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Abstract

Distributed storage systems are studied. The interest in such system has
become relatively wide due to the increasing amount of information needed
to be stored in data centers or different kinds of cloud systems. There are
many kinds of solutions for storing the information into distributed devices
regarding the needs of the system designer. This thesis studies the questions
of designing such storage systems and also fundamental limits of such sys-
tems. Namely, the subjects of interest of this thesis include heterogeneous
distributed storage systems, distributed storage systems with the exact re-
pair property, and locally repairable codes. For distributed storage systems
with either functional or exact repair, capacity results are proved. In the
case of locally repairable codes, the minimum distance is studied.

Constructions for exact-repairing codes between minimum bandwidth
regeneration (MBR) and minimum storage regeneration (MSR) points are
given. These codes exceed the time-sharing line of the extremal points in
many cases. Other properties of exact-regenerating codes are also studied.
For the heterogeneous setup, the main result is that the capacity of such
systems is always smaller than or equal to the capacity of a homogeneous
system with symmetric repair with average node size and average repair
bandwidth. A randomized construction for a locally repairable code with
good minimum distance is given. It is shown that a random linear code of
certain natural type has a good minimum distance with high probability.
Other properties of locally repairable codes are also studied.
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Tiivistelmä

Tämä tutkielma käsittelee hajautettuja tallennusjärjestelmiä. Tällaisista
järjestelmistä on tullut hyvin kiinnostavia tutkimuskohteita datakeskuksis-
sa ja erilaisissa pilvipalveluissa säilytettävän tiedon määrän jatkuvan kasvun
vuoksi. Riippuen järjestelmän suunnittelijan tarpeista tietoa voidaan säilyt-
tää monin eri tavoin erilaisissa hajautetuissa tallennusjärjestelmissä. Tässä
tutkielmassa tarkastellaan tällaisten järjestelmien suunnittelua ja niihin liit-
tyviä rajoituksia. Tärkeimmät käsitteet ovat heterogeeniset hajautetut tal-
lennusjärjestelmät, tarkasti korjaavat hajautetut tallennusjärjestelmät ja pai-
kallisesti korjaavat koodit. Sekä funktionaalisesti että tarkasti korjaaville
hajautetuille tallennusjärjestelmille todistetaan kapasiteettituloksia ja pai-
kallisesti korjaavien koodien tapauksessa tutkitaan minimietäisyyttä.

Työssä esitellään tarkasti korjaavien koodien konstruktioita MBR- ja
MSR-ääripisteiden välillä. Monissa tapauksissa nämä konstruktiot ylittävät
ääripisteiden interpoloinnilla saavutettavan triviaalin koodin suorituskyvyn.
Tämän lisäksi myös muita tarkasti korjaavien koodien ominaisuuksia tutki-
taan. Heterogeenisessä tapauksessa päätulos on, että tällaisen tallennus-
järjestelmän kapasiteetti on aina korkeintaan symmetrisesti korjaavan ho-
mogeenisen tallennusjärjestelmän kapasiteetti, jossa tallennusyksikön koko
on sama kuin heterogeenisen järjestelmän keskimääräinen tallennusyksikön
koko ja jossa korjauskaistanleveys on sama kuin heterogeenisen järjestelmän
keskimääräinen korjauskaistanleveys. Paikallisesti korjaaville koodeille esi-
tellään satunnaiskonstruktio. Lisäksi osoitetaan, että satunnaisella lineaari-
sella koodilla, joka on tiettyä luonnollista tyyppiä, on suurella todennäköi-
syydellä suuri minimietäisyys. Myös paikallisesti korjaavien koodien osalta
tutkitaan muitakin ominaisuuksia.
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Chapter 1

Summary

1.1 Introduction

The need for systems which store huge amount of information is growing
fast in the internet era. It took about four years for Dropbox to acquire
its first 100 million users, but only 10 additional months for this number
to double [29]. The information flood has forced us to think about how we
store information. Is it safe against malfunctioning machinery? Are privacy
needs being met? How expensive is it to store data?

The main concept of this thesis is a code. By a code, we mean a nonempty
subset C of Qn where Q is a set of size q. For example, Q can be a finite
field Fq of q elements. In classical coding theory codes were used for error
correction, i.e., to protect a message against interference during the trans-
mission process. Here, the purpose of the codes is different. We are storing
information rather than transmitting it. In this case the interference is not
the problem. The problem is that the devices in which we store information
maybe become unavailable, break, or malfunction. However, despite the
probability of a device becoming unavailable is small, when the number of
devices is large, the probability of losing at least one device is too large.

Let us say we have n = 1000 devices and the probability that a device
breaks in some time frame is p = 0.001. Then, the probability of the event
that at least one of the devices breaks in the given time frame is

P(at least one of the devices breaks)

=1− P(none of the devices breaks)

=1− (1− p)n

≈0.63.

(1.1)

This is quite a large probability for a real world application. It is reasonable
to expect to lose devices in a storage system.
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Hence, protecting information against device losses is of great impor-
tance. How can one do this? Of course, replicating all the data would
protect the information quite well. Or taking two copies of the data stored
in each device would do this even better. However, this would be highly
expensive when compared to the achieved level of protection. This is the
reason one uses codes in storage process.

1.2 Codes

In this section, we introduce some basic concepts from coding theory. A
good reference for the concepts and results of classical coding theory is [59].
Recall that a code is a nonempty subset C of Qn where Q is a set of size q.
A code with only one element is called trivial and a code with at least two
elements is called nontrivial.

For codewords x,y ∈ Qn, x = (x1, . . . , xn),y = (y1, . . . , yn) define the
Hamming distance

d(x,y) = |{i | 1 ≤ i ≤ n, xi 6= yi}|.

Note that the distance function defines a metric on Qn. The weight of x is

w(x) = d(x,0).

The minimum distance of a nontrivial code C is

dmin(C) = min{d(x,y) | x ∈ C,y ∈ C,x 6= y}.

If a nontrivial code C is a subspace of Fq, it is called linear. Notice that for
a linear code C the minimum distance has a simpler expression

dmin(C) = min{w(x) | x ∈ C \ {0}}.

A linear code of length n and dimension n−dmin(C)+1 is called a maximum
distance separable (MDS) code.

How does one use codes for storage? Suppose we have a q-ary code
C of length n, size |C| ≥ 2, and minimum distance dmin(C). We have n
storing devices, say, memory sticks. We can build a storage system for a
file of size B = ⌊logq |C|⌋ in the following way: Map the elements of FB

q

onto C using any bijection f : FB
q → C. If the mapped file is (x1, . . . , xB)

and f(x1, . . . , xB) = (y1, . . . , yn) then store yj into jth storing device for
j = 1, . . . , n. Now, any n − dmin(C) + 1 can recover the stored file. Hence,
if we lose dmin(C)− 1 or fewer devices, we have not still lost the saved file.
This idea is the starting point for using codes in storage.

There are codes for different purposes and needs. The above concepts are
familiar from classical coding theory. Despite the many similarities between
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classical coding theory and the theory of distributed storage systems, there
are still big differences, beginning with the definition of a code. In the next
section we will define more exactly the most important object of this thesis,
namely, a distributed storage system.

What is essential for the systems we use for storing information? Cer-
tainly, the reliability and the ease of use in storing information in and reading
information from the system. To achieve reliability, we will distribute infor-
mation into several storing devices as described in the example above. The
particular use of the system dictates what we require of it. In most cases,
reliability is the main concern. But after that, we have still choices to make.
One must decide which is more important: storing the information using as
little space as possible, making repairs using as little bandwidth as possible,
or contacting as few devices as possible during the repair process?

Let us return to the example above where we used a code for storing infor-
mation. The drawback of the solution is the complexity of the regeneration
of the lost devices. If we lose a device we may contact any n−dmin(C)+1 sur-
viving devices (or more) and using their content build the original file again
and then reconstruct the content of the lost node. However, this procedure,
which regenerates one Bth of the original file, requires as much bandwidth
as recovering the whole file. By comparison, if we had just split the original
file into B pieces and saved some number of each of their replicas in other
devices, then the regeneration process would have required only the amount
of one Bth of the file to regenerate the lost node. One can see that both
solutions have benefits and detriments.

1.3 Distributed Storage Systems and Capacity

In a distributed storage system, the size of a stored file clearly sets re-
quirements for the system. From that point of view, a maximum distance
separable code gives an optimal solution. However, as ”hardware failure is
the norm rather than the exception” [2] in a large distributed storage system
one has to make sure that the repair process of lost nodes can be handled
fluently.

In the literature, three kinds of repair cost metrics are studied: repair
bandwidth [10], disk-I/O [53], and repair locality [20, 31, 34, 38]. This thesis
studies the first and the last of the three, namely, the repair bandwidth and
the repair locality.

When the repair bandwidth is the main concern, we assume that each
set of d nodes can repair a lost device. The value we try to minimize is the
total repair bandwidth, i.e., the bandwidth needed to repair a lost node.

In the following we will define distributed storage systems with exact
repair and distributed storage systems with functional repair. For a dis-
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tributed storage system with exact repair we follow the formal definition
given in [56] that is generalized in a natural way. The definition of a dis-
tributed storage system with functional repair is from [10].

Definition 1.3.1 (A distributed storage system with exact repair): A dis-
tributed storage system with exact repair with parameters (n, k, d), corre-
sponding to the number of nodes ( i.e. storage devices), the data regenera-
tion degree, and the node repair degree, respectively, with node size α, total
repair bandwidth γ = dβ, and storage capacity B is an injective function
f : UB → Tn with the following properties. Here, U is a set of size q > 1,
T = Uα, and V = Uβ. Write DSS = f(UB) to be the image of the function.
The minimum distance dmin of DSS is

dmin ≥ n− k + 1.

Suppose i, j ∈ [n], i ∈ S ⊆ [n] with |S| = d and j 6∈ S. For all such i, j, S we

have the functions ghelperi,j,S : T → V and hrepairj,S : V d → T with the following
properties.

If f(x) = (y1, y2, . . . , yn) and S = {i1, i2, . . . , id}, then

hrepairj,S (ghelperi1,j,S
(yi1), g

helper
i2,j,S

(yi2), . . . , g
helper
id,j,S

(yid)) = yj .

The definition of a distributed storage system with functional repair
has some differences when compared to exact-repairing codes. Again, the
parameters n, k, d, α, γ and β are as in the definition of distributed storage
system with exact repair. Instead of being a time-invariant code, the system
varies over time during the node loss/repair processes.

A distributed storage system with functional repair consists of n storage
devices (called nodes), each of size α. Each set of nodes of size k(< n)
must be able to recover the file stored in the system. The node repair
process is as follows: If we lose a node voldi we replace it with a new node
vnewi (called a newcomer) while preserving the file recovery property and
the node repairing property of the system. In the node repair process it is
assumed that each of the d nodes involved in the repair process transmits
an amount β of information to the newcomer and hence the total repair
bandwidth γ is dβ.

For the functionally repairing codes, there are two assumptions that can
be made: requiring that such a code must work for an unlimited time period,
or that it only has to be able to work some given time period. By limited or
unlimited time period we mean that it must be able to tolerate bounded or
respectively unbounded number of node failures/repairs. In the first paper of
this thesis [16] only the requirement of a bounded number of failures/repairs
is considered. However, results which dictate something to be impossible for
a bounded number of repairs/failures naturally dictate the same thing to be
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impossible for an unbounded number of repairs/failures. Notice also that
in the case of distributed storage system with exact or functional repair we
may assume that k ≤ d since if any d nodes can repair any node then they
certainly can repair k nodes and hence recover the whole stored file.

The capacity of a distributed storage system is the largest file size that
can be stored in a system with given parameters. We formally define capac-
ity as follows:

Definition 1.3.2 (Capacity): Let (Cj)j∈Z+
be a sequence of functionally re-

pairing (respectively exact repairing) codes corresponding parameters (n, k, d),
node size αj, total repair bandwidth γj = αjγ/α and storing a file of size
Bj. A file size c(n, k, d, α, γ) is said to be achievable under the assumption
of functional repair (respectively exact repair) if

lim
j→∞

Cj

αj
=

c(n, k, d, α, γ)

α
.

The capacity Cn,k,d(α, γ) of functionally repairing (respectively Cexact
n,k,d (α, γ)

of exact repairing) codes is the supremum of all achievable file sizes under
the assumption of functional repair (respectively exact repair).

It is easy to check that if s is a positive number, then

Cn,k,d(sα, sγ) = sCn,k,d(α, γ) and Cexact
n,k,d (sα, sγ) = sCexact

n,k,d (α, γ).

The pioneering work [10] by Dimakis et al. gives an elegant solution
to the problem of finding the capacity under the assumption of functional
repair. The capacity in that case is

Ck,d(α, γ) := Cn,k,d(α, γ) =
k−1
∑

j=0

min{α, (d− j)β} (1.2)

where γ = dβ as before. This result was proved using results from network
coding proved in [1] by Ahlswede et al. The two seminal observations here
were the following: When repairing a node, it is enough to transmit less
data than the size of the stored file. Also, by increasing the number of
repairing nodes the total repair bandwidth can be decreased. There is a
trade-off between the size of information stored in one node and the total
repair bandwidth. Storing more than one kth of the information in each
node can make the repair process easier.

The concept of functional repair was introduced in [10]. There, the
number of node failures/repairs was assumed to be restricted. However, the
upper bound for the number of failures was allowed to be arbitrarily large.
In [61] it was proved that the capacity under the assumption of functional
repair is achievable even under the stronger assumption that the number
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of node failures is not restricted. Notice also that unlike in the case of
functional repair it is not known if the capacity under the assumption of
exact repair depends on the number of nodes.

1.4 Our Three Main Topics

This thesis considers three topics: exact-regenerating codes, heterogeneous
distributed storage systems, and locally repairable codes. In this section
we introduce these three topics by providing the necessary definitions and
describing the subsequent results.

1.4.1 Exact-Regenerating Codes

If the size of the stored file is fixed as B, the expression 1.2 for the capacity
under the assumption of functional repair defines a tradeoff between the
node size α and the total repair bandwidth γ. The two extreme points are
called the minimum storage regeneration (MSR) point and the minimum
bandwidth regeneration (MBR) point. The MSR point is achieved by first
minimizing α and then minimizing γ to obtain

{

αMSR = B
k

γMSR = dB
k(d−k+1) .

(1.3)

By first minimizing γ and then minimizing α leads to the MBR point
{

αMBR = 2dB
k(2d−k+1)

γMBR = 2dB
k(2d−k+1) .

(1.4)

These extreme points are also achievable under the stronger assumption
of exact repair [7, 39]. For the MSR point the achievability is proved asymp-
totically and the MBR point is strictly achievable. Despite the fact that
both the MBR and the MSR points are known to be at least asymptotically
achievable also under the assumption of exact repair, very little was known
about the achievability of the interior points for a long time. Shah et al. has
shown that almost all the interior points in the functional-capacity curve
were impossible to achieve in the non-asymptotic case [46]. However, in the
asymptotic scenario the question was still open. On the other hand, con-
structions better than the trivial time-sharing of the extremal points, did not
exist either. In 2013 Tian proved that generally there exists a non-vanishing
gap between the capacities under the assumptions of exact and functional
repair [56]. This was done by studying the case (n, k, d) = (4, 3, 3). Also,
in the same year three constructions for the interior points were presented.
Namely, these were [57] by Tian et al., [43] by Sasidharan et al., and [13] by
the author.
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The extended version of the last one [14] gives two constructions with
almost the same performance, both exceeding the time-sharing line for many
triples of (n, k, d). The performances of these constructions are also close to
optimal in the case that the values n, k, and d are close to each other and
relatively large. The performance of the first of these constructions is

P 1
n,k,d

(

α,
(d− k + i)α

d− k + 1

)

=
niα

n− k + i
.

The article also studies the relationships between exact-repairing codes cor-
responding to different parameters. The first result ties together the capaci-
ties of exact-repairing codes and functionally repairing codes in the following
way

Cexact
hn,hk,hd(α, γ) ≤ Cexact

n,k,d (α2, γ2),

where h is a positive integer and

α2 = Ch,hd(α, γ) and γ2 = Ch,hd(γ, γ).

The second result generalizes the method of puncturing to storage codes
leading to the following bound

Cexact
n−1,k−1,d−1(α,

(d− 1)γ

d
) ≥ Cexact

n,k,d (α, γ)− α.

In addition to the above mentioned constructions, Goparaju et al. have
a construction [22] for the same regime. This was presented in 2014.

In their construction, Sasidharan et al. combine a combinatorial struc-
ture with MDS codes to get codes they call canonical codes, for which
k = d. These canonical codes are combined with polynomial evaluations
to get codes for the case k < d. Tian et al. exploit block designs with MDS
codes to build exact-repairing codes. In their work, MDS codes are used in
two steps. Roughly speaking, one step for node repair and another step for
file regeneration.

In contrast to these two works, in my work MSR codes are used instead
of MDS codes. The benefit of this is that MSR codes already include a non-
trivial repair menchanism, which is not the case with general MDS codes.
My construction also exploits the code homogenizing procedure introduced
in [16] that significantly shortens the construction and makes it clearer.

Goparaju et al. build codes by using methods presented in my work and
in the work by Sasidharan et al. with a new ingredient. This new component
is that they add MSR codes that are optimal for all suitable values of d to
get new codes with good performance.

In addition to Tian’s result for the case (n, k, d) = (4, 3, 3), there are some
other upper bounds for the capacity of exact-repairing codes. Sasidharan et
al. [44] have presented an upper bound for the capacity of distributed storage
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system under the assumption of exact repair. Also, Duursma presented
another upper bound for the same capacity in [12]. These all differ from the
bounds I present in [14] in that the former two bounds give explicit bounds
depending on for example node size and repair bandwidth. In contrast to
these, my bounds illustrate the relationships between storage systems with
different parameters. They also give a way to derive new codes from already
existing ones.

1.4.2 Heterogeneous Distributed Storage Systems

In the literature the most typical setup for a distributed storage system
with either exact or functional repair is homogeneous, in the sense that
each storage device stores an equal amount of information and the repair
bandwidth is also constant. This is the setup we assumed above. However,
this does not have to be the case. In many applications, for example in
data centers, this is a justified assumption but also in many applications the
assumption is too narrow. Indeed, peer-to-peer (p2p) cloud storage systems
and internet caching systems for video-on-demand applications are examples
of systems that are more natural to be modeled using the heterogeneous
setup.

In a heterogeneous setup the ith node is of size αi, and in the repair
process, when the ith node repairs the jth node and S is the set of indices
of all helper nodes, then amount of information transmitted from the ith
node to the jth node is βijS . For the average total repair bandwidth γj of
the jth node we write

γj =

(

n− 1

d

)−1
∑

S:j /∈S
|S|=d

∑

i∈S

βijS . (1.5)

For the average node size we write α = 1
n

∑n
i=1 αi and average total repair

bandwidth γ = 1
n

∑n
i=1 γi.

In a homogeneous setup we have αi = α for all i and
∑

i∈S

βijS = γ

for each subset S ⊆ {1, 2, . . . , n} \ {j} of size d. However, it does not
necessarily hold that the values βijS are fixed, i.e., βijS = β. If we also
assume that the repair is symmetric, then βijS = β for all i, j, S.

In [16] heterogeneous distributed storage systems are studied. Both ca-
pacity with exact or functional repair and capacity under assumption of
different secrecy aspects are objects of interest. The main theorems state
that homogeneous setup with symmetric repair maximizes the system ca-
pacity in all cases. This has been the underlying assumption before but
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not proved until now. In the functional-repair case the main result can be
formulated as

C ≤ Ck,d(α, γ)

where C is the system capacity, α is the average node size, and γ is the
average total repair bandwidth.

Let us next study the secrecy capacity of the system. The model fol-
lowed here is from [36]. The secrecy capacity Cs of the system is defined
to be the maximum amount of information that can be delivered to a user
without revealing any information to the eavesdropper. The eavesdropper
is assumed to be passive, i.e., she can only read data but not modify it.
This is studied under the assumption of information theoretic security. In-
formation theoretic security refers to the system’s capability to provide data
confidentially, independently of cryptographic methods. Also in the case of
secrecy capacity, the homogeneous model is shown to be the best choice.

1.4.3 Locally Repairable Codes

In many applications the number of contacted nodes in the repair process
is a crucial issue. In a distributed storage system the repair degree was
lower bounded by the file regeneration degree. However, if we relax the
requirement that any set of given size can repair a lost node, we can reduce
this number.

In the case of repair locality, the object to be minimized is the number
of helper nodes in a repair process. In this scenario it is not required that
each set of a given size can be a repairing set. Instead, it is assumed that
for each node, there exists a set of nodes that can repair it even if some of
repairing nodes are unavailable. Locally repairable codes were introduced
in [20, 31, 34]. The generalized definition of (r, δ)-locality is from [38]. Lo-
cally repairable codes are used at least in two large-scale distributed storage
systems, namely in Windows Azure Storage and in Distributed File System
RAID used by Facebook [52].

Definition 1.4.1 (A locally repairable code): Given a finite field Fq with q
elements and an injective function f : Fk

q → F
n
q , let C denote the image of f .

We say that C is a locally repairable code and has all-symbol (r, δ)-locality
with parameters (n, k, d), if the code C has minimum distance d and all the
n symbols of the code have (r, δ)-locality. The jth symbol has (r, δ)-locality
if there exists a subset Sj ⊆ {1, . . . , n} such that j ∈ Sj, |Sj | ≤ r + δ − 1
and the minimum distance of the code obtained by deleting code symbols
corresponding the elements of {1, . . . , n} \Sj is at least δ. Locally repairable
codes are defined when 1 ≤ r ≤ k.

Remark 1.4.1 Notice the different purposes of k and d in the the defini-
tions of locally repairable codes and distributed storage systems with either
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functional or exact repair. In the case of distributed storage system with
exact or functional repair, k is the data regeneration degree. In the case of
locally repairable code, it is the dimension. Also, in the case of distributed
storage system with exact or functional repair, d is the node repair degree. In
the case of locally repairable code, it is the minimum distance. We use this
unfortunately slightly misleading notation to be consistent with established
notation in the literature.

In [38, 26] it is shown that we have the following bound for a linear
locally repairable code C of length n, dimension k, minimum distance d and
all-symbol (r, δ)-locality:

d ≤ n− k −

(⌈

k

r

⌉

− 1

)

(δ − 1) + 1. (1.6)

Codes achieving this bound are called optimal. The information theoretic
analogy of the above bound for any (linear or nonlinear) code is proved in
[32] in the case δ = 2. Optimal locally repairable codes are constructed in
e.g. [52, 49, 41, 51].

Locally repairable codes are studied in [17]. The paper gives methods to
find bigger and smaller codes from already existing codes. In several cases
when the code used as a starting point is optimal, the resulting code is also
optimal. In addition, a construction to find codes that are near to optimal
is given. Using the same ideas as in the construction it is shown that almost
every matrix of certain natural type generates an almost optimal code if the
field size is large enough. One notable aspect is that these results are proved
using only some results from elementary linear algebra. However, we use the
notation of circuit from matroid theory to simplify our arguments. In this
case a circuit has a simple interpretation in the language of linear algebra.
In addition, constructing linear locally repairable codes over small fields is
studied.

There are several constructions of locally repairable codes. In [26] regen-
erating codes with locality are constructed. Tamo et al. use Reed-Solomon
codes with MDS codes to construct LRCs in [52]. In [49] MDS codes com-
bined with techniques from network coding are used to construct optimal
codes for several parameter sets. This construction and our construction
have a common property that in both constructions the generator matrix is
built iteratively by searching new column vectors that are linearly indepen-
dent with certain previous column vectors. In [51] LRCs that can be seen as
a generalization of Reed-Solomon codes are constructed. Silberstein et al.
construct LRCs by using Gabidulin codes in [48].

The main difference between our construction and the constructions
mentioned above is that we do not try to restrict the used field size. This

10



is a drawback of our construction. However, as a benefit we get very gen-
eral codes. Also, we show that by using random matrices with guaranteed
locality, we get good codes with high probability.

1.5 Conclusion

In this thesis, we study methods for constructing codes and analyzing fun-
damental limits of codes in the context of distributed storage. Distributed
storage systems with both functional and exact repair with homogeneous and
heterogeneous setup are subjects of interest. Also, locally repairable codes
with all-symbol locality are studied. For the exact-repairing distributed
storage systems, the capacity is the main quantity of study. In the case of
locally repairable codes, the largest achievable minimum distance is of great
interest.

Open problems for future study include finding the capacity of dis-
tributed storage system under the assumption of exact repair, especially
in the case that d is notably smaller than n. Also, the exact expression for
the largest achievable minimum distance for a locally repairable code with
all-symbol locality is not completely solved.
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