reality and
constantly giving me a wonderful feeling of unlimited love!

Last but not the least, I want to thank my lovely friends Anne-Marie Tuikka and Fahime
Farahnakian for having delightful coffee breaks, helping me to refresh my mind!

iv

v

Contents

1 Introduction ... 1
1.1 Thesis Contributions... 2

1.1.1 Congestion-aware Techniques ... 3
1.1.2 Fault-Tolerant Techniques ... 4
1.1.3 Collective Communication .. 5

1.2 Thesis Organization .. 6

2 Networks-on-Chip ... 11
2.1 Networks-on-Chip Characteristics .. 11

2.1.1 Network Dimension ... 11
2.1.2 Network Topology ... 12
2.1.3 Switch Architecture .. 13
2.1.4 Virtual Channel .. 13
2.1.5 Switching Techniques .. 14
2.1.6 Flow Control Mechanisms ... 14

2.2 Routing Algorithms .. 15
2.2.1 Deterministic and Adaptive Routing ... 15
2.2.2 Minimal and Non-minimal Routing .. 15
2.2.3 Congestion-aware and Congestion-oblivious Routing 16
2.2.4 Unicast and Multicast Routing .. 16
2.2.5 Fault-Tolerant Routing ... 17
2.2.6 Starvation, Deadlock, and Livelock .. 17
2.2.7 Turn Models.. 18

3 Congestion-Aware Routing Algorithms for a 2D Mesh Network 19
3.1 Traditional Approaches .. 19

3.1.1 Dynamic XY (DyXY) .. 20
3.1.2 Enhanced Dynamic XY (EDXY) .. 20
3.1.3 Neighbor-on-Path (NoP) .. 21
3.1.4 Regional Congestion Awareness (RCA) .. 22
3.1.5 Destination-Based Adaptive Routing (DBAR) .. 23
3.1.6 Q-Learning Approach with Reduced Table Sizes (C-Routing) 24
3.1.7 Summary of Traditional Methods ... 25

3.2 The Proposed Cluster-based Approaches ... 25
3.2.1 Agent-based Routing Algorithm (AgRA) ... 26

vi

3.2.2 Trapezoid-based Routing Algorithm (TRA) .. 29
3.2.3 Results and Discussion... 40

3.3 The Proposed Non-Minimal and Learning-based Approaches 43
3.3.1 Highly Adaptive Non-Minimal Routing Algorithm (HARA) 44
3.3.2 Q-Learning-based Approach using HARA (HARAQ) 50
3.3.3 Results and Discussion... 54

3.4 The Proposed Fuzzy-based Approach ... 57
3.4.1 Non-Fuzzy Routing Algorithm (NFRA) ... 58
3.4.2 Fuzzy-based Routing Algorithm (FRA) ... 60
3.4.3 Results and Discussion... 69

3.5 Summary of the Proposed Methods .. 72

4 Fault-Tolerant Routing Algorithms for a 2D Mesh Network 75
4.1 Traditional Approaches .. 76

4.1.1 A Ring-based Fault-Tolerant Routing (Extended X-Y) 76
4.1.2 Reconfigurable Routing for Tolerating Faulty Switches (ReRS) 77
4.1.3 Reconfigurable Routing for Tolerating Faulty Links (RAFT) 78
4.1.4 Bidirectional Fault-Tolerant NoC (BFT-NoC) ... 78
4.1.5 Summary of Traditional Methods ... 78

4.2 The Proposed Approaches for Tolerating Faulty Links ... 79
4.2.1 Any Single Faulty Link (MD) ... 79
4.2.2 Multiple Faulty Links (MAFA) ... 86
4.2.3 Results and Discussion... 96

4.3 The Proposed Approaches for Tolerating Faulty Switches 99
4.3.1 Any Single Faulty Switch (HiPFaR) ... 99
4.3.2 Multiple Faulty Switches (MiCoF) ... 105
4.3.3 Results and Discussion... 112

4.4 Summary of the Proposed Methods .. 116

5 Unicast and Multicast Routing Algorithms for a 3D Mesh Network 119
5.1 Traditional Approaches .. 120

5.1.1 Virtual Circuit Tree Multicasting (VCTM) .. 120
5.1.2 Dual-Path Multicast Routing (DP) .. 121
5.1.3 Multi-Path Multicast Routing (MP) .. 123
5.1.4 Hamiltonian Adaptive Multicast and Unicast Model (HAMUM) 124
5.1.5 Summary of Traditional Methods ... 124

5.2 The Proposed Partitioning Methods for a 3D Mesh Network 125
5.2.1 Hamiltonian Path in a 3D Mesh Network ... 125
5.2.2 Two-Block Partitioning Method (TBP) .. 126
5.2.3 Vertical Block Partitioning (VBP) .. 130

vii

5.2.4 Recursive Partitioning (RP) ... 133

5.3 The Proposed Adaptive Routing Algorithm ... 136
5.3.1 Minimal Adaptive Routing (MAR) ... 136
5.3.2 Deadlock Avoidance .. 139

5.4 Results and Discussion ... 140
5.4.1 Analytical Results... 140
5.4.2 Simulation Results .. 143

5.5 Summary of the Proposed Methods .. 150

6 Conclusion .. 151

viii

ix

List of Figures

 1.1: (a) Bus (b) Network-on-Chip .. 1
 2.1: (a) 2D NoC (b) 3D NoC .. 12
 2.2: (a) Mesh topology (b) Torus topology ... 12
 2.3: A switch architecture ... 13
 2.4: A switch in (a) XY (b) double-XY (c) double-Y network .. 14
 2.5: Multicast approaches ... 17
 2.6: (a) Clockwise and counter-clockwise turns (b) XY routing (c) Negative-First (d) West-

First (e) North-Last (Solid lines indicate the allowable turns and dash lines indicate the
prohibited turns) .. 18

 3.1: An example of the DyXY method .. 20
 3.2: An example of the EDXY method .. 21
 3.3: An example of the NoP method .. 22
 3.4: An example of the RCA method ... 23
 3.5: An example of the DBAR method .. 24
 3.6: An example of the learning-based approach .. 25
 3.7: Agent-based Networks-on-Chip ... 27
 3.8: The congestion-aware selection algorithm in the agent-based approach 28
 3.9: An example of the agent-based selection method ... 29
 3.10: Passing-probability of packets through intermediate switches 31
 3.11: The output selection function of TRA .. 32
 3.12: The congestion information of the highlighted regions is needed at the switch 24 to

perform the output selection function of TRA .. 33
 3.13: Input selection function of TRA ... 34
 3.14: The congestion information of the highlighted regions is needed at the switch 24 to

perform the input selection function of TRA .. 34
 3.15: Assigning a name to each switch .. 35
 3.16: Assigning congestion values to packets ... 36
 3.17: The pseudo code of the priority-based input selection function of TRA 36
 3.18: A general example of combining the input and output selection functions of TRA ... 38
 3.19: The required information at the switch 24 to perform the input and output selection

functions .. 38
 3.20: Information from (a) west- (b) east- (c) north-, and (d) south-ward regions to the

switch 24 .. 39
 3.21: The required number of bits to propagate the congestion information 40
 3.22: Performance analysis in an 8×8 mesh network under uniform traffic profile 41
 3.23: Performance analysis in an 8×8 mesh network under hotspot traffic profile with

H=10% ... 41
 3.24: Performance analysis under different application benchmarks normalized to NoP 43

x

 3.25: (a) A switch in a double-Y network (b) 0-degree-ch (c) 0-degree-vc (d) 90-degree (e)
180-degree-vc (f) 180-degree-ch ... 45

 3.26: (a) 90-degree turns in vc1 (b) 90-degree turns in vc2 (c) 0-degree-ch (d) 0-degree-vc
 .. 45

 3.27: Channel numbering in the Mad-y method ... 46
 3.28: Allowable 180-degree turns in the HARA method ... 47
 3.29: The numbering mechanism of HARA .. 47
 3.30: All eligible turns in HARA ... 47
 3.31: Determining all eligible output channels by HARA ... 49
 3.32: An example of HARA ... 50
 3.33: The process of updating the Q-Tables .. 52
 3.34: Performance analysis in an 8×8 mesh network under the uniform traffic profile 55
 3.35: Performance analysis in an 8×8 mesh network under hotspot traffic profile with

H=10% ... 56
 3.36: Performance analysis under different application benchmarks normalized to DBAR 56
 3.37: Non-optimal decision by the DyXY routing algorithm... 58
 3.38: The pseudo code of NFRA .. 60
 3.39: Two examples of non-optimal routing decisions in NFRA .. 60
 3.40: (a) General fuzzy system (b) Fuzzy routing algorithm ... 61
 3.41: An example of triangular membership function .. 62
 3.42: (a) OccupiedSlots_Input (b) OccupiedSlots_Switch (c) Cost membership functions 63
 3.43: (a) OccupiedSlots_Input (b) OccupiedSlots_Switch as a part of two membership

functions .. 65
 3.44: Cost for (a) rule1 (b) rule2 (c) rule3 (d) rule4 ... 66
 3.45: Composition of the Cost membership function of all rules .. 66
 3.46: The degree of membership function for the input parameters at the switch 9 67
 3.47: The degree of membership function for the input parameters at the switch 6 68
 3.48: Performance analysis in an 8×8 mesh network under the uniform traffic profile 70
 3.49: Performance analysis in an 8×8 mesh network under hotspot traffic profile with

H=10% ... 70
 3.50: Simulation results under two multimedia traffic profiles: MPEG and VOPD 71
 3.51: (a) VOPD block diagram, with communication BW annotated (in MB/s) (b) its

mapping onto a mesh topology [19] .. 71
 3.52: (a) MPEG4 decoder block diagram, with communication BW annotated (in MB/s) (b)

its mapping onto a mesh topology [19] ... 72
 4.1: (a) Two examples of the Extended X-Y routing algorithm (b) The required fault

information .. 77
 4.2: (a) Two examples of the ReRS routing algorithm (b) The required fault information . 77
 4.3: (a) Two examples of the RAFT routing algorithm (b) The required fault information 78
 4.4: (a) Statuses of twelve links are needed by RAFT (b) The statuses of eight links are

needed by MD ... 79
 4.5: Permitted and prohibited turns of MD similar to Mad-y... 80
 4.6: The numbering mechanism of MD similar to Mad-y .. 80

xi

 4.7: Bypassing faulty links when the destination is located in the northeast position of the
source switch (Note that numbers determine the priority of selecting among different
routes) .. 82

 4.8: Bypassing faulty links when the destination is located in the (a) east (b) west (c) north
(d) south positions of the source switch .. 82

 4.9: Northward and southward packets are strictly belonging to the second virtual channel
(a) and (b) show the cases where the fault does not occur in the left borderline (c) and
(d) show how the fault can be tolerated when the fault occur in the left borderline 83

 4.10: MD routing algorithm.. 84
 4.11: Alternative paths from the source switch S to the destination D 85
 4.12: The first fault occurs in (a) borderline link (b) central link .. 86
 4.13: Fault distribution mechanism .. 87
 4.14: (a) west-last (b) east-last (c) all permitted transactions between vc1 and vc2 88
 4.15: Tolerating one faulty link by MAFA when the destination is in the (a) northeast (b)

southeast (c) northwest (d) southwest of the current switch .. 89
 4.16: Tolerating one faulty link by MAFA when the destination is in the (a) north (b) south

(c) east (d) west positions of the current switch.. 89
 4.17: Priority of selecting among different routes when the destination is in the (a) northeast

(b) southeast (c) northwest (d) southwest positions of the current switch 90
 4.18: Different positions of two faulty links for a northeast packet 91
 4.19: Different positions of two faulty links for a southwest packet 91
 4.20: Priority of different routes for (a) northward (b) southward (c) eastward (d) westward

packets ... 92
 4.21: MAFA routing algorithm for northeast, northwest, southeast, and southwest packets

 .. 93
 4.22: MAFA routing algorithm for north-, south-, east-, and west-ward packets................. 94
 4.23: Examining all possible paths by Enhanced MAFA ... 95
 4.24: Non-minimal choices offered by Enhanced-MAFA ... 95
 4.25: Performance analysis of MD and RAFT in an 8×8 mesh network under uniform

traffic profile ... 96
 4.26: Performance analysis of MAFA and RAFT in an 8×8 mesh network under uniform

traffic profile ... 97
 4.27: Performance analysis of MD and RAFT in an 8×8 mesh network under hotspot traffic

profile ... 97
 4.28: Performance analysis of MAFA and RAFT in an 8×8 mesh network under hotspot

traffic profile ... 98
 4.29: Reliability evaluation of Enhanced-MAFA in a 6×6 mesh network under uniform

traffic profile ... 98
 4.30: The statues of four neighboring switches are required by the HiPFaR routing

algorithm.. 100
 4.31: Permitted and prohibited turns of MD similar to Mad-y [10] 100
 4.32: The basic rules for selecting among the neighboring switches when a packet gets

close to the destination switch ... 102
 4.33: Different positions of current, destination and a faulty switch 102
 4.34: Tolerating a faulty switch by (a) eastward packets (b) westward packets 103

xii

 4.35: Tolerating a faulty switch for northward and southward packets............................... 103
 4.36: HiPFaR routing algorithm ... 104
 4.37: Switch architecture using MiCoF ... 106
 4.38: Five fautly switches in a 4×4 mesh topology (b) the resulted network using MiCoF

 .. 106
 4.39: Tolerating any single faulty switch using only the shortest paths 107
 4.40: Tolerating two faulty switches by the MiCoF approach ... 109
 4.41: A couple indicates a diagonal position ... 110
 4.42: Three faulty switches in the network, which are located close to each other 111
 4.43: MiCoF routing algorithm .. 112
 4.44: Performance analysis of HiPFaR and ReRS in an 8×8 mesh network under uniform

traffic profile ... 113
 4.45: Performance analysis of MiCoF and ReRS in an 8×8 mesh network under uniform

traffic profile ... 113
 4.46: Performance analysis of HiPFaR and ReRS in an 8×8 mesh network under hotspot

traffic profile ... 114
 4.47: Performance analysis of MiCoF and ReRS in an 8×8 mesh network under hotspot

traffic profile ... 114
 4.48: Reliability measurement based on the first metric .. 115
 4.49: Reliability measurement based on the second metric.. 115
 5.1: (a) VCTM (b) the number of hops can be reduced .. 121
 5.2: (a) A physical channel (b) high channel subnetwork (c) low channel subnetwork 122
 5.3: Dual-path multicast approach ... 123
 5.4: Multi-path multicast approach .. 123
 5.5. An example of HAMUM for (a) unicast packets (b) multicast packets 124
 5.6: (a) A 3×3×3 mesh network with the label assignment (b) high channel (c) low channel

subnetworks. The solid lines indicate the Hamiltonian path and dashed lines indicate
the links that could be used to reduce the path length .. 126

 5.7: The TBP method (a) balanced (b) unbalanced partitions .. 127
 5.8: The pseudo code of the TBP method.. 127
 5.9: Measuring MML for the TBP method.. 129
 5.10: The pseudo code of the VBP method ... 130
 5.11: The VBP method (a) balanced partitions (b) unbalanced partitions 131
 5.12: Measuring MML for the TBP method ... 132
 5.13: The pseudo code of the RP method .. 134
 5.14: RP when the source switch is at (a) the switch 26 (b) the switch 7 134
 5.15: The pseudo code of the MAR algorithm .. 137
 5.16: (a) An example of the MAR algorithm for a unicast packet (b) showing all possible

paths between the source 6 and destination 48 (c) An example of the MAR algorithm
for a multicast packet .. 138

 5.17: Packet length can affect the startup latency ... 141
 5.18: Performance analysis in a 4×4×3 mesh network using deterministic routing with 8

destinations .. 144
 5.19: Performance analysis in a 4×4×3 mesh network using deterministic routing with 16

destinations .. 144

xiii

 5.20: Performance analysis in a 4×4×3 mesh network using adaptive routing with 8
destinations .. 145

 5.21: Performance analysis in a 4×4×3 mesh network using adaptive routing with 16
destinations .. 145

 5.22: Performance analysis in a 4×4×3 mesh network using deterministic routing with 8
destinations under mixed traffic (30% multicast and 70% unicast); Unicast traffic is
based on the hotspot traffic model with a single hotspot switch (2,2,2), and H=10% 146

 5.23: Performance analysis in a 4×4×3 mesh network using deterministic routing with 16
destinations under mixed traffic (30% multicast and 70% unicast); Unicast traffic is
based on the hotspot traffic model with a single hotspot switch (2,2,2), and H=10% 146

 5.24: Performance analysis in a 4×4×3 mesh network using adaptive routing with 8
destinations under mixed traffic (30% multicast and 70% unicast); Unicast traffic is
based on the hotspot traffic model with a single hotspot switch (2,2,2), and H=10% 146

 5.25: Performance analysis in a 4×4×3 mesh network using adaptive routing with 16
destinations under mixed traffic (30% multicast and 70% unicast); Unicast traffic is
based on the hotspot traffic model with a single hotspot switch (2,2,2), and H=10% 147

 5.26: Performance analysis under different application benchmarks normalized to TBP . 148
 5.27: Average power dissipation results in a 4×4×3 mesh network under multicast traffic

profile ... 149

xiv

xv

List of Tables

 3.1: System configuration parameters.. 42
 3.2: Hardware implementation details ... 43
 3.3: Potential output channels offered by HARA ... 49
 3.4: Potential output channels offered by Mad-y .. 49
 3.5: The area overhead .. 53
 3.6: Hardware implementation details ... 57
 3.7: FRA inference rules ... 64
 3.8: The cost membership function of the switch 9 .. 68
 3.9: The cost membership function of the switch 6 .. 68
 3.10: Hardware implementation details ... 72
 3.11: Summarized characteristics of different congestion-aware approaches....................... 73
 4.1: Robustness analysis of two faulty links in different network sizes 86
 4.2: Hardware implementation details ... 99
 4.3: Hardware implementation details ... 116
 4.4: Summarized characteristics of different fault-tolerant approaches 117
 5.1: UL: Unicast Latency; SP: Startup packets; SL: Startup Latency; 141
 5.2: MML, MXML, and total latency in TBP, VBP, and RP methods 143
 5.3: System configuration parameters.. 148
 5.4: Performance gain of ARP over the other presented schemes 148

xvi

xvii

List of Abbreviations

2D Two Dimensional
3D Three Dimensional
AgRA Agent-based Routing Algorithm
ANoC Agent-based Network-on-Chip
ARP Adaptive Recursive Partitioning
ATBP Adaptive Two-Block Partitioning
AUL Average Unicast Latency
AVBP Adaptive Vertical-Block Partitioning
BFT-NoC Bidirectional Fault-Tolerant NoC
BW Bandwidth
CDG Channel Dependency Graph
CL Congestion Level
CoG Center of Gravity
CPU Central Processing Unit
CS Congestion Status
C-Routing Cluster based Adaptive Routing
DBAR Destination-Based Adaptive Routing method
DP Dual-Path
DRAM Dynamic Random Access Memory
DyAD Dynamic Adaptive Deterministic
DyXY Dynamic XY
EDXY Enhanced Dynamic XY
FIFO First In, First Out
FRA Fuzzy-based Routing Algorithm
GB Giga Byte
GEMS General Electric Manufacturing Simulator
GHz Gigahertz
HAMUM Hamiltonian Adaptive Multicast and Unicast Model
HARA Highly Adaptive Non-Minimal Routing Algorithm
HARAQ Highly Adaptive Non-Minimal Routing Algorithm based on Q-Learning
HiPFaR High Performance Fault-tolerant Routing
KB Kilo Byte
IC Integrated Circuit
IP Intellectual Property
ISA Instruction Set Architecture
Mad-y Maximally Fully Adaptive Routing
MAFA Minimal and Adaptive Fault-Tolerant Algorithm

xviii

MAR Minimal Adaptive Routing
MB Mega Byte
MD Minimal and Defect-resilient routing algorithm
MESI Modified, Exclusive, Shared, Invalid
MF Membership Function
MiCoF Minimal-path Connection-retaining Fault-tolerant approach
MML Mean Multicast Latency
MoM Mean of Maxima
MP Multi-Path
MPEG Moving Picture Experts Group
MPSoC Multi-Processor System-on-Chip
MxML Maximum Multicast Latency
NFRA Non-Fuzzy Routing Algorithm
NoC Network-on-Chip
NoP Neighbor-on-Path
PE Processing Element
RAFT Reconfigurable, Adaptive and Fault-Tolerant
RCA Regional Congestion Awareness
ReRS Reconfigurable Routing for Tolerating Faulty Switches
RP Recursive Partitioning
SL Startup Latency
SP Startup Packets
SNUCA Static Non-Uniform Cache Architecture
SoC Systems-on-Chip
SPARC Scalable Processor ARChitecture
SPLASH Stanford Parallel Applications for Shared Memory
TBP Two-Block Partitioning
TRA Trapezoid-based Routing Algorithm
TSV Through-Silicon-Via
UMC United Microelectronics Corporation
VBP Vertical-Block Partitioning
VC Virtual Channel
VCTM Virtual Circuit Tree Multicasting
VHDL VHSIC hardware description language
VOPD Video Object Plane Decoder

1

Chapter 1

1 Introduction

Traditionally, System-on-Chip (SoC) designers employ buses or hierarchical bus structures
to interconnect Intellectual Property (IP) blocks. The advances in semiconductor
technologies make it possible to integrate billions of gates and hundreds of processing units
into a single chip [1]. This technology trend implies the need for a structured, scalable,
reusable, and high performance communication platform which cannot be offered by bus
infrastructures (Figure 1.1(a)). Therefore, Networks-on-Chip (NoCs) have emerged as a
solution to address the communication demands of future SoC designs. The scalability and
reusability characteristics of NoCs may result in the reduction of design time and the
shortening of the time taken to reach the market for new products. An NoC consists of an
interconnection of many switches to enable a large number of cores to communicate with
each other.1 Figure 1.1(b) shows a mesh-based NoC where each core is connected to a
switch by a local network interface [2]. Cores can communicate with each other by
propagating packets through switches in the network. Each switch is connected to its
neighbors through bidirectional links. Typically in NoCs, the resources are scarce regarding
the ever-increasing demand for a high performance communication among cores [3], [4],
[5]. Therefore, a major challenge in this domain is achieving a high performance system
using the limited available resources [1]. Routing algorithms can perform an important role
in fulfilling this gap, by realizing these challenges.

Figure 1.1: (a) Bus (b) Network-on-Chip

1 Throughout this thesis, the term “switch” may refer to both the switch and the core connected to it.

Chapter 1 Introduction

2

As the size of the network is scaled up, the transmission delay between distant switches
is significantly increased, which results in lower performance and higher power
consumption. In addition, a 2D IC design imposes a very large chip area as the number of
cores increases. Considering 2D design bottlenecks, the technology is moving toward the
concept of 3D integrated circuits where multiple active silicon layers are vertically stacked.
Combining the benefits of 3D IC and NoC schemes provides a significant performance gain
for SoCs. Layers, stacked on top of each other, are connected via vertical interconnects
tunneling through them. Wire bonding, micro-bump, contactless (capacitive or inductive),
and through-silicon-via (TSV) interconnections are some of the vertical interconnect
technologies that have been used in stacked structures [6], [7]. The TSV interconnection
approaches have the potential to offer the greatest vertical interconnect density and
therefore are the most promising among the other vertical interconnect techniques [6], [8],
[9]. The major advantages of 3D ICs are the considerable reduction in the average wire
length and wire delay, resulting in lower power consumption and better performance [10],
[11], [12], [13]. Nevertheless, if the number of IP cores and memories increases in each
layer, more TSVs are required to handle the inter-layer communication. Inasmuch as each
TSV employs a pad for bonding, the area footprint in each layer is augmented significantly
[14]. Modern SoC designs can benefit from 3D integration by placing memory blocks on
top of a processing core in different layers [15]. This introduces a higher bandwidth and a
shorter critical path [16].

Routing protocols have a significant impact on the latency and power consumption of
NoC-based systems. In order to avoid the blocking of packets within NoCs, some rules
should be defined. These rules are determined by routing algorithms. Some routing
algorithms are very limiting regarding the adaptivity of packets, yet some others are not. In
other words, routing algorithms may force packets to be routed through specific paths,
while in others the packets can be distributed over all the possible routes. Routing
algorithms may not be able to tolerate faults and thus the network may stop functioning
after the occurrence of a single fault. Fault-tolerant routing algorithms make the network
resilient against faults by allowing packets to choose among alternative non-faulty routes.
The support of collective communication has a great impact on the overall performance of
the system. The reason for this impact is that if collective communication is not supported,
then multiple unicast packets should be delivered into the network, which imposes a
significant amount of traffic on the network. On the other hand, routing algorithms should
be designed based on the limitations and requirements of the system. In SoC designs, these
limitations include the area overhead, the power budget, the temperature, and the required
level of performance. In sum, moving towards more efficient communication protocols for
NoCs considering the constraints of SoC designs forms the main contribution of this thesis.

1.1 Thesis Contributions
The underlying routing algorithms in current systems are mostly taken from the
supercomputer concepts where energy consumption, design specialization, resource
limitation, and the area overhead are not big constraints. This implies that the current

Adaptive Routing Approaches for Networked Many-Core Systems Chapter 1

3

routing algorithms cannot satisfy the requirements of NoCs well. As a result, high-speed
processing elements and memories are developed while the interconnection between them
might be underutilized. In this thesis, we provide in-depth studies on routing algorithms to
discover the key problems in the current and next generation of many-core SoCs. Different
aspects of routing algorithms are discussed in this thesis as congestion, fault-tolerant, and
collective communication.

1.1.1 Congestion-aware Techniques
Congestion occurs frequently in NoCs when the demands of the packets exceed the
capacity of the network resources [17], [18]. Congestion may lead to increased transmission
delay and power consumption. Performance can be improved by routing packets through
less congested regions and distributing traffic over the network. In contrast with
supercomputers, in NoCs the congestion information can be easily propagated over the
network, and thus by using this knowledge, the traffic can be balanced over the network
[19]. Based on this characteristic of NoCs, we propose three different approaches to
alleviate congestion over a network. These algorithms can be divided into cluster-based,
learning-based, and fuzzy-based approaches.

Cluster-based approach
In traditional congestion-aware techniques, congestion is measured at a switch level
and delivered to other switches, either local or non-local. One of the contributions
of this thesis is to show that performance can be improved if the congestion level is
measured for a group of switches and propagated over the network, rather than
considering the congestion level of single switches. We have proposed two
algorithms: the Agent-based Routing Algorithm (AgRA) and the Trapezoid-based
Routing Algorithm (TRA). In AgRA, a lightweight clustering structure is built upon
a mesh network to propagate the congestion information over the different regions
of the network. This approach presents an efficient solution for providing a better
view of the network traffic condition. In TRA, we investigate the impact of both the
routing unit and switch arbitration unit in distributing the traffic load over a
network. In the proposed method, the congestion information is gathered from a
group of switches which are more likely chosen as intermediate switches and can
provide up-to-date information for a given switch.

Learning-based approach
Almost all of the existing methods are based on using the shortest paths in the
network. However, in high traffic conditions a longer and a less congested path may
result in a lower latency for a packet. On the other hand, gathering the information
from all minimal and non-minimal routes may not be possible, and would need an
intelligent method in order to cope. Another contribution of this thesis is to propose
a non-minimal routing algorithm for on-chip networks, called the Highly Adaptive
Non-Minimal Routing Algorithm (HARA), providing a wide range of alternative
paths between each pair of source and destination switches. In addition to this, for

Chapter 1 Introduction

4

selecting a less congested path, an optimized and scalable learning method is
utilized. The learning method is based on local and global congestion information
and can estimate the latency from each output channel to the destination region. The
Q-Learning-based approach using HARA is called HARAQ.

Fuzzy-based approach
In traditional methods, the comparison between the congestion values of candidate
output ports is very strict, meaning that a single free buffer slot may change the
routing decision toward a more congested region. To address this problem, we
propose a Fuzzy-based Routing Algorithm (FRA) to estimate the latency of each
candidate direction. Fuzzy systems avoid arbitrary rigid boundaries by giving a
level of confidence to a data. Thus the use of fuzzy-logic algorithms in the routing
decision unit leads to a systematic comparison among the candidates of output
ports.

1.1.2 Fault-Tolerant Techniques
Faults can occur in NoCs like in any other electrical system. Traditional techniques tolerate
faults by forcing packets to route around the fault. However, we show that faults can be
tolerated in NoCs without taking unnecessary, longer paths. Short wires are utilized to
inform the surrounding switches about the location of faults. Using this information, the
proposed routing algorithms avoid sending packets through faulty components. The
proposed methods are divided into two main groups; tolerating faulty links and tolerating
faulty switches. In each group, two algorithms are presented. The distinguishing
characteristic of these algorithms is the toleration of faults while also maintaining the
performance of the network.

Tolerating faulty links
The first algorithm in this group, called the Minimal and Defect-resilient routing
algorithm (MD), targets the addressing of a total link failure where the key ideas are
twofold. First, it can tolerate all one-faulty links using the shortest path between
each pair of source and destination switches, if such path exists. Therefore,
unnecessary longer paths are avoided when tolerating faults. Second, unlike
traditional fault-tolerant routing algorithms which are based on deterministic
algorithms, the proposed method is nearly fully adaptive. So, in addition to
tolerating faults, traffic can be balanced by distributing packets over the network.
MD takes advantage of one and two virtual channels along the X and Y dimensions,
respectively. This idea of MD is extended in the second approach, called Minimal
and Adaptive Fault-Tolerant Algorithm (MAFA), to tolerate two faulty links in the
network. Increasing reliability comes at the cost of using an extra virtual channel
along the Y dimension. MAFA uses two virtual channels along both X and Y
dimensions and is able to tolerate a wide range of multiple faulty links without
affecting the performance of the network.

Adaptive Routing Approaches for Networked Many-Core Systems Chapter 1

5

Tolerating faulty switches
The algorithms in this group, called the High Performance Fault-tolerant Routing
(HiPFaR) and the Minimal-path Connection-retaining Fault-tolerant (MiCoF)
approaches, are able to tolerate faulty switches in the network and to avoid rerouting
packets around faults. In other words, a proper non-faulty route is chosen for a
packet prior to it, reaching the fault. Similar to MD, HiPFaR uses one and two
virtual channels along the X and Y dimensions but it is able to tolerate all single
faulty switches in the network using only the shortest paths, if such path exists. A
non-minimal route is necessitated when the source and destination switches are
located in the same row or column with a faulty switch between them. In MiCoF,
the same amounts of virtual channels are used. However, it is able to tolerate a wide
range of faults by using only the shortest paths even if the source switch is in the
same row or column as the destination switch. This is achieved by a simple
modification in the switch architecture.

1.1.3 Collective Communication
The lack of hardware-level multicast support may result in decreased performance.
Multicast can be easily implemented with no hardware overhead by assuming that a
multicast packet is replicated and every instance is sent to a particular destination (this is
termed unicast-based multicast). However, this implementation is inefficient. This
inefficiency arises because sending multiple copies of the same packet into the network not
only imposes a significant amount of traffic into the network and increases the overall
power consumption, but also introduces a large serialization delay at the injection point of
the packets into the network. Based on this fact, the support of multicast communication
results in a significant performance gain, even if a small percentage of the traffic is
multicast. However, current hardware-level multicast support limits the adaptivity of
unicast packets. This means that all unicast packets have to be routed through a single path
for each pair of source and destination switches. Taking into account that unicast
communication forms the vast majority of almost all traffic, performance can be
significantly improved if the multicast support does not limit the adaptivity of unicast
packets. In this thesis, we propose a unicast/multicast communication protocol to maintain
the performance of unicast communication while supporting the multicast communication
efficiently. This method consists of two main parts; in the first part several partitioning
methods are introduced in order to reduce the overall path length of multicast packets while
the second part presents an adaptive routing algorithm for both unicast and multicast
packets. These approaches are discussed in both 2D and 3D mesh networks.

Partitioning methods
Partitioning methods try to reduce latency and increase performance through an
efficient partitioning of destinations into disjoint subsets. In this thesis, we propose
several partitioning methods, called Two-Block Partitioning (TBP), Vertical-Block
Partitioning (VBP), and Recursive Partitioning (RP), for 3D mesh NoCs. In TBP,

Chapter 1 Introduction

6

destinations are divided into two groups and a multicast packet is responsible for
delivering the packet to all destinations within its group. In VBP, the network is
vertically partitioned and destinations are divided based on the partitions to which
they belong. Thereby, latency can be decreased in comparison with TBP but more
packets should be delivered into the network to cover all destinations of a multicast
message. RP tries to have a comparable number of switches within each partition,
offering balanced partitions while keeping the number of delivered packets low.

Adaptive routing algorithm for both unicast and multicast communication
In addition to these partitioning methods, and in order to distribute the unicast and
multicast packets more efficiently, we present a minimal and adaptive routing
algorithm, called the Minimal Adaptive Routing (MAR), which is based on the
Hamiltonian path. Using MAR, congestion can be alleviated by routing both unicast
and multicast packets adaptively in the network. Furthermore, MAR is relatively
simple and does not require any virtual channel.

1.2 Thesis Organization
The thesis is organized as follows. Chapter 2 reviews the Network-on-Chip architectures
and different types of routing algorithms. In Chapter 3, three different congestion-aware
approaches are proposed. In the first section of this chapter, Section 3.1, traditional
methods are reviewed and the advantages and disadvantages of each method are discussed.
In Section 3.2, the proposed cluster-based approaches are described in which congestion is
measured at a region level rather than at individual switches. Section 3.3 introduces the
learning-based method. Within this section, it is explained how the traffic condition is
learned at run time and a less congested path is selected to route packets. Section 3.4
explains how to provide a reliable routing decision by employing the fuzzy-based
technique. Section 3.5 gives a summary of the proposed methods. Chapter 4 introduces four
high performance fault-tolerant routing algorithms. Section 4.1 reviews different well-
known fault-tolerant approaches along with their advantages and shortcomings. In Section
4.2, we explain the proposed fault-tolerant approaches to tolerate faulty links in the
network. Tolerating faults at the switch level are investigated in Section 4.3. These
algorithms are designed to tolerate faults with an emphasis on performance. A short
summary of the proposed methods are provided in Section 4.4. Chapter 5 presents an
efficient unicast and multicast communication approach for 3D NoCs. In Section 5.1, the
traditional methods in a 2D mesh network are described. Different partitioning methods and
their analytical formulas for a 3D mesh network are provided in Section 5.2. The adaptive
routing algorithm for these partitioning methods is explained in Section 5.3. Analytical and
simulation results are investigated in Section 5.4 while a summary of the proposed methods
are given in Section 5.5. The goal of this chapter is to show that the multicast
communication can be efficiently supported without any negative impact on the
performance of unicast communication. Finally, Chapter 6 concludes the thesis.

Adaptive Routing Approaches for Networked Many-Core Systems Chapter 1

7

This thesis is written based on my research during the period from April 2009 to May 2013
at the University of Turku, Finland. The following publications are the main references of
this thesis:

 Journal Publications

1. M. Ebrahimi, Hannu Tenhunen, “Fuzzy-based Adaptive Routing Algorithm for Networks-on-Chip,”
Journal of Systems Architecture, 2013.

2. M. Ebrahimi, M. Daneshtalab, P. Liljeberg, J. Plosila, J. Flich, and H. Tenhunen, “Path-based
Partitioning Methods for 3D Networks-on-Chip with Minimal Adaptive Routing,” IEEE Transaction
on Computers (IEEE TC), Special issue on NOCS, 2013.

3. M. Ebrahimi, M. Daneshtalab, P. Liljeberg, J. Plosila, and H. Tenhunen, “Cluster-based Topologies
for 3D Networks-on-Chip Using Advanced Inter-layer Bus Architecture,” Elsevier Journal of
Computer and System Sciences (JCSS-elsevier), Vol 79, No. 4, pp. 2013.

4. M. Daneshtalab, M. Ebrahimi, P. Liljeberg, J. Plosila, and H. Tenhunen, “A systematic reordering
mechanism for on-chip networks using efficient congestion-aware method,” Elsevier Journal of
Systems Architecture (JSA-Elsevier), 2012.

5. M. Daneshtalab, M. Ebrahimi, P. Liljeberg, J. Plosila, and H. Tenhunen, “Memory-Efficient On-Chip
Network with Adaptive Interfaces,” IEEE Transaction on Computer-Aided Design of Integrated
Circuits and Systems (IEEE-TCAD), Vol. 31, No. 1, pp. 146-159, 2012.

6. M. Daneshtalab, M. Kamali, M. Ebrahimi, S. Mohammadi, A. Afzali-Kusha, and J. Plosila, “Adaptive
Input-output Selection Based On-Chip Router Architecture,” Journal of Low Power Electronics
(JOLPE), Vol. 8, No. 1, pp. 11-29, 2012.

7. M. Daneshtalab, M. Ebrahimi, T. C. Xu, P. Liljeberg, and H. Tenhunen, “A generic adaptive path-
based routing method for MPSoCs,” Journal of Systems Architecture (JSA-elsevier), Vol. 57, No. 1,
pp. 109-120, 2011.

8. M. Daneshtalab, M. Ebrahimi, S. Mohammadi, A. Afzali-Kusha, “Low distance path-based multicast
algorithm in NOCs,” IET (IEE) Special issue on NoC, Vol. 3, No. 5, pp. 430-442, 2009.

 Conference Publications

9. M. Ebrahimi, M. Daneshtalab, J. Plosila, H. Tenhunen, “Minimal-Path Fault-Tolerant Approach
Using Connection-Retaining Structure in Networks-on-Chip,” in Proceedings of 7th International
Symposium on Networks-on-Chip (NOCS), 2013.

10. M. Daneshtalab, M. Ebrahimi, J. Plosila, H. Tenhunen, “CARS: Congestion-Aware Request
Scheduler for Network Interfaces in NoC-based Manycore Systems,” in Proceedings of 16th
ACM/IEEE Design, Automation, and Test in Europe (DATE), pp. 1048-1052, 2013.

11. M. Ebrahimi, M. Daneshtalab, J. Plosila, “Fault-Tolerant Routing Algorithm for 3D NoC Using
Hamiltonian Path Strategy,” in Proceedings of 16th ACM/IEEE Design, Automation, and Test in
Europe (DATE), pp. 1601-1605, 2013.

12. M. Ebrahimi, M. Daneshtalab, J. Plosila, “High Performance Fault-Tolerant Routing Algorithm for
NoC-based Many-Core Systems,” in Proceedings of 21th IEEE Euromicro Conference on Parallel,
Distributed and Network-Based Computing (PDP), pp. 463-469, 2013.

Chapter 1 Introduction

8

13. M. Ebrahimi, X. Chang, M. Daneshtalab, J. Plosila, P. Liljeberg, H. Tenhunen, “DyXYZ: Fully
Adaptive Routing Algorithm for 3D NoCs,” in Proceedings of 21th IEEE Euromicro Conference on
Parallel, Distributed and Network-Based Computing (PDP), pp. 499-503, 2013.

14. M. Ebrahimi, M. Daneshtalab, J. Plosila, F. Mehdipour, “MD: Minimal path-based Fault-Tolerant
Routing in On-Chip Networks”, in Proceedings of 18th Asia and South Pacific Design Automation
Conference (ASP-DAC), pp. 35-40, 2013.

15. M. Ebrahimi, M. Daneshtalab, J. Plosila, H. Tenhunen, “MAFA: Adaptive Fault-Tolerant Routing
Algorithm for Networks-on-Chip,” in Proceedings of 15th IEEE Euromicro Conference on Digital
System Design (DSD), pp. 201-206, 2012.

16. M. Ebrahimi, M. Daneshtalab, J. Plosila, “GLB - Efficient Global Load Balancing Method for
Moderating Congestion in On-Chip Networks,” in Proceedings. of 7th IEEE International Symposium
on Reconfigurable Communication-centric Systems-on-Chip (ReCoSoC), pp. 1-5, 2012.

17. X. Chang, M. Ebrahimi, M. Daneshtalab, T. Westerlund, J. Plosila, “PARS – An Efficient
Congestion-Aware Routing Method for Networks-on-Chip,” in Proceedings of 16th IEEE
International Symposium on Computer Architecture and Digital Systems (CADS), pp. 166-171, 2012.

18. M. Ebrahimi, M. Daneshtalab, P. Liljeberg, P. Liljeberg, J. Plosila, M. Palesi, and H. Tenhunen,
“HARAQ: Congestion-Aware Learning Model for Highly Adaptive Routing Algorithm in On-Chip
Networks,” in Proceedings of 6th ACM/IEEE International Symposium on Networks-on-Chip (NOCS),
pp. 19-26, 2012.

19. M. Ebrahimi, M. Daneshtalab, P. Liljeberg, J. Plosila, and H. Tenhunen, “CATRA- Congestion
Aware Trapezoid-based Routing Algorithm for On-Chip Networks,” in Proceedings of 15th
ACM/IEEE Design, Automation, and Test in Europe (DATE), pp. 320-325, 2012.

20. M. Ebrahimi, M. Daneshtalab, P. Liljeberg, J. Plosila, and H. Tenhunen, “LEAR – A Low-weight and
Highly Adaptive Routing Method for Distributing Congestions in On-Chip Networks,” in Proceedings
of 20th IEEE Euromicro Conference on Parallel, Distributed and Network-Based Computing (PDP),
pp. 520-524, 2012.

21. M. Daneshtalab, M. Ebrahimi, J. Plosila, “HIBS-Novel Inter-layer Bus Structure for Stacked
Architectures,” in Proceedings of IEEE International 3D Systems Integration Conference (3DIC), pp.
1-7, 2011.

22. M. Daneshtalab, M. Ebrahimi, P. Liljeberg, J. Plosila, and H. Tenhunen, “Memory-Efficient Logic
Layer Communication Platform for 3D-Stacked Memory-on-Processor Architectures,” in Proceedings
of IEEE International 3D Systems Integration Conference (3DIC), pp. 1-8, 2011.

23. M. Ebrahimi, M. Daneshtalab, P. Liljeberg, J. Plosila, and H. Tenhunen, “Agent-based On-Chip
Network Using Efficient Selection Method,” in Proceedings of 19th IFIP/IEEE International
Conference on Very Large Scale Integration (VLSI-SoC), pp. 284-289, 2011.

24. M. Daneshtalab, M. Ebrahimi, P. Liljeberg, et al., “High-Performance On-Chip Network Platform for
Memory-on-Processor Architectures,” in Proceedings of IEEE International Symposium on
Reconfigurable Communication-centric Systems-on-Chip (ReCoSoC), pp.1-6, 2011.

25. M. Ebrahimi, M. Daneshtalab, P. Liljeberg, J. Plosila, and H. Tenhunen, “Efficient Congestion-Aware
Selection Method for On-Chip Networks,” in Proceedings of IEEE International Symposium on
Reconfigurable Communication-centric Systems-on-Chip (ReCoSoC), pp.1-4, 2011.

26. M. Dehyadegari, M. Daneshtalab, M. Ebrahimi, J. Plosila, and S. Mohammadi, “An Adaptive Fuzzy
Logic-based Routing Algorithm for Networks-on-Chip,” in Proceedings of 13th IEEE/NASA-ESA
International Conference on Adaptive Hardware and Systems (AHS), pp. 208-214, 2011.

Adaptive Routing Approaches for Networked Many-Core Systems Chapter 1

9

27. M. Daneshtalab, M. Ebrahimi, P. Liljeberg, J. Plosila, and H. Tenhunen, “Cluster-based Topologies
for 3D Stacked Architectures,” in Proceedings of ACM International Conference on Computing
Frontiers (CF), No. 14, 2011.

28. M. Ebrahimi, M. Daneshtalab, P. Liljeberg, J. Plosila, and H. Tenhunen, “Exploring Partitioning
Methods for 3D Networks-on-Chip Utilizing Adaptive Routing Model,” in Proceedings of 5th
ACM/IEEE International Symposium on Networks-on-Chip (NOCS), pp. 73-80, 2011.

29. M. Ebrahimi, M. Daneshtalab, P. Liljeberg, H. Tenhunen, “Performance Evaluation of Unicast and
Multicast Communication in Three-Dimensional Mesh Architectures,” in Proceedings of 15th IEEE
International Symposium on Computer Architecture & Digital Systems(CADS), pp.181-182, 2010.

30. M. Daneshtalab, M. Ebrahimi, P. Liljeberg, J. Plosila, and H. Tenhunen, “Pipeline-Based Interlayer
Bus Structure for 3D Networks-on-Chip,” in Proceedings of 15th IEEE International Symposium on
Computer Architecture & Digital Systems(CADS), pp.41-47, 2010.

31. M. Daneshtalab, M. Ebrahimi, P. Liljeberg, S. Mohammadi, A. Afzali-Kusha, and J. Plosila, “Input-
Output Selection Based Router for Networks-on-Chip,” in Proceedings of 9th IEEE International
Symposium on VLSI (ISVLSI), pp. 92-97, 2010.

32. M. Daneshtalab, M. Ebrahimi, P. Liljeberg, J. Plosila, and H. Tenhunen, “A Low-Latency and
Memory-Efficient On-Chip Network”, in Proceedings of 4th IEEE/ACM International Symposium on
Network-on-Chip (NOCS), pp.99-106, 2010.

33. M. Ebrahimi, M. Daneshtalab, P. Liljeberg, H. Tenhunen, “Partitioning Methods for
Unicast/Multicast Traffic in 3D NoC Architecture”, in Proceedings of 13th IEEE International
Symposium on Design & Diagnostics of Electronic Circuits & Systems (DDECS), PP. 127-132, 2010.

34. M. Ebrahimi, M. Daneshtalab, P. Liljeberg, H. Tenhunen, “HAMUM – A Novel Routing Protocol for
Unicast and Multicast Traffic in MPSoCs”, in Proceedings of 18th IEEE Euromicro Conference on
Parallel, Distributed and Network-Based Computing (PDP), pp. 525-532, 2010.

35. M. Ebrahimi, M. Daneshtalab, P. Liljeberg, J. Plosila, H. Tenhunen, “A High-Performance Network
Interface Architecture for NoCs Using Reorder Buffer Sharing”, in Proceedings of 18th IEEE
Euromicro Conference on Parallel, Distributed and Network-Based Computing (PDP), pp. 547-550,
2010.

36. M. Ebrahimi, M. Daneshtalab, P. Liljeberg, H. Tenhunen, “An Efficient Unicast/Multicast Routing
Protocol for MPSoCs”, in Proceedings of 12th IEEE Euromicro Conference On Digital System Design
(DSD), pp. 203-206, 2009.

37. M. Ebrahimi, M. Daneshtalab, S. Mohammadi, A. Afzali-Kusha, H. Tenhunen, “An Efficent Dynamic
Multicast Routing Protocol for Distributing Traffic in NOCs”, in Proceedings of 12th IEEE/ACM
International Conference on Design, Automation, and Test in Europe (DATE), pp. 1064-1069, 2009.

38. M. Ebrahimi, M. Daneshtalab, N. Sreejesh, P. Liljeberg, H. Tenhunen, “Efficient Network Interface
Architecture for Network-on-Chips”, in Proceedings of 27th IEEE Norchip, pp. 1-4, 2009.

 PhD Forum and Workshops
39. M. Daneshtalab, M. Ebrahimi, P. Liljeberg, J. Plosila, and H. Tenhunen, “High-Performance TSV

Architecture for 3-D ICs”, in Proceedings of 9th IEEE International Symposium on VLSI (ISVLSI),
PhD-Forum, pp. 467-468, 2010.

40. M. Ebrahimi, M. Daneshtalab, P. Liljeberg, H. Tenhunen, “Performance Analysis of 3D NoCs
Partitioning Methods”, in Proceedings of 9th IEEE International Symposium on VLSI (ISVLSI), PhD-
Forum, pp. 467-468, 2010.

Chapter 1 Introduction

10

41. M. Ebrahimi, M. Daneshtalab, P. Liljeberg, H. Tenhunen, “Partitioning Methods for
Unicast/Multicast Routings in 3D Mesh NOCs”, 3D Integration Workshop, The Design, Automation,
and Test in Europe (DATE), 2010.

42. M. Daneshtalab, M. Ebrahimi, P. Liljeberg, H. Tenhunen, “A Novel Interlayer Bus Architecture for
Three-Dimensional Network-on-Chips”, 3D Integration Workshop, The Design, Automation, and Test
in Europe (DATE), 2010.

11

Chapter 2

2 Networks-on-Chip

The Network-on-Chip (NoC) technology has emerged as a solution to address the
communication demands of future many-core Systems-on-Chip (SoCs) due to its
reusability, scalability, and higher bandwidth compared with traditional approaches [20].
NoCs have been increasing in popularity in both academia and industry (e.g. Tile64 [21]
and Polaris [22]). The technology enables the integration of a large number of Intellectual
Property (IP) cores into a single chip [23], [24]. The performance and efficiency of NoCs
largely depends on the underlying routing technique which decides the routes of packets
between the source and destination switches. In this chapter, we review the characteristics
of NoCs and the basics of routing algorithms with further emphasis on the factors which are
employed in this thesis.

2.1 Networks-on-Chip Characteristics
In this section, we take a look at NoC designs in general. An NoC is defined by many
characteristics such as the network dimension, topology, switch architecture, switching
technique, and flow control. These characteristics have a direct impact on performance,
latency, and power consumption.

2.1.1 Network Dimension
The NoC design is commonly discussed in the form of two-dimensional (2D) and three-
dimensional (3D) architectures [25]. As shown in Figure 2.1(a), in 2D NoCs all switches
are laid down in a single layer and connected to each other via intra-layer connections. In
3D NoCs (Figure 2.1(b)), layers are stacked on top of each other via inter-layer connections
instead of being spread across a 2D plane [26]. Each layer can use different technologies,
topologies, clock frequencies, etc. In recent years, through-silicon-via (TSV) has attracted a
lot of attention to be employed for the inter-layer connections (vertical channels). TSVs
enable faster and more power efficient inter-layer communication across multiple stacked
layers. Figure 2.1 illustrates a 2D and 3D network with an almost similar number of cores.

Chapter 2 Networks-on-Chip

12

Figure 2.1: (a) 2D NoC (b) 3D NoC

2.1.2 Network Topology
NoCs consist of a set of switches and links. A topology determines the arrangement of
these switches and links. The selection of a topology can affect latency and power
consumption. Lots of topologies have been proposed so far, such as Ring, Mesh, Torus, and
Butterfly [24], [27]. Two popular topologies used in NoCs are mesh and torus. As shown in
Figure 2.2(a), in the mesh topology, each switch is connected to its four neighboring
switches. Although mesh topology offers the same wire length between the connected
switches, it suffers from the long distances between distant switches that cause a negative
effect on the communication latency. In the torus topology, the switches on the edges are
connected to the switches on the opposite edges through wrap-around channels [28]
(Figure 2.2(b)). This results in a shorter distance between distant switches. However, the
long wrap-around connections may result in excessive delay. Among mesh and torus
topologies, the mesh topology has gained more attention and has been widely used in
NoCs, mainly because of its simplicity and symmetrical characteristic. Some other
topologies are also defined in 3D networks such as a cluster-based topology [29]. In this
thesis, our focus is on mesh topology in both 2D and 3D networks.

Figure 2.2: (a) Mesh topology (b) Torus topology

Adaptive Routing Approaches for Networked Many-Core Systems Chapter 2

13

2.1.3 Switch Architecture
A generic switch architecture is illustrated in Figure 2.3. It consists of a routing unit, a
virtual channel (vc) allocator, a switch allocator, a crossbar, and input buffers. The routing
unit determines the output port and the virtual channel for an incoming packet. Multiple
packets may request the same output port and/or virtual channel. However, an output port
or a virtual channel should be granted to at most one packet at a time. The switch allocator
grants a packet to access the output port among all requestors while the virtual channel
allocator chooses a packet to get access to the requested virtual channel. When granted,
packets on input ports should be connected to the corresponding output ports. The crossbar
unit is responsible for making this connection.

East

West

North

South

Local

Routing Unit

VC Allocator

Switch Allocator

Crossbar Switch

L

E

W

N

S

L
E
W
N
S

Input Buffers

Figure 2.3: A switch architecture

The switch-based and bus-based [30], [31] organizations are the two dominant
architectures for 3D NoCs. In the switch-based architecture, each switch has 7 input/output
ports, a natural extension from a 5-port 2D switch by adding two ports to make connections
to the upper and lower layers [16]. Thereby, the obtained 3D switch requires additional
buffers with some modifications on the virtual channel allocator, switch allocator, and
crossbar switch. This architecture is called 3D symmetric NoC [16]. In the bus-based
architecture, however, each switch has 6 input/output ports where 1 input/output port is
connected to the bus architecture. Both approaches have some disadvantages. The bus-
based approach suffers from the poor scalability and deteriorates performance at high
injection rates, while the switch-based design consumes more area and power. In this thesis,
the default architecture is chosen as a simple switch-based design.

2.1.4 Virtual Channel
Packet latency and network throughput can be improved by dividing the buffer associated
with each physical channel into several virtual channels [32]. In this way, packets can make
progress by sharing the physical channel rather than remain blocked to get a free channel.

Chapter 2 Networks-on-Chip

14

Figure 2.4(a) shows a typical switch in the XY network. In this figure, each input channel is
paired with a corresponding output channel. By adding two virtual channels per physical
channel, a double-XY network is obtained (Figure 2.4(b)). The virtual channels in each
dimension are differentiated by vc1 and vc2. Figure 2.4(c) shows the double-Y network in
which one and two virtual channels are used along the X and Y dimensions, respectively.
Note that one virtual channel simply refers to the physical channel while two virtual
channels represent the physical channel shared by two different flows. All these types of
switches are used throughout the thesis.

Figure 2.4: A switch in (a) XY (b) double-XY (c) double-Y network

2.1.5 Switching Techniques
Two common types of switching techniques are circuit switching and packet switching. In
circuit switching, a physical path is reserved between the source and destination switches
prior to sending a packet. The main disadvantage of this technique is in underutilization of
resources as some parts of a path might be idle for a significant period of time [33]. In
packet switching, the path is not established between the source and destination switches
and the routing decision is made at each intermediate switch. At intermediate switches,
packets are temporarily stored in input buffers to receive a proper output channel. In packet
switching, communication links are better utilized as they can be simultaneously used by
different packets. In NoCs, the packet switching technique is more preferred which is also
employed in this thesis.

2.1.6 Flow Control Mechanisms
Packet switching technique can be implemented using three schemes as store-and-forward,
virtual cut-through and wormhole switching. In store-and-forward, the whole packet should
be stored in the input buffer before proceeding to the next one. In virtual cut-through, the
packet can be forwarded to the next switch before it is completely received by the current
switch. However, there should be enough space in the next switch when delivering the
packet. Obviously, virtual cut-through results in a lower latency than the store-and-forward
scheme. In both approaches, the buffer sizes must be large enough to be able to
accommodate the largest possible packet in the network. In wormhole switching, packets
are divided into flits traversing through the network in a pipelined fashion. This approach
eliminates the need to allocate large buffers in intermediate switches along the path [34].
However, a packet waiting to be allocated to an outgoing channel may prohibit other

Adaptive Routing Approaches for Networked Many-Core Systems Chapter 2

15

packets from using the channels and thereby wasting channel bandwidth and increasing
latency. Wormhole switching is the mostly used technique in the realm of NoCs and it is
chosen as the default technique in this thesis.

2.2 Routing Algorithms
Routing algorithms can be classified into different categories such as deterministic vs.
adaptive, minimal vs. non-minimal, and congestion-aware vs. congestion-oblivious.
Moreover, routing algorithms may be designed to support collective communication or to
tolerate faults. When designing routing algorithms, it is extremely important to remove
deadlocks, livelocks, and starvation. Turn models are used to guarantee deadlock freeness
in the network. This section gives the overall view about these issues.

2.2.1 Deterministic and Adaptive Routing
Routing algorithms can be classified as deterministic and adaptive algorithms. The simplest
deterministic routing method is dimension-order routing which is known as XY in a 2D
network and XYZ in a 3D network. Using dimension-order routing algorithms, packets are
routed by crossing dimensions in strictly increasing order, reducing to zero the offset in one
direction before proceeding to the next one. Implementations of deterministic routing
algorithms are simple but they are unable to balance the load across the links in a non-
uniform or bursty traffic [35].

In adaptive routing algorithms, a packet can traverse from a source to a destination
switch through multiple paths. Adaptive routing has been used in interconnection networks
to improve network performance and to tolerate link or switch failures. Specifically,
adaptive routing algorithms can be used to avoid congestion by adapting the routing
decision with the network status [36]. Thereby, they can decrease the probability of routing
packets through congested regions. Adaptive routing algorithms can be either partially
adaptive or fully adaptive. In partially adaptive routing algorithms, packets are limited to
choose among the shortest paths, while in fully adaptive methods, packets are allowed to
take any minimal paths available between the source and destination pair [33], [34], [35].

2.2.2 Minimal and Non-minimal Routing
In minimal routing algorithms, the shortest paths are used between each pair of source and
destination switches. In non-minimal routing, packets may take longer paths to reach the
destination switch. Non-minimal routing algorithms are usually used to tolerate faults rather
than avoiding congestion in the network. Employing non-minimal routing algorithms as a
congestion-aware technique may result in a severe deterioration of performance. This is due
to the fact that packets may take longer paths and meanwhile passing through congested
regions. Moreover, non-minimal methods suffer from a more complex switch structure than
minimal schemes. It is worth mentioning that, in this thesis we show that non-minimal
routing algorithms can be used to alleviate congestion in the network when coupling with
an intelligent method to estimate the traffic of different routes.

Chapter 2 Networks-on-Chip

16

2.2.3 Congestion-aware and Congestion-oblivious Routing
Adaptive routing algorithms can be decomposed into routing and selection functions [37].
The routing function suggests a set of output channels to deliver a packet. The selection
function selects an output channel from the set of channels supplied by the routing function.
The selection function can be classified as either congestion-oblivious or congestion-aware
schemes. In congestion-oblivious algorithms, routing decisions are independent of the
congestion condition of the network. This policy may disrupt the load balance since the
network status is not considered. In congestion-aware routing algorithms, the path a packet
traverses from a source to a destination is determined by the network condition which can
be based on local or global information. In approaches considering local traffic conditions,
the routing decision is made only based on the congestion statuses of adjacent neighbors.
These methods provide a limited view of the network condition. Routing algorithms based
on global information provide a better distribution of the traffic load. However, the
congestion information should be collected, distributed, and utilized in an efficient way.
Congestion-aware algorithms can take advantages of different metrics such as the number
of free buffer slots [38], [39], [40], [41], [42], available virtual channels [43], crossbar
demand, or combinations of these factors [44].

2.2.4 Unicast and Multicast Routing
Communication in NoCs may be in form of unicast or multicast messages [45]. In the
unicast communication, a packet is sent from a source switch to a single destination switch,
while in the multicast communication, a packet is delivered from one source switch to an
arbitrary number of destination switches. Multicast communication can be implemented by
sending a single unicast packet per destination of a multicast message (Figure 2.5(a)).
However, it increases the network congestion due to sending multiple copies of the same
message into the network. This results in decreasing performance significantly.

Hardware-based multicast schemes can be broadly classified into path-based [46], [47]
and tree-based methods [48]. In the tree-based method, a spanning tree is built at the source
switch and a single multicast packet is sent down the tree (Figure 2.5(b)). The source
switch is considered as the root while destinations are the leaves of this tree. The packet is
replicated along its route at switches and forwarded along multiple outgoing channels
reaching to disjoint subsets of destinations [27]. With tree-based multicast, care must be
taken to avoid deadlock. When using wormhole switching, dependencies between branches
of different multicast trees may create deadlock. Typically more resources are needed to
avoid such situations (e.g. using virtual channels or implementing virtual cut-through
switching). Also, replicating a packet through different output ports leads to larger
contention within the network (due to the temporal blocking of a branch). The situation is
even more difficult in 3D designs, because the probability of forming deadlock and
blockage is higher in such systems.

In the path-based multicast method (Figure 2.5(c)), a source switch prepares a packet for
delivery to a set of destinations by placing the list of destinations in the header of the
packet. The packet is routed along the path until it reaches the first destination. The packet

Adaptive Routing Approaches for Networked Many-Core Systems Chapter 2

17

is delivered both to the local core and to the corresponding output channel toward the next
destination in the list. In this way, the packet is eventually delivered to all specified
destinations. Notice that the path-based approach does not replicate packets within the
network, thus not increasing packet contention. However, the path visiting all switches can
become large.

Figure 2.5: Multicast approaches

2.2.5 Fault-Tolerant Routing
Two different types of faults that can occur in NoCs are transient and permanent. Transient
faults have unpredictable causes (e.g. power grid fluctuations and particle hits) and they are
often difficult to be detected and corrected. Permanent faults are caused by physical
damages such as manufacturing defects and device wear-out.

NoC, inherently, has a robust infrastructure by providing alternative routes between
different switches. Fault-tolerant routing algorithms realize this potential and enable the
NoC to be a fault-tolerant system. Fault-tolerant algorithms attempt to tolerate faulty links
or switches by routing packets through alternative paths. Although fault-tolerant algorithms
can bring a high degree of robustness for NoCs, on the other hand, they may result in huge
performance loss. This is because of sending packets through longer paths and creating
congestion around the fault.

2.2.6 Starvation, Deadlock, and Livelock
Starvation is the situation in which low priority packets cannot get access to output ports as
high priority packets always win the arbitration. The arbitration policy can be based on the
round-robin or the packet priority scheme. Round-robin provides a fair scheduling by
serving packets in a circular manner, so that it is starvation-free. However, packet
prioritization might be needed in the network for the quality of service or it can be used for
increasing the overall performance. On the other hand, prioritization schemes may lead to

Chapter 2 Networks-on-Chip

18

starvation in the network. A proper resource assignment can avoid starvation while giving
packets different priorities.

Deadlock is a situation where a set of packets are permanently waiting for each other
and no progress is made in the network. Deadlock is formed by a circular wait between
packets in which each packet holds a channel needed by the next one. One solution to break
cyclic dependencies is to drop a couple of packets involved in a deadlocked configuration.
However, this is not a good approach as the deadlock situation might occur occasionally in
the network. A better solution is to prevent deadlock by the means of routing algorithms in
the routing unit which can be based on turn models or adding virtual channels.

A different situation, called livelock, arises when some packets are not able to reach
their destinations, even if they are not blocked permanently [33]. In this situation, packets
keep moving indefinitely in the network without any progress toward their destinations.
Similar to the deadlock issue, livelock can be prevented if it is properly being considered in
the routing algorithm. Livelock may arise only when non-minimal routing is employed.

2.2.7 Turn Models
Turn models are firstly proposed by Glass and Ni [129] to provide a systematic approach
for deadlock-free adaptive routing [33], [49]. There are two types of complete cycles that
can be formed in the network, known as clockwise and counter-clockwise cycles
(Figure 2.6(a)). The creation of a cycle may lead to deadlock in the network and thus it
should be avoided. In turn models, certain turns are prohibited from each cycle in order to
break all cyclic dependencies and thus avoiding deadlock. In the XY routing algorithm, for
example, packets are routed along the X dimension before proceeding to the Y dimensions.
As shown in Figure 2.6(b), in this algorithm, two turns are avoided from each abstract cycle
and there is no possibility of forming a complete cycle among the remaining turns.
Deadlock can be avoided by prohibiting fewer turns than in the XY routing algorithm.
Negative-First (Figure 2.6(c)), West-First (Figure 2.6(d)) and North-Last (Figure 2.6(e))
prohibit only two turns to avoid deadlock.

Figure 2.6: (a) Clockwise and counter-clockwise turns (b) XY routing (c) Negative-First (d) West-First (e)
North-Last (Solid lines indicate the allowable turns and dash lines indicate the prohibited turns)

19

Chapter 3

3 Congestion-Aware Routing
Algorithms for a 2D Mesh Network

The performance and efficiency of NoCs largely depends on the underlying routing
technique. Congestion occurs frequently in NoCs when the demands of packets exceed the
capacity of the network’s resources. Congestion may lead to increased transmission delay,
thus limiting the performance of NoC. Efficient routing algorithms can address this issue by
routing packets through less congested regions and balancing traffic over the network. The
routing decision can be based on local or non-local congestion information. Methods based
on local congestion information are generally simple but they are unable to balance the
traffic load efficiently. On the other hand, methods using non-local congestion information
are more complicated while providing better traffic distribution.

In this chapter, we first investigate different well-known congestion-aware routing
methods. The routing decision in some of them is made based on purely local congestion
information, while in others non-local congestion information is also taken into account.
We discuss the advantages and disadvantages of each method and the impact on routing
decisions and traffic balancing. After that, we propose three main approaches to alleviate
congestion in the network, which forms the main contributions of this chapter. The first
approach is based on a clustering scheme in which congestion in the network is relevant to
regions rather than switches. The second method takes advantage of learning approaches to
estimate latency values from each source switch to different destinations at run time. The
third approach employs the basic concept of fuzzy-logic. This scheme eliminates rigid
boundaries on congestion metrics and provides a more reliable comparison mechanism to
select between output directions. Based on the design characteristics such as area,
performance, and power budget, the three proposed approaches (i.e. cluster-based, learning-
based, and fuzzy-based approaches) can be combined together as desired.

3.1 Traditional Approaches
In this section, we investigate several traditional approaches to alleviate congestion in the
network. Some of them are based on more local congestion information while others take
more global information into account.

Chapter 3 Congestion-Aware Routing Algorithms for a 2D Mesh Network

20

3.1.1 Dynamic XY (DyXY)
An adaptive routing algorithm called Dynamic XY (DyXY) is proposed in [38]. In this
algorithm, which is based on the static XY algorithm, a packet is sent either to the X or Y
dimension depending on the congestion condition. It uses local information, which is the
number of free buffer slots in an input buffer of the neighboring switches, to decide on the
next hop. One of the drawbacks of DyXY is that the use of local information in the routing
decision may forward a packet to a switch which is not locally congested while the
surrounding regions of this switch are highly congested. Such non-optimal routing
decisions increase the network latency in NoC.

Figure 3.1 shows an example of the DyXY method where the routing decision based on
local congestion information leads to deliver a packet through a congested region. In this
figure, colors show the congestion level at each switch such that the darker color indicates
the more congested switch. In this example, the switches 0 and 15 are the source and
destination of the packet, respectively. In the DyXY method, the source switch 0 compares
the occupied slots at the west input buffer of the switch 1 and that of the south input buffer
of the switch 4. Since the switch 1 is less congested, the packet is sent to this switch. When
the packet arrives at the switch 1, it has to be delivered through the switch 2 or 5.
According to the congestion condition shown in Figure 3.1, the switch 2 is less congested
and thus the packet is delivered to the switch 2. At the switch 2, the packet has to pass
through the most congested region (i.e. the switches 6, 7, 10, and 11) in the network to
reach the destination switch. This non-optimal path is as a result of making routing
decisions based on local information. The packet could pass through the less congested
region (i.e. the switches 8, 9, 12, and 13) if non-local information was considered.

Figure 3.1: An example of the DyXY method
(Note that the darker color indicates the more congested switch)

3.1.2 Enhanced Dynamic XY (EDXY)
In the Enhanced Dynamic XY (EDXY) method [39], the network is provided with auxiliary
wires along each row and column to carry the buffer statuses located in that row or column.
This information is propagated to the switches in the adjacent row and column. In this
method, every switch first looks at the destination address of the packet. If the destination

Adaptive Routing Approaches for Networked Many-Core Systems Chapter 3

21

switch is not located in the adjacent row or column, the packet is routed similar to the
DyXY method. However, if the destination address is just one hop apart from the switch in
either the X or Y dimension, not only the queue length of the buffer in the neighboring
switches are considered, but also congestion wires are used for the decision making.

Consider the example of Figure 3.2 where a packet is delivered from the source switch 0
to the destination 15 and it is already at the switch 2. Based on the DyXY method, since the
switch 3 is less congested than the switch 6, the switch 3 is selected as the next hop.
However, by this decision the packet has to pass the switches 7 and 11 which are highly
congested. In contrast, in the EDXY method, in a similar situation (i.e. when a packet is at
the switch 2), the congestion conditions of the third and fourth columns are compared
together; since the third column is less congested, the packet is sent to the switch 6, thus
avoiding packets to be routed through the highly congested switches.

In a similar example as in Figure 3.1, when the switches 6, 7, 10, and 11 are congested,
EDXY behaves similar to DyXY and the packet has to be routed through the congested
region due to the lack of global congestion information.

Figure 3.2: An example of the EDXY method

3.1.3 Neighbor-on-Path (NoP)
In the Neighbor-on-Path (NoP) [40] approach, the locality decision is based on 2-hop
neighbors. An example of NoP is shown in Figure 3.3 where a packet is sent from the
source switch 0 to the destination switch 15. At the source switch 0, the packet can be sent
either to the switch 1 or the switch 4. In NoP, the congestion value in the X dimension is
computed by considering the free buffer slots at the west input buffer of the switch 2 and
south input buffer of the switch 5 (i.e. these switches are located in the minimal routing
path to the destination). Similarly, the congestion value in the Y dimension is measured by
using the number of free buffer slots at the south input buffer of the switch 8 and west input
buffer of the switch 5. By comparing the obtained values in two directions, a packet is sent
to the switch 1 or the switch 4. The congestion status of the switch 5 may not affect the
routing decision. The reason for this is that, the number of free buffer slots in the south and
west input buffers of the switch 5 is compared at the switch 0. On the other hand, since both
of these input buffers belong to the same switch, their congestion values would be in a

Chapter 3 Congestion-Aware Routing Algorithms for a 2D Mesh Network

22

similar rang as they are largely affected by the contention of output ports (i.e. north and east
output ports in this example). Therefore, the comparison of these two values cannot have a
considerable impact on the routing decision. The NoP method also suffers from the
recursive nature of the routing algorithm, resulting in increased hardware overhead and
switch complexity. This method cannot be extended to look at the congestion of 3-hop
neighbors due to its significant hardware overhead.

Following the example of Figure 3.3, the packet is sent to the switch 1 since the
congestion status of the switch 2 is less than the switch 8. At the switch 1, the packet is sent
to the switch 2 as the switch 3 is less congested than the switch 9. As the result, the packet
has to pass through the highly congested region (i.e. the switches 6, 7, 10, and 11).

Figure 3.3: An example of the NoP method

3.1.4 Regional Congestion Awareness (RCA)
A well-known method called Regional Congestion Awareness (RCA-quadrant) is proposed
in [44] to utilize non-local congestion information in the routing decision. In the RCA
method, in order to collect global congestion value in switches, the locally computed
congestion value of the corresponding input buffers of a switch is combined with those
global signals propagated from upstream switches and the newly-aggregated value is
transmitted to the downstream switches and so on. In this method, non-local congestion
information is used to send a packet through a less congested direction. Even though RCA
collects global information, in fact this information cannot be efficiently used in routing
decisions.

Figure 3.4 shows an example of the RCA method where the switch 0 wants to
communicate with the switch 15. Firstly, the packet should be sent to either the switch 1 or
the switch 4 depending on global congestion information received from X and Y
dimensions. According to the RCA method, the congestion value in the Y dimension is
calculated by weighting sum (i.e. 50-50 weighting of local and propagated congestion
values) of the values of the corresponding input buffers of all switches above the first row.
Similarly, for the X dimension, the congestion value is determined by aggregating the
values of corresponding input buffers of all switches except the first column. As can be
seen in Figure 3.4 both calculated congestion values in the X and Y dimensions contain the
congestion information of several common switches, i.e. 5, 6, 7, 9, 10, 11, 13, 14, and 15.

Adaptive Routing Approaches for Networked Many-Core Systems Chapter 3

23

In as much as the comparison is made between the values in X and Y dimensions and both
values include the congestion information of common switches, only the values of the
switches in the row 0 and column 0 have a strong impact on routing decisions. Another
shortcoming of the RCA method is that it considers the statuses of all switches along each
direction whether they are located in the minimal path or not. Therefore, this method
introduces excessive information, which may degrade performance, especially when traffic
is mostly local [43].

According to the above explanation, the packet is sent to the X dimension from the
source switch since the congestion statuses of the switches 1, 2, and 3 are less than those of
the switches 4, 8, and 12. The congestion statuses of the other switches (i.e. 5, 6, 7, 9, 10,
11, 13, 14 and 15) are compared with each other, thus not affecting the comparison result
considerably. On the other hand, for an instance, the routing decision is the same wherever
the destination is located in the northeast position of the source switch (i.e. the switches 5,
6, 7, 9, 10, 11, 13, 14, and 15). Therefore, when the destination is at the switch 5, the
routing unit not only compares the congestion values of the switches 1 and 4, but also
considers the congestion values of all the other switches which are not located between the
source and destination switches.

Figure 3.4: An example of the RCA method

3.1.5 Destination-Based Adaptive Routing (DBAR)
The Destination-Based Adaptive Routing method (DBAR) is described in [43] under the
assumption of an 8×8 mesh network. In this method, each switch has two 9-bit registers,
called congestion-X and congestion-Y. These registers are used to store the congestion
information received from the X and Y dimensions. Each entry in the congestion-X
(congestion-Y) register is associated with one switch in that row (column) so that the
register represents the statuses of all input buffers along that row (column). The congestion
information of an input buffer is transferred through a wire to all the other switches along
that row or column. In an 8×8 mesh network, eight congestion wires are used along each
row and column. The DBAR method only considers the congestion value of the switches
that are located in the minimal path between source and destination switches.

Chapter 3 Congestion-Aware Routing Algorithms for a 2D Mesh Network

24

DBAR has several shortcomings as follows: 1- As the network size increases, the
register size in each switch should also be changed, indicating that the DBAR method is not
a scalable approach. 2- Comparison is unfair when a packet has different distances along
the X and Y dimensions to the destination switch. For an instance in Figure 3.5, the
problem of unfair decision can be seen when a packet is sent from the source 0 to the
destination 13. DBAR considers the congestion values of the switches along the X and Y
dimensions that reside in the minimal path to the destination switch. However, as shown in
Figure 3.5, the congestion condition of a single switch (i.e. the switch 1) in the X dimension
is compared with the congestion values of three switches (i.e. the switches 4, 8, and 12) in
the Y dimension. Thereby, in most cases, the packet is sent to the switch 1. This unfair
comparison results in limiting the packet adaptivity in the remaining path to the destination.
In other words, the packet has to be routed through one path from the switch 1 to the switch
13 and it has no alternative routing choices.

Figure 3.5: An example of the DBAR method

3.1.6 Q-Learning Approach with Reduced Table Sizes (C-Routing)
Learning-based models have been studied in several works such as [50] and [51], but they
have rarely been investigated in the context of on-chip networks [52]. In learning-based
approaches, the network condition is learned at run time which is utilized in the routing
decision. Each switch has a routing table maintaining the latency value from the current
switch to each destination switch in the network. Therefore, a large table is required at each
switch which may not be an efficient solution for NoCs. An example is shown in
Figure 3.6, where a packet is sent from the source switch 0 to the destination switch 10. The
table at the switch 0 maintains the latency values to reach from this switch to different
destination switches (i.e. the switch 1 to the switch 15) through the possible output channels
(i.e. E, W, N, or S output channel). Let us assume the packet is delivered to the east
direction as it shows a smaller latency. The packet has to be waited in the input buffer of
the switch 1 to receive an output channel. In this example, the packet is sent to the north
direction. At this time, the waiting time of the packet in the input buffer of the switch 1 and
the estimated latency from the switch 1 to the destination switch 10 are summed up and the
obtained value is sent to the switch 0 where the table 0 is updated with this new

Adaptive Routing Approaches for Networked Many-Core Systems Chapter 3

25

information. This procedure is repeated until the packet reaches its final destination. This
example shows that as more packets are propagated inside the network, the values of the
tables are more up-to-date.

C-Routing [53] is introduced for NoCs with smaller tables. In this method, all switches
are divided into several clusters. Tables maintain the latency values from the current switch
to other switches within its cluster and from the current switch to different clusters. This
approach is not scalable and the area overhead is still high in comparison with other
congestion-aware methods.

Figure 3.6: An example of the learning-based approach

3.1.7 Summary of Traditional Methods
Among the mentioned algorithms, the routing decision in DyXY is based on purely local
information. EDXY, NoP, and DBAR take more global information into account. RCA
collects the congestion information throughout the network, but this information cannot be
efficiently used in the routing unit and may result in non-optimal decisions. C-Routing is a
learning-based approach which imposes a large area overhead.

3.2 The Proposed Cluster-based Approaches
A common assumption among the mentioned traditional algorithms is that congestion is
measured at a switch level. In this section, we show that the performance can be improved
if the congestion level is obtained for a group of switches, called a cluster, rather than a
single switch. We propose two algorithms based on cluster-based schemes, called Agent-
based Routing Algorithm (AgRA) and Trapezoid-based Routing Algorithm (TRA).

In the agent-based method, a lightweight clustering structure is built upon the mesh
network to propagate the congestion information over the different regions of the network.
It employs an efficient selection method to choose between the output channels provided by
the routing function. This approach suggests an efficient solution to provide a better view
of the network traffic and to utilize this knowledge in the routing decision. TRA
investigates the impact of both the routing unit and the switch arbitration unit in distributing
the traffic load over the network. In the proposed method, the congestion information about
the remaining path is used in the routing unit while the information about the traversed path
is utilized in the switch arbitration unit. The non-local information about the remaining path

Chapter 3 Congestion-Aware Routing Algorithms for a 2D Mesh Network

26

is gathered from the switches that not only are more likely to be chosen as intermediate
switches in the routing path but also provide up-to-date information for a given switch.
Moreover, to collect and deliver the non-local information, a distributed propagation
mechanism is presented.

A basic requirement to distribute traffic over the network is to give packets some degree
of freedom in choosing among different routes. Fully adaptive routing algorithms satisfy
this condition well by providing the maximum degree of adaptiveness for packets. The two
presented cluster-based methods are based on the fully adaptive method, enabling to select
between all minimal directions at each switch. For this purpose one and two virtual
channels are used along the X and Y dimensions, respectively. To avoid deadlock, similar
to the methods in [38] and [39], eastward and westward packets use the first and second
virtual channel, respectively, along the Y dimension while northward and southward
packets can take either virtual channel.

3.2.1 Agent-based Routing Algorithm (AgRA)
Figure 3.7(a) shows the Agent-based Network-on-Chip (ANoC) structure in a 2D mesh
network [54]. The network is divided into several overlapped clusters in which a cluster
contains four switches and a cluster agent. The design consists of two separate mesh
networks: data network and lightweight agent network. The data network connects the
switches to each other to propagate packets over the network while in the agent network,
cluster agents communicate with each other to spread the congestion information. Each
cluster agent performs three simple tasks. First, it collects and aggregates the congestion
information from the local switches; second, it distributes the information to the
neighboring cluster agents; third, the cluster agent transfers the information to the local
switches (i.e. the information includes both local cluster information and those received
from the neighboring clusters). In addition to this information, a switch receives 1-bit
information from each neighboring switch about the buffer availability at the corresponding
input port. Accordingly, each switch is aware of the congestion condition of the switches
located in the local and neighboring clusters and the congestion condition of the input
buffer in the neighboring switches.

As illustrated in Figure 3.7(b), the Congestion Level of a switch (CL) is computed using
the Congestion Statuses of input buffers (CS). In each flit event (i.e. flit_tx or flit_rx), if the
number of occupied slots of an input buffer is larger (smaller) than a threshold value, the
threshold signal is assigned to one, otherwise zero. A history-based scheme is used to
capture the threshold signal of an input buffer. For this purpose a 4-bit shift register is
adopted to store the threshold signal whenever a new flit enters or leaves the buffer. The CS
signal is asserted if all bits of the shift register are one. Finally, the CL value of a switch is
computed by summing up the CS signals received from the input buffers. In fact, the CL
value of each switch indicates its load level. For example, if only the east and local input
buffers of a switch are congested (CS(local)=1 and CS(east)=1), then the CL value of the
switch will be two. By using one and two virtual channels along the X and Y dimensions,
three bits are enough to code the congestion level of a switch having the maximum of seven

Adaptive Routing Approaches for Networked Many-Core Systems Chapter 3

27

input buffers (i.e. L, E, W, N1, N2, S1, and S2 where numbers refer to virtual channels). As
the channel width of cluster agents is identical to the CL value, CL can be transferred
within one clock cycle.

To explain the propagation strategy, let us consider the central cluster (i.e. cluster 4) in
Figure 3.7(a). The cluster agent 4 receives the 3-bit CL value from each of the four local
switches (i.e. the switches 5, 6, 9, and 10). The obtained 12-bit information should be
transferred to the local switches and neighboring clusters, but it does not require
transferring the whole information to all of them. For example, a local switch knows about
its CL value and it only needs to be informed about the CL values of the other three local
switches. In another example, when transferring the information from the cluster agent 4 to
the cluster agent 5, only the CL values of the switches 5 and 9 are delivered since the
cluster 5 receives the CL values of the switches 6 and 10 by its local connections. The
similar principle is applied to other directions when transferring the information from the
cluster agent 4 to cluster agents 7, 3, and 1.

Figure 3.7: Agent-based Networks-on-Chip

By distributing the congestion information over the network, the routing decision can be
assisted by the local and non-local congestion information received from the neighboring
cluster agents. For example, the switch 0 in Figure 3.7 not only knows the CL value of the
switches within its cluster (i.e. the switches 1, 4 and 5) but also have the information about
the switches in the clusters C1 and C3 (i.e. the switches 2, 6, 8, and 9). The congestion-
aware selection algorithm in a 2D mesh network is shown in Figure 3.8. The routing
decision is made based on the relative position of the source and destination switches using
the following rules.

Rule1- If the source and destination are located in the same row or column (delta-
X=0 or delta-Y=0), the packet has no adaptivity and it is delivered through the only
possible direction. For instance, in Figure 3.9(a) when the packet is currently at the
switch 0 and the destination is located at the switch 1, 2, or 3, the packet has to be
routed along the X dimension while the packet is sent through the Y dimension when
the destination is located at the switch 4, 8, or 12.

Chapter 3 Congestion-Aware Routing Algorithms for a 2D Mesh Network

28

Rule2- If the distance along both directions is one (delta-X=1 and delta-Y=1), the
free buffer slots in the neighboring input buffers (FreeSlots_Input) are compared
together and the packet is sent to the less congested direction. For example, in
Figure 3.9(b) when the destination is at the switch 5, the number of free slots at the
west input buffer of the switch 1 is compared with the south (virtual channel 1) input
buffer of the switch 4.

Rule3- If the distance along one dimension is one and along the other dimension is
greater than one ((delta-X=1 and delta-Y>1) or (delta-X>1 and delta-Y=1)), at first
the FreeSlots_Input value along both directions is compared together. In a case that
the congestion values in both directions are the same, the CL value of 1- and 2-hop
neighbors (pair) is taken into consideration. For example, when the destination is
located at the switch 9 or 13 in Figure 3.9(c), at first the FreeSlots_Input values of
the switches 1 and 4 are compared together. If they are the same, the congestion
value of the pair (1,5) is compared with the pair (4,8). The congestion of each pair is
called Pair-Congestion. Similarly, Rule3 is applied in Figure 3.9(d) when the
destination is located at the switch 6 or 7.

Rule4- If the distances along both directions are greater than or equal to two (delta-
X>=2 and delta-Y>=2), after checking the congestion values of the input buffers in
the neighboring switches, the congestion level of the neighboring clusters are
compared together. The congestion on these clusters is called Cluster-Congestion.
For instance in Figure 3.9(e), at first the input buffers of the switches 1 and 4 are
compared, then the congestion values of clusters 1 and 3 are checked.

Figure 3.8: The congestion-aware selection algorithm in the agent-based approach

ALGORITHM: Congestion-aware selection method in the agent-based approach

Definitions: FreeSlots_Input: The number of free buffer slots in the input buffer
Cluster-Congestion: Congestion value of a cluster
Pair-Congestion: Congestion in 1- and 2-hop switches
delta_x, delta_y: Distance between source and destination

if (delta_x=0 and delta_y=0) then

select the local port;
elseif (delta_x=0 or delta_y=0) then

select the only possible direction;
elseif (delta_x=1 and delta_y=1) then

select based on FreeSlots_Input;
elseif (delta_x=1 and delta_y>1) or (delta_x>1 and delta_y=1) then

select based on FreeSlots_Input and then Pair-Congestion;
elseif (delta_x>=2 and delta_y>=2) then

select based on FreeSlots_Input and then Cluster-Congestion;
end if;

Adaptive Routing Approaches for Networked Many-Core Systems Chapter 3

29

Figure 3.9: An example of the agent-based selection method

3.2.2 Trapezoid-based Routing Algorithm (TRA)
The agent-based approach is a scalable method which can reduce the latency of packets
significantly compared with traditional methods. The reason of this reduction is that the
agent-based approach has a better overall view regarding the congestion at the neighboring
regions while traditional methods have a more limited view as they consider the congestion
at the switch level. However, the question is that how the number of switches within each
cluster is defined (e.g. four switches within a cluster in the agent-based approach). On the
other hand, a major part of research works as well as the presented agent-based method try
to alleviate congestion by considering the traffic condition in the forward paths and
delivering packets through the less congested paths. In other words, none of them consider
the impact of the switch arbitration in traffic distribution.

In this section, we propose a method called Trapezoid-based Routing Algorithm (TRA)
[55]. TRA tries to find the optimal number of switches within each cluster. In detail, the
basic ideas of TRA can be divided into two parts: input selection function and output
selection function [56].

The input selection function of TRA uses a priority-based approach to prioritize packets
coming from the congested regions. There are two solutions to estimate the congestion
condition of the path from where the packet is coming. The first solution is to carry the

Chapter 3 Congestion-Aware Routing Algorithms for a 2D Mesh Network

30

information by the means of packets, so that as a packet moves toward its destination, the
information of the traversed path is stored in the header flit of the packet. In this way, a
packet not only is responsible for delivering data but also carrying the experienced
congestion value along its path to the destination. The main drawback of this approach is
the increased per-hop latency due to updating the header flit with the new congestion
information whenever a packet leaves an intermediate switch.

The second solution is to propagate the information of nearby switches by using distinct
wires. Since packets do not carry the path information, the traversed path should be
estimated according to the position of the source and current switches. This estimation is
rather impractical considering all possible paths between the source and the current switch.
However, it is enough to consider the limited area residing in the packet quadrant rather
than the switches that have been passed by the packet. The imposed wiring overhead is the
shortcoming of this approach. In TRA, the second solution is employed. To reduce the area
overhead, TRA utilizes a distributed propagation mechanism to collect and distribute the
traffic information of distant switches. This suggests a relatively low wiring overhead,
latency and power consumption required for propagating traffic information.

The output selection function of TRA utilizes the most validated and up-to-date
congestion information in the routing decision unit. The aim of the output selection
function of TRA is to gather the congestion information from the switches that not only are
more likely to be chosen as intermediate switches in the routing path but also provide up-
to-date information for a given switch. By calculating the passing probability of packets
through the switches, we find out that the congestion information of the switches located in
the trapezoid-based region is sufficient to make optimal routing decisions.

3.2.2.1 Output Selection Function
For a given source and destination pair in an adaptive routing, some intermediate switches
are passed by more number of packets than others. In general, central switches forward
significantly a larger number of packets than edge switches since central switches are
accessible through more paths. One of the aims of the TRA method is to make the routing
decision based on the congestion conditions of the switches through which more packets
are forwarded toward destinations. For example, consider a case in Figure 3.10 where a
packet is sent from the switch 0 to the destination 24 when the network is not congested. At
the source switch, the packet can be sent through the switch 1 or 5 with 50% probability
each. When the packet arrives at the switch 1, there are two choices for the next hop, the
switch 2 or 6. The probabilities that a packet passes through them are 25% each (the switch
6 is accessible through the switches 1 and 5, so the passing probability of packets through
this switch is 50%). The arrived packet at the switches 2 and 6 can be delivered to the
switch 7, thereby with a probability of 37.5% the packet passes through the switch 7, and so
on. Similar to the DBAR technique, the routing decision can be assisted by the statuses of
the switches explicitly in the row or column (i.e. the switches 1, 2, 3, and 4 in the row; and
the switches 5, 10, 15, and 20 in the column), while the passing probabilities of packets
through the switches along a row or column are 50%, 25%, 12.5%, and 6.25%,

Adaptive Routing Approaches for Networked Many-Core Systems Chapter 3

31

respectively. Obviously, these switches are in the 1-, 2-, 3-, and 4-hop distances from the
source switch. By continuing along a direction, not only the passing probability of packets
through the switches approaches zero but also the congestion statuses of the switches would
be out-of-date for the source switch.

In general, traditional methods do not efficiently improve the load balance due to the
lack of knowledge about the congestion statuses of the switches to be likely passed in the
routing path. By calculating the passing probability of packets through the switches, in the
TRA method, the congestion statuses of the switches with the high passing probability
(trapezoid positions) are analyzed. Trapezoid positions for the X and Y dimensions (X-
trapezoid and Y-trapezoid) are shown in Figure 3.10. The delivered packets from the switch
0 may pass the switches in the X-trapezoid positions, the switches 1, 2, 7, 8, and 3 with a
probability of 50%, 25%, 37.5%, 25%, and 12.5%, respectively. The distances of these
switches from the source switch are 1, 2, 3, 4, and 3. So, the probability of the switches 7
and 8 being passed by the packets from the switch 0 is higher than either the switch 3 or the
switch 4 in the axis. Although the switches 6 and 12 can be used in the routing path with a
probability of 50% and 37.5%, respectively, their congestion statuses cannot affect the
comparison result at the switch 0 as they have similar effect on the obtained congestion
values in both directions. The other switches are either far from the source switch or have a
little chance to be intermediate switches through which packets are forwarded.

Figure 3.10: Passing-probability of packets through intermediate switches

Two 5-bit registers, called CRx and CRy, are used to store the congestion values of the
switches in the trapezoid positions. Each bit of these registers is allocated to one switch in
the trapezoid position and the orders (i.e. most significant bit to least significant bit) are
determined based on the passing probability of packets through the switches and their
distances from the source switch. For example, in Figure 3.10 the bits of CRx and CRy are
assigned as CRx=(switch 1; switch 2; switch 7; switch 8; switch 3) and CRy=(switch 5;
switch 10; switch 11; switch 16; switch 15). This suggests that for a given source and
destination pair, the congestion statuses of nearby switches with large passing probabilities
influences the routing decision more than those of long-distance switches.

Chapter 3 Congestion-Aware Routing Algorithms for a 2D Mesh Network

32

The pseudo code of the output selection function is presented in Figure 3.11. According
to this algorithm, when a packet is in the same row or column as the destination switch, the
packet is sent to the appropriate direction. However, if the packet is one hop apart from the
destination row or column, only the congestion conditions of the adjacent switches are used
in the routing decision. In this situation, if the congestion statuses of both neighboring
switches are the same, the packet is sent to the neighboring switch that probably is not
located in the destination row or column. This selection retains the packet adaptivity in the
next hop. When the packet is two hops away from the destination row or column, the
algorithm ignores the statuses of the switches that are not located in the minimal path to the
destination switch. In other cases, CRx and CRy are compared with each other. Since, in all
cases, the congestion conditions of the switches in the minimal paths are considered, this
algorithm offers an efficient approach to application’s isolation, when different applications
are mapped to multiple regions of the network. By integrating all the other trapezoid
positions, the congestion information of the highlighted regions in Figure 3.12 is needed by
a switch in a central part of the network.

Figure 3.11: The output selection function of TRA

ALGORITHM: Output selection function of TRA

Definitions: CRx: Congestion in the X-trapezoid Position (CRx=register(4 downto 0))
CRy: Congestion in the Y-trapezoid Position (CRy=register(4 downto 0))
Xs,Ys: X and Y coordinates of the source switch
Xd,Yd: X and Y coordinates of the destination switch

delta_x=Xd-Xs; delta_y=Yd-Ys;
if delta_x=0 or delta_y=0) then

if (delta_x=0 and delta_y=0) then select <= local;
elsif (delta_x=0) then select <= y_dir;
else select <= x_dir;
end if;

elsif (delta_x=1 or delta_y=1) then
if (CRx(4)>CRy(4)) then select <= y_dir;
elsif (CRx(4)<CRy(4)) then select <= x_dir;
elsif (CRx(4)=CRy(4)) then select<= greater-distance dimension;
end if;

elsif (delta_x=2 or delta_y=2) then
if (CRx(4 downto 2)>CRy(4 downto 2)) then select <= y_dir;
elsif (CRx(4 downto 2)<CRy(4 downto 2)) then select <= x_dir;
elsif (CRx(4 downto 2)=CRy(4 downto 2)) then select<= greater-distance dimension;
end if;

else
if (CRx>CRy) then select <= y_dir;
elsif (CRx<CRy) then select <= x_dir;
elsif (CRx=CRy) then select<= greater-distance dimension;
end if;

end if;

Adaptive Routing Approaches for Networked Many-Core Systems Chapter 3

33

Figure 3.12: The congestion information of the highlighted regions is needed at the switch 24 to perform the
output selection function of TRA

3.2.2.2 Input Selection Function
Let us explain the idea of the input selection function through the example of Figure 3.13(a)
where a darker color indicates a higher congestion level. Three packets reach the switch 12;
two generated at the switch 0 and one at the switch 4. These packets arrive from the west,
south and east input buffers of the switch 12 and request the north output channel. If a fair
arbitration mechanism is used at the switch 12, the packet from the congested region C1 has
the same chance to win switch arbitration as the packets from the less congested regions C2
and C3. Accordingly, the switch 12 can be a bottleneck for the packets leaving the
congested region. This bottleneck problem can be alleviated by giving a higher priority to
the packets arrived from the region C1 to access the output port of the switch 12. In
contrast, packets arriving from the regions C2 and C3 should wait in the input buffers for
an extended period of time before accessing the output channel, which slightly increases the
congestion condition of the switches in the regions C2 and C3. In other words, traffic of the
highly congested regions is steered to low congested ones. Figure 3.13(b) depicts the spread
of congestion when packets arriving from the congested regions (e.g. C1) get higher chance
to win the arbitration than the other packets (e.g. C2 and C3). Such priority-based
arbitration is performed similarly in all switches. In sum, the input selection function of the
TRA method allows the congested switches to forward their buffered packets rapidly. The
input selection of TRA requires the congestion information of static groups of four
switches. In Figure 3.14, the highlighted region around the central switch 24 indicates the
switches whose congestion information is required by the input selection function of the
switch 24 when considering all possible positions of the source switch.

Chapter 3 Congestion-Aware Routing Algorithms for a 2D Mesh Network

34

Figure 3.13: Input selection function of TRA

Figure 3.14: The congestion information of the highlighted regions is needed at the switch 24 to perform the
input selection function of TRA

According to the source switch position, the congestion values of some specific switches
are combined together and associated with the packet. This value can be considered the
priority of the packet in the switch arbitration unit. For the ease of understanding, each
switch is assigned a label shown in Figure 3.15, for example, the label nnw means that the
switch is located in the north-north-west position of the current switch. In the algorithm of
Figure 3.16, congestion values are determined and assigned to packets.

The priority of a packet is determined based on the congestion values of the nearby
switches located between the source and the current switches. For example, if the packet is
generated at the north neighboring switch (delta-X=0 and delta-Y=1), only the congestion
value of the north neighboring switch is considered for the packet. Similarly, when the
distance from the current to the source switch along the X and Y dimensions is zero and

Adaptive Routing Approaches for Networked Many-Core Systems Chapter 3

35

two, respectively (delta-X=0 and delta-Y>=2), the congestion values of the switches in 1-
and 2-hop neighbors in the north direction are considered for the packet. When the distance
along the Y dimension is one and along the X dimension is greater than one (delta-X>=1
and delta-Y=1), the congestion values of the switches at north and north-east positions are
used for the packet (similarly, north and north-west positions when delta-X<=-1 and delta-
Y=1). Finally, when the distance along the X dimension is equal or greater than one and
along the Y dimension is equal or greater than two (delta-X>=1 and delta-Y>=2), the
congestion values of four switches located at north, north-north, north-east, and north-
north-east positions are considered for the packet (similarly, north, north-north, north-west,
and north-north-west positions when delta-X<=-1 and delta-Y>=2). A similar principle is
applied to assign a congestion value to packets coming from the east, west, and south input
ports.

Obviously, depending on the source and current switch positions, the congestion
information of a various number of switches contributes to the calculation of packets’
priority. To have a consistent value for the comparison purposes, the calculated value
should be divided by the number of switches involved to obtain that value. As shown in
Figure 3.16, the number of contributing switches is limited to one, two and four, and hence
the division function can be easily implemented by a shift register.

The input selection function examines the priority value of all incoming packets and
gives a grant to a packet with the highest congestion value. In order to prevent starvation,
each time after finding a packet with the highest value, the priorities of other packets are
incremented. Figure 3.17 shows the pseudo code of the priority-based input selection
function.

Figure 3.15: Assigning a name to each switch

Chapter 3 Congestion-Aware Routing Algorithms for a 2D Mesh Network

36

Figure 3.16: Assigning congestion values to packets

Figure 3.17: The pseudo code of the priority-based input selection function of TRA

ALGORITHM: Assigning congestion value to packets

Definitions: Xc,Yc, Xs,Ys: X and Y coordinates of the current and source switches
pc, rc: Packet Congestion, Region Congestion
n,s,e,w: North, South, East, West

delta_x=Xc-Xs; delta_y=Yc-Ys;
if (inputBuffer=north) then

if (delta_x= 0 and delta_y= 1) then pc <= rc(n);
elseif (delta_x= 0 and delta_y>= 2) then pc <= rc(n,nn)/2;
elseif (delta_x>= 1 and delta_y= 1) then pc <= rc(n,ne)/2;
elseif (delta_x<= -1 and delta_y= 1) then pc <= rc(n,nw)/2;
elseif (delta_x>= 1 and delta_y>= 2) then pc <= rc(n,nn,ne,nne)/4;
elseif (delta_x<= -1 and delta_y>= 2) then pc <= rc(n,nn,nw,nnw)/4; end if;

elseif (inputBuffer=south) then
if (delta_x= 0 and delta_y= -1) then pc <= rc(s);
elseif (delta_x= 0 and delta_y<= -2) then pc <= rc(s,ss)/2;
elseif (delta_x>= 1 and delta_y= -1) then pc <= rc(s,se)/2;
elseif (delta_x<= -1 and delta_y= -1) then pc <= rc(s,sw)/2;
elseif (delta_x>= 1 and delta_y<= -2) then pc <= rc(s,ss,se,sse)/4;
elseif (delta_x<= -1 and delta_y<= -2) then pc <= rc(s,ss,sw,ssw)/4; end if;

elseif (inputBuffer=east) then
if (delta_x= 1 and delta_y= 0) then pc <= rc(e);
elseif (delta_x>= 2 and delta_y= 0) then pc <= rc(e,ee)/2;
elseif (delta_x= 1 and delta_y>= 1) then pc <= rc(e,en)/2;
elseif (delta_x= 1 and delta_y<= -1) then pc <= rc(e,es)/2;
elseif (delta_x>= 2 and delta_y>= 1) then pc <= rc(e,ee,en,een)/4;
elseif (delta_x>= 2 and delta_y<= -1) then pc <= rc(e,ee,es,ees)/4; end if;

elseif (inputBuffer=west) then
if (delta_x= -1 and delta_y= 0) then pc <= rc(w);
elseif (delta_x<= -2 and delta_y= 0) then pc <= rc(w,ww)/2;
elseif (delta_x= -1 and delta_y>= 1) then pc <= rc(w,wn)/2;
elseif (delta_x= -1 and delta_y<= -1) then pc <= rc(w,ws)/2;
elseif (delta_x<= -2 and delta_y>= 1) then pc <= rc(w,ww,wn,wwn)/4;
elseif (delta_x<= -2 and delta_y<= -1) then pc <= rc(w,ww,ws,wws)/4; end if;

end if;

ALGORITHM: Priority-based input selection function

Definitions: i: i(th) input channel; c: congestion; w: weight

for i=0 to all input buffers loop
if packet in input(i) is newly arrived then w(i) <= 0;
else w(i) <= w(i) + 1;
end if;
if w(i) + c(i) > maxPriority then

maxPriority <= w(i) + c(i);
select <= i;

end if;
end loop;

Adaptive Routing Approaches for Networked Many-Core Systems Chapter 3

37

3.2.2.3 A General Example
Figure 3.18 presents a general example of TRA when a packet is routed from the source
switch 24 to the destination switch 6. In this figure, the congestion values of dotted and
highlighted regions are used for distinguishing between input and output selection
functions, respectively. In the input selection function of Figure 3.18(a), the generated
packet at the switch 24 is in a competition with other packets to access an output port. The
priority of this packet is determined based on the congestion level of the switch 24. In the
output selection function, the west and south neighbors are detected as the possible choices
to forward the packet. Since the packet is far from the destination switch, the congestion
information of all switches in the trapezoid positions is used in the routing function
(CRx,CRy). Let us assume that the packet is delivered to the switch 23 (Figure 3.18(b)).

In the input selection function of the switch 23, the priority of the packet is determined
again based on the congestion value of the switch 24. In the output selection function, since
the switches 15 and 20 are located outside of the minimal path, their congestion values are
ignored in the routing decision, and for a fair comparison, the congestion statuses of the
switches 7 and 8 are also disregarded (CRx(4 downto 2), CRy(4 downto 2)). The purpose of
this policy is to compare the congestion information of the same number of switches in
each direction. When the packet reaches the switch 18 (Figure 3.18(c)), the similar
comparison mechanism is used (CRx(4 downto 2), CRy(4 downto 2)). In the input selection
function, since the packet arrives from the north direction and the distances from the source
switch are one hop along the X and Y dimensions, according to the algorithm shown in
Figure 3.16, the congestion values of the switches in the north (the switch 23) and northeast
(the switch 24) positions are considered. When a packet reaches the switch 17
(Figure 3.18(d)), the priority value of the packet is determined based on the congestion
values of four switches located at the east (the switch 18), east-east (the switch 19), east-
north (the switch 23), east-east-north (the switch 24) positions. In the output selection
function, as the packet is currently one hop away from the destination column, only the
congestion value of the adjacent switches 12 and 16 are compared together (CRx(4),
CRy(4)). If the congestion conditions are the same in both the X and Y dimensions, the
packet is delivered to the switch 12. This decision is made since the packet loses alternative
choices in the remaining path if the packet is sent to the switch 16. The input and output
selection functions of Figure 3.18(e) are similar to Figure 3.18(d). In Figure 3.18(f), the
priority of the packets is determined based on the congestion information of four switches
while the output selection function delivers the packet to destination.

3.2.2.4 Propagation Mechanism
To perform the input selection and output selection functions of TRA, the congestion
information of some group of switches should be available at the current switch.
Figure 3.12 and Figure 3.14 show the switches whose congestion information should be
available at the switch 24 to perform input and output selection functions, respectively. In
total, the congestion information of the highlighted switches in Figure 3.19 should be
provided for the switch 24 according to the TRA method.

Chapter 3 Congestion-Aware Routing Algorithms for a 2D Mesh Network

38

Figure 3.18: A general example of combining the input and output selection functions of TRA

Figure 3.19: The required information at the switch 24 to perform the input and output selection functions

Adaptive Routing Approaches for Networked Many-Core Systems Chapter 3

39

A propagation mechanism is needed to provide the congestion information of the
required regions for every switch in the network. To do this, as shown in Figure 3.20(a) and
Figure 3.20(b), each switch calculates its congestion value and aggregates it with two 1-bit
values of the neighboring switches in the Y dimension and then propagates the whole
information along the X dimension. This information should be transferred at most three
hops away from where it is generated. A similar methodology is applied to transfer the
information along the Y dimension (Figure 3.20(c) and Figure 3.20(d)).

Let us consider an example in Figure 3.20(a) where the congestion values of the
switches in the westward region are delivered to the switch 24. To transfer the information,
the congestion values of the switches 14 and 28 are sent to the switch 21. The congestion
values of the switches 14 and 28 are aggregated with the congestion value of the switch 21
before transmitting the whole information to the switch 22. At the switch 22, the received
3-bit congestion information is combined with those of values from the switches 15, 22,
and 29 and the 6-bit information is delivered to the switch 23. Finally, arrived information
at the switch 23 is merged with the values of the switches 16, 23, and 30 and the resulted 9-
bit information is transferred to the switch 24. In this way, the switch 24 is informed about
the congestion values of the switches 14, 15, 16, 21, 22, 23, 28, 29, and 30. Figure 3.20(b),
Figure 3.20(c), and Figure 3.20(d) show the similar situations when the information is
gathered from eastward, northward, and southward regions. Figure 3.21 illustrates the
required number of bits to propagate the congestion information throughout a 4×4 mesh
network. The minimum number of bits per unidirectional link is 3 bits while the maximum
is 9 bits. As the network size enlarges, the average number of bits per link approaches 9
bits.

1-
bi

t
1-

bi
t

1-
bi

t
1-

bi
t

1-
bi

t
1-

bi
t

1-
bi

t
1-

bi
t

1-
bi

t
1-

bi
t

1-
bi

t
1-

bi
t

6-
bi

t
3-

bi
t

9-
bi

t
6-

bi
t

3-
bi

t
9-

bi
t

Figure 3.20: Information from (a) west- (b) east- (c) north-, and (d) south-ward regions to the switch 24

Chapter 3 Congestion-Aware Routing Algorithms for a 2D Mesh Network

40

Figure 3.21: The required number of bits to propagate the congestion information

3.2.3 Results and Discussion
The efficiency of the proposed routing schemes (i.e. AgRA and TRA) are compared with
two other proposals NoP [40] and DBAR [43] selected from the traditional methods
(Section 3.1.3 and 3.1.5). For fairness, all of these methods utilize a fully adaptive routing
function based on the DyXY method [57] using one and two virtual channels along the X
and Y dimensions, respectively. A NoC simulator is developed with VHDL to model all
major components of the on-chip network. Simulations are carried out to determine the
latency characteristic of each network. As a performance metric, we use latency defined as
the number of cycles between the initiation of a packet by a Processing Element (PE) and
the time when the packet is completely delivered to the destination PE. The simulator is
warmed up for 12,000 cycles and then the average performance is measured over another
200,000 cycles. For all switches, the data width is set to 32 bits. Each input buffer contains
8 slots. Moreover, the packet length is uniformly distributed between 1 and 10 flits. The
congestion threshold value is set to 6. It is worth mentioning that in this thesis, wire delay
and power consumption due to wires are not included in the performance and power
estimates.

3.2.3.1 Performance Analysis under Uniform Traffic Profile
In the uniform traffic profile, each processing element generates data packets and sends
them to another processing element using a uniform distribution [49]. The mesh size is
considered 8×8. In Figure 3.22, the average communication latency as a function of the
packet injection rate is plotted. As observed from the results, TRA leads to the lowest
latency. This is due to the fact that TRA takes advantage of both input and output selection
functions in distributing packets while the performance gain in AgRA, DBAR and NoP
methods are limited to the output selection function. AgRA performs better than DBAR and
NoP as it provides a better view of the network traffic utilizing the clustering approach.

Adaptive Routing Approaches for Networked Many-Core Systems Chapter 3

41

Figure 3.22: Performance analysis in an 8×8 mesh network under uniform traffic profile

3.2.3.2 Performance Analysis under Hotspot Traffic Profile
Under the hotspot traffic pattern, one or more switches are chosen as hotspots receiving an
extra portion of the traffic in addition to the regular uniform traffic. In simulations, given a
hotspot percentage of H, a newly generated packet is directed to the hotspot switch with an
additional H percent probability. We simulate the hotspot traffic with a single hotspot
switch at (4,4) in an 8×8 mesh network. The performance with H=10% is illustrated in
Figure 3.23. Comparing average latency of all methods, it is obtained that TRA performs
the best. The reason for this improvement is that traffic can be distributed more efficiently
as the routing decision unit is based on the congestion statuses of the switches through
which more packets may pass toward destinations. In addition, TRA utilizes an efficient
input selection function whereas the AgRA, DBAR and NoP methods are lacking it.

Figure 3.23: Performance analysis in an 8×8 mesh network under hotspot traffic profile with H=10%

0

50

100

150

200

250

300

350

0 0.1 0.2 0.3 0.4

A
ve

ra
ge

 L
at

en
cy

 (
cy

cl
e)

Injection Rate (flits/node/cycles)

NoP

DBAR

AgRA

TRA

0

50

100

150

200

250

300

350

0 0.05 0.1 0.15 0.2 0.25 0.3

A
ve

ra
ge

 L
at

en
cy

 (
cy

cl
e)

Injection Rate (flits/node/cycles)

NoP

DBAR

AgRA

TRA

Chapter 3 Congestion-Aware Routing Algorithms for a 2D Mesh Network

42

3.2.3.3 Performance Analysis under Application Traffic Profile
Application traces are obtained from the GEMS simulator [58] using some application
benchmark suites selected from SPLASH-2. As listed in Table 3.1, we use a 64-node
network configuration: 20 processors and 44 L2-cache memory modules. For the CPU, we
assume a core similar to Sun Niagara and use SPARC ISA [59]. Each L2 cache core is
512KB, and thus, the total shared L2 cache is 22MB. The memory hierarchy is governed by
a two-level directory cache coherence protocol. Each processor has a private write-back L1
cache (split L1 I and D cache, 64KB, 2-way, 3-cycle access). The L2 cache is shared
among all processors and split into banks (44 banks, 512KB each for a total of 22MB, 6-
cycle bank access), connected via on-chip switches. The L1/L2 block size is 64B. Our
coherence model includes a MESI-based protocol with distributed directories, with each L2
bank maintaining its own local directory. The simulated memory hierarchy mimics SNUCA
while the off-chip memory is a 4GB DRAM with a 220-cycle access time.

Figure 3.24 shows the average packet latency across five benchmark traces, normalized
to NoP. TRA provides lower latency than other schemes and it shows the greatest
performance gain in Radix with 29% reduction in latency. The average performance gain of
TRA is up to 23% across all benchmarks vs. NoP and 16% vs. DBAR.

Table 3.1: System configuration parameters

Processor Configuration
Instruction set SPARC

Processor, memory
64-node network configuration: 20 processors and 44 L2-cache memory
modules

L1 cache split L1 I and D cache, 64KB, 2-way, 3-cycle access
L2 cache Shared, 44 banks, 512KB each for a total of 22MB, 6-cycle bank access
Cache coherence protocol MESI
Cache hierarchy SNUCA
Size 4GB DRAM
Access latency 220 cycles
Requests per processor 16 outstanding
Benchmarks SPLASH-2
Network configuration
Switch scheme wormhole
Flit size 32 bits
Workloads
SPLASH-2 Barnes, Radix, Ocean, fft, Cholesky

Adaptive Routing Approaches for Networked Many-Core Systems Chapter 3

43

Figure 3.24: Performance analysis under different application benchmarks normalized to NoP

3.2.3.4 Hardware Analysis
To assess the area overhead and power consumption of the proposed scheme, the whole
platform of each scheme is synthesized by Synopsys Design Compiler. Each scheme
includes network interfaces [2], switches, congestion wires, and communication channels.
For synthesis, we use the TSMC 65nm technology at the operating frequency of 500MHz
and supply voltage of 1V. We perform place-and-route, using Cadence Encounter, to have
precise power and area estimations. The power dissipation of each scheme is calculated
under the hotspot traffic using Synopsys PrimePower in an 8×8 mesh network. The layout
area and power consumption of each platform are shown in Table 3.2. According to this
table, the NoP platform consumes more power and has a higher area overhead than other
methods. The area overhead and power consumption of DBAR and AgRA are in a same
range. The TRA platform occupies more area than both the DBAR and AgRA platforms
while its power consumption is comparable with them.

Table 3.2: Hardware implementation details

Network platforms Area (mm2) Power (mw)

NoP 2.611 1.413
DBAR 2.578 1.316
AgRA 2.581 1.277
TRA 2.590 1.268

3.3 The Proposed Non-Minimal and Learning-based
Approaches

All of the mentioned traditional methods along with the proposed cluster-based methods are
based on using only the shortest paths in the network. In low traffic loads, methods based
on the shortest paths can achieve optimized performance, while they are inefficient in
avoiding hotspots when the network load increases. The reason for this inefficiency is that

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Barnes Radix Ocean fft cholesky

N
or

m
al

ize
d

av
er

ag
e

la
te

nc
y

NoP DBAR AgRA TRA

Chapter 3 Congestion-Aware Routing Algorithms for a 2D Mesh Network

44

they can deliver packets through at most two minimal directions and they cannot reroute
packets around congested regions. The routing policy (output selection) of these methods
can be based on local, non-local, or mix of local and non-local congestion information.
However, minimal routing algorithms suffer from a low degree of adaptiveness, which are
inefficient in distributing traffic over the network even if they have accurate knowledge of
the network condition.

The wormhole switching technique eliminates the need to allocate large buffers in
intermediate switches along the path. However, a packet waiting to be allocated to an
outgoing channel may prohibit other packets from using the channels and buffers and
thereby wasting channel bandwidth and increasing latency. Adding virtual channels can
alleviate this problem, but it is an expensive solution. Non-minimal methods can partially
overcome this blocking problem and reduce the waiting time of packets in input buffers by
delivering them through alternative paths. In contrast, performance can severely deteriorate
in non-minimal methods due to the uncertainty in finding an optimal path as they may
choose longer paths and meanwhile delivering packets through congested regions.
Moreover, non-minimal methods can suggest minimal and non-minimal paths between a
source and destination but this flexibility is at the cost of a more complex switch structure
or additional virtual channels. An output selection function should choose a single channel
from a set of predetermined channels to forward a packet to the next hop. As the number of
minimal and non-minimal paths might be very large, one of the main challenges involved
in designing an efficient non-minimal method is to select a less congested path from a set of
alternative paths. The decision for an output channel should not be based on local
information as it may route packets through paths which are not only longer but also highly
congested. On the other hand, even if a global knowledge of the network is provided, due to
a large number of alternative paths, finding a less congested path is questionable which
demands an intelligent method to cope with.

In this section, we present a non-minimal routing algorithm for on-chip networks that
provides a wide range of alternative paths between each pair of source and destination
switches. Initially, the algorithm determines all permitted turns in the network including
180-degree turns on a single channel without creating cycles. The implementation of the
algorithm provides the best usage of all allowable turns to route packets more adaptively in
the network. On top of that, for selecting a less congested path, an optimized and scalable
learning method is utilized. The learning method is based on local and global congestion
information and can estimate the latency from each output channel to the destination
region.

3.3.1 Highly Adaptive Non-Minimal Routing Algorithm (HARA)
The proposed non-minimal routing algorithm, called Highly Adaptive Non-Minimal
Routing Algorithm (HARA) [60], is based on the Mad-y method [57] which has been
introduced by Glass and Ni. Mad-y utilizes a double-Y network where the X and Y
dimensions have one and two virtual channels, respectively (Figure 3.25(a)). In a 2D mesh
network, three types of turns can be taken: 0-degree, 90-degree, and 180-degree turns (U

Adaptive Routing Approaches for Networked Many-Core Systems Chapter 3

45

turns). By taking a 0-degree turn, a packet transmits in a same direction with a possibility of
switching between virtual channels. The turn is called 0-degree-ch if in a turn neither the
direction nor the virtual channel changes (Figure 3.25(b)) while it is a 0-degree-vc turn if
the virtual channel changes (Figure 3.25(c)). By taking a 90-degree turn, a packet transmits
between the switches in perpendicular directions (Figure 3.25(d)). By taking a 180-degree
turn, a packet is transferred to a channel in the opposite direction. If the virtual channel is
changed, the turn is called 180-degree-vc (Figure 3.25(e)); otherwise, it is represented as
180-degree-ch (Figure 3.25(f)). In all figures, the vc1 and vc2 are differentiated by – and =
respectively.

Figure 3.25: (a) A switch in a double-Y network (b) 0-degree-ch (c) 0-degree-vc (d) 90-degree (e) 180-
degree-vc (f) 180-degree-ch

In order to avoid deadlock, the Mad-y method [57] prohibits some turns in the double-Y
network. As shown in Figure 3.26(c) and Figure 3.26(d), the 0-degree-vc turns from vc1 to
vc2 are permitted, also all 0-degree-ch turns are allowable, however 0-degree-vc turns from
vc2 to vc1 may cause deadlock in the network and are prohibited. As illustrated in
Figure 3.26(a) and Figure 3.26(b), out of sixteen 90-degree turns that can be potentially
taken in a network, four of them cannot be taken in Mad-y. Finally, 180-degree turns are
not allowed in Mad-y. To prove the deadlock freeness, a two-digit number (a,b) is assigned
to each output channel of a switch in a n×m mesh network. According to the numbering
mechanism, a turn connecting the input channel (Ia,Ib) to the output channel (Oa,Ob) is
called an ascending turn when (Oa>Ia) or ((Oa=Ia) and (Ob>Ib)). Figure 3.27 shows the
numbers assigned to each channel for a switch at the position (X,Y). Since this numbering
mechanism causes the packets to take the permitted turns in strictly increasing order, so that
Mad-y is deadlock-free.

Figure 3.26: (a) 90-degree turns in vc1 (b) 90-degree turns in vc2 (c) 0-degree-ch (d) 0-degree-vc

Chapter 3 Congestion-Aware Routing Algorithms for a 2D Mesh Network

46

Figure 3.27: Channel numbering in the Mad-y method

As Mad-y is a minimal and adaptive routing method, it cannot fully utilize the eligible
turns to route packets through less congested regions. The aim of HARA is to enhance the
capability of the existing virtual channels in Mad-y to reroute packets around congested
regions and hotspots. Since the Mad-y and HARA methods combine two virtual channels
with different prohibited turns, they diminish the drawbacks of turn models prohibiting
certain turns at all locations. In minimal routings, (e.g. Mad-y), 180-degree turns are
prohibited but they can be incorporated in non-minimal routings (e.g. HARA). One way to
incorporate 180-degree turns is to examine the turns one by one to see whether the turn
causes any cycle. After determining all allowable turns, in order to prove deadlock freeness,
the numbering mechanism is utilized.

In HARA, however, we use the numbering mechanism of the Mad-y method to learn all
180-degree turns that can be taken in the ascending order, and then we modify the
numbering mechanism to meet our requirements. According to the numbering mechanism
shown in Figure 3.27, among 180-degree-vc turns, those from vc1 to vc2 are taken in the
ascending order (Figure 3.28(a), Figure 3.28(b)), so that it is safe to employ them in the
network. As all 180-degree-vc turns from vc2 to vc1 take place in the descending order,
thereby they cannot be used in the network (Figure 3.28(c), Figure 3.28(d)). Now, let us
examine the 180-degree-ch turn connecting the first virtual channel of the north output port
to the same virtual channel of the north input port (Figure 3.28(e)). As shown in
Figure 3.27, the label on the output channel of the north direction along vc1 is (m-1-x,1+y)
and the label on the input channel of the north direction along the same virtual channel is
(m-1-x,n-1-y). The turn takes place in ascending order if and only if n-1-y is greater than
1+y. Therefore, this turn can be safely added to a set of allowable turns if the Y coordinate
of a switch is less than (n-2)/2. Similarly, in Figure 3.28(f), the 180-degree-ch turn on the
vc2 of the north direction is permitted if the Y value of a switch is less than (n-2)/2. 180-
degree-ch turns on the vc1 and vc2 of the south direction are permitted if and only if the Y
coordinate of a switch is greater than n/2 (Figure 3.28(g) and Figure 3.28(h)). Finally, the
180-degree-ch turn on the west direction is always permitted (Figure 3.28(i)) while the 180-
degree-ch turn on the east direction is prohibited in the network (Figure 3.28(j)).

Adaptive Routing Approaches for Networked Many-Core Systems Chapter 3

47

Figure 3.28: Allowable 180-degree turns in the HARA method

As shown in Figure 3.28, there are four conditional 180-degree turns. Two of those are
allowable only in the northern part of the network and two others in the southern part of the
network. This not only increases the complexity of the routing function but also imposes
heterogeneous routing function for switches. To overcome this issue, we modify the
numbering mechanism such that two turns are permitted in the whole network
(Figure 3.28(g) and Figure 3.28(h)) and two other are prohibited in the whole network
(Figure 3.28(e) and Figure 3.28(f)). The numbering mechanism of HARA and all permitted
turns in the network are shown in Figure 3.29 and Figure 3.30. As can be observed from
this figure, all allowable turns are taken in the ascending order.

Figure 3.29: The numbering mechanism of HARA

Figure 3.30: All eligible turns in HARA

Chapter 3 Congestion-Aware Routing Algorithms for a 2D Mesh Network

48

In the following we prove that HARA is deadlock-free and livelock-free.

Theorem 1: HARA is deadlock-free
Proof: If the numbering mechanism ensures that all eligible turns are ordered in the
ascending order (descending order), no cyclic dependency can occur between
channels. As can be observed from Figure 3.30, all connections between input
channels and output channels to form eligible turns in HARA take place in the
ascending order and thus HARA is deadlock-free.

Theorem 2: HARA is livelock-free
Proof: According to the turn model used in HARA, whenever a packet transmits in
the east direction, it can never be routed back to the west direction. Therefore, in the
worst case, the packet may reach to the leftmost column and then starts moving in
the east direction toward the destination column. Therefore, after a limited number
of hops, the packet reaches the destination, and Theorem 2 is proved.

In non-minimal routing, only eligible turns can be employed at each switch but it is not
sufficient to avoid blocking in the network. In fact, there is no possibility of creating cycles
but packets might be blocked forever. The reason for this blocking is that by using the
allowable turns a packet may not be able to find a path to the destination from the next hop
and is blocked. On the other hand, one of the aims of HARA is to fully utilize all eligible
turns to present a low-restrictive adaptive method in the double-Y network. To achieve the
maximal adaptiveness without the blocking issue, for each combination of the input
channel and the destination switch position, we examined all eligible 0-degree, 90-degree,
and 180-degree turns, separately. The output channels are selected in a way that not only
the turn is allowable but also it is guaranteed that there is a path from the next switch to the
destination switch. When a packet arrives through one of the input channels, the routing
unit determines one or several potential output channels to deliver the packet. The routing
decision is based on the relative position of the current and the destination switch which is
within one of the following eight cases: north (N), south (S), east (E), west (W), northeast
(NE), northwest (NW), southeast (SE), and southwest (SW).

All permissible output channels of HARA, for each pair of the input channels (inCh) and
destination positions (pos) are shown in Table 3.3. The adaptivity provided by Mad-y is
illustrated in Table 3.4. As can be obtained from both tables, HARA offers a large degree
of adaptiveness to route packets. For an instance when the packet arrives from the local
input channel (L) and the destination is to the east of the current switch (E), according to
the HARA algorithm, the packet can be delivered through all possible output channels (N1,
N2, S1, S2, E, and W). However, in a similar condition MAR offers only the east output
channel (E).

One of the drawbacks of non-minimal methods is in their complexity due to considering
different conditions in the routing decisions. However, as shown in Figure 3.31 (i.e. that is
extracted from Table 3.3), the implementation of HARA is very simple.

Adaptive Routing Approaches for Networked Many-Core Systems Chapter 3

49

Table 3.3: Potential output channels offered by HARA

pos
inCh N S E W NE NW SE SW

L N1,N2,S1,
W

N1,S1,S2,
W

N1,N2,S1,S2,
E,W

N1,S1,
W

N1,N2,S1,
S2,E,W

N1,S1,
W

N1,N2,S1,S2,
E,W

N1,S1,
W

N1 N2,S1,
W

S1,S2,
W

N2,S1,S2,
E,W

S1,
W

N2,S1,S2,
E,W

S1,
W

N2,S1,S2,
E,W

S1,
W

N2 - S2 S2,
E - S2,

E - S2,
E -

S1 N1,N2,S1,
W

N1,S1,S2,
W

N1,N2,S1,S2,
E,W

N1,S1,
W

N1,N2,S1,S2,
E,W

N1,S1,
W

N1,N2,S1,S2,
E,W

N1,S1,
W

S2 N2 - N2,
E - N2,

E - N2,
E -

E N1,N2,S1,
W

N1,S1,S2,
W

N1,N2,S1,S2,
E,W

N1,S1,
W

N1,N2,S1,S2,
E,W

N1,S1,
W

N1,N2,
S1,S2,
E,W

N1,S1,
W

W N2 S2 N2,S2,
E - N2,S2,

E - N2,S2,
E -

Table 3.4: Potential output channels offered by Mad-y

Pos
inCh N S E W NE NW SE SW

L N1,N2 S2 E W N1,N2,E N1,W S1,S2,E S1,W
N1 - S1,S2 E W - - S1,S2,E S1,W
N2 - S2 E - - - S2,E -
S1 N1,N2 - E W N1,N2,E N1,W - -
S2 N2 - E - N2,E - - -
E N1,N2 S2 - W N1,N2 N1,W S1,S2 S1,W
W N2 S2 E - N2,E - S2,E -

Figure 3.31: Determining all eligible output channels by HARA

ALGORITHM: Determining all eligible output channels in HARA

Definitions: inCh: input Channel
outCh: output Channel
pos: destination Position

if pos={L} then outCh(L) <= ’1’;
if pos={E or NE or SE} then outCh(E) <=’ 1’;
if inCh={L or N1 or S1 or E} then outCh(W) <= ’1’;
if inCh={L or S1 or E} then outCh(N1) <= ’1’;
if inCh={L or N1 or E or S1} then outCh(S1) <= ’1’;
if (inCh/= {N2}) and (pos={N or E or NE or SE}) then outCh(N2) <= ’1’;
if (inCh/={S2}) and (pos={S or E or NE or SE}) then outCh(S2) <= ’1’;
end if;

Chapter 3 Congestion-Aware Routing Algorithms for a 2D Mesh Network

50

Figure 3.32 shows an example of the HARA method in a 5×5 mesh network in which
the source switch 7 sends a packet to the destination switch 14. According to Table 3.3, the
packet arriving from the local channel and delivering toward the destination in the northeast
position has six alternative choices (i.e. N1, N2, S1, S2, E, and W); among them, the output
channels N1, N2, and E introduce the minimal paths and S1, S2, and W indicate the non-
minimal paths. Since the neighboring switches in the shortest paths are in the congested
region, the packet is sent to a non-minimal direction that is not congested. Again, at the
switch 2, all the minimal paths are congested, so the packet is sent to the switch 1 which is
not congested. The same strategy is used until the packet reaches the destination switch.
This example shows the ability of the HARA method to reroute packets around the
congested regions.

Figure 3.32: An example of HARA

3.3.2 Q-Learning-based Approach using HARA (HARAQ)
Reinforcement learning provides an effective model for problems where optimal solutions
are analytically unavailable or difficult to obtain. The learning methodology is based on the
common sense that if an action is followed by a satisfactory state or by an improvement,
then the tendency to produce that action is strengthened, i.e., reinforced. On the other hand,
if the state becomes unsatisfactory, then that particular action should be suitably punished
[61]. Q-Learning [51] is one of the algorithms in the reinforcement learning family of
machine learning. In the Q-Learning approach, the learning agent first learns a model of the
environment on-line and then utilizes this knowledge to find an effective control policy for
the given task. Q-Routing [50] is a network routing method based on Q-Learning models
which learn a routing policy to minimize the delivery time of packets to reach their
destinations. Q-Routing methods are implemented by allowing each switch to maintain a
table of Q-values (called Q-Table), where each value is an estimate of how long it takes for
a packet to be delivered to a destination from the source switch, if it sends through a
neighboring switch [51]. In this method, a routing table is updated whenever a packet is

Adaptive Routing Approaches for Networked Many-Core Systems Chapter 3

51

delivered to the next switch. Q-Routing methods allow a network to be continuously
adopted to load changes. Although these schemes make the most optimal routing decisions,
due to employing large tables, they are not cost-efficient approaches for NoCs.

We utilize an optimized Q-Routing model for the selection function of HARA to
estimate the latency of sending a packet from each output channel to the destination switch.
As the output selection function of HARA is inspired by the Q-Routing model, the
proposed routing method is called HARAQ (HARA using Q-Routing) [62]. Let us explain
the idea of HARAQ using the example of Figure 3.33 where a packet is generated at the
source switch S for the destination D. According to HARA, when a packet arrives from the
local input channel and destined for a destination switch in the northeast position, six
output channels can be selected to forward the packet (i.e. N1, N2, S1, S2, E, and W). At
Figure 3.33(a), suppose that the colored entry of the Q-Table indicates the estimated
latencies of a packet from each possible output channel to the northeast region. Since the
output channel N1 has the lowest estimated latency, the packet is delivered through this
channel.

At the switch X, the packet is received by the input channel S1 (Figure 3.33(b)). Using
the information in Table 3.3, multiple output channels can be used to forward the packet
(i.e. N1, N2, S1, S2, E, and W). Among eligible output channels, the output channel E has
the lowest latency, and thus it is selected for sending the packet to the switch Y. At this
time, the local and global congestion values should be returned to the switch S. The time
the packet waited in the input buffer of the switch X before transmission to the switch Y is
counted as the local information (i.e. BX=1). The minimum estimated latency of routing
packets from the switch X to the destination region through the neighboring switch Y is
considered as the global latency which is extracted from the Q-Table of the switch X (i.e.
minQX(D,Y)=4). The summed value of the local and global information provides a new
latency estimation of the path from the switch S to the destination D. Finally, the
corresponding entry of the Q-Table at the switch S (i.e. row: NE; column: N1) should be
updated with the new value. This is done by taking the average of the old and new latency
estimations (Figure 3.33(a)).

At the switch Y, the packet is received through the west input channel (Figure 3.33(c)).
The output channel with the lowest latency is selected among the three possible output
channels (i.e. N2, S2, and E). Upon connecting the input channel to the output channel of
the switch Y, local and global information are returned to the switch X. The local
congestion shows the waiting time of the packet at the input buffer of the switch Y (i.e.
BY=3) while the global congestion indicates the estimated latency from the switch Y to the
destination switch D through the neighboring switch Z (i.e. minQY(D,Z)=5). The sum of
the local and global values is a new latency estimation from the switch X to the destination
switch. As shown in Figure 3.33(b), the corresponding entry of the Q-Table at the switch X
is updated taking an average of the new estimated value (i.e. BY+minQY(D,Z)) and an
existing estimation (QX(D,Y)).

Finally, the packet arrives at the switch Z from the input channel S2 (Figure 3.33(d)).
This packet can reach the destination by delivering it through the N2 or E output channel.

Chapter 3 Congestion-Aware Routing Algorithms for a 2D Mesh Network

52

The output channel E has the lowest value and selected for delivering the packet. The local
latency (i.e. the waiting period at the input buffer of the switch Z) is 3 while the global
latency to the destination is equal to 0 as the packet reaches the destination in the next hop.
Similarly, the latency values are returned to the switch Y and consequently the
corresponding entry of the Q-Table is updated (Figure 3.33(c)). Hence, as packets are
propagated inside the network, Q-Tables gradually incorporate more global information
[63].

Figure 3.33: The process of updating the Q-Tables

3.3.2.1 Q-Table Format
Q-Routing models learn the network condition at run time and based on the obtained
information, a packet is sent through the path that has the lowest estimated latency to the
destination switch [50]. Generally, each switch maintains a Q-Table to store the estimated
latencies of routing packets to a destination switch through each output channel. Two typical
types of Q-Table, called Q-Routing and C-Routing tables, are investigated in [53]. The size
of a Q-Routing table is n×m×k where n is the number of switches in the network, m is the
number of output channels per switch, and k is the size of each entry in the Q-Table. The
required area of Q-Routing tables not only is very large but also increases as the network
size enlarges. C-Routing tables can decrease the size of tables by taking advantages of the
clustering approach. The size of C-Routing tables is (l+c)×m×k consisting of two parts: the

Adaptive Routing Approaches for Networked Many-Core Systems Chapter 3

53

cluster part having a size of c×m×k where c is the number of clusters, and the local part
having a size of l×m×k where l is the number of switches within each cluster. The size of Q-
Tables can be reduced by using C-Routing tables, but this model still suffers from the
scalability issue since the size of C-Routing tables can become rather large as the network
scales up. There are some other issues regarding the clustering model such as determining
the size of each cluster for different network sizes or partitioning the network when the
network size is not a multiple of the cluster size.

The Q-Table in our model is called Region-based Routing (R-Routing); each row of this
table corresponds to one of the eight different positions of the destination switch (i.e. N, S,
E, W, NE, NW, SE, and SW) and each column indicates output channels (i.e. N1, N2, S1,
S2, E, and W). Regardless of the network size, the size of R-Routing tables is 8×6×k that is
considerably smaller than Q-Routing and C-Routing tables. The required size for each
approach is given in Table 3.5 where l=4 and k=4. Note that the reported areas for Q-
Routing and C-Routing tables are based on using no virtual channel in the network while
the R-Routing table is based on utilizing an extra virtual channel.

While our approach reduces the size of Q-Tables such that they can be applicable in
NoCs, someone might think that the accuracy of the estimated latency toward each
destination diminishes by our model. In fact, under real traffic conditions, each entry of the
R-Routing table is inherently influenced by the switches which are in more communication
with them at that period. Therefore, it is not necessary to allocate a row for each specific
switch in the network. Moreover, R-Routing tables are updated more occasionally than Q-
Routing and C-Routing tables since packets designated for the same regions can be used to
update R-Routing tables while in two other models, each entry is updated only by the
packets for the same destination.

Table 3.5: The area overhead

Size\method Q-Routing C-Routing R-Routing

8×8 128 bytes 40 bytes 24 bytes
16×16 512 bytes 64 bytes 24 bytes
32×32 2048 bytes 160 bytes 24 bytes

3.3.2.2 Transferring Local and Global Information
In HARAQ, a 4-bit congestion wire is used between each two neighboring switches to
propagate local and global congestion information. The local congestion information is a 2-
bit value indicating the congestion level of an input buffer. The global congestion
information is a 4-bit value which provides a global view of the latency from the output
channel of the current switch to the region of the destination switch. This global information
is extracted from the corresponding entry of the R-Routing table.

The Q-Values are updated whenever a packet is propagated between two neighboring
switches. Suppose that a packet is sent from the switch X toward the destination switch D by

Chapter 3 Congestion-Aware Routing Algorithms for a 2D Mesh Network

54

passing through the neighboring switch Y and then the switch Z with the lowest estimated
latencies. At the switch Y, upon connecting the input channel to the output channel, 2-bit
local and 4-bit global values are aggregated into a 4-bit value (with the maximum value of
“1111”) and then it is transferred to the switch X. This value is a new estimation of the
latency from the selected output channel of the switch X to the destination D. The
corresponding entry of the Q-Table at the switch X is updated taking an average of the new
estimated value (i.e. BY+minQY(D,Z)) and an existing estimation (QX(D,Y)). Commonly, in
Q-Routing models, the following formula is used:

(,) = () (,) (+ (,))

In this formula, represents the learning rate at which newer information overwrites the
older one. With the factor of 0, no learning is performed while a factor of 1 considers only
the most recent information [52]. In our simulation, a 50-50 weight is assigned to the old
and new information so that =0.5.

3.3.2.3 Table Initialization
Q-Routing models have an initial learning period during which it performs worse than
minimal schemes. The reason for this inefficiency is that there is a possibility of choosing
non-minimal paths even if the network is not congested. To cope with this problem, in the
initialization phase, all entries of Q-Tables are initialized such that minimal output channels
are set to “0000” and non-minimal output channels are set to “1000” and never can be less
than it. Accordingly, in a low traffic condition, only minimal paths are selected while non-
minimal paths are used to distribute traffic when the network gets congested.

3.3.3 Results and Discussion
To evaluate the efficiency of HARAQ, two other schemes are also implemented, DBAR
[43] and C-Routing [53]. The former is an adaptive routing algorithm using local and non-
local congestion information; while the latter is an adaptive and cluster-based routing using
the Q-Learning technique (DBAR and C-Routing methods are reviewed in Section 3.1.5
and Section 3.1.6). For fairness, DBAR and C-Routing utilize a fully adaptive routing
function based on Mad-y [57]. A wormhole-based NoC simulator is developed with VHDL
to model all major components of the on-chip network and simulations are carried out to
determine the latency characteristic of each network. The packet length is uniformly
distributed between 1 and 10 flits. For all switches, the data width is set to 32 bits and each
input channel has the buffer (FIFO) size of 8 flits. The simulator is warmed up for 12,000
cycles and then the average performance is measured over another 200,000 cycles. Two
synthetic traffic profiles including uniform random and hotspot, and five application
benchmarks from SPLASH-2 [64] are selected.

Adaptive Routing Approaches for Networked Many-Core Systems Chapter 3

55

3.3.3.1 Performance Evaluation under Uniform Traffic Profile
In Figure 3.34, the average communication delay as a function of the average packet
injection rate is plotted for an 8×8 mesh network. As observed from the results, in low
traffic loads, the Q-Routing schemes (HARAQ and C-Routing) behave as efficiently as
DBAR. As load increases, DBAR is unable to tolerate the high load condition, while the Q-
Routing schemes learn an efficient routing policy. HARAQ leads to the lowest latency due
to the fact that it can distribute traffic more efficiently than the other two schemes. In fact,
in DBAR and C-Routing, packets use minimal paths so that under this traffic they are
routed through the very center of the network which creates large permanent hotspots in the
network. Correspondingly, packets traversing through the center of the network will be
delayed much more than they would use any non-minimal paths.

Due to the fact that the HARAQ method can reroute packets through non-minimal paths,
it alleviates the congestion in the network and performs considerably better than other
schemes. Using minimal and non-minimal routes along with the intelligent selection policy
reduces the average network latency of HARAQ in an 8×8 network (near the saturation
point) about 18% and 37%, compared with C-Routing and DBAR, respectively.

Figure 3.34: Performance analysis in an 8×8 mesh network under the uniform traffic profile

3.3.3.2 Performance Evaluation under Hotspot Traffic Profile
In simulations, given a hotspot percentage of H, a newly generated packet is directed to
each hotspot switch with an additional H percent probability. We simulate the hotspot
traffic with a single hotspot switch at (4,4) in an 8×8 mesh network. The performance of
each network with H=10% is illustrated in Figure 3.35.

As can be observed from the figure, the proposed routing scheme achieves better
performance compared with the other schemes. In an 8×8 mesh network, the performance
gain near the saturation point is about 31% and 42%, compared with C-Routing and DBAR,
respectively. The results reveal that using the non-minimal scheme along with the Q-
Learning policy can distribute the traffic efficiently.

0

50

100

150

200

250

300

350

0 0.1 0.2 0.3 0.4 0.5

A
ve

ra
ge

 L
at

en
cy

 (
cy

cl
e)

Injection Rate (flits/node/cycles)

HARAQ

C-Routing

DBAR

Chapter 3 Congestion-Aware Routing Algorithms for a 2D Mesh Network

56

Figure 3.35: Performance analysis in an 8×8 mesh network under hotspot traffic profile with H=10%

3.3.3.3 Performance Analysis under Application Traffic Profile
Application traces are obtained from the GEMS simulator using some application
benchmark suites selected from SPLASH-2. The configuration is the same as in
Section 3.2.3 which has been listed in Table 3.1. Figure 3.36 shows the average packet
latency across four benchmark traces, normalized to DBAR. HARAQ provides lower
latency than other schemes and it shows the greatest performance gain in Radix with 27%
reduction in latency (vs. C-Routing). The average performance gain of HARAQ across all
benchmarks is up to 22% vs. C-Routing and 33% vs. DBAR.

Figure 3.36: Performance analysis under different application benchmarks normalized to DBAR

3.3.3.4 Hardware Analysis
To assess the area overhead and power consumption of HARAQ, the whole platform of
each scheme is synthesized by Synopsys Design Compiler. Each scheme includes switches,
communication channels, and congestion wires. For synthesis, we use the TSMC 65nm
technology at the operating frequency of 500MHz and supply voltage of 1V. We perform
place-and-route, using Cadence Encounter, to have precise power and area estimations. The
power consumption of each scheme is calculated under the hotspot traffic profile near the
saturation point using Synopsys PrimePower in an 8×8 mesh network. The layout area and

0

50

100

150

200

250

300

350

0 0.05 0.1 0.15 0.2 0.25 0.3

Av
er

ag
e

La
te

nc
y

(c
yc

le
)

Injection Rate (flits/node/cycles)

HARAQ

C-Routing

DBAR

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Barnes cholesky FFT Ocean RadixN
or

m
al

iz
ed

 av
er

ag
e

la
te

nc
y

DBAR C-Routing HARAQ

Adaptive Routing Approaches for Networked Many-Core Systems Chapter 3

57

power consumption of each platform are shown in Table 3.6. The area overheads of both C-
Routing and HARAQ approaches are higher than DBAR while the area overhead of
HARAQ is smaller than C-Routing due to using smaller table sizes. Comparing power
consumption indicates that the HARAQ platform consumes more power than DBAR but
less power than C-Routing.

Table 3.6: Hardware implementation details

Network platforms Area (mm2) Power (mw)

DBAR 2.579 1.316
C-Routing 2.912 1.677
HARAQ 2.765 1.594

3.4 The Proposed Fuzzy-based Approach
Cluster-based and learning-based approaches can greatly improve performance compared
with traditional methods. However, they have yet another drawback. The comparison
between the congestion values of candidate output ports are very strict, meaning that a
single free buffer slot in one direction would change the routing decision toward a more
congested region. Fuzzy systems avoid arbitrary rigid boundaries by giving a level of
confidence to a data. They are commonly used to improve performance or to resolve
ambiguities in complex problems that are difficult to tackle mathematically. Since control
problems in communication systems become increasingly complex (due to their
characteristics of having multiple performance criteria), the use of fuzzy and adaptive
algorithms is indeed well suited to increase performance. Most applications using fuzzy-
logic can be regarded as systems with numerical inputs and outputs [65]. The linguistic
descriptions are used to define the relationship between input(s) and output(s).

In this section, at first, we investigate the problem of non-optimal routing decisions
because of defining rigid boundaries on input parameters. The investigation is done on the
DyXY method as a representative of traditional methods. After defining the problem, we
try to solve it by modifying the DyXY method. Although, by using the new approach,
called Non-Fuzzy Routing Algorithm (NFRA) [66], [67], the routing decision is improved,
the problem still persists and needs deeper analysis. To address this problem, we present a
Fuzzy-based Routing Algorithm (FRA), utilizing the fuzzy-logic controller [66], [67]. The
fuzzy system is employed to estimate the latency of each candidate direction. This cost is
determined based on the crisp (non-fuzzy) value of two metrics, the number of occupied
buffer slots at the corresponding input buffer of the next switch (OccupiedSlots_Input) and
the congestion level of that switch (OccupiedSlots_Switch). At each switch, the output
direction with the lowest cost is chosen as to deliver the packet. The use of fuzzy-logic
algorithms in the path decision making leads to a systematic comparison among the
candidates of output ports.

Chapter 3 Congestion-Aware Routing Algorithms for a 2D Mesh Network

58

3.4.1 Non-Fuzzy Routing Algorithm (NFRA)
In the DyXY method, switches employ a pre-port selection unit. Based on the number of
occupied buffer slots in the instant input buffer of the neighboring switches, the pre-port
selection unit selects the best candidate between two minimal directions (i.e. North vs. East
for northeast packets; North vs. West for northwest packets; South vs. East for southeast
packets; and South vs. West for southwest packets) and makes a routing decision based on
this information. Although DyXY is simple, in many cases it leads to non-optimal
decisions.

Let us consider the example of Figure 3.37 when the switch 5 has to decide whether to
send a packet to the switch 6 or 9. Since the number of occupied buffer slots in the south
input buffer of the switch 9 (i.e. 5 occupied buffer slots) is more than the west input buffer
of the switch 6 (i.e. 4 occupied buffer slots), the packet is sent to the switch 6. The decision
is made because of an extra free buffer slot at the switch 6. Now, by looking at the overall
congestion level at the switches 6 and 9, we notice that the total number of occupied buffer
slots in the switch 6 (i.e. 28 occupied buffer slots) is considerably larger than that of the
switch 9 (i.e. 15 occupied buffer slots). In other words, the contention in the switch 6 is
high and thus packets entering this switch from the west input port will be in competition
with other packets to receive the desired output channel while this contention situation is
mild at the switch 9. In this example, obviously it was better to deliver a packet to the
switch 9 rather than the switch 6. DyXY selects a direction by random in the case of the
same congestion values in both directions.

Figure 3.37: Non-optimal decision by the DyXY routing algorithm

Adaptive Routing Approaches for Networked Many-Core Systems Chapter 3

59

This example shows that DyXY may lead to a non-optimal decision when the number of
occupied buffer slots is comparable in two directions. In order to improve the performance
of DyXY, we proposed a method, called Non-Fuzzy Routing Algorithm (NFRA), which
utilizes two parameters for choosing among output directions. These parameters are the
number of occupied buffer slots in an instant input buffer of the neighboring switch
(OccupiedSlots_Input) and the total number of occupied buffer slots in the neighboring
switch (OccupiedSlots_Switch). To exchange the congestion information of
OccupiedSlots_Input and OccupiedSlots_Switch between adjacent switches, 4-bit and 6-bit
wires are required. In NFRA, when the differences between the values of
OccupiedSlots_Input in two directions are less than or equal to 2, the values of
OccupiedSlots_Switch are checked, so that the packet is sent to a direction which has the
lowest OccupiedSlots_Switch.

OccupiedSlots_Input has been considered as the main factor in NFRA since it has the
information about the available slots in an instant input buffer to accommodate a packet
rather than the overall switch congestion condition (OccupiedSlots_Switch). Considering
the same example as in Figure 3.37, since the values of OccupiedSlots_Input are
comparable, the values of OccupiedSlots_Switch are compared together and thus the packet
is sent to the switch 9, resulting in a better routing decision. The NFRA routing algorithm is
shown in Figure 3.38. Although NFRA can alleviate the shortcoming of the DyXY routing
algorithm, it is still suffering from non-optimal routing decisions due to using rigid
boundaries in input parameters. Regardless of the metrics used, this is a common drawback
of traditional methods.

In the following example, we explain this problem in the case of the NFRA routing
algorithm. In Figure 3.39(a) suppose that the switch 5 has two options (i.e., the switch 6 or
the switch 9) to forward a packet toward the desired destination. At the switch 5, the
congestion statuses of the west buffer of the switch 6 is compared with the south buffer of
the switch 9. Since the switch 6 has five free slots more than that of the switch 9, the packet
is delivered to the switch 6. However, it might not be a good decision as well, as the packet
at the switch 9 may get access to its desired output channel earlier than at the switch 6.

As another example in Figure 3.39(b), when the values of OccupiedSlots_Input are three
and five in two directions, the decision will depend on the values of OccupiedSlots_Switch.
This may not lead to an optimal decision as the values of OccupiedSlots_Switch are nearly
similar. In this case it is better to send a packet to the switch 6 which is able to
accommodate more flits of the arriving packet. In sum, the inability to find a proper output
direction is the weakness of almost all traditional methods. On top of it, solutions vary for
different buffer sizes and different metrics. These problems are due to the fact that the
decision making is based on rigid boundaries on input variables. A possibility to solve this
problem is to equip the routing algorithms by a fuzzy-logic system that allows a flexible
and controllable routing process.

Chapter 3 Congestion-Aware Routing Algorithms for a 2D Mesh Network

60

Figure 3.38: The pseudo code of NFRA

Figure 3.39: Two examples of non-optimal routing decisions in NFRA

3.4.2 Fuzzy-based Routing Algorithm (FRA)
Fuzzy controllers are widely used in many different fields nowadays, ranging from control
applications, robotics, image and speech processing to biological and medical systems [65].

ALGORITHM: Non-fuzzy routing algorithm

Definitions: Xc,Yc: X and Y coordinates of the current switch
Xd,Yd: X and Y coordinates of the destination switch
X_dir: candidate port in the X dimension
Y_dir: candidate port in the Y dimension

if (Xd=Xc) and (Yd=Yc) then select <= local;
elsif (Xd=Xc) then select <= Y_dir;
elsif (Yd=Yc) then select <= X_dir;
else
 if (ABS (OccupiedSlots_Input(X_dir) - OccupiedSlots_Input(Y_dir)) <=2) then

if OccupiedSlots_Switch(X_dir) >= OccupiedSlots_Switch(Y_dir) then
select <= Y_dir;

else
select <= X_dir;

 end if;
elsif (OccupiedSlots_Input(X_dir) > OccupiedSlots_Input(Y_dir)) then

select <= Y_dir;
else

select <= X_dir;
end if;

end if;

Adaptive Routing Approaches for Networked Many-Core Systems Chapter 3

61

Fuzzy controllers have already received much attention in Ad Hoc, wireless and
interconnection networks [21], [22]. For example in [68], a fuzzy controller is used to
instructing cache decisions and to optimize routing selection, so that only high quality links
are used between source and destination switches. In [69], the authors present a fuzzy
controller-based QoS routing algorithm in mobile Ad Hoc networks in order to dynamically
evaluate the route expiry time. In [70], hop-count, bandwidth, and mobile speed are
considered for routing decision based on a fuzzy-logic system to satisfy the required QoS.
In [71], using fuzzy rules, the link cost is dynamically determined depending on the link
delay and the number of packets waiting in the queue. The analysis of control problems in
communication systems can be perfectly done using the fuzzy-logic mechanism, due to
their characteristics of having multiple performance criteria [72]. In this section, we
propose a fuzzy-based routing algorithm for NoCs, called FRA.

As illustrated in Figure 3.40(a), a Fuzzy Inference System (FIS) consists of an input
stage (fuzzification), an inference system, a composition unit, and an output stage
(defuzzification). Fuzzification is a process of converting crisp input values to fuzzy values.
The fuzzy inference system uses the collection of linguistic rules to convert the fuzzy inputs
into fuzzy outputs. In the composition stage, the fuzzy outputs of all rules are combined
together to obtain a single fuzzy output. Defuzzification converts the fuzzy output into crisp
output value. Figure 3.40(b) demonstrates employing a fuzzy-logic system in a switch. A
packet can be sent through at most two directions toward the destination switch. The cost is
calculated over two candidate minimal directions using fuzzy-logic. The packet is sent to a
direction with the lowest cost.

Fuzzification Inference system Composition

Crisp Input 1

Crisp Input 2

Fuzzy Input1

Fuzzy Input2

Fuzzy Output1

Fuzzy Output2 Defuzzification
Fuzzy Output Crisp Ouput

Fuzzy System

Fuzzy System

Input Buffer Congestion

Switch Congestion

Switch Congestion

Inputs of choice1

Inputs of choice2

Link cost of choice 1

Link cost of choice 2

Routing Algorithm Next hop

(a)

(b)

Choice 1 or Choice 2Input Buffer Congestion

Figure 3.40: (a) General fuzzy system (b) Fuzzy routing algorithm

3.4.2.1 Fuzzification
Like NFRA, FRA has two input variables (i.e. OccupiedSlots_Input and
OccupiedSlots_Switch) and one output (i.e. Cost). In the fuzzification stage, the fuzzy

Chapter 3 Congestion-Aware Routing Algorithms for a 2D Mesh Network

62

controller accepts the crisp inputs and maps them into their membership functions, known
as fuzzy set. Fuzzification determines the degree of membership for a crisp input being
applied to appropriate fuzzy set . The degree of membership is a number between 0 and 1.

: [0,1]

The value 0 meaning that is not a member of the fuzzy set; the value 1 means that is
fully a member of the fuzzy set. The values between 0 and 1 characterize fuzzy members,
which partially belong to the fuzzy set.

A membership function (MF) is a curve that defines how each point in the input space is
mapped to a membership value (or degree of membership) between 0 and 1. The input
space is sometimes referred to as the universe of discourse [73]. The most commonly used
shapes for membership functions are triangular, trapezoidal, and Gaussian. Among them,
the triangular membership function is the simplest and the most frequently used [73], [74].
In the proposed FRA, the assigned membership functions to input and output variables are
chosen as triangular. The triangular edges can be identified by a triple (a, b, c) (with a < b <
c). The parameters {a,b,c} determine the X coordinates of the three corners of the
underlying triangular function. Figure 3.41 illustrates a triangular membership function
defined by the triangle (2,4,6). The point 4 has the largest value in the membership function
while points 2 and 6 have the lowest values.

Figure 3.41: An example of triangular membership function

In the following, we have defined a fuzzy membership function for OccupiedSlots_Input
and OccupiedSlots_Switch as the input metrics and Cost as the output parameter. From
three to seven curves are generally appropriate to cover the required range of an input
value, or the universe of discourse in a fuzzy region. We have examined the fuzzy system
using three, five, and seven curves. The performance gain of considering five and seven
curves was considerably larger in comparison with three curves while the difference
between five and seven curves was negligible. Thereby, we select the fuzzy set with five
states as “zero (Z)”, “very small (VS)”, “small (S)”, “medium (M)”, and “large (L)”.

Adaptive Routing Approaches for Networked Many-Core Systems Chapter 3

63

 Membership Function of OccupiedSlots_Input

Considering the number of occupied buffer slots in the input buffer
(OccupiedSlots_Input), the universe of discourse includes the numbers between 0
and 8. The value of 0 indicates that the input buffer is empty while the value of 8
indicates that the buffer is full. The triangular membership function maps the
number of occupied buffer slots in the input buffer ranged from 0 to 8
(OccupiedSlots_Input) to five fuzzy sets (Z, VS, S, M, and L) by a degree of
membership. The assignment is illustrated in Figure 3.42(a). According to this
figure, the fuzzy sets are {Z: triangle (0,0,2)}, {VS: triangle (0,2,4)}, {S: triangle
(2,4,6)}, {M: triangle (4,6,8)}, and {L: triangle (6,8,8)}.

 Membership Function of OccupiedSlots_Switch

OccupiedSlots_Switch can be a number between 0 and 40, where the value of 0
means that all the input buffers of the switch are empty while the value of 40
indicates that all input buffers are full. This variable can be divided into five fuzzy
sets (Z, VS, S, M, and L). As shown in Figure 3.42(b), the crisp values are mapped
into the sets associated with the degree of membership by defining fuzzy sets as {Z:
triangle (0,0,10)}, {VS: triangle (0,10,20)}, {S: triangle (10,20,30)}, {M: triangle
(20,30,40)}, and {L: triangle (30,40,40)}.

 Membership Function of Cost

We have defined Cost as a value between 0 and 40. The fuzzy set includes the states
as Z, VS, S, M, and L. The triangular membership function maps the input element
to a certain fuzzy set by a degree of membership. As illustrated in Figure 3.42(c),
the fuzzy sets are {Z: triangle (0,0,10)}, {VS: triangle (0,10,20)}, {S: triangle
(10,20,30)}, {M: triangle (20,30,40)}, and {L: triangle (30,40,40)}.

1

0,8

0,6

0,4

0,2

0
0 2 4 6 8

Z VS S M L
1

0,8

0,6

0,4

0,2

0
0 10 20 30 40

Z S M L

OccupiedSlots_Input OccupiedSlots_Switch

VS

(a) (b)

1

0,8

0,6

0,4

0,2

0

Z VS S M L

Cost
(c)

3 0 10 20 30 40

Figure 3.42: (a) OccupiedSlots_Input (b) OccupiedSlots_Switch (c) Cost membership functions

With these schemes, the states of input variable are no longer changed abruptly from one
state to the next. Instead, as the input changes, it loses a value in one membership function

Chapter 3 Congestion-Aware Routing Algorithms for a 2D Mesh Network

64

while gaining a value in the next. In other words, an input variable with some degree is part
of two membership functions. In Figure 3.42(a), for example, when OccupiedSlots_Input is
2, the input fully belongs to the membership function VS. However, when
OccupiedSlots_Input is 3, the input is partially (0.5 each) part of two membership functions
VS and S. In general, a fuzzy system is constructed based on human expertise and expert
knowledge. The boundaries of the states are also defined in the same manner. The
knowledge can be obtained by experiments.

3.4.2.2 Fuzzy Inference System
An inference engine is equipped with fuzzy rules to make a decision for an output channel
based on the current condition of the network. The inference engine is characterized by a
set of linguistic statements to describe the system by using a number of conditional “IF-
THEN” rules where the IF part is called the “antecedent” and the THEN part is called the
“consequent”. Expert knowledge is usually used to form the rules of a fuzzy inference
system. Table 3.7 contains the rules used in FRA with two fuzzy inputs and one fuzzy
output. The table provides various ranges of the output for different ranges of inputs. Filling
a data table with fuzzy attributes (scaling) is subjective. The table is filled based on the
basic knowledge on the impact of each metric in the overall performance of the network.
Based on our experiments, small changes in the table have negligible impact on
performance.

Table 3.7: FRA inference rules

Rules
OccupiedSlots_Switch

Z VS S M L

O
cc

up
ie

d
Sl

ot
s-

In
pu

t

Z Z Z VS S M
VS Z VS VS S M
S VS VS S M M
M S S M L L
L M M L L L

Fuzzy rule sets usually have several antecedents that are combined using fuzzy
operators, such as fuzzy intersection (AND) and fuzzy union (OR). If the rule uses an AND
relationship for mapping of two input variables, the minimum of those values is used as the
output while for the OR relationship, the maximum is used. In FRA, the AND operator is
utilized to combine the fuzzy inputs. Let us consider an example in Figure 3.43 where the
OccupiedSlots_Input and OccupiedSlots_Switch have the values of 5 and 18, respectively.
As shown in Figure 3.43(a), OccupiedSlots_Input is a part of membership functions S and
M while the portion of each membership function is 0,5. The input OccupiedSlots_Switch is
a part of membership functions VS and S as illustrated in Figure 3.43(b). In this case, the
degree of membership for membership functions VS and S is 0,2 and 0,8, respectively.

Adaptive Routing Approaches for Networked Many-Core Systems Chapter 3

65

D
eg

re
e

of
 m

em
be

rs
hi

p

D
eg

re
e

of
 m

em
be

rs
hi

p

Figure 3.43: (a) OccupiedSlots_Input (b) OccupiedSlots_Switch as a part of two membership functions

As shown in Figure 3.44, there are four combinations between OccupiedSlots_Input and
OccupiedSlots_Switch as:

Figure 3.44(a): OccupiedSlots_Input: S and OccupiedSlots_Switch: VS
Figure 3.44(b): OccupiedSlots_Input: S and OccupiedSlots_Switch: S
Figure 3.44(c): OccupiedSlots_Input: M and OccupiedSlots_Switch: VS
Figure 3.44(d): OccupiedSlots_Input: M and OccupiedSlots_Switch: S

Based on these combinations, four following rules are fired according to Table 3.7:
Rule1-if (OccupiedSlots_Input is S) and (OccupiedSlots_Switch is VS) then (Cost is VS)
Rule2-if (OccupiedSlots_Input is S) and (OccupiedSlots_Switch is S) then (Cost is S)
Rule3-if (OccupiedSlots_Input is M) and (OccupiedSlots_Switch is VS) then (Cost is S)
Rule4-if (OccupiedSlots_Input is M) and (OccupiedSlots_Switch is S) then (Cost is M)

3.4.2.3 Composition and Defuzzification
Defuzzification is the process of producing a quantifiable result in fuzzy-logic and converts
the fuzzy control action into a crisp value. The outputs of all rules should be aggregated and
converted into a single output. Two methods for defuzzification are widely used:

1- The Center-of-Gravity method (CoG). This method finds the geometrical center. It
favors the rule with the output of the greatest area.
2- The Mean-of-Maxima method (MoM). This method finds the value which has the
maximum membership degree according to the fuzzy membership function.
MoM is simpler but it loses useful information while CoG is the commonly used method as
it is more efficient. In FRA, the CoG defuzzification method is used to produce a crisp
value.

In the defuzzification stage, the four obtained cost values (Figure 3.44) are combined
together and by using the Center-of-Gravity method, a single cost value is extracted. As
shown in Figure 3.45, the fuzzy outputs of the same cost membership function are summed
together while the values in different membership functions are united (i.e. the maximum
value is considered).

Chapter 3 Congestion-Aware Routing Algorithms for a 2D Mesh Network

66

Figure 3.44: Cost for (a) rule1 (b) rule2 (c) rule3 (d) rule4

Figure 3.45: Composition of the Cost membership function of all rules

In this case, the cost value can be calculated from the following formula:

Adaptive Routing Approaches for Networked Many-Core Systems Chapter 3

67

=
	

		

=	
(10 0,2) + (20 0,5) + (20 0,2) + (30 0,5)

0,2 + 0,5 + 0,2 + 0,5 22

According to this formula, the degree of membership function of each rule multiplies to
the cost value associated with the maximum value in the membership function. This
procedure is performed for both candidate directions and the packet is delivered to a
direction with a smaller Cost value. Although in FRA, the congestion metric parameters of
the number of occupied slots (OccupiedSlots_Input) and congestion level of a switch
(OccupiedSlots_Switch) are used, the proposed approach is generic and can be easily
extended to different routing metrics. Now, let us employ the proposed fuzzy-logic system
in the example of Figure 3.39(b) where a packet should be delivered either through the
switch 6 or switch 9. The conditions of these switches are as follows:

9 = _ = 5
_ = 27

6 = _ = 3
_ = 26

We first measure the cost of selecting the switch 9 and then the switch 6. Considering
the switch 9, the degree of membership function for the input parameter
OccupiedSlots_Input is shown in Figure 3.46(a) and the input parameter
OccupiedSlots_Switch is shown in Figure 3.46(b). According to these figures, the degree of
membership in four triangles is non-zero: S and M from the input parameter
OccupiedSlots_Input and S and M from the input parameter OccupiedSlots_Switch. The
combinations of these membership functions result in a new membership function called
Cost. The type of the membership function is extracted from Table 3.7 while the degree of
membership function is achieved by using an AND operator between the input parameters.
The resulted Cost and the degree of membership are shown in Table 3.8.

Figure 3.46: The degree of membership function for the input parameters at the switch 9

Chapter 3 Congestion-Aware Routing Algorithms for a 2D Mesh Network

68

Table 3.8: The cost membership function of the switch 9; MF stands for the membership function

Occupied
Slots_Input

Degree
of MF

Occupied
Slots_Switch

Degree
of MF Cost

MaxValue
of MF Degree of MF

S 0,5 S 0,3 Rule(S,S)=S 20 (0,5 AND 0,3)=0,3
S 0,5 M 0,7 Rule(S,M)=M 30 (0,5 AND 0,7)=0,5
M 0,5 S 0,3 Rule(M,S)=M 30 (0,5 AND 0,3)=0,3
M 0,5 M 0,7 Rule(M,M)=L 40 (0,5 AND 0,7)=0,5

Finally, the cost of the switch 9 is calculated by:

=
	Values

		

=	
(20 0,3) + (30 0,5) + (30 0,3) + (40 0,5)

0,3 + 0,5 + 0,3 + 0,5 31

Similarly, the degree of membership function for each input parameter at the switch 6 is
shown in Figure 3.47.

Figure 3.47: The degree of membership function for the input parameters at the switch 6

The information on the Cost membership function is listed in Table 3.9.

Table 3.9: The cost membership function of the switch 6

Occupied
Slots_Input

Degree
of MF

Occupied
Slots_Switch

Degree
of MF

Cost MaxValue
of MF

Degree of MF

VS 0,5 S 0,4 Rule(VS,S)=VS 10 (0,5 AND 0,4)=0,4
VS 0,5 M 0,6 Rule(VS,M)=S 20 (0,5 AND 0,6)=0,5
S 0,5 S 0,4 Rule(S,S)=S 20 (0,5 AND 0,4)=0,4
S 0,5 M 0,6 Rule(S,M)=M 30 (0,5 AND 0,6)=0,5

Adaptive Routing Approaches for Networked Many-Core Systems Chapter 3

69

Finally, the cost of the switch 6 is measured as follow:

=
	

		

=	
(10 0,4) + (20 0,5) + (20 0,4) + (30 0,5)

0,4 + 0,5 + 0,4 + 0,5 20

According to these formulas, the cost of sending a packet from the switch 9 or 6 is 31
and 20, respectively, so the packet is sent toward the destination through the switch 6 which
is less congested. This choice is reasonable as the switch 9 has more occupied buffer slots
in the input buffer than the switch 6 while the overall congestion conditions of both
switches are similar. If the final result is not satisfactory (e.g. the switch 6 has a higher cost
value than the switch 9), it means that the fuzzy rules are not well defined and should be
modified.

3.4.3 Results and Discussion
To assess the efficiency of the proposed adaptive routing algorithms, NFRA and FRA, we
compare them with DyXY under synthetic and multimedia traffic profiles. All of them are
based on a fully adaptive routing algorithms using one and two virtual channels along the X
and Y dimensions, respectively. We have developed a synthesizable NoC simulator
implemented in VHDL to evaluate the efficiency of NFRA and FRA. This simulator is
based on wormhole switching in a 2D mesh configuration. The simulator inputs include the
array size, the routing algorithm, the link width, the buffer size, and the traffic type. For all
switches, the data width was set to 32 bits and each input port has a buffer size of 8 flits.
For the performance metric, we use latency defined as the number of cycles between the
initiation of the packet and the time when the tail of the packet reaches the destination. The
proposed schemes are evaluated for various traffic loads in an 8×8 mesh network. The
packet size is uniformly distributed between 1 and 10 flits.

The simulator is warmed up for 12,000 cycles and then the average performance is
measured over another 200,000 cycles. For evaluating performance, two synthetic traffic
profiles including uniform random and hotspot, and multimedia traffic are selected.

3.4.3.1 Performance Evaluation under Uniform Traffic Profile
In the uniform traffic model, each PE core sends a packet to any other core with equal
probability. As illustrated in Figure 3.48, NFRA has better performance than DyXY while
FRA performs the best under the uniform traffic profile. This performance improvement of
NFRA is due to the fact that it makes a better local decision than DyXY. On other hand,
FRA performs the best as the routing decision based on it leads to a better distribution of
packets over the network.

Chapter 3 Congestion-Aware Routing Algorithms for a 2D Mesh Network

70

Figure 3.48: Performance analysis in an 8×8 mesh network under the uniform traffic profile

3.4.3.2 Performance Evaluation under Hotspot Traffic Profile
In the hotspot traffic model, a PE receives an extra portion (H) of traffic more than the
other switches (here we assume the switch (4,4) receives H=10% more traffic). As
illustrated in Figure 3.49, FRA performs the best and then NFRA and DyXY, respectively.
This performance improvement of FRA over NFRA and DyXY confirms the fact that
employing fuzzy-logic mechanism results in a better routing decision which in turn reduces
average latency of packets.

Figure 3.49: Performance analysis in an 8×8 mesh network under hotspot traffic profile with H=10%

3.4.3.3 Multimedia Traffic
NFRA and FRA are also evaluated under two realistic case studies mapped onto a 3×4
mesh topology. We selected two different video processing applications: Video Object
Plane Decoder (VOPD) and MPEG4 decoder [75]. Figure 3.51 and Figure 3.52 depict the
VOPD and MPEG4 Decoder block diagrams mapped onto 3×4 mesh topologies,
respectively. Figure 3.50 shows the latency values normalized to DyXY. According to this
figure, FRA decreases latency considerably where the performance gain is up to 24% and

0

50

100

150

200

250

300

350

0 0.1 0.2 0.3 0.4

A
ve

ra
ge

 L
at

en
cy

 (
cy

cl
e)

Injection Rate (flits/node/cycles)

NFRA

FRA

DyXY

0

50

100

150

200

250

300

350

0 0.05 0.1 0.15 0.2 0.25

A
ve

ra
ge

 L
at

en
cy

 (
cy

cl
e)

Injection Rate (flits/node/cycles)

NFRA

FRA

DyXY

Adaptive Routing Approaches for Networked Many-Core Systems Chapter 3

71

25% under the MPEG and VOPD traffic profiles, respectively, compared with the DyXY
routing algorithm. The performance gain of NFRA over the DyXY method is around 4%
and 6% under the MPEG and VOPD traffic profiles, respectively.

Figure 3.50: Simulation results under two multimedia traffic profiles: MPEG and VOPD

Figure 3.51: (a) VOPD block diagram, with communication BW annotated (in MB/s) (b) its mapping onto a
mesh topology [19]

0

20

40

60

80

100

MPEG VOPD

N
or

m
al

iz
ed

 A
ve

ra
ge

 L
at

en
cy

DyXY NFRA FRA

Chapter 3 Congestion-Aware Routing Algorithms for a 2D Mesh Network

72

Figure 3.52: (a) MPEG4 decoder block diagram, with communication BW annotated (in MB/s) (b) its
mapping onto a mesh topology [19]

3.4.3.4 Hardware Overhead
For appraising the area overhead of the switch utilizing the proposed fuzzy-logic, each
scheme was synthesized by Synopsys Design Compiler using the TSMC 65nm technology
with an operating point of 500MHz and supply voltage of 1V. We perform place-and-route,
using Cadence Encounter, to have precise power and area estimations. The power
dissipation of each scheme is calculated under the uniform traffic profile near the saturation
point using Synopsys PrimePower in an 8×8 mesh network. The layout area and power
consumption of each platform are shown in Table 3.10. Comparing the area cost and power
consumption of the switches using DyXY and NFRA and the one employing FRA,
indicates that the hardware overhead of implementing a switch using the fuzzy-logic is
about 1.5% larger than two other methods. Although FRA seems to be a complicated
method, its implementation is easy and straightforward. The power consumption is
improved in both NFRA and FRA in comparison with DyXY. This is due to the fact that
these methods perform better in sending packets over less congested areas.

Table 3.10: Hardware implementation details

Network platforms Area (mm2) Power (mw)

DyXY 2.563 1.355
NFRA 2.566 1.342
FRA 2.604 1.333

3.5 Summary of the Proposed Methods
In this chapter, we proposed three main congestion-aware routing approaches as cluster-
based, learning-based and fuzzy-based routing algorithms. AgRA and TRA are the
proposed cluster-based approaches, HARAQ is a leaning-based and FRA is a fuzzy-based
method. These methods are mainly compared with three conventional methods, called
DyXY, NoP and DBAR. Among all the algorithms, HARAQ leads to the best performance

Adaptive Routing Approaches for Networked Many-Core Systems Chapter 3

73

but at the cost of employing routing tables. Agent-based methods do not use any routing
tables while utilize the congestion information of the surrounding regions. This information
leads to near-optimal routing decisions. The fuzzy-based algorithm can be applied on top of
every congestion-aware method (except learning methods) to guarantee the best routing
decision based on the collected congestion information. The characteristics of different
approaches are summarized in Table 3.11.

Table 3.11: Summarized characteristics of different congestion-aware approaches

Methods Routing
Congestion
Propagation

Strategy
Wiring overhead

per link Congestion view Use of
Tables

DyXY Minimal Congestion
wires 3 bits 1-hop neighbor No

NoP Minimal Congestion
wires 12 bits 2-hop neighbors No

DBAR Minimal Congestion
wires

n bits in n×n
mesh network

Switches in rows and
columns No

AgRA
(proposed) Minimal

Lightweight
congestion

network
9 bits orthogonal
+ 3 bits diagonal

Group of four switches
in two directions No

TRA
(proposed) Minimal Congestion

wires From 3 to 9 bits
5 switches from each

direction
(Trapezoid positions)

No

HARAQ
(proposed)

Non-
minimal

Congestion
wires 4 bits

Whole network
(global view)

Yes
24 bytes

FRA
(proposed) Minimal Congestion

wires 10 bits 1-hop neighbor
Yes

~ 6 bytes

74

75

Chapter 4

4 Fault-Tolerant Routing Algorithms
for a 2D Mesh Network

On-chip interconnects implemented with a deep submicron semiconductor technology,
running at GHz clock frequencies are prone to failures [76], [77]. Due to extreme device
scaling, the likelihood of failures increases [78]. These failures may have architectural level
ramifications as it may cause an entire on-chip network to fail. Since on-chip
communication reliability is a crucial factor in many-core systems, the NoC paradigm
should address these reliability issues. Fault-tolerant routing algorithms play an important
role in this domain by bypassing faults in the network and allowing the system to continue
functioning.

In NoCs, faults may occur in cores (such as processing elements and memory modules),
links or switches. When a core is faulty, it can be deactivated while the connected switch
and links can continue functioning. Therefore, a faulty core does not affect transmitting
packets between the other cores. However, once a link or switch has failed, the faulty
component cannot be simply discarded as it results in the blocking of other packets inside
the network. Fault-tolerant routing algorithms can be classified into two groups: addressing
faulty links, and addressing faulty switches. Usually, the algorithms within each group can
be modified to tolerate faults from the other group.

In this chapter, we review some well-known traditional methods tolerating faulty links
and switches in the network. A common behavior in fault-tolerant approaches is that
packets are routed normally in the network until they are faced with a fault. At this point,
turn models or other techniques are used to reroute packets around the faults in a way that
no cycles will be created in the network. The performance analysis in [79] indicates that in
a 4×4 mesh network, the average packet latency can be increased by almost double when
there is a single faulty switch in the network. Faults might exist forever or they might be
recovered after a long period. Now, imagine how many packets should be rerouted around
the fault and how it may affect performance. What if there are several faults in the network,
existing for an extended period of time?

We present four fault-tolerant routing algorithms, called MD (Minimal and Defect-
resilient), MAFA (Minimal and Adaptive Fault-Tolerant Algorithm), HiPFaR (High

Chapter 4 Fault-Tolerant Routing Algorithms for a 2D Mesh Network

76

Performance Fault-tolerant Routing), and MiCoF (Minimal-path Connection-retaining
Fault-tolerant). MD and MAFA address faulty links and HiPFaR and MiCoF deal with
faulty switches. The focus of these methods is to tolerate faults using the shortest paths in
the network as long as such path exists. Using these algorithms, packets are possibly routed
through minimal and non-faulty paths, which avoids facing faulty components and making
unnecessary rerouting around them.

In sum, the idea is based on a common idiom: “prevention is better than cure”. Based on
the failure rate and the desired reliability at link or switch levels, these algorithms can be
combined together to tolerate both faulty switches and links in the network. On the other
hand, most of the presented fault-tolerant algorithms are limited to deterministic routing
algorithms, resulting in considerable performance loss. However, the proposed methods are
based on fully adaptive algorithms, enabling to distribute packets over the network.

4.1 Traditional Approaches
Usually, the implementations of fault-tolerant algorithms are very complex due to various
issues, such as the location of faults, the number of faults, turn model rules, etc. In the
following, we review different attempts to tolerate faults either in off-chip or on-chip
network.

4.1.1 A Ring-based Fault-Tolerant Routing (Extended X-Y)
A wide range of fault-tolerant algorithms tolerates faults by rerouting packets around faulty
regions which have special convex or concave shapes. To form these shapes, some healthy
switches should be deactivated. For example, Extended X-Y is a well-known routing
algorithm presented in [80]. This algorithm is designed based on XY routing and the odd-
even turn model [81]. Similar to the odd-even turn model, this algorithm is deadlock-free
without using any virtual channels by prohibiting certain turns in odd and even columns. In
fault-free cases and depending on the position of the source and destination switch, this
algorithm may perform the same way as the XY routing algorithm (minimal routing), or
take a longer path (non-minimal routing). In more details, if the source switch is located in
an even column, the packet is sent to the Y dimension; otherwise it has to take a hop to the
west direction to reach an even column before making a turn toward the Y dimension. The
packet follows YX routing until it reaches the destination switch. When the packet faces a
fault along its path, it has to be routed around the fault based on some specific rules.

Two examples of Extended X-Y are shown in Figure 4.1(a). As can be seen in this
figure, packets have to take a very long path while they could be simply routed through the
shortest paths. It is worth mentioning that, this algorithm has many restrictions on the
location of faults (e.g. faults cannot be tolerated on borderline switches and there should be
enough distance between faulty regions). Extended X-Y only knows about the fault statuses
of its direct neighbors to make its routing decision (Figure 4.1(b)).

Adaptive Routing Approaches for Networked Many-Core Systems Chapter 4

77

Figure 4.1: (a) Two examples of the Extended X-Y routing algorithm (b) The required fault information

4.1.2 Reconfigurable Routing for Tolerating Faulty Switches (ReRS)
Z. Zhang et al. presented a reconfigurable routing algorithm [79] to tolerate any single
faulty switch in a mesh network without using virtual channels and disabling healthy
switches. We call this reconfigurable routing scheme, ReRS. This algorithm provides the
possibility of routing packets through a cycle free contour surrounding a faulty switch. To
tolerate more number of faulty switches, the contours must not be overlapped and thus
faulty switches should be located far away from each other. In other words, ReRS can
tolerate a single faulty switch in the network or multiple faulty switches if their contours do
not overlap. This algorithm is deterministic and does not make any effort toward alleviating
congestion in the network. This method shows that cycles can naturally be avoided in
borderline switches. Two examples of this method are shown in Figure 4.2(a). Packets are
routed normally inside the network using a deterministic method and they have to turn
around a fault when facing to it. Each switch should be informed about the fault statuses of
eight direct and indirect neighboring switches (Figure 4.2(b)).

Figure 4.2: (a) Two examples of the ReRS routing algorithm (b) The required fault information

Chapter 4 Fault-Tolerant Routing Algorithms for a 2D Mesh Network

78

4.1.3 Reconfigurable Routing for Tolerating Faulty Links (RAFT)
ReRs has been extended in the RAFT method [82] to tolerate two faulty links. For this
purpose, RAFT requires two virtual channels along both X and Y dimensions. This
algorithm investigates a cycle free contour for all combinations of one and two faulty links.
This algorithm is very complicated and has many exceptional rules. Two examples of this
algorithm are illustrated in Figure 4.3(a). RAFT is an adaptive method and is able to deliver
packets through multiple paths. This reduces latency as the probability of sending packets
through the shortest paths increases. In RAFT, each switch needs to know the fault statuses
of twelve surrounding links (Figure 4.3(b)).

Figure 4.3: (a) Two examples of the RAFT routing algorithm (b) The required fault information

4.1.4 Bidirectional Fault-Tolerant NoC (BFT-NoC)
A different fault-tolerant approach, called BFT-NoC, is presented in [76]. Normally, two
channels are used for transmitting and receiving packets between two adjacent switches. In
fault-free cases, one channel is dedicated to transmitting packets and another one for
receiving packets. The idea of BFT-NoC is to share a channel for both transmitting and
receiving packets when one of the channels is faulty. This method reduces packet latencies
by avoiding costly rerouting of packets. By sharing the resources, the link performs as a
bottleneck in high traffic loads. To reduce the load on the partially functioning links, it
might be better to deliver packets through alternative routes. This is the solution that can be
offered by routing algorithms. Obviously, BTF-NoC cannot be used to address faulty
switches or a total link failure in both unidirectional directions.

4.1.5 Summary of Traditional Methods
Most of the traditional fault-tolerant routing algorithms reroute packets around faulty
regions, either convex or concave, so that the selected paths are not always the shortest
ones. However, rerouting is an expensive solution and affects performance significantly not
only by taking longer paths but also by creating hotspot around a fault. On the other hand,

Adaptive Routing Approaches for Networked Many-Core Systems Chapter 4

79

most of the presented fault-tolerant algorithms are limited to deterministic routing
algorithms, resulting in considerable performance loss. Traditional fault-tolerant algorithms
are relatively complex due to considering different fault models and location of faults.
Fault-tolerant algorithms may use virtual channels [78], [82] or do not use any virtual
channels [80], [83]. The virtual channel based fault-tolerant routing algorithms provide
better fault-tolerant characteristics than those without virtual channels, but they are not
usually cost efficient. The methods that do not use any virtual channel are mainly based on
the turn models [49].

4.2 The Proposed Approaches for Tolerating Faulty Links
In this section, we first start by introducing a method called MD, Minimal and Defect-
resilient routing algorithm [84]. This method targets addressing a total link failure where
the key ideas are twofold: First, it can tolerate any single-link faults using the shortest path
between each pair of source and destination switches, if a path exists. Second, to avoid
congestion, output channels can be adaptively chosen whenever the distance from the
current to the destination switch is greater than one hop along both dimensions.

MD takes advantages of one and two virtual channels along the X and Y dimensions.
This idea of MD is extended in the second approach, called Minimal and Adaptive Fault-
Tolerant Algorithm (MAFA) [85], to make a network resilient against two faulty links.
Increasing reliability is at the cost of using an extra virtual channel along the Y dimension
in MAFA than MD. In total, MAFA uses two virtual channels along both dimensions.

4.2.1 Any Single Faulty Link (MD)
MD is able to tolerate any single faulty link in the network. It means that there might be
only one fault in the network or it can be multiple faults with enough distances from each
other such that faults are handled independently. The required distance between faults
varies in different methods.

4.2.1.1 Fault Distribution Mechanism
The RAFT approach [82] requires the statuses of twelve links to make its routing decision
(Figure 4.3(b) or Figure 4.4(a)). MD needs to know the statuses of fewer number of links
(i.e. eight links as shown in Figure 4.4(b)). Using this information, MD knows the faulty
conditions of the following paths: east, west, north, south, northeast, northwest, southeast,
and southwest.

Figure 4.4: (a) Statuses of twelve links are needed by RAFT (b) The statuses of eight links are needed by MD

Chapter 4 Fault-Tolerant Routing Algorithms for a 2D Mesh Network

80

4.2.1.2 Turn Model in MD
MD utilizes one and two virtual channels along the X and Y dimensions. The turns to be
prohibited in each virtual channel are taken from the Mad-y method [57]. To prove
deadlock-freeness, we use a numbering mechanism similar to the Mad-y method [57] (Note
that the proof has been also given in Section 3.3.1). This numbering mechanism shows that
all the turns have occurred only in ascending order, and thus no cycle can be formed in the
network. A two-digit number (a,b) is assigned to each output channel of a switch in an n×m
mesh network. According to the numbering mechanism, a turn connecting the input channel
(Ia,Ib) to the output channel (Oa,Ob) is called an ascending turn when (Oa>Ia) or ((Oa=Ia) and
(Ob>Ib)). Figure 4.6 shows how the channels of a switch at the position (x,y) are numbered.
By using this numbering mechanism, it is guaranteed that all allowable turns in Figure 4.5
are taken in the strictly increasing order, so that the MD routing algorithm is deadlock-free.
For instance, if the E-N1 turn (i.e. a packet moving to the east direction makes a turn to the
north direction using the first virtual channel) is taken into consideration, the west input
channel with label (Ia=m+x, Ib=0) is connected to the first virtual channel of the north
output port having the label (Oa=m+x, Ob=1+y). This turn takes place in an ascending order
since ((Oa=Ia) and (Ob>Ib)). Similarly, all the other turns allowed by MD are taken in an
ascending order.

Figure 4.5: Permitted and prohibited turns of MD similar to Mad-y

Figure 4.6: The numbering mechanism of MD similar to Mad-y

Adaptive Routing Approaches for Networked Many-Core Systems Chapter 4

81

4.2.1.3 Tolerating Faulty Links
A destination switch might be located in eight different positions of a source switch as
north, south, east, west, northeast, northwest, southeast, and southwest. In MD, packets are
able to use only the shortest paths in the presence of a faulty link when the destination is in
the northeast, northwest, southeast, and southwest directions of a source switch. This is
achieved by knowing about the statues of eight links and taking advantage of a fully
adaptive routing algorithm. Therefore, no rerouting takes place in these cases and the
algorithm remains deadlock-free. However, for east-, west-, north-, and south-ward packets,
non-minimal paths must be taken if a faulty link exists in the path.

Using a fully adaptive routing algorithm, all the shortest paths in the east direction are
valid for eastward packets. Similarly, westward packets can utilize all shortest paths in the
west direction. When the destination is in the northeast position of the current switch, the
packet can be delivered in either the north or east direction. As illustrated in Figure 4.7(a),
the distances along both east and north directions are one. On the other hand, the current
switch knows about the fault statuses of the links in E and NE paths. Using this
information, if a link is faulty in the NE path, the packet is routed through the east direction
and could safely reach the destination (assuming that there is no other fault in the path). As
a result, the packet is routed through a minimal path to the destination switch.

An example in Figure 4.7(b) shows the case where the distance along the X dimension
reaches one while the distance along the Y dimension is greater than one. The current
switch knows about the fault statues of E and N links. In MD, the packet is sent to the Y
dimension as long as it is non-faulty; otherwise the X dimension is selected. The reason for
this decision is that if the distance along the X dimension reaches zero, the packet has to
take the Y direction in the remaining path toward the destination switch. Thereby, if there is
a faulty link in the Y dimension, the packet must take a non-minimal route to bypass the
fault. This is not an optimal solution which is addressed by MD. MD avoids reducing the
distance into zero in one direction when the distance along the other direction is greater
than one. Therefore, when the distance between the current and destination switches
reaches one in at least one dimension, at first the possibility of sending the packet to the
greater-distance dimension is checked. The packet is sent along the greater-distance
dimension if the link toward this direction is non-faulty; otherwise the smaller-distance
dimension is examined. Consequently, in Figure 4.7(b) the availability of the N link is
checked before than that of the E link, and the packet is sent to the N link if it is non-faulty.
In the next hop, the packet faces the similar situation as in Figure 4.7(a), and thus only the
shortest paths are selected by MD so far. Similarly, in Figure 4.7(c) the condition of the E
link is examined earlier than that of the N link.

Finally, in Figure 4.7(d), the east and north links have the same priority to be selected,
so the congestion values are checked to choose between the non-faulty directions. By these
choices, the packet faces a similar situation as in Figure 4.7(b) or Figure 4.7(c) and thereby
only the shortest paths are taken by MD in all cases. The idea can be simply extended to the
northwest, southeast, and southwest packets in the network.

Chapter 4 Fault-Tolerant Routing Algorithms for a 2D Mesh Network

82

Figure 4.7: Bypassing faulty links when the destination is located in the northeast position of the source
switch (Note that numbers determine the priority of selecting among different routes)

As it is already mentioned, when a packet is east-, west-, north-, or south- bounded and
there is a faulty link in the path, the packet must be rerouted through a non-minimal path
around the faulty link. As illustrated in Figure 4.8(a), for the eastward packet, at first the
east link is checked and if it is non-faulty, the packet is sent through this direction.
However, if the link is faulty, the packet is delivered to the north or south direction. The
situation is similar for the westward packet (Figure 4.8(b)). In this case, the fault
information in the west direction is checked before those of the north and south directions.
For a northward packet facing a faulty link in the north direction (Figure 4.8(c)), the west
direction is checked earlier than the east direction. It means that the east direction is used
only when the faulty link is located in the left borderline. A similar perspective is applied to
southward packets (Figure 4.8(d)).

Figure 4.8: Bypassing faulty links when the destination is located in the (a) east (b) west (c) north (d) south
positions of the source switch

Now, we need to show that all the required turns for bypassing faults are in the set of
allowable turns. As shown in Figure 4.5(a), all required turns toward the east direction are
allowable, so that all cases of faults can be tolerated for northeast-, southeast-, and east-
ward packets by routing through the first virtual channel. Similarly, northwest-, southwest-,
and west-ward packets are routed through the second virtual channel where all of the
required turns toward the west direction are available. We only need to prove that the
northward and southward packets are routed in the network using the allowable turns. As
shown in Figure 4.9(a) and Figure 4.9(b), the northward and southward packets use the
allowable turns of the second virtual channel to bypass the faults. In Figure 4.9(c) and

Adaptive Routing Approaches for Networked Many-Core Systems Chapter 4

83

Figure 4.9(d), the packet has to make a turn to the right where the unallowable turns E-N2
and E-S2 must be taken. However, this cannot result in deadlock. This is due to the fact that
a cycle cannot be formed around the faulty borderline links or switches (as indicated in
[79]), thus MD remains deadlock-free.

Figure 4.9: Northward and southward packets are strictly belonging to the second virtual channel (a) and (b)
show the cases where the fault does not occur in the left borderline (c) and (d) show how the fault can be

tolerated when the fault occur in the left borderline

4.2.1.4 MD Routing Algorithm
A deterministic routing algorithm is a common used method in traditional fault-tolerant
methods. However, MD uses the deterministic routing only when a packet gets close to the
region of the faulty link. Based on MD, if the distance from the current to the destination
switch is greater than one hop along both dimensions, packets can adaptively choose among
the non-faulty links without any restrictions. The output selection function of MD is similar
to DyXY with some modifications. According to DyXY, a packet should be sent to a
direction which has more number of free buffer slots in the corresponding input buffer of
the neighboring switch. When both directions have the same number of free buffer slots, a
direction is chosen by random. On the other hand, MD tries not to reduce the distance in
one dimension to zero when the distance along the other dimension is greater than one. To
step toward this goal, we try to keep the distances along both directions as equally as
possible when routing packets. However, forcing a packet to choose a specific direction is
against the adaptive principles.

Our solution to this issue is to send a packet to the desired direction (greater-distance
dimension) whenever the number of free buffer slots are nearly equal in both directions.
The number of free buffer slots does not need to be exactly the same. For instance, four or
five free buffer slots out of eight available slots can be seen similar in the term of affecting
performance. Therefore, when the difference between the number of free slots in two input
buffers is less than or equal to two slots, the packet is sent to the greater-distance
dimension. The MD routing algorithm is shown in Figure 4.10.

Chapter 4 Fault-Tolerant Routing Algorithms for a 2D Mesh Network

84

Figure 4.10: MD routing algorithm

ALGORITHM: MD routing algorithm
--

Definitions: Xs,Ys: X and Y coordinates of the source switch
Xd,Yd: X and Y coordinates of the destination switch
Xc,Yc: X and Y coordinates of the current switch
vc: Virtual Channel;

position <= {NE,NW,SE,SW,E,W,N, or S} according to the source and destination positions

x_dir <= E when Xd > Xc else W;
y_dir <= N when Yd > Yc else S;

delta_x <= Xd - Xc when Xd>Xc else XC-Xd;
delta_y <= Yd - Yc when Yd>Yc else Yc-Yd;

vc <= vc1 when position={E,NE,SE} else
vc2 when position={W,N,S,NW,SW};

if position={NE, NW, SE, or SW} then
if (delta_x>=1 and delta_y=0) then select <= x_dir;
elsif (delta_x=0 and delta_y>=1) then select <= y_dir(vc);
elsif (delta_x/=1 and delta_y/=1) then

if link(y_dir)=faulty then select <= x_dir; else select <= y_dir(vc); end if:
elsif (delta_x=1 and delta_y=1) then

if position={NE } then
if link(NE)=faulty then select <= x_dir; else select <= y_dir(vc); end if:

elsif position={NW } then
if link(NW)=faulty then select <= x_dir; else select <= y_dir(vc); end if:

elsif position={SE} then
if link(SE)=faulty then select <= x_dir; else select <= y_dir(vc); end if:

elsif position={SW} then
if link(SW)=faulty then select <= x_dir; else select <= y_dir(vc); end if:

end if;
end if;

elsif position={E or W} then
if delta_y = 0 then

if link(x_dir)=faulty then select <= N(vc) or S(vc); else select <= x_dir; end if;
else

if link(y_dir)=dest then select <= y_dir(vc); else select <= x_dir; end if;
end if;

elsif position={N or S} then
if delta_x = 0 then

if link(y_dir)=faulty then
if Xc/=0 then select <= west; else select <= east; end if;

else select <= y_dir(vc); end if;
else

if inPort/= {E,W} and link(x_dir)=non-faulty then select <= x_dir;
else select <= y_dir(vc); end if;

end if;
end if;

Adaptive Routing Approaches for Networked Many-Core Systems Chapter 4

85

An example of MD is shown in Figure 4.11(a), where the source and destination are
located at the switches S and D while the link (11,D) is faulty. As can be seen in this figure,
the packet is routed adaptively inside the network until the distance along one dimension
reach one. The number of free buffer slots is used to select among the output channels at
each switch. The degree of adaptiveness of MD in faulty cases (Figure 4.11(a)) is nearly
equal to fault-free cases (Figure 4.11(b)).

Figure 4.11: Alternative paths from the source switch S to the destination D

4.2.1.5 Analytical Analysis of Two Faulty Links
Since MD cannot tolerate all positions of two faulty links, we analyze the reliability of MD
when two faults occur in the network. Let us assume that the location of faults is chosen
randomly. We divide the problem into two cases: the first fault occurs on the border links
or the first fault occurs in central links. If the first fault occurs on one of the borderline
links, the second fault must not happen on some specific locations. For example, in
Figure 4.12(a) if the link 2 is faulty, the locations marked with cross-cycle signs must be
healthy. A similar situation exists for all the other borderline links. The probability that the
first faulty link occurs on the border links and the second one does not occur in specific
locations is calculated as follow:

=
4(1)
2 (1)

3(1) + (2)
2 (1) =

2
(1

4 5
2 (1)

)

where the terms 2n(n-1) and 4(n-1) indicate the total number of links and the number of
borderline links, respectively, in an n×n mesh network. The second term measures the
number of locations in which the second fault can be tolerated.

Similarly, when the first fault occurs in a central link (Figure 4.12(b)), the robustness is
obtained by the following formula:

=
2(1)(2)

2 (1)
(1) + (2)

2 (1) =
(2)

(1
5 6

2 (1))

Chapter 4 Fault-Tolerant Routing Algorithms for a 2D Mesh Network

86

where the term 2(n-1)(n-2) indicates the number of central links. The second term measures
the number of locations in which the second fault can be tolerated.

According to these formulas, Table 4.1 shows the robustness in different network sizes
when two faults occur in the network. These values are based on this assumption that all
packets reach their destinations. Thereby, if only one packet cannot reach the destination,
the network is tagged as unreliable.

Table 4.1: Robustness analysis of two faulty links in different network sizes

Network size Robustness against
two faulty links

4×4 48%
6×6 63%
8×8 71%

16×16 85%

Figure 4.12: The first fault occurs in (a) borderline link (b) central link

4.2.2 Multiple Faulty Links (MAFA)
MD is a good candidate when an algorithm is targeted for a high performance design while
some degree of reliability is valued. MD works nearly similar to a fully adaptive method
with a negligible performance loss when the network becomes faulty. In faulty conditions,
MD possibly uses minimal paths while it is able to tolerate any single faulty link and some
multiple faulty links. However, if the design was targeted for high reliability, MD would
not be a good candidate. In this section, we present an algorithm, called Minimal and
Adaptive Fault-Tolerant Algorithm (MAFA), which is able to tolerate all one and two
faulty links in the network using two virtual channels in both X and Y dimensions. This

Adaptive Routing Approaches for Networked Many-Core Systems Chapter 4

87

algorithm is designed to retain the adaptivity in the network while tolerating a higher
number of faults.

The basic version of the proposed method is able to tolerate all two faulty links by using
the shortest paths as long as a path exists. Then we improve the method to address multiple
faulty links by taking advantages of non-minimal paths. In this method, we find out all
possible transactions between two virtual channels, such that a packet being routed in one
virtual channel can switch to the next one. Similar to the MD approach, MAFA avoids
reducing the distance into zero in one direction when the distance along the other direction
is greater than one.

4.2.2.1 Fault Distribution Mechanism
MAFA utilizes a new fault distribution mechanism. As shown in Figure 4.13(d), fault
information is distributed in a way that each switch is informed about the faulty links of its
2-hop distance. To collect this information, it is enough that each switch transfers the faulty
information on its links to the neighbors. In Figure 4.13(a), the neighboring switch in the
north of the current switch (C) transfers the fault information on its links in N, E, and W
directions to the current switch. Accordingly, the current switch would be informed about
the fault information in its N, NN, NE, and NW paths. In Figure 4.13(b), by receiving the
fault information from the east neighboring switch, the current switch knows about the fault
information in E, EE, EN, and ES paths as well. In addition, the statuses of ENW and NES
paths are also obtained. Similarly, in Figure 4.13(c), this knowledge is extended to know
about the fault information in S, SS, SE, SW, ESW, and SEN paths. Finally, as shown in
Figure 4.13(d) by receiving the information from the west neighboring switch, the current
switch has the information about the links in E, W, N, S, EE, EN, ES, WW, WN, WS, NN,
NE, NW, SS, SE, SW, ENW, ESW, WNE, WSE, NES, NWS, SEN, and SWN paths in
total.

For routing a packet to the northeast direction, a switch uses the fault information on the
links located in either minimal paths (i.e. EE, EN, NE, and NN) or non-minimal paths (e.g.
SE, WN, WW, and SS). Similarly, for a northward packet, the fault statues on some links
(e.g. N, E, W, NN, NE, NW, ENW, and WNE) are beneficial for making a reliable routing
decision.

Figure 4.13: Fault distribution mechanism

Chapter 4 Fault-Tolerant Routing Algorithms for a 2D Mesh Network

88

4.2.2.2 Turn Model in MAFA
MAFA uses two virtual channels along both dimensions. The turns to be prohibited in each
virtual channel are inspired from the method in [86]. According to this method, the routing
algorithm used in the vc1 is west-last where the west-to-north (W1-N1) and west-to-south
(W1-S1) turns cannot be taken by the packets. In the vc2, the east-last routing algorithm is
utilized where the east direction cannot be taken earlier than the other directions. The
allowable and unallowable turns in vc1 and vc2, are shown in Figure 4.14(a) and
Figure 4.14(b), respectively. Eastward packets are routed in the first virtual channel and
they are able to use all minimal routes in the east direction. Moreover, the remaining turns
are used for non-minimal routing if needed. Similarly, westward packets are routed in the
second virtual channel to utilize all alternative paths to send packets in the west direction
and the remaining turns are utilized for non-minimal purposes. Since the algorithms are
deadlock-free within each virtual channel, so that the whole network is deadlock-free. We
have modified this method allowing transactions between two virtual channels without
forming any cycles. The simple idea is that a cycle cannot be formed if packets could
switch from vc1 to vc2 but not vice versa. Based on this idea, many other turns (0-degree,
90-degree, 180-degree) are added into the list of allowable turns as shown in
Figure 4.14(c). Now, we have an extensive set of allowable turns in the network to be used
for rerouting packets and tolerating faults. According to MAFA, all packets must be routed
in the first virtual channel for as long as possible. They switch to the second virtual channel
only when no minimal option is available in the first virtual channel. This situation may
happen when a packet faces a faulty link.

Figure 4.14: (a) west-last (b) east-last (c) all permitted transactions between vc1 and vc2

4.2.2.3 Tolerating One Faulty Link by MAFA
MAFA is able to tolerate any single faulty link. Figure 4.15 shows the cases where the
destination is located in the northeast, southeast, northwest, and southwest of the current
switch and the distances along both X and Y dimensions are one. All the turns used in this
figure are in the set of allowable turns offered by MAFA. As shown in Figure 4.15(a) and
Figure 4.15(b), different fault locations are supported using the first virtual channel when
the destination switch is in the east position of the current switch. When the destination is
in the west position of the current switch, packets may switch from the first to the second
virtual channel as indicated in Figure 4.15(c) and Figure 4.15(d).

Adaptive Routing Approaches for Networked Many-Core Systems Chapter 4

89

Figure 4.15: Tolerating one faulty link by MAFA when the destination is in the (a) northeast (b) southeast (c)
northwest (d) southwest of the current switch

Figure 4.16 covers the cases when the destination is in the north, south, east, and west of
the current switch. As shown in Figure 4.16(a), normally northward packets are routed
around the fault from the east side using the first virtual channel. However, if the fault is
located in the right borderline, packets have to make a turn to the west direction. This
rerouting can be done by using the first virtual channel even if the west-north turn is
prohibited. In fact, a cycle cannot be formed in borderline cases. Similar perspective is
applied to Figure 4.16(b) for tolerating faults in the south direction. Eastward packets can
turn around the fault either through the north or south direction, and all the required turns
are allowable. Westward packets can bypass the fault by rerouting to the north or south
direction while switching to the second virtual channel. All turns are in a set of allowable
turns and can be safely taken.

Figure 4.16: Tolerating one faulty link by MAFA when the destination is in the (a) north (b) south (c) east (d)
west positions of the current switch

4.2.2.4 Tolerating Multiple Faulty Links by MAFA
We start by investigating the cases of multiple faulty links when the destination is in the
northeast, southeast, northwest, and southwest positions of the current switch. If the
distance from the current to the destination switch is one hop along both the X and Y
dimensions, at maximum, two minimal paths exist. If both of them are faulty, non-minimal
routes should be checked. The priorities of different routes (either minimal or non-minimal)
are illustrated in Figure 4.17 for northeast, southeast, northwest, and southwest packets

Chapter 4 Fault-Tolerant Routing Algorithms for a 2D Mesh Network

90

when the distance from the current to the destination switch is one hop along both
dimensions. For instance, when the destination is in the northeast of the current switch, at
first the availability of NE and EN paths are checked, if both of them are faulty, the statuses
of NN and EE paths are examined. If the links in these paths are also faulty, the possibility
of sending the packet through the SE path is considered. In addition to the SE path, the
availability of the south link of the destination switch should be also checked. Finally, if all
of the mentioned options were unsuccessful, the packet is delivered to the west direction.

Figure 4.17: Priority of selecting among different routes when the destination is in the (a) northeast (b)
southeast (c) northwest (d) southwest positions of the current switch

Now, we should prove that all paths can be taken without creating cycles in the network.
In other words, all of the required turns should be selected from the set of allowable turns.
The first row in Figure 4.18 shows all the six different positions of two faulty links
regarding the current and destination switches for a northeast packet. As shown in
Figure 4.17(a), the priority of selecting among different paths for a northeast packet is as
follow: NE, EN, NN, EE, SE (if the E link is faulty), and WN. In Figure 4.18(a), the NE
path is non-faulty and the packet is sent to the north direction while in Figure 4.18(b), the
east direction is a suitable path for delivering the packet. In Figure 4.18(c), both the NE and
EN paths are faulty, and thus the availability of the NN path is examined. If the NN path is
not available (e.g. the destination is located in the top borderline), the EE path is checked.
As shown in Figure 4.18(d), faults are already bypassed by the packet prior to reaching the
position of the current switch unless the packet is generated at the current switch (i.e.
current=source). In this case, there are two options to forward the packet to the destination
switch. The possibility of sending the packet to the south direction is checked earlier than
the west direction. In Figure 4.18(e), the NE and EN paths are faulty while the NN path
might be available, so the packet may be sent to the north direction. If the NN path is not
available, the next option is to check the SE path. If the packet is coming from the west
direction through the first virtual channel, it is routed to the south direction within the same
virtual channel to reach the destination switch. If the packet arrives from the south input
port, it should switch to the second virtual channel. Doing this, the packet has to take the
unallowable turn E2-N2. However, this turn can be safely taken as the cycle cannot be
completed in borderline cases. Finally, in Figure 4.18(f), after checking the NE, EN, and
NN paths, the EE path is found as a non-faulty path and the suitable choice for sending the
packet. If the EE path is not available, the next priority is the SE path. In this example, as

Adaptive Routing Approaches for Networked Many-Core Systems Chapter 4

91

Figure 4.18: Different positions of two faulty links for a northeast packet

the south link of the destination switch is faulty, the packet cannot reach the destination
switch. Therefore, the availability of the WN path is checked. Faults can be handled
similarly for southeast packets.

Westward packets are normally routed in the first virtual channel and then they may
switch to the second virtual channel when facing a fault. Figure 4.19 shows a southwest
packet facing faulty links in its path. As packets can always switch from the first to the
second virtual channel, for simplicity we assume that the packet has just switched to the
second virtual channel at the current switch. Even under this worst-case assumption, all the
required turns are in the set of allowable turns. Faults can be similarly tolerated for
northwest packets.

Le
ft

Bo
rd

er
lin

e

Figure 4.19: Different positions of two faulty links for a southwest packet

Chapter 4 Fault-Tolerant Routing Algorithms for a 2D Mesh Network

92

Figure 4.20 shows the priority of different routes when the destination is in the north,
south, east and west positions of the current switch. The first row covers the cases where
the packet is in the 1-hop distance from the destination switch while the second row covers
the rest of the cases.

C

D

1:N
2:ESW3:WSE

5:E4:W
D

C

1:N
2:ENW3:WNE

5:E4:W

D

C
2:EN3:WN

5:E4:W

1:NN or NE or NW
C

D

2:ES3:WS

5:E4:W

1:SS or SE or SW

C D
1:E

2:NEW

3:SEN

4:N

5:S

C D1:EE, EN or ES

2:NE

3:SE

4:N

5:S

D C
1:W

2:NWS

3:SWN

4:N

5:S

CD

2:NW

3:SW

4:N

5:S

1:WW, WN or WS

(a) (b)

(c) (d)

Figure 4.20: Priority of different routes for (a) northward (b) southward (c) eastward (d) westward packets

4.2.2.5 MAFA Routing Algorithm
The MAFA routing algorithm for northeast, northwest, southeast, and southwest packets is
shown in Figure 4.21. As long as the packet has not reached close to the destination switch,
it is sent to the greater-distance dimension. If all the minimal paths in 2-hop distance along
this direction are faulty, the availability of the minimal options along the other dimension is
examined. If all the minimal routes along this dimension are also faulty, the packet is sent
to a non-minimal direction based on the priorities shown in Figure 4.17.

In fault-free cases, MAFA performs similar to a fully adaptive routing algorithm. In
faulty cases, the fully adaptiveness is limited to eastward packets while westward packets
are routed deterministically. The reason for this limitation is that all packets are routed in
the first virtual channel for as long as possible where the turns toward the west direction are
limited to deterministic routing.

The MAFA routing algorithm for north-, south-, east-, and west-ward packets is shown
in Figure 4.22. In fault-free cases, packets follow the shortest paths. However, in faulty
situations, packets have to be rerouted around faults based on the priorities defined in
Figure 4.20.

Adaptive Routing Approaches for Networked Many-Core Systems Chapter 4

93

Figure 4.21: MAFA routing algorithm for northeast, northwest, southeast, and southwest packets

ALGORITHM: Tolerating faults by MAFA for northeast, northwest, southeast, and southwest packets
--

Definitions: Xd,Yd: X and Y coordinates of the destination switch
Xc,Yc: X and Y coordinates of the current switch
in, vc: input channel; virtual channel
dLoc: Location of the destination switch regarding the current switch

deltaX <= (Xd - Xc) when Xd > Xc else (Xc - Xd);
deltaY <= (Yd - Yc) when Yd > Yc else (Yc - Yd);
vc <= ‘0’ when (((select = east) and (in = W1,N1,S1, or L)) or

((select = west) and (in = E1,N1,S1, or L)) or
((select = north) and (in = W1,S1, or L)) or
((select = south) and (in = W1,N1, or L))) else ‘1’;

if (dLoc=local) then select <= local;
elsif (dLoc=northeast) then

if not(DeltaX=1 and DeltaY=1) and ((N='1') or (E='1')) then
if ((DeltaY>=DeltaX) and (NE='1' or NN='1')) then select <= north;
elsif (EE='1' or EN='1') then select <= east; else select <= north; end if;

else
if (NE='1') or (EN='0' and NN='1') then select <= north;
elsif (EN='1') or (EE='1') then select <= east;
elsif (SE='1') and (E=’0’) then select <= south; else select <= west; end if;

end if;
elsif (dLoc=northwest) then

if not(DeltaX=1 and DeltaY=1) and ((N='1') or (W='1')) then
if ((DeltaY>=DeltaX) and (NW='1' or NN='1')) then select <= north;
elsif (WW='1' or WN='1') then select <= west; else select <= north; end if;

else
if (NW='1') or (WN='0' and NN='1') then select <= north;
elsif (WN='1') or (WW=’1’) then select <= west;
elsif (SW='1') and (W=’0’) then select <= south; else select <= east; end if;

end if;
elsif (dLoc=southeast) then

if not(DeltaX=1 and DeltaY=1) and ((S='1') or (E='1')) then
if ((DeltaY>=DeltaX) and (SE='1' or SS='1')) then select <= south;
elsif (EE='1' or ES='1') then select <= east; else select <= south; end if;

else
if (SE='1') or (ES='0' and SS='1') then select <= south;
elsif (ES='1') or (EE='1') then select <= east;
elsif (NE='1') and (E=’0’) then select <= north; else select <= east; end if;

end if;
elsif (dLoc=southwest) then

if not(DeltaX=1 and DeltaY=1) and ((S='1') or (W='1')) then
if ((DeltaY>=DeltaX) and (SW='1' or SS='1')) then select <= south;
elsif (WW='1' or WS='1') then select <= west; else select <= south; end if;

else
if (SW='1') or (WS='0' and SS='1') then select <= south;
elsif (WS='1') or (WW='1') then select <= west;
elsif (NW='1') and (W=’0’) then select <= north; else select <= east; end if;

end if;
end if;

Chapter 4 Fault-Tolerant Routing Algorithms for a 2D Mesh Network

94

Figure 4.22: MAFA routing algorithm for north-, south-, east-, and west-ward packets

4.2.2.6 Enhanced-MAFA
MAFA is designed to tolerate all situations of two faulty links in the network, but it is not
the maximum reliability that can be provided by this method. For example, in
Figure 4.23(a) the statuses of the NE, EN, NN, EE, SE, and WN links are enough to cover
all situations of two faulty links for a northeast packet. However, all of these routes might
not be available when there are more faults in the network. The aim of Enhanced-MAFA is
to utilize almost all the possible paths for rerouting packets.

ALGORITHM: Tolerating faults by MAFA for north-, south-, east-, and west-ward packets
--

Definitions: Xd,Yd: X and Y coordinates of the destination switch
Xc,Yc: X and Y coordinates of the current switch
in,vc: Input channel; virtual channel
dLoc: Location of the destination switch regarding the current switch

vc <= ‘0’ when (((select = east) and (in = W1,N1,S1, or L)) or

 ((select = west) and (in = E1,N1,S1, or L)) or
 ((select = north) and (in = W1,S1, or L)) or

 ((select = south) and (in = W1,N1, or L))) else ‘1’;

if (dLoc=north) then
if (N=’1’) and ((NN='1' or NE='1' or NW='1') or (ly+1=dy)) then select <= north;
elsif (ENW=’1’) and (in=W1,N1,S1, or L) then select <= east;
elsif (WNE=’1’) and (in=E1,N1,S1, or L) then select <= west;
elsif (E=’1’) then select <= east;
elsif (W=’1’) then select <= west; else select <= south;
end if;

elsif (dLoc=south) then
if (S=’1’) and ((SS='1' or SE='1' or SW='1') or (ly-1=dy)) then select <= south;
elsif (ESW=’1’) and (in=W1,N1,S1, or L) then select <= east;
elsif (WSE=’1’) and (in=E1,N1,S1, or L) then select <= west;
elsif (E=’1’) then select <= east;
elsif (W=’1’) then select <= west; else select <= north;
end if;

elsif (dLoc=east) then
if (E=’1’) and ((EE='1' or EN='1' or ES='1') or (lx+1=dx)) then select <= east;
elsif (NES='1') and (in=W1,S1, or L) then select <= north;
elsif (SEN='1') and (in=W1,N1, or L) then select <= south;
elsif (N=’1’) then select <= north;
elsif (S=’1’) then select <= south; else select <= west;
end if;

elsif (dLoc=west) then
if (W=’1’) and ((WW='1' or WN='1' or WS='1') or (lx-1=dx)) then select <= west;
elsif (NWS='1') and (in=W1,S1, or L) then select <= north;
elsif (SWN='1') and (in=W1,N1, or L) then select <= south;
elsif (N=’1’) then select <= north;
elsif (S=’1’) then select <= south; else select <= east;
end if;

end if;

Adaptive Routing Approaches for Networked Many-Core Systems Chapter 4

95

When a packet enters a switch through one of the input channels (i.e. L, N1, N2, S1, S2,
E1, E2, W1, and W2), the routing unit determines one or several potential output channels
to deliver the packet. A switch receiving a packet needs to check for the faulty links and
eligible turns prior to connecting the input channel to the output channel. In Enhanced-
MAFA, the potential output channels are selected in a way that the existence of at least one
path from the next switch to the destination switch is guaranteed. For example, in
Figure 4.23(b) if the current switch is the source switch, packets can be routed through the
NN, NE, NW, WW, WN, WS, EE, EN, ES, SS, SE, or SW path without creating any
deadlock. In Figure 4.23(c), input channel is E1 and the destination is in the northeast of the
current switch. In this case, packets can be safely sent through the NE, NN, NW, WW,
WN, WS, SS, or SW path. Figure 4.24 presents the choices of output channels allowed by
Enhanced-MAFA. The main priorities are always checked before the other options.

Figure 4.23: Examining all possible paths by Enhanced MAFA

Figure 4.24: Non-minimal choices offered by Enhanced-MAFA

ALGORITHM: Output choices offered by Enhanced-MAFA
--

Definitions: inPort: input Port; dLoc: destination Location

if (dLoc/={e} and inPort/={w2,n2}) or (dLoc={e} and inPort={l,w1,s1}) then
select <= nn or ss;

if (dLoc/={ne} and inPort={l,w1,s1}) or (dLoc={ne} and inPort/={w2,n2}) then
select <= ne;

if (dLoc/={e} and inPort/={w2,n2}) then
select <= nw;

if (dLoc/={e} and inPort={l,w1,n1,s1}) or (dLoc={e} and inPort/={n2,s2}) then
select <= ee;

if (inPort ={l,w1,n1,s1}) then
select <= en,es;

if (dLoc/={e} and inPort/={w2}) then
select <= ww,wn,ws;

if (dLoc/={e} and inPort/={w2,s2}) then
select <= sw;

if (dLoc/={se} and inPort={l,w1,n1}) or (dLoc={se} and inPort/={w2,s2}) then
select <= se;

Chapter 4 Fault-Tolerant Routing Algorithms for a 2D Mesh Network

96

4.2.3 Results and Discussion
To evaluate the efficiency of the proposed routing schemes, a NoC simulator is developed
with VHDL to model all major components of the on-chip network. For all switches, the
data width is set to 32 bits. The congestion threshold value is set to 5, meaning that a buffer
is considered as a congested one when 5 out of 8 buffer slots are occupied. Moreover, the
packet length is uniformly distributed between 5 and 10 flits. As a performance metric, we
use latency defined as the number of cycles between the initiation of a packet issued by a
Processing Element (PE) and the time when the packet is completely delivered to the
destination PE. The simulator is warmed up for 12,000 cycles and then the average
performance is measured over another 200,000 cycles.

For evaluating performance, MD, MAFA, and RAFT methods are compared together.
As we discussed in section 4.1.3, RAFT is a traditional method designed for tolerating
faulty links in the network [82]. MAFA and RAFT methods require two virtual channels
along both dimensions while MD utilizes one and two virtual channels along the X and Y
dimension. To have a fair comparison, an extra virtual channel is added to the MD
approach which is utilized for improving performance.

4.2.3.1 Performance Analysis under Uniform Traffic Profile
In the uniform traffic profile, each processing element generates data packets and sends
them to another processing element using a uniform distribution [49]. The mesh size is
considered 8×8. In Figure 4.25, the average communication latencies of the MD and RAFT
are measured for fault-free and a single faulty link cases. As observed from the results, in
fault-free cases, RAFT works slightly better than MD. The reason is that RAFT is a fully
adaptive routing algorithm while in MD the adaptivity is limited when packets get close to
their destination switch. In one-faulty cases, MD maintains performance at the similar level
while the performance of RAFT drops significantly with a single faulty link in the network.
This is due to the fact that MD can route packets through minimal paths while in RAFT,
packets may take longer paths when facing a faulty link. MAFA is able to tolerate two
faulty links, so that we compare it with RAFT under fault-free and two faulty cases. As can
be seen in Figure 4.26, MAFA maintains performance under two faulty links.

Figure 4.25: Performance analysis of MD and RAFT in an 8×8 mesh network under uniform traffic profile

0

50

100

150

200

250

300

350

0 0.1 0.2 0.3 0.4

A
ve

ra
ge

 L
at

en
cy

 (
cy

cl
e)

Injection Rate (flits/node/cycles)

RAFT: 0-fault

RAFT: 1-fault

MD: 0-fault

MD: 1-fault

Adaptive Routing Approaches for Networked Many-Core Systems Chapter 4

97

Figure 4.26: Performance analysis of MAFA and RAFT in an 8×8 mesh network under uniform traffic profile

4.2.3.2 Performance Analysis under Hotspot Traffic Profile
Under the hotspot traffic pattern, one or more switches are chosen as hotspots receiving an
extra portion of the traffic in addition to the regular uniform traffic. In simulations, given a
hotspot percentage of H, a newly generated packet is directed to each hotspot switch with
an additional H percent probability. We simulate the hotspot traffic with a single hotspot
switch at (4,4) in an 8×8 mesh network. The performance of MD and RAFT is measured
for fault-free and one-faulty link cases while MAFA and RAFT are compared with each
other under fault-free and two faulty links. The performance analysis with H=10% are
illustrated in Figure 4.27 and Figure 4.28. In all the faulty configurations, MD and MAFA
outperform the RAFT approach.

Figure 4.27: Performance analysis of MD and RAFT in an 8×8 mesh network under hotspot traffic profile

0

50

100

150

200

250

300

350

0 0.1 0.2 0.3 0.4

Av
er

ag
e

La
te

nc
y

(c
yc

le
)

Injection Rate (flits/node/cycles)

RAFT: 0-fault

RAFT: 2-fault

MAFA: 0-fault

MAFA: 2-fault

0

50

100

150

200

250

300

350

0 0.05 0.1 0.15 0.2 0.25

Av
er

ag
e

La
te

nc
y

(c
yc

le
)

Injection Rate (flits/node/cycles)

RAFT: 0-fault

RAFT: 1-fault

MD: 0-fault

MD: 1-fault

Chapter 4 Fault-Tolerant Routing Algorithms for a 2D Mesh Network

98

Figure 4.28: Performance analysis of MAFA and RAFT in an 8×8 mesh network under hotspot traffic profile

4.2.3.3 Reliability Evaluation under Uniform Traffic Profile
It is worth mentioning that, MAFA and Enhanced-MAFA perform similarly in the term of
performance. However, Enhanced-MAFA offers higher reliability and can tolerate more
number of faults than MAFA. In the reliability evaluation, we take MD, Enhanced-MAFA,
and RAFT into consideration when the number of faulty links increases from 1 to 6. All
faulty links are selected using a random function. The results are obtained using 10,000
iterations in a 6×6 mesh network when the traffic is uniform random. A network is reliable
if all the injected packets reach their destinations. As shown in Figure 4.29, Enhanced-
MAFA can tolerate up to 6 faulty links by more than 97% probability.

	
Figure 4.29: Reliability evaluation of Enhanced-MAFA in a 6×6 mesh network under uniform traffic profile

4.2.3.4 Hardware Analysis
To assess the area overhead and power consumption, the whole platform of each method is
synthesized by Synopsys Design Compiler. We measured the area overhead and power
consumption of the MD, Enhanced-MAFA, and RAFT methods. MD utilizes one and two
virtual channels along the X and Y dimensions while Enhanced-MAFA and RAFT use two

0

50

100

150

200

250

300

350

0 0.05 0.1 0.15 0.2 0.25

Av
er

ag
e

La
te

nc
y

(c
yc

le
)

Injection Rate (flits/node/cycles)

RAFT: 0-fault

RAFT: 2-fault

MAFA: 0-fault

MAFA: 2-fault

75

80

85

90

95

100

1-faulty link 2-faulty link 3-faulty link 4-faulty link 5-faulty link 6-faulty link

Re
lia

bi
lit

y

Enhanced MAFA MD RAFT

Adaptive Routing Approaches for Networked Many-Core Systems Chapter 4

99

virtual channels in both dimensions. Power consumption is measured under a one-faulty
link case. Each scheme includes network interfaces, switches, and communication
channels. All methods are synthesized using the TSMC 65nm technology at the operating
frequency of 500MHz and supply voltage of 1V. We perform place-and-route, using
Cadence Encounter, to have precise power and area estimations. The power dissipation is
calculated using Synopsys PrimePower in an 8×8 mesh network.

The layout area and power consumption of each platform are shown in Table 4.2. As
indicated in the table, Enhanced-MAFA and RAFT have larger area overheads than MD
due to using an extra virtual channel. Enhanced-MAFA consumes less power than RAFT. It
is because of avoiding hotspots in the network in the presence of faults. Moreover,
Enhanced-MAFA uses a simpler routing unit than RAFT.

Table 4.2: Hardware implementation details

Network platforms Area (mm2) Power (mw)

MD 2.571 1.563
Enhanced_MAFA 2.903 1.657

RAFT 2.924 1.791

4.3 The Proposed Approaches for Tolerating Faulty Switches
The two proposed methods MD and MAFA are able to tolerate faulty links in the network.
MD is able to tolerate a small number of faulty links while performing similar to a fully
adaptive routing algorithm. MAFA tolerates a large number of faulty links with limited
adaptivity. Faults may occur at the switch level in which MD and MAFA are not able to
address them in their basic forms. In this section, we present two fault-tolerant approaches
to tolerate faulty switches. These methods are called High Performance Fault-tolerant
Routing (HiPFaR) [87] and Minimal-path Connection-retaining Fault-tolerant approach
(MiCoF) [88]. Similar to MD, HiPFaR uses one and two virtual channels along the X and Y
dimensions and is able to tolerate any single faulty switch in the network using only the
shortest path as possible. A non-minimal route is necessitated when the source and
destination switches are located in the same row or column with a faulty switch between
them. In MiCoF, the same numbers of virtual channels are used. However, it is able to
address a wide range of faults by using only the shortest paths even if the source is in the
same row or column as the destination switch. This is achieved by a simple modification in
the switch architecture.

4.3.1 Any Single Faulty Switch (HiPFaR)
As was already mentioned, there are many fault-tolerant approaches presented both in the
off-chip and on-chip networks. Some approaches disable healthy components in order to
form a specific shape while others do not. Regardless of all varieties, there has always been
a common assumption among them. Most of all traditional fault-tolerant methods are based
on rerouting packets around faults. These approaches affect performance significantly not
only by taking longer paths but also by creating hotspot around a fault.

Chapter 4 Fault-Tolerant Routing Algorithms for a 2D Mesh Network

100

The goal of HiPFaR is to tolerate faulty switches without affecting performance or
disabling healthy components. HiPFaR uses the minimum number of virtual channels to
provide adaptiveness. Moreover, it requires only the fault statuses of the neighboring
switches which are the minimum knowledge for making a routing decision in a fault-
tolerant approach.

4.3.1.1 Fault Distribution Mechanism
Some proposals require the knowledge about the fault statuses of all switches or links in the
network. To collect this knowledge, online or offline techniques are employed. In some
other proposals, for making routing decisions, the fault statuses of direct and indirect
neighboring switches are needed. In few approaches, the routing decision is based on the
minimum knowledge about the faults in the network (i.e. four neighboring switches). As
the fault might occur on additional resources, the simpler approach is always preferred.

In HiPFaR, it is enough that each switch is informed about the fault statues of its
neighboring switches (Figure 4.30). Based on this knowledge, HiPFaR is able to deliver
packets through the available shortest paths.

Figure 4.30: The statues of four neighboring switches are required by the HiPFaR routing algorithm

4.3.1.2 Turn Model in HiPFaR
HiPFar uses the same number of virtual channels as the MD routing algorithm which is one
and two virtual channels along the X and Y dimensions, respectively. HiPFaR also utilizes
the same turn model as MD, shown in Figure 4.31. This turn model is proved to be
deadlock-free in Section 4.2.1.

Figure 4.31: Permitted and prohibited turns of MD similar to Mad-y [10]

Adaptive Routing Approaches for Networked Many-Core Systems Chapter 4

101

4.3.1.3 Tolerating Faulty Switches
Let us assume that there is a faulty switch in the network. The fault is bypassed using non-
minimal paths when the source and destination switches are located in the same row or
column. In other cases, only the shortest paths are taken from the source to the destination
switch. In Figure 4.32, for the ease of understanding, we investigate HiPFaR for a northeast
packet. However, as it will be shown, the HiPFaR routing algorithm is general and can be
applied to the northwest, southeast, and southwest packets without any implementation
differences.

As illustrated in Figure 4.32(a) and Figure 4.32(b), the packet is one hop away from the
destination switch in both the X and Y dimensions (X-dir=1 and Y-dir=1). By default, the
packet is sent to the Y direction (Figure 4.32(a)). However, when the north neighboring
switch is faulty, the packet is delivered to the X direction (Figure 4.32(b)). Figure 4.33(a)
shows the possible cases where the distances along both the X and Y directions are one
hop. As illustrated in this figure, in positions 1 and 2, the packet is delivered to the Y
dimension since the north neighboring switch is non-faulty. In positions 3, the packet is
sent to the X dimension as the north neighboring switch is faulty. Thereby, in all three
positions, the packet can reach the destination using the shortest paths.

In Figure 4.32(c) and Figure 4.32(d), the distance is one and two (or greater than two)
hops along the X and Y directions (X-dir=1 and Y-dir>=2), respectively. The rule is
similar to the previous case such that the packet is sent to the Y direction unless the north
neighboring switch is faulty (i.e. in this case, the packet is delivered to the X direction).
According this rule, in positions 1, 2, and 3 of Figure 4.33(b), the packet is sent to the Y
direction. In the next hop, the packet stands in one of the positions of Figure 4.33(a) (It is
already shown that packets can reach the destination switch using the shortest paths in the
presence of fault). In position 4, the north neighboring switch is faulty, and thus the packet
is sent to the X direction. This packet reaches the destination switch using the shortest path
as the faulty switch is already bypassed.

Figure 4.32(e) and Figure 4.32(f) indicate the cases where the distances are two hops (or
greater than two) and one hop along the X and Y dimensions (X-dir>=2 and Y-dir=1). The
rule is as simple as avoiding to send the packet to the Y direction when the east neighboring
switch is non-faulty. Figure 4.33(c) shows the different positions of the current, destination
and a faulty switch. In positions 1, 2, and 3, the packet is sent to the X direction as the east
neighboring switch is non-faulty. In the next hop, the packet stands in one of the positions
of Figure 4.33(a). If the east neighboring switch is faulty (position 4), the packet is
delivered to the destination through the north neighboring switch.

When the distances along both directions are two or greater than two hops (X-dir>=2
and Y-dir>=2), the packet is sent to a non-faulty neighboring switch (Figure 4.33(d)). By
routing under this policy, the packet reaches one of the positions of Figure 4.33(b) or
Figure 4.33(c). In sum, in all faulty cases, the packet is routed to the destination switch
through the shortest paths. In a case where both neighboring switches are non-faulty, one
direction is chosen based on the congestion information. Therefore, HiPFaR is fully
adaptive as long as the remaining distance along both directions is equal or greater than two

Chapter 4 Fault-Tolerant Routing Algorithms for a 2D Mesh Network

102

Figure 4.32: The basic rules for selecting among the neighboring switches when a packet gets close to the
destination switch

Figure 4.33: Different positions of current, destination and a faulty switch

hops. According to these rules, each switch needs to know the fault information of only
four neighboring switches shown in Figure 4.32(g).

HiPFaR is a fully adaptive routing algorithm supporting all the required turns to route
packets through the shortest paths. The northeast, northwest, southeast, and southwest
packets do not take any non-minimal routes for tolerating faults, so that, all the required
turns are supported by HiPFaR. East-, west-, north-, and south-ward packets have to be
rerouted around the fault when facing to it. As shown in Figure 4.34(a), eastward packets
use the E-N1, N1-E, E-S1, E-S1, and S1-E turns to bypass the faults in which all of them
are in the set of allowable turns. Similarly, all the required turns by the westward packets
are allowable (i.e. W-N2, N2-W, W-S2, W-S2, and S2-W). As illustrated in Figure 4.35,
normally, the northward and southward packets use the allowable turns as N2-W, W-N2,
N2-E, S2-W, W-S2, S2-E. However, when the source and destination switches are located
in the left borderline, the required turns are N2-E, E-N2, N2-W, S2-E, E-S2, and S2-W.
Among them, E-N2 and E-S2 are unallowable according to the turn model of HiPFaR, but a
cycle cannot be formed in borderline cases and these unallowable turns can be safely taken.

Adaptive Routing Approaches for Networked Many-Core Systems Chapter 4

103

Figure 4.34: Tolerating a faulty switch by (a) eastward packets (b) westward packets

Figure 4.35: Tolerating a faulty switch for northward and southward packets

4.3.1.4 HiPFaR Routing Algorithm
The HiPFaR routing algorithm is illustrated in Figure 4.36. HiPFaR can be explained by
two parts: when the destination is in the east, west, north and south directions of the source
switch and when the destination is in the northeast, northwest, southeast, and southwest
directions of the source switch. In this algorithm, the position is specified based on the
source and destination position. The X-dir and Y-dir parameters determine the minimal
directions toward the destination switch regarding the current switch. The delta-X and
delta-Y parameters maintain the remaining distances from the current to the destination
switch along the X and Y dimensions. Finally, in the algorithm, vc indicates the appropriate
virtual channel. According to HiPFaR, the first virtual channel of the Y dimension is used
when the destination is toward the east, northeast, and southeast directions of the source
switch. Similarly, the second virtual channel is utilized for west-, northwest-, and
southwest-ward packets. The north- and south-ward packets utilize the second virtual
channel.

In Figure 4.34 when the packets are either east- or west-ward and delta-Y is equal to
zero, there are two options to bypass the fault: making a turn to the north or to the south
direction. However, when the packet is already rerouted to the north or south direction, it
has to be routed along the X-dir until delta-X becomes zero. At this point, the packet can be
delivered to the destination switch by turning to the Y direction. As illustrated in
Figure 4.35, the north- and south-ward packets are routed in the second virtual channel as
long as they do not face with a fault. To bypass the fault, normally the turn to the west
direction is done. In a case where the faulty switch is located in the left borderline, the turn
to the east direction should be done. Packets are routed along this direction until delta-Y
becomes zero. At this point, a turn to the east or west direction is needed to deliver the
packet to the destination switch.

Chapter 4 Fault-Tolerant Routing Algorithms for a 2D Mesh Network

104

A minimal routing algorithm is used for northeast-, northwest-, southeast-, and
southwest-ward packets. Packets can be adaptively routed within the network when they
are two hops away along each direction from the destination switch. At each intermediate
switch, the congestion information is used to send a packet to one of the non-faulty
neighboring switches which are located in the minimal path. HiPFaR is designed to tolerate
any single faulty switch in the network using only the shortest paths. However, there are
some cases in which non-minimal paths are required in order to bypass multiple faulty
switches. Non-minimal routes can be supported by similar approaches as Enhanced-MAFA.

Figure 4.36: HiPFaR routing algorithm

ALGORITHM: HiPFaR routing algorithm
--

Definitions: Xs,Ys,Xd,Yd,Xc,Yc: X and Y coordinates of the source, destination and current switches
 vc: virtual channel;

position <= {NE,NW,SE,SW,E,W,N, or S} according to the source and destination positions

x_dir <= E when Xd > Xc else W;
y_dir <= N when Yd > Yc else S;
vc <= vc1 when position={E,NE,SE} else vc2 when position={W,N,S,NW,SW};
delta_x <= Xd - Xc when Xd>Xc else Xc-Xd;
delta_y <= Yd - Yc when Yd>Yc else Yc-Yd;

if position={NE, NW, SE, or SW} then
if (delta_x>=1 and delta_y=0) then select <= x_dir;
elsif (delta_x=0 and delta_y>=1) then select <= y_dir(vc);
elsif (delta_x=1 and delta_y>=1) then

if neighbor(y_dir)=faulty then select <= x_dir; else select <= y_dir(vc); end if;
elsif (delta_x>1 and delta_y=1) then

if neighbor(x_dir)=faulty then select <= y_dir(vc); else select <= x_dir; end if;
else

if neighbor(x_dir)=faulty then select <= y_dir(vc);
elsif neighbor(y_dir)=faulty then select <= x_dir;
else select <= x_dir or y_dir(vc); end if;

end if;
elsif position={E or W} then

if delta_y = 0 then
if neighbor(x_dir)=faulty then select <= N(vc) or S(vc); else select <= x_dir; end if;

else
if neighbor(y_dir)=dest then select <= y_dir(vc); else select <= x_dir; end if;

end if;
elsif position={N or S} then

if delta_x = 0 then
if neighbor(y_dir)=faulty then

if Xc/=0 then select <= west; else select <= east; end if;
else select <= y_dir(vc); end if;

else
if inPort/= {E,W} and neighbor(x_dir)=non-faulty then select <= x_dir;
else select <= y_dir(vc); end if;

end if;
end if;

Adaptive Routing Approaches for Networked Many-Core Systems Chapter 4

105

4.3.2 Multiple Faulty Switches (MiCoF)
HiPFaR is able to tolerate faulty switches using the shortest paths as long as the source and
destination switches are not located in the same row or column. It has many advantages
over traditional methods as: 1- it maintains the performance level of NoC by choosing only
the shortest paths for each pair of source and destination switches in the presence of faults.
2- the routing unit only requires the fault statuses of the adjacent switches, that is the
minimum knowledge needed by a fault-tolerant routing algorithm. 3- the algorithm is very
simple such that it can be implemented in few lines of code. This small piece of code
covers all positions of faulty switches. 4- it requires only one and two virtual channels
along the X and Y dimensions, which is the minimum number of virtual channels to design
a fully adaptive routing algorithm. Moreover, it does not require any routing table.

In this section, we present a method called MiCoF (Minimal-path Connection-retaining
Fault-tolerant approach). The number of virtual channels, the fault distribution mechanism
and the turn model are similar to the HiPFaR approach. The main goal of MiCoF is to use
only the shortest paths in the presence of faulty switches. In this approach, packets are
never rerouted around the faulty switches. To keep the connectivity and avoid rerouting
packets, the switch architecture is slightly modified such that when a switch becomes
faulty, the involved links will be connected in appropriate directions. In other words, a
faulty switch can be seen as a wire, connecting the surviving switches to each other. Based
on this architecture, a routing algorithm based on the shortest paths is presented. This
architecture along with the shortest-path routing algorithm provides a highly resilient
network. The interesting point is that the average packet latencies are decreased as the
number of faults increases in the network.

MiCoF has the whole characteristics of HiPFaR while it offers more benefits as: 1-
packets take the shortest paths even if the source and destination switches are located in the
same row or column with a faulty switch between them. 2- when a switch becomes faulty,
its involved links can still be utilized. 3- it does not have any exceptional rules for
borderline switches. 3- it is highly reliable such that on average 99.5% percentages of
packets successfully reach their destinations when there are six faulty switches in an 8×8
mesh network. By another metric of reliability, when six faults occur in the network, with
the probability of more than 50%, the network functions normally without any packet loss.
Reachability is another highlighting point of this method as a switch with all neighbors
faulty is still reachable.

4.3.2.1 MiCoF Architecture
A faulty switch has a severe impact on the performance of NoCs. When a switch becomes
faulty, not only the connected core cannot send or receive packets, but also packets from
the other cores cannot be transmitted through this switch. In other words, the connected
core and links of a faulty switch are also tagged as faulty and become unusable. The core
cannot start working until the fault is recovered. However, by using the MiCoF
architecture, we show that the links can still be used to retain performance.

Chapter 4 Fault-Tolerant Routing Algorithms for a 2D Mesh Network

106

Figure 4.37 shows the switch architecture based on MiCoF. Normal switch architecture
includes input buffers, a routing unit, a virtual channel allocator, a switch allocator and a
crossbar switch. In our modified architecture, in a case of faults, the east input channel is
directly connected to the west output channel while the west input channel is connected to
the east output channel. Similarly, the packets coming from the north and south input
channels are directly connected to the south and north output channels, respectively. So, no
processing takes place in the switch and packets are not stored in input buffers. In the
MiCoF architecture, the whole faulty switch acts as a wire, connecting the input channels to
output channels in specific directions. Compared with normal switch architecture, MiCoF
needs a few multiplexers and de-multiplexers at input and output ports plus a small wiring
overhead.

Figure 4.37: Switch architecture using MiCoF

Figure 4.38(a) shows a 4×4 mesh topology with five faulty switches. A faulty switch
itself and the core connected to it are disconnected from the network while the links are
used to connect the neighboring switches in appropriate directions. Using the MiCoF
architecture, the resulted network is illustrated in Figure 4.38(b).

Figure 4.38: Five fautly switches in a 4×4 mesh topology (b) the resulted network using MiCoF

Adaptive Routing Approaches for Networked Many-Core Systems Chapter 4

107

4.3.2.2 Tolerating Single Faulty Switches by MiCoF
We start introducing the MiCoF approach in a case when there is a single faulty switch in
the network. To do this, we follow the path of a northeast packet as shown in Figure 4.39.
When the destination is in the east or north position of the current switch (Figure 4.39(a)),
the packet can bypass the faulty switch and reach the destination without taking any non-
minimal path. This is possible as the faulty switch can be considered as a wire connecting
the links in the horizontal and orthogonal directions.

In Figure 4.39(b), the packet is one hop away from the destination switch in both the X
and Y dimensions (X-dir=1 and Y-dir=1). By default, the packet is sent to the Y direction
(patterns 1 and 2). However, when the neighboring switch in the Y direction is faulty, the
packet is delivered to the X direction instead (pattern 3).

Figure 4.39(c) indicates the cases where the distances are two (or greater than two) hops
and one hop along the X and Y dimensions (X-dir>=2 and Y-dir=1), respectively. Similar
to the previous case, the packet is sent to the Y direction (patterns 1, 2, and 3) unless the
neighboring switch in this direction is faulty. If the north neighboring switch is faulty, the
packet is delivered to the X direction (pattern 4). In the next hop, the packet stands in one
of the positions of Figure 4.39(a) or Figure 4.39(b). Therefore, in all positions of a faulty
switch, the packet could reach the destination by using the shortest paths.

In Figure 4.39(d), the distance is one and two (or greater than two) hops along the X and
Y directions (X-dir=1 and Y-dir>=2), respectively. The rule is as simple as avoiding to
send the packet to the Y direction when the neighboring switch in the X direction is non-
faulty. Using this rule, all positions of faults can be covered by patterns 1, 2, 3, and 4. In
the next hop, the packet stands in one of the positions of Figure 4.39(a) or Figure 4.39(b).
When the distances along both directions are two or greater than two hops (X-dir>=2 and
Y-dir>=2), the packet should be sent to a non-faulty neighboring switch (Figure 4.39(e)).
By routing the packet with this policy, the packet reaches one of the positions of
Figure 4.39(c) or Figure 4.39(d). In a case where both neighboring switches are healthy, the

DC

D

C

C

D

1

C

D

2

C

D

3

C

D

4

D

C

D

C

(d)

3 4

D

C

1

D

C

2

D

C

1

D

C

2

D

C

3

D

C

D

C

2

1

D

1

C

D

2

C

(a)

(b)
(c)

(e)

(f)

Faulty NodeC Current D Destination

(g)

C

Figure 4.39: Tolerating any single faulty switch using only the shortest paths

Chapter 4 Fault-Tolerant Routing Algorithms for a 2D Mesh Network

108

packet is sent through the less congested direction. Using MiCoF, packets can be routed
adaptively in the network as long as the remaining distance along both directions is equal or
greater than two hops.

To sum up, it is guaranteed that any single faulty switch is covered by MiCoF taking
only the shortest paths between each pair of source and destination switches. In addition,
packets can be adaptively routed within the network when they are not close to the
destination switch. However, for better reliability, the adaptiveness of MiCoF can be
limited. The limitation is applied to a situation when the distances along both directions are
two or greater than two hops. In this case, the packet is sent to a greater-distance
dimension. If the neighboring switch in the greater-distance dimension is faulty, the
smaller-distance direction is selected (Figure 4.39(f)). In this way, packets maintain the
adaptivity, and thus they have an alternative choice when facing a fault in one direction.
Finally, the packet can be sent through either direction when the distances along both
directions are equal. Obviously, this adaptivity limitation does not affect the behavior of the
algorithm in addressing any single faulty switch without rerouting packets.

4.3.2.3 Tolerating Multiple Faulty Switches by MiCoF
MiCoF is able to tolerate multiple faulty switches with high reliability. In this section, we
investigate MiCoF specifically when it is used to tolerate two and three faulty switches in
the network.

A. Tolerating Two Faulty Switches

The rules of the MiCoF routing algorithm remain the same when tolerating more number of
faults. Now, we investigate how tolerating two faulty switches can be addressed in the
network using the same rules.

As shown in Figure 4.40(a), when the current and destination switches are located in the
same row or column, the packet can pass through the faulty switches, regardless of the
number of faults in the path. Figure 4.40(c) indicates all the positions of two faulty switches
when the distances are two and one hops along the X and Y dimensions. By default, the
packet is sent to the Y direction. If the neighboring switch in the Y direction is faulty, the
packet is sent through the X direction. In patterns 1, 2, and 3 of Figure 4.40(c), the packet is
sent to the neighboring switch in the Y direction as it is non-faulty. From the next hop, the
packet faces the similar conditions as one faulty switch in the network which is already
discussed. Patterns 4, 5, and 6 cover the cases when the neighboring switch in the Y
direction is faulty, and thus the packet is sent to the X direction. In the remaining path,
another fault can be easily tolerated. A similar approach is applied when the distance is one
and two hops along the X and Y dimensions (Figure 4.40(d)).

Figure 4.40(e) shows the cases in which the distance is two hops along both directions.
If the neighboring switch in one of the directions is faulty, the packet is sent through the
other direction (pattern 1 and 2). From the next hop to the destination switch, there might
be at most one faulty switch in the path that can be addressed according to MiCoF. If both
neighboring switches are non-faulty (pattern 3), in the remaining path from the next hop to
the destination switch, the packet might face to at most two faults. As indicated in

Adaptive Routing Approaches for Networked Many-Core Systems Chapter 4

109

Figure 4.40(c) or Figure 4.40(d), a network is reliable against two faults by MiCoF. If both
neighboring switches are faulty, the packet can be sent through either direction. This packet
will not face any fault in the remaining path as both faults are already bypassed.

So far, all two faulty switches are tolerated by MiCoF using only the shortest paths.
There is only one position in which two faulty switches cannot be addressed using the
shortest paths. This is the case when the distance from the source to the destination switch
is one hop along both dimensions while the neighboring switches in both directions are
faulty (Figure 4.40(b)). These positions of faults are called diagonal positions. The source
switch still can send and receive packets to/from every other switch in the network except
the destination switch. If the source switch is farther away from the destination, the packet
never stands in this unsupported position as the packet already chooses other routes prior to
reaching this position (e.g. similar to the pattern 2 of Figure 4.40(c) and Figure 4.40(d)).
Therefore, packets from this specific source position cannot reach to this specific
destination position (or vice versa) if both neighboring switches are faulty. All the other
packets can be normally routed in the network.

Figure 4.40: Tolerating two faulty switches by the MiCoF approach

In our measurements, we use two reliability metrics as reliability1 and reliability2.
Reliability1 shows the probability that the network can successfully deliver any packet
under the existence of faults. Reliability2 is the probability that a packet can be successfully
delivered under faults.

Reliability by the first definition (Reliability1):

According to MiCoF, if two faults are located in diagonal positions, the network may fail.
At first, we calculate the number of total combinations of two faulty switches in the
network. Then, we measure the number of combinations in which two faults occur in
diagonal positions. By dividing these two numbers, the reliability value is obtained. The
number of different combinations of two faulty switches in an n×n mesh network can be
measured by:

_ =
2

=
(1)

2

Chapter 4 Fault-Tolerant Routing Algorithms for a 2D Mesh Network

110

Figure 4.41 shows all combinations in which two faulty switches are located in diagonal
positions. By extending the idea to an n×n mesh network, the number of diagonal
combinations can be calculated by:

_ = 2(1)

Figure 4.41: A couple indicates a diagonal position
(i.e. nine diagonal positions in each figure)

Finally, Reliability1 can be calculated by:

1 = 1 _

_
= 1 4

(1)
(1)

According to this formula, for example in an 8×8 mesh network, with the probability of
95.2%, two faults will not be located in diagonal positions, and thus the network functions
normally without dropping any packet.

Reliability by the second metric (Reliability2)

The second metric is mostly used in literature to report the reliability value. Let us assume
that the network is examined under all combinations of two faulty switches. Thereby, the
number of examinations is equal to the combinations of two faulty switches (Nall-combinations).
Per examination, each non-faulty switch delivers one packet to every other non-faulty
switch in the network (i.e. total of n2-3 packets, except itself and two faulty switches). As
faulty switches do not send or receive any packets (i.e. total of n2-2 switches are able to
deliver packets), the total number of delivered packets per combination is:

_ _ = (2)(3)

Therefore, the total number of delivered packets in the whole examinations is:
= _ _ × _

On the other hand, per diagonal position, two packets must be dropped (those from the
source to the destination switch or vice versa), so that the total number of defeated packets
is calculated by:

= 2 × _ = 4(1)

Therefore, Reliability2 can be measured by:

Adaptive Routing Approaches for Networked Many-Core Systems Chapter 4

111

2 = 1

According to this formula, in an 8×8 mesh network, 99.998% of packets reach their
destinations considering all combinations of two faulty switches.

B. Tolerating Three Faulty Switches

Now we take a quick look at three faulty switches in the network. If three faults are
distributed over the network, they are easily tolerated according to Figure 4.39 and
Figure 4.40. However, when faults are close to each other, the situations depicted in
Figure 4.42 are obtained. If the locations of three faults are similar to the patterns 1 or 2 in
either Figure 4.42(a) or Figure 4.42(b), then faults are tolerated by the MiCoF routing
algorithm. In the patterns 3 and 4, a few packets cannot reach the destination. Even under
these positions, the rest of the packets reach their destinations through the shortest paths.

The focus of MiCoF is to tolerate faults by only using the shortest paths without any
performance loss. However, non-minimal paths or virtual channels can be used to support
the remaining cases.

Figure 4.42: Three faulty switches in the network, which are located close to each other

4.3.2.4 MiCoF Routing Algorithm
As it is already mentioned, fault-tolerant routing algorithms are usually very complex. In
contrast with them, the MiCoF algorithm is very simple with a negligible area overhead.
The general MiCoF routing algorithm is shown in Figure 4.43. This algorithm only requires
the fault information of four neighboring switches (i.e. it is normally provided for every
fault-tolerant method). Thereby, this algorithm does not impose any area overhead due to
collecting the fault information throughout the network. Taking into account that faults
might occur on additional resources, the less amount of requirements leads to a more
reliable method.

Chapter 4 Fault-Tolerant Routing Algorithms for a 2D Mesh Network

112

Figure 4.43: MiCoF routing algorithm

4.3.3 Results and Discussion
To evaluate the efficiency of the proposed approaches, a NoC simulator is developed with
VHDL to model all major components of the on-chip network. For all switches, the data
width is set to 32 bits. Each input buffer can accommodate 8 flits in each virtual channel.
Moreover, the packet length is uniformly distributed between 5 and 10 flits. As a
performance metric, we use latency defined as the number of cycles between the initiation
of a packet issued by a Processing Element (PE) and the time when the packet is
completely delivered to the destination PE. The request rate is defined as the ratio of the
successful packet injections into the network over the total number of injection attempts.
The simulator is warmed up for 12,000 cycles and then the average performance is
measured over another 200,000 cycles.

Our baseline method is ReRS [79] which is described in Section 4.1.2. This method does
not require any virtual channel and it is able to tolerate any single faulty switches. MiCoF
and HiPFaR require one and two virtual channels along the X and Y dimensions. To have a
fair comparison, we use two virtual channels for each method. The extra virtual channels
are used for the performance purposes.

ALGORITHM: MiCoF routing algorithm
--

Definitions: Xd,Yd: X and Y coordinates of the destination switch
Xc,Yc: X and Y coordinates of the current switch
N,S,E,W: North, South, East, West

x_dir <= E when Xd>Xc else W;
y_dir <= N when Yd>Yc else S;

delta_x <= (Xd-Xc) when Xd>Xc else (Xc-Xd);
delta_y <= (Yd-Yc) when Yd>Yc else (Yc-Yd);

if (delta_x>=1 and delta_y=0) then select <= x_dir;
elsif (delta_x=0 and delta_y>=1) then select <= y_dir;
elsif (delta_x>1 and delta_y=1) then

if neighbor(y_dir)=healthy then select <= y_dir; else select <= x_dir; end if;
elsif (delta_x=1 and delta_y>=1) then

if neighbor(x_dir)=healthy then select <= x_dir; else select <= y_dir; end if;
else

if (neighbor(x_dir)=faulty and neighbour(y_dir)=faulty) then
if (delta_x>delta_y) then select <= x_dir; else select <= y_dir; end if;

elsif (neighbor(x_dir)=healthy and neighbor(y_dir)=healthy) then
if (delta_x>delta_y) then select <= x_dir;
elsif (delta_x<delta_y) then select <= y_dir;
else select <= x_dir or y_dir;
end if;

elsif neighbor(y_dir)=healthy then select <= y_dir;
elsif neighbor(x_dir)=healthy then select <= x_dir;
else select <= x_dir or y_dir;
end if;

end if;

Adaptive Routing Approaches for Networked Many-Core Systems Chapter 4

113

4.3.3.1 Performance Analysis under Uniform Traffic Profile
The performance analysis under uniform random traffic is shown in Figure 4.44 and
Figure 4.45. The average communication latency of HiPFaR and ReRS are measured under
fault-free and one-faulty switch cases. The average communication latency of MiCoF is
obtained under fault-free and six-faulty switch cases. In the uniform traffic profile and in
the fault-free network, the ReRS method performs the best as the underlying routing
algorithm is a dimension-order routing. According to the simulation results, shown in both
figures, the performance of the ReRS method is degraded significantly when a single fault
occurs in the network. HiPFaR has a negligible performance loss under single faulty cases.

We increase the number of faulty switches up to six faults and measure the performance
of MiCoF. Surprisingly, performance gradually starts increasing under the same traffic
load. This is due to the fact that the routing does not take place in faulty switches and the
total number of hops is decreased. For clarity, the performance curves from two- to five-
faulty switches are omitted, but they are distributed between the curves of one- and six-
faulty switches. This improvement is from the communication point of view while the
whole system performance will be obviously decreased by occurring faults in the network.

Figure 4.44: Performance analysis of HiPFaR and ReRS in an 8×8 mesh network under uniform traffic profile

Figure 4.45: Performance analysis of MiCoF and ReRS in an 8×8 mesh network under uniform traffic profile

0

50

100

150

200

250

300

350

0 0.1 0.2 0.3 0.4

Av
er

ag
e

La
te

nc
y

(c
yc

le
)

Injection Rate (flits/node/cycles)

ReRS: 0-fault

ReRS: 1-fault

HiPFaR: 0-fault

HiPFaR: 1-fault

0

50

100

150

200

250

300

350

0 0.1 0.2 0.3 0.4

A
ve

ra
ge

 L
at

en
cy

 (
cy

cl
e)

Injection Rate (flits/node/cycles)

ReRS: 0-fault

ReRS: 1-fault

MiCoF: 0-fault

MiCoF: 6-fault

Chapter 4 Fault-Tolerant Routing Algorithms for a 2D Mesh Network

114

4.3.3.2 Performance Analysis under Hotspot Traffic Profile
Under the hotspot traffic pattern, one or more switches are chosen as hotspots receiving an
extra portion of the traffic in addition to the regular uniform traffic. In simulations, given a
hotspot percentage of H, a newly generated packet is directed to each hotspot switch with
an additional H percent probability. We simulate the hotspot traffic with a single hotspot
switch at (4,4) in an 8×8 mesh network. Figure 4.46 and Figure 4.47 show the performance
of HiPFaR, MiCoF, and ReRS under different numbers of faulty switches and H=10%. In
fault-free cases, both HiPFaR and MiCoF lead to better performance than ReRS as they are
fully adaptive routing algorithms. Under the existence of a single fault in the network, the
performance of ReRS is dramatically decreased. On the other hand, the performance of the
network using MiCoF is improved when there are six faults in the network.

Figure 4.46: Performance analysis of HiPFaR and ReRS in an 8×8 mesh network under hotspot traffic profile

Figure 4.47: Performance analysis of MiCoF and ReRS in an 8×8 mesh network under hotspot traffic profile

4.3.3.3 Reliability Evaluation under Uniform Traffic Profile
In the uniform traffic profile, each processing element (PE) generates data packets and
sends them to another PE using a uniform distribution [49]. The mesh size is considered
8×8. To evaluate the reliability of MiCoF, the number of faulty switches increases from one

0

50

100

150

200

250

300

350

0 0.05 0.1 0.15 0.2 0.25

Av
er

ag
e

La
te

nc
y

(c
yc

le
)

Injection Rate (flits/node/cycles)

ReRS: 0-fault

ReRS: 1-fault

HiPFaR: 0-fault

HiPFaR: 1-fault

0

50

100

150

200

250

300

350

0 0.05 0.1 0.15 0.2 0.25

Av
er

ag
e

La
te

nc
y

(c
yc

le
)

Injection Rate (flits/node/cycles)

ReRS:: 0-fault

ReRS: 1-fault

MiCoF: 0-fault

MiCoF: 6-fault

Adaptive Routing Approaches for Networked Many-Core Systems Chapter 4

115

to six. All faulty switches are selected using a random function. The results are obtained
using 10,000 iterations when traffic is uniform random.

Reliability is measured based on two metrics. In the first reliability metric (reliability1),
we measure the number of combinations in which no packet is lost in the network. In the
second metric (reliability2), the average number of successful packet arrivals at destinations
over the total number of delivered packets is calculated. This value is obtained over all
combinations of faulty switches.

The reliability values based on the first metric is shown in Figure 4.48. All three
approaches are 100% reliable when there is a single fault in the network. As illustrated in
this figure, HiPFaR and MiCoF have a higher degree of reliability compared with ReRS
under multiple faulty switches. MiCoF always provides better reliability than HiPFaR. For
instance, in 50% of all combinations of six faulty switches, the network using MiCoF is
functioning normally without any packet loss. As illustrated in this figure, the reliabilities
of HiPFaR and ReRS drop as the number of faults increases. Figure 4.49 shows the
reliability values based on the second metric. Based on the simulation results, MiCoF is by
99.5% reliable under the cases of six faulty switches in the network. This value is
considerably higher than the reliability value provided by ReRS which is about 63%.

Figure 4.48: Reliability measurement based on the first metric

Figure 4.49: Reliability measurement based on the second metric

0

20

40

60

80

100

1-faulty switch 2-faulty switch 3-faulty switch 4-faulty switch 5-faulty switch 6-faulty switch

R
el

ia
bi

lit
y

(%
)

MiCoF HiPFaR ReRS

50

60

70

80

90

100

1-faulty switch 2-faulty switch 3-faulty switch 4-faulty switch 5-faulty switch 6-faulty switch

Re
lia

bi
lit

y (
%

)

MiCoF HiPFaR ReRS

Chapter 4 Fault-Tolerant Routing Algorithms for a 2D Mesh Network

116

4.3.3.4 Hardware Analysis
To assess the area overhead and power consumption, the whole platform of each method is
synthesized by Synopsys Design Compiler. We measured the area overhead and power
consumption of the HiPFaR, MiCoF, and ReRS methods. In this set of analysis, HiPFaR
and MiCoF have one and two virtual channels along the X and Y dimensions while ReRS
does not use any virtual channel. Power consumption of all methods is measured under a
single faulty switch in the network. For each scheme, we include network interfaces,
switches, and communication links. All methods are synthesized under the TSMC 65nm
technology at the operating frequency of 500MHz and supply voltage of 1V. We perform
place-and-route, using Cadence Encounter, to have precise power and area estimations. The
power dissipation is calculated using Synopsys PrimePower in an 8×8 mesh network.

The layout area and power consumption of each platform are shown in Table 4.3. As
indicated in the table, ReRS has the lowest area overhead as it does not use any virtual
channel. However, its power consumption is comparable with HiPFaR and MiCoF since by
using ReRS hotspot creates around the fault and packets take unnecessary longer paths.
MiCoF has a larger area overhead than the HiPFaR method as it uses extra resources to
retain connectivity between surviving switches. MiCoF saves more power than HiPFaR by
routing packets through only the shortest paths.

Table 4.3: Hardware implementation details

Network platforms Area (mm2) Power (mW)

ReRS 2.126 1.466
HiPFaR 2.566 1.543
MiCoF 2.569 1.502

4.4 Summary of the Proposed Methods
In this chapter, we proposed four fault-tolerant routing algorithms; called MD, MAFA,
HiPFaR, and MiCoF. Two of which are designed to tolerate faulty links and two others deal
with faulty switches. These methods are mainly compared with two conventional methods,
called RAFT and ReRS. All of these methods are able to tolerate a single fault by 100% but
have different reliabilities against multiple faults in the network. The main characteristics
of these methods are listed in Table 4.4. Note that reliability values in this table show the
probabilities that a packet can be successfully delivered under the presence of faults in the
network.

Adaptive Routing Approaches for Networked Many-Core Systems Chapter 4

117

Table 4.4: Summarized characteristics of different fault-tolerant approaches

Methods Type of
fault

Use of non-
minimal paths Adaptiveness Number of

virtual channels
Reliability

against
two faults

Reliability
against

six faults

RAFT Link
Even if a

minimal path is
available

Nearly fully
adaptive

2 VCs along
both dimensions 100% 86.1%

MD
(proposed) Link

Only when a
minimal path
does not exist

Nearly fully
adaptive

1 and 2 VCs
along the X and
Y dimensions

99.8% 94.7%

MAFA
(proposed) Link

Only when a
minimal path
does not exist

Fully adaptive
+ deterministic

2 VCs along
both dimensions 100% 97.8%

ReRS Switch
Even if a

minimal path is
available

Static No virtual
channels 99.3% 63.1%

HiPFaR
(proposed) Switch

Only when a
minimal path
does not exist

Nearly fully
adaptive

1 and 2 VCs
along the X and
Y dimensions

99.8% 99%

MiCoF
(proposed) Switch Never Nearly fully

adaptive
1 and 2 VCs

along the X and
Y dimensions

99.9% 99.7%

118

119

Chapter 5

5 Unicast and Multicast Routing
Algorithms for a 3D Mesh Network

NoC enables the integration of a large number of Intellectual Property (IP) cores into a chip
[23], [24]. However, planar chip fabrication technology is facing new challenges in the
deep submicron regime [10], [89]. By integrating diverse components into a two-
dimensional (2D) chip, the manufacturing process can become highly complex [90]. In
addition, wire delay and power consumption increase significantly by the usage of global
interconnects in 2D designs. To overcome these limitations, technology is moving rapidly
towards the concept of three-dimensional (3D) ICs where multiple active silicon layers are
vertically stacked. 3D technology overcomes the limited floor-planning choices of 2D
designs and allows each layer to be instantiated with a different technology [90]. The major
advantages of 3D NoCs are the considerable reduction in the average wire length and wire
delay, resulting in lower power consumption and higher performance [10], [11], [12], [13].

In this chapter, we investigate efficient communication protocols for a 3D mesh network
with a mixture of unicast and multicast packets. We propose several partitioning methods,
named TBP, VBP, and RP, for the path-based multicast approach, each with different levels
of efficiency. In Two-Block Partitioning method (TBP), destinations are divided into two
groups and a multicast packet is delivered for each group. In Vertical-Block Partitioning
method (VBP), destinations are divided into several groups depending on their vertical
columns and a multicast packet is generated per group. Recursive partitioning method (RP)
tries to have a comparable number of switches within each partition while keeping the
number of packets low. This result in lower average latency compared with TBP and VBP
methods.

On top of all partitioning methods and in order to efficiently distribute the unicast and
multicast packets more efficiently, we design a minimal and adaptive routing algorithm,
called MAR, which is based on the Hamiltonian path. The algorithm is simple and does not
require any virtual channel for neither unicast nor multicast packets. The main properties of
the final approach which is the combination of the RP and MAR methods can be
summarized as follows: 1) decreasing the latency of packets by addressing the non-optimal
solutions of ordinary partitioning methods; 2) alleviating the traffic congestion by

Chapter 5 Unicast and Multicast Routing Algorithms for a 3D Mesh Network

120

providing the adaptive routing for both unicast and multicast packets; and 3) causing a
relatively small area overhead mainly by not using virtual channels for deadlock avoidance
and a simple implementation of the routing algorithm.

5.1 Traditional Approaches
The vast majority of traffic in Multi-Processor Systems-on-Chip (MPSoCs) consists of
unicast traffic and most studies have assumed that the traffic is only unicast. Based on this
assumption, the concept of unicast communication has been studied extensively in the
literature [39], [43], [44], [81]. Unicast protocols are designed for better network
performance assuming that all injected packets are unicast. However, if only a small
percentage of the total traffic is multicast, the efficiency of the overall system is
considerably reduced. Indeed, multicast communication has a great impact on the
performance of Chip Multi-Processor (CMP) systems [91], [92].

The multicast communication is frequently present in many cache coherency protocols
(e.g. directory-based protocols, token-based protocols, and Intel QPI protocol [48], [93]).
For example, around 5% of total traffic in a SGI-Origin protocol (which is a directory based
protocol) consists of multicast messages. In this protocol, message latency can be reduced
by 50%, if multicast is supported in hardware, thus highlighting the importance of
hardware-level multicast support [93]. It can also be taken into account that some cache
coherence protocols are heavily multicast (e.g. around 80% of the token-based MOESI
traffic consists of multicast traffic). In the following, we investigate traditional routing
algorithms supporting both unicast and multicast traffic in the network.

5.1.1 Virtual Circuit Tree Multicasting (VCTM)
Virtual Circuit Tree Multicasting (VCTM) approach is proposed in [48] which is a tree-
based method targeting a 2D mesh network. In VCTM, a virtual circuit tree should be built
over the network having the source switch as a root and destinations as the leaves of the
tree. Each switch maintains a table to store the information of different trees. An entry of
this table is corresponding to one multicast packet. To form the tree, a single unicast packet
is delivered per destination of the multicast packet. This packet updates the corresponding
entry of the routing tables in its path. After the setup phase, the multicast packet is sent over
the tree. The multicast packet uses the same virtual path which is already established by
unicast packets.

Figure 5.1(a) shows an example of VCTM when the multicast packet is sent from the
source switch S to the destination switches A, B, C, D, and E. At first, an entry is allocated
to the multicast packet, if it is not already assigned. The ID of the multicast message is
carried by each of the five setup unicast packets that are going to be sent to different
destinations. These packets follow a dimension-order routing and update the routing tables
regarding the path of the packet.

VCTM has several shortcomings as follows: If a multicast message includes many
destinations, a large number of setup packets must be delivered into the network (before the
real multicast packet is delivered) which increases the packet latency significantly. The area

Adaptive Routing Approaches for Networked Many-Core Systems Chapter 5

121

overhead of VCTM is also relatively high due to maintaining a table at each switch to store
the information of a virtual circuit tree. If the size of routing tables is smaller than the
amount of multicast packets, the entries are overwritten by other packets. In this case,
VCTM stops working as packets lose the information of their paths. The common
disadvantage of tree-based methods, which exists in the VCTM method as well, is that a
packet may hold several channels for extended periods of time to receive all requested
output channels, thereby increasing network contention [27]. Finally, VCTM is based on
deterministic algorithms and cannot provide adaptiveness for neither unicast nor multicast
packets. Although in VCTM, packets are routed through the shortest paths from the source
to each destination switch, this is not the least number of hops for a multicast packet. For
example, in Figure 5.1(b) the multicast packet reaches to all destinations using the shortest
paths while reducing the number of hops from sixteen in VCTM to nine.

Figure 5.1: (a) VCTM (b) the number of hops can be reduced

5.1.2 Dual-Path Multicast Routing (DP)
The Dual-Path (DP) multicast approach is a path-based method presented in [94] for a 2D
mesh network. The idea of this approach relies on using the Hamiltonian path. The
Hamiltonian path strategy [94] guarantees that the network will be free of deadlock under
unicast and multicast traffic. A Hamiltonian path visits every switch in a network exactly
once. As shown in Figure 5.2(a), for each switch in an a b mesh network, a label L(x, y) is
assigned as follows:

(,) = (×) + (+ 1)													 	
(,) = (×) + ()													 		

where x and y are the coordinates of the switch.
In the DP method, two directed Hamiltonian paths (or two subnetworks) are constructed

by the labeling. The high channel subnetwork (Figure 5.2(b)) starts at the switch 1 and the
low channel subnetwork (Figure 5.2(c)) ends at the switch 1. When the label of the
destination switch is greater than the label of the source switch, the routing always takes
place in the high channel subnetwork; otherwise it takes place in the low channel

Chapter 5 Unicast and Multicast Routing Algorithms for a 3D Mesh Network

122

subnetwork. The destinations are placed in two groups. One group contains all the
destinations that can be reached using the high channel subnetwork (GH), and the other
contains the remaining destinations that can be reached using the low channel subnetwork
(GL). Thereby, every switch in GH has a higher label than the source switch and every
switch in GL has a lower label than the source switch. To reduce the path length, the
vertical channels that are not part of the Hamiltonian path could be used in appropriate
directions. Deadlock is prevented as packets are routed in the network strictly in the
ascending or descending order using separate resources.

9 8 7 6

1 2 3 4 5

11 12 13 14 15

20 19 18 17 16

21 22 23 24 25

10 9 8 7 6

1 2 3 4 5

11 12 13 14 15

20 19 18 17 16

21 22 23 24 25

10 9 8 7 6

1 2 3 4 5

11 12 13 14 15

20 19 18 17 16

21 22 23 24 25

10

(a) (b) (c)

Figure 5.2: (a) A physical channel (b) high channel subnetwork (c) low channel subnetwork

In sum, all packets in the network (either unicast or multicast) should follow the
Hamiltonian path, based on the following rules.

For the high channel subnetwork:
Rule1: North and East directions are allowed in even rows.
Rule2: North and West directions are allowed in odd rows.

For the low channel subnetwork:
Rule1: South and West directions are allowed in even rows.
Rule2: South and East directions are allowed in odd rows.

Consider the example illustrated in Figure 5.3 when the switch 13 sends its multicast
packet to ten destinations as m=(13,{2,4,6,8,9,11,17,20,23,24}). Accordingly, two groups
are organized. The first group has all the destinations that could be reached from the source
switch using the high channel subnetwork, GH={17,20,23,24}. The multicast packet always
traverses in the ascending order as {13,14,17,18,19,20,21,22,23,24}. The second group,
GL={11,9,8,6,4,2}, has the remaining destinations that could be reached using the low
channel subnetwork using the path {13,12,11,10,9,8,7,6,5,4,3,2}.

Adaptive Routing Approaches for Networked Many-Core Systems Chapter 5

123

Figure 5.3: Dual-path multicast approach

5.1.3 Multi-Path Multicast Routing (MP)
To reduce the path lengths, in the Multi-Path (MP) multicast approach, GH and GL are also
partitioned. The set GH is divided into two subsets (GH: GH1,GH2). If the source switch is
located in an odd row, GH1 covers the switches whose X coordinates are greater than or
equal to that of the source switch and GH2 contains the remaining switches in GH
(Figure 5.4(a)). If the source switch is located in an even row, then GH1 covers the switches
whose X coordinates are greater than the source switch (Figure 5.4(b)). The set GL is
partitioned in a similar way into two subsets (GL: GL1,GL2). Hence, all destinations of a
multicast message are grouped into four disjointed subnetworks. An example of MP is
illustrated in Figure 5.4(b). The destinations in GH are divided into two subsets, which are
GH1={20,23} and GH2={17,24}. In the same way, the destinations in GL are divided into
two subsets, GL1={11,9,2} and GL2={8,6,4}. Subsequently, all destinations in GH1 and GH2
should be sorted in ascending order, and the destinations in GL1 and GL2 should be sorted in
descending order. Finally, one packet is created per group. All packets must follow the
Hamiltonian path and reach destinations in the order they are arranged. The Multi-Path is a
deterministic and deadlock-free approach that could be used for unicast and multicast
routing simultaneously.

Figure 5.4: Multi-path multicast approach

Chapter 5 Unicast and Multicast Routing Algorithms for a 3D Mesh Network

124

5.1.4 Hamiltonian Adaptive Multicast and Unicast Model (HAMUM)
Adaptive routing algorithms can improve performance significantly compared with
deterministic methods. Toward this direction, there are several proposals addressing the
adaptivity for unicast packets [49], [81]. However, when both unicast and multicast packets
are routed in the same network, the unicast packets have to obey the rules for multicast
packets. For example, in VCTM, unicast packets are also routed according to the
dimension-order routing. In DP and MP, unicast packets are delivered from the source to
the destination switch through a single path. This path is compatible with those used by the
multicast packets. Taking into account that unicast packets form the vast majority in most
traffic profiles, the performance can be significantly affected by routing packets
deterministically inside the network. In general, the purpose of supporting multicast traffic
is to improve performance. However, using these algorithms, the performance is degraded
due to the adaptivity restriction imposed on all unicast packets.

HAMUM [95] is one of our traditional methods, which allows both unicast and
multicast packets to be adaptively routed inside the network. The simple idea behind this
method is to deliver packets through all possible shortest paths which are located in the
Hamiltonian path. For example, in Figure 5.5(a), the unicast packets generated at the source
switches 2 and 3 can reach destinations switches 21 and 25 through different routes.
Figure 5.5(b) shows two examples of multicast packets. As can be seen in this figure,
packets can be routed adaptively between each two successive destination. All these paths
shown in Figure 5.5(a) and Figure 5.5(b) are compatible with the rules defined by the
Hamiltonian path.

Figure 5.5. An example of HAMUM for (a) unicast packets (b) multicast packets

5.1.5 Summary of Traditional Methods
In low traffic loads, tree-based approaches (e.g VCTM) perform well as packets can easily
receive the requested channels. In high traffic load, the performance is significantly
reduced. This is due to the fact that a packet may hold (or wait to take) multiple outgoing
channels simultaneously to deliver the packet. This increases the probability of packets’

Adaptive Routing Approaches for Networked Many-Core Systems Chapter 5

125

blocking. Moreover, VCTM is a deterministic method, degrading performance. In contrast,
path-based methods (e.g. DP and MP) are efficient in high traffic load, as there is no
blocking issue. However, the main problem is that in DP and MP, the unicast and multicast
packets are routed deterministically in the network which affects performance significantly.
HAMUM address this problem by allowing both unicast and multicast packets to be
adaptively routed within a 2D mesh network.

5.2 The Proposed Partitioning Methods for a 3D Mesh Network
Partitioning methods try to reduce latency and increase performance by an efficient
partitioning of destinations into disjoint subsets [96], [97], [98]. The performance of a
multicast operation can be measured in terms of its latency in delivering a packet to all its
destinations [97], [98]. Multicast latency consists of two components: the startup latency
and the network latency. The startup latency (startup-latency; SL) is the time required to
create several packets (each with a different set of destinations), prepare packets, and start
injecting them into the network. The network latency for multicast packets is defined as the
time elapsed from the first flit injection into the network to the reception of the last flit by
all destinations. Based on that, we define the mean multicast latency (mean-mul-latency;
MML) and the maximum multicast latency (max-mul-latency; MxML). As previously
stated, partitioning methods help in reducing the network latency component. In particular,
these methods divide the network into several logical partitions and assign destinations to
different sets, one set for each partition and including destinations that belong to that
partition. Smart partitioning methods must balance the sets and reduce the path length
within each partition.

However, breaking the network into logical partitions may have the following
deficiencies: 1- A large number of network partitions leads to additional latency as more
startup packets (SP) need to be prepared at the source switch and this latency is usually
high. 2- An unbalanced configuration of partitions will create long paths within the
network. In both cases the latency of the multicast operation will be increased.

5.2.1 Hamiltonian Path in a 3D Mesh Network
The concept of the Hamiltonian path can be used in NoCs for different purposes, for
example to support multicast communication [96] or to tolerate faults [99]. Several
Hamiltonian paths can be considered in the mesh topology. In an a×b×c mesh network,
each switch is labeled by an integer value according to its x, y and z coordinates. The
following equations show one possibility of assigning the labels, which we utilize in this
thesis [96], [97], [98]:

oddyoddzwherexybazbazyxL
evenyoddzwherexaybazbazyxL
oddyevenzwherexayazbazyxL
evenyevenzwherexyazbazyxL

:,:)1())1(()(),,(
:,:)())1(()(),,(
:,:)()()(),,(
:,:)1()()(),,(

Chapter 5 Unicast and Multicast Routing Algorithms for a 3D Mesh Network

126

As exhibited in Figure 5.6, two directed Hamiltonian paths (or two subnetworks) are
constructed by this labeling. The high channel subnetwork (Figure 5.6(b)) and the low
channel subnetwork (Figure 5.6(c)) are defined similar to a 2D mesh network. In case the
label of the destination switch is greater than the label of the source switch, the routing
always takes place in the high channel subnetwork; otherwise it takes place in the low
channel subnetwork.

Figure 5.6: (a) A 3×3×3 mesh network with the label assignment (b) high channel (c) low channel
subnetworks. The solid lines indicate the Hamiltonian path and dashed lines indicate the links that could be

used to reduce the path length

5.2.2 Two-Block Partitioning Method (TBP)
By using the Hamiltonian path, the network is divided into high channel and low channel
subnetworks. In the partitioning methods, destinations (at each source switch) are grouped
in two sets. One set includes all the destinations that are reached using the high channel
subnetwork, and the other set includes the remaining destinations reached using the low
channel subnetwork.

In the next section, we explain the TBP method in detail. Notice that the TBP method is
a straight forward extension of the dual-path multicast from a 2D NoC to a 3D NoC and it
can be seen as a naïve method since no effort is made to balance the two sets. However, this
method is used as a reference method for comparison purposes. For each partitioning
method, we provide an analysis of the number of startup packets (SP), the latency of
multicast operations (MML and MxML), and the average latency of unicast operations
(AUL). Analytical models are provided for unicast and multicast packets assuming zero-
load latency [13]. Based on the zero-load latency, a packet never contends for network
resources with other packets. Under this assumption, the performance of each approach can
be measured based on the number of hops required for delivering a packet from a source
switch to its destination(s). Contention effects will be accounted both analytically and in
experiments with our simulation platform, presented in Section 5.4.

Figure 5.7(a) shows an example of the TBP partitioning policy and the portions of each
partition that depend on the source switch position. As illustrated in this figure, if the
source switch is located at the middle layer, two partitions cover comparable numbers of
switches but still with a large number of switches in both partitions. However in

Adaptive Routing Approaches for Networked Many-Core Systems Chapter 5

127

Figure 5.7(b), one partition contains considerably more switches than the other. Now,
suppose that the multicast message m=(7,{2,3,20,26,45}) is generated at the switch 7.
Destinations are split into two sets and should be visited accordingly to their labels:
GH={20,26,45} and GL={3,2}. The packet created for GH uses the Hamiltonian path as
follows: {7,10,11,12,13,20,21,22,23,26,39,42,43,44,45} where fourteen hops are needed to
reach the last destination. The packet path for the GL is:{7,6,3,2} where three hops are
required for delivering the packet to all its destinations. In the TBP method, the number of
startup packets is low and never becomes larger than two. However, it suffers from high
network latency due to unbalanced partitions and the high probability of forming long paths
in the network. The TBP algorithm is shown in Figure 5.8.

Figure 5.7: The TBP method (a) balanced (b) unbalanced partitions

Figure 5.8: The pseudo code of the TBP method

5.2.2.1 Avg-Uni-Latency (AUL)
Since packets can utilize shortcut channels without introducing new cycles, the paths taken
by unicast packets are reduced to the shortest paths between each pair of source and
destination switches. Assuming uniform distribution of destinations and using the shortest
paths for unicast packets, the average unicast latency for an a×b×c mesh network is given
by [13]:

ALGORITHM: Two-Block Partitioning (TBP)

Definitions: GH , GL: High and Low channel subnetwork

for “i: 1 to number of destinations” loop
if (label(destination(i)) > label(source) then

 GH <= label (destination);
else

GL <= label (destination);
end if;

end loop;
Construct a packet for each non-empty set;

Chapter 5 Unicast and Multicast Routing Algorithms for a 3D Mesh Network

128

AUL3D=
a2bc+ab2c+abc2-ac-bc-ab

3abc 											(1)	

Regardless of the partitioning method used, unicast packets are routed within the
network in the same manner, so the formula (1) is valid for the VBP and RP methods as
well. This equation can be easily applied to one-dimensional (when b=1 and c=1) and two-
dimensional (when c=1) mesh networks.

5.2.2.2 Mean-Mul-Latency (MML)
The multicast latency depends on the number and the location of destinations. This makes
computing the analytical multicast latency complex. In order to simplify this complexity,
we consider that the latency of a multicast packet is set by the final destination so that the
multicast packet always takes the longest path within the network (without using shortcut
channels). This is the worst case. For instance, in the example of Figure 5.7, the two
packets have their final destinations set as 45 and 2, and their distances from the source
switch are fourteen and three hops, respectively. However, in MML, we consider the
longest path from the source to the destinations 45 and 2 which are forty-one and six hops,
respectively. In the TBP method, the path between two destinations to reach in a sequential
order is minimal while the path from the source to each destination is not necessarily a
minimal path. As an example in Figure 5.7, the path from the switch 7 to the switch 20
(similarly, from 20 to 26, and from 26 to 45) are minimal; however, the paths from the
switch 7 to the switch 26 (similarly, from 7 to 45) are non-minimal. According to this
assumption, MML for every switch j in an a×b×c network is: (where n is the total number
of switches in the network.)

MMLj=
1
n i

i=j-1

i=1

+ (i-j)
i=n

i=j+1

										 (2)	

The average multicast latency for the whole network in the TBP method can be obtained
by:

MMLTBP=
1
n MMLj

j=n

j=1

=
1
n

1
n(i

i=j-1

i=1

+ (i-j)
i=n

i=j+1

)
j=n

j=1

=
n2-1
3n 												(3)

This equation is proved by using the following set of formulas. The sum of partial factorial
formula is given by:

m!
0! +

(m+1)!
1! +

(m+2)!
2! +…+

(m+n-1)!
(n-1)! =

(m+n)!
(m+1)(n-1)!	

For all positive integers, we get the formula when m = 1 or m = 2:

1+2+3+…+n= i
i=n

i=1

=
n(n+1)

2 										(4)																		

Adaptive Routing Approaches for Networked Many-Core Systems Chapter 5

129

1×2+2×3+3×4+…+n×(n+1)= i(i+1)
i=n

i=1

=
n(n+1)(n+2)

3 											(5)

By using formulas (4) and (5), MML can be written as follow and the equation (3) is
proved:

MMLTBP=
1

2n2 (j-1)(j)+ (n-j)(n-j+1)
j=n

j=1

j=n

j=1

=
(n-1)(n+1)

3n =
n2-1
3n 	

By another perspective, the network can be seen as a 1D network (Figure 5.9) where the
only dimension () contains =a×b×c switches. Therefore, by using the formula (1) for a
1D network (when b=1 and c=1), MML is:

MMLTBP=
a'2-1
3a' =

n2-1
3n

	

á=
a×

b×
c

Figure 5.9: Measuring MML for the TBP method

5.2.2.3 Max-Mul-Latency (MxML)
MxML is the time when a multicast operation is completed and the multicast packet has
reached all its destinations. To calculate max-mul-latency, we consider the number of hops
that can be taken by a multicast packet from a source switch to the most distant switch. For
an instance, when the source switch is at switch 7, the longest path is related to the switch
48 which requires the maximum of 41 hops. MxML for a source switch j is given by:

MxMLj=
n-j						if	

n
2

j-1							if	
n
2 n

	

Chapter 5 Unicast and Multicast Routing Algorithms for a 3D Mesh Network

130

We calculate MxML for half of the network which is the same as the next half, and thus
MxML for the whole network is measured by:

MxMLTBP=
2
n

(n-j)
j=n/2

j=1

=

3n-2
4 														if		n:even

3n2-2n-1
4n 				if		n:odd

	

5.2.2.4 Startup-Packet (SP)
In TBP, destinations are split in two sets. Thus, the number of maximum startup packets
(SP) is set to two regardless of the source switch location. There are two exceptions
regarding the first and last switches which can deliver only one multicast packet to the
network.

5.2.3 Vertical Block Partitioning (VBP)
The TBP method performs well when the network size is small. However, as the network
size enlarges, it may take a long path to deliver the multicast packet to all destinations and
thus increasing latency. In Vertical Block Partitioning (VBP), similar to the TBP method,
the network is partitioned into high and low channel subnetworks. In an additional step,
each subnetwork is vertically partitioned such that switches in the same column (with the
same a value in an a×b×c network) are included in a new set. The algorithm is shown in
Figure 5.10.

Figure 5.10: The pseudo code of the VBP method

ALGORITHM: Vertical-Block Partitioning (VBP)

Definitions: GH ,GL: High and Low channel subnetwork
Xd: The X coordinate of destinations

for “i: 1 to the number of destinations” loop

if (label(destination(i)) > label(source) then
case “Xd(i)” is

when 1 => GH1 <= label (destination);
when 2 => GH2 <= label (destination);
…
when a => GHa <= label (destination);

end case;
else

case “Xd(i)” is
when 1 => GL1 <= label (destination);
when 2 => GL2 <= label (destination);
…
when a => GLa <= label (destination);

end case;
end if;

end loop;
Construct a packet for each non-empty set;

Adaptive Routing Approaches for Networked Many-Core Systems Chapter 5

131

As illustrated in Figure 5.11, this scheme does not guarantee balanced partitions. For the
switch located at 26, partitions are balanced, but they are not balanced when the source is at
the switch 7 (i.e. four subnetworks cover more switches than the others). Moreover, the
time required to prepare at most eight packets is considered as the number of startup
packets. For the multicast message m=(7,{2,3,20,26,45}), four sets are formed: GH2={26},
GH4={20,45}, GL2={2}, and GL3={3}. One packet is generated for each set and paths are
{7,26}, {7,10,11,12,13,20,45}, {7,2}, and {7,6,3} where the maximum hop count is six.

Figure 5.11: The VBP method (a) balanced partitions (b) unbalanced partitions

This scheme has several advantages over the TBP method as it achieves a high level of
parallelism; avoids the creation of long paths and reduces the network latency. The VBP
method increases, however, the number of startup packets as it requires up to 2a packets in
an a×b×c network. In addition, this scheme does not guarantee balanced partitions as it is
balanced only when the source switch is located in middle layers while some partitions may
cover considerably more switches than the others when the source switch is located at the
top or bottom layer.

5.2.3.1 Mean-Mul-Latency (MML)
Since the network is symmetric and is partitioned vertically, the MML value can be
measured in one vertical partition and then generalized to other partitions. For this purpose,
we consider that an a×b×c mesh network is divided into a vertical partitions where each
partition contains bc switches. Using formulas (2) and (3), the MML value for a source
switch j inside a vertical partition and for all switches in a partition can be computed as
follow:

MMLj=
1
bc i

i=j-1

i=1

+ (i-j)
i=bc

i=j+1

		 							MMLbc=
1
bc

1
bc

j=bc

j=1

i
i=j-1

i=1

+ (i-j)
i=bc

i=j+1

=
(bc)2-1

3bc 	

Chapter 5 Unicast and Multicast Routing Algorithms for a 3D Mesh Network

132

Moreover, packets are required to traverse in the X dimension to reach their relative
vertical partitions. For example, if a=4 in an a×b×c network and the source switch is
located at the first vertical partition, it takes 1, 2 and 3 hops to reach the second, third and
fourth vertical partitions, respectively. So, this value should be considered when measuring
the MML value.

MMLa=
1
a

1
a

j=a

j=1

i
i=j-1

i=1

+ (i-j)
i=a

i=j+1

=
a2-1
3a 																												 (6)

Finally, the MML value for the whole network is given by:

MMLVBP=MMLa+MMLbc=
a2-1
3a +

(bc)2-1
3bc =

a2bc+ab2c2-bc-a
3abc 	

From another point of view, the network can be viewed as a 2D network (a×b) where
=b×c (Figure 5.12). The dimension-order routing can be utilized for packets, and thus, by

using formula (1) in a 2D network (when c=1) the average multicast latency can be
measured by:

MMLVBP=
a2b'+ab'2-a-b'

3ab' =
a2bc+ab2c2-bc-a

3abc 	

Figure 5.12: Measuring MML for the TBP method

5.2.3.2 Max-Mul-Latency (MxML)
In the VBP method, the network is divided into several vertical partitions according to the
value a in an a×b×c network. Thereby, the following formula is used for computing the
MxML value in the network. In this formula, the first term shows the maximum number of
hops within each partition while the second term indicates the required number of hops to
reach a partition.

Adaptive Routing Approaches for Networked Many-Core Systems Chapter 5

133

MxMLVBP=
2
n

(
n-j
a

+
a2-1
3a

)
i=n/2

i=1

5.2.3.3 Startup-Packet (SP)
In the VBP method, the number of partitions depends on the location of switches that result
in different startup packets. The source switches 1, 2, 3, and 4 located in the first row in
Figure 5.11 (or switches 48, 47, 46, and 45 in the last row), for instance, divide the network
into 4, 5, 6, and 7 partitions, respectively, while the other switches divide the network into
8 partitions. As a result, the average number of startup packets for the VBP method in an
a×b×c network is:

SPVBP=
(3a2-a)+((abc-2a)(2a))

abc
=

2a2bc-a2-a
abc

							

5.2.4 Recursive Partitioning (RP)
The VBP method suggests a better degree of parallelism and lower latency as a packet is
dedicated to a smaller set of destination switches and thus a shorter path is taken by each
packet. The main disadvantage of this method is in the possibility of creating unbalanced
partitions as a group may contain a large set of switches than others. This results in taking
long paths by some packets and short paths by others, keeping the multicast latency still
high. The objective of the Recursive Partitioning (RP) method is to optimize the number of
switches that can be included in a partition and achieve parallelism. In this method, the
network is recursively partitioned until each partition contains k switches. In the worst case,
the network is partitioned into 2a vertical partitions like in the VBP method. So, we have
considered the value k as a reference value indicating the number of switches in each
partition of the VBP method, i.e. (k=bc) in an a×b×c network. The RP algorithm is shown
in Figure 5.13. An example of the RP method is illustrated in Figure 5.14(a) where a
multicast message is generated at the source switch 26. The required steps of the RP
method can be expressed as follows:

Step1: The value k is set with 12 switches in a 4×4×3 network.

Step2: The network is divided into two partitions using the TBP method.
Figure 5.7(a) shows two formed partitions when the source switch is located at the
switch 26.

Step3: If the number of switches in a partition exceeds the reference value k, the
partition is divided into two new partitions. This step is repeated until all partitions in
the network cover at most k switches. Following the example of Figure 5.7(a), 22
switches are covered by the high channel subnetwork which is greater than k=12. So,
the high channel subnetwork needs to be further divided into two new partitions (GH1
and GH2 as shown in Figure 5.14(a)). The GH1 and GH2 partitions contain 10 and 12
switches, respectively. Since both numbers are less than or equal to k=12, no further
partitioning is needed for the high channel subnetwork. The same partitioning
technique is applied to the low channel subnetwork.

Chapter 5 Unicast and Multicast Routing Algorithms for a 3D Mesh Network

134

Figure 5.13: The pseudo code of the RP method

Figure 5.14: RP when the source switch is at (a) the switch 26 (b) the switch 7

ALGORITHM: Recursive Partitioning (RP)

Definitions: GH, GL: High and Low channel subnetwork
Num_P: Number of switches in the partition
(Xp,Yp,Zp): X, Y, and Z coordinates of the given partition
k value: (k=bc) in a×b×c network

function Partitioning (G,Num_P) is

if (Num_P = n) then
//Partition the network using the TBP method
G => GH,GL;
Partitioning (GH,Num_PH);
Partitioning (GL,Num_PL);

elsif (Num_P > k) then
//Divide the given P into two new partitions (Gi,Gi+1)
G => Gi ((0:[(Xp)/2]),Yp,Zp),

 Gi+1 (([(Xp)/2]:Xp-1),Yp,Zp);
Partitioning (Gi,Num_Pi);
Partitioning (Gi+1,Num_Pi+1);

else
Return (G,Num_P);

end if;
end;
Construct a packet for each non-empty set;

Adaptive Routing Approaches for Networked Many-Core Systems Chapter 5

135

Figure 5.14(b) shows another example of the RP method where the multicast message is
m=(7,{2,3,20,26,45}). In this example three packets are formed and their paths are
{7,10,11,12,13,20,45},{7,26}, and {7,6,3,2} as the maximum latency is six hops.

In brief, this scheme has a similar performance in avoiding long paths as the VBP
method while it provides better parallelism as the number of switches is comparable among
partitions. By considering the RP method, the creation of balanced partitions is less
dependent of the source switch position, and thus it avoids long paths in the network and
increases parallelism while keeping the number of startup packets relatively low.

5.2.4.1 Mean-Mul-Latency (MML)
In the RP method, a network is divided into high and low channel subnetworks and each
subnetwork is recursively partitioned until all partitions cover around k switches, where
k=bc. The next set of formulas is concerned only the high channel subnetwork while the
low channel subnetwork has similar formulas. According to this assumption, if the high
channel subnetwork covers x switches where x>k, it is divided into two new partitions.
Each of the formed partitions might still cover more than k switches (x>k). Thereby, the
partition is further divided into two new partitions. In other words, the MML formula is
recursively called until all partitions cover at most k switches. Finally, the average multicast
latency is computed when the number of switches (x) in a partition become less than or
equal to the value of k:

MMLx=

MML x
2

+MML x
2

2
						where	x>k

1
x i

i=x

i=1

=
+ 1
2 							where	0<x k

0																										where	x=0

	

Similar to formula (6), in order to deliver packets from the source switch to different
partitions, average multicast latency in the X dimension should be taken into account:

MMLA=
a2-1
3a

Finally, the MML for the RP method is given by:

MMLRP=
1
2n

MML(j-1)
low +MML n-(j+1)

high
j=n

j=1

+ MML =
1
n

MML(i-1)+MMLA

i=n

i=1

	

5.2.4.2 Max-Mul-Latency (MxML)
For measuring MxML, the number of switches in the biggest partition should be identified.
To do this, we first find the MxML value for the high and low channel subnetworks and
then determine the number of switches in the biggest partition of the network.

Chapter 5 Unicast and Multicast Routing Algorithms for a 3D Mesh Network

136

MxML=Max(MxMLHigh ,MxMLLow)),	 MxMLx
Highor	MxMLx

Low=

Max(MxML x
2

,MxML x
2

)			where	x>k

1
x i

i=x

i=1

=
x+1

2 								where	0<x k

0																										where	x=0

	 	

To compute the MxML value, the following formula is utilized:

MxML =
2
n (MxML

i=n/2

i=1

+ MML)	

5.2.4.3 Startup-Packet (SP)
Clearly, in the case that k, the number of startup packets is equal to 1. However, when
x>k, the partition needs to be divided into two new partitions and the SP equation is called
for every newly formed partition.

SPx=
SP x

2
+SP x

2
					where	x>k

									1																where	 k
	

5.3 The Proposed Adaptive Routing Algorithm
In the previous section, we provide different partitioning methods. All of them require a
routing algorithm capable of forwarding all the packets to their sets of destinations.

5.3.1 Minimal Adaptive Routing (MAR)
We present a Minimal Adaptive Routing (MAR) algorithm based on the Hamiltonian path.
Using MAR, unicast and multicast packets can be adaptively routed inside the network.
Each switch in the graph has a label (L) determined by the Hamiltonian path labeling
mechanism. For a given switch c and destination d, the MAR algorithm finds possible
neighbors {p} of the current switch that can be selected to deliver a packet:

if	L(c)<L(d)	then	MAR(c,d)= {p}	 	 P	and	L(c)<L(p) L(d)	and	((xc,yc,zc (xp,yp,zp (xd,yd,zd) or												
																																																																																																																																	(xc,yc,z (xp,yp,zp (xd,yd,zd))}		
if	L(c)>L(d)	then	MAR(c,d)= {p}	 	 P	and	L(d) L(p)<L(c)	and	((xc,yc,zc (xp,yp,zp (xd,yd,zd) or			

																																																																																																																									(x ,y ,z (xp,yp,zp (xd,yd,zd))}	

The MAR algorithm is implemented at switches and can be described in three steps as
follows:

Step1: Determines the neighbors of switch c that can be used to move a packet
closer to its destination d. The pseudo code for Step1 is shown in Figure 5.15.

Adaptive Routing Approaches for Networked Many-Core Systems Chapter 5

137

Step2: due to the fact that in the Hamiltonian path all switches are visited in
ascending order (in the high channel subnetwork) or descending order (in the low
channel subnetwork), all of the selected neighbors in Step1 do not necessarily
satisfy the ordering constraint. Therefore, if the labels of the selected neighbors (in
Step1) are between the label of the switch c and the destination d, it/they can be
selected as the next hop. The pseudo code for Step2 is shown in Figure 5.15.

Step3: since the MAR algorithm provides several choices at each switch, the goal
of Step3 is to route a packet through the less congested neighboring switch. So, in
the case when the packet can be forwarded through multiple neighboring switches,
the congestion values of the input buffers in the selected neighbors are checked and
then the packet is sent to the neighbor with the smallest stress value.

Figure 5.15: The pseudo code of the MAR algorithm

ALGORITHM: Minimal adaptive routing for a 3D mesh network

Definitions: (Xc,Yc,Zc): X,Y, and Z coordinates of the current switch
(Xd,Yd,Zd): X,Y, and Z coordinates of the destination switch

------ STEP 1 ------
X_dir = East when (Xc<Xd) else West;
Y_dir = North when (Yc<Yd) else South;
Z_dir = Up when (Zc<Zd) else Down;
------ STEP 2 ------
if ((label(currentSwitch) = label(destSwitch)) then

select the local port;
elsif ((label(currentSwitch) < label(destSwitch)) then

----------High Channel Subnetwork--------
if (label(currentSwitch) < label(neighbor(X_dir))) and
 (label(neighbor(X_dir)) < label(destSwitch)) then

first choice <= neighbor(X_dir); end if;
if (label(currentSwitch) < label(neighbor(Y_dir))) and

 (label(neighbor(Y_dir)) < label(destSwitch)) then
second choice <= neighbor(Y_dir); end if;

if (label(currentSwitch) < label(neighbor(Z_dir))) and
 (label(neighbor(Z_dir)) < Label(destSwitch)) then

third choice <= neighbor(Z_dir); end if;
elsif ((label(currentSwitch) >Label(destSwitch)) then

----------Low Channel Subnetwork---------
if (label(currentSwitch) >label(neighbor(X_dir))) and

 (label(neighbor(X_dir)) > label(destSwitch)) then
first choice <= neighbor(X_dir); end if;

if (label(currentSwitch) > label(neighbor(Y_dir))) and
 (label(neighbor(Y_dir)) > label(destSwitch)) then

second choice <= neighbor(Y_dir); end if;
if (label(currentSwitch) >label(neighbor(Z_dir))) and

 (label(neighbor(Z_dir)) > label(destSwitch)) then
third choice <= neighbor(Z_dir); end if;

end if;

Chapter 5 Unicast and Multicast Routing Algorithms for a 3D Mesh Network

138

An example of the MAR algorithm is illustrated in Figure 5.16(a) where the source and
destination are at the switches 6 and 48, respectively. According to the algorithm, in the
first step the neighbors are chosen in a manner that brings the packet closer to its
destination, i.e. p={7,11,27}. At the second step, the selected neighbors in Step1 are
checked to determine whether they are in the Hamiltonian path or not. Since the labels of
the three selected neighbors are between the labels of the current switch (c=6) and
destination switch (d=48), the packet can be routed through all of them. Suppose that the
neighbor p=11 has a smaller congestion value than the other neighbors, so the algorithm
chooses this neighbor to forward the packet. If we continue with the switch c=11, this
switch has three neighbors belonging to the minimal paths, i.e. p={10,14,22}. However,
only two of them (p={14,22}) have the labels greater than the label of the current switch
(c=11) and lower than the label of the destination switch (d=48). Finally, according to the
stress values of the input buffers in the corresponding direction, one of them is selected as
the next hop. The algorithm is repeated for the rest of the switches until the packet reaches
the final destination. Figure 5.16(b) shows all possible shortest paths from the source
switch (c=6) to the destination switch (d=48). It is worth noting that the stress value is
updated whenever a new flit enters or leaves the buffer (flit events: flit_tx or flit_rx).

The MAR algorithm can be adapted for multicast packets such that alternative paths are
used to route a packet between the source switch and the first destination and also between
successive destinations. An example is shown in Figure 5.16(c) where the source switch
(c=6) forwards a multicast packet towards three destinations (D={15,32,46}). The MAR
algorithm provides a set of alternative paths to send a packet from the source switch to the
first destination (d1=15). Similarly, the packet can be adaptively routed between each two
destinations. For example, at the switch 15, the packet can make progress towards the
destination 32 either by selecting the switch 18 in the next layer or the switch 16 in the
current layer. The MAR algorithm is compatible with all methods supporting the
Hamiltonian path. Therefore, all the TBP, VBP and RP methods can utilize the MAR
algorithm for both unicast and multicast packets.

Figure 5.16: (a) An example of the MAR algorithm for a unicast packet (b) showing all possible paths
between the source 6 and destination 48 (c) An example of the MAR algorithm for a multicast packet

Adaptive Routing Approaches for Networked Many-Core Systems Chapter 5

139

5.3.2 Deadlock Avoidance
Deadlock is a situation where packets cyclically wait for network resources to be released.
To show that the proposed algorithm is deadlock-free, we need to prove that the channel
dependency graph (CDG) is acyclic [94]. First we demonstrate the MAR algorithm is
deadlock-free for unicast packets. Then, we extend the concept to multicast packets, taking
into account the partitioning methods.

The MAR algorithm follows the Hamiltonian paths and divides the network into two
disjoint sets of channels. Those packets going to higher-labeled destinations (L(d)>L(s)) are
routed through one set (the high channel subnetwork) and those packets going to lower-
labeled destinations (L(d)>L(s)) are routed through the other set of channels (the low
channel subnetwork). Dependencies between channels of one set do not close cycles in the
CDG as switches are ordered in an ascending or descending order. To close a cycle in the
high channel subnetwork, a packet may require requesting a channel that forwards the
packet to a lower-labeled switch, which is not allowed by the MAR algorithm. The same
applies for the low channel subnetwork. Also, as no packet changes from one subnetwork
to the other, no cycles are formed between both subnetworks. Therefore, the MAR
algorithm is deadlock-free for unicast traffic.

For multicast traffic two subtle cases may arise. The first one influenced by the
partitioning method, and the second one as a structural problem of path-based multicast. In
the first one, if the ordering of destinations in a multicast packet is not carefully considered,
a deadlock may have occurred. It happens when destinations are not reached with the
Hamiltonian labels. That is, for example, a multicast packet generated at the switch 9 must
be delivered to the destination 5 before destination 2. Otherwise, once the packet arrives at
the switch 2, it needs to take the high channel subnetwork to reach the switch 5, thus
changing from one subnetwork to the other and introducing a dependency between
subnetworks. It is easy to imagine that two packets doing the same (in opposite directions)
will create a cycle in the CDG. This is easily solved if the destinations of a multicast packet
follow strict Hamiltonian order, thus once an intermediate destination is reached, the next
one is reached through the same subnetwork.

The other case for deadlock in path-based multicast is when replicating the packet at a
switch. This happens when a packet is both delivered at the local switch and forwarded
through an output channel (to move towards its next destination). At that point two
branches of a tree have been formed. This may cause deadlock if at a given switch two
multicast packets reach the switch and request both channels, and each gets access to only
one channel. There is a branch dependency that creates a deadlock situation. This can be
solved basically using extra resources to avoid such conflict. In our case, we implement at
each switch two ejection channels.

As it is discussed, the implementations of partitioning methods along with the MAR
algorithm require two ejection channels but they do not need any virtual channels.
However, virtual channels can be used to improve performance (e.g. on top a fully adaptive
method [100]).

Chapter 5 Unicast and Multicast Routing Algorithms for a 3D Mesh Network

140

5.4 Results and Discussion

5.4.1 Analytical Results
We analyzed and compared the unicast latency, the startup latency, and the network latency
of the TBP, VBP, and RP partitioning methods using analytical models. For this purpose,
the previously presented factors (SP, MML, MxML) are utilized. For each method, we
explore the values for two different network sizes along with two different destination
numbers, injection rates, and packet lengths. Finally, we estimated the total latency
experienced by the packets under different configurations and methods.

5.4.1.1 Startup Latency
We developed formulas to extract the number of startup packets (SP) of the TBP, VBP and
RP methods. However, the startup latency not only depends on the SP value but also it is
affected by the packet length, injection rate, and the number of destinations per multicast
packet. Table 5.1 compares the startup latency of these three methods for different
parameters.

A. Effect of the Number of Destinations on the Startup Latency

We computed the upper-bound of the SP value for the TBP, VBP, and RP methods by
assuming that there is one packet per partition. The 3rd column of Table 5.1 shows the
number of startup packets in the TBP, VBP, and RP methods. However, in reality, the
number of packets may be lower than the number of partitions (e.g. when the number of
destinations is lower than the sets or destinations are not evenly distributed among sets).
We have assumed uniform distribution to find out the probability that a partition has
received a packet when there are eight or sixteen destinations per packet. Based on this
evaluation, the 4th and 7th columns in Table 5.1 are filled. For example, when there are eight
partitions and eight destinations per packet, on average, five partitions include at least a
destination and three partitions are empty, thus the average number of startup packets is
five. As the number of destinations per packet increases (e.g. from 8 to 16 destinations),
with a high probability there are at least one destination per partition. In this case, the
startup packets almost reach the upper-bound values.

According to the values in Table 5.1, the RP method offers a lower number of startup
packets than the VBP method since partitions are merged together. The average unicast
latency for different network sizes is also listed in the 2nd column. As already mentioned,
the unicast latencies of different methods are similar. This is due to the fact that unicast
packets are routed similarly in the network using the TBP, VBP, and RP methods.
Obviously, the unicast latency is increased as the network scales up.

Adaptive Routing Approaches for Networked Many-Core Systems Chapter 5

141

Table 5.1: UL: Unicast Latency; SP: Startup packets; SL: Startup Latency;
D/M: Destination per Packet; F/M: Flit per Packet; R: Rate.

Method

1st

Size
2nd

UL
(hop)

3rd

SP
4th

SP
8 D/M

5th

SL
8 D/M
5 F/M
1% R
1st M

6th

SL
8 D/M
5 F/M
10% R
100th M

7th

SP
16 D/M

8th

SL
16 D/M
10 F/M
1% R
1st M

9th

SL
16 D/M
10 F/M,
10% R
100th M

TBP 4×4×4 3,75 2 2 5 5 2 10 10
TBP 8×8×8 7,88 2 2 5 5 2 10 10
VBP 4×4×4 3,75 8 5 20 20 7 60 60
VBP 8×8×8 7,88 16 6 25 25 11 100 100+990
RP 4×4×4 3,75 5 4 15 15 5 40 40
RP 8×8×8 7,88 10 5 20 20 8 70 70

B. Effect of Packet Length on the Startup Latency

To show the effect of the packet length on the startup latency, let us assume that a multicast
packet (mul-msg-1) includes all destinations, and thus only one packet is sent to the
network. If there is no contention in the network, the first flit enters the network at cycle 0
(Figure 5.17(a)). However, by partitioning the network, the destinations are distributed
among several sets. In this case, multiple copies of mul-msg-1 (with different sets of
destinations) are injected into the network at cycles 0, N, 2N, … where N is the number of
flits per packet (Figure 5.17(b)). We compute the startup latency by considering the average
packet length as follow:

SLA= startup	packets-1 *(flits	per	packet)	

In Table 5.1, the 4th and 5th columns indicate the differences between the startup
latencies when the packet size increases from 1 to 5 flits. Similarly, the 7th and 8th columns
show the startup latencies by changing the packet size from 1 to 10 flits. The values show
an increased in the startup latencies when the packet size increases. In all configurations,
the TBP method has the lowest startup latency while RP offers lower startup latency than
the VBP method.

Figure 5.17: Packet length can affect the startup latency

Chapter 5 Unicast and Multicast Routing Algorithms for a 3D Mesh Network

142

C. Effect of the Injection Rate on the Startup Latency

In a low injection rate, the second multicast packet (mul-msg-2) is probably generated by
the core when all packets of mul-msg-1 have already sent to the network. However, in a
case of high injection rate, the mul-msg-2 is ready to be sent to the network while the
packets of mul-msg-1 are still in the queue and have not completely delivered to the
network. Therefore, if the number of cycles required for delivering all the packets of a
multicast message is larger than (100 - rate%), the following formula is obtained: (Latency
is cumulative, with each additional generated packet)

SLB=SLA+(total	number	of	generated	packets-1)* SLA-(100	-	rate%) 	

Table 5.1 also includes the results when the injection rate is taken into consideration.
The values are obtained based on two injection rates, 1% and 10%. As can be seen in the 5th

and 6th columns (or 8th and 9th columns), in most cases, the startup latencies do not change
as mul-msg-1 has delivered all its packets before mul-msg-2 is generated. However, in a
high injection rate (i.e. 10%), the time required to send startup packets may exceed 90
cycles (100-10). As shown in the 9th column, in one case, it takes more than 90 cycles to
deliver startup packets completely to the network. Indeed, the newly generated packets
experience considerably larger delays to send their first flit into the network. The values in
the 6th and 9th columns are computed for the 100th packet, while in 5th and 8th columns are
measured for the first packet.

5.4.1.2 Network Latency
Using analytical formulas, we have estimated the MxML and MML values for TBP, VBP,
and RP methods in 4×4×4 and 8×8×8 networks. Since MxML and MML reveal the number
of hops, to estimate the network latency the switch delay should be taken into
consideration. By assuming 3-stage pipeline architecture, the network latency is computed
by multiplying the number of hops with a factor of three. On the other hand, as the injection
rate and contention increases, per-hop delay is increased. We assume that in a 10%
injection rate, on average, latency increases by three cycles per hop (six cycles in total).
According to this assumption, we estimate the total latency using the following formula:

	 = 3 + 									 	1%
6 + 								 	10%

Table 5.2 shows the total latency (i.e. both network latency and startup latency) in the
TBP, VBP, and RP methods considering different parameters. The values in 2nd and 3rd

column of Table 5.2 indicate that MxML and MML of the TBP method are considerably
larger than those of values in the VBP and RP methods. The VBP method can reduce the
MML value significantly at a cost of more startup packets. The 4th, 5th, 6th, and 7th columns
show the total latency values when the startup latency is taken into consideration. Since, the
high number of startup packets in the VBP method may result in a time-overlapping of
different packets, as can be seen in the last column, in some cases the VBP method even
behave worse than the TBP method.

Adaptive Routing Approaches for Networked Many-Core Systems Chapter 5

143

Table 5.2: MML, MXML, and total latency in TBP, VBP, and RP methods

Method

1st

Size
2nd

MxML
3rd

MML
4th

MML*3+SL
5flits,8dests,

1%rate,
1th packet

5th

MML*6+SL
5flits,8dest,
10% rate,

100th packet

6th

MML*3+SL
10flits,16dests,

1%rate,
1th packet

7th

MML*6+SL
10flits,16dest,

10% rate,
100th packet

TBP 4×4×4 48 21 68 131 73 136
TBP 8×8×8 384 171 518 1031 523 1036
VBP 4×4×4 14 6 38 56 78 96
VBP 8×8×8 51 24 97 169 172 1234
RP 4×4×4 15 7 36 57 61 82
RP 8×8×8 59 26 98 176 148 226

5.4.2 Simulation Results
To assess the efficiency of the proposed partitioning methods in experiment, we have
developed a cycle-accurate NoC simulator based on wormhole switching in a 3D mesh
configuration. The simulator calculates average latency and power consumption for the
packet transmission. The simulator inputs include the array size, the routing algorithm, the
link width, the buffer size, and the traffic type. To estimate power consumption of switches,
we have used Orion library functions [101]. The power and delay of both horizontal and
vertical links are modeled based on the equation in [13]. Finally, we have compared the
proposed partitioning methods with each other.

The on-chip network considered for experiment is formed by a typical wormhole-
switching structure including input buffers, a routing unit, a switch allocator, and a
crossbar. Each switch has 7 input/output ports, a natural extension from a 5-port 2D switch
by adding two ports to make connections to the upper and lower layers [10]. There are
some other types of 3D switches such as the hybrid switch [10], [14] and MIRA [26],
however, since switch efficiency is out of the goals of this thesis, we have chosen a simple
7-port switch in our simulation. The data width and the frequency were set to 64 bits and
1GHz, respectively, and each input channel has a buffer size of five flits with the
congestion threshold at 80% of the total buffer capacity.

This congestion threshold is utilized by the presented MAR algorithm to choose the less
congested path if there is any alternative path(s). The experiments were performed on a 48-
switch (4 4 3) 3D stacked architecture with a constant packet size of five flits. We also
assume that the 3D mesh topology is regular and the delays in wires will not exceed the
clock period. Two synthetic traffic profiles including uniform and hotspot, and five
application benchmarks selected from SPLASH-2 [64] were used to evaluate the
partitioning schemes as well as MAR. For the performance metric, we used the multicast
latency defined as the number of cycles between the initiation of a multicast message
operation, including preparation and startup latency, and the time when the multicast
message receives by all destinations. For each load value, the result of packet latency is
averaged over 80,000 packets after a warm-up session of 20,000 arrived packets.

Chapter 5 Unicast and Multicast Routing Algorithms for a 3D Mesh Network

144

5.4.2.1 Performance Evaluation under Multicast Traffic Profile
The first set of simulations is performed for a random traffic profile. In the multicast traffic
profile, each core sends a packet to a set of destinations. A uniform distribution is used to
construct the destination set of each multicast packet. The number of destinations has been
set to eight and sixteen. The average communication delay as a function of the average
packet injection rate has been shown in Figure 5.18 and Figure 5.19. As observed from the
results, the RP method meets lower delay than the TBP and VBP methods. The foremost
reason for this performance gain is due to the efficiency of the RP method which not only
reduces the number of hops for multicast packets but also the number of startup packets as
much as possible. In fact, TBP suffers from long paths while the performance of VBP
degrades due to a large number of startup packets. Adaptive routing algorithms obtain
better performance in congested networks due to using alternative routing paths. In
Figure 5.20 and Figure 5.21, ARP (Adaptive RP), utilizing MAR in RP, and AVBP
(Adaptive VBP), utilizing MAR in VBP, are the adaptive models of the RP and VBP,
respectively. As illustrated in this figure, adaptive routings become more advantageous
when the injection rate increases.

Figure 5.18: Performance analysis in a 4×4×3 mesh network using deterministic routing with 8 destinations

Figure 5.19: Performance analysis in a 4×4×3 mesh network using deterministic routing with 16 destinations

0

50

100

150

200

250

300

350

0 0.05 0.1 0.15 0.2 0.25 0.3

A
ve

ra
ge

 L
at

en
cy

 (c
yc

le
)

Packet Injection Rate (packets/cycle)

TBP
RP
VBP

0

50

100

150

200

250

300

350

0 0.05 0.1 0.15 0.2 0.25 0.3

A
ve

ra
ge

 L
at

en
cy

 (c
yc

le
)

Packet Injection Rate (packets/cycle)

TBP
RP
VBP

Adaptive Routing Approaches for Networked Many-Core Systems Chapter 5

145

Figure 5.20: Performance analysis in a 4×4×3 mesh network using adaptive routing with 8 destinations

Figure 5.21: Performance analysis in a 4×4×3 mesh network using adaptive routing with 16 destinations

5.4.2.2 Performance Evaluation under Hotspot Traffic Profile
In this set of simulations, we used a mixture of unicast and multicast traffic, where 70% of
injected packets are unicast packets and the remaining 30% are multicast packets. The
hotspot traffic profile has been taken into account for unicast traffic generation. Under the
hotspot traffic pattern, one or more switches are chosen as hotspots receiving an extra
portion of the traffic in addition to the regular uniform traffic. In the hotspot traffic model,
given a hotspot percentage of H, a newly generated packet is directed to each hotspot
switch with an additional H percent probability. We simulate hotspot traffic with a single
hotspot switch. The hotspot switch is chosen to be the switch (2,2,2) in a 4×4×3 mesh
network. Figure 5.22 and Figure 5.23 shows the performance with H=10%. Figure 5.24 and
Figure 5.25 indicates that the adaptive routing reduces average latency in comparison with
the deterministic routing.

0

50

100

150

200

250

300

350

0 0.1 0.2 0.3

A
ve

ra
ge

 L
at

en
cy

 (c
yc

le
)

Packet Injection Rate (packets/cycle)

AVBP
VBP
RP
ARP

0

50

100

150

200

250

300

350

0 0.05 0.1 0.15 0.2 0.25

A
ve

ra
ge

 L
at

en
cy

 (c
yc

le
)

Packet Injection Rate (packets/cycle)

AVBP
VBP
RP
ARP

Chapter 5 Unicast and Multicast Routing Algorithms for a 3D Mesh Network

146

Figure 5.22: Performance analysis in a 4×4×3 mesh network using deterministic routing with 8 destinations
under mixed traffic (30% multicast and 70% unicast); Unicast traffic is based on the hotspot traffic model

with a single hotspot switch (2,2,2), and H=10%

Figure 5.23: Performance analysis in a 4×4×3 mesh network using deterministic routing with 16 destinations
under mixed traffic (30% multicast and 70% unicast); Unicast traffic is based on the hotspot traffic model

with a single hotspot switch (2,2,2), and H=10%

Figure 5.24: Performance analysis in a 4×4×3 mesh network using adaptive routing with 8 destinations under
mixed traffic (30% multicast and 70% unicast); Unicast traffic is based on the hotspot traffic model with a

single hotspot switch (2,2,2), and H=10%

0

50

100

150

200

250

300

350

0 0.05 0.1 0.15 0.2

A
ve

ra
ge

 L
at

en
cy

 (c
yc

le
)

Packet Injection Rate (packets/cycle)

TBP

RP

VBP

0
50

100
150
200
250
300
350

0 0.05 0.1 0.15 0.2

A
ve

ra
ge

 L
at

en
cy

 (c
yc

le
)

Packet Injection Rate (packets/cycle)

TBP
RP
VBP

0

50

100

150

200

250

300

350

0 0.05 0.1 0.15 0.2

A
ve

ra
ge

 L
at

en
cy

 (c
yc

le
)

Packet Injection Rate (packets/cycle)

AVBP
VBP
RP
ARP

Adaptive Routing Approaches for Networked Many-Core Systems Chapter 5

147

Figure 5.25: Performance analysis in a 4×4×3 mesh network using adaptive routing with 16 destinations
under mixed traffic (30% multicast and 70% unicast); Unicast traffic is based on the hotspot traffic model

with a single hotspot switch (2,2,2), and H=10%

5.4.2.3 Performance Evaluation under Application Traffic Profile
In order to know the impact of the presented methods on the application traffic profiles, we
use traces from some benchmark suites selected from SPLASH-2 [64]. Traces are
generated using the GEMS simulator. We used the Barnes, Cholesky, fft, Ocean, and Radix
applications from SPALSH-2 for our simulation. Table 5.3 summarizes our full system
configuration where the cache coherence protocol is token-based MOESI and access
latency to the L2 cache is derived from the CACTI [102]. We form a 64-node on-chip
network (4×4×4) that four layers are stacked on top of each other, i.e. out of the 64 nodes,
16 nodes are processors and other 48 nodes are L2 caches. L2 caches are distributed in the
bottom three layers, while all the processors are placed in the top layer close to a heat sink
so that the best heat dissipation capability is achieved [26], [103]. For the processors, we
assume a core similar to Sun Niagara and use SPARC ISA [59]. Each L2 cache core is
1MB, and thus, the total shared L2 cache is 48MB. The memory hierarchy implemented is
governed by a two-level directory cache coherence protocol. Each processor has a private
write-back L1 cache (split L1 I and D cache, 64KB, 2-way, 3-cycle access). The L2 cache
is shared among all processors and split into banks (48 banks, 1MB each for a total of
48MB, 6-cycle bank access), connected via on-chip switches. The L1/L2 block size is 64B.
The simulated memory hierarchy mimics SNUCA [104] while the off-chip memory is a
4GB DRAM with a 260-cycle access time.

Figure 5.26 shows the average network latency normalized to TBP. However, using the
adaptive routing scheme, MAR, diminishes the average delay of each partitioning method
significantly under all benchmarks. That is, adaptive routing has an opportunity to improve
performance. For instance, under the fft application, the performance gain of using MAR in
TBP, RP, and VBP is about (ATBP/TBP) 7%, (AVBP/VBP) 11.5%, and (ARP/RP) 6%.
We can see that ARP, using MAR in the recursive partitioning method, consistently
reduces the average network latency across all tested benchmarks. Table 5.4 lists the
performance gains of ARP over TBP, ATBP, RP, VBP, and AVBP where the overall
performance gain is about 20%.

0
50

100
150
200
250
300
350

0 0.05 0.1 0.15 0.2

A
ve

ra
ge

 L
at

en
cy

 (c
yc

le
)

Packet Injection Rate (packets/cycle)

AVBP
VBP
RP
ARP

Chapter 5 Unicast and Multicast Routing Algorithms for a 3D Mesh Network

148

Table 5.3: System configuration parameters
Processor Configuration
Instruction set SPARC, 16 processors
L1 cache 16KB. 4-way associative, 64-bit line, 3-cycle access time

L2 cache Shared, distributed in 3 layers, unified, 48MB (48 banks, each
1MB)

Cache coherence protocol Token-based MOESI
Cache hierarchy SNUCA
Size 4GB DRAM
Access latency 260 cycles
Requests per processor 16 outstanding
Benchmarks SPLASH-2
Network configuration
switch scheme 3D mesh with wormhole
Flit size 64 bits
Workloads
SPLASH-2 Barnes, Cholesky, FFT, Ocean, Radix

Figure 5.26: Performance analysis under different application benchmarks normalized to TBP

Table 5.4: Performance gain of ARP over the other presented schemes

TBP ATBP RP VBP AVBP
Barnes 26% 23% 6% 16% 14%

Cholesky 28% 24% 7% 18% 14%
FFT 42% 37% 6% 25% 15%

Ocean 41% 33% 9% 20% 13%
Radix 35% 29% 12% 18% 10% Overall
Avg. 34% 29% 8% 19% 13% 20%

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Barnes cholesky FFT Ocean Radix

N
or

m
al

iz
ed

 a
ve

ra
ge

 la
te

nc
y TBP ATBP RP ARP VBP AVBP

Adaptive Routing Approaches for Networked Many-Core Systems Chapter 5

149

5.4.2.4 Hardware Overhead
The presented partitioning methods have been implemented in network interfaces, thereby,
to estimate the hardware cost of the proposed methods, the network area of each
partitioning scheme, including switches and network interfaces, with the aforementioned
configuration were synthesized by Synopsys Design Compiler using the UMC 90nm
technology with an operating point of 1GHz and supply voltage of 1V. We performed
place-and-route, using Cadence Encounter, to have precise power and area estimations.
Depending on the technology and manufacturing process, the pitches of TSVs can range
from 1 m to 10 m square [9]. In this work, the pad size for TSVs is assumed to be 5 m2

with pitch of around 8µm2. Considering the link width of 64 bits, the area of two
unidirectional vertical channels, 2D switch, and 3D switch are 0.01mm2, 0.18mm2, and
0.23mm2, respectively. Therefore, the overhead of adding TSVs in a 3D switch is less than
4%. Different numbers of registers were employed for TBP (the base method), VBP, and
RP methods to implement their partitioning mechanisms leading to different area overhead.
Comparing the area cost of the TBP with VBP and RP schemes indicate 5% and 6%
additional overhead, respectively. However, using the proposed adaptive routing unit
(MAR) imposes less than 0.5% overhead for a switch in each method.

5.4.2.5 Power Dissipation
The power dissipation of the TBP, VBP, and RP methods were calculated and compared
under the multicast traffic model with sixteen destinations using the simulator based on the
Orion and the equation in [13]. The power values of the network interfaces, computed after
the place-and-route in the previous subsection, have been also integrated in the Orion
functions. The typical clock of 1GHz is applied in the aforementioned network (4×4×3
mesh network). The results for the average power under multicast traffic are shown in
Figure 5.27. The average power values are computed near the saturation point under
multicast traffic. As the results show, the average power consumption of the RP scheme is
16% and 8% less than that of the TBP and VBP schemes, respectively, when using
deterministic routing. In fact, this is achieved by smoothly balancing the traffic over the
network using efficient balancing scheme which reduces the number of the hotspots and,
hence, lowering the average power.

Figure 5.27: Average power dissipation results in a 4×4×3 mesh network under multicast traffic profile

0.181
0.169

0.155

0.188
0.174

0.161

0.1

0.15

0.2

TBP VBP RP

A
ve

ra
ge

 P
ow

er
 (W

)

Adaptive deterministic

Chapter 5 Unicast and Multicast Routing Algorithms for a 3D Mesh Network

150

5.5 Summary of the Proposed Methods
The main goal of this chapter is to show how a multicast communication can be efficiently
supported without affecting the performance of unicast packets. We presented different
partitioning methods (TBP, VBP, and RP) to reduce the overall path length of multicast
packets. Each approach offers a different level of efficiency which depends on the number
of injected packets into the network per multicast message and the capability to reduce the
path lengths. Among these methods, TBP is the simplest approach with the highest latency.
VBP may improve latency in low traffic loads; however the large number of startup packets
may result in early saturations of the network. RP has the best performance by suggesting
the best tradeoff between the number of injected packets and the path length. We equipped
these partitioning methods with an efficient adaptive routing algorithm (MAR) for both
unicast and multicast packets. Each of the partitioning methods can make benefits of MAR
for improving performance. In addition to simulation results, novel analytical models are
developed for the latency estimation.

151

Chapter 6

6 Conclusion

Technology trends toward an increased number of processing elements with higher levels
of integration and performance will require scalable and efficient communication
infrastructures. The Network-on-Chip architecture paradigm, based on a modular packet-
switched mechanism, can address many of the on-chip communication design issues such
as wiring complexity and the integration of a large number of intellectual property cores
into a single chip. In the NoC infrastructure, communication protocols perform a critical
role in increasing the overall performance of the whole system. This thesis described
different routing algorithms for NoCs. The proposed methods include congestion-aware
techniques, fault-tolerant routing algorithms, and collective communication support.

Congestion can be avoided by balancing traffic load over a network. This is possible by
knowing about the traffic conditions in different regions of the network and routing packets
through the less-congested parts. However, distributing the congestion information, storing
it at each switch, and keeping it up-to-date is expensive and requires extra wires and
registers, which directly affects the area overhead and power consumption. This thesis
showed that collecting global congestion information does not necessarily result in a better
routing decision. The proposed agent-based approaches confirmed this fact by showing that
routing decisions based on the congestion information of nearby switches can result in
significant performance gains while the impact of additional congestion information is
negligible.

The performance of the network can be improved by propagating packets through less
congested non-minimal paths rather than congested minimal routes. However, special care
should be taken when choosing a non-minimal path as not all of them lead to better
performance. The reason for this is that a packet might take a longer path while passing
through a highly congested region, thus exacerbating the traffic condition. This issue has
been addressed in this thesis by employing machine learning methods to find an optimal
route according to the underlying traffic condition among all available minimal and non-
minimal options.

The effectiveness of a routing decision depends not only on how precisely the
congestion information represents the traffic condition but also how efficiently this
information is utilized in the routing decision. This thesis proposed an efficient way of

Chapter 6 Conclusion

152

utilizing the collected congestion information to make better routing decisions. This
efficiency is achieved by employing fuzzy-logic techniques in the routing decision unit.

A high performance system might not be a practical choice if it is highly susceptible to
faults. On the other hand, fault-tolerant techniques may not be optimal choices if the
performance is considerably degraded by utilizing these methods. The proposed approaches
in this thesis fill this gap by presenting fault-tolerant methods which maintain the
performance of NoCs in the absence or presence of faults. The main idea of these methods
is to diminish the impact of faults on traffic congestion by avoiding unnecessary rerouting
of packets around faults. The faults were investigated at both link and switch levels.

An efficient multicast communication can also greatly improve the performance of
NoCs. However, multicast support may result in a significant performance loss if the
adaptivity of unicast packets is decreased due to this support. In this thesis, we showed how
multicast communication can be efficiently implemented without affecting the performance
of unicast communication. Unicast/Multicast communication was investigated in both 2D
and 3D networks, assisted by analytical models.

153

References
[1] M. Moadeli, A. Shahrabi, W. Vanderbauwhede, and M. Ould-Khaoua, “An Analytical

Performance Model for the Spidergon NoC,” in Proceedings of 21st Annual
Conference on Advanced Networking and Applications, 2007, pp. 1014–1021.

[2] M. Ebrahimi, M. Daneshtalab, N. P. Sreejesh, P. Liljeberg, and H. Tenhunen, “Efficient
network interface architecture for network-on-chips,” in Proceedings of NORCHIP,
2009, pp. 1–4.

[3] M. Daneshtalab, M. Ebrahimi, P. Liljeberg, J. Plosila, and H. Tenhunen, “Memory-
Efficient On-Chip Network With Adaptive Interfaces,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 31, no. 1, pp. 146–
159, 2012.

[4] M. Daneshtalab, M. Ebrahimi, P. Liljeberg, J. Plosila, and H. Tenhunen, “Memory-
efficient logic layer communication platform for 3D-stacked memory-on-processor
architectures,” in Proceedings of IEEE 3D Systems Integration Conference (3DIC),
2012, pp. 1–8.

[5] M. Daneshtalab, M. Ebrahimi, P. Liljeberg, J. Plosila, and H. Tenhunen, “A Low-
Latency and Memory-Efficient On-chip Network,” in Proceedings of Fourth
ACM/IEEE International Symposium on Networks-on-Chip (NOCS), 2010, pp. 99–106.

[6] Y. Xie, G. H. Loh, B. Black, and K. Bernstein, “Design space exploration for 3D
architectures,” ACM Journal on Emerging Technologies in Computing Systems (JETC),
vol. 2, no. 2, pp. 65–103, 2006.

[7] M. Daneshtalab, M. Ebrahimi, P. Liljeberg, J. Plosila, and H. Tenhunen, “High-
Performance TSV Architecture for 3-D ICs,” in Proceedings of IEEE Computer Society
Annual Symposium on VLSI (ISVLSI), 2010, pp. 467–468.

[8] A. Y. Weldezion, M. Grange, D. Pamunuwa, Z. Lu, A. Jantsch, R. Weerasekera, and H.
Tenhunen, “Scalability of network-on-chip communication architecture for 3-D
meshes,” in Proceedings of 3rd ACM/IEEE International Symposium on Networks-on-
Chip (NOCS), 2009, pp. 114 –123.

[9] J. Hu, L. Wang, L. Jin, and H. Z. JiangNan, “Electrical modeling and characterization
of through silicon vias (TSV),” in Proceedings of International Conference on
Microwave and Millimeter Wave Technology (ICMMT), 2012, vol. 2, pp. 1 –4.

[10] B. S. Feero and P. P. Pande, “Networks-on-Chip in a Three-Dimensional
Environment: A Performance Evaluation,” IEEE Transactions on Computers, vol. 58,
no. 1, pp. 32 –45, 2009.

[11] C. Seiculescu, S. Murali, L. Benini, and G. De Micheli, “SunFloor 3D: A tool for
Networks On Chip topology synthesis for 3D systems on chips,” in Proceedings of
Design, Automation Test in Europe Conference Exhibition (DATE), 2009, pp. 9 –14.

[12] H. Matsutani, M. Koibuchi, and H. Amano, “Tightly-Coupled Multi-Layer
Topologies for 3-D NoCs,” in Proceedings of 41st International Conference on
Parallel Processing, 2007.

154

[13] V. F. Pavlidis and E. G. Friedman, “3-D Topologies for Networks-on-Chip,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol. 15, no. 10, pp. 1081
–1090, 2007.

[14] F. Li, C. Nicopoulos, T. Richardson, Y. Xie, V. Narayanan, and M. K, “Design and
Management of 3D Chip Multiprocessors Using Network-in-Memory,” in Proceedings
of ISCA-33, 2006, pp. 130–141.

[15] M. Daneshtalab, M. Ebrahimi, P. Liljeberg, J. Plosila, and H. Tenhunen, “High-
performance on-chip network platform for memory-on-processor architectures,” in
Proceedings of 6th International Workshop on Reconfigurable Communication-centric
Systems-on-Chip (ReCoSoC), 2011, pp. 1–6.

[16] J. Kim, C. Nicopoulos, D. Park, R. Das, Y. Xie, V. Narayanan, M. S. Yousif, and C.
R. Das, “A novel dimensionally-decomposed router for on-chip communication in 3D
architectures,” ACM SIGARCH Computer Architecture News, vol. 35, no. 2, pp. 138–
149, 2007.

[17] M. Daneshtalab, M. Ebrahimi, P. Liljeberg, J. Plosila, and H. Tenhunen, “A
systematic reordering mechanism for on-chip networks using efficient congestion-
aware method,” Journal of Systems Architecture (JSA-elsevier), 2012.

[18] M. Daneshtalab, M. Ebrahimi, J. Plosila, and H. Tenhunen, “CARS: Congestion-
Aware Request Scheduler for Network Interfaces in NoC-based Manycore Systems,” in
Proceedings of 16th ACM/IEEE Design, Automation, and Test in Europe (DATE),
2013, pp. 1048–1052.

[19] M. Daneshtalab, M. Ebrahimi, and J. Plosila, “GLB-Efficient Global Load
Balancing method for moderating congestion in on-chip networks,” in Proceedings of
7th International Workshop on Reconfigurable Communication-centric Systems-on-
Chip (ReCoSoC), 2012, pp. 1–5.

[20] D. Wu, B. M. Al-Hashimi, and M. T. Schmitz, “Improving routing efficiency for
network-on-chip through contention-aware input selection,” in Proceedings of Asia and
South Pacific Conference on Design Automation, 2006, pp. 36–41.

[21] S. Bell, B. Edwards, J. Amann, R. Conlin, K. Joyce, V. Leung, J. MacKay, M. Reif,
L. Bao, J. Brown, M. Mattina, C.-C. Miao, C. Ramey, D. Wentzlaff, W. Anderson, E.
Berger, N. Fairbanks, D. Khan, F. Montenegro, J. Stickney, and J. Zook, “TILE64 -
Processor: A 64-Core SoC with Mesh Interconnect,” in Proceedings of Solid-State
Circuits Conference (ISSCC), 2008, pp. 88–598.

[22] S. Vangal, J. Howard, G. Ruhl, S. Dighe, H. Wilson, J. Tschanz, D. Finan, P. Iyer,
A. Singh, T. Jacob, S. Jain, S. Venkataraman, Y. Hoskote, and N. Borkar, “An 80-Tile
1.28TFLOPS Network-on-Chip in 65nm CMOS,” in Proceedings of Solid-State
Circuits Conference (ISSCC), 2007, pp. 98–589.

[23] W. J. Dally and B. Towles, “Route packets, not wires: on-chip interconnection
networks,” in Proceedings of Design Automation Conference, 2001, pp. 684 – 689.

[24] A. Jantsch and H. Tenhunen, Networks on Chip. Springer, 2003.

155

[25] M. Daneshtalab, M. Ebrahimi, P. Liljeberg, J. Plosila, and H. Tenhunen, “Pipeline-
based interlayer bus structure for 3D networks-on-chip,” in 2010 15th CSI International
Symposium on Computer Architecture and Digital Systems (CADS), 2010, pp. 35–41.

[26] D. Park, S. Eachempati, R. Das, A. K. Mishra, Y. Xie, N. Vijaykrishnan, and C. R.
Das, “MIRA: A Multi-layered On-Chip Interconnect Router Architecture,” in
Proceedings of International Symposium on Computer Architecture, 2008, pp. 251–
261.

[27] J. Duato, S. Yalamanchili, and L. M. Ni, Interconnection networks: an engineering
approach. IEEE Computer Society Press, 1997.

[28] M. Mirza-Aghatabar, S. Koohi, S. Hessabi, and M. Pedram, “An Empirical
Investigation of Mesh and Torus NoC Topologies Under Different Routing Algorithms
and Traffic Models,” in Proceedings of 10th Euromicro Conference on Digital System
Design Architectures, Methods and Tools (DSD), 2007, pp. 19 –26.

[29] M. Daneshtalab, M. Ebrahimi, P. Liljeberg, J. Plosila, and H. Tenhunen, “Cluster-
based topologies for 3D stacked architectures,” in Proceedings of the 8th ACM
International Conference on Computing Frontiers, 2011, pp. 14:1–14:3.

[30] M. E. Masoud Daneshtalab, “A Novel Interlayer Bus Architecture for Three
Dimensional Network-on-Chips.”

[31] M. Daneshtalab, M. Ebrahimi, and J. Plosila, “HIBS-Novel inter-layer bus structure
for stacked architectures,” in 3D Systems Integration Conference (3DIC), 2011 IEEE
International, 2012, pp. 1–7.

[32] W. J. Dally, “Virtual-channel flow control,” IEEE Transactions on Parallel and
Distributed Systems, vol. 3, no. 2, pp. 194–205, 1992.

[33] J. Duato, S. Yalamanchili, and L. Ni, Interconnection Networks. Morgan Kaufmann,
2003.

[34] L. M. Ni and P. K. McKinley, “A survey of wormhole routing techniques in direct
networks,” Computer, vol. 26, no. 2, pp. 62 –76, 1993.

[35] W. Dally and B. Towles, Principles and Practices of Interconnection Networks.
Morgan Kaufmann Publishers, 2003.

[36] X. Chang, M. Ebrahimi, M. Daneshtalab, T. Westerlund, and J. Plosila, “PARS- An
efficient congestion-Aware Routing method for Networks-on-Chip,” in Proceedings of
16th CSI International Symposium on Computer Architecture and Digital Systems
(CADS), 2012, pp. 166–171.

[37] M. Ebrahimi, M. Daneshtalab, P. Liljeberg, J. Plosila, and H. Tenhunen, “Efficient
congestion-aware selection method for on-chip networks,” in Proceedings of 6th
International Workshop on Reconfigurable Communication-centric Systems-on-Chip
(ReCoSoC), 2011, pp. 1–4.

[38] M. Li, Q.-A. Zeng, and W.-B. Jone, “DyXY - a proximity congestion-aware
deadlock-free dynamic routing method for network on chip,” in Proceedings of 43rd
ACM/IEEE Design Automation Conference, 2006, pp. 849 –852.

156

[39] P. Lotfi-Kamran, A. M. Rahmani, M. Daneshtalab, A. Afzali-Kusha, and Z. Navabi,
“EDXY – A low cost congestion-aware routing algorithm for network-on-chips,”
Journal of Systems Architecture, vol. 56, no. 7, pp. 256–264, 2010.

[40] G. Ascia, V. Catania, M. Palesi, and D. Patti, “Implementation and Analysis of a
New Selection Strategy for Adaptive Routing in Networks-on-Chip,” IEEE
Transactions on Computers, vol. 57, no. 6, pp. 809 –820, 2008.

[41] P. Lotfi-Kamran, M. Daneshtalab, C. Lucas, and Z. Navabi, “BARP-A Dynamic
Routing Protocol for Balanced Distribution of Traffic in NoCs,” in Proceedings of
Design, Automation and Test in Europe (DATE), 2008, pp. 1408 –1413.

[42] F. Farahnakian, M. Ebrahimi, M. Daneshtalab, P. Liljeberg, and J. Plosila,
“Adaptive Reinforcement Learning Method for Networks-on-Chip,” in Proceedings of
SAMOSXIII, 2012, pp. 236–243.

[43] S. Ma, N. Enright Jerger, and Z. Wang, “DBAR: an efficient routing algorithm to
support multiple concurrent applications in networks-on-chip,” in Proceedings of the
38th annual international symposium on Computer architecture, 2011, pp. 413–424.

[44] P. Gratz, B. Grot, and S. W. Keckler, “Regional congestion awareness for load
balance in networks-on-chip,” in Proceedings of IEEE 14th International Symposium
on High Performance Computer Architecture, HPCA, 2008, pp. 203 –214.

[45] M. Ebrahimi, M. Daneshtalab, P. Liljeberg, and H. Tenhunen, “Performance
evaluation of unicast and multicast communication in three-dimensional mesh
architectures,” in Proceedings of 15th CSI International Symposium on Computer
Architecture and Digital Systems (CADS), 2010, pp. 161–162.

[46] M. Daneshtalab, M. Ebrahimi, T. C. Xu, P. Liljeberg, and H. Tenhunen, “A generic
adaptive path-based routing method for MPSoCs,” Journal of Systems Architecture,
vol. 57, no. 1, pp. 109–120, Jan. 2011.

[47] M. Daneshtalab, M. Ebrahimi, S. Mohammadi, and A. Afzali-Kusha, “Low-distance
path-based multicast routing algorithm for network-on-chips,” IET Computers Digital
Techniques, vol. 3, no. 5, pp. 430–442, 2009.

[48] N. E. Jerger, L.-S. Peh, and M. Lipasti, “Virtual Circuit Tree Multicasting: A Case
for On-Chip Hardware Multicast Support,” in Proceedings of the 35th Annual
International Symposium on Computer Architecture (ISCA), 2008, vol. 36, pp. 229–
240.

[49] C. J. Glass and L. M. Ni, “The Turn Model for Adaptive Routing,” in Proceedings
of the 19th Annual International Symposium on Computer Architecture, 1992, pp. 278
–287.

[50] J. A. Boyan and M. L. Littman, “Packet Routing in Dynamically Changing
Networks: A Reinforcement Learning Approach,” in Proceedings of Advances in
Neural Information Processing Systems 6, 1994, pp. 671–678.

[51] C. Watkins and P. Dayan, “Technical Note: Q-Learning,” Machine Learning, vol. 8,
no. 3, pp. 279–292, 1992.

[52] C. Feng, Z. Lu, A. Jantsch, J. Li, and M. Zhang, “A reconfigurable fault-tolerant
deflection routing algorithm based on reinforcement learning for network-on-chip,” in

157

Proceedings of the Third International Workshop on Network on Chip Architectures,
2010, pp. 11–16.

[53] M. K. Puthal, V. Singh, M. S. Gaur, and V. Laxmi, “C-Routing: An adaptive
hierarchical NoC routing methodology,” in Proceedings of IEEE/IFIP 19th
International Conference on VLSI and System-on-Chip (VLSI-SoC), 2011, pp. 392 –
397.

[54] M. Ebrahimi, M. Daneshtalab, P. Liljeberg, J. Plosila, and H. Tenhunen, “Agent-
based on-chip network using efficient selection method,” in Proceedings of IEEE/IFIP
19th International Conference on VLSI and System-on-Chip (VLSI-SoC), 2011, pp.
284–289.

[55] M. Ebrahimi, M. Daneshtalab, P. Liljeberg, J. Plosila, and H. Tenhunen, “CATRA-
congestion aware trapezoid-based routing algorithm for on-chip networks,” in
Proceedings of Design, Automation Test in Europe Conference Exhibition (DATE),
2012, 2012, pp. 320–325.

[56] M. Daneshtalab, M. Ebrahimi, P. Liljeberg, J. Plosila, and H. Tenhunen, “Input-
Output Selection Based Router for Networks-on-Chip,” in IEEE Computer Society
Annual Symposium on VLSI (ISVLSI), 2010, pp. 92 –97.

[57] C. J. Glass, C. J. Glass, L. M. Ni, and L. M. Ni, “Maximally Fully Adaptive Routing
in 2D Meshes,” in Proceedings of International Conference on Parallel Processing,
1992, pp. 101–104.

[58] M. M. K. Martin, D. J. Sorin, B. M. Beckmann, M. R. Marty, M. Xu, A. R.
Alameldeen, K. E. Moore, M. D. Hill, and D. A. Wood, “Multifacet’s general
execution-driven multiprocessor simulator (GEMS) toolset,” SIGARCH Computer
Architecture News, vol. 33, no. 4, pp. 92–99, 2005.

[59] P. Kongetira, K. Aingaran, and K. Olukotun, “Niagara: a 32-way multithreaded
Sparc processor,” IEEE Micro, vol. 25, no. 2, pp. 21 – 29, 2005.

[60] M. Ebrahimi, M. Daneshtalab, P. Liljeberg, J. Plosila, and H. Tenhunen, “LEAR –
A Low-Weight and Highly Adaptive Routing Method for Distributing Congestions in
On-chip Networks,” in Proceedings of 20th Euromicro International Conference on
Parallel, Distributed and Network-Based Processing (PDP), 2012, pp. 520–524.

[61] X. Dai, C.-K. Li, and A. B. Rad, “An approach to tune fuzzy controllers based on
reinforcement learning for autonomous vehicle control,” IEEE Transactions on
Intelligent Transportation Systems, vol. 6, no. 3, pp. 285 – 293, 2005.

[62] M. Ebrahimi, M. Daneshtalab, F. Farahnakian, J. Plosila, P. Liljeberg, M. Palesi,
and H. Tenhunen, “HARAQ: Congestion-Aware Learning Model for Highly Adaptive
Routing Algorithm in On-Chip Networks,” in Proceedings of International Symposium
on Networks-on-Chip, 2012, pp. 19–26.

[63] W. Feng and K. G. Shin, “Impact of selection functions on routing algorithm
performance in multicomputer networks,” in Proceedings of the 11th international
conference on Supercomputing, 1997, pp. 132–139.

158

[64] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta, “The SPLASH-2
programs: characterization and methodological considerations,” in Proceedings of 22nd
Annual International Symposium on Computer Architecture, 1995, pp. 24 –36.

[65] A. Chandramohan, M. V. C. Rao, and M. S. Arumugam, “Two New and Useful
Defuzzification Methods Based on Root Mean Square Value,” Journal of Soft
Computing, vol. 10, no. 11, pp. 1047–1059, 2006.

[66] M. Dehyadegari, M. Daneshtalab, M. Ebrahimi, J. Plosila, and S. Mohammadi, “An
adaptive fuzzy logic-based routing algorithm for networks-on-chip,” in Proceedings of
NASA/ESA Conference on Adaptive Hardware and Systems (AHS), 2011, pp. 208 –214.

[67] M. Ebrahimi, H. Tenhunen, and M. Dehyadegari, “Fuzzy-based Adaptive Routing
Algorithm for Networks-on-Chip,” Journal of Systems Architecture, 2013.

[68] S. Rea and D. Pesch, “Multi-metric routing decisions for ad hoc networks using
fuzzy logic,” in Proceedings of 1st International Symposium on Wireless
Communication Systems, 2004, pp. 403 – 407.

[69] C. G. B Sun, “Fuzzy Controller Based QoS Routing Algorithm with a Multiclass
Scheme for MANET,” International Journal of Computers, Communications &
Control, vol. 4, pp. 427–438, 2009.

[70] M. M. Thaw, “Fuzzy-based multi-constrained quality of service distance vector
routing protocol in mobile ad-hoc networks,” in Proceedings of the 2nd International
Conference on Computer and Automation Engineering (ICCAE), 2010, vol. 3, pp. 429
–433.

[71] A. Pasupuleti, A. V. Mathew, N. Shenoy, and S. A. Dianat, “Fuzzy system for
adaptive network routing,” Digital Wireless Communications, pp. 189–196, 2002.

[72] E. Aboelela and C. Douligeris, “Fuzzy inference system for QoS routing in B-
ISDN,” in Proceedings of IEEE Canadian Conference on Electrical and Computer
Engineering, 1998, vol. 1, pp. 141 –144.

[73] J. S. R. Jang and N. Gully, MATLAB Fuzzy Logic Toolbox: User’s Guide.
MathWorks, 1997.

[74] W. Pedrycz, “Why triangular membership functions?,” Fuzzy Sets and Systems, vol.
64, no. 1, pp. 21–30, 1994.

[75] E. B. V. D. Tol and E. G. T. Jaspers, “Mapping of MPEG-4 decoding on a flexible
architecture platform,” in Proceedings of Media Processors, 2002, pp. 1–13.

[76] W.-C. Tsai, D.-Y. Zheng, S.-J. Chen, and Y.-H. Hu, “A Fault-Tolerant NoC Scheme
using bidirectional channel,” in Proceedings of 48th ACM/EDAC/IEEE Design
Automation Conference (DAC), 2011, pp. 918 –923.

[77] M. Cuviello, S. Dey, X. Bai, and Y. Zhao, “Fault modeling and simulation for
crosstalk in system-on-chip interconnects,” in Proceedings of IEEE/ACM International
Conference on Computer-Aided Design, 1999, pp. 297 –303.

[78] M. Koibuchi, H. Matsutani, H. Amano, and T. Mark Pinkston, “A Lightweight
Fault-Tolerant Mechanism for Network-on-Chip,” in Second ACM/IEEE International
Symposium on Networks-on-Chip (NoCS), 2008, pp. 13 –22.

159

[79] Z. Zhang, A. Greiner, and S. Taktak, “A reconfigurable routing algorithm for a
fault-tolerant 2D-Mesh Network-on-Chip,” in Proceedings of 45th ACM/IEEE Design
Automation Conference (DAC), 2008, pp. 441 –446.

[80] J. Wu, “A Fault-Tolerant and Deadlock-Free Routing Protocol in 2D Meshes Based
on Odd-Even Turn Model,” IEEE Transaction on Computers, vol. 52, no. 9, pp. 1154–
1169, 2003.

[81] G.-M. Chiu, “The odd-even turn model for adaptive routing,” IEEE Transactions on
Parallel and Distributed Systems, vol. 11, no. 7, pp. 729 –738, 2000.

[82] M. Valinataj, S. Mohammadi, J. Plosila, P. Liljeberg, and H. Tenhunen, “A
reconfigurable and adaptive routing method for fault-tolerant mesh-based networks-on-
chip,” AEU - International Journal of Electronics and Communications, vol. 65, no. 7,
pp. 630–640, 2011.

[83] D. Fick, A. DeOrio, G. Chen, V. Bertacco, D. Sylvester, and D. Blaauw, “A highly
resilient routing algorithm for fault-tolerant NoCs,” in Proceedings of Design,
Automation Test in Europe Conference Exhibition (DATE), 2009, pp. 21 –26.

[84] M. Ebrahimi, M. Daneshtalab, J. Plosila, and Mehdipour, Farhad, “MD: Minimal
path-based Fault-Tolerant Routing in On-Chip Networks,” in Proceedings of
IEEE/ACM 18th Asia and South Pacific Design Automation Conference (ASP-DAC),
2013, pp. 35–40.

[85] M. Ebrahimi, M. Daneshtalab, J. Plosila, and H. Tenhunen, “MAFA: Adaptive
Fault-Tolerant Routing Algorithm for Networks-on-Chip,” in Proceedings of 15th
Euromicro Conference on Digital System Design (DSD), 2012, pp. 201 –207.

[86] V. Soteriou and L.-S. Peh, “Dynamic power management for power optimization of
interconnection networks using on/off links,” in Proceedings of 11th Symposium on
High Performance Interconnects, 2003, pp. 15 – 20.

[87] M. Ebrahimi, M. Daneshtalab, and J. Plosila, “High Performance Fault-Tolerant
Routing Algorithm for NoC-based Many-Core Systems,” in Proceedings of 21th IEEE
Euromicro Conference on Parallel, Distributed and Network-Based Computing (PDP),
2013, pp. 463–469.

[88] M. Ebrahimi, M. Daneshtalab, J. Plosila, and H. Tenhunen, “Minimal-Path Fault-
Tolerant Approach Using Connection-Retaining Structure in Networks-on-Chip,” in
Proceedings of 7th International Symposium on Networks-on-Chip (NOCS), 2013.

[89] K. Banerjee, S. J. Souri, P. Kapur, and K. C. Saraswat, “3-D ICs: a novel chip
design for improving deep-submicrometer interconnect performance and systems-on-
chip integration,” Proceedings of the IEEE, vol. 89, no. 5, pp. 602 –633, 2001.

[90] S. Murali, C. Seiculescu, L. Benini, and G. De Micheli, “Synthesis of networks on
chips for 3D systems on chips,” in Proceedings of Design Automation Conference
(ASP-DAC), 2009, pp. 242 –247.

[91] M. Ebrahimi, M. Daneshtalab, P. Liljeberg, and H. Tenhunen, “An Adaptive
Unicast/Multicast Routing Algorithm for MPSoCs,” in Proceedings of 12th Euromicro
Conference on Digital System Design, Architectures, Methods and Tools (DSD), 2009,
pp. 203–206.

160

[92] M. Ebrahimi, M. Daneshtalab, M. H. Neishaburi, S. Mohammadi, A. Afzali-Kusha,
J. Plosila, and H. Tenhunen, “An efficent dynamic multicast routing protocol for
distributing traffic in NOCs,” in Proceedings of DATE, 2009, pp. 1064–1069.

[93] P. Abad, V. Puente, and J. Gregorio, “MRR: Enabling fully adaptive multicast
routing for CMP interconnection networks,” in Proceedings of IEEE 15th International
Symposium on High Performance Computer Architecture (HPCA), 2009, pp. 355–366.

[94] X. Lin, P. K. McKinley, and L. M. Ni, “Deadlock-free multicast wormhole routing
in 2D mesh multicomputers,” IEEE Transactions on Parallel and Distributed Systems,
vol. 5, no. 8, pp. 793–804, 1994.

[95] M. Ebrahimi, M. Daneshtalab, P. Liljeberg, and H. Tenhunen, “HAMUM - A Novel
Routing Protocol for Unicast and Multicast Traffic in MPSoCs,” in Proceedings of
PDP, 2010, pp. 525 –532.

[96] M. Ebrahimi, M. Daneshtalab, P. Liljeberg, J. Plosila, J. Flich, and H. Tenhunen,
“Path-based Partitioning Methods for 3D Networks-on-Chip with Minimal Adaptive
Routing,” IEEE Transactions on Computers, 2012.

[97] M. Ebrahimi, M. Daneshtalab, P. Liljeberg, and H. Tenhunen, “Partitioning
methods for unicast/multicast traffic in 3D NoC architecture,” in Proceedings of IEEE
13th International Symposium on Design and Diagnostics of Electronic Circuits and
Systems (DDECS), 2010, pp. 127–132.

[98] M. Ebrahimi, M. Daneshtalab, P. Liljeberg, and H. Tenhunen, “Performance
Analysis of 3D NoCs Partitioning Methods,” in Proceedings of IEEE Computer Society
Annual Symposium on VLSI (ISVLSI), 2010, pp. 479–480.

[99] M. Ebrahimi, M. Daneshtalab, and J. Plosila, “Fault-Tolerant Routing Algorithm for
3D NoC Using Hamiltonian Path Strategy,” in Proceedings of 16th ACM/IEEE Design,
Automation, and Test in Europe (DATE), 2013, pp. 1601–1605.

[100] M. Ebrahimi, X. Chang, M. Daneshtalab, J. Plosila, P. Liljeberg, and H. Tenhunen,
“DyXYZ: Fully Adaptive Routing Algorithm for 3D NoCs,” in Proceedings of 21th
IEEE Euromicro Conference on Parallel, Distributed and Network-Based Computing
(PDP), 2013, pp. 499–503.

[101] H.-S. Wang, X. Zhu, L.-S. Peh, and S. Malik, “Orion: a power-performance
simulator for interconnection networks,” in Proceedings of 35th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO), 2002, pp. 294 – 305.

[102] N. Muralimanohar, R. Balasubramonian, and N. Jouppi, “Optimizing NUCA
Organizations and Wiring Alternatives for Large Caches with CACTI 6.0,” in
Proceedings of the 40th Annual IEEE/ACM International Symposium on
Microarchitecture, 2007, pp. 3–14.

[103] I. Loi and L. Benini, “An efficient distributed memory interface for many-core
platform with 3D stacked DRAM,” in Proceedings of Design, Automation Test in
Europe Conference Exhibition (DATE), 2010, pp. 99 –104.

[104] B. M. Beckmann and D. A. Wood, “Managing Wire Delay in Large Chip-
Multiprocessor Caches,” in Proceedings of the 37th annual IEEE/ACM International
Symposium on Microarchitecture, 2004, pp. 319–330.

 HistoryItem_V1
 Nup

 Create a new document
 Trim unused space from sheets: no
 Allow pages to be scaled: yes
 Margins and crop marks: none
 Sheet size: 6.929 x 9.843 inches / 176.0 x 250.0 mm
 Sheet orientation: tall
 Scale by 87.00 %
 Align: top left

 0.0000
 10.0000
 20.0000
 0
 Corners
 0.3000
 ToFit
 1
 1
 0.8700
 0
 0
 1
 0.0000
 1

 D:20130611091718
 708.6614
 B5
 Blank
 498.8976

 Tall
 1069
 483
 0.0000
 TL
 0

 CurrentAVDoc

 0.0000
 0
 2
 0
 1
 0

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9b
 Quite Imposing Plus 2
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 6.929 x 9.843 inches / 176.0 x 250.0 mm
 Shift: move down by 14.17 points
 Normalise (advanced option): 'original'

 32

 D:20130221112901
 708.6614
 B5
 Blank
 498.8976

 Tall
 1
 0
 No
 1115
 512

 Fixed
 Down
 14.1732
 2.8346

 Both
 1
 AllDoc
 2

 CurrentAVDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9b
 Quite Imposing Plus 2
 1

 7
 180
 179
 180

 1

 HistoryList_V1
 qi2base

