
“University of Turku Technical Reports, No.5 — August 2015”

HARDWARE ACCELARATED
VISUAL TRACKING

ALGORITHMS
A Systematic Literature Review

Sirpa Korhonen |Leo Sakari |Tero Säntti |Olli Lahdenoja |Teijo Lehtonen

Sirpa Korhonen,
University of Turku, TRC, 20014 Turun yliopisto, Finland,

sirpa.k.korhonen@utu.fi

Leo Sakari,
University of Turku, TRC, 20014 Turun yliopisto, Finland,

leo.sakari@utu.fi

Tero Säntti,
University of Turku, TRC, 20014 Turun yliopisto, Finland,

tero.santti@utu.fi

Olli Lahdenoja,
University of Turku, TRC, 20014 Turun yliopisto, Finland,

olli.lahdenoja@utu.fi

Teijo Lehtonen,
University of Turku, TRC, 20014 Turun yliopisto, Finland,

teijo.lehtonen@utu.fi

www.trc.utu.fi

ISSN 2341-8028 | ISBN 978-951-29-6189-4

“University of Turku Technical Reports, No.5 — August 2015”

Abstract

Many industrial applications need object recognition and tracking capabilities.
The algorithms developed for those purposes are computationally expensive. Yet,
real time performance, high accuracy and small power consumption are essential
measures of the system. When all these requirements are combined, hardware accel-
eration of these algorithms becomes a feasible solution. The purpose of this study
is to analyze the current state of these hardware acceleration solutions, which algo-
rithms have been implemented in hardware and what modifications have been done
in order to adapt these algorithms to hardware.

Keywords

Hardware acceleration, visual object tracking, optical flow, augmented reality,
computer vision

“University of Turku Technical Reports, No.5 — August 2015”

Contents

1 Introduction 1

2 Research process 2
2.1 Review questions . 3

3 Analysis of the material 4
3.1 Feature extraction algorithms . 4
3.2 Optical flow algorithms . 5
3.3 Feature detection algorithms . 5
3.4 Others . 6

4 Techniques used to adapt the algorithms to hardware implementation 7
4.1 Data flow architecture modifications 7
4.2 Algorithm modifications and reformulations 8
4.3 Use of fixed point numbers instead of floating point representation . 9
4.4 Other techniques . 9

5 Performance statistics 10
5.1 Optimization criterias . 13

6 Results of the review 16

7 Conclusions 18

Bibliography 20

i

“University of Turku Technical Reports, No.5 — August 2015”

1 Introduction

Computer vision and augmented reality have become a growing area of research.
There are interesting applications in automotive industry, robotics, building and
maritime industry. These applications require a capability to recognize objects and
track the motion of these objects. Scale Invariant Feature Transform (SIFT) [3],
Speeded-Up Robust Features (SURF) [1] and Binary Robust Independent Elementary
Features (BRIEF) [2] are examples of feature extraction algorithms developed for this
purpose. Lucas-Kanade is an example of optical flow estimation algorithm, which
can be used in tracking.

The algorithms used in feature extraction, optical flow estimation and pose cal-
culation are complex and thus require a lot of computing capacity, especially when
real time performance is needed. Hardware acceleration is one solution to overcome
the computational bottleneck. Graphics Processing Unit (GPU) is a rivaling solution.
In the research of hardware acceleration the first step is to try identify the parts
of the algorithms which are most suitable to be implemented in hardware. Then
the second step is to find the most suitable techniques to adapt the algorithm to
hardware.

Feature regocnition and tracking algorithms are rather new research areas and
maybe due to this the naming conventions in the publications are not consistent.
Therefore, we clarify that in this paper we name the part of algorithms, where the
features are recognized from image, as feature detection. Then the phase, where
the vectors characterizing the feature are created, is called feature description. The
whole procedure including both feature detection and feature description we call
feature extraction.

This paper is organized as follows: In Chapter 2 we describe the research pro-
cess. In Section 2.1 the research objectives and review questions are presented. In
Chapter 3 we present analyzes of the selected papers. In Chapter 4 we present the
classification of the papers in terms of key characteristics. Finally, in Chapter 5 we
discuss the results and in Chapter 6 we present our conclusions and visions for the
future.

1

“University of Turku Technical Reports, No.5 — August 2015”

2 Research process

A systematic literature review is a systematic and repeatable approach to identify
and study all relevant research publications on a specific research question or phe-
nomenon. The method consists of literature search, study selection, data extraction
and synthesis. In this review seven major publication databases and search engines
were used, seen in Figure 1 which illustrates the review process. In total 9682 papers
were found. In the first selection round only titles were read and based on this 352
relevant articles were chosen to second round, in which the abstracts were read. 139
articles from this second round were selected to full text reading. All these third
round papers were read by at least two persons to select the papers to the final
review. In case these two persons had different opinions, a third person read the
paper and gave the deciding vote. 32 papers were finally chosen for this review. In
all search engines the following search string was used:

[(fpga OR asic OR ic OR chip OR co-processor) AND ("machine vision" OR "computer
vision" OR "robotic vision" OR "optical flow" OR "motion flow" OR "motion estimation"
OR "augmented reality" OR "feature extraction" OR slam OR surf OR sift OR klt OR
"Lucas-kanade")].

Search was performed using header and abstract option. Searches were done in
December 2014.

This survey was focused mainly on articles published 2010 or after that. Only 4
of the selected articles were published before 2010, oldest being from 2006. These
old papers were included in the review because they presented interesting architec-
tural structures. Otherwise rather new articles were chosen, because they represent
implementations done using current-state technologies and the requirements are set
according to current applications. Field Programmable Gate Arrays (FPGA), CPUs
and GPUs have developed a lot in terms of performance recently. FPGAs’ capacities
have increased a lot. Similarly, the requirements of applications have increased, as
new augmented reality and computer vision applications need better accuracy and
real-time functionality with increasing image resolution.

2

“University of Turku Technical Reports, No.5 — August 2015”

Figure 1: Process to select papers.

2.1 Review questions

In this review the main objective was to find out the current state of hardware accel-
eration in feature extraction and object tracking algorithms, which can be applied to
mixed reality systems. The research questions were

1) What algorithms and which parts of them have been implemented in hardware?
How well did the solutions perform?

2) Are there any parts in the investigated algorithms that have not been imple-
mented in hardware, why?

3) Are there any competing solutions to a given problem? What are the benefits
of each?

3

“University of Turku Technical Reports, No.5 — August 2015”

3 Analysis of the material

The selected papers can be divided into two main categories, namely feature ex-
traction algorithms and object tracking algorithms. The feature detector algorithms
included are scale space detector, Canny edge detector, Harris corner detection
and Features from Accelerated Segment Test (FAST). SIFT, SURF, O-DAISY, BAsis
Sparse-coding Inspired Similarity (BASIS) and Massively Parallel Keypoint Detection
and Description (MP-KDD) are feature extraction algorithms included in the selected
papers. The optical flow estimation algorithm included was Lucas-Kanade and there
were articles about tensor based algorithms. Both full and partial hardware (HW)
implementations of these algorithms were presented in the papers. Performance
comparisons between hardware solution and corresponding GPU and CPU imple-
mentations were also presented in many papers as well as comparisons to other HW
implementations. In most of the papers the parameters analysed were execution
time, image resolution, accuracy and hardware utilization. Power consumption and
design time were also discussed in some papers. Design time is interesting to system
engineers designing real products.

3.1 Feature extraction algorithms

SIFT is an algorithm for feature extraction. It is a robust algorithm but computa-
tionally complex. The most computation intensive part is the Gaussian filtering in
the feature detection part of SIFT. In [P7, P19, P29, P31, P32], the detection part has
been implemented in FPGA in order to decrease the needed computing capacity. In
[P19, P29, P31, P32] the feature description part is implemented on Digital Signal
Processor (DSP). When converted to hardware implementation the architecture is of-
ten designed to increase parallelism in operations. The mathematical operations are
simplified in some papers, e.g. the Gaussian filtering length has been fixed smaller,
but then the number of errors is increased. One drawback in HW implementation is
that floating point operations are often converted to fixed point, which means some
loss in accuracy. It is also stated in many papers that if the operations are copied
as such to hardware the amount of hardware resources would not be feasible. In
some papers part of the SIFT algorithm has been replaced by some other algorithm.
In [P29] Wang et al. have replaced the feature extraction part of SIFT by BRIEF.
The authors claim that this combines the stability and repeatability of SIFT with the
computational efficiency of BRIEF and thus the real time requirements from real-life

4

“University of Turku Technical Reports, No.5 — August 2015”

computer vision system are met. In [P27] Suzuki et al. utilize corner detection to
reduce the computational complexity of the feature detection part of SIFT. In [P4]
Bonato et al. implement the whole SIFT on an embedded FPGA module. In [P14]
Jie et al. and in [P22] Qasaimeh et al. implement the whole SIFT in FPGA.

SURF is another widely used algorithm for feature extraction. In [P1, P5, P26] the
authors present implementations of full SURF algorithm on FPGA. Krajnik et al. [P16]
implemented SURF detection part on FPGA and description is run on an embedded
processor module. The implementation is compared to GPU based system. In [P8]
Yongsig et al. present an implementation of SURF, where SURF is partitioned to
several sub-IPs which are implemented on Xilinx zynq-7020 processing platform. It
contains a complete ARM based system with memory interfaces.

3.2 Optical flow algorithms

Optical flow estimation algorithms can be used for tracking the motion of features
and objects from image to image. Wei et al. [P30] developed a tensor-based algorithm
to be implemented on an FPGA. They report real-time processing performance and
good accuracy. Bodily et al. [P3] have also studied tensor based optical flow imple-
mentation. The parameters they discussed are performance, cost, power, embedabil-
ity, memory architecture, flexibility and design productivity. Both algorithms are run
in parallel. In [P18] Mahlingan et al. and in [P15] Kalyan et al. present FPGA imple-
mentations of Lucas-Kanade. In both of these papers the target has been to develop
a VLSI architecture of the algorithm. However, prototyping has been done on an
FPGA. Pauwels et al. [P20] have also compared GPU and FPGA implementations of
an optical flow estimation algorithm. The parameters they have used are arithmetic
complexity, external and on-chip memory access, data dependency, accuracy, speed,
power consumption, cost and design time. Their conclusion is that it depends on the
application whether GPU or FPGA should be chosen. In [P28] Lucas-Kanade has
been implemented on DSP. The system as total consists of Harris corner detector
implemented on FPGA and DSP as co-processor running Lucas-Kanade. The main
driver for this combination has been to achieve a balance between throughput and
development time. DSP suits well for iterative processing, and development time is
relatively short. The emphasis in this study was to optimize the whole system, not
optimizing Lucas-Kanade performance only.

3.3 Feature detection algorithms

Possa et al. [P21] have implemented feature detection algorithms, namely Canny edge
detector and Harris corner detector, on FPGA. For comparison respective algorithms
have been implemented on GPU. A new architecture has been developed to reduce
latency and memory requirements. The results show that FPGA implementation is
competitive with GPU. It is faster in smaller image sizes but becomes slower when
image resolution is increased. In [P9] Dohi et al. present FAST corner detector
implementation on an FPGA. The advantage of FAST compared to other corner de-
tector methods is that it does not use difference of Gaussians, which makes detector

5

“University of Turku Technical Reports, No.5 — August 2015”

computationally effective. However, in FPGA implementation the problem is the size
of the corner detection look-up table. In this paper the problem is solved by table
compression techniques. Harris corner detection HW implementation is presented
in [P2] and [P28]. In [P28] Harris corner detector is part of feature tracking system,
where Lucas-Kanade optical flow is implemented on DSP.

3.4 Others

Idris et al. [P13] have presented Extended Kalman filter (EKF) HW acceleration.
EKF is used in Simultaneous Localization and Mapping (SLAM) for position and
motion estimation, where EKF is the most time consuming part and thus the obvious
candidate for HW acceleration.

6

“University of Turku Technical Reports, No.5 — August 2015”

4 Techniques used to adapt
the algorithms to hardware
implementation

Usually the algorithms are not optimal for hardware implementation as such, espe-
cially if the target is to maximize speed of execution and at the same time keep the
amount of logic in minimum. Minimizing the amount of logic also implies smaller
power consumption, which is important e.g. in mobile and robotic applications. A
consequence of adapting algorithm to hardware implementation may be decreased
accuracy. Various optimization techniques for keeping accuracy sufficient and at
the same time achieve efficient hardware implementation are studied in many of the
reviewed articles. On the other hand, decreased accuracy is not always a problem
because there maybe applications where the loss is acceptable. Many of the tech-
niques introduced in this chapter are useful for adapting the algorithm to FPGA but
they may increase the performance in software implementations also. In general,
combining different techniques was quite common in the reviewed papers.

4.1 Data flow architecture modifications

Data flow architecture is an area, in which there are many possibilities for modifica-
tions in order to optimize the data flow for hardware implementation. In hardware,
e.g. FPGA, it is easy to make massively parallel operations. Thus algorithms which
contain extensive data parallelism are good candidates for FPGA implementation.
The algorithms included in this study are containing data parallelism and in ad-
dition the incoming pixels are processed in such way that it is possible to pipeline
the operations to each pixel. In some cases the original algorithm is reformulated
in order to take full advantage of the parallelism in hardware. SURF implementa-
tions and the applied data flow modifications are presented in [P1, P5, P10, P26].
Examples of SIFT data flow architectures are presented in [P4, P7, P14, P19, P22].
In [P7] the most computationally expensive part of SIFT i.e. the detection of inter-
est points is reformulated by introducing parallel algorithm for scale-space extrema
detection. In this study the target has also been to keep the amount of used hard-
ware resources reasonable, and therefore interleaving is applied to processing of

7

“University of Turku Technical Reports, No.5 — August 2015”

octaves for pyramid processing. Due to interleaving a result is received every two
clock cycles, which slightly decreases the performance for this process, but amount
of hardware resources as total is decreased because the same unit can be used for
other convolotion operations.

For feature description algorithms algorithmic scaling and modifications are used
when targeting to hardware implementation. Xiao et al. [P31] use these techniques.
Parallelization in data flow architecture is presented by Bonato et al. [P4].

Examples of using parallelism and pipelining in optical flow algorithms are pre-
sented in [P15, P18, P30]. In [P30] Wei et al. present a fully pipelined data flow for
tensor based optical flow estimation. All steps happen sequentially and there is no
iterative processing. Besides the dataflow architecture in this article the trade-off
between accuracy and efficiency is studied. The kernel sizes in the three convolution
operations (Gradient Calculation, Gradient weighting and Tensor calculation) impact
to accuracy and amount of needed hardware resources. Optimum solution can be
identified by analysis using e.g. MATLAB simulations.

Kalyan et al. [P15] and Mahalingam et al. [P18] present pipelined dataflow ar-
chitectures of optical flow algorithms. In [P18] the Lucas-Kanade algorithm imple-
mentation the computing of the optical flow happens simultaneously with memory
loading of subsequent frames. In this article a lot of emphasis is on methods used for
decreasing the loss in accuracy which happens inevitably when fixed point numbers
are used instead of floating point representation. Those methods are discussed later
in this paper in Section 4.3.

Pipelining reduces the need for intermediate data storing and run time memory
accesses. An example of this can be found in [P28], where Tomasi et al. present
a hardware implementation of Harris corner detector. In [P23] Schaeferling et
al. present a solution in which the main idea is to minimize the repeated mem-
ory accesses to same pixels in SURF. In SURF basically a large amount of memory
is needed for storing the integral image and for the Hessian matrix calculation in
detector phase. In [P1, P8, P17], the authors are presenting architectural modifica-
tions which are targeted to reduce the amount of these two memories. In [P10] Fan
et al. modify the integral image buffering so that multiple data can be accessed in
one clock cycle.

4.2 Algorithm modifications and reformulations

Different kinds of algorithmic modifications and reformulations are also possible.
Scaling or even replacing part of the algorithm with totally new algorithm have
been proposed. These kind of changes are not always meant only for adapting
the system to hardware, but may improve the system performance in any platform.
An example is in [P31], where the SIFT feature detection part was implemented in
hardware. To adapt SIFT feature detector to hardware parallel Gaussian filtering is
is used instead of cascaded filtering. In addition, the number of layers in Gaussian
Pyramid and DOG pyramid can be adjusted according to image size and desired
FPGA capacity. Similar modifications are common in the reviewed papers. SIFT is
not as such highly parallel in data and pipelined in processing, and adjustments are

8

“University of Turku Technical Reports, No.5 — August 2015”

needed to make feasible hardware implementation. In [P29] Wang et al. replace
SIFT feature description and matching with BRIEF respectively. In [P10] Fan et
al. present an interesting sliding window method to the detector phase of SURF.
Additionally parallelization in data flow architecture and a new method in integral
image buffering is used.

4.3 Use of fixed point numbers instead of floating
point representation

Computer vision algorithms are basically using floating point representation of num-
bers, but especially in hardware implementations the fixed point representation is
preferred because it helps in keeping the amount of logic feasible. However, the
consequence is decreased accuracy. This trade-off between accuracy and hardware
efficiency has been discussed in many of the reviewed papers. In [P18] is studied
the possibilities to decrease the loss in accuracy when using fixed-point numbers
for Lucas-Kanade optical flow algorithm. Every step of L-K algorithm impacts the
accuracy, but special attention is put to deviation value in smoothing step and the
threshold value parameter during thresholding operation. These parameters were
selected after careful analysis based on Yosemite test sequence. Accuracy was also
improved by using powers of two coefficients in kernel matrices. Thirdly, the bit
widths in each stage were scaled uniquely. This was done in order to be minimize
the hardware overhead and accuracy error. Similarly bit width trimming is used in
[P30].

In [P19] Mishra et al. propose the use of Look Up Tables (LUT) for SIFT im-
plementation. According to the authors this removes the need of floating point
representation in all stages of the algorithm.

4.4 Other techniques

In [P30] the authors state that the highly pipelined dataflow architecture causes the
system performance bottleneck to be in the memory accesses. Therefore a multiport
memory controller that provides four separate memory ports is used. The external
memory access speed problem in FPGA implementations is notified in many of the
reviewed papers.

There are several hardware related tricks that can or even should be used when
optimizing the hardware implementation. Instead of normal dividers LUT based
dividers can be used, especially if target is to save hardware resources. In [P19] LUT’s
are used in every step of SIFT feature detection part. Bit width trimming in different
stages of algorithm is another possibility. This is useful again when it is essential to
save hardware resources. Use of state-of-art FPGA technologies which incorporate
embedded processors and internal memory enables implementing whole systems
on FPGA. However, the final implementation is not pure hardware accelerator, but
merely a SW/HW co-design system. However, having the whole system on same chip
reduces delays significantly.

9

“University of Turku Technical Reports, No.5 — August 2015”

5 Performance statistics

This chapter contains the technical details of the reviewed papers. The tables are
divided into four different categories according to the implemented algorithm area:
optical flow, feature detection, feature description and feature extraction. The tables
include the name of the implemented algorithm, the used platform (FPGA, DSP
and/or ASIC), the used image resolution and the reported performance of the system.
The feature extraction table also includes a column for the operating frequency (or
clock rate) of the system.

Because of the amount of papers and the highly varying performance statistics
given in the papers, the column Throughput was added to all four tables. It contains
a generalized performance value for the systems and makes it possible to directly
compare the performance of the implementations. Although some papers have pro-
vided the throughput value in the desired form (Mpix/s), most of the values in the
column have been derived from the reported performance values that can be found
in the individual papers.

For a system with horizontal resolution M, vertical resolution N and a frame rate
f, the throughput has been calculated as follows:

T hroughput =N ∗M ∗ f (5.1)

If the frame rate has not been given as FPS, it can be calculated from the delay
values. For example, 10 ms processing time equals 100 FPS. If the frame size or the
timing details have not been expressed, the throughput can not be calculated.

Out of the 32 selected papers, two focused on a custom ASIC chip design while
30 implemented their design on an FPGA. Four of the FPGA papers also used a DSP
as a part of their design. The most common algorithms in the review were SURF
and SIFT, both of which were implemented in nine different papers.

Table 1 contains the papers that have implemented optical flow algorithms. Two
of the papers [P3, P20] focus on comparing the performance of FPGAs to GPUs. An
algorithm that was first introduced in [P30] is also used in [P3]. This can be seen in
the identical throughput (19,7 MPix/s) of the two systems.

10

“University of Turku Technical Reports, No.5 — August 2015”

Paper Algorithm Platform Resolution Performance Throughput
(Mpix/s)

[P15] Lucas-Kanade FPGA 1200x680 500-700 FPS 571,2
[P20] Gautama FPGA Various Various 53,01

[P28] Lucas-Kanade DSP 640x480 160 FPS 49,2
[P18] Lucas-Kanade FPGA 640x480 8 ms/frame 38,4
[P30] Custom* FPGA 640x480 64 FPS 19,7
[P3] Custom* FPGA 640x480 64 FPS 19,7
[P24] KLT FPGA N/A 18 FPS N/A

Table 1: Optical flow
1as stated by the authors

Table 2 groups together the papers that have implemented feature detection al-
gorithms. [P21] appears twice in the table because both Canny and Harris detectors
were implemented in it. Other algorithms presented in the table are FAST and SIFT.
SIFT uses scale-space filtering for obtaining the locations of the keypoints. It is
worth mentioning that only the scale-space filtering part of SIFT is implemented in
the papers in this table.

Paper Algorithm Platform Resolution Performance Throughput
(Mpix/s)

[P21] Canny FPGA Various Various 242,01

[P21] Harris FPGA Various Various 232,01

[P19] SIFT FPGA+DSP Various 0,932 ms2 77,32

[P7] SIFT FPGA 320x240 900 FPS 69,1
[P2] Harris FPGA 1024x800 76 FPS 62,3

[P28] Harris FPGA Various Various 60,11

[P4] SIFT FPGA 320x240 33 ms 2,3
[P9] FAST FPGA N/A 62,5 FPS N/A

Table 2: Feature detection
1as stated by the authors

2fastest resolution

Table 3 contains the two papers that implemented the feature description part of
feature extraction. Both of the papers implemented a custom descriptor. Although
the implementation in [P12] is faster, the throughput in [P11] is much higher as it
uses a higher image resolution.

Paper Algorithm Platform Resolution Performance Throughput
(Mpix/s)

[P11] O-DAISY FPGA Various 30 FPS1 125,01

[P12] BASIS FPGA 640x480 60 FPS 18,4

Table 3: Feature description
1fastest resolution

Table 4 contains all papers in the survey that implement the whole process of

11

“University of Turku Technical Reports, No.5 — August 2015”

feature extraction from the acquisition of a raw image to the extracted feature data.
While a clear majority of the papers implemented a version of SIFT or SURF, two
other algorithms were also chosen for the implementation. The BRIEF descriptor
is used together with the SIFT detector in [P29], while a fully custom algorithm,
MP-KDD, is used for the full process in [P25].Krajnik et al. [P16] implemented SURF
detection part on FPGA and description is run on an embedded processor module.
The implementation is compared to a GPU based system. A similar speed but
smaller power consumption is reported. The target application was small mobile
robot, where the FPGA’s smaller power consumption is an advantage.

12

“University of Turku Technical Reports, No.5 — August 2015”

5.1 Optimization criterias

It is difficult to compare the different designs by performance and throughput. In
different studies the optimization criterias are different. In some studies the maxi-
mum resolution has been the first priority and very often frame rate has been the
most important parameter. On the other hand, in some cases an average 30 or 64
fps frame rate has been used, and optimization is done for other reasons. In those
cases it has been assumed that 30 or 64 fps is sufficient for most of the applications
and there was seen no reason to look for maximum fps. In many papers target has
been to keep the amount of used FPGA resources reasonable. The publication years
and used FPGA technologies are presented in Table 5.5. It looks that there has been
no major effort in trying to optimize the design to some specific FPGA technology.
On the contrary, the technology and FPGA family has been chosen according to
common availability and so that the platform does not limit implementation e.g due
to too few I/Os.

13

“University of Turku Technical Reports, No.5 — August 2015”

P
ap

er
A
lg
or
it
h
m

P
la
tf
or
m

C
lo
ck

ra
te

R
es
ol
ut
io
n

Pe
rf
or
m
an

ce
T
h
ro
ug

h
p
ut

(M
hz
)

(M
pi
x/
s)

[P
27
]

SI
FT

FP
G
A

16
8

19
20

x1
08

0
60

FP
S

12
4,
42

[P
10
]

SU
R
F

FP
G
A

15
6

64
0x

48
0

35
6
FP

S
10
9,
36

[P
1]

SU
R
F

FP
G
A

N
/A

64
0x

48
0

3,
02

9
m
s
to
ta
l

10
1,4

2
[P
29

]
SI
FT

/B
R
IE
F

FP
G
A

15
9

12
80

x7
20

60
FP

S
55
,3
0

[P
14
]

SI
FT

FP
G
A

50
51
2x

51
2

6,
55

m
s
to
ta
l

40
,0
2

[P
22

]
SI
FT

FP
G
A

29
64
0x

48
0

95
,2
8
FP

S
29

,2
7

[P
17
]

SU
R
F

A
SI
C

20
0

64
0x

48
0

60
FP

S
18
,4
3

[P
26

]
SU

R
F

FP
G
A

25
64
0x

48
0

60
FP

S
18
,4
3

[P
5]

SU
R
F

FP
G
A

20
0

64
0x

48
0

56
FP

S
17
,2
0

[P
25
]

M
PK

D
D

FP
G
A

50
16
0x

12
0

60
0-
76
0
FP

S
14
,6
02

[P
16
]

SU
R
F

FP
G
A

N
/A

10
24
x7
68

80
m
s
to
ta
l1

9,
83

1

[P
8]

SU
R
F

FP
G
A

20
0

64
0x

48
0

64
,6

m
s
to
ta
l

4,
76

[P
32

]
SI
FT

FP
G
A
+D

SP
10
7

32
0x

25
6

18
m
s
to
ta
l1

4,
55

1

[P
8]

SU
R
F

FP
G
A

20
0

30
0x

30
0

23
,4

m
s
to
ta
l

3,
85

[P
6]

SU
R
F

A
SI
C

10
0

64
0x

48
0

12
,5

FP
S

3,
84

[P
31
]

SI
FT

FP
G
A
+D

SP
27

36
0x

28
8

0,
76
3
m
s/
de
sc
ri
pt
or

1
1,2

11

[P
23

]
SU

R
F

FP
G
A

50
V
ar
io
us

10
20

m
s
to
ta
l3

0,
30

3

Ta
bl
e
4:

Fe
at
ur
e
ex
tr
ac
ti
on

1
A
ss
um

in
g
10
0
de
te
ct
ed

fe
at
ur
es

2
at

76
0
FP

S
3
fa
st
es
t
re
so
lu
ti
on

14

“University of Turku Technical Reports, No.5 — August 2015”

Paper Publ. Platform Technology

[P11] 2011 FPGA
[P12] 2011 FPGA
[P27] 2012 FPGA Xilinx Virtex-5
[P10] 2013 FPGA XILINX XC6CSX475T
[P1] 2012 FPGA XILINX XC6VSX204T

[P29] 2014 FPGA XILINX XUPV5-LX110T
[P14] 2014 FPGA XILINX Virtex-5
[P22] 2014 FPGA XILINX Virtex-5
[P7] 2013 FPGA XILINX Virtex-2 Pro
[P4] 2008 FPGA ALtera STRATIX II
[P17] 2014 ASIC
[P26] 2012 FPGA XILINX XC4 s
[P5] 2010 FPGA XILINX Virtex-5

[P25] 2014 ASIC
[P16] 2014 FPGA XILINX Virtex-5
[P8] 2013 FPGA
[P32] 2013 FPGA+DSP Xilinx XC4
[P8] 2013 FPGA XILINX Zynq-7020
[P6] 2014 ASIC TSMC 65nm process
[P31] 2013 FPGA+DSP Altera Cyclone III
[P23] 2012 FPGA XILINX Virtex-5
[P19] 2014 FPGA+DSP XILINX Virtex-6
[P21] 2014 FPGA Altera Cyclone IV
[P2] 2014 FPGA Altera Cyclone III
[P12] 2011 FPGA XILINX Virtex-6
[P13] 2012 FPGA
[P9] 2011 FPGA XILINX Virtex-5

[P30] 2007 FPGA XILINX Virtex-2 pro
[P18] 2010 FPGA XILINX Virtex-2 pro
[P15] 2011 FPGA Altera Cyclon II
[P20] 2012 FPGA XILINX Virtex-4
[P28] 2014 FPGA XILINX Virtex-4
[P24] 2006 FPGA XILINX Virtex-2 pro
[P3] 2010 FPGA and GPU

Table 5: Implementation platforms

15

“University of Turku Technical Reports, No.5 — August 2015”

6 Results of the review

The first review question was to find out which algorithms or parts of them have
been implemented in hardware. SIFT and SURF have been very popular. These
algorithms are robust and accurate and therefore useful in many applications. On
the other hand, they are computationally complex and require a lot of computing
capacity for real time system performance. This is an obvious reason why they have
raised interest to research hardware acceleration for them. Implementations of SIFT
are in most cases partial, whereas SURF implementations are usually full hardware
implementations. For SIFT the feature/keypoint detection has been the most popu-
lar part selected for hardware implementation. The simple reason is that this is the
computationally most expensive part of SIFT. Among optical flow estimation algo-
rithms the Lucas-Kanade has been very popular as hardware implementation. It is
suitable for hardware implementation because data can be operated highly parallel,
whereas as the processing can be pipelined without major algorithmic modifications
and compromises in accuracy. Tensor based optical flow algorithms have also been
implemented in hardware. In addition, Harris and FAST corner detectors have been
implemented in hardware.

In general it can be said that for hardware implementation the most suitable
algorithms or parts of them are those which have extensive data parallelism and
pipelined processing. Fixed point format is preferred, because it helps in keeping the
amount of hw resources feasible. Various optimizations are though possible to reduce
it’s the impacts to e.g. accuracy. Usually the original software implementations are
using floating point presentation.

The second review question was to find out if there are algorithms or parts of
them that have not been implemented in hardware. The result was simply, that
among those algorithms which were included in this survey, there are no parts that
had not been implemented in hardware.

The third question was to find out other techniques to implement these algo-
rithms. The most popular techniques were GPU based and FPGA implementation.
Another popular techniques was combining DSP and hardware implementations i.e.
part of the algorithms was in FPGA and other part running on DSP. Current most
advanced FPGA plalforms offer processor cores and in few cases those were also
used. FPGAs were also used as test platforms, when final solution was targeted to
ASIC. There were pure CPU solutions presented but only for comparison purposes,
so that the performance improvements achieved by hardware acceleration or GPU
could be shown.

16

“University of Turku Technical Reports, No.5 — August 2015”

In Section 3.1 the various techniques used to adapt these algorithms to hardware
implementation were discussed. In many papers several techniques were combined.
Firstly, dataflow architecture was modified in order to increase parallelism. Sec-
ondly, execution was pipelined. Memory architectures and accesses were optimized.
Algorithmic scaling and modifications were also researched.

The performance figures collected in Chapter 5 show that hardware acceleration
is feasible solution to the computing capacity problems in systems where these algo-
rithms are used. Pauwels et al. [P20] compare FPGA and GPU implementations of
optical flow algorithm and conclude that GPU overcomes FPGA in most cases. How-
ever, it depends on the application, design time, power consumption requirements
and many other factors whether GPU or HW acceleration should be chosen.

17

“University of Turku Technical Reports, No.5 — August 2015”

7 Conclusions

In this survey it was found that HW acceleration of visual tracking algorithms is a
widely studied field. In many of the reviewed papers an implementation of a one
algorithm was studied and the optimization criteria where clearly determined. But
there were also articles which were studying full systems including feature detection,
description and tracking. Optimization criteria were partly different in these two
cases. In system level optimizations throughput and design time were of interest.
In articles concentrating on specific algorithm, the criteria were accuracy, hardware
resource utilization and speed or performance. Power consumption was described
only qualitatively, though in a few papers measured results were presented. It is dif-
ficult to present feasible comparisons between different hardware implementations
and between GPU and FPGA implementations because the used technologies, FPGA
family, GPU platforms impact signifigantly to the power consumption. Many differ-
ent techniques have been used to adapt the algorithms to hardware. However, new
demanding application areas are coming all the time. Image resolutions are grow-
ing and at the same time the requirements for accuracy, small power consumption
and real time processing remain unchanged. Due to this HW acceleration of visual
tracking algorithms is an important research area in future and new solutions are
needed. Possible research topics can be SMART cameras i.e systems where are mark-
able part of the data processing is happening in the camera chip. Another research
topic could be looking for possibilities to utilize various sensors like gyroscopes and
accelerometers in pose estimation and tracking phase.

18

“University of Turku Technical Reports, No.5 — August 2015”

Acknowledgements

The research has been carried out during the MARIN2 project (Mobile Mixed
Reality Applications for Professional Use) funded by Tekes (The Finnish Funding
Agency for Innovation) in collaboration with partners; Defour, Destia, Granlund,
Infrakit, Integration House, Lloyd’s Register, Nextfour Group, Meyer Turku, Build-
ingSMART Finland, Machine Technology Center Turku and Turku Science Park. The
authors are from Technology Research Center, University of Turku, Finland.

19

“University of Turku Technical Reports, No.5 — August 2015”

Bibliography

Selected papers

[P1] N. Battezzati et al. “SURF algorithm in FPGA: A novel architecture for high
demanding industrial applications”. In: Design, Automation Test in Europe Con-
ference Exhibition (DATE), 2012. 2012, pp. 161–162.

[P2] Merwan Birem and François Berry. “DreamCam: A modular FPGA-based
smart camera architecture”. In: Journal of Systems Architecture 60.6 (2014),
pp. 519 –527. issn: 1383-7621.

[P3] John Bodily et al. “A Comparison Study on Implementing Optical Flow and
Digital Communications on FPGAs and GPUs”. In: ACM Trans. Reconfigurable
Technol. Syst. 3.2 (2010), 6:1–6:22. issn: 1936-7406.

[P4] V. Bonato, E. Marques, and G.A. Constantinides. “A Parallel Hardware Ar-
chitecture for Scale and Rotation Invariant Feature Detection”. In: Circuits
and Systems for Video Technology, IEEE Transactions on 18.12 (2008), pp. 1703–
1712. issn: 1051-8215.

[P5] D. Bouris, A. Nikitakis, and I. Papaefstathiou. “Fast and Efficient FPGA-Based
Feature Detection Employing the SURF Algorithm”. In: Field-Programmable
Custom Computing Machines (FCCM), 2010 18th IEEE Annual International
Symposium on. 2010, pp. 3–10.

[P6] ShanShan Cai et al. “Optimization of speeded-up robust feature algorithm
for hardware implementation”. English. In: Science China Information Sciences
57.4 (2014), pp. 1–15. issn: 1674-733X.

[P7] Leonardo Chang et al. “FPGA-based detection of SIFT interest keypoints”.
English. In: Machine Vision and Applications 24.2 (2013), pp. 371–392. issn:
0932-8092.

[P8] Yong-Sig Do and Yong-Jin Jeong. “A new area efficient SURF hardware struc-
ture and its application to Object tracking”. In: TENCON 2013 - 2013 IEEE
Region 10 Conference (31194). 2013, pp. 1–4.

[P9] K. Dohi et al. “Pattern Compression of FAST Corner Detection for Efficient
Hardware Implementation”. In: Field Programmable Logic and Applications
(FPL), 2011 International Conference on. 2011, pp. 478–481.

20

“University of Turku Technical Reports, No.5 — August 2015”

[P10] Xitian Fan et al. “Implementation of high performance hardware architecture
of OpenSURF algorithm on FPGA”. In: Field-Programmable Technology (FPT),
2013 International Conference on. 2013, pp. 152–159.

[P11] J. Fischer et al. “A rotation invariant feature descriptor O-DAISY and its
FPGA implementation”. In: Intelligent Robots and Systems (IROS), 2011 IEEE/RSJ
International Conference on. 2011, pp. 2365–2370.

[P12] Spencer G Fowers et al. Nature-Inspired BASIS Feature Descriptor and Its Hard-
ware Implementation. 2011.

[P13] Mohd. Yamani Idna Idris et al. “A co-processor design to accelerate sequen-
tial monocular SLAM EKF process”. In: Measurement 45.8 (2012), pp. 2141
–2152. issn: 0263-2241.

[P14] Jie Jiang, Xiaoyang Li, and Guangjun Zhang. “SIFT Hardware Implemen-
tation for Real-Time Image Feature Extraction”. In: Circuits and Systems for
Video Technology, IEEE Transactions on 24.7 (2014), pp. 1209–1220. issn: 1051-
8215.

[P15] T.R.S. Kalyan and M. Malathi. “Architectural implementation of high speed
optical flow computation based on Lucas-Kanade algorithm”. In: Electronics
Computer Technology (ICECT), 2011 3rd International Conference on. Vol. 4. 2011,
pp. 192–195.

[P16] Tomáš Krajník et al. “FPGA-based module for SURF extraction”. English. In:
Machine Vision and Applications 25.3 (2014), pp. 787–800. issn: 0932-8092.

[P17] Sang-Seol Lee et al. “Memory-efficient SURF architecture for ASIC imple-
mentation”. In: Electronics Letters 50.15 (2014), pp. 1058–1059. issn: 0013-5194.

[P18] V. Mahalingam et al. “A VLSI Architecture and Algorithm for Lucas Kanade-
Based Optical Flow Computation”. In: Very Large Scale Integration (VLSI)
Systems, IEEE Transactions on 18.1 (2010), pp. 29–38. issn: 1063-8210.

[P19] P. Mishra et al. “Embedded hardware architectures for scale and rotation
invariant feature detection”. In: Electronics, Computing and Communication
Technologies (IEEE CONECCT), 2014 IEEE International Conference on. 2014,
pp. 1–6.

[P20] K. Pauwels et al. “A Comparison of FPGA and GPU for Real-Time Phase-
Based Optical Flow, Stereo, and Local Image Features”. In: Computers, IEEE
Transactions on 61.7 (2012), pp. 999–1012. issn: 0018-9340.

[P21] P.R. Possa et al. “A Multi-Resolution FPGA-Based Architecture for Real-Time
Edge and Corner Detection”. In: Computers, IEEE Transactions on 63.10 (2014),
pp. 2376–2388. issn: 0018-9340.

[P22] M. Qasaimeh, A. Sagahyroon, and T. Shanableh. “A parallel hardware archi-
tecture for Scale Invariant Feature Transform (SIFT)”. In: Multimedia Com-
puting and Systems (ICMCS), 2014 International Conference on. 2014, pp. 295–
300.

21

“University of Turku Technical Reports, No.5 — August 2015”

[P23] Michael Schaeferling, Ulrich Hornung, and Gundolf Kiefer. “Object Recog-
nition and Pose Estimation on Embedded Hardware: SURF-based System
Designs Accelerated by FPGA Logic”. In: Int. J. Reconfig. Comput. 2012 (2012),
6:6–6:6. issn: 1687-7195.

[P24] J. Schlessman et al. “Hardware/Software Co-Design of an FPGA-based Em-
bedded Tracking System”. In: Computer Vision and Pattern Recognition Work-
shop, 2006. CVPRW ’06. Conference on. 2006, pp. 123–123.

[P25] Cong Shi et al. “A massively parallel keypoint detection and description
(MP-KDD) algorithm for high-speed vision chip”. English. In: Science China
Information Sciences 57.10 (2014), pp. 1–12. issn: 1674-733X.

[P26] T. Sledevic and A. Serackis. “SURF algorithm implementation on FPGA”. In:
Electronics Conference (BEC), 2012 13th Biennial Baltic. 2012, pp. 291–294.

[P27] T. Suzuki and T. Ikenaga. “SIFT-based low complexity keypoint extraction
and its real-time hardware implementation for full-HD video”. In: Signal In-
formation Processing Association Annual Summit and Conference (APSIPA ASC),
2012 Asia-Pacific. 2012, pp. 1–6.

[P28] Matteo Tomasi, Shrinivas Pundlik, and Gang Luo. “FPGA–DSP co-processing
for feature tracking in smart video sensors”. English. In: Journal of Real-Time
Image Processing (2014), pp. 1–17. issn: 1861-8200.

[P29] Jianhui Wang et al. “An Embedded System-on-Chip Architecture for Real-
time Visual Detection and Matching”. In: Circuits and Systems for Video Tech-
nology, IEEE Transactions on 24.3 (2014), pp. 525–538. issn: 1051-8215.

[P30] Zhaoyi Wei, Dah jye Lee, and Brent E. Nelson. FPGA-based Real-time Optical
Flow Algorithm Design and Implementation.

[P31] Han Xiao et al. “Real-time scene recognition on embedded system with SIFT
keypoints and a new descriptor”. In: Mechatronics and Automation (ICMA),
2013 IEEE International Conference on. 2013, pp. 1317–1324.

[P32] Sheng Zhong et al. “A real-time embedded architecture for SIFT”. In: Journal
of Systems Architecture 59.1 (2013), pp. 16 –29. issn: 1383-7621.

Other references

[1] Herbert Bay et al. “Speeded-Up Robust Features (SURF)”. In: COMPUTER
VISION AND IMAGE UNDERSTANDING 110.3 (2008), 346–359. issn: 1077-
3142.

[2] ZM. Calonder et al. “BRIEF: Computing a Local Binary Descriptor Very
Fast”. In: Pattern Analysis and Machine Intelligence, IEEE Transactions on 34.7
(2012), pp. 1281–1298. issn: 0162-8828.

[3] DG Lowe. “Distinctive image features from scale-invariant keypoints”. In:
INTERNATIONAL JOURNAL OF COMPUTER VISION 60.2 (2004), pp. 91–
110. issn: 0920-5691.

22

