
 

 

Johanna Moilanen

TURUN YLIOPISTON JULKAISUJA –  ANNALES UNIVERSITATIS TURKUENSIS
Sarja - ser. AI osa - tom. 518 | Astronomica - Chemica - Physica - Mathematica | Turku 2015

ELLAGITANNINS IN  
FINNISH PLANT SPECIES — 

CHARACTERIZATION, DISTRIBUTION 
AND OXIDATIVE ACTIVITY



 

Supervised by

Professor Dr Juha-Pekka Salminen
Department of Chemistry
University of Turku
Turku, Finland

Docent Dr Petri Tähtinen
Department of Chemistry
University of Turku
Turku, Finland

Docent Dr Maarit Karonen
Department of Chemistry
University of Turku
Turku, Finland

University of Turku 

Faculty of Mathematics and Natural Sciences
Department of Chemistry
Laboratory of Organic Chemistry and Chemical Biology
Doctoral Programme in Physical and Chemical Sciences

Reviewed by

Dr Anna K. Kiss
Department of Pharmacognosy and 
Molecular Basis of Phytotherapy
Medical University of Warsaw
Warsaw, Poland 

Professor Dr Riitta Julkunen-Tiitto
Department of Biology
University of Eastern Finland
Joensuu, Finland

Opponent

Professor Dr Irene Mueller-Harvey
School of Agriculture, Policy and 
Development
University of Reading
Reading, United Kingdom

The originality of this thesis has been checked in accordance with the University of Turku 
quality assurance system using the Turnitin OriginalityCheck service.

ISBN 978-951-29-6157-3 (PRINT)
ISBN 978-951-29-6158-0 (PDF)
ISSN 0082-7002
Painosalama Oy - Turku, Finland 2015



 

ABSTRACT 

UNIVERSITY OF TURKU 
Department of Chemistry/Faculty of Mathematics and Natural 
Sciences 
 
MOILANEN, JOHANNA: Ellagitannins in Finnish plant species – 
Characterization, distribution and oxidative activity 
 
Doctoral thesis, 156 p. 
Natural Compound Chemistry 
June 2015 
 
Ellagitannins are secondary metabolites that are produced by plants. 
Among other features, they are assumed to function as plants’ 
defensive compounds against plant-eating herbivores. This thesis 
focuses on a theory, which suggests that the biological activity of 
ellagitannins is based on their tendency to oxidize at the highly 
alkaline gut conditions of insect herbivores (oxidative activity). 
 
To study the biological activities of ellagitannins, a wide variety of 
structurally different ellagitannins were purified from different plant 
species by using liquid chromatographic techniques. The structures 
were characterized with the aid of spectrometric methods. Based on 
the acquired data, it was also possible to create a scheme, which 
enables the classification and even identification of ellagitannins 
from plant extracts without the need to isolate each compound for 
individual characterization. 
 
The biological activities of ellagitannins were determined with 
methods that are based on the abilities of the compounds to 
scavenge radicals, chelate iron ions, and on their rate of oxidation at 
high pH. The results showed that ellagitannins possess oxidative 
activities both at high and neutral pH, and that their activities 
depend on structure. 
 
The occurrence, distribution and content of ellagitannins in Finnish 
plant species were also studied. The specific ellagitannin profiles of 
the studied plant species were found to correlate well with their 
taxonomic classification. 
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Ellagitanniinit ovat kasvien tuottamia sekundääriyhdisteitä, joiden 
oletetaan toimivan muun muassa kasvien puolustusyhdisteinä niitä 
ravintonaan käyttäviä kasvinsyöjiä vastaan. Tämän väitöskirjan pääpaino 
on teoriassa, jonka mukaan ellagitanniinien biologinen aktiivisuus 
perustuu niiden hapettumisherkkyyteen (oksidatiiviseen aktiivisuuteen) 
hyönteistoukkien ruoansulatuskanavan korkeassa pH:ssa. 
 
Biologisen aktiivisuuden määrittämiseksi rakenteeltaan erilaisia 
ellagitanniineja puhdistettiin eri kasvilajeista nestekromatografisin 
menetelmin. Rakenteet karakterisoitiin spektrometrisin menetelmin. 
Saadun aineiston pohjalta luotiin myös kaavio, jonka avulla 
ellagitanniinien luokittelu ja jopa tunnistaminen on mahdollista tehdä 
suoraan kasviuutteesta, ilman että yksittäisiä yhdisteitä tarvitsee eristää ja 
puhdistaa tunnistamista varten.  
 
Biologisen aktiivisuuden määrittämiseksi käytettiin menetelmiä, jotka 
perustuvat yhdisteiden radikaalinsieppauskykyyn, kykyyn kelatoida 
metalli-ioneja sekä hapettumisnopeuteen korkeassa pH:ssa. Tulokset 
osoittivat, että ellagitanniinit ovat oksidatiivisesti aktiivisia sekä 
korkeassa että neutraalissa pH:ssa, ja että niiden aktiivisuus riippuu 
rakenteesta. 

 
Lisäksi työssä tutkittiin ellagitanniinien esiintymistä suomalaisissa 
kasveissa sekä sitä, kuinka paljon ja minkä tyyppisiä ellagitanniineja eri 
kasvilajit tuottavat. Kasvien ellagitanniinikoostumusten havaittiin 
korreloivan hyvin niiden taksonomisen luokittelun kanssa. 
 
Asiasanat: Ellagitanniini, biologinen aktiivisuus, taksonomia 
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1 INTRODUCTION 

Plants metabolize hundreds of compounds in their cells. Some compounds, such 

as amino acids, sugars and proteins, are essential for the survival, growth and 

reproduction of plants and because of that are called primary compounds or 

primary metabolites. In addition to primary compounds, plants produce a wide 

variety of secondary compounds, i.e., metabolites that are not considered to be 

essential for the survival of the plant. These secondary compounds include, 

among many others, tannins, alkaloids, flavonoids, phenolic acids and terpenes 

(Crozier et al., 2006). Although these compounds do not have a role in the 

primary metabolism of a plant, they are believed to have protective functions, 

such as protection against ultraviolet radiation and plant-eating herbivores 

(Crozier et al., 2006).  

Tannin is a common word that has been (and still is) used to name plant-

based polyphenolic compounds. However, the original meaning of this word 

clearly refers to plant material that can turn hide into leather; the word tannin 

comes from the French word ‘tan’ that means powdered oak bark extract, which 

in turn has been derived from Celtic prefix ‘tann-‘ meaning oak (Haslam, 1988, 

1989; Quideau et al., 2011).  Nevertheless, the only “true” tannins can be 

divided into three subclasses: hydrolysable tannins, proanthocyanidins 

(condensed tannins) and phlorotannins.  

Hydrolysable tannins (HTs) are esters of gallic acid and a polyol, which in 

most cases is ᴅ-glucose (Quideau and Feldman, 1996). HTs are divided into two 

subgroups, i.e., gallotannins and ellagitannins, based on their structures. In both 

cases the basic structure from which they are derived is pentagalloyl glucose 

(PGG; Fig. 1). Gallotannins (GTs) are formed when additional galloyl units are 

attached to PGG via m- or p-depside bonds (Fig. 1; Haslam, 1988). Ellagitannins 

(ETs) are formed when two or more neighboring galloyl groups of PGG are 

attached to each other by carbon-carbon (C–C) bonds, thus forming the 

characteristic feature of ETs, a hexahydroxydiphenoyl (HHDP) group (Fig. 1; 

Quideau and Feldman, 1996). Proanthocyanidins (PAs) are oligo- and polymers 

of flavan-3-ols (Fig. 1; Haslam, 1988). Phlorotannins are also oligo- and 

polymers, but their basic building unit is phloroglucinol (Fig. 1; Quideau et al., 
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2011). Phlorotannins have only been detected in brown algae (Steinberg, 1995), 

while PAs and HTs are widely distributed in the plant kingdom. 

Figure 1. Example structures of tannin subgroups. Pentagalloyl glucose is a precursor 
molecule for gallotannins (hexagalloyl glucose) and ellagitannins (pedunculagin). 
Procyanidin C1 is an example of proanthocyanidins and fucodiphlorethol A is an 
example of phlorotannins. HHDP = hexahydroxydiphenoyl group. 

Tannins are considered to function as anti-herbivore agents by two different 

mechanisms: by reducing the nutritive value of the plant by precipitating 

proteins in the guts of herbivores (Feeny, 1968, 1969; Haslam, 1989) and on the 

other hand by oxidative reactions that can cause oxidative stress to herbivores 

and damage cellular components and nutrients (Appel, 1993). In the early years 

of tannin research, the focus was set on the analysis of PAs, probably because of 
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their greater protein precipitation capacity (PPC; e.g., Feeny, 1968, 1969) which 

has been the most fundamental characteristic of tannins for decades, and because 

they have been said to be easier to analyze. Although ETs have also been studied 

at some level, the extent of their research has been far behind from that of PAs. 

The turning points for ET research have been the development of 

chromatographic separation and analysis techniques and the realization of their 

biological activity (Quideau and Feldman, 1996). Especially the developments in 

reversed phase (RP) column materials and detection techniques, particularly 

those concerning diode array detection (DAD) and mass spectrometry (MS), 

have had significant impact on ET research. These improvements in isolation 

and analysis techniques together with the advantages of using nuclear magnetic 

resonance (NMR) spectroscopy has enabled the characterization of 

approximately a thousand different ET structures (Quideau et al., 2011). As a 

result, the number of studies on the biological activity of ETs has increased 

significantly. However, the majority of these researches have mainly been 

focused on measuring the activity from the human health-promoting perspective 

(reviewed by e.g., Quideau et al., 2011; Serrano et al., 2009) and not so much on 

the activities ETs may have on herbivores.  

Although the literature on ET analysis, characterization, biological activity 

and their presence in a wide variety of different plant species has increased in 

the past few decades, the information is scattered and finding comprehensive 

data on, e.g., characterization of certain type of ET structures may be difficult. 

Thus, there is still room for improvements in that field and, more specifically, in 

the field of making the characterization easier without the necessity to isolate all 

the compounds in a plant sample for individual characterizations. This comes 

particularly useful in the case of screening studies, in which numerous samples 

need to be effectively and quickly analyzed. Therefore, being able to recognize 

the compound composition of a plant sample, one can easily deduce if that 

particular plant sample is suitable for large-scale isolation of some specific 

compound of interest. This is of importance in the case of biological activity 

measurements, which usually require relatively lot of purified compounds. 
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2 STRUCTURAL FEATURES OF 
ELLAGITANNINS 

2.1 Monomeric ellagitannins 

2.1.1 Glucopyranose-based ellagitannins 

The precursor for the vast variety of different ET structures is PGG and the 

defining character of ETs is the HHDP group. Majority of the monomeric ETs 

have a ᴅ-glucose as the central polyol but ETs with e.g., a gluconic acid 

(Yoshida et al., 2009) core have also been found. ᴅ-glucose may adopt several 

conformations from which the chair (4C1) conformation is the most often found 

in ET structures, but compounds with the less energetically favored 1C4 

conformation also exist (Fig. 2). Additionally, the C-1 of the ᴅ-glucose core can 

have either α or β configuration (Fig. 2: potentillin and casuarictin, respectively). 

Already these features enable several possible ET structures to be produced by 

plants. Further, due to axial chirality of the HHDP group (Eliel et al., 1994), it 

may adopt two different configurations, namely S and R configurations. 

However, it has been noticed that in the case of 4C1-glucose-based ETs where 

the HHDP group is attached to the 2,3- and/or 4,6-position(s) of the glucose 

core, the HHDP group is in S configuration (Okuda et al., 2009). On the other 

hand, in the case of 1C4-glucose-based ETs where the HHDP group is at 2,4- 

and/or 3,6-position(s) the configuration of the HHDP goup is R (Khanbabaee 

and van Ree, 2001; Okuda et al., 2009; Quideau and Feldman, 1996). ETs which 

incorporate an HHDP group in 1,6-position are rare in nature, and so far the only 

known compounds are davidiin (Hatano et al., 1990a; Self et al., 1986), 

hellioscopinin A and carpinusin, in which the 1,6-HHDP is in S configuration 

(Fig. 2) (Quideau and Feldman, 1996; Yoshida et al., 2009). 
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Figure 2. Example structures of monomeric ellagitannins. DHHDP = 
dehydrohexahydroxydiphenoyl, NHTP = nonahydroxytriphenoyl. 
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2.1.2 Ellagitannins with modified HHDP group 

The oxidation of an HHDP group results in a dehydrohexahydroxydiphenoyl 

(DHHDP) group (Fig. 2). It has been proposed that the DHHDP group is formed 

from the HHDP group by dehydrogenation, which in turn results to a 

cyclohexenetrione structure that is stabilized by hydration of one of the ketone 

carbonyls (Luger et al., 1998; Okuda et al., 1976). In solution, the DHHDP 

group equilibrates between six- and five-membered rings, and that is why, e.g., 

the structure of geraniin is usually presented as in Fig. 2. Further oxidation of the 

DHHDP group leads to modified dehydroETs (Okuda et al., 2009). One typical 

example of these is the chebuloyl group (Fig. 2). There are still a variety of 

different oxidized substructures found, but as they are more rarely found they are 

not presented here. 

2.1.3 C-glucosidic ellagitannins 

Another special subgroup of ETs is the C-glucosidic ETs. These compounds 

have an acyclic glucose core (Fig. 2; Okuda et al., 2009). They are also the only 

ETs in which three galloyl groups can be joined together to form a 

nonahydroxytriphenoyl (NHTP) group (vescalagin in Fig. 2). C-glucosidic ETs 

can be divided into vescalagin-type and castalagin-type, depending on the 

configuration of the hydroxyl (OH) group at C-1. In vescalagin-type ETs, the 

configuration is β, and in castalagin-type ETs α. C-glucosidic ETs are prone to 

react with other compounds. FlavanoETs or complex tannins are formed when a 

C-glucosidic ET and a flavan-3-ol unit are attached to each other (e.g., 

acutissimin A in Fig. 2; Okuda et al., 2009). C-glucosidic ETs are also often 

found to be attached to an additional glycosyl unit, such as xylose and lyxose 

(e.g., grandinin in Fig. 2; Yoshida et al., 2009).  

2.2 Oligomeric ellagitannins 

The structural diversity of ETs is already versatile within the monomers, but the 

variety of different compounds becomes even wider when oligomeric ETs are 

taken into account. Until recently, the largest oligomeric ETs isolated and 

purified were pentamers (Yoshida et al., 2005), but with the aid of modern mass 
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spectrometric methods, even an undecameric ET has been characterized 

(Salminen et al., 2011). The oligomerization of monomeric ETs occurs usually 

either between two galloyl groups or between a galloyl group of the other 

monomer and an HHDP group of the other monomer via an ether (C–O–C) 

linkage (Okuda et al., 2009). C-glucosidic ETs may also oligomerize through 

carbon-carbon (C–C) bonds (Okuda et al., 2009). 

2.2.1 Oligomers linked via dehydrodigalloyl groups 

Oligomeric ETs with dehydrodigalloyl linkages are formed when two 

monomeric ETs are bound to each other via ether bonds between two galloyl 

groups. One galloyl group serves as an O-donating group, i.e., one of the OH 

groups of the galloyl group forms the ether linkage to the carbon atom of another 

galloyl group. Depending on the position of the ether bond, the group is called 

either a dehydrodigalloyl group (m-GOG) or an isodehydrodigalloyl group (p-

GOG). The first oligomeric ET isolated was agrimoniin (Fig. 3; Okuda et al., 

1982a), which possesses the m-GOG group.  

2.2.2 Oligomers linked via valoneoyl and sanguisorboyl groups 

These linking units are most frequently found from oligomeric structures (Okuda 

et al., 2009). In a valoneoyl linkage, the other monomer donates one of the OH 

groups in an HHDP group to the ether bond and the other monomer accepts this 

bond to its unsubstituted galloyl group carbon atom. This is also referred to as a 

DOG-linkage (Okuda et al., 2009). Again, there are different possibilities how 

the linkage can be formed: in the valoneoyl group, the bond is formed from the 

m-position of the HHDP group, as in rugosin D (Fig. 3; Hatano et al., 1990b; 

Okuda et al., 1982b). In a tergalloyl group, the ether bond is formed from the p-

position of the HHDP group. A special modification of the valoneoyl group 

linking unit are macrocyclic ETs, in which two HHDP groups are coupled to two 

galloyl groups to form two valoneoyl groups as in oenothein B (Fig. 3; Hatano et 

al., 1989a). In a sanguisorboyl linkage, the OH-donating group is the galloyl 

group and the HHDP group accepts the bond. This is also referred to GOD-

linkage and is found, e.g., from sanguiin H-6 (Fig. 3; Nonaka et al., 1982). 
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2.2.3 C-glucosidic oligomers 

Most of the reported C-glucosidic ET oligomers are formed via C–C bonds 

between the C-1 of the sugar moiety of the other monomer and the HHDP or 

galloyl group of the other monomer (Fig. 4 roburin A; Hervé du Penhoat et al., 

1991). It is worth noting that in these oligomers, the C-1 participating to the C–C 

bond in most cases possesses the β-orientation, which means that this monomer 

is of vescalagin-type (Yoshida et al., 2009). However, there are some exceptions 

to this rule. These exceptions rise from the fact that the oligomerization can also 

take place at other parts of the structure. Examples of these kinds of ET 

structures are cocciferin D2, which is composed of a C-glucosidic ET 

(castalagin) and a glucopyranose-based ET (casuarictin) (Ito et al., 2002) and 

salicarinins A–C, which are composed of two C-glucosidic ETs 

(vescalagin/castalagin and stachyurin/casuarinin pairs; Fig. 4) (Piwowarski and 

Kiss, 2013). In both of these cases, the oligomerization occurs via a valoneoyl 

(m-DOG) group. 

 

 

Figure 4. Structural examples of C-glucosidic ellagitannin oligomers. 

Structural Features of Ellagitannins
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3 ANALYSIS, PURIFICATION AND 
CHARACTERIZATION OF ELLAGITANNINS 

In the early stages of ET research, the main methods for analysis and 

characterization were paper chromatography, NMR spectroscopy, different 

colorimetric methods (sodium nitrite, rhodanine and potassium iodate assays) 

and hydrolysis (e.g., Gupta et al., 1982; Haddock et al., 1982a). However, the 

resolution of paper chromatography is poor (Okuda et al., 1979; Scalbert et al., 

1990), and the specificity and accuracy of the colorimetric methods are 

questionable (Waterman and Mole, 1994). The hydrolysis, on the other hand, is 

time-consuming and laborious as each hydrolysis product has to be purified and 

characterized separately. Later, especially the colorimetric methods and 

hydrolysis have been replaced by other methods, such as high-performance 

liquid chromatography (HPLC) coupled to a diode array detector (DAD) or 

different mass detectors. Still, NMR spectroscopy is the most widely used 

method for the characterization of purified compounds and with the aid of 

circular dichroism (CD) spectroscopy the absolute configuration of the 

compounds can be obtained. 

3.1 Methods for analyzing ellagitannins 

3.1.1 Colorimetric assays 

The rhodanine assay (Inoue and Hagerman, 1988) is a specific method for the 

determination of gallic acid. Thus, this method is applicable for the detection of 

both types of hydrolysable tannins, i.e., GTs and ETs. In the reaction, esterified 

gallic acid groups are hydrolyzed to free gallic acid, which then reacts with 

rhodanine to give a gallic acid-rhodanine complex whose absorbance can be 

measured spectrophotometrically at 518 nm (Inoue and Hagerman, 1988). The 

shortcoming of the assay is that two separate determinations have to be 

performed: one that is made before the hydrolysis and second that is made after 

the hydrolysis. The first measurement will reveal if the sample contains free 

gallic acid and this result is subtracted from the final results after the hydrolysis 
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to obtain the amount of esterified gallic acid residues (Inoue and Hagerman, 

1988). Another shortcoming is that the method does not distinguish GTs from 

ETs, since it only detects gallic acid. Thus, if plant extracts are analyzed, one has 

to use other methods to find out whether the samples contain ETs or not.  

The potassium iodate (KIO3) assay (Bate-Smith, 1977) detects both gallic 

acid and ellagic acid. However, the method is sensitive to timing and 

temperature, and in addition, to side reactions and formation of precipitates 

(Bate-Smith, 1977; Waterman and Mole, 1994). The method was later optimized 

by Hartzfeld et al. (2002) for the detection of gallic acid.  A more specific assay 

for the determination of ETs is the sodium nitrite (NaNO2) assay (Bate-Smith, 

1972; Wilson and Hagerman, 1990). In this method, ETs are detected from a 

plant sample by hydrolyzing the sample in acidic conditions and by applying 

NaNO2 solution to obtain blue-colored solution, which indicates the presence of 

ellagic acid (Bate-Smith, 1972). However, there are several problems concerning 

the analytical conditions. These include long hydrolysis time, the use of anoxic 

reaction conditions, the use of pyridine and the need to use absolutely clean 

glassware (Waterman and Mole, 1994; Wilson and Hagerman, 1990). 

3.1.2 Chromatography 

Before the development of HPLC, paper chromatography was used for analytical 

separations. The detection of ETs was achieved by spraying the paper with color 

reagents, such as a solution consisting of nitrous acid, ice-cold 10 % NaNO2 and 

glacial acetic acid solution, which revealed ETs as rose-red spots that turned 

rapidly through green, brown and purple to indigo-blue (Gupta et al., 1982). 

However, as the liquid chromatographic equipment evolved, this method was 

quickly replaced. 

HPLC can be regarded to be the most sensitive and comprehensive method to 

determine phenolic compounds from plant samples. Majority of ET analyses are 

nowadays performed with RP-HPLC. In the RP-HPLC, the column material is 

nonpolar and widely used materials include silica to which octadecyl (C18) 

groups are bound. Elution is performed with relatively polar solutions, usually 

with water containing some acid [e.g., formic acid (HCOOH) or o-phosphoric 

acid (H3PO4)] and acetonitrile (ACN) or methanol (MeOH). The acid is added to 
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the eluent(s) for preventing ionization of compounds, and thus for improving the 

chromatographic separation. Various analysis conditions and column materials 

have been reviewed by, e.g., Arapitsas (2012). 

The latest achievement in the development of LC technology is the ultra-

high-performance liquid chromatography (UHPLC). The development of ultra-

high pressure pumps and sub-2 µm particles in column materials have had a 

significant impact on the separation, speed and efficiency of LC analyses 

(Motilva et al., 2013). These improvements have enabled 5- to 10-fold faster 

analysis times, better resolution, higher sensitivity and reduced solvent 

consumption in comparison to HPLC (Motilva et al., 2013). 

In addition, other kinds of column materials that are based on hydrophilic 

interactions (HILIC) have been developed. HILIC is referred to be a variant of 

normal phase (NP)-HPLC in which the mobile phase resembles that used in RP-

HPLC (Buszewski and Noga, 2012). It is most applicable for those compounds, 

which were earlier analyzed by NP-HPLC. 

3.2 Purification methods 

3.2.1 Gel chromatography 

Sephadex LH-20 (hydroxypropylated dextran) gel chromatography is a widely 

used method for fractionation of plant crude extracts and in pre-purification of 

ETs. The choice of used elution solutions varies depending on the target 

molecules under investigation. For ETs, usually aqueous alcoholic [ethanol 

(EtOH) or methanol (MeOH)] and/or aqueous solutions of acetone (Me2CO) are 

the most frequently used ones (Kashiwada et al., 1992; Pfundstein et al., 2010; 

Salminen and Karonen, 2011; Scalbert et al., 1990). Since ETs are adsorbed 

relatively tightly on the gel, gradual decrease of the elution solvent polarity, e.g., 

from an alcoholic solution to an acetone solution, provides good separation of 

different ET structures. In a typical procedure the sample is first dissolved in 

water and applied to the column. The elution is started with water followed by 

aqueous methanol (Kashiwada et al., 1992) and finally with aqueous acetone 

solutions (Salminen and Karonen, 2011). Other gel materials, such as Toyopearl 
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HW-40 F (e.g., Fukuda et al., 2003; Okuda et al., 1986a, b; Piwowarski et al., 

2014; Piwowarski and Kiss, 2013;) which is a vinyl polymer resin (Okuda et al., 

1989), MCl CHP-20P and Fuji gels are used in addition to or instead of 

Sephadex LH-20 purification (e.g., Ishimaru et al., 1987; Kashiwada et al., 

1992). The fractions obtained from the crude extract usually require one or more 

additional fractionations before the final purification by other methods, such as 

preparative RP-LC. 

3.2.2 Preparative RP-LC 

In most cases, the final purification of individual ETs is achieved by preparative 

RP-LC. The preparative RP-LC purification is often performed using aqueous 

methanol or aqueous acetonitrile solutions as elution solvents (e.g., Pfundstein et 

al., 2010; Piwowarski et al., 2014; Piwowarski and Kiss, 2013; Puech et al., 

1999; Quideau et al., 2004). There are several features that affect the 

effectiveness of the purification step. For example, resolution is affected by the 

solvent into which the sample is dissolved. Water is the best choice, since 

organic solvents may cause peak multiplication that results from the 

autoassociation of polar compounds in organic solvents due to their limited 

solubility (Scalbert et al., 1990). In some specific cases, such as in ETs which 

contain the DHHDP group, alcoholic organic solvents (Hatano et al., 1988a) and 

acetone (Tanaka et al., 1992) may cause formation of adducts. These adducts 

affect the chromatography and naturally, the structures of ETs. When 

acetonitrile is used as the eluent, peak multiplication is not observed (Hatano et 

al., 1988a). Addition of an acid into the eluent solution is recommended to 

prevent ionization, but it should be removed to prevent hydrolysis of the purified 

ETs (Puech et al., 1999; Scalbert et al., 1990). 

3.2.3 Droplet counter-current chromatography and centrifugal partition 
chromatography 

Other fractionation methods include droplet counter-current chromatography 

(DCCC) and centrifugal partition chromatography (CPC).  DCCC’s advantage is 

that it does not contain a solid phase on which the ETs could adsorb. The 
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apparatus (Fig. 5) consists of a set of columns that are filled with the stationary 

phase. The columns are attached to each other by tubing. The sample is first 

dissolved in either of the phases or in a mixture of these and is then applied to a 

sample chamber (Hostettmann, 1980). The mobile phase is immiscible with the 

stationary phase, and it is pumped into the system as droplets. The sample 

molecules move with the mobile phase and are partitioned between the phases 

according to their partition coefficients. Finally, the partitioned compounds end 

up to the fraction collector (Hostettmann, 1980; Ogihara et al., 1976; Tanimura 

and Ito, 1974).  

 

 

Figure 5. Schematic illustration of the operating principle of droplet counter-current 
chromatography in the ascending mode. The mobile phase is pumped throught the 
sample column and inserted into the first column from the bottom. A steady stream of 
droplets are formed. When the droplets reach the top of the column, they are delivered to 
the bottom of the next column, and the droplet formation begins again. Adapted from 
Hostettmann (1980). 

CPC, also known as centrifugal counter-current chromatography, is also 

based on partition between two liquid phases (Hostettmann and Marston, 1990). 

In CPC, a centrifugal force is applied that allows faster separation when 
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compared to that of DCCP and in addition, a wider range of solvent systems are 

applicable because there is no need for droplet formation (Hostettmann and 

Marston, 1990). The instrument consists of a series of cartridges located at the 

circumference of a centrifuge rotor with their longitudinal axes parallel to the 

direction of the centrifugal force. The cartridges are connected to each other as 

in DCCC (Hostettmann and Marston, 1990). CPC is faster than DCCC (Okuda 

et al., 1986b) which results in lower consumption of solvents and evaporation 

times (Okuda et al., 1989). In addition to other ETs (Okuda et al., 1986a, b; 

Okuda et al., 1987), CPC has been found to be particularly efficient in the 

separation of oligomeric ETs from each other (Okuda et al., 1989). These 

methods have also been widely used in isolation of other secondary metabolites 

(reviewed by Marston and Hostettmann, 1994). 

3.3 Characterization methods 

3.3.1 Analysis of hydrolysis and derivatization products 

Hydrolysis products can be used to aid the structure characterization of an 

unknown ET. Hydrolysis in boiling water or in aqueous acid (also by tannase 

enzyme) yields different kinds of hydrolysis products depending on the structure 

of the ET. These include, e.g., gallic acid (from esterified galloyl groups), ellagic 

acid (from HHDP groups), valoneic acid dilactone (from valoneoyl group), 

brevifolincarboxylic acid (from DHHDP group) and other partially hydrolysed 

ET structures (e.g., Gupta et al., 1982; Haddock et al., 1982a, b; Haslam, 1989; 

Hatano et al., 1990b; Tanaka et al., 1990). The identification of hydrolysis 

products is achieved by purification of individual hydrolysis products with 

different chromatographic methods (e.g., Sephadex LH-20 or silica gel) and 

subsequent NMR measurements. Methylation, acetylation, methanolysis and 

reactions with bases have also been used in characterizations (e.g., Hatano et al., 

1989b; Ishimaru et al., 1987; Okuda et al., 1976; Tanaka et al., 1990). Again, the 

products have been purified chromatographically and studied with NMR. 

Reactions with o-phenylenediamine that result in phenazine derivatives of 

corresponding ETs, have also been used to aid the characterization. However, 
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phenazine derivatives can be unstable and decompose before the characterization 

is performed (Tanaka et al., 1992).  

3.3.2 UV/Vis spectrum and chromatographic behavior 

By using DAD [also photodiode array detector (PDA)] for the detection of ETs 

in chromatographic analyses, a significant advantage over single wavelength 

detectors can be achieved, since it enables multiple wavelengths to be monitored 

at the same time (Waterman and Mole, 1994). As a result, the UV spectrum for 

each peak in the chromatogram can be obtained. It would be highly informative 

if the UV spectra were presented in the publications, but this is very seldom 

done. Instead, the UV data are generally reported by presenting the 

wavelength(s) at which the absorption maxima are observed (see Määttä-

Riihinen et al., 2004; Salminen et al., 1999, 2011; Silva et al., 2000 for 

exceptions). 

The retention order of ETs is also a very informative characteristic that could 

be more effectively used in the characterization of ETs, as has been realized in 

the case of other phenolic compounds, such as anthocyanidins, 

proanthocyanidins and flavonoids (e.g., Santos-Buelga and Williamson, 2003). 

Of course, it has to be kept in mind, that the retention times of compounds in LC 

analyses are affected by several factors, e.g., the equipment, the column 

material, the elution solvents and the flow rates used. Despite the features listed, 

there are general characteristics that are universal, regardless of the equipment 

used. Furthermore, the retention order of compounds remains usually unchanged 

between different LCs and columns. 

Those glucopyranose-based ETs, which have a free -OH group at C-1, show 

two peaks in their chromatogram. This results from the α and β anomers that are 

usually present almost at 1:1 ratio (Hatano et al., 1988a). The presence of these 

kinds of ETs, e.g., pedunculagin (Fig. 1), can be verified by their reaction with 

sodium borohydride (NaBH4) that reduces the hemiacetal group at C-1 and 

results as one peak in the chromatogram. Those ETs that are acylated, i.e., 

galloylated at C-1 are not affected by the treatment with NaBH4 (Hatano et al., 

1988a; Okuda et al., 1989). 



Analysis, Purification and Characterization of Ellagitannins 

23 
 
 

The number of galloyl groups in the ET structures affects their retention: the 

more there are free galloyl groups the later the ET will elute as the 

hydrophobicity of the ET increases (Tanaka et al., 1997). Likewise it can be said 

that the more there are HHDP groups, the earlier the ET will elute as the 

hydrophobicity of the ET decreases (Tanaka et al., 1997). Thus, the elution order 

of ETs is correlated with their solubility in water that is expressed by the water-

octanol partition coefficient (Kow). 

3.3.3 Mass spectrometry 

Mass spectrometry (MS) is an important tool in the characterization of ETs. 

Since ETs are highly polar, thermally labile and have poor volatility, a gas 

chromatograph coupled to a mass spectrometer (GC-MS) is not practical in ET 

analysis. However, GC-MS has sometimes been used to aid the characterization 

of hydrolysis products of ETs after trimethylsilylation (Hatano et al., 1990c; 

Yoshida et al., 1991a). Instead, LC-MS is a very practical and convenient tool to 

characterize ETs. This has been enabled by the development of electrospray 

ionization (ESI) interface between the LC and the MS. 

Ionization techniques 

The principal mechanism by which the ions to be analyzed are produced in the 

ESI source is as follows: the eluent from the LC is introduced to the ESI source 

by a capillary, to which a voltage of 3–4 kV (positive or negative depending on 

the ionization mode used) is applied (El-Aneed et al., 2009; Westman-

Brinkmalm and Brinkmalm, 2009a). At the end of the ion-source, i.e., the 

nozzle, an opposite charge relative to that of the needle is applied (Westman-

Brinkmalm and Brinkmalm, 2009a). The electric field at the needle tip charges 

the surface of the flowing liquid and a so-called Taylor cone is formed (Fig. 6). 

The cone is enriched with positive or negative ions from which charged droplets 

are ejected by the electric field, dispersing it into a fine spray of charged 

droplets. At the same time, a heated gas flow [usually nitrogen (N2)] is applied 

into the ion source that evaporates the solvent from the droplets and decreases 

their diameter (Westman-Brinkmalm and Brinkmalm, 2009a). As a result, the 
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charge density on the surface of the droplets increases until the charge repulsion 

and surface tension becomes so large that the droplets explode into smaller 

droplets. This repeats sequentially until the droplets are so small that ions can be 

desorbed from it into the ambient gas, from which they are directed to the mass 

analyzer (Fenn et al., 1989; Niessen and Tinke, 1995). 

 

 

Figure 6. Schematic of an electrospray ionization source. Adapted from Westman-
Brinkmalm and Brinkmalm (2009a). 

The advantages of ESI are high droplet charge-to-mass ratios, which result in 

increased analytical sensitivity and extensive multiply charging of ions that 

enables the analysis of large molecular weight compounds, e.g., proteins (Fenn 

et al., 1989). In ET analysis, the multiple charging of ions in ESI and the 

availability of high resolution mass analyzers (e.g., time-of-flight (TOF) 

analyzer) have enabled the characterization of new ET oligomers (up to 

undecamers) that was not possible earlier (Karonen et al., 2010; Salminen et al., 

2011). 

Another widely used ionization technique is the matrix-assisted laser 

desorption ionization (MALDI), which is particularly useful in protein, DNA, 

lipid and glycoconjugate studies (El-Aneed et al., 2009). In MALDI, ions are 

desorbed from the solid phase, i.e., from the matrix. The dissolved sample is 

mixed with a suitable matrix material, which is then dried and results in the 

formation of crystallized matrix-analyte mixture. When a laser beam (usually N2 

laser at the wavelength of 337 nm) is directed to the matrix-analyte crystal, the 

matrix is excited and transfers its energy to the analyte molecules resulting in the 
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ionization and desorption of the analyte ions into the gas phase (El-Aneed et al., 

2009). The difference between ESI and MALDI is that with MALDI mainly 

singly charged ions are formed (El-Aneed et al., 2009). The mass range of 

MALDI is dependent on the analyzer used, but proteins with masses up to 1 

MDa have been succesfully analyzed with MALDI-TOF-MS (Westman-

Brinkmalm and Brinkmalm, 2009a). 

Before ESI, methods such as fast atom bombardment (FAB) were used to 

confirm the molecular weight of isolated ETs and to obtain the molecular 

formula (e.g., Hatano et al., 1990c; Ishimaru et al., 1987; Yoshida et al., 2000). 

In FAB, the sample is dissolved into a liquid matrix, e.g., glycerol. Then the 

sample is bombarded with energetic atoms, such as argon or xenon, with a 

kinetic energy of ~10 keV. The atom impact initiates a cascade of collisions 

between the impacting particles and atomic nuclei of the sample, resulting in the 

ejection of neutral molecules and ions (Westman-Brinkmalm and Brinkmalm, 

2009a). In ET analysis, matrices such as glycerol (Self et al., 1986) and 

hexamethylphosphoric triamide-glycerol (1:1, v/v) (Isobe et al., 1989) have been 

used with a xenon beam. 

Mass analyzers 

After ionization, the ions formed need to be analyzed. Two most commonly used 

mass analyzers in ET analyses are the quadrupole (Q) and TOF analyzers. 

However, quadrupole ion trap (QIT) and Orbitrap analyzers are becoming more 

common as well (e.g., Grace et al., 2014; Granica et al., 2012, 2014; Hager et al., 

2008; Regueiro et al., 2014). 

The quadrupole mass analyzer is composed of four rods (Fig. 7). A direct 

current (DC) potential (U) is applied to two of the rods and an alternating radio-

frequency (RF, ω) potential (V) to the other two. Opposite rods are connected to 

each other electrically as pairs, and these pairs have (at any given time) same 

potentials, but of opposite sign (Westman-Brinkmalm and Brinkmalm, 2009a). 

The ions are moving towards the quadrupole due to the electric field and to the 

direction of opposite charge (i.e., negatively charged ions towards positively 

charged rods and vice versa). However, the polarities of the rods are 

interchanged continuously, which prevents the ions from striking the rods. As a 
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result, only ions with an appropriate mass-to-charge (m/z) ratio will pass towards 

the detector. The remaining ions will collide with one of the rods. By changing 

the V, U and ω values, transmission of various ions towards the detector with 

different m/z values can be obtained (El-Aneed et al., 2009; Westman-

Brinkmalm and Brinkmalm, 2009a). The advantages of quadrupole analyzers are 

low cost, relatively small size, robustness and ease of maintenance (El-Aneed et 

al., 2009). The drawbacks include limited mass range, typically up to 2000 Da 

(Westman-Brinkmalm and Brinkmalm, 2009a) and low resolving power (El-

Aneed et al., 2009a). 

Figure 7. Representations of a quadrupole (A) and a quadrupole-time-of-flight (B) mass 
analyzers. 

The other commonly used analyzer, TOF, is one of the simplest: it relies on 

the free flight of the ions in a tube before reaching the detector (Fig. 7). The 

main advantage of TOF is that all the ions formed are also detected. The 

separation of different ions is based on their mass: the lighter the ion, the more 

quickly it will reach the detector and the heavier the ion, the slower it will reach 

the detector. The resolving power of TOF can be enhanced with a reflector (an 

electrostatic ion mirror) that changes the path of the ions within the TOF. Those 

ions having higher kinetic energy will penetrate deeper into the mirror and hence 

ions will be gradually repelled, improving the resolution (El-Aneed et al., 2009). 

Another factor is the tube length: when reflector is used, the ions travel a longer 

Collision 
cell 
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path, thus resulting in better resolution and more accurate mass measurements 

(El-Aneed et al., 2009). Two or more reflectors can also be arranged in series, 

which enhances the mass resolving power even more (Westman-Brinkmalm and 

Brinkmalm, 2009a). The advantages of TOF analyzers include unlimited mass 

range (in theory) and the speed of the analysis (Westman-Brinkmalm and 

Brinkmalm, 2009a). A major drawback of TOF analyzers is their low 

quantification capability (Westman-Brinkmalm and Brinkmalm, 2009a). 

QIT is based on the same principle as a Q analyzer, but its geometry is 

different (Westman-Brinkmalm and Brinkmalm, 2009a): the quadrupoles are 

arranged so that they form a cylinder (can also be arranged linearly as in Q) into 

which the ions are trapped and stored. The mass spectrum is obtained by ejecting 

ions from the trap by changing the RF voltage. QIT is particularly useful in 

tandem mass spectrometry (MS/MS) and multistage mass spectrometry (MSn), 

since ions with particular m/z can be stored inside the trap for consecutive 

fragmentations. Drawbacks include low mass accuracy and limited dynamic 

range due to which it is not good for quantification (Westman-Brinkmalm and 

Brinkmalm, 2009a). In Orbitrap analyzer, the ions are trapped around a central 

electrode by applying an electrostatic field between the inner and outer 

electrodes, as well as between the end caps (Fig. 8) (Westman-Brinkmalm and 

Brinkmalm, 2009a). The ions move and oscillate in stable trajectories around the 

central electrode (Westman-Brinkmalm and Brinkmalm, 2009a). The frequency 

of the harmonic axial oscillation can be measured by image current detection 

(Gross, 2011) and as a result a sine wave for each m/z value is obtained. The 

image current signal is then translated into frequency domain signal by Fourier 

transform (Gross, 2011). This enhances the resolution and the mass accuracy of 

Orbitrap when compared to those of QIT (Westman-Brinkmalm and Brinkmalm, 

2009a). 
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Figure 8. Schematic presentation of an Orbitrap analyzer. 

By combining mass analyzers, e.g., a quadrupole with another quadrupole or 

with a TOF analyzer (Fig. 7), it is possible to do MS/MS. In these cases, the 

MS/MS method is called tandem-in-space, as the ions move from one part of the 

instrument to another. In the case of QIT, the method is called tandem-in-time, 

since the trapping, isolation, fragmentation and detection of selected ion(s) is 

performed in the same physical device (Westman-Brinkmalm and Brinkmalm, 

2009b). Basically MS/MS relies on the selection of a specific ion, which is then 

subjected to dissociation and subsequent production of fragment or product 

ion(s) that are detected. When three quadrupoles are combined, it is called a 

triple quadrupole (QqQ or TQ) instrument. The second quadrupole (q), which is 

in fact usually a hexapole or an octapole refers to a collision cell, in which the 

fragmentation of the selected ion is achieved (Westman-Brinkmalm and 

Brinkmalm, 2009b). When MS/MS analysis is performed with a TQ instrument, 

the process is as follows: the selected ion is filtered at the first quadrupole (Q1) 

from which it continues to the collision cell (q). A continuous stream of inert 

gas, e.g., helium, N2, argon or xenon, is supplied to the collision cell and when 

the ions collide with the gas (as well as with each other), some of the kinetic 

energy of the gas will transfer to the ions, causing their fragmentation (the 

process is called collision-induced dissociation, CID). The fragments are then 

analyzed at the third quadrupole (Q2). The basic principle of an MS/MS analysis 

in a quadrupole-time-of-flight (Q-TOF) spectrometer is the same as with TQ, the 

only difference being that the analysis of fragments is achieved with a TOF 

analyzer instead of the Q. Usually Q-TOF instruments are equipped with an 

additional quadrupole before the Q1 as an ion focusing device to provide 

collisional cooling of the ions so that the quality of the ion beam gets improved. 

This quadrupole is referred to as q0 (El-Aneed et al., 2009). 
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The advantages of Q-TOF instruments include ease of operation, higher 

resolution and higher mass accuracy when compared to TQ (Westman-

Brinkmalm and Brinkmalm, 2009b). However, the TQ instruments are favored 

in quantitative studies, because they have better linear dynamic range and 

because the sensitivity for quantification of targeted compounds is better than 

with Q-TOF (El-Aneed et al., 2009; Westman-Brinkmalm and Brinkmalm, 

2009b). 

The mass spectra of ETs typically exhibit the molecular ion [M–H]– (in 

negative ionization mode) and some characteristic fragment ions. If the ET 

contains galloyl groups, typical fragment ions observed are those in which a 

galloyl group [M–152]– or a gallic acid group [M–170]– has been lost. Another 

typical fragment that is observed for ETs is the loss of an HHDP group. It is 

observed as a deprotonated ellagic acid [M–H]– at m/z 301, since the HHDP 

group forms a lactone spontaneously (Self et al., 1986). In the mass spectra of 

dimeric ETs, the molecular ion [M–H]– is usually obtained. In addition, the 

spectra are usually characterized by a doubly charged molecular ion [M–2H]2–, 

which can be recognized from the isotopic peaks that are separated by 0.5 Da 

from each other (Self et al., 1986).  

3.3.4 Nuclear magnetic resonance spectroscopy 

The ultimate method for structure determination is NMR spectroscopy. As the 

name suggests, this technique relies on the magnetic resonances of nuclei that 

are brought about by applying electromagnetic radiation (radio frequency) in a 

form of pulses to a sample inside a powerful static magnetic field (Butler, 2008; 

Waterman and Mole, 1994). The advantage of NMR is that it provides 

constitutional, configurational and conformational information (Balci, 2005). 

The basic principle of operation is that some atomic nuclei are able to take up 

electromagnetic energy at characteristic frequencies to attain a higher resonance 

state. As this excitation relaxes back to the initial state, the emitted radiation is 

measured and transformed into a spectrum by Fourier transform (Butler, 2008; 

Waterman and Mole, 1994). The operating frequencies of NMR spectrometers 

can vary from 60 MHz to 1 GHz. Usually the frequencies of the equipment used 

in ET characterizations are in the range of 400–600 MHz.  
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Those isotopes, which are part of basic NMR measurements, are proton (1H) 

and carbon (13C) measurements. A 1H measurement requires typically a limited 

amount of sample (0.5–1 mg), whereas the natural abundance of 13C is only 1 %, 

and thus a 13C measurement requires much more sample (e.g., a 10 mg sample 

relates only to 0.1 mg as far as the 13C nuclei are considered). The measurements 

are usually performed using solution samples (although solid-state NMR 

experiments can also be performed). The solvents must be deuterated, i.e., the 1H 

nuclei of the solvent have been replaced by 2Hs (e.g., methanol-d4, D2O, 

acetone-d6, CDCl3), because the 1Hs of the solvent resonate at similar 

frequencies as the 1Hs in the molecules under investigation and thus, show 

signals in the same part of the spectrum. The  chemical shift (δ) scale of the 

spectra are calibrated either with tetramethylsilane (TMS) or by 1H signal(s) 

arising from the residual 1H in the deuterated solvent so that δTMS = 0 ppm 

(Waterman and Mole, 1994). Each δ unit represents one millionth (ppm) of the 

resonance frequency employed and thus is not dependent on the magnetic field 

used. This means that the δ values observed for the nuclei of a particular 

compound are comparable, and thus, the same regardless of the used field 

strength of the magnet. This in turn means that by using more powerful magnets 

some increase in sensitivity is achieved but more importantly, a considerable 

enhancement in resolution is gained (Waterman and Mole, 1994). 

From basic 1D 1H and 13C NMR measurements, the chemical shifts of 

protons and carbons, respectively, are obtained. The area of the signals in the 1H 

spectrum can be integrated to obtain the relative amount of different kind of 

hydrogens present in the molecule. It is also possible to determine the magnitude 

of coupling constants (JHH) between different protons, which give information 

on the proximity and spatial position of hydrogens in relation to each other. 

Usually the characterization of an unknown compound requires 2D NMR 

measurements in order to resolve the structure. Typical 2D measurements 

include: 1H,1H-homocorrelation spectroscopy [COSY or usually double-

quantum filtered correlation spectroscopy (DQF-COSY)] experiment, which 

correlate the chemical shifts of 1H nuclei that are J-coupled to each other; total 

correlation spectroscopy (TOCSY) experiment that shows correlations between 

hydrogens which belong to the same spin network; nuclear Overhauser effect 

spectroscopy (NOESY) experiment, which show correlations between nuclei 
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that are spatially close to each other. With 1H-detected heteronuclear multiple 

bond correlation (HMBC) and 13C-detected correlation via long-range coupling 

(COLOC) experiments the long-range 1H-13C connectivities can be obtained. 

With heteronuclear single quantum coherence (HSQC) experiment the single-

bond 1H-13C connectivities are obtained (i.e., which hydrogens are attached to 

which carbons) (Bruker, 2003). 

In the course of ET characterizations, NMR spectroscopy has played a central 

role and there is a vast amount of literature available (see for example, Haslam, 

1989; Hatano et al., 1988b, c; Yoshida et al., 1984, 2000). For example, it has 

been observed that the types of the polyphenolic acyl units (e.g., galloyl, HHDP 

and DHHDP groups) and the position to which these groups are attached in the 

glucose core, affect characteristically the chemical shifts observed for the 

glucose carbon atoms (Hatano et al., 1988b, c; Yoshida et al., 1984) and can thus 

be used in the characterization of unknown ET structures. 

The differences in the chemical shifts of α and β anomers can be used to 

distinguish these isomers from each other. For example, in the case of 

casuarictin (β-anomer) and potentillin (α-anomer) there are no significant 

differences observed for the chemical shifts of C-4 and C-6 of the glucose core 

(Table 1). However, for the rest of carbons (C-1–C-3 and C-5) an upfield shift is 

observed in the case of the α-anomer (Table 1; Yoshida et al., 1984). The effects 

of the formation of an HHDP group from two galloyl groups on the chemical 

shifts can be seen by comparing the differences of chemical shifts of 

pedunculagin-tellimagrandin I pairs (Table 2). Thus, when an HHDP groups is 

formed a downfield shift of the C-2 and C-3 signals are observed. This can be 

explained by increased rigidness of the structure, which results as constraints on 

the glucopyranose ring (Hatano et al., 1988b). In the case of those ETs which 

form anomeric mixtures, the effects on the changes in the chemical shifts are 

larger when compared to those ETs which are acylated at C-1 (compare the 

chemical shift changes of tellimagrandin I and pedunculagin to that of 

potentillin-casuarictin) (Hatano et al., 1988b). In addition, the acetylation of the 

C-1 affects characteristically to the chemical shifts of C-1 and C-5 of the glucose 

core. Thus, the acetylation of C-1 shifts the chemical shift of C-1 upfield and the 

chemical shift of C-5 downfield (note the chemical shift diffrences of α-
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pedunculagin-potentillin, β-pedunculagin-casuarictin and β-tellimagrandin I-

tellimagrandin II pairs in Table 2) (Hatano et al., 1988b). 

Those ETs, which contain a DHHDP or a chebuloyl group in their structure, 

the glucose core adopts 1C4 conformation. By comparing the chemical shifts of 

geraniin (contains a DHHDP group) and chebulagic acid (contains a chebuloyl 

group) to those of corilagin (contains two OH groups instead of the DHHDP or 

chebuloyl group) (Table 2), the effects of the substitution on the changes of 

chemical shifts can be seen. Thus, a significant downfield shift of the C-4 signals 

of geraniin and chebulagic acid are observed when compared to that of corilagin 

(Hatano et al., 1988c). 

C-glucosidic ETs can also be distinguished from each other by the 

characteristic chemical shift changes. Thus, in the case of those ETs which have 

β-configuration at C-1 of the acyclic glucose core (e.g., stachyurin), a significant 

downfield shift of the C-2 signal (+4.3 ppm) and an upfield shift of the C-1 

signal (-2.1 ppm) is observed, when compared to those of casuarinin (Table 1; 

Hatano et al., 1988c). Similar changes are also observed for vescalagin and 

castalagin (Table 1). In addition, the chemical shift of C-2 appears at the lowest 

field among the glucose carbon signals (Hatano et al., 1988c), and can be used to 

determine the configuration of C-1 (Hatano et al., 1988c; Okuda et al., 1989). 

The characterization of monomeric ETs is quite easy, but in the case of 

oligomers the situation is more complicated. For example, the type of the linking 

unit between the monomers (e.g., dehydrodigalloyl, valoneoyl, sanguisorboyl 

etc.) cannot be straightforwardly determined, but is achieved by using long-

range 2D correlation measurements, such as HMBC or 1H-13C COLOC (Yoshida 

et al., 2000). In addition, by comparing the NMR data (especially the 13C data) 

of known monomeric structures to those obtained for the oligomeric ETs, the 

characterization process is made easier (Hatano et al., 1988c; Okuda et al., 1989; 

Yoshida et al., 1984). 
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3.3.5 Circular dichroism spectroscopy 

Circular dichroism (CD) refers to the differential absorption of left and 

right circularly polarized radiation that is observed for chiral compounds 

(Wallace and Janes, 2009). Thus, a CD spectrum is a type of an absorption 

spectrum. For ETs, usually the CD spectra are measured in the UV-Vis 

range (which corresponds to the electronic transitions in the molecules), 

and thus, the specific method applied is electronic circular dichroism 

(ECD). In an ECD spectrum the molar ellipticity, [θ], as degrees cm2 

dmol–1 is often given as a function of the wavelenghts used (Wallace and 

Janes, 2009). The absorptions observed may be either negative or positive 

in their signs. This depends on whether the right- or left-handed radiation 

is absorbed more efficiently by the molecule at a given wavelenght. These 

absorption maxima/minima are usually referred to as Cotton effects. In 

ETs, the chirality results especially from the HHDP group(s) (due to axial 

chirality; Eliel et al., 1994) and its modifications. There are several 

features that affect the ECD spectra of ETs, and these features can be used 

to aid the structure elucidation of unknown ETs. 
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Figure 9. Electronic circular dichroism spectra of pedunculagin (A), corilagin (B) 
and geraniin (C). Modified from Okuda et al. (1982c, d). 

In the ECD spectra of those ETs that have only one HHDP group (i.e., 

HHDP-glucoses) in their structure, two Cotton effects (at 235 and 265 

nm) are observed in the spectrum. If the observed Cotton effect at ~265 

nm is positive, the configuration is R, and if it is negative, the 

configuration is S. When the HHDP group is accompanied by one to three 

galloyl groups in the ET structure, three Cotton effects are observed in the 

ECD spectrum. These maxima are situated at ~235, ~265 and ~285 nm 

(Fig. 9A). Again, if a positive Cotton effect is observed at around 265 nm, 

the configuration is R, and if the effect is negative the configuration is S 

(at 235 nm, the observed Cotton effects are opposite at their signs in 

comparison to that at 265 nm) (Okuda et al., 1982c). However, it has been 

observed that the Cotton effects at 265 nm are affected by the interactions 

between galloyl and HHDP groups, and thus, the Cotton effect at 235 nm 

is considered to be more diagnostic in determining the absolute 

configuration of the HHDP group (Yoshida et al., 2000). If there is no 

Cotton effect detected at the 235 nm, the compound does not contain an 

HHDP group. The amplitude of the observed Cotton effect at 235 nm is 

also informative: if the ET contains two HHDP groups, the amplitude of 

the Cotton effect is about twofold compared to those ETs that have only 

one HHDP group (Okuda et al., 1982c; Yoshida et al., 2000). Similarly, 
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the configurations of linking units in the oligomeric ETs can be 

determined by ECD spectroscopy (Yoshida et al., 2000). 

Chebuloyl and DHHDP groups are also chiral. Those compounds that 

have only a DHHDP group in their structure have three maxima in their 

ECD spectra: negative at 206 nm and two positive ones at 237 and 375 nm 

when the configuration is 1’S. The sign is opposite at 237 nm in the case 

of 1’R configuration. Other groups (galloyl and HHDP) in the structure 

affect the observed ECD spectra: first, two more maxima are observed 

(five in total; Fig. 9C) and second, the maximum at 230 nm region is 

affected by these groups. Thus, the configuration of the DHHDP group is 

best determined from the sign of the Cotton effect at the 200 nm region: 

positive Cotton effect means R configuration and negative S configuration 

(Okuda et al., 1982d). 

Some C-glucosidic ETs have, in addition to the HHDP group, an 

NHTP group in their structure. This group is also chiral, and thus it 

contributes to the ECD spectra of such compounds. Earlier studies 

suggested that the configuration of the NHTP group is (S, S) (Nonaka et 

al., 1987), but when these structures were re-examined by both 

computational and experimental methods (Matsuo et al., 2015), it was 

found that the actual configuration is (S, R) (Fig. 2). Thus, all the 

structures of the C-glucosidic ETs presented in this thesis have been 

corrected according to Matsuo et al. (2015). 
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4 DISTRIBUTION OF ELLAGITANNINS IN 
THE PLANT KINGDOM 

ETs can be found from leaves, roots, bark, seeds, fruits and berries of 

several plant taxa and they are often the principal component of those 

plants that have been or are used as herbal medicines (e.g., Clifford and 

Scalbert, 2000; Okuda, 2005; Serrano et al., 2009). Although ETs are 

often said to be widely distributed in the plant kingdom, their occurrence 

is well defined and restricted only to certain taxonomic branches. Thus, 

they are only found in Angiosperms (flowering plants) that are dicots and 

more specifically, they are found in rosids but not in asterids (Gardner, 

1977; Mole, 1993; Okuda et al., 2000). It has also been suggested that it is 

more likely to find tannins from the apparent plants (such as trees) than 

from herbaceous plants (Mole, 1993; Sporne, 1975), although divergent 

opinions exist (Okuda et al., 1992, 1993). Furthermore, tannins are more 

likely to be found from the early developed and primitive species than 

from the more recently developed species (Mole, 1993; Sporne, 1975). 

The generalizations mentioned above would not have been possible 

without comprehensive screening studies. These kinds of 

chemotaxonomic researches, i.e., the classification of plants based on 

natural products, have been conducted from the early stages of tannin and 

ET research (e.g., Gardner, 1977 and references therein; Haddock et al., 

1982c). Even though the analysis methods were not as sophisticated as 

they are today, the results of these studies are still valid, but have been 

fine-tuned. 

The taxonomic distribution of ETs has been recognized early on and, 

e.g., Haddock et al. (1982c) concluded that the occurrence of dehydroETs 

can be used as a chemotaxonomic marker for Aceraceae (Sapindales) and 

Geraniaceae (Geraniales). More detailed results were obtained by Okuda 

et al. (1992) in a study, in which species belonging to family Rosaceae 

were studied. In this study, several monomeric and oligomeric ETs were 

used as markers. It was found that the subfamily Rosoideae was the only 
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one containing ETs, while the other subfamilies (Spiraeoideae, 

Amygdaloideae and Maloideae) did not contain ETs. The results also 

showed that several monomeric ETs are present in the ET-containing 

species, and thus are not suitable to be used as chemotaxonomic markers. 

Oligomeric ETs, on the other hand, were found to correlate with tribes and 

genera. For example, it was found that sanguiins H-6 and H-11 were only 

found in Sanguisorba and Rubus species, agrimoniin was limited to 

Agrimonia species and to the tribe Potentilleae (includes genera Fragaria, 

Potentilla and Duchesnea) and gemin A was limited to Geum species. 

Later Okuda et al. (1993, 2000) extended these results by combining the 

structural data of ETs with the Cronquist’s classification for flowering 

plants (Cronquist, 1988; Fig. 6). 
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It was concluded that oxidized tannins, i.e., dehydroETs such as 

geraniin (classified as type III ETs in Okuda et al., 2000) and transformed 

dehydroETs such as chebulagic acid (classified as type IV ETs in Okuda 

et al., 2000) were frequently found in the Rosidae, but only in some 

species of the Dilleniidae and Hamamelidae (Fig. 6). These types of ETs 

were neither found from the earliest subclasses of Dicotyledonae namely 

Caryophyllidae and Magnoliidae (Fig. 6). The earliest order of Rosidae, 

Rosales, produce mostly gallotannins such as PGG (classified as type I in 

Okuda et al., 2000) and basic glucopyranose-based ETs such as 

pedunculagin (classified as type II ETs in Okuda et al., 2000). Oxidative 

transformations to types III and IV progress from Rosales to Sapindales to 

Geraniales without the production of oligomeric ETs (Fig. 6). Oligomeric 

ETs together with type II and II+ (e.g., C-glucosidic ETs such as 

casuariin) ETs occur in Rhamnales, Euphorbiales, Cornales, Myrtales and 

Proteales. In Hamamelidae the oxidative progression of ETs is not clear, 

but the occurrence of C-glucosidic ETs in many genera of Fagales is of 

note. 

The Cronquist’s classification is an example of a morphology-based 

classification, i.e., plants are classified based on similarities found in their 

phenotypic features. Nowadays, the taxonomists aim to ground 

classifications on genetic data, and a new classification for the 

Angiosperms has been proposed (APG, 1998, 2003, 2009). Since this is 

relatively new classification system, there is no literature available where 

the chemotaxonomy of ETs has been studied with respect to this 

classification.  

Although a wide variety of different plant species, belonging to a 

variety of genera, families and orders have been studied worldwide, the 

research of Finnish plant species is limited (Table 3). Some of these 

studies have primarily focused on the quantification of ellagic acid content 

in the samples after hydrolysis (Koponen et al., 2007) or on the total ET 

content without further characterization of individual ETs (Kähkönen et 

al., 2001). In recent years, however, the situation seems to have changed, 
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and more detailed studies on the ET composition of Finnish plant species 

have been published (e.g., Hanhineva et al., 2008; Kähkönen et al., 2012; 

Tuominen et al., 2013). The available data about Finnish ET-containing 

plant species is listed in Table 3. 
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5 BIOLOGICAL ACTIVITY OF ELLAGITANNINS 
FROM THE POINT OF VIEW OF AN INSECT 
HERBIVORE 

As was mentioned in the Introduction, there are two different theories by which 

tannins are suggested to function as anti-herbivore agents, i.e., by protein 

precipitation and by oxidative activation. The effect of the protein precipitation 

theory was emphasized by Feeny’s findings in the late 60’s and early 70’s when 

he concluded that tannins were responsible for the negative effects on the growth 

and development of winter moth (Operophtera brumata, Lepidoptera: 

Geometridae) larvae (Feeny, 1968) probably caused by complexation of oak leaf 

tannins with proteins (Feeny, 1969). Feeny showed that PAs were more effective 

protein precipitants than were HTs (Feeny, 1969) and after that, the protein 

precipitation capacity (PPC) of various tannins in various conditions and with 

various methods and proteins have been studied (e.g., Asquith and Butler, 1986; 

Hagerman and Butler, 1981; Hofmann et al., 2006; Kilkowski and Gross, 1999). 

Some of these studies included also ETs (e.g., Kilkowski and Gross, 1999; 

Hofmann et al., 2006), but since their PPC was significantly lower than that of 

PAs, galloyl glucoses and GTs, they were not considered to be biologically 

relevant compounds. 

   On the other hand, the results of Feeny were challenged by results obtained 

from feeding experiments done with grasshopper (Orthoptera: Acrididae) 

(Bernays, 1978; Bernays and Chamberlain, 1980) and swallowtail (Lepidoptera: 

Papilionidae) caterpillars (Berenbaum, 1983). In Bernays’ study (1978), PAs 

were not found to have effects on the survival, growth, consumption or digestion 

of the larvae. Similar results were obtained when tannic acid (a mixture of GGs 

and GTs) was added to the food (Bernays, 1978; Bernays and Chamberlain, 

1980), except for one grasshopper species (Locusta migratoria) that was 

severely affected by the tannic acid-containing food (Bernays, 1978). The effects 

of HT-containing food were explained by the passage of tannic acid through the 

peritrophic envelope (PE) which resulted as lesions in midgut and caeca 

(Bernays, 1978). Likewise, in Berenbaum’s study, no effects were observed and 

it was concluded that tannins do not act as digestibility-reducing substances, but 
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there must be some other mechanism for their activity (Berenbaum, 1983; 

Bernays, 1978). 

It was suggested that pH conditions together with redox conditions in the guts 

of different types of herbivores could explain these differences. Soon it was 

proposed that the activity of tannins cannot be based on PPC (at least in the 

cases of all herbivores), because for example lepidopteran larvae have basic gut 

conditions that prevent precipitation processes (Appel, 1993) and there are 

surfactants in the gut fluids that inhibit protein precipitation (Martin and Martin, 

1984). Instead, it was suggested that the biological activity resulted from 

oxidation and reactions related to that, such as the generation of reactive oxygen 

species (ROS) (Appel, 1993). 

5.1 Oxidative activity of tannins in herbivores 

Oxidation is a reaction that is involved in the normal metabolism of cells. In 

these oxidative reactions several radicals are formed which are involved in 

enzymatic reactions, mitochondrial electron transport, signal transduction, 

activation of nuclear transcription factors and gene expression (Bayir, 2005). 

The products of oxidative reactions are called reactive oxygen species (ROS) 

and include both oxygen-based radicals and non-radical oxidizing agents. 

Radicals include hydroxyl (OH•), superoxide (O2
•–), peroxyl (RO2

•), 

hydroperoxyl (HO2
•; Bayir, 2005) and alcoxyl (RO•) radicals (Barbehenn and 

Stannard, 2004). Non-radical oxidizing agents include hydrogen peroxide 

(H2O2), hypochlorous acid (HOCl) and ozone (O3), which all can be converted to 

radicals (Bayir, 2005). The formation of these various radicals are presented and 

discussed in Scheme 1. From these reactions those involving hydrogen peroxide 

and peroxides in general, can be regarded to be the most important ones with 

respect to plant-eating insect herbivores. This is because OH• and O2
•– radicals 

should be scavenged in the gut lumen by, e.g., the peritrophic envelope 

(Barbehenn, 2001; Section 5.2). In addition, peroxides are stable enough to be 

able to oxidize other luminal components and diffuse into midgut epithelial cells 

where they can decompose to ROS (Barbehenn, 2001). 
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Scheme 1. Reactions related to the formation of reactive oxygen species (ROS). 
Catalytic amounts of free ferric ion (Fe3+) may react with superoxide radical (O2

•–) to 
generate the ferrous iron (Fe2+) and molecular oxygen (Reaction 1). If hydrogen peroxide 
(H2O2) is generated within the system by the chemical dismutation of superoxide radical 
(Reaction 2), the extremely reactive hydroxyl radical (OH•) may be formed (Reaction 3; 
Fenton reaction). Other ROS may be formed, such as the peroxyl radical, the perferryl 
ion, the ferryl ion or alcoxyl radical (Reactions 4, 5, 6 and 7 respectively). At the high 
pH of the digestive tract of insect larvae, the autoxidation of (poly)phenolic compounds 
produces semiquinone radicals and quinones (Reaction 8). Adapted from Summers and 
Felton (1994), Barbehenn and Stannard (2004) and Barbehenn and Constabel (2011). 

Organisms use antioxidants to overcome the destructive consequences of 

oxidation. These antioxidants include, e.g., ascorbic acid and glutathione 

(Summers and Felton, 1994). However, if the protective effect of antioxidants 

are overwhelmed by the production of ROS, oxidation-related damages will 

occur and this phenomenon is called oxidative stress. This can result in protein 

oxidation and lipid peroxidation, which in turn may affect the growth and 

development of larvae, reduce reproductive potential and decrease adult 

longevity (Summers and Felton, 1994). 

In many lepidopteran larvae digestive tracts the oxygen levels are low 

(Johnson and Barbehenn, 2000) and the pH is high (Berenbaum, 1980; Dow, 
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1984; Gringorten et al., 1993). Despite the low oxygen levels, the overall redox 

conditions in the midgut (that is the place of food assimilation) may still be 

oxidizing (Appel and Martin, 1990), thus enabling the oxidation of phenolic 

compounds. It has also been observed that the amount of iron ions in the midgut 

is high enough (40–70 µM; Barbehenn et al., 2005a) to enhance the production 

of ROS through Fenton-type reactions (Barbehenn et al., 2005a; Scheme 1). 

Moreover, the midgut redox and pH conditions have been shown to be affected 

by the plant material that herbivores consume (Appel and Maines, 1995; 

Johnson and Felton, 1996; Schultz and Lechowicz, 1986). Also, the content and 

quality of phenolic compounds in the plant material affects significantly the 

semiquinone radical levels they produce in the guts of herbivores, and thus the 

level of oxidative stress (Barbehenn et al., 2005b, 2006a, 2008a, b). For 

example, it has been shown that sugar maple leaves, which have low 

ascorbate:phenolic ratio produce higher levels of semiquinone radicals in the 

midguts of two caterpillar species than red oak leaves do, in which the 

ascorbate:phenolic ratio is higher (Barbehenn et al., 2005b). In addition, 

semiquinone radical levels together with markers that indicate oxidative stress 

(protein carbonyls (oxidized proteins), peroxides, dehydroascorbate 

(oxidized):total ascorbate ratio and glutathione disulphide (oxidized): total 

glutathione ratio) are higher in tannin-sensitive species (Malacosoma disstria) 

than in tannin-tolerant species (Orgyia leucostigma) (Barbehenn et al., 2005b, 

2008b). Moreover, Barbehenn et al. (2003, 2009a) have shown that HTs increase 

the level of radical production in the digestive tracts of several larvae species. 

Furthermore, it has been shown that the ETs produce the highest amounts of 

semiquinone radicals, followed by galloyl glucoses. On the other hand, it was 

found that PAs do not produce radicals at all (Barbehenn et al., 2006b). 

Previously, Barbehenn and Martin (1994) have found that oxidizing gut 

conditions do not show oxidation of polyphenols in tannin-tolerant larvae and 

similar results (browning of midgut material was more pronounced in the most 

reducing midguts) have been obtained by Johnson and Felton (1996). This 

paradoxical relationship has been suggested to reflect the differences in the 

concentrations of oxidizable compounds in different host foliage or to indicate 

that the negative redox potentials may be a product of extensive oxidation, and 

not a larvae’s way to prevent oxidation (Johnson and Felton, 1996). Thus it is 
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possible, despite the reductive conditions that herbivores typically have in their 

midguts that the food material they ingest still autoxidizes in the highly alkaline 

gut conditions (Appel, 1993). It has also been suggested that even though some 

parts of the digestive tracts of herbivores might be anoxic, oxygen is always 

present close to the epithelium which is the prime target of oxidative stress, thus 

enabling oxidative reactions (Gross et al., 2008). 

5.2 Antioxidative mechanisms of herbivores  

Although there is evidence that ETs and other polyphenols have oxidative 

effects in the guts of lepidopteran herbivores (e.g., Barbehenn et al., 2003, 

2005b, 2009a), the herbivores have antioxidative mechanisms to diminish the 

damage. One of these is the PE (also called a peritrophic membrane) that insects 

secrete around the ingested food in their midguts. It is composed of a meshwork 

of chitin which is surrounded by a gel-like matrix of glycoproteins, proteins and 

proteoglycans (Barbehenn and Stannard, 2004). PE is assumed to protect the 

midgut epithelium from abrasive food, invasive pathogens and plant toxins, but 

it may also function as an iron and radical-scavenging antioxidant (Barbehenn 

and Stannard, 2004; Summers and Felton, 1996). There are four different 

mechanisms by which the PE is proposed to function: adsorption, ultrafiltration, 

polyanion exclusion and as an antioxidant (Barbehenn, 2001; Summers and 

Felton, 1996). 

The adsorption of tannins on PE has been evidenced only in the case of 

grasshoppers (Bernays, 1978). Barbehenn and Martin (1992) studied one 

herbivorous insect, Orgyia leucostigma, but found no evidence for the 

adsorption of tannic acid on the PE. The second mechanism, ultrafiltration, has 

not either gained support, because of the fact that for the filtration to occur, the 

molecular weights of ingested compounds should be high or the diameter of the 

compounds should be large (Barbehenn, 2001). However, this mechanism might 

have some significance, since it has been shown that tannic acid forms 

aggregates and colloidal structures in the gut of Manduca sexta larvae 

(Barbehenn and Martin, 1998). Polyanion exclusion might seem plausible 

mechanism for the PE to function. Proteoglycans that are found in the PE 

possess negatively charged sites. This, together with the fact that polyphenolic 
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compounds ionize at the highly alkaline gut conditions of insect herbivores to 

negatively charged phenolate ions, could explain the mode of action. However, 

the results obtained have not gained support for this mechanism either 

(Barbehenn and Martin, 1997). The fourth mechanism suggesting that the PE 

functions as an antioxidant that can scavenge hydroxyl radicals and inhibit the 

formation of hydroperoxides from hydroxyl radical generating systems could be 

an important one for several reasons (Summers and Felton, 1996): first, the 

midgut epithelium is sensitive to oxidative damage by dietary pro-oxidants and 

thus needs to be protected; second, by acting as an antioxidant, the radical 

scavenging capacity of the PE would prevent the depletion of antioxidant 

vitamins (e.g., ascorbic acid) and in additon, it would also prevent damage to 

amino acids and small peptides as well as to the transporters that are responsible 

for their uptake; third, as an antioxidant, the PE might also interfere the 

generation of pro-oxidants, e.g., by chelating metal ions (Summers and Felton, 

1996). The role of PE as a sacrificial antioxidant has been studied by Barbehenn 

and Stannard (2004). In this feeding experiment, Malacosoma disstria (tannin-

sensitive species) larvae were fed with diets containing elevated iron 

concentrations and a diet with elevated iron content and tannic acid as a source 

of free radicals. In both of these cases, the PE showed properties of sacrificial 

antioxidant: elevated iron content in the diet resulted in elevated iron levels in 

the PE and the PE protected proteins of the midgut epithelium by directing the 

oxidative damages to it, which was detected as elevated levels of protein 

carbonyls in the PE (Barbehenn and Stannard, 2004). 

Another antioxidative process that is important for insect larvae is the 

ascorbate-recycling system (Barbehenn et al., 2001). Ascorbic acid (or 

ascorbate) is a well-known antioxidant both in humans and in insects. Its 

antioxidant power is further enhanced by the presence of glutathione. The 

complete redox-cycle of these two antioxidants is presented by the following 

reactions (9 and 10). 

 AA + H2O2 → DHA + 2H2O     (9) 

 DHA + 2GSH → AA + GSSG     (10) 

At the first stage (Reaction 9), hydrogen peroxide (H2O2) reacts with ascorbic 

acid (AA) in the presence of ascorbate peroxidase to form dehydroascorbate 

(DHA) and water (H2O). In the second step (Reaction 10), glutathione (GSH) 
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converts DHA back to AA in the presence of dehydroascorbate reductase. In the 

process, glutathione itself is oxidized to GSSG. 

To study the effectiveness of the ascorbate-recycling system, Barbehenn et al. 

(2001) used O. leucostigma and M. disstria larvae. With both larvae, elevated 

peroxide concentrations were observed when the larvae fed on a diet containing 

tannic acid, but no added ascorbate. When ascorbate was added to the diet 

together with tannic acid, the peroxide levels of O. leucostigma were reduced, 

but were not changed in the case of M. disstria; high levels of peroxides were 

still observed regardless of the addition of the ascorbate. The same phenomenon 

was observed with Helicoverpa zea (Noctuidae) larvae when they were fed with 

a diet containing caffeic or chlorogenic acid and ascorbate (Summers and Felton, 

1994). It was concluded that the tannin-tolerant O. leucostigma has more 

efficient antioxidant system compared to that of the tannin-sensitive M. disstria, 

since the levels of antioxidative enzymes were similar in both species 

(Barbehenn et al., 2001). 

Another way of avoiding the harmful effects of ingested HTs is by 

compensatory feeding (Barbehenn et al., 2009a; Haukioja et al., 2002; Kause et al., 

1999; Lempa et al., 2000). For example, it has been studied that when larvae fed on 

leaves painted with HTs (compounds used were PGG and pedunculagin), the 

semiquinone radicals formed in the midgut were significantly increased. However, 

no effects on larval performance were detected. This was explained by 

compensatory feeding, i.e., the larvae eat more to compensate the harmful effects of 

oxidative reactions, that reduce the quality of the food (Barbehenn et al., 2009a). 

In a another study, birch leaves of different ages and with varying amounts of 

GTs and PAs were fed to Epirrita autumnata larvae (Kause et al., 1999). In this 

study, it was found that when larvae were fed with young leaves with high GT 

content, the efficiency of conversion of ingested food into larval biomass (ECI) 

was negatively affected by the high GT content. However, this was compensated 

by the larvae by significant increase in the relative consumption rates (RCR) of 

leaves, thus indicating compensatory feeding (Kause et al., 1999). On the other 

hand, when the larvae were fed with mature leaves containing high 

concentration of PAs, the effects on ECI and RCR were not significant and thus, 

the larvae did not display compensatory feeding in the case of mature leaves 

(Kause et al., 1999).   
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6 AIMS OF THE STUDY 

This thesis focused on the study of ETs. On one part, the aims were to enhance 

their characterization from complex plant samples and to study their ocurrence 

in Finnish plant species, since these kinds of studies are limited. Another aspect 

was to examine their biological activity concentrating on the ‘oxidation theory’, 

i.e., could ETs function as plants’ defensive compounds against plant-eating 

insect herbivores via oxidative reactions. To do this, and to obtain information 

about the structure-activity relationships of ETs, both in vitro and in vivo 

methods were used. Thus, the main aims can be summarized by posing the 

following questions: 

 

1) How ETs can be effectively and quickly identified/characterized from 

plant crude extracts without the need for isolation and characterization 

of individual ETs? Are there useful characteristics and features in ETs’ 

structures which can be used to aid the characterization by the data 

obtained from chromatographic, spectroscopic and mass spectrometric 

analyzes? (I) 

2) Which Finnish plant species contain ETs? Which plants are rich in ETs 

and what kind of ETs these species produce? (II) 

3) How different ET structures differ in their reactivity (i.e., activity) in 

different biological environments? (III, IV) 
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7 MATERIALS AND METHODS 

7.1 Plant material 

All plant materials used (Table 4) were collected from natural populations 

growing around Turku area, south-west Finland and from the Botanical Garden 

of the University of Turku. Several plants of a particular species were collected 

to obtain a pooled and representative sample; usually the amount of the collected 

plant material was high enough to obtain 50 g sample of the dried material to be 

extracted (Section 7.2). The plant species and parts to be analysed were selected 

based on availability and abundance. Thus, in some cases, e.g., alders and 

birches, leaves were collected but bark was not, because the trees could not be 

cut down. The sampling time also affected the decision which parts were 

collected. For large scale purification of individual ETs (I, III and IV) 

additional plant material was collected when needed. Terminalia chebula seeds 

(I) were from previous research projects (Saleem et al., 2001, 2002). 

All plant materials were air-dried, ground into fine powder and stored in a 

freezer (–20 °C) until the time of extraction. Althought freeze-drying is the 

preferred choice for drying plant materials (Salminen, 2003), air-drying was 

used because of the substantial amount of plant material. However, this should 

not alter the chemical composition of the samples significantly (Keinänen and 

Julkunen-Tiitto, 1996; Salminen, 2003). Moreover, the grounding was 

performed as soon as the material was dry, and then stored in a freezer (–20 °C). 

After extraction and freeze-drying (Section 7.2), the crude extracts were stored 

in a freezer until the time of analysis (Section 7.6.1). All crude extracts and 

fractions were analyzed as soon as possible. 
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Table 4. Plant species used in this thesis work. Shown are plant families, species 
(scientific name and common name) and the plant part(s) that were used. The column 
‘Study’ refers to publication(s) in which the particular plant species was used. 

Plant family and species Plant part(s) Study 
Betulaceae Leaf II 
Alnus incana Grey alder Leaf II 
Alnus glutinosa Black alder Leaf II 
Betula pubescens White birch Leaf II 
Betula pendula Silver birch Leaf II 
Betula nana Dwarf birch Leaf II 
Corylus avellana Common hazel Leaf II 
Elaeagnaceae 
Hippophaë rhamnoides Sea buckthorn Leaf I–III 
Fagaceae 
Quercus robur English oak Leaf, seed, bark I–III 
Geraniaceae 
Geranium pratense Meadow cranesbill Leaf II 
Geranium sylvaticum Wood cranesbill Leaf I–IV 
Lythraceae 

Lythrum salicaria Purple loosestrife 
Leaf and flower 
(combined) 

I–III 

Myricaceae 
Myrica gale Bog myrtle Leaf II 
Onagraceae 

Epilobium hirsutum Hairy willowherb 
Leaf and flower 
(combined) 

II 

Epilobium montanum Broad-leaved 
willowherb 

Leaf II 

Epilobium angustifolium Rosebay willowherb Flower I–III 
Rosaceae 
Alchemilla Lady’s mantle Leaf, root II 
Potentilla anserina Silverweed Leaf II 
Filipendula ulmaria Meadowsweet Inflorescence I–III 

Fragaria vesca Wild strawberry 
Leaf and flower 
(combined) 

II 

Geum urbanum Wood avens Leaf, seed I–III 
Geum rivale Water avens Leaf II 
Potentilla erecta Tormentil Root I–IV 
Comarum palustre Marsh cinquefoil Leaf II 
Rosa dumalis Whitis-stemmed briar Petals II 
Rosa mollis Soft downy rose Leaf II 
Rosa spinosissima Burnet rose Leaf II 
Rosa rugosa Rugosa rose Leaf II 
Rosa spp. Hip II 
Rubus chamaemorus Cloudberry Leaf II 
Rubus idaeus Raspberry Leaf I–III 
Rubus saxatilis Stone bramble Leaf II 
Apiaceae 
Anthriscus sylvestris Cow parsley Inflorescence II 
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Plant family and species Plant part(s) Study 
Apocynaceae 
Vincetoxicum 
hirundinaria 

Swallow-wort Leaf II 

Araceae 
Calla palustris Bog arum Leaf II 
Asparagaceae 
Convallaria majalis Lily of the valley Leaf II 
Asteraceae 
Solidago virgaurea Goldenrod Leaf II 
Taraxacum spp. Dandelion Leaf, flower II 
Tussilago farfara Coltsfoot Leaf II 
Brassicaceae 

Alliaria petiolata Garlic mustard 
Leaf and flower 
(combined) 

II 

Bunias orientalis Warty cabbage Flower II 

Thlaspi arvense Field pennycress 
Leaf and silicles 
(combined) 

II 

Campanulaceae 
Campanula patula Spreading bellflower Flower II 
Campanula 
rapunculoides 

Creeping bellflower Flower II 

Caprifoliaceae 
Lonicera xylosteum Fly honeysuckle Leaf II 
Caryophyllaceae 
Saponaria officinalis Soapwort Leaf, flower 
Silene dioica  Red campion Leaf II 

Stellaria sp.    Stitchwort 
Leaf and flower 
(combined) 

II 

Ericaceae 
Rhododendron 
tomentosum  

Labrador tea Leaf II 

Vaccinium myrtillus  Blueberry Leaf II 
Vaccinium uliginosum  Bog bilberry Leaf II 
Fabaceae 

Caragana arborescens    Siberian peashrub 
Leaf and flower 
(combined) 

II 

Lathyrus pratensis  Meadow vetching Flower II 
Lupinus polyphyllus Garden lupin Leaf, flower II 
Vicia cracca   Tufted vetch Leaf, flower II 
Grossulariaceae 
Ribes alpinum  Mountain currant Leaf II 
Ribes uva-crispa  Gooseberry Leaf II 
Malvaceae 
Tilia cordata  Small-leaved lime Leaf II 
Oleaceae 
Fraxinus excelsior  Ash Leaf II 
Orobanchaceae 
Melanpyrum sp  Cow-wheat Leaf II 
Papaveraceae 
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Plant family and species Plant part(s) Study 

Chelidonium majus  Greater celandine 
Leaf and flower 
(combined) 

II 

Pinaceae 
Picea abies  Norway spruce Needle II 
Pinus sylvestris  Scots pine Bark II 
Primulaceae 
Lysimachia vulgaris   Yellow loosestrife Leaf, flower II 
Ranunculaceae 
Caltha palustris  Marsh marigold Leaf II 
Ranunculus acris  Meadow buttercup Flower II 
Rhamnaceae 
Frangula alnus  Buckthorn Leaf II 
Rosaceae 
Amelanchier alnifolia  Saskatoon Leaf II 
Cotoneaster lucidus  Cotoneaster Leaf II 
Malus sp.  Apple Leaf II 
Prunus cerasus  Cherry Leaf II 
Prunus padus Bird cherry Leaf II 
Sorbus aucuparia  Rowan Leaf II 
Sorbus hybrid  Finnish whitebeam Leaf II 
Sorbus intermedia  Swedish whitebeam Leaf II 
Salicaceae 
Populus tremula  Aspen Leaf II 
Salix caprea  Goat willow Leaf II 
Salix phylicifolia  Tea-leaved willow Leaf II 
Sapindaceae 
Acer platanoides Norway maple Leaf, seed, flight wing II 
Acer rubrum  Red maple Leaf II 
Aesculus hippocastanum  Horse-chestnut Leaf II 
Solanaceae 
Solanum tuberosum  Potato Leaf II 
Ulmaceae 
Ulmus glabra  Wych elm Leaf II 
Urticaceae 
Urtica dioica  Stinging nettle Leaf II 
Combretaceae 
Terminalia chebula  Myrobalan Seed I 

7.2 Extraction of plant materials 

All plant materials were extracted with aqueous acetone (Me2CO:H2O, 70:30, 

v/v) containing 0.1 % (m/v) ascorbic acid to prevent the oxidation of 

compounds. This solvent was selected because it had been found to be the best 

solvent for the extraction of hydrolysable tannins (Salminen, 2003). The 

extraction procedure was as follows: 50 g of finely ground plant material was 

extracted with 900 ml of aqueous acetone in a planary shaker at room 
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temperature usually overnight, but at least for eight hours per solvent batch. The 

extraction was repeated three times. These conditions were used to ensure that 

the extraction is efficient enough for quantitive determinations. Despite the 

rather long extraction time, no significant decomposition of ETs was observed 

(based on quantitative determination of ellagic acid; unpublished results). Before 

a new batch of extraction solvent was applied, the solvent was separated from 

the plant material by vacuum filtration with a Büchner funnel, the plant material 

was put back into the extraction vessel and a new batch of solvent was added. 

All three solvent batches were combined and acetone was evaporated with a 

rotary evaporator (<40 °C). The remaining aqueous phase was filtered to remove 

all the non-water-soluble material (chlorophyll, waxes, etc.) and freeze-dried. 

7.3 Fractionation of the crude extracts 

Two different fractionation procedures were used. In both cases, a Sephadex 

LH-20 column (400 × 40 mm, Pharmacia, Uppsala, Sweden) was used and 10 g 

of the crude extract was dissolved in 20 ml of water. The solution was applied 

onto the Sephadex LH-20 material, soaked into the material and eluted with 

different solvents. The crude extracts used in II were fractionated into five 

subfractions (Table 5). The crude extracts used in studies I, III and IV were 

fractionated with seven eluents (Table 5), but more than one fraction per eluent 

was collected if it was possible to obtain fractions with almost pure ETs (the 

elution was monitored by HPLC, Section 7.6.1). The fraction volume was 500 

ml per eluent, except for the Fraction 1 that was collected in five 100 ml 

subfractions. These were discarded after HPLC analyses (Section 7.6.1) if they 

did not contain compounds of interest. To ensure that all compounds had eluted 

from the column before a new extract was applied, the column was washed with 

aqueous acetone (Me2CO:H2O, 80:20 v/v) solution (Fraction 5b or 7b) and 

combined with Fraction 5a or 7a. All fractions were analyzed with HPLC-DAD 

as described in Section 7.6.1, concentrated into aqueous phase with a rotary 

evaporator and freeze-dried. 
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Table 5. Fractionation procedures used for crude extracts in II (upper part of the table) 
and in I, III and IV (lower part of the table). 

Fraction H2O MeOH Me2CO Compound group 
1 100 – – sugars and non-phenolic compounds 
2 70 30 – phenolic acids 
3 25 75 – flavonoid glycosides 
4 30 55 15 flavonoid glycosides 
5a 
5b 

30 
20 

– 
– 

70 
80 

hydrolysable tannins and 
proanthocyanidins 

     
1 100 – –  
2 70 30 – monomeric acyclic ETs 
3 50 50 – monomeric acyclic and glucopyranose-based 

ETs 
4 90 – 10 monomeric acyclic and glucopyranose-based 

ETs 
5 70 – 30 monomeric glucopyranose-based and 

oligomeric ETs 
6 50 – 50 oligomeric ETs 
7a 
7b 

30 
20 

– 
– 

70 
80 

oligomeric ETs 

7.4 Purification of ellagitannins 

Final purification of individual ETs was achieved with preparative and semi-

preparative HPLC. The whole fraction (or max. 600 mg of the fraction or semi-

pure compound) was dissolved in approximately 2 ml of water and filtered 

through 0.45 µm PTFE filter. Two different HPLC systems were used. In I, the 

preparative HPLC system consisted of a LiChroprep RP-18 (440 × 37 mm, 40–

63 µm, Merck, Darmstadt, Germany) column and a Merck Hitachi 6200A pump 

(Merck-Hitachi, Tokyo, Japan). The eluent consisted of H2O and MeOH and a 

linear gradient from 5:95 MeOH:H2O to 80:20 MeOH:H2O. The elution lasted 

for two hours with the flow rate of 5 ml min-1. Fraction volume was 50 ml. All 

fractions were analyzed with HPLC-DAD (Section 7.6.1), pure fractions were 

combined, concentrated into aqueous phase and freeze-dried. 

The semi-preparative HPLC system used in III and IV consisted of Waters 

Corporation (Milford, USA) HPLC, 2998 photodiode array detector, 600 

controller, Delta 600 pump, programmable fraction collector and Gemini RP-18 

(150 × 21.2 mm, 10 µm, Phenomenex) column. The eluent system consisted of 

0.1 % formic acid (HCOOH) in water and acetonitrile (ACN) at the flow rate of 
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8 ml min-1. Different linear gradient elutions were used depending on the 

retention time of a compound obtained from HPLC chromatograms (Section 

7.6.1). In general, the elution begun with the same solvent composition as the 

compound eluted from the analytical HPLC. The elution gradient was increased 

to 80:20 ACN:H2O (v/v) within two hours. The fraction collector was 

programmed to automatically collect fractions based on the retention time, the 

intensity of the peak and the volume of the collection vessel (2 or 10 ml). Based 

on the chromatograms obtained from the elution, the most promising fractions 

were analyzed with HPLC-DAD (Section 7.6.1).  Fractions containing pure 

compounds were combined, concentrated into aqueous phase and freeze-dried. 

7.5 Derivatization of ellagitannins 

In order to obtain a wider selection of the structural features that may affect the 

activity of ETs in III, derivatives of vescalagin, stachyurin, hippophaenin B and 

a dimer from Lythrum salicaria were synthesized. 

The methyl derivatives were obtained by refluxing ETs in MeOH for 2.5–48 

h, depending on the efficiency of methylation. Methylation efficiency was 

monitored with HPLC-DAD (Section 7.6.1). The catechin derivatives of ETs 

were obtained by refluxing ETs with commercially available catechin for 24 h in 

0.05 M o-phosphoric acid (H3PO4). HPLC-DAD was used to monitor the 

reaction (Section 7.6.1). In both cases, the derivatives were purified with 

preparative HPLC as described in Chapter 7.4. 

7.6 Analysis and characterization 

7.6.1 HPLC-DAD 

Prior to analysis, all samples were filtered with a 0.45 µm PTFE filter. The 

analytical HPLC system used in all analyses consisted of a Merck Hitachi 

(Merck- Hitachi, Tokyo, Japan) liquid chromatography equipped with an 

interface module (D-7000), a diode array detector (L-7455), an autosampler (L-

7200), a pump (L-7100), and a LiChroCART Superspher 100 RP-18 (75 × 4 

mm, 4 μm, Merck, Darmstadt, Germany) column. The binary mobile phase 
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consisted of ACN (A) and 0.05 M o-H3PO4 (B). The elution profile was: 0–3 

min, 2 % A in B (isocratic); 3–25 min, 2–30 % A in B (linear gradient); 25–30 

min, 30–70 % A in B (linear gradient); 30–34 min 70 % A in B (isocratic; 

column wash); 34–36 min 70–2 % A in B (linear gradient); 36–50 min 2 % A in 

B (isocratic; column re-equilibration). Injection volume was 10 or 20 µl, flow 

rate was 1 ml min–1, the detection wavelength was 280 nm, and the UV spectra 

were recorded between 195 and 450 nm. 

Samples used in quantitations (II) were prepared by dissolving 10 mg of the 

crude extract (or fraction) in 1 ml of water. Gallic acid was used as an external 

standard. Four concentrations and three replicate injections per standard 

concentration were done. The standards were analyzed after every tenth sample. 

The calibration curve obtained was then used to quantitate those ten plant 

samples that followed the standards. The amount of total phenolic compounds 

(mg g–1) in the crude extracts was calculated based on the total peak area of the 

chromatogram recorded at 280 nm.   

7.6.2 HPLC-DAD-ESI-QTOF-MS 

Samples for MS analyses were prepared by dissolving 3 mg of the crude extract 

in 1 ml of water. Samples were filtered through a 0.2 µm PTFE filter prior to 

analysis. The mass spectra were recorded with a Bruker Daltonics MicrOTOF-Q 

mass spectrometer (Bremen, Germany) with an ESI source. The mass 

spectrometer was controlled by Compass micrOTOF control software (Bruker 

Daltonics). Negative ion mode ESI conditions were: capillary voltage 4000 V 

with the end plate offset at –500 V, drying gas (N2) temperature 200 ˚C with the 

flow rate of 8 l min–1, nebulizer gas (N2) pressure 1.6 bar, and mass range for 

data acquisition 100–3000 Da. The mass spectra were calibrated with 5 mM 

sodium formate solution injected at the end of each LC-MS run. Data obtained 

were handled by Compass DataAnalysis software (version 4.0, Bruker 

Daltonics). 

The HPLC was controlled by Hystar software (version 3.2, Bruker BioSpin, 

Rheinstetten, Germany) and consisted of an Agilent Technologies (Waldbronn, 

Germany) 1200 Series pump, an autosampler, a diode array detector and an 

XBridge Phenyl (2.1×100 mm, 3.5 µm, Waters Corporation, Milford, USA) 
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column. The binary mobile phase consisted of ACN (A) and 0.1 % HCOOH (B) 

at the flow rate of 0.3 ml min–1. The elution profile was: 0–1 min, 0 % A; 1–30 

min, 0–30 % A in B (linear gradient); 30–32 min, 30–80 % A in B (linear 

gradient); 32–42 min 80 % A in B (isocratic; column wash); 42–44 min 80–2 % 

A in B (linear gradient); 44–60 min 0 % A (isocratic; column re-equilibration). 

Injection volume was 5 µl and chromatograms were recorded at 280 nm. The 

content of different ET subgroups in II were calculated from the chromatograms 

recorded at 280 nm and were expressed as percentage of the total peak area of 

the chromatogram. Characterization of individual ETs and compound groups 

were based on characteristic UV spectra as well as on mass spectra (I). 

7.6.3 NMR 

Structures of some of the ETs used in I, III and IV were confirmed by NMR. 

The NMR experiments were performed with a Bruker Avance 500 spectrometer 

operating at 500.13 MHz for 1H and 125.77 MHz for 13C. Spectra were recorded 

at 25 °C and methanol-d4 was used as a solvent. The measurements included 1H 

and 13C spectra, and several 2D spectra, such as DQF-COSY, NOESY, 1H–13C 

HSQC and 1H–13C HMBC spectra. 

7.7 Methods to study the activity of ellagitannins 

7.7.1 pH 10 assay 

The oxidative activities of the ETs in III and IV were measured with a 96-well 

plate reader (Multiskan Ascent, Thermo Electron Corporation) with our 

modification of the method reported by Barbehenn et al. (2006a, b). Ten mg of 

the purified and freeze-dried ET was dissolved in aqueous ethanol (EtOH:H2O, 

70:30 v/v) to prepare a 2.0 mM stock solution. Four dilutions (1.5 mM, 1.0mM, 

0.50 mM and 0.25 mM) of the stock solution were prepared with EtOH:H2O 

(70:30 v/v). One 12-well line of a 96-well plate was used in a single kinetic 

measurement. 3 × 30 µl of each of the four ET dilutions were pipetted into the 

12 wells. 270 µl of a pH 10 carbonate buffer (50 mM, J.T. Baker, Deventer, 

Holland) solution was added into each well with a 12-line pipette; ET 
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concentrations in the reaction mixtures were thus 0.15 mM, 0.10 mM, 0.050 mM 

and 0.025 mM. Kinetic measurements were started immediately after the buffer 

addition; the delay was 1–2 s. The increase of absorbance at 415 nm (due to 

formation of quinones and other oxidation products) was monitored for each 

well for a period of 8 min in 8 s intervals. The results of the kinetic 

measurements were plotted as absorbance vs. time. From each plot, a maximum 

rate of oxidation (abs s–1; maximum value for the tangential slope) was 

automatically calculated with the aid of the Multiskan Ascent software; in each 

case, the maximum rate was obtained during the first 100 s of oxidation. The 

three replicate samples within each ET concentration were used to calculate a 

mean value for the maximum rate of oxidation (abs s–1) of a certain ET 

concentration (0.15 mM, 0.10 mM, 0.050 mM and 0.025 mM). These four mean 

values of maximum rates of oxidation were plotted against ET concentration. 

This type of a plot produced a straight line; only lines with correlation 

coefficients higher than 0.99 (as calculated by using Microsoft Excel) were 

accepted. The slope of the straight line gave the value of the maximum rate of 

oxidation as a function of concentration (abs s–1 mM–1) for each of the tested ET. 

To maximise the reliability of the final results, each of the ETs were tested three 

to five times by separate 12-well measurements, i.e., each of the four ET 

concentrations were tested at least nine times (three replicate samples in three 

separate measurements). The final value of oxidative activity, i.e., the maximum 

rate of oxidation as a function of concentration (abs s–1 mM–1) was reported as 

the mean value of these three to five measurements  standard error of the mean 

(SEM). 

7.7.2 2,2-diphenyl-1-picrylhydrazyl radical assay 

The antioxidant activity of the purified ETs (measured for all those ETs in III; 

unpublished data) was measured with the DPPH (2,2-diphenyl-1-picrylhydrazyl) 

radical assay using the 96-well plate reader (Multiskan Ascent, Thermo Electron 

Corporation). Six dilutions (0.5, 0.25, 0.2, 0.1, 0.05 and 0.02 mM) were prepared 

from the 2 mM stock solution in EtOH:H2O (70:30 v/v). The 0.25 mM DPPH 

solution was prepared in EtOH. For the measurements, 20 µl of each ET dilution 

was pipetted into four wells of the plate and 280 µl 0.25 mM DPPH solution was 
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added. In each set of measurements, positive and negative controls were 

included. The positive control sample, i.e., compound that produced 100 % 

inhibition of the radical, was 1 mM PGG in EtOH:H2O (70:30 v/v). The negative 

control sample, i.e., compound that produced 0 % inhibition was EtOH:H2O 

(70:30 v/v). The absorbance was monitored at 520 nm for 90 min. In this time, 

the reaction had completed, i.e., the absorbance of the sample did not change 

anymore. The absorbance was measured every ten minutes and the plate was 

shaken before reading the absorbance. The inhibition activity (%) for each 

dilution was calculated from the last absorbance readings by using the equation 

1. 

 

Inhibition	 % 	1– Abs sample –Abs pos.control

Abs neg.control –Abs pos.control
   (1)

  

These calculated inhibition activities were plotted against concentration and the 

inhibition concentration at 50 % inhibition point (IC50-value) was determined 

from the curves. Three independent replicates were measured for each ET. 

7.7.3 Deoxyribose assay 

The radical scavenging activity, metal chelating ability and pro-oxidant activity 

of purified ETs were determined with the deoxyribose assay (IV; Aruoma, 1994; 

Soberon et al., 2009). The assay of Soberon et al. (2009) was slightly modified. 

The radical scavenging activity was measured as follows: 1240 µl of 20 mM 

sodium dihydrogen phosphate (NaH2PO4) buffer (pH 7.4), 160 µl of 0.1 mM 2-

deoxyribose (2-DR), 40 µl of 4.16 mM disodium ethylenediaminetetraacetic 

acid (EDTA), 40 µl of 4 mM iron (III) chloride (FeCl3), 160 µl of different 

sample dilutions [four dilutions (1 mM, 2 mM, 3 mM and 5 mM with three 

replicates)], 40 µl of 4 mM ascorbic acid (AA) and 40 µl of 40 mM hydrogen 

peroxide (H2O2) were pipetted into Eppendorf tubes in the indicated order. In 

blank samples, no 2-DR or sample solutions were included, instead they were 

replaced with buffer. In control samples, 2-DR solution was included, but 

sample solution was replaced with buffer. 
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Fresh EDTA, FeCl3 (from stock solution of 0.1 M), AA, H2O2, 2-

thiobarbituric acid (TBA) and trichloroacetic acid (TCA) (from stock solution of 

100 % TCA) solutions were prepared daily. EDTA and FeCl3 were not pre-

mixed nor left to stand before adding of the rest of the reagents (Halliwell and 

Gutteridge, 1981). 

The tubes were incubated in a 37 °C water bath for 2 hours, after which each 

sample was divided into two 300 µl subsample. After that the color reagents, 

300 µl of 1 % TBA dissolved in 50 mM natrium hydroxide (NaOH) and 300 µl 

of 2.8 % TCA, were pipetted into the tubes in the indicated order and the tubes 

were incubated in an 80 °C water bath for 30 minutes. The tubes were then 

allowed to cool at room temperature for 30 minutes before the absorbances were 

measured. From the cooled tubes, two 250 µl aliquots were pipetted to a 96-well 

plate, and the absorbances of samples, controls and blanks were measured with 

96-well plate reader (Multiskan Ascent, Thermo Electron Corporation) at 520 

nm. The average absorbance of each dilution was calculated, the absorbance of 

the blank sample was subtracted and the inhibition activity (%) was calculated 

by the equation 2. 

 

Inhibition	 % 	 	
Abs control 	–	Abs sample

Abs control
∙100   (2) 

 

 

The metal chelating ability measurements were determined by omitting EDTA 

from the reaction mixture and by replacing it with buffer solution and using 

sample concentrations of 0.1 mM, 0.25 mM, 0.5 mM and 1 mM. The pro-

oxidant activity measurements were determined by omitting AA from the 

reaction mixture and by replacing it with the buffer solution. Same sample 

concentrations were used as in the radical scavenging assay.  

7.7.4 Feeding experiment with Amphipyrea pyramidea larvae 

Feeding experiments with purified ETs and copper underwing (Amphipyra 

pyramidea) larvae were performed in spring/summer 2011. The copper 

underwing larvae were reared from eggs; in the experiment fourth instar larvae 
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were used. For every ET-treatment 16 larvae from four clutches were randomly 

selected. The larvae were placed in plastic containers into which the ET-painted 

leaf of bird cherry (Prunus padus) was placed. Six different ETs (vescalagin, 

vescavaloninic acid, chebulagic acid, chebulanin, punicalagin and cocciferin D2) 

were painted on the leaves at the concentration of 25 mg g–1 leaf dw. ETs were 

dissolved in aqueous acetone (Me2CO:H2O, 70:30 v/v) solution, the solution was 

painted on each leaf with a brush and acetone was allowed to evaporate before 

the leaf was put into the container with the larva. Aqueous acetone (70:30 v/v) 

solution was painted on the control leaves. The larvae were weighted before the 

experiment and at the end of the experiment (72 h). A fresh leaf was provided 

daily, the uneaten remainders of the leaves were removed from the containers 

and the frass was collected. Remainders of the leaves and frass were freeze-dried 

and weighted. The larvae were kept at ambient outdoor conditions in a shed at 

the Botanical garden of the University of Turku at Ruissalo. After the 72 h 

experiment, the larvae were allowed to pupate in their containers (moss was put 

to the containers to prevent drying of the larvae and to offer a more natural 

environment for the pupation) and the pupa were weighted 14 days after 

pupation. 

To identify the possible effects of the ETs on the different components of 

larval performance, four nutritional indices were used (Roslin and Salminen, 

2008). These indices were:  

1) Amount of food ingested (mg dw) 

2) Digestability (absorption effiency): 

 
food	ingested	 mg	dw frass	excreted	 mg	dw

food	ingested	 mg	dw
 

 

3) Growth efficiency (efficiency of conversion of ingested food to body 

substance) 

 
biomass	increment	 mg	fw
food	ingested	 mg	dw
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4) Metabolic efficiency (efficiency of conversion of digested food to body 

substance) 

 
biomass	increment	 mg	fw

food	ingested	 mg	dw 	 frass	excreted	 mg	dw
 

 

To examine the impact of treatment on different metrics of larval performance, a 

generalized linear mixed effects model was used. Each response metric was 

modeled separately as a function of treatment (a categorical fixed effect with 

seven levels) and the weight of the larva at the start of the experiment (a 

continuous variable). To account for potential correlations among larvae from 

the same clutch, a repeated-measures model with clutch treated as the subject 

was used. Relevant degrees of freedom were estimated by a Kenward-Roger 

approximation. The model was fitted in SAS System 9.2 for Windows (SAS 

Institute Inc., Cary, NC, USA). 



Results and Discussion 

68 
 
 

8 RESULTS AND DISCUSSION 

8.1 Characterization of ellagitannins from plant samples 

Nowadays the number of characterized ET structures exceeds a thousand 

(Quideau et al., 2011). This means that a lot of time has been used to extract, 

isolate, purify and characterize the structures of the isolated ETs. Thus, there is a 

vast literature available on different spectroscopic and spectrometric features for 

individual ET structures to aid phytochemists to identify their ETs. However, 

there is only little literature available that concerns thoroughly the 

characterization of ETs from different analytical steps, starting from the first 

chromatographic analysis of the crude extract in comparison to, e.g., flavonoids 

for which there is comprehensive data available (see e.g., Santos-Buelga et al., 

2003). Moreover, there is a very limited selection of commercially available 

ETs, and thus reference compounds are not as readily available as they are for 

e.g., the above-mentioned flavonoids. 

Fast compound classification and characterization is particularly useful in the 

case of screening studies, where there is a number of samples to be analyzed and 

the compounds of interest should be quickly recognized. Thus the aim of I was 

to overcome some of the characterization-related difficulties by providing a 

thorough representation on how ETs having different substructures can be 

readily and effectively characterized from complex plant samples. 

Nevertheless, the data obtained by chromatographic and spectrometric 

methods is dependent on several factors, such as, the instrument, the column, the 

flow rate, the elution solvents and the ionization parameters used. Thus direct 

comparisons of, e.g., retention times between different studies is not meaningful. 

In the case of UV spectra, the data is in many cases published only as numerical 

data in a table which makes the application of the information inconvenient. 

Thus, in I, a characterization scheme (Scheme 2) was developed: it represents 

the regularities between different ET structures, their retention behavior in the 

RP-LC, mass spectrometry and even their biological activities. 
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8.1.1 Structural information obtained from the retention order 

The main feature that affects the retention of ETs is the ratio between galloyl 

groups and HHDP (or other HHDP derived) groups together with the 

configuration of the glucose core. As is seen from Scheme 2, the more there are 

galloyl groups in the ET structure, the later it will elute from the RP-HPLC 

column, and also from the Sephadex LH-20 column. Likewise, when the number 

of the HHDP groups in relation to the galloyl groups increases, the retention of 

ETs in the column decreases. With acyclic ETs, the adsorption to the column 

material decreases even more. Thus, C-glucosidic ETs elute earlier than their 

glucopyranose-based counterparts (Scheme 2, Table 1 in I). Furthermore, there 

are a couple of additional features of ETs, which should be kept in mind when 

interpreting the chromatographic data. Both glucopyranose-based and C-

glucosidic ETs have two possible isomers with respect to the C-1 of their 

glucose core. If the C-1 of the glucopyranose-based ETs is unsubstituted, i.e., 

there is a OH group at C-1, two peaks with a nearly 1:1 ratio is usually seen in 

the chromatogram, namely α- and β- anomers. The presence of these kinds of 

ETs can be confirmed by the reaction with sodiumborohydride (NaBH4) 

(Section 3.3.2; Hatano et al., 1988a). In addition, those ETs whose configuration 

at C-1 is β elute earlier than the isomers with α configuration at the C-1 (Table 1 

in I; Salminen et al., 2001). Thus, e.g., vescalagin-type C-glucosidic ETs elute 

earlier than castalagin-type C-glucosidic ETs. 

8.1.2 Structural information obtained from the UV spectra 

The characterization of ETs is enhanced significantly, if the LC is equipped with 

a diode array detector, since then the UV spectrum can be obtained for each peak 

in the chromatogram. Based on the UV spectra, ETs can be distinguished from 

each other (Fig. 10) and from the other polyphenolic compounds present in the 

sample (Fig. 4 in I). Thus, ETs can be classified as belonging to either 

glucopyranose-based ETs or C-glucosidic ETs. The distinction between 

dehydroETs and chebuloyl-containing ETs may be difficult if only their UV 

spectra are considered (compare the spectra of geraniin and chebulagic acid to 
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that of tellimagrandin I in Fig. 10), but their characterization is simpler if also 

mass spectrometry can be utilized (Section 8.1.3). 

The same features which affect the retention behaviour of ETs in RP-LC 

analysis, affect also their UV spectra. The UV spectra of glucopyranose-based 

ETs resemble those of gallic acid and PGG, in which there are two clear maxima 

at 220 and 280 nm region and a valley at 240 nm region (PGG in Fig. 10). As 

the number of HHDP groups increases with respect to the number galloyl groups 

in the ET structure, the valley between the two maxima gradually disappears 

(e.g., compare the spectra of tellimagrandin I, casuarictin and pedunculagin to 

each other in Fig. 10). With acyclic glucose-based ETs, as in the case of C-

glucosidic ETs, the shape of the UV spectrum changes also characteristically: 

there is neither maximum observed at the 280 nm region nor there is a valley 

observed at the 240 nm region (vescalagin in Fig. 10). If a C-glucosidic ET 

contains an HHDP group and a galloyl group instead of an NHTP group, a 

plateu can be seen in the 260 nm region (e.g., stachyurin in Fig. 10), which is 

clearly separable from the valley present in the spectra of glucopyranose-based 

ETs.
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8.1.3 Structural information obtained from the mass spectra 

The mass spectrometric analysis is an important tool in the characterization of 

ETs. The determination of the molecular weight (MW) is of importance, but 

additional information of the functional groups in the ET structure may also be 

obtained from the fragmentation data. Furthermore, if it is possible to combine 

the information from the chromatographic analysis and the UV spectra with the 

additional information obtained from the mass spectra, it may be possible to 

fully characterize ETs from the sample. 

In the mass spectra of monomeric ETs, the most abundant peak represents 

usually the molecular ion [M–H]– of an ET. When the MW increases, as in the 

case of oligomeric ETs, the multiply charged ion [M–2H]2– may be the dominant 

one. These ions are distinguished from the singly charged ones by the isotopic 

distribution of the signals: if the isotopic signals differ by 1.0 Da the ion is 

singly charged, and if the signals differ by 0.5 Da, the ion is doubly charged 

(Fig. 6 in I). 

Additional information about different structural details can be obtained from 

the fragment ions. For example, it is common that in the spectra of those ETs, 

which contain galloyl groups, an ion at m/z 169 is present, which corresponds to 

a deprotonated gallic acid. Likewise, the presence of an HHDP group is typically 

observed at m/z 301 as a deprotonated ellagic acid. In addition, information 

about substitution patterns can be obtained: for example, if an additional galloyl 

group is attached to an ET by an ether bond (C–O–C) as in the valoneoyl group 

of vescavaloninic acid (Fig. 2 in I), a fragment ion corresponding to the loss of a 

carboxylic acid (–COOH) group from the molecular ion (or from the doubly 

charged molecular ion) is seen, i.e., [M–COOH]– and/or [M–H–COOH]2–. For 

those ETs which contain a DHHDP group, the loss of water [M–H–H2O]– or 

[M–2H–H2O]2– is typical. The loss of water is also characteristic for those C-

glucosidic ETs, which have β configuration at their C-1, i.e., vescalagin-type 

ETs. From castalagin-type ETs (α configuration at C-1) the fragmentation of 

water is not observed. This has been explained to result from steric and 

intramolecular stabilization effects (Quideau et al., 2003, 2004, 2005; Yoshida et 

al., 1991b), i.e., in castalagin-type ETs, the OH group at C-1 forms a hydrogen 

bond to one of the OH groups of the NHTP group, which stabilizes the structure 
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of the castalagin-type ETs in comparison to the vescalagin-type ETs (Quideau et 

al., 2004, 2005). 

The interpretation of the mass spectra of monomeric ETs is quite 

straightforward and the building blocks of an ET can, at least to some extent, be 

resolved by the aid of Scheme 2 and the fragmentation patterns given above. It is 

also simple to determine the MWs of oligomeric ETs. However, it is also 

possible to further evaluate the building blocks of oligomeric ETs. To do this, it 

is worth remembering that the oligomeric ETs are comprised of those 

monomeric ETs that are present in the sample. Thus, if it is known which type of 

monomeric ETs a plant species produce, then it is likely that the oligomeric ETs 

are constructuted from these monomers. Secondly, the linkage between the 

monomers is formed either via C–O–C or via C–C bonds between the 

monomers. In the former case, the other monomer functions as an O-donor, i.e., 

its OH group is etherified to an aromatic carbon atom of the other monomer 

(functions as an O-acceptor) (Okuda et al., 2009). Thus, in the process, a total of 

2 Da is lost. The latter coupling is only possible for C-glucosidic ETs and 

flavanoETs (Okuda et al., 2009). This coupling takes place between the C-1 of 

the other monomer and an aromatic carbon atom of the other monomer. In this 

linkage, a total of 18 Da is lost (cleavage of water). Thus, different variations of 

the theoretical oligomer masses can be calculated by the following equations (3–

4): 

MW of an oligomeric C–O–C linked ET =  

(MWs of the n monomers) – 2(n–1)    (3) 

 

MW of an oligomeric C–C linked ET = 

 (MWs of the n monomers) – 18 (n–1)   (4) 

 

where n stands for the number of the monomers 

 

However, as for every generalization, exceptions do exist. Examples of these 

exceptions are the macrocyclic oligomers (e.g., oenothein B) and dimers that 

consist of monomers that belong to different subgroups (e.g., cocciferin D2). In 

macrocyclic ETs, there is an additional C–O–C bond that decreases the MW of 

the oligomer by another 2 Da. However, if one wants to use Equation 1 to 
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estimate the MWs of these types of oligomers, it is worth remembering that the 

double C–O–C coupling typically occurs only once in the structure (Karonen et 

al., 2010). Thus, this additional feature allows the decrease of the MW derived 

from Equation 1 only by 2 Da. 

8.2 Distribution and content of ellagitannins in Finnish flora 

As was shown in Table 3 (Chapter 4), the ET content of Finnish plant species 

have not been widely studied. Thus, in II a wide variety of different plant 

species were screened for their ET composition and content. The information 

obtained from the study II has been used in III and IV, when ET-containing 

plant species were needed for large scale ET isolation and purification purposes. 

In total, 82 plant species were studied. These species represented 34 different 

plant families. In addition, different parts of plants were studied in some cases. 

The studied plant species and parts are listed in Table 4 (Section 7.1). From the 

82 species, 30 contained ETs. These species were taken into further 

examination, and the total ET content of the crude extract was quantitated with 

HPLC-DAD. In addition, the crude extracts were analyzed with HPLC-DAD-

ESI-QTOF-MS to obtain detailed information about the ET composition of 

individual plant species. The ETs found were characterized based on the 

characterization patterns presented in I and were divided into four subgroups 

(glucopyranose-based ETs, C-glucosidic ETs, dehydroETs and oligomeric ETs), 

whose contents were also determined. Individual ETs were identified based on I 

and tentative characterizations were based on literature. Taxonomic distribution 

of ETs in the studied plant species was examined with the aid of phylogenetic 

trees, and the results were reflected to the APG III (2009) classification. 

The plant species containing ETs, studied plant parts, the total content of ETs 

in the crude extract and individual ETs characterized from the plant samples are 

presented in Table 1 (II). The phylogenetic relationships between ET-containing 

species and the content of different ET subgroups are presented in Figure 11.



 

 

F
ig

u
re

 1
1.

 P
hy

lo
ge

ne
ti

c 
tr

ee
 r

ep
re

se
nt

in
g 

th
os

e 
sp

ec
ie

s 
w

hi
ch

 c
on

ta
in

ed
 e

ll
ag

it
an

ni
ns

. T
he

 l
et

te
rs

 A
–D

 d
en

ot
e 

di
ff

er
en

t 
E

T
 s

ub
gr

ou
ps

: 
A

 

=
 g

lu
co

py
ra

no
se

-b
as

ed
 E

T
s,

 B
 =

 o
li

go
m

er
ic

 E
T

s,
 C

 =
 C

-g
lu

co
si

di
c 

E
T

s,
 D

 =
 d

eh
yd

ro
E

T
s.

 C
on

te
nt

 o
f 

E
T

 s
ub

gr
ou

ps
: 
■

 <
1–

10
%

, 
■

 1
1–

29
%

, ■
 3

0–
50

%
, ■

 >
50

%
. C

la
ss

if
ic

at
io

n 
of

 R
os

ac
ea

e 
is

 a
cc

or
di

ng
 to

 P
ot

te
r 

et
 a

l. 
(2

00
7)

. 

Results and Discussion 

76 



Results and Discussion 

77 
 
 

The Cronquist’s classification is presented in Fig. 6 (Chapter 4) and 

the APG classification in Fig. 11. There are three major differences 

between these classifications. First, in the Cronquist’s classification the 

subclass Hamamelidae includes orders Fagales (Fagaceae and Betulaceae) 

and Myricales (Myricaceae). In the APG classification the subclass 

Hamamelidae no longer exists, and the order Myricales is combined with 

Fagales. Thus, in the APG classification Fagales includes families 

Fagaceae, Betulacea and Myricaceae. Second, in the Cronquist’s 

classification the subclass Rosidae includes order Proteales into which the 

family Elaeagnaceae is placed. In the APG classification, Elaeagnaceae is 

placed into order Rosales. Third, in the APG classification there is no 

ranking to subclasses as is in the Cronquist’s classification, but the orders 

are placed under two unranked and informally named subgroups Malvids 

and Fabids. Thus, Malvids includes orders Geraniales and Myrtales and 

Fabids includes orders Rosales and Fagales (Fig. 11). 

The change that family Myricaceae is placed under Fagales made by 

the APG is supported by the results of II: the ET profiles and contents of 

ETs in all of the studied plant species (except that of Fagaceae) are similar 

(Table 1 in II). They all contain low amounts of ETs, and the ETs found 

are both glucopyranose-based and C-glucosidic ETs. The content of ETs 

in Quercus robur (Fagaceae) is substantially higher than in those species 

that belong to the families Betulaceae (Alnus species, Betula species and 

Corylus avellana) and Myricaceae (Myriga gale). Also the ET profile of 

Q. robur is different: the species is characterized by having a high content 

of C-glucosidic ETs and especially by producing a dimeric ET cocciferin 

D2, which is not detected in any other plant species studied (Fig. 11; Table 

1 in II). 

The family Elaeagnaceae has been a dilemma to taxomists, and it has 

been classified into several different orders (Hyvönen, 1996). In the 

Cronquist’s classification it is placed under Proteales, which is suggested 

to be evolved from Myrtales (Fig. 6; Okuda et al., 2000). In the APG 

classification, Elaeagnaceae is placed under Rosales (Fig. 11). However, 
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as the ET composition in Figure 11 and in Table 1 (II) points out, it does 

not seem to fit in there either. The other family of Rosales is Rosaceae and 

all the other species and genera studied from Rosaceae have clearly 

different ET compositions compared to that of Elaeagnaceae (Fig. 11; 

Table 1 in II). At this point one could argue that only one species 

(Hippophae rhamnoides) from Elaeagnaceae was studied. However, the 

genus Hippophae is very small with only five species (Hyvönen, 1996). 

The whole family is also small; in addition to Hippophae, it includes only 

two other genera, Shepherdia with three species and Elaeagnus with 20–

50 species [in comparison, Rosaceae includes 95 genera and ca. 2800 

species (Encyclopedia of Life)]. Shepherdia and Elaeagnus species do not 

naturally grow in Finland, but have previously been studied by Ito (1999). 

All these genera are characterized by producing C-glucosidic ETs and 

their derivatives. Same types of C-glucosidic ETs have been found from 

species belonging to families Lythraceae and Fagaceae (Ito, 1999). Thus, 

in this case it would seem more appropriate to place Elaeagnaceae to 

Myrtales, as was suggested by Cronquist. Overall, the order Myrtales is 

comprised of families whose ET composition is exceptional: species 

belonging to Onagraceae (Epilobium species) are characterized by 

producing macrocyclic oligomeric ETs (e.g., oenothein A and B) and 

Lythrum salicaria (Lythraceae) by producing oligomeric ETs that are 

composed of C-glucosidic ETs (Table 1 in II). 

In addition, Myrtales and Geraniales are classified in the APG system 

to Malvids. Geraniales includes the family Geraniaceae, which is also 

exceptional in its ET composition: Geranium species are characterized by 

producing dehydroETs and their derivatives. Thus, if Elaeagnaceae is 

included in Myrtales, this branch of Malvids would be composed of 

families which have special ET composition. Furthermore, in the 

phylogenetic tree of APG (APG III, 2009), Myrtales and Geraniales form 

their own well-separated branch, which indicates they are not closely 

related to other orders belonging to Malvids. 
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In general, the APG classification matches well with the ET data 

obtained in II. The only drawback of the APG classification is that it is 

focused only on the order and family level. In the case of Rosaceae, this 

level of classification was considered to be too wide: the family included 

26 species, with several genera, which in turn had different ET profiles. 

Thus, the classification has been deepened into subfamily, supertribe, tribe 

and subtribe level according to Potter et al. (2007) (Fig. 11). Overall, this 

classification is in good accordance with the ET data, but if only the 

chemical data is considered, some modifications to this could be done. 

These modifications are illustrated in Scheme 1 (II), in which all the 

genera from Rosaceae are divided into groups based on the type of 

oligomeric ETs they produce. 

Thus, in comparison with the classification of Potter et al. (2007; Fig. 

11) the following changes could be made: 1) Filipendula could be placed 

to supertribe Rosodae as it has similar ET composition as Rosa species. 2) 

Rubus and Rosa species could be classified under different tribes because 

of the differences in their ET composition. 3) Comarum, Fragaria and 

Alchemilla species could be classified into the same tribe with Potentilla 

since they have the same main ET (agrimoniin). However, Geum species 

should be kept in their own tribe although they are placed into the same 

group with Alchemilla, Potentilla, Comarum and Fragaria species 

(Scheme 1 in II). This is because in Geum species the main ET is gemin 

A, not agrimoniin. 

8.3 Biological activity of ellagitannins 

Three different assays were used to measure the in vitro activity of ETs. 

There are two main reasons for this. First, the pH 10 assay was used to 

assess the propensity of ETs to oxidize at high pH (III), i.e., in conditions 

that many lepidopteran larvae have in their digestive tract. Second, since 

not all herbivorous insect larvae have alkaline gut conditions, it was of 

interest to study how ETs would react in different pH conditions. Thus, 

the deoxyribose assay (IV), in which the reaction conditions are buffered 
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to pH 7.4, was used. Furthermore, the advantage of the deoxyribose assay 

is that it can be modified so that it can be used to evaluate both the 

antioxidant activity and pro-oxidant activity of ETs. The antioxidant 

activity can be measured as non-site-specific radical scavenging activity 

by measuring the hydroxyl radical scavenging activity. Site-specific 

scavenging activity can be measured by the ability to chelate iron (Fe) 

ions. The pro-oxidant activity is measured as the ability to reduce Fe3+ 

ions. The activities of ETs in III were also measured with the DPPH 

assay, which is a widely used method for the determination of antioxidant 

capacity. For the activity measurements in III and IV, a wide variety of 

structurally different ETs were purified (Table 6). 
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8.3.1 Oxidative activity with pH 10 assay 

Previously Barbehenn et al. (2006a, b) have successfully shown that the 

oxidation of ETs occurs at high pH. In that study, a simple spectrophotometric 

assay was introduced to evaluate the propensity of tannins to oxidize: tannins are 

oxidized at high pH and the formation of brown oxidation products (quinones 

and polymeric pigments) is monitored spectrophotometrically at 415 nm 

(Barbehenn et al., 2006a, b). We slightly modified this assay. First, we changed 

the starting time for the measurements. In the original assay the measurements 

were started 15 sec after the addition of the buffer. In this time period, the 

oxidation process has proceeded for a quite long time (Fig. 12). Therefore, in our 

method the measurements were started immediately after the addition of the 

buffer; the delay was in the range of 1 to 2 sec. Second, our measuring time was 

longer (8 min) than in the original method (3 min). Third, we used the oxidation 

data from the first 100 secs to calculate the maximum rate of oxidation; in the 

original method, the maximum rate was calculated from the data collected 

during the first 60 secs. 

The oxidation curves obtained from the data varied in their shapes depending 

on the ET (Fig. 12) indicating their varying propensities to oxidize. The 

differences in the activities between the most inactive (chebulagic acid, Table 6; 

IV) and the most active (castavaloninic acid, Table 6; III) ETs were almost 40-

fold. By comparing structurally closely related ETs (e.g., vescalagin and 

stachyurin), it is possible to deduce, which type of structural features affect the 

activity. Additionally, it is possible to draw conclusions on the direction and 

magnitude of these effects caused by different structural features, i.e., whether 

they are positive or negative, large or small. Based on these comparisons (III), it 

was concluded that the structural features affected the oxidative activity of ETs 

in the following descending order: valoneoyl group with a free carboxylic acid 

(–COOH) group > acyclic glucose core with α-configuration at C-1 > glycosyl 

substituent (xylose/lyxose) > NHTP group > bound valoneoyl group ≈ 

sanguisorboyl group > HHDP group ≈ acyclic glucose with β-configuration at C-

1. In addition, an equation that can be used to estimate the oxidative activity of 
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other ET structures was developed (III) and a good correlation between the 

measured and calculated activity was obtained (r ≈ 0.97; III).  

It is interesting that castalagin-type C-glucosidic ETs have higher activities 

than vescalagin-type C-glucosidic ETs. It is generally known, that vescalagin-

type ETs are more reactive than castalagin-type ETs (Quideau et al., 2003) and 

derivatives of vescalagin-type ETs can be easily synthesized even in mild 

reaction conditions (III; Quideau et al., 2003, 2005). In fact, the derivatives of 

castalagin-type ETs have only rarely been found in nature (Ishimaru et al., 1987) 

and they can be synthesized only with poor yields (Ishimaru et al., 1987) or not 

at all (Quideau et al., 2005). In this context the higher activity of castalagin-type 

ETs is peculiar. However, these results could be explained by the fact that in 

castalagin-type ETs an intramolecular hydrogen bond is formed (Quideau et al., 

2005; Section 8.1.3.), which lowers the basicity of the O-1 atom (Quideau et al., 

2005). In the alkaline conditions used in the pH 10 assay this would mean that 

the OH group at C-1 would be more easily deprotonated than in the vescalagin-

type ETs. 

The structural variety of ETs was later extended with eight previously 

unexamined structures: grandinin, roburin E, punicalagin, tellimagrandin II, 

chebulanin, chebulagic acid, geraniin and carpinusin (IV). The activity of 

roburin E (11.25×10–3 abs s–1 mM–1) corresponded quite well with the calculated 

activity (13.2×10–3 abs s–1 mM–1), but the activity of grandinin (8.1×10–3 abs s–1 

mM–1) deviated from the calculated. The calculated and measured activities of 

tellimagrandin II corresponded also each other well (calculated: 2.0×10–3 abs s–1 

mM–1, measured: 1.48×10–3 abs s–1 mM–1). In conclusion, the results obtained in 

III and IV show clearly that glucopyranose-based ETs are not as prone to 

oxidation as are C-glucosidic ETs and that those ETs, which have a DHHDP 

group or its modification in their structure are particularly resistant to oxidation 

at high pH.  
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8.3.2 Antioxidative activity with DPPH assay  

Antioxidative activity of ETs used in III was measured with DPPH assay (Table 

6). In this assay, the difference between IC50 values (i.e., concentration in which 

50 % of the radicals are reduced) of the most active (lambertianin C) and 

inactive compound (isostrictinin) was ~4-fold. Similar structure-activity 

comparisons were made as for pH 10 assay. However, the effects of different 

structural features on the antioxidative activity were not as clear as was for the 

oxidative activity, i.e., the antioxidative activities of ETs could not be grouped 

into distinct structural features. The most active compounds were oligomeric 

ETs (lambertianin C, sanguiin H-6, cocciferin D2, gemin A, agrimoniin and the 

C-glucosidic dimer). Moderate inhibition activity was obtained for ETs with 

acyclic glucose cores, i.e., C-glucosidic ETs, and low activity for glucopyranose-

based ETs. The results show good correlation (Fig. 13) between the IC50 value 

and the number of phenolic OH groups in the structure. 

 

 

Figure 13. Correlation between IC50 value and the number of phenolic hydroxyl groups 
in the ellagitannin structure. 

Thus, the more there are OH groups in the structure (oligomeric > 

monomeric compounds) the more efficiently the compound can reduce the 

DPPH radical. It has been suggested that the 1,2,3-trihydroxyl structure of gallic 

acid is responsible for the radical scavenging activity of ETs (Hatano et al., 

1989b; Yokozawa et al., 1998) as resonance-stabilized radicals are formed 

(Yoshida et al., 1989). When the galloyl groups are replaced by, e.g., a DHHDP 

0,0
2,0
4,0
6,0
8,0

10,0
12,0
14,0

0 10 20 30 40 50

IC
50

(µ
M

)

Number of phenolic OH groups

R = 0.9087

14.0
12.0
10.0
8.0
6.0
4.0
2.0
0.0



Results and Discussion 

87 
 
 

group, the activity is suggested to decrease because there are fewer OH groups 

in the structure, or because of spatial hindrance (Yokozawa et al., 1998). 

8.3.3 Activity of ellagitannins with deoxyribose assay 

To be able to compare the activities of ETs in different biological conditions, the 

activities of 13 ETs were measured with 2-deoxyribose (2-DR) assay (Table 6). 

This assay is based on the degradation 2-DR caused by hydroxyl (OH˙) radicals 

at pH 7.4. The radicals are generated from the Fe3+/ascorbate/EDTA/H2O2 

system (Fig. 14), i.e., by the Fenton reaction, which is the main source of 

hydroxyl radicals in vivo (Soberon et al., 2009). 

 

 

Figure 14. Reaction scheme for deoxyribose assay. 
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Although the chemistry of 2-DR assay is complicated and differentiates from 

that used in pH 10 assay, the results are surprisingly similar between these two 

methods. C-glucosidic ETs exhibited pro-oxidant activity also at neutral pH. 

This can be seen from both the OH• scavenging activity and the pro-oxidant 

activity results (Table 6), which are negative in their sign (i.e., the degradation of 

2-DR is enhanced by the presence of these ETs). However, the activity is 

dependent on the concentration of ET studied (Fig. 2 in IV): at lower 

concentrations (1–3 mM) most C-glucosidic ETs exhibit pro-oxidant effects, but 

as the concentration increases (5 mM) the pro-oxidant effect decreases and the 

ETs begin to exhibit antioxidative activity. Nevertheless, their overall activity 

has more of pro-oxidative character than antioxidative. 

From glucopyranose-based ETs, tellimagrandin II is the only one which 

exhibits antioxidative activity in both assays, and also in all concentrations (Fig. 

2 in IV). Punicalagin, which exhibits relatively good OH• scavenging activity at 

all concentrations, exhibits pro-oxidant activity at low concentrations with the 

pro-oxidant assay (Fig. 2 in IV). 

The dimeric ETs (agrimoniin and gemin A) are the only ones that show 

strong antioxidative activity in both assays and thorough the studied 

concentration range (Fig. 2 in IV). The two dehydroETs studied (geraniin and 

carpinusin) exhibit concentration-dependent antioxidant activity in OH• 

scavenging assay, but in pro-oxidant assay they exhibit more pro-oxidant 

activity than antioxidative activity (Fig. 2 in IV). ETs that contain a chebuloyl 

group, i.e., chebulanin and chebulagic acid, also possess both antioxidative and 

pro-oxidative activities. However, these activities are not dependent on 

concentration (Fig. 2 in IV). This implies that they may react in some other way 

in the prevailing reaction conditions than the other ETs do. 

It has been suggested that the antioxidative activity of ETs is not related to 

their ability to scavenge radicals, but instead on their ability to chelate metal ions 

(Gyamfi and Aniya, 2002), and similar conclusions have been drawn from 

studies in which different types of phenolic and polyphenolic compounds have 

been studied (e.g., Andrade et al., 2005, 2006; Lopes et al., 1999). As the results 

show (Table 6), the studied ETs possess good ability to chelate Fe ions (except 

chebulanin). This is further supported by the fact that the measurements of 

chelating ability needed to be performed at concentrations ten times more dilute 



Results and Discussion 

89 
 
 

than OH• scavenging and pro-oxidant activity measurements. The most effective 

chelators are dimeric ETs. Their chelating abilities are roughly two-fold 

compared to those of other tested ETs. For the rest of the ETs, the chelating 

abilities are in the range of 20–30 %. The only exception is chebulanin, whose 

chelating ability is the lowest, only about 4 %. 

From the herbivores’ point of view, the results are interesting. For example, 

the metal chelating results suggest that herbivores might be able to use ETs as 

antioxidants to prevent Fenton-type reactions to take place in their digestive 

tracts. These reactions have been shown to occur in the prevailing iron 

concentrations that herbivores have in their gut (Barbehenn et al., 2005a). On the 

other hand, it has been shown that ETs cause oxidative stress in the guts of 

herbivores (Barbehenn et al., 2005b, 2008b), and that although the herbivore 

would be able to compensate (e.g., by antioxidants) and/or to take advantage on 

ETs it consumes during feeding, markers indicating oxidative stress are still 

observed (Barbehenn et al., 2001). Thus, it seems that ETs possess more 

negative features concerning larval performance than positive ones.     

8.3.4 In vivo activity of ellagitannins on Amphipyrea pyramidea larvae 

It is clear that the evalution of the biological effects that ETs have (or might 

have) on herbivores is not an easy task. Thus, it was of interest to perform some 

in vivo experiments as well. The idea for the experiment came from the results of 

Roslin and Salminen (2008). In their study, two generalist moth species and two 

oak-specialist moth species were fed with artificial diets containing an ET 

(vescalagin), PAs (mixture from mountain birch) or a mixture of them. The most 

notable finding of the study was that the larvae of the generalist species that 

were fed with a diet containing vescalagin were significantly affected: all 

utilized nutritional indices (the amount of food ingested, the approximate 

digestibility of food, the efficiency of conversion of ingested food to body 

substance, and the efficiency of conversion of digested food to body substance) 

were significantly affected and resulted in clearly reduced larval weight 

development. On the other hand, the diet containing PAs had no effect on any of 

the species. Thus, our aim was to repeat these results, but with a wider selection 

of structurally different ETs and by using leaf diet. 
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In this experiment bird cherry (Prunus padus) leaves were selected to be fed 

to the larvae. The feed choice was based on preliminary experiments and on the 

fact that bird cherry leaves do not naturally contain ETs (II). The generalist 

moth species, copper underwing (Amphipyra pyramidea), was chosen based on 

the results obtained by Roslin and Salminen (2008). ETs (chebulagic acid, 

chebulanin, cocciferin D2, punicalagin, vescalagin and vescavaloninic acid) were 

selected so that they represented varying oxidative activities (Table 6). 

The results of the 72 h experiment are presented in Table 7 and the statistical 

analyses of the results in Table 8. As can be seen, the results are highly non-

significant, i.e., no effects on the nutritional indices or growth were observed 

(Table 8). There is one almost significant result, which indicates that the initial 

weight of the larvae may have an effect on the growth efficiency of the larvae, 

i.e., the heavier the larvae are at the beginning, the greater their growth 

efficiency is.  

The results indicate that no negative effects on the larvae of the generalist 

moth species are observed when they feed on diet containing ETs painted on 

bird cherry leaves. There are several possible explanations for this. First and the 

most obvious explanations is that the compounds in bird cherry leaves have 

suppressed the activity of ETs. The total polyphenol content of bird cherry 

leaves is low (55 mg g–1 of the crude extract) and these polyphenols consist of 

PAs (25 mg g–1 of the crude extract), chlorogenic acid (14 mg g–1 of the crude 

extract) and flavonoid glycosides (12 mg g–1 of the crude extract). It has been 

shown, that PAs decrease the amount of semiquinone radicals produced by ETs 

in vitro (Barbehenn et al., 2006b) and that the negative effects of consuming ETs 

were absent when PAs were added to the food along with an ET (Roslin and 

Salminen, 2008). Thus, it is possible that the oxidative activity of ETs was 

suppressed by the presence of PAs in the leaves. However, there is another 

option to explain the results. Barbehenn et al. (2009b) have concluded that 

painting of compounds on the leaf surface does not influence the overall leaf 

chemistry. In their study, Barbehenn et al. (2009b) found no overall effects of 

leaf resistance to M. dispar larvae when they were fed with red oak leaves 

coated with HTs and, on the other hand, when fed with sugar maple leaves 

coated with PAs. It was expected that, e.g., in the case of sugar maple, which 

produces high concentrations of semiquinone radicals in vivo (Barbehenn et al., 
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2005b), the levels of radicals would decrease when PAs are painted on the leaf 

surface, but this was not observed. Since only nutritional indices were taken into 

account in our study, it is impossible to evaluate the effects of ETs inside the 

digestive tract. Thus, it is possible that ETs enhanced the production of radicals 

and oxidative stress in the midgut tissues of these larvae to some extent, but 

these implications were not sufficient enough to have effects on the growth of 

the larvae. Another point is that often the feeding experiments last only for few 

days or throughout one or a couple of instars. Thus, it would be interesting to 

see, would the results be different if the experiment lasted throughout the whole 

life-cycle of larvae to adultery, and whether the consumption of ETs have effects 

e.g., on the fecundity and reproductivity of the adults. 
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9 CONCLUSIONS 

The main aim of this thesis work was to study ellagitannins. On one part, the aim 

was to enhance the characterization of ETs from complex samples without 

having to isolate every ET for individual characterization. Thus, a thorough 

representation of how ETs having different substructures can be effectively 

characterized from complex plant samples was given (I). The characterization 

patterns presented in I should be useful for phytochemists in their task of finding 

out what kind of ETs their plant samples contain. The results presented in I 

significantly aided the characterization of ETs in a screening study (II) that was 

done to obtain information about the distribution and content of ETs in the 

Finnish flora. This was first study that investigated individual ETs from Finnish 

plants at this extent. In addition, the taxonomic distribution of ETs in the studied 

plant species was investigated, and was found to correlate well with their 

classification. 

The second aim was to study the biological activities of individual ETs 

focusing on their role in plant-herbivore interactions. The results showed that 

ETs possess varying oxidative activities both at high pH (III) and at neutral pH 

(IV), and that their activity is dependent on the structure. Moreover, the results 

showed that some of the ETs possess oxidative activity even at neutral pH. 

Despite of these encouraging results, no effects on the performance of 

Amphipyrea pyramidea larvae were found in the feeding experiment, which 

included also some of the most active ETs. Thus, there is still work to be done to 

find out if ETs are produced for defensive purposes by plants, and if they are, by 

which mechanism(s) they affect the herbivores. 
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