
Turku Centre for Computer Science

TUCS Dissertations
No 167, December 2013

Bo Yang

Towards Optimal Application
Mapping for Energy-Efficient
Many-Core Platforms

Towards Optimal Application
Mapping for Energy-Efficient

Many-Core Platforms

Bo Yang

To be presented, with the permission of the Faculty of Mathematics and
Natural Science of the University of Turku, for public criticism in

Auditorium Beta on December 9th, 2013, at 12 noon.

University of Turku
Department of Information Technology

20014 Turku, Finland

2013

Supervisors

Associate Processor Juha Plosila
Department of Information Technology
University of Turku
20014 Turku, Finland

Senior Researcher Tero Säntti
BID Technology, University of Turku
20014 Turku, Finland

Senior Researcher Liang Guang
Department of Information Technology
University of Turku
20014 Turku, Finland

Reviewers

Professor Timo D. Hämäläinen
Department of Pervasive Systems
Tampere University of Technology
Korkeakoulunkatu 1, FIN-33720 Tampere
Finland

Associate Professor Zhonghai Lu
Department of Electronic Systems
Royal Institute of Technology (KTH)
Isafjordsgatan 39, Kista, 164 40, Stockholm
Sweden

Opponent

Associate Professor Jesús Barba Romero
School of Computer Science
University of Castilla-La Mancha
Edificio Fermı́n Caballero
13071 Ciudad Real, Spain

ISBN 978-952-12-2982-4
ISSN 1239-1883

The originality of this thesis has been checked in accordance with the University of

Turku quality assurance system using the Turnitin OriginalityCheck service.

Abstract

As massively parallel computing on many-core platforms has become the
state-of-the-art, application mapping is widely researched as an important
step to minimize the energy consumption and improve the system perfor-
mance. Conventional algorithms are prohibitively expensive for the appli-
cation mapping problem, if even possible. To find the optimal application
mapping, the frameworks and algorithms which optimize the allocation of
large amount of computation and communication resources on many-core
platforms, have to be innovated. This thesis proposes systematic frame-
works for single-/multi-application mapping, and innovates on conventional
and evolutionary algorithms for energy minimization on many-core plat-
forms.

Firstly, an application mapping framework which integrates both com-
putation and communication resource allocations is proposed. In this three-
stage framework, IP selection aims to minimize the energy consumed for the
computation of tasks. Tile assignment and communication mapping focus
on the minimization of the energy consumed for the inter-core communica-
tion. In addition to investigating and formulating the individual operation
of each individual stage, the framework emphasizes on the interaction of the
three stages. With each individual stage addressing a particular resource al-
location problem, the collective effort of the three stages results in an overall
optimized mapping from the system’s point of view.

For the three stages in the framework, tree-model and simulated an-
nealing (SA) based algorithms are proposed in this thesis. By utilizing
the tree-model of a network-on-chip (NoC) in the mapping, the tree-model
based algorithm is time- and energy-efficient. To improve the optimality
of the mapping solutions, two SA-based algorithms are developed for ap-
plication mapping. Compared to the generic SA algorithm, the first one,
the parameter-optimized SA (POSA) algorithm, utilizes a set of optimized
parameters which speeds up the convergence to the global optimal map-
pings. Furthermore, the tk-SA algorithm starts the annealing from an al-
ready optimized initial solution, with the appropriate initial temperature.
The quantitative evaluations show that both SA-based algorithms need sig-
nificantly fewer iterations to converge to the optimal mappings, without loss

i

of mapping quality.
While the previous framework and algorithms address the mapping prob-

lem of a single application, a novel framework for mapping multiple applica-
tions adaptively with unbounded or bounded number of cores is presented.
Consisting of two steps, application mapping and task mapping, the pro-
posed mapping method finds an area on a many-core NoC for each applica-
tion and then maps all tasks of the application into the area. A weighted
node average distance (WNAD) based algorithm is proposed for application
mapping. The proposed tk-SA algorithm is applied to the task mapping
in the case of unbounded number of cores. A task-sequence based (TSB)
algorithm is proposed for the task mapping in the case of bounded number
of cores. The quantitative comparisons show that the WNAD+tk-SA map-
ping algorithms achieves the lowest communication energy consumption in
all combinations of application mapping and task mapping algorithms eval-
uated.

ii

Acknowledgements

First and foremost, I would like to express my sincerest gratitude to my
supervisors, Prof. Juha Plosila and Dr Tero Säntti. Prof. Juha Plosila has
supported me throughout my doctoral study, which allows me to explore
promising research topics freely and flexibly. With his solid knowledge and
high-level guidance, I have been able to tackle challenging issues and make
progresses in my research. Dr Tero Säntti gave me valuable instructions on
how to carry out high quality research as soon as I began my study. I am
grateful to his comments and criticism on my research works and the thesis.

I owe a very important debt to my best friend and my youngest super-
visor, Dr Liang Guang. He has inspired and encouraged me in the whole
course of my PhD program. We have worked together on many research
tasks and he has contributed so much to my research. In addition, Dr Liang
Guang has provided invaluable help and effort on finalizing and refining
my thesis. He is a nice fella that I can always learn from, not only in the
academic, by also in the real life.

I also wish to thank external experts for reviewing and being opponent
for my thesis defence: Prof. xxx, Prof. Timo D. Hämäläinen and Prof.
Zhonghai Lu. Thanks to their detailed reviews and constructive comments,
the thesis has been modified and improved.

I would like to thank my colleagues, Thomas Canhao, Xu and Alexander
Wei, Yin. We have cooperated in several research issues. I have been moti-
vated by their professionals in corresponding fields. Besides, I am grateful
for the generous help and friendliness from my colleagues, Pasi Liljeberg,
Teijo Lehtonen, Rajeev Kumar Kanth and Khalid Latif.

I would like to acknowledge the financial and academic support from
Academy of Finland and Turku Center for Computer Science (TUCS).

Last but not least, I would like to express my deepest appreciation to my
wife and daughters. With their endless love and support, I have never lost
my direction and courage to go forward in my life. They are also the source
of my pleasure and happiness which help me to break down the technical
barriers in my research, as well as the physical difficulties in our life.

iii

iv

Contents

1 Introduction 1

1.1 Parallel Computing on Many-Core Processors 1

1.1.1 Limitations of Single-Core Architecture 1

1.1.2 Emergence of Many-Core Processors 3

1.1.3 Massively Parallel Computing 5

1.2 Communication-Centric Parallel Computing 6

1.3 Application Mapping . 10

1.4 Thesis Objectives . 11

1.5 Thesis Contributions . 12

1.6 List of Publications . 14

1.7 Organization of Thesis . 15

2 Energy-Efficient Many-Core Platforms 17

2.1 Parallel Architectures of Many-Core Platform 17

2.1.1 Shared Address Space 18

2.1.2 Message Passing . 20

2.2 Interconnection Network . 22

2.2.1 Network Characteristics 22

2.2.2 Network Topology . 23

2.2.3 Routing and Switching 27

2.2.4 Network-on-Chip . 30

2.3 Energy-Efficient Design Methods 32

2.3.1 Energy Consumption 32

2.3.2 Adaptive Voltage and Frequency Scaling 33

2.3.3 Power Gating . 34

2.3.4 Clock Gating . 35

2.3.5 Application Mapping 35

2.4 Chapter Summary . 38

3 Application Mapping 39

3.1 Three-Stage Application Mapping 40

3.2 NoC and Application Model 41

v

3.2.1 NoC Model . 41

3.2.2 Application Model . 42

3.3 Formulation of Application Mapping Problem 45

3.3.1 Framework of Three-Stage Application Mapping . . . 45

3.3.2 IP Selection . 47

3.3.3 Tile Assignment . 47

3.3.4 Communication Mapping 48

3.4 Energy Consumption Model 49

3.5 Mapping Methods . 50

3.5.1 Overview of Mapping Methods 50

3.5.2 Exhaustive Search (ES) 51

3.5.3 Branch-and-Bound Search 52

3.5.4 Greedy Incremental Search 53

3.5.5 Simulated Annealing (SA) 54

3.5.6 Genetic Algorithm . 56

3.5.7 Integer Linear Programming (ILP) 58

3.5.8 Summary of Mapping Methods 60

3.6 Chapter Summary . 61

4 Tree-Model Based Mapping Heuristic 63

4.1 Objective Function . 63

4.1.1 Energy Model . 63

4.1.2 Delay Model . 64

4.2 Tree-Model Based Mapping Algorithm 65

4.2.1 Extended Tree Model of a NoC 65

4.2.2 Mapping Tasks on Extended Tree 67

4.3 Experimental Evaluation . 69

4.3.1 Experiment Setup . 69

4.3.2 Results Analysis . 70

4.4 Chapter Summary . 72

5 Simulated Annealing for Global Optimum 75

5.1 Nelder-Mead Simplex Method 76

5.2 Parameter-Optimized Simulated Annealing 78

5.2.1 Parameters and Functions in SA 78

5.2.2 Parameter Optimization 81

5.2.3 Parameter-Optimized Simulated Annealing Algorithm 83

5.3 Experimental Evaluation . 83

5.3.1 Experiment Setup . 83

5.3.2 Results Analysis . 84

5.4 Chapter Summary . 87

vi

6 Accelerating Simulated Annealing 89
6.1 Simulated Annealing . 90

6.1.1 Acceptance Function: Accept(∆C, T) 90
6.1.2 Objective Function . 91
6.1.3 Parameters Selection 91

6.2 Accelerated Simulated Annealing 91
6.2.1 Typical Behavior of SA 91
6.2.2 Acceleration Method 92
6.2.3 Heuristic for Optimized Initial Solution 93
6.2.4 Determination of tk 93
6.2.5 tk-SA Algorithm . 95

6.3 Experimental Evaluation . 96
6.3.1 Experiment Setup . 96
6.3.2 Result and Analysis 96

6.4 Chapter Summary . 100

7 Resource-Aware Multi-Application Mapping 101
7.1 Multi-Application Mapping Problem 102

7.1.1 Problem Formulation 103
7.1.2 Work Flow of Multi-Application Mapping 103

7.2 Unbounded Mapping . 104
7.2.1 Objective Formulation 105
7.2.2 Two-Step Multi-Application Mapping 106

7.3 Bounded Mapping . 110
7.3.1 Application Mapping 110
7.3.2 Task Mapping Analysis 110
7.3.3 Task-Sequence-Based Task Mapping 112

7.4 Quantitative Evaluation . 113
7.4.1 Experimental Setup 114
7.4.2 Results of Unbounded Mapping 115
7.4.3 Results of Bounded Mapping 117
7.4.4 Experiment Summary 119

7.5 Chapter Summary . 120

8 Conclusion 121
8.1 Three-Stage Application Mapping 121
8.2 Accelerating High-Performance Mapping Algorithms 122
8.3 Towards Multi-Application Mapping 123
8.4 Future Work . 124

vii

viii

List of Figures

1.1 Performance Growth of Generations of Processors since 1978
[1] . 2

1.2 The Architecture of Intel Core i7 Processor [2] 4

1.3 The Design Process of Parallel Computing on Many-Core
Platforms . 8

1.4 An Illustration of The Design Process 9

2.1 Shared Address Space Architecture 19

2.2 Message Passing Architecture with Distributed Memory Mod-
ules . 21

2.3 Direct Interconnection Networks 25

2.4 Dynamic Interconnection Networks 26

2.5 Illustration of Circuit and Packet Switching 29

2.6 An Example of 4x4 2D Mesh NoC 32

2.7 A Basic Principle of Energy-Efficient Application Mapping . 36

3.1 An Overview of Multi-Stage Application Mapping on Hetero-
geneous NoC . 40

3.2 A Task Graph of MP3 Decoder 44

3.3 An Example CCG of the TG in Figure 3.2 45

3.4 The Work Flow of Application Mapping 46

3.5 An Example of Search Tree in [3] 53

4.1 Extended Tree Abstraction of a 2D Mesh 67

4.2 Task Mapping Using Extended Tree of a NoC 69

4.3 Comparison of Run-time of Tree-model Based and GI algorithm 70

4.4 Comparison of normalized ANL, E and WCA for FFT and
Radix benchmarks over different mapping strategies 72

5.1 Comparison of WCA . 86

5.2 Evaluation of Energy Consumption 86

6.1 The Workflow of the tk-SA Algorithm 90

6.2 Typical Behavior of SA (H264) 92

ix

6.3 Behavior of tk-SA Algorithm (H264) 98
6.4 Behavior of full-range SA Algorithm (H264) 99
6.5 Comparison of WCA . 99
6.6 Evaluation of Energy Consumption 100

7.1 Work Flow of Multi-Application Mapping 104
7.2 Application Mapping Using MER 106
7.3 Comparison of Mappings for Application A3 109
7.4 Modified Task Graph with Virtual Dependency 112
7.5 Mapping Result of Unbounded Mapping on a 9× 9 NoC . . . 116
7.6 Normalized Communication Energy Consumption of Four Bench-

marks with Different Mapping Methods for UM 117
7.7 Result of Bounded Mapping with WNAD Application Map-

ping Algorithm on a 7× 7 NoC 118
7.8 Communication Energy Consumption of Four Benchmarks

with Different Mapping Methods in BM 119
7.9 Execution Times of Four Benchmarks with Different Mapping

Methods in Bounded Mapping 119

x

List of Tables

3.1 Functions and Parameters for SA 56
3.2 Comparison of Mapping Methods 61

4.1 System configuration parameters 71

5.1 Functions and Parameters for SA 82
5.2 Optimized Parameters of SA for Benchmarks 84
5.3 Iterations of SA for Benchmarks 85
5.4 Runtimes and Speedup for Benchmarks 85

6.1 Parameters Applied in SA and tk-SA 97
6.2 Iterations and Runtimes for Benchmarks 97
6.3 Mean of WCA at tk for Benchmarks 98

7.1 Mapping Algorithms for Experimental Comparison 115
7.2 Mappings and Task Sequences of GE with Different Task

Mapping Algorithms . 118

xi

xii

List of Algorithms

1 General Simulated Annealing Algorithm 55

2 Abstraction Algorithm of Extended Tree Model 66
3 Tree-Model-Based Task Mapping Algorithm 68

4 Nelder-Mead Simplex Method for Minimizing f(p) 77
5 Parameter-Optimized Simulate Annealing 83

6 tk-SA Algorithm . 95

7 NAD-Based Application Mapping Algorithm 108
8 WNAD-Based Application Mapping Algorithm 109
9 Task-Sequence-Based Task Mapping Algorithm 114

xiii

xiv

List of Abbreviations

ALU Arithmetic Logic Unit

APU Accelerated Processing Unit

BB Branch-and-Bound

BM Bounded Mapping

CCG Core Communication Graph

CPU Central Processing Unit

DAG Directed Acyclic Graph

DSM Distributed Shared Memory

DVFS Dynamic Voltage and Frequency Scaling

EA Evolutionary Algorithm

FLOPS Floating Point Operation per Second

GA Genetic Algorithm

GI Greedy Incremental

GPU Graphics Processing Unit

ILP Integer Linear Programming

IP Intellectual Property

IPR IP Repository

ISA Instruction Set Arxhitecture

LP Linear Programming

MER Maximal Empty Rectangle

xv

MIC Many Integrated Cores

MIN Multistage Interconnection Network

MIPS Microprocessors with Interlocked Pipeline Stages

MPI Message Passing Interface

NAD Nodes Average Distance

NoC Network-on-Chip

NTG Network Topology Graph

POSA Parameter-Optimized SA

SA Simulated Annealing

SCC Single-Chip Cloud Computer

SMT Symmetric Multithreading

TG Task Graph

TSB Task-Sequence Based

UM Unbounded Mapping

WCA Weighted Communication of an Application

WNAD Weighted NAD

xvi

Chapter 1

Introduction

1.1 Parallel Computing on Many-Core Processors

1.1.1 Limitations of Single-Core Architecture

Since the first generation of microprocessors was invented in 1970s, the
computer architects and the chip manufacturers have strived to provide
new microprocessors with higher performance and extended functionality.
Historically, for the processors with single central processing unit (CPU),
called single-core processors or uniprocessors, there have been two major
approaches to increase the computation capacity of the processors [1]. One
is pipelining of individual instructions. In pipelining, the execution of an
instruction is decomposed into stages, e.g., instruction fetch, instruction de-
code, operand fetch, execute and store result. The basic idea of pipelining is
to keep all stages occupied by executing multiple instructions in a pipelined
way. Although the execution time of one instruction is not decreased, the
throughput of the processor is increased. The decomposed small stages
also allow a faster clock rate of the processor, which again contributes to
a higher throughput and is an obvious sign of increased performance to
normal customers. Another approach is the adoption of superscalar archi-
tecture. Instead of using only one arithmetic logic unit (ALU), multiple
ALUs are implemented in the superscalar processors. Sets of instructions
of applications are checked by the compiler and independent instructions
are executed simultaneously on the group of parallel ALUs, often out-of-
order with respect to the original sequence. The approach is enabled by
the increased number of transistors on chip provided by new technologies
according to Moore’s law [4]. With these approaches, we have witnessed an
exponential performance improvement of single-core processors for about
two decades, as shown in Figure 1.1.

However, the gains of the pipelining and superscalar architecture have
reached their limits since about 2005. There are two outstanding reasons

1

which limit the continuous development of pipelining and superscalar ar-
chitecture in a single-core processor. The first reason is that there is an
upper bound for the amount of instruction level parallelism which can be
exploited in an application. This limitation results in diminishing returns
of applying pipelining and superscalar techniques, which are dependent on
the instruction level parallelism of applications [1]. The second reason is
the power/energy concern which has been imposed by the increased density
of transistors on the processors [5]. As the single-core processors were run
at ever higher clock rates, the power required grew at a faster rate than
the frequency. In addition, when the technology scaled down, the leakage
power could not be ignored anymore due to its increased portion in the to-
tal power consumption. Reported in [6], the leakage power has accounted
for more than 50 percent of the total power consumption starting from the
65 nm technology. The power/energy situation becomes even worse for
the complex single-core processors with deeper pipelining and broader issue
widths, since larger amounts of transistors were needed for implementing the
additional logic. The power/energy issue directly resulted in serious heat
dissipation problem and constrained the performance growth of conventional
single-core processors, as the cooling technologies did not keep up with the
increasing power and energy consumption. The above limitations have pre-
vented the processor manufactures from delivering ever higher performance
with single-core processor architectures.

Figure 1.1: Performance Growth of Generations of Processors since 1978 [1]

2

1.1.2 Emergence of Many-Core Processors

To overcome the limitations of conventional single-core architectures and to
fulfill the requirement of increasing computation capability from end users,
multi-core processor architectures have been proposed by major chip ven-
dors as a promising alternative to the single-core architectures. As the
name implies, a multi-core processor integrates usually a moderate number
of processing units, referred to as cores, into a single processor. All cores are
organized according to a specific topology and connected through an inter-
connection medium such as bus, crossbar switch, or network-on-chip (NoC)
[7]. The cores communicate with each other through the interconnections
for data transfer, as well as for synchronization and coordination control
(see Chapter 2). Figure 1.2 shows the architecture of the Intel Core i7 pro-
cessor which can have up to 8 four-issue, out-of-order, two-way symmetric
multithreading (SMT) cores. A three-level cache hierarchy is used for data
exchange between cores and memories. With multi-core processors, the set
of tasks can be distributed to multiple cores and processed in parallel. With
a lighter workload, each core has not to be as complex and powerful as its
counterpart in the single-core processors. Hence, each core does not have
to run at the clock rate of the single-core processors, which significantly
decreases the power consumption. As demonstrated in [8], a decrease of
20% in the clock frequency can reduce the dynamic power consumption by
50%. Compared to a single-core processor in which only the instruction level
parallelism is supported, explicit parallelism like thread-level and data-level
parallelism, can be efficiently exploited and employed by multi-core pro-
cessors. These two major features of multi-core processors alleviate the
limited instruction level parallelism and increased power concerns in single-
core architectures. Moreover, compared to single-core processors, multi-core
architectures provide flexibility of dynamically adjusting the supply voltage,
clock frequency and workload on individual cores in order to optimize the
system performance and reduce power/energy consumption [9]. Multi-core
processors are the inevitable evolution of conventional uniprocessors and are
taking over the world of computers.

The mainstream multi-core processors on the market are general-purpose
multi-core processors, for example, Intel Nehalem and Core i7, AMD Phe-
nom, IBM POWER7, Oracle SPARC T3 and ARM Cortex A15 ([2] [10]
[11]). These processors target at a wide variety of applications which are
usually found in desktops and servers. To reach the objective, a relatively
small number of rather complex and powerful cores are employed. The cores
in such a general-purpose multi-core processor typically inherit features that
have been well developed in previous generations of uniprocessors, such as
standard instruction set architecture (ISA) (e.g., CISC x86 ISA in Intel
processors), wide-issue and out-of-order execution, multithreading and mul-

3

Two to Eight Cores

....Four-Way

Out of Order Core

Two-Way SMT

32 KB

IL1

32 KB

DL1

256 KB L2

Four-Way

Out of Order Core

Two-Way SMT

32 KB

IL1

32 KB

DL1

256 KB L2

8 MB L3

Quick Path Memory Controller

Figure 1.2: The Architecture of Intel Core i7 Processor [2]

tilevel cache hierarchy. The replication of this kind of general-purpose cores
not only increases the computing capability of the multi-core processors, but
also simplifies task and thread management.

Based on the same architectural innovation, an alternative parallel pro-
cessor design approach is to integrate a larger number of smaller and simpler
cores for more fine-grained parallel applications. This trend results in the
so-called many-core processors, in which usually tens to thousands cores are
employed. In contrast with cores in the multi-core processors, the cores in
many-core processors are less complicated, but more specified for partic-
ular application domains like graphics processing and scientific computing.
The examples of many-core processors include 80-tile Intel TeraFLOPS [12],
Tilera’s Tile GX family [13] and NVIDIA graphics processing units (GPUs)
(up to 3072 cores in Nvidia’s Fermi GPUs) [14]. As the future of high-
performance processors, many-core processors have drawn great attention
for the major chip manufactures. The ongoing projects of developing more
powerful many-core processors include, for instance, single-chip cloud com-
puter (SCC) and many integrated cores (MIC) architecture in Intel, micro-
processors with interlocked pipeline stages (MIPS) in SiCortex, and CSX700
in ClearSpeed [11].

With respect to the heterogeneity of processing cores, the multi-core or
many-core processors can be classified into homogeneous and heterogeneous
processors. A processor consisting of a number of identical cores is termed as
homogeneous processor. Conversely, the processor integrating various types

4

of cores, either in complexity or functionality, is called a heterogeneous pro-
cessor. A heterogeneous processor could be a hybrid of general-purpose cores
and high-performance cores like the accelerated processing units (APUs) of
AMD Fusion [15] and Intel Sand Bridge[16] which integrate a multi-core
CPU and a GPU on the same chip. A heterogeneous processor can contain
processing elements such as DSPs, reconfigurable FPGA blocks and other
intellectual property (IP) cores. For the sake of generality, in this thesis,
we refer to the processing elements in a heterogeneous multi- or many-core
processor as IP cores. With the heterogeneity of IP cores, heterogeneous pro-
cessors are more capable of improving system throughput, reducing power
consumption and exploiting parallel computing than homogeneous proces-
sors [17] [18].

1.1.3 Massively Parallel Computing

Although it was introduced already in the middle of 1960s, parallel comput-
ing did not become so popular before the emergence of multi- and many-core
processors. Parallel computing used to be too expensive and difficult to use
for normal organizations and end users, and was mainly limited to scientific
computing in research units and governments. Nowadays, a desktop com-
puter with a multi-core processor can be seen as a parallel computing sys-
tem. More powerful parallel computing systems targeting more complicated
and difficult applications, or massively parallel computing, have become the
norm of the present computing systems. Massively parallel computing has
been employed in a variety of fields including complicated simulations, en-
ergy analysis, computer-aided design and computer-aided manufacturing,
graphics processing, life science, finance, and data mining. Data-intensity
is the most significant feature of applications in these fields. Consequently,
the computation for solving such problems is time- and energy-consuming.
Take the climate simulation presented in [19] as an example. Using a high-
resolution 3D model for partitioning the globe, it needs 1020 floating point
operations to complete the climate simulation over a certain weather cycle.
For such amount of operations, it will take 31 centuries for a single-core
processor, at a rate of 109 floating point operation per second (FLOPS),
to complete the simulation. Clearly, it is impractical to use a single-core
processor to do jobs as heavy as the climate simulation. Massively parallel
computing based on the multi- and many-core processors is a more efficient
way to solve such kind of extremely data-intensive problems.

The implementation of massively parallel computing is a two-sided prob-
lem [19]. One side is the algorithms which represent the specific applications
to be realized. The other side is the parallel computing platforms which pro-
vide the processing resources to the application, and can be computers with
multi- or many-core processors, or cluster(s) of computers. To run an ap-

5

plication on a parallel computing platform, i.e., to move from the algorithm
side to the platform side, a systematic design flow should be followed. In this
flow, the issues including algorithm analysis, algorithm parallelization, par-
allel programming, communication identification, scheduling and mapping,
have to be dealt with.

1.2 Communication-Centric Parallel Computing

To run an application in a parallel paradigm, the application which was
originally represented by a sequential program, has to be implemented by
a team of tasks which can be distributed and executed simultaneously on
different cores. To generate the same outputs as the original sequential pro-
gram, the concurrent executions of all tasks need to be coordinated so that
the dependencies among them can be fulfilled and they can work in the
correct order. The dependence between tasks can be control dependency
or data dependency, or more precisely, classified into flow dependency, an-
tidependency and output dependency [20]. If one task has dependency on
one or more tasks, we say that the task is dependent on those tasks. Flow
dependency happens when one task produces output that is used by another
task. To meet this kind of data dependency, the resulted output (data) has
to be transferred from the first task to the second task. Antidependence
occurs when one task uses a variable as its input which should be written by
another task later. An earlier write operation of the second task will make
the first task produce a wrong output. A wrong output could also be gener-
ated while two tasks write to the same variable out of order. This scenario
comes from the violation of the output dependency. To deal with the antide-
pendency and output dependency, synchronization control information has
to be exchanged among tasks or between tasks and the operation system.
The transfer of data and the exchange of synchronization information in-
troduce another important issue, communication, in the parallel computing
systems on multi-core or many-core platforms. There are two typical meth-
ods for dealing with the communication problem on a multi- or many-core
platform: shared variables or message passing. The method applicable to
a specific platform is dependent on the memory structure of the platform.
The communication methods will be discussed in more detail in Chapter 2.

The communication has great impact, not only on the overall perfor-
mance of a parallel computing system, but also the power/energy consump-
tion. A task cannot start its operation until the tasks that it is dependent
on have already completed their executions and, for those with data depen-
dency (or flow dependency), the resulted data have been received. A delay
on the starting time of a task due to dependencies will in turn postpone the
execution of tasks which are dependent on this task and increase the overall

6

execution time of an application. For some latency-sensitive applications,
like game or streaming applications, the delay can become unacceptable.
In addition, in modern technology, the energy consumption of communica-
tion is significant compared to that of computation. For example, trans-
ferring 32-bit data across a 10 mm chip consumes 17 pJ in 50 nm CMOS,
while a 32-bit ALU operation only consumes 0.3 pJ . The great impact on
performance and power/energy consumption makes communication analy-
sis and optimization integral parts of a parallel computing system design.
In other words, the parallel computing design on many-core platforms has
become communication-centric, instead of computation-centric as it was in
the uniprocessor era [21] [11].

Based on the communication-centric design paradigm, a general design
flow of implementing parallel computing of an application on multi-core or
many-core platforms is presented in Figure 1.3. The design starts from a
sequential program which has been used for representing the application.
The target platform, on which the parallelized program will be executed, is
also given at the beginning. The first stage of the design flow is algorithm
design. It begins with analyzing the sequential program to find which parts
of the program can be run in parallel. Based on the analysis, the original
program is decomposed into a set of program fragments, each of them is
described by sequential code and called a task. The dependencies between
tasks are also analyzed and represented by, for example, a directed acyclic
graph (DAG) [22]. The size of a task (in terms of the number of instruc-
tions) is called granularity. The tasks with a large size have a coarse-grained
granularity, while the tasks with a small size are fine-grained. The terms
granularity, coarse and fine are relative in the description of an application.
The granularity of tasks determines the amount of computation to complete
the task, as well as the intra-task communication. More fine-grained tasks
can increase the degree of parallelism, but also results in a larger amount
of intra-task communication which implies more scheduling and mapping
overhead. Decomposition of application into tasks needs to find a good
compromise between the number of tasks and their granularity. The de-
composition is also determined by the inherent parallelism property of an
application.

The set of decomposed tasks is then programmed using an appropri-
ate programming language. In the parallel programming stage, the features
of the target platform have to be taken into account. This is because the
multi- and many-core platforms from different vendors might be built on
different parallel architectures and memory organizations (see Section 2).
Thus, they might only support particular communication methods and pro-
gramming languages. For example, for the many-core processors with dis-
tributed memory, the message passing method has to be used for inter-core
data transfer, synchronization and coordination. In this case, the language-

7

Application

(Sequential Program)

Algorithm Design
Parallelism Analysis

Decomposition into tasks

Dependence Analysis

Parallel Programming
Tasks Implementation (Coding)

Parallelism Levels

Communication Mechanism

Scheduling
Executiong Seqeunce

Task-Process Assignment

Mapping
Task-Core Assignment

Core Mapping

Communication Mapping

Configuration and

Execution

Tasks Distribution

Programs Execution

Parallel Architecture

Figure 1.3: The Design Process of Parallel Computing on Many-Core Plat-
forms

independent communication protocol, MPI (message passing interface), is
currently the dominant model for programming. After an application has
been programmed as a group of parallel programs, the communication vol-
umes between the communicating tasks (programs) can be obtained by static
or dynamic program analysis/profling, as introduced in [23] [24]. The com-
munication volume information can be added into the dependency graph
(e.g., a DAG) generated in the previous algorithm design stage. The up-
dated dependency graph is an important representation of the application,
which will be used in the following scheduling and mapping stages for pro-
ducing an optimized design.

Figure 1.4 is an illustration of the design process presented here with
the parallel programming stage omitted. The programs of tasks need to
be assigned to processes or threads which can be run on a processor. This

8

assignment is called scheduling. The scheduling also produces the execution
sequence of the given set of tasks to make sure that the antidependency
and output dependency constraints are fulfilled. If the number of tasks is
larger than that of available processes or threads, multiple tasks have to be
assigned to one same process or thread. In this case, scheduling can take the
granularity of each task into account and find a load-balanced scheduling
solution.

A
p

p
lic

a
t
io

n
 (S

e
q

u
e

n
tia

l P
r
o

g
r
a

m
)

core1 core2

core3 core4

t1

t2

t3

t5
t6

t7

t9

Parallelized Application

t8

Decomposition

t1

t2

t3

t5

t6

t7 t8 t9

process 1 process 2

process 4process 3
Processor

Scheduling Mapping

ti task

Figure 1.4: An Illustration of The Design Process

With the task-process assignment solution obtained in the scheduling
stage, themapping (or application mapping) stage maps processes or threads
onto physical cores on a platform. Similarly to scheduling, multiple processes
or threads can be mapped onto one same core if the number of processes or
threads exceeds that of cores. Inter-task communication is the major issue
which is taken care in the mapping stage. The typical objectives of mapping
an application on a many-core platform include minimizing the communi-
cation power/energy consumption, decreasing the bandwidth requirement
and reducing the contention and congestion situation on the communica-
tion networks. In addition, the workload on cores can be balanced by the
application mapping as well.

After the optimized scheduling and mapping solutions have been found,
the last stage of the design is to load the set of parallel programs to their
mapped cores on the target multi- or many-core platform. Based on the
scheduling carried out by the operating system, the set of tasks execute
concurrently and complete the jobs of the application.

9

1.3 Application Mapping

This thesis focuses on the application mapping stage. Basically, the appli-
cation mapping is a resource allocation problem. It decides how to allocate
processing cores (computation resources) to tasks, and how to distribute
inter-task communications on the interconnection network (communication
resources) [25]. The solution of computation resource allocation determines
on which core a task will be executed, which in turn determines the execution
time and energy consumption of executing the task. The time and energy
consumption of computation might vary significantly over different task-core
mapping solutions, especially on heterogeneous many-core platforms. In ad-
dition, assuming that the cores are connected by a network architecture, e.g.,
a NoC, the task-core mapping also determines how far (in terms of hops)
the data has to be transferred between each pair of communicating tasks.
More hops result in higher communication energy consumption. Regarding
the communication resource allocation, the distribution of inter-task com-
munication on the interconnection network determines the contention and
congestion situations in the network. High contention and congestion in
the network will delay the communication and degrade the performance of
the running applications. High congestion in the network also increases the
communication energy consumption since data has to be kept longer in the
communication network.

The application mapping is a resource allocation problem between a
group of cores (resources) and a set of tasks (jobs), consisting of compu-
tation and communication resource allocation. The purpose of the appli-
cation mapping is to obtain an optimized solution which can improve the
system performance and minimize the cost such as energy/power consump-
tion. This objective can be achieved by individual optimization of either
computation resource allocation or communication resource allocation, or
by the combination of both. However, this kind of resource allocation prob-
lem is categorized as the combinational optimization problem which consists
of finding an optimal solution from a finite set of candidate solutions. It is
an instance of the constrained quadratic assignment problem and is known
as being NP-hard [26].

To solve such an important but difficult problem, extensive works have
been carried out for developing efficient mapping algorithms [27, 28, 29, 30,
31, 32]. Based on the study of the existing works, we observed that:

1. Minimizing the communication power/energy consumption is one of
the major objectives that have been addressed in existing works. This
is due to, on one hand, an ever larger number of transistors on pro-
cessor chips, which has resulted in increasing power/energy concerns.
On the other hand, a tighter power/energy consumption constraint is

10

imposed by modern computers or hand-held devices because of cool-
ing problems and/or battery capacity limitations, conflicting with the
fact that more power and energy are required by increasingly complex
parallel applications.

2. Performance and complexity of a mapping algorithm have to be traded
off according to the pre-defined objectives and constraints imposed
by hardware and software. More complex algorithms, e.g., genetic
algorithm [32] or linear programming [29], can find near-optimal or
optimal mapping solutions, but the required computation effort is huge
or prohibitively expensive for large-size problems. On the contrary,
simpler algorithms like greedy heuristic search [28], can find a solution
with comparably less computation and runtime, but the solution could
not be guaranteed to be globally optimal or near-optimal. Algorithms
with better trade-off between performance and complexity need to be
developed.

3. The majority of the existing works do individual optimization on ei-
ther computation resource allocation, or communication resource allo-
cation. A systematic method which combines the optimization process
on both issues has been hardly investigated.

4. Most existing works aim to solve the single-application mapping prob-
lem in which only one application is mapped onto a many-core plat-
form. As future many-core processors will provide abundant process-
ing cores, the focus should be shifted from single-application mapping
to multi-application mapping where multiple applications are mapped
and executed on a many-core platform. This introduces another level
of parallelism, the application-level parallelism.

The first observation shows that power/energy consumption should be the
major concern when we develop new application mapping algorithms. Ac-
cording to the second observation, the mapping algorithms to be developed
should ensure the optimality of the mapping solutions while keeping the
complexity of the algorithm as low as possible. The third and fourth obser-
vations point out the potential fields in which we should explore to pursue
high-performance and innovative application mapping methods for parallel
computing on future many-core platforms.

1.4 Thesis Objectives

Motivated by aforementioned observations, this thesis targets: (1) identify-
ing the general mapping process which incorporates both computation and
communication resource allocation for finding an overall optimal mapping

11

solution; (2) developing novel mapping algorithms applied to computation
and communication resource allocation problems. More precisely, the ob-
jectives of this thesis include:

1. To build a general application mapping framework for heterogeneous
multi-core or many-core platforms, in which the specific mapping stages
for computation and communication resource allocation are identified
and integrated in a systematic way, in order to produce globally op-
timal mappings. The formulation of each stage and the cooperation
mechanism among them will be investigated.

2. To develop mapping algorithms which are used for each specific map-
ping stage. The objective of the algorithms is to optimize the spe-
cific design interests in terms of performance or cost metrics (e.g.,
energy consumption, bandwidth requirement and execution time). As
the exhaustive search and linear programming methods are too time-
consuming, or even prohibitively expensive for large-size mapping prob-
lems, algorithms based on search heuristics (e.g., simulated annealing
and genetic algorithm) will be particularly investigated. How to trade
off the complexity and performance is the major consideration in de-
veloping new mapping algorithms.

3. To establish a methodology for mapping multiple applications onto
many-core platforms. The objective of the multi-application mapping
algorithms is to minimize the resource competition between applica-
tions, while keeping the design metrics of an individual application as
good as those achieved by single-application mapping.

1.5 Thesis Contributions

To reach the objectives, extensive investigations of the application map-
ping problem on a heterogeneous many-core platform have been conducted.
Based on the investigations, a generic framework of application mapping
is presented. Three high-performance algorithms are developed with the
purpose of improving the solution quality while decreasing the algorithm
complexity. Utilizing the algorithm developed, a methodology of mapping
multiple applications is proposed. The main contributions of this thesis are:

1. A three-stage process of application mapping is introduced for hetero-
geneous many-core platforms, which is composed of three consecutive
stages, i.e., IP selection, tile assignment and communication mapping.
The three-stage process provides a framework of how to solve the com-
putation and communication resource allocation problems in a system-
atic way. IP selection selects one type of IP core available on the target

12

platform for each task. Tile assignment decides which tile (or node)
is assigned for the execution of a task, provided that the type of the
IP core on this tile is the same that was selected for the task in the
IP selection stage. When the tile assignment has been done, commu-
nication mapping allocates one routing path on the communication
network for each inter-tile communication. The functions of the three
stages are formulated respectively.

2. Six categories of mapping algorithms which are broadly used in the
three sub-stages of application mapping, including exhaustive search,
branch-and-bound, greedy incremental search, simulated annealing,
genetic algorithm, and integer linear programming, are analyzed and
compared in terms of search space size, solution quality, complexity
and problem scope. The study of the algorithms provides insights into
the complexity and performance of each type of algorithm. Based on
the study, we were inspired to put effort on developing optimized sim-
ulated annealing algorithm for high-performance application mapping,
due to its better trade-off between solution quality and time complex-
ity.

3. Three algorithms are proposed for application mapping, with different
complexity and performance trade-offs. The first one is a time-efficient
task-core mapping algorithm which utilizes a tree-model of a NoC to
speed up the mapping process. Two simulated annealing (SA) based
algorithms are proposed for the purpose of finding the globally optimal
mapping solutions. To reduce the time complexity of the generic SA
algorithm, the Nelder-Mead simplex method is applied in one algo-
rithm to generate the optimized parameters for the SA algorithm. In
another algorithm, called tk-SA, the generic SA algorithm is acceler-
ated by starting the annealing process from a lower initial temperature
tk together with an optimized initial mapping solution. The experi-
ments show that both algorithms reduce the random partition of the
generic SA algorithm and speed up the convergence to the final map-
ping solutions, without loss of mapping quality. The algorithms were
initially published in my previous publications [33] [34] [35].

4. A novel methodology for mapping multiple applications adaptively
with unbounded or bounded number of cores is presented. Composed
of application mapping and task mapping, the proposed two-step map-
ping methodology maps multiple applications on different regions in a
many-core NoC so that each application has no or negligible interfer-
ence with other applications. The proposed tk-SA algorithm is applied
to the task mapping in the case of unbounded number of cores. The
task-sequence based (TSB) algorithm is proposed for the task mapping

13

in the case of bounded number of cores. Without the limitations of
the algorithms applied for application mapping and task mapping, the
innovative mapping methodology provides a framework for mapping
multiple applications on many-core platforms. The proposed method-
ology was partially presented in my previous publications [36] [37] [38].

1.6 List of Publications

The work presented in the thesis is based on the following publications:

1. Bo Yang, Liang Guang, Tero Säntti and Juha Plosila, Survey of Appli-
cation Mapping Methods for Networked Many-Core Systems. Scalable
Computing (Springer), accepted for publication.

2. Bo Yang, Liang Guang, Tero Säntti and Juha Plosila, Mapping Mul-
tiple Applications with Unbounded and Bounded Number of Cores
on Many-Core Networks-on-Chip. Microprocessors and Microsystems
(Elsevier), Volume 37, Pages 460-471, 2013. [38]

3. Bo Yang, Liang Guang, Tero Säntti and Juha Plosila, tk-SA: Accel-
erated Simulated Annealing Algorithm for Application Mapping on
Networks-on-Chip. Proceedings of the fourteenth international confer-
ence on Genetic and evolutionary computation conference (GECCO’2012),
1191-1198, ACM, 2012. [35]

4. Bo Yang, Liang Guang, Tero Säntti and Juha Plosila, Parameter-
Optimized Simulated Annealing for Application Mapping on Networks-
on-Chip. Learning and Intelligent Optimization, LNCS, 307-322, Springer
Berlin Heidelberg, 2012. [34]

5. Bo Yang, Liang Guang, Thomas Canhao Xu, Alexander Wei Yin,
Tero Säntti and Juha Plosila, Multi-Application Multi-step Mapping
Method for Many-Core Network-on-Chips. Proceeding of NORCHIP
(2010), 1-6, IEEE, 2010. [36]

6. Bo Yang, Liang Guang, Thomas Canhao Xu, Tero Säntti and Juha
Plosila, Multi-application mapping algorithm for Network-on-Chip plat-
forms. Proceeding of IEEE 26th Convention of Electrical and Elec-
tronics Engineers in Israel (IEEEI), 540-544, IEEE, 2010. [37]

7. Bo Yang, Liang Guang, Tero Säntti and Juha Plosila, Tree-model
based mapping for energy-efficient and low-latency Network-on-Chip.
Proceeding of Design and Diagnostics of Electronic Circuits and Sys-
tems (DDECS), 189-192, IEEE, 2010. [33]

14

1.7 Organization of Thesis

The thesis is composed of 8 chapters. Chapter 2 discusses the typical energy-
efficient design methods for many-core platforms. Existing works address-
ing the application mapping problem are reviewed as well. A three-stage
application mapping process is presented in Chapter 3, including the formu-
lation of each stage, and the comparison between the set of representative
algorithms. Chapter 4 proposes an energy- and latency-efficient algorithm
for mapping an application onto a 2D mesh NoC. A tree-model of a NoC
is introduced and employed in the application mapping. Two accelerated
simulated annealing algorithms are proposed for application mapping in
Chapters 5 and 6. In Chapter 5, a set of parameters utilized in the SA
algorithm is produced by the proposed method which significantly speeds
up the SA algorithm. Alternatively, an optimized initial mapping and cor-
responding temperature are applied in Chapter 6 to accelerate the generic
SA algorithm. Chapter 7 presents a methodology for mapping multiple ap-
plication simultaneously on a many-core platform. The proposed adaptive
methodology addresses mapping with both unbounded and bounded num-
ber of cores. Chapter 8 concludes the thesis and discusses envisioned future
work for application mapping on many-core platforms.

15

16

Chapter 2

Energy-Efficient Many-Core
Platforms

Energy-efficiency has become a primary concern for massively parallel com-
puting on many-core platforms [39]. On one hand, although the energy/power
consumption of individual cores can be decreased with technology scaling,
the aggregate energy consumption and power density scale up when the num-
ber of integrated cores increases. Many-core platforms are energy-hungry
due to the large amount of concurrent computations and communications
[40] [41]. According to the prediction from ITRS [42], the power consump-
tion of consumer devices will grow from today’s 100 W to more than 200 W
in 2015. On the other hand, the energy/power budget is becoming tighter
and tighter due to increasing heat dissipation concerns. As demonstrated in
[43], a modern multi-core mobile phone is required to support 100 GOPS
(1011 operations per second) with 1W power budget. Hence, energy-efficient
design on many-core platforms has drawn significant attention in literature.
This chapter discusses the typical parallel architectures of many-core plat-
forms. The emphasis is put on the impacts that the architectures and in-
terconnection networks impose on the energy consumption in a many-core
platform. Then, the typical energy-efficient design methods are presented.
Of them, application mapping is one method which provides great potential
to achieve energy-efficiency at the system level.

2.1 Parallel Architectures of Many-Core Platform

To explore the potential of massively parallel computing with multiple or
many IP cores, various forms of parallel architectures have been developed.
A parallel architecture is characterized by the nature and the number of IP
cores, the arrangement of IP cores and memory modules, the nature and
types of interconnection among IP cores and memory modules, the com-

17

munication mechanism among IP cores and between IP cores and memory
modules, and the applicable programming model [44]. Due to these charac-
teristics, parallel architectures can be classified from different perspectives.
In this section, we are going to introduce two typical parallel architectures
which are classified based on the communication mechanism and program-
ming model. They are shared address space and message passing architec-
tures.

2.1.1 Shared Address Space

As the name implies, in a shared address space many-core platform, the
memory space is accessible to all IP cores. Figure 2.1 shows the general
abstraction of a shared address space architecture [45]. The shared memory
can be one physical memory module (global memory) as shown in Figure
2.1a, or be composed of a set of memory modules as shown in Figure 2.1b. In
the latter case, the whole address space is distributed into the set of memory
modules. This architecture is also called a distributed shared memory (DSM)
system. In the shared address space architecture, each core can address
and access any location in the shared memory. A result of one IP core is
written to the shared memory and read later by another IP core. Inter-core
communication is realized by writing and reading shared variables which are
stored in the shared memory. To alleviate the impact of slow memory access,
a memory hierarchy is usually used in modern multi- or many-core processors
[46]. Several levels of faster and relatively smaller caches are employed
between the IP cores and the main memory. Frequently accessed data or
instructions are pre-fetched and stored in caches and accessed directly by
the IP cores at runtime. An access to the main memory occurs only when
the required data has not been found in any of the cache levels.

Most modern desktop and server multiprocessors employ the shared ad-
dress space architecture. Recalling Intel Core i7 shown in Figure 1.2 (Section
1.1.2) which uses the Intel’s Nehalem microarchitecture, each core has pri-
vate L1 and L2 caches, and a L3 cache shared with other cores. All cores
are connected through a ring and access the local system memory through
the integrated memory controller [47]. Similar architectures are applied to
the latest AMD Opteron 6000 series [48], Oracle’s Sparc T3 [49] and IBM
Power 7 [50].

The main advantage of the shared address space architecture is that it
facilitates parallelization of legacy sequential programs where all variables
are defined in the same address space. From the programmers’ point of
view, the same set of variables is accessible to multiple IP cores in a parallel
program as was accessible to a single core in the sequential implementation
of the program. Therefore, programs require a minimum of restructuring for
parallel computing on a many-core platform. Programming for the shared

18

Core1 Core2 Corem...

Intercnonnection Network

Cache CacheCache

Shared Memory

(a) Implementation with One Physical Memory

Core1 Core2 Corem...

Intercnonnection Network

Cache CacheCache

...M1 M2 Mn

(b) Implementation with Memory Modules

Figure 2.1: Shared Address Space Architecture

address space architecture is also easier to understand due to the similar-
ity of operating systems programming and general multiprogramming. The
programming language can be an extension of existing languages with direc-
tives or libraries supporting parallel operations. For example, OpenMP API
(application program interface) provides a collection of compiler directives,
library routines and environmental variables for the programming of shared
memory systems. The compiler directives can be used for Fortran, C and
C++ for tasking constructs, work-sharing constructs and synchronization
constructs [51].

There are several challenges in designing systems based on the shared

19

address space architecture. Firstly, from the programming perspective, since
race conditions occur when multiple threads or tasks operate on the same
part of a program or variables (called critical section) simultaneously, keep-
ing these operations in order is critical to ensure the correctness of the pro-
gram. This leads to a complex synchronization problem [44] [52]. Explicit
synchronization has to be implemented in programs manually by program-
mers. From the hardware perspective, although the utilization of caches
efficiently hide the memory access latency, it introduces the cache coher-
ence problem in a shared address space system [53] [45]. With multiple
copies of a data item in multiple caches, a complex cache coherence protocol
has to be employed to keep the multiple copies consistent whenever one of
them is modified [44] [1] [47]. The protocol overhead per core increases with
the number of cores, leading to a “coherence wall” [54]. Another issue of
the shared address space architecture is the scalability. This is due to the
limitation of the coherence wall and the performance bottleneck caused by
the shared memory in general. In addition, the address space of the share
memory cannot scale up infinitely.

2.1.2 Message Passing

Message passing is another type of communication mechanism and program-
ming model which are usually employed in distributed memory architectures.
As shown in Figure 2.2, in a distributed memory architecture, a private
memory is allocated to each core for storing local program and data. The
local memory can be accessed by the local IP core directly. When an IP core
needs data in a remote memory, message passing is performed for transfer-
ring the required data from a private memory to another. To alleviate the
long memory access latency, similar to the shared address space architecture,
caches are also used between the IP cores and their local memory modules.
Compared to implicit inter-core communication by reading or writing shared
variables in shared address space architectures, communication in message
passing architectures is realized by explicit send and receive operations. The
send operation specifies a process of sending data in the local memory of an
IP core to a remote memory accessed by another IP core. Correspondingly,
the receive operation specifies a process of fetching data from a remote mem-
ory to the local memory. Depending on whether the send and the receive
operations need to be synchronized for completing a data transfer, message
passing can be classified as synchronous and asynchronous message passing
[44]. In the synchronous paradigm, the data transfer can only be performed
after a handshaking coordination between the source and destination cores.
In the asynchronous paradigm, the data transfer, especially for a send op-
eration, can start immediately without coordination with the destination
core.

20

Intercnonnection Network

...
Core1 Core2 Coren

Cache

M1

Cache

M2

Cache

Mn

Figure 2.2: Message Passing Architecture with Distributed Memory Modules

To accomplish message passing, appropriate communication protocols
have to be employed in both synchronous and asynchronous paradigms.
These protocols can be performed by the IP cores. In this case, the compu-
tation on an IP core has to be blocked due to a send or receive operation
(blocking send or receive). The blocking send and receive operations waste
the computation resources on the platform. Therefore, the trend in modern
message passing architectures is to decouple the communication operation
from the computation operation. There are two typical approaches for the
decomposition. One is to add a memory controller to perform the data trans-
fer between the local and remote memories [55]. An IP core can continue its
computation after issuing a communication call to the memory controller.
The memory controller performs the data transfer independently. Another
approach is to implement dedicated routers in the interconnection network.
The IP cores are connected to the routers through network interfaces. The
routers are connected by a specific topology and form an interconnection
network for inter-core communication. The data to be transferred is first
injected into the network by the local router, and then forwarded to the des-
tination core by a set of routers according to a specific routing algorithm.
This approach leads to the promising network-on-chip (NoC) structure for
many-core platforms, which will be discussed in Section 2.2. Utilizations
of either memory controllers or routers enables overlapping of computation
and communication and improves thereby system performance.

The message passing architecture has been widely used in classical par-
allel computing systems such as client/server systems and computer clus-
ters. With the emergence of multi- and many-core processors, the message
passing architecture has recently drawn great attention due to its better
scalability [56] [57] [58]. Take the prototype processor presented in [57] as
an example, 48 PentiumTM IA-32 cores are distributed into 24 tiles which

21

are arranged in a 6 × 4 2D-mesh NoC with 2 cores per tile. A five-port
router is embedded in each tile to connect with the 4 neighboring routers
and one local core. The 48 cores communicate over the NoC using the
message passing architecture, which removes the dependence on hardware
maintained cache coherence while remaining in a constrained power budget.
From the architectural point of view, message passing architectures provide
better scalability due to the modular way in which the IP cores and memory
modules are organized, facilitating integration of hundreds to thousands of
IP cores in future many-core platforms. From the programming point of
view, the explicit send and receive operations used for inter-core commu-
nication eliminate the complex synchronization and coordination problem
presented in the shared address space architectures. The cooperative send
and receive operations have implicitly a built-in synchronization feature. In
addition, message passing programming is easier for validation and more
portable than shared memory programming, which makes it more efficient
for programming on multi- and many-core platforms [54]. The most popular
communication library for message passing architectures is MPI (message
passing interface) which provides a communication interface to , for example,
Fortran, C and C++ [59].

2.2 Interconnection Network

2.2.1 Network Characteristics

In both aforementioned parallel architectures, interconnection network is a
key component for providing efficient and reliable communication between
IP cores and memory modules (as shown in Figure 2.1 and 2.2). An intercon-
nection network is characterized mainly by bandwidth, latency, concurrency,
diameter, connectivity and scalability [52].

Bandwidth: Bandwidth is usually specified by the bisection bandwidth of
an interconnection network, in terms of the maximum number of bytes
per second that the network can transport across the section through
which the network is partitioned into two equal halves.

Latency: Latency is the time consumed from the transmission of data into
the network to its reception at its destination. The latency for trans-
ferring one message is usually composed of software overhead, channel
delay, switching or routing delay, and contention time.

Concurrency: Concurrency of a network is measured by the number of
connections which can be supported concurrently in the network. Con-
currency is an important characteristic for a parallel architecture. A
larger concurrency leads to higher throughput and smaller latency

22

since a larger number of inter-core communication events can perform
simultaneously.

Diameter: Diameter is the longest path between any two nodes on the
network. It is usually quantified by the hops between nodes at the
farthest ends of the network. The diameter is used for estimating the
longest transfer delay on the network.

Connectivity: Connectivity is quantified by the node or edge degree, which
is the number of nodes or links that need to fail to disconnect the
network. A higher connectivity implies better reliability and fault-
tolerance.

Scalability: Scalability is the potential that a network can expand in a
modular fashion. The performances of systems based on the network
increase approximately at the same rate as the number of IP cores
scales up.

The above characteristics of an interconnection network have great im-
pact on the performance and energy-consumption of a parallel architecture.
They are determined by the network topology, routing and switching tech-
niques that are employed. For each of them, there are different design op-
tions with various characteristics. The following sections present typical
design methods for interconnection networks. For more detail on intercon-
nection networks, see [53] and [45].

2.2.2 Network Topology

The topology of an interconnection network defines how the IP cores and
memory modules on a parallel platform are connected with each other. In-
terconnection networks are distinguished as direct and indirect networks
[60]. In direct networks, each node is a terminal node which can be an IP
core, a memory module or a combination of them, as shown in Figure 2.1
and 2.2. A terminal node acts as a source or destination node for packets.
Packets are forwarded directly between terminal nodes. The connection
cannot be changed during the execution time. In indirect networks, a node
could be a terminal node or a switch which forwards packets from input
ports to output ports. In contrast to direct networks, the packets between
source and destination terminal nodes are forwarded indirectly by means of
switch nodes. The connection between nodes can be dynamically configured
to meet the changing communication requirements of applications.

Direct Networks

The typical direct networks include mesh, ring, tree and cube network. The
topologies of them are shown in Figure 2.3. The fully-connected network is

23

shown here as an extreme case of direct networks, in which each terminal
node is directly connected to all other terminal nodes. The linear array is
a one-dimensional mesh which connects N nodes using N − 1 links on a
line. The two-dimensional mesh is constructed similarly as the linear array
on both their x and y axes. In a 2D mesh, a node is usually denoted by
its x and y coordinates on the horizontal and vertical direction respectively.
The 2D mesh is the most popular network topology because of its regularity,
scalability and routing simplicity. A 2D torus is a variant of the 2D mesh.
The difference between a torus and a mesh is that in the torus the boundary
nodes are also directly connected both row-wise and column-wise. A ring
topology is obtained by connecting the two end nodes in a linear array.
A tree topology connects nodes in a parent-child way. Figure 2.3e shows a
binary tree topology in which each interior node has one parent node and two
child nodes. k−ary n− cube is the most general form of the cube networks.
Meshes, rings and hypercube networks are topologically isomorphic to the
k − ary n− cube networks.

Each kind of topology has particular characteristics, as well as different
performance and cost. A trade-off between topologies has to be made in
the design by taking these aspects of each type of topology into account,
with respect to the requirements of target applications. As reported in
[52], given a constant number of nodes, higher dimension networks have
better scalability and lower latency, but they utilize more wires, pins and
larger switches. This leads to higher cost in several aspects, including heat
dissipation, yield, testing, etc., compared to low-dimensional networks [61].
Hence, the low-dimensional networks, such as 2D meshes, are favored due
to their facilitated implementation, simplicity of the routing strategy and
network scalability.

Indirect Networks

The direct networks presented above are suitable for applications which can
exploit regular, fixed topologies. In contrast, the indirect interconnection
networks perform better for applications with variable and irregular com-
munication patterns. The connection between two terminal nodes can be
dynamically established by reconfiguring the intermediate switches. This
provides great flexibility to meet various communication patterns from dif-
ferent applications. There are some significant disadvantages for dynamic
networks as well, including low concurrency and scalability. The representa-
tive indirect networks are buses, crossbar networks and multistage networks,
as shown in Figure 2.4.

Bus is the simplest indirect network. In the bus scheme, all terminal
nodes are connected by a shared set of wires. A crossbar network provides
a full connection between N nodes. As shown in Figure 2.4b, the total

24

(a) Linear Array (b) 2D Mesh

(c) Ring (d) Star

(e) Binary Tree (f) 3-Cube

(g) Fully-Connected

Figure 2.3: Direct Interconnection Networks

number of N2 switches are required to set up the connection between any
two nodes on the network. Multistage interconnection networks (MINs)
make use the 2 × 2 or larger crossbar switches as the building blocks to
develop fully connected network between nodes. A general MIN consists
of multiple stages each of which consists of a set of crossbar switches. A
MIN is a compromise between a low-performance but simple bus and a
high-performance but costly crossbar network.

The buses are efficient and simple only for connecting a small number
of IP cores. The lack of parallelism inhibits the scalability of buses for
large size systems. In contrast, crossbar networks allow all permutations
of connections in constant time and support more concurrent communica-
tion, but the cost of switches required is excessive for large size systems.
Multistage interconnection networks are compromise solutions between low

25

(a) Bus Network

(b) Crossbar Network

(c) Multistage Omega Network

Figure 2.4: Dynamic Interconnection Networks

cost/performance buses and high cost/performance crossbar networks. Since
less switches are utilized, a possible problem of multistage interconnection
networks is the occurrence of hot spots in the network.

26

2.2.3 Routing and Switching

Direct and indirect networks provide communication paths between nodes.
The message sent from a source node has to traverse a sequence of intermedi-
ate terminal nodes or switches before it finally reaches its destination node.
To perform inter-core transactions, specific routing and switching techniques
have to be utilized to regulate and coordinate the communication events on
the network.

Routing Algorithms

In certain kind of interconnection networks, such as meshes, there are mul-
tiple paths and routes from one node to another node. A routing algorithm
determines on which path the message from node A to node B should be
transferred. The purpose of a routing algorithm is to guide the transfer at
each router on the path so that the message can finally reach its destination.
A routing algorithm also needs to handle the problems of deadlock and live-
lock. The typical routing algorithms include the dimension-order routing,
source-based routing, table-driven routing and turn model routing [45].

There are two major classification schemes used for characterizing the
routing algorithms. Based on the length of the selected routing path, the
routing algorithms are classified into minimal and non-minimal routing al-
gorithms. A minimal routing algorithm always chooses a routing path with
the shortest possible length between two nodes. One example of the min-
imal routing algorithm is the dimension-order XY routing algorithm. On
the other hand, a non-minimal routing algorithm may not always select the
shortest routing path with the purpose of, for example, avoiding the con-
gestion on the network. The routing algorithms can also be categorized
as deterministic and adaptive routing. With deterministic algorithms, the
routing path is deterministic and unique for a pair of communicating nodes.
The path selection is only depending on the source and destination nodes,
without taking other transmissions in the network into consideration. The
deterministic algorithms are simple, but they can lead to unbalanced load
and more contentions in the network. In contrast, adaptive routing algo-
rithms can select one routing path from several alternative paths according
to the traffic situation in the network. As a result, the communication traffic
in the network can be balanced and the contention situation is alleviated by
the adaptive routing algorithms. They also provide better fault-tolerance
than the deterministic algorithms. Naturally, the adaptive algorithms are
more complex than the deterministic algorithms. Based on whether the
minimal-path strategy is applied or not, the dynamic algorithms are fur-
ther classified into minimal and non-minimal adaptive algorithms. Exam-
ples of deterministic routing algorithms are dimension-order XY routing

27

and source-based routing. Turn model routing algorithms are examples of
dynamic routing [62] [63].

The problems very often encountered in routing are deadlock and live-
lock. Deadlock occurs when two data transmissions hold a resource that
is required by both for the next step operation. Deadlock might happen
whenever several transmissions have cyclic dependence on resources. Live-
lock is the situation in which a message keeps moving around the network
but can never reach its destination. It is usually the result of using an
adaptive routing algorithm so that a message is not guaranteed to reach its
destination deterministically. Turn model routing algorithms such as west-
first and north-last routing algorithms are used to avoid deadlock [62]. The
deterministic dimension-order XY routing is free of livelock.

Switching Techniques

The switch strategy determines how a message is forwarded at a switch
or a router along a rouging path between a source and a destination node.
More particularly, the switching determines how to move data from an input
channel to an output channel at a switch or a router. Circuit switching and
packet switching are the typical strategies used in modern interconnection
networks [60]. The different switching techniques are illustrated in Figure
2.5

In circuit switching (Figure 2.5a), the routing path from a source node
to a destination node is established and exclusively occupied by the mes-
sage transmission between the nodes. The routing path is released when the
whole transmission is completed. A message is transferred on the path in
terms of pieces of data which are called physical units (phits). The routing
path is established by using short probe messages traveling along the path,
and is released by a message trailer or by an acknowledgement message from
the receiver. The circuit switching can provide high speed and large band-
width for message transmission, but it decreases the utilization efficiency
of the physical links in the network, due to the exclusive occupation of the
whole routing path during a message transmission.

In packet switching, the transmission of a message is performed at the
packet granularity. The message to be transferred is split into a sequence
of packets which can be transferred independently to the destination node.
To do so, a packet is generally composed of the header, the data and the
trailer sections. The routing and control information are contained in the
header. Each packet is sent separately to the destination node according to
the routing information in the header. The conventional technique used in
packet switching is the store-and-forward (Figure 2.5b). In the store-and-
forward switching, an entire packet has to be received at a switch or a router
before it can be forwarded to next switch or router. Compared to the circuit

28

Time

Node

Node 1

Node 2

Node 3

Node 4

Path

Establishing

Message

Transmission

Active Time of Node 1

(a) Circuit Switching

Time

Node

Node 1

Node 2

Node 3

Node 4

Active Time of

Node 1

H

H

H

H

Packet Transmission

(b) Store-and-Forward Packet Switching

Time

Node

Node 1

Node 2

Node 3

Node 4

Active Time of

Node 1

H

H

H

H

Packet Transmission

(c) Cut-Through Packet Switching

Figure 2.5: Illustration of Circuit and Packet Switching

switching, packet switching improves the utilization rate of links due to the
adoption of the shorter packets.

If the sequence of packets of one message is transmitted along the same
routing path, the pipelining technique can be used so that the set of packets

29

can use the links on the routing path in an overlapping way. The total trans-
mission time of the whole message is therefore decreased. The pipelining
techniques can be further used in the transmission of an individual packet,
which leads to the cut-through switching and the wormhole switching [60]
[21]. In cut-through switching (Figure 2.5c), the routing path of a packet is
established by checking the phits of the packet header. Then, the rest of the
packet will be transferred in a pipelining way on the routing path. A channel
allocated to a packet can be freed as soon as the trailer of the packet has
been transmitted through the channel. In the wormhole routing, the packet
is organized as a sequence of flow control units (flits), which can be as large
as the packet header. Similar to the cut-through switching, the header flit
is used to establish the routing path and the rest flits are transferred along
the path in a pipelining way. The major difference from the cut-through
switching is, if the transmission of a packet is blocked on a switch, only few
flits are stored in the switch. The rest of the flits are stored in preceding
switches on the path. Consequently, smaller buffers are required in switches
or routers. The disadvantage of the wormhole switching is that a blocked
packet transfer will occupy the buffer space of switches or routers on the
path. Various latencies of the different packet switching algorithms are il-
lustrated in Figure 2.5, where the transmission of one packet, from node 1
to node 4, is demonstrated with each aforementioned algorithm.

2.2.4 Network-on-Chip

Nework-on-chip has been proposed as a evolutionary architecture to inte-
grate very large number of IP cores since last decade [64] [7] [65]. The NoC-
based chip multiprocessors (CMPs) have been developed both in academia
and industry [65] [57] [66] [65]. The development of NoC architecture has
been driven by the growing demand on parallel computing and increasing
popularity of many-core processors. Due to the poor scalability, the in-
terconnection networks such as rings, buses, crossbars and MINs are not
performing as efficiently on many-core processors as they are on multi-core
processors. NoCs were proposed as an alternative for these conventional
interconnection networks and targets to the systems consisting of tens to
thousands of IP cores and memory modules. Instead of using the dedi-
cated wires, the numerous IP cores and memory modules in a NoC are
connected to a on-chip network which routes packets between them. Com-
pared to their predecessors, NoC architectures have several advantages [67]
[64]. The modularity is the key advantage of NoCs which supports scalabil-
ity from the ground up, especially in terms of performance. The structured
networks are more predictable and provide more potential to explore the
power/performance design space and more flexibility to support specific ap-
plications. The distributed nature of NoC infrastructures also improve the

30

reliability of the systems due to the modular organization and the utiliza-
tion of segmented connections, so that a local fault cannot break the whole
network.

Structure of NoC

Figure 2.6 shows an example of a 4 × 4 2D mesh NoC with 16 nodes. The
interconnection network of the NoC is composed of a set of routers and
point-to-point links connecting the routers. An IP core is connected to
a router through the network interface (NI). The NI acts as a translator
which packetizes the data to be transferred on the network, and unpackets
the packets received from the network. On the 2D mesh network, a router is
directly connected to up to four neighboring routers via the point-to-point
links. The data is sent to and received from the network for a IP core by the
local router. Each router also works as an intermediate transporter which
forwards the incoming packets to one of its neighboring routers according to
the specific routing algorithm. Packet switching is generally used in NoCs.
Both deterministic and adaptive routing algorithms can be applied to a NoC.
For 2D mesh NoCs, the dimension-order routing algorithms, for example,
XY routing, is often used. With XY routing, a node on the 2D mesh NoC
is referenced by its x and y coordinates. From a source node, a packet is
transferred along one dimension at a time until it finally reach its destination
node. For a packet transmission from node A (xa, ya) to node B (xb, yb),
the minimal length of the routing path equals to |xb − xa|+ |yb − ya|. NoC
interconnection is applicable to both message passing and shared address
space parallel architectures.

2D mesh NoC is one of the most popular NoC structures due to its regu-
larity and modularity which in turn simplify the routing on the network and
facilitate the implementation. 2D mesh NoC has been implemented in the
Intel 80-core TeraScale processor [12] and the 48-core SCC processor [57],
as well as the 64-core Tilera processor [65]. Extended from 2D implemen-
tations, 3D NoCs have recently been proposed, either by stacking multiple
layers of 2D mesh NoCs [68], or by placing interconnection network and IP
cores on separate layers [69]. Besides 2D mesh, other topologies like torus
and hypercube can also be applied to NoCs.

Most significant characteristic of NoC architectures is that it decom-
poses the computation and the communication. Thanks to the utilization
of routers, an IP core needs not to participate or to be blocked by a mes-
sage transmission so that the computation and communication operation
can overlap each other. A node consisting of an IP core and a router oper-
ates as a lightweight processor and can efficiently communicate with other
nodes. Clearly, the distributed and modular structure of NoCs provides
better scalability for constructing high-performance many-core platforms.

31

R Router NI Network Interface

R R RR

IP
(0, 0)

NI

IP
(1, 0)

IP
(2, 0)

IP
(3, 0)

R R RR

IP
(0, 1)

NI

IP
(1, 1)

NI

IP
(2, 1)

IP
(3, 1)

R R RR

IP
(0, 2)

NI

IP
(1, 2)

IP
(2, 2)

IP
(3, 2)

R R RR

IP
(0, 3)

NI

IP
(1, 3)

NI

IP
(2, 3)

IP
(3, 3)

NI NI

NININI

NI NI

NININI

Figure 2.6: An Example of 4x4 2D Mesh NoC

Besides scalability, the NoC structure provides more opportunity and flexi-
bility to explore energy-efficient design on many-core platforms.

2.3 Energy-Efficient Design Methods

2.3.1 Energy Consumption

In a many-core platform, energy is consumed for running the IP cores, mem-
ories, I/Os and interconnection network. Energy consumption is composed
of the dynamic and static parts. Dynamic energy is consumed by the switch-
ing of capacitances, while static energy is consumed by subthreshold and
gate leakage [70]. As long as the IP cores and the interconnection network
are powered on, there is static energy consumption. Therefore, the static
energy consumption is more platform-dependent, which is determined by
factors like supply voltage, body bias voltage and temperature of the plat-
form, as well as the active time of the IP cores and the interconnection net-
work (Equation 2.1, derived from [71] [72]). Dynamic energy is consumed
when the IP cores are processing data and the interconnection network is
transmitting data. The dynamic energy consumed for switching transitions
in a router or a link is proportional to the capacitance and the square of
the supply voltage (Equation 2.2 [73]). Dynamic energy consumption is the
direct result of the computation and the communication operations. Take a
NoC-based system as an example, a sequence of packets has to be forwarded

32

through a set of routers along the routing path until the packets reach the
destination node. During the transmission, energy is dissipated inside each
router and on each link. As defined in Equation 2.3 [73], the total dynamic
energy consumption for transmitting the sequence of packets is the sum of
the router and link traversing energy over the routing path.

Esta =

∫ t=t1

t=t0

Psta dt

Psta = K1 × VDD × 10−K2×VthT + |Vbs × Ij |
(2.1)

Edyn−tran ∝ CL × V 2
DD (2.2)

Edyn−NoC =

allpackets∑
(Edyn−router + Edyn−link)×H (2.3)

In the above equations, VDD, Vth and Vbs are the supply voltage the
threshold and the bias voltage respectively. K1 and K2 are two experi-
mentally determined parameters. T is the temperature. Ij is the junction
leakage. H is the hop count of a packet traversing from its source node to
its destination node. CL is the load capacitance.

Based on the origins of static and dynamic energy consumption, and the
design flexibility provided by the NoC architecture, a diversity of methods
have be proposed to achieve energy-efficiency on a NoC-based many-core
platform. To classify, these methods follow two main directions. One group
of them focuses on how to optimize the platform-specific parameters in Equa-
tion 2.1 and 2.2 which affect the static and dynamic energy consumption at
the architecture level. The methods in this group include, for instance, adap-
tive voltage and frequency scaling, power gating and clock gating. The other
direction aims to optimizing the allocation of the IP cores and communica-
tion channels in order to minimize the energy consumed for data processing
and transmission. An important and efficient method on this direction is the
application mapping. As we can see from Equation 2.3, given the dynamic
energy consumption of the routers and the links, Edyn−router and Edyn−link

respectively, the dynamic energy consumption on a NoC can be reduced by
minimizing the length of the routing path, H. The minimization of routing
path can be achieved by the application mapping method.

The typical energy-efficient design methods employed on NoC-based
platforms are explained in the following sections.

2.3.2 Adaptive Voltage and Frequency Scaling

Dynamic voltage and frequency scaling (DVFS) is a widely used technique
for energy efficient design [74] [75] [76]. DVFS originates from the fact

33

that it is inefficient and unreasonable for all IP cores and links on a many-
core platform to operate at a uniform supply/threshold voltage levels and
a single frequency because the workloads on them may vary significantly
over time. Various demands on processing and communication can be ful-
filled with different voltage levels and frequencies. DVFS is enabled by the
NoC architectures where each node can work in a globally asynchronous
locally synchronous (GALS) way. DVFS is usually implemented by mon-
itoring the run-time workloads on IP cores and links, based on which the
appropriate voltage levels and frequencies are set. For example, in [74], the
processorsŕuntime statistics and an online learning algorithm are utilized
for determining the appropriate voltage level and frequency at any given
point of time. It is reported that the maximum energy saving of 49% can be
achieved. In [75], the utilization ratio of links is monitored as an indicator of
the workload. When the utilization of a link is too high, a higher frequency
can be set to reduce the workload. If there is low utilization of a link, the
frequency can be decreased to save energy.

DVFS can be implemented at various granularities: chip-wide, region-
wide and per-core [73]. Chip-wide DVFS adapts multiple voltage levels and
frequencies to the whole platform corresponding to various workloads from
different applications. Chip-wide DVFS is the basic form with minimal
overhead and complexity. Since the workloads on different regions of a
many-core platform have spatial locality, it is more reasonable to employ
DVFS per region instead of per chip. One approach of region-wide DVFS
is to deploy several voltage and frequency islands on the platform, each of
them consisting of multiple IP cores supplied by the same voltage level and
frequency [76]. The voltage level and frequency of each island is independent
of the chip-level voltage level and frequency. An island can be allocated to
an application with appropriate processing and communication requirements
so that the energy consumption can be minimized. The most fine-grained
DVFS is to utilize scalable voltage levels and frequency for each IP core.
This design paradigm is adopted on a 176-core platform [66], in which the
voltage level and frequency of each core can be adjusted by a local DVFS
controller. The fine-grained DVFS can provide high performance and design
flexibility, but with more area and timing overhead.

2.3.3 Power Gating

With technology scaling, the static power, which used to be minimal in
earlier CMOS technologies, is becoming the dominating part of power con-
sumption in sub-90 nm CMOS technologies [70]. Meanwhile, with the in-
creasing number of IP cores on a many-core platform, it is more likely that
some portion of the platform, including the IP cores and the interconnec-
tion network, might be idle temporally. This makes it possible to employ

34

the power gating techniques, whereby transistors are used to disconnect the
power of the idle portion of the platform, to reduce the power and energy
consumption.

Many techniques have been developed for power gating [77]. For NoC
based platforms, most efforts have been put on the interconnection network
because the buffers in the routers and the repeaters on the links are the
major contributors of the static power [78]. For example, in [79], the pro-
posed NoC consists of an always-on network and a number of configurable
on/off channels. The always-on network ensures the basic connectivity and
functionality of the interconnection network. There are much fewer chan-
nels in the always-on network than a normal NoC so that the static power
is greatly reduced. The on/off channels can be dynamically powered on or
off, depending on the local traffic load. In [80], the links will be powered
off if there is no incoming packets in the next few cycles. The power gat-
ing is based on the prediction of future traffic load, which is performed by
using information obtained from the look-ahead routing of packets in the
neighboring routers.

2.3.4 Clock Gating

Another traditional technique for energy-efficient design is clock gating. In
clock gating, the energy is saved by shutting off clock of the logic block of a
device when there is no work to be done. Clock gating is an efficient way to
reduce the power consumption on the clock net, which accounts for 20% to
40% of the total dynamic power consumption [81]. The clock gating can be
employed at the system level as well as at the combinational and sequential
logic levels [81].

In [82], a two-level clock gating is proposed for NoCs. At first level, the
fine-grained clock gating is applied to router components including input
FIFOs and matrix arbiters. A the upper level, a whole router can be gated
when it is inactive. The clock-gating of a router is determined at the runtime
by signals which indicate if the router has any buffered data or blocked
output virtual channels.

2.3.5 Application Mapping

On a many-core platform, application mapping determines how to map a
set of concurrent tasks onto a group of IP cores provided by the platform,
with respect to specific design interests and constraints. While aforemen-
tioned methods achieve energy-efficiency at the infrastructure level, appli-
cation mapping provides an overall system design method which takes the
characteristics of both platforms and applications into account. Application
mapping is classified as an outstanding design problem and important design

35

dimension on many-core platforms, which plays significant role in determin-
ing the energy consumption and performance of the overall system [83] [84].
Research focusing on the application mapping problem has been extensively
performed from various perspectives [27, 85, 86, 31, 30, 41, 36, 87].

Different task-core mapping solutions will result in different performances
and energy consumption characteristics for the same set of tasks. Figure 2.7
gives a simple example of two mapping solutions for tasks T1 to T4. Among
them, the data volume between tasks T1 and T3 is larger than that between
tasks T2 and T4. Without considering the inter-task data volume, tasks T1

and T3 might be mapped farther than tasks T2 and T4, as shown in Figure
2.7a. Clearly, this is not energy-efficient because larger amount of data be-
tween tasks T1 and T3 has to be transmitted on a longer routing path (two
hops). Figure 2.7b gives an optimized mapping solution whereby the data
volume is taken into account so that T1 and T3 are mapped on two neighbor-
ing nodes. The energy saving from communication between tasks T1 and T3

results in the overall energy decrease even though there is a slight increase
between tasks T2 and T4. Simple as the example is, Figure 2.7 illustrates
the basic principle of energy-efficient application mapping.

T1 and T3: larger data volume, mapped farther

T2 and T4: smaller data volume, mapped closer

T1 T2 T3

T4 MappedMapped

(a) Random Mapping

T1 and T3: mapped closer, significant energy saving

T2 and T4: mapped farther, slight energy overhead

T2 T1 T4

T3 MappedMapped

Application

Mapping

(b) Energy-Efficient Mapping

Figure 2.7: A Basic Principle of Energy-Efficient Application Mapping

As presented in Section 1.3, application mapping is indeed a resource
allocation problem. On a many-core platform, the resources that can be
allocated to execute one or more applications include the IP cores and the
communication channels in the interconnection network, or computation and
communication resources, respectively. For the sake of generality, consid-
ering heterogeneous many-core platforms, application mapping can achieve
energy-efficiency by the following approaches:

1. To select an appropriate type of IP core for each task so that the
energy consumed by the group of IP cores for executing the tasks is
minimized. This task-core mapping is called IP selection in this thesis.
IP selection is enabled by the heterogeneity of IP cores which means
that each core has various performance and energy consumption char-
acteristics for a set of tasks. For example, each IP core presented in [88]

36

has various features such as energy consumption, execution time and
memory consumption for individual tasks. IP selection is taken into
account in order to minimize the computation energy consumption. In
[85], IP selection is performed to minimize the communication loads
between cores with the consideration of that tasks mapped on different
IP cores generate communication loads. In this case, IP selection is
also an approach of reducing the communication energy consumption.

2. To assign a tile (or node) on the many-core platform to map the IP
cores that have been selected in the IP selection stage. Tile assignment
aims at minimizing the inter-core communication energy consumption
since the distance between two communicating tiles affects the energy
consumed for transmitting data between two tasks on the tiles. This
core-tile mapping is called tile assignment in this thesis. [3] presents a
branch-and-bound algorithm for mapping a set of IP cores on a NoC
architecture so that the communication energy consumption is mini-
mized. In [89], a clustering technique is applied to the core-to-node
mapping in order to minimize the communication power consumption
on 2D mesh NoCs.

3. To find a specific routing path for communication between IP cores
that have been mapped onto tiles in the tile assignment stage. The al-
location of routing path to inter-core communication is called commu-
nication mapping in this thesis. Interconnection network may provide
multiple routing path between two tiles. Communication mapping
can be performed, for instance, to minimize the communication en-
ergy consumption [85], or to alleviate the contention and congestion
on the links so that the packet latency can be decreased [90] [91].

The IP selection, tile assignment and communication mapping explore
the design space for minimizing the energy consumption from different per-
spectives. For an application mapping problem, these three approaches can
be performed systematically to obtain a more optimized mapping solution
than each of them can achieve individually. Generally, the three stages pro-
ceed sequentially, i.e., IP selection at first, then tile assignment, and com-
munication mapping at last. But in some cases, it is unnecessary to perform
all three stages. For example, on NoCs employing deterministic routing al-
gorithms, communication mapping is not applicable since the routing path
between any two tiles is determined. In addition, to achieve an overall opti-
mal mapping, the three stages may need to iterate with feedback from each
other stages.

IP selection, tile assignment and communication mapping are all fea-
tured as the combinatorial optimization problems which consist of finding
an optimal solution from a finite set of candidate solutions. Each of them is

37

an instance of the constrained quadratic assignment problem which is NP -
hard [26]. The search space in each problem increases factorially with the
number of tasks and IP cores on a many-core platform. For such problems,
deterministic methods, e.g., exhaustive search, which exhaustively explore
the search space, can find the optimal solution. But, it is prohibitively
expensive, if not impossible, for the practical size of problems. Therefore,
constructive or transformative heuristics are widely employed for application
mapping on many-core platforms.

The three-stage application mapping approach will be presented in detail
in Chapter 3, in terms of the formulation of general application mapping, the
objective and constraint functions, and the representative mapping methods.

2.4 Chapter Summary

This chapter introduced the state-of-the-art shared address space and mes-
sage passing parallel architectures. The emphasis was put on the communi-
cation mechanism applied on each type of architecture because it has great
impact on energy consumption of a many-core platform. As an impor-
tant component which affects the energy consumption and performance of a
many-core platform, the interconnection networks were discussed in terms of
topologies, routing algorithms and switching techniques. Of them, network-
on-chip was presented as a promising interconnection structure. Typical
energy-efficient design methods were explained. Application mapping was
presented as an energy-efficient design method at the system level.

38

Chapter 3

Application Mapping

Generally speaking, the role of application mapping is to decide how to
distribute a set of tasks on a set of cores so that the particular metrics of
design interest can be optimized. There are two inputs to this problem:
application and NoC platform. An application is composed of a set of tasks
which can execute in parallel. There are inter-task communications repre-
senting data or control dependencies between tasks. A NoC provides the
computation and communication resources for completing the application.
For a heterogeneous NoC, on-chip processing elements (PEs) could consist
of CPUs, DSPs, video processors, FPGAs, embedded memory blocks and
other IP cores (as shown in Figure 3.1). Due to the increasing number of
integrated cores on the many-core platforms, as well as the increasing com-
plexity of massively parallel computing, application mapping plays more and
more important role in improving the system performance and decreasing
the energy consumption [83] [84]. As shown in [92], the application mapping
generated by the optimized SA algorithm can save up to 66.32% of energy
consumption compared to traditional SA algorithm. To find such kinds of
optimal or near-optimal mapping solutions, optimization algorithms need to
be applied to application mapping problem.

This chapter presents the general three-stage application mapping frame-
work. The mapping stages are formulated with classical application and NoC
models. The energy model of a many-core NoC is derived which is used as
one major objective of the energy-efficient mapping algorithms developed
in this thesis. The representative mapping methods that have been applied
to application mapping are studied and compared in order to clarify the
directions we should explore to develop more efficient mapping algorithms
in this thesis.

39

3.1 Three-Stage Application Mapping

As mentioned in Chapter 2, we define the application mapping on a hetero-
geneous many-core platform as a three-stage resource allocation problem.
The typical three-stage application mapping is depicted in Figure 3.1. In
a heterogeneous system, a task could have multiple implementations with
different performances and costs, corresponding to different type of IP cores
provided in the many-core NoC. Therefore, the first stage of application
mapping is to select one type of IP core to implement a particular task,
called IP selection. The second stage is called tile assignment. The tile
assignment decides which tile on a NoC should be assigned to a selected IP
core. This stage performs the physical placement of the selected IP cores.
To efficiently distribute the communication traffic on the communication
network, the third stage, communication mapping, is performed after the
previous two stages, to find a particular routing path for each pair of com-
municating cores (tasks).

FPGACPU MEM

CPUDSP1 DSP2

MEMCPU CPU

t1

t2

t3

t5 t6

t7
t9

Application

(Task Graph)

Tile Assignment

Heterogeneous Network-on-Chip

(Network Topology Graph)

Router

IP Core

Task

Link

t8

CommunicationIP Selection

Communication Mapping

c25

c25

c25: communication

between tasks t2

and t5

1

23

DSP1 is assigned to

task t1, t2, t3

DSP2, assigned to

task t9, is mapped

on NoC

R4

R7

R1
R2

R5

R8

R3

R6

R9

Figure 3.1: An Overview of Multi-Stage Application Mapping on Heteroge-
neous NoC

Based on the time when the mapping is performed, application mapping
can be categorized into static and dynamic mapping. Static mapping is
performed at design time, while dynamic mapping is performed at runtime.
Static mapping can utilize full information about the application and the
NoC, including the topology of the application, the volume/rate of inter-
task communications, and the characteristics of the NoC. In contrast to

40

static mapping, the information used in dynamic mapping is limited to what
can be collected at runtime. As a result, superior mappings can be found
by static mapping with a global view of the system, compared to those
found by dynamic mapping with a local view of the system [93]. This thesis
emphasizes on the static mapping on NoC-based many-core platforms.

3.2 NoC and Application Model

To solve the application mapping problem, we first need to define the NoC
and the application. The most widely used approach is graph model. The
abstracted graph can provide the information associated with the NoC and
the application, which are used in the evaluation of the objective functions
and constraints in application mapping.

3.2.1 NoC Model

A heterogeneous NoC is characterized by communication network and IP
repository provided by the NoC. As discussed in Section 2.2.4, 2D mesh NoC
is the most popular NoC structure due to its regularity and modularity. In
this thesis, 2D mesh topology is assumed for the formulation of the NoC.
The deterministic XY routing is adopted which is a minimal path routing
algorithm and is free of deadlock and livelock. The wormhole routing is
employed due to its low cost (the buffer capacity can be less than the length
of the packet) and low latency (the router can start forwarding the first flit
of a packet without waiting for the tail).

Communication Network

As shown in Figure 3.1, the communication network is modeled as a net-
work topology graph (NTG) . A NTG is a directed graph < R,L >, where
R = {r1, r2, . . . , rn} is the set of vertices, representing the set of n routers
available on the NoC. Each router connects to one IP core as its processing
element. L = {(ri, rj)|ri, rj ∈ R} is the set of edges, representing the set of
links between routers. lij = {(ri, rj)} denotes the link between two adjacent
routers ri and rj . R and L have the following properties:

1. ∀ri ∈ R

(a) PE(ri) gives the type of IP core connected to the router ri.

(b) Ebit gives the energy consumed for transferring one bit of data
through the router [3].

41

2. ∀lij ∈ L

(a) bw(lij) gives the maximal bandwidth of link lij .

(b) ELbit
gives the energy consumed for transferring one bit of data

on the link lij [3].

Generally, a router and the IP core connected to the router are termed as a
tile or a node, which is usually labeled by its coordinates on the NoC. For
example, in Figure 3.1 the bottom-left and top-right nodes could be labeled
as (0, 0) and (2, 2) respectively.

IP Repository

IP repository is a library of IP cores provided by a NoC. For example, in the
Embedded System Synthesis Benchmarks Suite (E3S) [94], 17 processors
are provided in the IP repository. Each of them has different features in
terms of price, energy and power consumption, and so on. Each processor
also consumes various amount of energy and time for executing different
types of tasks. Similar to E3S, we define the IP repository as IPR =
IP1, IP2, . . . , IPq, where each IPi is one type of IP core and has the following
properties:

1. IPType gives the type of the IP core (e.g., CPU, DSP, MEM and
FPGA shown in 3.1), which defines the category of tasks that IPi can
execute.

2. ETi gives the set of execution times corresponding to tasks that IP
core IPi can execute, e.g., task time in [94].

3. ECi gives the set of energy consumptions corresponding to tasks that
IP core IPi can execute, e.g., task power in [94].

4. w(IPi) gives the number of IPi type of cores available on the NoC
and,

q∑
i=1

w(IPi) = n (3.1)

which means that the number of IP cores equals to that of routers on
the NoC, assuming that one core is only connected to one router.

3.2.2 Application Model

The widely used models for defining an application are task graph [31] [95]
and core communication graph [3] [89] [87].

42

Task Graph

A task graph (TG) is a graphical abstraction of an application, which
presents the characteristics of an application. Figure 3.2 is an example
of a TG of a simplified MP3 decoder in [96]. A TG is a weighted di-
rected graph < T,C >, where T = {t1, t2, . . . , tm} represents the set of
m tasks of an application, corresponding to the set of TG vertices, and
C = {cij = (ti, tj)|ti, tj ∈ T} represents the communication between tasks,
corresponding to the set of TG edges. For a communication cij = (ti, tj),
task ti is called the parent task of task tj . Conversely, task tj is the
child task of task ti. A task without parent task is called an entry task
and a task without child task, an exit task. The direction of an edge cij
presents either the data or the control dependency between tasks ti and tj .
The sets T and C have the following properties:

1. ∀ti ∈ T

(a) id gives the unique name of task ti, which also defines the func-
tionality of task ti.

(b) parent gives the set of tasks that are parent tasks of task ti, in
other words, the tasks that ti is dependent on.

(c) child gives the set of tasks that are child tasks of task ti, in other
words, the tasks that are dependent on task ti.

(d) IM is the set of implementations of task ti. Each IMij ∈ IM
corresponds to the implementation of task ti on jth type of IP
core.

2. ∀cij ∈ C

(a) volij gives the data volume of the communication cij .

(b) bwij gives the bandwidth requirement of the communication cij .

(c) laij gives the maximal latency constraint of the communication
cij .

The examples of task t0 and communication c01 shown in Figure 3.2
illustrate how to define T and C in a TG of an application. A TG and related
properties can be derived by static or dynamic program analysis/profiling.
As the details of the process are beyond the scope of the thesis, interested
readers can refer to [23] and [24] for detailed explanation.

Core Communication Graph (CCG)

After each task is assigned to an IP core in the IP selection stage, a task
graph is transformed into a core communication graph. In contrast to the

43

t0

t1

t3

t9

t2

t8

576

576

t4

t10

36
36

540

36
540

540

36

t5

t11

540

540

t6

t12

t7

t13

t14

36 576 576

36 576 576

576

576

540

t0 :

parent: Ø

child: {t1, t8}

IM: {IM01, IM02}

c01:

vol01: 576 MBs (for instance)

bw01: 16 GB/s

la01: 36 ms

Figure 3.2: A Task Graph of MP3 Decoder

original TG, a CCG presents the communication between cores selected for
an application. Figure 3.3 is the transformed CCG of the TG in Figure
3.2. In a CCG, the tasks assigned to the same IP core are clustered as one
vertex (depicted by the dotted circle). That is, in Figure 3.3, 9 cores are
selected for the 14 tasks in Figure 3.2. A CCG is a weighted directed graph
< Cor,Com >, where Cor = {cor1, cor2, . . . , corp} represents the set of p
IP cores selected for the application (1 ≤ p ≤ min{m,n}), corresponding to
the set of CCG vertices, and Com = {comij = (cori, corj)|cori, corj ∈ Cor}
denotes the communication between cores, corresponding to the set of CCG
edges. The sets Cor and Com have the following properties:

1. ∀cori ∈ Cor

(a) IPType gives the type of the core cori, which is defined in the
repository IPR.

(b) Ti is the set of tasks assigned to the core cori.

(c) ∀tj ∈ Ti, ETij gives the execution time of task tj on the core cori.

(d) ∀tj ∈ Ti, ECij gives the energy consumption for executing task
tj on core cori.

2. ∀comij ∈ Com

(a) vol(comij) gives the aggregate data volume between cores cori
and corj , and vol(comij) =

∑
vol(cuv) (∀tu ∈ Ti, ∀tv ∈ Tj).

(b) bw(comij) gives the worst case bandwidth requirement between
cores cori and corj , and bw(comij) =

∑
bw(cuv) (∀tu ∈ Ti, ∀tv ∈

Tj)

While a TG represents only application features, a CCG is based on
application and IP core features and provides a representation of the appli-
cation mapped on NoC cores.

44

t0 t1 t3t9t2t8576576 t4t10576576576 t5t11 t6t12 t7t13 t14576576 576576576cor1cor1 :T1: {t1, t2}, and vol12=0ET: {ET11, ET12}ET: {EC11, EC12}IPType:IPType0
cor3 com13:vol(com13): vol13 + vol23 (in Fig. 2.1)bw(com13): bw13 + bw23 (in Fig. 2.1)

Figure 3.3: An Example CCG of the TG in Figure 3.2

3.3 Formulation of Application Mapping Problem

In traditional systems with multiple IP cores, application mapping, also
called task mapping, mainly refers to how to map each task on a specific
IP core. Both the category and the number of integrated IP cores are
limited. On a NoC-based many-core system, as shown in Figure 3.1, various
types of IP cores are provided, and a number of same type of IP cores
may be distributed on different tiles on the NoC. Moreover, there can be
several routing paths between two tiles. Hence, two additional approaches,
tile assignment and communication mapping, can be applied to explore the
potential provided by the many-core NoC architectures and to find more
optimized mapping solution for a many-core system. Altogether, a globally
optimal mapping can be obtained by performing IP selection, tile assignment
and communication mapping.

3.3.1 Framework of Three-Stage Application Mapping

The framework of the general application mapping is depicted in Figure 3.4.
Prior to the application mapping, the application and NoC architecture have
been modeled by task graph and network topology graph (with IP repository
IPR) respectively. Network topology graph also defines design constraints,
e.g., the available bandwidth on communication links. The first stage of
application mapping is IP selection which selects one type of IP core in IPR
for each task. The output of IP selection is the core communication graph
(CCG). Thereafter, the tile assignment decides on which tile (node) each
selected core in the CCG should be placed. The assignment of one core in
CCG might be constrained to particular tiles due to the heterogeneity of IP
cores on a NoC, as shown in Figure 3.4. When the tile assignment is done,

45

the last stage, the communication mapping, is to allocate one routing path
on the communication network for each communication in the CCG.

At each stage, a candidate mapping is evaluated with respect to a set of
pre-defined objective functions and constraints. The mapping process iter-
ates with the feedback from the evaluations until the best mapping solution
is found. The feedback can come from the current stage (called internal
feedback), or from the other stages (called external feedback). For example,
if no mapping solution could satisfy the bandwidth constraint in the com-
munication mapping step, an external feedback would be sent to the tile
assignment and a new IP core to tile mapping solution has to be created
for the next round of communication mapping, even though it is worse than
previous tile assignment solution. This means, to find a globally optimal so-
lution with respect to the particular objectives and constraints, IP selection,
tile assignment and communication mapping stages have to operate jointly.
Finally, a mapping solution satisfying all pre-defined design objectives and
constraints will be obtained after the three-stage mapping.

Application

Modeling

Architecture

Modelling
Task Graph (TG)

Network Topology

Graph (NTG)

IP Repository (IPR)

IP Selection

Core

Communication

Graph (CCG)

Design-Specific

Mapping Solutions

Design Objective(s)

Satisfied

Solutions?

No

Tile Assignment

Satisfied

Solutions?

No

Yes

Communication

Mapping

Satisfied

Solutions?

No

Yes

Yes

No

No

Identifying the most suitable TYPE of IP cores for tasks

to optimize computation performance and energy

Placing IP cores on heterogenous NoC platform for

the optimization of application performance and

communication energy

Allocating routing paths to minize latency and

maximize throughput

Design Flow

Output Flow

Figure 3.4: The Work Flow of Application Mapping

46

The following sections formulate the problem at each stage. The map-
ping function for each stage is defined.

3.3.2 IP Selection

Given a TG and an IPR, the role of IP selection is to select one type of IP
core to a task. The IP selection function is defined as:

IPSelect : T → IPR, IPSelect(ti) = IPj , ∀ti ∈ T, ∃IPj ∈ IPR (3.2)

subject to:

∀ti ∈ T,
∑

∀IPj∈IPR

Aij = 1 (3.3)

and
∀IPj ∈ IPR,

∑
∀tu∈T

∑
∀tv∈T

AujAvjBuv/2 ≤ w(IPj) (3.4)

where

Aij =

{
1 IPj type of IP core is assigned to ti
0 otherwise

and

Buv =

{
1 tasks tu and tv are assigned to different cores in CCG
0 otherwise

Equation 3.3 restricts that a task can only be assigned to one core, while
Equation 3.4 gives the constraint on the availability of a certain type of IP
core, which means the number of IPj type of core selected for an application
cannot exceeds that are provided by the NoC. Arrays A : T × IPR and
B : T × T are the results of the IP selection stage. Using arrays A and B,
a TG is transformed into a CCG.

3.3.3 Tile Assignment

Given a CCG and a NTG, tile assignment is to decide on which tile a selected
core in the CCG should be placed on the NoC. The tile assignment function
is defined as:

TileAssign : Cor → R, T ileAssign(cori) = rj , ∀cori ∈ Cor,∃rj ∈ R (3.5)

subject to

∀cori ∈ Cor,
∑

∀rj∈R
Dij = 1

∀rj ∈ R,
∑

∀cori∈Cor

Dij = 1
(3.6)

47

and

cori.IPType = PE(rj).IPType (3.7)

where

Dij =

{
1 cori is mapped on rj
0 otherwise

Equation 3.6 ensures that only one tile on the NoC is assigned to a core in
the CCG. Equation 3.7 guarantees that a selected core in CCG is mapped
on a tile with same type of IP core. The tile assignment stage results in
array D : Cor ×R.

3.3.4 Communication Mapping

After IP selection and tile assignment stages, communication mapping, also
known as routing path allocation, chooses one specific path for each com-
munication between communicating cores. Communication mapping is an
efficient way to balance the communication and reduce the potential con-
tentions and congestions on the communication network, which in turn de-
crease the average/maximal packet latency and save energy for buffering the
packets on the routers [29] [91]. The communication mapping function is
defined as follows:

ComMap : Com→ L,ComMap(comij) = Ωij , ∀comij ∈ Com (3.8)

where Ωij is a routing path on the NoC from the source router ri (connected
to core TileAssign−1(ri) in CCG) to the destination router rj (connected
to core TileAssign−1(rj) in CCG). Ωij is composed of a nonempty sequence
of links l0, l1, . . . , lk and

1. d(li) = s(li+1) (0 ≤ i ≤ k),

2. s(l0) = ri, d(lk) = rj .

Subject to ∑
bw

comij

lu
≤ bwlu , ∀comij ∈ Com, ∀lu ∈ L (3.9)

where the left part of the inequality is the bandwidth requirement on the
link lu, and bw

comij

lu
is obtained by the following equation:

bw
comij

lu
=

{
bwcomij if lu ∈ Ωij

0 otherwise
(3.10)

Equation 3.9 defines the bandwidth constraint of each link on the NoC. The
aggregate bandwidth requirement could not exceed the bandwidth available
on a link.

48

Note that, the communication mapping is not applicable to NoCs where
runtime adaptive routing is employed. In addition, the minimal path routing
is preferable in the communication mapping. The minimal path routing
chooses the shortest path between two communicating cores, which is able
to minimize the communication energy consumption. Take a 2D mesh NoC
as an example, the set of shortest paths lie in the rectangle formed by
the source and destination nodes. The length of the shortest path is the
Manhattan distance between two nodes, i.e., |xd−xs|+ |yd−ys| ((xs, ys) and
(xd, yd) are the coordinates of the source and destination nodes respectively).
Equation 3.10 gives the bandwidth requirement on link lu imposed by the
communication comij , where bwcomij is defined in Section 3.2.2.

3.4 Energy Consumption Model

Energy consumption has drawn significant attention in application map-
ping [86] [88] [3] . A major goal of application mapping is to minimize
the energy consumption of executing an application. The energy consump-
tion is contributed by both communication network and processing cores,
corresponding to the communication and computation energy consumption
respectively. The energy consumption is formulated as:

E = Ecomm + Ecomp (3.11)

where Ecomm and Ecomp represent the communication and computation en-
ergy consumption respectively. Both Ecomm and Ecomp are composed of
dynamic and static energy consumption. Dynamic energy consumption is
proportional to switching activity, which happens when data is being pro-
cessed on the IP cores or transferred on the NoC. Static energy consumption
mainly originates from subthreshold leakage current and is dependent on the
application execution time, the number of transistors and the temperature
[71] [72].

A classical dynamic communication energy consumption model of NoCs,
based on the bit energy consumption Ebit, was proposed in [3] as follows:

Ebit = EBbit
+ ESbit

+ ELbit
(3.12)

where EBbit
, ESbit

and ELbit
are the energy consumed for transferring one

bit data by the buffer, switch, and link at a router respectively.
The dynamic energy consumed by communication comij in a CCG is

proportional to Ebit, the data volume vol(comij) and the length of the rout-
ing path γij = |Ωij |. Equation 3.13 gives the dynamic energy consumption
of the communication comij .

Ecomij = vol(comij)× (γij × (EBbit
+ ESbit

) + (γij − 1)× ELbit
) (3.13)

49

And the dynamic communication energy consumption, Ecomm−dy, is the
total energy consumed by all communications in a CCG.

Ecomm−dy =
∑

comij∈Com

Ecomij (3.14)

A static communication energy consumption model was proposed in [97]
as follows:

Ecomm−st = n× Prouter × texec (3.15)

where n is the number of routers on the NoC, Prouter is the static power
consumption of each router, which takes the temperature into account. texec
is the execution time of the application. The total communication energy
consumption is computed as:

Ecomm = Ecomm−dy + Ecomm−st (3.16)

Using the application and NoC models presented in Section 3.2, and the
IP selection result A : T × IPR in Section 3.3.2, the dynamic computation
energy consumption Ecomp−dy is calculated by:

Ecomp−dy =
∑

IPj∈IPR

∑
ti∈T

ECij ×Aij (3.17)

and the static computation energy consumption can be calculated similarly
as the static communication energy consumption in Equation 3.15:

Ecomp−st =
n∑

i=1

Pcori × texec (3.18)

where Pcori is the static power consumption of IP core cori ∈ Cor.
The total computation energy consumption is computed as:

Ecomp = Ecomp−dy + Ecomp−st (3.19)

Equation 3.14 and 3.19 are used to evaluate the qualities of mapping solu-
tions found by the algorithms developed in this thesis.

3.5 Mapping Methods

3.5.1 Overview of Mapping Methods

Recalling the formulations of IP selection, tile assignment and communica-
tion mapping, we know that all resource allocation problems dealt with the
three stages are the combinatorial optimization problem, which consists of
finding an optimal solution from a finite set of candidate solutions. Each

50

of them is an instance of constrained quadratic assignment problem, which
is known to be NP -hard [98]. The search space in each problem increases
factorially with the application and NoC sizes. For such problems, determin-
istic methods, e.g., exhaustive search and Branch-and-Bound search, which
exhaustively explore the search space, are guaranteed to find the optimal
solution. But, they are not affordable for the practical size of problems due
to the prohibitively expensive computing. Therefore, constructive or trans-
formative heuristics are widely used to solve the mapping problems with
large number of tasks and NoC nodes.

Heuristics are pseudo-random search and optimization techniques which
perform the exploration of search space based on learned experience. Com-
pared to exhaustive search, heuristics can provide near-optimal solution with
reduced complexity and affordable computation. Heuristics incrementally
improve the quality of mappings over iterations or generations, until the
number of iterations (generations) reaches to a pre-defined limit or the crite-
ria of termination are met. At each iteration (generation), current mappings
are reconstructed and evaluated for finding the better solutions compared
to the best ones that have been found so far. Widely used heuristics for
application mapping include greedy incremental, simulated annealing and
genetic algorithm.

Another method to solve the application mapping problem is to use
mathematical programming. Linear programming (LP) is an example of
mathematical programming. Using mathematical programming, it is able
to find the set of parameters which can minimize or maximize the objective
functions under a set of constraints. In practice, integer linear program-
ming (ILP) is more applicable for application mapping problem where the
variables in objective functions and constraints are integer.

The following sections discuss the representative algorithms which have
been applied to application mapping problems. Following the illustrations of
the algorithms, an comparison between algorithms is performed in terms of
search space size, solution quality, complexity and problem scope. The com-
parison clarifies the directions that will be explored in this thesis in order to
develop high-performance energy-efficient application mapping algorithms.

3.5.2 Exhaustive Search (ES)

ES is the simplest and most straightforward method for application map-
ping problem. To find the optimal solution in the entire search space, all
candidate solutions are exhaustively enumerated and evaluated with respect
to the objective functions. Take the IP selection problem as an example, for
a CCG with p cores and a NTG with n routers (p ≤ n), there are in total
n!/(n− p)! candidate solutions, which incurs an o(n!) complexity for the ES
algorithm. Considering this factorially increased complexity, in practice, ES

51

is only applicable to the mapping problems with small size. The experiment
in [97] shows that, for all small NoCs (up to 3 × 4 or 2 × 5), it is possible
to find the optimal mapping by ES. For larger ones (8 × 8 and 10 × 10),
it is impossible to find the optimal mappings by ES within a reasonable
computation time.

3.5.3 Branch-and-Bound Search

Branch-and-Bound (BB) search deals with optimization problems over a
search space that can be represented by the leaves of a search tree. Each
intermediate node represents a partial solution and a leaf node, a complete
solution. The search tree is traversed in a specific order, and the score of
the best leaf found so far is kept as a bound B. If the most achievable score
among the descendant leaf nodes of an intermediate node is worse than B,
the search tree is pruned at that node, i.e., its subtree (a branch) will not
be searched any more. Otherwise, the child nodes of current node will be
generated and evaluated in the next round. The algorithm continues until
all non-pruned branches have been enumerated and the best leaf is found.

In [25] [26] [3], BB algorithm is applied to tile assignment and com-
munication mapping in order to minimize the communication energy con-
sumption subject to the specified design constrains. The mono-objective BB
algorithm proposed in [26] is extended to a Pareto-based BB (PBBB) algo-
rithm in [95] to perform multi-objective exploration of the mapping space.
Even though BB algorithm is possible to skip unnecessary evaluations by
branch-pruning, it is difficult to predict the exact effect. In the worst case,
the complexity of BB is as high as ES. In [99], the authors use an efficient
BB mapping algorithm to minimize the execution time. The BB algorithm
is optimized by using greedy heuristic for the initial solution and bounds so
that the convergence is speeded up. The proposed mapping algorithm in
[100] tries to reduce the search space of BB algorithm by binding the tasks
with large communication volume together and mapping them preferably
on adjacent nodes in the NoC. The binding technique also aims to decrease
the communication energy consumption.

The example of search tree for mapping a four-core application (repre-
sented by a CCG) onto a 2 × 2 NoC, derived from [3], is shown in Figure
3.5.

The root node corresponds to the state that no IP core has been mapped
on the NoC. Intermediate node, for example, “03XX”, represents that cores
cor0 and cor3 have been mapped to routers r0 and r1 respectively, while
cor2 and cor1 have not yet been mapped. The leaf node “0321” means that
four cores, cor0, cor3, cor2 and cor1 have been mapped to routers r0 to
r3 respectively. Two bounds, the upper bound cost (UBC) and the lowest
bound cost (LBC) are employed. UBC of a node is defined as a value that is

52

no less than the minimum energy consumption of its legal, descendant leaf
nodes. LBC of a node is defined as the lowest energy consumption that its
descendant leaf nodes can possibly achieve. The detail of the BB algorithm
using LBC and UBC techniques can be found in [3]. The experiment shows
that for applications with 9 and 36 cores, compared to a general simulated
annealing algorithm, the speedup achieved by the BB algorithm is 45 and
127 times respectively, while the energy consumptions are reduced for most
benchmarks.

XXXX

0XXX 2XXX1XXX 3XXX

02XX01XX 03XX 21XX20XX 23XX

031X 032X

0312 0321

Root Node

Intermediate

Node

Leaf Node

Figure 3.5: An Example of Search Tree in [3]

3.5.4 Greedy Incremental Search

Greedy Incremental (GI) algorithm is an intuitive approach for solving the
combinatorial optimization problems. Starting from an empty solution X =
∅, GI algorithm repeatedly adds one element x to X from a set of candidate
elements E so that the best improvement of the objective function can be
achieved by the solution X ∪ x. The process continues until E = ∅ [101].
Decision at each step is made based on improving local or current state
without considering global optimization. And the previous decision will not
be reconsidered in the future steps.

GI algorithm is employed in [28] for the tile assignment and the minimum-
path routing. Starting from an initial mapping, the GI algorithm iteratively
improve the mapping solution in a way of swapping two tasks at one time.
Only when improvement is measured, can a swap be accepted. Similar to
[28], GI is applied in [30] as one kind of energy-efficient tile assignment al-
gorithm. GI algorithm is composed of two nested loops. Starting from an
initial mapping, the external loop chooses a node on the NoC as the pivot

53

of evaluation, and the internal loop iteratively swaps the IP core mapped
on this node with those on other nodes. The swapped nodes that lead to
the largest saving on energy consumption (same model as Equation 3.13),
are returned by the internal loop and the swap is performed by the external
loop. The external loop then proceeds to find the next pivot by discarding
the previously evaluated nodes. The algorithm stops when there is no pivot
available.

According to the comparison in [30], the advantage of GI algorithm is its
faster speed compared to other algorithms. It can obtain a local optimum
by performing the pair-wise swapping O(n2) times for an n-node NoC. The
time complexity of the GI algorithm is therefore O(n2). The quality of the
final mapping solution is not guaranteed to be the global optimum, and is
greatly affected by the initial mapping solution.

3.5.5 Simulated Annealing (SA)

SA algorithm originates from the annealing of solids in the field of met-
allurgy, a way involving heating and controlled cooling of a material to
increase the size of its crystals and reduce their defects. While heated at
high temperature, atoms with high energy become more active and are able
to move away from their initial positions which represents a state of the
local minimum in terms of internal energy. Then, new state with changed
internal energy is created due to these moves. While the temperature is
falling down, the material will finally reach to the frozen state with minimal
internal energy. The slow cooling gives atoms more chances to move to a
state with lower internal energy.

The pseudo-code of the generic SA algorithm is shown in Algorithm 1.
The symbols and definitions of the applied functions and parameters are
listed in 3.1. Different implementation alternatives of these functions and
parameters are summarized in [31]. Analogous to the process of physical
annealing, the general SA algorithm proceeds by iteratively replacing the
current solution with a new randomly generated solution. The moves from
current solution to that with lower or equal cost (downhill moves) are always
accepted, and those to higher cost (uphill moves) may be accepted with a
changing probability which depends on the cost difference (∆C > 0) and
a global parameter t (called the temperature). The temperature t grad-
ually decreases during the annealing process. SA becomes greedy when
the temperature t approaches to zero and terminates when the function
Terminate(i, R) becomes true. During the whole process, SA behaves like
a pure randomizing algorithm at the beginning and a pure greedy algorithm
at the end. This feature allows the SA algorithm to take advantage of both
the randomizing algorithm (the ability of finding the global optima) and the
greedy algorithm (a faster convergence).

54

Algorithm 1: General Simulated Annealing Algorithm

1 S ← S0

2 C ← Cost(S0)
3 Sbest ← S
4 Cbest ← C
5 R← 0
6 for i← 0 to ∞ do
7 T ← Temp(i, T0)
8 Snew ←Move(S, T)
9 Cnew ← Cost(Snew)

10 ∆C ← Cnew − C
11 if ∆C < 0 or Accept(∆C, T) then
12 if Cnew < Cbest then
13 Sbest ← Snew

14 Cbest ← Cnew

15 end if
16 S ← Snew

17 C ← Cnew

18 R← 0
19 else
20 R← R+ 1
21 if Terminate(i, T0, R) = True then
22 break
23 end if
24 end if
25 end for
26 return Sbest and Cbest

Compared to a pure greedy algorithm, e.g., the GI algorithm presented
previously, the significant strength of SA is the ability to find the global
optimum. This is achieved by accepting worse solutions, which enables
the algorithm to escape from the local optimum. However, to obtain the
global optimum, SA algorithm generally needs much more evaluations than
pure greedy algorithms. The result in [3] shows that to map an integrated
video/audio application, the solutions produced by SA are better than those
by BB at the price of slower speed. Based on the observation in [102], SA
can be seen as a variant of the (1 + 1)-EA (evolutionary algorithm). It is
hard to give an exact complexity of SA, which depends on the parameters
and functions applied. Mathematical tools [102] can be utilized to analyze
the complexity of different SA implementations.

55

Table 3.1: Functions and Parameters for SA

Symbol Definition

S Mapping solution (S0: initial solution)

Cost(S) Cost function

Temp(i, T0) Temperature function, return the temper-
ature at iteration i

Move(S, T) Move function, return a neighboring map-
ping of S at temperature T

Accept(∆C, T) Accept function, return True (to accept)
or False (to reject) a worse solution

Terminate(i, R, Tf) Termination function, return True (to ter-
minate the SA) or False (to continue the
annealing)

T0 The initial temperature

Tf The final temperature

R The number of rejected solutions

3.5.6 Genetic Algorithm

Compared to the aforementioned ES, BB and SA algorithms, genetic al-
gorithm (GA) is more suitable for multi-objective optimization problems.
GA is a search heuristic that mimics the process of natural evolution. GA
usually starts from a population of randomly generated individuals, where
each individual presents a solution. In each generation, the fitness of every
individual in the population is evaluated and associated with a rank. To
generate a new generation, usually the top few percentages of individuals
are kept. The rest of the population is composed of the offspring created
by crossover and mutation operators. For the crossover operation, two par-
ent individuals are selected. Offspring are created by exchanging parts of
the selected individuals. The crossover may be single-point or multi-point.
The mutation operator selects one parent individual and randomly change
some of its properties to create offspring. The evolution repeats until a ter-
mination condition has reached. A termination condition may be that, for
example, a satisfied solution is found, or a fixed number of generations have
been created and evaluated. The solution quality and convergence time of
GA are controlled by parameters including crossover rate, mutation rate,
population size, etc [103].

For a multi-objective problem, it is less likely to find one single solution
which can optimize all objectives at the same time. Instead, a set of solutions
need to be produced by GA algorithm. In practice, the domination concept
[104] with a ranking schema is applied to classify the set of solutions into so-
called Pareto fronts. Solutions from the front ranked as one (Pareto-optimal

56

front) are equally good or better than solutions from Pareto fronts with
higher rank.

GA requires a genetic representation of the solution domain, and a fitness
function (objective function) to evaluate the solutions. We take the work
in [105] as an example to illustrate the implementation of GA, where GA
is used in the IP selection stage with the purpose of minimizing the total
execution time and power consumption.

1. Representation. Each individual (chromosome) is represented by one-
dimension array, and indexes of the array correspond to the tasks in
T (from TG). Initially, a random type of IP core is selected from the
IP repository and assigned to each element (gene) in the array.

2. Tournament selection, one-point crossover and simple mutation are
used.

3. Fitness Functions

(a) Execution Time.

Time = max
p∈Paths(TG)

(
∑
∀t∈p

timet) (3.20)

where Paths(TG) provides all possible paths in a given TG and
timet is the required execution time for task t on its selected IP
core. In this function, the communication delay is not considered
in calculating the execution time of an application.

(b) Power Consumption.

Power =
∑
t∈TG

powert (3.21)

where powert is the required power consumption for the execution
of task t on its selected IP core.

Similar to SA, the complexity of GA is problem-specific and dependent on
different fitness functions and operators. A GA employing crossover and
mutation operators is a (N + N)-EA [102], whose complexity is not yet
possible to be calculated. In [106], the authors claimed that GA takes more
computation time than SA, because it compares a population of individuals
at each generation, while in SA only a pair of solutions are compared at
each iteration.

57

3.5.7 Integer Linear Programming (ILP)

Linear programming (LP) is a technique for the optimization problem with
a linear objective function, subject to linear equality and linear inequality
constraints. The major advantage of LP is that it allows different, and often
conflicting design interests to be integrated and explored within a unified
model. A LP problem is formulated by dependent variables in the objective
functions and independent variables in the constraint functions. ILP is a
subclass of LP where variables are forcibly constrained to be integer.

A 0-1 ILP formulation is presented in [107] for energy-efficient mapping.
The experiments on several real applications show that, for applications with
smaller amount of tasks and communications, the proposed ILP approach
can find optimum results under the given CPU time limit in most cases.
However, for the applications with more tasks and communications (e.g.,
application VOPD with 16 tasks and 20 communications), the ILP method
fails to obtain the optimum mapping in the given time. The ILP formu-
lation presented in [88] takes both the computation and communication
energy consumption into account. Although the global optimal mapping
can be found by the proposed ILP formulation, the computational complex-
ity of the ILP grows rapidly as the problem complexity grows. To alleviate
the computational complexity of ILP approach, a simulated annealing with
timing adjustment (SA-TA) heuristic is proposed as well. As claimed, the
SA-TA algorithm achieves near global optimal mapping even under tight
timing constraints (less than 5% energy overhead using 1000 iterations).

We use the instance in [29] to illustrate the ILP method. The objective
in [29] is to produce a contention aware mapping which can trade off the
network latency (and implicitly, the throughput) with the communication
energy consumption. The problem is formulated as an ILP problem as
follows.

1. Variables

(a) MDrsrt : the Manhattan Distance from routers rs to rt.

(b) l1, l2, . . . , lK : the set of K uni-directional segment links on the
NoC, for each link lk, l

rsrt
k defines whether or not the link lk is

on the routing path from routers rs to rt, and

lrsrtk =

{
1, if lk ∈ Ωst

0, otherwise

where Ωst is a routing path from source router rs to destination
router rt.

(c) mrs
cori gives the mapping result, i.e.,

mrs
cori =

{
1, core cori ∈ Cor is mapped on the router rs ∈ R
0, otherwise

58

where Core and R are the set of cores in CCG and routers in
NTG respectively.

(d) prsrtcoricorj shows the communication mapping result, i.e.,

prsrtcoricorj =


1, communicating cores cori and

corj are mapped on routers rs and
rt respectively

0, otherwise

(e) zlk coricorjcormcornrsrtrprq is used to represent the path-based
contention.

zlk (coricorjcormcornrsrtrprq) =



1, link lk is shared by rout-
ing path from routers rs to rt
and that from routers rp to
rq, on which communicating
tasks cori, corj , corm and corn
are mapped respectively.

0, otherwise

2. Objective Function. The objective is to minimize the weighted commu-
nication distance (and implicitly, communication energy consumption)
and the path-based contention as well, i.e.,

min
{(1− α)

β
×
(∑

∀(cori,corj)∈Cor

wcori,corj ×
[∑
∀rs,rt∈R

(MDrsrt × prsrtcoricorj)
])

+
α

γ
×
∑
∀lk

zlk (coricorjcormcornrsrtrprq)
}

(3.22)

3. Constraints.

(a) One-to-one core-to-router mapping: each task is exclusively mapped
to one router.

∀rs ∈ R,
∑

∀cori∈Cor

mrs
cori ≤ 1

∀cori ∈ Cor,
∑

∀rs∈C
mrs

cori = 1

∀cori ∈ Cor,∀rs ∈ R, 0 ≥ mrs
cori ≤ 1

(3.23)

59

(b) Communication path: there must be one communication path for
any communicating cores that are mapped on the NoC.

∀(cori, corj) ∈ Cor

mrs
cori +mrt

corj − 1 ≤ prsrtcoricorj ≤
mrs

cori +mrt
corj

2
0 ≤ prsrtcoricorj ≤ 1

(3.24)

(c) Bandwidth constraint: for each link lk, the total bandwidth re-
quirement for all communications passing through the link cannot
exceed the bandwidth bw(lk).∑

∀rs,rt∈R

∑
∀(cori,corj)∈Cor

bwcori,corj × lrsrtk × prsrtcoricorj ≤ bw(lk)

(3.25)

(d) Path-based network contention count: the path-based contention
happens when two communications contend for the same link.

∀(cori, corj), (corm, corn) ∈ Cor

prsrtcoricorj + p
rprq
cormcorn + lrsrtk + l

rprq
k − 3 ≤ zlk (coricorjcormcornrsrtrprq)

0 ≤ zlk (coricorjcormcornrsrtrprq) ≤ 1

(3.26)

After the mapping problem is formulated, tools like MATLAB, Xpress −
MP [107] and lp − solver [29] can be used to obtain the final mapping
solution. Note that, in [29], the authors also use a LP approximation to
relax the NP -hard ILP problem, which significantly decreases the run-time
of the mapping algorithm (from hours to less than one second). Similarly,
to overcome the unacceptable complexity of ILP in dealing with application
mapping problems, an approach of quadratic programming (QP) formula-
tion is proposed in [108]. Due to the decrease in the number of variables
for the mapping problems with large size, the QP approach is, as reported
in [108], at least 10 times faster than the original ILP formulation for the
given 20 benchmarks.

3.5.8 Summary of Mapping Methods

Based on the study of the above methods, we can see that each of them has a
compromise between quality, search space, complexity and the scope of the
applicable problems. The comparison between these methods is summarized
in Table 3.2.

ES and BB are able to find the global optimum at the price of highest
computational complexity, as a result of the exhaustive search over the entire

60

Table 3.2: Comparison of Mapping Methods

Method Category Search
Space

Quality Com-
plexity

Problem
Scope

ES Determinis-
tic
Search

Whole
Space

Global
Optimum

o(n!) Single-
Objective

BB Determinis-
tic
Search

Whole
Space
(worst
case)

Global
Optimum

o(n!)
(worst
case)

Single-
Objective

GI Heuristic
Search

Small
Search
Space

Local
optimum

o(n2) Single-
Objective

SA Constructive
Heuristic
Search

Medium
Search
Space

Global or
Near Global
Optimum

Problem-
Specific

Single- and
Multi-
Objective

GA Transforma-
tive Heuristic
Search

Large
Search
Space

Global or
Near Global
Optimum

Problem-
Specific

Single- and
Multi-
Objective

ILP Mathemati-
cal
Program-
ming

Whole
Space

Global
Optimum

Class
NP

Single- and
Multi-
Objective

search space. Similarly, ILP is a method in the complexity class NP -hard
[29] for finding the global optimum. It is impractical to use ES, BB and
ILP for mapping problems with large number of tasks and NoC nodes. GI
is the simplest algorithm, but it can only converge to a local optimum.
As a trade-off between complexity and quality, SA and GA can converge
to the global optimum or sub-optimum in finite iterations (generations) by
exploring larger search space than GI. The exact complexity of SA and GA
depends on the parameters and functions employed. In addition, SA, GA
and ILP are capable of solving both single- and multi-objective problems.

3.6 Chapter Summary

The framework of the general application mapping process, consisting of IP
selection, tile assignment and communication mapping stages, was presented
in this chapter. Each stage focuses on a particular sub-problem and a final
mapping solution is obtained by the collective efforts of these three stages.
The energy consumption model used for evaluate the quality of mappings
was derived based on the existing works. The methods applied to the ap-
plication mapping problem was studied. Since the application mapping is

61

a NP -hard optimization problem, heuristics are employed to find the near-
optimal solutions. SA, GA and ILP methods can find better mappings than
GI and BB with reasonable computational complexity. SA, GA and ILP are
also capable of solving the multi-objective mapping problems. By utilizing
optimized parameters and operators, SA and GA can be further accelerated
for specific mapping problems.

62

Chapter 4

Tree-Model Based Mapping
Heuristic

This chapter presents a lightweight mapping algorithm based on a tree model
of a NoC. All the nodes on a NoC as well as the interconnections between
them are abstracted as a extended tree structure. By mapping the selected
tasks one by one on the tree starting from the root of the tree, the tree-
model based mapping algorithm minimizes the energy consumption and
packet latency. The utilization of the tree model makes the mapping a
one-round procedure which significantly decreases the run-time of the al-
gorithm. Besides time efficiency, the proposed mapping algorithm achieves
better performance compared to the GI algorithm.

4.1 Objective Function

The algorithm is dedicated to the tile assignment stage. Here we assume
that the given application has already been partitioned and implemented as
a set of tasks, and each of them has been allocated to one type of IP core.
The objective of tile assignment is to minimize the communication energy
consumption and packet latency. We use the application and NoC models
presented in Section 3.2 to describe the application and NoC respectively.
The NoC is assumed to be a 2D mesh NoC employing the minimal routing
algorithm and the wormhole switching (see Section 2.2.3).

4.1.1 Energy Model

As the emphasis is put on minimizing the dynamic communication energy
consumption, Equation 3.14 defined in Section 3.4 is used as the energy
consumption model.

63

Ecomm−dy =
∑

comij∈Com

Ecomij

=
∑

comij∈Com

vol(comij)× (γij × (EBbit
+ ESbit

) + (γij − 1)× ELbit
)
(4.1)

where EBbit
, ESbit

and ELbit
are the energy consumed for transferring one

bit data by the buffer, switch and link respectively, and γij = |Ωij | is the
length of a routing path Ωij from a source router ri to a destination router
rj (see Section 3.3.4).

4.1.2 Delay Model

Besides the energy model, a delay model is developed to define the delay for
transmitting a packet along a routing path Ωij . The delay of transferring
one data from the source tile to the destination tile is affected not only by
the length of communication path, but also by the network traffic situation.
When the network is in congestion, all flits have to wait for a period of time
at the router until resources are released by other transmissions. Because
of the concurrent nature of network traffic, it is difficult to make an exact
calculation of the delay at a specific router on the routing path which is
resulted from the network congestion. Hence, we formulate the transmission
delay using an average delay, Dcon. The delay for transferring one flit from
a source tile ti (or router ri) to a destination tile tj (or router rj) is then
formulated as follows:

D
titj
flit = γij ×

(
DSflit

+Dcon

)
+ (γij − 1)×DLflit

(4.2)

where DSflit
represents the delay of switching one flit at a router. DLflit

represents the delay of forwarding one flit across a link. The total delay of
communication communication cij from tile ti to tile tj is derived as:

Dtitj =
volij
F
× γij ×

(
DSflit

+Dcon

)
+

volij
F
× (γij − 1)×DLflit

(4.3)

where F is a constant and dependent on the specific NoC. F is dependent
on the packet size and the switching technique utilized in the NoC.

It is shown in Equation 4.1 and 4.3 that, given the NoC-specific constants
(i.e., EBbit

, ESbit
, ELbit

, DSflit
, Dcon and DLflit

), both the communication
energy consumption and the delay are proportional to the product of the
data volume volij and the length of the routing path γij between two commu-
nicating cores (tasks). Therefore, instead of directly using the energy model

64

and the delay model, we define the following weighted communication of an
application (WCA) as the objective function.

Definition 1: The weighted communication of an application (WCA)
is the sum of products of data volume volij and the length of the routing
path γij , for all communicating tasks of the application which are mapped
on a NoC.

WCA =
∑
∀cij

volij × γij (4.4)

Using the WCA, the different mappings can be relatively evaluated. Ac-
cording to Equation 4.1 and 4.3, a mapping with the minimal WCA will
yield the minimized communication energy consumption and packet delay.

4.2 Tree-Model Based Mapping Algorithm

To reach the objective of minimizing theWCA, it is important for us to know
the logical relationship between nodes on the NoC. We notice that for any
topology, given a specific node, it is possible to abstract the connections with
other nodes by traversing the whole network from the given node. Compared
to linear data structure such as linked list and one dimensional array, tree
structure can be traversed more flexibly and efficiently. Starting from a node
on a tree, all its parents and children nodes can be traversed, which makes
tree structure suitable for representing the many-to-many connections in a
NoC. In practice, tree model has already been widely used in a broad range
of applications including pattern classification [109], data searching [110] to
parallel computing [111]. Therefore, we utilize the tree model to abstract
the connections between nodes in a NoC.

4.2.1 Extended Tree Model of a NoC

To abstract a NoC into a tree, first the center point of the NoC is chosen
as the root node of the tree, which has the shortest average distance to all
other nodes in the NoC. The neighbors of the center point are put on the
tree as the child nodes of the root node. Then, the same traversal iterates
for each child node. The procedure continues until all nodes in the NoC are
put onto the tree. The structure is called an extended tree since some child
nodes may have more than one parent node.

The abstraction of the extended tree model of a 2D mesh NoC is pre-
sented in Algorithm 2. Although the algorithm is illustrated with a 2D mesh
NoC, we note that the extended tree model and the abstraction algorithm
are applicable to NoCs with any kinds of topologies, as long as the starting
point is specified.

65

Algorithm 2: Abstraction Algorithm of Extended Tree Model

Input : A 2D mesh of size x× y
Output: A extended tree structure representing the 2D mesh

1 Select the starting point whose coordinates is
(
x
2 ,

y
2

)
;

2 Create the initial Mapping Tree (MT), MT = {tk}, tk is defined as
the root of the tree;

3 Create set B = {tk};
4 Traverse the NoC from node tk ∈ B clockwise, denote the
neighboring nodes of tk in all directions, i.e., tkw, tkn, tke and tks
respectively, as the child nodes of the node tk; Conversely, denote the
node tk as the father node of nodes tkw, tkn, tke and tks.;

5 Create level set L = {tkw, tkn, tke, tks}, append L to MT, B = L and
then empty L;

6 Traverse the NoC from each node ti ∈ B sequentially, find all children
nodes of ti ∈ B, append these children nodes to L if it is not in L yet.
When all ti ∈ B has been accessed, append L to MT, B = L and then
empty L;

7 Repeat 6 until all nodes of the NoC are appended in MT;

Figure 4.1 is an example where a 3× 3 2D mesh NoC is abstracted into
an extended tree using Algorithm 2. The traversal starts from the center
point in order to:

1. Make the tree as flat as possible. As a result, the length of the routing
path from the root to any leaf nodes can be minimized as much as
possible.

2. Obtain a tree as symmetrical as possible so that each node located at
the interior levels has the most number of child nodes. Consequently,
it is possible to map more tasks communicating with a given task on
its neighbor nodes to achieve smaller WCA.

The level of the extended tree implies some characteristics of the nodes
at that level:

1. Resource quantity. If we refer to the child nodes of a node as its
resources, the root node and the nodes at interior levels have more
resources than those leaf nodes. In Figure 4.1 the resource quantity of
nodes at the root, 1st and 2nd level is 4, 2 and 0 respectively.

2. Communication distance. Different levels on the extended tree imply
different lengths of routing path from nodes located at that level to
nodes at other levels. For example, in Figure 4.1 the average length

66

(in hops) from any node at the 2nd level to root node is 2, while that
from a node at the 1st level is 1.

Extended treeNoC

R

n4

R

n5

R

n6

R

n7

R

n8

R

n9

R

n1

R

n2

R

n3
n5

n2n4 n8n6

n1 n3 n9 n7

Abstraction

Root

1st level

2nd level

Figure 4.1: Extended Tree Abstraction of a 2D Mesh

Due to these two characteristics, it is reasonable for mapping algorithm
to map a task on a node at a level as low as possible. In such a way, the newly
mapped task gets more child nodes with shortest communication distance (1
hop) on the NoC, to map tasks that communicate with it. Additionally, this
task can communicate with those tasks that have already been mapped on
the tree through shorter communication paths. Both of them will contribute
to the minimization of the WCA.

4.2.2 Mapping Tasks on Extended Tree

After the NoC is abstracted as an extended tree, we can use the tree to map
the tasks of an application. The mapping algorithm takes advantage of the
features implied by the levels on the tree and try to map a selected task on
a node at lowest level.

To present the task mapping algorithm, we first introduce the following
definitions that are used in the tree-model based task mapping algorithm.

Definition 2: A Partial Tree (PT) is a partial solution of mapping an
application where a part of tasks in the task graph have been mapped on
the extended tree of the NoC. The partial tree PT =< T

′
, C

′
> is a subset

of the TG. That is, T
′ ⊆ T , C

′ ⊆ C and each ti ∈ T
′
has already been

mapped on the tree.
Definition 3: The Communication Volume (CV) of task tj ∈ T is the

aggregate communication data volume between tj and all its parent tasks
and child tasks in T . The CV of tj is calculated as follows:

CVtj =
∑

∀tp∈T

(
voltp,tj

)
+
∑
∀tc∈T

(
voltj ,tc

)
(4.5)

where tp and tc denote a parent and a child task of tj respectively, and
volti,tj is the data volume between tasks ti and tj .

67

Definition 4: The Affinity to Partial Tree (APT) of a task tj ∈ T − T
′

is the communication weight between tj and its parent and child tasks in
T

′
. The APT of a task tj is calculated as follows:

APTtj =
∑

∀tp∈T ′

(
voltp,tj

)
+
∑

∀tc∈T ′

(
voltj ,tc

)
(4.6)

where tp and tc denote a parent and a child task for tj on the PT respectively.

Using these definitions, the tree-model based mapping algorithm is given
in Algorithm 3.

Algorithm 3: Tree-Model-Based Task Mapping Algorithm

Input : TG, abstracted tree ET of a NoC
Output: Mapping solution M

1 Calculate CV for all tasks ti ∈ T ;
2 Select the task tb with largest CV , map this node onto root node nr

of ET, create T
′
= {tb} and M = {< nr, tb >}, remove tb from T ;

3 while T is not empty do
4 Calculate APTtk for all tk ∈ T ;
5 Select task tj with largest APTtj as the task to be mapped;
6 Set the WCAmin the WCA of the PT WCAPT ;

7 for each node ni in the T
′
do

8 for each child node nc of the node ni do
9 map task tj on node nc;

10 calculate the WCA of the PT WCAPT ;
11 if WCAPT < WCAmin then
12 WCAmin = WCAPT ;
13 set the objective node bobj the node nc;

14 Map tj onto nobj , append pair < nobj , tj > into M ;

15 Append tj into T
′
, remove tj from T ;

At the beginning of the mapping, the task with the largest CV in the TG
is selected and mapped on the root node of the extended tree. Thereafter,
the task with the largest APT is selected. The algorithm attempts to map
the selected task on a free child node of those nodes on which one task
has already been mapped. After each mapping trial, the WCA of the PT
will be calculated and compared with the minimal one achieved so far in
previous trials. Finally, the node which achieves the minimal WCA of the
PT will be chosen to map the selected task. For an application composed
of n tasks, the process iterates n times until all tasks are mapped on the
nodes in the extended tree, which is less than n×(n−1)

2 times in the case of

68

the GI algorithm presented in Section 3.5.4. The final mapping solution
minimizes the WCA using the APT method and consequently reduces the
energy consumption and packet delay. Figure 4.2 is an example of using the
tree-model based algorithm to map an application on an extended tree of a
3× 3 NoC.

TG Extended Tree

t0

t3t4 t5t2

t1 t6

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

Step 7

Task
Free

Core
tx

Used

Core
tx

32

43

4

5

2

7

t0

t6

t5

t4t1 t3t2

2
Figure 4.2: Task Mapping Using Extended Tree of a NoC

4.3 Experimental Evaluation

4.3.1 Experiment Setup

The efficiency of the tree-model based algorithm is compared with the GI
algorithm in terms of run-time of algorithm, average network latency (ANL),
energy consumption (E) and WCA, using the benchmark applications from
the SPLASH-2 application suite [112].

Full system simulation is performed to gain further insight into the per-
formance of mapping algorithms. A multiprocessor simulator [113] is used
as our simulation platform to gather application traffic traces and original
mapping. Links and routers are modeled accurately in the simulation. The
wormhole router includes a routing computation unit, a virtual channel al-
locator, a switch allocator, a crossbar switch and four input buffers. X-Y
deterministic routing is used to avoid deadlocks. Two applications are se-
lected from the SPLASH-2 suite: Fast Fourier Transform (FFT) and Radix.
The original traffic data of Radix is used to compare the run-time of the
tree-model based and the GI algorithm with NoC size variation from 3× 3
to 8× 8.

Another cycle-accurate NoC simulator Noxim [114] is used to simulate
the application traffic on the NoC and produce detailed results of both al-
gorithms. The ANL, E and WCA under the original random mapping, tree-

69

model based and GI mapping algorithms are compared using experiment
data gained from Noxim simulator.

4.3.2 Results Analysis

Both algorithm complexity and NoC size affect the run-time of algorithm.
Figure 4.3 shows that a significant reduction of run-time is achieved by
tree-model based algorithm. In the experiment, the only case that the GI
is faster than the tree-model based algorithm occurs in the 3 × 3 NoC. In
other cases, the run-time of the tree-model based mapping is only 10% of
the GI on average. Run-time comparison shows that the speed-up of the
tree-model based algorithm over the GI is up to 92 times when the NoC
size grows from 4 × 4 to 8 × 8. Moreover, the run-time of tree-model base
algorithm increases only slightly when NoC size increasing. The run-time of
the tree-model based mapping in a 8× 8 NoC is about 12 times longer than
that in a 3 × 3 NoC, in comparison to 1504 times of the GI mapping. The
speed-up achievement means that the tree-model based algorithm is more
efficient and applicable if considering the increasing NoC size as well as the
tighter run-time constraints in the real-time systems.

125
246

484
708

1083

93

774

4464

17996

59181

1511

139866

10

100

1000

10000

100000

1000000

3*3 4*4 5*5 6*6 7*7 8*8

NoC Size

Ru
n-

tim
e o

f A
lg

or
ith

m(

µs) Tree-model

GI

Figure 4.3: Comparison of Run-time of Tree-model Based and GI algorithm

We use a configuration of 5 × 5 mesh NoC with 25 cores which models
a chip multiprocessor (CMP) for our experiments. Each PE has a core,
a private L1 cache and a shared L2 cache bank. Memory controllers are
connected to the top and bottom side of the chip. The static non-uniform
Cache Architecture (NUCA) [115] is implemented in our memory/cache ar-
chitecture, in which data are mapped to cache banks statically. Compared
with the uniform cache architecture (UCA), which has been used in tra-
ditional commercial multi-core processors, NUCA has more flexible cache
access latencies and thus improves the system performance. The reason is

70

that in UCA, the unified cache access latency is determined by the worst
case wire delay. A two-level distributed cache coherence protocol known as
MESI [116] is used in our memory hierarchy in which each L2 bank has
its own directory. Four types of cache line status, namely Modified (M),
Exclusive (E), Shared (S) and Invalid (I) have been implemented.

We evaluated ANL, E and WCA under different mapping algorithms.
The detailed configurations of processor, cache and memory configurations
can be found in Table 4.1. Results are presented for FFT and Radix work-
loads with 16 threads.

Table 4.1: System configuration parameters

Processor configuration

Number of processors 25 in-order

Issue width 1

Cache configuration

L1 cache Private, split instruction
and data cache, each cache
is 16KB. 4-way associative,
64-bit line, 3-cycle latency.

L2 cache Shared, unified 12.5MB
(25 banks, each 512KB).
64-bit line, 6-cycle latency.

Cache coherence protocol MESI

Cache hierarchy Static NUCA

Memory configuration

Size 4GB DRAM

Access latency 260 cycles

Controllers 10

Requests per processor 16 outstanding

Network configuration

Routing algorithm X-Y deterministic

Router scheme Wormhole

Flit size 128 bits

Router and link latency 1 cycle

Figure 4.4 shows the results of ANL, E and WC on FFT and Radix in
which three mapping strategies are evaluated. As anticipated, the original
unoptimized mapping has the worst latency and energy values, due to the
higher weighted communication. It is shown that in FFT traffic, compared
with the original mapping, the network latency, energy and weighted com-
munication of the tree-model mapping are reduced by 21.3%, 21.5% and

71

Original
Tree−model
GI

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

ANL−FFT E−FFT WCA−FFTANL−Radix E−Radix WCA−Radix

No
rm

al
ize

d
va

lu
e

Figure 4.4: Comparison of normalized ANL, E and WCA for FFT and Radix
benchmarks over different mapping strategies

29.7%, respectively. The GI algorithm shows similar results, with reduction
of 21.5%, 21.6% and 29.8% respectively. The proposed tree-model based
mapping has comparable performance with the GI, but its complexity is
much lower (as shown in Figure 4.3). For Radix traffic, as shown in Fig-
ure 4.4, the GI and the tree-model mapping outperform the original mapping
in all aspects. Comparing with the original mapping, the average network
latency of the tree mapping and the GI are reduced by 40.8% and 17.3%
respectively; energy consumption of the tree-model mapping and the GI are
reduced by 24.7% and 18.7% respectively; weighted communication of the
tree-model mapping and the GI are reduced by 32.6% and 29.9% respec-
tively. It is noteworthy that tree-model mapping performed much better
than the GI when the traffic becomes heavier in Radix than FFT applica-
tion. The ANL reduction of the tree-model based algorithm is significantly
greater than that of the GI because under the GI strategy the task with the
largest CV is mapped on node 6 instead of node 12 which is the center node
of the NoC. Therefore, the ANL is increased because of unbalanced traffic
on network.

4.4 Chapter Summary

A novel mapping algorithm based on the extended tree model of NoC was
presented and evaluated. Experimental results show that the proposed algo-
rithm achieves lower energy consumption and average network delay. Com-
pared to the GI algorithm, the tree-model based algorithm finds comparably
better mappings using significantly less run-time, especially in the cases of
large NoC sizes. The improvements on system performance as well as the re-
duction of algorithm run-time make the tree-model based algorithm a viable

72

mapping algorithm, which can be used solely as a energy- and time-efficient
mapping algorithm, or jointly with other mapping algorithms to find higher
quality mappings as we will presented in the following chapters.

73

74

Chapter 5

Simulated Annealing for
Global Optimum

Compared to heuristics like branch-and-bound (BB), and greedy incremental
(GI), the major advantage of simulated annealing algorithm is that it is able
to find the globally optimum mapping. In addition, SA algorithm provides
better trade-off between complexity and performance in comparison with the
other algorithms presented in Chapter 3. SA has drawn more and more at-
tention for application mapping problems on many-core NoCs [3] [87] [117].
As presented in Section 3.5.5, to apply SA algorithm, a set of parameters
and functions has to be specified, including initial temperature, final tem-
perature, cooling ratio, temperature function, move function, accept function,
etc. These parameters and functions determine how closely and how quickly
SA can converge to the global optimum of the objective function. However,
there are no straightforward ways to specify these parameters. In previous
works, these parameters are set either by using randomly selected values [3]
[87], or parameters tailored to the particular problems [117]. Clearly, it is
not certain if these random or tailored values can be generally applicable to
all other problems. Additionally, the performance of SA algorithm cannot
be guaranteed by randomly selected parameters.

For the parameters used in the SA algorithm, we argue that:

1. The parameters of SA are problem-specific. The annealing process of
SA algorithm is controlled by the set of functions which are deter-
mined by the set of parameters. Various sets of parameters will result
in different annealing processes and convergency to the optimal solu-
tion. The parameters have to be selected with respect to the specific
problem.

2. The parameters of SA have a joint impact on the performance of SA.
This means that these parameters should be selected systematically,
instead of being set randomly and independently.

75

Based on these two considerations, a systematic method is necessary
for generating the set of parameters of SA algorithm for the application
mapping problem. In this chapter, we propose to use the Nelder-Mead sim-
plex method, which is originally introduced in [118], to automatically gener-
ate the optimized parameters of SA algorithm. The generated parameters
are applied to the SA algorithm to find the optimized mapping solution
which achieves minimized communication energy consumption on a many-
core NoC. Due to the utilization of the optimized parameters, the annealing
process of the SA algorithm is significantly shortened while keeping good
mapping quality.

5.1 Nelder-Mead Simplex Method

The purpose of the Nelder-Mead simplex method is to minimize the output
of a function f(p) with n variables x1, x2, . . . , xn. In this method, a number
of n+1 points (solutions) p0, p1, . . . , pn are originally selected and form the
so-called simplex. The set of points is then used to generate a new and
better point which will replace the worst point in current simplex and forms
a new simplex. Each point of the simplex is a n-tuple with n variables, i.e.,
pk =

(
xk1, x

k
1, . . . , x

k
n

)
. The Nelder-Mead simplex method compares the n+1

values of the function f(p) (f(pi) (0 ≤ i ≤ n)), and replaces the point with
largest value by the newly generated point. In each iteration, the replace-
ment is realized by three operations: reflection, expansion and contraction.
If the replacement fails through these three operations, all points forming
the simplex are updated with new values to generate a new simplex. The
general Nelder-Mead simplex method is presented in Algorithm 2.

As shown in Algorithm 2, the principle of the Nelder-Mead simplex
method is, if f(pr) ≤ f(pn−1), then the point pn is replaced by its reflection
point pr. Thereafter, if f(pr) < f(p0), the reflection point is expanded to
the expansion point pe and the point pn is replaced by pe. The procedure
restarts when the expansion is done. In the case if f(pr) > f(pn−1), the
contraction point pc is generated. If f(pc) < min (f(pr), f(pn)), the point
pn is replaced by contraction point pc. Otherwise, all points in current sim-
plex are updated by pj = (pj + p0)/2(j = 0, 1, . . . , n) and a new simplex is
generated. The process iterates with the above operations.

By continuously replacing the point pn with a point which achieves
smaller f(p), the value of the function f(p) converges to the minimum. The
process terminates when the function stop() becomes true. The state of
function stop() can be determined by whether the value of function f(p) has
converged to a final value [118], or whether the points forming the simplex
have already converged to a final point [119]. In this work, because we try
to find the optimized parameters for the SA algorithm, we adopt the latter

76

Algorithm 4: Nelder-Mead Simplex Method for Minimizing f(p)

1 !ht
2 [118]

1 Select the initial n+ 1 points pi (0 ≤ i ≤ n).
2 while (!stop()) do
3 Sort f(pi) (0 ≤ i ≤ n) such that

f(p0) ≤ f(p1) ≤ · · · ≤ f(pn−1) ≤ f(pn).

4 Let p =

n−1∑
i=0

pi/n.

5 Generate reflection point pr = p+ α ∗ (p− pn).
6 if f(pr) ≤ f(pn−1)) then
7 Replace pn by pr.
8 Generate expansion point pe = p+ β ∗ (pr − p).
9 if (f(pr) < f(p0)) ∧ (f(pe) < f(pr)) then

10 Replace pn by pe.
11 end if
12 else
13 Let f(p∗) = min(f(pr), f(pn)).
14 Generate contraction point pc = p+ γ ∗ (p∗ − p).
15 if f(pc) ≤ f(p∗) then
16 Replace pn by pc.
17 else
18 Update pj with (pj + p0)/2 for j = 0, 1, . . . , n.
19 end if
20 end if
21 end while
22 Return the point p0.

77

way to define the function stop(). More precisely, in Algorithm 2, stop()
becomes true when |xki −xkj | ≤ εk(i ̸= j), for all i, j and k, where xki and xkj
are the kth element of point pi and pj respectively. Each element of vector ε,
called convergence degree of variable x, is a predefined small positive value
which determines the magnitude of the convergence.

In Algorithm 2, reflection coefficient α, expansion coefficient β and con-
traction coefficient γ give the factors with which the new simplex is gener-
ated by reflection, expansion and contraction operation respectively. These
coefficients decide the speed of the convergence and the quality of the final
point. In [118] and [119], two sets of α, β and γ were used. In this work, we
evaluated both sets of values by applying them in the Nelder-Mead simplex
method for the same set of benchmarks. The results show that both sets of
parameters achieve comparable performance of the SA algorithm, but the
Nelder-Mead simplex method using the coefficients in [119] can converge to
the final point with 100 times less CPU time than that in [118]. Therefore,
we use 1/3, 2.0 and 1.5 for α, β and γ respectively, which were used in [119].

5.2 Parameter-Optimized Simulated Annealing

This section presents the SA algorithm which applies the parameters gen-
erated by the Nelder-Mead simplex method. The set of parameters and
functions used for implementing the SA algorithm is defined first.

5.2.1 Parameters and Functions in SA

Cost Function

The SA algorithm is adopted in the tile assignment stage (Section 3.3.3).
The objective of the mapping is to minimize the communication energy con-
sumption on a many-core NoC. Similar to the mapping algorithm presented
in Chapter 4, we use the weighted communication of an application (WCA)
defined in Equation 4.4 as the objective function Cost(S) in SA. As verified
in Chapter 4, a mapping with the minimal WCA results in the minimized
communication energy consumption.

WCA =
∑
∀cij

volij × γij (5.1)

where volij and γij are the data volume and the length of the routing path
for the communication cij .

Annealing Schedule: Temp(i) Function

The annealing schedule determines how the temperature is cooling down.
At each step of annealing, a new temperature is generated by temperature

78

function Temp(i). We choose the geometric annealing schedule presented in
[31] as the temperature function.

Temp(i) = T0 × q⌊
i
L⌋ (5.2)

The new temperature is decided by the initial temperature T0, the cooling
ratio q, the accumulated number of iterations i and the number of iterations
at each temperature L.

Number of Iterations L

The number of iterations at each temperature L is set as M(N − 1), where
M and N are the number of cores in the CCG (Section 3.2.2) and that of
tiles in the many-core NoC respectively.

Acceptance Function: Accept(∆C, T)

While an downhill move (∆C < 0) is always accepted, the functionAccept(∆C, T)
determines whether a uphill move (∆C > 0) should be accepted or not at
the temperature T . The normalized inverse exponential form is chosen to
implement the acceptance function in this work.

Accept(∆C, T) = True⇔ random() < p

p =
1

1 + exp
(

∆C
KC0T

) (5.3)

With this acceptance function, the possibility of accepting a uphill move, p,
is less than 50%. On the basis of the original normalized inverse exponential
form presented in [31], we add the normalizing ratio K in the acceptance
function which works together with the initial cost C0 to normalize the cost
difference ∆C. This comes from the observation that using the original nor-
malized inverse exponential form , in cases that the C0 is huge, an accepting
possibility close to 50% will be generated even for a very small ∆C at a
very low temperature. This makes SA inefficient at the last rounds of lower
temperatures.

Initial and Final Temperature

The acceptance function in (5.3) defines the relation between the accepting
possibility p, cost difference ∆C and temperature T . Equation (5.3) can be
solved with respect to T as follows:

T =
∆C

ln(1p − 1)
(5.4)

79

If we define Ps the possibility of accepting the maximal ∆C at initial tem-
perature T0, and Pf the possibility of accepting the minimal ∆C at final
temperature Tf , then the initial and final temperature can be calculated as
follows:

T0 =
∆Cmax

ln(1
P0
− 1)

, Tf =
∆Cmin

ln(1
Pf
− 1)

(5.5)

When T0 and Tf are set manually using randomly selected values (the cases
in [3] [87]), only a numerical range is given by T0 and Tf , and there are no
real-world meanings behind T0 and Tf . In this work, by contrast, the usage
of Ps and Pf is more meaningful and understandable for designers to choose
the T0 and Tf by Equation (5.5).

Move function:Move(S, T)

We use the random swapping as the move function. An IP core in the
current mapping is randomly selected and the mapping tile of the IP core
is swapped with that of another randomly selected IP core.

Termination function:Terminate(i, R)

We add one criteria N∆C=0 into the termination function of coupled tem-
perature and rejection threshold which is presented in [31], to determine the
stopping condition of the SA algorithm.

Terminate(i, R) = True⇔ (Temp(i) < Tf ∧R ≥ Rmax)

∨(N∆C=0 = Z)
(5.6)

N∆C=0 stands for the number of consecutive temperatures at which the
lowest cost Cbest has not been changed. Z is the maximal number of N∆C=0

allowed in the SA algorithm. R is the number of consecutive rejections since
last acceptance and Rmax is the maximal number of rejections allowed in
the SA algorithm. With this termination function, the annealing is stopped
either when the temperature reaches to or below the final temperature and
the moves in last Rmax iterations are rejected, or in the last Z temperatures,
no better solutions have been found. In this work, we set Rmax = L and
Z = 0.1NT , when NT stands for the total number of temperatures from T0

to Tf .

Initial Mapping

A random mapping in which each IP core is randomly mapped on a tile, is
generated as the initial mapping.

80

Summary of Parameters

Table 5.1 summarizes the parameters and functions used in the SA algorithm
in this work. We can see from Table 5.1, to apply the SA algorithm, the
values of 6 parameters need to be specified: q,K, Ps, Pf ,∆Cmax and ∆Cmin.
As long as these parameters are specified, other parameters such as T0 and
Tf can be decided. In these 6 parameters, the values of ∆Cmax and ∆Cmin

can be obtained from a set of mapping trials generated from the original
mapping using the move function (Section 5.3). The other 4 parameters,
labeled “Nelder-Mead Simplex Method” in column “Value” in Table 5.1,
are the most important parameters of SA in this work and they are going to
be optimized by the Nelder-Mead simplex method presented in Section 5.1.

5.2.2 Parameter Optimization

To apply the Nelder-Mead simplex method for optimized values of q,K, Ps

and Pf , we need to define the function f(p) and specify the boundaries
from which the parameter is chosen, and the convergence degree of each
parameter.

Function f(p)

Since using various sets of q,K, Ps and Pf , the SA algorithm will produce
different minimized values of WCA, we can define the output of the SA,
i.e., the minimized WCA, as the function f(p) of variables q,K, Ps and Pf .
With this definition, it is possible to use the Nelder-Mead simplex method
to find the final point of variables q,K, Ps and Pf which yield the minimum
WCA by the SA algorithm.

Parameter Boundaries and Convergence Degrees

Contrary to the work in [118] where the variables is unbounded, the pa-
rameters q,K, Ps and Pf in our specific application mapping problem are
bounded. Among them, the parameters Ps and Pf are theoretically in the
range (0.0, 0.50] according to Equation (5.3). For the SA algorithm, it is rea-
sonable to set a high acceptance possibility at the initial temperature and
a low acceptance possibility at the final temperature. In this work, we set
the range of Ps and Pf by [0.20, 0.49] and (0.0, 0.10] respectively. And the
convergence degrees εPs and εPf

are set 0.01 and 0.005 respectively. The
cooling ratio q can be in range (0.0, 1.0). In this work, we set the range
[0.80, 0.99] for q. The convergence degree εq is set 0.005. The value of K is
allowed in the range of (0.0, 1.0] and the convergence degree εK is set 0.05.

At the beginning of the Nelder-Mead simplex method, 5 initial points are
generated by choosing 4 elements, i.e, q,K, Ps and Pf , from their allowable
range. During the process of the Nelder-Mead simplex method, whenever an

81

Table 5.1: Functions and Parameters for SA

Symbol Definition Value
S Mapping solution (S0: initial

solution)
Cost(S) Cost function WCA (Equation

(5.1))

Temp(i) Temperature functioni T0 × q⌊
i
L⌋

i Accumulated number of iterations
q Geometric annealing schedule

cooling ratio
Nelder-Mead
Simplex Method

L Number of iterations at each
temperature

M(N − 1)

N Number of tiles in CCRG
M Number of tasks in CWG
Accept(∆C, T) Return accept (True) or reject

(False) for a worse move
random() <
1/(1 + exp ∆C

KC0T
)

K Normalizing ratio Nelder-Mead
Simplex Method

C0 Initial cost Cost(S0)
T0 Initial temperature ∆Cmax/ ln(

1
Ps
− 1)

Tf Final temperature ∆Cmin/ ln(
1
Pf
− 1)

∆Cmax The maximal ∆C at initial
temperature T0

Experiment

∆Cmin The maximal ∆C at final
temperature Tf

Experiment

P0 The possibility of accepting the
maximal ∆C at initial temperature
T0

Nelder-Mead Simple
Method

Pf The possibility of accepting the
minimal ∆C at final temperature
Tf

Nelder-Mead
Simplex Method

Move(S, T) Return a neighboring mapping of S
Terminate(i, R) Return terminate (True) or

continue (False)
Temp(i) < Tf ∧R ≥
Rmax ∨N∆C=0 = Z

R Number of rejections
Rmax Allowed maximal number of

rejections
L

NT The total number of temperatures
from T0 to Tf

ln(T0

Tf
)/ ln(q)

Z The allowed maximal number of
temperatures with ∆C = 0

0.1NT

element of a point exceeds its boundary, the boundary value is used for the
element. The function stop() becomes true and the process is terminated
when these 5 points converge to one point.

82

5.2.3 Parameter-Optimized Simulated Annealing Algorithm

Algorithm 5: Parameter-Optimized Simulate Annealing

1 Define the boundaries and convergence degree ε for parameters
q,K, Ps and Pf .

2 Obtain the final point of the Nelder-Mead simplex method,
popt = simplex().

3 Set qopt = popt.q,Kopt = popt.K.
4 Set Psopt = popt.Ps, Pfopt = popt.Pf .
5 Find the best solution by applying the final point to SA,

Sbest = sa(qopt,Kopt, Psopt , Pfopt).
6 Return Sbest.

Applying the Nelder-Mead simplex method, we develop the parameter-
optimized simulated annealing algorithm for application mapping problems
on many-core NoCs. The proposed algorithm is described in Algorithm 5
where the functions sa() and simplex() correspond to Algorithm 1 and 2
respectively. After defining the boundaries and convergence degree for four
target parameters, i.e., q,K, Ps and Pf , the optimized set of parameters
is obtained by the Nelder-Mead simplex method. The mapping solution
with minimized WCA is then found by running the SA algorithm with the
optimized set of parameters.

Since there are no limitations on the variables and objective functions ap-
plied in the Nelder-Mead method, the Algorithm 5 is applicable for obtaining
different sets of optimized parameters corresponding to different implemen-
tations of the SA algorithm. This makes the proposed method applicable
for selecting optimized parameters in diverse application mapping problems.

5.3 Experimental Evaluation

To evaluate the efficiency of the proposed parameter-optimized simulated
annealing (POSA) algorithm, we experiment POSA with a set of bench-
marks and compare it against the implementation of the SA algorithm in
[3].

5.3.1 Experiment Setup

The implementation of the SA algorithm in [3] is available in the NoCmap
project [120]. In the NoCmap, the geometric annealing schedule is used
and the q is set 0.9. T0 is fixed to 100 and the final temperature Tf is
unbounded. The objective of the NoCmap is to minimized the total com-
munication energy consumption and the energy model presented in [3] is

83

adopted in the simulator. In this work, we also use the NoCmap simulator
to obtain the communication energy consumption of the mappings generated
by the POSA algorithm.

Four benchmark applications are selected for the comparison, including
a video object plane decoder (VOPD) and a MPEG4 from SUNMAP [121],
a multimedia systems application (MMS) [26] and a H.264 decoder (H264)
[122]. The CCGs of these applications are derived from original descriptions
in these works. The benchmarks and corresponding NoCs used in this work
are summarized in Table 6.1.

The mapping of each benchmark is performed by the NoCmap and the
POSA algorithms. The communication energy consumptions of both map-
pings are produced by the NoCmap simulator. For POSA, the average
∆Cmax and ∆Cmin are obtained from 5 ∗ L move trials starting from the
original random mapping, which are used to calculate the T0 and Tf with
given parameters P0, Pf , C0 and K. Both algorithms were executed on a
Desktop PC with 3.0 GHz Intel Core2 Duo CPU and 8.0 GB of memory to
evaluate the run-time overhead.

5.3.2 Results Analysis

Optimized Parameters

Table 5.2: Optimized Parameters of SA for Benchmarks

Benchmark Cores NoC q P0 Pf K

VOPD 16 4x4 0.91 0.44 0.05 0.72

MPEG4 12 3x4 0.95 0.34 0.05 0.36

MMS 25 5x5 0.94 0.36 0.05 0.62

H264 16 4x4 0.89 0.42 0.05 0.49

Applying the POSA algorithm (Algorithm 5), the optimized mapping
solution with minimized WCA of each application is found. At the same
time, the optimized parameters of the SA algorithm are obtained. Table 5.2
lists the optimized parameters of SA for mapping the four benchmarks. It
is observed that, instead of using an identical set of parameters, to find an
optimized mapping, different parameters should be used in SA for mapping
different applications.

Iterations and Runtime

Table 5.3 shows the iterations (Is) of NoCmap and POSA algorithm for
finding the final mapping solution of each application. The column T0 and

84

Tf are the initial and final temperature respectively. Tt refers to the tem-
perature at which SA terminates. Is is the number of iterations that the SA
algorithm has run until the termination. Column pct presents the percent-
age of the iterations of POSA to that of NoCmap. We can see that, since
optimized parameters are applied, a much lower initial temperature is set
in POSA. As a result, POSA uses significantly smaller number of iterations
which is on average less than 1% of that used in NoCmap, to get the final
mapping.

Table 5.3: Iterations of SA for Benchmarks

Benchmark
T0 Tf Tt Is

NoCmap POSA NoCmap POSA NoCmap POSA NoCmap POSA pct

VOPD 100 2.69 - 1.35e-4 2.28e-6 9.88e-5 4.30e6 2.74e4 0.64%

MPEG4 100 1.90 - 1.26e-4 5.80e-7 8.38e-5 2.61e6 2.77e4 1.06%

MMS 100 1.36 - 1.26e-5 5.80e-7 1.25e-5 1.14e7 1.18e5 1.04%

H.264 100 3.11 - 1.94e-4 0.15 1.43e-4 1.61e6 1.94e4 1.02%

Table 5.4 shows the runtimes of SA in NoCmap and POSA (in seconds)
and the speedup achieved by POSA. POSA is, on average, 1.41 times faster
than NoCmap. Note that, the runtime of POSA includes the time consumed
by the Nelder-Mead simplex method in which the SA is run more than
hundred times. In terms of the runtime of a single run of SA, a large speedup
is achieved by POSA due to less evaluating iterations. In Table 5.4, POSA

′

and Speedup2 represent the runtime of a single run of SA applying the set
of optimized parameters, and the speedup over the NoCmap respectively.
We can see that in POSA, the SA with optimized parameters is on average
237 times faster than that in NoCmap. This indicates the great impact of
optimized parameters on the runtime of SA algorithm.

Table 5.4: Runtimes and Speedup for Benchmarks

Benchmark NoCmap POSA Speedup1 POSA´ Speedup2

VOPD 31.69 15.50 2.04 0.087 364

MPEG4 15.74 9.67 1.63 0.059 267

MMS 171.74 181.75 0.94 1.17 147

H.264 12.34 11.90 1.04 0.072 171

Average - - 1.41 - 237

WCA and Energy Consumption

In this work, minimizing communication energy consumption on NoC is the
objective of applying SA for the tile assignment. Figure 5.1 shows the WCA
achieved by NoCmap and POSA for each application respectively. The

85

results of both algorithms vary slightly. The maximum of WCA variance is
less than 4% in the case of application H.264.

As anticipated from the results of the minimized WCA, the communica-
tion energy consumptions achieved by NoCmap and POSA are almost same.
Figure 5.2 shows that the maximal difference exists again in the case of ap-
plication H.264, which is less than 2%. The comparable energy consumption
verify the efficiency of the proposed POSA algorithm. Although a signifi-
cantly smaller number of iterations is conducted, POSA still can find the
optimized mapping solutions which are comparably good with that found
by NoCmap in which more iterations have to be performed.

1 1 1 11.001 1.022 1.009 1.036

0

0.2

0.4

0.6

0.8

1

1.2

VOPD MPEG4 MMS H.264

No
rm

al
iz

ed
 W

CA

NoCmap

POSA

Figure 5.1: Comparison of WCA

1 1 1 11 1.014 1.007 1.018

0

0.2

0.4

0.6

0.8

1

1.2

VOPD MPEG4 MMS H.264

No
rm

al
iz

ed
 E

ne
rg

y
Co

ns
um

pt
io

n

NoCmap

POSA

Figure 5.2: Evaluation of Energy Consumption

86

5.4 Chapter Summary

The set of parameters applied in the SA algorithm has great impact on
the runtime and the quality of the final solution. A method to systemati-
cally select the parameters of the SA algorithm for the application mapping
problem was proposed in this chapter. The Nelder-Mead simplex method,
which is used to get the minimization of a function of n variables, was ap-
plied to find the optimized parameters of the SA algorithm. With the set
of optimized parameters, less evaluation iterations are needed and the SA
algorithm is accelerated. The experiment showed that the proposed POSA
algorithm only uses on average less than 1% iterations of that used in the
NoCmap algorithm to converge to the final optimized solution. An average
speedup of 1.4 times is achieved by POSA over NoCmap. With the opti-
mized parameters, the SA algorithm is 237 times faster than the NoCmap,
while the comparably good mappings are still found. Besides the time- and
energy-efficiency, the proposed POSA algorithm provides a way to flexibly
select various number of parameters with respect to different cost functions
for different kinds of mapping problems.

87

88

Chapter 6

Accelerating Simulated
Annealing

Simulated Annealing algorithm is a promising method to solve application
mapping problems on many-core NoCs. One major drawback of SA algo-
rithm is low speed. As shown in Chapter 5, to obtain the global optimum,
SA algorithm generally needs hundreds of thousands iterations. Since the
annealing process of SA is controlled by a set of functions and parameters,
to speed up the general SA algorithm, one feasible way is to apply opti-
mized functions and parameters, instead of using generic or empiric ones.
While Chapter 5 focuses on the method of selecting optimized parameters
for SA algorithm, this chapter presents a method which shortens the an-
nealing process of the SA algorithm by applying optimized initial mapping
and temperature.

It is worth noting that generally the SA algorithm starts the annealing
process from a randomly generated initial solution and a high initial tem-
perature T0 [3]. As a result, the SA algorithm behaves randomly at the
beginning stage and lots of iterations are wasted without optimization. The
random behavior of SA at high temperatures provides us an opportunity
to accelerate SA algorithm. In [89], a cluster-based annealing method was
proposed for the application mapping problem. Using the clustering tech-
nique, a better initial mapping is obtained and a faster convergence can be
achieved. It shows up to 30% reduction of runtime without compromising
the solution quality. In [87], instead of using a uniformly random probability
when determining the core to be swapped, two probability distribution func-
tions (PDFs) are applied to build a variable grain swapping move function.
With the optimized move function, the SA algorithm in [87] is reported to
obtain an average runtime speedup of 98.55% while keeping the quality of
the mapping solution.

Based on the analysis of the general behavior of SA algorithm, the basic

89

idea of the accelerating method in this chapter is to start the SA algorithm
from an optimized initial mapping obtained by the previously presented
tree-model based heuristic in Chapter 4. Then, a corresponding lower ini-
tial temperature tk is derived and applied in the SA algorithm to skip a
portion of the random behavior at the beginning stages of a general SA
algorithm. Consequently, the convergence to the optimal solution is acceler-
ated without degrading the solution quality. Figure 6.1 shows the workflow
of the proposed tk-SA algorithm. The two highlighted processes are the
main contributions of the proposed method.

Application NoC

Heuristic Mapping

Determining tk

tk-SA Mapping

Optimized

Initial Solution

Final Solution

Figure 6.1: The Workflow of the tk-SA Algorithm

6.1 Simulated Annealing

The SA algorithm uses the same set of parameters and functions as those
in Section 5.2 except for the acceptance function.

6.1.1 Acceptance Function: Accept(∆C, T)

In this work, we add two parameters k and C0 in the exponential form of
the acceptance function presented in [31].

Accept(∆C, T) = True⇔ random() <
1

exp
(

∆C
kC0T

) (6.1)

In this normalized form, the cost difference ∆C is normalized by the pa-
rameters k(0 ≤ k ≤ 1) and the initial cost C0 = Cost(S0) (initial mapping

90

solution s0). With this acceptance function, the range of the acceptance
possibilities is kept in a relevant range even if the cost function changes for
different problems. This makes the selecting of the temperature easier than
using the initial exponential form. Compared to the acceptance function
utilized in Chapter 5, the possibility of accepting an uphill move is in the
range of (0.0, 1.0].

6.1.2 Objective Function

The objective of the mapping is to minimize the communication energy
consumption in the tile assignment stage (Section 3.3.3). Similar to the
SA algorithm (Algorithm 5) in Chapter 5, the weighted communication of
an application (WCA) is used as the objective function Cost(S) in the SA
algorithm in this chapter.

WCA =
∑
∀cij

volij × γij (6.2)

where volij and γij are the data volume and the length of the routing path
for the communication cij .

6.1.3 Parameters Selection

The method developed in Chapter 5, i.e., the Nelder-Mead simplex method
is used to select the set of optimized parameters including the initial temper-
ature T0, the final temperature Tf , the cooling ratio q and the normalized
ratio k. These parameters are employed in the reference SA algorithm with
full temperature range from T0 to Tf (called full-range SA), and also used
to derive temperature tk applied in the proposed tk-SA algorithm.

6.2 Accelerated Simulated Annealing

The basic idea of the accelerated tk-SA algorithm is to start the SA algo-
rithm from an optimized solution with a lower cost. Corresponding to the
optimized initial solution, an appropriate lower initial temperature tk is de-
termined. By doing so, the runtime of the SA algorithm is decreased because
only a portion of temperatures in the full temperature range of [T0, Tf] is
proceeded. The determination of the temperature tk is critical to the pro-
posed algorithm in terms of runtime and the quality of the final solution. It
is based on the analysis of the typical behavior of the general SA algorithm.

6.2.1 Typical Behavior of SA

SA operates like a pure randomizing optimization at the beginning and a
pure greedy optimization at the end. To analyze this typical behavior of the

91

SA algorithm, we apply the general SA algorithm to map a H.264 decoder
(H264) application ([122]). Figure 6.2 depicts the annealing process of the
SA algorithm with respect to the temperature t against the mean of WCAs
(MWCA) of all accepted solutions at temperature t. SA starts from T0 = 7.5
and terminates at Tf = 7.8e− 5 approximately.

 1e+07

 1.2e+07

 1.4e+07

 1.6e+07

 1.8e+07

 2e+07

 2.2e+07

 2.4e+07

 2.6e+07

 2.8e+07

 3e+07

 3.2e+07

 0.0001 0.001 0.01 0.1 1 10

Me
an

 of
 W

CA
 (b

its
*h

op
s)

Temperature t

Tf T0

p1

t1

p2

t2

Figure 6.2: Typical Behavior of SA (H264)

As we can see from Figure 6.2, before SA gets to the greedy point
(roughly at point P1), MWCA varies slightly across a wide range of tem-
peratures (from T0 to nearly 0.65). No obvious optimizations have been
achieved in this period since the acceptance possibilities are close to 1 so
that almost all moves in this period are accepted. From the point P1 to point
P2, SA becomes greedy and MWCA is decreased while the temperature falls
down. Note that MWCA increases at some points. This illustrates the major
feature of SA algorithm that some uphill moves are accepted, which prevents
the optimization process from ending with a local minimum. After point P2,
all accepted solutions converge to the optimal one and MWCA remains con-
stant over these temperatures. At the end, SA obtains the best solution
with lowest cost and terminates after temperature Tf .

6.2.2 Acceleration Method

We also apply the general SA algorithm to other benchmark applications
used in this chapter. The experiments show that the SA algorithm behaves
similarly as in Figure 6.2. Based on the analysis of the typical behavior
of SA, it is possible to accelerate the annealing process of SA if we can
start the SA algorithm from a temperature tk between t1 and t2 (shown in
Figure 6.2). Provided that MWCA at temperature tk in the accelerated SA
is comparable to that in the SA algorithm operating in the full temperature
range of [T0, Tf], the process from temperature T0 to tk in the full-range

92

SA can be skipped. This is because the accelerated SA can approximately
reproduce the behavior of the full-range SA from temperature tk to Tf . With
the reproduced behavior, the quality of the final solution is maintained by
the accelerated SA algorithm.

Based on this consideration, we propose an accelerated SA algorithm,
tk-SA algorithm, for the application mapping problem. In the algorithm,
tk stands for an intermediate temperature between T0 and Tf . The tk-SA
algorithm starts from temperature tk with an optimized mapping solution
Sheur. To make the tk-SA algorithm faster than the full-range SA algo-
rithm, the runtime of obtaining Sheur and tk must be shorter than that of
performing SA from T0 to tk. The heuristic algorithm for obtaining Sheur

and determining tk are presented in the following sections.

6.2.3 Heuristic for Optimized Initial Solution

The tree-model based mapping algorithm presented in Chapter 4 is applied
to get the optimized initial solution Sheur. Simply speaking, the mapping al-
gorithm operates in two steps. Firstly, a NoC is abstracted into an extended
tree which represents the connections and distances among the tiles on the
NoC. Secondly, the tasks of the given application are mapped onto the NoC
using the extended tree. Since the extended tree places the network tiles
with shorter average distance (to other tiles) onto higher-level tree nodes,
it is reasonable to map the tasks in the application with larger communica-
tion volumes on nodes at as high level as possible so that the WCA can be
minimized.

Because of the usage of the tree-model of the NoC, the mapping algo-
rithm is significantly efficient in terms of algorithm runtime. The experiment
shows that the runtime of tree-model based mapping is on average 10% of
that of the greedy incremental (GI) algorithm. In addition, the runtime
increases slightly while the number of tasks to be mapped increases. The
quality of the mapping is comparable to the GI algorithm. These features,
especially the efficiency of the runtime, make the tree-model based algo-
rithm suitable for generating an optimized initial mapping solution to speed
up the SA algorithm.

6.2.4 Determination of tk

Given the optimized initial solution, an appropriate temperature tk must be
determined. If the selected tk is too low, the tk-SA can prematurely end up
with a local minimum. Conversely, if the tk is too high, the optimization
that has been achieved by the initial mapping solution Sheur can be degraded
because more uphill moves will be accepted at temperature tk.

The method presented here tries to utilize the typical behavior depicted

93

in Figure 6.2 to determine the temperature tk. Given the initial solution
Sheur, the principle of the proposed method is to find a temperature tk at
which MWCA is approximately equal to the WCA of the solution Sheur. The
method is reasonable because the accepted solutions are controlled by the
temperature in the acceptance function. Given an initial solution Si, MWCA

of all accepted solutions will converge to the WCA of Si if the amount of
WCA increases and decreases of all solutions can offset each other.

In a SA algorithm, the accepted solutions at the temperature t comprise
a Markov chain which is a sequence of probabilistic moves and each move
to the next solution is only dependent on the current solution [123]. To cal-
culate the MWCA at temperature t, we have to generate the Markov chain
first. The fact is, without the real run of the SA algorithm, it is impossible
to get the exact Markov chain at a temperature. However, note that in
the SA algorithm applied in this work, with the functions Move(S, T) and
Accept(∆C, T) presented previously, the acceptance of a new solution in a
Markov chain at temperature t is decided by a uniformly random probabil-
ity. The Markov chain at temperature t is a result of a series of probabilistic
movements. Based on the probability theory, we can use the expected values
(or mathematical expectations) of a finite number of trial moves to approxi-
mate the MWCA at a temperature t.

We assume that the SA algorithm starts from solution S0, and S1, S2, . . . , SW−1

are the sequence of trial solutions generated by the function Move(S, T).
With this set of W trial solutions, the MWCA at temperature t can be
calculated as

MWCA ≈
1

W

(
W−1∑
i=0

Cost(Si) · Paccept(∆Ci,t)

)
(6.3)

where Cost(Si) and Paccept(∆Ci,t) are the WCA of the solution Si and the
probability of accepting the solution P (Si) at temperature t respectively.

Since all downhill moves (∆C ≤ 0) are certainly accepted, and an uphill
move (∆C > 0) is accepted with the probability defined in the acceptance
function Accept(∆C, t) (Equation 6.1), Paccept(∆C,t) can be defined as

Paccept(∆Ci,t) =

{
1 ∆Ci ≤ 0

1

exp
(

∆Ci
kC0t

) ∆Ci > 0 (6.4)

Using the above Paccept(∆Ci,t), Equation 6.3 is rewritten as:

MWCA ≈
1

W

W1∑
i=0

Cost(Si) +

W2∑
i=0

Cost(Si)

exp
(

∆Ci
kC0t

)
 (6.5)

where W1 and W2 are the number of downhill and uphill moves in the trial
Markov chain at temperature t respectively.

94

With the approximation of MWCA, we try to find the temperature tk
which satisfies the following equation:

M tk
WCA ≈ Cost(Sheur) (6.6)

Based on the Equation 6.6, the following method is proposed for calcu-
lating the temperature tk:

1. Starting from solution Sheur, generate a finite number of W trial so-
lutions in accordance with the function Move(S, T);

2. Let tk = (T0 + Tf)/2;

3. Using the set of trial solutions, calculate M tk
WCA.

4. If M tk
WCA < Cost(Sheur), raise tk according to a binary search and

repeat 3 and 4; IfM tk
WCA > Cost(Sheur), lower tk according to a binary

search and repeat 3 and 4; If |M tk
WCA − Cost(Sheur)| < ϵ, return tk as

the initial temperature for the tk-SA algorithm.

Since all the downhill moves are accepted, in the given set of trial solu-
tions, the sum of the costs of all downhill solutions (∆C ≤ 0) remains con-
stant regardless of the changes of tk. Hence, M tk

WCA < Cost(Sheur) means
that less uphill moves have been accepted due to a lower tk. Therefore, the
temperature needs to be raised in the next iteration. Conversely, the current
tk needs to be lowered if M tk

WCA > Cost(Sheur). ϵ is an user-defined positive
real number. In this work, ϵ is set as 0.01× Cost(Sheur).

6.2.5 tk-SA Algorithm

Putting all above analysis and techniques together, the tk-SA algorithm is
presented in Algorithm 6, where the function sa() refers to the Algorithm
1. Sheur and tk replace S0 and T0 in the Algorithm 1 respectively. The
parameters k, C0 and q are kept the same as those applied in the full-range
SA (Algorithm 5).

Algorithm 6: tk-SA Algorithm

1 Generate the optimized starting solution Sheur using the tree-model
based application mapping algorithm.

2 Determine the temperature tk.
3 Find the best solution by applying Sheur and tk to SA,

Sbest = sa(Sheur, tk).
4 Return Sbest.

95

6.3 Experimental Evaluation

To evaluate the efficiency of the proposed tk-SA algorithm, we experiment
tk-SA with a set of benchmarks and compare the results with the full-range
SA algorithm (Algorithm 5).

6.3.1 Experiment Setup

Five benchmark applications are selected for the comparisons, including a
video object plane decoder (VOPD) and a MPEG4 from SUNMAP [121],
a multimedia systems application (MMS) [3], a H.264 decoder (H264) [122]
and an image processing application BASIZ ([124]). The CCGs of these ap-
plications are derived from original descriptions. The size of the benchmarks
and corresponding NoCs are summarized in Table 6.1.

For each benchmark application, the full-range SA algorithm is first per-
formed for the tile assignment. Parameters T0, Tf , k, q and C0 are obtained
using the method in Chapter 5. Afterward, the proposed tk-SA algorithm
is employed. The performances of these two algorithms, in terms of the
runtime and the number of iterations needed for finding the final solution,
are compared. To evaluate the quality of the final mapping solution, we
use the NoCmap simulator presented in the NoCmap project [120] to get
the communication energy consumption. Both algorithms were run on a
Desktop PC with 3.0 GHz Intel Core2 Duo CPU and 8.0 GB of memory.

6.3.2 Result and Analysis

Applied Parameters

Table 6.1 shows the parameters applied in the full-range SA and tk-SA al-
gorithm respectively. CSheur

is the WCA of the mapping solution generated
by the tree-model based application mapping algorithm. We can see from
Table 6.1, with an optimized initial solution, the initial temperature tk of
the tk-SA algorithm is hundred times lower than T0 in the full-range SA al-
gorithm. Starting from such a lower temperature tk, tk-SA skips an amount
of temperatures in the full-range SA algorithm. The number of skipped
temperatures is shown in the column “STs” in Table 6.1.

Iterations and Runtime

As anticipated from the skipped temperatures presented in Table 6.1, the
iterations (consecutive moves in SA), as well as the runtime of the algorithm
are reduced in the tk-SA algorithm. As shown in Table 6.2 , for the five
benchmarks, the number of iterations in the tk-SA algorithm is on average
58% of that in the full-range SA algorithm. As a result, the runtime of the

96

Table 6.1: Parameters Applied in SA and tk-SA

App Cores NoC
SA tk-SA STs

T0 Tf C0 tk CSheur

VOPD 16 4x4 14.15 5.48e-5 8.27e7 0.048 5.27e7 40

H264 16 4x4 7.53 8.00e-5 2.86e7 0.044 1.99e7 255

MPEG4 12 4x3 8.40 3.19e-5 1.47e8 0.041 8.00e7 56

MMS 25 5x5 21.28 1.97e-6 1.72e9 0.083 9.76e8 275

BASIZ 26 6x5 4.78 1.31e-6 1.82e7 0.021 1.09e7 133

tk-SA algorithm is decreased and an average speedup of 1.55 is achieved
over the full-range SA algorithm. For application H264, the largest speedup
of 1.84 is achieved due to the lowest percentage of iterations (48%). Note
that the runtime of the tk-SA algorithm includes the time of generating the
initial solution Sheur and that of determining the temperature tk.

Table 6.2: Iterations and Runtimes for Benchmarks

Benchmark
Iterations Runtimes

SA tk-SA pct SA tk-SA speedup

VOPD 2.26e4 1.23e4 54% 0.079 0.050 1.58

H264 1.96e5 9.34e4 48% 0.582 0.317 1.84

MPEG4 1.76e4 1.00e4 57% 0.038 0.024 1.58

MMS 5.43e5 3.57e5 66% 4.542 3.720 1.22

BASIZ 2.55e5 1.64e5 64% 2.253 1.462 1.54

Avg. - - 58% - - 1.55

Accuracy of Temperature tk

The temperature tk is the most important parameter which affects the per-
formance of the tk-SA algorithm and the quality of the final mapping so-
lution. The closer the acquired tk approaches to that in the full-range SA
algorithm, the more accurately the tk-SA can reproduce the behavior of the
full-range SA algorithm in the period after temperature tk. As shown in
Table 6.3, two values are used for the measurement of the accuracy of the
temperature tk. The first one, M tk−SA

WCA , stands for the mean of WCAs at
temperature tk in the tk-SA algorithm. The second one, MSA

WCA, is the mean
of WCA at temperature tk (or nearly tk) in the full-range SA algorithm.
The variance between M tk−SA

WCA and CSheur
can measure the accuracy of tk

determined using Equation 6.6. Furthermore, the variance between M tk−SA
WCA

97

and MSA
WCA can verify how efficiently the tk-SA algorithm reproduces the

behavior of the full-range SA algorithm in the period after temperature tk.

As we can observe from Table 6.3, the M tk−SA
WCA is very close to the CSheur

in all applications except for MMS. This demonstrates that the method
proposed in this work is efficient for determining the temperature tk. For
all applications, M tk−SA

WCA and MSA
WCA are comparable. The largest variance

is less than 7% in the application VOPD. This means that the tk-SA and
full-range SA algorithms behave similarly at the temperature tk. Since both
of them use the same set of parameters and functions, they are more likely
to behave similarly after temperature tk.

Table 6.3: Mean of WCA at tk for Benchmarks

App tk CSheur
M tk−SA

WCA MSA
WCA

VOPD 0.048 5.27e7 5.37e7 5.02e7

H264 0.044 1.99e7 1.93e7 1.87e7

MPEG4 0.041 8.00e7 7.90e7 8.47e7

MMS 0.083 9.76e8 1.31e9 1.29e9

BASIZ 0.021 1.09e7 1.05e7 1.06e7

Figures 6.3 and 6.4 show the behavior of the tk-SA and full-range SA
algorithms for mapping application H264 respectively. MWCA stands for
M tk−SA

WCA and MSA
WCA respectively. With same scale in both figures, we can

see that the behavior of the tk-SA algorithm approximate that in the full-
range SA algorithm (after temperature tk) very well. This convinces the
efficiency of using the tk-SA algorithm to speed up the general SA algorithm
without the loss of the mapping quality.

 1e+07

 1.2e+07

 1.4e+07

 1.6e+07

 1.8e+07

 2e+07

 2.2e+07

 2.4e+07

 2.6e+07

 2.8e+07

 3e+07

 3.2e+07

 0.0001 0.001 0.01 0.1 1 10

Me
an

 of
 W

CA
 (b

its
*h

op
s)

Temperature t

Tf T0tk

MWCA

Figure 6.3: Behavior of tk-SA Algorithm (H264)

98

 1e+07

 1.2e+07

 1.4e+07

 1.6e+07

 1.8e+07

 2e+07

 2.2e+07

 2.4e+07

 2.6e+07

 2.8e+07

 3e+07

 3.2e+07

 0.0001 0.001 0.01 0.1 1 10

Me
an

 of
 W

CA
 (b

its
*h

op
s)

Temperature t

Tf T0tk

MWCA

Figure 6.4: Behavior of full-range SA Algorithm (H264)

Quality of Mapping Solution

The qualities of mapping solutions obtained by the tk-SA and full-range SA
algorithms are first evaluated mathematically by the WCAs of the mapping
solutions. Figure 6.5 shows the WCAs of mapping solutions for each ap-
plication found by the tk-SA and full-range SA algorithm respectively. For
applications H264 and MMS, the WCAs of both algorithms are almost the
same. For other applications, the WCA using the tk-SA algorithm is slightly
smaller than that using the full-range SA algorithm. The largest reduction
of WCA is about 5% in the case of application BASIZ.

1 1 1 1 10.99 1.00 0.98 1.00
0.95

0

0.2

0.4

0.6

0.8

1

1.2

VOPD H264 MPEG4 MMS BASIZ

No
rm

al
ize

d W
CA

SA

tk-SA

Figure 6.5: Comparison of WCA

The quality of mapping solutions of the tk-SA and full-range SA al-
gorithms is further evaluated by the communication energy consumption
obtained from the NoCmap simulator. As anticipated by the WCA, the
communication energy consumptions are comparably the same between so-

99

lutions of the two algorithms. Figure 6.6 shows that the maximal difference
exists again in the case of application BASIZ, which is less than 5%.

1 1 1 1 11.00 1.00 0.99 1.02
0.97

0

0.2

0.4

0.6

0.8

1

1.2

VOPD H264 MPEG4 MMS BASIZ

No
rm

al
iz

ed
 E

ne
rg

y C
on

su
m

pt
io

n

SA

tk-SA

Figure 6.6: Evaluation of Energy Consumption

The comparisons of the WCA and the communication energy consump-
tion verify the efficiency of the proposed tk-SA algorithm. Although smaller
number of iterations and shorter time are used, the tk-SA algorithm achieves
the same good quality of the mapping solutions as that of the full-range SA
algorithm.

6.4 Chapter Summary

An accelerated SA algorithm, tk-SA algorithm, was proposed in this chapter.
Instead of using a random mapping solution, the tk-SA algorithm employs
an optimized mapping solution as the initial solution. Based on the analysis
of the typical behavior of the general SA algorithm, an efficient method for
calculating the initial temperature tk which corresponds to the optimized
initial solution was proposed. The accuracy of the temperature tk deter-
mined by the proposed method was quantitatively verified.

Starting from the lower initial temperature tk, the tk-SA algorithm saves
the iterations and runtime required for converging to the optimal mapping
solution. The experimental results showed that, for the given set of bench-
mark applications, on average, the tk-SA algorithm uses 58% iterations of
that in the full-range SA algorithm. As a result, an average speedup of 1.55
is achieved by the tk-SA algorithm. In addition, using the temperature tk,
the tk-SA algorithm reproduces the behavior of the full-range SA algorithm.
This enables the accelerated tk-SA algorithm to obtain the mapping solution
which has the same quality as that found by the full-range SA algorithm.

100

Chapter 7

Resource-Aware
Multi-Application Mapping

The massive parallel computing performed on many-core platforms is the fu-
ture of computing [125]. With increasing processing capability, communica-
tion channels and flexible scalability, many-core NoC provide great potential
for solving today’s increasingly complex problems. With abundant process-
ing cores available on many-core NoCs, it is no longer reasonable to only
focus on the implementation of one single application. Instead, the design
focus should shift from the single-application to the multi-application sce-
narios, more precisely, to deploy multiple applications simultaneously on a
many-core NoC. For instance, [66] presents a concrete example of a 167-core
computing platform, where 9 cores are dedicated to realize a JPEG encoder,
and 15 cores are utilized to implement a H.264 encoder. Such physical sepa-
ration of multiple applications onto different regions of the NoC may reduce
the design complexity (e.g., imposed by context switching). And the com-
munication interference between applications will be significantly alleviated.
A system with less communication interference will benefit from lower la-
tency, higher throughput and shorter execution time [126].

While the majority of previous works focus on single application map-
ping, few works have been undertaken for mapping multiple applications
on a NoC platform. [127] presented a methodology to map multiple use-
cases onto the NoC architecture, with each use-case executing on specific
time slots. This method incurs considerable design and verification com-
plexity dealing with context switching, as well as the timing overhead. In
[128], multiple applications are mapped on different regions of the NoC so
that each application has no or smallest interference with other applica-
tions. Search heuristics including simulated annealing, greedy incremental
and Tabu search were applied for mapping multiple applications. Due to
the larger search space imposed by the multi-application mapping prob-

101

lems, the method is time-consuming. Multi-application mapping is still an
open problem and more novel methods need to be developed.

This chapter presents a novel methodology for mapping multiple appli-
cations, which is aware of the available IP cores on the many-core plat-
forms. The multi-application mapping extends the single-application map-
ping which we have addressed in previous chapters and consists of two steps:
application mapping and task mapping. The two-step mapping method first
finds an area on the NoC for each application and then maps all tasks of the
application into the region. With general applicability to the unbounded
mapping (UM) and bounded mapping (BM) problems, the method is adap-
tive to the availability of on-chip cores. Several strategies are proposed for
application mapping and task mapping. The proposed two-step mapping
methodology aims to minimizing the communication energy consumption of
multiple applications and the timing overhead due to the core sharing by
multiple tasks in the BM case.

7.1 Multi-Application Mapping Problem

In contrast to the single-application mapping problem, a multi-application
mapping problem consists of multiple independent applications, each of
them can be represented by a TG (task graph) or a CCG (core commu-
nication graph) presented in Section 3.2.2. The objective functions and
constraints of the set of applications may vary. The many-core NoC is rep-
resented by the NoC model presented in Section 3.2.1.

Since in the BM case, the sequencing of tasks on individual cores will
significantly impact the execution time due to data dependencies, the time
consumed for each application needs to be formulated. While the compu-
tation time is given in the TG of one application, it is difficult to obtain
the communication time at the design time because it is dependent on the
particular mapping solution, as well as the switching and routing techniques
applied in the many-core NoCs. Hence, in this work, we approximate the
communication time by the data volume given in the TG of an application.
The approximation method is explained in Section 7.3.2.

Given a TG in which the communication time is approximated by the
data volume, the Earliest Completion Time (ECT) of a task ti, denoted by
ECT (ti), is defined as follows:

ECT (ti) = max
1≤k≤p

(ECT (tk) + CTki + ETi) (7.1)

where task ti has p parent tasks and tk is its kth parent task. CTki and ETi

are the communication time of the communication Comki and the execution
time of task ti respectively. ECT (te) = ETe, if te is an entry task.

102

Similarly, the Latest Completion Time (LCT) of a task ti, denoted by
LCT (ti), is defined as follows:

LCT (ti) = min
1≤u≤w

(LCT (tu)− CTiu − ETu) (7.2)

where task ti has w child tasks and tu is its uth child task. LCT (tx) =
ECT (tx), if tx is an exit task.

Those tasks with same ECT and LCT compose the critical path (CP) of
an application. A CP is the longest path from an entry task to an exit task.
The sum of the computation and the communication times of tasks on the
CP, i.e., the length of the CP, determines the shortest execution time of an
application.

7.1.1 Problem Formulation

In the single application mapping case, given a many-core NoC with a par-
ticular topology and an application implemented by a set of tasks, the role
of mapping is to decide how to topologically place each task onto a core
on the NoC so that the design objectives are achieved subject to specific
constraints. For the multi-application mapping problem, we consider how
to simultaneously map multiple applications on a NoC. In contrast to single-
application mapping, the multi-application mapping contains not only the
placement of tasks but also that of applications on the NoC.

In this work, the objective of the multi-application mapping problem
is to minimize the energy consumptions both in UM and BM cases. In
addition, since the mapping and scheduling of tasks in BM case will change
the execution time of an application, BM method also aims to minimize the
length of the critical path for each application.

Using the aforementioned application and NoC models, we define the
multi-application mapping problem as follows:

Given a set of TGs and a NoC;
Find a mapping area for each application on the NoC, and a tile within

the mapping area for each task of the application with either unbounded or
bounded number of cores;

Such that for the given set of TGs, the communication energy con-
sumption on the NoC is minimized. And, in the bounded mapping, the
execution time of each application is minimized.

7.1.2 Work Flow of Multi-Application Mapping

Figure 7.1 illustrates the work flow of the proposed methodology for solving
the above multi-application mapping problem. The given set of applications
are mapped based on the order they arrive (first-come, first-served), or their
priorities (if more than one arrive at the same time). The system first decides

103

whether the unbounded or bounded mapping should be applied. If there are
enough cores for all applications, the unbound mapping is applied, otherwise
bounded mapping is used. Then, a two-step mapping is performed for each
application, including application mapping and task mapping phases. In
both unbounded and bounded cases, the WNAD-Based algorithm (Section
7.2.2) is proposed for application mapping. For task mapping, the tk-SA
mapping algorithm presented in Chapter 6 is applied to the unbounded
mapping, and a task-sequence-based (TSB) algorithm (Section 7.3.3) to the
bounded mapping.

2

2

42

3

5

3

7

a0

[3]

a6

[3]

a5

[6]

a4

[2]

a1

[5]

a3

[5]

a2

[7]

5

5

55

10

b0

[2]

b2

[2]

b1

[1]

5

b3

[1]

b5

[5]

b4

[7]

Application A Application B

NoC

Unbounded Mapping

(enough resources)

Bounded Mapping

(limited resoures)

Application A Application B

Application A Application B

Application Mapping

(WNAD)

Task Mapping

(tk-SA)

of cores > # of tasks

Application Mapping

(WNAD)

Task Mapping

(TSB)

Yes No

Multiple Applications

Figure 7.1: Work Flow of Multi-Application Mapping

7.2 Unbounded Mapping

With enough on-chip cores, each task can be exclusively mapped on a single
core. The objective of the UM is to minimize the communication energy
consumption by shortening the communication distances among IP cores,
especially for those with large data transmissions.

104

7.2.1 Objective Formulation

To evaluate the communication energy consumption, we use the volume-
based energy consumption model presented in Section 3.4. According to
this model, the energy consumption of one communication comij is linearly
proportional to the products of the data volume vol(comij) and the length
of the routing path γij . In order to minimize the communication energy
consumption, we need to find the mapping solution in which the commu-
nicating cores are mapped as close as possible. One way to achieve this
is to map an application onto a continuous and compact area rather than
multiple separated areas on the NoC. For this purpose, we use the nodes
average distance (NAD) mentioned in [27] to evaluate the quality of the
candidate mapping areas. NAD is defined as the average distance between
two randomly selected nodes on a NoC. For a X × Y mesh NoC, the NAD
is calculated by Equation (7.3)

NAD =
X + Y

3
×
(
1− 1

X × Y

)
(7.3)

The Equation (7.3) implies that for a given application, the average com-
munication distance among tasks varies when different areas are chosen for
mapping the application. For example, for an area with size 6×4, the NAD
is approximately 3.2, but that for an area with size 3 × 3 is approximately
1.8. This means, on average, a transmission in the former case needs to go a
longer way and consumes more energy than that in the latter one. Therefore,
an area with smaller NAD is preferable for mapping an application.

Given a selected mapping area, the next step to minimize the commu-
nication energy consumption is to find an optimized mapping solution. As
presented in previous chapters, for a single application, a lower energy con-
sumption can be achieved by minimizing the WCA (weighted communica-
tion of an application). The WCA is defined as the sum of the product of
the communication vol(comij) and the length of the routing path γij for
all communications of an application. We extend the concept of WCA to
the weighted communication of multiple applications (WCMA). For a set of
M applications, the WCMA is the sum of WCAs of all M applications as
follows:

WCMA =
M∑
k=1

∑
∀comij

(vol(comij)× γij) (7.4)

Based on these formulations, the objective of the multi-application map-
ping problem in UM case is transformed into: (1) to search for a mapping
area with smallest NAD for each application and, (2) to find the optimized

105

task mapping solution yielding the minimized WCA for each application
and consequently the minimized WCMA for multiple applications.

7.2.2 Two-Step Multi-Application Mapping

To reach the above objectives, we propose a multi-application mapping
method which consists of two sequential steps: Application Mapping and
Task Mapping. The role of application mapping is to find an optimal map-
ping area with minimal NAD on the NoC for each application. The task
mapping works after application mapping and targets at mapping all tasks
of an application onto the mapping area with the purpose of minimizing the
WCA.

NAD-Based Application Mapping

Implied by Equation 7.3, for a given application, if we can find a square area
to map it, a minimal NAD can be achieved. On a 2-D mesh NoC, when a
square or a rectangle area is allocated to an application, the remaining area
on the NoC is divided into several rectangles. Therefore, the main job of
application mapping is how to efficiently allocate the unused area on the
NoC to each application. Based on this notion, we adopt the concept of
maximal empty rectangle (MER), which was originally used to solve the
placement problem in FPGA design [129].

Maximal Empty Rectangle An MER is an empty rectangle that is not
contained by any other empty rectangles. In our case, an MER represents
a cluster of spare nodes on the NoC that could be used for mapping an
application. Figure 7.2 shows an example of application mapping using the
MER approach. At first, the whole NoC is represented by one MER R0

(Figure 7.2a). After the mapping of application A1, the R0 is split into R1

and R2 (Figure 7.2b). In Figure 7.2c, the R2 is further divided into R3 and
R4 after the application A2 has been mapped. The MERs R1, R3 and R4

can be used for mapping the following applications.

R1

(a)

R1

A1

R2

(b)

R1

R3

A1
A2

R4

(c)

Figure 7.2: Application Mapping Using MER

106

Objective MER Selection For a given application with m tasks, appli-
cation mapping tries to find an optimal or nearsub-optimal objective MER
to map the application. Based on the state of MERs on the NoC, the cases
that application mapping may encounter include: (1) there is at least one
candidate MER that can accommodate the given application; (2) the to-
tal amount of nodes in all MERs is sufficient to accommodate the given
application, but none of them can accommodate the application alone.

For the first case, there is one sub-area in each candidate MER, on which
if the given application is mapped, the minimal NAD can be achieved. We
denote the minimal NAD in the ith candidate MER by NADi, and the sub-
area by Areai. Assuming there are k candidate MERs, application mapping
will select the jth MER which has the smallest NADj among all NADi as
the objective MER, and the area Areaj as the mapping area Areamap for
the given application. The selection function is described as follows:

Areamap = Areaj , ∃j,NADj =
k

min
i=1

NADi (7.5)

To deal with the second case, the Largest Size + Combining (LS+C)
strategy is applied. In this case, the application has to be mapped on several
noncontiguous MERs. To avoid increasing communication cost between
more noncontiguous MERs with small size , LS+C chooses the free MER
with largest number of spare nodes as the primary area and then combines
the nearest free MERs to get adequate nodes for mapping the application.

MER Merging When the execution of an application finishes, the area
occupied by the application can be released and merged with neighboring
free MERs to form larger MERs for the following mapping.

Combining these strategies together, the NAD-Based application map-
ping algorithm is described as Algorithm 7.

WNAD-Based Application Mapping Algorithm

In Algorithm 7, the MERs which cannot accommodate the given application
would not be selected as an objective MER as long as there are candidate
ones, even if some of them have smaller NADs than the selected objective
MER and can accommodate most number of tasks of the application. Figure
7.3a is an example of application mapping using NAD-Based Algorithm.
After the application A1 and A2 have been mapped, the candidate MER
R1 is selected, although the non-candidate MER R2 with the smaller NAD
and close size (15) for the application A3. This is because the combination
of several noncontiguous MERs is likely to induce higher NAD and WCA
than a continuous MER. However, if tasks which most affect the WCA
are mapped in an area with smaller NAD, the rest of the tasks can have

107

Algorithm 7: NAD-Based Application Mapping Algorithm

Input : A: a set of applications (DAGs), CCRG: a 2-D mesh NoC
with size W ×H

Output: The mapping area Areamap for each application

1 Initiate the original MERs list R0 with size W ×H.
2 for each application Ai do
3 if more than one MER can accommodate Ai then
4 Set NADmin = NADR0 , Areamap = R0;
5 for each MER R do
6 Compute the minimal NAD NADR and the corresponding

mapping area AreaR in R for application Ai;
7 if NADR ≤ NADmin then
8 NADmin = NADR;
9 Areamap = AreaR;

10 else
11 Use the LS+C strategy to find a mapping area Areamap;

12 Fragment the objective MER and update the MERs list;

13 if application Aj is completed then
14 Merge the area occupied by Aj with neighboring free MERs;
15 Update the MERs list;

limited impact on the overall WCA even if they are mapped on separate
MERs. Based on this consideration, we extend the NAD-based application
mapping algorithm to the weighted NAD (WNAD) based algorithm. The
WNAD of an MER is defined as follows:

WNAD =
Ntasks

Nnodes
×NAD (7.6)

where the first factor is the weighted ratio which indicates the percent-
age of tasks of an application that can be mapped on an MER. Ntasks is the
number of tasks of an application and Nnodes, the number of nodes avail-
able in the MER. For a candidate MER presented above, the weighted ratio
equals to 1 and the WNAD strategy is equivalent to the NAD strategy. An
MER with a lower WNAD can accommodate most tasks of the application
and has a smaller NAD. Using the WNAD strategy, both the candidate and
non-candidate MERs presented in the Section 7.2.2 can be evaluated to-
gether for finding the objective MER. If a non-candidate MER is selected as
an objective MER, the LS+C strategy is used to combine the non-candidate
MER with its nearest neighboring MERs to form the mapping area Areamap.

108

A3
A4

A1 A2

R1

R2

(a) NAD-Base Mapping

A4
A3

A1 A2

(b) WNAD-Base Mapping

Figure 7.3: Comparison of Mappings for Application A3

Using WNAD strategy, the Algorithm 7 is extended to Algorithm 8.
Figure 7.3b is an example of using WNAD algorithm to map the same set
of applications mentioned in Figure 7.3a. The main difference between the
NAD and the WNAD algorithms is that, the application A3 is mapped on
the area combined by MER R2 and one node in MER R1, instead of the
area completely inside the MER R1. As a result, the NAD of the mapping
area is decreased from 3.13 to 2.83.

Algorithm 8: WNAD-Based Application Mapping Algorithm

Input : A: a set of applications, NoC: a 2-D mesh with size W ×H
Output: The mapping area Areamap for each application

1 Initiate the original MERs list R0 with size W ×H.
2 for each incoming application Ai do
3 Set WNADmin = WNADR0 , Areamap = R0;
4 for each MER R do
5 Compute the minimal WNAD WNADR and the

corresponding mapping area AreaR in R for application Ai;
6 if WNADR ≤WNADmin then
7 WNADmin = WNADR;
8 Areamap = AreaR;

9 if the objective MER is a non-candidate MER then
10 Use the LS+C strategy to form a mapping area Areamap.;

11 Fragment the objective MER and update the MERs list;

12 if application Aj is completed then
13 Merge the area occupied by Aj with neighboring free MERs;
14 Update the MERs list;

15 Repeat 2-14 until mapping area Areamap for each application is
found.

109

tk-SA Task Mapping

When the mapping area for a given application has been obtained in the
application mapping stage, the role of task mapping is to map the tasks
of the application into the mapping area with the purpose of minimizing
the WCA. The task mapping is a single-application mapping problem.
Therefore, the tk-SA algorithm (Algorithm 6) presented in Chapter 6 is
applied.

7.3 Bounded Mapping

7.3.1 Application Mapping

In the BM case, a set of m applications are to be mapped on a bounded
number of IP cores. The m applications consist of p tasks in total and each
of them has p0, p1, . . . , pm number of tasks respectively. The number of
cores provided by the NoC is q and q < p. We define the scale-down ratio
by q/p which means that the number of cores allocated to an application
has to be scaled down by q/p.

Given the number of cores allocated to each application, either NAD or
WNAD-Based algorithm presented previously can be applied to the appli-
cation mapping step.

7.3.2 Task Mapping Analysis

The task mapping algorithm in the BM case utilizes the tree-model based
algorithm presented in Chapter 4. The first phase of the task mapping is the
same as that in the original tree-model based algorithm, i.e., the abstraction
of a mapping area into an extended tree. The major difference lies in the
second phase, i.e., mapping tasks onto the extended tree.

Since a task in the bounded case has to share a core with other tasks, the
ECT (Equation 7.1) of a task is not only determined by the completion time
of its parent tasks, but also by the completion time of the task preceding
it in the task sequence in the same core. On other words, mapping a task
on a core may modify the length of the critical path and in turn change the
execution time of an application. For example, in Figure 7.4a, if we assume
that tasks t0, t2 and t3 are sequentially assigned to the same core (surrounded
by the dotted circle), the execution of task t3 cannot start until the task t2
finishes, even though its predecessor task t0 has already completed. In this
case, the ECT of the task t3 is changed from 11 to 15 time units.

Therefore, in the bounded mapping, to minimize the execution time of an
application, the task sequence in which all tasks are executed consecutively
on a core should be optimized whenever a new task is mapped on the core.
To evaluate the impact imposed by various task sequences on the execution

110

time of an application, the dependency imposed to a task by sharing the
same core with tasks that have no data dependency with the task, needs
to be denoted in the TG (task graph). We refer to this dependency as the
virtual dependency (VD) in comparison with the data dependency between
two tasks in the original TG.

Modified Task Graph

A VD is added into a TG if one task is following another task in the task
sequence of a core while in reality there is no dependency between them in
the original TG. As shown in Figure 7.4b, the VD between tasks t2 and t3
is depicted by a directed dotted line from t2 to t3. The weight of a VD is
zero because in fact there is no communication between them.

The presences of VDs modify a TG by adding new dependency con-
straints into the original TG and consequently modify the ECT and LCT
(Equation 7.2) of a task and other tasks that depend on it. These modifi-
cations will finally change the CP of the TG. As shown in Figure 7.4, after
t3 is mapped to the core where tasks t0 and t2 have already been mapped,
the CP of the TG is changed from t0− > t2− > t5− > t6 (Figure 7.4a)
to t0− > t2− > t3− > t5− > t6 (Figure 7.4b). The length of the CP is
increased by 3 time units.

Clearly, mapping a task to different cores will result in different modified
TGs and corresponding CPs. The variants of task sequence in one core will
also generate different TGs and CPs. In Figure 7.4, if the execution order
of tasks t2 and t3 reverses, a VD of task t2 on task t3 is added and a CP
with longer length (t0− > t3− > t2− > t5− > t6) is resulted in. To achieve
a minimized CP of an application, in each step of mapping a task, we need
to find the right core and the right position in the task sequence of the core
for the given task. By mapping the given task on this core and putting it in
the proper position in the task sequence, the minimal CP can be achieved.
This is the main idea of the task mapping in the bounded mapping.

Communication Time

To calculate and compare different CPs derived from different modified TGs,
both the execution times of tasks and communication times of inter-task
communications in a TG should be specified. In fact, both of them are
dependent on the computation and communication resources on which an
application is to be mapped. Especially for the communication time between
two tasks, it would not be known until both tasks are mapped on the cores
of a NoC. Some previous works surveyed in [22] addressing the scheduling
problem based on the assumption that, either there is no communication
cost, or multiprocessors are fully connected. Hence, the communication cost

111

0

2

4

3

3

2

7

t0
[3]

t6
[3]

t5
[6]

t4
[2]

t1
[5]

t3
[5]

t2
[7]

2
5

(a)

0

2

4

3

0

2

7

t0
[3]

t6
[3]

t5
[6]

t4
[2]

t1
[5]

t3
[5]

t2
[7]

2
5

0

(b)

Figure 7.4: Modified Task Graph with Virtual Dependency

could be specified in a TG beforehand. Clearly, this is unrealistic for most
cases, such as on a many-core NoC based system presented in this work. In
practice, it is possible to get data volume by application analysis. Based
on a 2D mesh NoC where the wormhole packet switching is applied, we can
approximate the communication time with data volume between any two
IP cores. This is because, on such a NoC, the network latency of wormhole
routing is (Lf/B)D+L/B, where Lf is the length of a flit, B is the channel
bandwidth, D is the length of the routing path, L is the length of the data.
If Lf << L, the communication time is dominated by the part of L/B [130].
Therefore, given the channel bandwidth B, it is reasonable to use L/B to
approximate communication time when we compute the length of the CP of
a TG. In addition to the approximation, the communication time between
two tasks assigned to the same core is not considered since the data is not
communicated on the NoC.

7.3.3 Task-Sequence-Based Task Mapping

Using the techniques of virtual dependency and modified task graph, we de-
velop the Task-Sequence-Based (TSB) mapping algorithm for task mapping
in BM. The algorithm first selects a task and then compare all CPs resulted
from modified TGs when the task is mapped to each possible position in
the task sequence of each candidate core. The core and the position in the
task sequence which achieve the minimal length of CP will be chosen for
mapping the selected task.

112

Task Selection

As in the tree-model based mapping algorithm, at first, the task with the
largest communication volume with other tasks will be selected and mapped
on the root node of the extended tree. Then the task with largest APT (see
Section 4.2.2) will be selected as the next task to be mapped on the extended
tree.

Core Selection

Unlike UM, in BM both free cores and the used cores on which some tasks
have already been mapped, need to be evaluated for finding the optimal
task mapping. In case that there are spare cores on the extended tree, the
way by which a core is selected in the tree-model based mapping algorithm
is used to find a spare core for the selected task. The mapping on this core
has to be compared against the mappings on the used cores. In case that
there is no spare core available on the NoC, the mapping solutions on all
used cores are compared with each other to find the optimal task mapping.
The one achieving the shortest length of CP will be chosen as the objective
core for the given task. If the mappings on several cores get the same CP,
the WCA is used to determine the best one.

Comparison of Task Sequence

For a core and a selected task, the different position in the task sequence
where a task is inserted will result in different modified TGs and CPs. To
compare with the mapping solutions on other cores, the comparison among
all possible positions in the task sequence of a core has to be done first.
When the selected task is inserted in one position in the task sequence, the
TG is modified correspondingly. The length of the CP of the modified TG
is calculated and compared with the shortest one obtained so far. Finally,
the algorithm gets the shortest CP and the position in the task sequence
which achieves the shortest CP. A task cannot be put in a position before
any preceding predecessor task in the original TG.

Using the methods presented above, the TSB mapping algorithm is de-
scribed in Algorithm 9.

7.4 Quantitative Evaluation

To evaluate the effectiveness of the proposed multi-application mapping
methods, we experimented the algorithms with a set of benchmarks on an
in-house many-core NoC simulator [131].

113

Algorithm 9: Task-Sequence-Based Task Mapping Algorithm

Input : TG, extended tree ET of the mapping area
Output: Mapping solution M

1 Calculate CV for all tasks ti ∈ T ;
2 Select the task tb with largest CV , map this node onto the root node

nr of ET, create T
′
= {tb} and M = {< nr, tb >}, remove tb from T ;

3 while T is not empty do
4 Calculate APTtj for all tj ∈ T ;
5 Select the task tb with the largest APT ;
6 Set minimal CP CPmin the CP of original DAG;
7 if there are free nodes on ET then
8 select one free node ni using tree-model based algorithm and

map tb on it;
9 calculate the CPi of the DAG;

10 if CPi < CPmin then
11 CPmin < CPi

12 for each used node nj on ET do
13 Set minimal CP CPj on node nj the CP of original DAG;
14 for each possible position s in the scheduling sequence of nj do
15 insert the task tb on the position s of the scheduling

sequence ;
16 add a virtual dependency in the TG and modify the TG;
17 update the ECT and LCT of each task;
18 calculate the CPjs of the modified DAG;
19 if CPjs < CPj then
20 CPj < CPjs

21 if CPj < CPmin then
22 CPmin < CPj

23 Map tb on the node nk which gets the minimal CP CPj ;
24 Put tb on the optimal position in the scheduling sequence in nk;
25 Append pair < nmap, tb > into M ;

26 Append tb into T
′
, remove Tb from T ;

7.4.1 Experimental Setup

A system-level many-core NoC simulator is built to analyze the execution
time and communication energy of the experimental benchmarks, under dif-
ferent settings. The in-house simulator is cycle-accurate in terms of network
transmission, where each stage of the data switching and routing process in

114

the routers is modeled explicitly.

The NoC platform is either a 9 × 9 mesh for unbounded mapping, or a
7× 7 mesh for bounded mapping. The simulator adopts X-Y deterministic
routing and wormhole switching. Each router has 5 IN/OUT ports with 2
flit-depth buffers in each input port. To estimate the energy consumption,
each link between routers is assumed as 1 mm long and 32 bits wide. Orion
2.0 [132] is used to model the energy consumed on routers and links.

Four benchmarks are simulated, including an image processing applica-
tion (BASIZ, [124]), a MPEG encoding application [133], and kernels for
Gaussian Elimination (GE) and Laplace Equation (LE) algorithms [134].
BASIZ is a parallel application with 26 tasks detecting image zones with
more brightness and color intensity. MPEG has 21 tasks. The 18-task GE
and 16-task LE algorithms are widely used for digital signal processing.

Mapping Step Unbounded Mapping Bounded Mapping

Application Mapping WNAD WNAD
NAD

Task Mapping tk-SA TSB
GI NoP

Table 7.1: Mapping Algorithms for Experimental Comparison

The proposed multi-application mapping methods are compared with ex-
isting techniques (Table 7.1). In UM, for application mapping we compare
the WNAD-Based (Algorithm 8) algorithm for application mapping with
NAD-Based algorithm (Algorithm 7). We will demonstrate the benefits of
WNAD-Based algorithm by the mapping analysis of the four benchmarks
in Section 7.4.2. For task mapping, we compare tk-SA algorithm (Chap-
ter 6) with Greedy Incremental (GI) algorithm [135]. The GI algorithm is
evaluated with superior mapping results compared to previous works. The
combination of application and task mapping algorithms leads to four map-
ping methods: WNAD+tk-SA, WNAD+GI, NAD+tk-SA and NAD+GI.

In bounded mapping, we compare our TSB algorithm with non-optimized
(NoP) task mapping, since there is no existing work addressing the same
problem. The NoP mapping algorithm maps the tasks based on their se-
quential order defined in the task graph and randomly selects the core on
which a task is mapped. It considers the dependency of tasks defined in the
task graph but without further optimization of scheduling.

7.4.2 Results of Unbounded Mapping

The four benchmarks are mapped on a 9×9 NoC, with the results illustrated
in Figure 7.5. From Figure 7.5a and 7.5b, we can observe the effectiveness

115

of WNAD-Based application mapping algorithm. Using the WNAD-Based
algorithm, the application BASIZ is mapped onto an area of a 5× 5 square
plus a neighboring node. MPEG and GE are also mapped on contiguous
areas. When mapping the application LE, there is still a contiguous area
left for it. In contrast, using the NAD-Based algorithm, the application LE
is mapped onto three separate areas. Since NAD-Based algorithm always
tries to allocate a candidate MER which can completely accommodate an
application in the application mapping, it usually assigns more cores to an
application than required. As a result, the first three applications, BASIZ,
MPEG and GE, are mapped to the areas which are similar to those in the
WNAD-Based algorithm. When it comes to application LE, the mapping
area has to be formed by the fragment areas left on the NoC, which results
in a larger NAD than that using the WNAD-Based algorithm.

MPEG
LE

BASIZ
GE

(a) Application Mapping with WNAD-
Based Algorithm

LE
GE

BASIZ
MPEG

(b) Application Mapping with NAD-
Based Algorithm

Figure 7.5: Mapping Result of Unbounded Mapping on a 9× 9 NoC

The normalized communication energy consumption for different map-
ping algorithms is illustrated in Figure 7.6. We can observe that the applica-
tion mapping has great impact on the energy consumption. As anticipated
from the increased NAD in Figure 7.5b, the largest difference of energy
consumption is shown in the application LE. The energy consumptions of
NAD-based algorithm are 136% and 98% higher than those of WNAD-based
algorithm, corresponding to the tk-SA and GI task mapping algorithms re-
spectively. For other three applications, the energy consumptions of WAND-
based application mapping with tk-SA and GI task mapping are also lower
than those of NAD-based algorithm.

Another observation is that the tk-SA algorithm outperforms the GI
algorithm in task mapping for all applications. The energy consumptions
of WNAD+GI mapping for application BASIZ, MPEG, GE and LE are
respectively 42%, 15%, 29% and 54% higher than those of WNAD+tk-SA
mapping. Similarly, the energy consumptions of NAD+GI mapping for the
applications are respectively 37%, 24%, 6% and 28% higher than those of
NAD-tk-SA mapping.

116

In all combinations of application mapping and task mapping algorithms,
WNAD+tk-SA achieves the lowest energy consumption. This result verifies
the efficiency of the proposed application mapping and task mapping algo-
rithms in minimizing the communication energy consumption of multiple
applications.

0

0.4

0.8

1.2

1.6

2

2.4

WNAD NAD WNAD NAD WNAD NAD WNAD NAD

BASIZ MPEG GE LE

N
or

m
al

iz
ed

 E
ne

rg
y

Co
ns

um
pt

io
n

TMB

GI

Figure 7.6: Normalized Communication Energy Consumption of Four
Benchmarks with Different Mapping Methods for UM

7.4.3 Results of Bounded Mapping

Figure 7.7 illustrates the mapping results of four benchmarks on a 7×7 NoC
in BM with WNAD-based application mapping algorithm. Since Section
7.4.2 already shows the effectiveness of WNAD-based application mapping
algorithm compared to NAD-Based algorithm, here we focus on analyzing
the effectiveness of TSB task mapping algorithm compared to NoP mapping.
Table 7.2 illustrates the mapping and task sequence of benchmark GE as an
example, using TSB and NoP mapping algorithms. The core at the bottom-
left corner of a NoC is indexed as 0 and that at the top-right is indexed
as n − 1, where n is the size of the NoC. The second and third columns
show the mapping and task sequence by WNAD+TSB and WNAD+NoP
mapping respectively.

The communication energy consumption for different mapping algorithms
is illustrated in Figure 7.8. We can observe that the energy consumption
of TSB mapping is less than that of NoP mapping for all four benchmarks.
The maximal reduction of energy consumption, about 57%, is in the case of
application MPEG. The energy consumption is decreased by 49%, 33% and
28% for application BASIZ, GE and LE respectively.

The execution times of four benchmarks with different mapping methods
in BM are illustrated in Figure 7.9. The TSB mapping achieves consider-

117

GE LE

BASIZ
MPEG

Figure 7.7: Result of Bounded Mapping with WNAD Application Mapping
Algorithm on a 7× 7 NoC

Core Index WNAD+TSM WNAD+NoP

28 4 15

29 3 4

30 16 2 16 17

35 0 2 7 11

36 6 8 11 10 14 0

37 1 6

38 13 15 17 5

42 12 8

43 7 1 12

44 9 10 13 14

45 5 3

Table 7.2: Mappings and Task Sequences of GE with Different Task Mapping
Algorithms

able execution time reductions for applications BASIZ and GE with 52%
and 40% respectively. The critical paths of these two applications are min-
imally influenced by different task mappings, thus the TSB mapping works
effectively on reducing the length of critical paths. For applications MPEG
and LE, they either have multiple critical paths or the critical path is easily
changed during task mapping. TSB has limited effectiveness for these types
of applications.

118

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

BASIZ MPEG GE LE

No
rm

ali
ze

d E
ne

rg
y C

on
su

mp
tio

n

TSB

NoP

Figure 7.8: Communication Energy Consumption of Four Benchmarks with
Different Mapping Methods in BM

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

BASIZ MPEG GE LE

No
rm

ali
ze

d E
xe

cu
tio

n T
im

e

TSB

NoP

Figure 7.9: Execution Times of Four Benchmarks with Different Mapping
Methods in Bounded Mapping

7.4.4 Experiment Summary

The quantitative evaluation demonstrates the effectiveness of the proposed
two-step multi-application mapping methods in terms of energy consump-
tion and execution time. For application mapping, the WNAD algorithm
considerably reduces the communication energy with the four applications
mapped on the 9 × 9 NoC. For task mapping, the tk-SA algorithm outper-
forms the GI algorithm in terms of energy saving in the UM case. The
proposed TSB algorithm is able to reduce the energy consumption and
execution time for the BM. With the two steps combined, our adaptive
mapping methods achieve significant energy and execution time saving for
multi-application mapping with various number of cores. It should be noted

119

that the effectiveness of our algorithm is influenced by the characteristics of
applications.

7.5 Chapter Summary

Many-core architectures enable simultaneous execution of multiple applica-
tions on a chip. A novel methodology for mapping multiple applications
on many-core NoC platforms was proposed in this chapter. Composed of
application mapping and task mapping, the two-step mapping methodology
aims to minimize the communication energy consumption and the execution
time of each application. The adaptive mapping methods for bounded or
unbounded number of cores were presented respectively.

With an unbounded number of cores where each task can be allocated
with a dedicated core, WNAD-Based application mapping algorithm and
the tk-SA task mapping algorithm minimize the communication energy con-
sumption of multiple applications. For the bounded mapping where several
tasks need to share one core, TSB task mapping algorithm not only mini-
mizes the communication energy consumption, but also reduces the execu-
tion time overhead caused by core sharing. As demonstrated by the quan-
titative evaluation of practical benchmarks, the proposed two-step mapping
methodology achieves smaller energy consumption and execution time com-
pared to non-optimized mapping and existing works.

The proposed mapping methodology provides a general framework for
mapping multiple applications, where the algorithms employed in both ap-
plication and task mapping steps are not limited to those that have been
proposed in this work. Following the two-step methodology, we can apply
other optimization algorithms to application and task mapping with respect
to specific design metrics.

120

Chapter 8

Conclusion

Many-core platforms have become the norm of massively parallel comput-
ing. One important issue in implementing parallel computing on a many-
core platform is how to allocate the computation resource (IP cores) and the
communication resource (communication channels) for a set of tasks which
represent the target applications, i.e., the application mapping problem.
Proper application mapping methods can minimize the energy consump-
tion and improve the system performance. A general application mapping
process consists of multiple stages, each of them focusing on a particular re-
source allocation problem. The collective effort of these stages leads to the
overall optimal mappings. This thesis defines the general framework of appli-
cation mapping, which integrates three optimization stages-IP selection, tile
assignment and communication mapping. Methods of accelerating the gen-
eral SA algorithm have been proposed to reduce the complexity of SA while
keeping the good quality of mapping solutions. Additionally, a novel multi-
application mapping methodology is proposed to perform multi-application
mapping with bounded or unbounded number of IP cores.

8.1 Three-Stage Application Mapping

Given a set of applications and a many-core platform, application mapping
determines to which resources on the platform a task will be allocated, and
on which routing path in the communication network an inter-task com-
munication will be routed. More concretely, on a heterogeneous many-core
platform, application mapping can be carried out through three stages-IP
selection, tile assignment and communication mapping. Each of them deals
with a specific resource allocation problem. Minimizing energy consumption
is the major objective of application mapping addressed in this thesis. IP
selection selects an appropriate IP core for each task with the consideration
of minimizing the energy consumed for the computation. Tile assignment

121

and communication mapping target the minimization of the energy con-
sumed for the inter-core communication. Tile assignment determines which
tile on the platform will be assigned to an IP core selected in the previous
stage. This stage performs the physical placement of the selected IP cores.
Tile assignment optimizes the core-to-node mapping in order to map cores
with large amount of communication onto adjacent nodes, so that less en-
ergy would be consumed for communication. The communication mapping
chooses one routing path for each inter-node communication by taking the
traffic situation on channels (e.g., links on a NoC) into account, in order to
balance the traffic and alleviate the network contention.

With each individual stage focusing on a particular resource allocation
problem, the collective effort of the three stages results in an overall opti-
mized mapping. A framework of application mapping which integrates the
above three stages is proposed in this thesis. In addition to investigating
and formulating individual operations of the three stages, the framework
emphasizes on the inter-stage interaction to reach the overall optimal map-
pings.

8.2 Accelerating High-Performance Mapping Al-
gorithms

Regarding the mapping algorithm, the performance and the complexity are
the major metrics in selecting the appropriate algorithms employed in each
mapping stage. Compared to other heuristic algorithms like GI and GA,
as well as ILP method, SA algorithm has a better trade-off in complexity
and mapping quality. However, there are still potentials to speed up the SA
algorithm. Based on the study of the generic SA algorithm, it is observed
that:

1. The set of parameters and functions applied in the SA algorithm jointly
affects the annealing process and the quality of final mappings. The
parameters and functions optimized for a specific mapping problem
will speed up the annealing process without loss of the mapping qual-
ity. Additionally, the set of parameters has to be selected systemati-
cally, instead of being set independently.

2. When the annealing process starts from a randomly generated ini-
tial solution and a high initial temperature, the generic SA algorithm
behaves randomly at the beginning and lots of iterations are wasted
without optimization. It is possible to skip the random behavior and to
speed up the SA algorithm by starting the annealing from an optimized
initial mapping solution and a corresponding initial temperature.

122

According to these observations, two methods have been proposed for accel-
erating the SA algorithm in the application mapping. One way is to utilize
an optimization method, called Nelder-Mead simplex method, to produce
the set of optimized parameters applied in the SA algorithm. With the set
of optimized parameters, fewer evaluation iterations are needed compared
to the reference SA algorithm in which the set of parameters is set by the
random values. The proposed method also demonstrates the necessity of uti-
lizing the systematic approach to produce problem-specific parameters for
the SA algorithm, instead of using randomly selected parameters for differ-
ent problems. Another accelerating method is to start the annealing from an
already optimized initial solution, with the appropriate initial temperature.
The proposed tk-SA algorithm can skip the random behavior at the begin-
ning stages of the general SA algorithm. By doing this, the SA algorithm
is accelerated and the quality of final solution is kept. The quantitative
comparison shows that the SA algorithm utilizing the optimized parameters
and functions only uses on average less than 1% iterations of that used in
the SA algorithm using empirical parameters, to converge to the final opti-
mized solution. With the optimized parameters, the proposed SA algorithm
is on average 237 times faster than the SA algorithm using empirical pa-
rameters, while the optimal mapping is still found. Starting from the lower
initial temperature tk, the tk-SA algorithm saves the iterations and runtime
for finding the optimal mapping solution. The tk-SA algorithm on average
uses 58% iterations of that in the full-range SA algorithm. As a result, an
average speedup of 1.55 is achieved by the tk-SA algorithm. In addition,
using the temperature tk, the tk-SA algorithm reproduces the behavior of
the full-range SA algorithm. This enables the accelerated tk-SA algorithm
to obtain the mapping solution which has the same quality with that found
by the full-range SA algorithm.

8.3 Towards Multi-Application Mapping

Mapping multiple applications simultaneously is an efficient way to utilize
the abundant computation and communication resources on a many-core
platform. The design focus should shift from single-application mapping to
multi-application mapping. Compared to single-application mapping, there
are more challenges in mapping multiple applications due to the resource
sharing and competition between applications. It is prohibitively expensive
to combine multiple task graphs as a whole and to solve the mapping prob-
lem with a large number of tasks with the SA, GA or ILP algorithms. In
this thesis, we proposed a two-step multi-application mapping which deals
with the problem in a divide-and-conquer way. Consisting of two steps, ap-
plication mapping and task mapping, the proposed mapping method finds

123

an area on a many-core NoC for each application and then maps all tasks
of the application into the area. The multi-application mapping adapts to
the availability of IP cores on the NoC. The weighted NAD (WNAD) based
algorithm is proposed for application mapping. The tk-SA algorithm is ap-
plied to the task mapping in the case of unbounded number of cores. The
task-sequence based (TSB) algorithm is proposed for the task mapping in
the case of bounded number of cores. The quantitative comparison shows
that the WNAD+tk-SA mapping algorithms achieves the lowest communi-
cation energy consumption in all combinations of application mapping and
task mapping algorithms evaluated. The proposed WNAD+TSB mapping
algorithm not only minimizes the communication energy consumption, but
also reduces the overhead caused by core sharing between multiple tasks.

8.4 Future Work

This thesis has explored the potential of achieving the optimal mapping
by the three-stage framework of application mapping and the developed
mapping algorithms. Several directions, however, should still be further
investigated.

Firstly, the utilization of GA in application mapping needs to be pro-
moted. Although GA, as a class of of evolutionary algorithm (EA), can the-
oretically produce better mapping solutions than SA algorithm, it is not yet
widely used for application mapping due to its unaffordable computational
complexity. Therefore, similar to the techniques which have been proposed
for SA algorithm in this thesis, appropriate accelerating techniques need to
be developed for GA. For instance, optimized crossover and mutation op-
erators can be proposed so that the convergence of GA can be accelerated
and the computational complexity of GA can be decreased.

Secondly, multi-objective mapping problems have to be investigated.
The optimization objectives in application mapping are often multiple rather
than single, and are sometimes conflicting with each other. For instance,
performance and energy consumption are usually a trade-off in application
mapping. For such multi-objective mapping problems, there is no single op-
timal solution, but a set of solutions featuring different trade-offs between
the objectives (or Pareto front). To find the Pareto front, algorithms like SA,
GA and ILP have to be applied. As discussed previously, the complexities
of these algorithms have to be decreased to improve their feasibility.

Last but not least, more novel methods need to be developed for multi-
application mapping. Compared to single-application mapping, there are
more challenges for mapping multiple applications onto a many-core plat-
form. One of them is how to efficiently allocate the shared resources (e.g.,
IP cores and communication network) to multiple applications and reduce

124

the inter-application interference due to the resource sharing. Another one
is how to provide a design which can meet individual requirement and con-
straint, but not over-designed from the system’s point of view. Although
one methodology is innovated in this thesis, multi-application mapping is
still an open problem and more effort needs to be put into this direction.

125

126

Bibliography

[1] John L. Hennessy and David A. Patterson. Computer Architecture:
A Quantitative Approach, 4th Edition. Morgan Kaufmann, 4 edition,
September 2006.

[2] G. Blake, R.G. Dreslinski, and T. Mudge. A survey of multicore pro-
cessors. Signal Processing Magazine, IEEE, 26(6):26 –37, november
2009.

[3] Jingcao Hu and R. Marculescu. Energy- and performance-aware map-
ping for regular noc architectures. Computer-Aided Design of Inte-
grated Circuits and Systems, IEEE Transactions on, 24(4):551 – 562,
april 2005.

[4] Gordon E Moore. Cramming more components onto integrated cir-
cuits. Electronics, 38(8):33–35, 1965.

[5] Jan M. Rabaey, Anantha Chandrakasan, and Borivoje Nikolic. Digital
Integrated Circuits. Prentice Hall Press, Upper Saddle River, NJ, USA,
3rd edition, 2008.

[6] M. Anis and M.H. Aburahma. Leakage current variability in nanome-
ter technologies. In System-on-Chip for Real-Time Applications, 2005.
Proceedings. Fifth International Workshop on, pages 60 – 63, july 2005.

[7] L. Benini and G. De Micheli. Networks on chips: a new soc paradigm.
Computer, 35(1):70–78, Jan 2002.

[8] Lionel Torrens, Pascal Benoit, Gilles Sassatelli, and Michel Robert.
An Introduction to Multi-Core System on Chip-Trends and Challenges,
chapter 1, pages 1–21. Springer Science+Business Media, 2011.

[9] Kunle Olukotun, Lance Hammond, and James Laudon. Chip multi-
processor architecture: Techniques to improve throughput and latency.
Synthesis Lectures on Computer Architecture, 2(1):1–145, 2007.

[10] Andrs Vajda. Programming Many-Core Chips, chapter Multi-core and
Many-core Processor Architectures, pages 9–43. Springer US, 2011.

127

[11] Rainer Buchty, Vincent Heuveline, Wolfgang Karl, and Jan-Philipp
Weiss. A survey on hardware-aware and heterogeneous computing
on multicore processors and accelerators. Concurr. Comput. : Pract.
Exper., 24(7):663–675, May 2012.

[12] S. R. Vangal, J. Howard, G. Ruhl, S. Dighe, H. Wilson, J. Tschanz,
D. Finan, A. Singh, T. Jacob, S. Jain, V. Erraguntla, C. Roberts,
Y. Hoskote, N. Borkar, and S. Borkar. An 80-tile sub-100-w ter-
aflops processor in 65-nm cmos. Solid-State Circuits, IEEE Journal
of, 43(1):29–41, 2008.

[13] Tilera. Tile gx family, 2008.

[14] NVIDIA. Graphics processing units (gpus).

[15] AMD. Amd fusion apus.

[16] Intel. Sand bridge apus.

[17] R. Kumar, D.M. Tullsen, N.P. Jouppi, and P. Ranganathan. Hetero-
geneous chip multiprocessors. Computer, 38(11):32 – 38, nov. 2005.

[18] M.A. Qayum, N.A. Siddique, M.A. Haque, and A.S.M. Tayeen. Future
of multiprocessors: Heterogeneous chip multiprocessors. In Informat-
ics, Electronics Vision (ICIEV), 2012 International Conference on,
pages 372 –376, may 2012.

[19] Fayez Gebali. Algorithms and Parallel Computing. John Wiley &
Sons, 2011.

[20] Harry F. Jordan and Gita Alaghband. Fundamentals of Parallel Pro-
cessing. 2003.

[21] TOBIAS BJERREGAARD and SHANKAR MAHADEVAN. A sur-
vey of research and practices of network-on-chip. ACM Computing
Surveys, 38, 2006.

[22] Yu K. Kwok and Ishfaq Ahmad. Static scheduling algorithms for
allocating directed task graphs to multiprocessors. ACM Comput.
Surv., 31(4):406–471, December 1999.

[23] Oliver Sinnen and Leonel Sousa. A platform independent parallelising
tool based on graph theoretic models. In Selected Papers and Invited
Talks from the 4th International Conference on Vector and Parallel
Processing, VECPAR ’00, pages 154–167, London, UK, UK, 2001.
Springer-Verlag.

128

[24] Concepcio Roig, Ana Ripoll, and Fernando Guirado. A new task
graph model for mapping message passing applications. IEEE Trans.
Parallel Distrib. Syst., 18(12):1740–1753, December 2007.

[25] Jingcao Hu and R. Marculescu. Exploiting the routing flexibility for
energy/performance aware mapping of regular noc architectures. In
Design, Automation and Test in Europe Conference and Exhibition,
2003, pages 688 – 693, 2003.

[26] Jingcao Hu and R. Marculescu. Energy-aware mapping for tile-based
noc architectures under performance constraints. In Proceedings of the
ASP-DAC 2003. Asia and South Pacific, pages 233 – 239, jan. 2003.

[27] Tang Lei and Shashi Kumar. A two-step genetic algorithm for mapping
task graphs to a network on chip architecture. In DSD ’03: Proceedings
of the Euromicro Symposium on Digital Systems Design, page 180,
Washington, DC, USA, 2003. IEEE Computer Society.

[28] Srinivasan Murali and Giovanni De Micheli. Bandwidth-constrained
mapping of cores onto noc architectures. In Proceedings of the con-
ference on Design, automation and test in Europe - Volume 2, DATE
’04, pages 20896–. IEEE Computer Society, 2004.

[29] Chen-Ling Chou and R. Marculescu. Contention-aware application
mapping for network-on-chip communication architectures. In Proc.
IEEE International Conference on Computer Design ICCD 2008,
pages 164–169, October 12–15, 2008.

[30] C.A.M. Marcon, E.I. Moreno, N.L.V. Calazans, and F.G. Moraes.
Comparison of network-on-chip mapping algorithms targeting low en-
ergy consumption. IET Computers & Digital Techniques, 2(6):471–
482, 2008.

[31] Heikki Orsila, Erno Salminen, and Timo D. Hämäläinen. Best prac-
tices for simulated annealing in multiprocessor task distribution prob-
lems. Simulated Annealing, I-Tech Education and Publishing KG.,
pages 321–342, 2008.

[32] Marcus Vińıcius Carvalho da Silva, Nadia Nedjah, and Luiza
de Macedo Mourelle. Power-aware multi-objective evolutionary op-
timization for application mapping on noc platforms. In Proceed-
ings of the 23rd international conference on Industrial engineering
and other applications of applied intelligent systems - Volume Part
II, IEA/AIE’10, pages 143–152, Berlin, Heidelberg, 2010. Springer-
Verlag.

129

[33] Bo Yang, Thomas Canhao Xu, Tero Säntti, and Juha Plosila. Tree-
model based mapping for energy-efficient and low-latency network-on-
chip. In Proceeding of Design and Diagnostics of Electronic Circuits
and Systems (DDECS), pages 189 –192, 14-16 2010.

[34] Bo Yang, Liang Guang, Tero Säntti, and Juha Plosila. Parameter-
optimized simulated annealing for application mapping on networks-
on-chip. In Youssef Hamadi and Marc Schoenauer, editors, Learn-
ing and Intelligent Optimization, Lecture Notes in Computer Science,
pages 307–322. Springer Berlin Heidelberg, 2012.

[35] Bo Yang, Liang Guang, Tero Säntti, and Juha Plosila. t(k)-sa: ac-
celerated simulated annealing algorithm for application mapping on
networks-on-chip. In Proceedings of the fourteenth international con-
ference on Genetic and evolutionary computation conference, GECCO
’12, pages 1191–1198, New York, NY, USA, 2012. ACM.

[36] Bo Yang, Liang Guang, T.C. Xu, A.W. Yin, T. Säntti, and J. Plosila.
Multi-application multi-step mapping method for many-core network-
on-chips. In Proceeding of NORCHIP, 2010, pages 1 –6, nov. 2010.

[37] Bo Yang, Liang Guang, T.C. Xu, T. Säntti, and J. Plosila. Multi-
application mapping algorithm for network-on-chip platforms. In Pro-
ceeding of Electrical and Electronics Engineers in Israel (IEEEI), 2010
IEEE 26th Convention of, pages 000540 –000544, nov. 2010.

[38] Bo Yang, Liang Guang, Tero Sntti, and Juha Plosila. Mapping
multiple applications with unbounded and bounded number of cores
on many-core networks-on-chip. Microprocessors and Microsystems,
37(4):460 – 471, 2013.

[39] M. Horowitz and W. Dally. How scaling will change processor archi-
tecture. In Solid-State Circuits Conference, 2004. Digest of Technical
Papers. ISSCC. 2004 IEEE International, pages 132 – 133 Vol.1, feb.
2004.

[40] Dong Hyuk Woo and H.-H.S. Lee. Extending amdahl’s law for energy-
efficient computing in the many-core era. Computer, 41(12):24–31,
2008.

[41] Zhiyi Yu. CMOS Processors and Memories, chapter Towards High-
Performance and Energy-Efficient Multi-core Processors, pages 29–51.
Springer Netherlands, 2010.

[42] International Technology Roadmap for Semiconductors. Itrs 2011 edi-
tion, 2011.

130

[43] C.H. (Kees) van Berkel. Multi-core for mobile phones. In Design
Automation and Test Europe Conference (DATE), 2009.

[44] David Culler, Jaswinder Pal Singh, and Anoop Gupta. Parallel Com-
puter Architecture: A Hardware/Software Approach. Morgan Kauf-
mann Publishers, 1998.

[45] Thomas Rauber and Gudula Rünger, editors. Parallel Programming
for Multicore and Cluster Systems. Springer Berlin Heidelberg, 2010.

[46] James R. Goodman. Using cache memory to reduce processor-memory
traffic. In Proceedings of the 10th annual international symposium on
Computer architecture, ISCA ’83, pages 124–131, New York, NY, USA,
1983. ACM.

[47] Michael E. Thomadakis. The architecture of the nehalem processor
and nehalem-ep smp platforms. Technical report, Supercomputing
Facility, Texas A&M University, 2011.

[48] AMD. Amd opteron 6000 series processors, 2013.

[49] Oracle. Oracle’s sparc t3-1, sparc t3-2, sparc t3-4 and sparc t3-1b
server architecture. Technical report, Oracle, 2011.

[50] IBM. Ibm power 7 processor, 2013.

[51] Barbara Chapman, Gabriele Jost, and Ruud Van Der Pas. Using
OpenMP: Portable Shared Memory Parallel Programming. The MIT
Press, 2007.

[52] L. E. Jordan and Gita Alaghband. Fundamentals of Parallel Process-
ing. Prentice Hall Professional Technical Reference, 2002.

[53] Hesham El-Rewini and Mostafa Abd-El-Barr. Advanced Computer
Architecture and Parallel Processing. John Wiley & Sons, Inc., 2005.

[54] Rakesh Kumar, Timothy G. Mattson, Gilles Pokam, and Rob F. Van
der Wijngaart. The case for message passing on many-core chips. In
Michael Hübner and Jürgen Becker, editors, Multiprocessor System-
on-Chip, pages 115–123. Springer, 2011.

[55] Xiaowen Chen, Zhonghai Lu, A. Jantsch, and Shuming Chen. Support-
ing distributed shared memory on multi-core network-on-chips using
a dual microcoded controller. In Design, Automation Test in Europe
Conference Exhibition (DATE), 2010, pages 39–44, 2010.

131

[56] O.S. Lawlor. Message passing for gpgpu clusters: Cudampi. In Cluster
Computing and Workshops, 2009. CLUSTER ’09. IEEE International
Conference on, pages 1–8, 2009.

[57] J. Howard, S. Dighe, S.R. Vangal, G. Ruhl, N. Borkar, S. Jain, V. Er-
raguntla, M. Konow, M. Riepen, M. Gries, G. Droege, T. Lund-Larsen,
S. Steibl, S. Borkar, V.K. De, and R. Van Der Wijngaart. A 48-core
ia-32 processor in 45 nm cmos using on-die message-passing and dvfs
for performance and power scaling. Solid-State Circuits, IEEE Journal
of, 46(1):173–183, Jan.2011.

[58] Zhiyi Yu, Kaidi You, Ruijin Xiao, Heng Quan, Peng Ou, Yan Ying,
Haofan Yang, Ming”e Jing, and Xiaoyang Zeng. An 800mhz 320mw
16-core processor with message-passing and shared-memory inter-core
communication mechanisms. In Solid-State Circuits Conference Digest
of Technical Papers (ISSCC), 2012 IEEE International, pages 64–66,
2012.

[59] J. Diaz, C. Munoz-Caro, and A. Nino. A survey of parallel pro-
gramming models and tools in the multi and many-core era. Paral-
lel and Distributed Systems, IEEE Transactions on, 23(8):1369–1386,
Aug.2012.

[60] William Dally and Brian Towles. Principles and Practices of Intercon-
nection Networks. Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 2003.

[61] A.W. Yin, T.C. Xu, Bo Yang, P. Liljeberg, and H. Tenhunen. Change
function of 2d/3d network-on-chip. In Computer and Information
Technology (CIT), 2011 IEEE 11th International Conference on,
pages 181–188, 31 2011-Sept. 2.

[62] Christopher J. Glass and Lionel M. Ni. The turn model for adaptive
routing. J. ACM, 41(5):874–902, September 1994.

[63] Wen-Chung Tsai, Kuo-Chih Chu, Yu-Hen Hu, and Sao-Jie Chen. Non-
minimal, turn-model based noc routing. Microprocessors and Mi-
crosystems, (0):–, 2012.

[64] William J. Dally and Brian Towles. Route packets, not wires: on-chip
inteconnection networks. In Proceedings of the 38th annual Design
Automation Conference, DAC ’01, pages 684–689, New York, NY,
USA, 2001. ACM.

[65] David Wentzlaff, Patrick Griffin, Henry Hoffmann, Liewei Bao, Bruce
Edwards, Carl Ramey, Matthew Mattina, Chyi-Chang Miao, John F.

132

Brown III, and Anant Agarwal. On-chip interconnection architecture
of the tile processor. IEEE Micro, 27(5):15–31, 2007.

[66] D. Truong, W. Cheng, T. Mohsenin, Zhiyi Yu, T. Jacobson,
G. Landge, M. Meeuwsen, C. Watnik, P. Mejia, Anh Tran, J. Webb,
E. Work, Zhibin Xiao, and B. Baas. A 167-processor 65 nm com-
putational platform with per-processor dynamic supply voltage and
dynamic clock frequency scaling. In VLSI Circuits, 2008 IEEE Sym-
posium on, pages 22 –23, 2008.

[67] G. De Micheli, C. Seiculescu, S. Murali, L. Benini, F. Angiolini, and
A. Pullini. Networks on chips: From research to products. In Design
Automation Conference (DAC), 2010 47th ACM/IEEE, pages 300–
305, 2010.

[68] B.S. Feero and P.P. Pande. Networks-on-chip in a three-dimensional
environment: A performance evaluation. Computers, IEEE Transac-
tions on, 58(1):32–45, Jan.

[69] Vitor de Paulo and Cristinel Ababei. 3d network-on-chip architec-
tures using homogeneous meshes and heterogeneous floorplans. Int.
J. Reconfig. Comput., 2010:1:1–1:12, January 2010.

[70] N.S. Kim, T. Austin, D. Baauw, T. Mudge, K. Flautner, J.S. Hu, M.J.
Irwin, M. Kandemir, and V. Narayanan. Leakage current: Moore’s law
meets static power. Computer, 36(12):68–75, Dec.2003.

[71] Lin Yuan, S. Leventhal, and Gang Qu. Temperature-aware leakage
minimization technique for real-time systems. In Computer-Aided
Design, 2006. ICCAD ’06. IEEE/ACM International Conference on,
pages 761–764, Nov.2006.

[72] M. Pedram and S. Nazarian. Thermal modeling, analysis, and man-
agement in vlsi circuits: Principles and methods. Proceedings of the
IEEE, 94(8):1487–1501, Aug.2006.

[73] Liang Guang, Ethiopia Nigussie, Juha Plosila, Jouni Isoaho, and
Hannu Tenhunen. Survey of self-adaptive nocs with energy-efficiency
and dependability. International Journal of Embedded and Real-Time
Communication Systems (IJERTCS), 3(2):122, 2012.

[74] G. Dhiman and T.S. Rosing. Dynamic voltage frequency scaling for
multi-tasking systems using online learning. In Low Power Electronics
and Design (ISLPED), 2007 ACM/IEEE International Symposium
on, pages 207–212, Aug.2007.

133

[75] Liang Guang, Ethiopia Nigussie, Lauri Koskinen, and Hannu Ten-
hunen. Autonomous dvfs on supply islands for energy-constrained
noc communication. In Proceedings of the 22nd International Confer-
ence on Architecture of Computing Systems, ARCS ’09, pages 183–194,
Berlin, Heidelberg, 2009. Springer-Verlag.

[76] Wooyoung Jang, Duo Ding, and D.Z. Pan. Voltage and frequency is-
land optimizations for many-core/networks-on-chip designs. In Green
Circuits and Systems (ICGCS), 2010 International Conference on,
pages 217–220, June, 2010.

[77] Changbo Long, Jinjun Xiong, and Yongpan Liu. Techniques of power-
gating to kill sub-threshold leakage. In Circuits and Systems, 2006.
APCCAS 2006. IEEE Asia Pacific Conference on, pages 952–955,
Dec.2006.

[78] Xuning Chen and Li-Shiuan Peh. Leakage power modeling and op-
timization in interconnection networks. In Low Power Electronics
and Design, 2003. ISLPED ’03. Proceedings of the 2003 International
Symposium on, pages 90–95, Aug.2003.

[79] V. Soteriou and Li-Shiuan Peh. Exploring the design space of
self-regulating power-aware on/off interconnection networks. Paral-
lel and Distributed Systems, IEEE Transactions on, 18(3):393–408,
March,2007.

[80] H. Matsutani, M. Koibuchi, H. Amano, and D. Wang. Run-time power
gating of on-chip routers using look-ahead routing. In Design Automa-
tion Conference, 2008. ASPDAC 2008. Asia and South Pacific, pages
55–60, March, 2008.

[81] Muhammad Qadri, Hemal Gujarathi, and Klaus McDonald-Maier.
Low power processor architectures and contemporary techniques for
power optimization a review. Journal of Computers, 4(10), 2009.

[82] R. Mullins. Minimising dynamic power consumption in on-chip net-
works. In System-on-Chip, 2006. International Symposium on, pages
1–4, Nov.2006.

[83] R. Marculescu, U.Y. Ogras, Li-Shiuan Peh, N.E. Jerger, and
Y. Hoskote. Outstanding research problems in noc design: System,
microarchitecture, and circuit perspectives. Computer-Aided Design
of Integrated Circuits and Systems, IEEE Transactions on, 28(1):3
–21, jan. 2009.

134

[84] Pradip Kumar Sahu and Santanu Chattopadhyay. A survey on ap-
plication mapping strategies for network-on-chip design. Journal of
Systems Architecture, 59(1):60 – 76, 2013.

[85] Dongkun Shin and Jihong Kim. Power-aware communication opti-
mization for networks-on-chips with voltage scalable links. In Proceed-
ings of the 2nd IEEE/ACM/IFIP international conference on Hard-
ware/software codesign and system synthesis, CODES+ISSS ’04, pages
170–175, New York, NY, USA, 2004. ACM.

[86] K. Srinivasan, K. S. Chatha, and G. Konjevod. An automated tech-
nique for topology and route generation of application specific on-chip
interconnection networks. In Proceedings of the 2005 IEEE/ACM In-
ternational conference on Computer-aided design, ICCAD ’05, pages
231–237, Washington, DC, USA, 2005. IEEE Computer Society.

[87] Ciprian Radu and Lucian Vinţan. Optimized simulated annealing
for network-on-chip application mapping. In Proceedings of the 18th
International Conference on Control Systems and Computer Science
(CSCS-18), Bucharest, Romania, volume 1, pages 452–459, Bucharest,
Romania, May 24-27 2011. Politehnica Press.

[88] Jia Huang, C. Buckl, A. Raabe, and A. Knoll. Energy-aware task al-
location for network-on-chip based heterogeneous multiprocessor sys-
tems. In Parallel, Distributed and Network-Based Processing (PDP),
2011 19th Euromicro International Conference on, pages 447 –454,
feb. 2011.

[89] Zhonghai Lu, Lei Xia, and Axel Jantsch. Cluster-based simulated
annealing for mapping cores onto 2d mesh networks on chip. In Pro-
ceedings of the 2008 11th IEEE Workshop on Design and Diagnostics
of Electronic Circuits and Systems, pages 1–6, 2008.

[90] Andreas Hansson, Kees Goossens, and Andrei Rdulescu. A unified
approach to mapping and routing on a network-on-chip for both best-
effort and guaranteed service traffic. In VLSI Design, volume 2007,
page 16. Hindawi Publishing Corporation, 2007.

[91] E. Carvalho and F. Moraes. Congestion-aware task mapping in het-
erogeneous mpsocs. In Proc. International Symposium on System-on-
Chip SOC 2008, pages 1–4, November 5–6, 2008.

[92] Liulin Zhong, Jiayi Sheng, Ming’e Jing, Zhiyi Yu, Xiaoyang Zeng, and
Dian Zhou. An optimized mapping algorithm based on simulated an-
nealing for regular noc architecture. In ASIC (ASICON), 2011 IEEE
9th International Conference on, pages 389–392, 2011.

135

[93] Ewerson Carvalho, César Marcon, Ney Calazans, and Fernando
Moraes. Evaluation of static and dynamic task mapping algorithms in
noc-based mpsocs. In Proceedings of the 11th international conference
on System-on-chip, SOC’09, pages 87–90, Piscataway, NJ, USA, 2009.
IEEE Press.

[94] Robert Dick. Embedded systems synthesis benchmark suite (e3s).
http://ziyang.eecs.umich.edu/ dickrp/e3s/.

[95] Vincenzo Catania Giuseppe Ascia and Maurizio Palesi. Mapping cores
on network-on-chip. International Journal of Computational Intelli-
gence Research, Vol.1, No.2:109–126, 2005.

[96] Dragos Truscan, Tiberiu Seceleanu, Johan Lilius, and Hannu Ten-
hunen. A model-based design process for the segbus distributed archi-
tecture. In Proceedings of the 15th Annual IEEE International Confer-
ence and Workshop on the Engineering of Computer Based Systems,
pages 307–316, Washington, DC, USA, 2008. IEEE Computer Society.

[97] C. Marcon, A. Borin, A. Susin, L. Carro, and F. Wagner. Time and
energy efficient mapping of embedded applications onto nocs. In Proc.
Asia and South Pacific Design Automation Conference the ASP-DAC
2005, volume 1, pages 33–38, January 18–21, 2005.

[98] Suleyman Tosun. New heuristic algorithms for energy aware appli-
cation mapping and routing on mesh-based nocs. J. Syst. Archit.,
57(1):69–78, January 2011.

[99] K. Vivekanandarajah and S.K. Pilakkat. Task mapping in heteroge-
neous mpsocs for system level design. In Engineering of Complex Com-
puter Systems, 2008. ICECCS 2008. 13th IEEE International Confer-
ence on, pages 56 –65, 31 2008-april 3 2008.

[100] Liyang Zhou, Ming’e Jing, Liulin Zhong, Zhiyi Yu, and Xiaoyang Zeng.
Task-binding based branch-and-bound algorithm for noc mapping. In
Circuits and Systems (ISCAS), 2012 IEEE International Symposium
on, pages 648 –651, may 2012.

[101] Thomas H. Cormen, Clifford Stein, Ronald L. Rivest, and Charles E.
Leiserson. Introduction to Algorithms. McGraw-Hill Higher Education,
2nd edition, 2001.

[102] P. S. Oliveto J. He and X. Yao. Time complexity of evolutionary
algorithms for combinatorial optimization: A decade of results. Inter-
national Journal of Automation and Computing, pages 100–106, 2007.

136

[103] Maria Angelova and Tania Pencheva. Tuning genetic algorithm param-
eters to improve convergence time. International Journal of Chemical
Engineering, 2011:7, 2011.

[104] Rabindra Ku Jena and Prabat K. Mahanti. Design space exploration
of network-on-chip: A system level approach. International Journal
of Computing and ICT Research, 2:17–25, 2008.

[105] M.V.C. da Silva, N. Nedjah, and L. de Macedo Mourelle. Evolution-
ary ip assignment for efficient noc-based system design using multi-
objective optimization. In Evolutionary Computation, 2009. CEC ’09.
IEEE Congress on, pages 2257 –2264, may 2009.

[106] B. Suman and P. Kumar. A survey of simulated annealing as a tool
for single and multiobjective optimization. Journal of the Operational
Research Society, 57(18):1143–1160, 2006.

[107] S. Tosun, O. Ozturk, and M. Ozen. An ilp formulation for application
mapping onto network-on-chips. In Application of Information and
Communication Technologies, 2009. AICT 2009. International Con-
ference on, pages 1 –5, oct. 2009.

[108] Jiayi Sheng, Liulin Zhong, Ming’e Jing, Zhiyi Yu, and Xiaoyang Zeng.
A method of quadratic programming for mapping on noc architec-
ture. In ASIC (ASICON), 2011 IEEE 9th International Conference
on, pages 200 –203, oct. 2011.

[109] R. Setiono and Huan Liu. A connectionist approach to generating
oblique decision trees. Systems, Man, and Cybernetics, Part B: Cy-
bernetics, IEEE Transactions on, 29(3):440–444, Jun 1999.

[110] D. Shasha, J.T.L. Wang, Huiyuan Shan, and Kaizhong Zhang. Atree-
grep: approximate searching in unordered trees. In Scientific and Sta-
tistical Database Management, 2002. Proceedings. 14th International
Conference on, pages 89–98, 2002.

[111] E. John, F. Hudson, and L.K. John. Hybrid tree: A scalable op-
toelectronic interconnection network for parallel computing. Hawaii
International Conference on System Sciences, 7:466, 1998.

[112] Jaswinder Pal Singh, Anoop Gupta, Moriyoshi Ohara, Evan Torrie,
and Steven Cameron Woo. The splash-2 programs: Characterization
and methodological considerations. Computer Architecture, Interna-
tional Symposium on, 0:24, 1995.

137

[113] Milo M. K. Martin, Daniel J. Sorin, Bradford M. Beckmann,
Michael R. Marty, Min Xu, Alaa R. Alameldeen, Kevin E. Moore,
Mark D. Hill, and David A. Wood. Multifacet’s general execution-
driven multiprocessor simulator (gems) toolset. SIGARCH Comput.
Archit. News, 33(4):92–99, November 2005.

[114] University of Catania. Noxim. http://www.noxim.org/.

[115] Bradford M. Beckmann and David A. Wood. Managing wire de-
lay in large chip-multiprocessor caches. In Proceedings of the 37th
annual IEEE/ACM International Symposium on Microarchitecture,
pages 319–330, December 2004.

[116] Avadh Patel and Kanad Ghose. Energy-efficient mesi cache coher-
ence with pro-active snoop filtering for multicore microprocessors. In
Proceeding of the thirteenth international symposium on Low power
electronics and design, pages 247–252, August 2008.

[117] H. Orsila, E. Salminen, and T.D. Hamalainen. Parameterizing sim-
ulated annealing for distributing kahn process networks on multipro-
cessor socs. In System-on-Chip, 2009. SOC 2009. International Sym-
posium on, pages 019 –026, oct. 2009.

[118] J.A.Nelder and R. Mead. A simplex method for function minimization.
Computer Journal, 7:308–313, 1965.

[119] Moon-Won Park and Yeong-Dae Kim. A systematic procedure for
setting parameters in simulated annealing algorithms. Comput. Oper.
Res., 25:207–217, March 1998.

[120] SLD:: System Level Design Group @ CMU. Nocmap: an
energy- and performance-aware mapping tool for networks-on-chip,
http://www.ece.cmu.edu/ sld/software/nocmap.php.

[121] S. Murali and G. De Micheli. Sunmap: a tool for automatic topology
selection and generation for nocs. In Design Automation Conference,
2004. Proceedings. 41st, pages 914 –919, july 2004.

[122] E.B. van der Tol, E.G.T. Jaspers, and R.H. Gelderblom. Mapping of
h.264 decoding on a multiprocessor architecture. In Image and Video
Communications and Processing, pages 707–718, 2003.

[123] P.J.M. Laarhoven and E.H.L. Aarts. Simulated annealing: theory and
applications. Mathematics and its applications. D. Reidel, 1987.

[124] Concepcio Roig, Ana Ripoll, and Fernando Guirado. A new task
graph model for mapping message passing applications. Transactions
on Parallel and Distributed Systems, 18(12):1740–1753, 2007.

138

[125] Krste Asanovic, Ras Bodik, Bryan C. Catanzaro, Joseph J. Gebis,
Parry Husbands, Kurt Keutzer, David A. Patterson, William L.
Plishker, John Shalf, Samuel W. Williams, and Katherine A. Yelick.
The landscape of parallel computing research: a view from berkeley.
(UCB/EECS-2006-183), December 2006.

[126] Francisco Triviño, José L. Sánchez, Francisco J. Alfaro, and José Flich.
Virtualizing network-on-chip resources in chip-multiprocessors. Micro-
process. Microsyst., 35(2):230–245, March 2011.

[127] Srinivasan Murali, Martijn Coenen, Andrei Radulescu, Kees Goossens,
and Giovanni De Micheli. Mapping and configuration methods for
multi-use-case networks on chips. In ASP-DAC ’06: Proceedings of
the 2006 Asia and South Pacific Design Automation Conference, pages
146–151, Piscataway, NJ, USA, 2006. IEEE Press.

[128] L. Ost, G. Guindani, F.G. Moraes, L.S. Indrusiak, and S. Matt. Ex-
ploring noc-based mpsoc design space with power estimation models.
Design Test of Computers, IEEE, 28(2):16 –29, march-april 2011.

[129] K. Bazargan, R. Kastner, and M. Sarrafzadeh. Fast template place-
ment for reconfigurable computing systems. Design Test of Comput-
ers, IEEE, 17(1):68 –83, jan-mar 2000.

[130] L.M. Ni and P.K. McKinley. A survey of wormhole routing techniques
in direct networks. Computer, 26(2):62 –76, February 1993.

[131] Liang Guang, E. Nigussie, J. Plosila, J. Isoaho, and H. Tenhunen.
Hls-donoc: High-level simulator for dynamically organizational nocs.
In Design and Diagnostics of Electronic Circuits Systems (DDECS),
2012 IEEE 15th International Symposium on, pages 89–94, 2012.

[132] Andrew B. Kahng, Bin Li, Li-Shiuan Peh, and Kambiz Samadi. Orion
2.0: a fast and accurate noc power and area model for early-stage
design space exploration. In Proceedings of the Conference on De-
sign, Automation and Test in Europe, DATE ’09, pages 423–428, 3001
Leuven, Belgium, Belgium, 2009. European Design and Automation
Association.

[133] Gul Khan and Usman Ahmed. Cad tool for hardware software
co-synthesis ofheterogeneous multiple processor embedded architec-
tures. Design Automation for Embedded Systems, 12:313–343, 2008.
10.1007/s10617-008-9031-1.

[134] Min you Wu and Daniel D. Gajski. Hypertool: A programming aid
for message-passing systems. IEEE Trans. on Parallel and Distributed
Systems, 1:330–343, 1990.

139

[135] C.A.M. Marcon, E.I. Moreno, N.L.V. Calazans, and F.G. Moraes.
Evaluation of algorithms for low energy mapping onto nocs. In Proc.
IEEE International Symposium on Circuits and Systems ISCAS 2007,
pages 389–392, 2007.

140

Turku Centre for Computer Science

TUCS Dissertations

1. Marjo Lipponen, On Primitive Solutions of the Post Correspondence Problem
2. Timo Käkölä, Dual Information Systems in Hyperknowledge Organizations
3. Ville Leppänen, Studies on the Realization of PRAM
4. Cunsheng Ding, Cryptographic Counter Generators
5. Sami Viitanen, Some New Global Optimization Algorithms
6. Tapio Salakoski, Representative Classification of Protein Structures
7. Thomas Långbacka, An Interactive Environment Supporting the Development of

Formally Correct Programs
8. Thomas Finne, A Decision Support System for Improving Information Security
9. Valeria Mihalache, Cooperation, Communication, Control. Investigations on

Grammar Systems.
10. Marina Waldén, Formal Reasoning About Distributed Algorithms
11. Tero Laihonen, Estimates on the Covering Radius When the Dual Distance is

Known
12. Lucian Ilie, Decision Problems on Orders of Words
13. Jukkapekka Hekanaho, An Evolutionary Approach to Concept Learning
14. Jouni Järvinen, Knowledge Representation and Rough Sets
15. Tomi Pasanen, In-Place Algorithms for Sorting Problems
16. Mika Johnsson, Operational and Tactical Level Optimization in Printed Circuit

Board Assembly
17. Mats Aspnäs, Multiprocessor Architecture and Programming: The Hathi-2 System
18. Anna Mikhajlova, Ensuring Correctness of Object and Component Systems
19. Vesa Torvinen, Construction and Evaluation of the Labour Game Method
20. Jorma Boberg, Cluster Analysis. A Mathematical Approach with Applications to

Protein Structures
21. Leonid Mikhajlov, Software Reuse Mechanisms and Techniques: Safety Versus

Flexibility
22. Timo Kaukoranta, Iterative and Hierarchical Methods for Codebook Generation in

Vector Quantization
23. Gábor Magyar, On Solution Approaches for Some Industrially Motivated

Combinatorial Optimization Problems
24. Linas Laibinis, Mechanised Formal Reasoning About Modular Programs
25. Shuhua Liu, Improving Executive Support in Strategic Scanning with Software

Agent Systems
26. Jaakko Järvi, New Techniques in Generic Programming – C++ is more Intentional

than Intended
27. Jan-Christian Lehtinen, Reproducing Kernel Splines in the Analysis of Medical

Data
28. Martin Büchi, Safe Language Mechanisms for Modularization and Concurrency
29. Elena Troubitsyna, Stepwise Development of Dependable Systems
30. Janne Näppi, Computer-Assisted Diagnosis of Breast Calcifications
31. Jianming Liang, Dynamic Chest Images Analysis
32. Tiberiu Seceleanu, Systematic Design of Synchronous Digital Circuits
33. Tero Aittokallio, Characterization and Modelling of the Cardiorespiratory System

in Sleep-Disordered Breathing
34. Ivan Porres, Modeling and Analyzing Software Behavior in UML
35. Mauno Rönkkö, Stepwise Development of Hybrid Systems
36. Jouni Smed, Production Planning in Printed Circuit Board Assembly
37. Vesa Halava, The Post Correspondence Problem for Market Morphisms
38. Ion Petre, Commutation Problems on Sets of Words and Formal Power Series
39. Vladimir Kvassov, Information Technology and the Productivity of Managerial

Work
40. Frank Tétard, Managers, Fragmentation of Working Time, and Information

Systems

41. Jan Manuch, Defect Theorems and Infinite Words
42. Kalle Ranto, Z4-Goethals Codes, Decoding and Designs
43. Arto Lepistö, On Relations Between Local and Global Periodicity
44. Mika Hirvensalo, Studies on Boolean Functions Related to Quantum Computing
45. Pentti Virtanen, Measuring and Improving Component-Based Software

Development
46. Adekunle Okunoye, Knowledge Management and Global Diversity – A Framework

to Support Organisations in Developing Countries
47. Antonina Kloptchenko, Text Mining Based on the Prototype Matching Method
48. Juha Kivijärvi, Optimization Methods for Clustering
49. Rimvydas Rukšėnas, Formal Development of Concurrent Components
50. Dirk Nowotka, Periodicity and Unbordered Factors of Words
51. Attila Gyenesei, Discovering Frequent Fuzzy Patterns in Relations of Quantitative

Attributes
52. Petteri Kaitovaara, Packaging of IT Services – Conceptual and Empirical Studies
53. Petri Rosendahl, Niho Type Cross-Correlation Functions and Related Equations
54. Péter Majlender, A Normative Approach to Possibility Theory and Soft Decision

Support
55. Seppo Virtanen, A Framework for Rapid Design and Evaluation of Protocol

Processors
56. Tomas Eklund, The Self-Organizing Map in Financial Benchmarking
57. Mikael Collan, Giga-Investments: Modelling the Valuation of Very Large Industrial

Real Investments
58. Dag Björklund, A Kernel Language for Unified Code Synthesis
59. Shengnan Han, Understanding User Adoption of Mobile Technology: Focusing on

Physicians in Finland
60. Irina Georgescu, Rational Choice and Revealed Preference: A Fuzzy Approach
61. Ping Yan, Limit Cycles for Generalized Liénard-Type and Lotka-Volterra Systems
62. Joonas Lehtinen, Coding of Wavelet-Transformed Images
63. Tommi Meskanen, On the NTRU Cryptosystem
64. Saeed Salehi, Varieties of Tree Languages
65. Jukka Arvo, Efficient Algorithms for Hardware-Accelerated Shadow Computation
66. Mika Hirvikorpi, On the Tactical Level Production Planning in Flexible

Manufacturing Systems
67. Adrian Costea, Computational Intelligence Methods for Quantitative Data Mining
68. Cristina Seceleanu, A Methodology for Constructing Correct Reactive Systems
69. Luigia Petre, Modeling with Action Systems
70. Lu Yan, Systematic Design of Ubiquitous Systems
71. Mehran Gomari, On the Generalization Ability of Bayesian Neural Networks
72. Ville Harkke, Knowledge Freedom for Medical Professionals – An Evaluation Study

of a Mobile Information System for Physicians in Finland
73. Marius Cosmin Codrea, Pattern Analysis of Chlorophyll Fluorescence Signals
74. Aiying Rong, Cogeneration Planning Under the Deregulated Power Market and

Emissions Trading Scheme
75. Chihab BenMoussa, Supporting the Sales Force through Mobile Information and

Communication Technologies: Focusing on the Pharmaceutical Sales Force
76. Jussi Salmi, Improving Data Analysis in Proteomics
77. Orieta Celiku, Mechanized Reasoning for Dually-Nondeterministic and

Probabilistic Programs
78. Kaj-Mikael Björk, Supply Chain Efficiency with Some Forest Industry

Improvements
79. Viorel Preoteasa, Program Variables – The Core of Mechanical Reasoning about

Imperative Programs
80. Jonne Poikonen, Absolute Value Extraction and Order Statistic Filtering for a

Mixed-Mode Array Image Processor
81. Luka Milovanov, Agile Software Development in an Academic Environment
82. Francisco Augusto Alcaraz Garcia, Real Options, Default Risk and Soft

Applications
83. Kai K. Kimppa, Problems with the Justification of Intellectual Property Rights in

Relation to Software and Other Digitally Distributable Media
84. Dragoş Truşcan, Model Driven Development of Programmable Architectures
85. Eugen Czeizler, The Inverse Neighborhood Problem and Applications of Welch

Sets in Automata Theory

86. Sanna Ranto, Identifying and Locating-Dominating Codes in Binary Hamming
Spaces

87. Tuomas Hakkarainen, On the Computation of the Class Numbers of Real Abelian
Fields

88. Elena Czeizler, Intricacies of Word Equations
89. Marcus Alanen, A Metamodeling Framework for Software Engineering
90. Filip Ginter, Towards Information Extraction in the Biomedical Domain: Methods

and Resources
91. Jarkko Paavola, Signature Ensembles and Receiver Structures for Oversaturated

Synchronous DS-CDMA Systems
92. Arho Virkki, The Human Respiratory System: Modelling, Analysis and Control
93. Olli Luoma, Efficient Methods for Storing and Querying XML Data with Relational

Databases
94. Dubravka Ilić, Formal Reasoning about Dependability in Model-Driven

Development
95. Kim Solin, Abstract Algebra of Program Refinement
96. Tomi Westerlund, Time Aware Modelling and Analysis of Systems-on-Chip
97. Kalle Saari, On the Frequency and Periodicity of Infinite Words
98. Tomi Kärki, Similarity Relations on Words: Relational Codes and Periods
99. Markus M. Mäkelä, Essays on Software Product Development: A Strategic

Management Viewpoint
100. Roope Vehkalahti, Class Field Theoretic Methods in the Design of Lattice Signal

Constellations
101. Anne-Maria Ernvall-Hytönen, On Short Exponential Sums Involving Fourier

Coefficients of Holomorphic Cusp Forms
102. Chang Li, Parallelism and Complexity in Gene Assembly
103. Tapio Pahikkala, New Kernel Functions and Learning Methods for Text and Data

Mining
104. Denis Shestakov, Search Interfaces on the Web: Querying and Characterizing
105. Sampo Pyysalo, A Dependency Parsing Approach to Biomedical Text Mining
106. Anna Sell, Mobile Digital Calendars in Knowledge Work
107. Dorina Marghescu, Evaluating Multidimensional Visualization Techniques in Data

Mining Tasks
108. Tero Säntti, A Co-Processor Approach for Efficient Java Execution in Embedded

Systems
109. Kari Salonen, Setup Optimization in High-Mix Surface Mount PCB Assembly
110. Pontus Boström, Formal Design and Verification of Systems Using Domain-

Specific Languages
111. Camilla J. Hollanti, Order-Theoretic Mehtods for Space-Time Coding: Symmetric

and Asymmetric Designs
112. Heidi Himmanen, On Transmission System Design for Wireless Broadcasting
113. Sébastien Lafond, Simulation of Embedded Systems for Energy Consumption

Estimation
114. Evgeni Tsivtsivadze, Learning Preferences with Kernel-Based Methods
115. Petri Salmela, On Commutation and Conjugacy of Rational Languages and the

Fixed Point Method
116. Siamak Taati, Conservation Laws in Cellular Automata
117. Vladimir Rogojin, Gene Assembly in Stichotrichous Ciliates: Elementary

Operations, Parallelism and Computation
118. Alexey Dudkov, Chip and Signature Interleaving in DS CDMA Systems
119. Janne Savela, Role of Selected Spectral Attributes in the Perception of Synthetic

Vowels
120. Kristian Nybom, Low-Density Parity-Check Codes for Wireless Datacast Networks
121. Johanna Tuominen, Formal Power Analysis of Systems-on-Chip
122. Teijo Lehtonen, On Fault Tolerance Methods for Networks-on-Chip
123. Eeva Suvitie, On Inner Products Involving Holomorphic Cusp Forms and Maass

Forms
124. Linda Mannila, Teaching Mathematics and Programming – New Approaches with

Empirical Evaluation
125. Hanna Suominen, Machine Learning and Clinical Text: Supporting Health

Information Flow
126. Tuomo Saarni, Segmental Durations of Speech
127. Johannes Eriksson, Tool-Supported Invariant-Based Programming

128. Tero Jokela, Design and Analysis of Forward Error Control Coding and Signaling
for Guaranteeing QoS in Wireless Broadcast Systems

129. Ville Lukkarila, On Undecidable Dynamical Properties of Reversible One-
Dimensional Cellular Automata

130. Qaisar Ahmad Malik, Combining Model-Based Testing and Stepwise Formal
Development

131. Mikko-Jussi Laakso, Promoting Programming Learning: Engagement, Automatic
Assessment with Immediate Feedback in Visualizations

132. Riikka Vuokko, A Practice Perspective on Organizational Implementation of
Information Technology

133. Jeanette Heidenberg, Towards Increased Productivity and Quality in Software
Development Using Agile, Lean and Collaborative Approaches

134. Yong Liu, Solving the Puzzle of Mobile Learning Adoption
135. Stina Ojala, Towards an Integrative Information Society: Studies on Individuality

in Speech and Sign
136. Matteo Brunelli, Some Advances in Mathematical Models for Preference Relations
137. Ville Junnila, On Identifying and Locating-Dominating Codes
138. Andrzej Mizera, Methods for Construction and Analysis of Computational Models

in Systems Biology. Applications to the Modelling of the Heat Shock Response and
the Self-Assembly of Intermediate Filaments.

139. Csaba Ráduly-Baka, Algorithmic Solutions for Combinatorial Problems in
Resource Management of Manufacturing Environments

140. Jari Kyngäs, Solving Challenging Real-World Scheduling Problems
141. Arho Suominen, Notes on Emerging Technologies
142. József Mezei, A Quantitative View on Fuzzy Numbers
143. Marta Olszewska, On the Impact of Rigorous Approaches on the Quality of

Development
144. Antti Airola, Kernel-Based Ranking: Methods for Learning and Performace

Estimation
145. Aleksi Saarela, Word Equations and Related Topics: Independence, Decidability

and Characterizations
146. Lasse Bergroth, Kahden merkkijonon pisimmän yhteisen alijonon ongelma ja sen

ratkaiseminen
147. Thomas Canhao Xu, Hardware/Software Co-Design for Multicore Architectures
148. Tuomas Mäkilä, Software Development Process Modeling – Developers

Perspective to Contemporary Modeling Techniques
149. Shahrokh Nikou, Opening the Black-Box of IT Artifacts: Looking into Mobile

Service Characteristics and Individual Perception
150. Alessandro Buoni, Fraud Detection in the Banking Sector: A Multi-Agent

Approach
151. Mats Neovius, Trustworthy Context Dependency in Ubiquitous Systems
152. Fredrik Degerlund, Scheduling of Guarded Command Based Models
153. Amir-Mohammad Rahmani-Sane, Exploration and Design of Power-Efficient

Networked Many-Core Systems
154. Ville Rantala, On Dynamic Monitoring Methods for Networks-on-Chip
155. Mikko Pelto, On Identifying and Locating-Dominating Codes in the Infinite King

Grid
156. Anton Tarasyuk, Formal Development and Quantitative Verification of

Dependable Systems
157. Muhammad Mohsin Saleemi, Towards Combining Interactive Mobile TV and

Smart Spaces: Architectures, Tools and Application Development
158. Tommi J. M. Lehtinen, Numbers and Languages
159. Peter Sarlin, Mapping Financial Stability
160. Alexander Wei Yin, On Energy Efficient Computing Platforms
161. Mikołaj Olszewski, Scaling Up Stepwise Feature Introduction to Construction of

Large Software Systems
162. Maryam Kamali, Reusable Formal Architectures for Networked Systems
163. Zhiyuan Yao, Visual Customer Segmentation and Behavior Analysis – A SOM-

Based Approach
164. Timo Jolivet, Combinatorics of Pisot Substitutions
165. Rajeev Kumar Kanth, Analysis and Life Cycle Assessment of Printed Antennas for

Sustainable Wireless Systems
166. Khalid Latif, Design Space Exploration for MPSoC Architectures

167. Bo Yang, Towards Optimal Application Mapping for Energy-Efficient Many-Core
Platforms

Joukahaisenkatu 3-5 B, 20520 Turku, Finland | www. tucs.fi

Turku
Centre for
Computer
Science

University of Turku
Faculty of Mathematics and Natural Sciences
 • Department of Information Technology
 • Department of Mathematics and Statistics
Turku School of Economics
 • Institute of Information Systems Science

Åbo Akademi University
Division for Natural Sciences and Technology
 • Department of Information Technologies

ISBN 978-952-12-2982-4
ISSN 1239-1883

B
o Yang

Tow
ards O

ptim
al A

pplication M
apping for Energy-Efficient M

any-C
ore Platform

s

