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Tropical forests are sources of many ecosystem services, but these forests are 
vanishing rapidly. The situation is severe in Sub-Saharan Africa and especially in 
Tanzania. The causes of change are multidimensional and strongly interdependent, 
and only understanding them comprehensively helps to change the ongoing 
unsustainable trends of forest decline. Ongoing forest changes, their spatiality and 
connection to humans and environment can be studied with the methods of Land 
Change Science. The knowledge produced with these methods helps to make 
arguments about the actors, actions and causes that are behind the forest decline.  
 
In this study of Unguja Island in Zanzibar the focus is in the current forest cover and its 
changes between 1996 and 2009. The cover and changes are measured with often 
used remote sensing methods of automated land cover classification and post-
classification comparison from medium resolution satellite images. Kernel Density 
Estimation is used to determine the clusters of change, sub-area –analysis provides 
information about the differences between regions, while distance and regression 
analyses connect changes to environmental factors. These analyses do not only 
explain the happened changes, but also allow building quantitative and spatial future 
scenarios. Similar study has not been made for Unguja and therefore it provides new 
information, which is beneficial for the whole society.  
 
The results show that 572 km2 of Unguja is still forested, but 0,82–1,19% of these 
forests are disappearing annually. Besides deforestation also vertical degradation and 
spatial changes are significant problems. Deforestation is most severe in the communal 
indigenous forests, but also agroforests are decreasing. Spatially deforestation 
concentrates to the areas close to the coastline, population and Zanzibar Town. 
Biophysical factors on the other hand do not seem to influence the ongoing 
deforestation process. If the current trend continues there should be approximately 485 
km2 of forests remaining in 2025. Solutions to these deforestation problems should be 
looked from sustainable land use management, surveying and protection of the forests 
in risk areas and spatially targeted self-sustainable tree planting schemes.   
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Trooppiset metsät tuottavat monia keskeisiä ekosysteemipalveluita, mutta näiden 
metsien määrä vähenee hälyttävällä tahdilla. Metsien väheneminen on nopeaa 
Saharan eteläpuolisessa Afrikassa ja erityisesti Tansaniassa. Syyt muutoksiin ovat 
monitahoisia ja vahvasti keskinäisriippuvaisia, mutta ainoastaan ymmärtämällä niitä 
kokonaisvaltaisesti voidaan muuttaa nykyisiä kestämättömiä kehityskulkuja. Metsissä 
tapahtuvia muutoksia, muutosten spatiaalista rakennetta ja suhdetta ympäristöön ja 
ihmisiin voidaan tutkia maanmuutostieteen metodein. Näillä työkaluilla tuotettu tieto 
auttaa ymmärtämään ketkä ovat niitä tekijöitä ja mitkä ovat niitä syitä jotka muokkaavat 
maailman metsiä.  
 
Tutkimuksessa keskitytään Sansibarilla sijaitsevan Ungujan saaren metsien nykyiseen 
määrään ja siinä vuosien 1996 ja 2009 välillä tapahtuneisiin muutoksiin. Metsien 
määrää ja muutoksia mitataan kaukokartoituksesta tutuilla automaattisen maapeitteen 
luokittelun ja muutosanalyysin menetelmillä. Tiheysfunktion ydinestimaattia käytetään 
muutosten spatiaalisten klustereiden kartoittamiseen, osa-alue – analyysillä tuodaan 
esiin alueiden välisiä eroja kun taas etäisyys- ja regressionanalyysit yhdistävät 
tapahtuneita muutoksia ympäristötekijöihin. Näiden analyysien avulla ei ainoastaan 
selitetä tapahtuneita muutoksia vaan pyritään myös ennustamaan miten paljon ja 
missä metsäkatoa tapahtuu tulevaisuudessa. Samankaltaista tutkimusta ei ole aiemmin 
tehty koko Ungujan alueelta, joten se sisältää paljon uutta tietoa mistä on hyötyä koko 
yhteisölle.  
 
Tulokset näyttävät, että noin 570 km2 Ungujasta on vielä tänäänkin metsien peitossa, 
mutta 0,82–1,19% näistä metsistä katoaa vuosittain. Horisontaalisen metsäkadon 
lisäksi myös vertikaalinen degradaatio ja spatiaaliset muutokset ovat merkittäviä 
ongelmia. Metsäkato on intensiivisimmillään yhteisömailla olevissa alkuperäismetsissä, 
mutta myös peltometsäalueet vähenevät. Metsäkadon spatiaalista rakennetta selittää 
rannikoiden, asutuksen ja Zanzibar Townin läheisyys, kun taas biofyysiset tekijät eivät 
vaikuta prosessiin. Jos kehityskulku jatkuu nykyisellään, vuonna 2025 metsät peittävät 
enää vain noin 485 neliökilometriä saaresta. Ratkaisuja metsäkadon ongelmiin tulisi 
hakea kestävämmästä maankäytönsuunnittelusta, riskialueilla sijaitsevien metsien 
kartoittamisesta ja suojelusta sekä alueellisesti kohdistetuista omavaraisista 
puunistutushankkeista.    
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1. Introduction 

Tropical forests are known to sustain biodiversity and hydrological cycle, improve air, 

water and soil quality, slow down climate change, reduce flooding and erosion, uphold 

traditional cultures and provide livelihoods to communities and individuals (Skole & 

Tucker 1993; Rudel & Roper 1997; Laurance 1999; Houghton et al. 2000; Maass et al. 

2005; UNEP 2007; FAO 2010: 35–37; Fagerholm et al. 2012). Nonetheless 5,2 million 

hectares of forests, area larger than Estonia, is lost each year. Even though the public 

discussion often focuses on South America, the forests of Africa are almost as 

threatened (FAO 2010: 15–34). Tanzania is one of the deforestation hot spots of the 

continent and as part of Tanzania, Zanzibar is no exception (RGZ 2004; DCCFF 2008; 

FAO 2010: 21).  

 

Deforestation and forest changes in general are outcomes of multiple processes. 

Different actors cause change at local level because of wood extraction, agricultural 

and infrastructure expansion, but the amount of deforestation is directed by more 

underlying causes in the society and the environmental realm makes the boundaries 

for how much and where deforestation takes place (Rudel & Roper 1997; Kaimowitz & 

Angelsen 1998: 90–98; Angelsen 1999; Geist & Lambin 2001: 6–8). The outcomes of 

deforestation can be measured with remote sensing and GIS techniques, but 

understanding the processes and causes behind these measurements requires 

approaches incorporated from multiple disciplines (Nagendra et al. 2004; Rindfuss et 

al. 2004; Lambin et al. 2006: 7; Turner et al. 2007). These interdisciplinary approaches 

are referred as Land Change Science (LCS). LCS tries to provide answers to questions 

how land can change, how people cause change and how the environmental factors 

distribute the change spatially (Rindfuss et al. 2004; Lambin et al. 2006: 8; Turner et al. 

2007).  

 

Changes are usually measured with post-classification comparison methods in many 

LCS studies (Lu et al. 2004; Pontius et al. 2004). However the focus has shifted away 

from simply detecting changes to explaining and modeling them. This is often done 

with change trajectory, distance, multivariate regression and cellular automata analysis 

(Mertens & Lambin 2000; Veldkamp & Lambin 2001; Verburg et al. 2004; Käyhkö & 

Skånes 2006). These studies have been made from various areas around the world 

and they have deepened the understanding about the causes of forest decline, 

provided knowledge about the sustainability of current forest uses for the stakeholders, 

allowed discussions about alternative options and provided tools for decision makers to 

allocate actions (Ludeke 1990; Chomitz & Gray 1996; Mertens & Lambin 1997; 

Verburg et al. 2002, 2004, 2006; Walker 2004). 
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This study tries to monitor, model and explain the forest change processes happened 

in Zanzibar between 1996 and 2009 with the theoretic and methodological framework 

provided by LCS and deforestation research. The forests of Zanzibar are part of 

biodiversity rich East African Coastal Forest and they are homes to various endemic 

species (Burgess & Clarke 2000: 71–73). Also the daily lives of many Zanzibarians 

depend on forest products as sources of energy and livelihoods (Sitari 2005; 

Fagerholm & Käyhkö 2009; Fagerholm et al. 2012). However these forests are 

threatened by intensifying shifting cultivation, unsustainable fuel wood collection, 

expansion of tourism, urbanization, population growth and unsecure land tenure (RGZ 

2004:  6; DCCFF 2008; Käyhkö et al. 2008: 73–74; Mustelin 2008; Käyhkö et al. 2011). 

The authorities of the archipelago are seriously concerned about the sustainability of 

the natural resources (DCCFF 2008). Also Finland has collaborated with the 

Government of Zanzibar since 1980s in the field of forestry and securing the existence 

of forests have been one of the main goals of this collaboration (Fagerholm 2012: 35).  

 

Estimations about the extent of current forest cover and the rate of its decline have 

been made, but these have been based on spatially limited field observations or they 

are badly outdated (RGS 2004; DCCFF 2008). There is a lack of spatially explicit 

research, which would survey the coverage of current forests, provide relatively 

accurate rates for deforestation and map the spatial patterns of lost and still existing 

forests. This research tries to answer to these needs for Unguja, the main island of 

Zanzibar. The goal is not only to detect the changes at the level of entire Unguja, but 

also to identify its inner variations, to link the observed changes to biophysical and 

accessibility factors, determine the most influential environmentals factor and to predict 

quantity and spatiality of fore coming deforestation. There are four final research 

questions, which are later on specified with 8 sub-questions:  

 

 How were the forests and other land cover types distributed in Unguja 

spatially and quantitatively in 2009? 

 

 How has the forest cover changed between 1996 and 2009? 

 

 How have different environmental factors influenced forest changes 

spatially during this time period? 

 

 How will the forest cover change in the future? 
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2. Theoretical framework 

2.1 Multiple values and uses of tropical forests 

Forest and especially tropical forests sustain many important ecosystem services. 

Tropical forests cover only 7% of Earth’s surface, while maintaining about the half of 

animal and plant species, making them primary terrestrial biodiversity hot spots. 

Species are driven to extinction and biodiversity is threatened when deforestation 

causes destruction, fragmentation or increased edge effect of habitats (Wilson 1988; 

Skole & Tucker 1993; Rudel & Roper 1997; Laurance 1999; Ferraz et al. 2003; 

Jongman & Pungetti 2004: 2–33). Agricultural, urban or other vegetated land covers 

bind significantly less carbon than forests, thus accelerating climate change (Skole & 

Tucker 1993; Laurance 1999; Houghton et al. 2000). Reduction of forest cover also 

increases the surface flow of watersheds, which exposes the land to flooding, water 

erosion and decreased infiltration and groundwater flow rates (Sahin & Hall 1994; 

Laurance 1999). Although deforestation might increase the water yield of lakes and 

rivers in a short run, it influences the hydrological cycle negatively causing less rainfall 

in a longer time period, due to decreased evapotranspiration (Skole & Tucker 1993; 

Laurance 1999; Maass et al. 2005; D’Almeida et al. 2007). Besides water erosion, 

cleared soils are also sensitive to wind erosion. Erosion along with the decrease of 

microbial biomass, loss of labile organic matter and disturbance of macroaggregates 

caused by deforestation, leads to decline in overall soil quality (Islam & Weil 2000).  

 

Deforestation has also direct human-related effects. Forests are essential for 

livelihoods, especially in the developing world. They provide fuel wood, charcoal, 

medicinal plants, construction materials, wild fruits, beverages, spices, hunting 

grounds, materials for handicrafts, grazing areas for livestock and land for shifting 

cultivation for individuals and communities (Maass et al. 2005; Fagerholm & Käyhkö 

2009; Swetnam et al. 2011; Fagerholm et al. 2012). In national scale, timber, minerals 

and ecotourism are essential sources of income and possibilities of economic 

development for many tropical developing countries (Laurance 1999; Maass et al. 

2005). Also large amount of medicinal plants can be found from tropical forest. 

However only a small portion of these are scientifically tested and even smaller fraction 

are refined as drugs (Balick & Mendelsohn, 1992; Laurance 1999). Besides the direct 

material values many indigenous cultures are closely related to the used lands and 

forests and the knowledge collected by them is threatened as these are threatened 

(Alcorn 1993; Laurance 1999; Contreras-Hermosilla 2000). Even though culture would 

not be strongly built around the forest, these still have an important non-material value 

as sites for recreation, traditional believes, aesthetic and intrinsic values (Maass et al. 

2005; Sitari 2005; Fagerholm et al. 2012). 
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2.2. Global and regional trends of forest change 

Forests cover proximately one third of Earth’s, but 0,13% (5,2 million hectares) of these 

forests are disappearing annually. The pace of net deforestation has lowered 

significantly since 1990s, when it was still 8 million hectares per year, but nonetheless 

the current development is unsustainable. All of the tropical regions are under this 

threat, but especially severe the situation is in South America and Africa. Although 

South America is often considered as the primary deforestation hotspot, Africa is not 

far behind. If reforestation is left acknowledged approximately 4 million hectares of 

forests are lost in South America annually, while the figure is only 0,6 million hectares 

less in Africa (FAO 2010; 11–22). Besides these figures the situations are completely 

different. In South America half of all land is forested and 80% of these are old growth 

primary forests, while in Africa only less than a quarter of the total area is under forest 

cover and only 10% of these are primary (FAO 2010: 15–34). In Eastern Africa the 

share of primary forests is even as lower (2,4%) (FAO 2010: 52).   

 

The forests of Zanzibar are part of East African Coastal Forests (EACF), extending 

from Somalia to Mozambique (Figure 1). EACFs are combinations of multiple habitats 

and not only formed from closed forests, but also from drier woodlands, thickets and 

scrublands (Burgess & Clarke 2000: 84–94). Spatially comprehensive periodical forest 

surveys are missing from the area, but some estimations of the total forest extent are 

made (Dallu 2004). Godoy et al. (2011) estimated the EACFs to cover 3583 km2 of 

Tanzania in 2000, while Tabor et al. (2010) measured 4560 km2 cover. The former 

measured also the cover for 2007 when it was 2737 km2. Though, differences in class 

semantics, forest detection methods and delineations of the ecoregion make 

comparison of various estimations difficult (Olander 2008). It is estimated that today’s 

EACF cover only 5–40% from their original extent and the continuing decrease of forest 

stock is a serious problem in the area. Besides deforestation, also fragmentation and 

degradation are devastating forest systems by dividing continuous forests to patches 

generally smaller than 5 km2 (Burgess 2000b; Dallu 2004).  

 

It has been estimated that approximately three quarters of the EACFs are under high or 

very-high deforestation threat, while the remaining one quarter is under institutional 

protection (Tabor et al. 2010; WWF Tanzania Country Office 2012: 70). The estimated 

annual deforestation rate for whole Tanzania in 2010 was 1,13%, which was the 

second highest in Africa (FAO 2010: 21). Surprisingly the annual deforestation rates for 

Coastal Forest in Tanzania were lower than for the whole country, although again the 

methodological differences make comparisons biased. In the study of Tabor et al. 

(2010) 371 km2 (8,1%) of these forests disappeared between 1990 and 2000, making 
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the annual forest cover decrease to be 0,8%. At the same time period Godoy et al. 

(2011) measured annual deforestation rate to be around 1%. In general the annual 

deforestation rate seems to be decreasing and between 2000 and 2007 it was anymore 

0,4% (Godoy et al. 2011). Deforestation faced especially non-protected areas, which 

had 5,5 to 9 times higher deforestation rates than the protected areas (Tabor et al. 

2010; Godoy et al. 2011). Also the areas near the coastline were more prone to 

deforestation, although majority of low-lying forest have already gone through 

extensive deforestation process in the history (Prins & Clarke 2007; Tabor et al. 2010; 

Swetnam 2011).  

 

Figure 1. The extent of East African Coastal Forests in 2006 modified from TFCG (2006).  

 

Besides the pace of deforestation also the driving forces behind the process vary 

significantly between and within continents, countries and regions (Geist & Lambin 

2001: 1–2). In Africa deforestation is more often linked to subsistence agriculture, 

shifting cultivation, fuel wood extraction, population growth, increased accessibility, 

foreign depth, urbanization and land tenure insecurity, while in South America it relates 

more to road and settlement expansion, commercial logging, grazing, rapid market 

growth, industrialization, taxation and capital (Geist & Lambin 2001: 23–49; Rudel et al. 

2009). Some have argued that large scale loggings, export oriented agriculture and 

bioenergy are becoming more important drivers of deforestation in Africa, but at 

present the deforestation process is still strongly subsistence agriculture driven (Rudel 

et al. 2009; DeFries et al. 2010; Fisher 2011). These substantial inter- and intraregional 
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differences emphasizes the value of research done at various geographical levels, 

ranging from local to global (Lambin 2003).   

 

It is estimated that 60% of the Coastal Forest have been converted to farmland or 

urban areas (WWF Tanzania Country Office 2012: 70). The forests are still threatened 

by urban and agricultural expansion, but also timber cutting and charcoal production 

are serious threats (Burgess et al. 2000; Ahrends et al. 2010; Tabor et al. 2010; 

Swetnam et al. 2011). WWF Tanzania Country Office (2012: 70) and Swetnam et al. 

(2011) made stakeholder estimations about the proximate causes of deforestation in 

EACFs. In these estimations agricultural expansion was seen as the number one 

cause of decline, but also demand for fuel wood was analyzed as very high threat. 

Infrastructure expansion, unsustainable logging and forest fires were seen also as 

influential driving forces, while harvesting wood for carving, grazing, unsustainable 

hunting, conversion to salt pans, mining, climate change, collection of materials for 

selling, invasive species and pollution were analyzed as minor threats.      

 

Majority of the Coastal Forest in Tanzania are Forest Reserves in their management 

status, while approximately one-fifths of the area is under more strict conservation as 

National Parks or National Reserves (Dallu 2004; Tabor et al. 2010). However many 

areas lack management plans or they are badly outdated. Where plans exist, limited 

resources and high pressure makes difficult to achieve their objectives and although 

general rules for forest use are set, they are rarely enforced locally. Nationally, 

environmental protection is promoted, but in reality it is rarely integrated in to economic 

policies, leading to situations where environmental values are overruled by the 

economic ones (Dallu 2004). Because of the severe lack in administrative resources, 

Participatory and Joint Forest Management schemes promoting greater role of local 

communities are widely promoted in Tanzania (Dallu 2004; WWF Tanzania Country 

Office 2012: 68 – 69).  

 

2.3. Forests and dynamics of forest change 

FAO (2000) has defined forest as a land area that is larger than 0,5 hectares, where 

trees reach minimum height of 5 meters in maturity and canopies cover at least 10% of 

the area. Forests are further subdivided to natural and planted, former referring to 

indigenous forests and latter to planted ones. Even though an area would fill these land 

cover requirements it should not be considered as forest if the main active land use is 

agricultural or urban, thus agroforests are not considered as forests in FAO (2000) 

classifications. Based on the same standards deforestation is a situation where forest 

converts to other land uses or the canopy coverage decreases below 10%, due to 
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anthropogenic or natural reasons. The conversion needs to be long-term or even 

permanent and therefore it should last at least 10 years (Kaimowitz & Angelsen 1998; 

FAO 2000; Rudel 2005: 12). Long-term fallows and secondary forests are often 

considered as forests, but in certain cases these may be left outside the concept 

(Kaimowitz & Angelsen 1998). 

 

Forest changes are truly geographical phenomena influenced by both the social and 

natural realms of life. The drive to change often comes from comprehensive 

happenings in the society such as population growth, urbanization or increased market 

demand (Figure 2) (Kaimowitz & Angelsen 1998: 90–98; Angelsen 1999; Geist & 

Lambin 2001: 6–8). Environmental realm on the other creates the boundary conditions 

for this change. Forests simply cannot grow where the soil or climate is unsuitable and 

are rarely deforested from areas inaccessible to humans (Rudel & Roper 1997; 

Kaimowitz & Angelsen 1998: 90; Geist & Lambin 2001: 13–15; Verburg et al. 2004). 

The underlying social causes determine the quantity of change, while environmental 

factors designate its spatial pattern. Though, sometimes environmental factors can 

create feedback effects which work as the underlying causes (Geist et al. 2006). For 

example deforestation leading to soil degradation and unpredictable water flowes 

causes decrease in agricultural productivity. Decreasing productivity leads people to 

seek income from forest products, which eventually causes more deforestation. 

Similarly social underlying causes, like political decisions of forest conservation, have 

an influence on the spatial pattern of forest change.  

 

Underlying causes and environmental boundary conditions come to reality through 

actions of individuals and communities towards forests. These actions, such as fuel 

wood collection and shifting cultivation are called as proximate causes and they always 

have a direct impact on forests (Kaimowitz & Angelsen 1998: 90–98; Angelsen 1999; 

Geist & Lambin 2001: 6–8). All of these direct changing processes have their own 

spatio-temporal nature, which is influenced by the underlying causes and 

environmental factors. For example fuel wood collection degrades forests steadily 

around the rural villages from where usable wood is available, while shifting cultivation 

spreads more widely to forested areas nearby, but causing only a short-term change  

(Geist & Lambin 2001: 69–71; Ahrends et al. 2010; Hett et al. 2012). Eventually it is the 

quantity and spatial pattern of the change process, which becomes empirically 

verifiable. Happened changes provide feedback to the underlying causes and 

environmental factors, which may alter the process when it starts again from the 

beginning (Geist & Lambin 2001: 14–15).  
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Figure 2. Dynamics of forest change. Underlying causes dictate the need for change, while 

environmental factors determine its boundary conditions. The changes are actualized through 

proximate causes, which all have their own spatio-temporal characteristics influenced by the 

underlying causes and environmental factors. It is eventually the quantity and spatial pattern of 

the process which becomes measurable. 

 

As an example of the forest dynamics modified from the case study of Nagendra et al. 

(2003): Increase in coffee prices in the Western markets (underlying cause) promotes 

establishing new coffee plantations in Guatemala, but coffee only grows in high altitude 

and in particular soil conditions (environmental factors). All of the forests with the right 

altitude and soil could be deforested, but the coffee farmers only prefer those sites that 

are along main roads (environmental factor) and plantations concentrate diffusively 

there (proximate cause). Unfortunately the deforestation concentrates within the 

habitats of endangered cougars and after political pressure from the environment 

movement the government declares all cougar habitats protected (feedback). After the 

decision the new coffee plantations are abandoned and reforested (temporal nature of 

change). Eventually these actions lead to certain quantity and spatio-temporal patterns 

of forest change, which can be measured with remote sensing and GIS techniques. At 

the end of the day forest dynamics are created by countless similar and sometimes 

entangled processes, which alter the forests constantly, making it extremely difficult to 

fundamentally understand the process and the forces behind it (Contreras-Hermosilla 

2000; Geist & Lambin 2001: 95–96)  
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2.4. Underlying causes  

Mere detection of forest change is insufficient, if it is not connected to the forces 

causing it (Meyer & Turner 1992). Underlying causes are large social processes that 

are behind or underpin majority of the proximate causes (Table 1). These are political, 

social, economic, technological, demographic and cultural factors operating at various 

spatial scales, influencing forest change either quite directly at local level or indirectly 

through various chain-linked systems of national, regional or global scales. Eventually 

they are connected to proximate causes and actors at local level executing the actual 

change process (Contreras-Hermosilla 2000; Geist & Lambin 2001: 8–13; Lambin et al. 

2001).  

 

Table 1. Underlying causes of deforestation (Kaimowitz & Angelsen 1998: 95–98, Contreras-

Hermosilla 2000; Geist & Lambin 2001: 8) 

 Underlying causes 

 
Economic 

Market growth 
Rapid market growth, market failures, rise of cash economy, increased market 
accessibility, growth of certain industries, growth of consumer good demand 

Economic structures 
Poverty, unemployment, low living standards, economic downturn, external 

debt 

Urbanization & 
industrialization 

Growth of urban markets, increasing basic, heavy and forest based industries 

Economic parameters 
Advantages of cheap production and materials, price changes of certain 

commodities, price changes of cash crops 

 Policy and institutional 

Formal policies 
Taxes, tariffs, subsidies, licenses, bans, finance, legislation, land use, zoning, 

transportation, forest policy, structural adjustment 

Informal policies Corruption, lawlessness, mismanagement 

Property rights Insecure ownership, land tenure, land competition, access to land 

 Technological 

Agro-technological 
change 

Land use intensification and extensification, production changes 

Technological 
applications in forestry 

Damage due poor logging, wastage in production 

Other production 
factors in agriculture 

Low level of technological inputs, land scarcity, limited labor, lack of capital, 
lack of irrigation 

 Cultural 

Attitudes, beliefs and 
values 

Lack of forest protection, low education, frontier mentality, nation-building, 
concern about welfare of future generations etc. 

Individual and 
household behaviour 

Increase in demand, consumption, commercialization, traditional use of 
resources 

 Demographic 

Demographic 
Population pressures, population growth, migration, population density, 

population distribution, population structure, etc. 
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While connections between proximate causes and forests changes are quite 

straightforward, it is more difficult to affirm the causality between underlying forces and 

change (Kaimowitz & Angelsen 1998: 95–98). Underlying causes tend to operate in 

chain-linked manner where the same cause can have different influences at different 

locations at different times, depending on how it is linked to the rest of the cause-chain. 

This makes it difficult to lay universal explanations, but certain regional or national 

generalizations can be made (Geist & Lambin 2001: 1–2; Lambin et al. 2001; Turner et 

al. 2007). However the underlying causes are often outcomes of other underlying 

causes, making it hard to pinpoint one and only driving factor (Contreras-Hermosilla 

2000; Geist & Lambin 2001: 95–97). For example poverty often drives people to 

unsustainable cultivation methods, making poverty the underlying cause of 

deforestation, but poverty can be also seen as outcome of population growth or 

unequal power over resources caused by colonization. So is it eventually poverty, 

population growth, unequal power relations or colonization, which is the main 

underlying cause behind deforestation? It would be easy to bypass these kinds of 

chain-linkages as causalities in history, irrelevant to actions taken against present 

deforestation, but to change the current state, underlying causes need to be 

responded, and the answers given to poverty are very different from the ones given to 

population growth or unequal power relations (Contreras-Hermosilla 2000).  

 

Because underlying causes are extremely diverse and vary between regions, only 

those that have significant value in Africa, or in Tanzania, are introduced here. From 

the 19 deforestation case studies from Africa analyzed by Geist & Lambin (2001: 23–

49) demographic factors were influential in 95%, economic factors in 84%, 

technological factors in 74%, institutional and policy factors in 47% and cultural and 

sociopolitical factors in 37%. Market growth, market failures, changes in agricultural 

prices, commercialization, growing population densities, in-migration, agrotechological 

changes and wood sector related matters were the more specific factors behind 

deforestation (Angelsen & Kaimowitz 1999; Geist & Lambin 2001: 23–49). 

 

Geist & Lambin (2001: 46) found links between deforestation and such demographic 

factors as, population growth (in 79% of cases), in-migration (47%), population density 

(32%) and urbanization (26%). Already since Malthus population growth has been 

viewed as a central driving force to land cover change (Geist et al. 2006: 53). Growing 

population pressure influences deforestation in multiple ways. Directly it increases rural 

population seeking for agricultural land, fuel wood, timber and other forest products and 

the amount of customers for these products in-situ and in urban areas. More indirectly 

it affects the labor markets by pushing down wages, which causes people to seek 
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incomes from agriculture and forest activities that were unprofitable earlier or through 

the institutional and technological changes (Kaimowitz & Angelsen 1998: 95–96; 

Mertens et al. 2000; Scrieciu 2006). The sheer number of population is no longer the 

only issue mattering, also population composition, fertility, distribution, urbanization, 

migration, household size and household live cycle have gained interest in research 

(Rindfuss et al. 2005: 361–363; Geist et al. 2006: 53–54; Lambin et al. 2006: 6). 

Especially in-migration has become important demographic factor in the globalized 

world where mortality and birth rates are stabilizing. From all of the demographic 

factors it is precisely in-migration to sparsely populated primary forest areas that has 

been proved to cause deforestation with absolute certainty (Rindfuss et al. 2005: 357; 

Geist et al. 2006: 54).  

 

Writght and Muller-Landau (2006) have argued that urbanization could severely 

decrease the deforestation pressure caused by population growth and help to avoid 

mass extinction of tropical forest species. Urbanization eases the pressure of 

population growth as rural migrants leave their old fields abandoned and to reforest. 

Urban habitants are also more open-minded towards environmental friendly technology 

developments and their monetary incomes are higher. A higher income promotes 

importation of food and forest products and decreases the domestic demand 

(Contreras-Hermosilla 2000: 21). It also increases forest product prices at home, which 

could lead to tree planting in rural areas (Foster & Rosenzweig 2003; Rudel et al. 

2005). Urbanization is however a double-edged sword and on the other hand it is 

related with increasing deforestation (Geist & Lambin 2001: 9; Rudel et al. 2009). 

When urbanization leads to increased personal incomes it also leads to higher 

consumption of agricultural products, which pushes the agricultural lands to spread. 

Although this may not happen at home it increases deforestation generally (Rudel et al. 

2009). Also in Africa charcoal is often the most used cooking energy in the cities and its 

production chain requires more forest materials than using unprocessed woodfuel 

(DCCFF 2008; Ahrends 2010).   

 

Arguments saying that majority of deforestation is caused by population growth 

combined with poverty through shifting cultivation practices has been proved as crude 

simplifications (Lambin et al. 2001). It is coming more and more obvious that 

demographic matters are always connected to other causes of culture, economy, 

technology, formal policies, accessibility and biophysical settings, and the causality 

between demographic factors and land cover changes are outcomes of these 

connections rather than sheer population changes (Kaimowitz & Angelsen 1998: 95–

96; Rindfuss et al. 2004; Geist et al. 2006: 54). Evidence of population factors 
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influences at micro-scales has been scarce, but at macro-scales the effect is clear 

(Rindfuss et al. 2004). Differences between regions make generalizations fruitless and 

underline the importance of study area knowledge. Also the causalities of demographic 

factors and other underlying causes suggest that concentrating solely on demographic 

problems is rather limited approach to deforestation (Geist et al. 2006: 53–54)  

 

In the cases analyzed by Geist & Lambin (2001: 34) such economic and political 

factors were connected with deforestation as growth in agriculture- and wood-related 

industries (in 68% of cases), growth in demand of agricultural and forestry products 

(68%), increased market accessibility (26%), economic development (26%), land 

policies (26%) and foreign debt (21%). Surprisingly poverty was not strongly linked to 

the deforestation cases of Africa (Geist & Lambin 2001: 36). Increasing market demand 

of agricultural crops and forest products leads to agricultural intensification and spread 

of agriculture and pasture land to forest areas (Kaimowitz & Angelsen 1998: 91–96; 

McConell & Keys 2005). Increasing market opportunities “pull” farmers to produce 

beyond subsistence, creating growth in agriculture- and wood-related industries, while 

same opportunities “push” to consume more than subsistence requires. Governments 

can increase these “push” and “pull” factors with subsidies, agricultural policies, 

taxation, and improving access to markets with infrastructure development (Kaimowitz 

& Angelsen 1998: 91–96; Mertens et al. 2000). Globally demand for meat, vegetables 

and fruits are increasing and causing subsistence croplands to decline and market 

oriented production to increase (Geist et al. 2006: 48; Rudel et al. 2009). These global 

and local trends associated with agriculture promoting policies can cause increase in 

agricultural prices. Higher prices make agriculture more profitable and capital available 

for farmers, which can generate deforestation, while decreasing prices may leave 

previously used lands uncultivated and free for reforestation (Kaimowitz & Angelsen 

1998: 90–97; Mertens et al. 2000; Scrieciu 2006).     

 

Foreign debt is considered to create deforestation when governments seek to generate 

income to pay debts through extensive logging projects (Conteras-Hermosilla 2000: 

13–14). Although 21% of the cases from Africa studied by Geist & Lambin (2001: 36) 

link deforestation with public debt, the relationship is unclear (Kaimowitz & Angelsen 

1998: 96–97; Conteras-Hermosilla 2000: 13–14). Methodological difficulties has made 

the subject difficult to prove scientifically, however top decision makers from forest rich 

tropical countries have been certain that the linkages exist (Conteras-Hermosilla 2000: 

13–14). 

 



13 

 

Open access or communal land ownership policies are generally considered to cause 

deforestation, especially if forest clearance gives rights to land ownership. This 

encourages people to clear more land than needed for subsistence purposes, if they 

can sell the products or the land for profit later on or squeeze unwanted neighbors out 

from the area (Kaimowitz & Angelsen 1998: 94). Also clearing forests prevents land to 

be claimed under official protection, which would limit land owners possibilities for 

income generation (Conteras-Hermosilla 2000: 16). Hardin (1968) has named the 

phenomenon of maximizing self-interest at the expense of long-term communal good in 

communal lands as “the tragedy of commons”.   

 

Geist and Lambin (2001: 36) did not link deforestation with poverty in Africa in their 

meta-analyses; however other researchers have done so. In poverty plagued 

surroundings there are limited off-farm employment possibilities, capital, technology 

and access to markets, eventually leaving no other possibilities to improve livelihoods 

than to turn more forests to cultivation, to shorten fallow periods, to overgraze or to 

harvest forest products for income (McPeak & Barret 2001; Khan & Khan 2009). 

Another issue is the ecological marginalization of the poor and politically weak. They 

are often pushed to marginalized lands already in the past and these lands do not allow 

livelihood generation without overexploitation, which has caused it to be status quo 

instead of something avoided until the end (Khan & Khan 2009). Poverty is also said to 

cause conservation opposing attitudes, when livelihood dependencies on natural 

resources are high, but on the other hand the dependency on natural resources is also 

said to promote conservation and other environment protecting actions (Scherr 2000; 

Swinton et al. 2003; Khan & Khan 2009). Eventually poverty-forest or poverty-

environment interactions are highly place-dependent and local economic, institutional, 

political, social and cultural context determines how they function (Khan & Khan 2009). 

 

Increasing market demand of agricultural products and their prices often promotes 

deforestation. These happenings are often outcomes of increased income and 

economic growth, but their effects vary significantly between regions. In regions with 

vast forest cover like Amazon, Southeast Asia and central Africa economic uplift leads 

to deforestation when nations try to capitalize their natural resources, while in forest 

scarce regions like in East Africa increase in forest prices often leads to reforestation 

(Kaimowitz & Angelsen 1998: 92–96; Contreras-Hermosilla 2000: 19; Unruh et al. 

2005). Many researchers believe in Environmental Kuznets Curve hypothesis, arguing 

that that after reaching certain threshold, improved economy decreases forest pressure 

and increases the forest cover, by creating better functioning government institutions, 

increasing governments capabilities for conservation, creating  technological 
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improvements, off-farm employment, urbanization, shifts towards petroleum based 

fuels, recreational forest uses, enhancing conservation atmosphere and decreasing 

dependency on agricultural and forest products (Kaimowitz & Angelsen 1998: 92–96; 

Contreras-Hermosilla 2000: 19; Rudel et al. 2005; Scrieciu 2006; Barbier et al. 2010). 

Though the evidence supporting the hypothesis has not been consistent, the level of 

economic and forest cover thresholds has been unspecified and the local social, 

political, institutional and cultural conditions have not been acknowledged (Conteras-

Hermosilla 2000: 19; Scrieciu 2006; Barbier et al. 2010). When Environmental Kuznets 

Curve hypothesis is more directly associated with forests it is referred as Forest 

Transition Theory or more accurately as its “economic development path”, but there is 

also another route towards Forest Transition, called as “forest scarcity path” (Rudel et 

al. 2005; Barbier et al. 2010). In this route the declining forest cover linked with 

continuously growing population leads to rising forest product prices, which encourages 

tree planting instead of other land uses. Governments can accelerate this path through 

forest planting schemes and by controlling forest product prices (Foster & Rosenzweig 

2003; Rudel et al. 2005). However the same uncertainties related to consistent 

evidence, level of thresholds and local conditions makes it difficult to believe in 

universal generalization of “forest scarcity path”. The first forest transition path is often 

related with European countries, while the second links to such Asian countries as 

Bangladesh and India (Foster & Rosenzweig 2003; Rudel et al. 2005). Eventually these 

approaches relating economic changes to forest cover cannot be fundamentally 

understood without linking them to theories of Von Thünen and to the incomes 

generated by other land use options (Barbier et al. 2010).  

 

In his theory Von Thünens argues that land is occupied by the use that generates the 

highest income and changes happen when other land uses became more profitable 

than the original one. As in the case of deforestation and agricultural expansion, 

deforestation takes place when agriculture becomes more profitable than keeping the 

forest untouched. The moment this actually happens, is influenced by multiple factors, 

such as agricultural input and output prices, technology, transportation costs and 

biophysical conditions and majority of these factors are linked to distance from markets 

or cities (Chomitz & Gray 1996: Verburg et al. 2004; Angelsen 2007: 2–4). In 

homogenous and isolated world Von Thünens theory creates a conceptual model, 

where most profitable and labor intensive agricultural land uses concentrate to the 

vicinity of cities, while steadily turning to less managed forest land uses when distance 

increases and profitability declines (Figure 3) (Angelsen 2007: 2–4). In genuine world 

Von Thünen model has proved to explain the spread of agriculture and the use of 

forest products (Verdburg et al. 2004; Ahrends: 2010), though the model is a crude 



15 

 

simplification criticized not to recognize land conversion costs, variations in soil, 

climate, vegetation, costs of different transportation means or changes in demands. 

Anyhow it is current still today and Von Thünen’s approach has gained wider meaning 

as studying land uses in relation to location and income (Chomitz & Gray 1996: 

Angelsen 2007: 2–4).    

 

 

Figure 3. Land use based on Von Thünen model. Profits created by land uses decrease when 

distance from urban centers or markets increase, which influences the most prominent land use 

form in the area. Based on Angelsen (2007: 7).  

 

2.5. Proximate causes  

Proximate causes are those human actions that directly affect deforestation and they 

can be roughly divided to three categories: agricultural expansion, wood extraction and 

infrastructure expansion, which can be then subdivided to more precise causes (Geist 

& Lambin 2001: 6–7) (Table 2). Proximate drivers originate from land use decisions 

made at local level, which makes it easier to connect these factors to deforestation 

than the underlying causes. Underlying factors at national, regional or global levels can 

influence proximate drivers, but actual land use decisions are always made locally 

(Geist & Lambin 2001: 6; Geist et al. 2006; Turner et al. 2007). Some of them are more 

planned by the state or administration, like for example commercial logging actions or 

colonization of new areas, while some are more unplanned like intensified fuel wood 

extraction or shifting cultivation rotation (Angelsen & Kaimowitz 1999). Emphasizing 

only the proximate causes can lead to situations of “blaming the victim”, as when 

subsistence farmers are accused for deforestation, although prevailing economic, 

political and technological situations may not allow them alternative options   (Turner et 

al. 2007).  
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Table 2. Proximate causes of deforestation. Based on Geist & Lambin (2001: 7) 
 

Proximate causes 

Agricultural expansion 

Shifting cultivation 

Permanent cultivation 

Cattle ranching 

Colonization of agricultural land 

Wood and mineral  
extraction 

Commercial logging 

Fuelwood extraction 

Polewood extraction 

Charcoal production 

Lime making 

Coral extraction 

Infrastructure extension 

Transport infrastructure 

Market infrastructure 

Public services 

Settlement expansion 

Private bussiness infrastructure 

 
 

From the African cases studied by Geist & Lambin (2001: 24–29) 84% linked 

deforestation with agricultural expansion, 68% with wood extraction and 47% with 

infrastructure extension. Though, rarely it is a single proximate cause behind the 

changes, but rather a combination of multiple causes. Generally deforestation in tropics 

and also in mainland Tanzania starts with logging of larger commercial trees, followed 

by shifting cultivation, collection of fuel wood and charcoal making in already degraded 

forest, finally leaving the area so degraded that complete shift to permanent agriculture 

becomes easy where soil conditions allow it (Lambin 1997; WWF Tanzania Country 

Office 2012: 73).   

 

Agricultural expansion is seen as by far the most important direct cause of 

deforestation globally and in Tanzania (Kaimowitz & Angelsen 1998: 89; Geist & 

Lambin 2001: 85; Swetnam et al. 2011; WWF Tanzania Country Office 2012: 70). It is 

an umbrella for multiple change processes at various scales, ranging from individual 

farmers slash and burn actions to large scale agricultural colonization of tropical 

forests. In Africa agricultural expansion is linked mainly to subsistence and small holder 

agriculture (Geist & Lambin 2001: 25; Lambin et al. 2003). Shifting cultivation was seen 

as a driving force in 42% of the African cases analyzed by Geist and Lambin (2001: 

25). Transmigration related agriculture was related to 21% of cases and cattle ranching 

to 16%. As said earlier, forests are not only threatened by the subsistence food crops, 

but also the market oriented cash crops have had their influence (Mertens et al. 2000; 

Geist et al. 2006: 48). Coconut, sisal, cashew, rubber and clove have placed areas 

previously occupied by forests and nowadays also such biofuel crops as jatropha, palm 
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oil and sugar cane are threating the Coastal Forests (WWF Tanzanian Country Office 

2012: 70–71).  

 

Agricultural expansions have a general tendency to occur in low-lying and plain areas 

that have suitable soils and high water availability, located close to villages, cities and 

markets of agricultural products. Though, population pressure, soil degradation and 

subsistence needs can push farmers to cultivate areas unable to fill these 

requirements, which in tropics often leads to extensive shifting cultivation (Kaimowitz & 

Angelsen 1998: 90; Geist & Lambin 2001: 78). This is also the case in Coastal Forest –

areas where soils are not widely able to support permanent agriculture. The high 

population pressure leads to overuse of agricultural land causing soil degradation and 

decreases in yields (Chidumayo 1987; Dallu 2004). This pushes agriculture to 

undisturbed forest areas and also intensifies the shifting cultivation rotation speed, 

leaving less time for the forest to regenerate and making them not only degrade 

horizontally, but also vertically (Chidumayo 1987; Hett et al. 2012). When possibilities 

to expand cultivation areas are limited, higher land use pressure appears mainly as 

shortening of fallow periods.  

 

Agricultural expansion can form many different spatial patterns of deforestation. Small 

holder and subsistence based shifting cultivation creates a diffusive structure where 

patches spread across the landscape rather randomly, but within a close distance to 

home villages, while permanent agriculture creates more of a patchy structure, where 

forests are cleared almost completely leaving only small patches standing in areas 

unsuitable for agriculture (Figure 4) (Lambin 1997; Geist & Lambin 2001: 69–71; Hett 

et al. 2012). However the created structure depends heavily on the underlying factors 

and for example colonialist agricultural expansion often follows roads in corridor or 

fishbone type manner and if rural living is not nucleated to villages, individual 

households may cause island pattern of deforestation (Skole & Tucker 1993; Geist & 

Lambin 2001: 69–71).  
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Figure 4. Different morphologies or spatial patterns of deforestation based on Lambin (1997) 

and Geist & Lambin (2001: 69–71). 

 

While deforestation related to wood extraction is mainly due to commercial logging in 

Asia and Latin America, in Africa it relates more to fuel wood collection, charcoal 

production and polewood extraction (Contreras-Hermosilla 2000; Geist & Lambin 2001: 

29). In study of Geist & Lambin (2001: 29) fire wood collection and charcoal making 

were behind over half of the deforestation cases from Africa, while polewood extraction 

influenced 42% and commercial logging only 26% of the cases. In Zanzibar also lime 

making and extraction of coral for construction purposes are deteorating the forest 

cover (Orjala 2008; Fagerholm et al. 2012). Charcoal is used mainly in larger cities and 

its influence is directly relational to accessibility to these cities, while fuel woods and 

polewoods are used more in rural areas, making their influence to spread more steadily 
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(Ahrends et al. 2010; WWF Tanzanian Country Office 2012: 71–75). As an example, 

charcoal provided to Dar es Salaam is estimated to influence areas as far as 300 km 

from the city and the production radius has spread over 50 kilometers since 1970s 

(Ahrends et al. 2010).  

 

Compared to large scale loggings wood fuel collection, polewood cutting and other 

domestic wood extraction activities may have less significant deforestation effects at 

regional scale, but their influence is strong at local or village level (Geist & Lambin 

2001: 72; Ahrends et al. 2010). Wood extraction for domestic purposes has been 

associated with island pattern of forest clearance, where deforestation happens mostly 

in areas circularly surrounding villages. Wood is simply extracted from areas which are 

closest and deforestation is not influenced by roads, soils, markets or topography, if 

they do not directly affect the availability of wood (Mertens & Lambin 1997; Geist & 

Lambin 2001: 71–72; Ahrends et al. 2010). Distribution of forest clearance caused by 

commercial logging, charcoal making and polewood extraction is dominated by 

vegetation in forest scarce regions, because these activities require relative large tree 

stems. Deforestation caused by selective logging of larger individual trees or 

unsystematic collection of fuel wood are difficult to measure with medium resolution 

satellite images, where minor changes do not cause shifts from forest to other land 

cover class, but rather cause vertical and qualitative degradation of forest stands 

(Healey et al. 2007: 68).  

 

Infrastructure causes direct deforestation when forests are cleared for urbanization, 

roads, railroads, mining or other human facilities (Geist & Lambin 2001: 7). At global 

scale direct deforestation impacts of infrastructure expansion are minor compared to 

wood extraction and agriculture. In global land cover estimations dense built-up areas 

cover less than 0,2% of terrestrial land, while the share is around 20% for agriculture. 

Although built-up areas are underestimated because of the large pixel size used and 

the elongated shape of built-up areas, it is clear that infrastructure expansion has 

rather limited direct impacts on deforestation (Hansen et al. 2000; Loveland et al. 2000; 

Geist & Lambin 2001: 8).  However indirect impacts are notable. Urban areas expand 

to close-by fields pushing agriculture towards forest, growing demands of urban 

population degrade forests nearby and transportation infrastructure opens access to 

new forest areas and links these to markets (Chomitz & Gray 1996; Mertens & Lambin 

1997; Lambin et al. 2003; Verburg et al. 2004; Ahrends et al. 2010).  

 

All African case studies analyzed by Geist and Lambin (2001: 27) linked deforestation 

with road extensions and only in couple of cases development of railroads and 
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accessibility to settlements and markets had an important influence. Generally 

infrastructure extensions causes patchy or corridor type distribution of deforestation. 

Patchy distribution is linked to overall spread of urban and agricultural land covers, 

while corridor type deforestation refers to process where forests are cleared mainly 

from road sides leaving rest of the area unaffected (Geist & Lambin 2001: 68–71).   

 

2.6. Environmental factors 

Environmental factors rarely trigger deforestation processes, but merely shape and 

provide feedback to them, making them to drive the location, not the quantity of 

change. As said earlier, permanent agriculture does not spread to soils unsuitable for 

farming or infrastructure is not built to rugged slopes (Mertens & Lambin 1997; Rudel & 

Roper 1997; Kaimowitz & Angelsen 1998: 90; Geist & Lambin 2001: 13–15; Geist et al. 

2006: 44; Verburg et al. 2004). Sometimes environmental factors can create feedback 

effects which work as proximate causes to the quantity of deforestation (Geist et al. 

2006). Environmental factors can be subdivided to biophysical and location properties. 

Biophysical properties include soil, climate, topography, hydrology and vegetation, 

while locational properties are more related to human activity and are turned to such 

variables as accessibility from coastline, vicinity to roads and accessibility to markets or 

urban centers (Geist & Lambin 2001: 13–15; Geist et al. 2006: 44; Verburg et al. 2004). 

Locational variables connect pixels to society, while biophysical properties affect land 

use decisions on the spot (Irwin & Geoghagen 2001; Verburg & Veldkamp 2003). 

Different proximate causes can be linked to different environmental factors and vice 

versa (Figure 5). However quantitatively arguing anything related to proximate or 

underlying causes based on research connecting deforestation to environmental 

factors is methodologically problematic, since all the proximate causes are linked to 

many different environmental factors and all the environmental facors are linked to 

many diffent proximate causes (Veldkamp & Lambin 2001).  
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Figure 5. Causalities of environmental factors and proximate causes of deforestation adapted to 

conditions of Coastal Forests of Tanzania and Zanzibar based on related research (Chomitz & 

Gray 1996; ; Mertens & Lambin 1997; Angelsen & Kaimowitz 1999; Geoghegan et al. 2001; 

Verburg et al. 2004; Angelsen 2007: 2–4; Prins & Clarke 2007; Fagerholm & Käyhkö 2009; 

Tabor et al. 2010; Swetnam 2011; Fagerholm et al. 2012;). 

 

Surprisingly many land cover change studies do not use land cover as a variable 

explaining the spatial pattern of deforestations. Different land cover types have different 

path dependencies altering the possibilities of changes. Fallows have clearly higher 

probability to reforest than urban areas and field cannot change back to primary forest. 

These limitations should be acknowledged in any land cover change modeling 

(Verburg & Velkamp 2003; Verburg et al. 2004). Land cover and its patterns also 

influences deforestation indirectly through the accessibility. It is easier to pass through 

open field than wetland to collect fuel wood and it is easier to collect these from edges 
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of fragmented forests (Kaimowitz & Angelsen 1998: 93; Verburg et al. 2004). However 

land cover classifications are often crude simplifications with only few classes and no 

inner variations within the classes. These inner variations such as vegetation 

differences within forests may impact deforestation in multiple ways as different 

deforestation processes require different kinds of forest vegetation (Verburg et al. 

2004). For example shifting cultivation driven deforestation tends to concentrate to 

areas of early secondary regrowth already used in cultivation, branches from only 

certain tree species are collected as fuel wood, while actions like logging, charcoal 

making and polewood extraction require trees to be relatively large and mature forests 

are more easily protected than low-lying scrubs or thickets (Geoghagen et al. 2001; 

Orjala 2008). Importance of vegetation is essential and Boonyanuphap (2005) found it 

actually to be the most important environmental factor explaining the spatial distribution 

of deforestation.  

 

Fertile soils are preferred in agriculture and therefore have a higher tendency to 

deforest (Chomitz & Gray 1996; Irwin & Geoghagen 2001; Kok & Veldkamp 2001; 

Nagendra 2003). 50% of lands with fertile soils were under agricultural production in 

Belize, while this was only 15% for areas with less fertile soils (Chomitz & Gray 1996). 

However, when soil fertility differences are minor or fertilizers widely available, soil has 

significantly lower influence on deforestation (Serneels & Lambin 2001). Soils affect 

deforestation primarily through agricultural expansion, but they also have an influence 

on construction of roads, buildings and other infrastructure elements and can also be 

sources of geological materials such as sand or coral stones (Kaimowitz & Angelsen 

1998: 94; Verburg et al. 2004; Fagerholm et al. 2012).    

 

Elevation is important factor molding land use especially in areas with high altitude 

differences (Kok & Veldkamp 2001). Human population is more concentrated to low-

lying coastal areas, which make these more easily turned to agriculture (Serneels & 

Lambin 2001). Higher elevation is also often connected to weaker accessibility, rugged 

terrain, poor soils and lower soil moisture, all relieving deforestation pressure 

(Geoghegan et al. 2001; Kok & Veldkamp 2001; Verburg & Veldkamp 2003). Although 

in some cases low-lying coasts are so dry, that areas slightly elevated are more 

suitable for agriculture and as an example coffee require shigher elevations to be 

grown in tropics, which leads to deforestation in these areas (Southworth et al. 2002; 

Nagendra et al. 2003). It is not only elevation which influences, but also topography in 

general. If terrain is undulating heavily or has sharp ridges these might make it 

undesirable for cultivation or impossible for infrastructure construction, which leaves it 

under less pressure, allowing unprofitable forest uses to bloom (Nagendra et al. 2003). 
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However, after forests are cleared elsewhere these rugged inaccessible patches might 

be the only proper forests left, making them the only possible areas for deforestation. If 

this is the cases, analyses connecting environmental variables with deforestation would 

show that elevated, rugged and undulating areas are more prone to deforestation, but 

proper consideration of historical context should be made before doing these kinds of 

wrong generalizations (Geoghagen et al. 2001). 

 

Location of certain land or socio-economic elements can be turned to variables through 

accessibility measures. Accessibility refers to how well certain area can be accessed. It 

is not only influenced by distance, but also land cover types, road, rail road, river and 

airport networks, means of transportation, gas prices and topography (Kaimowitz & 

Angelsen 1998: 93). Accessibility is considered as one of the most important factors 

explaining deforestation patterns and different accessibility measurements have been 

used as independent variables in many spatial deforestation models (Ludeke et al. 

1990; Chomitz & Gray 1996; Mertens & Lambin 1997; Angelsen & Kaimowitz 1999; 

Geoghegan et al. 2001; Kok & Veldkamp 2001; Serneels & Lambin 2001; Southworth 

2002; Verburg et al. 2002, 2004; Nagendra et al. 2003; Aguiar 2007). Improved 

accessibility affects both the origin and the destination (Verburg et al. 2004). From 

origins perspective it allows access to new land and forest resources or lowers the cost 

of using old ones, while from destinations perspective it links these areas and their 

products to markets and innovations (Chomitz & Gray 1996; Irwin & Geoghagen 2001; 

Nagendra et al. 2003, 2004). In a sense, accessibility measures connect localities to 

larger scale phenomena’s (Verburg & Veldkamp 2002). It is most frequently measured 

from such sources as roads, railroads, waterways, coast, fields, forest edges, villages, 

cities, houses and markets with multiple means of transportation (foot, car, logging 

truck, boat) and with various measurement techniques (Euclidean distance, travel time, 

monetary cost, population potential) (Ludeke et al. 1990; Chomitz & Gray 1996; 

Mertens & Lambin 1997; Mertens et al. 2000; Geoghegan et al. 2001; Kok & Veldkamp 

2001; Serneels & Lambin 2001; Southworth 2002; Verburg et al. 2002, 2004; Nagendra 

et al. 2003; Aguiar 2007).  

 

Road accessibility is one of the most often used accessibility measures and proved to 

have significant influence on deforestation (Chomitz & Gray 1996; Geoghegan et al. 

2001; Boonyanuphap 2005). Use of road accessibility relies on the idea that roads 

connect areas to markets, bring in innovations and in-migration, cause deforestation 

and fragmentation in building process and that their sides are more prone to spread of 

urban or agricultural expansions (Chomitz & Gray 1996; Geoghagen et al. 2001; Hett et 

al. 2012). Although accessibility through road network clearly influences deforestation, 
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it seems that it is explain deforestation at local level, while correlations ca not be found 

at regional or national scales The effect of roads is also relational to their type and 

means of transportation available (Verburg et al. 2004; Boonyanuphap 2005). 

Altogether the causality between road accessibility and deforestation could be 

overestimated and not as straightforward as often presumed, since location of transport 

infrastructure correlates with population, land cover and geomorphology. Roads are 

built in areas already settled and cleared from forests and their alignment is often 

dictated by topography, soil quality and other biophysical factors. Also some 

accessibility measures that connect population with road networks, like population 

potential, make it impossible to separate the effects of population and roads (Kaimowitz 

& Angelsen 1998: 94; Verburg et al. 2004). Eventually influence of roads is highly 

chain-linked to other environmental and underlying factors. For example influence is 

higher when the soils along the roads allow permanent cultivation or when roads are 

built for colonialist settlements (Chomitz & Gray 1996; Contreras-Hermosilla 2000).     

 

Market accessibility is considered as one of the most significant forms of accessibility 

influencing landscapes. Markets connect people and natural resources creating more 

demand and production, increasing forest clearance (Mertens et al. 2000; Geoghagen 

2001; Nagendra 2004; Verburg et al. 2004). As was theorized already by Von Thünen 

in 1826, accessibility or distance to markets lowers the transportation causes of 

agricultural and other products, eventually increasing the lands rent, which promotes 

agricultural or urban uses instead of relatively unprofitable forest uses (Serneels & 

Lambin 2001; Angelsen 2007: 2–4). Von Thünen links markets with urban centers, 

which are still essential places for global and regional markets, but besides these also 

transport networks, hubs, harbors and airports bring products to the wider world, while 

some products are used locally (Verburg & Veldkamp 2003; Nagendra 2004). Though, 

often lack of data and efficiency drives to combine market and urban accessibility 

measurements as one variable (Irwin & Geoghagen 2001). Urban centers influence 

through markets but also by spreading infrastructure to their fringes and by pushing 

agriculture areas further (Lambin et al. 2003; Antrop 2006a). The correlation with 

deforestation is diverse and non-linear, since areas closest to urban centers are often 

already cleared from forests and deforestation occurs only after certain threshold 

(Mertens & Lambin 1997).    

 

Accessibility to homes, villages and population is able to present pressure to the 

nearby lands where majority of agriculture and collection of forest resources takes 

place (Ludeke et al. 1990; Mertens & Lambin 1997; Geist & Lambin 2001: 69–71; 

Geoghagen et al. 2001; Fagerholm & Käyhkö 2009; Fagerholm et al. 2012). According 
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to Verburg et al. (2004) the time distance between farmers home and fields is more 

important than the distance to markets, because this journey is taken almost daily, 

while products are taken to markets only occasionally. Also some products may be 

processed at the villages before transportation to markets or used locally (Verburg et 

al. 2004). In village case studies from Zanzibar, subsistence uses of land were 

averagely located 500 to 1200 meters from inhabitants’ homes, livestock keeping and 

collection of construction materials concentrating more close and cultivation and fuel 

wood gathering more further away (Fagerholm & Käyhkö 2009; Fagerholm et al. 2012). 

 

Based on spatial autocorrelation and diffusion theories agriculture has a tendency to 

concentrate near to areas already cleared for cultivation, thus vicinity or extent of 

agricultural areas is often used to explain spatial progress of deforestation (Geoghagen 

et al. 2001; Serneels & Lambin 2001; Aguiar et al. 2007). Various individual or 

household level decisions may cause deforestation near to already established 

agriculture: farmers may decide to expand their fields, swiddening causes spatio-

temporal mosaic of fields, scrubs and forests and newly migrated farmers favor areas 

near old fields where the productivity of land is already tested. In geographically large 

swiddening landscapes deforestation tends not to happen near active agriculture, but 

rather in forest regrowth areas, while in other surroundings distance from other 

agriculture was one of the most important environmental variables predicting future 

changes (Geoghagen et al. 2001; Boonyanuphap 2005). The influence of nearby 

agriculture is greater in areas of permanent cultivation on fertile soils, while the pattern 

and linkages are more random at shifting cultivation landscapes (Kaimowitz & 

Angelsen 1998: 93). Increased accessibility can also lead to agricultural intensification 

instead of deforestation if there is a severe underuse of the current fields (Verburg et 

al. 2004).  

  

Generally the areas deep within the forest are safer in terms of deforestation than the 

areas on the edges where majority of pressure occurs. Highly fragmented forests 

having more edge are therefore more easily deforested (Ludeke et al. 1990; Kaimowitz 

& Angelsen 1998: 93; Rudel & Roper 1997; Fox et al. 2003; Nagendra et al. 2003, 

2004). Distance from forest edge is often used variable and it has proved influential in 

predicting future changes (Ludeke et al. 1990; Mertens & Lambin 1997; Nagendra et al. 

2003). Even though certain change processes, as selective logging or forest fires, may 

alter this generalization (Healey et al. 2006; Clark & Bobbe 2006). In case study from 

Cameroon, Mertens and Lambin (1997) showed that 80% of deforestation happened 

within one kilometer from forest edge and it was significantly better explanatory factor 

in shifting cultivation environments, than the vicinity of roads.  
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In island surroundings distance to coast has its own influence. Coastal and island 

forest are more easily accessible than large unifies patches in continental regions 

(Kaimowitz & Angelsen 1998: 93). In East Afrcian Coastal Forest these areas are 

largely already turned to more profitable agricultural uses, but remaining patches are 

under heavy pressure (Prins & Clarke 2007; Tabor et al. 2010; Swetnam 2011). 

Tourism creates its own forces of change, when coastal and especially beach locations 

are favored by hotel constructors and building materials are collected from nearby 

areas (Käyhkö et al. 2011).  

 

3. Methodological framework 

3.1. Land change science as an approach for deforestation research 

The causes, spatial pattern and consequences of deforestation are extremely 

multidimensional and linked to various societal and environmental processes. 

Understanding the nature of deforestation requires a combination of scientific 

approaches from social, environmental and geographical sciences, such as landscape 

ecology, biogeography, political ecology and demography joined with methodologies of 

remote sensing, GIS and statistics. A true combination of these is referred as Land 

Change Science (LCS) (Rindfuss et al. 2004; Turner et al. 2007). LCS seeks answers 

to questions related to land change observation, monitoring, causes, consequences, 

modeling, vulnerability, resilience and sustainability, studied at scales ranging from 

local to global (Rindfuss et al. 2004; Turner et al. 2007). Complexity of human-

environment and space-time relations, combination of approaches from multiple 

disciplines and diversity of land changes create their own challenges for LCS (Rindfuss 

et al. 2004). Each change is an outcome of multiple agents, multiple uses of land, 

multiple responses to social, economic and environmental contexts, multiple spatial 

and temporal scales and multiple connections between people and their land. This 

makes building universal theories extremely demanding, but complicated study 

subjects such as climate change and biodiversity loss call for more overarching 

theories and increasing amount of  articles, journals and empirical evidence are leading 

the way towards this (Lambin et al. 2006: 7; Turner et al. 2007).  

 

LCS is not ready to produce these overarching theories, but the matters they should 

relate to, are laid. Firstly the land change theory should be able to lay some rules how 

land units (ea. forest pixel, urban patch) change, how social units (household, 

communities, administration) cause changes and how environmental factors (ea. soil, 

climate, elevation, slope and location) distribute these changes spatially. These 

generalizations can be given based on the environmental and historical settings (soil, 

climate, elevation, slope, location and change history) of the land unit, and by socio-
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economic factors (age, wealth, education, household life cycle and livelihoods) of the 

social unit (Lambin 1997; Lambin et al. 2006: 8). Secondly the theory should 

acknowledge the importance and linkages of scale. Social units are always 

combinations; individual belongs to a household, household to a village, village to 

region. In some cases it might be the factor working at household level causing the 

changes, while sometimes global economic shift can be the main driving force. 

Similarly also the land units belong to larger groups, such as continues urban patch, 

shifting cultivation area or watershed, all having their own functionality (Lambin et al. 

2006: 8). Therefore it should always be considered that which social unit answers land 

changes of that particular land unit at focus (Rindfuss et al. 2004; Turner et al. 2007). 

Thirdly, the theory should be able to link the past with the present and the future. 

Historical context of both social and land units determines their change possibilities in 

the future. For example communities that have relied on fishing for generations are less 

eager to cause deforestation through agricultural expansion than migrant households 

with agricultural backgrounds. For land units there are certain path dependencies 

existing: urbanized areas do not reforest without major disasters and primary forest are 

not as vulnerable to deforestation as secondary regrowth (Lambin et al. 2006: 8).      

 

Land cover classifications and change detections work as the starting points for any 

deforestation or LCS research (Ridfuss et al. 2004). Though the subtleties of these 

approaches have developed enormously in recent decades, the focus of the LCS 

community has shifted from observing the change to explaining it. Local and regional 

level spatial patterns are explained by connecting change detection outcomes to 

environmental factors with distance analyses and spatial regression models in GIS 

(Ludeke et al. 1990; Mertens & Lambin 1997; Nagendra et al. 2003; Verburg et al. 

2004). Proximate and underlying causes are linked to the processes with somewhat 

more aspatial regression methods in statistical softwares or with qualitative or narrative 

analyses and used to explain national and global differences (Geist & Lambin 2001: 18; 

Verburg et al. 2002: 118–119). These approaches provide knowledge about the 

quantity, spatial extent, key areas and causes of deforestation for the stakeholders, 

decision makers and global scientific community. However, also more forward looking 

approaches have been developed to help the decision makers to allocate actions in 

spatially more accurate manner (Verburg et al. 2004b). One of these developments has 

been to predict deforestation spatially by projecting the outcomes of change detections 

and spatial regression analyses in to the future (Mertens & Lambin 1997; Veldkamp & 

Lambin 2001; Alcamo et al. 2002; Verburg et al. 2004b).  
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3.2. Remotely sensed data and its classification to land covers  

Analyzing spatial distribution of forests and other land cover types requires a land 

cover classification and detecting changes requires at least two of these snapshots of 

time. If appropriate or updated classifications do not exist, classifications can be 

created by reclassifying of old maps or with such remote sensing methods as manual 

digitization of aerial images or automated classification of satellite images (Lillesand et 

al. 2008: 189–222, 545–591). Remote sensing as such is based on measuring and 

analyzing the electromagnetic reflectance from the ground. More precisely optical 

remote sensing measures the electromagnetic reflectance of Sun from Earth’s surface 

at the wavelengths of visible light, near- and mid-infrared (0,4 – 3,0 µm) (Lillesand & 

Kiefer 1994: 6–9). Different land cover features have different combinations of 

reflectance values at different wavelengths and this allows separating them (Figure 6) 

(Campbell 1996: 314–315; Lillesand et al. 2008; 545–547).  

 

Figure 6. Reflectance of different land cover features at different wavelengths. The color bands 

in the middle represent different multispectral bands (red, green and near infra-red) of the 

Landsat TM image. Modified from Lillesand et al. 2008: 17. 

 

The electromagnetic reflectance is captured by remote sensing sensors, which turns it 

to an image. However the journey from Sun through Earth to a sensor is long and 

contains many uncertainties. Reflectance can be scattered, absorbed or bended while 

traveling through the atmosphere, which is a severe problem, especially for the satellite 

sensors located far away (Campbell 1996: 30; Lillesand et al. 2008: 9–12). Also 

different surfaces reflect radiance differently. There are no perfectly straight surfaces in 

nature as there neither is perfectly scattering surfaces, therefore all of the radiance 

reflected by an object never reaches the sensor and the objects in remotely sensed 

images always contain radiance from other objects (Campbell 1996: 30; Lillesand et al. 
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2008: 12–29). Also topography, angle of the sensor and azimuth of the Sun influences 

the amount of radiance collected by the sensor (Mather 2005: 18; Lillesand et al. 2008: 

12–29).  

 

The sensor captures the electromagnetic reflectance and turns it to an image. Although 

the images seem to be continuous representations, they are actually created by 

combination of predefined two-dimensional square shaped individual picture elements, 

called pixels. Each pixel has certain brightness value, which corresponds to the 

average radiance value measured electronically from its geographical area. In 

multispectral images there are multiple bands representing different wavelengths of 

light. The average radiance value at each partition of the wavelength spectrum is 

recorded to different bands (Lillesand et al. 2008: 30–33). The absolute radiance 

values are transformed to more computation friendly Digital Number (DN) values, 

ranging from 0 to 255, 0 to 511, 0 to 1023 or higher. These ranges are defined by the 

binary computer coding scales called 8-, 9- or 10-bit, respectively. In these formats the 

image data can be automatically visualized by the computer (Campbell 1996: 314–315; 

Lillesand et al. 2008: 30–33, 545–547). So eventually the radiance values collected for 

example by the Landsat TM sensor are turned to brightness values ranging from 0 to 

255 measured separately from seven different parts of the wavelength spectrum and 

visualized as pixel of 30 m2.  

 

The remote sensing sensors capture reflectance differently. They have unique spatial 

resolutions, referring to the geographical area represented by individual pixels (Table 

3). This limits the size of the smallest unit able to be detected. In the modern high-

resolution satellite sensors the spatial resolution is less than 1 m, while in Landsat TM 

it is 30 and even 1000 m in such sensors as MODIS and AVHRR (Mather 2005: 34–48; 

Lillesand et al. 2008: 30–36). The larger the pixel size is the more there are “mixels”, 

pixels which are representations of multiple objects instead of purely representing one 

(Foody 2004). However the larger pixel size reduces the data processing times and 

allows collection of globally continues land cover data. Besides the spatial resolution, 

sensors also have also differences in their spectral, radiometric and temporal 

resolutions. Different sensors measure different partitions of the electromagnetic 

spectrum and collect it to different amounts of spectral bands. The used spectrum is 

referred as spectral resolution. The temporal resolution refers to the timespan between 

images taken from same area and the radiometric resolution to the used binary system. 

Besides these also the coverage of sensors varies. In general the coverage is rather 

small in high-resolution satellite sensors, while low-resolution sensors cover large 

areas at once (Lillesand et al. 2008: 30–36).   
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Table 3. Differences in spatial, temporal and spectral resolutions between satellite remote 

sensing sensors. Source: Mather 2005: 34–48; Lillesand et al. 2008: 399–481. 

Satellite Sensor 

Spatial 

resolution (m) 

Coverage 

(km) 

Temporal 

resolution (d) 

Spectral 

resolution (µm) 

Geoeye-1 HRV 0,41–1,65  15,2 >3 0,45–0,90  

IKONOS-2 OSA/TDI 1–4 11 2–3,5 0,45–0,90 

SPOT-3 HRV 5–20  60 26 0,49–0,89 

Landsat 4 TM 30–120  185 16 0,45–2,35 

NOAA-17 AVHRR 1000 3000 0,5 0,55–12,5 

 

Although there are various sensors existing, Landsat imaginary have become the 

backbone of land change research. The satellite has provided continuous Earth 

Observation data since 1972 and its creators have committed to continue collecting 

“Landsat-like” imaginary also in the future (Lillesand. et al. 2008: 399–432). The long 

history of observations, medium sized resolution, relatively large coverage, good 

spectral resolution and relatively short temporal coverage have all made Landsat 

extremely popular, but extensive cloud coverage and lack of acquiring, storage and 

distributing facilities in parts of the tropics have undermined its continuity. However 

these data gaps can be occasionally filled with other similar sensors such as SPOT 

HRV (Systéme Pour l’Observation de la Terra High Resolution Visible) (Lillesand et al. 

2008: 399–432; Wulder et al. 2008) 

 

Satellite images along with aerial photographs are the most common sources of raw 

data for land cover classification, but as such they are only visual representations of 

the situation at one time and need to be categorized for quantitative analyses (Foody 

2004). This can be done manually through digitizing or automatically with computer 

driven classification techniques. Automated classification techniques are relevantly 

cost-efficient, therefore suiting regional or national scale studies done with aerial or 

satellite images. In automated image classification the idea is to categorize pixels to 

spectral clusters or land cover classes. Classification procedures are mainly based on 

the differences in DN values in multispectral bands, though some applications also use 

contextual or texture information in the process (Lillesand et al. 2008: 545–591). 

Unfortunately even land cover features within same land cover class may have 

different reflectance properties and for example young birch forest can vary 

significantly from mature pine forest, although they would both belong to land cover 

class forest. Therefore it is essential to understand the spectral differences of the 

features before the actual classification process and to create classification schemes 

dictating which kind of differences are tried to adduce with the classification. Although 

even then, some features that are extremely similar in reality may have dissimilar 
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spectral properties because of illumination and shadow differences (Campbell 1996: 

316; Di Gregorio 2005: 1). Eventually all land cover classifications include so called 

omission and commission errors. The first one refers to a situation where a pixel is not 

classified to that category where it should belong, while the second problem is the 

opposite where classes contain pixels which are not part of that particular class in 

reality (Rogan & Miller 2007: 150; Lillesand et al. 2007: 585–586). One approach to 

these built-in problems of land cover classifications would be to create fuzzy or 

probability classifications, not indicating the absolute land cover class but a possibility 

or a probability to belong to a class (Benz et al. 2004).  

 

However just creating a classification does not mean it is ready. Before actually using 

any classification its accuracy should be tested (Lillesand et al. 2008; 585). This allows 

users and producers to evaluate maps utility for their purposes (Stehman & Czaplewski 

1998). When study areas are large, accuracy is estimated against reference data, 

which can be collected with multiple techniques from various sources. It can rely on on-

site inspections, high resolution satellite images, aerial photographs or other maps from 

the same region (Lunetta & Lyon 2000; 2–7). Related literature underlines the 

importance of quality reference data, where spatial resolution is higher than in 

classified data, temporal gaps are minimal and used classes are recognizable (Lunetta 

& Lyon 2000; 7). In reality, especially in developing countries the used reference data 

is more often determined by availability of data rather than rules set in the literature.  

 

3.3. Detecting forest changes from satellite images 

Land cover change detection between at least two snapshots of time is the basis for 

any spatially explicit land change science research. The change detections provide 

information about the directions, rates, patterns and driving forces of change and 

although the gained knowledge is primarily historical it can help to detect long-term 

patterns of changes, which carry influence also in the future (Pontius et al. 2004; 

Käyhkö & Skånes 2006; Lillesand et al. 2008: 595). Multiple spatial data sources, such 

as historical and thematic maps, aerial photographs and satellite imaginary can be 

used in change detection and often understanding long-term patterns dating back 

decades or even centuries requires combination of all these (Käyhkö & Skånes 2006).  

 

Satellite imaginary change detection is based on overlaying multiple images over each 

other and comparing them pixel-by-pixel (Coppin et al. 2004; Lillesand et al. 2008: 

595). In perfect conditions change detection would be done with images from the same 

satellite sensor, with the same spatial, spectral and radiometric resolution, taken from 

the same angle, exactly on the same time of the day and at the same date of a year 
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and eventually registered so that the images overlay each other perfectly. Even if these 

conditions would be matched, different atmospheric, wind, soil moisture, growing 

season, rainfall and plant phenology situations between the dates may cause problems 

(Lillesand et al. 2008: 595). In theory this kind of perfectionism would be possible by 

using Landsat data (TM or ETM+), but the problems with cloud cover and acquiring of 

the data from tropics has made it obligatory to rely on data from multiple satellite 

sensors (Lillesand et al. 2008: 399; Wulder et al. 2008).  

 

Using data from multiple satellite sensors is referred as cross-sensor analysis. Cross-

sensor analysis help to produce change detections even when continues single sensor 

data is not available (Wulder et al. 2008). Though, cross-sensor analyses have their 

own set of limitations relating to sensor calibration, spectral and spatial resolutions, 

geo-rectification and temporal coverage (Franke et al. 2006; Wulder et. al 2008). Many 

sensors like Landsat and SPOT have spectrally rather similar bands, but the calibration 

differences make direct comparisons of DN values and indices impossible. Comparison 

of these would require tedious radiometric normalizations, which are often impossible 

because lack of reference data about the atmospheric conditions or because spatial 

mismatches and different resolutions makes it impossible to find exactly the same 

pixels from the two images (Franke et al. 2006; Wulder et al. 2008). All change 

detection procedures also require geo-rectification of the images. In geo-rectification 

raw images are registered to known coordinate systems by connecting clearly 

identifiable elements with Ground Control Points (GCP) from the raw images to same 

elements in images that are already registered to certain coordinate system. In other 

words the raw images are overlaid against other spatial data so that they are spatially 

matching (Lillesand et al. 2008: 485–490; Mather 2005: 88). Generally rectification 

errors less than ½ of a pixel are considered acceptable, while larger errors may cause 

dilemmas in change detection if changes are caused by pixel mismatches instead of 

real world transitions (Lillesand et al. 2008: 595). Also the spatial resolutions vary 

between different sensors and the images must be resampled to the same resolution, 

which inevitably causes loss of spatial and substance information and makes the geo-

rectification procedure even more difficult (Lillesand et al. 486–488). In other words 

after any geo-rectification and especially when it is combined with cross-sensor 

resampling, it is difficult to be secure that pixels laid on each other’s represent the 

same pieces of land, which eventually compromises the whole idea of pixel-by-pixel 

analyses (Coppin et al. 2004; Lu et al. 2004; Franke et al. 2006; Wulder et al. 2008). 

For these reason, it is essential that the center of research focus is on large continuous 

patches and their changes instead of individual pixels (Wulder et al. 2008). 
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Post-classification comparison is one of the most used methods in deforestation 

research. The method is able to minimize the differences in atmospheric conditions, 

sun-angle and sensor calibrations between the used images and therefore do not 

require laborious radiometric normalization procedures (Lunette & Elvidge 1999: 32; Lu 

et al. 2004). Though problems related to geo-rectification, spatial resolution and annual 

differences still exist in post-classification change detection. It has been estimated that 

the post-classification comparison has a general tendency to underestimate the overall 

area of change, but where change is detected, it is often overestimated (Lu et al. 

2004). Also changes are clear to detect when they happen to certain direction, for 

example from forests to urban, but when changes are subtle and cause little spectral-

radiometric and textural alterations (ea. change from grassland to active field) they may 

be left undetected (Lambin et al. 2003; Rogan & Miller 2007: 150). In context of forests 

this means that degradation is often undetectable, even it would not even be so subtle. 

Olson (1995) was unable to detect canopy coverage decrease of lower than 20–25% in 

boreal forests, while Souza and Barreto (2000) could not map selective forest harvests 

in tropical surrounding, even though they knew their location based on field data. The 

studies were done with Landsat TM and ETM+ data and the problem eventually relates 

to the pixel size of medium resolution satellite images, it is simply too large to detect 

disappearance of individual or small group of trees (Healey et al. 2007: 68). Though 

also other conditions such as ground reflectance, canopy shadowing effect, tree 

species composition, understory vegetation and topography influenced the errors 

occurrence (Rogan & Miller 2007: 150–151).  

 

Another aspect relates to the nature of post-classification comparison. The method is 

able to avoid problems related to direct setting of absolute thresholds for change that 

has to be done in spectral analyses (ea. 15% decrease in NDVI value would refer to 

deforestation), but in reality these thresholds are set in creation of classes based on 

DN values (Coppin et al. 2004; Lu et al. 2004; Lillesand et al. 2008: 550–557, 596–

597). For this reason some relevant changes are left unnoticed when they happen 

close to centers of DN value clusters, but even minor variations may be classified as 

change if they happen close to the DN cluster boundaries (Lillesand et al. 2008: 550–

557, 596–597). In practice this would mean that even extensive forest degradation 

would be left unnoticed if it would not cross the class border. Detecting subtle changes 

would require continues or fuzzy land cover classifications based on possibility or 

probability to belong to a certain category or spectral change detection methods 

enhanced with other GIS data and high-resolution imaginary (Lambin et al. 2003; 

Roger & Miller 2007: 150–153). It is also highly time-consuming to create accurate 

individual classifications and it requires significant amount of reliable reference data. 
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However the accuracy of post-classification comparison is directly relational to the 

accuracy of individual classifications (Lu et al. 2004; Coppin et al. 2004). If the overall 

accuracy is 90% for classification 1 and 80% classification 2 the overall accuracy of the 

change detection is 72% (90% * 80% = 72%) (Lunette & Elvidge 1999: 32). 

 

Forests can be dynamic, cyclical, linear, secular or reversible in their changes and 

transition processes are rarely progressive or even gradual (Lambin et al. 2003; 

Käyhkö & Skånes 2006; Käyhkö et al. 2011). Cyclicity is typical especially to the forests 

in swidden landscapes where areas are cultivated and then left to forest again (Hett et 

al. 2012). Using only two snapshots of time is unable to reveal the whole truth of forest 

dynamics, as it identifies areas simply as deforested, stable or reforested. It identifies 

land cover situations at two different times, but is often unable to identify the change 

processes behind these situations. Large trends may become covered by minor short 

term changes, making explaining, modeling and predicting changes partly biased. 

Landscape/Land cover Change Trajectory Analysis is a method using multiple 

snapshots of time instead of only two, thus, able to model also the change processes 

(Mertens & Lambin 2000; Käyhkö & Skånes 2006, 2008).  

 

3.4. Identification of spatial clusters  

Change detection creates maps of the forest change and visual interpretation of these 

already provide certain idea about its spatial patterns, however these visual 

interpretations are highly subjective and quantifying the patterns requires other means 

(Lunetta & Lyon 2000: 7). An easy approach is to simply convert the forest change 

raster to polygons and to identify the largest polygons, however if the pattern of 

deforestation is diffusive the processes does not create continuous patches (Geist & 

Lambin 2001: 69–71; Hett et al. 2012). Multiple spatial statistical methods, which 

recognize the spatial autocorrelation effect of near-by areas, have been developed. 

Global clustering methods, such as Moran’s I and Getis Ord G, calculate the distances 

between similar observations and provides one overall figure for the clustering of the 

whole data set used (Getis & Ord 1992). Moran’s I and Getis Ord G vary in such a 

manner that Moran’s I detects overall clustering (value 1), randomness (value 0) and 

perfect dispersion (value -1), while Getis Ord G detects if it is high or low values that 

are clustered, but is unable to identify clustering of both simultaneously. Getis Ord G is 

also unable to detect dispersion or randomness of patterns (Getis & Ord 1992). The 

global clustering methods only provide overall figures, while local methods, such as 

Local Indicators of Spatial Association (LISA) and Getis Ord Hot Spot Analyses, also 

map the clusters. LISA also known as Anselin Local Moran’s I calculates Local Moran’s 

I value for each observation. Positive values imply that the observation is part of a 
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cluster, while negative values suggest that it is an outlier among a cluster of other 

values (Anselin 1995). Getis Ord Hot Spot Analyses looks each value in the context of 

its neighboring values and compares these values to the average. If the values are 

significantly higher than average the observation is part of hot spot of high values, 

while if the values are lower than average is the observation part of hot spot of low 

values (Getis & Ord 1996).          

 

These methods are good for continous data, but unable to map clusters if there is only 

observations with the same value (ea. deforestation = 1) (Getis & Ord 1992). Using 

only single valued observations turns the object from detecting the clusters among 

multiple values to detecting concentrations of objects from otherwise empty space. 

Kernel Density Estimation (KDE) is a tool that can be used for this purpose, while it is 

also able to handle bivariate data (Silvermann 1986). The method calculates the 

amount of observations within certain cutoff distance and the areas with high amount of 

observations within the distance receive high values. KDE create outcomes with 

smoothed surfaces and therefore provides certain fuzziness to the estimation 

(Silvermann 1986). KDEs have been used successfully in many land use and biology 

applications such as mapping changes in prehistorical land use, delineating animal 

home ranges and defining the key areas for conservation (Seaman & Powell 1996; 

Brinkmann et al. 2011; Grove 2011).  

 

3.5. Linking environmental factors to forest changes 

Linking measured deforestation somehow to its causes is seen essential for enhancing 

the understanding of the drivers of deforestation. It also helps to create better tools for 

reducing deforestation and for spatial allocation of the resources (Veldkamp & Lambin 

2001; Verburg et al. 2006: 117–118). However there are considerable methodological 

problems in this process. From the 152 deforestation studies meta-analyzed by Geist & 

Lambin (2001: 18) 76% created these links qualitatively through secondary data and 

documents published from the study areas, while only 24% did this quantitatively with 

household surveys or linking secondary data to the process with correlation or 

regression analyses. Qualitative analyses usually tend to create descriptions or 

narratives of change process, whereas quantitative analyses rely on structural 

modeling (Verburg et al. 2006: 117–119).  

 

Multivariate regression modeling have been the most common tool of quantitatively 

explaining links between deforestation and factors behind it (Geist & Lambin 2001: 18; 

Veldkamp & Lambin 2001; Verburg et al. 2004b). These methods are able to combine 

explanatory power of various variables, show the direction of relationships between the 
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dependent and independent variables, determine the power of each individual 

explanatory variable and allow creating future scenarios based on the regression 

equations (Veldkamp & Lambin 2001; Verburg et al. 2002, 2006: 119; Walker 2004). 

The regression analyses can be either spatial or non-spatial. The non-spatial models 

try to determine the rate and magnitude of change without taking account to its spatial 

distribution. Spatial models on the other hand try to do this at the level of pixels or 

administrative units (Verburg et al. 2006: 118). Though even the spatial models have 

certain spatial differences and for example the models based on administrative units 

can be purely statistical using generalized deforestation figures as dependent variable 

and aggregated socio-economic and environmental data as independent variables 

(Tole; 2001; Aguiar 2007), whereas some GIS –based models explain spatially 

accurate deforestation distributions with spatially accurate accessibility, distance, soil, 

elevation, slope and vegetation data (Ludeke 1990; Chomitz & Gray 1996; Geoghegan 

et al. 2001; Verburg et al. 2004, 2006: 118).  

 

Logistic regressions models are generally the most used regression methods, however 

they face serious dilemmas when handling spatial data (Kaimowitz & Angelsen 1998: 

40–41; Anselin 2002; Verburg et al. 2002: 126–128). Geographical phenomenons are 

spatially autocorrelated, which may cause problems when determining the importance 

of the variables or their coefficients. The issue is especially problematic when variables 

are ranked based on their influence and in some studies independent variables have 

lost their explanatory value completely after the spatial autocorrelation has been 

normalized (Rosero-Bixby & Balloni 1996; Kaimowitz & Angelsen 1998: 41). On the 

other hand spatial autocorrelation is not just a bias, but a real characteristic of 

geographical phenomenons and therefore not removing it may improve the predictive 

models (Kaimowitz & Angelsen 1998: 41; Verburg et al. 2002: 127). Tools for both, 

removing (Spatial Lag and Spatial Error regression models) and incorporating the 

positive sides (Cellular Automata) of spatial autocorrelation have been developed 

(Anselin 2002; Verburg et al. 2002: 127).  

 

Also the outcomes of regression analyses might be systematically flawed if there is 

serious multicollinearity between the independent variables. In other words if there is 

serious correlation between the explanatory variables this might influence the 

outcomes (Kok & Veldkamp 2001; Serneels et. al 2007). Some regression methods 

include automated testing of multicollinearity, however this is not included into the 

binary logistic regression and therefore needs to be tested before modeling. Correlating 

variables should be dropped from the final model or combined as one (Serneels et. al 

2007). Also the scale influences, not only the binary logistic, but all regression 
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methods. Changes in land cover are results of processes at different scales, issues 

mattering at certain scale may not explain changes at another scale and aggregating 

process from down to up do not lead to correct outcomes (Turner et. a. 1995; 

Veldkamp & Lambin 2001; Verburg et al. 2002: 123–126). Therefore it is a necessity to 

understand the scale of the study, choose right variables based on it and not to do 

generalizations that go over the used scale.  

 

Regression analyses are not the only tools for linking environmental factors to land 

changes, though they have been extremely popular in recent years (Verburg et al. 

2006: 116). One different approach is to divide the study area to sub-areas based on 

elevation, accessibility or vegetation type and to study the differences between the sub-

areas (Serneels & Lambin 2001; Nagendra et al. 2003; Southworth et al. 2004). 

Another approach is to search for more nonlinear connections, which is impossible with 

the linear regression models (Mertens & Lambin 1997; Verburg et al. 2004a). Often the 

regression modeling is done for regions where the scarce population concentrates to 

clearly delineating cities and villages, road networks are limited and the area is largely 

covered by natural vegetation (Ludeke et al. 1990; Chomitz & Gray 1996; Verburg et al. 

2002; Nagendra et al. 2003; Aguiar 2007). These are the perfect conditions for finding 

linear correlations and to create regression models based on them. However the 

relations can be far from linear in small and highly populated islands with diverse land 

use actions. Therefore it was seen necessary to seek ways to study the relationships of 

deforestation and distance measurements nonlinearly. Related literature did not offer 

many methodological examples, though some studies that link distance measurements 

to deforestation in spatially detailed accuracy and in nonlinear manner were found. In 

their study from southern Cameroon Mertens & Lambin (1997) scatter plotted 

logarithmic frequency of all the deforested pixels against distances to roads, towns and 

forest edges and calculated linear, logarithmic and quadratic functions explaining these 

patterns and used these functions to predict fore coming deforestation. Verburg et al. 

(2004) linked cumulative distribution of corn, banana and rice farming and secondary 

and primary forests to travel times to markets at 5-minutes intervals. Maeda (2011: 34–

42) worked in slightly different manner and reflected the probabilities for agricultural 

expansion calculated from regression analysis against individual explanatory variables 

for better creditability of his modeling. 

 

The spatially explicit regression models along with annual forest cover change rates 

can be also used as tools for predicting the future of changes (Veldkamp & Lambin 

2001; Verburg et al. 2002; Walker 2004). Predictive models provide cartographic 

information to forest officers and land use planners about areas with highest change 
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potential. These projections can be used to discuss possible changes with relevant 

stakeholders and eventually to allocate management actions (Mertens & Lambin 1997; 

Verburg & Veldkamp 2004). The purpose of predictive modeling varies according to the 

scale. Often at national level it is enough to recognize the hot spots of possible change, 

while regionally changes should be connected more tightly to overall land use and their 

influence on natural resources (Verburg et al. 2002; Verburg & Veldkamp 2004). The 

projections can be either static as certain “business as usual” -models assuming that 

the developments keep their current track or dynamic estimating certain changes 

happening in the process (Mertens & Lambin 1997; Verburg et al. 2006: 119; Ahrends 

et al. 2011). Especially the dynamic models work as virtual laboratories where 

alternative pathways of future can be tested (Veldkamp & Lambin 2001).  

 

4. Study area 

4.1. General geography of Unguja 

Zanzibar is a semi-autonomous archipelago in Tanzania and Unguja is the larger of its 

two main islands (Figure 7). The island is located in East Africa, 40 km east from 

Tanzanian mainland and slightly south from the Equator (5° - 6° S and 39° E). At 

longest Unguja is 85 kilometers long and 39 kilometer wide, with total area of 1 660 

km2, making it slightly larger than island of Gran Canaria. 

 

Although Unguja is relatively moist year around, its climate is dominated by tropical 

monsoon system with two distinct rain seasons. The annual rainfall is around 1000–

2500 mm and majority of this is contributed by masika, the long rain season from 

March till June. Vuli, the short rains, lasts from October until December and provides 

approximately one third of the rainfall. Eastern side of the island gets relatively less 

rainfall and Vuli can be completely absent in some years (Hettige 1990: 11; Krain 1998; 

Klein & Käyhkö 2008). The annual mean maximum temperature is 29,3°C and mean 

minimum 21,1°C. The hottest period is from January until February in the dry season 

just before the long rains, while the coolest period is between May and September, 

from the end of the long rains until the beginning of short rains (Hettige 1990: 24; Krain 

1998; Klein & Käyhkö 2008). Geologically the islands can be divided to two larger 

regions: to the elevated and undulating terrain with fertile deep sandy soils and 

maximum elevation of 120 meters in the western side and to the generally flat, coralline 

limestone dominated area with terrace system descending stepwise from 40 meters 

until the sea level in the eastern side (Hettige 1990: 25–30; Klein 2008a: 15). Though 

the eastern side is generally coralline limestone dominated, the composition of soils 

vary rather randomly from hard and solid coral rag with only pockets of softer soils to 

mixture of broken down coral rag and more fertile soils (Klein 2008)   
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Figure 7. Island of Unguja in Zanzibar, Tanzania. The island is roughly divided to deep soils in 

the west and shallow coral soils in the east. There are all together six government forest 

conservation or plantation areas.   

 

In the population census of 2002 there were 980 000 habitants in Zanzibar and 

620 000 in Unguja. The average population density of 382 people/km2 makes the 

island one of the most densely populated rural areas in the world, and the annual 

growth rate of 3,1% guarantees increase of population for years to come (OCGS 2007: 

1–10). Based on the annual growth rate between 1988 and 2002, the population in 

Unguja today should be close to 850 000 and the average population density should be 

over 500 people/km2. Zanzibar’s’ GDP was as low as 543 USD in 2008, although the 

real gross domestic product (GDP) has grown impressive 6,4% annually since 1991 

(RGZ 2009: 29–31; OCGS 2010: 3–4). About half of the households are below basic 

needs poverty line and 13% of them fail to sustain daily food consumption. However, 

the situation is not as bad as the poverty figures may imply, since subsistence uses of 

land, good access to water, healthcare and education reliefs the situation (RGZ 2006).  

 

The economy of Zanzibar has been liberalized since 1990s and the annual GDP per 

capita growth has been astonishing 6,4% between 1991 and 2008 (RGZ 2009). The 

GDP is divided between services (42,7%), primary production (30,7%) and industry 
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(14,3%). However GDP does not include subsistence production and thus 

underestimates the importance of primary production. Primary production comes 

mainly from crops (21,3%), livestock (4,6%) and fishing (4,4%), while forestry 

production (0,3%) has only a marginal share (OCGS 2010: 5). Clove, seaweed and 

rubber were the main cash crops, while cassava, banana, sweet potato, coconut and 

rice were grown for food consumption. Forestry generated incomes mainly through 

selling of wood fuel and charcoal, while building poles and other forest materials 

created only ¼ of the income (OCGS 2010: 18–20). The most important sectors 

outside primary production were public administration (9,7%), trade and repairs (8,7%), 

transport and communication (8,0%), hotels and restaurants (7,4%), and construction 

(7,3%) (OCGS 2010: 5).  

 

It is not the history as center of slave trade, period as the “Spice Islands” or modern 

poverty that first pops up to people’s minds about Zanzibar, but rather the status as 

tourist destination. Tourism has grown massively since mid-1990s, especially in the 

east coast of Unguja (Mustelin 2008; Gössling 2001). The spread of international hotel 

chains have not only increased the price of land in the coast, but also restricted access 

to communal land, limited possibilities to fishing and sea weed farming and caused 

direct and indirect deforestation. Though, Zanzibar generates approximately 25% of its 

revenues from tourism, it does not create equal employment effect and the benefits to 

the coastal communities have been rather limited (Mustelin 2008; RGZ 2009: 17) 

 

The land tenure system in Zanzibar is rather confusing. In theory all the land is 

nationalized by the government and only rights to land use are given to habitants. 

These rights can be acquired from village leader and are ratified via actual use of land 

(ea. building a house). After land use rights are acquired the holder can sell or leave 

the constructions, trees or other improvements as an inheritance. This structure is 

mixed up by the government land redistribution programs and the inheritance traditions 

of Islam (Krain 1998; Törhönen 1998; Fagerholm 2012: 34–35). All together the baffling 

tenure systems, causes unwillingness to long-term land management, creating a 

perfect starting point for the “tragedy of commons” (DCCFF 2008).         

 

Behind generalizations of an entity there are significant differences within Unguja. 

Administratively Unguja is divided to 3 regions, 6 districts and 197 wards (Swahili: 

shehia) (Figure 8). One-third of the population are concentrated within the small Urban 

district covering central parts of Zanzibar Town, another one-third within West district 

and final one-third are gathered between the four other districts, which occupy 86% of 

the land area (Table 4) (RGZ 2007: 23; RGZ 2009: 15–16). Highly concentrated 
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population creates significant differences in the population distribution and the 

population density for Urban district is over 146 times higher than it is in the least 

populated South district. The differences are significant also within the districts and 

majority of buildings are concentrated along the coast or the main roads (Figure 8). 

District specific population growth rates varies between 1,7% (South) and 9,2% (West). 

High figure of West district and relatively low figure for Urban district (1,9%) indicates 

that Urban district is not anymore capable to accommodate more inhabitants and 

majority of rural-urban migration and urban sprawl happens within the West district  

(Ameyibor et al. 2003: 7; NBS 2005).  

 

 

Figure 8. A) Distribution of buildings within 150 m2 grid cells in 2004 calculated from DoSUP 

2009 building database. B) Administrative borders of Unguja. Data source: DoSUP 2009 

topographic map database.    
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Table 4. Demographic, socio-economic and agricultural statistics of the five districts of Unguja 

(Based on NBS 2004a, 2004b, 2004c, 2004d, 2004e & 2004f) 

Population North A North B Central South West Urban 

Total population 84 147 52 492 62 391 31 853 184 204 205 870 

Urban population (%) 1,1 2,7 1,5 12,2 61,7 100 

Population density 399 244 138 88 886 12 867 

Population growth (%) 2,4 2,4 2,3 1,7 9,2 1,9 

Employment       

Primary production (%) 48,8 39,9 43,6 30,3 11,4 3,2 

Government employed (%) 3,5 7,0 6,2 6,3 12,3 13,1 

Private sector employed 2,5 2,1 2,2 3,4 8,3 8,2 

Unemployment rate (%) 3,4 5,5 1,7 2,3 8,4 14,7 

Dependency ratio 102 89 88 85 83 68 

Economy       

Annual mean per capita income (Tsh) 159 786 177 578 159 226 181 942 235 548 271 915 

Agricultural share of income (%) 14,3 17,3 24,9 11,2 6,2 1,8 

Monthly consumption per capita (Tsh) 18 099 16 667 19 901 18 134 23 105 28 745 

Consumption on food (%) 60,4 60,7 62 62,5 54,6 50,9 

Population below food poverty line 12,18 12,06 8,35 9,73 9,54 7,75 

Population below poverty line 53,3 48,3 45,7 53,8 38,6 37,6 

Education             

Adult literacy (%) 46 63 71 75 77 81 

Adults with no education (%) 43 33,3 19,6 16,2 9,3 12,1 

Healthcare             

Infant mortality rate 113 87 85 92 70 69 

Child mortality rate 84 57,5 56 62,5 42 41,5 

Household             

Average household size 5,3 5 5,2 4,7 6,1 5,4 

HHs with modern roof (%) 60,8 38,2 53,5 59,2 74,2 92,7 

HHs with modern walls (%) 56,5 39 19,2 11,9 76,2 73,5 

HHs with electricity (%) 4,1 7,9 6,5 19,5 34,1 67,6 

HHs without toilet facilities (%) 57,8 40,6 24 29,4 6 0,7 

Use of firewood in cooking (%) 97,4 96,01 96,85 92,1 57,32 42,56 

Primary production             

Average cultivation area per HH (ha) 0,8 0,85 0,92 0,44 0,6 n/a 

Agricultural households (%) 88,9 83,6 92,9 62,5 34,9 n/a 

Households growing crop (%) 88,7 83,4 92,9 61,9 34,4 n/a 

Households rearing livestock (%) 18,8 28,5 38,8 18,4 13,9 n/a 

Annual crop per person (tons) 0,13 0,14 0,16 0,06 0,03 n/a 

Fish catch per person (tons) 0,044 0,004 0,016 0,040 0,006 0,028 

 

Based on the district level statistics Urban and West districts can be generally 

characterized as urban areas with higher income, higher share of urban livelihoods, 

better education levels, better healthcare, more modern housing, but also higher 

unemployment ratio, higher population growth and higher percentage of young people. 

The West region has Human Development Index value of 0,86, while in the other two 

regions it is below 0,65 (RGZ 2009: 16). Urban and West are more developed districts, 
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which are also facing problems related to urbanization. Majority of agricultural and 

forest products are brought from other areas and direct dependency on primary 

production is lower, though gradual change towards rustic can already be seen in the 

West district. 

 

The four other districts can be characterized as more rural and primary production 

based with less population pressure and lower development status. The lower incomes 

are compensated with domestic food and natural resource production, but still poverty 

and incapability are more present here than in urban areas. Fishing is an important 

source of livelihoods in North A, South and Urban districts, while the people in South 

are less engaged to agricultural actions. If literacy, education and food poverty are 

used as standards, Central and South districts are doing better than North A and North 

B and especially North A appeared as the least developed area in the light of 

urbanization, share of agricultural production, income, food poverty and healthcare.   

 

4.2. Landscapes of Unguja 

The landscapes of Unguja can be roughly divided to two types: the western deep soil 

and the eastern coral rag landscapes (Figure 9). The coral rag region is characterized 

by cliffs, terraces and less fertile coral soils, which are limited to support permanent 

agriculture, causing the landscapes to be dominated by shifting cultivation and natural 

vegetation (Hettige 1990: 95–98; Kombo & Kitwana 1997; Klein 1998; Klein & Käyhkö 

2008). Majority of tree species are indigenous, but because of the extensive shifting 

cultivation, fire wood collection and other land use pressures the trees rarely have time 

to grow to mature forests. Thus the landscape is highly fragmented and reflects 

different stages of succession varying from recently used fields, fallows, scrubs, 

thickets to various forms of forest. The heterogeneity of the landscape is enhanced by 

distribution of settlements, the permanent agriculture and agroforestry around them 

and the uneven distribution of fertile soils (Krain 1998; Klein 2008b; Käyhkö et al. 2011; 

Fagerholm 2012: 37). Old-growth forests are mainly present at sacred sites and 

formally protected areas, the vastest being government forest reserves of Kiwengwa-

Pongwe and Jozani (RGS 2004). 

 

Cassava, corn, jams, tomato, and beans are the most common agricultural products 

used in shifting cultivation, but also fruit trees are planted. The shifting cultivation 

rotation is rapid (1 – 5 years) and it is not supported with machines or fertilizers, 

making it extensive and covering large areas (Fagerholm & Käyhkö 2009). Besides 

agriculture, the land is used for collection of fire wood, building poles, medical plants, 

handicraft materials, charcoal, coral stone, lime, wild fruits and vegetables, grazing of 
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livestock and beekeeping. The end products of these activities are occasionally sold for 

income (Orjala 2006: 30–31; Fagerholm & Käyhkö 2009; Fagerholm et al. 2012). Use 

pressure concentrates to the vicinity of settlements, which are subjected to 

degradation, deforestation and fragmentation of landscapes (Fagerholm et al. 2012). 

Almost all villages are in coastal settings, therefore fishing, sea weed cultivation and 

other marine based livelihoods are also important (Orjala 2008; Fagerholm 2012: 37). 

Besides the traditional livelihoods, tourism development has occurred mainly at the 

Eastern coast of Unguja (Gössling 2001; Mustelin 2008).  

 

 

Figure 9. A) Deep soil agroforest system where trees are mixed with open cultivation. B) Coral 

rag coastline with scrubs of various heights and structures. Photos: Jukka Käyhkö 2004. 

 

The western part of the island is characterized by elevated and undulating terrain with 

fertile deep sandy soils, making it the base of permanent agricultural production of 

Unguja (Klein & Käyhkö 2008; Klein 2008). Although the superiority of the western 

deep soils has been questioned, majority of the agriculture and population 

concentrates there and makes natural forests rare (Klein & Käyhkö 2008). It has been 

assumed that the region consisted mainly of tropical forests before it was turned into 

food crop agriculture and plantations coconuts and cloves in the 19th century (Hettige 

1990; WWF Tanzania Country Office 2012: 59). Today the landscape is a mosaic of 

fruit tree plantations, agroforestry, permanent cultivation, settlements and other 

infrastructure, while natural forest can be only found from the government protected 

area of Dole-Masingini (Hettige 1990: 85–94; Klein & Käyhkö 2008). Mainly the area is 

covered by semi-open fruit plantations and agroforest systems except for the open 

cultivation and urban areas (Hettige 1990: 85–94). Krain (1998) distinguished the 

hydromorphic valleys situated in the middle of the island dominated by irrigated rice 

cultivation, as a third agro-ecological/landscape zone. In these valleys the agroforestry 

system turns to open cultivation and tree planting is actually forbidden. Besides these 

valleys, one could argue that Zanzibar Town has expanded to such an extent that it 

could called as its own landscape zone within the Deep soil region.  

 

A

 
 

 A 

B
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In the deep soil region the main agricultural crops are rice, cassava, maize, sweet 

potatoes, banana, cowpeas, pigeon peas, pineapples and various vegetables, while 

mango, coconut, papaya, cloves, durian, kapok, breadfruit, jack-fruit and citrus trees 

are grown in agroforestry and fruit plantation systems (Hettige 1990: 85–94; Orjala 

2006: 30). Significant portion of the agricultural production is sold to Zanzibar Town or 

in the local markets and altogether the vicinity of the capital allows more diverse 

livelihood options than in more distant coral rag region. Otherwise the rural livelihood 

options are rather similar except fishery and forestry based livelihoods are less 

common in the deep soil area (Orjala 2006: 30).  

 

4.3. Forests of Unguja  

Unguja’s forests are part of the Coastal Forests of Eastern Africa, which are classified 

as global biodiversity hot spot, because of their high diversity of endemic plants and 

animal species, such as Zanzibar Red Colobus Monkey (Procolobus kirkii) (Burgess & 

Clarke 2000: 71–73; Siex et al. 2011; WWF Tanzania Country Office 2012: 21). 

However, on itself Zanzibar Islands are rather depauperate in the sense of endemic 

species, mainly because of at least of 2000 years of human influence. There are only 

four endemic and 93 regionally endemic species in Unguja (Burgess & Clarke 2000: 

137–142). It is assumed that without any human interventions the island would be 

covered by tropical high forest in the deep soils and deciduous woodland in the coral 

rag region (Hettige 1990). Today the forests are mixture of evergreen and deciduous 

trees and scrubs, woodlands and various thickets (Figure 10) (Burgess & Clarke 2000: 

84–94). Estimations of forest cover for whole Zanzibar vary between 660 km2 (26%) 

and 1350 km2 (51%) depending on how forest is defined (RGZ 2004: 6; DCCFF 2008: 

39). In the Biomass Inventory of 1997 the forest cover was divided between Unguja 

and Pemba so that the former had 69% (928 km2) of the terrestrial natural forest cover 

if agroforest and mangroves were left out from the calculations. Based on this 

percentage cover of natural forest would be 455 km2 (27% of total landscape) in the 

DCCFF estimation from 2008. The biomass inventory also divides the forests to coral 

rag forest (65%), agroforests (30%) and high forests/plantations (5%) (RGZ 2004: 6).  

 

Although forestry was only 0,3% of the total GDP it has an important role in 

subsistence consumption and such materials as fuel wood, charcoal, wood for lime 

making, building materials, handicraft materials, medicinal plants and wild fruits are 

collected from the forests (Orjala 2008; Fagerholm & Käyhkö 2009; Fagerholm et al. 

2012). The forests also have significant aesthetic, cultural, spiritual, religious and 

intrinsic values to the local communities and especially the Masingini Forest reserve 
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has an important role in securing the quality of the ground water used in Zanzibar Town 

(Fagerholm et al. 2012).  

 

 

 Figure 10. Forest area in the outskirts of Zanzibar Town steadily becoming younger and shorter 

because of extensive use.  

 

When talking about the forest of Unguja the focus is often placed on natural forests, 

while domestic forests are left with less attention. However, approximately one-third of 

the forests are within agroforest systems, consisting of coconut, mango, clove, rubber, 

orange, durian and rambutan trees along with the indigenous species (RGZ 2004: 6; 

OCGS 2006: 172–174). In small scale agriculture coconut is the most common tree 

planted, while also orange, mango and clove are also widely grown (Table 5). Together 

the area used for these crops cover 4,8% of the total landscape, while regional 

differences are existing. Proportionally coconut is the prominent tree crop in Central 

district, orange in the South, mango in North A and clove in North B, while planting of 

agroforest or fruit trees is generally more rare in the South district (1,1% of total area). 

Also government and large scale agricultural producers are involved with rubber, 

coconut and clove production, but statistics are not available. Besides agroforestry, 5% 

of small scale agricultural households are engaged in their own tree planting activities 

and 3% in communal tree planting schemes. The most often planted trees are 

Casuarina (Casuarina equisetifolia) and Acacia (Acacia auriculiformis). Majority of 

communal and individual tree planting is done in North A and Central districts, and 

especially communal tree planting schemes are rare elsewhere. Households own tree 

planting is done mainly for producing poles and planks, while fuel wood is seen as 

important secondary product. Communal tree planting is rationalized as well with 

material reasons, but in Central and West district it has also environmental 

rehabilitation and erosion control purposes (OCGS 2006:  218–220). 
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Table 5. Agroforest tree crops in different districts based on OCGS 2006: 172–174. 

 
Area (ha) Percentage of total landscape 

District Coconut Orange Mango Clove Total Coconut Orange Mango Clove Total 

North A 514,6 129,0 653,2 89,4 1386,2 2,4 0,6 3,1 0,4 6,6 

North B 529,9 45,6 68,8 368,6 1012,9 2,5 0,2 0,3 1,7 4,7 

Central 1251,3 1119,2 460,2 220,7 3051,4 2,8 2,5 1,0 0,5 6,7 

West 865,2 248,9 57,9 62,8 1234,8 4,2 1,2 0,3 0,3 5,9 

South 181,4 129,8 73,8 0,0 385,0 0,5 0,4 0,2 0,0 1,1 

Total 3342,4 1672,5 1313,9 741,5 7070,3 2,3 1,2 0,9 0,5 4,8 

 

DCCFF (2008) estimated annual rate of forest cover decline to be -1,2%. Also forest 

degradation and fragmentation are seen as serious threads, but absolute estimations 

have not been made (Siex et al. 2011). Agricultural expansion, mainly in form of 

shifting cultivation, collection of wood for energy (fuel wood & charcoal), lime making, 

building materials and expansion of urban structure and tourism infrastructure are seen 

as the main direct causes behind deforestation (RGZ 2004:  6, Käyhkö et al. 2008: 73–

74; Siex et al. 2011; WWF Tanzania Country Office 2012: 69–70). All these driving 

forces have their own distinctive spatial behavior. Tourism causes deforestation directly 

near the coastline, but simultaneously pushes local inhabitants to resettle more inlands, 

causing indirect deforestation there (Mustelin 2008; Käyhkö et al. 2011). Zanzibar 

Town grows along its main roads causing direct deforestation mainly at its outskirts in 

West district, but the growing demands of urban population indirectly increases the 

forest pressure far away from the city (Masoud 1991; Ameyibor et al. 2003; Ahrends 

2010). Fuel wood collection on the other hand happens close to the rural villages or 

there were wood is easily available (Fagerholm & Käyhkö 2009; Fagerholm 2012). The 

underlying causes of deforestation are not profoundly studied, but population growth, 

insecure land tenure system, low technological development, weakness of government 

institutions and limited livelihood and income generating opportunities are often 

mentioned as reasons behind unsustainable forest use (Käyhkö et al. 2011; Siex et al. 

2011; WWF Tanzania Country Office 2012: 69–70).   

 

Department of Forestry and Non-Renewable Natural Resources (DFNR) is the 

government official responsible for forest resources in Zanzibar. Its main goals are to 

protect biodiversity of forest and mangrove areas, secure sustainable use of forest 

resources, develop farm forestry and enhance the capacity of forest management. The 

coral rag forests are set under special attention, because past difficulties securing their 

sustainability (DCCFF 2008; Fagerholm 2012: 34–36). In the past DFNR has been able 

to implement large scale tree planting schemes and gazetting of protection areas, while 

focus nowadays is more in management of the already established forest reserves, 
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increasing their connectivity and ensuring sustainability of communal forests (ZFDP 

1997; DCCFF 2008; Siex 2011).  

 

Based on by the official delineations of government forest areas provided by DFNR 

103,1 km2 of land is under official government protection and 20,5 km2 is used for 

government forest plantations. There are three established sites of government 

protection: Jozani-Chwaka Bay National Park (66,9 km2), Kiwengwa-Pongwe Forest 

Reserve (30,4 km2), Masingini Forest Reserve (5,8 km2) and one newly proposed 

forest reserve of Muyuni (42,1 km2) (Siex 2011; WWF Tanzania Country Office 2012: 

59). All the important forest areas, expect for Masingini, are connected by corridors in 

community lands, but deforestation is risking these connection if major actions are not 

taken (Siex et al. 2011). There are also other Government Forest Areas, such as 

Chaani (4,5 km2), Dunga (7,9 km2) and Kibele (8,1 km2), which are tree plantations not 

meant for conservation. Possibilities to manage and control forest uses are limited in 

governmental areas, due to lack of monetary resources and the situation is even worse 

in communal lands. In some areas, mainly Jozani-Chwaka Bay National Park, 

revenues created through ecotourism are helping the situation (WWF Tanzania 

Country Office (2012: 70).  

 

At least half of the biologically important forest habitats lay outside the government 

areas and the communities are brought into management and conservation of forests 

(Siex 2001; WWF Tanzania Country Office 2012: 69–70). The process started already 

in 1990s and at the moment it is implemented through Community Forest Management 

Agreements (CoFMA), which zones forest areas and gives legal management mandate 

to the communities. Simultaneously it requires communities to set the responsibilities of 

protection and sustainable use, which should be then followed (WWF Tanzania 

Country Office 2012: 85). The CoFMAs restrict open access to forest land by dividing it 

to high protecting, low impact and high impact zones and thus providing community 

based solutions for “the tragedy of commons” (Hardin 1968). Though funding to fulfill 

the laid responsibilities is still uncertain and implementation has been criticized 

because of limited public participation (Fagerholm 2012: 36). CoFMA process is also 

supporting global REDD+ actions, where Zanzibar is piloting as a part of Tanzania 

(The Royal Norwegian Embassy 2010).         
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5. Materials and methods: 

5.1. Primary data 

Two satellite images were used as primary source for the land cover classifications, 

SPOT-3 HRV image dated 30.06.1996 and Landsat-5 TM image from 01.07.2009 

(Figure 11). The Landsat image was already obtained for previous research and 

georectified according to the 2004-2005 aerial images, while the SPOT image was 

purchased from commercial company (Astrium) for this purpose, since other cloud free 

Landsat data was not available. The SPOT image was acquired from the same time of 

the year than the Landsat TM image to minimize the seasonal variations in vegetation 

and reflectance. Landsat TM image has six spectral bands with spatial resolution of 30 

meters and the thermal infrared band in 120 m resolution, while SPOT image has only 

three bands all in higher 20 m resolution (Table 6). The wavelengths missing from the 

SPOT image in relation to the TM image are blue, two mid-infrared and the thermal-

infrared bands. Arc 1960 UTM Zone 37S was used as the coordinate system for both 

satellite images and also for other spatial data from Zanzibar. The created 

classifications were later on used for change detection. 

 

 

Figure 11. Landsat TM (RGB 432) and SPOT-3 HRV (RGB 321) images from Unguja. 
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Table 6. Spectral reflectance and spatial resolution of Landsat TM and SPOT-3 HRV satellite 

sensors. Based on Lillesand et al. 2008; 411, 433. 

Band Wavelength (µm) Spectral location Resolution (m) 

Landsat TM 

1 0,45 - 0,52 Blue 30 

2 0,52 - 0,60 Green 30 

3 0,63 - 0,69 Red 30 

4 0,76 - 0,90 Near-infrared 30 

5 1,55 - 1,75 Mid-infrared 30 

6 10,4 - 12,5 Thermal-infared 120 

7 2,08 - 2,35 Mid-infrared 30 

SPOT-3 

1 0,50 - 0,59 Green 20 

2 0,61 - 0,68 Red 20 

3 0,78 - 0,89 Near-infrared 20 

 

5.2. Reference data  

Aerial photographs of years 1989 - 1990 and 2004 - 2005 from the Department of 

Urban and Rural Planning (DoURP) (formerly Department of Survey and Urban 

Planning) and high resolution GeoEye-1 satellite images received from GeoEye 

Foundation from year 2009 were used as reference data to assess the accuracy of 

created classifications (Figure 12). The aerial photographs were already orthorectified, 

while the GeoEye-1 satellite images were georectified to the aerial images. The 2004 - 

2005 aerial photographs were color images with 0,5 meters spatial resolution covering 

the whole island (Table 7). The 1989 - 1990 images were panchromatic with 1 meter 

resolution data covering only selected sites of the study area. The 2009 GeoEye-1 high 

resolution satellite images had five bands, 3 bands of visible light, near-infrared and 

panchromatic with different resolutions. These images were obtained only for 

Kiwengwa-Pongwe Forest Reserve and Muyuni-Uzi area, mainly because these were 

the only cloud-free images close to the date of the Landsat TM image.  

 

Figure 12. Examples of the aerial photographs and high resolution satellite images used in the 

accuracy assessment. A) Panchromatic aerial photograph from 1989-1990. B) True-color aerial 

photograph from 2004-2005 C) Multispectral high resolution satellite imaginary from 2009. 

A

 
 

 A 

B

 
 

 A 

C

 
 

 A 
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Table 7. Spectral band, resolution and spatial coverage of the used aerial photographs and high 

resolution satellite images.  

Spectral band Resolution (m) Coverage 

2004 - 2005 aerial photographs 

Red 0,5 
 

Green 0,5 Unguja 

Blue 0,5 
 

1989 – 1990 aerial photographs 

Panchromatic 1 Dole, Cheju, Matemwe, Kiwengwa 

2009 GeoEye-1 satellite image 

Blue 1,65 
 

Green 1,65 
 

Red 1,65 
Kiwengwa-Pongwe (04.10.2009) & 

Muyuni-Uzi (19.06.2009) 

Near-infrared 1,65 
 

Panchromatic 0,41 
 

 

5.3. Field work data 

Land cover classification was enhanced with field observations collected between 

October and December of 2011. Altogether 85 field observation points were visited and 

premade field observation sheets were filled from each site (Figure 13).  

 

Figure 13. Locations of the collected field observations.  
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Such issues as topography, soil, moisture conditions, ground layer, number of tree and 

scrub layers, dominating canopy shape, tree/scrub coverage, spatial pattern, dominant 

tree/scrub species, ongoing land use activities, evidence of past land use activities and 

land cover type were visually observed (Appendix 1). Also photos and GPS points were 

taken from every site. The field work points were used to connect the spectral cluster of 

unsupervised classification to actual land cover classes and to describe the created 

land cover classes through statistics, qualitative descriptions and photographs.   

 

5.4. Other spatial data 

Also other spatial datasets were used in the analysis process. Multiple thematic GIS 

datasets from the DoURB 2009 topographical database, such as coastline, roads, 

building and land use were used (Table 8). All these materials were originally digitized 

at the scale of 1:10 000 from the 2004–2005 aerial photographs and they were in 

shapefile form. Coastline shapefile included the accurate borders of Unguja Island as 

polygon data. The coastline data combined with the mangrove delineation data from 

DoURB 2009 land use classifications and used to determine the accurate borders of 

Unguja and to exclude all the island that were not connected to the main island by land 

or mangroves. Coastline dataset combined with mangroves were also used to create 

the distance to coastline surface and for enhanced visualization of created maps.  

 

Table 8. Other spatial datasets, their sources and use. 

Data Source Use 

Coastline 
DoURB 2009 topographical  
database 

Delineation of Unguja, distance to coastline  
surface and visualisations of maps 

Road lines 
DoURB 2009 topographical  
database 

Distance to roads surface and visualisations  
of maps 

Building polygons 
DoURB 2009 topographical  
database 

Kernel density of buildings surface, density  
of buildings map 

Land use 
classification 

DoURB 2009 topographical  
database 

Planning of land cover classification, enhance  
classification of rubber plantations, delineation  
of Unguja. 

Physiographic  
map  

Hettige (1990) & Klein 
(2008) 

Delineation of deep soil and coral rag 
landscapes 

Government forest  
stations 

DFNR (2009) 
Delineation of government protected and  
silviculture forests 

Muyuni Forest  
Reserve 

DFNR (2011) Delineation of planned Muyuni forest reserve 

 

The road database was in polyline form and included all roads visible in the 2004–2005 

aerial photographs (24 522 lines) classified to footpaths, tracks, secondary roads, main 

roads and main roads with two lanes. The database also included length data for each 

line digitized. Roads data set was used to create the distance to roads surface and in 

the visualization of some maps. The building dataset included all buildings digitized as 

polygons divided between Zanzibar Town (76 047) and rest of the island (102 261 
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polygons). The data set included information about the size and perimeter of polygons, 

their construction status (build/under construction), block number, block name, section 

name, class (residential, mosque, church, hospital, school, dispensary, government 

office, market, police station, etc.) and a name for known buildings. The data set was 

used to create the kernel density estimation of buildings used in regression analyses 

and for the building distribution map. The land use data included 17 land use classes: 

airport, clove, coconut, cultivation, forest, mangrove, mixed, park, plantation, quarry, 

rice, rubber, salt farm, sand, scrub, settle and wetland. However the classification was 

created for whole Zanzibar and therefore some of these land uses were missing from 

Unguja. The dataset was in polygon form and included knowledge about the size and 

perimeter of each individual patches. The land use dataset was used to support the 

planning of land cover classification, enhance the classification of rubber plantations, 

and include mangroves in coastline delineations. Physiographic map of Unguja created 

by Hettige (1990) and digitized by Klein (2008) in previous research was used to 

delineate coral rag and deep soil regions. The physiography was divided to four main 

classes: Alluvial system, marine system, ridge system and shallow coralline system 

and altogether there were 22 sub-classes. Alluvial system, ridge system and marine 

system (excluding mangroves) were combined as deep soil system and shallow 

coralline system represents the coral rag region. The official borders of government 

borders were provided by the DFNR in shapefile form. The data is collected from the 

field by following the border marks of the forest areas by foot. DFNR also provided the 

preliminary border of Muyuni Forest Reserve which follows the forest delineations 

made in CoFMA process. The datasets include name and area information for each 

polygon.   

 

5.5. Study approach 

The four main research questions are divided to eight sub-questions, which are 

answered by different methodological tools (Figure 14). The research proceeded in 

stages and the outcomes of previous work steps were used as the main data for the 

following ones. The work starts with quite normal remote sensing methods of land 

cover classification and change detection and their results are post-analyzed with more 

GIS and geostatistical oriented methods of Kernel Density Estimation, sub-area, 

distance and regression analysis. The questions related to the future of forests are not 

answered by any own methods, but rather as byproducts of other methods and 

research questions.  
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Figure 14. Study approach linking the used methods to research questions. 

 

The work started with the preprocessing of the primary data, which included the 

acquiring and georectification of the images. This step was followed by land cover 

classification, which included the planning of the classification scheme, unsupervised 

clustering, supervised classification, calculating mean NDVI values for classes, 

accuracy assessment and connecting field observations to classification. Although the 

classifications included multiple classes the focus was constantly to classify forests as 

accurately as possible. The two land cover maps created were used in the change 

detection of forests with post-classification comparison method, which produced 

change data with 49 possible directions of change. This dataset was used to calculate 

statistics related to forest cover change, but dataset with 49 classes was considered 

too complicated and it was developed to two change classifications with fewer 

categories. These two change classifications were used to create forest change maps, 

calculate statistics of change, determine the rate of forest cover change and to 

estimate the extent of forest cover in the future. The change detection outcomes were 

also used to map the clusters of deforestation and reforestation with Kernel Density 

Estimation method and to link the environmental factors to deforestation. 
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Environmental factors were linked to forest change with three different methods: sub-

area, distance and regression analyses. The outcomes of regression analyses were 

also used to estimate the deforestation risk of different areas. Each methodological 

step answer to specific research questions or their sub-questions and in some cases 

multiple methods were used to answer same question to give more in-depth 

perspective.   

 

5.6. Preprocessing of the raw images 

Because of lack of other cloud free Landsat images, SPOT-3 HRV image had to be 

acquired for the change detection purposes. The image was purchased and received in 

two separate images, where the northern and southern parts of the island were 

separated. The separated bands and images were stacked and mosaicked to one 

single file containing all the three spectral bands and both parts of the island in Erdas 

Imagine 11. The mosaicked image was rectified, registered and resampled to match 

the Landsat image.  

 

Image was georectified with Erdas Imagine “Control Points” – tool. The tool works in 

such a manner that the user looks for recognizable points from the raw image and their 

counterparts from the reference data and places GCPs to these locations. The location 

in both data sets are recorded and these locations are used in least square regression 

analysis, which determines regression coefficients that can be used to relate the raw 

image to the coordinate system of the reference data (Lillesand et al. 486). Altogether 

15 GCPs were evenly distributed around the island to locations easily detectable from 

both images, such as island tips, corners of large build areas and road intersections. 

Although it is often noted that lower resolution images should be rectified against 

higher resolution images, the SPOT was rectified against the Landsat TM scene, 

because it was already rectified to match other available spatial data. The accuracy of 

the rectification is measured with roots mean square (RMS) error, which is the 

difference between desired GCP location and the actual location of the point after 

rectification (Mather 2005: 87–89; Lillesand 2008 et al. 485–490).  

 

During the georectification process the SPOT image was resampled to the new 

alignment and spatial resolution. When the spatial resolution stays the same, 

resampling is only done to make sure that the pixels are in straight lines, because they 

may be skewed in the rectification process. However in this case also the pixel size 

had to be changed to coterminous with the Landsat TM pixel. This was done with the 

nearest neighbor method where the pixel values of the georectified image are 
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determined by the pixel values closest to them in the rectified but skewed image 

(Lillesand et al. 487–488).  

 

5.7. Automated land cover classification 

The classification process started with planning the classification system and 

recognizing spectrally separable land cover features from previous land cover 

classifications, aerial photographs of 2004 – 2005, GeoEye-1 images from 2009, 

Landsat TM image from 2009 (Figure 15). The originally planned classification system 

and its classes were modified multiple times during the process to see what actually 

was possible to classify from the two scenes, however constantly keeping the final use 

as deforestation modeling in mind.  

 

The used classifications were created with a combination of unsupervised and 

supervised methods, which are the two most common automated spectral classification 

methods (Campbell 1996: 315; Lillesand et al. 2008; 545–547). In supervised 

classification the classifier directs the outcomes by creating example areas, called 

training sites for all predefined land cover features and computer classifies all the pixels 

in the image according to the spectral values of these training sites with mathematical 

algorithms, such as Maximum Likelihood, Minimum-Distance-to-Means or 

Parallelepiped. Maximum Likelihood classifying method quantifies the mean variance 

and covariance matrix of the created training areas and classifies other pixels 

according how well their properties match with these. Pixels probability of belonging to 

a class is calculated for each class in the classification and eventually the pixel is 

classified to the class with highest probability or as “unknown” if all the probability 

values are below defined threshold (Lillesand et. al 2008; 554–557). The training sites 

can be delineated in the field with GPS or visually from the used data with assistance 

of aerial photographs, high resolution satellite imaginary or maps (Campbell 1996: 

329–334; Lillesand et. al 2008; 557–568). The classification outcome depends heavily 

on the quality of training sites, which should be as homogenous as possible to avoid 

internal spectral variations. Creating representative training sites is often time 

consuming process and requires knowledge about the geographical area, its annual 

changes and reference data from used sites (Lillesand et al. 2008; 557).  

 

The advantages of the supervised method are that user can define the classes, make 

them to suite the study and ensure comparability to other classification schemes. The 

disadvantage on the other hand are that real land cover classes may not be spectrally 

unified and creating spectrally diverse training areas may bias the whole classification. 

Often there are also minor geo-rectification errors between primary and reference data, 
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which might cause problems when delineating the training areas. Also if certain land 

cover features or classes are not represented in the training sites they are simply 

joined into spectrally most similar class, even though they would be far from this in the 

field (Campbell 1996: 327–329). These problems can be avoided by collecting training 

sites from all important land cover features, making sure that the sites are spectrally 

unified and combining features to more comprehensive land cover classes only after 

the technical classification process (Campbell 1996: 316).  

 

In unsupervised classification the pixels are first clustered to predefined amount of 

natural spectral clusters based on their DN values and these clusters are attached to 

actual land cover classes. These clusters contain pixels which DN values are close as 

possible to each other and far as possible from other clusters (Campbell 1996: 317–

319; Lillesand et al. 2008; 568–569). The clustering can be done with various 

algorithms, such as K-means and Iterative Self-Organizing Data Analysis Technique 

(ISODATA). In K-means approach user defines the amount of clusters he wants to 

identify. The algorithm then locates the defined number of cluster centers in the 

multidimensional data so that in the beginning the average distances between the 

clusters are equal. Each pixel is assigned to a cluster of which mean vector value is the 

closest to that pixel’s spectral values. After this the mean vectors of clusters are re-

calculated and the pixels are again assigned to the “closest” cluster. This iteration is 

continued until there are no more significant changes in mean vector values.  

 

ISODATA follows the basic principles of K-means clustering, but in this algorithm the 

statistics of clusters are assessed after each iteration. If the distance between two 

clusters is lower than predefined minimum they are merged, while if the standard 

deviation is too high within single cluster it is split to two or the cluster is deleted if the 

amount of pixel within it is too low. The iteration stops when there are no longer 

significant changes in the cluster statistics or the maximum number of iterations is 

reached (Lillesand et al. 2008: 569–570). The unsupervised classes are solely spectral 

clusters and on itself they do not refer to any land cover classes, but they can be linked 

to land covers with reference data or field visits. Unsupervised classifications 

advantages are that it requires significantly less knowledge about the study area and 

possibilities of human errors are minimized. Although unsupervised classification 

appears more straightforward and cost-efficient than supervised classification, the 

process of connecting spectral clusters to real land covers requires large amounts of 

reference data and may turn out to be highly time consuming. It is especially 

problematic process when the classified image is so old that field assessments are not 

valid and reference data is scarcely available. Also the created clusters may not match 
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the categories interested by the user or they are incomparable to other classification 

schemes (Campbell 1996: 317–319; Lillesand et al. 2008: 568–569).  

 

 

Figure 15. Flowchart of the main classification work phases. 

 

After planning the already rectified and registered Landsat TM image was masked with 

the coastline of Unguja and classified with ISODATA unsupervised method to 20 

clusters. These clusters were attached to land cover classes through field visits and 

visual assessment of aerial photographs. 18 out of 20 clusters were assessed in the 
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field. The two clusters left out were urban and mangrove classes, so obviously 

recognizable from the aerial photographs that they were not considered to require any 

field assessments. The field observation points were chosen so that they were evenly 

divided between coral rag and deep soil regions, visited cluster patches were large 

enough to truly represent the land cover and that they were along the roads making the 

process efficient. The collected GPS points were imported to ArcGIS and overlaid on 

the created spectral clusters and the observations and photographs collected in the 

field were attached to the clusters. The ISODATA clusters, field visits and the aerial 

photographs helped to identify 12 spectrally separable land cover features.  

 

To create coherent classifications between the 2009 Landsat TM and 1996 SPOT 

images the classification was turned from unsupervised to supervised and 

approximately 250 training sites were collected from these 12 primary land cover 

features. The training sites were based on the field visits, aerial photographs and 

knowledge from the previous research done in the island (Käyhkö et al. 2011; 

Fagerholm et al. 2012). In the beginning the training sites were collected only for the 

Landsat TM image, but later assessed and modified with the SPOT image. This was 

done by first matching the SPOT image histogram against the Landsat histogram to 

lower the contrast differences caused by different sensor calibrations (Wulder et al. 

2008). Then the training sites were gone through one-by-one and they were modified 

or deleted if there were clear visual differences between the satellite images. After the 

primary training sites were collected the classification was tested and the spectral 

statistics of each classes training sites and the created classifications were visually 

assessed. The primary training sites were modified multiple times based on these 

assessments to make the training sites, their signatures and the whole classification as 

coherent as possible between the two images. In the end there were 203 training sites 

for the 12 spectral features, which were used to create signature files individually from 

both images. The final classification was done with maximum likelihood supervised 

classification method for radiometrically non-corrected images. The classified Landsat 

TM image included all the other bands except the thermal band and the SPOT image 

all the bands.    

 

Because of large spectral differences between land cover features, the amount of 

classes was intentionally kept as high as 12 (Figure 16). For example there were four 

spectrally different forest features and combining them to one class would have made 

the range of DN values wide and risk of misclassification high (Campbell 1996: 327–

329). Many of the different spectral land cover features were based on differences in 

near infrared values and these differences were estimated by calculating the mean 
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Normalized Difference Vegetation Index (NDVI) value of each class in 2009 

classification before combining them together. NDVI value indicates the amount of live 

green vegetation within a pixel and it is calculated as: 

 

𝑁𝐷𝑉𝐼 =  
𝑁𝐼𝑅 − 𝑅

𝑁𝐼𝑅 + 𝑅
 

 

Where NIR is the near infrared band and R is the red band of the sensor (Lillesand et 

al. 2008: 464–466). After the NDVI values were considered coherent the classification 

was post-classified to 7 classes.   

 

 

Figure 16. The original 12 spectral land cover features were post-classified hierarchically to 

seven more easily interpretable land cover classes and also handled as three different classes 

in the change detection. Mean NDVI values were also calculated for each class.  
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All classifications are eventually subjective and represent the interpreters’ visions of the 

landscape. This makes replication or comparing classifications fairly difficult (Weiers et 

al. 2002). In change detection significant portion of changes can come from the minor 

differences between nominally same classes rather than from actual land cover 

changes (Weiers et al. 2002; Di Gregorio 2005: 7–10; Ahlqvist 2008). The subjectivity 

should be minimized in the classification process, but also qualitative descriptions (ea. 

land cover type and land use activities) and quantitative parameters (ea. percentage of 

canopy coverage and amount of tree layers) should be linked to the classes after 

creating them. These can be acquired from high resolution aerial images or with field 

observations and they have important value in describing the classes, underlining class 

differences, repetition of classification and in comparison with other classifications 

(Ahlqvist 2004). For these reasons, the created classes were described and 

parameterized with the collected field observation after the actual classification 

process. GPS from field observation sites were overlaid on the land cover classification 

of 2009 and connected to corresponding land cover class. This information was 

connected to the table created from observations. Key variables were chosen and most 

common, average and majority values were calculated. Some of the observations were 

left out from the comparison, because they were repetitions of previous points, did not 

contain all the needed information or had clearly changed after 2009. It should be 

remembered that the field observations were also used to associate unsupervised 

clusters to land covers and to delineate training sites, therefore the descriptions and 

parameters drawn from the observations and photographs taken are representing the 

classes better than randomly selected sites. In a way they are representing the ideality 

of the classes and not the objective reality. Giving objective descriptions or parameters 

to classes would have required an individual data collection campaign or post-

classification interpretation of the aerial photographs, which was impossible when 

considering the time resources in hands. 

 

5.8. Accuracy assessment 

Aerial photographs and high resolution satellite images were used as reference data in 

this research and their systematic visual interpretation created the basis for accuracy 

assessment. In the accuracy assessment approaches the producer estimates visually 

the land cover in the sampling unit, based on created classification structure. This 

visually interpreted land cover is later compared against the class in automatic 

classification. The method relies heavily on the skills of the interpreter and visual 

interpretation elements are often set to decrease the subjectivity and to keep the 

outcome coherent (Lunetta & Lyon 2000; 7). Although some interpretation elements 

were helping the interpretation, their use was not systematic in this research.  
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Accuracy assessment was based on samples of the data pixels. There are various 

alternatives for sampling unit, but for satellite imaginary it is usual to overlay the 

created classification with a grid and estimate majority land cover within randomly 

chosen grid cells (Lillesand et al. 2008; 588). The size of the cells is determined by the 

original pixel size, but usually they are pixel blocks of 3 to 10 times the original size 

(Stehman & Czaplewski 1998, Lunetta & Lyon 2000; 7). Choosing samples from class 

boundaries is often avoided, because it is fairly tricky to draw an absolute line between 

two land cover types and inaccurate geo-rectification causes errors close to the edges. 

On the other hand majority of changes happen in these boundaries between classes, 

so their accuracy should be as precise as possible (Lunetta & Lyon 2000; 6–7, 

Lillesand et al. 2008; 587). In this study the assessment was done with a grid of 5 x 5 

original pixel sized cells, which was overlaid on reference data and land cover majority 

was interpreted visually for each cell (Figure 17). The grid size was considered suiting 

the mosaic like structure of landscape where changes may happen even within short 

distances.  

 

Figure 17. Sampling cell overlaid on 2004/2005 aerial photograph representing non-forest in 

reference data and an example image of accuracy assessment attribute table. 

 

High amount of pixels in Landsat TM image forces the user to sample the data rather 

than assessing all of the pixels. Even collecting the 0,5% sample, traditionally used in 

statistics, may be problematic if the study areas are large. Usually in the related 

literature minimum of 50 samples are chosen from each land cover class, but this 

amount is in relation to produced map (Congalton 1991). Some literature advices that 

that more samples should be chosen from the land cover classes that are in the focus, 

but this approach would distort calculation of some statistical figures like overall 

accuracy and KHAT statistics (Lillesand et al. 2008; 585–591). Rather the sample sizes 

should be in line with the proportional size of a class from the total land cover (Lunetta 

& Lyon 2000; 4–5, Lillesand et al. 2008; 588). So that all land cover classes would be 

Sample 
ID 

LCC in 
reference data 

LCC in  
classification 

1 Non-forest Non-forest 

2 Forest Non-forest 

… … … 
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well represented in accuracy assessment samples are often chosen with stratified 

random sampling, with limitations on the minimum and maximum amount of samples 

per class (Lunetta & Lyon 2000; 5, Lillesand et al. 2008; 588). Sampling cannot be 

completely random, because if randomly chosen samples cluster in each other vicinity 

the outcome is influenced by spatial autocorrelation. Congalton (1988) estimated that 

spatial autocorrelation influences neighboring land covers as far as 1,8 kilometers 

away from original sites, but this depends on the landscape at focus. To reduce the 

spatial autocorrelation sampling must be modified so that sampling sites do not cluster 

to the extent that closeness of other observations would influence the results (Lunetta 

& Lyon 2000; 6).  

 

The land cover class in majority in the created classifications was calculated for each 

cell with “Zonal statistics” –tool in ArcGIS 10. Stratified random sampling of 

assessment units was performed by first adding the variance information of the 

classifications to the grid cells with “Zonal statistics” –tool. Only those cells that had 

variance value one, meaning that there were only one land cover class in these cells 

were chosen for assessment. This was done because it would be impossible to assess 

cells with high land cover diversity where majority could be reached with rather small 

amount of pixels (with 7 land cover classes the min. is 5/25 pixels). Random numbers 

were calculated in ArcGIS 10 “Field calculator” –tool for all remaining cells and they 

were set to ascending order. Classifications land cover majorities were removed from 

the attribute table and actual classification images were removed from the workspace 

to avoid the possibility of peeping. In situations where land cover change was obvious 

or clouds blocked the view, the land cover was not assessed. Altogether 361 sample 

units were checked from the Landsat and 358 for the SPOT classification. Sample size 

was approximately the recommended 0,5% of the total land cover (Lillesand et al. 

2008; 588). The amount of sample units per class was proportioned to their size from 

total area. Assessed cells situated less than 450 m from other assessed cells were 

removed to reduce the errors caused by spatial autocorrelation. The threshold distance 

was set lower than suggested by Congalton (1998), since it was considered that the 

mosaic like structure of the landscape reduces spatial autocorrelation.   

 

The observations collected from reference data were compared against the produced 

classification in error matrix. In this cross tabulation the reference data is represented 

in rows and classified data in columns, revealing which reference data observations fall 

in the same land cover class in produced classification and vice versa (Lunetta & Lyon 

2000; 3, Lillesand et al. 2008; 585). Error matrix works as a baseline for multiple 
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statistical measures used to assess the accuracy of classifications. Overall accuracy 

(O) is calculated as: 

𝑂 =
∑ 𝑥ii

𝑟
𝑖=1

𝑁
 

 

Where all the correctly calculated observations (∑ xii
r
i=1 ) are divided with the total 

number of observations ( N ). Accuracy can also be calculated individually for all 

classes. Producer’s accuracy refers to amount of correct observations divided by the 

total amount of reference observations in that particular class. This measures the 

accuracy of reference samples being correctly classified and how well certain land 

covers can be classified. User’s accuracy indicates the probability that classified 

sample unit represents the same land cover in reality. It is calculated by dividing the 

correct observations with the total amount of sample units belonging to that particular 

class (Lunetta & Lyon 2000; 3–4, Lillesand et al. 2008; 585). Even completely random 

classification would provide an outcome with certain accuracy. KHAT statistics 

compares created classification to the average accuracy of randomly created 

classification. The KHAT (k) statistics calculated as: 

 

𝑘 =
𝑁 ∑ 𝑥ii

𝑟
𝑖=1 − ∑ (𝑥i+

𝑟
𝑖=1 ∙ 𝑥+i )

N2 − ∑ (𝑥i+
𝑟
𝑖=1 ∙ 𝑥+i )

 

 

Where N is the total number of observations in the matrix, r number of rows, xii is the 

sum of correctly classified observations in row i and in column i, xi+ is the total of 

observations in row i and 𝑥+i  is the total of observations in column i. K values vary from 

0 to 1, where value 0 would refers to classification that is no better than randomly 

created one. K value can be interpreted so that if it is 0,76 the classification is 76% 

better than one created completely on random basis (Lillesand et al. 2008; 590 – 591). 

 

The error matrix table was built manually in Microsoft Excel 2010 from the attribute 

table of sampling units with a SQL search of both classifications. The majority in the 

created classification was set to rows and in reference data to columns and the 

samples were cross tabulated. The cross tabulation was used to calculate overall 

accuracy and KHAT figure for the classifications and the user’s and producer’s 

accuracy for each classes.  

 

5.9. Post-classification comparison 

The change detection was done with post-classification comparison method, where 

images from different times are classified independently and then compared pixel-by-
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pixel or segment-by-segment (Coppin et al. 2004). The outcomes can be represented 

as change maps and transition matrixes. Change maps are visual spatial models of not 

only the changed areas, but also the persisted ones. Transition matrix is a statistical 

cross-tabulation of the classes in the two used classification. The transition matrix 

provides information about the quantity and direction of change class-by-class. Post-

classification comparison is able to show how individual pixels and class areas 

changed through time. For example has the change been from forest to urban or what 

has been the area that changed from forest to agriculture (Coppin et al. 2004; Pontius 

et al. 2004; Lu et al. 2004; Lillesand et al. 2008: 595). 

 

Transition matrixes can be used to calculate class and landscape level change 

statistics. Net change is the absolute value of area lost or gained by an individual class 

or the whole landscape. Although it is the key quantitative figure of change, it is 

essentially aspatial and thus not acknowledging spatial changes within the classes. For 

example the total amount of forests can keep stable as certain areas face deforestation 

which is counterbalanced by reforestation elsewhere (Pontius et al. 2004). In research 

of Mertens and Lambin (2000) from Cameroon over half of the changes were actually 

spatial changes within classes, while in local level case study from Zanzibar these 

changes covered over ¾ of total changes (Käyhkö et al. 2011). These spatial changes 

are called “swapping” and its measurement requires calculating such quantitative 

figures as gain, loss, persistence, total change and swap (Pontius et al. 2004). Gain 

refers to the amount of area that was not part of particular class in the first 

classification, but belonged to that in the second one, or more simply put, the area 

gained by the class in the time period. Loss is the change to opposite direction, area 

lost during the time period. Persistence measures the area of the class that did not 

change spatially. Total change sums gain and loss to calculate the total amount of area 

changed. Swap, measured by doubling the smallest gain or loss value or by subtracting 

net change from the total change, indicates the amount of location changes within the 

class. These figures can be also calculated for the whole landscape by summing class 

level values, however for swap and total change the summed values need to be 

divided by two, because loss in one class is compensated by gain in other classes 

(Pontius et al. 2004). 

 

The change detection of SPOT 1996 and Landsat 2009 land cover classifications was 

performed with Erdas Imagine “Matrix union” –tool, which produces a new image where 

class value is determined by the combination of class values of the two used images 

pixel-by-pixel. Using seven classes created 49 types of change (7 * 7 = 49) (Appendix 

2), which were cross-tabulated to a transition matrix. Gain, loss, persistence, swap, 
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total change and absolute value of net change were calculated from the transition 

matrix based on methodology presented by Pontius et al. (2004). Some areas 

classified incoherently between the satellite sensors (ea. rubber plantations) were 

delineated with the DoSUP 2009 land use classification and reclassified to correct 

change class.  

 

Previous research indicates that swapping and total changes are extremely high in the 

study area (Käyhkö et al. 2011). Also classification problems related to cross-sensor 

analysis and class semantics may increase the amount of swapping and total change 

(Pontius et al. 2004; Ahlqvist 2008; Wulder et al. 2008). Therefore it was seen 

important to generalize the original change detection outcomes. Pretesting indicated 

that pixels swapped frequently between rather similar land cover classes, such as 

semi-open scrubs on barren and semi-open scrubs on grass. Due to this the 49 types 

of change were post-classified to two generalized vegetation change classifications 

with 7 and 11 categories based on land cover classes and direction of change. The 7 

classes included reforestation, stable forest, deforestation, revegetation, stable 

vegetation, devegetation and stable non-vegetated, while the 11 classes included also 

forest improvement, forest degradation, vegetation improvement and vegetation 

degradation. How the changes from 1996 land cover to 2009 land cover were classified 

to change classes is represented in Appendix 2. In the 7 class classification, which is 

now an called as “abrupt classification”, barren and urban classes were considered as 

“barren”, low-lying vegetation, semi-open scrubs on barren and semi-open scrubs on 

grass as “vegetated” and woodlands and closed forests/scrubs as “forested”. 

Landscape change and transition matrix statistics were recalculated for these classes, 

causing swap and total change to lower to more acceptable levels.   

 

Based on visual estimations and accuracy assessments it was noticed that changes 

from semi-open scrubs on grass and woodlands to closed forests/scrubs and vice 

versa were often misclassified. It was seen necessary to treat these classes separately 

as intervening categories not truly belonging to “vegetated” neither to “forested” in the 

three class division. In the 11 class classification, called as “gradual classification”, 

semi-open scrubs on grass were handled as “degraded forest” class between 

“forested” and “vegetated”, which meant that changes from “vegetated” to semi-open 

scrubs on grass were classified as vegetation improvement and as vegetation 

degradation to the opposite direction and changes from “forested” classes to semi-

open scrubs on grass were considered as forest degradation instead of deforestation 

and as improved forest when it happened vice versa. Also the woodland class was 

approached in a similar manner, but so that changes from it to closed forests/scrubs 
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was considered as forest improvement and forest degradation when happening to 

other direction and changes from it to semi-open scrubs on grass were considered as 

forest degradation and as forest improvement to the other direction. Using two different 

classification schemes reduces misclassifications. The classification with 11 is stricter 

when it comes to deforestation and reforestation and it represents forest change that 

has happened for absolute certainty, but in some cases it is too strict to detect all the 

happened changes. The 7 categories classification is able to detect these changes, but 

in some areas it is too loose and even subtle changes are marked as deforestation. 

The truth lies somewhere between these two and using them both allows leeway in 

estimations and instead of producing one deforestation figure this approach produced a 

range of deforestation. 

 

Transition matrix and landscape change statistics were calculated for the abrupt 

classification, but the complexity of the gradual classification prevented these statistics 

to be calculated, therefore only the change maps and change class statistics were 

produced for this classification. When transition matrixes or landscape change statistics 

were used in the analyses it always refers to the ones created from the original 49 

change class or the abrupt classification. Class level statistics were calculated for all of 

the 7 and 11 change classes. Focus was set on the forest changes, so the maps within 

the text were excluding other change classes, but the original products were included 

as appendixes and even though all classes were represented in class level statistics 

only forest changes were analyzed (Appendix 3). Deforestation, forest degradation, 

forest improvement, reforestation and net forest decrease figures were calculated for 

the whole 13 year study period. These figures were projected against the extent of 

stable, 1996, 2009 and all ever existed forests to estimate the magnitude of change 

and future developments of the forest cover. Changes were projected especially 

against stable and 2009 forests to estimate their stability, swapping and absolute 

deforestation in the future.   

 

The absolute amount of forest decline is relational to the absolute amount of forests 

existing. In other words, when the forest stock declines so does the absolute amount of 

deforestation, though the rate of forest change stays unchanged (Puyravaud 2003). 

Therefore calculating the annual rate of forest change provides better estimations 

about the future of forest cover than simply calculating the absolute areas lost (FAO 

1995; Puyravaud 2003). Based on FAO (1995) standards the annual rate of forest 

cover change (q) is calculated from the land cover data as: 
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𝑞 =
𝐴2

𝐴1

(1/(𝑡2−𝑡1)

− 1 

 

Where 𝑡1  and 𝑡2  are the times (year) of the forest estimates and 𝐴1  and 𝐴2  the 

estimates of these years. The figure can be turned to percentages by multiplying it with 

100. The annual rate of forest change was used to project the current forest cover until 

2050.  

 

5.10. Kernel Density Estimation 

The clusters of forest change can be mapped with various techniques, but Kernel 

Density Estimation (KDE) connected to Moran’s I spatial autocorrelation calculation 

was used in this research to avoid subjective visual estimation of areas most changed. 

KDE was used to map the actual clusters, while Moran’s I calculations determined the 

cut off distance for the KDE and measured spatial autocorrelation within this distance 

(Silverman 1986; ESRI 2012). Mathematically the kernel density (𝑓(𝑥)) for bivariate 

data is defined as: 

𝑓(𝑥) =
1

𝑛ℎ2
∑ 𝐾 

𝑛

𝑖=1

{
(𝑥 − 𝑋𝑖)

ℎ
} 

 

Where 𝑛  is the number of observations, ℎ is the used cutoff distance, 𝐾  is a kernel 

density defined as, (𝑥) vector of x,y coordinates describing the location where the 

function is calculated subtracted with (𝑋), the x,y vector location of each observations 

(𝑖) divided with the cutoff distance (Silverman 1986; Seaman & Powell 1996). In more 

practical terms KDE calculates the occurrence of events within certain cut off distance 

(Figure 18). Different events or magnitude of events may be weighted differently (ea. 

reforestation 1, forest improvement 0,5, forest degradation -0,5 and deforestation -1). 

The value of events is not only relational to their weight, but also distance to them from 

the observing point influences, so that points further away get lower coefficient factor 

than those nearby. As a moving window method, the KDE starts from a point, 

calculates its kernel value in relation to other points, their weights and distances and 

the moves to the next point until all points in the data are gone through (Silverman 

1986; Brinkmann et al. 2011; Grove 2011). Eventually it creates smoothed surfaces, 

where clusters of deforestation cover also pixel where deforestation has not taken 

place. The value for point in focus in example Figure 18 would be -2,5 if the 

occurrences and their weights would be summed together within the cutoff distance, 

however KDE also acknowledges the distance to the occurrences and therefore the 

value would be lower for the point, since the events with negative weights are closer 
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than the ones with positive values. In the technical solution of ArcGIS 10 the final KDE 

value is eventually divided with the area created by the cutoff circle.  

  

 

Figure 18.Visual representation of the Kernel Density Estimation. KDE is calculated by summing 

the events multiplied by their weight and distance from the point in focus in relation to the cut off 

distance.  

 

The z-score from Moran’s I calculations is considered to peak when spatial processes 

are most pronounced and this cut off distance should be used in distance based spatial 

analyses. The peak can be defined by testing different cutoff distance and comparing 

their z-score, however in some occasions there can be multiple peaks when different 

spatial processes function at different scales (ESRI 2012). In practice Moran’s I 

calculation was done first by converting the abrupt classifications deforestation and 

reforestation pixels to points with Raster to Point –tool in ArcGIS 10. Moran’s I 

calculations requires heavy mathematical data handling processes, which makes the 

use of whole study area impossible, therefore approximately 3 km2 a test site was 

chosen from Muyuni area. The test site was chosen so that its spatial clustering would 

represent the clustering pattern of the whole study area as well as possible. Spatial 

autocorrelation of these points were calculated with various cut off distances (500 m, 

750 m, 1000 m, 1250 m and 1500 m) with Spatial Autocorrelation (Moran’s I) –tool and 

the distance with highest z-score were used in KDE.  

 

Kernel densities are calculated from point patterns and therefore the forest change 

classes (reforestation, forest improvement, forest degradation and deforestation) in the 

abrupt and gradual classification rasters were turned to point data. The KDE were 

calculated for three different point sets with ArcGIS 10 “Kernel Density” –tool. Doing 

this provided information about different forms of deforestation and their patterns of 

spatial clustering. The first used point set were the deforestation and reforestation 

pixels in the gradual classification and this was considered to map areas of absolute 
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changes from forested to other land covers or vice versa. The second KDE also 

included the deforestation and reforestation pixels from the gradual classification, but 

also the points of forest degradation and forest improvement with their own value 

weightings. This KDE mapped not only the key areas of absolute changes, but also the 

sites where degradation and improvement were present. The third data set included 

the deforestation and reforestation points from the abrupt classification and therefore 

mapped the key areas of change without taking any stands to the severity of changes 

or in other words making no distinctions between deforestation and degradation or 

reforestation and forest improvement. 

 

Only the reforestation pixels with higher values than 0,000347226 and deforestation 

pixels with lower values than -0,000347226 were used in analyzes and mapping. This 

threshold was calculated by first extracting only the negative values from the third KDE 

raster and then classifying the remaining pixels based on quintiles to classes with 10% 

share from the landscape. The dividing value between the most deforested 10% of 

pixels and the rest was 0,000347226, which was set as the threshold for deforestation 

hotspots. The value was turned negative to determine the boundary for reforestation 

hotspots so that these would be comparable to the deforestation hotspots. However the 

reforested pixels had originally smaller values and therefore the hotspots of 

reforestation no longer represented 10% of the landscape. Eventually the deforestation 

and the reforestation hotspots from all the three point sets were mapped over the 

generalization of the study area map.   

 

5.11. Sub-area, distance and multivariate regression analysis  

In this research forest changes were linked to environmental factors with three 

quantitative approaches. Firstly the island was divided into four different forest sub-

types based on their soils and government status and the forest dynamics differences 

between these types were studied. Secondly the influence of the vicinity of Zanzibar 

Town, main roads and coastline were studied by relating Euclidean distant 

measurements to values of forest change at the level of the entire island. Thirdly the 

forest types, distance measurements and other environmental factors were used as 

explanatory variables in regression analyses which modeled deforestation.  

 

Driving forces having essential influence in one landscape may have only minor impact 

on another. Therefore it is important to understand the inner variations of the studied 

area and on demand it should be divided to smaller homogenous units. These divisions 

should be well justified based on literature, previous research or empirical testing 

(Mertens & Lambin 1997; Serneels & Lambin 2001). However dividing to too many 
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small units is time consuming and unable to achieve generalizations (Serneels & 

Lambin 2001). In the case of Unguja it was seen that the deforestation processes and 

causes are highly different for the western agroforest and eastern indigenous forest 

regions. As a starting hypothesis it was assumed that the agroforest as important 

component of the agricultural system are rarely deforested without serious cause, while 

on the other hand the indigenous forests as sites of swiddening, fuel wood and building 

material collection are more prone to deforestation (Käyhkö et al. 2009; Fagerholm 

2012: 31–37). Spatially the division between these forest types was done based on the 

soils in the physiographic map of Hettige (1990) digitized by Klein (2008), in a manner 

that the forests on deep soils were considered agroforests and the ones in coral rag as 

indigenous forests/scrubs. However there are significant differences even within these 

areas mainly caused by different government forest management actions. Therefore 

the government protected forests and government forestry forests were separated from 

the two main categories with official forest station delineations of DFNR.  

 

Transition matrixes, landscape change statistics and change class statistics were 

calculated for each forest type. Some figures like the absolute areas of forests in 1996, 

2009 and stable forests, each forest types proportional shares from these forests 

covers, the share of these forest covers from whole forest type area and share of 

stable forests from 2009 forests within the forest type were calculated.  The average 

deforestation rates for each forest type were calculated with the same FAO equation 

than the rates of entire Unguja and the differences of gradual class distributions were 

examined by putting them on column charts. Landscape change statistics for each 

forest type were also calculated. However it is impossible to compare total change, 

swapping, stable forest and net deforestation figures of different forest types directly 

since the baseline situations of forest cover have been completely different, therefore 

the figures need to be proportioned against the share of forest cover within the forest 

type and reflected against the proportion of the same processes at the level of entire 

Unguja. This is done with the following equation: 

 

𝑋 =
𝑎/𝑏 

𝑐/𝑑
  

 

Where the proportional share of any change process (total change, swap, net 

deforestation, stability) within class forest ( 𝑋 ) of any forest region (agroforest, 

indigenous forest, government protected forest, government forestry forest) is 

calculated by first dividing the change process within the class forest of that forest type 

(𝑎) with the total amount of class forests existing during the time period within the same 
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forest type (𝑏). This outcome is then divided by the outcome of the same change 

process in Unguja’s forests (𝑐) divided with the total amount of forests existing during 

the time period in Unguja (𝑑).  The outcomes can be interpret so that when the value is 

1 the change process in that forest type has happened with the same rate than in entire 

Unguja when the baseline situations of forests have been taken into account.  

 

In the second approach the relationships of forest changes and distance 

measurements were studied nonlinearly. The used method used was roughly similar to 

the one used by Mertens & Lambin (1997). Main and secondary roads, coastline and 

border of Zanzibar Town in 1996 were chosen as the sources of the Euclidean distance 

measurements. Buffers of 60 meters (2 pixels) were created around all these elements 

to exclude errors caused by georectification. Outwards facing distance rasters were 

calculated from the buffers and then reclassified after every 150 meters until 3 

kilometers. Percentage shares of deforestation, reforestation, stable forests and net 

deforestation from the total forest cover of 1996 were calculated for each 150 meter 

zone from the gradual classification. These shares were proportioned against the 

average of the entire Unguja as was done in the forest type analyses, with the 

exception that the baseline situation was not all the forest cover ever existing, but the 

cover in 1996. The proportional shares were visualized as line diagrams, which follow 

the same formal logic as the change ratios of different forest types: when the value is 

over 1 the change process has been more common than averagely on the island, while 

if the values are lower than 1 the process has been less common and the negative 

values of net deforestation refer to forest gain instead of loss.  

 

Linear trendlines and their coefficient of determination (R2) were calculated from the net 

deforestation ratios of each distance measurement. These line diagrams and their 

trendlines enable better understanding of the linearity, nonlinearity and range of 

influences (cutoff distance) of each distance measurement used. This knowledge helps 

to interpret the regression modeling outcomes, which rely solely on linear relationships 

between variables (Verburg et al. 2004a; Metsämuuronen 2008: 119–121). However, 

also the cumulative percentages of forest cover were calculated for each distance 

measurement to allow understanding of their magnitude of influence at the scale of 

entire Unguja.   

 

In the third approach linear regression analyses were used to determine the power and 

direction of individual variables on deforestation and to estimate the deforestation 

probability of still existing forests. Binary logistic regression was chosen as the used 

method from the family of regression analyses, mainly because of two reasons. Firstly 
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it allowed using binary dependent variable of deforestation/stable forest instead of 

continuous variable of net deforestation. The idea was not to find out why certain cells 

deforest more than other, but to examine what separates cells of heavily declining 

forest cover from those of extremely stable cover. Secondly its mathematical basis was 

easily understandable, which makes the interpretation of outcomes and creating future 

scenarios easier (Metsämuuronen 2008: 114–126). Binary logistic regression follows 

the following equation: 

 

ln [
𝑃(𝑌 = 1)

1 − 𝑃(𝑌 = 1)
] = 𝑎 + 𝑏1𝑥1 + ⋯ + 𝑏n𝑥n  

 

Where logarithm (ln) of the probability of the dependent variable being 1 [𝑃(𝑌 = 1)] 

divided with the same probability subtracted from 1 is equal to explanatory variable (𝑏) 

multiplied with the regression coefficient ( 𝑥 ) added to regression constant ( 𝑎 ) 

(Metsämuuronen 2008: 116).  

 

The regression modeling was done with aggregated cells. This generalization was 

seen to reduce the errors caused by misclassification of individual pixels and it also 

decreased the data handling and calculating capacity required. Using spatially too 

detailed dependent variable could have prevented from understanding the grand lines 

of the deforestation process. The original deforestation data was aggregated to cells of 

300 m2 (ten times the original Landsat TM pixel) and turned to vector format. The 

created vector database included altogether 17 958 cells, which were in spatial 

alignment with the original Landsat TM pixels. The information from land cover 

classifications of 1996 and 2009 and gradual change classification were fed into 

database class-by-class, so that each cell has percentage information about the forest 

cover in 1996, 2009, deforestation, reforestation and their combined net deforestation, 

which were then used to calculate the binary dependent variable (Table 9).  
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Table 9. Example of the regression database 

 
Cell ID 1 2 3 4 5 

Origin of 
dependent 

variable 

1996 forests (%) 10 95 74 20 10 

Deforestation (%) 10 31 27 20 10 

Reforestation (%) 0 1 7 0 25 

Net deforestation (%) 0 68,4 73 100 -50 

Dependent 
variable 

Deforestation (1/0) 0 1 1 0 0 

Explanatory 
variable 

Distance to coast (km) 2,0 0,5 3,1 1,4 5,0 

Distance to Zanzibar Town (km) 1,5 3,4 2,1 1 15 

Distance to roads (km) 4 2,5 0,2 1,4 5 

Building kernel density 245 95 145 523 16 

GPS (1 = yes / 0 =no)* 1 0 0 0 0 

GFA (1 = yes /0 = no)** 0 0 1 0 0 

Mean NDVI 0,354 0,489 0,648 0,214 0,712 

Mean elevation 10,2 24,5 58,6 1,3 7,5 

Soil (1= deep soils, 2= coralline) 1 2 1 2 2 

*) Government protection status **) Government forestry status 

 

Deforestation in gradual classification was considered spatially more accurately 

modeled and therefore it was chosen as the basis for the dependent variable 

calculation. Dependent variables were created based on following equation: 

 

1) Deforestation term: 

 

𝑥 =  
𝑎 − 𝑏

𝑐
≥ 50 ∩  

𝑐

𝑑
≥ 50 

    

0) Stable forest term: 

 

𝑦 =  
𝑎 − 𝑏

𝑐
≤ 10 ∩  

𝑐

𝑑
≥ 50 

 

The dependent variable gets value 1 when the term of heavily declining forest cover (𝑥) 

is achieved. This state was defined as a situation where deforestation (𝑎) subtracted 

with reforestation (𝑏) and divided with forest cover of 1996 (𝑐) was over 50 (%) and (∩) 

the forest cover of 1996 was over 50 (%) from the total cover of the cell (𝑑). In other 

words, the forest cover must have been over 50% of the cell in 1996 and at least 50% 

of this must have been deforested during the study period. The term for stable forests 

(𝑦) was defined as a situation where cell had net deforestation lower than 10% during 

the study period and forest cover over 50 (%) in 1996. Altogether there were 662 cells 

(3,69%) that fulfilled the deforestation rule. The effects of spatial autocorrelation were 

reduced by manually removing all those cells that were closer than 1,5 km (3 cells) 

from other cells of the same class, which lowered the amount of deforestation cells to 
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186 (Congalton 1988). Originally there were 4583 cells (25,52%) that fulfilled the stable 

forest rule, but they were reduced to 187 to avoid overrepresentation in the modeling 

(Appendix 4). This was done by assigning random numbers to all the stable forest cells 

and choosing the 187 cells with the lowest random number, which were at least 3 cells 

away from each others.  

 

The selection of used explanatory variables was based on related literature. Veldkamp 

& Lambin (2001) underline that the scale of study influences variable selection so that 

social and accessibility factors should be used at household level, topography and 

agroclimatic conditions at landscape level and climate, political-economy and 

demographic variables at regional or national level. The right variables for Unguja were 

seeked from other landscape and regional level studies from Africa and Tanzania. 

These studies have used such variables as elevation, slope, soil, land cover, 

vegetation, protection status, climate suitability, distance from coastline and 

accessibility to major cities, villages, markets, roads, rives and agricultural areas (Prins 

& Clarke 2007; Milledge et al. 2007: 6; Ahrends et al. 2010; Tabor et al. 2010; 

Swetnam et al. 2011). Some of these variables were left out from the modeling for 

various reasons. Even though there are differences in the rainfall between eastern and 

western parts of the island, climate was left out from the analyses because patterns 

caused by it are already present in the distribution of forested cells and correlates with 

soil data. The influence of river vicinity was not included, because of the small amount 

of rivers. Also the slope was not used as explanatory variable because lack of data. In 

the end altogether 9 explanatory variables were chosen for the regression analysis: 

distance to coast, distance to Zanzibar Town, distance to main and secondary roads, 

kernel density of buildings, mean NDVI, mean elevation, soil, government protected 

areas and government forestry areas (Table 10). Majority of variables are in continuous 

form, except for soil (1= deep soils, 2 = coralline soils), government protected areas (0 

= no, 1 = yes) and government forestry areas (0 = no. 1 = yes). The variables were 

collected from various sources and modified to fit the regression analysis.  
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Table 10. The regression analyses variables, their sources and types.   

Variable Source Variable type 

Distance to coast DoSUP 2009 topographic database Continous (km) 

Distance to Zanzibar Town SPOT 1996 satellite image Continous (km) 

Distance to roads DoSUP 2009 topographic database Continous (km) 

Building kernel density DoSUP 2009 topographic database Continous (kernel density) 

GPA (1/0) Government forest boundaries (DFNR) Dichtomous (1/0) 

GFA (1/0) Government forest boundaries (DFNR) Dichtomous (1/0) 

Mean NDVI SPOT 1996 satellite image Continuous (0 - 2) 

Mean elevation 
DEM derived from contours of DoSUP  
2009 topographic database 

Continous (m) 

Soil Phyiographic map of Hettige (1990) Dichtomous (1/2) 

 

Multicollinearity of explanatory variables may flaw the modeling, therefore it should be 

tested before the actual modeling and the correlating variables should be dropped from 

the final model or combined as one (Serneels et. al 2007). Some regression methods 

include automated testing of multicollinearity, however this is not included into the 

binary logistic regression and therefore it was tested with Pearsons Bivariate 

correlation analysis with two-tailed test of statistical significance. Pearsons correlation 

analysis is the most common method to determine the correlation between at least two 

variables. The variables should be at least in interval scale and their dependence 

should be linear (Metsämuuronen 2008: 11–23). The Pearsons correlation coefficient 

(𝑟) is calculated as: 

𝑟 =
∑ (𝑥𝑖 − 𝑥̅𝑛

𝑖=1 )(𝑦𝑖 − 𝑦̅)

𝑛𝑠𝑥𝑠𝑦

 

 

Where 𝑛  is the amount of number pairs of 𝑥𝑖  and 𝑦𝑖 , 𝑠𝑥  and 𝑠𝑦  are the standard 

deviations of the variables 𝑥 and 𝑦 and 𝑥̅ and 𝑦̅ are the averages of variables 𝑥 and 𝑦. 

The outcomes can be interpret so that if 𝑟 is 0 there is no correlation, if it is -1 there is 

negative correlation and value 1 refers to positive correlation. The outcomes of the 

correlation analyses were taken into account so that if variables had correlations over 

0,7 or under -0,7 one of the variables was removed and correlation over 0,4 or under -

0,4 were marked and considered when modifying the regression models or analyzing 

the outcomes.  

 

Normal binary logistic regressions were calculated individually for each explanatory 

variable and conditional stepwise binary logistic regressions were used when 

combining all the explanatory variables to a single model. These multivariate models 

were calculated for the entire island and separately for coral rag and deep soil regions. 
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The island was divided between landscape regions to improve the modeling and to 

study the differences between these regions. The division was rough and some 

enclaves of deep soils were left within otherwise coral rag landscape and vice versa. 

The division was done in this rough manner rather than solely based on soils, because 

it was seen that the remaining enclaves are more influenced by the surrounding 

landscapes rather than areas of similar soil conditions kilometers away. The 

multicollinearity analyses were also done independently for the explanatory variables in 

each landscape region.  

 

The outcomes of regression analyses were analyzed based on their regression 

coefficients, amount of correctly classified dependent variables, Wald statistics and 

Nagelkerke R2. The regression coefficients are produced while calculating the 

regression equation introduced previously. The regression equation is tested against 

the used dependent variables to see how many of these variables are correctly 

classified in both classes and altogether based on the regression equation. Wald 

statistics is used to estimate the significance of individual explanatory variables in 

multivariate regression models. It is calculated as:  

 

𝑊𝑎𝑙𝑑 =  (
𝛽

𝑠. 𝑒.
)

2

 

 

Where the regression coefficient 𝛽  divided with standard error 𝑠. 𝑒.  is squared 

(Metsämuuronen 2008: 118–119). Nagelkerke R2 is a pseudo-R estimate implying the 

overall usefulness of the model. It is a modification from Cox and Snell R2, which is 

calculated as:  

𝑅2 = 1 − 𝑒
2(𝐿𝐿(𝐵)−𝐿𝐿(0))

𝑛  

 

Where the Neper unit 𝑒 (≈2,718) is squared with the log-likelihood of the created model 

(𝐿𝐿(𝐵), subtracted with the log-likelihood of antimodel (𝐿𝐿(0), multiplied by 2 , divided 

with the sample size 𝑛 and then subtracted from 1. In theory this calculation should 

reach 1 when the model explains all the dependent variables correctly. However in 

practice it never reaches 1, but Nagelkerke has modified the calculation so that it does 

reach zero when the model is perfect. Nagelkerke R2 is calculated as: 

 

𝑅̃2 =  
𝑅2

1 − 𝑒
2𝐿𝐿(𝑜)

𝑛
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Where Cox and Snell R2 is divided with the term 1 − 𝑒
2𝐿𝐿(𝑜)

𝑛  dictating the maximum value 

possible to achieve with the model. There for Nagelkerke R2 is able to directly tell how 

much the model is able to explain from the variations in the observations 

(Metsämuuronen 2008: 123).  

 

Purpose of the regression analyses was not only to determine the direction and power 

of each independent variable, but to use the outcomes also for creating future 

scenarios. These projections were done in static “business as usual” manner, meaning 

that changes in rates, causes or spatial distribution of deforestation were not taken into 

account (Verburg et al. 2006: 119; Ahrends et al. 2011). Except that the new planned 

conservation area of Muyuni-Jambiani in the South district was included into the 

scenario building. The modeling was fuzzy in a sense that only the risk of deforestation 

ranging from 0 to 100% was visualized and the precise location and time of 

deforestation were left out from the scenarios (Mertens & Lambin 1997; Veldkamp & 

Lambin 2001). The modeling was done by using the explanatory variables and 

regression coefficients explaining the change between 1996 and 2009 to create 

regression equations for the forested cells of 2009. This was done independently for 

the coral rag and deep soil regions. Eventually it was only 3 variables that explained 

deforestation in the coral rag region and 4 variables in the deep soil. Some of the 

original variables just did not explain the variations or the outcomes were so bizarre 

that it was expected that the variables modeled something that were not really 

connected to them. For example “mean elevation” had really limited explanatory value 

in the individual models and in the multivariate analysis from the coral rag, but in deep 

soil region it suddenly became an important variable. The elevation differences in the 

island are really minor and therefore it was not considered plausible that increasing 

mean elevation would cause deforestation. Also it was seen distorting to include the 

“government forestry forests” into the modeling as the deforestation in these areas are 

caused by management actions that hardly fit to mathematical models. These variables 

were removed and the regression coefficients of the remaining variables were 

recalculated for the predictive modeling.  
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6. Results: 

6.1. The distribution of forests and other land covers in 2009 

6.1.1. General landscape 

In 2009 approximately 38% of the island is covered by different kinds of forest 

vegetation, such as moist evergreen tropical forest, dry coral rag forest, forest 

plantations, agroforests, dense thickets and scrublands and semi-closed woodlands 

(Table 11 & Figure 19). Half of the area is covered by other forms of vegetation, such 

as semi-open scrublands and low-lying grasslands and the remaining 12% are non-

vegetated, including urban areas, cleared agricultural fields, salt marshes and beaches. 

The overall accuracy of the classification is 82,5% and Kappa 0,784 (Table 12). 

Though, some classes such as low-lying vegetation, semi-open and woodland are 

more unreliable than the others.  

 

Table 11. Land cover statistics of Unguja in 2009 based on classification of Landsat TM 
(01.07.2009) image.  

2009 Land cover classification  

Class Pixels 
Area  
(km2) 

Percentage  
of landscape 

Barren 103833 93,5 6,2 

Urban 101033 90,9 6,1 

Low-lying vegetation 186522 167,9 11,2 

Semi-open scrubs on barren 286544 257,9 17,2 

Semi-open scrubs on grass 352667 317,4 21,2 

Woodland 138078 124,3 8,3 

Closed forest and scrub 497489 447,7 29,9 

Total 1666167 1499,6 100 

 

Table 12. Error matrix with accuracy assessment figures for 2009 land cover classification of 

Landsat TM image from 01.07.2009. Aerial photographs of DoSUP from 2004 – 2005 and 

GeoEye-1 high resolution satellite images from 2009 were used as reference data.  

Reference data 

  Class B U LV SB SG W CF Total 
User's  

accuracy 

Classified  
data 

 

B 32 
      

32 100,0 

U  

 
20 

     
20 100,0 

LV 

  
23 2 10 

  
35 65,7 

S-O B 3 
 

3 37 8 6 2 59 62,7 

S-O G 

  
1 7 64 2 3 77 83,1 

W 

     
22 5 27 81,5 

CF 

    
5 6 100 111 90,1 

Total 35 20 27 46 87 36 110 361 
 

 

Producer's  
accuracy 

91,4 100,0 85,2 80,4 73,6 61,1 90,9 

  Overall  
accuracy 

82,5 
      

  Kappa 0,784 
      

  B = Barren, U = Urban, LV = Low-lying vegetation, SB = Semi-open scrubs on barren, SG = 

Semi-open scrubs on grass, W = Woodland, CF = Closed forests and scrubs  
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Figure 19. 2009 land cover classification with 7 classes classified from Landat TM images 

(01.07.2009). 

 
There is a clear distinction between the eastern and the western sides of the island. 

The eastern coral rag region consists of large unified patches of closed forests and 

scrubs, woodlands and semi-open scrublands, while the western deep soil region is 

more a mosaic of small patches from various land cover classes spreading around 

villages or agricultural areas. Although there are some larger unified patches of urban, 

barren, low-lying scrubs and semi-open scrubs in the west. In general the deep soil 

region is structurally more a minute mosaic landscape of open agriculture, agroforestry 

and settlements, while coral rag is dominated by various forms of indigenous 

vegetation broken only occasionally by shifting cultivation or settlements.  
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6.1.2. Non-vegetated land 

Relatively small portion (12,3%) of the total terrestrial landscape is non-vegetated, 

which included classes barren (6,2%) and urban (6,1%). Based on interpretation of 

aerial photographs uncultivated fields, beaches, sand taking areas, salt marshes and 

coral outcrops are classified as barren (Figure 20). Based on the producers’ accuracy 

some semi-open scrubs on barren grounds are also classified to this class. Spatially 

the barren lands is scattered all around the island, but biggest concentrations are the 

salt marshes in the northwest and the uncultivated open agricultural areas in the middle 

parts of the island. Urban areas have 100% accuracy in all figures. Zanzibar Town and 

its conjunctions cover approximately 40% of the class, and also some of the smaller 

towns (Nungwi, Paje, Mkokotoni and Chawka) create relatively large unified urban 

patches.  

 

6.1.3. Vegetated land 

Vegetated land cover approximately half (49,6%) of the landscape and is divided 

between low-lying vegetation (11,2%), semi-open scrubs on barren (17,2%) and semi-

open scrubs on grass (21,2%). Low lying-vegetation class consists mainly of cultivated 

and fallow fields, grasslands and wetlands. These land covers are clearly distributed 

more on the western side of the island, on the fertile deep soils and even the few field 

observations gathered from these sites showed higher moisture and looseness of soils 

(Table 13). Often these areas are under agricultural and livestock land uses, though 

there are also some natural wetlands and forest fire sites. In deep soil region low-lying 

vegetation patches are part of the larger rural landscape mosaic, while in coral rag 

these appear mainly in small swidden fields. The producers’ accuracy (85,2%) is good, 

but the user’s accuracy (65,7%) is rather poor and in both cases mismatches are 

caused mainly by other vegetated classes.  
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Table 13. Chosen field observation variables collected connected spatially to class of the site.  

  Low-lying vegetation Semi-open scrubs on barren Semi-open scrubs on grass Woodland Closed forest/scurb 

Observations sites 5 19 18 5 32 

Land cover 

Open cultivation (2), 
grassland (2), semi-open 
scrubland on barren (1), 
coconut plantation (1) 

Semi-open coral scrub (9), 
coconut plantation (4), forest 

(2), grassland (2) 

Semi-open forest/scrub (7), 
coconut plantation on 

grassland (6), low-lying forest 
(6), fallow (2)  

Medium high forest (3), 
semi-open scrubs (2) 

High forest (13), medium high 
forest (10), low-lying scrubs (2), 
fragmented forest (3), coconut 

plantation (1) 

Canopy coverage 
Open (3),  

semi-open (2) 
Semi-open (11),  

closed (3), open (2) 
Semi-open (11) to closed (8) Closed (2), semi-open (1) Closed (23), semi-open (3) 

Tree/scrub layers 1 0,6 2,1 2,1 2,3 2,6 

Sites with low, medium 
and high trees (%) 2 N/A 47 - 6 - 47  32 - 26 - 42 N/A 13 - 33 - 54 

Sites with low, medium 
and high trees (%) 
without coconut 2 

N/A 80 - 0 - 20 43 - 36 - 21 N/A 13 - 35 - 52 

Soil type 
Loose soils (4),  

coral rag (1) 
Coral rag (6), semi-coral (5), 

sand (4), loose soils (3) 
Loose soils (9), semi-coral 

(8), coral rag (2) 
Semi-coral (4) 

Semi-coral (12), coral rag (8), 
loose soils (8), sand (1) 

Bare groundlayer (%) 1 N/A 38,5 11,5 N/A 68 

Moisture conditions  
(dry = 1 & wet = 10) 1 5,2 2,6 3,8 2 3,5 

Land use  
Permanent and shifting 

agriculture, grazing, 
coconut plantation 

Cultivation, agroforestry, 
coconut plantation, spice 

farming, sacred site, garbage 
dumb, construction, 

conservation 

Grazing, firewood collection, 
tree planting, coconut 

plantation, fallow, shifting 
cultivation, coral stone 

extraction 

Forest conservation, 
casuarina plantation 

Forest conservation, teak, pine, 
casuarina and coconut 
plantations, coral stone 

extraction, firewood collection, 
coppicing  

Past land use N/A 
Shifting cultivation, gravel 

taking 
Forest fires, shifting 

cultivation, acacia plantation 
N/A Shifting cultivation 

1) Average 2) Low = < 3 m, medium = 3 – 5 m, high = > 5 m 
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Figure 20. A) Coral outcrop revealed by burn-clearing. B) Open agricultural field in Bambi ward 

cultivated by military personnel. C) Wetland in Jozani National Park. Photos: Niina Käyhkö, 

2011. 

 

Semi-open scrubs on barren are distributed quite steadily between coral rag and deep 

soil regions. The biggest spatial concentrations are the sparse agroforest areas in the 

deep soil region, the couple years old swidden fields in the coral rag region and the 

naturally semi-open scrub areas on bare coral rag. The class is part of a swiddening 

continuum ranging from barren back to forest in coral rag and part of rural landscape 

mosaic in the deep soils. 19 field observation sites belonging to this class are mainly 

semi-open coral scrubs on grounds with limited or now undergrowth, but also some 

sparse coconut plantations, forests and grasslands appear (Figure 21). Average 

amount of bare ground layer is 38,5%, which is significantly higher than for semi-open 

vegetation on grass. This intensive reflectance from bare ground eventually separates 

these two semi-open classes. The canopy cover is mainly semi-open and 80% of the 

sites have highest tree layer being less than 3 meters high when coconut trees are left 

out from the calculations. Land use in the field observation sites is highly connected to 

agriculture, but also some urban activities like dumbing of garbage and construction 

are present. The users’ accuracy (62,7%) is low and it seemed like all possible land 

cover types, except urban are misclassified as semi-open scrubs on barren. Producers’ 

accuracy on the other hand is rather good (80,4%) and misclassifications are caused 

B

 
 

 A 

A 
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only by other vegetated classes. There are misclassifications to both directions 

between the semi-open classes. 

 

  

 

Figure 21. A) Semi-open scrubland on barren ground in Matemwe shehia in northeast of 

Unguja. B) Semi-open scrubland on grass in Unguja Ukuu shehia in central Unguja. C) Mixture 

of scrubs and herbs close to village of Nungwi in north of Unguja. Photos: Niina Käyhkö, 2011. 

 

Semi-open scrubs on grass cover almost the entire coral rag region, which is not 

already covered by forested classes. Based on the field observations and visual 

estimation of the aerial photographs and high resolution satellite images, the patches in 

this class are mixtures of grasses, herbs, scrubs and trees in various forms. From the 

18 field observations majority are either semi-open scrubs, coconut plantations on 

grasslands or low-lying scrubs, separated by the grass or herb covered ground layer 

from the other semi-open class. The soils are looser than in the other semi-open class, 

A 

 
B 
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allowing binding of moisture and vegetation growth in the ground layer. Majority of field 

observation sites have semi-open canopy layer (58%), but there is also quite a lot of 

sites with closed canopy (42%), which could refer to significant classification error. 

Land use activities are agriculture related, but also some forest land uses, such as 

firewood collection and tree planting are present. The class creates large unified 

patches on the coral rag, but on the deep soil these are smaller and often fragmented 

by other classes. Largest unified patches are found from the northern tip of Unguja and 

from the western parts of coral rag region. Although, the high amount of field 

observations had different land cover, the class has relatively good users’ accuracy 

(83,1%) and mediocre producers’ accuracy (73,6%). In the accuracy assessment the 

misclassifications came mainly from forested and other vegetated classes, and only 6% 

of the samples assessed as semi-open scrubs on grass from the reference data were 

classified as forests, even though the amount of sites with closed canopy layer was as 

high as 42% in the field observations.  

 

6.1.4. Forested land  

Majority of the woodlands are situated in the southern coral rag region, either as 

natural woodlands, ea. two circular areas within Jozani National Park (Figure 22) or as 

forested swidden sites, which are too high and vivid for semi-open classes, but not 

closed or high enough as closed forests/scrubs. Also some slightly open agroforest 

areas in the deep soil region are classified to this class. Field observations from 

woodland sites are limited and able to tell only minor details of this class. The land 

covers in the field observation sites are divided between medium high closed forests 

and semi-open scrubs and the amount of tree/scrub layers is slightly higher than for the 

semi-open areas. The soil type is semi-coral in all of the observation sites. The land 

use activities are linked to forest conservation or forestry and there is not any present 

evidence of agricultural activities. The class has a mediocre (81,5%) users’ accuracy, 

but the producers’ accuracy is low (61,1%). There are misclassifications to both 

directions between the woodlands and closed forests/scrubs and some woodlands are 

misclassified as semi-open scrubs.  
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Figure 22. Natural woodland in middle of Jozani National Park. Photo: Niina Käyhkö, 2011. 

 

Closed forests and scrubs are largest of the individual classes and included moist 

evergreen tropical forest, dense and high thickets and scrublands, dry forests on coral 

rag and dense agroforests (Figure 23). Differently from semi-open and woodland 

classes the canopy coverage is always closed. The amount of average tree layers is 

highest from all of the classes and the class has largest percentage of trees over 5 

meters, however in 48% of field observation sites the highest tree layer was less than 5 

meters in height. The soils vary from coral rag to loose soils and land use activities are 

related to forest uses, extraction of soil and conservation. Opposite to open areas 

forests and scrubs concentrate on the eastern coral soil region of the island, where 

soils do not allow permanent agriculture. The forest in the coral rag region can be seen 

as one continuous area reaching from Kiwengwa to Muyuni or as three separate 

patches. These patches are surrounding forest conservation areas of Kiwengwa-

Pongwe, Jozani-Chawka Bay and Muyuni. Two of these areas are joined to one unified 

patch covering almost 10% of the whole island. Between the main forest areas there 

are open or semi-open areas causing fragmentation of habitats. In the deep soil region 

forests are mainly dense agroforests, except for the Masingini forest conservation area 

just north from Zanzibar town. The class had high users’ (90,1%) and producers’ 

(90,9%) accuracies, though some semi-open scrubs and woodlands are misclassified 

as closed forests and some forests are misclassified to these classes. 
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Figure 23. A) Wet evergreen forest close to Masingini forest. B) Dry coral rag forest close to 

Jozani National Park. Photos:. Niina Käyhkö, 2011. 

 
6.2. Forest change between 1996 and 2009 

6.2.1. Preprocessing, classification and accuracy of 1996 classification   

The final total RMS error in the georectification of 1996 SPOT HRV image was 0,884. 

This corresponds approximately to 18 meters. Based on visual estimation the 

rectification was more distorted in the northern parts of the island, where errors were 

more than 1 pixel. 

 

In 1996 approximately 8% of the landscape was non-vegetated, 46% vegetated and 

45% forested (Table 14 & Figure 24). The overall accuracy is 83,0%, which would 

mean that the overall accuracy for the change detection would be 68,48% (0,825 * 0,83 

= 0,68475) (Table 15). Although this is relatively good accuracy for automated change 

detection analyses, it still contains 31,52% possibility for error. The kappa figure is 

0,784, making the classification 78,4% better than one created on completely random 

basis.  

 

Based on producer’s accuracy barren (80,6%), semi-open scrubs on grass (80,8%), 

woodland (92,6%) and closed forest and scrub (96,7%) classes included mainly those 

land covers intended, but high amount of areas that should have been classified as 

urban (66,7%), low-lying vegetation (61,1%) or semi-open scrubs on barren (72,4%) 

were misclassified. Considerable amount of barren pixels are misclassified as urban, 

semi-open scrubs on barren as low-lying vegetation and other vegetated classes as 

A 
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semi-open scrubs on barren. From the perspective of user’s accuracy barren, urban, 

semi-open scrubs on grass, woodlands, closed forests and scrubs have accuracy 

figures over 80%, but low-lying vegetation (75%) and semi-open scrubs on barren 

(52,5%) have clearly weaker accuracies. Semi-open scrubs on barren are 

systematically mixed up with low-lying vegetation, but errors in low-lying vegetation 

were caused by multiple different classes. 

 

 

Figure 24. 1996 land cover classification with 7 classes classified from SPOT-3 HRV  image 
dated 30.06.1996. 
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Table 14. Land cover statistics of Unguja in 1996 based on classification of SPOT-3 HRV 
(30.06.1996) image.  

1996 land cover classification 

 
Pixels 

Area 
(km2) 

Percentage of 
landscape 

Barren 132122 118,9 7,9 

Urban 19344 17,4 1,2 

Low-lying vegetation 195578 176,0 11,7 

Semi-open scrubs on barren 216411 194,8 13,0 

Semi-open scrubs on grass 360256 324,2 21,6 

Woodland 111800 100,6 6,7 

Closed forest/scrub 630656 567,6 37,9 

Total 1666167 1499,6 100,0 

 

Table 15. Error matrix with accuracy assessment figures for classification of SPOT-3 HRV 

image from 30.06.1996. Aerial photographs of DoSUP from 1989 were used as reference data.  

Reference data 

  Class B U LV SB SG W CF Total 
User's  

accuracy 

Classified  
data 

 

B 29 4 1 1 1 
  

36 80,6 

U  1 8 
     

9 88,9 

LV 4 
 

33 3 4 
  

44 75,0 

SB 1 
 

16 21 
 

1 1 40 52,5 

SG 1 
 

2 3 63 
 

2 71 88,7 

W 

  
2 

  
25 1 28 89,3 

CF 

   
1 10 1 118 130 90,8 

Total 36 12 54 29 78 27 122 358 
 

 

Producer's  
accuracy 

80,6 66,7 61,1 72,4 80,8 92,6 96,7 

  Overall  
accuracy 

83,0 
      

  Kappa 0,784 
      

  B = Barren, U = Urban, LV = Low-lying vegetation, SB = Semi-open scrubs on barren, SG = 

Semi-open scrubs on grass, W = Woodland, CF = Closed forests and scrubs. 

 

6.2.2. Change at landscape level 

At landscape level there has been massive amount of spatial and absolute changes 

from 1996 to 2009. Only 42,55% of all pixels have not changed, while 57,45% have 

done so (Table 16). From the changed area 46,77% are caused by swapping and only 

10,69% by actual changes between classes. Only in classes urban (64,1%) and closed 

forests and scrubs (58,95%) over half of the pixels stayed unchanged. Majority of 

changes happened between classes of similar spectral and vegetation properties and 

when similar classes are combined to barren, vegetated and forested categories in the 

abrupt classification, changes diminish (Table 17). The effect of combining classes 

influences percentages of spatial and absolute changes in same proportion and after it 

the figures are 34,30% for total change, 27,88% for swap, 65,71% for persistence and 

12,84% for total absolute value of net change (Table 18). Also the pixel level 

persistence is over 50% in every class after combining classes. 
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In general forested land covers have diminished in area and 6,42% of the total 

landscape are areas where forested classes had changed to other classes. Statistically 

this area ceded by forests is evenly divided between barren (3,22%) and vegetated 

(3,2%) land covers (Table 19). Though spatially deforested areas are mainly occupied 

by other vegetated land covers, while portion of vegetated areas of 1996 are 

transferred to barren covers. Vegetated class gained 5,48% of total landscape area 

(13,99% - 8,51% = 5,48%) from forests, but simultaneously lost 2,28% of area (6,04% 

– 3,76% = 2,28%) to barren classes and barren received rest 0,94% (3,22% - 2,28%) 

of its net gain directly from forest classes. From classification with seven classes it can 

be seen that closed forest and scrubs (8% of total landscape) and barren (1,68%) lost 

most area, while urban (4,9%), semi-open scrubs on barren (4,21%) and woodlands 

(1,58%) gained the most. From these only closed forests and scrubs (5,8%) lost its 

area to classes outside its own abrupt classification category (forested), while urban 

(3,14%) and semi-open scrubs on barren (1,91%) gained significantly from other 

categories.          

 
Table 16. Landscape change statistics between 1996 and 2009 at the level of 7 land cover 

classes.  

 
Gain Loss Persistence 

Total  
change Swap 

Absolute 
value  

of net change 

Barren 4,07 5,75 2,17 9,82 8,14 1,68 

Urban 5,32 0,42 0,75 5,74 0,84 4,9 

Low-lying vegetation 8,67 9,22 2,52 17,89 17,34 0,55 

Semi-open scrubs on barren 13,56 9,35 3,64 22,91 18,7 4,21 

Semi-open scrubs on grass 12,58 13,04 8,58 25,62 25,16 0,46 

Woodland 5,72 4,14 2,57 9,86 8,28 1,58 

Closed forest/scrub 7,54 15,54 22,32 23,08 15,08 8 

Total 57,46 57,46 42,55 57,46 46,77 21,38 

 
 

Table 17. Change matrix between 1996 and 2009 at the level of 7 land cover classes 

  
2009 

 

  
B U LV S-O B S-O G W C F/S Total 1996 

1996 

B 2,17 1,76 1,04 1,72 0,79 0,14 0,3 7,92 

U 0,12 0,75 0,06 0,1 0,05 0,02 0,07 1,17 

LV 1,22 0,91 2,52 2,96 2,87 0,31 0,95 11,74 

S-O B 1,45 1,13 1,94 3,64 2,36 0,94 1,53 12,99 

S-O G 0,64 0,69 3,29 3,64 8,58 1,1 3,68 21,62 

W 0,19 0,22 0,43 1,55 0,74 2,57 1,01 6,71 

C F/S 0,45 0,61 1,91 3,59 5,77 3,21 22,32 37,86 

 

Total 2009 6,24 6,07 11,19 17,2 21,16 8,29 29,86 100 
B = Barren, U = Urban, LV = Low-lying vegetation, S-O B = Semi-open scrubs on barren, S-O G = 
Semi-open scrubs on grass, W = Woodland, C F/S =Closed forest scrub  
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Table 18. Landscape change statistics between 1996 and 2009 at the level of 3 land cover 
classes (abrupt classification).  

 
Gain Loss Persistence Total change Swap 

Absolute value  
of net change 

Barren 7,51 4,29 4,8 11,8 8,58 3,22 

Vegetated 17,75 14,55 31,8 32,3 29,1 3,2 

Forested 9,04 15,46 29,11 24,5 18,08 6,42 

Total 34,3 34,3 65,71 34,3 27,88 12,84 

 

Table 19. Change matrix between 1996 and 2009 at the level of 3 land cover classes (abrupt 
classification). 

  
2009 

 
  

Barren Vegetated Forested Total 1996 

1996 

Barren 4,8 3,76 0,53 9,09 

Vegetated 6,04 31,8 8,51 46,35 

Forested 1,47 13,99 29,11 44,57 

 

Total 2009 12,31 49,55 38,15 100 

 

6.2.3. Rates of forest change 

From the abrupt classifications transition matrix and the change matrix of all seven 

classes it can be seen that 24,9 - 29,11% (373,2 - 436,5 km2) of the total landscape is 

covered by persistent forests, depending on if forests changed from closed to more 

open woodlands are considered stable or not. These stable or persistent forests 

covered 66,05 - 77,26% of 2009 and 56,1 - 65,62% of 1996 forests and are located 

inside Jozani, Kiwengwa-Pongwe and Masingini government forest areas, just outside 

these protection areas and in the agroforests of deep soil region, but the largest 

concentrations are the community forests in South district. Persistent forests are a 

rarity near to the coastline and existed only between Kizimkazi and Jozani and in Uzi 

Island. When the amount of persistent forests are proportioned against all forests 

existing either in 1996, 2009 or in both years their share is 46,4 - 54,30% and the rest 

45,70 – 53,58% (367,40 – 430,70 km2) are forests that vanished or generated during 

the time period. Evidently this points to high swapping of forests and actually 73,80% of 

forest changes are caused by swapping and only 26,20% by permanent loses from 

forested to barren or vegetated. Both absolute and swapping changes are mainly 

caused by transitions from forested classes to semi-open scrubs on grass, semi-open 

scrubs on barren and to low-lying vegetation, in this order. From forested classes 

closed forests and scrubs cause more net and swapping changes obviously because of 

its bigger size. Though when proportioned to the total changes of the class, within 

woodlands swapping cause 83,98% of changes, while in closed forests and scrubs this 

is only 65,34%.  
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When looking at the transitions based on the change classes, land cover changes 

classified as deforestation cover 134,1 km2 in the gradual classification and 231,7 km2 

in the abrupt one. These figures are 9,0% and 15,5% of the total landscape and 20,2% 

and 34,9% from the total forest cover in 1996. If the deforestation would be evenly 

divided between the 13 years of the study period, it would mean that 10,32–17.82 km2 

of forests have disappeared annually (Figure 25) (Table 20). If reforestation is not 

taken into account and it is assumed that the absolute amount of deforestation stays 

the same, it would mean that all the remaining 565 km2 of forests, scrubs and 

woodlands would go through deforestation in 32 to 55 years and all the remaining 

stable forests in 21 to 42 years.   

 

Table 20. Statistical figures for abrupt and gradual change classification.  

 
Gradual classification Abrupt classification 

Change class Area (km2) 
Area from total  
landscape (%) 

Area (km2) 
Area from total  
landscape (%) 

 Reforestation 63,7 4,3 135,5 9,0 

 Forest improvement 87 5,8 N/A N/A 

 Stable forest 373,2 24,9 436,5 29,1 

 Forest degradation 145,8 9,7 N/A N/A 

 Deforestation 134,1 8,9 231,7 15,5 

 Revegetation 56,5 3,8 56,5 3,8 

 Vegetation imrpovement 78,4 5,2 N/A N/A 

 Stable vegetation 294,6 19,6 476,9 31,8 

 Vegetation degradation 103,9 6,9 N/A N/A 

 Devegetation 90,5 6 90,5 6 

 Stable non-vegetated 71,9 4,8 71,9 4,8 

 Total 1499,6 100 1499,6 100 

  

Only 9,48 – 16,38% of the happened deforestation is caused by transitions from 

forested surfaces to barren or urban land covers. These changes concentrate to 

coastal areas, government forests and close to Zanzibar Town, while smaller patches 

spread all around coral rag region. Majority of deforestation is changes from forests to 

other vegetation (83,62 – 90,52%). The biggest individual changes are from forested 

classes to semi-open scrubs on grass and the 6,51 percentage point range in total 

deforestation estimates came from different approaches to this class. Changes from 

forested classes to vegetated ones spread quite steadily all around the island, but 

some larger concentrations are found from the outskirts of Zanzibar Town, Fumba 

peninsula, Uzi island, coastal areas of Muyuni, Makunduchi and Kizimkazi, tip of 

Michamvi peninsula, north from the tip of Kiwengwa-Pongwe forest reserve and from 

coastal region between Matemwe and Nungwi.  

 

The gradual classification class forest degradation cover 145,8 km2, 9,7% from the total 

landscape and 21,92% from the forests of 1996. If it is assumed that the absolute 

amount of degradation has been stable during the study period, this would mean that 
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11,2 km2 of forests would have been degradading annually. With this continuous pace 

all the remaining forests and scrubs would degrade in 50 years if forest improvement 

and reforestation is not taken into account. Majority (66,98%) of forest degradation is 

caused by changes from forested classes to semi-open scrubs on grass and only 

33,02% is caused by transitions from closed forests and scrubs to woodlands. The 

former is part of deforestation in abrupt classification and its spatial distribution is 

mentioned in that section. The latter appears mainly in the southern peninsula of 

Unguja where majority of woodlands are located. Also some of the agroforest areas 

especially in Kidanzini ward have gone through changes from dense to more sparse.    

 

63,7 to 135,5 km2 of Unguja reforested between 1996 and 2009. This means that 7,63  

- 16,24% of the non-forest areas of 1996 forested during the study period and 11,27– 

23,98% from the total forests existing in 2009 are created by reforestation. If the 

process is equally divided between the study years, this means that 4,9–10,4 km2 of 

new forests is created annually. Transitions from barren surfaces to forests cover 7,89 

km2, which is 0,53% from the total landscape and 5,82–12,39% from the class, without 

any major spatial concentrations. Rest 55,81–127,61 km2, 3,77–8,47% from the 

landscape and 87,61 – 94,18% from the class are changes from vegetated to forested. 

These concentrated to government forest areas of Jozani, Kiwengwa-Pongwe, Kibele 

and Dunga, to all major agroforests and to the area between Jozani and Kiwengwa-

Pongwe government forests.  

 

Forest improvements cover 87 km2, 5,8% from the total landscape and 15,40% from 

2009 forests and woodlands. This would be 6,69 km2 when divided steadily between 

the 13 study years. Changes from semi-open scrubs on grass to closed forests and 

scrubs or woodlands contribute 71,78 km2, 4,78% from total landscape and 82,51% 

from the class and the rest 15,19 km2, 1,01% from total landscape and 17,49% from 

the class are changes from woodlands to closed forests and scrubs. The former 

concentrates to government forests and to the area between Jozani and Kiwengwa-

Pongwe as mentioned earlier, while the patches of the latter are so small that no clear 

concentrations exist.  

 

If reforestation is subtracted from deforestation to calculate net forest change or more 

precisely net deforestation in this case of negative trend, it is 70,4–96,2 km2 during the 

13 year period and 5,42–7,4 km2 annually if divided even between the years. This is 

10,6–14,5% from the total forest cover in 1996. If the absolute amount of forest decline 

would stay unchanged, it would mean that the 572 km2 of forest cover still remaining in 

1996 would disappear completely in 76 to 104 years. Combined deforestation and 
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forest degradation covers 279,8 km2, which would mean annual combined 

deforestation and degradation pace of 21,52 km2 if divided evenly. If the process would 

happen only in the remaining gradual classification stable forests with the same pace 

they would be wiped out in 17 years and 4 months, but with combined reforestation and 

forest improvement speed of 150,7 km2 during the 13 years and 11,59 km2 annually, 

197,07 km2 of forests and scrubs would have grown back during this process. When 

reforestation and forest improvement figures are subtracted from deforestation and 

degradation the final net forest deforestation/degradation figure is 129,2 km2 and 

19,42% from the total landscape and 9,94 km2 and 19,33% from the forest stock of 

1996. This would mean that all of the remaining 572 km2 of woodlands and closed 

forests and scrubs would go through degradation or complete deforestation in fore 

coming 57 years if the absolute amount of change would stay equal. This figure also 

includes changes from closed forest/scrub to woodlands. 

 

Based on the FAOs (1995) equations the annual rate of forest change is  

-1,1886 when calculated from the abrupt classification and -0,8247 when calculated 

from gradual classification. These relative and the two absolute figures provide 

significantly different future estimations (Figure 26). The annual forest cover change 

rate drawn from the gradual classification would argue that forest cover drops below 

500 km2 only after 2025 and below 400 km2 somewhere in 2050s, while the abrupt 

classification change rates would argue that these declines happen around 2020 and 

2040. However if the absolute decline continues to be 7,4 km2 annually the forest cover 

is below 400 km2 already in 2030s and below 300 km2 in 2040s.  

 

 

Figure 26. The forest cover scenarios until 2050 based on annual forest change rates and the 

absolute areas of annual forest cover decline.  
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Figure 25. Forest changes of Unguja between 1996 and 2009. Gradual classification deals semi-open scrubs on grass as vegetated class, while in the gradual 

classification the class is considered as degraded forest class. 
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6.2.4 The key areas of forest change 

The z-score of Moran’s I Spatial Autocorrelation calculations for the test site peaks at 

1000 m cut off distance and its Moran’s I index at this threshold is 0,46 indicating 

relatively high clustering (Table 22).  

 

Table 22. Outcomes of Moran’s I calculations for the chosen test site 

Moran's I 

Threshold (m) Moran's I Index z-score p-value 

500 0,62 380 0,0000 

750 0,54 428 0,0000 

1000 0,46 441 0,0000 

1250 0,40 432 0,0000 

1500 0,34 410 0,0000 

 

The key areas or hotspots of deforestation form altogether over 40 patches, wherefrom 

9 are larger than 3,5 km2 by their abrupt KDE borders (Figure 27). Only two of these 

are in deep soil, one within Chaani government forestry site and one at the outskirts of 

Zanzibar Town. Integrating factor between these two hotspots, one larger in Michamwi 

peninsula and the smaller ones close Kizimkazi, Makunduchi and Paje is that their 

borders are almost as large in the grdual classification KDE as they are in the one 

based on the abrupt classification. This indicates that in these areas changes have 

been from forest to completely different land covers, possibly caused by clear cuts, 

permanent agriculture and urban expansion. The six remaining large hotspots in Uzi 

Island, Fumba peninsula, Muyuni, Jozani, Kiwengwa/Matemwe and Matemwe/Nungwi 

all have abrupt classification KDE borders surrounding the gradual ones or they are not 

even considered as hotspots by gradual classification standards. This indicates that 

they are formed by a core area of absolute land cover changes surrounded by 

degradation of forests or that they are created by degradation only. Also the smaller 

hotspots concentrate on the coral rag side of the island and they are most present in 

the South district. 

 

There are altogether 14 reforestation hotspots and these are considerably smaller than 

the key deforestation areas (<3,5 km2). The gradual classification KDE did not 

recognize any reforestation hotspots, and even when forest degradation and 

improvement were included, only one significant reforestation hotspot was found within 

Kibele government forestry area. In abrupt classification KDE hotspots were 

recognized within Jendele and Jozani-Chawka Bay forest areas and north from Jozani-

Chwaka Bay.  
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Figure 27. The key areas or hotspots of deforestation and reforestation calculated with Kernel 

Density Estimation with 1 km cut off distance from the gradual and abrupt classification classes 

“deforestation” and “reforestation” and also by using gradual classification classes “forest 

degradation” and “forest improvement”. The outcomes are laid on the landscape/soil delineation 

and government forest areas are included. 

 

6.3. Influence of environmental factors on forest changes 

6.3.1. Change differences between forest types 

Unguja’s forests can be divided to communal indigenous forests (59,6–62,9% of total 

forest cover), agroforests (21,8–27,6%), government protected forests (10,3–15,1%) 

and to government forestry forests (0,6–1,6%) (Table 23 & Figure 28). Forests cover 

73,88–85,80% of total land area in protected areas, while within other entities this 

share is lower and as low as 12.76–38,04% within government forestry forests. The 

proportion of indigenous forests from all forests have gone from 62,94% to 59,61% 
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between 1996 and 2009. These lost 3 percentage points have been gained by 

government protected forests, while other forests categories have stayed relatively 

stable. However this does not mean that the absolute area lost by indigenous forests is 

gained by the government protected forests, but rather the total amount of forests have 

dropped drastically, while the cover is increased slightly within the protection zones. In 

absolute square kilometers indigenous communal forests have diminished significantly 

in size (79,65 km2), agroforests slightly (21,59 km2), government forestry forests 

negligibly (0,57 km2) and the government protected forests have gained area (5,61 

km2). Based on the FAO (1995) function the annual forest cover change is -1,60% in 

indigenous communal forests, -1,05% in agroforests, -0,58 in government forestry 

forests and 0,59 in government protected forests. In 2009 86,10% of government 

protected forests, 79,98% of communal indigenous forests, 64,67% of agroforests and 

only 36,22% of government forestry forests were stable forests, which have not 

changed between 1996 and 2009. The government protected forests have higher 

share from the stable forests than they have from all forests of 1996 and 2009, while in 

agroforest and forestry areas this share is lower, which indicates that there is more 

swapping happening in the last two forest types, while protected forests are more 

persistent.         

 

Table 23. Forest and class statistics of four different forest types. 

Forest category 
Indigenous  
communal  

forests 
Agroforests 

Government  
protected  

forests 

Government  
forestry 
forests 

Total 

Forests (km2) in 1996 420,62 168,78 71,03 7,81 668,24 

Forests (km2) in 2009 340,97 147,19 76,64 7,24 572,03 

Stable forests (km2) 272,70 95,20 65,99 2,62 436,52 

Share from all of the forests in 1996 (%) 62,94 25,26 10,63 1,17 100 

Share from all of the forests in 2009 (%) 59,61 25,73 13,40 1,27 100 

Share from all of the stable forests (%) 62,47 21,81 15,12 0,60 100 

Share from all forests (%) 61,5 27,6 10,3 1,6 100 

Share of 1996 forests from the total 
class area (%) 

56,08 26,39 79,52 38,04 44,57 

Share of 2009 forests from the total 
class area (%) 

45,46 23,01 85,80 35,27 38,15 

Share of stable forests from the total 
class area (%) 

36,36 14,88 73,88 12,76 29,11 

Share of the stable forests from all of 
the 2009 forests within the forest type 

79,98 64,67 86,10 36,22 76,31 
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Figure 28. The spatial distribution of the four forest types of Unguja and their share from all the 

forests ever existed between 1996 and 2009. 

 

Indigenous forests share of forest degradation in the gradual classification is higher 

than its share generally from the forests (Figure 29). In other words forest degradation 

happens more frequently in indigenous forests than in other forest types. Reforestation 

and forest improvement on the contrary happen more seldom. Deforestation and 

amount of stable forest are in line with the general share of forests. Shares of 

deforestation (36,3%), forest degradation (29,7%), reforestation (40,2%) and forest 

improvement (32,5%) are significantly higher in agroforest than its share range from 

total forest area, while amount of stable forest (20,1%) is lower, which implies that 

agroforests are rather dynamic in their nature. The share of deforestation (1,8%) and 

forest degradation (2,9%) are extremely low in government protected forests, though 
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also reforestation (6,9%) and forest improvement (9,5%) levels are lower than the 

general share of forests, while proportion of stable forests (16,7%) is significantly 

higher. Government forestry forests have higher share from forest improvement (4,4%), 

deforestation (2,7%) and reforestation (1,6%), while the share from stable forests 

(0,6%) is lower than  the share of general forest cover. Within all other forest types over 

90% of changes are from forested to vegetated and vice versa, but within government 

forestry areas changes from forested to barren cover 28% of all losses.  

 

 

Figure 29. The shares of different forest types from changes, stability and overall forest cover. 

 

When looking at the landscape change statics of each forest type, it is clear that there 

have been enormous differences in the change processes (Table 24). For example 

swapping causes 63,19% of forest changes in indigenous forests, 64,24% in 

government protected areas, 82,78% in agroforests and 94,20% in government forestry 

forests. After the baseline situations of forest cover is acknowledged some 

generalizations can be done (Table 25). Indigenous forests could be described as 

spatially relatively stable forests facing high net deforestation, but still having generally 

a higher forest cover, agroforest and government forestry forest as areas of unstable 

forests with high locational forest changes and moderate net deforestation and 

government protected forests as areas of extremely high cover and stability of forests 

with moderate net forest gain. 
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Table 24. Landscape change statistics of different forest types 

Landscape change statistics for each forest type* 

Communal indigenous forests 

 
Barren Vegetated Forested Total 1996 

  
Gain Loss Persistence Total change Swap Absolutevalue of net change 

Barren 0,90 2,14 0,62 3,65 
 

Barren 3,65 2,76 0,90 6,40 5,51 0,89 

Vegetated 1,94 29,84 8,49 40,27 
 

Vegetated 20,15 10,43 29,84 30,58 20,86 9,73 

Forested 1,71 18,02 36,36 56,08 
 

Forested 9,10 19,72 36,36 28,82 18,21 10,62 

Total 2009 4,55 50,00 45,46 100,00 
 

Total 32,91 32,91 67,09 32,91 22,29 21,24 

Agroforests 

 
Barren Vegetated Forested Total 1996 

  
Gain Loss Persistence Total change Swap Absolute value of net change 

Barren 10,17 6,19 0,38 16,74 
 

Barren 12,77 6,57 10,17 19,35 13,14 6,20 

Vegetated 11,62 37,52 7,74 56,88 
 

Vegetated 16,53 19,36 37,52 35,90 33,07 2,83 

Forested 1,16 10,35 14,88 26,39 
 

Forested 8,13 11,50 14,88 19,63 16,25 3,38 

Total 2009 22,94 54,05 23,01 100,00 
 

Total 37,44 37,44 62,56 37,44 31,23 12,41 

Government protected forests 

 Barren Vegetated Forested Total 1996   Gain Loss Persistence Total change Swap Absolute value of net change 

Barren 0,07 0,64 0,87 1,58  Barren 0,63 1,51 0,07 2,15 1,26 0,88 

Vegetated 0,27 7,58 11,04 18,89  Vegetated 5,92 11,31 7,58 17,23 11,84 5,39 

Forested 0,36 5,28 73,89 79,53  Forested 11,91 5,64 73,89 17,56 11,28 6,27 

Total 2009 0,70 13,50 85,80 100,00  Total 18,46 18,46 81,54 18,46 12,19 12,54 

Government forestry forests 

 Barren Vegetated Forested Total 1996   Gain Loss Persistence Total change Swap Absolute value of net change 

Barren 0,54 1,44 0,22 2,21  Barren 13,71 1,67 0,54 15,37 3,33 12,04 

Vegetated 6,62 30,86 22,27 59,75  Vegetated 19,63 28,89 30,86 48,52 39,26 9,26 

Forested 7,08 18,19 12,77 38,04  Forested 22,49 25,27 12,77 47,76 44,99 2,78 

Total 2009 14,25 50,49 35,26 100,00  Total 55,83 55,83 44,17 55,83 43,79 24,08 

*All the values are percentages of that particular forest type 
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Table 23.  Change ratios of different forest types 

 
Unguja 

Communal  
indigenous forest 

Communal  
agroforest 

Government  
protected forests 

Government  
forestry forest 

Forest* 1 1,22 0,64 1,71 1,13 

Stable forests* 1 1,03 0,79 1,49 0,39 

Total change * 1 0,97 1,24 0,42 1,73 

Swapping * 1 0,83 1,40 0,37 2,20 

Net deforestation *  1 1,36 0,82 -0,57 0,38 

* Values are proportioned to the average total change, swapping and net deforestation of 
of all forest areas existing in 1996, 2009 or in both years 

 

6.3.2. Forest change connected to distance measurements 

Distance from coast influences deforestation so that areas close to it are more prone to 

deforestation. Deforestation reaches its peak approximately 500 meters away from the 

coastline when it is 66% higher than averagely and starts to decline steadily until 1,6 

km, when it is at the same levels as the average deforestation (Figure 30 A). Forest 

gain is 20 – 27% below whole island averages until 1,1 km away from coast and after 

this approximately 10% below normal figures within the remaining 3 kilometers. The 

amount of stable forests is generally 25 to 30% below averages until 1,5 kilometers 

from the coast, after which it keeps steadily increasing. When reforestation and 

deforestation are combined as net deforestation, these figures are over 1 until two 

kilometers from the shoreline and peak around 500 meters away, when net 

deforestation is 2,9 times more common than averagely (Figure 30 B). These 

outcomes suggest quite directly that forest losses happen more frequently in the area 

until 1,5 - 2 kilometers away from the coastline. Especially serious the situation is 

between 0,2 – 1,1 kilometers away where the net forest loss is over 2 times higher than 

normally. The net deforestation trend is rather linear, however there is some 

nonlinearity and the R2 value for the linear trend line is only 0,7277. The magnitude and 

overall importance of deforestation near coast is rather significant, since based on the 

cumulative percentages of net deforestation 63% of the process happens within 3 

kilometers from the coast and 43% in areas where deforestation is most severe (Figure 

31).    
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Figure 30. Relation of proportional reforestation, stable forests and deforestation to distance 

from coast (A), roads (C) and Zanzibar Town (E) and relations of proportional net deforestations 

and their trendlines to distance from coast (B), roads (D) and Zanzibar Town (F). 
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Figure 31. Cumulative percentage of deforestation from different sources. 

 

In Unguja it seems that forests near roads are less prone to deforest than forests in 

coastal settings or near the capital, but these are still disappearing faster than forest 

averagely on the island. Forest loss is highest just outside roads (37% more than on 

average), reaches average levels around kilometer away and keeps declining steadily 

from here on until 3 kilometers away (Figure 30 C), when it is only 55% from average 

deforestation. Forest gain works in a similar manner, but having maxima only 21% 

above average and declining only 19% below average around 3 kilometers. Stable 

forests increase steadily from 23% less than normally in first zone to 33% more around 

3 kilometers. Net deforestation tells similar outcomes and the forest loss is highest right 

next to roads where it is 52% higher than normally (Figure 30 D). It declines to normal 

levels after 1,2 kilometers and is below average 2,2 kilometers onwards. The trend is 

clearly linear and the trendline gets R2 value of 0,8160. 87% of net deforestation 

happens within 3 kilometers from roads and 42% of happens within 700 meters from 

roads, where deforestation is most rapid.  

 

Both deforestation and reforestation were more common in areas just outside Zanzibar 

Town in 1996, however the reforestation rates start to decline rapidly, while 

deforestation rates only keep increasing (Figure 30 E). The highest deforestation rates 

are achieved 800 meters away from the capital when they are 3,1 times higher than on 

average. The peak of deforestation levels around 1,5 kilometers away, though the 

process is continuously over 1,5 times more common within the whole three kilometers 

study zone. The amount of stable forest never achieves average levels within the study 

zone and varies between 20 – 99% from the average, being highest in the zone 

between 1 – 1,5 kilometers away where Masingini forest is located. The net 
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deforestation rates show even more staggering figures (Figure 30 F). In the area 

between 0,5 – 1 kilometers from the city border deforestation was 3,5 times more 

common than on average and peaks at 800 meters away (5,4). The net deforestation 

values do not go below 1,5 within the whole study zone and generally the figures are 

over 2,5. The trend of deforestation is not linear by any means near the capital and 

linear trendline achieves coefficient of determination of only 0,1427. When interpreting 

the cumulative percentages of net deforestation it can be seen that in large scale the 

distance to Zanzibar Town holds only minor importance. From all of the deforestation 

happening in Unguja only 11% happens within 3 kilometers from the capital and only 

4% in the zone where deforestation is most rapid. 

 

6.3.3. Environmental factors explaining spatial patterns of deforestation 

The binary logistic regression overall accuracies of single variable models range 

between 51,5 – 60,5%, while the anti-model estimating all the observations as 0 (non-

forested) would reach the accuracy of 51,9% (Table 26). Therefore the best model 

(distance to coast) is able to estimate only 8,6 percentage points better than the anti-

model, however when estimating deforested pixels the accuracy is 61,5 percentage 

points better.  

 

Table 26. Accuracies, coefficients, Nagelkerke R2 and Wald statistics of single variable binary 

logistic regression models explaining the distribution of deforested and stable forest cells. 

 

Deforested 
accuracy (%) 

Stable  
accuracy (%) 

Overall  
accuracy (%) 

B 
Nagelkerke 
R Square 

Wald 

Distance to coast* 61,5 59,7 60,5 -0,279 0,117 108,4 

Kernel density of  
buildings* 

26,3 89,5 59,1 0,007 0,089 38,7 

Mean NDVI* 52,4 64,8 58,9 -20,621 0,041 43,2 

Distance to Zanzibar  
Town* 

47,3 63,7 55,8 0,018 0,011 11,7 

Government protection  
status* 

16,2 98,3 55,7 -2,461 0,101 59,0 

Government forestry  
status* 

6,3 99,6 54,7 2,776 0,043 21,4 

Soil** 19,9 81,9 52,1 -0,076 0,001 2,0 

Distance to main and  
secondary roads 

0 100 51,9 -0,013 0,000 0,1 

Mean elevation** 11 88,9 51,5 0,005 0,002 1,9 

*) Statistically significant at level 0,05. **) Statistically significant at level 0,5 

 

Distance to coast is by far the most explanatory variable based on overall and 

deforested accuracy, Nagelkerke R2 and Wald statistics, but also kernel density of 
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buildings, mean NDVI and government protection status have high explanatory value. 

Distance from Zanzibar Town has relatively good deforested and overall accuracies, 

but its Nagelkerke R2 and Wald figure are low, while the situation is opposite to 

government forestry status. Surprisingly the soil, distance to roads and mean elevation 

are not usable variables for explaining deforestation in Unguja. 

 

The regression coefficient of the best variables show that increasing distance from the 

coast, increasing mean NDVI and government protection status would reduce the risk 

of deforestation, while increasing kernel density of buildings, distance from Zanzibar 

Town and status as government forestry forest would increase the risk of deforestation. 

The coefficient of “distance to Zanzibar Town” is rather peculiar since average 

deforestation was over 5 times more common in the areas near the capital than on 

average and in related literature vicinity of large cities has increased deforestation 

(Ludeke et al. 1997; Verburg et al. 2004). The deforestation concentrates into the coral 

rag region and its furthest corners, which then creates this peculiar correlation with 

distance from the capital, although the matters are not related in reality. 

 

In correlation analyses none of the variables have extremely strong correlations (> 0,7 

or < -0,7), which would cause problems of multicollinearity and require dropping 

variables out from the multivariate regression analyses (Table 27). However some 

significant correlations (> 0,4 or < -0,4) are found, which should be kept in mind when 

analyzing the final outcomes.  

 

Table 27. Bivariate Pearsons correlation analysis with two-tailed test of statistical significance 

showing weak or moderate multicollinearity between the explanatory variables. 

  Coast NDVI Kernel Z Town GPS GFS Soil Roads Elevation 

Coasta 1 -,155** ,220** -,424** -0,051 ,160** -,578** -0,028 ,599** 

NDVIb -,155** 1 -,158** -0,018 ,186** -,165** ,294** ,211** -,186** 

Kernelc ,220** -,158** 1 -,530** -0,031 ,054* -,561** -,159** ,211** 

Z Townd -,424** -0,018 -,530** 1 -,210** -,127** ,625** ,305** -,390** 

GPSf -0,051 ,186** -0,031 -,210** 1 -,059* ,099** -0,005 -0,014 

GFSg ,160** -,165** ,054* -,127** -,059* 1 -,264** 0,013 ,346** 

Soilh -,578** ,294** -,561** ,625** ,099** -,264** 1 ,260** -,658** 

Roadsi -0,028 ,211** -,159** ,305** -0,005 0,013 ,260** 1 -,064* 

Elevationj ,599** -,186** ,211** -,390** -0,014 ,346** -,658** -,064* 1 

a) Distance to coastline, b) Mean NDVI in 1996, c) Kernel density of buildings with 6500 m cutoff 

distance, d) Distasnce to Zanzibar Town in 1996, E) Government protection status, F) Government 

forestry statusG) Soil typeH) Distance to main and secondary roads i) Mean elevation. 

 

When the individual explanatory variables are fed into conditional stepwise binary 

logistic model, the variable “distance from main and secondary roads” is ignored 
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because of its limited capabilities explaining the model. Also the program modified the 

order of entrance so that “mean NDVI” is left as last and replaced by “mean elevation”. 

The best multivariate model for the entire island is reached in the step 5, when 

variables “distance to coast”, “kernel density of buildings”, “government protection 

status”, “government forestry status” and “mean elevation” were included into the 

model, in this order (Table 28). The overall accuracy is 77,7% and deforestation 

accuracy as high as 83,9%, however still 53 (28,3%) stable forest cells are incorrectly 

classified as deforested (Table 29). In the light of Nagelkerke R2 (0,441) the model with 

highest overall accuracy can be seen to have limitations, but introducing new variables 

only decreases the overall accuracy of the model. Based on the coefficients the 

relations of individual variables are the same than in the single variable models (Table 

30). The Wald statistics implies that the “distance to coast” is by far the most important 

variable, followed by “kernel density of buildings”, “mean elevation”, “government 

protection status” and “government forestry status” in this order.  

 

Table 28. The outcomes of conditional stepwise binary logistic model best explaining 

deforestation and stable forest locations in Unguja. 

Step Variable entered 
Deforested 
accuracy 

Stable forest 
accuracy 

Overall 
accuracy 

Nagelkerke 
R square 

1 Distance to coast 61,5 59,7 60,5 0,117 

2 Kernel density of buildings 76,7 69,6 73 0,266 

3 Mean elevation 80,5 72,5 76,4 0,340 

4 Government protection status 83,5 71,3 77,2 0,424 

5 Government forestry status 83,9 71,7 77,7 0,441 

6 Distance to Zanzibar Town 81,4 72,3 76,7 0,457 

7 Soil type 82,2 71,8 76,8 0,464 

8 Mean NDVI 79,9 74,2 77,0 0,474 

 

Table 29. The accuracy and correctly estimated cells of the model best explaining the spatial 

distribution of deforestation and stable forest in Unguja. 

  
Predicted 

  
Stable forest Deforested Total Correct (%) 

Observed 

Stable forest 134 53 187 71,7 

Deforested 30 156 186 83,9 

Total 164 209 373 77,7 
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Table 30. The regression coefficients and Wald statistics of the model best explaining the 

spatial distribution of deforestation and stable forest in Unguja. 

Variable B S.E. Wald df Siq. Exp (B) 

Distance to coast -,676 ,046 213,346 1 ,000 ,509 

Kernel density of buildings ,009 ,001 66,947 1 ,000 1,009 

Government protection status -3,548 ,507 48,914 1 ,000 ,029 

Government forestry status 2,580 ,652 15,665 1 ,000 13,203 

Mean elevation ,057 ,007 64,945 1 ,000 1,058 

Constant 0,674 ,103 42,410 1 ,000 1,962 

 

 

There neither is severe multicollinearity between the variables in the coral rag region 

(Appendix 5). When the individual explanatory variables are fed into conditional 

stepwise binary logistic model for the coral rag region, the variables “distance to main 

and secondary roads” and “government forestry status” are ignored because they could 

not explain variations or be statistically significant. The model reached highest overall 

accuracy (76,7%) when all of the six remaining statistically significant variables are 

included (Table 31 & 32). However highest the deforestated accuracy (83,4%) is 

achieved already when the three first variables are introduced. Although the accuracies 

are rather good, the Nagelkerke R2 figures imply that there are severe limitations in the 

model.  

 

The directions of the regression coefficients are the same than for the whole island 

level modeling, however their order of influence based on Wald statistics varies slightly 

(Table 33). “Distance to coast” is still by far the most explanatory variable, but 

“government protection status” is the second most influential, only then followed by 

“mean elevation”, “kernel density of buildings” and “mean NDVI”. However when the 

outcomes of the model best explaining deforested cells are looked the “kernel density 

of buildings” is more important factor than “government protection status” (Table 34 & 

35).  

 

Table 31. The outcomes of conditional stepwise binary logistic model best explaining both 

deforestation and stable forest locations in coral rag region. 

Step Variable entered 
Deforested 
accuracy 

Stable forest 
accuracy 

Overall 
accuracy 

Nagelkerke 
R square 

1 Distance to coast 72,2 62,3 67,3 0,226 

2 Kernel density of buildings 82,6 68,1 75,4 0,325 

3 Government protection status 83,4 68,2 75,7 0,389 

4 Mean elevation 83,0 67,7 75,4 0,404 

5 Mean NDVI 82,6 70,2 76,4 0,417 

6 Soil type 82,8 70,6 76,7 0,421 
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Table 32. The accuracy and correctly estimated cells of the model best explaining the spatial 

distribution of both deforestation and stable forest in coral rag region. 

  
Predicted 

  
Stable forest Deforested Total Correct (%) 

Observed 

Stable forest 107 44 151 70,6 

Deforested 25 120 145 82,8 

Total 132 164 296 76,7 

 
Table 33. The regression coefficients and Wald statistics of the model best explaining the 

spatial distribution of both deforestation and stable forest in coral rag region. 

Variable B S.E. Wald df Siq. Exp (B) 

Distance to coast -,680 ,058 135,728 1 ,000 ,506 

Kernel density of buildings ,023 ,005 18,242 1 ,000 1,023 

Government protection status -2,493 ,405 37,860 1 ,000 ,083 

Mean elevation ,060 ,014 19,368 1 ,000 1,062 

Mean NDVI -18,419 4,742 15,086 1 ,000 ,000 

Soil type 1,484 ,751 3,907 1 ,048 4,410 

Constant 20,797 6,058 11,785 1 ,001 1076875765,585 

 
Table 34. The accuracy and correctly estimated cells of the model best explaining the spatial 

distribution of deforestation in coral rag region. 

  
Predicted 

  
Stable forest Deforested Total Correct (%) 

Observed 

Stable forest 103 48 151 68,2 

Deforested 24 121 145 83,4 

Total 127 169 296 75,7 

 
Table 35. The regression coefficients and Wald statistics of the model best explaining the 

spatial distribution of deforestation in coral rag region. 

Variable B S.E. Wald df Siq. Exp (B) 

Distance to coast -,587 ,052 128,118 1 ,000 ,556 

Kernel density of buildings ,036 ,005 56,254 1 ,000 1,036 

Government protection status -2,398 ,385 38,794 1 ,000 ,091 

Constant ,635 ,157 16,245 1 ,000 1,886 

 

The multicollinearity of the variables in the deep soil region is also limited and no 

correlations over 0,7 or under -0,7 are found (Appendix 6). Variable “mean NDVI” is 

excluded by the model and the order modified significantly. The best modeling outcome 

is achieved by using the eight other variables. Also the variable “distance from 

Zanzibar Town” is removed, because it made the same peculiar assumptions that the 

increasing distance from the capital would increase the deforestation, although it is 

evident that the deforestation in deep soil region is most severe in the vicinity of the 

capital. After the re-run the best model was the one including all of the remaining 

variables (Table 36). This model has overall accuracy of 85,7%, deforested accuracy of 
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85,4% and Nagelkerke R2 of 0,668, which all argue that the model functions quite 

nicely for the deep soil region (Table 37). The direction of influence implied by the 

variable coefficients are similar than on the whole island level, except also the soil type 

influences deforestation so that the enclaves of coralline soils are more prone to 

deforestation (table 36). The influences of different variables are on the other hand 

highly different than for the whole island or coral rag region. The “distance to coast” is 

not anymore the most influential variable, but only as explanatory as “government 

protection status” or “mean elevation”. “The kernel density of buildings” however is here 

the most influential factor. Also the differences in Wald statistics are smaller, arguing 

that it is not a single factor, but combination of then that models deforestation the best 

in the western parts of the island.  

 

Table 36. The outcomes of conditional stepwise binary logistic model best explaining 

deforestation and stable forest locations in deep soil region. 

Step Variable entered 
Deforested 
accuracy 

Stable forest 
accuracy 

Overall 
accuracy 

Nagelkerke 
R square 

1 Distance to coast 37,0 89,7 64,9 0,209 

2 Kernel density of buildings 60,1 90,3 76,1 0,383 

3 Government protection status 78,6 81,5 80,2 0,480 

4 Government forestry status 79,2 85,1 82,3 0,529 

5 Soil type 80,3 87,2 84,0 0,566 

6 Mean elevation 85,4 86,1 85,7 0,668 

 

Table 37. The accuracy and correctly estimated cells of the model best explaining the spatial 

distribution of both deforestation and stable forest in deep soil region. 

  
Predicted 

  
Stable forest Deforested Total Correct (%) 

Observed 

Stable forest 31 5 36 86,1 

Deforested 6 35 41 85,4 

Total 37 40 77 85,7 

 
Table 38. The regression coefficients and Wald statistics of the model best explaining the 

spatial distribution of both deforestation and stable forest in deep soil region. 

Variable B S.E. Wald df Siq. Exp (B) 

Distance to coast -,609 ,100 37,050 1 ,000 ,544 

Kernel density of buildings ,016 ,002 52,383 1 ,000 1,016 

Government protection status -10,665 1,724 38,251 1 ,000 ,000 

Government forestry status 2,220 ,596 13,860 1 ,000 9,209 

Soil type 2,328 ,530 19,305 1 ,000 10,257 

Mean elevation ,087 ,014 36,953 1 ,000 1,091 

Constant -4,615 1,050 19,322 1 ,000 ,010 
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Before the deforestation probability mapping the regression model for deep soil region 

is modified, because the outcomes of mean elevation are not considered reliable and it 

is seen implausible to predict the future of government forestry forests. New correlation 

coefficients are calculated for the deep soil region without these explanatory variables 

(Table 39).   

 

Table 39. The regression coefficients used for predicting the deforestation probability in coral 

rag and deep soil regions  

Variable 
Coefficients for coral  

rag model 
Coefficients for deep  

soil model 

Distance to coast -0,587 -0,235 

Kernel density of buildings 0,036 0,009 

Government protection status -2,398 -4,149 

Government forestry status n/a n/a 

Soil type n/a 1,293 

Mean elevation n/a n/a 

Constant 0,635 -1,658 

 

The deforestation probability mapping points out those forest areas that are at the 

highest deforestation risk, based on the previous regression analyses (Figure 32). The 

pressure is highest in coastal forests and in agroforest areas near Zanzibar Town.  

Although the coastal forests are generally facing high risk of deforestation, the 

probabilities are lower in certain areas because of the low population pressure. These 

less threaten coastal forests concentrate in to the south-western corner of South district 

and in to Michamwi peninsula. The government protected areas, interioirs of large 

indigenous scrublands in the south and the inland agroforest areas are the ones with 

the lowest probability for deforestation. However the population pressure is so severe 

in the south-western corner of Masingini forest that it achieves rather high deforestation 

probability values even though it is officially protected.    
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Figure 32. Deforestation probability of the cells still forested in 2009 based on relationship 

between deforestation and environmental variables between 1996 and 2009.   
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7. Discussion 

7.1. Forests and forest changes in Unguja 

7.1.1. Quantity and spatial pattern of today’s forest cover 

The created classification is the most accurate spatially comprehensive forest coverage 

estimation available for Unguja, since other similar classifications are either outdated 

and overestimating the coverage of coral rag scrubs (Woody Biomass Inventory of 

Zanzibar Islands, 1997) or generalizing the whole coral rag region to a single category 

of “scrubs” (DoSUP Land Use classification 2009). Based on the classification the 

forests, scrubs, woodlands and thickets cover approximately 38% of Unguja. However, 

if this is considered a lot or a little, is a subjective question. Based on FAO (2010) 

statistics the figure is similar than for Tanzania. However, it is less than in the large 

continental African countries at the same latitudes (Angola, Congo, Democratic 

Republic of Congo, Mozambique, Zambia) and more than in the small but highly 

populated countries of Uganda, Burundi and Rwanda. There is more forests in Unguja 

than in the other small East African island nations with similar land area and population 

(Mauritius, Comoros and Reunion) or as in the Caribbean and Oceania islands with 

similar population densities (300 – 500km2). As a generalization it could be said that 

Unguja has relatively a lot of forest cover for an island with extremely high population 

density and the situation is especially good in the context East African island nations. 

Though, the different description of forests and methods measuring them makes it 

extremely problematic to compare the FAO forest statistics (Olander 2008). Therefore 

the given generalization about the forest cover is rather suggestive than absolute. 

 

The spatial structure of current forests is governed by soil and land use related policies. 

The coral rag area is significantly more forested (45%) than the deep soil region (23%), 

even if the government forests located mainly in the coral rag region would not be 

included into the calculations. The fertile deep soils have been cleared for agriculture 

and tree plantations already decades and centuries ago, while the low agricultural 

fertility of the shallow coralline soils have prevented similar actions from happening on 

the other side of the island (Hettige 1990: 95–98; Krain 1998; Klein & Käyhkö 2008). 

Though, it is not only the soil fertility that matters. It has been pointed out that the coral 

soils are more fertile than the deep soils, but they are too shallow, concentrated to 

potholes, mixed with stones and rugged by coralline outcrops, all eventually making 

cultivation extremely difficult (Hettige 1990; Klein 2008). In deep soil region, soil related 

agricultural policies affect forests so that the clay soils are preserved for open 

agriculture, while slightly less fertile soils are used for agroforestry (Hettige 1990). The 

non-forest/forest pattern creates a patchy structure in the deep soil area, where forest 

is remaining in only small patches and an opposite structure in the coral rag, where the 
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villages and shifting cultivation fields create small patches within otherwise continuous 

forest (Mertens & Lambin 1997). The large scale differences caused by the soil are well 

known and therefore not truly intriguing, but there are few large variations within the 

landscape regions that cannot be explained by large scale soil differences. For 

example why is the northern tip of Unguja dominated by semi-open vegetation instead 

of closed coral rag forests and scrubs? Why does the Masingini Forest Reserve still 

exist in the other wise deforested deep soil region? Why are there circular semi-open 

woodlands existing in the otherwise closed Jozani Forest Reserve? It would be 

interesting to study if it is the soil conditions, climate and groundwater levelz, human 

activity or something else that explain these variations.  

 

There are also significant structural variations within the Unguja forests. These were 

highlighted by dividing forests by their structure to fully closed forests/scrubs (78% of 

forests) and semi-dense woodlands (22%) and based on soils and protection status to 

communal indigenous forests (60%), agroforests (26%), government protected forests 

(13%) and government silviculture forests (1%). The amount of agroforest is 

presumably even higher as many of these are semi-open in their structure and thus 

easily classified to other than forest categories. The division based on soil and 

protection status also partly resembles the division between forest vegetation types, as 

majority of those high rise mature forests that have been able to avoid severe human 

influence are already government protected, while the communal forests are mainly 

consisting of low-lying coral forests, scrubs and thickets or agroforests.  

 

Based on the field observations about half of the closed forests/scrubs were over 5 

meters in height and majority of these were within government protected areas. 

Although the sampling of the field observations is partly biased it seems that very large 

portion of closed forests/scrubs in the communal lands are less than 5 meters in height, 

which would mean that they would not even be forests in FAO (2000) standards. 

Though, they might grow over 5 meters in height if they would be allowed enough time 

without human encroachment. On the other hand it might be that the soil conditions are 

too poor and rainfall too limited for them to ever achieve this standard (Burgess & 

Clarke 2000: 90–91; Käyhkö et al. 2011). Even though the cover of forests is rather 

extensive on the island only a small fraction of these are ecologically highly valuable 

mature indigenous forests. It could be said that the forests of Unguja are relatively high 

in quantity but low in quality. Therefore measuring only the quantity of forest cover from 

remote sensing data is limited approach and should be fulfilled with methods able to 

say something about the quality. 



115 

 

The quality of the indigenous communal forests might be rather low in terms of forest 

height, but this does not automatically mean that their value is low. If values are 

considered from ecological perspective the indigenous low-lying forests, scrubs and 

thickets are part of the EACF ecosystems, they sustain diversity of tree species and 

provide habitats for animals (Burgess & Clarke 2000: 84–94; Kotiluoto et al. 2008; Siex 

2011). In the research of Kotiluoto et al. (2008) the shrub, thicket and semi-open 

shrubland habitats had generally higher average amount of species and occasionally 

even more individual trees than the mature forests. Siex (2011) showed that in general 

there were as much traces of mammal species in the habitat type low coral forests as 

there were in high coral forests, while the mixed thickets and shrub lands had 

significantly less traces. Though, it is hard to exactly know what Kotiluoto (2008) and 

Siex (2011) semantically meant by their habitat types or have their sampling been 

spatially biased, it seems that at least the closed low coral forest and shrubs are 

ecologically valuable in Unguja.  

 

For humans the low forests and scrublands are sources of many important materials 

and they are widely used by the local communities (Kotiluoto 2008; Fagerholm & 

Käyhkö 2009; Fagergolm et al. 2012). However, although they provide energy, 

construction materials and additional food items they are not essential for food 

production and are not strongly associated with non-material values (Fagerholm & 

Käyhkö 2009; Fagergolm et al. 2012). It might be that in the minds of local inhabitants 

and communities these low coral forests and scrublands are marginalized as certain 

kind of hinterlands, not having enough subsistence value to be considered worth 

developing or neither enough ecological or intrinsic value to be conserved. This might 

create a cycle where the scrubs are overused, because they are not considered 

valuable enough, which eventually prevents them from becoming valuable.  

 

The reality nevertheless is that majority of the indigenous forests are within these 

marginalized forest types and their use should be organized in such a manner that it 

would allow increasing their quality and ecological values simultaneously as the 

subsistence needs of the population are guaranteed. This could be approached with 

better spatial planning of the land uses, especially the slash-and-burn cultivation and 

woodfuel collection. CoFMA process is leading the way to this as community members 

divide forests to “high protection” and “low impact” zones, but doing permanent plans 

only once is not enough as actions like shifting cultivation and wood fuel collection 

needs to be spatial directed almost annually (WWF Tanzania Country Office 2012: 85).  
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7.1.2. Changes in forest cover 

Forested landscapes of Unguja have been extremely dynamic spatially and 

quantitatively between 1996 and 2009. About half of the forests stayed unchanged, 

one-third changed spatial location and one-tenth disappeared completely. The annual 

forest cover change rates of Unguja (-1,18% – -0,82%) are quite close to the earlier 

estimations done by DFNR (-1,2%) and the change measured by Käyhkö et al. (2011) 

from Matemwe between 1978 and 2004 (-1,14). The calculated rates are also similar to 

the rates of entire Tanzania (-1,16%), but clearly higher than in other African nations at 

the same latitude, in the other East African island nations or in the Caribbean and 

Oceania islands, except for Uganda and Comoros (FAO 2010b). Therefore it could be 

said that the deforestation situation is extremely severe in Unguja, although it does not 

differ from the overall situation in Tanzania.  

 

It has been suggested that deforestation happens in a stepwise manner changing 

forests gradually to less vegetated and finally to permanent cultivation surfaces 

(Lambin 1997; WWF Tanzania Country Office 2012). These outcomes suggest similar 

pathways to Unguja as forests change mainly to vegetated land covers, while these 

change mostly to barren surfaces. However large proportion of changes from 

vegetated to barren surfaces have happened in well-established agricultural areas, 

thus are not related to deforestation. Nevertheless, deforestation seems to proceed 

through stepwise changed. When high forests are logged they are often also burned for 

cultivation (Muyuni), intensive woodfuel collection and shifting cultivation steadily turns 

closed scrublands to partly barren (Matemwe) or lands previously used for slash-and-

burn cultivation are taken to more permanent rotation farming as population grows 

(Paje and Jambiani). However the current changes in Unguja rarely follow fully the 

stepwise path suggested by Lambin (1997) as the larger individual trees are already 

logged and soils rarely allow permanent cultivation.  

 

Altogether the spatial changes happening are eventually affecting the forests more 

than the absolute deforestation. Within only 13 years one-third of the forests have 

swapped their location or in other words the forests lost somewhere have been 

compensated by forest gains elsewhere. The magnitude of the process is so great that 

it eventually influences all of the forests in Unguja. This high proportion of swapping 

from the total changes is rather typical for shifting cultivation and secondary forest 

surroundings, where areas are cleared for agriculture and let to reforest after the 

cultivation period (Mertens & Lambin 2000; Heinimann et al. 2007; Käyhkö et al. 2011). 

In their research from Matemwe Käyhkö et al. (2011) pointed out that 90% of forest 

changes were caused by swapping between 1953 and 1978, 74% between 1978 and 
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1989 and 74% between 1989 and 2004. The proportion of swapping from total changes 

for entire Unguja (74%) was in line with these outcomes and it seems like the process 

is ongoing not only in Matemwe, but all around Unguja. Certain technical aspects such 

as resampling, georectification, filtering and used training areas are increasing 

swapping, but if it is even half from the given figure the process is extremely extensive.  

 

Eventually it is not only the easily detectable horizontal deforestation or the swapping 

that are deteriorating Ungujas forests, but also the continuous degradation happening 

vertically. Subtle degradation has been proved extremely difficult to detect with medium 

resolution satellite imaginary and lot of it is left undetected also in this study (Olson 

1995; Lambin et al. 2003; Healey et al. 2007: 68). Majority of forests are already low-

lying forests and scrubs and they are continuously degrading. In some areas, such as 

Kiwengwa-Matemwe and Matemwe-Nungwi the vertical degradation has been so 

severe that forest areas have changed their land cover class, but probably there are 

countless areas where forests have degraded, but not so much that it would cause land 

cover changes. Deforestation measured with remote sensing techniques is highly 

relational to the actions happening, as certain procedures such as agricultural and 

infrastructure expansions cause clear land cover changes, but such actions as 

woodfuel collection or cutting of individual trees leads to degradation that may be left 

unnoticed (Souza and Barreto 2000; Healey et al. 2007: 68). Therefore there is a need 

for systems monitoring the vertical degradation of forests, besides these remote 

sensing applications measuring mainly the horizontal deforestation and swapping.    

 

7.1.3. Regional differences and spatial patterns of deforestation 

As has been theoretically assumed and empirically proved deforestation is a diffusive 

process heavily influenced by spatial autocorrelation (Kaimowitz & Angelsen 1998: 41; 

Geoghagen et al. 2001; Serneels & Lambin 2001). This is the case also in Unguja as 

the deforested and stable forest pixels had strong spatial autocorrelation at least until 

1,5 kilometers away. However the island is diverse on itself and forest changes have 

not been similar at different regions and parts of Unguja. It could be said that in general 

the government protected areas, agroforests and interior parts of the island have been 

more able to sustain their forest cover and large areas near and within the government 

protected and silviculture areas have even reforested during the study period. These 

outcomes support the facts that areas far from forest edges are generally safer from 

deforestation, government protection really functions in Tanzania and forests are less 

easily deforested when they create income (Ludeke et al. 1990; Mertens & Lambin 

1997; Angelsen 2007: 2–4; Tabor et al. 2010). What is surprising though is that the 

forest cover has actually increased in the shifting cultivation area between Jozani and 
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Kiwengwa-Pongwe Forest Reserves. There have been plans to establish wildlife 

corridor in this area and the plans seems to be executing without any government 

support (Siex 2011).    

 

Majority of net deforestation has concentrated into the communal indigenous forests, 

but surprisingly also the agroforest area is decreasing. The indigenous forests are the 

base of forest materials and because of all previously mentioned global and local 

causes it is expected to decline, but agroforests are part of income generating 

agricultural system and therefore not expected to deforest (Angelsen 2007: 2–4; 

DCCFF 2008). Urban sprawl is spreading to agroforest areas, but this process explains 

only a small part of the decline happening. Agroforest decline may be related to 

intensification of the farming practices and preferences to annual crops or 

methodological issues discussed later on (see chapter 7.2.4.). There have been hopes 

that the decreasing indigenous forest cover would be compensated by increase in the 

agroforest areas, at least locally (Käyhkö et al. 2011). These outcomes nevertheless 

suggest that this kind of process is not ongoing at the scale of the entire island.  

 

Shifting and slash-and-burn cultivation takes place in the indigenous forests and 

therefore they are prone to swapping, but no surprisingly the spatial changes are more 

commont to agroforests, which was not assumed. There are three possible fields of 

explanation for these findings. Firstly, it is normal that old fruit and plantation trees are 

cut and new ones planted, which causes swapping, but this should not cause more 

spatial changes than shifting cultivation. High magnitude of these changes could be 

only explained by large scale government or community actions that have made the 

agroforests sparser elsewhere while making them denser at other locations. The 

second field of explanations relates to the spectral properties of semi-open agroforests. 

Their ground layer may vary between active and barren fields and these provide 

different reflectance. Semi-open agroforest with active cultivation underneath is more 

easily classified as forest then if there would not be cultivation happening. The 

swapping changes would not be then caused by changes in canopy layer, but ground 

layer instead. Also parts of the net deforestation of agroforest could be explained by 

the decreased ground layer cultivation in agroforests. The third field of explanations 

relate to the technicalities of classification and change detection, which are discussed 

later on.   

 

More detailed spatial pattern of deforestation in Unguja can be explained rather well 

with the used environmental factors. This was assumed already before the study was 

even started as dozens of similar studies have been made around the world. Although 
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some context related peculiarities and difficulties were found. These specialties may 

help us to understand the deforestation process more well at least in the highly 

populated island surroundings. The multivariate regression models are able to explain 

75–85% of the spatial distribution of deforested and stable forests. Factors distance to 

coast, kernel density of buildings, government protection status and government 

forestry status where the ones that explained the process best, while soil, mean 

elevation, mean NDVI, distance to roads and distance to Zanzibar Town carried no 

crucial explanatory value. Although it is statistically possible to test how well variables 

explain the process it is completely another think to interpret why they do so.  

 

Some studies have come to the conclusion that deforestation is more directed by 

accessibility than biophysical aspects (Mertens & Lambin 2000), while others argue 

that it is the combination of both aspects that matter (Ludeke et al. 1990; Chomitz & 

Gray 1996; Geoghegan et al. 2001). These outcomes however suggest that the 

biophysical factors have absolutely no explanatory power in Unguja. Their meaning 

may have been limited in other studies, but nonetheless existing. The weak 

explanatory power of soil and elevation is probably caused by the long human 

influence on the island, while in the case of NDVI the question is more about the 

usability of the variable.  

 

As mentioned soil is the main factor influencing the structure of current forest cover in 

Unguja, but its influence on deforestation process is extremely limited (Hettige 1990). 

The current forest structure created by the soil differences is already so well 

established that large scale changes do not take place. Serneels and Lambin (2001) 

suggest that soils do not cause deforestation if the differences are minor and this 

seems to be the case in Unguja. There are no soil types within the coral rag forests that 

would suddenly attract farmers to clear these locations for cultivation as there are no 

soils in deep soil region that would be suddenly abandoned and left for reforestation, 

but certain fine scale differences may explain why for example shifting cultivators 

choose certain sites instead of others. However the used data was too robust to detect 

these subtleties.  

 

Also elevation or its changes carried little or no value explaining the current 

deforestation process. Elevation influences deforestation process mainly when 

differences are significant (Kok & Veldkamp 2001). This is not the case in Unguja as 

the island is extremely flat.  Elevation does not really make any difference, although the 

variable might correlate with the soil structure and explain the current forest pattern as 

the deep soils are generally higher in elevation. Slope was not used in this study, but I 
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assume that also it would be connected to current forest pattern as rugged areas are 

left forested, but unable to explain happening deforestation (Nagendra et al. 2003)  

 

The explanatory power of vegetation on the other hand is intriguing. Because forest 

vegetation type data does not exist NDVI was used in this study as its substitute. It 

showed ability to model the location of deforestation and stable forest in single variable 

regression models, but this ability was lost in the multivariate analysis. Certain forest 

types are more used in collection of forest materials, others provide more fertile soils 

for cultivation while mature forest are more easily protected (Geoghagen et al. 2001; 

Orjala 2008). Therefore it could be assumed that forest vegetation type influences the 

deforestation process, but NDVI was not able to detect the multidimensional aspects of 

it. Firstly, the relationship is not linear or at least not in the manner that NDVI would 

catch the variations. The stressed or semi-open vegetation related to low NDVI is 

probably vulnerable to deforestation as it has already been used for shifting cultivation, 

but simultaneously the lush vegetation with high NDVI value might be easily deforested 

because it provides better inputs for slash-and-burn cultivation and logging. Secondly, 

it is occasionally hard to interpret the NDVI outcomes. In Unguja the lush thickets or 

bushes have highest value instead of the high forest, therefore the NDVI value does 

not develop linearly from low stressed vegetation to high mature forests. Also the mean 

NDVI of the aggregated cells includes some elements of spatial autocorrelation as 

those cells that have already been partly cleared have lower values. To understand the 

inner variations of different NDVI values the variable would have required similar 

analysis as done for the distances. I am certain that forest vegetation type differences 

could help to model deforestation in Unguja, however it should be handled categorically 

and fed into the model separately as has been done in other studies (Boonyanuphap 

2005).      

 

In Unguja it is mainly the human influence related variables that relate closely to 

deforestation. The regression and distance analyses all point out that vicinity of coast 

increases the risk of deforestation especially in the forested coral rag region. Case 

studies from Matemwe and Kiwengwa show similar outcomes from a period of last 15 

to 20 years (Mustelin et al. 2010; Käyhkö et al. 2011). This study shows that the 

process is not only ongoing in these villages, but all around the coral rag coast. There 

are multiple actions and multiple actors causing deforestation at coastal settings. 

Based on the earlier case studies and visual estimation of aerial photographs it seems 

that spreading of shifting cultivation is the main direct cause of deforestation, but in 

certain areas like in between Jambiani and Paje, Pongwe and Matemwe and in the 

coast of Makunduchi the spread of infrastructure such as tourist hotels, roads and 
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houses have caused a lot of forest loses (Käyhkö et al. 2008: 76–82, 2011; Mustelin et 

al. 2010). Spread of tourism infrastructure also pushes local inhabitants more inland 

from their old coastal settlements and tempts in-migration in to the coastal villages 

causing deforestation in both locations (Mustelin et al. 2010; Käyhkö et al. 2011). 

However majority of people live by the sea in the coral rag region and therefore it is 

presumable that deforestation would happen close to the coastline even without the 

influence of tourism. Also wood extraction is causing coastal deforestation. In north of 

Unguja the coastal forests have been the only actual forests remaining and therefore 

they have faced serious pressure of forest material collection. Significant portion of 

coastal forest losses are also coming from the high forests of Muyuni and Uzi. Although 

these deforestation patches are turned to shifting cultivation fields, one could assume 

that monetary or material gains from the logging are also driving deforestation.  

 

It has been generally recognized that deforestation is often taking place at the edges of 

the forests areas (Ludeke et al. 1990; Mertens & Lambin 1997; Nagendra et al. 2003). 

However the role of the coastal edge of forests in island surroundings has been less 

discussed matter. It would be tempting to quantify the deforestation differences of the 

inland and coastal edges of forests to see if there have been significant differences, but 

even without quantification it can be said with almost certainty that deforestation takes 

place mostly at the coastal edge in Unguja. However has this process been 

accelerated by spread of tourism, is another matter. Tourism spreads infrastructure, 

tempts in-migration and pushes local farmers more inland, but simultaneously it lowers 

the dependency on traditional livelihoods, thus possibly reducing deforestation (Orjala 

2008; Mustelin et al. 2010; Käyhkö et al. 2011).   

 

The closeness of buildings increases deforestation in entire Unguja and had especially 

strong role in the deep soil agroforests. It seems that deforestation caused by 

agricultural expansion and collection of forest materials happens relatively close to 

people’s homes as pointed out in many researches (Mertens & Lambin 1997; Geist & 

Lambin 2001: 69–71; Geoghegan et al. 2001; Fagerholm & Käyhkö 2009; Fagerholm 

2012). What was surprising though is that the vicinity of population had more minor 

impact at the coral rag region. Although the settlements are growing and causing 

deforestation in the region, a lot of deforestation has happened relatively far from any 

previous settlements. This is mainly caused by the random patterns of shifting 

cultivation, but might be also engaged to the spread of tourism, which seeks pristine 

beach locations distant from disturbing local villages (Geist & Lambin 2001: 69–71). 

Also some deforested areas have located quite far from settlements, but they have had 

to be used for woodfuel collection and shifting cultivation. The more influential role of 
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kernel density of buildings in deep soil region could be explained with the urban growth 

of Zanzibar Town that has happened at the expense of nearby agroforests. All together 

urban sprawl has however caused less than one-tenth of all happened deforestation 

and the relationship is not direct or linear. As was theoretically assumed by Von 

Thünen already in the 19th century and empirically proved at least by Mertens & 

Lambin (1997), urban expansion causes limited deforestation as such, but it happens 

at the expense of nearby agricultural areas, which then spread outwards to the forest 

areas (Angelsen 2007: 2–4).  

 

The distance to Zanzibar Town carried no explanatory power in the multivariate 

regression analysis and therefore it could be assumed that market accessibility as such 

is a limited factor explaining deforestation process in Unguja. The factor has been 

successfully used elsewhere, but it does not explain deforestation in Unguja as the 

distances in are generally too short, human presence too extensive and the soil 

differences too dominant (Mertens et al. 2000; Geoghegan 2001; Verburg et al. 2004). 

However also it may explain the current structure of land covers as the more profitable 

land uses concentrate to the deep soil region close to the capital as an study book 

example of Von Thünen’s theory (Angelsen 2007: 2–4)    

 

Another surprising locational issue was that the vicinity of roads was rather limited 

factor explaining deforestation in distance analysis and had absolutely no explanatory 

power in the regression analyses. However it has been linked with deforestation or 

current forest pattern in almost all modeling experiments (Ludeke et al. 1990; Chomitz 

& Gray 1996; Mertens & Lambin 2000; Geoghegan et al. 2001; Kok & Veldkamp 2001; 

Nagendra et al. 2003; Verburg et al. 2004; Boonyanuphap 2005). This can be 

explained by the long and extensive presence of humans, limited forest cover and 

diversity of land covers. Almost all the regression modeling experiments are from areas 

where pristine forests cover majority of the landscape and human presence is 

restricted to only certain locations (Ludeke et al. 1990; Chomitz & Gray 1996; Mertens 

& Lambin 2000; Nagendra et al. 2003; Verburg et al. 2004). In Unguja majority of 

current roads have been there for a long time and there is no colonialist in-migration 

causing serious deforestation happening along the roadsides. Shifting cultivation is 

dominated by the vegetation and rotation makes it to happen in a random pattern 

relatively far away from main roads (Geist & Lambin 2001: 69–72). Also in some areas 

the only remaining forests are far from roads, but the woodfuel needs have to be 

fulfilled anyway. However the vicinity of roads is not altogether irrelevant. The 

deforestation process has probably advanced along the roads in history, but this 

process has happened already decades or centuries ago. Also some roads and 
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especially those that go through otherwise intact forest patches seem to cause 

deforestation along their sides, but the impact is so minor that it is not detected in the 

regression analysis. Therefore it seems like the road factor that has been successfully 

used explaining and predicting the spatial patterns of deforestation in highly forested 

surroundings does not work in areas where the forest cover is limited and population 

pressure extensive.      

 

Based on these analyses it seems that it is almost solely the human related variables 

that explain deforestation process in Unguja, while the biophysical settings do not 

influence the process. The biophysical factors have created the current pattern of 

forests, but it is so well established because of centuries of human presence that 

changes are not anymore happening for these reasons. For the same reasons the road 

and market accessibilities, well used elsewhere, do not explain the variations in 

Unguja. This is only one case study from one particular context, but it might be that 

these generalizations could be taken to other similar surroundings with high population 

densities, long and extensive history of human influence, little biophysical obstacles 

and limited land resources.    

 

7.1.4. Actors and actions causing deforestation 

Although this research did not produce direct empirical evidence about the main actors 

or proximate causes of deforestation, certain links can be reasoned. Small holder 

farmers and urban consumers are often named as the actors of deforestation in Africa. 

The first ones demand land for cultivation and woodfuel for cooking, while the latter 

ones want food and charcoal to be provided  for them (Rudel et al. 2009; DeFries et al. 

2010; Fisher 2011). This is the case also in Unguja, but there are also other actors and 

actions in the field. Government actors have been behind forests clearances because 

of infrastructure development (Makunduchi), logging (Chaani) and urban sprawl 

(Zanzibar Town). Areas have been cleared for tourism (Nungwi, Michamwi, Paje, 

Jambiani and Kizimkazi) and tourism has also increased the population in nearby 

villages. So large areas have been cleared for shifting cultivation (Uzi, Jozani, Muyuni 

and Michamwi) that these actions cannot be said to be driven by individual small scale 

farmers, but rather by the rural communities as whole. The actors and actions behind 

deforestation are often diverse and therefore they should not be over simplified. It 

should be remembered that eventually it is not only these local actors and actions 

causing the changes, but there are also countless underlying causes directing their 

possibilities (Turner et. al 2007).   
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It would be interesting to study these actors and proximate causes of change by 

connecting expert and local knowledge to mapped deforestation clusters. These 

stakeholders could name all the actors and actors behind each deforestation patch and 

rank them by order of influence. Using maps in the process would make the experts to 

think the situations of each patch individually, which might provide more in-depth 

answers instead of simplifications. Simplifications may work at regional scale, but are 

rarely right answers explaining the local happenings. The actors and actions could be 

quantified in relation to deforested land areas, which might eventually help to rank their 

influences correctly.  

 

7.1.5. The underlying causes and future of the forests 

There are multiple ways to calculate the annual deforestation and forest cover change 

rates (FAO 1995; Puyravaud 2003). Though the interest in here is not in the calculation 

methods as such, but rather in the future scenarios different rates produce for the 

forest cover of Unguja. The figures drawn from the gradual classification suggest milder 

change (5,4 km2 & -0,82%), while the figures of the abrupt classification are more 

severe (7,4 km2 & -1,19%). The generally used annual forest cover change calculation 

methods are constructed so that they assume that the deforestation declines along the 

declining forest cover (FAO 1995; Puyravaud 2003). Therefore these percentage 

figures -0.82% and -1,19% would level the absolute area lost annually along the time, 

while the average annual absolute deforestation figures (5,4 & 7,4 km2) argue that 

change keeps its current pace. When projected until 2025 the annual forest cover 

change rate calculated from gradual classification suggest the highest forest cover (501 

km2), the average annual absolute deforestation figure from the same classification and 

the annual forest cover change rate drawn from the abrupt classification come to 

mediocre outcomes (472 km2 & 485 km2), while the average annual absolute 

deforestation figure of the abrupt classification suggest the lowest forest cover (454 

km2).  

 

There are few methodological issues supporting the scenarios build from the modest 

figures of the gradual classification. Firstly the abrupt classification exaggerates 

deforestation, as it classifies scrublands as forest in the SPOT image. Although, the 

gradual classification on the contrary underestimates the deforestation as changes 

from forested classes to semi-open scrubs on grass are left outside, the problem is 

more severe to the other direction. Secondly the data used for calculating the change 

rates was not filtered and significant proportion of deforestation is caused in really 

small forest patches, which would not be even considered as forests because of their 

size in FAO (2000) standards.  
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Besides the methodological issues there are few matters related to the local context, 

which promote the use of more moderate deforestation estimates. Firstly, a significant 

portion of change has been caused by government actions. The silviculture area of 

Chaani has been cut and large areas from Makunduchi have been cleared for 

urbanization. It may be that similar actions are taken also in the future, but all of the 

government forestry sites are in the stage of regeneration at the moment and it is likely 

that they will rather increase the forest cover instead of decreasing it. Also the 

willingness of people to resettle in planned areas like Makunduchi seems limited in the 

light of buildings built there and therefore it seems unlikely that similar actions are 

promoted in the future. Secondly, in some areas, such as Fumba peninsula, Uzi Island 

and near Nungwi and Matemwe, the forests have disappeared almost completely, 

therefore removing the base for deforestation. The subsistence need for materials like 

fuel wood has not disappeared and will be partly fulfilled by cuttings in other parts of 

the islands. However the nearest forests are far from these locations and therefore I 

expect that the need for wood fuel is fulfilled with overuse of existing semi-open 

scrublands, as has happened in Matemwe (Käyhkö et. al 2011). Thirdly, although the 

tourism expansion is probably going to continue in the coastal areas, the boom of it has 

happened during this time period, therefore the tourism related coastal deforestation 

should be slowing down (Gössling 2001; Mustelin et al. 2010). Fourthly, the trend of 

deforestation is declining at least in Matemwe (Käyhkö et al. 2011). Though this is only 

a single case study and its outcomes are caused by local context and therefore should 

not be generalized for the whole island.  

 

Eventually it is the underlying causes that specify deforestation happening in the future 

It is important to estimate has the time period used to determine the change rates been 

somehow exceptional and how changes in underlying causes are going to influence the 

future changes (Kaimowitz & Angelsen 1998: 90–98; Geist & Lambin 2001: 6–8). At 

global level deforestation trend seems to be slowing down, but accelerating in Africa 

(FAO 2010). Some have even argued that deforestation has not really even started in 

Africa and logging, export agriculture and bioenergy driven deforestation will skyrocket 

the deforestation figures in the following decades (Rudel et al. 2009; DeFries et al. 

2010; Fisher 2010). However I consider Zanzibar to be largely safe from these actions 

as its land and forest base is so small and island location makes transportation costs 

outrun the possible incomes. Therefore it is likely that deforestation continues to be 

subsistence agriculture driven as it has been so far in the island and generally in Africa 

(Käyhkö et al. 2009; Rudel 2009; Siex 2011). Although it is possible that incomes 

provided by cultivation of bioenergy species that are able to grow in poor soil 
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conditions, such as Jatropha curcas, would promote clearance of the coral rag 

scrublands.   

 

Even though the main underlying causes of deforestation would not be changing the 

amount of persons needing subsistence is going to increase. The population more than 

doubled between 1978 and 2002 and it will probably do so between 2002 and 2025. 

The annual population growth rate of Unguja was 3,2% between 1978 and 1988 and 

rose to 3,5% between 1988 and 2002 (OCGS 2007: 10). Even if the annual population 

growth rate would not be increasing the absolute population is going to do so for a long 

period. Large proportion of this population is going to get their livelihoods from 

agriculture and pressure for permanent and slash-and-burn cultivation of forests 

increases. Also 96% of the households use charcoal or wood fuel as their main energy 

source for cooking. Even though DCCFF (2008) uses more moderate estimations for 

population growth, it has assumed that the domestic demand for wood increases 44% 

until the year 2020. Alternative energy sources, such as liquid gas and solar cookers, 

more efficient use of wood energy through fuelwood saving stoves, awareness raising 

and tree planting are planned and proposed solutions for the growing energy demands 

(DCCFF 2008; Käyhkö et al. 2009; Fagerholm 2012: 53). However thousands of new 

equipment should be taken in to use to even keep up with the growing demand.  

 

The population growth in the West region, where parts of Zanzibar Town and its 

conjunctions are located, has constantly been higher and has also accelerated faster 

than elsewhere on the island (OCGS 2007). The rapid urbanization may relief the 

deforestation pressure caused by the rapid population growth and the agricultural and 

wood energy demands related to it. As mentioned generally urban dwellers are 

straightaway off from agricultural activities, they are more prone to take new energy 

solutions into use, their demand promotes tree planting in rural areas and they use 

relatively more food and energy products imported from elsewhere. (Contreras-

Hermosilla 2000: 21; Foster & Rosenzweig 2003; Rudel et al. 2005; Writght and Muller-

Landau 2006; DCCFF 2008). However Zanzibar Town also tempts immigrants outside 

the island, urban dwellers use more agricultural and forest materials than their rural 

counterparts, inefficient charcoal is used in cooking, they have limited means to 

participate in wood energy and agricultural production and the spread of the city 

causes direct deforestation (Masoud 1991; OCGS 2007; DCCFF 2008). Also the forest 

products they use are not coming from their backyard, which weakens the human-

environment relationships and makes it easier to make environmentally unsustainable 

consumption demands. Eventually it is difficult to say has or will urbanization reduce 

deforestation in Unguja as it depends how consuming habits change, where the food 
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and wood materials are produced and does urbanization tempted migrants outside 

Unguja. However I assume that the urbanization has and will help to mitigate the 

deforestation impacts of the population growth.    

 

Besides these issues it should be also acknowledged that the study period has been 

economically and politically abnormal. The economy has been liberalized and annual 

GPD growth has been impressive (RGZ 2009). As mentioned in the theoretical section 

economic growth has many positive and negative effects on deforestation and in 

Ungujas context the growth has been driven by the tourism sector (RGZ 2009; 

Gössling  2001). The economic growth may have promoted forest clearance to make 

room for infrastructure developments, urban sprawl and tourism, but also provided 

resources for management of the government forest areas and creation of new 

protected areas. Zanzibar also faced political turmoil causing foreign governments to 

stop their development projects in 1990s. This period also created a caesura in the 

well-established collaboration between Finnish and Zanzibar governments in forest 

sector, decreased foreign funding of DFNR and impaired the possibilities for sufficient 

forest management. However partly because of the previous collaboration the country 

had governmental forest management actor existing during this study period (Sitari 

2005).    

 

It might be that the current common land tenure system, where land as such is not 

owned, but the assets on it are promotes actions that cause deforestation (Törhönen 

1998; Fagerholm 2012: 34–35). Forests may be overused in shifting cultivation and 

forest material collection as people try to maximize their personal benefits (Hardin 

1968). Also certain kind of land speculation might exist. Forests in potential tourist 

areas might be turned to fields or habituated to get income from these lands if they are 

later sold for tourism use. Also high mature forests might be turned to shifting 

cultivation fields if there is a risk that government seeks to turn these to official 

protection areas (Conteras-Hermosilla 2000: 16). These are solely assumptions, but 

the current land tenure system supports these kinds of actions and any changes in it 

would inevitably affect the deforestation process.      

 

All these factors have had essential influence on forest changes happened during the 

study period, but their influence has been so diverse and interlinked that it is impossible 

to estimate how much, why and to what direction the effects have really been (Geist & 

Lambin 2001: 1–2; Lambin et al. 2001). Also it is extremely difficult to estimate how 

these issues are going to influence forest changes in the future. However after 

acknowledging all these underlying causes and assuming that radical changes are not 
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going to happen in near future it is likely that the average annual area deforested 

measured from the gradual classification (5,4 km2) creates the most accurate future 

estimations, at least until 2025. Because of the rapid population growth, there are no 

reasons to believe that the absolute area lost would be decreasing, but it should be 

acknowledged that the abrupt classification gives exaggerated figures. It is also 

possible that population growth, in-migration, economic development and spread of 

tourism in the forest rich coral rag region might actually even increase the annual 

deforestation in the future.  

 

However where this future deforestation takes place is completely another question. At 

the moment deforestation is highest near build-up coastlines and if the situation 

continues as such the still remaining coastal forest are at high risk of deforestation. 

From all of the endangered coastal forest, there are two patches that stand out as 

especially valuable and vulnerable: one in the southern tip of Uzi Island and one in the 

west coast of Muyuni (Figure 33). Two reasons make these patches rather unique: 

Firstly, they are the only high forest patches without government protection at the direct 

vicinity of the coast and secondly, they have already faced serious deforestation. Aerial 

photographs and GeoEye images reveal that the deforestation has happened between 

2004 and 2009 and if this pace keeps continuing there is nothing left of these patches 

within next five to ten years. The monetary and human resources of forest protection 

are scarce in Zanzibar, but from my opinion the ecological, environmental, aesthetic 

and cultural values of these patches should be studied and they should be taken under 

official government protection before it is too late. The patch of Muyuni is in somewhat 

better position than the one in Uzi, since it has been included to the original plans for 

future network of government protected forests as a part of “Muyuni-Jambiani” forest 

conservation area, but in the last delineations of the new protected area provided by 

DFNR, this patch is missing (Siex 2011; WWF Tanzania Country Office 2012). Both of 

these patches are also marked as “High protection zones” in CoFMA agreements, but 

the authority of these plans can be questioned, since parts of the Muyuni -patch 

delineated under protection has already deforested since 2004. 
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Figure 33. The forest areas lost between 1996 ans 2009 and still remaining forests areas 

under deforestation risk in Uzi and Muyuni. 

 

Another area that is under severe risk of future deforestation is the agroforests close to 

Zanzibar Town (Figure 34). Deforestation caused by urban sprawl is a complex issues 

as there are tens of thousands individual actors and also government and city 

administration involved, but if deforestation keeps its current pace are the nearby 

agroforests seriously threatened.  

 

A third set of areas where the development of deforestation should be more closely 

monitored are the outskirts of coastal villages in the South district. Slash-and-burn has 

been the main cultivation method there and more areas are cleared because of this 

today than in 1996. However it seems like other more stable forms of rotation farming 

have also been established during the study period. There are clear marks of this close 

to villages of Bwejuu, Paje, Jambiani and Kizimkazi (Figure 35). The population has 

grown significantly in these villages because of natural population growth and tourism 

related in-migration. It may be that, because of the population growth people have had 

to harness livelihoods that were earlier not used in the area. However these farming 

methods may be unsustainable in a long run, which may lead to similar degradation of 

forest that has happened in Matemwe and to a cycle where agriculture deteriorates the 

soils and forests of a site and then spreads to new areas (Käyhkö et al. 2011). 
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Figure 34. The agroforest deforested between 1996 and 2009 and forest patches under 

deforestation risk near Zanzibar Town. 
 

 
Figure 35. The spreading of farming near Bwejuu and Jambiani villages between 1996 and 

2009 
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It is likely that in a long Zanzibar is following the “forest scarcity path” of forest transition 

where decrease first slows down and then turns to increase, because of the increasing 

forest product prices (Rudel et al. 2005; Barbier et al. 2010). However the moment 

when the deforestation turns to reforestation or even slows down is far from the 

present. It is impossible to estimate when the forest cover reaches its bottom and how 

much there would be forests still existing at that time, but the latter makes all the 

difference from the perspective of biodiversity. There is not much hope for the flora and 

fauna if the forest cover drops to 1% before starting to increase, but the outlook is not 

as bad if 15-25% of the land can be kept forested. The question is not only about the 

quantity, but also about the spatial pattern and quality. Percent-wise even relatively 

small amount of forest habitats can help to sustain the biodiversity if it is connected, 

diverse and in good conditions (Jongman & Pungetti 2004: 2–33). Therefore I see it 

extremely important to promote the already made plans to establish a network of 

protected areas that would create one new conservation area in to the south and 

connect all of the major forest areas with wildlife corridors (Siex 2011; WWF Tanzania 

Country Office 2012). However the current spatial plans for this network are rough and 

they should be optimized so that the spatial pattern and diversity of habitats would 

ensure maximum biodiversity benefits with minimum costs.  

 

There are also few relatively far-fetched, but existing possibilities that could make the 

“economic development path” of forest transition possible or on contrary risks that 

could lead to rapid decline or even devastation of current forest base. Oil and natural 

gas has been found from the offshores of Zanzibar. As such, the use of oil and gas 

could change the energy sector of the island and practically abolish the large-scale 

need for woodfuel as has happened in some oil rich countries, but it would also bring in 

the other benefits of economic development. Improved economic situation could relief 

large amount of rural inhabitants from agricultural subsistence economy, connect them 

to monetary economy, increase the importation of food products and promote 

environment protection attitudes, spatial planning and tree planting (Rudel et al. 2005; 

Barbier et al. 2010). It would eventually eradicate the need for ecologically destructive 

and unprofitable subsistence actions as the slash-and-burn cultivation. However, the 

influence of the economic development is highly related to local social, political, 

institutional and cultural context (Conteras-Hermosilla 2000: 19; Scrieciu 2006; Barbier 

et al. 2010). Eventually how the economic development gained through oil and gas will 

change the forest cover in Zanzibar is not about the absolute economic growth as 

such, but rather about its equalitarian distribution among the population and how the 

money is used to build the structures of the society and especially those of 

environmental management. Following the unequal development paths of Nigeria or 
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Angola would not change the ways impoverished rural inhabitants use their 

surrounding environment, at least not to positive direction (Omotola 2006; Maconachie 

et al. 2009).  

 

From the negative side it should be mentioned that the food self-sufficiency is only 

around 50% in Zanzibar. The growing population may lead to increasing soil erosion 

and degradation in agricultural lands, which would decrease the already low food self-

sufficiency (RGS 2004). Also as the population grows and urbanizes more of the forest 

materials are brought from mainland Tanzania or elsewhere. If importation of food and 

wood from mainland would be disturbed, possibly because of global food crises or 

political tension caused by ever growing independency demands, this might cause 

severe destruction of the unprotected communal indigenous forests as desperate 

needs would be taken to ensure food and energy availability. Long-lasting crisis could 

lead to severe deforestation and devastate the current forest cover as has happened in 

North Korea (Noland et al. 2001). As already mentioned the spread of bioenergy 

cultivation in coral rag lands could also lead to severe decrease of forest cover.    

 

7.2. Methodological issues 

7.2.1. Errors in the preprocessing 

The errors in the georectification did not really influence the outcomes of the individual 

classification of 2009, but caused displacement errors in the change detection. The 

general RMS error of was over the 0,5 pixel, which is often considered as a critical line 

in change detection (Lillesand et al. 2008: 595). It seemed that if the northern end of 

the island was well rectified there were serious errors in the south and wise-versa. In 

the final rectification the errors are greater in the northern end of the island. The 

original raw data was provided in two pieces and the north and the south parts were 

originally different files. There was approximately one pixel mismatch in the borders of 

these two original images, which disappeared when the images were mosaicked. It 

might be that this original mismatch prevailed in the data and made adequate 

rectification impossible using polynomial equations. This problem could have been 

avoided by first matching the images in a regular graphics software before mosaicking 

and georectifying them in a geospatial software. Another dilemma in the rectification 

was that although it is generally recommended to rectify the low resolution images 

against the high resolution ones, this was not possible in this study, because the 

Landsat TM file was already rectified against other used data (Mather 2005: 88). It was 

tested to rectify the SPOT image against the high resolution aerial photographs used to 

rectify the Landsat image, but the outcomes were even worse.  
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7.2.2. Challenges of land cover classification  

The created classifications are governed by use purposes, available datasets and 

possibilities for field working. The classification process would have been different if it 

would have been done only for the 2009 image, but as it was done also for the 1996 

image and both of the classifications were used in the change detections the 

classification solutions had to adapt. Using solely the supervised method for a single 

classification would have been preferred as it creates ready classes, while on the other 

hand the unsupervised technique would have been more adequate for the change 

detections as it relies on statistically sound clustering of the spectral values and is 

therefore less prone to human errors (Campbell 1996: 317–329; Lillesand et al. 2008: 

557–569). It is possible to misinterpret the spectral clusters afterwards and some of 

them are meaningless in the sense of land covers, but at least they are always 

spectrally coherent. In supervised classification it is possible to create classes, which 

have so wide spectral range and standard deviation that they capture pixels not 

belonging to the particular class (Lillesand et al. 2008: 557–569). In the created 

classifications the spectral land cover features semi-open scrubs on grass and dense 

herblands and the final land cover class semi-open scrubs on grass faced these errors, 

which then had to be minimized by creating two different change classifications.  

 

Using solely unsupervised classification was not possible in this study as there was no 

spatially and temporally adequate reference data for the 1996 SPOT image that could 

have been used to connect the spectral clusters to land cover classes. The aerial 

photographs used as reference data in accuracy assessment were from 1988–1989 

and during this 7 to 8 years temporal gap a lot of land covers had already changed. 

The images were also black-and-white making interpretation of certain features such 

as the bareness of the ground layer or forest vegetation type extremely difficult. Also 

the images covered only certain areas of the island and although there was a lot of on-

site knowledge about these areas based on previous research, some land cover types 

were not represented in them (Sitari 2005; Käyhkö et al. 2008, 2011, Mustelin et al. 

2010, Fagerholm et al. 2011). Eventually also the statistical nature of the used data 

would had influenced the unsupervised classification so that created clusters might 

have not been completely comparable between the images. For example parts of the 

low-lying scrubs could have been joined with the semi-open scrub classes in the other 

classification, while they could have belonged to some forest class in the other 

(Campbell 1996: 317–319; Lillesand et al. 2008; 568–570). 

 

The focus was set to minimizing the errors of the supervised classification as the 

unsupervised technique turned impossible. The idea was to make the training sites as 
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homogenous as possible (Lillesand et al. 2008; 557). One way to ensure this was to 

delineate the training sites based on the unsupervised clusters. However this was done 

only for the 2009 classification. Although it would have been impossible to interpret the 

spectral clusters from the 1996 image, the unsupervised clustering could have been 

used to see that are the training sites homogenous and that has there  been significant 

changes between 1996 and 2009. Now these issues were assessed based on the 

1988-1989 aerial photographs and histogram matched SPOT image. It was possible to 

detect major changes with these datasets, but subtle changes were left unnoticed as 

certain thinks simply looked different in the SPOT or the black-and-white images. For 

example some forests looked significantly brighter in the SPOT image than in the 

Landsat scene and it was hard to decide has the vegetation within the training site 

been lusher in 1996 or were these visual differences simply caused by the sensor 

calibration. Eventually these subtle disparities within the training sites may have 

caused significant differences in the final signature files, thus causing wrongly detected 

changes. Some of these errors were minimized by using four different land feature 

classes for forests that all had different spectral responses and post-classifying these 

to one forest land cover class only after the automated classification process.  

 

As the accuracy assessments shows the final land cover classifications work rather 

well for the forests and urban areas, but are inaccurate for other land cover types. The 

inaccuracies are largely due to the limitations of the used spatial resolution and 

classification method. The pixel size can be simultaneously too coarse, adequate and 

too detailed. It may be able to detect certain things, while simultaneously unable to 

detect others (Campbell 1996: 316; Di Gregorio 2005: 1; Lillesand et al. 2008: 110–

116, 617–621). The landscapes in Unguja are extremely heterogeneous, small-scaled 

and mosaic-like (Klein & Käyhkö 2008). There can be multiple land covers even within 

the 30 m2 pixels and majority of pixels are mixels of multiple spectral responses (Foody 

2004). Urban areas and forests were correctly classified, because their real world 

spatial and spectral properties correspond with the used pixel size. In other words they 

are usually spectrally rather homogenous and spatially continuous within the 30 m2 

pixels. On the other hand certain land cover types such as semi-open areas are neither 

spectrally homogenous nor spatially continuous. Within large semi-open areas pixels 

can be aligned so that there is completely closed canopy coverage within one pixel and 

absolutely no canopy in another (Figure 35). Therefore the used pixel size is both too 

coarse to detect the individual components that make the land cover, but 

simultaneously too detailed to detect the spatial pattern of the land cover in focus. 

These problems could be partly solved with spatial pattern recognition or object-

oriented classification techniques acknowledging not only the spectral properties of a 
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cell, but also the spatial patterns surrounding it (Lillesand et al. 2008: 545–591). Use of 

these methods would take an important step away from spectral land covers towards 

more cognitive land covers.   

 

 

Figure 36. Conceptual model about the difficulties of spectral land cover classification in semi-

open surroundings.Some of the pixels in semi-open areas get their reflectance from ground 

layer and other from canopy and they are therefore classified differently although they would 

belong to same land cover class.  

 

Although the forests are generally classified quite correctly the class as such is a crude 

generalization. As mentioned it includes agroforests, thickets, scrubs, low coral forests 

as well as high mature forests all formed from various species with different spectral 

responses (Campbell 1996: 316; Di Gregorio 2005: 1). The original idea was to create 

classification, which could have detected few main forest structure or vegetation types. 

This proved more difficult that thought and the four forest land cover features in the 

original classification were post-classified to only two for the final one. Also it would 

have been rather impossible to make sure that the land cover features represent same 

forest types in the SPOT image as there were not adequate reference data. However 

there a countless studies were different forest types have been separated using 

Landsat TM imaginary and there are no reasons why this could not be possible also in 

the context of Zanzibar (Foody & Hill 1996). One approach to improve the created 

forest classification would be to clip the original data with the created forest borders 

and run the unsupervised classification only within the forest areas to see the inner 

variations (Coppin et al. 2004).  

 

Eventually what is considered as a “forest” is a problem in any forest cover 

measurement. Creating conceptual classes may be a start for a solution, but the 

problems begin when the concepts are taken from abstract level to reality and 

boundaries between land cover types are drawn (Ahlqvist 2004, 2008). FAO (2000) 

have created conceptual description for forests, but this was seen poorly applicable for 

this study, mainly because it argues that the canopy coverage in forests should only be 

over 10% and trees should reach 5 m height in maturity. If the 10% coverage -rule 
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would have been used majority of Unguja would be classified as forest, while if the 5 m 

height -rule would have been used large part of the indigenous coral scrubs would not 

be considered as forests. Also it is extremely difficult to detect forest heights from 

optical remote sensing data (Garcia et al. 2010). As these predefined descriptions are 

badly applicable for local contexts and remote sensing data, research often relies on 

subjective descriptions created by researchers themselves case by case (Weiers et al. 

2002; Ahlqvist 2004; Olander 2008). However these create subjective outcomes and 

comparing forest cover estimations created by different people at different times for 

different locations is extremely difficult and often biased (Ahlqvist 2004, 2008).  

 

Methods have been developed to back-up the subjective classes with qualitative and 

quantitative descriptions, such as general land use, visual appearance, average 

canopy coverage and photographs (Ahlqvist 2004). This research tried to open the 

semantics by attaching the collected field data to the classes, but as this data was used 

also to direct the classification the outcomes are partly biased. It also became obvious 

that there should be enormous amounts of field observations to create representative 

descriptions. Therefore I consider creating semantic descriptions based on the used 

raw data as more adequate approach for remote sensing based classifications. Mean 

NDVI was attached to each class partly for this reason, but knowledge about spectral 

class centers, variances and standard deviations in all used bands should also be 

somehow attached to the classifications. This information would allow other user to 

recreate the signature files used in classification and repeat the classification perfectly.  

 

What comes to the accuracy assessment of the final classification outcomes there is a 

serious reason to believe that the done accuracy assessment underestimates the error 

in the data. Firstly the accuracy was only assessed from those aggregated cells that 

had variance value one meaning that there was only one land cover type within them. 

However these cells only resemble the areas where the land cover is spectrally and 

spatially homogenous, while the most severe accuracy errors are in the borders of 

classes or within mixed areas (Lunetta & Lyon 2000: 6–7; Foody 2004; Lillesand et al. 

2008; 587). On the other hand it might be impossible to identify the absolute land cover 

of border areas even with cognitive human vision as these areas are often fuzzy and 

gradual. Nevertheless, as these areas were avoided in the assessment the final 

accuracy figures are higher than they should be. I would estimate that the figures are at 

least 10 to 20% too high for each class and for the entire classification.  
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7.2.3. Uncertainties related to change detection 

If creating the classifications had severe uncertainties related to the used method, 

class semantics and accuracy assessment, change detection is facing even more 

challenges. Many of these are normal for any change detection studies, some are 

emphasized by cross-sensor analysis and few are typical only for the cross-sensor 

analysis. The largest errors in automated change detection techniques comparing 

classifications pixel-by-pixel is the comparability of these pixels (Coppin et al. 2004; 

Mather 2005: 88; Wulder et al. 2008). The georectification caused change detection 

errors in two different ways, by influencing the comparability of the training sites 

between the raw images and by influencing the comparability of the pixels in the final 

classifications. The slight differences in georectification and resampling made it 

impossible to say were the training sites in the same geographical location between the 

two images, which increased the differences between the two classifications (Campbell 

1996: 327–329; Mather 2005: 86–90). This problem was reduced by making the 

training areas smaller from their edges so that possible mixels and rectification errors 

would be avoided. Unfortunately the landscapes in Unguja are so heterogeneous that it 

is difficult to create large continuous training sites and thus majority of the sites had 

little to reduce from.  

 

It is hard to estimate how much wrongly detected change it caused that the pixels were 

not perfectly aligned because of the insufficient georectification. However it is likely that 

the errors were larger in agroforest than in other forest areas. Agroforests in Unguja 

are relatively small in size and they form semi-open patterns where the forest pixels 

mix with other land covers, while the indigenous and government forests are relatively 

large in size and continuous in their spatial pattern. If there is a situation where forest 

cover have not changed at all, but there is a one pixel georectification error the change 

outcomes are significantly different for continuous and semi-open patches. In 

continuous patches the change error only occurs in the borders of the class so that 

deforestation on the other side is compensated by reforestation at the other border, 

while the interior forests stay unchanged (Figure 37). However the outcome may cause 

all the pixels in semi-open areas to change if the pixels are aligned so that each forest 

pixel is neighboring an open pixel. This partly explains the extremely high swapping of 

agroforests. 
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Figure 37. Conceptual model about the change detection errors caused by geo-rectification in 

closed and semi-open forests. Rectification causes errors only in the borders in the closed 

forests, but all the pixels may be affected by the error in semi-open forests.  

 

Second technical issue influencing change detection relates mainly to cross sensor 

analysis with different spatial resolutions. The Landsat TM had original pixel size of 30 

m2, while this was 20 m2 in the SPOT image. The SPOT image had to be resampled 

during the georectification process to match the Landsat resolution and this was done 

with the nearest neighborhood technique. Resampling with neighborhood technique 

reduces the amount of data as it assigns the pixel value from the nearest cell center of 

the original data to the new resampled pixel. When data is resampled to larger pixel 

size it means that certain pixel centers are not closest to any of the new pixel centers 

and therefore their pixel values are not attached to any new pixel, thus reducing the 

amount of information (Lillesand et al. 486–490). The reduced data is not a problem as 

such, but in certain cases it may influence the change detection outcomes. The 

conceptual model in Figure 38 shows a situation where the actual forest cover stays 

stable, but neighborhood resampling causes change detection errors. The numbers 1 

to 4 and letters from A to D represent the SPOT pixels. The pixel in the upper left 

corner is pixel 1A and the one in lower right corner is 4D. The small letters a, b, c and d 

represent the Landsat pixel they are inside of and the arrows show which the SPOT 

cell centers are used to assign data values in the neighborhood resampling. As it can 

be seen the Landsat pixels a and d have over 50% forest cover and are therefore 

classified as forests, but when the SPOT image is resampled to matching spatial 

resolution these pixels are classified as non-forest because the forest coverage in the 

SPOT pixels closest to new cell centers (2B and 3C) is significantly less than 50%. The 

situation is opposite for pixels b and c. This causes the pixels a and d to be classified 
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as reforested and pixels b and c as deforested, although the situation has stayed stable 

in reality. Also this phenomenon partly explains the high swapping and net 

deforestation of the agroforest areas as the semi-open forests are more prone to these 

kinds of errors than the continuous indigenous forests.  

 

Figure 38. Conceptual model about the change detection errors caused by resampling to larger 

pixel size with the nearest neighbor method. The smaller SPOT pixels used have different forest 

cover than the larger Landsat pixels they are assigning values, which causes change even 

though the situation has stayed stable. 

 

It would be scientifically tempting to empirically measure what is the general influence 

of the used cross-sensor resampling method in change detection. This could be done 

by having SPOT images with various spatial resolutions and a Landsat TM or ETM+ 

image from the same time and the same area. In the experiment the SPOT images 

would be resampled to Landsat resolution with different methods, the images would be 

classified with the same training areas and the change caused by resampling in 

theoretically same scenes would be measured with normal post-classification 

comparison techniques. Only problem is that the resampling is so closely connected to 

done georectification, that in practice it would be completely impossible to say that the 

pixels in the images would actually represent the same areas (Lillesand et al. 2008: 

486–490).  

 

For these and other reasons the change detection should not focus to individual pixels, 

but rather to continuous patches (Wulder et al. 2008). This could be achieved by 

filtering, aggregating, amalgamating or generalizing the original or the final change 

classifications (Coppin et al. 2004; Lu et al. 2004; Franke et al. 2006). However none of 
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these procedures where done for the original change data and therefore the non-

filtered data is also present in the change rates, KDE, sub-area and distance analysis, 

while the regression and predictive analysis were done with aggregated data. There 

are reasons why these methods were not used. Filtering was seen too harsh and 

influencing the final outcomes more than the presence of small patches as it simply 

changes pixel values based on their neighbors. The outcomes of filtering would have 

been highly dependent on the spatial pattern of original values, which might have 

caused serious errors in the agroforest areas. Certain amalgamating filtering on the 

other hand could have been used if there would have been options either in ArcGIS or 

in Erdas Imagine to merge individual pixels to surrounding mosaic when 6–7 of its 

neighbor pixels would belong to same category. However the softwares did not offer 

these kinds of solution and it was seen too complicated to build this kind of application 

by one’s own. Option that should have been used would have been to delete the 

smallest deforestation and reforestation patches after the change detection. Deleting 

the patches smaller than the FAO (2000) 0,5 hectare limit for forests would have 

reduced the deforestation estimations approximately by one-third. However the FAO 

(2000) limit is a minimum size for forest patches and not for deforestation patches and 

properly using this limit would have not meant deleting all deforested patches smaller 

than 0,5 hectares, but only deleting them from forest areas that have had original size 

smaller than that. All these generalization procedures could have helped to remove 

some of the errors caused by georectification, as some of those small patches which 

were more prone to changes caused by rectification errors would have been removed 

(Lillesand et al. 2008: 595; Wulder et al. 2008). 

 

Also a likely source of inconsistency was created when the final supervised 

classification was done with six spectral bands for the Landsat TM image and only with 

three bands for the SPOT image. In theoretical terms the Landsat TM had a wider 

spectral resolution, whereupon it created the classes differently (Lillesand et al. 2008; 

411, 433, 554–557). It may even be that certain Landsat pixels had exactly same 

reflectance in the three bands used in both classifications, but they were classified 

differently, because of the differences at those three bands used only for the Landsat 

TM image. The bands that were only used for the Landsat TM image were able to 

detect urban elements, soil and vegetation moisture differences (Lillesand et al. 2008: 

411). This explains why the SPOT classifications underestimated the urban areas. Also 

some closed scurblands with low moisture levels could have been classified as semi-

open instead of forested, which might explain why there were so much swapping 

between semi-open scrubs, woodlands and forests. Especially the areas analyzed as 

deforested in the northern parts of Unguja look relatively similar between the raw 
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images with pseudo-colors and I assume that it is partly these moisture differences that 

caused the wrongly detected change.  

 

Eventually these issues related to sensor calibrations, amount of bands used, 

georectification and resampling influenced the training sites collected, the signature 

files created and the final classifications produced. Even though the semantic concepts 

of the classes are equal between the classifications, their technical executions are not 

and this creates errors in the change detection (Campbell 1996: 327–329; Ahlqvist 

2004; Lillesand et al. 2008; 411, 433, 485–490; 554–557). In this study, especially the 

transitions between semi-open scrubs on grass and the two forested classes were 

often considered unreliable based on visual estimations. Changes in visual appearance 

between the classes were so subtle that one could not interpret that were they caused 

by actual changes in vegetation or just by technical-semantic differences. These subtle 

vegetation differences could be caused by logging of larger trees, coppicing of 

branches, intensified shifting cultivation or annual changes in rainfall and climate. All of 

this could be interpret as natural degradation. Another explanation is that the pixel 

values in these areas set close the class borders and minor differences in the training 

areas cause them to be classified differently between the images. It might be also 

possible that the differences in the spectral resolution caused these errors. Whatever 

the explanation is, these problems made it obligatory to create two different change 

classification schemes, which eventually led to range of forest change rates instead of 

one precise figure. The gradual classification underestimates the happened changes, 

while the abrupt classification overestimates it and the real figures are probably 

somewhere between these estimations. Although, this helped to reduce the change 

detection errors, the problems were so substantial that the outcomes of this study 

should be interpreted rather as suggestive than as absolute truth. 

 

However many of these dilemmas could have been avoided by using data from a 

single sensor, such as Landsat TM (Wulder et al. 2008). Firstly, the Landsat TM is in 

one spatial resolution, thus there is no need for resampling that reduces the amount of 

information. Secondly, there are no differences in sensor calibrations or in the spectral 

resolutions. This makes images visually and spectrally comparable and allows using 

spectral change detection methods and single signature files after atmospheric 

corrections (Lu et al. 2004; Franke et al. 2006). Also when provided by USGS Landsat 

images are often in perfect spatial alignment removing the need for georectification. 

Altogether single sensor analysis would remove many of errors related to the similarity 

of the classifications. However the cross-sensor analysis methods need to be 

developed, because continuous and adequate data from single sensor is often a rarity 
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(Wulder et al. 2008). Though it is globally important that the continuity of Landsat 

mission will be guaranteed and data collection and distribution facilities are developed 

especially in Africa. 

 

If the single sensor data would solve many of these technical aspects related to change 

detection, manual digitization is able to solve these and also many problems related to 

classification as such. Manual digitization has multiple benefits as human mind is more 

able to create cognitive land cover classes than the automated techniques, semantic 

differences can be minimized with systematic use of image interpretation keys, 

differences within forests can be recognized from high resolution images, it is easier to 

georectify high-resolution images and there is no need for resampling to other spatial 

resolutions (Coppin et al. 2004; Lillesand et al. 2008: 190–250, 485–490). Automated 

classification techniques are often promoted because they should be time-efficient in 

large scale, but as relatively small island Unguja could have been easily digitized to few 

major forest categories during the time that was used to georectify, resample, create 

the class concepts, interpret unsupervised classifications, draw and modify training 

areas and post-classify the classifications (Coppin et al. 2004; Lillesand et al. 2008: 

545–591). The manual digitization would have also provided quantitatively and spatially 

significantly more accurate classification and change detection outcomes (Coppin et al. 

2004). It might be that in single sensor analysis with Landsat data the automated 

techniques could be more time-efficient than manual digitization, but these benefits are 

lost in cross-sensor analysis. Therefore I do not see any reasons why automated 

classification techniques of medium resolution data should be used instead of manual 

digitization of high resolution data in medium sized study areas if the required data is 

available. 

 

Even though single sensor or manually digitized data would be available certain 

aspects of change would still not be captured. Using land cover classifications from 

only two different years is not enough to capture the temporality of changes. As 

mentioned, changes are not always permanent and especially not in the shifting 

cultivation landscapes (Lambin et al. 2003; Käyhkö & Skånes 2006; Hett et al. 2012). 

The role of temporal deforestation can be viewed from at least two perspectives. On 

the other hand it is deforestation as any other form of deforestation. If a certain area 

used to have forest cover and it is not there now, it has deforested no matter if the 

cover will return in few years. The other approach relies on FAOs (2000) definition of 

deforestation, which argues that area needs to be without forest cover over 10 years to 

be considered deforested. Nevertheless if shifting cultivation fields are considered as 

deforestation or not, they cause problems in analysis explaining the spatial patterns of 
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the forest change process. The reasons behind spatial distribution of swidden fields are 

completely different from other deforestation types and cannot therefore be explained 

by same independent variables (Skole & Tucker 1993; Lambin 1997; Geist & Lambin 

2001: 69–71)  

 

Detecting these temporally cyclical changes would have required at least three and 

preferably four land cover classifications with 10 years interval (Käyhkö & Skånes 

2006). The change between first and the second image would be used to determine 

the recently deforested area. The change between the second and third images would 

be used to determine the new recently deforested areas and to see has the areas 

deforested between the first and the second image reforested within the 10 year period 

and if so they would be considered as temporal deforestation. The same loop would be 

continued for the change between second-third and third-fourth images, eventually 

pointing which changes have been temporal and which permanent. These change 

trajectory analyses have already been used in many similar change detection studies, 

with good outcomes (Mertens & Lambin 2000; Nagendra et al. 2003; Käyhkö & Skånes 

2006; Käyhkö et al. 2011).   

 

7.2.4. Post-analyzing the outcomes of change detection  

Using KDE as a tool for mapping the change clusters was originally chosen, because 

the idea was to map only the deforestation clusters, which would have been impossible 

with the other clustering methods (Silvermann 1986; Getis & Ord 1992). Later 

reforestation, forest improvement and degradation were also included and use of other 

methods would have been possible. Even though of this change, the KDE is still 

considered as an appropriate tool for determining the clusters of de- and reforestation. 

However it includes certain inaccuracies. Eventually it is subjective question that how 

much of the landscape the clusters can cover. In this case 10% of pixels with highest 

deforestation kernel density value were chosen as clusters, but some other may have 

chosen this threshold to be 5 or 20%, which would have created completely other 

outcomes. The tool is also sensitive to the cutoff threshold (Silvermann 1986). There 

might be a lot of deforested patches in certain area, but if these are relatively far from 

each other the area does not create a cluster with one kilometer threshold, however it 

might do so if the threshold is set to 2 or 5 kilometers.  

 

Dividing Unguja to smaller areas based on the soils and protection status provided 

significant insight to the inner variations of the island. The division was clearly justified 

as there were clear differences in the change rates and the environmental factors 

behind the changes (Mertens & Lambin 1997; Serneels & Lambin 2001). The division 
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was quite straightforward to do in Unguja as the divided areas vary from each other so 

strongly in land uses and the appropriate spatial data was available. However the 

island could be divided even further for example based on the forest vegetation type, 

human pressure and land use types. Although it might be extremely difficult to draw 

borders between these areas. The created function where changes were proportioned 

against similar changes in entire Unguja was extremely good tool to compress the 

information of the differences to a single figure.  

 

The created distance analysis showed rather well that the correlation between the used 

distance variables and deforestation is not always linear (Mertens & Lambin 1997). 

This helped to interpret the outcomes of the regression models and provided additional 

knowledge. For example although the vicinity of Zanzibar Town and roads carried no 

value in regression models, they still showed to influence forest change in distance 

analysis. The influence may just be non-linear and therefore not detected by the 

regression methods (Metsämuuronen 2008: 115–119). The distance analysis could 

have been made better by continuing them even after three kilometers, which may 

have explained why certain variables had peculiar coefficients in the regression 

analysis. 

 

The created regression model worked amazingly well, albeit it could be developed 

significantly further in many ways. As such the model has two major geostatistical 

deficiencies. Firstly, the statistical significance of regression models cannot be assured 

if the independent variables are not normally distributed, but this was not tested before 

the modeling. Variables can be modified to normal distribution with polynomial, squared 

and logarithmic transformations (Metsämuuronen 2008: 101–103)  

 

Secondly, although the spatial autocorrelation was reduced by making certain that 

similar cells were at least 1 kilometer apart from each other’s, the role of spatial 

dependency should be better acknowledged both in good and in bad. Congalton (1998) 

measured that spatial autocorrelation effected land cover of a site until 1,8 kilometers 

away from it and the Moran’s I outcomes from the test site showed that the 

phenomenon was strongly present even after 1,5 kilometers. Therefore the actions 

taken to reduce spatial autocorrelation simply may not have been enough. There are 

few options to handle the spatial autocorrelation in regression modeling, such as 

spatial error modeling, cellular automata and spatial lag modeling, all having their own 

pros and cons (Anselin 2002; Verburg et al. 2004). However, only the last is introduced 

here as possible solution.  
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Spatial lag model takes the dependent values of the nearby or neighboring cells into 

account, introduces them to the regression model as independent variables and 

calculates their regression coefficients. What is not explained by this spatial lag term is 

then explained by the other variables (Anselin 2002). The regression coefficients could 

be then used in predictive modeling with or without the spatial lag term. However either 

using or not using the term has their own downsides. Using it overestimates the 

deforestation happening near the already deforested cells, as it uses existing state 

without any knowledge of the previous situation to explain future happenings. It is like 

estimating that in the future you will have family with two kids as your neighbor based 

on data from a neighborhood where there is a family with two kids living in 90% of 

houses. Nevertheless not using the spatial lag term underestimates the spatial 

autocorrelation and presumes that the status of the neighboring cells will not influence 

the deforestation happening in the cell in the focus (Anselin 2002; Verburg et al. 2008). 

The predictive modeling done in this study follows the latter logic and it is therefore 

better explaining where fully new areas of deforestation will occur than explaining 

where all of the deforestation is going to happen.  

 

However it is also possible to measure the influence of spatial autocorrelation 

empirically and use the measured outcomes in predictive modeling. This could be done 

by having three land cover classification with the same time interval. The change 

detection outcomes of the two most recent ones would be used in the regression 

modeling, while the change happened between the first and the second classification 

would be used to determine where deforestation has happened during this period. 

When it would be known where deforestation has recently happened in the second 

image it would be possible to calculate how much deforestation happens between the 

second and third image near these recently deforested cells.  

 

Besides these geostatistical improvements the modeling could actually be improved 

with other less technical approaches. The used independent variables are rather good 

explaining the changes, but they are still far from modeling it perfectly. Therefore new 

independent variables should be included and the old ones need to be developed. As 

mentioned the mean NDVI was limited in its abilities and it should be replaced with 

categorical divisions of forest structures and vegetation types. Also the simple 

Euclidean distances could be replaced with more advanced accessibility measures as 

they have been proved better explaining land cover variations (Verburg et al. 2004). 

Also new sources of accessibility could be introduced. For example vicinity of tourist 

facilities may explain deforestation happening because spread of tourism. Kernel 

density of buildings could be replaced with population potential calculations, which not 
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just estimate how much there are buildings within certain threshold, but also takes road 

accessibility into account and measures how many people can reach certain areas in 

certain time (Verburg et al. 2004). Also different waterfronts have different meanings as 

tourism possibly spreads to near sandy beaches or areas with scenic beauty. Also the 

dependent variable could be transformed from dichotomous to continuous, such as the 

amount of deforested pixels within a cell. Also it could be disaggregated to original pixel 

size. The island could also be divided to even smaller sub-areas and deforestation 

could be explained differently in locations near Zanzibar Town, in the shifting cultivation 

or the coastal areas.  

 

One of the most intriguing developments would be to test other non-linear regression 

models. As the distance analyses and other studies have showed the correlations are 

not always linear and therefore there is a need for non-linear regression models 

(Mertens & Lambin 1997). One option to add certain non-linearity to the models would 

be to transform the distance variables with logarithmic and polynomial variations to 

resemble their line diagrams instead of feeding them in linear. Another method would 

be to add cutoff distances to variables as the distance analyses have showed that 

some accessibility measurements like distance to roads only influences until certain 

threshold. However, even if all these technical and mathematical developments would 

be done, I assume that the model would still be inadequate, as certain individual or 

communal level choices or global and regional level changes cannot ever be 

mathematically modeled, at least not in a single scale of observation. 

 

All the models produce outcomes, but it is another question how accurate these 

outcomes are. In this study the predictive modeling outcomes were only validated 

against the cells used to build the model, which creates over positive accuracy 

estimations (Metsämuuronen 121–123; Mertens & Lambin 2000). The validation could 

be improved by doing it against the cells not used in the modeling, but also this would 

create biased outcomes as the dependent variables of the cells not used are influenced 

by the spatial autocorrelation of the used cells (Congalton 1988). The change process 

might have also changed after the time period used in the regression modeling and the 

independent variables may have different influence. Therefore the only solid way to test 

the usefulness of the predictive model would be to test its outcomes against actual 

change happened in the future as has been done in multiple similar studies (Mertens & 

Lambin 1997, 2000; Geoghegan 2001; Serneels & Lambin 2001; Verburg et al. 2002;). 

This would have required a third image taken after 2009, but cloud free images did not 

exist.  
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In ideal situation the regression and predictive modeling would be done with at least 4 

images from the same satellite sensor with equal time intervals and perfect spatial 

alignment (Figure 39). This approach would allow separating temporal deforestation 

caused for example by shifting cultivation from the permanent deforestation, include 

empirically measured spatial autocorrelation into the model and allow validation of the 

outcomes. The first image would be used as a baseline situation, the change between 

Image 1 and the Image 2 would be used to determine the recently deforested areas in 

the Image 2, the change happening between Image 2 and Image 3 would be used as 

the base for the regression modeling and the change between Images 3 and 4 would 

be used to validate the predictive outcomes of the regression model. Spatial 

autocorrelation would be empirically measured based on deforestation happening 

between images 2 and 3 near the recently deforested cells of image 2. Temporal 

changes such as shifting fields would be excluded from the model with the change 

trajectory analysis so that areas that have reforested within 10 years interval are not 

considered as actual deforestation or the modeling could also be mainly focusing on 

them. The change trajectory analysis would be also used to determine has the change 

in the time interval used for regression modeling been somehow exceptional and to 

estimate is the deforestation trend generally increasing or decreasing. If the created 

model would explain deforestation sufficiently based on the validation, it could be then 

projected until the future from Image 4.      

 

 

Figure 39. Ideal structure for predictive regression modeling where Image 1 would be used to 

determine the baseline, change between images 2 and 3 in the actual regression model and the 

change between images 3 and 4 to validate the predictive modeling outcomes. The change 

trajectory analysis would be used to measure spatial autocorrelation and to remove short-term 

changes from permanent deforestation. 
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7.3. Land Change Science in forest research 

It is hard to draw boundaries between Land Change Science, Landscape Ecology and 

Political Ecology, as there are clear similarities in research topics, questions and 

methods (Jongman & Pungetti 2004: 2–33; Rindfuss et al. 2004; Turner et al. 2007; 

Turner & Robbins 2008). Nevertheless what is the used theoretical and methodological 

framework called, it provided excellent approaches for forest research. Especially 

change detections based on remotely based land cover classifications have 

revolutionized the entire fields of land cover and forest research as they provide 

quantified information about rates, patterns and directions of change (Coppin et al. 

2004; Lu et al. 2004; Pontius et al. 2004; Käyhkö & Skånes 2006). However there are 

always matters that need to be developed. Detecting change as such is an important 

action, but it is not real-time monitoring. The outcomes are often badly outdated and 

even though they can be used to create general assumptions where change has 

happened and where it is probably going to happen, it does not tell where change 

happens at this moment. Near real-time deforestation monitoring systems have been 

developed for large forest areas with low spatial resolution data, but these are not 

adequate for small and diverse surroundings, such as Zanzibar, because of their pixel 

size (Anderson et al. 2005). Hopefully in the future as the satellite sensors develop and 

data sharing policies open up there will be medium or high resolution data with high 

temporal coverage allowing continuous monitoring of the decreasing forest resources.   

 

There is also a certain methodological gap between detecting changes and connecting 

them to the proximate and underlying causes. Change can be detected in rather 

detailed accuracy, regional variations can be emphasized and happened changes can 

be easily connected to environmental factors, but eventually these analyses do not 

provide any empirical evidence about the causes behind the changes (Veldkamp & 

Lambin 2001; Verburg et al. 2004). Certainly cross-sectional sub-area analysis may 

show that there are change differences between two areas and spatial regression 

analysis may explain patterns of change with environmental factors, but differences 

between areas can be caused by thousands of different causes, which cannot be 

separated and also the environmental factors and causes are so tangled that it is 

impossible to link the changes in regression coefficients to actual causes. (Rindfuss et 

al. 2004; Verburg et al. 2004) More aspatial regression analysis using administrative 

level socio-economic statistics to explain deforestation in large study areas may show 

that changes in certain societal aspect cause changes also in forests, but even then 

the happened changes cannot be undressed from interdependencies of local context 

(Tole 2001; Verburg et al. 2004; Aguiar 2007). Many have relied connecting causes to 

process with narrative analysis based on secondary documents or expert and local 
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knowledge (Geist & Lambin 2001: 18; Verburg et al. 2004). Although these approaches 

probably provide the most reliable outcomes, I see them vulnerable to simplifications 

and repetitions of well-established “truths”.  

 

Land Change Science relies heavily on the positivist tradition and empirically measured 

observations. It is therefore eager looking explanations to changes with quantifiable 

data that can be fed into statistical modeling methods (Veldkamp & Lambin 2001; 

Rindfuss et al. 2004; Verburg et al. 2004; Turner et al. 2007). However the causes 

behind changes are so interlinked and multi-scaled that they cannot ever be separated 

or simultaneously understood at multiple scales only with the quantitative methods. 

Therefore I see it extremely important not to get stuck with single predefined 

frameworks, such as LCS, but to be pragmatically experimental. What I mean with this 

gibberish is more daring unification of measuring quantitative and explaining qualitative 

approaches. This could be done for example by using maps of empirically measured 

changes to stimulate the interviews of stakeholders to go beyond simplifications, by 

asking experts to connect environmental factors to proximate and underlying causes 

simultaneously at multiple scales and by connecting local uses to forest areas with 

PGIS methods (Fagerholm & Käyhkö 2009; Fagerholm et al. 2011, 2012).  

 

Eventually though, the question is not only about how well forest changes can be 

understood scientifically, but also about the usability of this knowledge. From my 

opinion the methods used here are unable to create the full benefits for the 

communities. Historical change detections do not please the needs of real-time 

monitoring and the statistical methods often only emphasize the already known facts, 

while true benefits are only achieved if new information, knowledge or even wisdom 

could be produced.  
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8. Conclusions 

 

 At the moment there is relatively lot of forests cover in Unguja (572 km2 & 38%), but 

majority of it is in the low-lying coral rag scrublands and agroforests.   

 

 The forest cover is declining rapidly (0,82–1,18% per year) and in 2025 there is 

going to be only 485 km2 of forests left. Besides deforestation the forests are also 

suffering from vertical degradation and spatial changes.  

 
 Deforestation is most severe in the communal indigenous coral rag forests, but also 

agroforests are decreasing. The government protected areas on the other hand are 

able to increase their forest cover.  

 
 More precisely deforestation concentrates to areas near the coastline, population 

and Zanzibar Town, while soil, elevation, vegetation and road distance differences 

are not explaining the spatial patterns of the process.  

 

 The deforestation is mainly driven by small holder farmers, but also urban dwellers, 

administration, rural communities and tourism actors are involved. Shifting 

cultivation, spreading of more permanent agriculture, urban sprawl, village growth, 

tourism developments, planned resettlement actions and logging are the main 

proximate causes. The proximate causes are linked to such underlying drivers as 

population growth, in-migration, urbanization, tourism development, economic 

growth and land tenure  

 

 Semantic concepts, their technical executions, georectification, resampling, spatial 

and spectral resolution differences caused substantial biases in the estimations. 

Many of these errors could have been solved by using only single sensor data.  

 
 The theoretical and methodological frameworks of LCS and deforestation research 

provide many usable tools for forest change research enabling detecting main areas 

of change, differences between areas and connecting changes to environmental 

causes. However these tools are limited in providing empirical evidence about the 

proximate and underlying causes of change.    
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APPENDIX 1. Field observation sheet (Niina Käyhkö & Markus Kukkonen 2011) 

ZANZIBAR –PROJECT 2011, FIELD OBSERVATION SHEET  

Site ID: ___________ Observer(s): _____________ Date: _______________ 

Photographs:______________ 

Place (shehia, village, site): ________________________________________________________ 

GPS X: GPS Y: GPS Z:  

Land cover type/class (describe): 

    

 

Topography within the site: (1) flat (2) slope (inclination N S E W) (3) undulating 

Soil type: (1) coral rag (> 75%) (2) semi-coral (~50%) (3) loose soils dominating (4) sand (5) other     

Moisture conditions:  |--------------------------------------------------| 

(circle along the gradient) dry   wet 

Other edaphic (bedrock/soil/topography/) observations of the site: 

 

 

Ground layer coverage: (1) bare ground ___% (2) grasses and herbs ___% (3) cultivated ____% 

Number of tree/scrub layers:  1 2 3    4   

Layer heights: (1) <1 m (2) 1-3 m (3) 3-5 m (4) 5-10 m (5) >10 m 

Dominating tree canopy shape: (1) wide/round (2) narrow (3) mixed 

Tree/scrub coverage: (1) open (<25%) (2) semi-open (25-75%) (3) closed (>75%)  

Spatial pattern: (1)              (2)                  (3)           (4) 

 

 

 

Dominant tree/scrub species (list): 

 

 

 

  

 

Ongoing/annual land use activities within the area?  

 

 

 

 

 

Visible evidences of past/historical land uses? (e.g. planting of trees, extraction of coral/sand etc.) 
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APPENDIX 2. Class-by-class change statistics: 

1996 class 2009 class Gradual class Abrupt class Area (km2) Area (%) 

B B Stable non-vegetated Stable non-vegetated 32,57 2,17 
B U Stable non-vegetated Stable non-vegetated 26,36 1,76 

B L-LV Revegetation Revegetation 15,66 1,04 
B S-O B Revegetation Revegetation 25,86 1,72 

B S-O G Revegetation Revegetation 11,88 0,79 
B W Reforestation Reforestation 2,16 0,14 

B C F/S Reforestation Reforestation 4,42 0,30 
U B Stable non-vegetated Stable non-vegetated 1,78 0,12 

U U Stable non-vegetated Stable non-vegetated 11,22 0,75 
U L-LV Revegetation Revegetation 0,84 0,06 

U S-O B Revegetation Revegetation 1,44 0,10 
U S-O G Revegetation Revegetation 0,82 0,05 

U W Reforestation Reforestation 0,25 0,02 
U C F/S Reforestation Reforestation 1,06 0,07 
L-LV B Devegetation Devegetation 18,33 1,22 
L-LV U Devegetation Devegetation 13,61 0,91 
L-LV L-LV Stable vegetation Stable vegetation 37,82 2,52 
L-LV S-O B Stable vegetation Stable vegetation 44,44 2,96 
L-LV S-O G Improved vegetation Stable vegetation 42,97 2,87 
L-LV W Reforestation Reforestation 4,62 0,31 
L-LV C F/S Reforestation Reforestation 14,23 0,95 
S-O B B Devegetation Devegetation 21,69 1,45 

S-O B U Devegetation Devegetation 16,95 1,13 
S-O B L-LV Stable vegetation Stable vegetation 29,12 1,94 

S-O B S-O B Stable vegetation Stable vegetation 54,58 3,64 
S-O B S-O G Improved vegetation Stable vegetation 35,44 2,36 

S-O B W Reforestation Reforestation 14,07 0,94 
S-O B C F/S Reforestation Reforestation 22,92 1,53 

S-O G B Devegetation Devegetation 9,55 0,64 
S-O G U Devegetation Devegetation 10,36 0,69 

S-O G L-LV Vegetation degradation Stable vegetation 49,35 3,29 
S-O G S-O B Vegetation degradation Stable vegetation 54,54 3,64 

S-O G S-O G Stable vegetation Stable vegetation 128,65 8,58 
S-O G W Improved forest Reforestation 16,55 1,10 

S-O G C F/S Improved forest Reforestation 55,23 3,68 
W B Deforestation Deforestation 2,84 0,19 

W U Deforestation Deforestation 3,29 0,22 
W L-LV Deforestation Deforestation 6,40 0,43 

W S-O B Deforestation Deforestation 23,27 1,55 
W S-O G Forest degradation Deforestation 11,13 0,74 

W W Stable forest Stable forest 38,50 2,57 
W C F/S Improved forest Improved forest 15,19 1,01 

C F/S B Deforestation Deforestation 6,69 0,45 
C F/S U Deforestation Deforestation 9,14 0,61 

C F/S L-LV Deforestation Deforestation 28,68 1,91 
C F/S S-O B Deforestation Deforestation 53,76 3,59 

C F/S S-O G Forest degradation Deforestation 86,51 5,77 
C F/S W Forest degradation Forest degradation 48,12 3,21 

C F/S C F/S Stable forest Stable forest 334,69 22,32 
B = Bare, U = Urban, L-LV = Low-lyinh vegetation, S-O B = Semi-open scrubs on barren, S-O G = Semi-open scrubs on  
grass, W = Woodland, C F/S = Closed forest/scrub.  
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APPENDIX 3. Land cover changes in Unguja between 1996 and 2009:
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APPENDIX 4. The cells used for regression analyses: 
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APPENDIX 5. Bivariate Pearsons correlation with two-tailed test of statistical significance for Coral rag region 

 Dist_mang 1996_ndvi Ker_buildi Dist_Stown GPF_y_n GFF_y_n Soil_type Dist_ms_rd Elev_mean 

Dist_mang 
Pearson Correlation 1 ,068* -,039 -,151** ,073* ,100** ,003 ,204** ,278** 

Sig. (2-tailed) 
 

,034 ,219 ,000 ,023 ,002 ,918 ,000 ,000 

1996_ndvi 
Pearson Correlation ,068* 1 -,110** -,256** ,190** -,016 ,040 ,244** ,114** 

Sig. (2-tailed) ,034 
 

,001 ,000 ,000 ,624 ,209 ,000 ,000 

Ker_buildi 
Pearson Correlation -,039 -,110** 1 ,012 -,122** ,038 ,017 -,219** ,467** 

Sig. (2-tailed) ,219 ,001 
 

,720 ,000 ,239 ,604 ,000 ,000 

Dist_Stown 
Pearson Correlation -,151** -,256** ,012 1 -,479** -,066* ,007 ,146** -,068* 

Sig. (2-tailed) ,000 ,000 ,720 
 

,000 ,039 ,835 ,000 ,034 

GPF_y_n 
Pearson Correlation ,073* ,190** -,122** -,479** 1 -,011 ,005 -,047 ,035 

Sig. (2-tailed) ,023 ,000 ,000 ,000 
 

,732 ,879 ,141 ,279 

GFF_y_n 
Pearson Correlation ,100** -,016 ,038 -,066* -,011 1 ,003 -,017 ,048 

Sig. (2-tailed) ,002 ,624 ,239 ,039 ,732 
 

,915 ,593 ,134 

Soil_type 
Pearson Correlation ,003 ,040 ,017 ,007 ,005 ,003 1 ,104** -,026 

Sig. (2-tailed) ,918 ,209 ,604 ,835 ,879 ,915 
 

,001 ,424 

Dist_ms_rd 
Pearson Correlation ,204** ,244** -,219** ,146** -,047 -,017 ,104** 1 ,219** 

Sig. (2-tailed) ,000 ,000 ,000 ,000 ,141 ,593 ,001 
 

,000 

Elev_mean 
Pearson Correlation ,278** ,114** ,467** -,068* ,035 ,048 -,026 ,219** 1 

Sig. (2-tailed) ,000 ,000 ,000 ,034 ,279 ,134 ,424 ,000 
 

*. Correlation is significant at the 0.05 level (2-tailed). 

**. Correlation is significant at the 0.01 level (2-tailed). 
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APPENDIX 6. Bivariate Pearsons correlation with two-tailed test of statistical significance for Deep soil region 

 Dist_mang 1996_ndvi Ker_buildi GPF_y_n GFF_y_n Dist_Stown Soil_type Dist_ms_rd Elev_mean 

Dist_mang Pearson Correlation 1 -,326** -,107* -,181** -,065 ,093 -,520** -,137** ,534** 

 Sig. (2-tailed)  ,000 ,040 ,000 ,213 ,076 ,000 ,009 ,000 

1996_ndvi Pearson Correlation -,326** 1 -,084 ,021 -,180** -,192** ,465** -,141** -,280** 

 Sig. (2-tailed) ,000  ,108 ,692 ,001 ,000 ,000 ,007 ,000 

Ker_buildi Pearson Correlation -,107* -,084 1 ,257** -,129* -,627** -,283** ,098 -,184** 

 Sig. (2-tailed) ,040 ,108  ,000 ,014 ,000 ,000 ,062 ,000 

GPF_y_n Pearson Correlation -,181** ,021 ,257** 1 -,069 -,273** -,085 ,153** ,270** 

 Sig. (2-tailed) ,000 ,692 ,000  ,184 ,000 ,103 ,003 ,000 

GFF_y_n Pearson Correlation -,065 -,180** -,129* -,069 1 ,510** ,083 ,431** ,187** 

 Sig. (2-tailed) ,213 ,001 ,014 ,184  ,000 ,110 ,000 ,000 

Dist_Stown Pearson Correlation ,093 -,192** -,627** -,273** ,510** 1 ,013 ,249** ,382** 

 Sig. (2-tailed) ,076 ,000 ,000 ,000 ,000  ,803 ,000 ,000 

Soil_type Pearson Correlation -,520** ,465** -,283** -,085 ,083 ,013 1 ,021 -,447** 

 Sig. (2-tailed) ,000 ,000 ,000 ,103 ,110 ,803  ,686 ,000 

Dist_ms_rd Pearson Correlation -,137** -,141** ,098 ,153** ,431** ,249** ,021 1 ,102* 

 Sig. (2-tailed) ,009 ,007 ,062 ,003 ,000 ,000 ,686  ,050 

Elev_mean Pearson Correlation ,534** -,280** -,184** ,270** ,187** ,382** -,447** ,102* 1 

 Sig. (2-tailed) ,000 ,000 ,000 ,000 ,000 ,000 ,000 ,050  

**. Correlation is significant at the 0.01 level (2-tailed). 

*. Correlation is significant at the 0.05 level (2-tailed). 
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