
Turku Centre for Computer Science

TUCS Dissertations
No 166, December 2013

Khalid Latif

Design Space Exploration for
MPSoC Architectures

Design Space Exploration for MPSoC
Architectures

Khalid Latif

To be presented with the permission of the Faculty of Mathematics and
Natural Sciences of the University of Turku, for public criticism in

Auditorium Beta on December 20, 2013, at 9:00 am.

University of Turku
Department of Information Technology

20014 Turun yliopisto

2013

Supervisors

Docent Tiberiu Seceleanu
ABB Corporate Research, Västerås
Västerås, Sweden

Professor Hannu Tenhunen
D.Sc. (Tech.) Ethiopia Nigussie
Department of Information Technology
University of Turku
Turku, Finland

Reviewers

Professor Olli Vainio
Department of Computer Systems
Tampere University of Technology
Tampere, Finland

Associate Professor Marisa López-Vallejo
Departamento de Ingenieŕia Electrónica E.T.S.I. Telecomunicación
Universidad Politécnica de Madrid
Madrid, Spain

Opponent

Professor Koen Bertels
Computer Engineering, EEMCS
Delft University of Technology
Delft, The Netherlands

ISBN 978-952-12-2976-3
ISSN 1239-1883

The originality of this thesis has been checked in accordance with the University of

Turku quality assurance system using the Turnitin OriginalityCheck service.

Abstract

Multiprocessor system-on-chip (MPSoC) designs utilize the available tech-
nology and communication architectures to meet the requirements of the
upcoming applications. In MPSoC, the communication platform is both the
key enabler, as well as the key di�erentiator for realizing e�cient MPSoCs.
It provides product di�erentiation to meet a diverse, multi-dimensional set
of design constraints, including performance, power, energy, recon�gurabil-
ity, scalability, cost, reliability and time-to-market. The communication re-
sources of a single interconnection platform cannot be fully utilized by all
kind of applications, such as the availability of higher communication band-
width for computation but not data intensive applications is often unfeasible
in the practical implementation.

This thesis aims to perform the architecture-level design space explo-
ration towards e�cient and scalable resource utilization for MPSoC commu-
nication architecture. In order to meet the performance requirements within
the design constraints, careful selection of MPSoC communication platform,
resource aware partitioning and mapping of the application play important
role. To enhance the utilization of communication resources, variety of tech-
niques such as resource sharing, multicast to avoid re-transmission of identi-
cal data, and adaptive routing can be used. For implementation, these tech-
niques should be customized according the platform architecture. To address
the resource utilization of MPSoC communication platforms, variety of ar-
chitectures with di�erent design parameters and performance levels, namely
Segmented bus (SegBus), Network-on-Chip (NoC) and Three-Dimensional
NoC (3D-NoC), are selected. Average packet latency and power consumption
are the evaluation parameters for the proposed techniques.

In conventional computing architectures, fault on a component makes
the connected fault-free components inoperative. Resource sharing approach
can utilize the fault-free components to retain the system performance by
reducing the impact of faults. Design space exploration also guides to narrow
down the selection of MPSoC architecture, which can meet the performance
requirements with design constraints.

i

Dedicated to my late parents

Who believed in the richness of learning

ii

Acknowledgements

It gives me great pleasure to be able to express my gratitude to the people and
institutions that have helped me to accomplish this research work. First and
foremost, I would like to thank my supervisors Docent Tiberiu Seceleanu,
D.Sc. (Tech.) Ethiopia Nigussie, and Prof. Hannu Tenhunen for their
inspiration, guidance and support.

I owe a huge debt of thanks to Docent Tiberiu Seceleanu for his invalu-
able and continuous guidance. His comments and criticism had a signi�cant
impact on the research presented here. I am very grateful to D.Sc. (Tech.)
Ethiopia Nigussie for her guidance and encouragement throughout the period
of my research. I am also indebted to Prof. Hannu Tenhunen for inspiring
me to pursue my research in on-chip interconnection platforms. I wish to
thank Prof. Olli Vainio from the Tampere University of Technology, Finland
and Associate Professor Marisa López-Vallejo from Universidad Politécnica
de Madrid, Spain for reviewing the thesis.

Turku Centre for Computer Science (TUCS) is gratefully acknowledged
for funding my doctoral studies. This research work was also �nancially
supported by the Academy of Finland, the Nokia Foundation, the Finnish
Foundation for Technology Promotion (Tekniikan edistämissäätiö (TES)),
the HPY:n Tutkimussäätiö and the Ulla Tuominen Foundation.

I would like to acknowledge all my colleagues at the IT department. I am
grateful to everyone who have co-authored papers with me which are included
in this thesis. I am thankful to D.Sc. (Tech) Ethiopia Nigussie, D.Sc. (Tech)
Liang Guang and D.Sc. (Tech) Thomas Canhao Xu for proof-reading part
of this thesis. Associate Professor Pasi Liljeberg deserves special thanks for
his guidance in last phase of the thesis in spite of his busy schedules. I am
grateful to my colleagues Kameswar Rao Vaddina, Rajeev Kumar Kanth, and
Amir-Mohammad Rahmani for their time to have valueable discussions. I am
very thankful TUCS and IT department management personnels especially
Irmeli Laine, Tomi Mäntylä, Maria Prusila, and Late Maarit Pöyhönen.

I would like to express my deepest gratitude to my siblings for their
constant support, encouragement and most importantly taking care of my
responsibilities at home. I am also indebted to my brothers Tariq Mahmood
Wains and Daoud Ahmad Wains, who always encouraged me to follow my

iii

ambitions, irrespective of how much they missed me. I am grateful to my
friends Ahmad Tariq and Abdul Samad from Tampere, Nauman Khan and
Ali Shuja for their nice company in Turku, and Adnan Ahmed, Sulman Mah-
mood and Ganguly Debashish for spending nice time with them during my
stay in Stockholm.

Turku, November 2013
Khalid Latif

iv

Contents

1 Introduction 1
1.1 Driving Forces for Parallel Computing 2

1.1.1 Computation . 2
1.1.2 Communication . 3
1.1.3 Power Consumption 4

1.2 Design Challenges of Parallel Embedded Systems 4
1.3 Thesis Objectives and Contributions 6
1.4 Overview of the Thesis . 8
1.5 Research Publications . 8

2 Parallel MPSoC Architectures 11
2.1 Segmented Bus Architecture 12
2.2 Network-on-Chip . 14
2.3 Three Dimensional NoC (3D-NoC) 18
2.4 Chapter Summary . 19

3 Design Flow for SegBus Platform 21
3.1 Existing Design Methodologies for On-Chip Communication

Architectures . 22
3.2 Uni�ed Design Methodology for Application and MPSoC plat-

form . 23
3.2.1 Tool Environment . 23
3.2.2 Application Partitioning 27
3.2.3 Code Generation . 28

3.3 Experimental Results . 30
3.4 Chapter Summary . 31

4 Communication Services in SegBus Platform 33
4.1 Existing Communication Services for MPSoC Architectures . 35
4.2 Development of Communication Services 36

4.2.1 Scheduling . 36
4.2.2 SPLIT Transactions 41
4.2.3 Interrupt Communication 43

v

4.2.4 Multicast Transactions 44

4.3 Experimental Results . 47

4.4 Chapter Summary . 48

5 Improving Resource Utilization in NoCs 49

5.1 Existing Resource Utilization Techniques 50

5.1.1 Application Mapping Techniques 50

5.1.2 Bu�er Management Techniques for Bandwidth Utiliza-
tion . 51

5.2 Application Mapping for Minimal Routing 52

5.2.1 Prioritization of IP Cores 53

5.2.2 Placement (Platform Dependent) 55

5.2.3 Simulation Results . 56

5.3 Channel Utilization . 58

5.3.1 Synthetic Tra�c Analysis 59

5.3.2 Application Tra�c Analysis 62

5.4 Partial Virtual Channel Sharing (PVS) Router Architecture . 64

5.4.1 Virtual Channel Sharing Logic 65

5.4.2 Crossbar Switch . 68

5.4.3 Comparison with Existing Architectures 68

5.4.4 Simulation Results . 69

5.5 Summary . 74

6 Network Level Fault Tolerance in PVS-NoC Architecture 75

6.1 Existing Fault Tolerance Techniques 75

6.2 Fault Scenarios . 77

6.3 Performance Sustainability under Faults 80

6.4 Network Interface Assisted Pre-Routing 86

6.4.1 Addressing Scheme . 87

6.4.2 Control Logic for Packet Reception 88

6.5 Simulation Results . 90

6.5.1 Performance Sustainability under Link Faults 90

6.5.2 Fault Tolerance for Routing Logic 92

6.5.3 Reduction in Average Packet Latency by Network In-
terface Assisted Routing 93

6.6 Summary . 96

7 AdaptiveZ Routing for 3D NoC-Bus Hybrid Architectures 97

7.1 Motivation and Contribution 98

7.2 Proposed Architecture . 99

7.3 Inter-layer Fault Tolerant Routing 102

7.4 Simulation Results . 105

7.4.1 Synthetic Tra�c Analysis 105

vi

7.4.2 Videoconference Application 106
7.5 Summary . 109

8 Conclusions 111
8.1 Future Works . 113

vii

viii

List of Figures

1.1 Evolution of on-chip communication architectures as a com-
mercial product. 3

2.1 Design �ow for Parallel MPSoCs [115]. 12

2.2 Segmented bus structure. 13

2.3 The data packet structure and the �ow of an inter-segment
packet transfer. 14

2.4 Abstraction between computation and communication. 14

2.5 Homogeneous 4×4 NoC with Mesh Topology. 15

2.6 Typical Virtual Channel Router Architecture [109]. 17

2.7 3D Symmetric Mesh NoC structure. 18

3.1 H.264 Encoder . 24

3.2 Uni�ed Design Process for Application and MPSoC platform 25

3.3 The H.264 Video encoder application model 26

3.4 The communication matrix for the example 27

3.5 PSDF application speci�cation 28

3.6 The structure of the programme line, with two examples. . . . 30

4.1 Classi�cation of on-chip services. 34

4.2 Segbus Design Methodology. 37

4.3 Segbus scheduler structure. 38

4.4 Task graph. 39

4.5 Single bus scheduling. 39

4.6 Two segment SegBus scheduling. 39

4.7 Program line example, with parameters: max_dest=3, max_segs=3,
max_enable=4. 40

4.8 Inter Segment transfer control. 42

4.9 Interrupt scheduling. 44

4.10 Packet read mechanism. 46

4.11 Packet Format . 46

4.12 Packet read mechanism. 47

5.1 Packet Traversal Mechanism for Bu�ered NoC Architectures. 50

ix

5.2 Example application mapping with limited availability of cores. 53

5.3 Video conference encoder (VCE) application. 54

5.4 Mapping generated for the VCE application. 58

5.5 Average Packet Latency with XY routing algorithm. 59

5.6 Power consumption with XY routing algorithm. 59

5.7 Tra�c load analysis for XY-routing. 61

5.8 MPEG4 application [102]. 63

5.9 Data transmission format. 65

5.10 Proposed PVS approach for conventional Virtual Channel Ar-
chitecture. 66

5.11 Average Packet Latency vs. Packet injection rate for 5×5
Mesh 2D NoC with (2, 2, 1) combination of PVS approach. . 71

5.12 VCE application mapped to 3×3×3 3D-Mesh NoC. 72

6.1 Routing in presence of faulty links. 78

6.2 Typical Virtual Channel Input Port Architecture. 79

6.3 Resource utilization under faults by PVS approach. 80

6.4 Load management in PVS approach under faults on VC bu�ers. 81

6.5 Impact of faulty routing logic on routing. 82

6.6 Routing logic fault tolerance by PVS approach. 82

6.7 Resource reclamation by PVS approach under faults. 83

6.8 PE Recovery architecture. 84

6.9 PE Recovery Router. 85

6.10 PE recovery architecture with dual inputs and single output. 85

6.11 Clustering of 6×6 NoC for NI assisted pre-routing. 86

6.12 Network Interface architecture for pre-routing of packets. . . . 88

6.13 Finite state machine for the proposed control logic for packet
reception of PE0 in Figure 6.8. 89

6.14 5×5 2D-Mesh NoC with two faulty links 90

6.15 Average Packet Latency vs. Packet injection rate for 5×5
Mesh 2D NoC with (2, 2, 1) combination of PVS approach. . 91

6.16 6×6 2D-Mesh NoC with faulty routing logics. 92

6.17 Average Packet Latency vs. Packet injection rate for 6×6
Mesh 2D NoC with fault on routing logics shown in Figure
6.16(a). 93

6.18 Clustering of 5×5 2D Mesh NoC for simulation of NI assisted
pre-routing. 94

6.19 Simulation curves for average packet latency (APL) vs. packet
injection rate for 5×5 Mesh 2D NoC with (2, 2, 1) combination
of PVS approach. 95

7.1 Side view of the 3D NoC with the dTDMA bus 98

7.2 Example of AdaptiveZ routing 100

x

7.3 VC architecture for the stacked mesh architecture 102
7.4 Side view of the proposed stacked mesh architecture 103
7.5 Example of modi�cations to the proposed routing algorithm

to guarantee single bus-link failure tolerance 104
7.6 Latency versus average packet arrival rate for a 3×3×3 NoC . 106
7.7 Latency versus average packet arrival rate for a 3×3×4 NoC . 107
7.8 3D NoC running the video conference encoding application

with one faulty bus . 108

xi

xii

List of Tables

3.1 The task allocation and associated cost results. 27

4.1 Communication cost with and without multicast service for
H.264 application with three segments. 48

4.2 Platform power consumption with and without Multicast ser-
vice. 48

5.1 Comparison with existing NoC router architectures 69
5.2 Experimental results for VCE application, mapped to 3×3×3

3D-Mesh NoC. 73
5.3 Experimental results for VCE application, mapped to 5×5

2D-Mesh NoC, shown in Figure 5.4. 73
5.4 PVS-NoC router Silicon Area for di�erent grouping combina-

tions. 74

6.1 Silicon area of the existing and proposed NoC router architec-
tures. 96

7.1 Power Consumption and Average Packet Latency 108
7.2 Power Consumption and Average Packet Latency 109

xiii

xiv

List of Abbreviations

APL Average Packet Latency

APAR Average Packet Arrival Rate

BiNoC Bidirectional NoC

BIST Built In Self Test

BU Border Unit

CA Central Arbitration Unit

CMOS Complementary Metal Oxide Semiconductor

CRC Cyclic Redundancy Check

DCS Dual Connected mesh Structure

DSB Distributed Shared Bu�er

ECC Error Correction Code

ERAVC Enhanced Reliability Aware Virtual Channel architecture

FLOPS FLoating-point Operations Per Second

FU Functional Unit

FVS Full Virtual channel Sharing

GALS Globally Asynchronous Locally Synchronous

GDS Graphic Database System

IC Integrated Circuit

IP Intellectual Property

NI Network Interface

xv

MPSoC MultiProcessor System-on-Chip

NoC Network-on-Chip

OFDM Orthogonal Frequency-Division Multiplexing

PE Processing Element

PSDF Packet SDF

PVS Partial Virtual channel Sharing

SA Segment Arbitration unit

SDF Synchronous Data Flow

SegBus Segmented Bus

SoC System-on-Chip

TSV Through-Silicon Via

UML Uni�ed Modeling Language

VC Virtual Channel

xvi

Chapter 1

Introduction

Ever-increasing performance and reliability requirements on electronic sys-
tems are the key driving factors for evolution of the integrated circuit tech-
nology. These applications can be categorized as computation intensive and
data intensive [19,20]. Computation intensive applications require the com-
putational elements with high processing power. On the other hand, data
intensive applications are designed for working with large data-sets which
require high bandwidth for inter-component data communications. In short,
each type of application has its own requirements on processing and inter
component communication hardware. Thus the conventional high perfor-
mance computing platforms are not enough to ful�ll the requirements of
modern applications.

Buses and point to point connections are attractive solutions for on-chip
communications with limited bandwidth requirements and smaller number
of connected components. The bandwidth provided by bus can be e�ectively
utilized because it is shared by several communication partners. However as
the constant scaling of CMOS technology enabled integration of more com-
putation components onto a single die, the bandwidth provided by on-chip
buses was not scalable to higher number of integrated computation compo-
nents [76]. Other than bandwidth limitations, power consumption because
of high capacitive load due to long interconnection wires makes it ine�cient
to use the on-chip buses for larger number of components. As a consequence,
segmented bus (SegBus) [63] and hierarchical bus [2] were proposed to deal
with the mentioned issues. Once the number of connected components ex-
ceeded the certain limit, bandwidth limitations became a major bottleneck
again. As a result, Network-on-Chip (NoC) [122], and Three dimensional
NoC (3D-NoC) [3] platforms were proposed which have the potential to meet
the scalability requirements.

Though the main task of e�cient computing systems is to minimize the
task completion time but power consumption, cost, and design time are also

1

the key parameters, which are leading the integrated circuit technology road
map from single-core to multi- and many-core systems. Enormously parallel
processing has become a mainstream and promising computing platform for
high performance computing solutions with reduced power consumption [1].
To get full bene�t of parallel processing, a multiprocessors system needs an
e�cient on-chip communication architecture [76, 108]. This thesis presents
the scalability issues for on-chip interconnection platforms using novel system
level optimization techniques for fault tolerance, power consumption and
throughput performance.

1.1 Driving Forces for Parallel Computing

Almost a decade ago, Intel abandoned the plan of high clock rates and started
putting multiple processing cores on a single chip because of severe heat
problems [4]. Until that time, increasing the clock rate showed direct and
positive impact on software performance without any change in software
code. But this technological paradigm shift changed the basic principle of
software programming to evaluate the application's performance. Only the
applications, which can be redesigned in an e�cient way to run parallel tasks
on di�erent cores can be bene�ted form this fundamental change.

The very �rst challenge after switching to multi-core systems was to pro-
vide an e�cient interconnection platform for on-chip communications among
di�erent cores. Di�erent on-chip communication platforms have been pro-
posed, such as bus, hierarchical bus, bus matrix (crossbar), networks-on-chip
(NoC) or customized application-speci�c architectures. Each platform has
its own pros and cons. The evolution of on-chip communication architec-
tures with time and when di�erent manufacturers commercially manufac-
tured them is shown in Figure 1.1. There are di�erent driving forces which
motivated the designers to switch from sequential to parallel computing. Few
of those have been discussed here.

1.1.1 Computation

To meet the computation requirements of modern applications like multi-
media signal processing, cloud based servers, satellites generating massive
amounts of data or analyzing other larger scienti�c data-sets, parallel and
distributed computing became the major focus of research community in
computer science and engineering. Accordingly, high performance comput-
ing systems were commercially manufactured in recent years as can be seen
in Figure 1.1. For instance, H.265 video codec recently manufactured by
Texas Instruments [5], an 8-core digital signal processor at 1.25 GHz achieves
160 GFLOPS (160 × 109 �oating-point operations per second). TILE64
processor manufactured by Tilera in 2007 [7], a 64-core processor is able to

2

2000 Time

In
te
r
c
o
n
n
e
c
ti
o
n
P
la
tf
o
r
m
s

Adapteva Epiphany 4096 core

A
m
b
ric
A
m
2
0
4
5
3
3
6
c
o
re

ASOCS ModemX 128 core

2005 2010 2015

AzulSystems Vega 3, mesh, 54 core

AzulSystems Vega 1, mesh, 24 core

ClearSpeed CSX700, 192 core

AzulSystems Vega 2, mesh, 48 core

Cavium Networks Octeon Plus, CN5860,

Collection of Buses, 16 core

Freescale Semiconductor QorIQ,

point-to-point, 8 core

IBM Power7, point-to-point, 4, 6, 8 core

IBM Power4, 2 core

IBM Power5, 2 core
IBM Power6, 2 core

Kalray MPPA-256, 256 core

SONY Cell processor, circular

data bus, 9 core

Intel TeraFLOPS 80 core

Intel Xeon, QPI, 8 core

Intel SCC, 48 core

Intel Knights Family, bidirectional

ring bus, 32 core

IntellaSys SEAforth 40C18, point-to-point

with neighbors, 40 core

Sun SPARC T5, crossbar, 16 core

Tilera TILE64, 64 core

Tilera TILE-Gx, 100 core
Texas Instruments, H.265, 8 DSPs

Intel Guftown core i7-980x, QPI, 6 core

Figure 1.1: Evolution of on-chip communication architectures as a commer-
cial product.

execute 166 billion 32-bit operations per second at 866 MHz. The Gulftown
score i7-980X processor manufactured by Intel in 2010 [6], a 6-core proces-
sor at 3.33 GHz can achieve 79.992 GFLOPS. The Knights Ferry processor
manufactured by Intel in 2010 [6], is a 32-core processors, which can ex-
ceed 750 GFLOPS at 1.2 GHz. The TeraFLOPS manufactured by Intel in
2011 [6], an 80-core processor at 3.16 GHz can achieve over 1.0 TFLOPS.
Thus there is a pool of multi-core systems, where each system contains mas-
sive computing power. Now, it is up to the designer to select the appropriate
hardware according the application requirements.

1.1.2 Communication

After having many cores with massive computation capability, the next issue
is the inter core communication. Multi-core systems use di�erent platforms
for on-chip communications, which manifest various features and provide dif-
ferent levels of bandwidth. It is the task of the application designer to select
the platforms which provide high bandwidth for the applications requiring
high rates of data transfers between di�erent cores.

The H.265 codec, TILE64 and TeraFLOPS processors use NoC platform

3

for on chip communications and provide 2 Tbps, 2660 Gbps and 1.62 Tbps
bisection bandwidth respectively. Gulftown processor uses QuickPath Inter-
connect (QPI) which is a point-to-point processor interconnect developed by
Intel and provides 409.6 Gbps bandwidth for on-chip communications. The
Knights Ferry processor uses the bi-directional ring bus for on-chip commu-
nications which can achieve the bandwidth of 307.2 Gbps). All these band-
width values are reported for the same operating frequencies, mentioned in
section 1.1.1.

1.1.3 Power Consumption

Integrating a lot of computation and communication resources can make
the system capable to meet the modern application requirements. However
an e�cient system should meet these requirements with minimum power
consumption. The purpose of minimizing the power consumption of a chip
is not only to save power but to minimize noise, timing contention, clock
skew and chip temperature. This subsequently decreases the cost of cooling
and packaging design, maximizes system reliability, simpli�es power supply
circuitry design, and increases battery lifetime [8]. At the same frequen-
cies, mentioned in section 1.1.1, TeraFLOPS, H.265 codec, Gulftown and
Knights Ferry processors consume 62 W, 7.5 W (at 75 oC, 9.5 W at 105 oC),
130 W TDP and 300 W TDP respectively. The thermal design power (TDP)
refers to the maximum amount of power the cooling system in a computer
is required to dissipate to prevent overheating. TILE64 processor consumes
60.8 W at 700 MHz operating frequency.

After having the detailed analysis and comparison of di�erent multi-core
systems from computation capability, communication bandwidth and power
consumption perspectives, the target hardware should be selected according
to the application requirements.

1.2 Design Challenges of Parallel Embedded Sys-
tems

On-chip communication architectures can be evaluated in terms of over-
heads and communication bandwidth availability [115]. The overheads are
measured as silicon area, energy and power consumption. In order to meet
high performance requirements, the communication architecture needs mas-
sive number of wires and complex control logic which cost in terms of a
much larger power consumption and area overhead. The designer should
ensure while selecting the communication architecture that the performance
requirements are satis�ed without violating the area and power consump-
tion constraints. The second and major parameter to evaluate performance

4

of communication architecture is the value of supported bandwidth. For
this purpose, design space exploration of communication architectures is
necessary. In order to narrow down the design solution from a large set
of design choices (topologies, control logics, application mapping techniques,
tra�c routing algorithms, and inter-core communication protocols are pos-
sible within the same architecture model), e�cient design space exploration
is critical to the shortening of time-to-market.

To evaluate the overheads and bandwidth of a distributed system, scal-
ability is a primary metric. According to [9], scalability of distributed sys-
tems has three dimensions: numerical, geographical, and administrative.
The numerical scalability represents the ability of the system to integrate
an increasing number of components. The geographical scalability means
the distance, over which the system components are scattered. The admin-
istrative dimension of scalability represents the administrative convenience
with sizable system. The geographical scalability is extraneous for on-chip
parallel systems and thus beyond the scope of this thesis. On the basis of
design constraints and scalability dimensions, [10] has de�ned three aspects
of scalability of on-chip parallel systems: Performance, Overhead and Design
e�ort.

The performance metrics for any computing system are task comple-
tion time, on-chip communication latency, system throughput, and resource
utilization. While switching to a parallel processing system from a single
processor system, the basic parameter to evaluate the performance scala-
bility is the speedup [11]. The speedup factor of multiprocessor systems is
limited by application characteristics [12]. With advent of various on-chip
communication platforms for parallel systems, the communication architec-
ture has great impact on the speedup as well [115]. Thus collectively, there
are several factors which limit the speedup factor like inter-core communi-
cation time, additional computations in parallel programmes and idle time
slots for processors due to data dependencies on other processing elements.

All the mentioned issues for performance scalability can be dealt with at
the expense of di�erent overheads like silicon area and power consumption.
Thus achieving speedup beyond the requirement without considering over-
heads is not an economical solution. An ideal solution should have better
performance with minimum overheads. The silicon area has been the pri-
mary concern for chip designers. With continuous scaling of transistor size,
silicon area became an exponentially cheaper resource relative to power and
energy consumption [13]. Thus, the power consumption has replaced area
as the primary constraint for SoC design. For smaller number of cores and
lower bandwidth requirements, bus based communication is an e�cient so-
lution due to minimal communication overheads compared to NoC. On the
other hand, bus based system does not scale well with more number of PEs
because of the power consumption due to higher capacitive loads.

5

The last few decades were characterized by revolutions in information and
communication technology. To cope with this ever changing revolution in our
daily lives, never-ending update is required [14]. In this case, accelerating the
time to market plays a vital role in product success. Generally, scalability
in terms of design e�ort becomes a bottleneck to achieve this objective [15].
The design e�ort normally scales with number of integrated components.
This design e�ort can be minimized by using techniques like reusability,
early error detection and orthogonalization [16]. This minimizes the time for
design and development process.

Another dimension, which a�ects system scalability is reliability. In con-
ventional computing architectures, fault on a component makes the con-
nected fault-free components inoperative. In such situations, the only draw-
back is not only the performance degradation. These a�ected fault-free com-
ponents consume power as well. In modern systems, due to aggressive tech-
nology scaling, the probability of transient and permanent faults is increasing
because of increased process variation and reduced noise-margins. Thus fault
occurrence can severely and unexpectedly degrade the system performance.
To deal with system reliability issues, fault detection should migrate to fault
prediction [17]. It will reduce the number of unscheduled system stalls and
cycle wastes. The main problem to switch from detection to prediction is
to build precise, robust, power e�cient, real-time updateable, and generic
models for prediction. Another approach to retain the system performance in
case of fault occurrence is to utilize the fault-free components which cannot
be used due to the faults on the other resources.

Unfortunately, a system that is scalable in one or more scalability di-
mensions may cost in other scalability dimensions [18]. For the selection
of on-chip communication platform, the application requirements should be
considered with scalability issues.

1.3 Thesis Objectives and Contributions

A shift from computation centric design methodologies to communication
centric design methodologies became essential in modern parallel systems
[21]. Consequently, the design space exploration for on on-chip communica-
tion architectures is crucial. This thesis addresses the selection of on-chip
communication platforms with an optimal tradeo� between system perfor-
mance, reliability and overheads according to the application requirements
and design constraints. To achieve this goal, di�erent on-chip communication
architectures and communication services have been proposed and evaluated
regarding the computation performance, power consumption, silicon area
and fault tolerance. The main contributions of this thesis are:

• The design �ow for segmented bus (SegBus) platform including the

6

communication services is proposed. Di�erent communication services
like multicast, interrupt and split are introduced in SegBus platform.
H.264 video encoder is used to demonstrate the proposed services. The
designer can select the services according to the application and per-
formance requirements.

• Application mapping technique for Multiprocessor System-on-Chip (MP-
SoC) platforms with homogeneous processing nodes is proposed. For
this purpose, task prioritization criteria is proposed, which is used
to map the application on MPSoC platform. NoC is used as a case
study to compare the application mapping performance with existing
task allocation techniques. The proposed technique shows signi�cant
improvement in system performance and reduction in power consump-
tion.

• A novel Partial Virtual channel Sharing (PVS) NoC architecture is
proposed which improves the utilization of resources to enhance the
performance with minimal overheads. The PVS-NoC architecture also
reduces the impacts of faults on performance and tolerates the faults
in routing logic. The runtime allocation of the bu�ers depends on
incoming load and fault occurrence. Furthermore, an e�cient and re-
liable Network Interface (NI) assisted routing strategy for NoC using
PVS architecture is proposed. For this purpose, NoC system is di-
vided into clusters. Each Processing Elements (PE) can inject data
to the network through a router in the cluster, which is closer to the
destination node. The proposed architecture can also recover the PE
disconnected from the network due to network level faults by allowing
the PE to transmit and receive the packets through other routers in
the cluster. Simulation results reveal that PVS architecture improves
the performance signi�cantly in presence of faults, compared to other
virtual channel (VC) based NoC architectures.

• An e�cient architecture to optimize system performance, reduce power
consumption, and enhance reliability of stacked mesh 3D NoC is pro-
posed. For this purpose, an inter-layer communication mechanism
is developed which addresses the load balancing and system fault-
tolerance issues by enhancing the bu�er utilization. Overall, the per-
formance is enhanced by an adaptive inter-layer routing scheme called
AdaptiveZ. For the sake of simplicity and to observe the contribution
of AdaptiveZ in performance improvement, intra-layer communication
uses static XY routing algorithm. Our extensive experiments show sig-
ni�cant reduction in power consumption and average packet latency as
compared to the typical stacked mesh 3D NoC architectures.

7

1.4 Overview of the Thesis

The rest of the thesis is organized as follows. Chapter 2 presents the concept
of on-chip communications for multi-core architectures and its main design
choices like bus and network based architectures have been addressed. Chap-
ter 3 describes the uni�ed design methodology for application and MPSoC
platform. SegBusplatform has been used as an example MPSoC architecture.
To improve the system performance and resource utilization, communication
services like multicast, interrupt communication and SPLIT transactions for
SegBusplatform have been introduced in Chapter 4. To enhance the resource
utilization in NoC based architectures, an application mapping technique has
been presented in Chapter 5. Furthermore, the resource utilization analysis
has been presented as well. On the basis of resource utilization analysis, Par-
tial Virtual channel Sharing NoC (PVS-NoC) architecture has been proposed
to address the utilization of virtual channel bu�ers in NoC router. Di�erent
techniques to reduce the impact of faults on system performance have been
discussed in Chapter 6. Chapter 7 presents the adaptive inter layer com-
munication mechanism for 3D NoC-Bus hybrid architectures to enhance the
system performance and reduce the overall power consumption. Chapter 8
concludes the dissertation.

1.5 Research Publications

The work discussed in this thesis is based on and extended from the inter-
national journals and proceedings of conferences listed below:

1. Khalid Latif, Ethiopia Nigussie, Tiberiu Seceleanu. Uni�ed Prioritiza-
tion Criteria for Application Mapping on MPSoC Platforms. Submit-
ted to ACM Transactions on Embedded Computing Systems (TECS).
Author's contributions: The author contributed with the problem for-
mulation, conducted experiments and wrote the manuscript.

2. Khalid Latif, Amir-Mohammad Rahmani, Ethiopia Nigussie, Tiberiu
Seceleanu, Martin Radetzki, Hannu Tenhunen. Partial Virtual Chan-
nel Sharing: A Generic Methodology to Enhance Resource Manage-
ment and Fault Tolerance in Networks-on-Chip. Journal of Electronic
Testing: Theory and Applications (Springer-JETT), 29(3), pp 431-452,
June 2013. DOI 10.1007s10836-013-5389-5
Author's contributions: The author formulated the resource sharing
technique to enhance the system performance and address the fault tol-
erance issues. The author also wrote the manuscript. Amir-Mohammad
Rahmani performed the simulations.

8

3. Khalid Latif, Amir-Mohammad Rahmani , Tiberiu Seceleanu, Hannu
Tenhunen. Cluster based Networks-on-Chip: An E�cient and Fault-
Tolerant Architecture using Network Interface Assisted Routing. Ac-
cepted for publication in IGI-Global International Journal of Adaptive,
Resilient and Autonomic Systems (IJARAS), 2013.
Author's contributions: The author formulated the network interface
assisted routing technique to reduce the network load and wrote the
manuscript.

4. Khalid Latif, Tiberiu Seceleanu, Cristina Seceleanu, Hannu Tenhunen.
Service based communication for MPSoC platform-SegBus. Micropro-
cessors and Microsystems, Elsevier, 35(7), pp. 643-655, October 2011.
DOI 10.1016j.micpro.2011.06.006
Author's contributions: The author contributed with the problem for-
mulation, conducted experiments and wrote the manuscript.

5. Amir-Mohammad Rahmani, Khalid Latif, Pasi Liljeberg, Juha Plosila,
Hannu Tenhunen. A Stacked Mesh 3D NoC Architecture Enabling
Congestion-Aware and Reliable Inter-Layer Communication. In pro-
ceedings of IEEE/Euromicro International Conference on Parallel, Dis-
tributed, and Network-Based Processing (PDP) in Special Session on
On-Chip Parallel and Network-Based Systems, pp. 423-430, Ayia Napa,
Cyprus, February 2011.
Author's contributions: The author proposed the idea, suggested ex-
perimentation methods, and wrote the manuscript.

6. Khalid Latif, Amir-Mohammad Rahmani, Tiberiu Seceleanu and Hannu
Tenhunen, "An Autonomic NoC Architecture using Heuristic Tech-
nique for Virtual Channel Sharing," in Phan Cong-Vinh (Eds.), Auto-
nomic Networking-on-Chip: Bio-inspired Speci�cation, Development,
and Veri�cation. Part of the Embedded Multi-core Systems (EMS)
Book Series, CRC Press, December 2011. 1st Edition, pp. 47-68,
ISBN: 143982911X, 9781439829110
Author's contributions: The author formulated the problem and wrote
the manuscript.

7. Khalid Latif, Amir-Mohammad Rahmani, Tiberiu Seceleanu, Hannu
Tenhunen. Power- and Performance-Aware IP Mapping for NoC-Based
MPSoC Platforms. In proceedings of IEEE International Conference
on Electronics Circuits and Systems (ICECS), pp. 760-763, Athens,
Greece, December 2010.
Author's contributions: The author developed the mapping technique,
conducted experiments and wrote the manuscript.

9

8. Khalid Latif, Moazzam Niazi, Hannu Tenhunen, Tiberiu Seceleanu,
Sakir Sezer. Application development �ow for on-chip distributed ar-
chitectures. In proceedings of 21st IEEE International SoC Conference
(SOCC), pp. 163-168, Newport Beach, CA, USA, September 2008.
Author's contributions: The author proposed the application design
�ow for MPSoC, conducted experiments and wrote the manuscript.

10

Chapter 2

Parallel MPSoC Architectures

Multiprocessor System-on-Chip (MPSoC) addresses the never ending com-
plexity of applications. Like a traditional SoC design �ow, MPSoC design
starts with application speci�cations and requirements as shown in Figure
2.1. After the application speci�cation, a functional model can be formu-
lated using system-level design tools like Simulink or high level language such
as C/C++ to verify and optimize the application algorithm using di�erent
con�gurations and random as well as normal inputs. In next step, the im-
plementation approach for each application task is decided. It is a decisive
step for power, performance and area optimizations of computation units.
The computation tasks implemented as a circuit are called hard compo-
nents. These hard components can be implemented using di�erent logic ar-
chitectures like Programmable Logic Devices (PLD), General-Purpose Logic
(GPL) devices, Field Programmable Gate Arrays (FPGA) or Application-
Speci�c Integrated Circuit (ASIC). While rest of the tasks are implemented
as a sequential set of instructions on a microprocessor which are called soft
components. At this stage, application architecture model is available. All
inter-node communication in architecture model use point-to-point (P2P)
links.

For applications, where subset of cores communicates with most of the
nodes in application, P2P based communication architecture can provide
the best communication performance at the expense of silicon area and high
power consumption [21]. At this stage, MPSoC design �ow di�ers from
traditional SoC design �ow. An e�cient architecture for inter-core commu-
nications with minimum overheads is required for MPSoC designs. MPSoC's
performance is highly dependent on the selection of communication architec-
tures [56]. The focus of this thesis is to facilitate the designer for communica-
tion platform selection in MPSOC designs. In this chapter, di�erent on-chip
communication platforms will be presented which provide the foundation for
the rest of the thesis.

11

Figure 2.1: Design �ow for Parallel MPSoCs [115].

2.1 Segmented Bus Architecture

A segmented bus (SegBus) is a bus which is partitioned into two or more
segments. Each segment acts as a normal bus between modules that are
connected to it and operates in parallel with other segments. Neighboring
segments can be dynamically connected to each other in order to establish a
connection between modules located in di�erent segments. Due to the seg-
mentation of the bus, parallel transactions can take place, thus increasing
the performance. A high level block diagram of the segmented bus system
which we consider in the following sections is illustrated in Figure 2.2.

The SegBus platform [63] is thought as having a single central arbitration
unit (CA) and several local segment arbitration units (SA), one for each
segment. The SA of each bus segment decides which device, generically
referred as functional unit (FU), within the segment will get access to the
bus in the following transfer burst.

Platform communication. Within a segment, data transfers follow a
�traditional� bus-based protocol, with SAs arbitrating the access to local re-
sources. The inter-segment communication is a packet based, circuit switched
approach, with the CA having the central role. The interface components
between adjacent segments, the border units - BUs, are basically FIFO ele-

12

Figure 2.2: Segmented bus structure.

ments with some additional logic, controlled by the CA. A brief description
of the communication is given as follows.

Whenever one SA recognizes that a request for data transfer targets a
module outside its own segment, it forwards the request to the CA. This
one identi�es the target segment address and decides which segments need to
be dynamically connected in order to establish a link between the initiating
and targeted devices. When this connection is ready, the initiating device is
granted the bus access. This one starts �lling the bu�er of the appropriate
bridge with the packet data. The latter is taken into account by the corre-
sponding next segment SA which forwards it further, until it reaches the
destination. At this point, the SA of the targeted segment routes the packet
to the own segment lines, from here it is collected by the targeted device.

A transfer from the initiating segment k to the target segment n is repre-
sented in Figure 2.3. The packet structure shown in �gure contains di�erent
�elds. Destination ID �eld is the FU's ID as packet destination. Similarly
Source ID is the FU's ID as packet source. Data payload is the actual
data to be transferred. The segments from k to n are released for possible
other inter-segment operations in a cascaded manner, from the source k to
the destination, n as speci�ed by the packet header. However, the �gure
stresses the relatively long duration of an inter-segment transfer: whenever
the data has arrived in the BU FIFOs, such a transaction collides with on-
going local activities. A solution in this sense, that is, speeding up the global
communication, comes in the form of interrupts [61]: when a data packet
arrives at one BU, the local operations of the next segment to be traversed
is interrupted, to make way for the inter-segment packet.

The arbitration at CA level, that is, for global transfers, implements

13

Figure 2.3: The data packet structure and the �ow of an inter-segment packet
transfer.

the application data�ow, with respect to these transfers. Hence, one has to
implement accurate control procedures for inter-segment transfers, as pos-
sible con�icting requests must be appropriately satis�ed, in order to reach
performance requirements and to correctly implement applications.

The bus snooping mechanism is shown in Figure 2.4. Wrapper (W) pro-
vides the abstraction between processing elements (PE) and communication
platform to make the system plug-and-play. Here, the task of the wrapper is
requesting the bus, reading data from bus and other control signals commu-
nication. In packet based communication, packetization and depacketization
are additional tasks of the wrapper.

W

PEK1 SAK CA

B
U
K

B
U
K
-1

W

PEKn

W

PEK

Figure 2.4: Abstraction between computation and communication.

The SegBus platform speci�cs consist in a set of global parameters that
have a great impact on the implementation [63]: (i) topology - a linear or
circular geometry; (ii) number of segments; (iii) size of the data packet.

2.2 Network-on-Chip

Network-on-Chip (NoC) is a general purpose on-chip communication concept
which answers to the problems induced by wire density in SoCs and o�ers

14

high throughput, which are the basic requirements to deal with complexity
of modern systems [56,76,122]. It is an attractive solution to replace the con-
ventional communication architectures such as shared buses or point-to-point
dedicated links. NoC provides better scalability than on-chip buses because
as more resources are introduced to a system, also more routers and links
are introduced to connect them to the network. The additional links and
routers ful�ll the communication capacity requirements for new resources. A
typical NoC based system consists of processing elements (PE), network in-
terfaces (NI), routers (R) and inter-router communication channels as shown
in Figure 2.5.

PE (0,2)

NI

R

PE (0,3)

R

NI

PE (0,0)

R

PE (0,1)

R

NI

NI

PE (1,2)

NI

R

PE (1,3)

R

NI

PE (1,0)

R

PE (1,1)

R

NI

NI

PE (2,2)

NI

R

PE (2,3)

R

NI

PE (2,0)

R

PE (2,1)

R

NI

NI

PE (3,2)

NI

R

PE (3,3)

R

NI

PE (3,0)

R

PE (3,1)

R

NI

NI

Figure 2.5: Homogeneous 4×4 NoC with Mesh Topology.

The NoCs can be categorized as homogeneous and heterogeneous. Ho-
mogeneous NoCs are based on the replication of identical PE units, while
heterogeneous NoCs are based on variety of PE cores. The PEs can be a
general purpose processor core, a cache bank, a memory controller, an FPGA
block or even a custom logic component. Generally, heterogeneous NoCs are
more e�cient than homogeneous ones. However, homogeneous NoCs provide
better �exibility, fault tolerance and scalability [22]. PEs act as the source
and sink for the information/data packets, inject to the network. In rest
of the thesis, homogeneous NoCs are used to provide the better comparison
of communication performances. Thus, all possible software procedures are
mapped within the general purpose hardware devices.

In NoC based system, PEs communicate with each other by breaking

15

up a message into small packets for transmission. At destination node, the
received packets are re-ordered to extract the real message. The network
interface (NI) is the component which packetizes the data before injecting
it to the network and de-packetizes the packet after it leaves the network
but before delivering it to the destination PE [122]. The packetization/de-
packetization provides abstraction between computation and communication
and makes the system plug-and-play for heterogeneous PEs [108]. A well
designed NI enables the PE to utilize the full bandwidth with minimum
latency o�ered by the network.

The task of the router (R) is to compute the route of the received pack-
ets and direct them towards the destination accordingly. These packets are
received either from neighboring routers or the local PE. The router can
be bu�ered or bu�erless. For bu�ered routers, packets are stored in router
bu�ers. The routing information is extracted from packet header �it and
route is computed according to the implemented routing strategy. If the
destination address of the packet matches with the address of local PE at-
tached to the router, the packet is delivered the attached PE core, otherwise
the packet is routed to the neighboring nodes according to the computed
route. The concept of virtual channels has been introduced to address the
utilization of communication channels and avoid deadlock. The VC based
router contains a routing logic, a VC allocator, a switch allocator, a VC iden-
ti�er, a crossbar switch, and several VC bu�ers and as shown in Figure 2.6.
The number of IO channels for the router depends on topology. Di�erent
NoC router architectures like BiNoC [103], ViChar [114] and DSB-NoC [118]
have been proposed which address di�erent issues.

All inter-router communication channels in NoC can be simultaneously
used for data transmission, which provides a high level of parallelism. Dif-
ferent interconnection design techniques and wire models can be used to
design these channels. Similarly, variety of data encoding/decoding tech-
niques and on-chip signaling schemes are available for data transmission on
these links [23].

Other than mentioned hardware (HW) components, there are three other
concepts which de�ne NoC: Topology, Routing techniques and Flow con-
trol [122]. All these elements play an important role in determining the NoC
performance. Network topology describes the the arrangements of routers
and communication channels. Like the NoC concept, most of the proposed
NoC topologies have been borrowed from computer networks or from net-
work of multiple computation units in supercomputers. The main topology
metrics are degree, hop count and path diversity. The well known NoC
topologies are ring, mesh, torus, folded torus and tree structures (binary
tree and fat tree).

The routing process decides, which path should be followed by a packet to
reach its destination. A router can be de�ned as an ordered set of inter-router

16

Crossbar

Input Channel

VC Buffers

VC Identifier

Input Port
Input Port

Input Channel

credit out

credit out

Output Channel

Routing Logic

VC Allocator

Switch Allocator

Output Channel

credit in

Figure 2.6: Typical Virtual Channel Router Architecture [109].

communication channels. The routing information is inserted in header �it
of the packet by NI during packetization. There are two basic types of rout-
ing: source routing and node-table routing [122]. In case of source routing,
NI contains the routing table and complete route is de�ned and saved in
packet header at the source node. On other hand, node-table routing uses
distributed approach where each router is assigned an address and also con-
tains the routing table. The route is computed at each router on the way
of packet. In this case, only the destination address is included in packet
header. Normally, deterministic and oblivious routing algorithms use source
routing, while adaptive routing uses node-table routing to take advantage of
network state information at intermediate hops along the route.

Flow control mechanisms in NoC manages the resource allocation for
packets as they are traversed through the network. It also de�nes the granu-
larity level of packet transfer. In a situation, when two packets are compet-
ing for the same resource, �ow control mechanism resolves the con�ict. For
bu�erless routers, �ow control schemes like hot-potato have been de�ned. For
routers with bu�ering capacity, �ow control schemes like store-and-forward,
virtual cut-through and wormhole routing have been de�ned.

17

2.3 Three Dimensional NoC (3D-NoC)

A three-dimensional integrated circuit (3D-IC) is a major paradigm which
can continue the Moore's law of integration [24]. 3D ICs o�er a considerable
reduction in the number and length of global interconnects as compared to
traditional 2D ICs, which reduces wire delay and power consumption and
enhances the system performance [25]. Due to all these bene�ts of 3D-ICs,
the paradigm shift from 2D-NoC towards 3D-NoC was a very necessary step.

Di�erent 3D-NoC architectures have been proposed [26], like Symmetric
3D Mesh, Ciliated 3D Mesh, Hybrid 3D NoC-Bus, True 3D NoC, Tree-
Based 3D NoC and De-Bruijn Graph-Based 3D NoC. The simplest one for
understanding is Symmetric 3D Mesh NoC. This approach is an extension
of 2D mesh NoC, where in addition to existing links, each node has two
additional links (up and down) for inter-layer communications. A 3×3×3
3D Symmetric Mesh NoC structure with 27 nodes is shown in Figure 2.7.
For 3D Symmetric Mesh NoC structure, inter- or intra-layer hop bear the
same characteristics at system level.

Processing

Element (PE)

Router (R)

inter-router

communication

channel

Figure 2.7: 3D Symmetric Mesh NoC structure.

The system performance of 3D Symmetric Mesh NoC structure is better
than 2D Symmetric Mesh NoC because of two reasons: more communication
resources (two extra ports for each router of 3D Symmetric Mesh NoC)
and better bandwidth support by Through-Silicon-Vias (TSV) for inter-layer
communications. TSV pads distributed across planar layers show relatively
high area overheads. This may impose constraints on number of TSVs to
avoid wire routing congestion [27]. Another drawback of 3D Symmetric Mesh
NoC is the crossbar size. It requires a 7×7 router crossbar because of two
extra links for inter-layer communications. It can be observed at a later stage
from the simulation results that crossbar scales ine�ciently due to increase
of critical path length and extra gate count. To address all these issues and
further enhance the performance of 3D-NoC structure, an e�cient hybrid

18

3D NoC-Bus architecture and adaptive inter-layer routing scheme will be
presented in Chapter 7.

With all the performance bene�ts, 3D technology introduces the on-chip
thermal issue which increases the packaging and cooling costs. All these
issues are faced by 3D-NoC architectures as well but it is beyond the scope
of this thesis.

2.4 Chapter Summary

In this chapter, di�erent parallel on-chip communication architectures have
been presented which are the foundation for the next chapters. Di�erent
aspects and design issues of each platform like scalability, communication
mechanism, bandwidth limitations and power consumption were discussed.
The problems mentioned here have been addressed during the research work
for this thesis. It is the task of the designer to select an appropriate inter-
connection platform according to the performance requirements and other
design constraints such as power consumption for the application.

19

20

Chapter 3

Design Flow for SegBus

Platform

One of the reasons behind the di�culties in MPSOC development is the
lack of design methodologies [29]. Due to environmental and application
requirements, the operation and communication characteristics of the em-
ployed devices and architectural instances may vary greatly from system to
system. Performance measures are intrinsically related to the speci�cs of the
underlying hardware platform. The lack of information availability at the
higher abstraction (application) layers a�ects how speci�cation requirements
are re�ected in the �nal system realization. Another important issue is the
control of data transfers between di�erent devices, as concurrent communi-
cation will certainly create con�icting situations.

At the same time, there is a growing demand for performance of multime-
dia applications. In order to address such issue, both performant platforms,
but as well e�cient design methodologies need to be developed. Employ-
ment of Intellectual Property (IP) designs is one of the high requirements
in order to allow a fast deployment of new design solutions. Alternatively,
hardware design languages might prove at times to be too restrictive, as only
a small part of the design community has good respective knowledge. The
tendency is therefore to replace, or to make transparent, whenever possible,
VHDL (for instance) based design with higher level constructs, for instance
C-like languages. The new challenges reside now in having a good platform
representation at these higher levels, such that early evaluations are possible
to perform.

The present work delves into aspects related to design methodologies for
MPSOC. We describe the principles of a stepwise design methodology that
targets a distributed on-chip architecture, Segmented Bus (SegBus) platform
[63]. We continue the work of previous research results in the direction of
raising the levels of abstraction at which such methodology is bene�cial.

21

We also take a step further in the direction of automation, by providing
platform models in the framework o�ered by Matlab [79]. We are interested
in Matlab/Simulink as a high level design environment which allows the
exploration of allocation results and o�ers the possibility for early assessment
of application - platform mapping.

The most common current methods to deal with concurrency are threads,
semaphores, mutual exclusion locks, etc. However, these approaches are in-
tended to build virtual parallel environments, most often not well suited for
current heterogeneous multi processor systems. For instance, threads are de-
�ned as sequential processes, exchanging information through shared mem-
ory resources, and several synchronization methods must be implemented in
order the ensure the security and reliability of the shared data. This is be-
cause threads are highly non-deterministic, and a immense e�ort is dedicated
to establishing an order of execution.

Our approach here is based on the existence of segment and central ar-
biters that contain the schedule for data exchanges between devices within
the same segment, or in di�erent ones. Out of a possible group of "enabled"
transfers, these devices select the appropriate one with a built-in policy of
granting. The present study builds on the work of Truscan et. al [39], and it
provides an improved tooling support for the development of applications.

3.1 Existing Design Methodologies for On-Chip Com-
munication Architectures

In recent years, research started to address on-chip solutions. Di�erent on-
chip communication architectures can use di�erent design methodologies.
Here we discuss the alternative design approaches for bus based on-chip
communication architectures.

Lahiri et al. [33] address design optimality for a segmented bus platform
similar to the SegBus. The segmented bus architecture [33] is, however, mem-
oryless, di�erent to our case, where the segments are separated by storage de-
vices. Moreover, the protocols are �t to one application, and contentions can
be extracted following a higher level simulation. The approach introduces
a valuable simulation-based trace extraction, to indicate the communication
patterns, considered consistent, after which an algorithmic solution is found
to the allocation problem. Arbitration issues are not speci�cally addressed,
and hence, possible contention problems and precedence relations are not
analyzed. The intermediate arbitration tables, in our case, solve both the
contention and the precedence issues.

Srinivasan et al. [37] introduce an AMBA-like hierarchy of a segmented
bus. The authors employ genetic algorithms for �nding optimal segmented
bus allocations, but the methodology is not continued to other levels of

22

abstraction. There is a similarity with [33], in the sense that no control
procedures, either for local or inter-segment activities, is presented. The
arbitration is possibly organized following AMBA protocols, but this may
a�ect both allocation optimality and solving the con�icting task execution.

De Jong [32] elaborates a system design �ow based on UML and SDL,
mainly for the purpose of control, communication and synchronization re-
�nement of both hardware and software components. As it pertains more to
the area of software-hardware co-design, this study is viewed as a comple-
mentary research to the present work.

Dekeyser et al. [31] propose a �Y-chart" methodological approach to mul-
tiple SOC system design with UML. While the results are applicable to our
speci�c platform-based approach, in general, several design steps, such as ap-
plication and platform re�nement, granularity, communication restrictions,
are not captured in [31].

The approach we illustrate here does not impose restrictions towards
other MPSOC platforms. For example, the existing network-on-chip [76]
models like [40,41] can be used in order to enlarge the basis of the solution.
Considered together with earlier results [39] on high level design method-
ologies, we approach the realization of a complete framework for the design
of multiprocessor systems which provides the uni�ed representation of both
interconnection platform and application.

3.2 Uni�ed Design Methodology for Application and
MPSoC platform

The design methodology for multiprocessor platforms with focus on uni�ed
representation of interconnection platform and application will be presented
in this section. The proposed design �ow is illustrated in Figure 3.2. It
integrates Matlab/Simulink, HDL design and co-simulation (DSP builder),
in order to raise the design abstraction level which takes a step closer to
design automation. We are interested in Matlab/Simulink since it allows
the exploration of task allocation results and o�ers the possibility for early
assessment of application - platform mapping. As a running example we
employ a H.264 encoder [35] as application (Figure 3.1) and SegBus as the
interconnection platform.

3.2.1 Tool Environment

Matlab / Simulink. Matlab Simulink Environment [79] is a tool com-
monly used for modeling, simulation, analysis and pro�ling of multi domain
systems. These systems range from a simple adder to complex application
like Video coding, transceiver synchronization in communication systems or

23

Figure 3.1: H.264 Encoder

control system design. It comprises of di�erent block sets, libraries and
programming functionalities. After the application speci�cation, a working
Simulink model can be modeled and application algorithm can be veri�ed
using di�erent con�gurations and random as well as normal inputs.

Here, we use the "Video and image processing" blockset from Simulink
to model the H.264 Encoder application. This blockset provides a variety
of functions that can be used for modeling of Image and Video applications.
The Matlab Simulink environment also supports obtaining the communi-
cation matrix necessary to compute the optimal allocation scheme for the
interconnection platform.

Altera. At the time, the implementation technology for the SegBus plat-
form is o�ered by Altera [42] devices. Hence, after application modeling
and platform customization the �ow is taken into the Quartus design en-
vironment, where previously de�ned functional units are mapped on actual
devices. Following compilation, a simulation is performed within a Model-
sim [43] framework.

Application development. We start by analyzing the targeted application
by splitting it in processes. The interaction between these is observed in
terms of input-output data-�ows. In subsequent steps the top-level process is
decomposed hierarchically into less complex processes and the corresponding
data-�ows between these processes.

The decomposition process is based on designer's experience and ends
when the granularity level of the identi�ed processes maps to existent library
elements or devices that can be developed by the design team. The H.264
encoder application shown in Figure 3.1 was modeled in Simulink. The
application tasks were further partitioned into number of sub-tasks in order
to have enough granularity and communication complexity between tasks

24

Application Specification

Simulink Model

Application/Architecture

Mapping

Topology Design using

Communication Matrix

DSP Builder

Signal Compiler

SOPC Builder

· VHDL or Verilog

· Tcl files to run

synthesis &

Place-and-Route

· Simulation Test

Benches

· Tcl files to run

Modelsim Tool

IP (Interconnection

Platform)

Synthesis and

Quartus II Software

Place & Route

Quartus II

SoftwareModelsim/

Modelsim Altera Tool

SOPC Builder

Programmer Object

File(.pof)

Hardware

Manual IP

Design

PU Selection

Virtual Ips from

Matlab/Simulink in

Design

Communication

Matrix

M
A
T
L
A
B
/S
im
u
li
n
k

E
n
v
ir
o
n
m
e
n
t

H
D
L
D
e
s
ig
n

C
o
-S
im
u
la
ti
o
n
u
s
in
g

D
S
P
-B
u
il
d
e
r

Simulation not OK

Final Application

Figure 3.2: Uni�ed Design Process for Application and MPSoC platform

to analyze the MPSoC platform under consideration. The corresponding
model is shown in Figure 3.3. The values on the edges represent the number
of transaction packets for processing of one video frame, where each data
packet is of same size (66 bytes).

The communication between processes is organized as a Packet SDF di-
agram [62]. The PSDF representation will be used to extract the programs

25

Figure 3.3: The H.264 Video encoder application model

controlling the activity (grant distribution schedule) of the SAs and of the
CA [65].

The Packet SDF. A PSDF comprises mainly two elements: processes and
data �ows ; data is, however, organized in packets. Processes transform input
data packets into output ones, whereas packet �ows carry data from one
process to another. A transaction represents the sending of one data packet
by one source process to another, target process, or towards the system
output. In [62], a packet �ow is a tuple of two values, P and T . P represents
the number of successive, same size transactions emitted by the same source,
towards the same destination; T is a relative ordering number among the
(packet) �ows in one given system. Thus, a �ow is understood as the number
of packets issued by the same process, targeting the same destination, and
having the same ordering number.

A third element of the PSDF tuple characterizes the kind of the packet.
The kind - a natural number I - identi�es if a packet is to be routed to
multiple destinations, thus establishing the modeling basis for multicasted
or broadcasted transmissions as will be discussed in Chapter 4. Packet �ows
having same I value carry the same content of data, from the same source
towards multiple destinations.

The PSDF of a certain system becomes hence a sequence of packet �ows,
< (P1, T1, I1), . . . , (Pn, Tn, In) >, Pi ̸= Pj where ∀i, j ∈ {1, . . . , n} and T1 ≤
T2 ≤ . . . ≤ Tn. Flows sourcing in the same node and with identical Is, will
also have identical T s, identifying a multicast packet.

The non-strictness of the relation between T values of the above de�-
nition models the possibility of several �ows to coexist at moments in the
execution of the system. In the case of the SegBus platform, this most often
will describe local �ows, that is �ows where the source and the destination
are situated in the same segment. However, considering a segment number
larger than 3, global �ows, where the source and the destination are in dif-
ferent segments, are also possible to be characterized by the same ordering
number. In this case, it means that the CA, if possible, allows a simultane-
ous execution of transactions from all the �same T � global �ows.

The corresponding PSDF diagram for application model in Figure 3.3 is
shown in Figure 3.5. For the moment, the reader should ignore the parti-

26

From / To P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12

P0 0 35840 17920 17920 17920 0 0 0 0 0 0 0 0

P1 0 0 0 0 8960 0 0 0 0 0 0 0 0

P2 0 0 0 12780 0 0 0 0 0 0 0 0 0

P3 0 0 0 0 176 0 0 176 0 0 0 0 0

P4 0 0 0 0 0 26880 0 0 0 0 26880 0 0

P5 0 0 0 0 0 0 13440 0 0 0 0 0 0

P6 0 0 0 0 0 0 0 4200 4200 0 0 0 0

P7 0 0 0 0 0 0 0 0 0 0 0 0 0

P8 0 0 0 0 0 0 0 0 0 1536 0 0 0

P9 0 0 0 0 0 0 0 0 0 0 1536 0 0

P10 0 0 0 0 0 0 0 0 0 0 0 0 14136

P11 0 0 0 0 14539 0 0 0 0 0 0 0 0

P12 0 0 0 0 0 0 0 0 0 0 0 14539 0

Figure 3.4: The communication matrix for the example

tion in segments, which is based on developments in the next sections. The
processing elements (P0, P1, . . . , P12) correspond respectively to YUV gen-
erator, Chroma resampler, Motion vector estimator units, etc. Figure 3.4
shows the the number of bytes to be transferred between two FU's for the
processing of one video frame.

3.2.2 Application Partitioning

We consider that the application is already partitioned and mapped on the
available devices as described in Figure 3.5. In general,this means also that
all possible software procedures are already mapped within the hardware
devices. However, this is not the case in Figure 3.5, where all the devices are
hardware elements.

At this moment, we can extract the communication features, that is, the
frequency with which the various devices communicate with each other. We
group these frequencies in the so-called "communication matrix". For the
application at hand, this matrix is illustrated in Figure 3.4. The matrix was
obtained by using the signal dimension option in Simulink.

The matrix is fed into the PlaceTool programme which delivers the allo-
cation costs for various scenarios [34]. The output results of the PlaceTool
are shown in Table 3.1, where || represents the segment borders. It can be ob-
served that performance may go down by increasing the number of segments
due to increase in communication overhead. In this case, a two segment
platform delivers the best performance; however, we decide to select a three
segment platform, in order to analyze a more complex structure as explained
in [53]. The resulting segmented application model is obtained as in Figure
3.5.

Table 3.1: The task allocation and associated cost results.

Nr. Segs Cost Allocation Improvement(%)
1 233000 0 1 2 3 4 5 6 7 8 9 10 11 12 100 (Reference)
2 132000 4 5 6 7 8 9 10 11 12 || 0 1 2 3 -43
3 137400 9 || 4 5 6 7 8 10 11 12 || 0 1 2 3 -41
4 143100 9 || 8 || 4 5 6 7 10 11 12 || 0 1 2 3 -39

27

Segment 2

Segment 1Segment 0

200,2,3

560,1,2

P2 P3

P1

P0

140,2,6

280,1,1

P5420,4,7 P6

P7
280,1,1

280,1,1 210,5,8 P8

P9

24,7,10

P10

24,8,11

420,4,7

P12 P11221,9,12 228,10,13

228,1,5

P4 66,6,9

3,3,4

66,6,9

3,3,4

840,0,0

60,7,14

Figure 3.5: PSDF application speci�cation

3.2.3 Code Generation

The segmentation process, while providing premises for a more performant
execution, it raises the complexity related to �nding a (good) schedule for
both the processing tasks, but, mostly for the data transfers. The com-
munication matrix is just a means to obtain the best possible allocation of
resources with respect to global (inter-segment) transfers, but in order to im-
plement the application functionality, both local (intra-segment) and global
transfers must be appropriately scheduled.

The PSDF representation helps in creating such a communication & pro-
cessing schedule. This is applied in two turns, once at the segment level and
once at the platform level, in order to obtain the programme that will coor-
dinate the activity of the segment and central arbiters, respectively.

Arbitration programmes. The programme for both the SAs and the CA
is a grouped collection of VHDL statements placed in the controlling process
of the arbiter's speci�cation. Through speci�c mechanisms (described in the
further paragraphs) the sequential execution of VHDL statements within a
process is improved with a non-deterministic interleaved execution model.
This gives the possibility for several lines to be perceived as executed in
parallel, whenever appropriate.

The segment level arbitration is similar to any single segment bus situa-
tion. Activities in the segment are sequential, the SA deciding which device
can access the bus lines. Any attached BU behaves like a local master, but
the respective requests will have the highest priority. A master willing to
transfer data on the bus raises the request line, while it also speci�es the
segment to which it wants to communicate. The SA identi�es the target
and, if it is outside the own segment, it forwards the request to the CA. If
the request target is within the own segment, it proceeds to granting it.

These activities are collected in the application control code (ACC) which
will drive the SegBus communication strategy at runtime [65]. The ACC is
basically a binary matrix where each line controls the granting algorithm

28

such that the �right" master obtains the access to the bus. The code is
parsed at every arbitration execution, and it contains nrLines lines of code -
a parameter of the arbiter module. One line of code, assimilated to a program
line (an array) has the following �eld structure (see also Figure 3.6),

1. PC. This is the Programme Counter, providing reference to the lines of
instructions possible to be accessed from other instructions. It ranges
from 0 to nrLines-1.

2. Guard. The Guard signals if the respective line is possible to be selected
for execution. This is to enforce the necessary order of data transfers.
Devices not part of a granted transfer may, meanwhile, proceed with
their processing tasks. When guard = 0, the respective line is enabled,
that is, the arbiter may consider it for selection. When guard > 0,
the line is disabled, that is, it cannot be considered in the arbitration.
The arbiter marks a line as executed whenever the respective count
value reaches 0, by establishing guard = nrLines. Several lines with
guards evaluated to 0 are potentially selectable for granting operation.
However, only one of the instructions can be actually "executed".

3. Source. This �eld contains the address of the requesting master - the
initiator of a transfer request. Devices on the platform (masters, slaves)
are identi�ed by an unique number.

4. Destination. This �eld contains the address of the targeted device -
the slave.

5. Dest_Seg. This �eld contains the address of the segment where the
Destination is located.

6. toGrant. This is the instruction for the arbiter to grant the requesting
master. At this moment the speci�cation is obsolete, but the �eld is
preserved for future developments.

7. Count. Identi�es the number of packets the master has to send to
the speci�ed targets. It corresponds to the �rst number in the PSDF
description. Every time the master is granted and performs the trans-
fer, this number is decreased. When it reaches 0, the line cannot be
anymore selected for execution, even if the Grant �eld is also 0.

8. enables. The purpose of enables �eld is to address the data dependency
between di�erent tasks. Disabled lines will become enabled during the
execution of the programme. The enables �eld (one per instruction)
speci�es which line can be moved towards enabledness at the end of
the current transfer. This is achieved by subtracting 1 from the present
value of the Guard �eld of the respective line.

29

Guard Source Destination Dest_Seg toGrant count enables

0 2 5 0 2 200 6

Example:

1 6 3 0 6 120 9

PC

5

6

Figure 3.6: The structure of the programme line, with two examples.

The programme construction considers also requests coming from BUs
as events to be part of schedules. In this case, as an actual example, it may
be interesting to observe the whole code describing the operation of the SA
for segment 2 of the H.264 application, given as follows.

program(0) <= (guard => 0, source => RFL, dest => 9,

dest_seg => 2, togrant => RFL, count => 24,

enables => 1);

program(1) <= (guard => 1, source => 17, dest => 5,

dest_seg => 1, togrant => 17, count => 24,

enables => 0);

In the above, the "RFL" term stands for "request from left". In brief,
and in correlation with the �ow described in Figure 3.5, the SA of segment
2 waits �rst that a transfer is received from left (segment 1), after which
a transfer from the local device (P9 - Figure 3.5) is able to be executed,
targeting a device in segment 1.

The application execution ends when all the lines are marked executed.
That is, we have PC = nrLines − 1 and, for all lines, guard = nrLines.
This triggers the arbiter to restore the initial values of the ACC content.

A similar approach is taken at the level of the CA for request-grant
activities (containing only info about segment requests).

3.3 Experimental Results

We have applied the illustrated techniques for the implementation of a H.264
model on a traditional single bus platform and on a 3 segment SegBus plat-
form, both on the same Stratix III device. The SegBus solution is character-
ized by a linear topology (as in Figure 3.5) and 66 words packet - similar for
the single bus. The �rst one run at a clock frequency of 100 MHz, while the
SegBus solution utilizes four clock domains (one for each segment - 100 MHz,
60 MHz, 50 MHz and one for the CA - 30 MHz).

The performance (throughput) results came close (within 1%) to the ones
anticipated by the Table 3.1 for the respective solution. Intuitively, this also
means an approximated 40% reduction in power. But the results from the
Altera's PowerPlay Power Analyzer tool show that there is slightly higher
then 5% reduction in power consumption of SegBussolution compared to the
single bus solution, both in a vectorless and toggle-rate based approach. The

30

power consumption is not reduced with the same proportion as the through-
put performance enhancement, this is due to power overhead of the cross
border communications. These results are application dependent. While the
core dynamic power dissipation was in the favor of the single bus solution
(due to the additional switching activity of the BUs), the I / O and the total
power dissipation go in the favor of the SegBus platform.

3.4 Chapter Summary

The construction of design methodologies for on-chip multiprocessor plat-
forms, with the focus on segmented bus (SegBus) platform has been pre-
sented. It was studied how applications can be mapped on such distributed
architectures and how to build the concrete level software procedures that
will coordinate the control �ow on the platform. The methodological chain
used in this study (Matlab-DSP Builder-Quartus-Modelsim) proved to o�er a
suitable framework for the application development on the SegBus platform.
We have described the employment of arbiter programmes for scheduling
with a mostly static characteristic, but with a certain degree of (useful) non-
determinism in practice. The approach employs models developed in the
Matlab-Simulink environment considering a uni�ed representation of both
platform and application. The running example is represented by the H.264
encoder. Allocation of processing elements on the platform, structure and
functionality and the eventual control code for arbiters are the main topics
described here.

31

32

Chapter 4

Communication Services in

SegBus Platform

A computation mechanism comprises multiple functions and tasks generally
expressed at di�erent levels of abstraction. Individually, such functions or
tasks can be considered as a service. We de�ne here the two types of ser-
vices for SoC: computation and communication services as shown in Figure
4.1. A computation service means that the chip o�ers service(s) which will
(together) complete a certain task, or execute some application. A com-
munication service contains functions that facilitate or support the data
transfer from source to destination, such as monitoring, scheduling, arbi-
tration, multicast and SPLIT transfers. These communication services can
be customized and included in MPSoC communication platforms accord-
ing to the application requirements. The implementation of communication
services for on-chip communications is completely di�erent from o�-chip or
computer system communications, though the basic concept is exactly same.
For on-chip communications, challenges are deep submicron e�ect, cross talk,
thermal noise and many other issues, which are not the key problems for typ-
ical communication systems. Apart from that, for systems based on MPSoC
platforms, the customer considerations - power consumption, area and la-
tency, are di�erent than for communication systems. There are few services,
required for on-chip communications but not used in telecommunication sys-
tems like cache-coherence or interrupt communication. Similarly, there are
services for communication systems, which are not very important for on-chip
communications like security. Some services cannot be completely de�ned
as computational or communication, for instance the thermal monitoring.
Such services are found then on the border between computation and com-
munication services as shown in Figure 4.1.

Two well known architectures for implementation of communication fab-
rics for SoCs are transaction-based - buses and packet based - NoCs [56].

33

Figure 4.1: Classi�cation of on-chip services.

Implementing the communication services for transaction based data trans-
fers is not economical because of the service overhead for each transaction.
Communication services built on packet based transactions can show a sig-
ni�cant improvement in system performance. Communication services have
already been implemented for NoC but for bus based systems (e.g., SegBus),
only the obvious services like scheduling and arbitration are most commonly
considered.

Congestion control, cache coherence and power consumption are the key
problems for on-chip distributed architectures. A �rst technique to address
congestion control is the avoidance of identical data re-transmission, which
leads to the idea of a multicast approach in many streaming applications
like H.264 codec, MP3 codec or video conference application. Multicast
techniques are simple and easy to implement in bus based systems as com-
pared to the implementations of networks on chip (NoC). Considering the
later, apart from implementation, multicast introduces a serious communi-
cation overhead. For segmented bus approaches, multicast approaches bring
only a negligible overhead. This makes multicast power and latency e�cient
for bus based systems.

We describe here the realization of a multicast protocol for the segmented
bus platform SegBus. We perform this in the context of a perspective change,
where activities related to the design and execution of applications on the
SegBus platform are viewed now as services. While scheduling can be seen
as a service at design time, arbitration, and various kinds of communication
features (SPLIT, interrupt, multicast, etc) are treated as run-time platform
services. Multicast features of communication protocols are not a recent de-
velopment. This comes as a performance improvement to repetitious trans-
actions containing the same data. Lately, multicast procedures have been

34

analyzed in the context of on-chip multi processor architectures. Similarly,
interrupt communications, scheduling, task allocation mechanism and other
services are discussed.

4.1 Existing Communication Services for MPSoC
Architectures

Di�erent MPSoC design models have already been proposed [46, 47, 57, 59,
68]. We approach the problem by considering the communication cost and
throughput, which are dependent on each other and make the design process
automated. By introducing di�erent communication services one-by-one or
in a group, communication cost can be reduced. Then, a service or the group
of services with minimum communication cost and overhead is selected for
�nal implementation.

A bus system and its variants do not scale well with the system size in
bandwidth and clocking frequency [54]. However a bus platform is very e�-
cient when considering broadcasting, since all clients are directly connected
to it. A unicast transaction is in fact broadcasted to all clients in the bus
segment, but read only by the destination device.

Bus snar�ng is proposed as well for performance improvement of mul-
tiprocessor systems [49, 50]. Broadcasting technique can be used to reduce
memory latency for bus-based multiprocessor systems [45]. In the case of
the SegBus platform, segment level or selected number of segments level
broadcasting is possible without using the whole platform.

Tranberg-Hansen et al. [67] present a uni�ed model for application and
platform. Authors present the service model in an abstract model of a hard-
ware component implementing the behavior of the component by o�ering
the services. For this purpose, the service model has been proposed. We
complement here by introducing the services block in our design methodol-
ogy instead of having a service model. The authors also pointed out that
Artemis [47] and the subproject Sesame [70] present the application and
architecture model separately. We approach similarly the problem, by sepa-
rating the computation and communication models.

Cornelius et al. [71] introduce the service oriented approach for NoC
based communications. A useful comparison of centralized and distributed
service oriented architectures is presented. In case of centralized approach,
extra communication from all the nodes will be needed to coordinate with
Central Coordination Node (CCN). In this case, CCN will be overloaded
but it simpli�es the monitoring of services. On other hand, the distributed
nature of the system control promises to circumvent the hot spot around a
single resource (like the CCN). Similar approaches can be adopted for any
MPSoC platform but here, we adopt a hybrid approach. In the SegBus

35

platform, a hierarchical solution is used, as CA works only if some service
needs cross border communication. CAdeals with multicast service only
when a multicasted packet is to be delivered across the border.

Zhang et al. explain the use of snoopy protocol for bus-based MPSoCs
in [69]. It makes use of the broadcasting and the serialization properties of
buses, resulting in an economical solution.

Faizal et al. [60] presents the architecture of a multicast parallel pipeline
router for NoC. The routing engine computes the direction from each header
�it and writes it in the register of the routing table. After that, according to
direction register entries, payload �its are broadcasted in multiple directions.
In our case, just one or two (for both directions) packet copies are generated.
This provides power e�ciency and simplicity of the implementation, com-
pared to [60]. [52] propose the dynamic multicast routing protocol for tra�c
distribution in NoC. In this approach, packet prioritization service is not con-
sidered, which is a rising requirement for most of the upcoming applications.
One may also infer a power performance overhead at the source node, as all
the destination addresses need to be sorted. There is no need of sorting and
prioritization in our approach, where also prioritization is considered during
the placement of processing elements.

4.2 Development of Communication Services

The design methodology for SegBus platform has already been proposed
by [62]. In this methodology, optimization of communication cost is con-
sidered according to the application and platform model. Communication
cost can be further optimized by introducing di�erent communication ser-
vices like multicast, cache coherence or proper scheduling approach accord-
ing to the application requirements. Figure 4.2. shows the updated design
methodology. We approach the problem by introducing the services block
in the existing methodology. Services block o�ers di�erent kind of services
with a variety of architectures. The services are introduced one by one and
performance improvement regarding communication cost is observed by sim-
ulation. The group of services, which provides the best performance can be
selected for �nal implementation. The criteria to select some service for
�nal implementation is discussed individually for each service in following
subsections.

4.2.1 Scheduling

Scheduling is the basic and mandatory service to use the interconnection
platform. Scheduling can be divided into two steps: task allocation and
arbitration as shown in Figure 4.3.

36

Application Model

(AM)

Initial Platform Model

(IPM)

Segmented Application

Model

(SAM)

Communication

matrix

Configuration

details

PlaceTool

Allocation

Table Complete Platform

Model

(CPM)

S
e

g
B

u
s

C
o

m
p

o
n

e
n

t

lib
ra

ry

Synthesizable

Platform Model

(SPM)

Detailed

Component

Specifictaion

Transformation

Control Code

generation

Application

Transfer Tables

Structural Code

generation

Structural

VHDL Code

Transformation

Partitioned

Application Model

(PAM)

Transformation

Component

type

communication

cost == OK

partitioning

suggestions

Synthesis

Structural

VHDL Code

Structural

VHDL Code

Services

Mandtory: Scheduling

Optional: Error monitrong,

SPLIT transaction,

Intruppt Handling,

Multicast,

Services

service

suggestions

Figure 4.2: Segbus Design Methodology.

37

Communication features of the running application are needed for the
proper placement of IPs. Here, we are interested in the transaction fre-
quency between processing units, their relative sequencing and scheduling.
System performance will depend on the utilization of throughput and the
balanced tra�c load. With all these considerations, the PlaceTool [64] has
been developed, to deliver the allocation cost for various scenarios.

For SegBus, the PlaceTool works as the task allocator. The communi-
cation matrix is extracted from PSDF diagram and fed to the PlaceTool to
approximate the e�ect of segmentation on the performance of the application
(tasks) / platform mapping as discussed in Section 3.2.3. After having the
placement of tasks and processes, next step is the scheduling on bus, which is
controlled by arbitration. For SegBus platform, arbitration mechanism can
be further divided into three steps as depicted in Figure 4.3.

Module Setup

Application Specification (snippet)

Arbitration and Supervision

Sequential Execution

IP Placement (Place tool)

Arbitration

Scheduler

Arbiter code structure

Figure 4.3: Segbus scheduler structure.

For an example, consider the arbitrary task graph shown in Figure 4.4. tA
represents the processing time for task A and similarly, the processing time
for other tasks is mentioned. The values on the edges represent the number
of transaction packets between two nodes, connected by the corresponding
edge. PlaceTool allocates the tasks A, F, G, H, I on segment '0' and the
tasks B, C, D, E on segment '1'. The scheduling on a single bus and also
for the segmented bus with two segments is presented in Figures 4.5 and 4.6
respectively. The context switching time in scheduling is considered zero.
The total execution time is reduced by 21% but this value is application
dependent. The detailed description of PlaceTool and arbitration mechanism
is presented in following subsections.

Arbitration

The SAs and the CA are VHDL de�ned modules, with a similar structure.
The code runs with multiple parameters as required by the platform spec-
i�cation. We see the application as a set of correlated transactions that
must be ordered in their execution by the arbiters. The speci�cation of the
schedule - as supplied by the PSDF representation, is provided by a snippet
introduced in the SA or the CA codes, representing the projection of the
application �ow at the respective level and location [65].

38

A

tA=10

B

tB=5

D

tD=10

C

tC=20

E

tE=10

20

20 20

20

F

tF=5

H

tH=20

G

tG=20

I

tI=5

20

20 20

2020

Figure 4.4: Task graph.

A→B

A

A→F B→C F→G C→E B→D F→H E→D

B F C G DE H I

0 10 30 50 70 90 110 130 150 170 190

Execution Time=195G→I

Figure 4.5: Single bus scheduling.

A→B

A

A→F F→G F→H G→I

F G H I

0 10 30 50 75 95 115 135

Execution Time=155

A→B B→C B→D

B C E

0 10 30 55 75 95 115 135 155

Segment_0

Segment_1
C→E E→D

D

writing to

border unit

reading from

border unit

Figure 4.6: Two segment SegBus scheduling.

The structure of the arbiters is depicted in Figure 4.3. The �Mod-
ule SetUP� and the �Arbitration & Supervision� blocks are concerned with
application-independent procedures, such as reading the input signals, select-
ing the granted master, counting the number of transactions performed in a
granted activity, etc. The middle block, �Arbitration speci�cation�, brings
in the application speci�c requirements for scheduling grant decisions.

The application snippet is part of the actual arbiter VHDL code, and, as
such, will be executed. The addressed variables will be read or written by
the other arbitration code blocks.

Enhancements in arbitration programmes. The arbitration programme
structure has already been discussed in Chapter 3. Here, we discuss only the

39

extensions to the existing programme structure �elds, which will be used
for enhancement of communication services. The modi�ed programme line
structure can be observed in Figure 4.7.
• dest. Identi�es the target slaves. The number of maximum targets for one
transmission is a parameter of the arbiter module (max_dest). If one of the
dest sub-�elds equals the ID of the source, the content is ignored.

• dest_seg. Identi�es the target slave's segments. The number of maximum
targets for one transmission is a parameter of the arbiter module (max_segs).
This in compliance with the allocation results and the dest �eld content. The
sub-�elds ignored for the dest speci�cation will also be ignored here.

• enables. Whenever a line is marked executed, the SA will enable the line
speci�ed by this �eld, by subtracting 1 from it's current guard value. In
order to become enabled, a line with an initial guard > 1 will require that
several previous operations (execution lines) to have �nished. If, for a given
line, enables = nrLines, then the arbiter does not try to enable any other
line, when the current one is marked executed. One line may enable multiple
downstream lines. The number of maximum enable targets for one line is
a parameter of the arbiter module (max_enable). If one of the sub-�elds
equals the current line number, the information is ignored by the arbiter.

Guard Source Destination Dest_Seg toGrant count enables

1 0 2 1 280

Example:

PC

1 3 4 0 3 4 5

1 4 4 4205 10 5 X 1 7 11 X

--- --- --- --- ------ --- ---

--- --- --- --- ------ --- ---

0 0 1 0 5600 X X 0 2 X X

Figure 4.7: Program line example, with parameters: max_dest=3,
max_segs=3, max_enable=4.

The VHDL code corresponding to the table in Fig 4.7 is:

-- SA segment 0 snippet

program(0) <= (guard => 0, source => 0,

dest1 => 1, dest2 => 0, dest3 => 0,

dest_seg => 0, count => 560,

enables1 => 1, enables2 => 0, enables3 => 0);

program(1) <= (guard => 1, source => 0,

dest1 => 2, dest2 => 3, dest3 => 4,

dest_seg => 0, count => 280,

enables1 => 3, enables2 => 4, enables3 => 5);

...

40

4.2.2 SPLIT Transactions

Either the transfer is local or across the border, it is possible that the slave
is not able to to receive the data or cannot respond the master with required
data immediately. In this situation, master will hold the bus and other
masters cannot utilize the bus, even when it is free. This reduces the degree
of bus utilization. A SPLIT transfer improves the overall bus utilization by
splitting the operation of the master providing the address to a slave from the
operation of the slave responding with the appropriate data [44]. Thus by
using the SPLIT transfers idle bus cycles can be used for other transactions.

The basic criteria to have SPLIT transaction service depends on band-
width requirements of application and the packet size. If packet size is very
small, SPLIT transaction overhead to arrange the SPLIT mechanism will
not be economical and even might reduce the utilization. According to the
design methodology discussed in section 4.2, SPLIT mechanism can be in-
troduced and improvement in communication cost can decide to either use
or do not use the SPLIT service.

The SegBus communication situations can be divided mainly into two
categories: Local situation and Cross border situation. Cross border sit-
uation can be further divided into three situations [63]: Local-External,
External-External and External-Local. In the following sections, we detail
the SPLIT transaction approach for mentioned communication situations.

Local SPLIT Transactions

In this situation, both the communicating modules are placed in same bus
segment. The initiating master requests the bus ownership by raising the
req signal to the corresponding local SA. There are two reasons, when bus
ownership cannot be granted to the requesting master for local transaction.
First, if another transaction is under completion on the bus. Second, the
target slave is busy and cannot respond the request. If the bus is busy, SA
assigns the bus ownership to the requesting master later at some time. If the
target slave is not able to serve the request, SA assigns the bus ownership
to another master until the slave is ready to serve, which is exactly the same
mechanism as employed in AMBA busses [44].

Cross border SPLIT transactions

SPLIT transaction for cross border communication is the enhancement of ex-
isting SPLIT mechanism. Consider the situation that a master module from
segment0 requests to send the data packet to a slave located in segment2.
In this transaction, segment1 will be used as well because it is on the way
of transaction. It will not be an economical option to allocate all the bus
segments for this transaction for the time span of generating the packet at

41

source and delivering it to the destination. To enhance the bus utilization in
this scenario, we split the transaction into the number of steps equal to the
number of segments including the source and destination segment on its way.
Neighboring BUs are considered as local modules for the corresponding SA.
Thus the mechanism for local SPLIT transactions will be followed for each
segment traversal in cross border SPLIT transactions.

The bus request come along with target slave address. SA checks, if the
request can be served in current segment or not. If the request cannot be
served in current segment (inter-segment request), request is forwarded to
the CA with target address. In the meanwhile, no other external request is
served by the SA, until the pending operation is completed. Here, the bus
can stay idle for a number of cycles. To deal with this situation, interrupt
communication service was introduced as discussed in section 4.2.3. In this
section, we address another issue of bus utilization.

Figure 4.8: Inter Segment transfer control.

Whenever the CA is able to serve the request, it informs the SAs, from
initiator to target of the imminent transfer (signal SOP - operate). As soon
as the current operation �nishes in the initiator segment, that SA grants the
requesting master to access either the left, or the right BU. In a circular set-
up, the CA selects the shortest possible distance from the initiator segment
to the �nal one.

Upon �lling up the FIFO, the BU informs further the next segment
that data is waiting to be transferred. The corresponding SA allows for
the current operation to end, after which it will grant the transfer from one
segment border to the other (by setting the granting lines (GFL or GFR, re-
spectively). Hence, the packet waits in the FIFO the period of time required
to end the current local transfer in the next segment. When this operation
completed, the CA receives the OPF (operation �nished) signal from the
corresponding SA, and answers by lowering the respective SOP line. When
OPF is also reset, the segment is ready for a new inter-segment transfer.
The whole mechanism is shown in Figure 4.8. In a cascaded manner, the
above scenario repeats all the way to the target segment (as also illustrated
in Figure 2.3).

42

4.2.3 Interrupt Communication

As mentioned in section 4.2.2, a packet may have to wait in BU for number
of clock cycles during the cross border transactions. By using an interrupt
service, the delay in BU can be signi�cantly reduced [61]: an inter-segment
transfer, when reaching one of the BUs on the road from source to destina-
tion, will preempt the local activities of the next segment to be crossed.

The local SA is the controller that supervises any activity within the
segment. The moment of interruption, with respect to the completion of the
running local transfer, while the data packet is waiting in the intermediate
BU FIFO, is of prime importance with highest criticality value. Hence, the
decision to interrupt, or continue the current local activity will fall into the
attributions of the SA. The interrupt transaction will be non-preemptive
from start to the completion of execution.

In every clock cycle during the execution of a local activity, the corre-
sponding SA monitors if an external request for inter-segment data transfer
is raised. When such request is detected, the local grant is put down in the
subsequent clock cycles. The whole process from detection of interrupt to
the resetting of local grant takes four clock cycles. The ID of the master that
has just been interrupted is saved by the SA and it will be granted again
access, immediately when the inter-segment transaction completes. The re-
spective master then continues to send the information remaining from the
interrupted operation.

To illustrate the interrupt mechanism, consider the task graph shown in
Figure 4.4. Suppose that it is the graph of a streaming application like au-
dio/video codec and all these tasks execute repeatedly. As shown in Figure
4.9, after completing the local transaction G→I on segment 0, next transac-
tion will be again cross the border (A→B). After �lling the BU, an interrupt
will be generated by border control unit to the SA of segment 1, which will
preempt the current transaction and will read the bu�ered data from BU for
transaction A→B. The context switching time is supposed to be zero for to
make the explanation simple. After reading the complete data packet from
BU, the interrupted transaction (E→D) will be resumed. Now consider the
situation that there is no interrupt service available. In that situation, not
only the transaction A→B will be delayed but the rest of the processing and
transactions on segment 1 will be delayed as well and this delay value will go
on increasing because of previous delay. Thus after few application cycles,
segment 1 will be lagging too much behind segment 0. In this way, interrupt
communication enables the pipelining of tasks on SegBus.

The selection criteria of interrupt service to use for �nal implementation is
data dependency and urgency. It depends on the application the how urgent,
the data packet stored in BU is needed by the destination node. Another
issue is data dependency: how many nodes will have to wait directly or

43

Figure 4.9: Interrupt scheduling.

indirectly due to the delay of the packet inBU. In Figure 4.9, the data packet
for transaction A→B will not delay only the processing on node B but all of
the processing elements on segment1. Thus, improvement in communication
cost will be the parameter to favor interrupt service to be used for �nal
implementation.

4.2.4 Multicast Transactions

We introduce here an additional communication feature, namely multicast
transactions, meant to further improve performance aspects of the platform,
in the situations when a single device must send the same data packet to
multiple destinations. Such a situation can be observed for the application
at hand, in Figure 3.5: P0 has to send the same packet no less than three
times, to P2, P3 and P4, respectively.

Without the multicast feature, P0 has to execute three requests and
send, in some sequence, the data to the necessary destinations. It is nat-
ural that a single transaction, if possible, would dramatically reduce thus
the communication load, at least in this context.The multicast service will
show improvement in communication cost, only if, there is a big fraction of
identical data in the application.

In the following sections we illustrate the impact of providing such mul-
ticast feature on the activities performed by the local and central arbiters.

Implementation

For multicast transactions, the source device request to the corresponding
SA is accompanied by the destination IDs without having any information
of their relative placement. It is the task of the SA to identify the respective

44

destination segment. A local table is available to all SAs, indicating the
placement of resources as from the PlaceTool selection. SA will read the
requested slave IDs from the program line to compute the direction and
destination segment or segments (for both directions). The table is modeled
by the assignment:

--(Processing Unit) => (Segment ID)

Segmentation <= (0 =>0, 1 =>0, 2 =>0, 3 =>0, 4 =>1, 5 =>1, 6 =>1,

7 =>1, 8 =>1, 9 =>2, 10=>1, 11=>1, 12=>1);

In case of a broadcast transaction, the requested slave ID (the destina-
tion) is a universal code �11...1" (which must not be assigned to any process-
ing element). The width of this requesting code will be equal to the data
bus width. Broadcast is a special case of multicast transaction. Multicast
is used more often in today's on-chip applications. So, for implementation
details, we focus on multicast transactions.
Multicast transaction. Figure 3.5 shows that the third value of the tuple
is the same for communication links from source P0 to destinations P2, P3
and P4. The payload of these packets is the same. In this case, a single
packet can be transmitted instead of sending three di�erent copies of identical
packets. So, P0 will request the processing element with ID �1111", the
broadcast code. SA will read dest from the respective programme line after
receiving the request from P0. dest will provide the destination slave IDs 2,
3 and 4. SA then obtains the corresponding destination segment IDs from
Segmentation (0, 0 and 1 respectively).

program(0) <= (guard => 0, source => 0, dest => 2,3,4, togrant => 0,

count => 280, enables => 4,5,6,7);

Using the requested segment IDs, only one or two segments will be se-
lected for transmitting packets either in left, right or in both directions.
The selection of segments and direction for current transaction is made as
illustrated in Figure 4.10.

This example code corresponds to the multicast transaction initiated in
segment '0'. After computing the destination segment IDs, the SA will
decide if the transaction is local or across the border. If the transaction
is local, SA will check the status of segment and make proper signaling to
initiate the transaction. If the transaction is across the border, SA will
forward the request to CA with destination segment IDs. After receiving
the signal InS from CA, SA will allow the requester to start the transaction.

Then packets are transmitted according the new packet format, shown
in Figure 4.11. The packet header contains the operational code with des-
tination address because some processing elements may o�er more than one
operations. Source opCode is the operation done by source element for cur-
rent packet generation.

45

Figure 4.10: Packet read mechanism.
D

e
s
tin

a
tio

n
 n

...

...

D
e

s
tin

a
tio

n
 1

D
e

s
tin

a
tio

n
 0

S
o

u
rc

e
 ID

Data Payload

Packet Header Packet Data

Total Packet Length

D
a

ta
 W

id
th

o
p

C
o

d
e

 n

...

...

o
p

C
o

d
e

 1

o
p

C
o

d
e

 0

S
o

u
rc

e

o
p

C
o

d
e

Figure 4.11: Packet Format

Once the communication link is established and the packet is injected
into the platform, the slave will read the packet according to the mecha-
nism shown in Figure 4.12. When the packet header arrives and granted is
inserted by SA, all slaves start snooping the data bus. If destination ID
is matched in packet header to the current slave, Slave_Acq is raised high.
Slaves snoops the bus, even after this event because more than one oper-
ational code may be assigned to one slave for a single packet. Slave_Acq
enables Slave_Data_Read at the end of packet header.

In NoC, packet prioritization requires extra processing for broadcast or
multicast communication. For the SegBus platform, no prioritization is re-
quired because processing elements are placed with the consideration of com-
munication requirements and packets are transmitted towards the extreme
destination segments. By inspecting the bus lines, each destination will re-
ceive the requested tra�c. In the same way, a very economic cache coherence
snoopy protocol can be implemented.

46

granted

D_in

S
o

u
rc

e

d
e

s
t_

0

d
e

s
t_

1

d
e

s
t_

n

Data

Load

Current

destination

Packet Header Packet Data

Slave_Acq

Slave_Data

_Read

...

Figure 4.12: Packet read mechanism.

4.3 Experimental Results

To demonstrate the feasibility of proposed design methodology, the multicast
service was implemented. As a running example, the H.264 video encoder
application was mapped to SegBusplatform with three segments. Results of
around 24% reduction in tra�c load show a signi�cant reduction in latency
and communication overhead. This comes in comparison to the original, �not
multicast enabled� SegBus platform. These results are application dependent
because multicast service will show signi�cant improvement when a big frac-
tion of identical tra�c is injected to the platform. The best performance is
achieved when all multicast destinations are placed in one direction with ref-
erence to source processing element. However, this is a di�cult arrangement
to reach.

The interrupt approach brings further improvements to the platform per-
formance. The communication load with and without multicast service for
each platform component is shown in Table 4.1. It can be observed that
the individual segment load values (S0, S1) show signi�cant reduction in the
presence of the multicast service. But there is no signi�cant improvement on
border unit loads (BU0, BU1), due to an e�cient placement by the tool - as
indicated, the Place Tool already tries to minimize the cross border transac-
tions. Reduction in the total system power is proportional to the reduction
in tra�c load. However during broadcast, all destination elements read the
bus, thus increasing the capacitive load on the bus. Still, the reduction in
power due to the reduction in tra�c load dominates the power consump-
tion overhead due to capacitive load. Power consumption results for SegBus
platform with and without multicast service are presented in Table 4.2. The
results have been extracted by Altera PowerPlay tool [42].

47

Table 4.1: Communication cost with and without multicast service for H.264
application with three segments.

SegBus Element S0 S1 S2 BU0 BU1
Transactions without multicast 1746 2333 48 426 48
Transactions with multicast 1183 1844 48 423 48

Reduction in muber of transactions 32% 21% 0% 0.7% 0%

Table 4.2: Platform power consumption with and without Multicast service.

SegBus Platform without multicast with multicast Improvement
service service

Static Power Consumption 755.64 mW 755.72 mW -0.01%
Dynamic Power Consumption 137.15 mW 134.20 mW 2.15%

4.4 Chapter Summary

We have illustrated here a new perspective on the SegBus platform, based
on services. The design methodology for SegBus platform including the
communication services is presented. Each service is considered individually,
but relations between them can be also noted. The designer can select the
services according to the requirements. We have introduced a solution that
provides multicast services on the SegBus platform, and shown the impact on
arbitration and scheduling, down to the VHDL code. Our intuition about the
performance enhancement was proved correct by the implementation results
as exercised on the H.264 encoder application, where a further improvement
in performance has been observed. The broadcasting feature is implemented
with a minimal overhead in terms of arbitration computation, and in terms
of data packet size. While the former impact is overcome by the parallel
activities of the arbiter and of the functional modules, the latter can be seen
as a small price for a possibly very large improvement in performance, when
multiple destinations are required.

48

Chapter 5

Improving Resource Utilization

in NoCs

By maximizing the utilization of available resources, network performance
can be improved with a minimum overhead [90]. To address the utilization,
�rst we need to consider the packet traversal mechanism in the network.
For bu�ered NoC architectures, the packet traversal mechanism is shown in
Figure 5.1. When a packet is injected from a source processing element (PE)
to the network for delivery to the destination PE, the packet is forwarded
hop by hop on the network according to the decision made by each router
on the way. For any bu�ered NoC router, each packet is stored in the bu�er
upon arrival. In the next step, control logic reads the header �it of the
packet to make the routing and channel arbitration decisions. In the last
phase, the packet is traversed through the crossbar and delivered to the next
router via an inter-router link. This process is repeated until the packet is
delivered to the destination core. Each packet injected to the network passes
through three resources repeatedly before it is delivered to the destination
core: Input bu�er, Inter-router link and Crossbar as shown in Figure 5.1.
Di�erent techniques have been proposed for performance enhancement and
utilization of these resources, like VC based NoC architecture [109], which
addresses the channel utilization, while [73] addresses the crossbar perfor-
mance enhancement by decomposing a larger 5×5 crossbar into two smaller
2×2 crossbars.

The communication frequency between the cores is decided by the run-
ning application and the location of these cores is decided by an application
mapping technique. During the execution of the application, a routing algo-
rithm decides the route of data packets between the source and destination
nodes. This whole mechanism decides the utilization of NoC resources for
the running application at a system level. However, resource utilization tech-
niques, like the time division multiplexing of packets on inter-router channels

49

Inter-Router

Link

P
a
ck
et
In
je
ct
ed
fr
o
m
S
o
u
rc
e
to
N
et
w
o
rk

th
ro
u
g
h
N
et
w
o
rk
In
te
rf
a
ce

P
ac
k
et
S
to
re
d
at
In
p
u
t
B
u
ff
er
(V
C
)

R
o
u
ti
n
g
D
ec
is
io
n
an
d
C
h
an
n
el
A
rb
it
ra
ti
o
n

C
ro
ss
b
a
r
T
ra
v
er
sa
l

Source Node

Router

P
a
ck
et
S
to
re
d
a
t
In
p
u
t
B
u
ff
er
(V
C
)

R
o
u
ti
n
g
D
ec
is
io
n
an
d
C
h
an
n
el
A
rb
it
ra
ti
o
n

C
ro
ss
b
ar
T
ra
v
er
sa
l

Intermediate

Network Routers

Inter-Router

Link

P
ac
k
et
S
to
re
d
at
In
p
u
t
B
u
ff
er
(V
C
)

R
o
u
ti
n
g
D
ec
is
io
n
an
d
C
h
an
n
el
A
rb
it
ra
ti
o
n

C
ro
ss
b
ar
T
ra
v
er
sa
l

P
ac
k
et
S
to
re
d
at
In
p
u
t
B
u
ff
er
(V
C
)

R
o
u
ti
n
g
D
ec
is
io
n
an
d
C
h
an
n
el
A
rb
it
ra
ti
o
n

C
ro
ss
b
ar
T
ra
v
er
sa
l

Inter-Router

Link

Inter-Router

Link

P
ac
k
et
S
to
re
d
at
In
p
u
t
B
u
ff
er
(V
C
)

R
o
u
ti
n
g
D
ec
is
io
n
an
d
C
h
an
n
el
A
rb
it
ra
ti
o
n

C
ro
ss
b
ar
T
ra
v
er
sa
l

Destination

Node Router

P
a
ck
et
D
el
iv
er
ed
fr
o
m
N
et
w
o
rk
to

D
es
ti
n
a
ti
o
n
th
ro
u
g
h
N
et
w
o
rk
In
te
rf
a
ce

Time
Packets are physically

traversed through these

resources repeatedly

Figure 5.1: Packet Traversal Mechanism for Bu�ered NoC Architectures.

for channel utilization, is done at a micro-architecture level. Thus, the NoC
resource utilization can be addressed at di�erent abstraction levels. In this
chapter, the resource utilization is addressed by application mapping at a
system level and then input bu�er utilization at a micro-architecture level.

5.1 Existing Resource Utilization Techniques

As already mentioned, this chapter addresses the resource management to
improve performance in two phases: application mapping and bu�er man-
agement. The discussion on existing techniques focuses on both approaches
separately.

5.1.1 Application Mapping Techniques

The number of task allocation and scheduling techniques for the communi-
cation and resource management of MPSoC systems with homogenous and
heterogenous cores have already been proposed. An application speci�c al-
gorithm for task allocation and IP core placement is not a recently addressed
topic but one which still needs attention in order to deal with the upcoming
requirements of modern applications.

Srinivasan et al. [81] and Hu et al. [82] presents a heuristic approach
for the bandwidth constrained mapping of cores onto NoC architecture. In
their approach, initially, the core with maximum communication demand is
placed onto one of the mesh nodes with a maximum number of neighbors.
Then, for each core yet to be mapped, the core communicating more with the
already mapped cores is selected and placed onto the node, this minimizes
the communication cost with the mapped cores. After mapping all the cores,
iterative pair-wise swapping is used to improve the mapping till the system
delivers the best performance. The issue with these approaches is that they

50

do not consider the tra�c distribution of each core. A core may have high
communication requirements with many nodes but a large fraction of the
tra�c might be only for one core. In this situation, this core should not be
the �rst to be mapped.

Walter et al. [84] propose to divide the cores into a number of classes ac-
cording to the core functionality. Initially, the random mapping is generated
and then, repeatedly, cores are swapped to reduce the application execution
time unless further improvement is not obtained for a prede�ned number
of iterations. The problem with this approach is that, because of random
nature, the optimal solution cannot be consistently achieved.

The approach we illustrate here does not impose restrictions towards
other MPSOC platforms. In our approach, we propose an algorithm for
placement of IPs according to the application requirements. As a running
example, two multimedia applications, a video conference encoder (VCE)
and an MPEG-4 video encoder, are mapped on a 2D-mesh NoC platform.

5.1.2 Bu�er Management Techniques for Bandwidth Utiliza-
tion

Maximizing the bu�er utilization in Network-on-Chip (NoC) has been the
subject of prior research. Bu�er utilization can be enhanced by sharing
bu�ers among ports. Router architectures with bu�er sharing among all
the input ports can deliver high throughput, but this comes at the expense
of area and power consumption. Thus, a thoughtful tradeo� among perfor-
mance, power consumption, and area should be advised by an e�cient design
approach. Lan et al. [103] address bu�er utilization by making the channels
bidirectional, which shows signi�cant improvement in system performance.
In this case, each channel controller has two additional tasks: dynamically
con�guring the channel direction and allocating the channel to one of the
routers. These additional tasks make the controller circuit complex. There is
a 40% area overhead over the typical NoC router architecture due to double
crossbar design and control logic which also results in an additional power
consumption overhead.

In order to improve bu�er utilization, a Dynamic Virtual Channel Regu-
lator (ViChaR) for NoC routers has been proposed by Nicopoulos et al. [114].
To this end, the authors use a uni�ed bu�ered structure (UBS) instead of
individual, statically partitioned FIFO bu�ers. A UBS provides each router
port with a variable number of VCs, depending on the tra�c load. The archi-
tecture achieves around 25% improvement in system performance at a small
cost of power consumption. However, the architecture only enhances bu�er
utilization when a port is under heavy tra�c load. In the case of no traf-
�c load, the free bu�er resources cannot be used by neighboring overloaded
ports in the router.

51

A distributed shared bu�er (DSB) NoC router architecture has been pre-
sented by Ramanujam et al. [118]. Because of the extra crossbar and com-
plex arbitration scheme imposed by this architecture, it shows a signi�cant
improvement in throughput at the expense of area and power consumption.

We address the mentioned problems by proposing a NoC architecture
which o�ers low communication latency through utilization of VC-bu�ers
with minimal overheads. The proposed architecture does not impose restric-
tions on network level system design.

5.2 Application Mapping for Minimal Routing

In this section, we present the application mapping technique onto a mesh
NoC architecture for minimal routing algorithms. Average Packet Latency
(APL) and power consumption are the key evaluation parameters for ap-
plying application mapping techniques onto NoC architectures [88]. Ideally,
both of these performance indexes should be optimized. We approach the
problem by optimizing the communication cost which has direct impact on
APL and power consumption. The value of the communication cost is the
total number of hops for each packet multiplied by the number of packets
for one application cycle. Thus, we need to optimize the number of hops
for each packet. The minimum possible value of the communication cost is
equal to the number of packets injected into the network (average hop count
= 1). Due to the limitations of interconnection platforms, like a node in a
2D-mesh NoC not being able to communicate directly with more than four
nodes, the value of average hop count is always more than '1'.

The basic approach for any mapping technique is to map the cores on
neighboring nodes, which communicate with each other. Due to platform
limitations and unavailability of cores at the time of mapping, it is not an
easy task. Mapping is possible when number of cores to be mapped are less
than or equal to the number of available cores on the platform. Otherwise,
application partitioning should be rede�ned and the requirement for the
number of cores should be reduced.

For example, consider the application graph shown in Figure 5.2(a),
which needs to be mapped on a 4x4 2D-mesh NoC of homogeneous cores.
Now suppose that other applications are already running on the system and
four cores are available to serve the new application. Thus the mapping can
be de�ned. The available cores are marked and shown in Figure 5.2(b). The
available cores are far from each other except two neighboring cores. In the
example graph, cores 'B' and 'D' require more bandwidth to communicate
with each other as shown by the weighted edges in Figure 5.2(a). Therefore,
cores 'B' and 'D' will be mapped �rst as neighboring nodes at '10' and '00',
respectively. Cores 'A' and 'C' are mapped after the mapping of 'B' and

52

'D' in the two other available cores with a minimum communication cost.
IPs can be prioritized to �rst map on the basis of communication load and
the number of neighboring nodes that communicate directly with that node,
such as node 'B' communicating directly with node 'D'.

A

tA=5

C

tC=10

B

tB=20

D

tD=10

2020

8520

(a) Example ap-
plication graph

30 32 3331

20 22 2321

10 12 1311

00 02 0301

Busy Busy Busy Available

Busy Busy Busy Busy

Available Busy Busy

Available Busy Busy Busy

Available

A

CB

D

(b) Mapping on 2D-mesh NoC

Figure 5.2: Example application mapping with limited availability of cores.

Here we use the VCE application to test the proposed mapping technique.
For VCE, the PSDF diagram is shown in Figure 5.3. The PSDF diagram
has already been explained in section 3.2.1. There are two values on each
graph edge. The �rst value represents the number of successive same-size
transactions during one application cycle and the second value represents
the relative ordering among the data �ows in the given application. The
application is a group of sub-applications, an H.264 video encoder, MP3
audio encoder and OFDM transmitter.

The mapping technique can be divided into two steps: Prioritization and
Placement. The prioritization of IP cores is platform independent while the
placement phase is platform and topology dependent.

5.2.1 Prioritization of IP Cores

After having the inter-core communication data for the given application,
next step is to prioritize the IP cores for placement. The prioritization of IP
cores is based on following parameters:

Total number of packets to be communicated to, or by, the core(NPi).
The total number of packets transmitted and received by core `i ' can be com-
puted by the expression: NPi =

∑
j(Ci,j + Cj,i). Where Ci,j represents the

53

2000,2

5600,1

1400,2

2800,1

2800,1

2800,1 240,8

240,9

4200,4

2210,102280,112280,1

660,7

30,3

660,7

30,3

8400,0

600,8

YUV

Generator

Chromma

Resampler

Padding for MV

Computation

Motion

Estimation

Motion

Compensation

Quantization

(Q)

IQ

Entropy

Encoder

IDCT

Predictor

90,1 30,3

90,1

Filter Bnk MDCT

FFT

Quantizer

90,2

90,0

20,5

Transform

(DCT)
4200,5

2100,6

Stream Mux

Mem

Mem in

Audio

Mem in

Video

PS/TS

Mux
620,9 640,10

SRAM4200,4

Huffman

Enc.

20,4

640,11
Modulator

(OFDM)

Sample

Hold

IFFT

De-Blocking

Filter

Figure 5.3: Video conference encoder (VCE) application.

number of packets generated by node i for node j. Similarly, Cj,i represents
the number of packets transmitted by node j for node i.

Number of neighboring cores to be communicated (Ni).
The number of cores which communicate with core `i ' can be computed by
the expression: Ni =

∑
j(nnz(Ci,j)+nnz(Cj,i)). Where nnz is a function to

count the number of communication edges with non-zero load. To count the
number of neighbors for a core, a communication edge is considered between
each pair of cores. The edges with non-zero values represent the communi-
cation edge between the two cores in application graph.

Tra�c distribution (σ2
xi).

Tra�c distribution is the statistical load variance for a core. Suppose an IP
communicates with �ve di�erent cores, but 95% of its tra�c is for a single IP
core. With the rest of the cores, it communicates for very few packets. Thus,
only one core is strongly connected and should be mapped on the neighbor-
ing node of the current node. The remaining four cores can be mapped on
nodes far from the current node, if enough nodes are not available in the
neighborhood. Thus, the current node does not require a central node for
mapping even if it communicates with many cores. To deal with such situ-
ations, statistical variance in communication can be used to decide whether
the communication load is distributed for an IP core among it neighbors or
not. Statistical variance can be computed by Eq.5.1.

σ2
xi =

1

Ni

Ni∑
n=1

(xni −XNi)
2 (5.1)

54

Where, XNi = Average link load for IPi.
= NPi / Ni

xni = Number of packets to be communicated
between IPn and IPi.

After extracting the communication parameters, as discussed above, the
next step is to de�ne the prioritization expression. Priority is directly pro-
portional to NP and Ni and is inversely proportional to the σ2

x. Now, we
have an expression to compute the priority of the ith processing element (Pi)
shown in Eq.5.2.

Pi =
NPi ∗Ni

σ2
xi

(5.2)

The pseudocode to compute and sort the priority of 'N' application cores
to be mapped on the basis of mentioned parameters is shown in Algorithm
1.

ALGORITHM 1: PRIORITIZATION OF CORES
Input: N,NPi, Ni, σ

2
xi;

Output: P; //Prioritization sequence
PTEMP; //Prioritization sequence before sorting

1: PTEMP = 0;
2: for i = 1 to N do
3: PTEMPi

= NPi ∗Ni/σ
2
xi;

4: end for
5: P← DESCENDING_SORT (PTEMP);
6: return P;

The priority sequence for the application shown in Figure 5.3 is Motion
compensation, YUV Generator, Motion estimation, and SRAM (etc.), in de-
scending order.

5.2.2 Placement (Platform Dependent)

After obtaining the prioritized and sorted sequence of IP cores to be mapped,
the next step is to map the application cores onto the MPSoC platform. The
placement algorithm is platform and topology dependent. The task of the
placement algorithm is to optimize the APL value and reduce the power
consumption. With a higher value of average hop count, the values of APL
and power consumption are increased. The optimization of the average hop
count optimizes the power and performance characteristics. The mapping
algorithm for a 2D-mesh NoC is shown in Algorithm 2.

In Algorithm 2, Neighbors is a function to check which of the mapped
cores in communication with the current core `P' is to be mapped. Cores

55

ALGORITHM 2: APPLICATION MAPPING
Input: P; //Prioritization sequence generated by Algorithm 1

Cores_Availability; //Free cores on MPSoC platform
PSDF ; //Application PSDF stored as a matrix

Output: MPSoC_Platform; //2D Mesh NoC

1: if (|Cores_Availability| > |PSDF | then
2: Mapping can be de�ned;
3: else
4: Rede�ne application partitioning and reduce number of core requirements;
5: exit;
6: end if
7: MPSoC_Platform(Cores_Availability (Node with maximum neighbors)) ← P (1);
8: for j = 2 to |PSDF | do
9: //Following loop is for already mapped cores.
10: for k = 1 to j − 1 do
11: if Neighbors(P (j), P (k), PSDF) then
12: Neighbor_Cores (j) ← P (k);
13: end if
14: end for
15: if (|Neighbor_Cores(j)| ≥ 1) then
16: MAP (

P(j), Neighbor_Cores(j), Cores_Availability,MPSoC_Platform,P(1 : j − 1));
17: //P (j-1) represents already mapped cores.
18: else
19: MAP_AWAY (P(j), Cores_Availability,MPSoC_Platform);
20: end if
21: end for
22: return MPSoC_Platform;

_Availability keeps a record of the available cores on the platform for map-
ping and for already mapped IPs. Using Neighbor_Cores, MPSoC_Platform
and Cores_Availability, the current IP is placed by using the function MAP.
MAP optimizes the communication cost for mapping a single core. It has
been presented in Algorithm 3. If the next IP core to be mapped does not
communicate with already placed IPs, it is placed away from the already
placed IP cores using the function Map_Away. By using the proposed map-
ping algorithms, the overall application mapping has complexity of O(N2).

The placement of IPs for the VCE application presented in Figure 5.3
is shown in Figure 5.4. The values at the edges represent the number of
packets, exchanged over the corresponding link in one application cycle.

5.2.3 Simulation Results

To demonstrate the better power and performance characteristics of the pro-
posed mapping algorithm, a cycle-accurate NoC simulation environment was
implemented, running two applications mapped with four di�erent mapping
algorithms (Proposed, NMAP [81], Walter et al. [84], and PBB [82]) in HDL.
The simulations were performed for 4x4 and 5x5 mesh NoCs with MPEG4
and VCE applications, respectively. The comparison is performed in terms

56

ALGORITHM 3: MAP: SINGLE CORE MAPPING
Input: Core_To_Be_Mapped; //P(j) in MAP function call in Algorithm 2

Neighbor_Cores; //Neighbor_Cores(j) in MAP function call in Algorithm 2
Cores_Availability;//Free cores on MPSoC platform
MPSoC_Platform;//2D Mesh NoC
Already_Mapped_Cores; //P (1 : j-1) in MAP function call in Algorithm 2

Output: MPSoC_Platform; //2D Mesh NoC, updated and returned

1: Map Core_To_Be_Mapped on nearest node of Already_Mapped_Cores(1) according to
the Cores_Availability with minimum communication cost;

2: Mapping_Node = Node position, to which Core_To_Be_Mapped has been mapped.
3: C = Communication Cost;
4: Remove the mapping of Core_To_Be_Mapped.
5: for i = 2 to |Already_Mapped_Cores| do
6:
7: if Core_To_Be_Mapped and Already_Mapped_Cores (i) are Neighbor then
8:
9: Map Core_To_Be_Mapped on nearest node of Already_Mapped_Cores(i)

according to the Cores_Availability with minimum communication cost;
10: if Current_Communication_Cost < C then
11: C = Current_Communication_Cost;
12: Mapping_Node = Node position, to which Core_To_Be_Mapped has been

mapped.
13: end if
14: Remove the mapping of Core_To_Be_Mapped.
15: end if
16: end for
17: Map Core_To_Be_Mapped on Mapping_Node of MPSoC_Platform;
18: return MPSoC_Platform;

of power consumption and APL. The packet latency was de�ned as the time
duration from when the header �it is created at the source node to when it is
delivered to the destination node. For each simulation, the packet latencies
were averaged over 50,000 packets. Latencies were not collected for the �rst
5,000 cycles to allow the network to stabilize. It was assumed that the pack-
ets had a �xed length of 66 �its, the bu�er size of each synchronous bu�er
was eight �its and the data width was set to 32 bits. The NoC switches ex-
ploit two virtual channels for each input port. To perform the simulations,
we used an XY wormhole routing algorithm. A 50 MHz clock frequency
is applied to the NoC, resulting in a maximum transmission rate per link,
equal to 400 Mbps. To estimate the switch power consumptions, the high
level NoC power simulator presented in [80] was used.

The NoC system performance and power consumption for four di�er-
ent mapping algorithms are given in Figure 5.5. It can be observed from
this �gure that the proposed approach shows more than a 20% reduction
in APL compared to the PBB mapping technique. The values for other
techniques show similar results. The di�erence in performance is greater, as
the number of cores in the application are increased and can be observed in
Figures 5.6 and 5.5. The mapping technique shows more improvement for
the 5x5 NoC compared to the application mapped to the 4x4 mesh NoC.

57

Motion
Estimator
(MV comp.)

Entropy
Encoder

YUV
Generator

Video in
Mem.

SRAM DCT
Motion

compensator

Sample hold
for motion
compenstion

IDCT IQPredictor
De-Blocking
Filter

Delay and
pad for MV
computation

Stream Mux.
Mem.

Chromma
Resampler

Audio in
Mem.

2210

2280

8400

240

4200

30

240

4200

5600

30

2
2
8
0

4
2
0
0

6
6
0

4
2
3
0

6
6
0

5
6
0
0

1
4
0
0

2
8
0
0

2
0
0
0

6
0
0

OFDM

IFFT

Q

TS Mux

1320

2100

620

2
1
0
0

6
4
0

6
4
0

MDCT QuantizerFFTFilter Bank

180 30180

Huffman
Encoder

20

20

9
0

2
0

Figure 5.4: Mapping generated for the VCE application.

The power consumptions of the interconnection network, which are based on
35nm standard CMOS technology, are presented in Figure 5.6. The pattern
of power comparison is similar to APL, but the reduction factor is di�erent
because reducing the number of hops directly a�ects APL. However, power
consumption is not reduced by the same factor because packet generation
and static power are the major power sinks, which are independent of the
mapping technique.

5.3 Channel Utilization

E�cient resource utilization is necessary to execute a given application with
minimized overhead. It can be observed from Figure 5.4 that even after
e�cient mapping, more than half of the interconnection links are not used
at all by the application. The �rst step towards enhancing the utilization
of interconnection resources is examining the purpose of each network re-
source individually. If multiple applications execute on an MPSoC simulta-
neously, the tra�c pattern is unpredictable and makes it di�cult to analyze
the utilization of individual resources. The routing algorithm controls the
utilization of communication channels. The system then utilizes the router
resources according to the load on the incoming channels. We employ chan-

58

0

40

80

120

160

4x4 MPEG4 5x5 H.264 Video Conference

A
v

er
g

a
e

P
a

ck
et

 L
a
te

n
cy

 (
cy

cl
es

)

Mapping Algorithm

Proposed NMAP Walter et al. PBB

Figure 5.5: Average Packet Latency with XY routing algorithm.

0

500

1000

1500

2000

4x4 MPEG4 5x5 H.264 Video Conference

P
o

w
er

 C
o

n
su

m
p

ti
o

n
 (

m
W

)

Mapping Algoritm

Proposed NMAP Walter et al. PBB

Figure 5.6: Power consumption with XY routing algorithm.

nel load analysis to provide the basis for determining the utilization of these
router resources in the following sections for synthetic and application spe-
ci�c benchmarks.

5.3.1 Synthetic Tra�c Analysis

In synthetic tra�c analysis, the average load for each link is determined for
a variety of tra�c patterns. In our case, uniform, transpose, bit complement
and negative exponential distribution (NED) tra�c is analyzed with XY
routing. In the uniform tra�c pattern, a node sends a packet to any other
node with an equal probability while in the transpose tra�c pattern, each
node (i,j) only communicates with node (j,i). For the bit complement tra�c
load, each node (i,j) communicates only with node (M-1-i,N-1-j), if the

59

mesh size is MxN. The NED is a synthetic tra�c model based on Negative
Exponential Distribution, in which the likelihood that a node sends a packet
to another node exponentially decreases with the hop distance between the
two cores. This synthetic tra�c pro�le accurately captures the key statistical
behavior of realistic traces of communication among the nodes [117]. Figure
5.4 shows the percentage load for each link on the network for di�erent tra�c
patterns, measured by eq. 5.3.

L(i,j)→(k,l) =
TLL: (i, j) → (k, l)

TNL
(5.3)

where,

TLL: (i, j) → (k, l) =∑
0<x<(M−1)
0<x′<(M−1)

∑
0<y<(N−1)
0<y′<(N−1)

{
(S(x, y), D(x′, y′) |
via(i, j)) Then via(k, l)

and

TNL =
∑

0<m<(M−1)
0<n<(N−1)

∑
0<o<(M−1)
0<p<(N−1)

L(m,n)→(o,p)

To measure the total link load (TLL) on a speci�c link directed from node
(i, j) towards node (k, l), the tra�c load from the source nodes represented by
S(x, y) routed via node (i, j) and then via node (k, l) towards the destination
nodes, represented by D(x', y'), is considered. The destination node D(x',
y') could be the node (k, l) because these packets will contribute to the link
load for the link directed from node (i, j) towards node (k, l). For the total
network link load (TNL), the link load of all the interconnection links is
summed up. The expression is topology independent and can be extended
to any number of dimensions.

The normalized link load percentage computed using eq. 5.3 for uniform,
transpose, bit complement and NED tra�c loads are shown in Figure 5.7(a),
5.7(b), 5.7(c) and 5.7(d) respectively, with an XY routing logic. For example,
consider the node `12' in Figure 5.7(b). The input ports to receive data
from nodes `11' and `13' are not used at all during the entire simulation,
independent of the total simulation time. But, the input ports from left and
right receive the tra�c load. The tra�c load from node `22' is twice that of
the load from node `02'. The link from node `22' towards `12' is overloaded
but cannot utilize the available resources of other ports. Similar behavior
can be observed for odd-even routing.

60

(2,1) (3,1)(1,1)(0,1)

(2,2) (3,2)(1,2)(0,2)

(2,3) (3,3)(1,3)(0,3)

(2,0) (3,0)(1,0)(0,0)

1.875

1.875

1.875

1.875

1.875

1.875

1.875

1.875

1.875

1.875

1.875

1.875

1.875

1.875

1.875

1.875

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

1
.8
7
5

1
.8
7
5

1
. 8
7
5

1
. 8
7
5

1
. 8
7
5

1
. 8
7
5

1
. 8
7
5

1
. 8
7
5

2
.5

2
.5 2
.5

2
.5

2
.5

2
.5

2
.5

2
.5

1
.8
7
5

1
.8
7
5

1
.8
7
5

1
.8
7
5

1
.8
7
5

1
.8
7
5

1
.8
7
5

1
.8
7
5

(a) Uniform tra�c load.

(2,1) (3,1)(1,1)(0,1)

(2,2) (3,2)(1,2)(0,2)

(2,3) (3,3)(1,3)(0,3)

(2,0) (3,0)(1,0)(0,0)

0

7.5

2.5

0

2.5

0

2.5

0

0

2.5

0

2.5

0

2.5

7.5

0

0

5.0

0

5.0

5.0

0

5.0

0

7
.5 0 0 2
.5 0 2
. 5 0 2
. 5

5
.0 0 5
.0 0 0 5
.0 0 5
.0

2
.5 0 2
.5 0 2
.5 0 0 7
.5

(b) Transpose tra�c load.

(2,1) (3,1)(1,1)(0,1)

(2,2) (3,2)(1,2)(0,2)

(2,3) (3,3)(1,3)(0,3)

(2,0) (3,0)(1,0)(0,0)

1.5625

1.5625

1.5625

1.5625

1.5625

1.5625

1.5625

1.5625

1.5625

1.5625

1.5625

1.5625

1.5625

1.5625

1.5625

1.5625

3.125

3.125

3.125

3.125

3.125

3.125

3.125

3.125

1
.5
6
2
5

1
.5
6
2
5

1
.5
6
2
5

1
.5
6
2
5

1
.5
6
2
5

1
.5
6
2
5

1
.5
6
2
5

1
.5
6
2
5

3
.1
2
5

3
.1
2
5

3
.1
2
5

3
.1
2
5

3
.1
2
5

3
.1
2
5

3
.1
2
5

3
.1
2
5

1
.5
6
2
5

1
.5
6
2
5

1
.5
6
2
5

1
.5
6
2
5

1
.5
6
2
5

1
.5
6
2
5

1
.5
6
2
5

1
.5
6
2
5

(c) Bit complement tra�c load.

(2,1) (3,1)(1,1)(0,1)

(2,2) (3,2)(1,2)(0,2)

(2,3) (3,3)(1,3)(0,3)

(2,0) (3,0)(1,0)(0,0)

2.22

1.85

2.00

1.65

2.00

1.65

2.22

1.85

1.85

2.22

1.65

2.00

1.65

2.00

1.85

2.22

2.54

2.54

2.24

2.24

2.24

2.24

2.54

2.54

1
.9
2

1
.6
3

2
. 3
1

1
. 8
7

2
.3
1

1
.8
7

1
.9
2

1
.6
3

2
.2
1

2
.2
1

2
.5
6

2
.5
6

2
.5
6

2
.5
6

2
.2
1

2
.2
1

1
.6
3

1
.9
2

1
.8
7

2
.3
1

1
.8
7

2
.3
1

1
.6
3

1
.9
2

(d) NED tra�c load

Figure 5.7: Tra�c load analysis for XY-routing.

In all of the investigated cases, some input ports were overloaded, com-
pared to other ports. In order to balance the load and to enhance the re-
source utilization, resources can be shared among over- and underutilized
input ports. The threshold for distinguishing between over- and underuti-
lization is selected in such a way that half of the ports have a higher load
value and the other half has a lower load value.

The resources could be shared among all the input ports, but this would
require large crossbar switches, which increases power consumption, area and
switching delay. The other option is sharing the resources among multiple
ports (but not among all ports) so that loads are balanced, resource utiliza-
tion is improved, and throughput is close to an architecture with full VC
bu�er sharing.

61

In higher-dimensional NoCs (e.g. 3D NoCs), the partial virtual-channel
sharing (PVS) approach bene�ts from the increased number of router ports,
which opens more grouping options as listed below:

Typical 2D-mesh:R(5) :< (5), (4, 1), (2, 2, 1), . . . , (1, 1, 1, 1, 1) >

Stacked 3D-mesh [127]:R(6) :< (6), (5, 1), (2, 2, 2), . . . , (1, 1, 1, 1, 1, 1) >

Typical 3D-mesh:R(7) :< (7), (6, 1), (3, 3, 1), . . . , (1, 1, 1, 1, 1, 1) >

Where R(n) represents the router with n ports, <(p, q, ...)... (f, g, h,
...)> represents the set of di�erent grouping options. Each grouping option
is denoted as a tuple of group sizes; for example, (3, 2, 2) represents one group
of 3 ports and two groups of 2 ports. Ports in the same group can share their
resources. In the examples provided for the grouping options, the stacked
3D-mesh NoC is di�erent from a typical 3D mesh NoC in terms of inter-layer
interconnects. The stacked 3D-mesh NoC is a NoC-Bus hybrid architecture
which requires a 6-port router, since the bus adds a single additional port to
the generic 2D 5-port router for inter-layer communications in both directions
(up/down) [116]. On the other hand, a typical 3D mesh NoC requires a 7-
port router with two extra ports for upward and downward communication,
compared to the generic 2D 5-port router.

5.3.2 Application Tra�c Analysis

The MPEG4 application introduced in [102] has been selected for resource
utilization analysis. The NoC-mapped application and its bandwidth re-
quirements are shown in Figure 5.8. Consider, for example, the link loads of
the DR-SDRAM node. If its East and South ports share their resources, the
heavy load value of 942 MB/s from the East port can utilize the resources
of the South port, which receives a smaller load value of 60.5 MB/s. Thus,
sharing communication resources among multiple ports can balance the in-
put load on all ports without increasing the crossbar size too much. In this
case, the average load on input ports is comparable to the average load per
port which can be achieved by sharing the resources of all four ports.

The ports are grouped so that the load sums of the di�erent groups
are balanced. The port with the maximum load should be grouped together
with the port with the minimum load. Grouping it with an average load port
would not make sense because such a port does not have free resources and
does not require extra resources. For load balancing, the selection of ports
to share the resources should be made during the design phase, according to
Algorithm 4, as described and analyzed below.

The input parameters of the algorithm are the number of router ports, P,
the number of VCs per port, V, the vector representing the input bandwidth

62

requirements for each router port, L, and the number of partitions (group-
ings) of ports, d. In the algorithm, the average bandwidth requirements
per VC are represented by l and the number of ports which share the VC
bu�ers in a group is represented by vector S. Similarly, the total bandwidth
requirements for each group of ports sharing the VC bu�ers are represented
by vector W. The output of the grouping algorithm are group combinations
represented by C.

The total number of VC bu�ers in the router is P×V . Similarly, the total
number of VC bu�ers in group i are Si×V . The value of l can be computed
by a summation of the bandwidth requirements of all the router input ports
divided by P×V. The input ports in group i are grouped to share the VC
bu�ers in such a way that the total incoming load for the group (

∑
i L(Ci))

approaches the value of l × Si × V . The sum of all the S values is equal to
P. Each value of W is equal to l multiplied by the corresponding value of S.
Di�erent combinations of ports are tested by using a for loop such that the
sum of the bandwidth requirements of the ports in the combination is close
to the corresponding value of W. The whole process is repeated until the
best combination is achieved and the di�erence between W and the sum of
communication bandwidth requirements of the ports in the group is minimal.
Finally, the grouping combinations, C, are returned.

Figure 5.8: MPEG4 application [102].

The proposed algorithm can support any topology including irregular
topologies with any number of ports, P. For example, Murali et al. [110]
propose an application speci�c power e�cient topology which requires an
eleven port router. If Algorithm I is used to generate the grouping combina-
tions according to the input load requirements, further system performance
enhancement can be achieved by selecting an optimal combination from the
following set of potential groupings:

63

ALGORITHM 4: Grouping
Input: P: Number of router ports, V: Number of VCs per port, d: Number of partitions,
L = [L1, L2, . . . , LP]: input bandwidth requirements
Output: C = [C1,C2, . . . ,CP];
//Ci contains the port IDs in segment i
S = [S1, S2, . . . , Sd];
//Si is the number of ports sharing the VCs at segment i
l = Average bandwidth requirement per VC
W = [W1,W2, . . . ,Wd];
//Wi is total bandwidth requirement for partition i

1: LACC = 0; //L Accumulator
2: for i = 1 to P do
3: LACC ← LACC + Li;
4: end for
5: l← LACC/(P × V);
6: loop
7: Random S |

∑d
i=0 Si = P ;

8: W← l× S;
9: for j = 1 to d do
10: Cj ← Combination of ports |

∑
i L(Ci) ∼Wj ;

11: end for
12: if ∀(l× sizeOf(Ci)) ∼

∑
i L(Ci) then

13: exit;
14: end if
15: end loop
16: return C;

R(11) :<(11), (10, 1), (6, 5), (5, 5, 1), (4, 4, 3),

(3, 3, 3, 2), . . . , (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) >

5.4 Partial Virtual Channel Sharing (PVS) Router
Architecture

To address the resource utilization issues discussed in section 5.3, we propose
the partial virtual-channel sharing NoC (PVS-NoC) architecture. Due to
sharing, the proposed approach enhances VC utilization because free bu�ers
can be utilized by other channels. Maximum VC utilization could be achieved
by sharing among all the input ports. However, full sharing increases the
control logic complexity and power consumption. Thus, a tradeo� between
resource utilization and power consumption is needed.

This tradeo� can be achieved with the PVS approach by forming groups
with a limited number of input ports that share resources according to the
communication requirements. With this technique, the bu�er utilization is

64

increased and comes close to the utilization level of the fully shared archi-
tecture without its signi�cant silicon area and power consumption overhead
su�ering.

Data is injected into the network in the form of packets produced by the
Network Interface (NI). While receiving a packet, the NI de-packetizes it and
delivers the payload to the PE. The packet format is shown in Figure 5.9.
The header �it carries the operational code (OP), the source address (SA),
and the destination address (DA). The beginning of packet (BOP) and end of
packet (EOP) are the indicators of header and tail �its, respectively. SA and
DA are composed of two parts: horizontal (X) and vertical (Y) coordinates.
The number of bits for X and Y are determined by the number of rows and
columns in a 2D Mesh. The extra bit (0/1) in DA is used for PE recovery
and will be explained in Chapter 6.

Communication

Channel

BOP

EOP

d

DATA

Tail flit

EOP=1

Header flit

BOP=1

Data
Payload

OP

SA

DA

Flow Control
Signals

BOP

EOP

DATA

Flow Control
Signals

d

XSrc

YSrc
YDest

0/1

XDest

Figure 5.9: Data transmission format.

5.4.1 Virtual Channel Sharing Logic

The PVS approach is implemented on the input ports of the router. The
bu�er utilization is enhanced by dynamically allocating free bu�ers to over-
loaded ports. The de�nition of which bu�ers are shared among which ports
is parameterized and can be adjusted to match any number of input ports
according to the topology requirements. Only the processing element uses
dedicated bu�ers for packet injection, which are not shared with any other
router ports.

In the PVS approach, the input control logic is responsible for bu�er
allocation and receiving the data packets. An example of the PVS architec-
ture, with two groups of two channels sharing VC bu�ers, is shown in Figure
5.10. Within each group, each port has its own (distributed) routing logic
whereas VC allocation is centralized. Both the VC allocator and routing
logic operate independently, without communicating with the control logic

65

Input Channel_S

credit out

VC Allocator

Routing Logic_U

Input Channel_W

id
_
Wcredit out

VC FIFO-L-0

VC FIFO-L-(n-1)

Routing Logic_L

VC FIFO-U-0

VC FIFO-U-(n-1)

id
_
S

Output Channel_S

Input Channel_L (PE)

Pre-Grant

Pre-Grant C
r
o
s
s
b
a
rInput Channel_N

credit out

VC Allocator

Routing Logic_U

Input Channel_E

id
_
Ecredit out

VC FIFO-L-0

VC FIFO-L-(n-1)

Routing Logic_L

VC FIFO-U-0

VC FIFO-U-(n-1)

id
_
N

Pre-Grant

Pre-Grant

Output Channel_W

Output Channel_N

Output Channel_E

Output Channel_L (PE)

Figure 5.10: Proposed PVS approach for conventional Virtual Channel Ar-
chitecture.

of other groups. The task of the VC allocator is to keep track of free bu�ers
and to allocate them to the incoming tra�c. After allocation, the routing
logic computes the route for the packet and controls the crossbar for packet
switching. In Figure 5.10, `Routing Logic_U' refers to the control logic for
the upper group of virtual channel bu�ers and `Routing Logic_L' refers to
the control logic for the lower group.

Selection Criteria

For load balancing, the selection of ports to share their VC bu�ers should
be made on the basis of the number of router ports, the number of VCs
per port, input bandwidth requirements for each input port and the number
of groups (sharing VCs). The input ports are grouped to share the bu�ers
in such a way that the total incoming load for the whole group approaches
the average value of the bandwidth requirements per VC multiplied by the
number of VC bu�ers in the current group, as described in Algorithm 4.

The MPEG4 application presented by [102] was discussed in section 5.3.2
for link load analysis. In the scenario described, the East and South ports of

66

the DR-SDRAM node should share their VC bu�ers, and the West and North
ports should form a second sharing group. The heavy tra�c, amounting to
942 MB/s at the East port, can utilize the resources of the South port which
receives less tra�c, only 60.5 MB/s only. When one of the incoming links of
the DR-SDRAM node fails, its VC bu�ers can be utilized by the other port
in the same group when needed. Moreover, under control logic faults, a port
can utilize the VC resources of other ports in its group.

Allocation Policy

The PVS approach uses wormhole switching with partial sharing of virtual
channel bu�ers. Due to sharing, race conditions may occur. This happens,
for example, if only one bu�er is available and multiple channels in the
sharing group request ownership of the same bu�er. To avoid such situations,
a `Pre-Grant' signal is used, as shown in Figure 5.10. `Pre-Grant' is a single
bit signal for each physical channel and set to high by default.

When two VCs are left for allocation and a VC request comes from any
of the physical channel, one VC will be granted and the `Pre-Grant' signal
will be made `0' for that physical channel. After that, only the one remain-
ing physical channel can access the one remaining VC. This avoids the race
condition. However, a starvation situation can happen to the channel which
does not get the access to VC. To address this problem, whenever a VC
becomes free, the `Pre-Grant' signal is raised for the channel which did not
get the access to VC in previous case or has been waiting for the longest
period. Another option is to assign the priority value for each channel in a
sharing group. This approach is more useful for a handshake protocol. For
application speci�c NoCs, the priority is proportional to the channel band-
width requirements. The channel with the higher priority value is allowed
to use the bu�er.

Routing Algorithm

Di�erent routing algorithms can be used with the PVS technique. However,
there is the possibility of deadlock when more than one input ports share
their VCs. For instance, if the North and East input ports share their re-
sources and all the VCs are occupied by the �its coming from the East and
going to the West, then the �its traversing from the North to the South
direction in the upstream router (i.e., North router) have to wait. If the
scenario results in a cyclic dependency, then a deadlock will occur.

In order to avoid a deadlock in static routing algorithms such, as static
XY, at least one VC should be dedicated for each input port. Therefore, for
a PVS unit which has w number of VCs being shared among u number of
input ports, u dedicated VCs are needed (one VC for each input port) and

67

the rest of the (w-u) VCs can be shared. Similarly, since for the dynamic
routing algorithms at least two input VCs are required for each input port
to avoid deadlock [113], w-2u VCs can be shared.

5.4.2 Crossbar Switch

The Output part consists of a typical N×N crossbar switch with central con-
trol logic, where N is the total number of ports including the local PE port.
The crossbar size can be customized according to the topology requirements.
Wormhole switching is used for packet transmission, which makes e�cient
use of bu�er space as the number of �it bu�ers per VC can be less than the
packet size [122].

5.4.3 Comparison with Existing Architectures

A 5-port router with two unidirectional links per port and 10 internal bu�ers
has been investigated and has been compared with other NoC architectures.
Table 5.1 shows the result of this comparison.

The typical VC NoC represents a conventional virtual channel NoC ar-
chitecture, with 2 VCs per port, which uses unidirectional channels to com-
municate with neighboring routers. Thus, two channels are required between
two neighboring routers for two way communication. In the case of heavy
tra�c load on a certain port, the typical virtual channel architecture can
provide only 2 VCs to receive the packets on that port. The PVS-NoC can
provide 4 VCs to the same port under heavy tra�c load. Thus, the VC
availability has been doubled with only a small overhead of crossbar size.

A BiNoC has two bidirectional channels per port, for which the direc-
tion can be switched at run-time to meet communicate requirements [103].
Compared to the BiNoC architecture with 10 in-out channels, the PVS-NoC
approach provides 5 input and 5 output physical channels. A PVS-NoC
can provide 4 input and 4 output VCs per physical port whereas a BiNoC
has only two physical channels per port, without VCs. The option of di-
rection selection is provided at the cost of a large crossbar switch. Another
issue to be addressed here is scalability. The number of VC bu�ers can
be selected according to the application and topology requirements for our
proposed architecture. To insert a new VC, the bu�er and a controller are
needed without any modi�cation of the existing logic, and at the cost of
only a slight increase in crossbar resources. To insert a new bu�er in the
BiNoC architecture, a separate bu�er allocator is required and the crossbar
is signi�cantly larger.

The DSB-175 and DSB-300 router architectures have been described in
[118]. To make an exact comparison, we de�ne a DSB-160 architecture in
accordance with [118]. The DSB-160 is a router with 160 �its of aggregate

68

Table 5.1: Comparison with existing NoC router architectures

Architecture⇒ Typical BiNoC DSB-160 FVS-NoC PVS-NoC
Resource⇓ VC NoC

Number of Bu�ers 10 10 10 10 10

Channels/Direction 1-in 1-out 2-inout 1-in 1-out 1-in 1-out 1-in 1-out

Max. VCs/Channel 2 1 2 10 4

Bu�er Size 16 �its 16 �its 8 �its 16 �its 16 �its

Total Bu�er Size 160 �its 160 �its 160 �its 160 �its 160 �its

Crossbar Size 4(1×2) + 10×10 2(5×5) 5×10 + 2(2×4) +
5×5 10×5 5×5

bu�ering. The bu�ers are divided between 5 middle memory banks with
16-�it bu�ers per bank and an aggregate of 80-�it input bu�ers comprising
two 8-�it bu�ers (VCs) at each input port. The �ve memory banks are
not considered in the comparison in Table 5.1 because only one �it can
be written into and read from a middle memory in the DSB architecture,
which reduces the utilization of memory banks. Thus, the static power
consumption, without an increase in the system performance, is the major
overhead of DSB architecture as compared to a PVS-NoC.

For further comparison, the Fully-Virtual-channel shared NoC (FVS-
NoC) architecture has been investigated. In this architecture, any of the
10 VC bu�ers can be allocated to any input port. FVS-NoC channels are
unidirectional. The architecture provides the maximum utilization of VC
bu�ers at the cost of signi�cantly larger crossbars, which makes the solution
area and power expensive, compared to the proposed architecture.

5.4.4 Simulation Results

To demonstrate the performance characteristics of the proposed architecture
(PVS-NoC), a cycle-accurate NoC simulation environment has been imple-
mented in VHDL. The packets have a �xed length of seven �its, the bu�er
size is eight �its, and the data width is set to 32 bits. The 5×5 2D mesh
topology is used for interconnection. Each input port has 4 VCs. With the
same parameters, the typical virtual channel and FVS-NoC architectures are
analyzed. The static XY wormhole routing algorithm is used.

The PVS approach with a grouping combination of (2, 2, 1) is used in the
simulation, where `1' represents the bu�er dedicated to the local PE. The
critical path limits the operating frequency of the PVS router, which is 3.5%
less than the operating frequency of the baseline virtual channel router. For
the grouping combination of (3, 1, 1), the maximum operating frequency
is around 9% less than the maximum operating frequency of the baseline
virtual channel router.

69

Synthetic Tra�c

We compare the simulation results in terms of APL and saturation points
using typical, PVS, and FVS virtual channel management policies. In the
tra�c analysis, we have evaluated the performance of the network using
latency curves as a function of the packet injection rate. The packet latency
is de�ned as the time duration between the generation of the �rst �it at the
source node and the delivery of the last �it to the destination node. For each
simulation, the packet latencies are averaged over 50,000 packets. Latencies
are not recorded for the �rst 5,000 cycles to allow the network to stabilize.
In the simulations, uniform, transpose and NED [117] tra�c patterns are
used.

The latency curves for uniform, transpose and NED tra�c patterns are
shown in Figure 5.11. It can be observed for all the tra�c patterns that the
PVS-NoC architecture saturates at higher injection rates when compared to
the typical VC architecture, but at slightly lower rates than the FVS-NoC
architecture. The proposed architecture manages bandwidth limitations by
proper resource utilization and by making the load more balanced, without
increasing the communication resources. The saturation point of PVS-NoC
is just before that of the FVS-NoC because an FVS-NoC provides more bu�er
utilization by sharing the VC bu�ers among all the input ports. However, an
FVS-NoC is not a power e�cient solution, as veri�ed below with application
tra�c.

Application Benchmark

For application benchmark analysis, the encoding part of a video conference
application with sub-applications of an H.264 encoder, MP3 encoder and
OFDM transmitter is used. The video stream used for simulation purposes
contains frames of 300×225 pixels, with each pixel consisting of 24 bits.
Thus, each video frame amounts to 2025 KBytes and can be broken into
8400 data packets of 7 �its, including the header �it, where each �it is 32
bits wide. The Mem. In Video component generates the 8400 packets for
one application cycle, equivalent to one video frame. The frame rate for the
video stream is 30 frames/second and the data rate for the encoded video
stream is 6167 kbps.

The application graph with 26 nodes is shown in Figure 5.3. It consists of
processes and data �ows; data is, however, organized in packets. Processes
transform input data packets into output packets, whereas packet �ows carry
data from one process to another. A transaction represents the sending of
one data packet by one source process to another, target process, or towards
the system output. A packet �ow is a tuple of two values (P, T). The �rst
value, P, represents the number of successive, same size transactions emitted

70

0

100

200

300

400

0,05 0,07 0,09 0,11 0,13 0,15 0,17 0,19 0,21

A
v

er
a

g
e

P
a

ck
et

 L
a

te
n

cy
 (

cy
cl

es
)

Average Packet Arrival Rate (packets/cycle)

Typical VC NoC

PVS-NoC

FVS-NoC

(a) Uniform tra�c load.

0

100

200

300

400

0,05 0,07 0,09 0,11 0,13 0,15 0,17 0,19 0,21

A
v

er
a

g
e

P
a

ck
et

 L
a

te
n

cy
 (

cy
cl

es
)

Average Packet Arrival Rate (packets/cycle)

Typical VC NoC

PVS-NoC

FVS-NoC

(b) Transpose tra�c load.

0

100

200

300

400

0,05 0,1 0,15 0,2 0,25 0,3

A
v

er
a

g
e

P
a

ck
et

 L
a

te
n

cy
 (

cy
cl

es
)

Average Packet Arrival Rate (packets/cycle)

Typical VC NoC

PVS-NoC

FVS-NoC

(c) NED tra�c load.

Figure 5.11: Average Packet Latency vs. Packet injection rate for 5×5 Mesh
2D NoC with (2, 2, 1) combination of PVS approach.

by the same source, towards the same destination. The second value, T, is
a relative ordering number among the (packet) �ows in the given system.
For simulation purposes, all the possible software procedures are already
mapped to hardware devices. The application is mapped to a 3×3 3D-mesh
NoC. The details of this mapped application model are presented in [104].

71

Figure 5.12: VCE application mapped to 3×3×3 3D-Mesh NoC.

Algorithm 4 was used to determine the individual grouping combination for
each node according to the bandwidth requirements.

Meeting the application requirements, the application was mapped to a
3×3 3D-mesh NoC using Algorithm 2, as shown in Figure 5.12. The central
node (1, 1, 1) is used as a platform agent for monitoring purposes. By apply-
ing Algorithm 4, an individual grouping combination has been determined for
each node according to the bandwidth requirements. To estimate the power
consumption, the high level NoC power simulator presented by [101] has been
extended to support 3D-NoC architectures. The power consumption of the
interconnection network (NoC switches, bus arbiters, intermediate bu�ers,
and interconnects) is based on 35nm standard CMOS technology. The sim-
ulation results for APL, power consumption and the average router silicon
area for the VCE application are shown in Table. 5.2.

The area of the 3D-symmetric-mesh-based routers (with 7×7 crossbars) is
computed after synthesizing it with CMOS 65nm LPLVT STMicroelectronics
standard cell library using Synopsys Design Compiler. The results for the
average router silicon area of a 3×3×3 3D NoC are shown in Table 5.2.
Each input port has 4 VC bu�ers. The size of the bu�ers is 8 �its and
the data width is set to 32 bits. Here, the average silicon area is reported
because di�erent sharing combinations for PVS according to Algorithm I
have di�erent crossbar sizes and thus di�erent silicon areas. The �gures
given in the table demonstrate that the area overhead of the proposed PVS
technique is more reasonable compared to a fully shared virtual channel
technique.

The PVS-NoC shows around 21% reduction in power consumption and
around 7% reduction in silicon area but around 6% higher APL over the

72

Table 5.2: Experimental results for VCE application, mapped to 3×3×3
3D-Mesh NoC.

3D NoC Power Average Packet Average Silicon
Architecture Consumption (W) Latency (cycles) Area (µm2)

Typical Symmetric
3D NoC (7x7) 1.587 186 195154
PVS-3D-NoC 1.713 144 203596
FVS-3D-NoC 2.182 136 220282

Table 5.3: Experimental results for VCE application, mapped to 5×5 2D-
Mesh NoC, shown in Figure 5.4.

2D NoC Power Average Packet Average Silicon
Architecture Consumption (mW) Latency (cycles) Area (µm2)
Typical VC 66.4 112 145712
PVS-NoC 72.1 87 151412
FVS-NoC 87.9 82 163742

FVS-NoC architecture. On other hand, the PVS-NoC shows approximately
22% reduction in APL value but around 8% higher power consumption
and around 4% larger silicon area over the symmetric 3D-NoC architec-
ture. Thus, the proposed PVS-NoC architecture provides a superior tradeo�
between APL, power consumption and silicon area.

2D mesh mapped VCE application (Figure 5.4) was simulated using the
same parameters and results are shown in Table 5.3. The power consumption
results of the interconnection network (NoC switches, bus arbiters, interme-
diate bu�ers, and interconnects) are based on 35nm standard CMOS tech-
nology. The PVS-NoC showed 18% reduction in power consumption but 6%
more APL over the FVS-NoC architecture. On other hand, the PVS-NoC
showed 22.32% reduction in APL value but 7.9% more power consumption
over the typical VC architecture. Thus, the proposed PVS-NoC architecture
provides a better tradeo� between APL and power consumption.

Trade-o�s

As already discussed in previous sections, the proposed PVS approach pro-
vides a tradeo� between system performance, area and power consumption.
As shown with the synthetic tra�c analysis for a 2D mesh NoC, the satura-
tion point of the PVS latency curves comes close to the fully shared virtual
channel architecture. On the other hand, PVS saturates at a signi�cantly
higher packet arrival rate as compared to the typical virtual channel archi-
tecture. For a uniform tra�c load, the PVS architecture does not show
signi�cant improvement in the saturation point for the packet injection rate
compared to typical VC architectures. The reason for this is that all the
resources are equally loaded. The PVS based network has a lower average

73

Table 5.4: PVS-NoC router Silicon Area for di�erent grouping combinations.

Grouping Combination Silicon Area (µm2)

Typical VC router (1,1,1,1,1) 145712

PVS router (2,2,1) 151412

PVS router (3,1,1) 153338

PVS router (3,2) 156180

PVS router (4,1) 159208

Full VC Shared router (5) 163742

packet latency for transpose and NED tra�c loads than the typical VC ar-
chitecture because it is better able to balance the link load, as discussed in
section 5.3.1. PVS with (2,2,1) sharing groups requires 7% less area than
FVS. Compared to the typical VC architecture, PVS has only a 3% area
overhead. Silicon areas with di�erent PVS sharing combinations, again syn-
thesized on CMOS 65nm LPLVT STMicroelectronics standard cells using
Synopsys Design Compiler, are presented in Table 5.4. It can be observed
that the PVS area signi�cantly increases as the sharing group size increases.

In the case of the video conference encoder application, the PVS architec-
ture shows a signi�cant reduction in the average packet latency with minor
overhead of silicon area and power consumption. Moreover, the proposed
architecture shows a signi�cant reduction in area and power consumption
over the FVS architecture with minor overhead of average packet latency.

5.5 Summary

In this chapter, resource-aware task allocation, resource utilization analysis
and, on the basis of that, VC sharing technique were presented. For task
allocation, IP cores with more communication requirements which directly
communicate with a larger number of cores are given higher priority over less
demanding IP cores. Afterwards, IP core mapping is performed according
to a priority order. After de�ning an e�cient mapping technique, resource
utilization analysis was conducted. It was observed that many resources were
not used at all or the level of utilization was very low, while at the same time
some resources were overloaded. By maximizing the resource utilization of
available resources, network performance can be improved with minimum
overhead. Bu�ers consume the largest proportion of the dynamic and leakage
power of an NoC router. To enhance the utilization of VC bu�ers and reduce
the load of overloaded bu�ers in a router, a novel NoC architecture with a
better tradeo� between resource utilization, system performance and power
consumption than conventional VC based architectures was proposed.

74

Chapter 6

Network Level Fault Tolerance

in PVS-NoC Architecture

In nanometer technologies, devices are exposed to a large number of noise
sources such as capacitive and inductive crosstalk, power supply noise, leak-
age noise, thermal noise, charge sharing, and soft errors. This impacts the
reliability of the manufactured devices [115] [106] and thereby the overall reli-
ability of the system. For NoC based multi-core systems, there are a number
of fault tolerant solutions at di�erent abstraction levels of the system, for
example routing algorithms [107] [125], architectures [112] [123], and error
control coding schemes [99] [119]. Some of the proposed fault tolerant NoC
architectures use intelligent routing algorithms [97] [95]. The major draw-
back of this approach is that the fault-free resources which are interconnected
with the faulty resource cannot be used. This leads to a reduction in system
performance. For instance, if there is a link failure in a VC based NoC, the
VC bu�ers connected to the failed link cannot be used. To mitigate the e�ect
of faults on system performance, such unused resources should be utilized
by the system. A well designed network exploits all available resources to
sustain performance.

In this chapter, technique to maximize the utilization of resources in the
presence of faults, which in turn helps to retain the performance of PVS-NoC
architecture (presented in 5) is presented. In addition, PVS-NoC architecture
is further extended to provide the PE protection in case of network level
faults. The architecture for PE protection provides the option for network
interface (NI) assisted routing which also reduces the network load.

6.1 Existing Fault Tolerance Techniques

Faults can be categorized as permanent, intermittent, and transient [94]. Dif-
ferent techniques are required to deal with di�erent kinds of faults. Neishabouri

75

et al. [111] proposed the Enhanced Reliability Aware Virtual Channel (ER-
AVC) architecture for NoC. ERAVC enables dynamic VC allocation and
reliability aware sharing among input channels. More memory is allocated
to the busy channels and less to the idle channels. In addition, ERAVC
uses fault-tolerant �ow control which allows packet retransmission without
requiring the extra bu�ers. ERAVC shows signi�cant reduction in Average
Packet Latency (APL) for typical system operation at the expense of com-
plex memory control logic. If a router node is marked faulty, the approach
balances the tra�c load well. However, the approach cannot utilize the intact
resources of a partially-faulty router.

Fick et al. [98] devise a strategy to utilize the inherent redundancy at
network and router level to maintain correct operation. In the proposed Vicis
architecture, the network layer is recon�gured by swapping ports so that
defective ports come together as pairs on the same link, thereby increasing
the number of usable links with two intact ports. Router level recon�guration
is used to tolerate internal faults of a router which are not visible at the
network level. A crossbar bypass bus is used to tolerate crossbar failure.
Error correction coding (ECC) is used to protect data path elements. Each
router uses built-in-self-test (BIST) to diagnose the exact locations of hard
faults, intended for better utilization of ECC, port swapper and crossbar
bypass bus. To minimize the overhead, the port swappers does not need to
be fully connected, i.e., not every port can be connected to every physical
link. The link to the local network adapter is able to connect to three
di�erent input ports and other links are able to connect to two input ports.
For swapping to be still e�ective, the pair of failed input and output ports
must belong to the same swapping group.

Concatto et al. [93] present a highly recon�gurable fault tolerant NoC
router architecture. The architecture can dynamically stop using a faulty
�it bu�er unit and instead borrow the �it bu�er units from the neighboring
channels to sustain performance. However, the �ne-granular bypassing and
borrowing of �it bu�er units makes the control logic very complex. Thus,
the proposed solution is not area and power e�cient.

In typical NoC architectures, a fault in a router or in a network inter-
face (NI) results in an unconnected resource. Lehtonen et al. [105] achieve
fault tolerance in such situations by introducing multiple-NI architectures.
This approach improves the system fault tolerance on topology level. The
throughput performance can also be enhanced by utilizing multiple routes
and reducing the number of communication hops. However, this approach
has signi�cant area overhead, and it is not power e�cient for synchronous
systems unless power gating is introduced for all NIs. Zonouz et al. [126]
propose a dual connected mesh structure (DCS) like [105] and has similar
problems.

A lightweight fault tolerant mechanism for NoCs based on default backup

76

paths has been proposed by Koibuchi et al. [96]. These backup paths are
able to maintain the connectivity of healthy routers and processing cores in
presence of the faults. However, the critical path for packet transmission
increases with the number of faulty routers on the transmission path of
the packet. Moreover, the packet is transferred via both, the intermediate
routers and their local PEs. To avoid the transmission overhead via PEs,
additional logic is required which increases the area and power overhead.
Another issue with the proposed architecture is its scalability. The authors
claim that all the PEs can still be connected even in case of failure of all
the routers. In this case, the toplogy becomes a ring which cannot meet the
bandwidth requirements of hundreds of connected cores.

Lot�-Kamran et al. [107] presented a decision making routing algorithm
to avoid congestion in 2D NoC architectures. In addition, the proposed
dynamic routing approach can tolerate a single link failure. However, the
resources connected to a faulty link, e.g. VC bu�ers and control logic, cannot
be utilized by the proposed technique. A similar issue occurs with other fault
tolerant routing techniques. Hence, we propose a NoC architecture which
addresses the utilization of the available communication resources in the
presence of faults.

The main motivation of this work is to formulate a NoC architecture
which o�ers low communication latency and high network throughput and
minimizes design overheads. The tradeo�s among performance, power con-
sumption and area are balanced using the proposed PVS approach. It also
reduces the impact of di�erent fault scenarios on system performance without
requiring additional redundant hardware. Unlike the conventional architec-
tures, the proposed architecture maintains system performance by utilizing
the fault-free subcomponents which are part of a faulty component. In addi-
tion, the proposed architecture works reliably even if routing logic is faulty
and also makes the processing element accessible to the network if its router
fails without a�ecting the critical path length of proposed architecture.

6.2 Fault Scenarios

In this section, e�ects of di�erent faults in router and communication links
are described. Fault tolerance techniques for PEs are out of the scope of this
thesis. Approaches like [105] [126] can be used to create fault tolerant NIs.

CASE-1: Faulty Links. Consider that a fault occurrs on a network inter-
router-link. In typical architectures, the input/output bu�ers connected to
this link cannot be used anymore. Assume that there are X faulty links in a
NoC based system, each input port contains V virtual channels with bu�er
depth d, and each �it size or bu�er width is f bits. If there is a VC controller
for each virtual channel, the resources which cannot be used by the system

77

amount to X ·V ·d · f fault free memory cells, X ·V · f connecting wires and
X control logic units.

These resources could be switched o� using power gating technique to
avoid at least their unnecessary power consumption. However, this would
leave their chip area wasted. Instead, it is more bene�cial to utilize those
resources to improve the system performance or to reduce performance degra-
dation in case of faults. For example, consider the NoC platform shown in
Figure 6.1. A packet routed from node `001' to node `002' would take the
vertical link upward in absence of faults. If the communication link between
the nodes is broken as shown in Figure 6.1, the packet is rerouted via nodes
`101' and `102'. At the same time, if node `111' is the source and node `000'
is the destination, the packets for this source-destination pair will be routed
via nodes `101' and `100'. In this situation, the resources on the new routes
and especially the router at node `101' will be overloaded. The input ports
from `111' and `001' are overloaded due to the fault, while other inputs might
not be congested.

120

121

022

012

002

122

112

102

021

011

001

111

101

020

010

000

110

100

X

X

Figure 6.1: Routing in presence of faulty links.

CASE-2: Deadlock due to Faults. VCs are used to avoid deadlock [113].
Consider the situation that there are N VCs and out of them, N-1 VCs
have a fault. This fault can occur in any part of the FIFO, e.g. Rd./Wr.
controller, content counter or memory �ip-�ops, see Figure 6.2. In this case,
the architecture becomes equivalent to the typical non-VC architecture and
deadlock can occur if the routing relies on the availability of virtual channels
for deadlock avoidance.
CASE-3: Load Management. If a FIFO is faulty, the communication
performance of the corresponding port is reduced because it is overloaded by
the packets which are supposed to be transmitted via the port's VCs. Now
consider that the neighboring port is free and thus the corresponding VC
bu�ers are available. Without bu�er sharing, the overloaded port cannot

78

Input Channel

V
C
Id
e
n
ti
fi
e
r

credit out

Routing Logic

VC Allocator

FIFO Architecture
FIFO Architecture

Wr

pointer

Rd

pointer

content

counter

Xbar data

Memory
Data IN

Wr

FIFO
Full

Data OUT

Rd

FIFO
Empty

VC FIFO-0

VC FIFO-k

VC FIFO-(n-1)

FIFO Architecture
FIFO Architecture

Figure 6.2: Typical Virtual Channel Input Port Architecture.

utilize these resources to manage the load. Such faults become a bottleneck
for the overall system performance. Existing works do not consider load man-
agement mechanisms at micro-architecture level, although there are tra�c
routing algorithms dealing with load balancing on a higher level as discussed
in section 6.1.

CASE-4: Faulty Routing Logic. If a fault occurs in the logic of a VC
allocator, the corresponding physical link and VC bu�ers cannot be used
anymore. Then the tra�c needs to be re-routed using some fault-tolerant
routing algorithm as discussed in section 6.1. The use of non-minimal routes
may be necessary. In this case, not only the system throughput is con-
siderably reduced but also there is unnecessary power consumption for VC
bu�ers and control logic. Congestion on some nodes and power consump-
tion due to non-minimal paths may raise thermal issues as there is a vicious
circle between heat and power consumption [120]. This scenario is similar
to CASE-1 but di�ers in the faulty resource (VC routing logic instead of
inter-router link).

CASE-5: Resource Reclamation under Faults. Assume that a fault
occurs in routing logic or VC allocator of one port and that another fault
occurs on the physical link of a second port. Without sharing, the physical
link of �rst port cannot utilize the VC allocator and bu�ers of the second
port. So neither of the physical links can be used for packet transmission.
This may cause the complete router to fail.

CASE-6: Processing Element Recovery. Once a router has been marked
as faulty or its link to the local PE is broken, a well functional PE is isolated

79

from the rest of the system. Network level fault tolerance issues cannot ad-
dress this problem. Multiple NI architecture and default backup paths have
been proposed to maintain the accessibility of PE to the rest of the system
as discussed in section 6.1. However, multiple NI architecture is ine�cient
due to its area and power overheads, and the default backup path approach
increases packet latency.

6.3 Performance Sustainability under Faults

The main feature of the PVS-NoC architecture is to retain the system per-
formance up to a certain level after the occurrence of faults. In NoC based
interconnection platforms, a fault can occur in four types of components:
physical link, bu�er, controller or network interface. The faults on these
resources can make the connected components non-functional. By our pro-
posed sharing approach, the functionality of a�ected fault-free components
can be restored to retain the system performance. Subsequently, the fault
cases mentioned in section 6.2 are addressed. The dashed boundary (−−−)
in �gures ranging from Figure 6.3 to Figure 6.7 represents fault free resources
which are not functional due to the faults on other resources.
CASE-1: Faulty Links. When a fault occurs on a physical link, bu�ers
and control logic cannot be used by the NoC based system as can be observed
in Figure 6.3(a). If a fault occurs in `Channel_0', its VC bu�ers and routing
logic cannot be used to route a packet. Now, consider this situation for the
PVS approach as shown in Figure 6.3(b). If the fault occurs on `Channel_0',
`Channel_1' can utilize the VC bu�ers and control logic to enhance the
system throughput and avoid the unnecessary static power consumption by
the VC bu�ers and control logic.

Channel_0 Xbar data

Channel_1 Xbar data

(a) Conventional architec-
ture: fault a�ecting resource
utilization.

Channel_0 Xbar data

Channel_1 Xbar data

X

(b) PVS architecture: fault in
channel not a�ecting use of
bu�ers.

Figure 6.3: Resource utilization under faults by PVS approach.

CASE-2: Deadlock due to Faults. If most of the VC bu�ers of a spe-

80

ci�c port become faulty, the number of available VCs may drop below the
requirements of a deadlock-free routing algorithm. An example is depicted
in Figure 6.4(a), for the input port of `Channel_0', all but one of the VC
bu�ers are faulty. The architecture becomes equivalent to a non-VC archi-
tecture and deadlock may occur. Now consider the PVS architecture shown
in Figure 6.4(b). Only one VC bu�er is left of the three normally allocated to
`Channel_0', but it can bene�t from the shared VC bu�ers of `Channel_1'
and maintain enough VCs to operate without deadlock.

Channel_0 Xbar data

Channel_1 Xbar data

X

X

(a) Conventional architec-
ture: Faulty VC bu�ers
making the port overloaded
and deadlock can occur.

Channel_0 Xbar data

Channel_1 Xbar data

X

X

(b) PVS Architecture: Im-
pact of faulty bu�ers reduced
and deadlock avoided.

Figure 6.4: Load management in PVS approach under faults on VC bu�ers.

CASE-3: Load Management. To balance the load on input bu�ers and
to provide a relief to the loaded ports, the sharing of VC bu�ers by the
input ports allows to balance the negative e�ect of a faulty FIFO. In a
typical VC architecture, if one or multiple bu�ers become faulty as shown
in Figure 6.4(a), the port (`Channel_0') becomes overloaded as packets are
waiting to be routed but less functioning resources are available. In the
PVS architecture, as shown in Figure 6.4(b), the available VC bu�ers of
`Channel_1' can be used to route the blocked packets. Thus, the fault
impact will be distributed equally over `Channel_0' and `Channel_1'.

CASE-4: Faulty Routing Logic. Consider the 3×3 NoC mesh shown in
Figure 6.5. If a fault occurs at node `12' in the routing logic for the input
port from node `11', the packets for node `12' from node `11' is re-routed
through the paths shown with blue color according to the assumed fault
tolerant routing algorithm [121]. However, any other fault tolerant routing
scheme can be used to observe the similar issue. All the resources on that
input port cannot be used by the NoC system as shown in Figure 6.6(a).
Without virtual channel sharing as in PVS approach, no packets can be
routed through `Channel_0' due to the fault in the `Routing_Logic_0'.

With the PVS approach, the VC allocator marks the routing logic faulty

81

20 2221

10 1211

00 0201

Routing Logic_0

Channel_0 Xbar data

X

X

Figure 6.5: Impact of faulty routing logic on routing.

and the VC bu�ers controlled by that routing logic are not allocated to
any packet for the purpose of transmission. Even if fault occurs on `Rout-
ing_Logic_0', `Channel_0' can be used as shown in Figure 6.6(b). Only the
bu�ers shared by `Channel_1' are available for both channels (`Channel_0'
and `Channel_1') which lowers the bandwidth. But the packets do not need
to be rerouted and thus the fault can be tolerated with minimized overhead.

Routing Logic_0

Channel_0 Xbar data

Channel_1 Xbar data

Routing Logic_1

(a) Conventional architec-
ture: Faulty routing logic
requires re-routing of packets.

Routing Logic_0

Channel_0 Xbar data

Channel_1 Xbar data

Routing Logic_1

(b) PVS Architecture: Rout-
ing logic fault tolerated.

Figure 6.6: Routing logic fault tolerance by PVS approach.

CASE-5: Resource Reclamation under Faults. If a fault occurs in
the routing logic of one port, the port's resources cannot be used for packet
transmission even if its link and VC bu�ers are still functional. Similarly,
if a fault occurs on a physical link, the connected port cannot receive pack-
ets from that link even if its routing logic, VC bu�ers and mux/demux are
functional. Now consider that these faults occur on resource-sharing ports
of the same switch as shown in Figure 6.7(a). That is, faults occur on `Rout-
ing_Logic_0' and `Channel_1'. Without PVS, neither port can receive
packets. Also, many functional subcomponents cannot contribute towards
system performance while consuming static power. By using the PVS ap-

82

proach, the functional resources can be recovered and `Channel_0' can use
`Routing_Logic_1' to receive the packets as shown in Figure 6.7(b). This
sustains the system performance and avoids waste of power.

Routing Logic_0

Channel_0 Xbar data

Channel_1 Xbar data

Routing Logic_1

(a) Conventional architec-
ture: Faulty-free components
cannot be used because of
fault on other components.

Routing Logic_0

Channel_0 Xbar data

Channel_1 Xbar data

Routing Logic_1

(b) PVS Architecture: Fault
free components from neigh-
boring nonfunctional chan-
nels reclaimed to make one
channel functional.

Figure 6.7: Resource reclamation by PVS approach under faults.

CASE-6: Processing Element Recovery. The critical path for packet
transmission via shared VC bu�ers limits the maximum operating frequency.
The length of the critical path increases with the number of input ports that
share VC bu�ers due to the increased complexity of the VC controller and
the input multiplexer. If the VC bu�ers dedicated to a local PE are shared
with another input port as shown in Figure 6.8, the resulting path is not
longer than all the other paths in the router. Hence, it will not a�ect the
maximum operating frequency. This gives an opportunity to recover PEs in
the presence of network level faults.

For PE recovery, each PE is connected to multiple routers by a multiplexer-
demultiplexer pair. For demonstration, PE0 is connected to two routers, R0
and R1, as shown in Figure 6.8. Any existing on-line router fault detection
technique, for example the one proposed in [89], can be be used in the `Fault
Detector' component. When the fault detector detects a fault of router R0,
it changes the injection and reception paths of PE0 to backup paths us-
ing the multiplexer (Rx) and demultiplexer (Tx). After fault occurrence on
router R0, PE0 transmits and receives the tra�c via router R1. In this novel
approach, each PE can be connected to multiple routers using only a single
network interface (NI), keeping the overhead low and the system compatible
with single NI cores. In addition, overhead is very low compared to the mul-
tiple NI architecture presented by [105]. The critical path length for packet
transmission is slightly increased by a 2×1 multiplexer, which is signi�cantly

83

PVS Router

(R0)

Processing

Element (PE0)

PVS Router

(R1)

R
x

N
etw

ork

Interface

Tx

North

South

E
a

s
t

Bac
ku

p
P
at

h
fo

r

ne
ig
hb

or
in
g

P
E

Fault

Detector

Backup path

for PE0 in

case of R0

failure

PE0 with Recovery

Interface

Fault

Detector

PE1 with Recovery

Interface

Backup path

for PE1 in

case of R1

failure

Figure 6.8: PE Recovery architecture.

lower overhead compared to the backup path approach presented in [96].

Fault tolerant routing algorithms, for example [125] and [107], can only
deliver the tra�c to the desired destination if the PE± router is functional.
Using the proposed PE recovery approach, the tra�c can reach at its desti-
nation even if the router is faulty but it needs a new addressing scheme.

Consider that router R0 in Figure 6.8 is marked as faulty. PE0 can still
transmit and receive tra�c through router R1. Besides the failure infor-
mation of R0, the address of the router (R1) which replaces R0 has to be
broadcasted in the network. Nodes that generate and transmit data orig-
inally destined at R0 have to update their local address information and
address their data to destination R1 instead of R0. R1 must di�erentiate
between the packets for the local PE of R1 and packets for PE0. This is
achieved by an additional bit appended to the destination address (DA) as
shown in Figure 5.9. Only one additional bit is needed if PEs are connected
to two routers. If PE0 is connected to more than two routers, multiple bits
are required. Whenever the appended bit is set to `1', the packet is delivered
through the backup path to the PE of the neighboring faulty router node
(PE0). In the current scenario, it is possible to use all the PEs in the system
if 50% of routers are failed but if only one router is functional in each pair
as shown in Figure 6.8.

The architecture of the PVS router with PE recovery is shown in Figure
6.9. It can be observed that each PVS block at the router input side has two
inputs and two outputs whereas the PE recovery block has just one output.
It is possible to design all the blocks with a single output, which would result
in a 3×6 crossbar. However, this would halve the physical output bandwidth.
This is acceptable only for the PE recovery block as the backup path for the
PE is used only for packet injection and in case of fault occurrence.

84

O
u
tp

u
t

C
h

an
n
el

_
S

Input Channel_S

Input Channel_W

P
V

S

A
rc

h
it

ec
tu

re

Input Channel_N

Input Channel_E

P
V

S

A
rc

h
it

ec
tu

re

In_PE_Local

In_PE_Nbr

P
E

 R
ec

o
v

er
y

A
rc

h
it

ec
tu

re

M1

Crossbar (5x6)

O
u

tp
u

t
C

h
an

n
el

_
W

M2

O
u
tp

u
t

C
h
an

n
el

_
N

M3

O
u
tp

u
t

C
h
an

n
el

_
E

M4

O
u
t_

P
E

_
L

o
ca

l

M5

O
u

t_
P

E
_

N
b

r

M6

Figure 6.9: PE Recovery Router.

The PE recovery block with two inputs and a single output for packet
injection to the network is shown in Figure 6.10. To receive the packets from
the network, both PEs need the dedicated link from the crossbar. Thus, a
5×6 crossbar can be used for the PE recovery architecture. As compared
to a 5×5 crossbar, a 5×6 crossbar requires one more 5×1 multiplexer (M6)
without increasing the critical path length whereas a 6×6 crossbar increases
the critical path length in addition to extra gate count.

The insertion of a 2×1 multiplexer (Figure 6.9: PE Recovery Architec-
ture) does not a�ect the critical path of the router if at least two other ports
share the VC bu�ers. This is because the inserted 2×1 multiplexer for PE
recovery operates in parallel with the other PVS blocks.

In_PE_Local

credit out

VC Allocator

Routing Logic

Crossbar Data

VC FIFO-(n-1)

VC FIFO-0

Id
_
N
b
r

credit out

id_L

In_PE_Nbr

Figure 6.10: PE recovery architecture with dual inputs and single output.

85

6.4 Network Interface Assisted Pre-Routing

The processing element (PE) recovery architecture presented in CASE-6 of
section 6.3 can be used for NI assisted routing of packets which helps to re-
duce the network load. For this purpose, we divide the network into clusters.
For demonstration, each cluster is comprised of two nodes as shown in Fig-
ure 6.11. The approach is scalable to any number of routers in a cluster. In
current scenario, there are three possibilities for routing of packets between
two clusters. For demonstration, consider 'Cluster 15' and 'Cluster 11'.

• If nodes '05' and '53' communicate with each other. In this case, source
and destination, both are at far ends of the clusters. In this case, pre-
routing approach can save two hops.

• If nodes '05' and '43' or nodes '15' and '53' communicate with each
other. In this case, one of the nodes is at inner end of the cluster while
other node is at far end of the cluster. Using the proposed pre-routing
approach, one hop can be saved.

• If nodes '15' and '43' communicate with each other. In this case,
both nodes are at inner ends of the communicating clusters. In this
case, normal routing technique can be used because pre-routing cannot
contribute to save any hop.

00

01

10

11

02

03

12

13

04 14

20

21

30

31

22

23

32

33

24 34

40

41

50

51

42

43

52

53

44 54

05 15 25 35 45 5505 15

Cluster 15

25 35

Cluster 16

45 55

Cluster 17

04 14

Cluster 12

24 34

Cluster 13

44 54

Cluster 14

03 13

Cluster 9

23 33

Cluster 10

43 53

Cluster 11

02 12

Cluster 6

22 32

Cluster 7

42 52

Cluster 8

01 11

Cluster 3

21 31

Cluster 4

41 51

Cluster 5

00 10

Cluster 0

20 30

Cluster 1

40 50

Cluster 2

Figure 6.11: Clustering of 6×6 NoC for NI assisted pre-routing.

86

The next step is to propose an architecture to divide the network into
clusters and implement the pre-routing approach without signi�cant over-
heads. For this purpose, we analyze the PVS architecture. The critical path
for packet transmission via shared VC bu�ers in PVS architecture limits
the maximum operating frequency. The critical path length increases, if the
number of input ports sharing VC bu�ers is increased. This is due to larger
VC controller and demultiplexer. If the VC bu�ers dedicated to local PE are
shared with neighboring PE (PE_Nbr) as shown in Figure 6.9, the critical
path length of the router does not increase because the PVS architecture for
PEs operates in parallel with other PVS architectures in the router. So, it
will not a�ect the maximum operating frequency. This gives an opportunity
to pre-route the packets by NI.

As each PE will inject the tra�c to the network through one of the
routers in cluster at a time, it is possible to apply the single port output
PVS approach after NI assisted pre-routing. The designed router will route
the packets by using any existing routing algorithm. The pre-routing of
packets will be done by NI before injecting the packet to the network. The
detailed NI architecture is shown in Figure 6.12.

For packet injection, the pre-routing logic computes the node identi�ca-
tion bit on the basis of destination address (DA), topology table and the
cluster table. Accordingly, the pre-routing logic selects the packet transmis-
sion node by Tx Router Selector bit. Once the the transmission node has
been selected, other �its follow the route header �it. For packet reception,
the control logic and FSM will be explained in section 6.4.2.

6.4.1 Addressing Scheme

For pre-routing, each PE is connected to two routers by a multiplexer and
demultiplexer. For demonstration, PE0 is connected to two routers R0 and
R1. During transmission, NI of PE0 will decide, which of two routers in
transmission cluster is near to the destination cluster. According to that, NI
will select the demultiplexer output using transmitter router selection signal
'Tx Router Signal'. PE0 can inject a packet to the network via router R1, if it
is closer to the destination node and saves one hop of packet traversal in the
network. In addition to selection of R0 or R1 for packet transmission, another
task of NI is to put the destination address (DA) in packet header. NI will
select the node in destination cluster, which is closest to the transmission
cluster, to deliver the packet. The detailed cluster architecture for NI assisted
pre-routing is shown in Figure 6.8.

Here, the problem is to di�erentiate between the packets for PE0 and
PE1 at the time of reception. To resolve this problem, node identi�cation
bit (NIB) is appended with DA as discussed in Chapter 5 and shown in
Figure 5.9. Whenever NIB is set to '1', the packet is delivered to other PE

87

Tx
Tx

Pre-Routing
Pre-Routing

Cluster Taba le
Cluster Table

T
x
D
ata
R
0

T
x
D
ata
R
1

Rx
Rx

N
etw
o
rk
In
terface

(N
I)

Proceessing Elemment (PE)
Processing Element (PE)

FSM
FSM

R
x
D
at
a
R
0

T
x
R
o
u
te
r

S
el
ec
to
r

R
x
R
o
u
ter

S
electo

r

DA

NIB

Topology Taba le
Topology Table

R
x
D
at
a
R
1

F
lo
w
C
o
n
tr
o
l

S
ig
n
al
s

Networks-on-Chip

(NoC)

Figure 6.12: Network Interface architecture for pre-routing of packets.

in the cluster. Only one bit wide NIB is needed, when PE is connected to
two routers. Multiple NIB bits are needed, if PE0 is connected to more than
two routers.

6.4.2 Control Logic for Packet Reception

For data reception, control logic block in Figure 6.12 will decide, which router
can deliver the tra�c to PE0 using 'Rx Router Selector' signal. The state
machine for control logic is quite simple and area e�cient. To be fair, we
choose the round-robin policy for arbitration. It should be noted that to
maintain full compatibility with the existing NI transmission protocols, a
packet based arbitration is used. This means that the arbitration is per-
formed for each packet, not for each �it. The state machine contains four
main states, which are R0-Turn, R0-Sending, R1-Turn and R1-Sending as
shown in Figure 6.13. At the initialization time of the whole system, access
to the output port of router R0 is granted to deliver the packet to PE0. In
this state, if there is a request from router R0 (Req R0 = '1'), it will be

88

granted and the current state will be changed to R0-Sending. The current
state remains in R0-Sending as long as the packet is being sent. End-of-
packet signal (eop R0 = '1') indicates the transmission completion for router
R0. At this time, the current state switches to R1-Turn indicating this is the
R1 turn to send a packet (Req R0 = '0' and Req R1 = '0'). Alternatively,
it will directly get the R1-Sending state, on condition that there is a request
from router R1 (Req R1 = '1'). At the initial stage (R0-Turn), providing
that there is no request from the router (Req R0 = '0'), the request signal
from the router R1 will be checked. If there is a request from R1 (Req R1 =
'1'), the current state will switch to R1-Sending and the packet transmission
will be initiated. A similar procedure is followed when the current state is
R1-Turn.

R0-Turn R1-Sending

R0-Sending R1-Turn

Req_R0 = 0 &&

Req_R1 = 0

Req_R0 = 1 Req_R1 = 1

Req_R0 = 0 &&

Req_R1 = 1

Req_R0 = 1 &&

Req_R1 = 0

Req_R0 = 0 &&

Req_R1 = 0

eop_R0 = 1 &&

eop_R1 = 1

eop_R1 = 0

eop_R0 = 0

Req_R0 = 0 &&

Req_R1 = 0 &&

Req_R0 = 0 &&

Req_R1 = 0

R
eq
_R
1
=
1
&
&

eo
p_
R
0
=
1

R
eq
_R
0
=
1
&
&

eo
p_
R
1
=
1

Figure 6.13: Finite state machine for the proposed control logic for packet
reception of PE0 in Figure 6.8.

In this approach, each PE can be connected to multiple routers using
only a single network interface (NI), keeping the overhead low and the system
compatible with single NI cores. In addition, overhead is very low compared
to the multiple NI architecture presented by [105]. Similarly, the critical
path length for packet transmission is slightly increased by 2×1 multiplexer
which is signi�cantly lower compared to the backup path approach presented
in [96].

89

6.5 Simulation Results

To demonstrate performance characteristics of the proposed architecture
(PVS-NoC) under faults, a cycle-accurate NoC simulation environment has
been implemented in VHDL. The packets have a �xed length of seven �its,
the bu�er size is eight �its, and the data width is set to 32 bits. The 5×5
2D mesh topology is used for interconnection. Each input port has 4 VCs.
With the same parameters, typical virtual channel and FVS-NoC architec-
tures are analyzed. The static XY wormhole routing algorithm is used for
both non-faulty and faulty scenarios.

For the faulty scenario, it is assumed that an appropriate fault detection
mechanism (test unit) similar to the one used in [100] detects the faulty
links, and stores the fault information in the con�guration registers of the
routers connected to the faulty link. In this case, these routers will not send
any tra�c to the corresponding links and will reroute packets through one
of the other adjacent routers by using the fault tolerant routing algorithm
presented in [121]. The PVS approach with grouping combination of (2, 2,
1) is used in the simulation, where `1' represents no-sharing for PE bu�ers.

6.5.1 Performance Sustainability under Link Faults

We compare the simulation results in terms of APL and saturation points
for two cases: a normal network with no fault using typical, PVS, and FVS
virtual channel management policies, and an example of a faulty network
with two faulty links using typical and PVS virtual channel management
schemes as depicted in Figure 6.14. The system performability under link
faults with PVS approach has been discussed in CASE-1 of Section 6.3.

Figure 6.14: 5×5 2D-Mesh NoC with two faulty links

In tra�c analysis, we have evaluated the performance of the network
using latency curves as a function of the packet injection rate. The packet
latency is de�ned as the time duration between the generation of the �rst �it
at the source node and the delivery of the last �it to the destination node.
For each simulation, the packet latencies are averaged over 50,000 packets.

90

Latencies are not recorded for the �rst 5,000 cycles to allow the network
to stabilize. In the simulations, uniform, transpose and NED [117] tra�c
patterns are used.

0

100

200

300

400

0.05 0.1 0.15 0.2 0.25

A
v
er

a
g

e
P

a
ck

et
 L

a
te

n
cy

 (
cy

cl
es

)

Average Packet Arrival Rate (packets/cycle)

Typical

Partial Sharing

Fully Sharing

Typical, 2 faulty links

Partial Sharing, 2 faulty links

400

A
v
er

a
g

e
P

a
ck

et
 L

a
te

n
cy

 (
cy

cl
es

)

A A i (/)

0

100

200

300

400

0.05 0.1 0.15 0.2 0.25

A
v
er

a
g

e
P

a
ck

et
 L

a
te

n
cy

 (
cy

cl
es

)

Average Packet Arrival Rate (packets/cycle)

Typical

Partial Sharing

Fully Sharing

Typical, 2 faulty links

Partial Sharing, 2 faulty links

400

A
v
er

a
g

e
P

a
ck

et
 L

a
te

n
cy

 (
cy

cl
es

) (a) Uniform tra�c load.

0

100

200

300

400

0.05 0.07 0.09 0.11 0.13 0.15 0.17 0.19 0.21

A
v
er

a
g

e
P

a
ck

et
 L

a
te

n
cy

 (
cy

cl
es

)

A A i (/)

Typical

Partial Sharing

Fully Sharing

Typical, 2 faulty links

Partial Sharing, 2 faulty links

0

100

200

300

400

0.05 0.07 0.09 0.11 0.13 0.15 0.17 0.19 0.21

A
v
er

a
g

e
P

a
ck

et
 L

a
te

n
cy

 (
cy

cl
es

)

Average Packet Arrival Rate (packets/cycle)

Typical

Partial Sharing

Fully Sharing

Typical, 2 faulty links

Partial Sharing, 2 faulty links

A
v
er

a
g

e
P

a
ck

et
 L

a
te

n
cy

 (
cy

cl
es

)

(b) Transpose tra�c load.

0

100

200

300

400

0.05 0.1 0.15 0.2 0.25 0.3

A
v
er

a
g

e
P

a
ck

et
 L

a
te

n
cy

 (
cy

cl
es

)

Average Packet Arrival Rate (packets/cycle)

Typical

Partial Sharing

Fully Sharing

Typical, 2 faulty links

Partial Sharing, 2 faulty links

(c) NED tra�c load.

Figure 6.15: Average Packet Latency vs. Packet injection rate for 5×5 Mesh
2D NoC with (2, 2, 1) combination of PVS approach.

The latency curves for uniform, transpose and NED tra�c patterns are
shown in Figure 6.15. The curves for a normal network with no faults have

91

already been discussed in section 5.4.4 and presented here for the comparison
purposes with faulty networks. For faulty networks, the curves reveal that
for all the tra�c patterns, the proposed architecture su�ers less performance
degradation compared to the typical architecture. The reason is that the
VCs connected to the faulty links are utilized by the other channel which
helps to reduce the average packet latency.

6.5.2 Fault Tolerance for Routing Logic

As discussed in CASE-4 of Section 6.3, if a fault occurs in the routing logic,
the PVS architecture can tolerate the fault and packets do not need to be
re-routed. To demonstrate that, the 6×6 2D mesh NoC with 2 VCs per port
is simulated. The values of the other system parameters are the same as in
Section 6.5. For demonstration, the faulty network with two and four faulty
routing logic blocks is shown in Figure 6.16.

(a) Two faulty routing log-
ics.

(b) Four faulty routing logics.

Figure 6.16: 6×6 2D-Mesh NoC with faulty routing logics.

The latency curves with faulty routing logic for the network of Figure 6.16
are shown in Figure 6.17 for uniform, transpose and NED tra�c patterns. It
can be observed that for all tra�c patterns the PVS-NoC architecture sat-
urates at higher injection rates as compared to the typical VC architecture.
The reason is that the PVS architecture does not re-route the packets in
case of a routing logic fault. Instead, another routing logic block within the
sharing group is used to route the packets through the same channel, and
thus the average hop-count is not increased. For the PVS approach, it can
be observed that the performance degrades just slightly when the number of
faults increases. On other hand, in the typical virtual channel architecture,
the system performance is severely a�ected as the number of faults increases.

92

0

100

200

300

400

0.05 0.07 0.09 0.11 0.13 0.15 0.17

A
v
e
r
a
g

e
 P

a
c
k

e
t

L
a
te

n
c
y
 (

c
y

c
le

s)

Average Packet Arrival Rate (packets/cycle)

Typical with 2 faulty routing logics PVS with 2 faulty routing logics

Typical with 4 faulty routing logics PVS with 4 faulty routing logics

(a) Uniform tra�c load.

0

100

200

300

400

0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12 0.13

A
v
e
r
a
g

e
 P

a
c
k

e
t

L
a
te

n
c
y
 (

c
y

c
le

s)

Average Packet Arrival Rate (packets/cycle)

Typical with 2 faulty routing logics PVS with 2 faulty routing logics

Typical with 4 faulty routing logics PVS with 4 faulty routing logics

(b) Transpose tra�c load.

0

100

200

300

400

0.05 0.08 0.11 0.14 0.17 0.2 0.23

A
v
e
r
a
g

e
 P

a
c
k

e
t

L
a
te

n
c
y
 (

c
y

c
le

s)

Average Packet Arrival Rate (packets/cycle)

Typical with 2 faulty routing logics PVS with 2 faulty routing logics

Typical with 4 faulty routing logics PVS with 4 faulty routing logics

(c) NED tra�c load.

Figure 6.17: Average Packet Latency vs. Packet injection rate for 6×6 Mesh
2D NoC with fault on routing logics shown in Figure 6.16(a).

6.5.3 Reduction in Average Packet Latency by Network In-
terface Assisted Routing

To demonstrate performance characteristic of the proposed NI assisted rout-
ing approach, the same simulation parameters and routing technique was

93

used as discussed in section 6.5. The PVS approach with grouping combi-
nation of (2, 2, 1) was used for simulation purposes, where '1' represents the
bu�er dedicated to the local PE. The clustered PVS approach with grouping
combination of (2, 2, 2) was used for simulation purposes, where last tuple
'2' represents two PEs sharing the VC bu�ers.

00

01

10

11

02

03

12

13

04 14

20

21

30

31

22

23

32

33

24 34

40

41

42

43

4404 14

Cluster 4

34 44

Cluster 9

03 13

Cluster 3

33 43

Cluster 8

02 12

Cluster 2

32 42

Cluster 7

01 11

Cluster 1

31 41

Cluster 6

00 10

Cluster 0

30 40

Cluster 5

23

24

C
lu
s
te
r
1
1

20

21

C
lu
s
te
r
1
0

Figure 6.18: Clustering of 5×5 2D Mesh NoC for simulation of NI assisted
pre-routing.

For simulation purposes, the 5×5 2D mesh PVS-NoC was clustered ac-
cording to Figure 6.18. Due to odd number of nodes in NoC system and
having two nodes per cluster, one of the nodes cannot be clustered. Here,
node '22' was not clustered. There are options to cover all the nodes for
clustering. One option is to have one cluster in the system with three nodes.
In this case, node '22' can be included in one of the neighboring clusters like
'Cluster 2', 'Cluster 7', 'Cluster 10' or 'Cluster 11'. In this case, critical path
length of the router will be increased due to sharing group of three PEs.

In tra�c analysis, the performance of the network was evaluated using
latency curves as a function of the packet injection rate. The packet latency
was de�ned as the time duration when the �rst �it is created at the source
node to when the last �it is delivered to the destination node. For each sim-
ulation, the packet latencies were averaged over 50,000 packets. Latencies
were not collected for the �rst 5,000 cycles to allow the network to stabi-
lize. Uniform, transpose and NED (Negative Exponential Distribution) [117]
tra�c patterns were used in the simulation. The NED is a synthetic tra�c
model based on Negative Exponential Distribution where the likelihood that

94

0

100

200

300

400

0.05 0.1 0.15 0.2 0.25

A
v

er
a
g
e

P
a
ck

et
 L

a
te

n
cy

 (
cy

cl
es

)

Average Packet Arrival Rate (packets/cycle)

Typical Architecture

PVS Acrhitecture

Cluster-Based PVS Architecture

(a) Under uniform tra�c load.

0

100

200

300

400

0.05 0.1 0.15 0.2 0.25 0.3

A
v

er
a
g
e

P
a
ck

et
 L

a
te

n
cy

 (
cy

cl
es

)

Average Packet Arrival Rate (packets/cycle)

Typical Architecture

PVS Architecture

Cluster-Based PVS Architectre

(b) Under NED tra�c load.

0

100

200

300

400

0.05 0.07 0.09 0.11 0.13 0.15 0.17 0.19 0.21

A
v

er
a
g
e

P
a
ck

et
 L

a
te

n
cy

 (
cy

cl
es

)

Average Packet Arrival Rate (packets/cycle)

Typical Architecture

PVS Architecture

Cluster-Based PVS Architecture

(c) Under transpose tra�c load.

Figure 6.19: Simulation curves for average packet latency (APL) vs. packet
injection rate for 5×5 Mesh 2D NoC with (2, 2, 1) combination of PVS
approach.

a node sends a packet to another node exponentially decreases with the hop
distance between the two cores. This synthetic tra�c pro�le is better in cap-
turing key statistical behavior of realistic traces of communication among the
nodes. The latency curves for uniform and NED tra�c patterns are shown in

95

Router Area (µm2) Overhead (%)

Typical VC based router 145712 Reference

PVS router: Single-PE (2,2,1) 151412 3.76

PVS router: Dual-PE (2,2,2) 152403 4.39

Table 6.1: Silicon area of the existing and proposed NoC router architectures.

Figure 6.19. It can be observed that for all the tra�c patterns, the clustered
PVS-NoC architecture saturates at higher injection rates as compared to the
typical VC architecture and PVS architecture without clustering.

To demonstrate the overheads of the proposed technique, area of the
typical VC based, PVS-NoC and clustered PVS routers was computed once
synthesized on CMOS 65nm LPLVT STMicroelectronics standard cells us-
ing Synopsys Design Compiler. The simulation results for the router silicon
area for a 2D-Mesh based NoC router are shown in Table 6.1. The shar-
ing combinations used for PVS are also mentioned in Table.6.1 with router
types. The �gures given in the table demonstrate that the area overheads of
the proposed cluster based technique is reasonable when compared to other
techniques without clustering.

6.6 Summary

In this chapter, partial virtual channel sharing NoC (PVS-NoC) architecture
has been used to reduce the impact of faults on system performance. In a
conventional VC router, when a fault occurs on a channel, its corresponding
VC bu�ers and routing logic cannot be used to route packets. However in
PVS-NoC architecture, other channels can use the VC bu�ers and control
logic of a faulty channel to enhance the system throughput and avoid un-
necessary static power consumption by the VC bu�ers and control logic. In
similar manner, if a fault occurs on a channel and also on a routing logic of
another channel, PVS-NoC architecture can utilize the fault free components
to make one channel active to reduce the impact of faults on system perfor-
mance. The PVS-NoC architecture can also tolerate the routing logic faults
without requiring additional logic. In addition, the PVS-NoC architecture
is further enhanced to provide PE protection with minimal overheads and
without a�ecting the critical path length of the PVS-NoC architecture. The
PE protection architecture can also be used for network interface assisted
pre-routing of packets to reduce the network load.

96

Chapter 7

AdaptiveZ Routing for 3D

NoC-Bus Hybrid Architectures

Three-dimensional networks-on-chip (3D-NoC) is an extension of 2D-NoC,
which utilizes the bene�ts of 3D IC technology such as reduction in length
of global interconnects and decrease in power consumption while an increase
in system performance [134]. A typical 3D-NoC switch has total of seven
I/O channels. If bus architecture is used for inter-layer communications,
the switch has total of six I/O channels including the connections to local
PE. The stacked hybrid 3D NoC-Bus architecture has already been proposed
by [127], and shown in Figure 7.1. In this architecture, routers connected to
pillar nodes are di�erent, as an interface between the dTDMA pillar (vertical
link) and the NoC router must be provided to enable seamless integration of
the vertical links with the 2D network within the layers. An extra physical
channel is added to the router for the vertical communication. The extra
channel has its own dedicated bu�ers, and is indistinguishable from the other
channels. This hybrid system provides both performance and area bene�ts.

However, despite this encouraging result, there is an opposite side of the
coin which paints a rather bleak picture, because the bus approach also suf-
fers from a following drawback. Since the bus is a shared medium, it does not
allow concurrent communication in the third dimension. Therefore, in high
network loads, probability of contention and blocking critically increases. As
result of this, there is a considerable degradation in inter-layer bandwidth de-
spite single-hop vertical communication does improve performance in terms
of overall latency. In this chapter, the bu�er utilization and routing issues
for stacked mesh architecture are addressed. The proposed approach also
provides fault tolerance against single bus failure.

97

LAYER Partioning

LAYER Partioning

RXY(Z+1)

LAYER Partioning

Output Buffer

Intput Buffer

RXYZ
Output Buffer

Intput Buffer

Packet traversal path

Interlayer

communication link

Bus interface

NoC router

Figure 7.1: Side view of the 3D NoC with the dTDMA bus

7.1 Motivation and Contribution

In the static XYZ routing algorithm for stacked mesh architecture presented
by [127], consider that RXY Z is the source, which needs to send a data
packet to the destination RXY Z+1 as shown in Figure 7.1. This particular
architecture is neither power nor performance e�cient because of ine�cient
bus utilization. This can be justi�ed by considering di�erent communication
scenarios as follows.

Bus is busy but input bu�er of RXY Z+1 is free. The packet will get
stuck in RXY Z output bu�er as long as the bus is busy and arbiter does
not give bus access to RXY Z . If the neighboring bus becomes free at a later
stage to route the packet, the routing cannot take place even with adaptive
routing algorithms after the packet has been written to the output port bu�er
of RXY Z .

Bus is free but input bu�er of RXY Z+1 is full. The packet will be
delayed for an undetermined length of time, because another transaction
may start at the bus. In the meanwhile destination bu�er may be available.
Also, if another node with a high priority packet requests access to the bus
or even worse the RXY Z+1 input bu�er, the delivery time of packet becomes
completely uncertain.

Bus is busy and also the input bu�er of RXY Z+1 is full. For the stacked
mesh architecture, if the destination node is not exactly above/below the
current node, packets will wait unnecessarily even if the rest of the network
resources are available.

Thus there are two major drawbacks in the stacked mesh architecture.
First, each packet is traversed through two bu�ers, which increases the dy-

98

namic power consumption. Secondly, the output bu�ers are not bene�cial
in reducing the latency. They also hinder the on-chip network from imple-
menting adaptive and congestion-aware routing algorithms. This happens
because when the packet is written to an output bu�er, it is not possible for
the connected router to bring it back and re-route it. The presence of the
output bu�er also a�ects the static power consumption.

To address these problems, an e�cient inter-layer communication scheme
and routing algorithm which enable congestion-aware communication are
proposed. The contribution of this chapter is to address the issues arising
when two di�erent communication media (NoC and Bus) are hybridized to
form a 3D communication scheme. We will present in detail in Section 7.2
and Section 7.3 that by removing the output bu�ers, setting up a smart
inter-layer communication, and exploiting an appropriate adaptive routing
algorithm, the average packet latency (APL) and power consumption for
stacked mesh architecture (presented in [127]) are reduced while fault toler-
ance has been enhanced.

7.2 Proposed Architecture

It is not an e�cient approach to connect a NoC router to a vertical bus
without considering the characteristics of both platforms. The extra output
bu�er in Figure 7.1 can hinder the routing adaptivity and load balancing.
In this section, we approach the problem in di�erent phases. Initially, the
bu�er on output port is removed to reduce power consumption and to enable
implementing an adaptive routing algorithm. Then, an adaptive inter-layer
routing algorithm called AdaptiveZ (Z̃) is applied. For the sake of simplic-
ity, it is assumed that for intra-layer communication a static XY routing
algorithm is used. Note that the proposed inter-layer routing algorithm is
not dependent to intra-layer routing policy. Therefore, in Z̃XY routing al-
gorithm, the XY routing is projected in di�erent layers identically as shown
in Figure 7.2 with the adaptive inter-layer communication. The AdaptiveZ
routing algorithm is elaborated in Algorithm 5.

As can be seen from Figure 7.2, for inter-layer communication, the �rst
bus pillar that is available on the way for the vertical communication will
be used. For this purpose, the router sends a request signal req with the
destination layer ID to the bus arbiter after each hop on its way until it
reaches the target layer or being exactly below/above the destination router.
Based on the status of the target bu�er and bus, the arbiter decides to grant,
reject, or suspend the request. Once the grant or wait signals are received,
the packet waits there accordingly, to be delivered to the intermediate node
in the destination layer. In order to determine if the destination is free or
busy, we use the stress values of the bus which is calculated based on the

99

D

X

Z

Y

D: Destination node

S: Source node

21 3 4 5

6

7

S

n th Interlayer

communication path

Figure 7.2: Example of AdaptiveZ routing

number of the requests pending on the bus. In this work, the wait signal
is deasserted when the number of pending requests are more than ⌊n/2⌋.
However, other criteria to calculate the stress value of the bus can be used.
Once, the packet is in the destination layer (Zdiff = 0), normal XY (or any
other) routing algorithm is used. The packet is delivered to the destination
node, once Xdiff =Ydiff =Zdiff = 0. Thus, in Figure 7.2 vertical link #1
has the highest probability to serve the packet under consideration and link
#7 has the lowest probability to be used for routing of the current packet.
Routing in the vertical dimension is done adaptively by considering the load
on vertical links for load balancing purposes. This was done because the bus
is a shared medium and adaptive vertical link communication can increase
the bus utilization. Note that if the output bu�er existed, it would not be
possible to bring back the packet and re-route it.

This solution is not deadlock free due to adaptivity. To deal with dead-
lock, typical virtual channel architecture is used as shown in Figure 7.3.
Consider that the input bu�er of router R001 contains a packet, which needs
to be transmitted to the neighboring node R101. Router R101 is already
waiting for the availability of dTDMA bus to deliver a packet at the node
R100. Also, consider that the node R000 and R100 have the same situations.
In case of typical stacked mesh architecture with adaptive vertical routing
and without virtual channel, there will be a deadlock. In the proposed ar-
chitecture, with the same number of bu�ers as compared to stacked mesh
with dTDMA bus architecture [127], we modify the inter-layer communica-
tion scheme to support the VC architecture. The output bu�er from the
router for bus communication was removed. An extra input bu�er is used to
receive the data packets and support the VC concept. There is very small

100

ALGORITHM 5: AdaptiveZ Routing Algorithm
Input: (Xcurrent, Ycurrent, Zcurrent), (Xdestination, Ydestination, Zdestination), wait
Output: Next Hop (E, W, N, S, L, U/D)

1: Xdiff = Xcurrent −Xdestination;
2: Ydiff = Ycurrent − Ydestination;
3: Zdiff = Zcurrent − Zdestination;
4: if (Xdiff = Ydiff = Zdiff = 0) then
5: Deliver the packet to the local node and exit;
6: end if
7: if (Zdiff = 0) then
8: Use a 2D intra-layer routing algorithm;
9: else if (Xdiff = Ydiff = 0) then
10: Send a request to the bus arbiter along with the destination layer ID;
11: Wait until receiving the grant;
12: else if (Xdiff ̸= 0 or Ydiff ̸= 0) then
13: Send a request to the bus arbiter along with the destination layer ID;
14: if (wait = `1') {the destination is free, but the bus is busy} then
15: Wait until receiving the grant;
16: else {the destination is busy}
17: Withdraw the request;
18: Use a 2D intra-layer routing algorithm;
19: end if
20: end if

area overhead of one 2×1 multiplexer, one 1×2 demultiplexer and few sig-
naling wires. In addition, the added VC not only avoids deadlock, but it also
improves the throughput. Now the intermediate bu�ers are used in a more
e�cient way and enhance the system power and performance characteristics.
The reduction in power consumption is achieved due to removal of the bu�er
from the traversal path of the packet and routing adaptivity.

The detailed stacked mesh architecture is shown in Figure 7.4. The bus
arbiter receives the bus request from di�erent nodes by req signal along with
destination layer ID (dest_layerID). The bus arbiter deals with bus request
by considering the di�erent parameters like stress value (indicating availabil-
ity of bu�er slots) of VC bu�ers, ongoing transactions and the transactions
in the queue waiting for the bus grant. We use local information which is
the current queue length of the corresponding VCs connected to the target
router to generate the stress value. Depending on the situation, the bus
arbiter generates grant and wait signals. If the node receives a grant sig-
nal, then it will proceed with the transaction. Instead, if it receives a wait
signal, the node will continue to wait for the grant signal and the bus ar-
biter will put the request in the queue. If no grant and no wait signals are
received, the node will withdraw the request and move the packet within
the layer using any of the 2D routing algorithms. On the next node, again
same procedure will be repeated. On the same node, if the bus is granted
for vertical communication, the packet will be delivered to the intermediate
node in the destination layer. If the packet does not get any bus access on

101

R001

R000

R101

R100

PE PE

PE PE

Layer partitioning

dTDMA Bus

Free buffer

Filled buffer
Traversal path for

the stucked packet

Figure 7.3: VC architecture for the stacked mesh architecture

its way for vertical communication until it reaches exactly below or above
the destination node, it will wait there without any further routing to get
the bus arbitration and will be delivered directly to the destination node.
This is the situation for path #7 in Figure 7.2.

7.3 Inter-layer Fault Tolerant Routing

In 3D integration, the silicon vias provide communication links for dies in the
vertical direction which is a critical design issue. Like other physical com-
ponents, the fabrication and bonding of TSVs can fail. A failed TSV may
cause a number of stacked known-good-dies to be discarded. As the number
of dies to be stacked increases, the failed TSVs increase the manufactur-
ing cost and decrease the yield [128]. A reliable inter-layer communication
scheme can considerably cope with these issues. In this section, we explore
how the available signals can enable the routing algorithm to avoid these
paths (faulty buses) when there are other available paths between the source
and destination pair. In this work, we assume that all intra-layer communi-
cation links are free from faults.

The proposed dynamic routing approach can tolerate a single link fail-
ure by utilizing the available communication resources. In this section,
we enhance our proposed AdaptiveZ algorithm to deal with fault tolerance
for inter-layer communication of stacked mesh architecture. Similar to the
EDXY routing algorithm, the existing signaling used for adaptive inter-layer
communication is reused to achieve fault tolerance without adding any extra

102

Bus

Arbiter
RXYZ

1

0

LAYER Partitioning

LAYER Partitioning

RXY(Z+1)
1

0

RXY(Z-1)
1

0

dest_LayerID
req
wait
grant

EOP

LAYER Partitioning

LAYER Partitioning

RXYZ_VC0_StressValue
RXYZ_VC1_StressValue

Figure 7.4: Side view of the proposed stacked mesh architecture

wires. As explained in Section 7.2, wait signal acts as a congestion �ag in
normal conditions. In case of any fault on the dTDMA bus, wait signal is
permanently asserted to `0' and bus arbiter does not serve any request raised
by req signal. Thus, routing adaptivity is not a�ected by introducing the
fault tolerance in the existing architecture.

The proposed architecture employs Cyclic Redundancy Check (CRC)
codes to detect possible faults in a received �it that may have been cor-
rupted. Before traversing the bus towards the input of the downstream
intermediate bu�er, each �it is error encoded at the upstream router using
payload bits to store a CRC checksum for error detection. The CRC charac-
teristic polynomial that has been used in this work is g(x) = x8+x2+x+1.
The polynomial adds 8 check bits to �it data. The same CRC code has been
used in the Header Error Control of ATM networks, and is able to correct
single-bit errors (we do not make use of this correction capability) and detect
many multiple bit errors [130]. If the error is detected in received �it, the bus
arbiter asserts `0' on the wait signal. When router checks the wait signal,
it will re-route the packets within the layer and in future, will not drive any
tra�c for inter-layer communication to the corresponding dTDMA bus. The
minimal path routing will be used even in the case of faulty links without
any modi�cation in the proposed routing algorithm. However there are the

103

120

121

022

012

002

122

112

102

021

011

001

111

101

020

010

000

110

100 IP Block

Switch

Interconnect

Faulty Bus Bus

Bus Node

Figure 7.5: Example of modi�cations to the proposed routing algorithm to
guarantee single bus-link failure tolerance

cases, when routing mechanism needs to be modi�ed to follow a non-minimal
path to reach the destination node.

Consider the node `000' in Figure 7.5 which needs to send a packet to
node `112'. The vertical links on two paths are faulty as shown in Figure
7.5. According to the proposed routing algorithm in Section 7.2, the vertical
dTDMA bus connecting the nodes `000', `001' and `002' should be tried �rst,
but that bus link is faulty in the current situation. So, the packet will be
routed to either of the nodes `010' or `100' according to the routing algorithm.

We route the packet via non-minimal path through one of the neighboring
nodes of the current node, when both the current and the destination nodes
are connected to the same faulty pillar. Consider the situation that the
packet is exactly below or above the destination node. In this case, it cannot
be delivered to the destination if the bus link is faulty. So, the packet will
be rerouted to the neighboring node within the layer, where the packet is
currently residing and then will be delivered to the destination. This is
the situation, when the node `120' contains a packet for node `122'. For
the proposed routing algorithm, the packet can only be routed through the
vertical dTDMA bus connecting the nodes `120', `121' and `122', which is
faulty. In this situation, the packet will be routed to the nodes `110' or `020'
via a non-minimal path using one of the neighboring pillars.

This is especially important in future 3D integration in which the failure
rate is high. If the interlayer channels are fabricated correctly, the added
wires used to reduce network latency, can guarantee packet transmission in
the vertical dimension in the case of a bus link failure.

104

7.4 Simulation Results

A cycle-accurate NoC simulation environment was implemented in VHDL
to simulate the proposed techniques and compared its performance with
existing 3D-NoC architectures. Symmetric 3D-mesh NoC [131], Hybrid 3D
NoC-Bus mesh [127], and the proposed architecture using AdaptiveZ routing
algorithm was analyzed for synthetic and realistic tra�c patterns. Static
ZXY routing was used for Symmetric and Hybrid 3D NoC-Bus mesh. For
the proposed architecture, AdaptiveZ (Z̃XY) routing was used.

7.4.1 Synthetic Tra�c Analysis

To perform the simulations under synthetic tra�c pro�les, we used uniform,
hotspot 10%, and Negative Exponential Distribution (NED) [132] [133] traf-
�c patterns. For each simulation, the packet latencies were averaged over
50,000 packets. Latencies were not collected for the �rst 5,000 cycles to al-
low the network to stabilize. It was assumed the bu�er size of each FIFO
was eight �its, and the data width was set to 64 bits.

In the �rst experiment set, 3×3×3 3D meshes and packets with a length
of seven-�its were used. The average packet latency (APL) curves for uni-
form, hotspot 10% and NED tra�c patterns with varying average packet
arrival rates (APAR) are shown in Figure 7.6(a), 7.6(b), and 7.6(c), respec-
tively. For the hotspot 10% tra�c pattern, the node at (2, 2, 2) is destined
as the hotspot node. It can be observed for all the tra�c patterns, that
the network with proposed architecture saturates at higher injection rates.
The reason being that the AdaptiveZ routing for inter-layer communication
increases the bus utilization and makes the load, balanced. In the case of
static ZXY routing, the Hybrid 3D NoC-Bus architecture cannot deliver
the desired throughput because of bandwidth limitations. For the proposed
architecture, bandwidth limitations are managed by proper bu�er utiliza-
tion without increasing the communication resources. For NED tra�c, the
throughput curves show a signi�cant di�erence in performance as shown in
Figure 7.6(c).

In the second experiment set, we changed some of the NoC parameters
considered in the �rst set of experiments. For the simulations, 3×3×4 3D
meshes and packets with a length of ten-�its were used. The nodes at (2, 2,
2) and (2, 2, 3) are chosen to receive more packets for the hotspot 10% traf-
�c pattern. The packet latency for uniform, hotspot 10% and NED tra�c
patterns with varying APAR are shown in Figure 7.7(a), 7.7(b), and 7.7(c),
respectively. For this experiment set, our results also reveal improved aver-
age packet latency for varying average packet arrival rates compared to the
typical Hybrid 3D NoC-Bus mesh and the Symmetric 3D-mesh NoC.

105

50

100

150

200

250

300

350

400

450

500

0.05 0.1 0.15 0.2

A
v
er

a
g
e

P
a

ck
et

 L
a
te

n
cy

 (
cy

cl
es

)

Average Packet Arrival Rate (packets/cycle)

Symmetric NoC 3D Mesh

Hybrid NoC-Bus 3D Mesh

Proposed Hybrid NoC-Bus 3D Mesh

A
v
er

a
g
e

P
a

ck
et

 L
a
te

n
cy

 (
cy

cl
es

)

(a) Under uniform tra�c pro�le

50

100

150

200

250

300

350

400

450

500

0.05 0.1 0.15 0.2

A
v
er

a
g
e

P
a

ck
et

 L
a
te

n
cy

 (
cy

cl
es

)

Average Packet Arrival Rate (packets/cycle)

Symmetric NoC 3D Mesh

Hybrid NoC-Bus 3D Mesh

Proposed Hybrid NoC-Bus 3D Mesh

A
v
er

a
g
e

P
a

ck
et

 L
a
te

n
cy

 (
cy

cl
es

)

(b) Under hotspot 10% tra�c pro�le

50

100

150

200

250

300

350

400

450

500

0.05 0.1 0.15 0.2

A
v
er

a
g
e

P
a

ck
et

 L
a
te

n
cy

 (
cy

cl
es

)

Average Packet Arrival Rate (packets/cycle)

Symmetric NoC 3D Mesh

Hybrid NoC-Bus 3D Mesh

Proposed Hybrid NoC-Bus 3D Mesh

A
v
er

a
g
e

P
a

ck
et

 L
a
te

n
cy

 (
cy

cl
es

)

(c) Under NED tra�c pro�le

Figure 7.6: Latency versus average packet arrival rate for a 3×3×3 NoC

7.4.2 Videoconference Application

For realistic tra�c analysis, we used the encoding part of videoconference
application with sub-applications of H.264 encoder, MP3 encoder and OFDM
transmitter presented in Chapter 5. The video stream used for simulation

106

50

150

250

350

450

550

650

0.05 0.1 0.15 0.2

A
v
er

a
g
e

P
a

ck
et

 L
a
te

n
cy

 (
cy

cl
es

)

Average Packet Arrival Rate (packets/cycle)

Symmetric NoC 3D Mesh

Hybrid NoC-Bus 3D Mesh

Proposed Hybrid NoC-Bus 3D Mesh

(a) Under uniform tra�c pro�le

50

150

250

350

450

550

650

0.05 0.1 0.15

A
v
er

a
g
e

P
a

ck
et

 L
a
te

n
cy

 (
cy

cl
es

)

Average Packet Arrival Rate (packets/cycle)

Symmetric NoC 3D Mesh

Hybrid NoC-Bus 3D Mesh

Proposed Hybrid NoC-Bus 3D Mesh

(b) Under hotspot 10% tra�c pro�le

50

150

250

350

450

550

650

0.05 0.1 0.15 0.2

A
v
er

a
g
e

P
a

ck
et

 L
a
te

n
cy

 (
cy

cl
es

)

Average Packet Arrival Rate (packets/cycle)

Symmetric NoC 3D Mesh

Hybrid NoC-Bus 3D Mesh

Proposed Hybrid NoC-Bus 3D Mesh

(c) Under NED tra�c pro�le

Figure 7.7: Latency versus average packet arrival rate for a 3×3×4 NoC

purposes was of size 300×225 pixels and each pixel consists of 24 bits. Thus
each video frame is composed of 1.62 Mbits and can be broken into 8400 data
packets each of size 7 �its including the header �it. The data width was set
to 64 bits. We modeled the application graph, mapping strategy, frame rate,
bu�er size, number of nodes, layers and generated packets, supply voltage

107

and clock frequency used in Chapter 5 for the real application simulation.
The application that is mapped to 3×3×3 3D-mesh NoC is shown in Figure
5.12.

YUV

Generator

Padding for

MV Comp.

Stream Mux

Mem

Figure 7.8: 3D NoC running the video conference encoding application with
one faulty bus

Table 7.1: Power Consumption and Average Packet Latency

3D NoC Architecture Power Consumption Average Packet
(W) Latency (cycles)

Symmetric NoC 3D Mesh 1.587 186

Hybrid 3D NoC-Bus Mesh 1.439 166

Proposed Hybrid 3D NoC-Bus Mesh 1.382 153
(AdaptiveZ routing)

Proposed Hybrid 3D NoC-Bus Mesh 1.491 179
with 1 faulty bus (AdaptiveZ routing)

To estimate the power consumption, we used the high level NoC power
simulator presented in [80] to support the 3D NoC architectures. The sim-
ulation results for power and performance of the videoconference encoding
application are shown in Table. 7.1. The proposed architecture using the
AdaptiveZ routing algorithm showed 13% and 4% drop in power consumption
over the Symmetric 3D-mesh NoC and Hybrid 3D NoC-Bus mesh architec-
tures, respectively. Similarly, 18% and 8% reduction in APL over the Sym-
metric 3D-mesh NoC and Hybrid 3D NoC-Bus mesh architectures was also
observed for our proposed architecture. Note that the proposed technique
only deals with inter-layer communication, but these values are calculated for
the whole system. It could be deduced that the proposed architecture has
considerably optimized the inter-layer communication with negligible area
overheads, presented in Table 7.2. Note that for all the routers, the data
width and bu�er depth were set to 32-bit and 8, respectively. The �gures

108

given in the table reveal that the area overheads of the proposed routing
units and the bus control module are negligible.

Table 7.2: Power Consumption and Average Packet Latency

Component Area (µm2) for Area (µm2) for
Typical Architecture AdaptiveZ routing

6-port router 40127 41256

6-Port Router with 2 VCs 92194 93591

Bus arbiter for a three-layer NoC 267 694

As discussed in Section 7.3, if a fault occurs on a vertical bus, the pro-
posed architecture can tolerate the fault and packets will be re-routed to one
of neighboring nodes. To demonstrate that, the system running the video-
conference (Figure 5.12) with one faulty vertical bus was simulated. The
rest of the system parameters were kept unchanged. As shown in Figure
7.8, we assumed that the bus connecting Stream Mux Mem, Padding for MV
Computation, and YUV Generator components is faulty because there is a
high inter-layer communication via this bus. Thus, the arbiter of the faulty
bus asserts `0' on the wait signal and the connected routers re-route the
packets within the layer and do not drive any tra�c for inter-layer commu-
nication to this bus. The power consumption and average packet latency of
the proposed architecture using the AdaptiveZ routing with one faulty bus
are shown in Table 7.1 as well. As mentioned, the proposed architecture can
tolerate a single faulty bus using the congestion signal triggered by the bus
arbiter with a negligible latency and power overhead.

7.5 Summary

This chapter presented a novel inter-layer communication scheme for Hy-
brid 3D NoC-Bus Mesh architecture. The proposed technique enhanced the
system performance, reduced power consumption, and improved the system
reliability. To this end, a congestion aware adaptive inter-layer communica-
tion algorithm was introduced. To deal with deadlock, an appropriate VC
architecture was used with same number of bu�ers as compared to the exist-
ing stacked mesh architectures. In addition, the congestion signal triggered
by the bus arbiter was used to deal with fault tolerance. The e�ectiveness of
the proposed architecture regarding average packet latency and power con-
sumption has been demonstrated by experimental results using the synthetic
as well as the realistic tra�c loads. At congested locations, the simulation
results for proposed architecture and routing scheme showed lower latencies
compared to other architectures.

109

110

Chapter 8

Conclusions

More and more computation power is a key demand from computer indus-
try. To address the issue, there are two options: increase the system clock
speed or increase the number of computation resources. Increasing the clock
speed shows direct and positive impact on software performance without
any change in software code but it increases the power consumption den-
sity which raises the thermal problems. Thus, industry opted for the second
option, which recommended to integrate more number of computation units
while operating at same frequencies. A sequential application which has been
designed to run on a single core, cannot gain any performance improvement
by running on a multi-core system unless an e�cient application partition-
ing and mapping technique is used and an e�cient inter-core communication
platform is available. These two multi-core design steps are interlinked and
face the scalability problems.

An e�cient application mapping technique for MPSoC platforms with ho-
mogeneous computation nodes has been presented. The mapping approach
has been divided into two steps. In the �rst step, platform independent
task prioritization criteria is de�ned and the cores with higher communica-
tion demands are prioritized over less demanding cores. In the next step,
platform speci�c mapping technique is presented and cores are mapped ac-
cording to the de�ned priority order while minimizing the communication
cost. The simulation results have shown that reducing the communication
cost improves the system performance in terms of both the communication
time and the power consumption.

The second dimension for MPSoC design is an e�cient on-chip commu-
nication platform. Traditional bus-based architecture is an e�cient solution
for the applications, where most of the tasks generate identical copy of data
for multiple tasks (multicast). On other hand, buses can support the lim-
ited bandwidth and cannot support the connectivity for larger number of
cores because of high throughput requirements and power consumption over-

111

heads. Segmented bus (SegBus) has been proposed to address the problems
of bus architectures. To further enhance the performance of SegBus based
system in terms of the communication time and power consumption, di�er-
ent communication services are introduced including multicast and interrupt
transactions. Unfortunately, scalability becomes an issue for SegBus because
of signi�cant increase in fan-out and critical path length of the logic with
multiplexer size.

To address the scalability of on-chip communications, Network-on-Chip
(NoC) has already been proposed. The increase in performance of NoC
based system comes with an increased power-density and reliability issues.
The proposed partial virtual channel sharing NoC (PVS-NoC) architecture
mitigates these issues by enhancing the resource utilization of virtual chan-
nel bu�ers with minimal overheads. The PVS-NoC architecture is tolerant
of routing logic faults. In addition, it reduces the impact of faults on sys-
tem performance by utilizing the components which have been indirectly
a�ected by faults on other components. The PVS-NoC is further enhanced
to address the processing element protection and reduce the network load
by pre-routing of packets. The H.264 video encoder was simulated for Seg-
Bus and NoC based communications platforms. The simulation results for
inter-task communication showed that NoC can provide better throughput
performance as compared to SegBus at the cost of extra power consumption.

In case of 2D-NoC, the value of average hop-count for data packets is
higher, which directly a�ects the congestion, power consumption and latency.
To address all these issues, 3D-NoC has been proposed. In typical 3D-
NoC architecture, 7-port router is used which shows signi�cant overheads
in terms of silicon area and power consumption as compared to the 5-port
2D-NoC router. To address this issue, an e�cient 3-D NoC-Bus hybrid
architecture was proposed which uses bus based architecture for inter-layer
communications. To address the bandwidth limitations of bus, AdaptiveZ
routing is introduced which is a minimal routing with static intra-layer but
adaptive inter-layer communication. The simulation results for video encoder
application (comprising of four sub-applications: H.264 video encoder, MP3
encoder, Audio/Video multiplexer and OFDM transmitter) showed that the
proposed NoC-Bus hybrid architecture is an optimal trade-o� of average
packet latency and power consumption as compared to the typical 2-D and
3-D NoC architectures.

The presented design space exploration for MPSoC design enables more
appropriate design choices for given design constraints. It leads the system
designer to avoid performance overheads by eliminating the unnecessary per-
formance beyond the requirements.

112

8.1 Future Works

The future of computing industry is the integration of heterogeneous and
mobile services in smart environments. Thus, a uni�ed application mapping
approach is an immediate requirement, which can generate the task allo-
cation for applications, running partially on heterogeneous interconnection
platforms simultaneously while performing the multi-objective optimizations
like reducing the inter-task communications time and making the system
thermal e�cient. The next future direction should be a simulation envi-
ronment for smart environments comprising of real application benchmarks
and heterogenous computing platforms with a variety of task allocation tech-
niques.

113

114

Bibliography

[1] Krste Asanovic et al. The Landscape of Parallel Computing Research: A
View from Berkeley. Technical report, U.C.Berkeley, 2006.

[2] N. D. Liveris and P. Banerjee. Power aware interface synthesis for bus-
based SoC designs. Design, Automation and Test in Europe Conference
and Exhibition , 2004, pp.864-869.

[3] C. Addo-Quaye. Thermal-aware mapping and placement for 3-D NoC
designs. In Proceedings of IEEE International SOC Conference, 2005,
pp.25-28.

[4] Regan, Keith. Intel Puts 4 GHz Processor on Back
Burner. E-Commerce Times, Oct 15, 2004. Online at
http://www.ecommercetimes.com/story/37360.html

[5] Texas Instruments. http://www.ti.com/

[6] Intel Corporation. http://www.intel.com/

[7] Tilera Corporation. http://www.tilera.com/

[8] D. Brooks, R. P. Dick, R. Joseph, L. Shang. Power, Thermal, and Reli-
ability Modeling in Nanometer-Scale Microprocessors. IEEE Micro, vol.
27, no. 3, 2007, pp.49-62, doi:10.1109/MM.2007.58

[9] B. Cli�ord Neuman. Scale in Distributed Systems. In Casavant, T. and
Singhal, M. (eds.), Readings in Distributed Computing Systems, IEEE
Computer Society Press, 1994, pp.463-489.

[10] Liang Guang. Hierarchical Agent-based Adaptation for Self-Aware Em-
bedded Computing Systems. Ph.D. thesis. University of Turku, Finland.
December 2012.

[11] D.L. Eager, J. Zahorjan, E.D. Lazowska. Speedup versus e�ciency in
parallel systems. IEEE Transactions on Computers, vol.38, no.3, 1989,
pp.408-423.

115

[12] David P. Rodgers. Improvements in multiprocessor system design. In
Proceedings of the 12th annual International Symposium on Computer
Architecture (ISCA), IEEE Computer Society Press,1985, pp.225-231.

[13] M.B. Taylor. Is dark silicon useful? Harnessing the four horse-
men of the coming dark silicon apocalypse. In proceedings of
49th ACM/EDAC/IEEE Design Automation Conference (DAC), 2012,
pp.1131-1136.

[14] L. Olvera et al. Translator training and modern market demands. En
Perspectives Studies in Translatology. Vol. 13, no. 2, 2005, pp.132-142.

[15] Accelerating Product Time to Market. Industry Insights from Kodak,
2009.

[16] Keutzer, K.; Newton, A.R.; Rabaey, J.M.; Sangiovanni-Vincentelli, A.
System-level design: orthogonalization of concerns and platform-based
design. IEEE Transactions on Computer-Aided Design of Integrated Cir-
cuits and Systems, vol.19, no.12, 2000, pp.1523-1543.

[17] International Technology Roadmap for Semiconductors (ITRS). 2010.

[18] Andrew S. Tanenbaum, Maarten van Steen Distributed Systems: Prin-
ciples and Paradigms (2nd Edition). Prentice-Hall, Inc., 2006.

[19] Singh, H.; Ming-Hau Lee; Guangming Lu; Kurdahi, F.J.; Bagherzadeh,
N.; Chaves Filho, E.M. MorphoSys: an integrated recon�gurable system
for data-parallel and computation-intensive applications. IEEE Transac-
tions on Computers, vol.49, no.5, 2000, pp.465-481.

[20] Gokhale, M.; Cohen, J.; Yoo, A.; Miller, W.M.; Jacob, A.; Ulmer, C.;
Pearce, R. Hardware Technologies for High-Performance Data-Intensive
Computing. Computer, IEEE Computer Society, vol.41, no.4, 2008,
pp.60-68.

[21] Hyung Gyu Lee, Naehyuck Chang, Umit Y. Ogras, and Radu Mar-
culescu. On-chip communication architecture exploration: A quantita-
tive evaluation of point-to-point, bus, and network-on-chip approaches.
ACM Trans. Des. Autom. Electron. Syst. vol.12, no.3, article no.23, 2008,
pp.23:1-23:20.

[22] Camille Jalier, Didier Lattard, Ahmed Amine Jerraya, Gilles Sassatelli,
Pascal Benoit, and Lionel Torres. Heterogeneous vs homogeneous MPSoC
approaches for a mobile LTE modem. In Proceedings of the Design,
Automation and Test in Europe (DATE), 2010, pp.184-189.

116

[23] Ethiopia Enideg Nigussie. Exploration and Design of High Performance
Variation Tolerant On-Chip Interconnects. Ph.D. thesis. University of
Turku, Finland. August 2010.

[24] A.W. Topol et al. Three-dimensional integrated circuits. IBM Journal
of Research and Development, 50(4), 2006, pp.491-506.

[25] Pavlidis, V.F.; Friedman, E.G. 3-D Topologies for Networks-on-Chip.
IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
vol.15, no.10, 2007, pp.1081-1090.

[26] A.M.Rahmani, K. Latif, P. Liljeberg, J. Plosila, H. Tenhunen. Research
and Practices on 3D Networks-on-Chip Architectures. In proceedings of
28th IEEE Norchip Conference, 2010, ISBN: 978-1-4244-8971-8.

[27] A. Y. Weldezion, M. Grange, D. Pamunuwa, Z. Lu, A. Jantsch, R.
Weerasekera and H. Tenhunen. Scalability of network-on-chip communi-
cation architecture for 3-D meshes. In Proceedings of the 3rd ACM/IEEE
International Symposium on Networks-on-Chip (NOCS), 2009, pp.114-
123.

[28] Stratix III Device Handbook 2007, Altera.

[29] International Technology Roadmap For Semiconductors. 2005 Edition.
Design.

[30] Modelsim, http://www.model.com.

[31] J.-L. Dekeyser et al. Model Driven Engineering for Regular MPSOC Co-
design. Recon�gurable Communication-centric SoCs (ReCoSoC), 2006.

[32] G. de Jong. A UML-Based Design Methodology for Real-Time and
Embedded Systems. Design, Automation and Test in Europe Conference
and Exhibition, 2002, pp.776-778.

[33] K. Lahiri, A. Raghunathan, S. Dey. Design Space Exploration for Op-
timizing On-Chip Communication Architectures. IEEE Transactions on
Computer-aided Design og Integrated Circuits and Systems, VOL. 23,
NO. 6, 2004, pp.952-961.

[34] V. Leppänen, T. Seceleanu, O. Nevalainen. Communication Scheduling
for the SegBus Platform. Proceedings of the IEEE International SOC
Conference (SOCC), Sept. 2007.

[35] I.E.G. Richardson, J. E. Richardson H.264 and MPEG-4 Video Com-
pression. Wiley, John & Sons, Inc. October 2003.

117

[36] T. Seceleanu. The SegBus Platform - Architecture and Com-
munication Mechanisms. Journal of Systems Architecture (2006),
doi:10.1016/j.sysarc.2006.07.002

[37] S. Srinivasan, L. Li, N. Vijaykrishnan. Simultaneous Partitioning and
Frequenct Assignment for On-chip Bus Architectures. In Proceedings of
Design Automation andd Test in Europe Conference, 2005, pp.218-223.

[38] A.D. Swaminathan, T. Seceleanu. Interrupt Communication on the
SegBus platform. Proceedings of the IEEE International System on-chip
Conference, Austin, TX, USA, 2006, pp.229-232.

[39] D. Truscan et. all. T.Seceleanu, H. Tenhunen, J. Lilius. A Model-Based
Design Process for the SegBus Distributed Architecture. 15th Annual
IEEE International Conference and Workshop on the Engineering of
Computer Based Systems (ECBS), 2008, pp.307-316.

[40] Junyan Tan; Fresse, V.; Rousseau, F. Generation of emulation platforms
for NoC exploration on FPGA. 22nd IEEE International Symposium on
Rapid System Prototyping (RSP), 2011, pp.186-192.

[41] Ye Lu; McCanny, J.; Sezer, S. Generic Low-Latency NoC Router Ar-
chitecture for FPGA Computing Systems. International Conference on
Field Programmable Logic and Applications (FPL), 2011, pp.82-89.

[42] Stratix III Device Handbook 2007, Altera.

[43] Modelsim, http://www.model.com.

[44] ARM AMBA Speci�cation and Multilayer AHB Speci�cation (rev 2.0).
www.arm.com.

[45] C. Anderson, J.-L. Baer. Two techniques for improving performance
on bus-based multiprocessors. HPCA '95: Proceedings of the 1st IEEE
Symposium on High-Performance Computer Architecture, 1995, pp.256-
275.

[46] F. Balarin, Y. Watanabe, H. Hsieh, L. Lavagno, C. Passerone and A.
Sangiovanni-Vincentelli. Metropolis: An Integrated Electronic System
Design Environment Computer, vol. 36, no. 4, 2003, pp.45-52.

[47] A. Bakshi, V. K. Prasanna and A. Ledeczi. MILAN: A Model Based
Integrated Simulation Framework for Design of Embedded Systems SIG-
PLAN Not., vol. 36, no. 8, 2001, pp.82-93.

[48] F. Baslett, T. Jermoluk, and D. Solomon. The 4D-MP Graphics Super-
workstataion: Computing+Graphics=40MIPS+40MFLOPS and 100,000

118

Lighted Polygons per Second In Proceedings of the COMPCON'88, 1988,
pp.468-471.

[49] S. Cho, G. Lee Reducing coherence overhead in shared-bus multipro-
cessors Euro-Par, Vol. II 1996. pp.492-497

[50] F. Dahlgren. Boosting the Performance of Hybrid Snooping Cache Pro-
tocols 22nd Annual International Symposium on Computer Architecture
(ISCA), 1995, pp.60-69.

[51] W. Dally. Route packets, not wires: on-chip interconnection networks
DAC - Design Automation Conference, 2001, pp.684-689.

[52] M. Ebrahimi, M. Daneshtalab, M.H. Neishaburi, S. Mohammadi, A.
Afzali-Kusha, J. Plosila and H. Tenhunen. An E�cent Dynamic Multi-
cast Routing Protocol for Distributing Tra�c in NOCs Design, Automa-
tion and Test in Europe, 2009, pp.1064-1069.

[53] K. Latif, M. Niazi, T. Seceleanu, H. Tenhunen, S. Sezer. Application
development �ow for on-chip distributed architectures. Proceedings of
the 21st IEEE International SoC Conference (SOCC), 2008, pp.163-168.

[54] Z. Lu. Design and Analysis of On-Chip Communication for Network-
on-Chip Platforms. Ph.D. thesis. Royal Institute of Technology, March
2007.

[55] E. McCreight. The Dragon Computer System: An Early Overview
Technical report, Xerox Corp., 1984.

[56] C. Nicopoulus, V. Narayanan, C.R. Das. Network-on-Chip Architec-
tures: A Holisitic Design Exploration. Springer 2009, ISBN 978-90-481-
3030-6.

[57] M. F. S. Oliveira, a. Eduardo W. Bri F. A. Nascimento, F. R. Wagner,
Model Driven Engineering for MPSoC Design Space Exploration In Pro-
ceedings of the 20th annual conference on Integrated circuits and systems
design, ACM, 2007, pp.81-86.

[58] M. Papamarcos, J. Patel. A Low Overhead Coherence Solution for Mul-
tiprocessors with Private Cache Memories In Proceedings of the 11th An-
nual International Symposium on Computer Architecture, 1984, pp.348-
354.

[59] A. Pimentel, L. Hertzbetger, P. Lieverse, P. van der Wolf, E. Deprettere.
Exploring Embedded-systems Architectures with Artemis Computer, vol.
34, no. 11, 2001, pp.57-63.

119

[60] F. A. Samman, T. Hollstein, M. Glesner. Multicast parallel pipeline
router architecture for network-on-chip. In Proceedings of Design, Au-
tomation and Test in Europe, 2008, pp.1396-1401.

[61] A.D. Swaminathan, T. Seceleanu. Interrupt Communication on the
SegBus platform. Proceedings of the IEEE International System on-chip
Conference, 2006, pp.229-232.

[62] D. Truscan, T.Seceleanu, H. Tenhunen, J. Lilius. AModel-Based Design
Process for the SegBus Distributed Architecture. 15th Annual IEEE
International Conference and Workshop on the Engineering of Computer
Based Systems (ECBS), 2008, pp.307-316.

[63] T. Seceleanu. The SegBus Platform - Architecture and Communication
Mechanisms. Journal of Systems Architecture vol. 53, no. 4, 2007, pp.151-
169. DOI= http://dx.doi.org/10.1016/j.sysarc.2006.07.002

[64] T. Seceleanu, V. Leppänen, O. Nevalainen. Improving the Performance
of Bus Platforms by Means of Segmentation and Optimized Resource
Allocation. EURASIP Journal on Embedded Systems, vol. 2009, Article
ID 867362, 14 pages, 2009. doi:10.1155/2009/867362.

[65] T. Seceleanu, I. Crncovik, C. Seceleanu. Transaction level control for
application execution on the SegBus Platform. In Proceedings of the 33rd

Annual IEEE International Computer Software and Applications Confer-
ence (COMPSAC), 2009, pp.537-542. doi:10.1109/COMPSAC.2009.78

[66] C. Seceleanu, A. Vulgarakis, P. Pettersson, REMES: A Resource Model
for Embedded Systems. In Proceedings of the 14th IEEE International
Conference on Engineering of Complex Computer Systems (ICECCS),
2009, pp.84-94.

[67] A. S. Tranberg-Hansen, J. Madsen. A Service Based Component Model
for Composing and Exploring MPSoC Platforms In Proceedings of IEEE
International Symposium on Applied Sciences in Bio-Medical and Com-
munication Technologies (ISABEL), 2008, pp.1-5.

[68] A. L. Varbanescu, H. Sips, and A. Van Gemund PAM-SoC: A Toolchain
for Predicting MPSoC Performance Lecture Notes in Computer Science,
vol. 4128 LNCS, 2006, pp.111-113.

[69] Y. Zhang, Z. Lu, A. Jantsch, L. Li, M. Gao. Towards hierarchical cluster
based cache coherence for large-scale network-on-chip. In Proceedings
of the 4th IEEE International Conference on Design and Technology of
Integrated Systems in Nanoscale Era, 2009, pp.119-122.

120

[70] A. Pimentel, C. Erbas, and S. Polstra A Systematic Approach to Ex-
ploring Embedded System Architectures at Multiple Abstraction Levels
IEEE Transactions on Computers, vol. 55, no. 2, 2006, pp. 99-112.

[71] Claas Cornelius, Hendrik Bohn, Dirk Timmermann Service-oriented
Approaches for the Operation of large on-chip Networks 24th NORCHIP
Conference, 2006, pp. 183-186, ISBN: 1-4244-0772-9

[72] Jongman Kim, Chrysostomos Nicopoulos, Dongkook Park, Reetuparna
Das, Yuan Xie, Vijaykrishnan Narayanan, Mazin S. Yousif, and Chita R.
Das. A Novel Dimensionally-Decomposed Router for On-Chip Commu-
nication in 3D Architectures In Proceedings of the 34th annual Interna-
tional Symposium on Computer Architecture (ISCA), 2007, pp.138-149.

[73] Jongman Kim; Nicopoulos, C.; Dongkook Park; Narayanan, V.; Yousif,
M.S.; Das, C.R. A Gracefully Degrading and Energy-E�cient Modular
Router Architecture for On-Chip Networks In Proceedings of the 33rd an-
nual International Symposium on Computer Architecture (ISCA), 2006,
pp. 4-15.

[74] Dally, W.J. Virtual-channel �ow control IEEE Transactions on Parallel
and Distributed Systems, vol.3, no.2, 1992, pp.194-205.

[75] Shekhar Borkar. Designing reliable systems from unreliable components:
The challenges of transistor variability and degradation. IEEE Micro,
vol.25, no.6, 2005, pp.10-16.

[76] A. Jantsch and H. Tenhunen (Eds.) Networks on Chip. Kluwer Aca-
demic Publishers, Boston; 2003. ISBN 1-4020-7392-5

[77] Rikard Thid, Ingo Sander, Axel Jantsch. Flexible Bus and NoC Perfor-
mance Analysis with Con�gurable Synthetic Workloads. In Proceedings
of the 9th EUROMICRO Conference on Digital System Design, 2006,
pp.681-688.

[78] Alok Choudhary, Ian Foster, Rick Stevens. Multimedia Applications
and High-Performance Computing. IEEE Parallel and Distributed Tech-
nology, vol. 3, no. 2, 1995, pp.2-3.

[79] Matlab/simulink, http://www.mathworks.com.

[80] G. Guindani et al. NoC Power Estimation at the RTL Abstraction Level
In Proceedings of IEEE Computer Society Annual Symposium on VLSI
(ISVLSI), 2008, pp.475-478.

[81] Srinivasan Murali, Giovanni De Micheli Bandwidth-Constrained Map-
ping of Cores onto NoC Architectures. In Proceedings of Design Automa-
tion and Test in Europe (DATE), 2004, pp.896-903.

121

[82] J.Hu, R.Marculescu Energy-Aware Mapping for Tile-based NOC Ar-
chitectures Under Performance Constraints. In Proceedings of Asia and
South Paci�c Design Automation Conference (ASP-DAC), 2003, pp.233-
239.

[83] Mikkel B. Stensgaard, Jens Sparsϕ. ReNoC: A Network-on-Chip Ar-
chitecture with Recon�gurable Topology. In Proceedings of the Second
ACM/IEEE International Symposium on Networks-on-Chip (NOCS),
2008, pp.55-64.

[84] I. Walter, I. Cidon, and A. Kolodny, D. Sigalov. The Era of Many-
Modules SoC: Revisiting the NoC Mapping Problem Second Interna-
tional Workshop on Network on Chip Architectures (NoCArc), 2010,
pp.43-48.

[85] Tiberiu Seceleanu, Ville Leppänen, Olli S. Nevalainen. Device alloca-
tion on the SegBus platform based on communication scheduling cost
minimization. Proceedings of the IEEE International SOC Conference
(SOCC), 2007, pp.191-196.

[86] Umit Y. Ogras, Radu Marculescu. "It's a small world after all": NoC
performance optimization via long-range link insertion. IEEE Transac-
tions on Very Large Scale Integration (VLSI) Systems, 2006, pp.693-706.

[87] D. Truscan et. all. A Model-Based Design Process for the SegBus Dis-
tributed Architecture. 15th Annual IEEE International Conference and
Workshop on the Engineering of Computer Based Systems (ECBS), 2008,
pp.307-316.

[88] G. Ascia, V. Catania, M. Palesi. Multi-objective mapping for
mesh-based NoC architectures. International Conference on Hard-
ware/Software Codesign and System Synthesis (CODES + ISSS), 2004,
pp.182-187.

[89] A. Alaghi, N. Karimi, M. Sedghi, and Z. Navabi. Online NoC Switch
Fault Detection and Diagnosis Using a High Level Fault Model. In Pro-
ceedings of 22nd IEEE International Symposium on Defect and Fault-
Tolerance in VLSI Systems (DFT), 2007, pp.21-29.

[90] James Balfour and William J. Dally. Design tradeo�s for tiled cmp on-
chip networks. In Proceedings of the 20th annual international conference
on Supercomputing (ICS), 2006, pp.187-198.

[91] N. Banerjee, P. Vellanki, and K.S. Chatha. A power and performance
model for network-on-chip architectures. In Proceedings of Design, Au-
tomation and Test in Europe Conference and Exhibition, volume 2, 2004,
pp.1250-1255.

122

[92] Xuning Chen and Li-Shiuan Peh. Leakage power modeling and opti-
mization in interconnection networks. In Proceedings of International
Symposium on Low Power Electronics and Design (ISLPED), 2003,
pp.90-95.

[93] Caroline Concatto, Debora Matos, Luigi Carro, Fernanda Kastensmidt,
Altamiro Susin, Erika Cota, and Marcio Kreutz. Fault tolerant mecha-
nism to improve yield in NoCs using a recon�gurable router. In Proceed-
ings of the 22nd Annual Symposium on Integrated Circuits and System
Design: Chip on the Dunes (SBCCI), 2009, pp.26:1-6.

[94] C. Constantinescu. Trends and challenges in vlsi circuit reliability. IEEE
Micro, vol. 23, no. 4, 2003, pp.14-19.

[95] T. Dumitras and R. Marculescu. On-chip stochastic communication [soc
applications]. In Design, Automation and Test in Europe Conference and
Exhibition, 2003, pp.790-795.

[96] M. Koibuchi et al. A Lightweight Fault-Tolerant Mechanism for
Network-on-Chip. In International Symposium on Networks-on-Chip
(NoCS), 2008, pp.13-22.

[97] D. Fick, A. DeOrio, G. Chen, V. Bertacco, D. Sylvester, and D. Blaauw.
A highly resilient routing algorithm for fault-tolerant NoCs. In Design,
Automation Test in Europe Conference Exhibition, 2009, pp.21-26..

[98] David Fick, Andrew DeOrio, Jin Hu, Valeria Bertacco, David Blaauw,
and Dennis Sylvester. Vicis: a reliable network for unreliable silicon. In
Proceedings of the 46th Annual Design Automation Conference (DAC),
2009, pp.812-817.

[99] Arthur Pereira Frantz, Fernanda Lima Kastensmidt, Luigi Carro, and
Erika Cota. Dependable network-on-chip router able to simultaneously
tolerate soft errors and crosstalk. In Test Conference, 2006. ITC '06.
IEEE International, 2006, pp.1-9.

[100] C. Grecu, A. Ivanov, R. Saleh, E.S. Sogomonyan, and Partha Pra-
tim Pande. On-line fault detection and location for noc interconnects.
In Proceedings of 12th IEEE International On-Line Testing Symposium
(IOLTS), 2006. doi: 10.1109/IOLTS.2006.44

[101] G. Guindani, C. Reinbrecht, T. Raupp, N. Calazans, and F.G. Moraes.
NoC power estimation at the rtl abstraction level. In Proceedings of IEEE
Computer Society Annual Symposium on VLSI (ISVLSI), 2008, pp.475-
478.

123

[102] Donghyun Kim, Kangmin Lee, Se joong Lee, and Hoi-Jun Yoo.
A recon�gurable crossbar switch with adaptive bandwidth control for
networks-on-chip. In Proceedings of IEEE International Symposium on
Circuits and Systems (ISCAS), 2005, pp.2369-2372.

[103] Ying-Cherng Lan, Shih-Hsin Lo, Yueh-Chi Lin, Yu-Hen Hu, and Sao-
Jie Chen. BiNoC: A bidirectional NoC architecture with dynamic self-
recon�gurable channel. In Proceedings of 3rd ACM/IEEE International
Symposium on Networks-on-Chip (NoCS), 2009, pp.266-275.

[104] K. Latif, A. M Rahmani, K.R. Vaddina, T. Seceleanu, P. Liljeberg, and
H. Tenhunen. Enhancing performance of noc-based architectures using
heuristic virtual-channel sharing approach. In Proceedings of 35th IEEE
Annual Computer Software and Applications Conference (COMPSAC),
2011, pp.442-447.

[105] T. Lehtonen, P. Liljeberg, and J. Plosila. Fault tolerance analysis of
NoC architectures. In Proceedings of IEEE International Symposium on
Circuits and Systems (ISCAS), 2007, pp.361-364.

[106] Teijo Lehtonen. On fault tolerance methods for networks-on-chip.
Ph.D. Thesis, University of Turku, Finland. 2009.

[107] P. Lot�-Kamran, A. M. Rahmani, M. Daneshtalab, A. Afzali-Kusha,
and Z. Navabi. EDXY - A low cost congestion-aware routing algorithm
for network-on-chips. J. Syst. Archit., vol. 56, no. 7, 2010, pp.256-264.

[108] Giovanni De Micheli Luca Benini. Networks On Chips: Technology
And Tools. Morgan Kaufmann Publishers, 2006.

[109] R. Mullins, A. West, and S. Moore. Low-latency virtual-channel
routers for on-chip networks. In Proceedings of 31st Annual International
Symposium on Computer Architecture, 2004, pp.188-197.

[110] S. Murali, C. Seiculescu, L. Benini, and G. De Micheli. Synthesis of
networks on chips for 3d systems on chips. In Proceedings of Asia and
South Paci�c Design Automation Conference (ASP-DAC), 2009, pp.242-
247.

[111] M.H. Neishaburi and Z. Zilic. ERAVC: Enhanced reliability aware
NoC router. In Proceedings of 12th International Symposium on Quality
Electronic Design (ISQED), 2011, pp.1-6.

[112] M.H. Neishaburi and Zeljko Zilic. Reliability aware NoC router archi-
tecture using input channel bu�er sharing. In ACM Great Lakes Sympo-
sium on VLSI, 2009, pp.511-516.

124

[113] L.M. Ni and P.K. McKinley. A survey of wormhole routing techniques
in direct networks. Computer, vol. 26, no. 2, 1993, pp.62-76.

[114] C.A. et al. Nicopoulos. Vichar: A dynamic virtual channel regulator
for network-on-chip routers. In 39th Annual IEEE/ACM International
Symposium on Microarchitecture, (MICRO), 2006, pp.333-346..

[115] S. Pasricha and N. Dutt. On-Chip Communication Architectures: Sys-
tem on Chip Interconnect. Morgan Kaufmann, 2008.

[116] A.-M. Rahmani, K. Latif, K.R. Vaddina, P. Liljeberg, J. Plosila, and
H. Tenhunen. Congestion aware, fault tolerant, and thermally e�cient
inter-layer communication scheme for hybrid NoC-bus 3D architectures.
In Fifth IEEE/ACM International Symposium on Networks on Chip
(NoCS), 2011, pp.65-72.

[117] A.M. Rahmani, A. Afzali-Kusha, and M. Pedram. NED: A Novel
Synthetic Tra�c Pattern for Power/Performance analysis of Network-on-
chips Using Negative Exponential Distribution. In Journal of Low Power
Electronics (American Scienti�c Publishers), vol. 5, 2009, pp.396-405.

[118] Rohit Sunkam Ramanujam, Vassos Soteriou, Bill Lin, and Li-Shiuan
Peh. Design of a high-throughput distributed shared-bu�er NoC router.
In Fourth ACM/IEEE International Symposium on Networks-on-Chip,
2010, pp.69-78.

[119] Jih-Sheng Shen, Chun-Hsian Huang, and Pao-Ann Hsiung. Learning-
based adaptation to applications and environments in a recon�gurable
network-on-chip. In Design, Automation Test in Europe Conference Ex-
hibition (DATE), 2010, pp.381-386.

[120] K. Rao Vaddina, E. Nigussie, P. Liljeberg, and J. Plosila. Self-timed
thermal monitoring of multicore systems. In 12th IEEE Symposium on
Design and Diagnostics of Electronic Circuits and Systems (DDECS),
2009, pp.246-251.

[121] Mojtaba Valinataj, Siamak Mohammadi, Juha Plosila, Pasi Liljeberg,
and Hannu Tenhunen. A recon�gurable and adaptive routing method for
fault-tolerant mesh-based networks-on-chip. AEU - International Journal
of Electronics and Communications, vol. 65, no. 7, 2011, pp.630-640.

[122] Brian Patrick Towles William J Dally. Principles and Practices of
Interconnection Networks. The Morgan Kaufmann Series in Computer
Architecture and Design, 2004.

125

[123] P.M. Yaghini, A. Eghbal, H. Pedram, and H.R. Zarandi. Investigation
of transient fault e�ects in an asynchronous NoC router. In 18th Euromi-
cro International Conference on Parallel, Distributed and Network-Based
Processing (PDP), 2010, pp.540-545.

[124] T.T. Ye, L. Benini, and G. De Micheli. Analysis of power consump-
tion on switch fabrics in network routers. In Proceedings of 39th Design
Automation Conference (DAC), 2002, pp.524-529.

[125] Z. Zhang, A. Greiner, and S. Taktak. A recon�gurable routing algo-
rithm for a fault-tolerant 2D-Mesh Network-on-Chip. In 45th ACM/IEEE
DAC Conference, 2008, pp.441-446.

[126] A.E. Zonouz, M. Seyra�, A. Asad, M. Soryani, M. Fathy, and R. Be-
rangi. A fault tolerant NoC architecture for reliability improvement and
latency reduction. In 12th Euromicro Conference on Digital System De-
sign, Architectures, Methods and Tools, 2009, pp.473-480.

[127] Li, F. and Nicopoulos, C. and Richardson, T. and Yuan X. and
Narayanan, V. and Kandemir, M. Proceedings of the 33rd International
Symposium on Computer Architecture Design and Management of 3D
Chip Multiprocessors Using Network-in-Memory, 2006, pp.130-141.

[128] Hsieh, A.-C. and Hwang, T. and Chang, M.-. and Tsai, M.-H. and
Tseng, C.-M. and Li, H.-C. TSV redundancy: architecture and design
issues in 3D IC Proceedings of the Conference on Design, Automation
and Test in Europe, 2010, pp.166-171.

[129] Lot�-Kamran, P. and Rahmani, A.-M. and Daneshtalab, M. and
Afzali-Kusha, A. and Navabi, Z. EDXY - A low cost congestion-aware
routing algorithm for network-on-chips Journal of Systems Architecture,
vol. 56, no. 7, 2010, pp.256-264.

[130] Koopman, P. and Chakravarty, T. Cyclic Redundancy Code (CRC)
Polynomial Selection For Embedded Networks Proceedings of the Inter-
national Conference on Dependable Systems and Networks, 2004, pp.145-
154.

[131] Carloni, L.P. and Pande, P. and Xie, Y. Networks-on-chip in emerging
interconnect paradigms: Advantages and challenges Proceedings of the
2009 3rd ACM/IEEE International Symposium on Networks-on-Chip,
2009, pp.93-102.

[132] Rahmani, A.-M. and Kamali, I. and Lot�-Kamran, P. and Afzali-
Kusha, A. and Safari, S. Negative Exponential Distribution Tra�c Pat-
tern for Power/Performance Analysis of Network on Chips Proceedings
of the International Conference on VLSI Design, 2009, pp.157-162.

126

[133] Rahmani, A.-M. and Afzali-Kusha, A. and Pedram, M. NED: A Novel
Synthetic Tra�c Pattern for Power/Performance Analysis of Network-on-
Chips Using Negative Exponential Distribution Journal of Low Power
Electronics, vol. 5, no. 3, 2009, pp.396-405.

[134] Weldezion, A.Y.; Grange, M.; Pamunuwa, D.; Zhonghai Lu; Jantsch,
A.; Weerasekera, R.; Tenhunen, H. Scalability of network-on-chip
communication architecture for 3-D meshes," Networks-on-Chip 3rd
ACM/IEEE International Symposium on NoCS, 2009, pp.114-123, doi:
10.1109/NOCS.2009.5071459

[135] Tanenbaum, Andrew S. Modern operating systems. Upper Saddle
River, NJ: Pearson Prentice Hall. ISBN 0-13-600663-9.

127

Turku Centre for Computer Science

TUCS Dissertations

1. Marjo Lipponen, On Primitive Solutions of the Post Correspondence Problem
2. Timo Käkölä, Dual Information Systems in Hyperknowledge Organizations
3. Ville Leppänen, Studies on the Realization of PRAM
4. Cunsheng Ding, Cryptographic Counter Generators
5. Sami Viitanen, Some New Global Optimization Algorithms
6. Tapio Salakoski, Representative Classification of Protein Structures
7. Thomas Långbacka, An Interactive Environment Supporting the Development of

Formally Correct Programs
8. Thomas Finne, A Decision Support System for Improving Information Security
9. Valeria Mihalache, Cooperation, Communication, Control. Investigations on

Grammar Systems.
10. Marina Waldén, Formal Reasoning About Distributed Algorithms
11. Tero Laihonen, Estimates on the Covering Radius When the Dual Distance is

Known
12. Lucian Ilie, Decision Problems on Orders of Words
13. Jukkapekka Hekanaho, An Evolutionary Approach to Concept Learning
14. Jouni Järvinen, Knowledge Representation and Rough Sets
15. Tomi Pasanen, In-Place Algorithms for Sorting Problems
16. Mika Johnsson, Operational and Tactical Level Optimization in Printed Circuit

Board Assembly
17. Mats Aspnäs, Multiprocessor Architecture and Programming: The Hathi-2 System
18. Anna Mikhajlova, Ensuring Correctness of Object and Component Systems
19. Vesa Torvinen, Construction and Evaluation of the Labour Game Method
20. Jorma Boberg, Cluster Analysis. A Mathematical Approach with Applications to

Protein Structures
21. Leonid Mikhajlov, Software Reuse Mechanisms and Techniques: Safety Versus

Flexibility
22. Timo Kaukoranta, Iterative and Hierarchical Methods for Codebook Generation in

Vector Quantization
23. Gábor Magyar, On Solution Approaches for Some Industrially Motivated

Combinatorial Optimization Problems
24. Linas Laibinis, Mechanised Formal Reasoning About Modular Programs
25. Shuhua Liu, Improving Executive Support in Strategic Scanning with Software

Agent Systems
26. Jaakko Järvi, New Techniques in Generic Programming – C++ is more Intentional

than Intended
27. Jan-Christian Lehtinen, Reproducing Kernel Splines in the Analysis of Medical

Data
28. Martin Büchi, Safe Language Mechanisms for Modularization and Concurrency
29. Elena Troubitsyna, Stepwise Development of Dependable Systems
30. Janne Näppi, Computer-Assisted Diagnosis of Breast Calcifications
31. Jianming Liang, Dynamic Chest Images Analysis
32. Tiberiu Seceleanu, Systematic Design of Synchronous Digital Circuits
33. Tero Aittokallio, Characterization and Modelling of the Cardiorespiratory System

in Sleep-Disordered Breathing
34. Ivan Porres, Modeling and Analyzing Software Behavior in UML
35. Mauno Rönkkö, Stepwise Development of Hybrid Systems
36. Jouni Smed, Production Planning in Printed Circuit Board Assembly
37. Vesa Halava, The Post Correspondence Problem for Market Morphisms
38. Ion Petre, Commutation Problems on Sets of Words and Formal Power Series
39. Vladimir Kvassov, Information Technology and the Productivity of Managerial

Work
40. Frank Tétard, Managers, Fragmentation of Working Time, and Information

Systems

41. Jan Manuch, Defect Theorems and Infinite Words
42. Kalle Ranto, Z4-Goethals Codes, Decoding and Designs
43. Arto Lepistö, On Relations Between Local and Global Periodicity
44. Mika Hirvensalo, Studies on Boolean Functions Related to Quantum Computing
45. Pentti Virtanen, Measuring and Improving Component-Based Software

Development
46. Adekunle Okunoye, Knowledge Management and Global Diversity – A Framework

to Support Organisations in Developing Countries
47. Antonina Kloptchenko, Text Mining Based on the Prototype Matching Method
48. Juha Kivijärvi, Optimization Methods for Clustering
49. Rimvydas Rukšėnas, Formal Development of Concurrent Components
50. Dirk Nowotka, Periodicity and Unbordered Factors of Words
51. Attila Gyenesei, Discovering Frequent Fuzzy Patterns in Relations of Quantitative

Attributes
52. Petteri Kaitovaara, Packaging of IT Services – Conceptual and Empirical Studies
53. Petri Rosendahl, Niho Type Cross-Correlation Functions and Related Equations
54. Péter Majlender, A Normative Approach to Possibility Theory and Soft Decision

Support
55. Seppo Virtanen, A Framework for Rapid Design and Evaluation of Protocol

Processors
56. Tomas Eklund, The Self-Organizing Map in Financial Benchmarking
57. Mikael Collan, Giga-Investments: Modelling the Valuation of Very Large Industrial

Real Investments
58. Dag Björklund, A Kernel Language for Unified Code Synthesis
59. Shengnan Han, Understanding User Adoption of Mobile Technology: Focusing on

Physicians in Finland
60. Irina Georgescu, Rational Choice and Revealed Preference: A Fuzzy Approach
61. Ping Yan, Limit Cycles for Generalized Liénard-Type and Lotka-Volterra Systems
62. Joonas Lehtinen, Coding of Wavelet-Transformed Images
63. Tommi Meskanen, On the NTRU Cryptosystem
64. Saeed Salehi, Varieties of Tree Languages
65. Jukka Arvo, Efficient Algorithms for Hardware-Accelerated Shadow Computation
66. Mika Hirvikorpi, On the Tactical Level Production Planning in Flexible

Manufacturing Systems
67. Adrian Costea, Computational Intelligence Methods for Quantitative Data Mining
68. Cristina Seceleanu, A Methodology for Constructing Correct Reactive Systems
69. Luigia Petre, Modeling with Action Systems
70. Lu Yan, Systematic Design of Ubiquitous Systems
71. Mehran Gomari, On the Generalization Ability of Bayesian Neural Networks
72. Ville Harkke, Knowledge Freedom for Medical Professionals – An Evaluation Study

of a Mobile Information System for Physicians in Finland
73. Marius Cosmin Codrea, Pattern Analysis of Chlorophyll Fluorescence Signals
74. Aiying Rong, Cogeneration Planning Under the Deregulated Power Market and

Emissions Trading Scheme
75. Chihab BenMoussa, Supporting the Sales Force through Mobile Information and

Communication Technologies: Focusing on the Pharmaceutical Sales Force
76. Jussi Salmi, Improving Data Analysis in Proteomics
77. Orieta Celiku, Mechanized Reasoning for Dually-Nondeterministic and

Probabilistic Programs
78. Kaj-Mikael Björk, Supply Chain Efficiency with Some Forest Industry

Improvements
79. Viorel Preoteasa, Program Variables – The Core of Mechanical Reasoning about

Imperative Programs
80. Jonne Poikonen, Absolute Value Extraction and Order Statistic Filtering for a

Mixed-Mode Array Image Processor
81. Luka Milovanov, Agile Software Development in an Academic Environment
82. Francisco Augusto Alcaraz Garcia, Real Options, Default Risk and Soft

Applications
83. Kai K. Kimppa, Problems with the Justification of Intellectual Property Rights in

Relation to Software and Other Digitally Distributable Media
84. Dragoş Truşcan, Model Driven Development of Programmable Architectures
85. Eugen Czeizler, The Inverse Neighborhood Problem and Applications of Welch

Sets in Automata Theory

86. Sanna Ranto, Identifying and Locating-Dominating Codes in Binary Hamming
Spaces

87. Tuomas Hakkarainen, On the Computation of the Class Numbers of Real Abelian
Fields

88. Elena Czeizler, Intricacies of Word Equations
89. Marcus Alanen, A Metamodeling Framework for Software Engineering
90. Filip Ginter, Towards Information Extraction in the Biomedical Domain: Methods

and Resources
91. Jarkko Paavola, Signature Ensembles and Receiver Structures for Oversaturated

Synchronous DS-CDMA Systems
92. Arho Virkki, The Human Respiratory System: Modelling, Analysis and Control
93. Olli Luoma, Efficient Methods for Storing and Querying XML Data with Relational

Databases
94. Dubravka Ilić, Formal Reasoning about Dependability in Model-Driven

Development
95. Kim Solin, Abstract Algebra of Program Refinement
96. Tomi Westerlund, Time Aware Modelling and Analysis of Systems-on-Chip
97. Kalle Saari, On the Frequency and Periodicity of Infinite Words
98. Tomi Kärki, Similarity Relations on Words: Relational Codes and Periods
99. Markus M. Mäkelä, Essays on Software Product Development: A Strategic

Management Viewpoint
100. Roope Vehkalahti, Class Field Theoretic Methods in the Design of Lattice Signal

Constellations
101. Anne-Maria Ernvall-Hytönen, On Short Exponential Sums Involving Fourier

Coefficients of Holomorphic Cusp Forms
102. Chang Li, Parallelism and Complexity in Gene Assembly
103. Tapio Pahikkala, New Kernel Functions and Learning Methods for Text and Data

Mining
104. Denis Shestakov, Search Interfaces on the Web: Querying and Characterizing
105. Sampo Pyysalo, A Dependency Parsing Approach to Biomedical Text Mining
106. Anna Sell, Mobile Digital Calendars in Knowledge Work
107. Dorina Marghescu, Evaluating Multidimensional Visualization Techniques in Data

Mining Tasks
108. Tero Säntti, A Co-Processor Approach for Efficient Java Execution in Embedded

Systems
109. Kari Salonen, Setup Optimization in High-Mix Surface Mount PCB Assembly
110. Pontus Boström, Formal Design and Verification of Systems Using Domain-

Specific Languages
111. Camilla J. Hollanti, Order-Theoretic Mehtods for Space-Time Coding: Symmetric

and Asymmetric Designs
112. Heidi Himmanen, On Transmission System Design for Wireless Broadcasting
113. Sébastien Lafond, Simulation of Embedded Systems for Energy Consumption

Estimation
114. Evgeni Tsivtsivadze, Learning Preferences with Kernel-Based Methods
115. Petri Salmela, On Commutation and Conjugacy of Rational Languages and the

Fixed Point Method
116. Siamak Taati, Conservation Laws in Cellular Automata
117. Vladimir Rogojin, Gene Assembly in Stichotrichous Ciliates: Elementary

Operations, Parallelism and Computation
118. Alexey Dudkov, Chip and Signature Interleaving in DS CDMA Systems
119. Janne Savela, Role of Selected Spectral Attributes in the Perception of Synthetic

Vowels
120. Kristian Nybom, Low-Density Parity-Check Codes for Wireless Datacast Networks
121. Johanna Tuominen, Formal Power Analysis of Systems-on-Chip
122. Teijo Lehtonen, On Fault Tolerance Methods for Networks-on-Chip
123. Eeva Suvitie, On Inner Products Involving Holomorphic Cusp Forms and Maass

Forms
124. Linda Mannila, Teaching Mathematics and Programming – New Approaches with

Empirical Evaluation
125. Hanna Suominen, Machine Learning and Clinical Text: Supporting Health

Information Flow
126. Tuomo Saarni, Segmental Durations of Speech
127. Johannes Eriksson, Tool-Supported Invariant-Based Programming

128. Tero Jokela, Design and Analysis of Forward Error Control Coding and Signaling
for Guaranteeing QoS in Wireless Broadcast Systems

129. Ville Lukkarila, On Undecidable Dynamical Properties of Reversible One-
Dimensional Cellular Automata

130. Qaisar Ahmad Malik, Combining Model-Based Testing and Stepwise Formal
Development

131. Mikko-Jussi Laakso, Promoting Programming Learning: Engagement, Automatic
Assessment with Immediate Feedback in Visualizations

132. Riikka Vuokko, A Practice Perspective on Organizational Implementation of
Information Technology

133. Jeanette Heidenberg, Towards Increased Productivity and Quality in Software
Development Using Agile, Lean and Collaborative Approaches

134. Yong Liu, Solving the Puzzle of Mobile Learning Adoption
135. Stina Ojala, Towards an Integrative Information Society: Studies on Individuality

in Speech and Sign
136. Matteo Brunelli, Some Advances in Mathematical Models for Preference Relations
137. Ville Junnila, On Identifying and Locating-Dominating Codes
138. Andrzej Mizera, Methods for Construction and Analysis of Computational Models

in Systems Biology. Applications to the Modelling of the Heat Shock Response and
the Self-Assembly of Intermediate Filaments.

139. Csaba Ráduly-Baka, Algorithmic Solutions for Combinatorial Problems in
Resource Management of Manufacturing Environments

140. Jari Kyngäs, Solving Challenging Real-World Scheduling Problems
141. Arho Suominen, Notes on Emerging Technologies
142. József Mezei, A Quantitative View on Fuzzy Numbers
143. Marta Olszewska, On the Impact of Rigorous Approaches on the Quality of

Development
144. Antti Airola, Kernel-Based Ranking: Methods for Learning and Performace

Estimation
145. Aleksi Saarela, Word Equations and Related Topics: Independence, Decidability

and Characterizations
146. Lasse Bergroth, Kahden merkkijonon pisimmän yhteisen alijonon ongelma ja sen

ratkaiseminen
147. Thomas Canhao Xu, Hardware/Software Co-Design for Multicore Architectures
148. Tuomas Mäkilä, Software Development Process Modeling – Developers

Perspective to Contemporary Modeling Techniques
149. Shahrokh Nikou, Opening the Black-Box of IT Artifacts: Looking into Mobile

Service Characteristics and Individual Perception
150. Alessandro Buoni, Fraud Detection in the Banking Sector: A Multi-Agent

Approach
151. Mats Neovius, Trustworthy Context Dependency in Ubiquitous Systems
152. Fredrik Degerlund, Scheduling of Guarded Command Based Models
153. Amir-Mohammad Rahmani-Sane, Exploration and Design of Power-Efficient

Networked Many-Core Systems
154. Ville Rantala, On Dynamic Monitoring Methods for Networks-on-Chip
155. Mikko Pelto, On Identifying and Locating-Dominating Codes in the Infinite King

Grid
156. Anton Tarasyuk, Formal Development and Quantitative Verification of

Dependable Systems
157. Muhammad Mohsin Saleemi, Towards Combining Interactive Mobile TV and

Smart Spaces: Architectures, Tools and Application Development
158. Tommi J. M. Lehtinen, Numbers and Languages
159. Peter Sarlin, Mapping Financial Stability
160. Alexander Wei Yin, On Energy Efficient Computing Platforms
161. Mikołaj Olszewski, Scaling Up Stepwise Feature Introduction to Construction of

Large Software Systems
162. Maryam Kamali, Reusable Formal Architectures for Networked Systems
163. Zhiyuan Yao, Visual Customer Segmentation and Behavior Analysis – A SOM-

Based Approach
164. Timo Jolivet, Combinatorics of Pisot Substitutions
165. Rajeev Kumar Kanth, Analysis and Life Cycle Assessment of Printed Antennas for

Sustainable Wireless Systems
166. Khalid Latif, Design Space Exploration for MPSoC Architectures

Joukahaisenkatu 3-5 B, 20520 Turku, Finland | www. tucs.fi

Turku
Centre for
Computer
Science

University of Turku
Faculty of Mathematics and Natural Sciences
 • Department of Information Technology
 • Department of Mathematics and Statistics
Turku School of Economics
 • Institute of Information Systems Science

Åbo Akademi University
Division for Natural Sciences and Technology
 • Department of Information Technologies

ISBN 978-952-12-2976-3
ISSN 1239-1883

K
halid Latif

K
halid Latif

D
esign S

pace Exploration for M
PS

oC
 A

rchitectures

D
esign S

pace Exploration for M
PS

oC
 A

rchitectures

