Mika Murtojarvi

Efficient Algorithms/for
Coastal Geographic Problems

TurkU CENTRE for COMPUTER SCIENCE

TUCS Dissertations

No 210, April 2016

Efficient Algorithms for Coastal
Geographic Problems

Mika Murtojarvi

To be presented, with the permission of the Faculty of Mathematics and
Natural Sciences of the University of Turku, for public criticism in Tauno
Nurmela Hall (Lecture Hall I) on April 29, 2016, at 12 noon.

University of Turku
Department of Information Technology
Vesilinnantie 5, 20500 Turku

2016

Supervisors

Olli Nevalainen

Department of Information Technology
University of Turku

Turku

Finland

Ville Leppénen

Department of Information Technology
University of Turku

Turku

Finland

Reviewers

Martti Juhola

School of Information Sciences
FI-33014 University of Tampere
Finland

Borut Zalik

Faculty of Electrical Engineering and Computer Science
University of Maribor

Slomgkov trg 15, 2000 Maribor

Slovenia

Opponent

Jan Westerholm

Department of Information Technologies
Abo Akademi University
Joukahaisenkatu 3-5

Finland

The originality of this thesis has been checked in accordance with the
University of Turku quality assurance system using the Turnitin Origi-
nalityCheck service.

ISBN 978-952-12-3372-2
ISSN 1239-1883

Tiuvistelma

Tietokoneiden suorituskyvyn kasvaminen on tehnyt mahdolliseksi ratkaista
algoritmisesti ongelmia, joita on aiemmin tarkasteltu paljon ihmisty6ta vaa-
tivilla, mahdollisesti epatarkoilla, menetelmilld. Algoritmien suorituskykyyn
on kuitenkin toisinaan edelleen kiinnitettdva huomiota ldhtémateriaalin suu-
ren maaran tai ongelman laskennallisen vaikeuden takia.

Vaitoskirjaan sisaltyvissa artikkeleissa tarkastellaan kahta maantieteellis-
td ongelmaa. Ensimmaisessé néistd on méaritettava etédisyyksid merelld ole-
vista pisteistd lahimpédn rantaviivaan ennalta méaratyissia suunnissa. FEtéi-
syyksié ja tuulen voimakkuutta koskevien tietojen avulla on mahdollista ar-
vioida esimerkiksi aallokon voimakkuutta. Toisessa ongelmista annettuna on
joukko tarkkailuasemia ja niiltd aiemmin kerdttyd tietoa erilaisista veden-
laatua kuvaavista parametreista kuten sameudesta ja ravinteiden méarista.
Tehtévana on valita asemajoukosta sellainen osajoukko, etta vedenlaatua voi-
daan edelleen tarkkailla riittavalla tarkkuudella, kun mittausten tekeminen
muilla havaintopaikoilla lopetetaan kustannusten saastdmiseksi.

Viitoskirja keskittyy padosin ensimmaisen ongelman, suunnattujen etéi-
syyksien, ratkaisemiseen. Haasteena on se, etté tarkasteltava kaksiulotteinen
kartta kuvaa rantaviivan tyypillisesti miljoonista karkipisteistd koostuvana
joukkona polygoneja ja etdisyyksié on laskettava miljoonille tarkastelupisteil-
le kymmenissi eri suunnissa. Ongelmalle kehitetdén tehokkaita ratkaisuta-
poja, joista yksi on likim&arainen, muut pyoristysvirheitd lukuun ottamatta
tarkkoja. Ratkaisut eroavat toisistaan myos siiné, ettd kolme menetelmista
on suunniteltu ajettavaksi sarjamuotoisesti tai pienelld méaarélla suoritiny-
timi&, kun taas yksi menetelmisté ja siithen tehdyt parannukset soveltuvat
my0s voimakkaasti rinnakkaisille laitteille kuten GPU:lle.

Vedenlaatuongelmassa annetulla asemajoukolla on suuri maard mahdol-
lisia osajoukkoja. Liséksi tehtdvissd kiaytetddn aikaa vaativia operaatioita
kuten lineaarista regressiota, mikd entisestddn rajoittaa sitd, kuinka monta
osajoukkoa voidaan tutkia. Ratkaisussa kaytetdénkin heuristiikkoja, jotka
eivit valttdmatta tuota optimaalista lopputulosta.

Avainsanat: Suunnattu etdisyys, aaltovaikutus, vedenlaatu, GPU-algo-
ritmit

i

Abstract

The increasing performance of computers has made it possible to solve al-
gorithmically problems for which manual and possibly inaccurate methods
have been previously used. Nevertheless, one must still pay attention to the
performance of an algorithm if huge datasets are used or if the problem is
computationally difficult.

Two geographic problems are studied in the articles included in this the-
sis. In the first problem the goal is to determine distances from points, called
study points, to shorelines in predefined directions. Together with other in-
formation, mainly related to wind, these distances can be used to estimate
wave exposure at different areas. In the second problem the input consists
of a set of sites where water quality observations have been made and of
the results of the measurements at the different sites. The goal is to select
a subset of the observational sites in such a manner that water quality is
still measured in a sufficient accuracy when monitoring at the other sites is
stopped to reduce economic cost.

Most of the thesis concentrates on the first problem, known as the fetch
length problem. The main challenge is that the two-dimensional map is
represented as a set of polygons with millions of vertices in total and the
distances may also be computed for millions of study points in several di-
rections. Efficient algorithms are developed for the problem, one of them
approximate and the others exact except for rounding errors. The solutions
also differ in that three of them are targeted for serial operation or for a small
number of CPU cores whereas one, together with its further developments,
is suitable also for parallel machines such as GPUs.

Keywords: Fetch length, wave exposure, water quality, GPU algorithms

il

v

Acknowledgements

This thesis was written under the supervision of Professors Olli S. Nevalainen
and Ville Leppénen. Their help was invaluable at every stage of the work.
In particular, I often found it difficult to write articles and the thesis in a
way that is easy to read and still covers the subject in a sufficient detail. At
times, I also needed some persuasion when continuing with the thesis felt
rather pointless. Although I am still unsure whether the university degree
will be of any advantage to me, at least writing the thesis was not as bad an
experience as I expected. Sometimes it was even a welcome addition to my
daily routine.

I would also like to thank Mikko Laakso who helped me in many ways
not directly related to the thesis work. Without him I would likely not
have chosen to finish this work. Outside the department of Information
Technology, researchers of geography, especially Tapio Suominen and Harri
Tolvanen, provided the interesting problems studied in this thesis and were
also involved in writing some of the articles.

When starting work on this thesis, I worked at the department of Infor-
mation Technology of University of Turku, with enough work time reserved
for the thesis. In addition to the thesis work I had the opportunity to take
part in teaching several courses. This was very important for providing vari-
ety to my work, and I thank the department of Information Technology for
having had this opportunity.

Finally, I wish to thank my closest relatives, especially my parents and
sister, for being there to support me when that was necessary.

Turku, March 1, 2016.
Mika Murtojarvi

vi

List of original publications

P1 Murtojarvi M., Suominen T., Tolvanen H., Leppénen V. and Nevalainen
0.S., Quantifying Distances from Points to Polygons - Applications
in Determining Fetch in Coastal Environments. Computers € Geo-
sciences, 33(7), 2007.

P2 Murtojéarvi M., Leppédnen V. and Nevalainen O.S., Determining direc-
tional distances between points and shorelines using sweep line tech-
nique. International Journal of Geographical Information Science, 23(3),
2009.

P3 Murtojéarvi M., Leppdnen V. and Nevalainen O.S., A parallel GPU im-
plementation of an algorithm for determining directional distances.
Proceedings of 12th International Conference on Computer Systems
and Technologies, CompSysTech’11, 2011.

P4 Murtojéarvi M., Leppénen V. and Nevalainen O.S., Performance tuning
and sparse traversal technique for a cell-based fetch length algorithm
on a GPU. Concurrency and Computation, Practice and Experience,
accepted for publication, 2015.

P5 Murtojéarvi M., Suominen T., Uusipaikka E., Nevalainen O.S., Optimis-
ing an observational water monitoring network for Archipelago Sea,
South West Finland. Computers € Geosciences, 37(7), 2011.

vil

viil

Contents

I Synopsis

1 Introduction
1.1 The fetch length problem
1.1.1 Fetch length in coastal research
1.1.2 Methods for computing fetch lengths
1.1.3 Related problems
1.2 The water monitoring network problem
1.2.1 Problem setting
1.2.2 Related research
1.3 Goals and results of this research

2 The fetch length problem
2.1 Problem setting L
2.2 A brute force algorithm L.
2.3 Datastructures
2.3.1 Imterval trees
2.3.2 Order-statistic trees
2.4 Sweep line technique L.
2.4.1 Time complexity
2.4.2 A raster-based sweep line algorithm
2.5 Cell-based algorithm
2.5.1 Time complexity
2.6 Tailoring the cell-based algorithm for GPU.
2.6.1 OpenCL programming model
2.6.2 The architecture of a GPU
2.6.3 Cell-based fetch length algorithm on a GPU

3 The water quality monitoring network problem
3.1 Statistical model
3.2 Missing and incorrect values oL
3.3 Network optimization

X

15
15
17
18
18
19
20
22
24
28
30
32
32
34
37

4 Summary of publications 45
4.1 P1: Quantifying Distances from Points to Polygons - Appli-

cations in Determining Fetch in Coastal Environments 45

4.2 P2: Determining directional distances between points and
shorelines using sweep line technique 46

4.3 P3: A parallel GPU implementation of an algorithm for de-
termining directional distances 49

4.4 P4: Performance tuning and sparse traversal technique for a
cell-based fetch length algorithm on a GPU 51

4.5 P5: Optimising an observational water monitoring network
for Archipelago Sea, South West Finland 54
5 Conclusions 57

II Publication reprints

Part 1

Synopsis

Chapter 1

Introduction

The performance and memory capacity of computers have increased rapidly
in the recent decades. This has enabled tackling larger problems than be-
fore and improving accuracy in cases where one previously had to resort to
manual methods. Geographic information systems (GIS) can now be found
for problems dealing with map data, as both commercial and free of charge
software.

On the other hand, making measurements has also become much easier
with an increasing degree of automation. As a simple example, it is now
possible to record the air temperatures at a particular location at regular
intervals with very little manual labor. Techniques such as aerial photogra-
phy and satellite measurements can provide detailed information about large
areas. The result is that the datasets used in geographic research can be very
large. The efficiency of the algorithms used for processing that data then
becomes important despite the advances in computer technology.

In some cases the result of interest may be time-consuming to compute
even if the dataset is quite small. As an example one might consider the
problem of selecting a subset of a set S of n items that is optimal according
to some criterion. If the size of the desired subset is not restricted, there are
2™ subsets of S. Unless there is a way to avoid checking all possible subsets,
the running time of an algorithm for finding the optimal subset would be
Q(2™). As the exponential function grows very rapidly, only relatively small
problems could be solved using any computer. Unfortunately, large problem
sizes do occur in real-world problems. In such a case one possibility is to
resort to approximation algorithms [1]| to find some, possibly suboptimal,
solution to the problem.

Two algorithmic problems are considered in this thesis. In the fetch length
problem the goal is to find distances from given points to the nearest land
areas in a specified direction. The challenge in this problem is the size of
the input: There can be hundreds of millions points for which the distances

3

are to be computed, several directions of interest and the map itself may
be large. The other considered problem is that of optimizing a water moni-
toring network. In this problem there are a number of sites at which water
quality samples have been collected. To reduce costs their number should
be reduced, while losing as little water quality information as possible. This
rather imprecise problem setting allows several interpretations. Among the
most important is whether one is allowed to move the observational sites
or whether the new network should be formed by only removing some sites
from the existing network. In this work the latter choice will be taken and
the task is then to find an optimal subset of the existing set of observational
sites. The number of sites in the network is moderate (about 60) but approx-
imate algorithms are still needed to achieve an acceptable running time. The
problem is also complicated by errors and missing values in the observational
dataset and by the need to choose a model that allows assessing which sites
to remove from the network. While these choices are mentioned, they are
outside the scope of this thesis and previously known methods and software
are used for dealing with the problems.

1.1 The fetch length problem

In the fetch length problem the input consists of a map and a set of points,
called study points to distinguish them from the points occurring in the map
data. Additionally, one is given the directions in which the fetch lengths are
computed. The directions are usually the same for all study points. The
goal is to compute the distance from each point to the nearest land area in
each direction, see Figure 1.1.

The map is two-dimensional, i.e., no water depth or land height infor-
mation is available. The map is specified as a set of islands, each island
being represented by a list of points that lie on its coastline. An island is
then approximated by a polygon whose vertices are the points of the input
data, with consecutive points joined by line segments. In the algorithms for
solving the problem the information about which line segment belongs to
which island is not needed and the problem is slightly simplified.

For notation, the symbol S will be used for the set of study points and a
single study point is represented by the symbol p. The set of all line segments
of the polygon boundaries is denoted by L and a single segment by [. The set
of directions is © and a single direction is marked by . Using these notations,
the goal is then to compute for each study point p € S and direction # € ©
the fetch length d(p, @), where the symbol d stands for distance; d(p,0) is
the minimal distance from p to the interior of a polygon in the direction 6.
For a point that is in a water area, we clearly have d(p,) = minjey, d(p,,0),
where d(p, [, 0) is the distance from the study point to the line segment [in

4

Figure 1.1: Fetch lengths in 48 directions for one study point that is on
water.

the direction 6. For this to hold it is defined that the distance d(p,1,8) is
infinite if the half line h(p, 0) starting from p and having the direction 6 does
not intersect [. For a point that is in a land area, i.e., inside a polygon, the
fetch length is by definition 0.

A special case occurs when a study point lies on the coastline of an island,
i.e., on a polygon border. While the above definition technically covers the
case, this is an important practical case. The convention for the border
points is that the fetch length d(p,) = 0 if the half line h(p,) points into
the island polygon. Otherwise, the fetch length is defined similarly to points
on water, except that the segment on which p lies is excluded from the set
of line segments to get a non-zero fetch length. The points lying in water
are called exterior points and the points located on land interior points. The
remaining points are border points.

Special cases have still been ignored above. For instance, it was assumed
that a border point lies on a segment, but it can also coincide with a vertex
- a point shared by two consecutive line segments of a polygon. Also, the
half line h(p,0) may hit a vertex instead of a segment so that the half line
does not enter the polygon. The former case is easy to handle by excluding
all segments on which p lies. The latter case is, on the other hand, not very
important in practice as any imprecision of the map could lead to a different
conclusion about whether the half line intersects the island polygon or not.

While the cases mentioned above pose no problem for defining fetch
length sufficiently, it is necessary to identify all relevant special cases in
the algorithms for solving the problem. A failure to do so can lead to wrong
conclusion about whether a study point lies on land or on water, causing

zero lengths for exterior points and non-zero lengths for interior points. The
somewhat tedious special cases vary from one algorithm to another and will
be considered only when discussing the publications included in this thesis.

1.1.1 Fetch length in coastal research

Having defined what fetch length is, let us briefly consider the motivation for
computing such quantities: Fetch lengths are used in a method for estimating
wave exposure at a particular location [2|. It is assumed that wind blows
in the same direction for a long period of time, leading to a state where the
average wave height and direction stabilize. It is also assumed that waves
always move in the same direction as the wind. The latter assumption is
not accurate because obstacles, i.e., shorelines and shallow areas, lead to
phenomena such as diffraction and refraction. These possibilities are ignored,
so a wave is taken to vanish when it hits a shoreline. Similarly, after an
obstacle a wave starts growing from zero height no matter how small the
obstacle is.

While this essentially one-dimensional model of wave formation is very
simple, fetch length has still been found to be a useful quantity for estimating
wave exposure [2]. It should now be clear why fetch lengths are computed in
several different directions: A fetch line direction corresponds to the direction
of the wind and wind may blow in any direction. One should then compute
fetch lengths in many directions to have a decent sampling of the possible
directions of the wind. On the other hand, the number of directions may
need to be kept moderate to reduce the time required for computing fetch
lengths.

Computing fetch lengths in a predetermined set of directions has the
unfortunate effect that features of the map may be essentially ignored for
some study points. For instance, it may happen that none of the given fetch
lines originating from a point hit an island that is reachable from the point.
Conversely, a fetch line might hit a very small island that would not have
much effect on the estimated wave exposure if fetch could be computed in all
directions. It would be possible to refine the concept of fetch length to take
into account a sector of directions instead of a single direction, but doing so
would need to take into account the fact that wave exposure is a nonlinear
function of fetch length [2]. Computing the lengths for a sector would be
more time-consuming than for a single direction, and any model based on
fetch lengths is still only a rough approximation of wave exposure. For these
reasons, the concept of fetch length is accepted as is in this work.

6

1.1.2 Methods for computing fetch lengths

A GIS-based algorithm for the fetch length problem was given by Ekebom
et al. |2]. The algorithm can compute fetch lengths for one or multiple
study points in different directions, using vector-based input data similar to
described in Section 1.1. The procedure starts by adding, for each study
point, the candidate fetch lines. A candidate fetch line for point p and
direction @ is a line segment having p as an end point and forming the
angle # with the z-axis. The candidate fetch lines must be longer than
the maximal distance within the map area to ensure that all intersections
can be found. The candidate fetch lines are then cut using the map data.
The map represents each island polygon as a hole, and the result of cutting
a candidate fetch line is then a set of line segments that are subsegments
of the candidate fetch line, each segment spanning the water area between
consecutive islands. The exceptions are the first and the last segment that
may end in the study point or the original other end point of the candidate
fetch line, respectively. The segments that do not end in the study point are
irrelevant and are removed. Now, only the fetch lines are left and the fetch
lengths are determined by computing the lengths of the fetch lines.

The time complexity of the GIS-based method has not been analyzed and
doing so would require knowing how the GIS software and the extensions
handle the operation of cutting a set of line segments with the map data.
Direct performance measurements were also not available, but a bound can
be inferred from one of the publications included in this thesis (P1). There it
is noted that a new algorithm allowed increasing the number of study points
by a factor of 1600 while still requiring a fraction of the time compared to the
GIS-based method. The computations using the new algorithm took about
five hours for a study area of 40 km x 40 km containing 2.56 million study
points. This implies that the processing time using the GIS-based method
would have been years. Indeed, the GIS-based method has been used for
moderate numbers of study points. An example is a case where there were
about 7800 exterior and 2600 border study points, with interior study points
pruned from the input without running the fetch length algorithm for them
3]

A raster-based method for computing fetch lengths is also known [4]'.
Here, the input data is also given in a raster format, i.e., as a grid of cells,
each cell containing its elevation from the sea level. To compute fetch lengths
for all grid cells in a vertical direction the algorithm starts from the top of
the map. A one-dimensional array fetch whose length is equal to the width
of the map is initialized with negative values to indicate unbounded fetch
lengths. Then, the map is scanned downwards one row at a time. A row is

!The source code can be found at http://www.umesc.usgs.gov/management/dss/
wind_fetch_wave_models.html.

processed by checking for each of its columns whether the cell is in a water
area. If that is the case for the cell currentRow[i], fetch[i] is incremented
by the size of the cell?, because the distance from the current cell to the
nearest land area in the upwards direction is one cell more than it was from
the corresponding cell of the previous row. If currentRow[i] is on land,
fetch length fetchl[i] is set to zero. Once the row has been processed, the
current array of fetch lengths is written to the output file. To handle other
wind directions the raster map can be rotated before applying the algorithm
described above.

To use the raster-based method with a vector map, the map first needs
to be converted into a raster format. This causes a loss of precision whose
magnitude depends on the chosen cell size. The raster-based algorithm also
has its own inaccuracies that result from, e.g., rotating the map and requiring
a post-processing step to fill in any data gaps caused by the rotations. The
comments in the source code indicate that computed fetch lengths have an
accuracy of about 6 cell lengths while coordinates may be inaccurate by 3
cells. On the other hand, a small cell size increases the processing time and
memory requirements of the algorithm.

In 2010, a cell-based algorithm for determining fetch lengths was given by
Yang et al. [5]. The method subdivides the map by a regular grid into non-
overlapping rectangular areas (cells). A major difference to purely raster-
based method is that, for each cell, the entire set of original line segments
contained in the cell is stored, making it possible to maintain full precision
in the fetch length computation. Examining a cell is more time-consuming
than in raster-based methods since all of its line segments are examined
for intersection with the candidate fetch line. However, the number of line
segments in a cell is typically small. Furthermore, the cells can be larger than
in a raster-based method since the cell size has no effect on the accuracy of the
algorithm. The algorithm can also determine a fetch length in any direction
with the same cell-based representation of the map, making it very efficient
in the case where the number of study points is moderate compared to the
number of polygon vertices in the map data. Indeed, the algorithm was
found to be faster in practice than those algorithms presented in this thesis
that were developed before the cell-based method [5]. In this work the cell-
based algorithm is adapted for operation on a GPU and new optimizations
are developed to further improve its performance on a GPU.

1.1.3 Related problems

The wave model based on fetch lengths is rather simplistic. In essence,
the model is one-dimensional and does not therefore take into account the

2The exception is if the fetch length is still unbounded. Then the fetch length is
decremented by the cell size to still indicate unbounded fetch.

8

effect of water depth and diffraction and reflection caused by waves hitting
obstacles. More sophisticated wave models are now readily available [6, 7, 8,
9, 10|. Software implementations of such models were also found. However,
it was the decision of domain experts not to use those implementations as
they were considered unsuitable for the complex archipelago environment.
Also, the computations had to be carried out using only a two-dimensional
map as full depth information was not available for the area of interest.

A raster-based method for determining maximum fetch has also been
proposed [11]. Here, for a given cell and a sector of directions the maximal
fetch length within that sector is determined. The algorithm uses a visibility
principle for computing the maximum fetch. First, each cell in a land area
is given the height 100 and each water cell the height 0. The cell of interest
(target cell) is elevated slightly to height 5. Then, each cell is checked for
visibility from the target cell. After finding all visible cells, their distances
and directions from the target cell are determined. The cell with the maximal
distance within the sector of interest is finally reported. When implemented
on GIS software, the algorithm could determine fetch lengths for 55000 cells
in eight compass directions in 13 days, using a 1 GHz processor [11]. Using
the method for millions of study points in a complicated map would be rather
time-consuming, and it is unclear whether maximum fetch is a more useful
quantity than fetch length.

The fetch length problem is similar to other known problems of compu-
tational geometry. Among the most researched are intersection problems,
particularly the problem of finding the intersections between line segments.
This problem was solved using the sweep-line technique already in 1979 [13],
and several other algorithms have been published later. There are two sig-
nificant differences between the segment intersection problem and the fetch
length problem. In the fetch length problem only one intersection point for
a given study point p and direction 6 is of interest: the closest (to p) of all
points where the half line h(p,6) intersects a segment | € L. Solving the
fetch length problem as an intersection problem would also produce several
points where different candidate fetch lines, originating from different study
points, intersect each other. They are of no interest in the fetch length prob-
lem and can be ignored. Computing those unnecessary intersections would
have an unfavorable impact on the time required for computing fetch lengths
using an intersection algorithm. Nevertheless, the similarities of the prob-
lems make it possible to modify known segment intersection or intersection
detection algorithms [12, 13, 14| to the purpose of determining fetch lengths.

1.2 The water monitoring network problem

Eutrophication is a process where an excess of nutrients in water leads to
increased growth of algae and plants. Among the most important nutrients
are nitrogen and phosphorus whose concentration in water can increase, e.g.,
as a result of human activity. One area where the problem is significant is
the Baltic Sea. Although the anthropogenic input of nutrients has declined
recently, their concentrations remain elevated and nearly the entire sea area
is affected by eutrophication [15].

To assess whether the state of a water area is changing in a favorable
direction it is necessary to monitor the water quality with good coverage
both spatially and temporally, i.e., water samples should be collected often
and at several locations. On the other hand, a dense monitoring network is
expensive to maintain, leading to an economic pressure to reduce the number
of sites in the network. In this case the number of sites in the new network
can be considered to be a predefined constant as it directly affects the cost
of the monitoring program.

This is the situation in the case study of this thesis (P5). Previously,
a fixed set of 60 water quality monitoring sites in the Archipelago Sea of
Finland have been visited three times a year. The monitoring is currently
largely manual, i.e. the sites are visited by boats instead of having automated
monitoring systems at the sites. Despite this, the locations of the sites can be
considered to be constant. The observations have also been made at almost
the same time at all sites: Three trips have been made during summer, each
trip taking roughly 4 days. Thus, the time between the trips is far greater
than the time required for collecting the samples from all sites, i.e., the
duration of a single trip.

One consequence of visiting the sites by boats is that it is not always
possible to collect the samples due to, e.g., bad weather. This leads to
the problem of missing data which cannot be ignored because the amount
of observations for each site turns out to be rather small. Sometimes the
recorded values are also incorrect because of typing errors or contaminated
water samples. Many of the incorrect values are very different from the
other observations and can be detected using simple methods. The problem
of missing data is more difficult, but imputation methods [16, 17, 18] are now
available as ready-made software [19, 20]. Imputation replaces the missing
values by estimated values derived from the values that are available. In
the case of multiple imputation several different estimates are generated to
reflect the uncertainty in the estimates.

The quantities of interest in the water monitoring program are Py (unit
ng/l), Niee (ng/l), chlog (png/l) and Secchi (m). The first two are the
amounts of phosphorus and nitrogen while the third, chlorophyll-a, is re-
lated to photosynthesis and is found in phytoplankton. Secchi depth is a

10

measure of visibility, measured in meters. These quantities are among the
known indicators of the degree of eutrophication [15].

Visiting 60 sites three times each year by boats and analyzing the wa-
ter samples requires a considerable amount of human labor. To make the
monitoring less expensive it is of interest to find a smaller set of sites that
can still give adequate information on water quality in the area. Certain
requirements still need to be satisfied: The new network should have a good
spatial coverage of the area and the dataset should be as continuous as pos-
sible. The latter requirement means that the monitoring sites should not be
moved as that would mean ending the monitoring at one site and beginning
at another one. The first requirement is taken into account simply by parti-
tioning the area of interest and requiring that there remains at least one site
in each area. In the case studied in this thesis (P5) the areas actually come
as external inputs from other research.

1.2.1 Problem setting

With the above restrictions the problem is one of selecting a subset S’ of
the existing set of sites S. In addition to the sites a set of non-overlapping
regions R is given. It is required that for each region r € R there is at least
one site s € S” such that s is inside r (the coverage constraint). The sites are
taken to be points in the two-dimensional map, meaning that a site can only
reside in one region. The number of sites in S’ is taken as external input
(the size constraint).

With a given subset S’ of sites one can associate a function Error(S’)
that is a measure of how much the water quality information obtained using
only sites in S’ deviates from those obtained using all sites in S. The goal is
then to find a subset S’ that satisfies the size and coverage constraints, with
Error(S’) being as small as possible. The error measure is left undefined
at this point to keep the problem setting general. In the solutions to the
problem a simple error measure will be used and the algorithms themselves
are heuristic in nature. This means that the found subset S’ may not be
optimal with respect to the given error measure.

1.2.2 Related research

Previous research exists on the problem of optimizing observational networks.
However, much of the work focuses on physical or statistical modeling which
is outside the scope of this thesis. Hence, only aspects relevant to site selec-
tion are reviewed here.

Frolov et al. |21] consider the problem in a more general setting where
one can both remove and add monitoring sites. They frame the problem
as an optimization problem where there is a set of candidate locations for

11

sites. The goal is to find a set of sites that minimizes a cost function, the
role of the cost function being similar to the error function described above.
A high cost indicates that the network does not accurately reproduce the
field of values of the observed quantity, the ground truth coming from a
simulation. The optimization is done using a greedy method that is called
an exchange-type algorithm. A basic step is the removal of one site and the
addition of another one. The site to be removed is the one that decreases the
cost function less than any other site in the existing network. Similarly, a
new site is added to the candidate location whose observations are estimated
to be most useful for reducing the value of the cost function. The process
is repeated until no improvement is obtained. Different randomly gener-
ated initial networks can be used as the starting points of the optimization.
Also add-only and delete-only versions of the algorithm were tested. The
results indicate that the delete-only algorithm produces better results than
the add-only method, while the goodness of the network produced by the
exchange-algorithm depends on the initial configuration ranging from worse
than add-only to better than delete-only [21]. The add-only and remove-
only algorithms are also known as sequential forward and backward feature
selection, respectively, in the literature on pattern recognition |22].

Lin et al. [23] propose an algorithm that is based on quadtrees. Here
the goal was not to remove sites from an existing network but to freely
determine good sampling locations. The study area is first divided into four
quadrants of equal size. For each region a variance measure is computed from
simulated data, and the area with the highest variance is further divided
into four subregions, i.e., that quadrant is replaced by four new quadrants.
A new site is placed in the center of each new quadrant, although a random
placement of the sites within the quadrants was also tested. The process
is then repeated, using the current set of quadrants as the starting point
at each step, until a stopping criterion such as the maximum number of
sites or a small enough variance is achieved. The method was seen to yield
much better results than random sampling [23]. However, the procedure is
unsuitable for the case where the purpose is to remove some sites from an
existing network.

1.3 Goals and results of this research
The goal of this thesis is to develop solution methods for the fetch length

problem and the water quality monitoring network problem. In particular,
the research goals are:

e RG1: Develop efficient algorithms for determining fetch lengths.

12

e RG2: Develop a practical method for selecting a reduced number of
monitoring sites.

For the fetch length problem three new sequential algorithms are de-
signed and analyzed. Two of them are exact while one is approximate. The
approximate algorithm is similar to the known raster-based algorithm [4],
with the important difference that memory is conserved by rasterizing the
map data only when needed. The rotation step is done for the original vec-
tor map instead of the raster representation, which improves accuracy. The
exact methods have their roots in line segment intersection problems [14],
modified to compute only the intersections of interest. These algorithms are
a satisfactory solution to RG1 for serial implementations.

For parallel devices RG1 is examined further by adapting a previously
known algorithm for the fetch length problem for GPU devices. The first
version of the algorithm is a simple parallelization without taking the prop-
erties of GPUs into account except in some low-level details. This implemen-
tation is then improved by optimizing the memory access patterns and by
introducing sparse rasterization algorithm for line segments. This technique
allows a cell-based method to skip over many empty cells when looking for
intersections, improving execution speed. Several unsuccessful attempts to
improve the performance of the algorithm on a GPU are also documented
and analyzed to understand why the methods failed.

For RG2 suboptimal algorithms for removing sites from the network are
presented. In addition to the site selection algorithms the solution method
also needs to incorporate other steps to deal with the limitations of the input
data. For the problem of incorrect data (outliers) simple methods are used
while pre-existing software is used for the imputation of missing data. In
the case considered in this thesis, it turned out that the work needs to be
carried out using only a small number of observations, and the optimization
results are then somewhat sensitive to the missing values. The running
times of even the simplest algorithms are rather high when implemented
using statistical software. Thus, no attempt is made to improve the simple
algorithms. Nevertheless, the results are found to be better than a random
selection of sites, even when the imputed values in the testing dataset differ
from those used for selecting the new network.

13

14

Chapter 2

The fetch length problem

In the fetch length problem there may be millions of line segments in the
map data, millions of study points and typically a few dozen directions in
which the lengths are to be computed. A brute-force algorithm for the
problem would, given a point p and direction 6, iterate over all line segments
l € L. For each segment the distance from the point p to the segment [in
the direction 0, i.e. d(p,0,l) would be computed, with the smallest found
distance being the required fetch length. However, if the study point lies in
the interior of a polygon, fetch length is taken to be zero.

To achieve acceptable computation time the number of intersection com-
putations must be reduced from that required by the brute-force algorithm.
In this work four different techniques for solving the fetch length problem
are explored, three of them being in principle exact while one computes an
approximate result whose accuracy depends on the chosen rasterization res-
olution. The exact methods use three different algorithmic techniques: an
interval tree, the sweep line technique and a cell-based technique. Of these
only the algorithm based on the sweep line technique has a worst-case time
complexity that is better than that of the brute-force algorithm. However, in
practice the cell based method is found to be the fastest. Before introducing
the algorithmic techniques let us first look more carefully at what is to be
computed.

2.1 Problem setting

In the fetch length problem for a single point the goal is to compute the
shortest distance from the study point p to land area in the given direction
0. If the point p is in the interior of a polygon, i.e. on land, fetch length
d(p,0) is zero. For a point that lies on the border of a polygon the fetch
length is zero if the half line originating at p and having the direction 6
points into a polygon. Otherwise it is the same as for an exterior point, with

15

Figure 2.1: Fetch lengths in the horizontal direction 8 = 0 for seven study
points. Fetch length is zero for the points p3, ps and p7, positive and finite
for p1, p4 and pg and infinite for po.

the segment on which p lies excluded from the distance computation to avoid
a zero result. The different cases are illustrated in Figure 2.1.

For determining whether a point is an interior or an exterior point two
basic approaches can be used. One is counting how many times the half line
originating at p and having direction # intersects the border of any island
polygon: p is then an exterior point if and only if this number is even. The
other approach assumes that the input line segments are not given in an
arbitrary order but in the order in which they are encountered when walking
around the polygon borders. For instance, if the vertices of a polygon are
traversed in a counterclockwise order, the interior of the polygon lies on the
left side of the line segments of the polygon. This can be used to classify the
study points: given the line segment [that is closest to p in the direction 6,
it is enough to test whether p lies to the left or to the right of the line that
passes through [, left and right being taken with respect to the direction of
L.

One must be careful to take into account the special cases that occur in
the classification methods. The exceptional case is when the half line hits a
vertex of a polygon. This happens for points pg and p7 in Figure 2.1 when
the chosen direction is # = 0. In the segment counting method it is enough
to exclude from the count all line segments that lie totally on a preselected

16

side of the half line while counting all segments that either cross the half line
or lie totally on the other side of the half line. For instance, in Figure 2.1 we
might choose to exclude all line segments that are, except for a vertex, above
the horizontal half line through a chosen study point. For pg the count would
then be zero so the point would be correctly classified as an exterior point.
For point p; the count would be one and the point would again be correctly
classified as an interior point. In the directed line segment approach point
p7 would cause no difficulty: both segments meeting at the vertex hit by
the half line have a similar orientation, leading to the same classification
for the study point. The line segments intersecting at the vertex hit by the
horizontal half line through pg, however, have a different orientation: one
segment is traversed from top to bottom while the other one is traversed in
the opposite direction in the polygon order. It is then important to choose
as the closest line segment the one that is closer to pg in any direction except
f# = 0, in which the distances are the same.

The case of interest in this work is computing fetch lengths for a large
batch of study points. The directions in which the lengths are computed are
the same for all study points.

2.2 A brute force algorithm

For a moderate number of study points and directions, fetch lengths can be
computed by the means of a brute force algorithm. To compute fetch length
for a study point p in the direction 6, first form the half line h(p, §) whose
starting point is p and angle with respect to the positive direction of the
x-axis is #. Set the minimum found distance to d := oo to indicate that
no intersecting segment has been found. Next, iterate over all line segments
l € L of the map. For each segment [it is checked whether h(p, #) intersects
[. If there is an intersection, the distance from p to the point of intersection,
ie. d(p,l,0),is computed. If d(p,l,0) < d, a new minimal distance has been
found, so update d := d(p,[,0). Otherwise, nothing needs to be done as d
already is the smallest distance found so far.

Once all segments have been processed, d is the smallest distance from p
to a line segment [€ L in the direction 6. The actual fetch length d(p, 0) is
d if p is an exterior point or a border point with the half line h(p, #) pointing
away from a polygon. Otherwise, d(p,0) = 0. It makes sense to include
the classification of the point to the algorithm described above. While the
classification could be done only once for the interior and exterior points, it
is direction-dependent for border points. Regardless of which classification
method is used (intersection counting or orientation test), it is easy to add
the classification to the brute-force method.

17

Although the brute-force algorithm will not be used for computing fetch
lengths, it forms a baseline whose performance should be exceeded for an
algorithm to be considered successful. The time complexity of the brute-
force algorithm is easy to evaluate. While the method was described for one
study point, for a set of study points and directions the brute-force method
is to perform the above computations for all study points and directions. If
there are m study points and D directions, there are m - D pairs of a study
point and a direction. For each of them all n line segments are tested for
intersection, the intersection test and any other required processing being
constant-time operations. Hence, the time complexity of the algorithm is
©(m-n- D). Usually D is considered to be a constant, leading to the time
complexity O(m - n) for the brute-force algorithm.

2.3 Data structures

It was told before that the number of intersection tests must be kept small
to compute fetch lengths quickly. In fact this is somewhat inaccurate: inter-
section tests are rather simple but their number is so large in the brute-force
algorithm that they would still take much time. To achieve a significant
speedup it is then not sufficient, e.g., to just eliminate most intersection
tests using a simpler preliminary test that can reject most segments. In-
stead, the goal must be not to iterate over all line segments at all when
computing the fetch length for a study point. In the cell-based algorithm
only array-based lists are required but the other exact methods use more
complicated data structures for quickly finding the line segments of interest.

These data structures are variants of the red-black tree [1]. A red-black
tree is a binary search tree that keeps itself balanced while items are added
to and removed from the tree. The usefulness of such trees follows from the
fact that many tree operations require time that is proportional to the height
of the tree. For an n-node red-black tree the height and the time complexity
of operations such as finding, inserting or deleting a node is O(logn).

For the fetch length problem augmented versions of the red-black tree are
used. In an augmented tree each node contains, in addition to its ordinary
data, additional information that makes it possible to perform quickly queries
that would be inefficient on an ordinary balanced tree. The fetch length
algorithms use two kinds of data structures based on the red-black tree: an
interval tree and an order-statistic tree.

2.3.1 Interval trees

An interval tree [1| can be used for efficiently finding in a set I all intervals
1 € I whose intersection with the query interval ¢ is nonempty. Each node of
the tree contains one interval, the tree order being determined by the lower

18

end points of the intervals. In addition to this a node stores the highest end
point (max) of any interval that is in the subtree rooted at the node. This
extra information is used for limiting the number of nodes that need to be
checked to find the intervals of interest. For instance, if the left child of the
current node contains a max value that is smaller than the lower end point
of the query interval, there is no point in checking the left subtree, since all
intervals in the subtree have strictly smaller values than the query interval.
Similarly, for any interval in the right subtree it is known that the lower end
point is no lower than the lower end point of the current node (because of
the search tree property) and that the higher end point is no greater than
the max value stored in the right child of the current node.

The interval tree structure can be used for finding all k intervals that
intersect the query interval in O(min(klogn,n)) time when the interval tree
contains n intervals. Data structures that can achieve a lower running time
of O(k + logn) are also known (e.g. [24]) but were not used in the present
work.

In the fetch length problem the interval tree can be used to limit the
number of line segments that need to be tested for intersection with a given
half line. It is assumed that the coordinate system has been rotated so that
the half line is horizontal. A line segment s = (z1,y1) — (22, ¥y2) intersects
the horizontal line y = yg if and only if y1 < yo < y2 or y2 < yo < y1. Line
segments with this property can be found by performing a query with the
interval [yo, yo|, after constructing the interval tree to contain the projections
of the polygon line segments onto the y-axis. With each interval the original
line segment, whose projection the interval is, is also stored to enable fur-
ther intersection testing: we still need to check whether the found segment
also intersects the half line through p with direction # = 0 and of all such
intersections the closest one needs to be found.

In the interval tree method potentially a large number of line segments
still needs to be tested to find the fetch length for a given point p in one
direction. However, the fetch length itself is the distance from p to one line
segment or zero if p is inside a polygon. This observation suggests a way to
limit the number of intersection tests further.

2.3.2 Order-statistic trees

Earlier it was assumed that the interval query returns the line segments
intersected by the horizontal line y = gy in an arbitrary order. It was then
necessary to iterate over all of them to compute a fetch length. If the line
segments were given in a left-to-right order, it would be easier to find the
segment that is closest to p in the direction 8 = 0. If the segments are stored
in a binary search tree this segment could be found very similarly to how
one searches for an element that is in the tree: the tree is traversed until a

19

leaf node is found, going to the left subtree if and only if the intersection of
the segment of the current node lies to the right of p. The search does not
typically end in the correct segment as one needs to check the left subtree of
the closest segment to ensure that there are not segments that are even closer
to p. However, the segment of interest is always one of the segments in the
search path, so it is enough to maintain a "best candidate" while traversing
the tree.

Two problems were ignored in the above discussion. First, it was assumed
that the tree containing the line segments intersecting the line y = yq is
available. Second, while the closest segment was found, it is also necessary
to determine whether p is an interior or an exterior point. Let us ignore
the first difficulty for a while and consider the second one. Recall that we
introduced two methods for classifying the study point p. If the segments
are stored so that they retain their orientation in the polygon, it is possible
to use the simpler second classification method. Otherwise we resort to
counting the number of line segments to the right of p. Now, iterating over
all segments is precisely what we wanted to avoid, so the number of segments
must be computed in another manner.

Fortunately, a well-known data structure called order-statistic tree [1]
is well suited for this purpose. A node of an order-statistic tree stores, in
addition to normal node data, the number of nodes in the subtree rooted
at the node. With this information it is easy to compute the rank of any
node. Here, rank means the position of an element in a sorted order, i.e.
an element with rank ¢ is the ith smallest element in the collection. When
computing a fetch length we require the number of segments that lie to the
right of p on the line through p. If there are n, segments in the tree and
we know the rank r of the segment that was found in the tree search, there
are then n, — r + 1 segments to the right of p. This number is then used to
classify point p in the current fetch line direction.

2.4 Sweep line technique

In the above the problem of constructing the order-statistic tree was ignored.
One cannot simply build a new tree for each study point p after finding the
segments of interest because this construction would require more time than
a full fetch length computation for p. What is needed is a method to maintain
the order-statistic tree without rebuilding it completely for each study point.

One approach to achieve this is the well-known plane sweep, also called
sweep line, technique [24]. While there are many variants of this technique,
not all of them using a straight sweep line [25] or even dealing with two-
dimensional data |26, 27|, for the fetch length problem an old algorithm for

20

finding intersections between line segments [13] provides a good basis. Let
us review how this algorithm works.

The operation of the algorithm can be visualized by moving a horizontal
sweep line upwards, starting from below all objects of the input data and
stopping when all objects have been processed. At all times the line segments
intersected by the current sweep line are kept sorted by the horizontal coor-
dinates of their intersections with the sweep line. Although the intersection
points of the input line segments with the moving sweep line change continu-
ously, only at discrete points are there changes in the order of the segments.
These points are the lower end points of line segments, where a new segment
is inserted to the order, the upper end points, where a segment is deleted
from the ordered structure, and intersection points, where the order of the
intersecting segments is reversed. The points where processing is done to
compute output data or to update the data structures of the algorithm are
called event points.

In the fetch length problem there are no intersections between the line
segments of the input data. Instead, the intersections of interest are between
the horizontal half lines originating from the study points and the line seg-
ments of the input data. The end points of the line segments are then the
only points where the order of the line segments needs to be updated. At a
study point a fetch length is computed, with no changes to the line segment
data structure.

The sweep-line algorithm for the fetch length problem proceeds as fol-
lows. First, the coordinate system is rotated so that the direction in which
fetch lengths are to be computed is horizontal. All event points (end points
of line segments and the study points) are sorted into an increasing order
of y-coordinates. If two points have the same y-coordinate, their order is
determined by their z-coordinates. An empty order-statistic tree is created,
corresponding to the fact that the sweep line intersects no segments below
all end points. Then, all event points are processed in order. When the next
point is a lower end point, a line segment is added to the order-statistic tree.
When the point is an upper end point, a segment is removed from the tree.
When the point is a study point p, a fetch length is computed as described
above. The procedure is given as pseudocode in Algorithm 1.

It is assumed that the map has already been converted into the format
required by the algorithm. This means that the map is given as a set of
vertices (endpoints), each vertex containing references to the (at most 2)
line segments that have the vertex as an upper or a lower endpoint. There is
also assumed to be an initialized data structure for the fetch lengths d(s, 0),
where the results are stored. It is also assumed that reading the next element
of a list advances the list pointer to the next element. Thus, after reading
an end point or a study point it is necessary to step back in the list (S
or endpoints) whose element was not processed in the current iteration of

21

Algorithm 1 Sweep line algorithm for determining fetch lengths. The code
is simplified from P2 by ignoring special cases.
Rotate all coordinates by 6§ — 7 radians;
endpoints := a list of all end points of L, with references to the segments;
Sort S and endpoints into increasing order of y-coordinates;
T := empty order-statistic tree of line segments;
while there are unprocessed study points in S do
s := next point of S; p := next point of endpoints;
if p.y < s.y then
// The next point is an end point.
Remove segments ending at p from T
Add segments starting at p to T
Step back by one element in S;
else
// The next point is a study point.
eleft := T.predecessor(s); nyeps = T .rank(eepe);
if 1.4 is even then
L(s,0) :=d(s, eleft,0);
else
L(s,0) := 0;

Step back by one element in endpoints;

the while-loop. One also needs to take into account that the closest line
segment to the left of a study point may not exist, i.e. ey = nil. In such a
case the rank of the segment is defined to be 0 and the horizontal distance
(d(s, eleft,0)) from s to ey = nil is infinite. All operations are performed
in the rotated coordinate system. The operation of the sweep line algorithm
is illustrated in Figure 2.2.

2.4.1 Time complexity

If there are m study points and n polygon vertices (and hence n line seg-
ments) in the map data, sorting all m + n points into an increasing order of
y-coordinates requires O((m+n)log(m+n)) time using a comparison-based
sort [1]. For an end point p; of a line segment, inserting or removing the
line segment starting or ending at p; requires O(logn;) time where n; is the
number of segments that are in the status structure when handling point p;,
i.e., the number of line segments intersecting the horizontal line through p;.
For a study point p; the nearest line segment to the right of p; is found in
time proportional to the height of the tree, which is O(logn;) for a balanced
binary tree with n; elements [1]. Finding the rank of this segment in the

22

Ps

j P4 P2

Figure 2.2: Handling event points in the sweep line fetch length algorithm.
For the study point p; the closest line segment [to the left of p; is found
using T'. The rank of [is 2, an even number, so p; is an exterior point and
the fetch length is the horizontal distance from p; to [. At the end point po
one line segment is removed from the status structure 7' and another one is
added. At p3 two segments are removed and at ps two segments are added
toT.

tree and hence determining whether p; is an interior or an exterior point can
also be done in O(logn;) time.

The objects stored in the order-statistic tree are a subset of the line
segments of the map, so n; < n for each study point or polygon vertex.
The time required for processing a vertex is then O(logn) and the total time
complexity of the algorithm is O((m+n) log(m-+n)+(m+n)logn) = O((m+
n)log(m + n)). This is assuming that the number d of directions in which
fetch lengths are determined is a constant, otherwise the time complexity is
multiplied by d.

Although not implemented in this work, it would be possible to improve
the time complexity to O((m + n)logn). To see this, one may first note
that the time complexity is dominated by sorting. But the order-statistic
tree remains unchanged when processing a study point, making it possible to
process the study points occurring between two end points in any order. It is
then only necessary to sort the end points. For each study point it is enough
to know the two consecutive end points between which the study point lies

23

vertically. All study points belonging to such an interval can be recorded, for
instance, in a list structure, with one list for each vertical interval between
consecutive end points and two additional lists for the intervals (—o00, Ymin]
and (Ymaz,00). Finding the correct list takes O(logn) time and storing the
study point to the end of the list requires O(1) time [1]. The end points can
be sorted in O(nlogn) time, storing the m study points to the lists takes
O(mlogn) total time and processing all study points and end points is done
in O((m + n)logn) time as before, leading to the claimed time complexity.
This technique has been previously used in a general line segment intersection
algorithm [28], although there the purpose was to improve the accuracy of
an algorithm for the general line segment intersection problem, instead of
improving time complexity.

2.4.2 A raster-based sweep line algorithm

In the vector-based sweep line algorithm processing a study point requires
O(logn) time due to traversing a path in a balanced binary search tree from
the root to a leaf. By accepting a loss of precision it is possible to reduce this
time to O(1). This is achieved by a raster-based version of the fetch length
algorithm. The basic idea is similar to a known algorithm by Finlayson [4],
but there are some differences as well. In contrast to [4], the map is given as
a set, of line segments instead of a raster representation and is only rasterized
when needed. This makes rotating the map data more accurate, since the
rotation is performed in full precision for the vector (line segment) data, and
rasterization only takes place after the rotation. The memory requirements
are also reduced by not having to store the entire rasterized map anywhere.
Another difference is that fetch lengths are not computed for every raster cell
but only for those that correspond to the user-defined study points s € S.
The sweep line status is modified so that it only needs to be updated when
rasterizing the line segments of the map. This speeds up the algorithm when
many of the cells do not contain study points.

Unlike the vector-based algorithm described in Section 2.4, the raster-
based version computes fetch lengths in a direction opposite to the direction
in which the sweep line moves. That is, if the sweep line is horizontal and
moves upwards, the raster-based algorithm determines the lengths in a down-
wards direction whereas the vector-based version does this in a left-to-right
or right-to-left direction. Otherwise the algorithms are somewhat similar,
both using rotation to deal with the fetch line directions that do not align
with the coordinate axes. The pseudocode is given in Algorithm 2.

The preprocessing begins by rotating the map and normalizing the ro-
tated coordinates of the study and end points so that all z-coordinates lie
in the range [0, X] and y-coordinates in [0,Y], where X and Y depend on
the chosen resolution (cell size, called scale) of the rasterization. The study

24

Algorithm 2 A raster-based sweep line algorithm for determining fetch
lengths (P2).
Rotate all coordinates by 6 + 7/2 radians;
Find minimal and maximal map coordinates Tmin, Tmaz, Ymin, Ymaz;
(X,Y) == ([(#maz — Tmin)/scale], [(Ymaz — Ymin)/scale]);
(s_points,v_points) := new arrays of Y + 1 empty lists;
Store study points in s_points and end points in v points;
(lasty,label) := arrays of size X + 1, with initial values (—oo, exterior);
active_lines := a new empty list of line segments;
for index := 0 to Y do
for each study point s in s_points[index| do
if label[s.x] = interior then
L(s,0) :=0;
else
L(s,0) := scale - (s.y — lasty[s.z]);

for each end point p_lower in v_points[index| do
add the line segments stored in p_lower to active lines;

for each line segment line in active_lines do
rasterize(line, index, active_lines, last,, label);

points and lower end points of line segments are stored in two separate ar-
rays of size Y +1, s_points and v__points. Each element of these arrays is a
reference to a list, with the list v points[j| containing the lower end points
whose normalized y-coordinate lies in the range [j,j + 1). Together with a
lower end point a reference to the segment starting at the point is stored
in full precision to allow accurate rasterization of the segment, i.e., the end
points of the segment are not rounded. In the pseudocode it is assumed
that the coordinates of the study points are rounded to integers while stor-
ing them to s_points, allowing indexing arrays based on these coordinates.
This is only for notational convenience as the rounding could also be done
when converting a coordinate to an array index.

The sweep line status of the algorithm consists of two arrays of size
X +1, lasty and label and one list of variable size, active _lines. The array
position last,[i] contains the greatest y-coordinate of a nonempty cell with -
coordinate i. Only cells that are below the current position of the sweep line
are taken into account. The array is initialized with values —oo to indicate
that there are no nonempty cells below the sweep line. As usual, the sweep
line lies below all objects in the beginning of the algorithm. Similarly, label][i]
contains the label of the cell ¢ at the position of the sweep line and is either
interior or extertor. Initially, the sweep line is outside all island polygons
and label is therefore filled with the value exterior. The list active lines

25

contains those line segments whose lower end point has been met by the
sweep line but whose upper end point is above the sweep line. Initially, all
line segments are above the sweep line and active lines is empty.

The initialization is followed by the sweep line phase. The horizontal
sweep line takes the vertical positions index = 0,1,2,...,Y. For a given
position of the sweep line, fetch lengths are computed for all study points
whose rounded y-coordinate is equal to index, consulting the arrays label
and lasty. If label[s.x] = interior for the study point s, the point in inside
an island and the fetch length is zero. Otherwise, s.y — lasty[s.x] is the
vertical distance between the study point s and the closest nonempty cell
below the study point, measured in cells. This distance is multiplied by the
side length scale of a map cell to yield the approximate fetch length.

Next, the line segments whose lower end point lies on the sweep line are
added to active lines. This is followed by rasterizing all currently active
line segments. Here, rasterization does not mean converting the entire seg-
ment into a cell representation. Instead, the procedure rasterize determines
the minimum and maximum z-coordinates (i, and X;q.) of a given line
segment that occur in the current sweep line position, i.e., between y = index
and y = index + 1. The array positions lasty[Zmin, ..., Tmaz] are set to index
to indicate that there were nonempty cells at those locations. The array label
is updated by flipping label[z] between interior and exterior if the current
line segment extends horizontally over the middle position of the current
cell. The procedure rasterize is also responsible for removing a line segment
from active lines if its upper end point lies at the current position of the
sweep line. Although the coordinates of the end points are not rounded, it
is assumed that they have been rotated and normalized as described above.
The algorithm is illustrated in Figure 2.3.

Unlike in the vector-based algorithms, the classification of a study point
(or cell) into an interior or an exterior point is uncertain for points that are
close to a shoreline. The algorithm should only be used for points that are
in a water area. It is possible to modify the algorithm to detect the cases
where the classification is uncertain: It happens when the study point lies in
a nonempty cell. Note that the emptiness of the cell containing a study point
can depend on the chosen fetch line direction, because the rasterization is
done after rotating the vector-based map data.

The time complexity of the algorithm can now be determined. Rotating
and normalizing the coordinates requires O(m+n) time for the n end points
and m study points. Initializing the lists last, and label takes O(X) time,
while active lines is initially empty and is initialized in a constant time.
The lists s_points and v_points are initialized in O(Y) time. Since the
horizontal order of the line segments and study points is irrelevant for the
algorithm and each point is stored exactly once in a list of v _points or

26

y P

Figure 2.3: Raster-based method in the sweep line position index = 3. For
point p fetch length is found to be 2 x scale. Rasterizing 11 for the current
sweep line position means setting last,[i] to 3 for i = 5,6,7. The value of
label is flipped to interior for indices 6 and 7 but not for 5 since 11 does not
extend (in the sweep line position) horizontally over the middle of the cell,
i.e., the line z = 5.5. Rasterizing 12 sets last,[5] = 3 and label[5] = exterior.
The sweep line position index = 3 is taken to mean the area between y = 3

and y = 4, shown as non-dashed lines in the figure.

27

s_points, the points can be added to the lists in O(m + n) time by always
appending to the end of a list.

The time required for rasterizing a line segment is proportional to the
number of cells intersected by the segment, i.e., for a segment of length
len it is O(]len/scale]) The total time complexity of the algorithm is then
O(m+n+ X +Y + leny/scale), where lenyy is the total length of all line
segment in the map, i.e. len = > cr length(l).

2.5 Cell-based algorithm

To further reduce the time required for determining fetch lengths, one pos-
sibility is to utilize parallel execution units in a CPU or a GPU (Graphics
Processing Unit). A problem here is that the plane sweep technique is se-
rial in nature. Also in the interval tree method it is easiest to implement
the tree generation as a serial algorithm, even if the actual distance queries
could easily be done in parallel. The preceding techniques then offer limited
possibilities for parallel operation. One could certainly process the different
fetch line directions at the same time, but this is only enough for a system
with a moderate number of processing units. For a GPU implementation,
in particular, much more work needs to be performed in parallel to achieve
maximum performance.

A fetch length algorithm that is well suited for parallelization was pub-
lished in 2010 by Yang et al. [5]. The method is based on spatial partitioning
using a uniform grid [14, 29|. This means that it subdivides the map into
a grid of rectangular cells. A preprocessing step stores each line segment of
the map into all cells through which the segment passes. Then, finding a
fetch length starts by finding the cell containing the study point of interest.
The cells intersecting the half line starting at the study point are examined
in the order of increasing distance from the study point. The examination
of a cell consists of a brute-force search for intersections between the half
line and the line segments of the cell. If there are such intersections inside
the cell, the segment whose intersection with the half line is the closest to
the study point is sufficient for determining the fetch length. Otherwise the
processing is repeated for the next cell until an intersection is found or the
map border is reached.

The cell-based approach has some advantages over the interval tree and
sweep line methods. A fetch length can be determined in any direction using
the same cell representation of the map. The preprocessing, i.e., constructing
the cell-based map representation, has been reported to take only 0.7 s for
a map containing over one million vertices on a computer with 2 GHz Intel
Core processor [5]. It is also relatively easy to deal with inaccuracies in
the input data such as rounded coordinates of study points, which can be

28

Figure 2.4: Determining fetch lengths in different directions using a cell-
based algorithm. For p; two empty cells and two nonempty cells are exam-
ined. For py only one cell is examined. For ps the search ends in the map
border after visiting one nonempty and two empty cells.

difficult to do when using the sweep line technique. The main advantage
in practice is performance: The cell-based algorithm has been reported to
be several times faster than the sweep line method when processing a large
number of study points, and the difference is greater when the number of
study points is small [5]. The good performance can be attributed to three
main factors. The short preprocessing time makes the algorithm suitable for
both small and large numbers of study points. For a suitably chosen cell size
there are typically only a small number of line segments in a cell, making the
brute-force intersection computation in a cell efficient. On the other hand,
the cell size must not be too small, so that only a moderate number of cells
need to be examined. In [5] the cell size is set by choosing the numbers of
cells in the horizontal and vertical direction to be cells, = [y/n - w/h] and
cellsy = |\/n-h/w|, where w and h are the width and the height of the
map, respectively. Hence, there are approximately as many cells as there are
line segments in the map, typically leading to a small average number of line
segments in a cell'. The algorithm can also use simple data structures such as

!This average number need not be approximately equal to 1 because a segment may
be stored in several cells.

29

array-based lists, storing the line segments of a particular cell in consecutive
memory addresses. This can lead to more efficient memory accesses than
in the sweep-line method where a typical operation is the examination of a
root-to-leaf path in a binary search tree.

The cell-based procedure for determining a fetch length for one study
point in one direction is shown as pseudocode in Algorithm 3. The inner
while-loop finds the next nonempty cell along the half line h(p, #), moving at
each iteration by one cell either horizontally or vertically. Once this cell is
found, the for-loop is the brute-force search for intersections between h(p,)
and the line segments within the current cell. If intersections are found, the
computation is ready. Otherwise the outer while-loop is repeated to find the
next nonempty cell.

Algorithm 3 Determining a directional distance using the cell-based
method (P3).
procedure DIRECTIONALDISTANCE(Map m, Point p, Direction 6)
Initialize Oz, dy, dx, dy, i, j, pr and py using m, p and 6
minDist ;= oo; nearestSegment := null; ready := false
numLines = linesInCell(m, (i, 7))
while not ready do
while numLines = 0 and inBounds(m, (i, j)) do
if dr < dy then
1:= 1+ px; dr := dr + Ox
else
J=J+py; dy = dy+ 9y
numlLines := linesInCell(m, (i, j))

for all line segments in the cell (i, j) of m do
update minDist, nearestSegment and ready if necessary
numLines := 0
return getDistance(p, 6, nearestSegment)

A theoretical disadvantage is that the worst-case time complexity of the
algorithm is poor, even when compared to a brute-force algorithm. The
memory requirements also depend not only on the amount of line segments
and study points but also on the lengths of the segments of the island poly-
gons.

2.5.1 Time complexity

While the cell-based algorithm performs well in practice, little is known
about its theoretical performance. The worst case time complexity can be
easily shown to be O(mn?), while that of the brute-force algorithm is O(mn).
As before, n is the number of line segments in the map data and m is the

30

Figure 2.5: A worst case for the cell-based algorithm. Every cell contains all
line segments except the vertical segment on the right. The width and the
height of the map have been chosen to ensure that there is only one cell in
the vertical direction. The cells are not square-shaped due to different zoom
factors in the horizontal and the vertical direction.

number of study points and it is assumed that the number of fetch line
directions is a constant.

The worst case of the cell-based algorithm appears when the map is so
wide that it only contains one cell vertically and n cells in the horizontal
direction. Furthermore, the number of line segments in the cells must be
maximized. In Figure 2.5 this is achieved by using one polygon whose vertical
right side only appears in the rightmost cell but the other n—1 long segments
occur in all n cells. The fetch lengths are to be determined in the horizontal
direction, with the study points located so that all cells need to be examined
before the half line intersects the polygon boundary. Now, for all m study
points, the algorithm examines n — 1 segments in n — 1 cells and n cells in
the rightmost cell for an intersection, achieving the claimed worst-case time
complexity O(mn?).

Of more interest is the average case time complexity of the algorithm,
given that the worst case occurs in a highly unrealistic situation. This has
been considered by Yang et al. [5] and they show that processing one study
point runs in expected O(1) time. However, their assumptions may not be
fully realistic. The first assumption is that the ratio between the height
and the width of the map is bounded, i.e., does not depend on n. This
assumption is certainly acceptable, but their second assumption states that
the number of segments in a nonempty cell is a constant independent of n.
It is questionable whether this holds when one increases n by sampling the
map in a higher resolution. Furthermore, the number of nonempty cells that
need to be examined before finding an intersection almost certainly depends
on chosen map resolution: In a high resolution map more cells are required
to represent the same distance compared to a map with a lower resolution.

Hence, it is questionable whether the average-case time complexity of the
algorithm is O(1) for a study point. Taking into account all study points
and the preprocessing, the total time complexity would then be O(m + n).
In any case, the practical performance of the algorithm has been tested to
be better than that of the interval tree or the sweep line based algorithm [5].

31

2.6 Tailoring the cell-based algorithm for GPU

When using a traditional multi-core CPU, it is trivial to implement a parallel
version of the cell-based fetch length algorithm. Since the preprocessing time
is small, it is not necessary to parallelize that step. Once the preprocessing
has been done the cell representation is unchanged during the execution of
the algorithm. Since there are millions of study points in the cases of interest
and the fetch length computations for the different points are independent
of each other, a large number of cores can easily be utilized.

On a GPU, however, such parallelization may not yield the best possi-
ble performance. Compared to a CPU the difference is that the individual
"threads"? (or work-items in OpenCL) do not execute independently of each
other. Instead, a block of work-items, i.e., a wavefront will typically execute
in lock step [30]. To understand this it is necessary to study the OpenCL
programming environment and the internal organization of GPU devices.

2.6.1 OpenCL programming model

The GPU implementations of this work were programmed in the OpenCL
language [31, 32|, which can be seen as a subset of the C programming
language. From the programmers point of view one important limitation
is that in OpenCL there are no built-in functions or standard libraries for
allocating memory while a program is running. Instead, all required memory
must be reserved before running the OpenCL program. Thus, OpenCL can
only be used to implement some parts of a piece of software while the rest
is implemented in some other language such as C.

Programs implemented in OpenCL are called kernels or compute kernels
and are similar to functions in C language. However, because the OpenCL
is a separate execution environment, using a compute kernel is more compli-
cated than calling a function in the host environment. As preliminary steps
one must initialize the OpenCL environment for the device that is used for
executing it, compile the kernel, and set all parameters of the kernel. Once
the kernel has finished its execution, the computed results are transferred to
the host environment for further use.

An important difference between a function and a compute kernel is that
running a compute kernel is actually similar to performing several function
calls instead of only one. Before running the kernel the host environment
specifies an index space, with the meaning that the kernel is to be executed
for all specified indices. The indices can be 1-, 2- or 3-dimensional and for
each dimension the set of indices is a consecutive range of integers from 0 to
the maximum index in that dimension. The index is essentially an implicit

2In general using the word "thread" is avoided in this work as its meaning is somewhat
varied in GPU programming.

32

parameter for the kernel: It does not occur in the parameter list but can be
accessed using OpenCL functions.

An OpenCL term that will be used extensively is work-item. It means
simply one kernel instance that is executed for a particular index of the index
space. How the work-items will be executed depends on the implementation
of OpenCL for the device executing the kernel. Often there are much more
work-items than there are execution resources on the device. The OpenCL
environment can then use multi-threading and loops in order to process the
set of work-items.

OpenCL has a relaxed memory consistency model. This means that if
one work-item writes some data into the device memory, it is not guaranteed
that another work-item can later access that written value. This allows using
cache memories that are not coherent across the device, i.e., there may be
local caches that have different values for the same memory location?. Only
after finishing kernel execution memory consistency is guaranteed. There
are other possibilities for synchronization in OpenCL but they are limited
to typically small consecutive subsets of work-items (called work-groups).

A simple OpenCL implementation of the cell-based algorithm. For sim-
plicity suppose that fetch lengths are computed in only one direction. The
index space for the compute kernel is a one-dimensional range 0,1, ...,m — 1,
where m is the number of study points. As its explicit parameters the kernel
takes the constructed cell representation of the map, the locations of the
study points (in a linear array), the fetch line direction, and an array for the
output of the algorithm. The implicit parameter is the index ¢ of the study
point. The kernel first finds ¢ (the global index of the work-item) and, with
this information, gets the geometric location of the study point p; from the
array of study points. Then, the kernel runs as described above, finding the
fetch length for p;. Finally, the found length d(p;,0) is written to location
i in the output array. The compute kernel is thus almost identical to a C
function that determines a fetch length for one study point, except that the
kernel stores the result into a location of the output array instead of return-
ing it to the caller. As another difference, the coordinates of the study points
are not direct parameters for the kernel but they are found from the array
of study points using the work-item indices.

The OpenCL language in itself does not impose any limitations that are
relevant for the kernel sketched above. The fetch length computations for
different study points are independent of each other, so there is no need
for synchronization between the work-items. However, the ezxecutions of
different work-items need not be independent of each other, provided that

3The advantage of non-coherent caches compared to coherent ones is reduced amount
of data transfers within the GPU, saving energy and making the chip smaller.

33

this can only affect the performance, not the correctness, of the program.
Indeed, on current GPU devices such dependencies are common.

2.6.2 The architecture of a GPU

As a concrete example of a GPU architecture let us consider the AMD
Radeon 7970 card, which is, except for clock speed, identical to the newer
Radeon R9 280X used in this work, both equipped with a GPU called Tahiti.
The information of this section is collected mainly from programming and
architecture manuals of AMD [30, 33].

Architecture. At the highest level the GPU consists of 32 compute units
(CU, Figure 2.6). The different compute units are independent of each other,
making a CU to have a similar role as a core in a CPU*. Each CU contains
one scalar unit (SALU, Scalar Arithmetic Logic Unit) and four vector units
(VALU). The vector units are physically 512-bit wide SIMD (Single Instruc-
tion, Multiple Data) units. When using 32-bit values this means that a
VALU can perform the same arithmetic or logical operation for 16 values in
parallel. However, the SIMD units are used in such a way that they process
the same instruction for four consecutive vectors in consecutive clock cycles.
Hence, the width of the SIMD units is logically 64 instead of 16 lanes®. The
benefit of this organization is reduced amount of control logic in the GPU: It
is only necessary to issue a 64-wide vector operation every four clock cycles,
instead of a 16-wide vector operation every clock cycle.

Wawvefronts. Writing a program in a way that uses 64-wide vector instruc-
tions would be tedious for a programmer. Furthermore, there are different
GPU architectures, making portability an issue. In the case of AMD APP
SDK [30] the solution to this problem is that the compiler takes care of using
the vector instructions. The work-items are mapped into individual lanes of
the SIMD units. Thus, one instruction of a VALU processes 64 work-items
in parallel. A group of work-items being executed using the same SIMD in-
structions is called a wavefront. The benefit of this organization is that it is
not necessary to find instruction level parallelism (for the SIMD units) inside
a compute kernel to effectively use the vector units. It will be seen later that
handling divergent control flow, such as loops or conditional blocks, becomes
somewhat complicated for the compiler, since the SIMD execution forces all
work-items of a wavefront to perform the same sequence of instructions®.

The scalar unit is used for operations that are done in a per-wavefront
basis. This can include arithmetic that is the same for all work-items, but

4An important difference is that in a GPU the caches of the different CUs need not be
coherent because of the relaxed memory consistency model.

®So, an add command for VALU means that given 64-element vector registers a and b,
the VALU computes a 64-element vector ¢ such that c[i] = a[i]+b[i] for each i = 1,2, ..., 64.
For the SALU a, b and ¢ are single values instead of vectors.

5This is what was meant earlier by stating that the work-items execute in lock-step.

34

Vector ALU (VALU) Vector GPRs
—1 SIMD: 16 x 32 bit lanes 64 KiB]
logically 64 x 32bit lanes | (256 x 64 x 32 bit)

o
o VALU VGPRs [=
X ©
© =
o VALU VGPRs — g
% (O]
3 €
- VALU vVePRs [&
| -

Scalar GPRs
Scalar ALU (SALU) 8 KiB

Figure 2.6: A single compute unit (CU) of the Radeon R9 280X GPU. The
CU consists of one scalar unit, four vector units and LDS and cache memory.
The scalar and vector ALUs contain several general purpose registers.

among the most important functions of the scalar unit is branching. Uncon-
ditional branching can be used, e.g., for function calls, whereas conditional
branching is required for if-else blocks and loops. Now, the sequence of vector
instructions may depend on the scalar instructions as a result of branching,
so one scalar unit might not seem sufficient for four vector units in the com-
pute unit. This is where the usage model of the vector units helps. The
vector unit is pipelined and can start a new operation every clock cycle, but
this is always the same operation over four consecutive clock cycles. For in-
stance, a VALU could start an addition operation for the work items (WIs)
1,2,...,16 in the first clock cycle, the same operation for Wls 17,18, ..., 32
in the next clock cycle, then for Wls 33, ...,48 and finally for W1Is 49, ..., 64.
Since a new vector operation is started only every four clock cycles, one
scalar unit processing one instruction in each clock cycle is enough for the
four vector units.

Ezecution masking. The remaining difficulty for executing complicated
programs is that OpenCL compute kernels have full support for loops with
varying iteration counts and other constructs requiring conditional branch-
ing. So, an OpenCL program can have different branching choices for every
work-item while the hardware only supports branching at a wavefront granu-
larity. The solution to this problem is in principle relatively straightforward

35

The hardware maintains for each wavefront an execution mask exec, which
is a 64-bit vector with one bit for each work-item. The meaning of the
mask is that the next instruction is ignored for SIMD lane ¢ if the mask
has exec[i] = false. For example, to handle an if-block the condition is
first evaluated using vector instructions. This creates an execution mask.
Then the block is executed as usual. As a result of the mask, executing the
block has no effect for a SIMD lane ¢ with exec[i]| = false. If the block is a
long sequence of instructions, the scalar unit can be used to skip over it if
execli] = false for all lanes 1 = 1,2, ..., 64.

The above discussion omits several details. For instance, the old value
of the execution mask needs to be saved and later restored so that after
the conditional block the correct lanes continue executing. One also needs
to support loops and function calls in compute kernels. For information on
handling complicated control flow, see [33]. All these details are handled by
the OpenCL compiler, but knowing them in some detail is useful in order
to understand the performance implications of running branching code on a
GPU.

Memory accesses. In addition to SIMD execution, the performance of
a GPU implementation may be limited by memory accesses. The Radeon
R9 280X GPU has four main types of memory: General purpose registers
(GPRs), local (scratchpad) memory, cache memory (two levels) and global
memory. The bandwidths of the different memory spaces vary considerably,
with GPRs offering about 100 times as much bandwidth as the global mem-
ory [30].

The latency of a memory access may be covered to some extent by mul-
tithreading. A CU of the Radeon R9 280X GPU can have at most 40 wave-
fronts in progress, i.e., 10 for each vector unit. The wavefronts of a vector
unit are not processed simultaneously; instead, the next active wavefront
is chosen for execution after completing an instruction of the current one.
This arrangement allows the GPU to process other wavefronts while some
of them are waiting for a memory access. However, the actual number of
running wavefronts depends on the resource requirements of the compute
kernel. The resources of interest are the scalar registers (SGPRs), vector
registers (VGPRs) and the local memory. These resources are shared by all
wavefronts running on the same CU, so a compute kernel with high resource
requirements limits the number of active wavefronts, which has a negative
impact on the latency hiding of memory accesses. On the other hand, global
memory is much slower than the registers or the local memory. Thus, using
global memory instead of registers may lead to decreased performance even if
the number of active wavefronts is increased by such a change. Nevertheless,
kernel occupancy is one possible target for optimization in a GPU algorithm.
Kernel occupancy is, by definition, the number of active wavefronts divided

36

by the maximum possible number of active wavefronts supported by the
device [31].

2.6.3 Cell-based fetch length algorithm on a GPU

While a GPU can run compute kernels containing conditional statements,
their effect on performance can be significant. A practical worst case for an
if-statement occurs when all but one work-item of the same wavefront need
to be masked out of execution because the condition is false for these items”.
This can lead to a kernel running at only 1/64 of the theoretical performance
of the device, 64 being the number of work-items in a wavefront on the
Radeon. In cases where work-items need to be masked out of execution the
control flow of the program is said to be divergent.

Control flow divergence. There are several sources of divergent control
flow in the cell-based fetch length algorithm. After examining a cell, the
rasterization algorithm moves either horizontally or vertically to the next cell,
depending on the current values of some variables. If the wavefront contains
at least one work-item making a horizontal transition and at least one making
a vertical transition, the code for both transitions must be executed for the
wavefront. A far greater problem is that the numbers of line segments in
the nonempty cells can be highly variable, requiring the brute-force searches
done in the cells to use loops with different numbers of iterations for different
work-items. The number of iterations for the wavefront is then determined
by the work-item requiring the highest number of iterations. As such a loop
proceeds, an increasing number of work-items are masked out of execution,
until the processing for the last work-item becomes ready and the loop can
be exited. This means a decreasing utilization rate for the SIMD units.
The same is true for the cell traversal. In the best case the starting cell
contains a line segment intersecting the half line starting from the study
point, while in the worst case the rasterization proceeds from one edge of
the map to the other edge without meeting any nonempty cells. With a map
containing millions of line segments, the maximal number of iterations to
find a nonempty cell can then be thousands of times larger than the minimal
number. Again, in such a case a work-item requiring only one iteration would
in effect need to wait until the work-item requiring the maximal number of
iterations (in the same wavefront) has finished processing.

Solutions. The GPU implementations will be discussed in more detail
later, but here is a short summary of the results. The simplest way to
implement the cell-based algorithm is to ignore the SIMD execution and
implement it as if the work-items were truly independent of each other. This

Tt is possible that none of the work-items satisfy the condition but the block is still
executed. Such code may be desirable when the block is so short that executing it takes
only a similar amount of time as a conditional branch.

37

was done in P3 and the result was surprisingly good. The algorithm was up
to 8 times faster on a Radeon 5850 GPU than a parallel implementation on
an AMD Phenom 9850 quad-core CPU. One must note, though, that the
GPU was a high-end device at the time, while faster CPUs were already
available at reasonable prices.

The cell-based algorithm was later revisited with the goal of better op-
timizing it for a GPU (P4). The hardware used in the study was faster
than before, an Intel Core i7 3770K CPU and AMD Radeon R9 280X GPU,
both high-end consumer devices at the time the work was started. Many of
the attempts to improve performance were unsuccessful, but two approaches
had a positive effect: presorting of the study points and sparse rasterization.
The goal of the presorting was to group together study points that are ge-
ometrically close to each other. They could then perform similar memory
accesses, leading to better cache utilization than with a random placement of
study points into wavefronts. The benefit of the sparse rasterization is that
it does not examine all empty cells along a half line, reducing the number
of memory accesses compared to using the original rasterization algorithm
by Cleary and Wyvill [34]. Both techniques can also have a positive effect
on the wavefront divergence problem: sparse rasterization can quickly step
over large empty areas, while the benefit of the presorting is that fetch lines
originating from geometrically close study points often end in cells that are
close to each other. The varying number of line segments in the nonempty
cells was not a significant problem in practice.

38

Chapter 3

The water quality monitoring
network problem

In the monitoring network problem the input consists of a set S of obser-
vational sites and a set of observations for each site. The goal is to select
a subset S’ C S with a minimal (negative) effect on the quality of observa-
tions compared to using the whole network. The particular water monitoring
network studied in this work is shown in Figure 3.1.

Level 1 Zones

—— Level 2 Zones
60°N

| Finland * Observation site

IL- 3 —A__| ® Prioritized site
Sweden l
| @ Only site in zone

50 km

Figure 3.1: The water monitoring network in the Archipelago Sea. Priori-
tized sites should not be removed from the network. Additionally, at least
one site should remain in each level 2 zone (P5).

There were additional prerequisites for the site removal, as shown in the
figure. First, some sites were considered to be especially important, perhaps
as a result of having a particularly long history of taking observations. These
prioritized sites should not be removed from the network. There should

39

also not be large areas without any monitoring sites. This requirement of
good spatial coverage was taken into account simply by requiring that there
remains at least one site in each predefined area called a level 2 zone. There
were some zones with only one observational site in the network, making
these sites essentially similar to the prioritized sites. When describing the
site pruning algorithms, these details are omitted because they are easy to
take into account in implementations.

When starting to work on the problem it was clear that neither a physical
simulation model nor sufficient data for using such a model were available.
Only the locations of the sites and the observations collected so far could
be used, possibly in addition to a two-dimensional map. As a result of this
limitation, a simple error measure was chosen for the network optimization
problem: The observations of a removed site are estimated using the cor-
responding observations of sites that remain in the network. The error for
a site is related to the differences between the actual observations and the
estimated values. The error function for the entire network is a sum of all
site-specific estimation errors.

3.1 Statistical model

For modeling the observations of a site, multivariate linear models [35] were
chosen. In such a model the observations of a site are expressed as a linear
combination of the observations of other sites, in addition to a constant term.
However, there were only 27 observations of each quantity at each site. For
a network with 60 sites it would not be possible to determine the model
coefficients in a unique way. Therefore, the initial idea was modified so that
only a small number of sites closest to the current one are taken into account
in the model. Hence, the observations of a site are modeled as

Qsi = | Os,q + Z Bs’,qqy,i + Us,q,i- (31)
s'enn(s,k)

Here, gs; stands for the ith observation of the quantity ¢ at site s and
the set nn(s, k) contains the k nearest neighbor sites of s. The term wuggq;
is the residual, i.e., the error done when modeling the observation using the
linear model. The constant term for the site s and quantity ¢ is a, 4, while
By q is the coefficient for the observations of the site s’ and quantity ¢. The
coefficients («,) can be determined using statistical software.

Next, an error measure needs to be defined. For an individual site s and
time of observation ¢ the error eg; is defined as the Mahalanobis distance
[35] and then, for the site s as e; = (3, €s.i)/ns, where ng is the number of
observations at site s. For the entire network the estimation error is then

40

€del = Y scdel €s» Where del is the set of sites that has been removed from the
network.

3.2 Missing and incorrect values

As noted before, some (ca. 4.5%) of the observations were missing in the
dataset used in the study. The problem is made worse by the fact that
Equation 3.1 uses the observations from the k nearest neighbors of site s.
Using this model it is not possible to compute an estimate for a quantity if
any of the neighbor sites used in the model contain a missing value for the
same quantity and time. With an already sparse dataset this is a significant
problem.

One way to deal with the problem is imputation of missing values [16].
It is a process where the missing values are replaced with estimates that are
based on the values of other quantities. In the water quality data missing
values often occur in groups, i.e., all observations of a given site are missing
because the site could not be visited at all. The relationships between the
different quantities are then not useful for imputing many of the missing
values. Nevertheless, by including, e.g., the times and coordinates of obser-
vations it was possible to obtain better estimates than the mean values of
the observed values.

When using imputation there is a choice between using a single or a mul-
tiple imputation method. The difference between these two approaches is
that in single imputation a missing value is replaced by the best estimate
for that value. In multiple imputation the uncertainty of the value is esti-
mated in addition to the value. For each observation to be imputed, several
estimates are then drawn at random from the probability distribution de-
termined by the imputation method. In this work multiple imputation was
favored because when using it, it is possible to see whether the optimization
results are robust with respect to the imputation errors.

The other data quality problem, incorrect values, was handled using a
method based on the site-wise means and standard deviations of the quan-
tities. An observation was considered to be an outlier if it differed from the
mean value of the quantity by at least a certain number of standard devia-
tions for the quantity. After an examination by a human expert, all found
outliers were removed.

Removing an outlier adds a missing value to the dataset. To avoid this,
outlier elimination was done before the imputation. Typically, at most one
of the observed values at a given site and time was eliminated in the outlier
elimination process. Hence, imputing the values that have been eliminated
by the outlier removal process can use the observations of the other quantities
at the same site and time.

41

3.3 Network optimization

Having chosen a way to estimate the observations of the removed sites and
an error measure, it remains to remove sites from the network. All site
pruning methods used in this work follow the greedy approach where sites
are removed one at a time. At each step the site to remove is the one that
is, according to a chosen cost function, the best candidate for removal. The
approach is heuristic in nature, i.e., there is no guarantee that the final
pruned network is the best possible network in terms of the chosen metric.
Three different heuristics were tested: Two variations of greedy pruning with
local costs (pruning_local_taboo, pruning local_notaboo) and one variation
of greedy pruning with global costs (pruning global).

In the first heuristic (pruning local taboo), the idea is to always remove
the site s whose observations can be best modeled using the observations of
the nearest neighbors, according to the given cost function. Now, there is
the problem that if one of the k nearest neighbors of the removed sites are
later removed, the model for the removed site is no longer the same as it
was when the site was removed. Thus, in the first version of the algorithm
the nearest neighbors of a removed site are no longer candidates for removal.
This is achieved by adding the neighboring sites to a taboo list, with the site
to remove always being chosen from the non-taboo candidates.

One consequence of using such a taboo list is that it is only possible to
remove [ng/(k+1)] sites from the network. If one needs to remove a greater
number of sites, one possibility is to empty the taboo list once there are no
sites to remove. However, the idea behind the taboo list is lost when doing so,
because the neighbors of a removed site in the final network will be different
from those used when constructing the linear model for the observations.
Therefore, another variation of the algorithm (pruning local notaboo) does
not use the taboo list at all and always removes the site with the smallest
estimation error. Except for the removal of the taboo list, the method is
identical to the first one.

The second heuristic (pruning local taboo) allows choosing the site to
remove from a larger set of candidates than the first one. However, the value
of the cost function for a site may increase when one of its neighbors is later
removed from the network, because a different set of neighbors will then be
used for modeling its observations. One way to take this into account is to
modify the cost function as is done in the third heuristic (pruning global).
The new cost function is defined for the entire set of removed sites and is
simply the sum of the cost functions of the individual removed sites. Thus,
a site with a low estimation error but whose removal would increase the
estimation error for other, already removed, sites may no longer be the best
candidate for removal. Other approaches for obtaining a better network are
also known, such as allowing to insert a removed site back to the network,

42

known as an exchange-type algorithm [21]. However, this possibility was
not considered in this work because the running time of the remove-only
algorithm was already found to be excessive.

43

44

Chapter 4

Summary of publications

4.1 P1: Quantifying Distances from Points to Poly-
gons - Applications in Determining Fetch in
Coastal Environments

The interval-tree based fetch length algorithm described in Section 2.3.1
was designed and implemented in Java. Performance testing was carried
out using a computer with 1 GiB main memory and a 1.92 GHz single-
core Athlon XP processor. The testing data, a coastal map, contained 1277
islands represented as polygons with a total of 53301 vertices. Since the
algorithm was to be used with a far larger map, artificial maps were generated
by tiling various numbers of copies of this map side by side. There were
always the same number of tiled copies in both the vertical and the horizontal
direction, and no extra gaps were added between the tiles. The same map
and the approach of tiling several copies of the map was later used in the
three other publications dealing with the research question RGI.

The running time for generating the interval tree ranged from 4.7 s for
a map with 53301 vertices to 730 s when there were 6.4 million vertices. In
other words, increasing the size of the map by a factor of 121 increased the
preprocessing time by a factor of 160. The size of the map had a significant
effect also on the time required for computing fetch lengths. For instance,
computing the lengths for 50000 study points in 48 directions took 25.8 s
(excluding preprocessing) with a map containing the smallest tested amount
of vertices but 370 s with the largest map. This increase is not surprising
since the algorithm iterates over all map line segments intersecting the hor-
izontal line (in the rotated coordinate system) through a given study point
when determining the fetch length for the point. Since the same number of
maps was tiled in both directions, the number of line segments to examine
is proportional to \/n, where n is the number of vertices in the map, at least
when considering vertical or horizontal fetch line directions. The process-

45

ing time for a study point indeed roughly followed the square root! of the
number of vertices.

The method was also applied for determining fetch lengths using a real
map containing 3 million vertices. There were 270000 study points on a
shoreline and 2.56 million study points on a regular grid with a 25 m distance,
covering an area of 40 km x 40 km. A different computer was used in this
case, and the shoreline points were processed in 39 minutes and the grid
data in about 5 hours. In order for the data to fit in the 1 GiB memory of
the computer, the study points were processed in batches of at most 100000
points.

During the work there was a small change in requirements. Instead of
computing a zero fetch for a point that is on land, the distance to the nearest
shoreline was computed similarly to the points on water, but it was multi-
plied by —1 to indicate a point in a land area. Furthermore, for the grid
data average fetch lengths were to be computed, but some of the generated
points happened to be on a shoreline. In this case a zero fetch was to be
output for any points on a shoreline to avoid computing averages of positive
and negative lengths. Computing negative lengths was an easy change but
identifying a point as lying on a shoreline was a bit more difficult. It required
using a pre-defined tolerance € so that a point was considered to be on land
if its distance to the nearest shoreline was at most . However, the interval
tree method originally only took into account those segments that intersect
the horizontal line through the study point. This was changed (Figure 4.1)
by modifying the tree query interval from [—p,, p,] to [p, — €, py + €].

The interval tree method was found to be more than 1000 times faster
than the GIS-based method that was previously in use (P1). It was later
used for computing fetch lengths for a far greater number of study points
at the department of Geography of the University of Turku. The work was
carried out during a longer than one month time period, indicating a need
for faster algorithms for the fetch length problem.

4.2 P2: Determining directional distances between
points and shorelines using sweep line technique

This article continued with the research question RG1 by developing new al-
gorithms that are highly efficient when the number of study points is large.
The vector- and raster-based sweep line algorithms described in Section 2.4
were implemented and compared to the interval-tree based method (P1).
The computer and implementation language were the same as in the first
article. As told earlier, the vector-based method needs to consider a far

To be more precise, there is also a logarithmic factor in the time complexity due to
searching a balanced tree.

46

A

Figure 4.1: To find all borderlines that are within the distance ¢ from the
study point, a query interval [p, — €, p, + €] is used for filtering out segments
that are certainly further away from p. All line segments passing this initial
test are then checked for proximity to p.

smaller number of line segments than the interval tree method when com-
puting a fetch length for a study point. On the other hand, processing the
end points requires more time than the interval tree generation. The net
result was that the interval tree method was in some test cases more than
twice as fast as the sweep line method when the number of study points was
small (10000). When the number of study points was increased, the sweep
line method outperformed the interval tree method. With 3 million study
points and 3.4 million vertices, the sweep line method achieved over 10-fold
performance compared to the interval tree method.

The performance of the raster-based method depends on the chosen ras-
terization accuracy (cell size). With a 10 m cell size the raster-based method
was generally faster than the vector-based one, although the difference was
less than 2-fold in all cases. Reducing the cell size to 2 m caused the raster-
based algorithm to always be slower than the vector sweep method, although
the time difference was minor in most cases. However, the most significant
shortcoming of the method was that the results are not reliable for study
points that are close to a shoreline. The reason is that the classification of
a point as an interior or an exterior point is inaccurate and depends also

47

on the chosen fetch line direction. The vector-based algorithm is then more
appealing than the raster-based one despite being slightly less efficient.

The requirement of detecting whether a point lies on a shoreline was
dropped before designing the sweep-line algorithms. The reason was that
in most cases users did not want zero fetch lengths for study points lying
on a shoreline. If such functionality was desired, it might be difficult to
achieve using the sweep-line method. The reason for this is that the sweep
line status only contains the map line segments intersected by the current
sweep line, making it impossible to find segments that are completely below
or above the sweep line. If such segments were included, it could be difficult
to maintain a sensible ordering of the line segments.

The handling of special cases was omitted in Section 2.4, so let us briefly
consider them. First, if a line segment of the map happens to be horizontal,
it can be omitted from the status structure. The only distances that it can
affect are horizontal fetch lengths for points that are on the segment. Such a
distance is not well-defined without agreeing on whether the shoreline itself is
inside or outside the island. This problem is not relevant in practice, because
any (small) inaccuracies in measuring the shoreline could change the result.
The fetch length can also be multiplied by the cosine of the angle between
the normal of the shoreline and the fetch line direction to obtain a quantity
known as effective fetch (P1), and this cosine is zero.

Another special case occurs when there are vertices on the horizontal
line through the study point. In this case the method of classifying the
study point as an interior or an exterior point can fail if the method of
counting intersections is applied without thought. It turns out that it is
enough to count a segment with a vertex on the sweep line if and only if
the segment extends below the sweep line. In addition, all segments crossing
the sweep line are counted as usual. For computing the distance, however,
a segment is taken into account regardless of whether its upper or lower
vertex is on the sweep line?. This is done by processing a study point twice
if its y-coordinate is the same as that of some vertex. The first pass finds
the intersections with the segments whose upper vertex is on the sweep line,
while the second pass takes care of those segments with a lower end point
on the sweep line. Between these passes the segments ending at the sweep
line are removed from and the starting segments are added to the sweep line
status, an order-statistic tree.

The special cases shown in Figure 4.2 also apply for the interval tree
method. The only exception is that only in the sweep line algorithm it is
necessary to explicitly take care of including all line segments having an
upper or lower end point on the sweep line method when determining the

2Like for the horizontal segments, any sampling inaccuracies would have an effect on
whether the fetch line should end at the vertex or not. Hence, the special case is unlikely
to be important in practice.

48

P4
P2 i \ e
P3

Figure 4.2: Handling of special cases in the vector-based sweep line algo-
rithm. The horizontal line through p; meets a vertex that is counted as one
intersection. For ps and py4 the vertices are counted as 2 and 0 intersections,

respectively. For ps the fetch length is determined as if the horizontal coastal
line did not exist.

distance. For the interior/exterior classification the segments whose lower
end point lies on the sweep line are excluded, which is similar to the interval
tree based method.

4.3 P3: A parallel GPU implementation of an al-
gorithm for determining directional distances

The third article started the work on RG1 for parallel devices, particularly
GPUs. While the algorithms introduced in the previous two articles were
not very promising for parallelization, a cell-based algorithm [5] had been
published by other researchers. The method has a short preprocessing (map
building) time, making it unnecessary to parallelize that phase. Once the
preprocessing is ready, the processing of the different study points can be
done in parallel. Parallel versions of the cell-based algorithm were imple-
mented for both a CPU and a GPU.

The computer used in the tests was equipped with a 2.5 GHz AMD Phe-
nom 9850 quad-core processor, 4 GiB of main memory and an ATI Radeon

49

5850 GPU with 1 GiB memory. The architecture of this older GPU is
somewhat different from that described in Section 2.6.2. In particular, the
machine-language instructions are in VLIW5 (very long instruction word)
form, which means that one instruction can specify up to five different oper-
ations applied on different data. The instructions are still applied for wave-
fronts of 64 work-items, meaning that an instruction can effectively perform
up to 320 operations. An important consideration is that the GPU can only
achieve its peak performance if, for every work-item, it is possible to per-
form the maximal number of operations (5) in parallel. It is often necessary
to use explicit vector operations to assist the compiler in producing well-
parallelized code, a stark contrast to the newer GPU (see Section 2.6.2),
where parallelism within a work-item is neither required nor useful.

The parallel fetch length computation was implemented using the OpenCL
programming language for both the CPU and the GPU. The compute kernel
was tuned separately for the different devices, consisting mainly of low-level
changes. The performance benefit of the changes was generally small.

As is expected for a parallel device, using the GPU was only beneficial
when the number of study points was large enough. With 1000 study points
the CPU was generally faster but already with 100000 points the GPU could
achieve a speedup by a factor ranging from 3.6 to 7.7 depending on the size
of the map (greater speedup with a larger map). Increasing the number
of study points to 5 million further increased the performance difference
between the GPU and the CPU slightly. At best the GPU was almost 8.3
times as fast as the CPU with four cores.

The theoretical peak performance of the used GPU was more than 20
times higher than that of the CPU (2088 GFLOPS [30] vs. 80 GFLOPS)
- a much greater difference than the observed performance difference. Note
that also the CPU requires parallel operations within a work-item in the
form of (4-wide, i.e. 128 bit) SIMD instructions. They are more restricted
than the VLIW instructions since a SIMD instruction performs the same
operation for different data while in a VLIW instruction the operations can
be different. This means that while insufficient VLIW packing can prevent
the GPU from achieving its maximum performance, this does not explain the
smaller than ideal speedup; the CPU has similar requirements for achieving
its peak performance.

A significant bottleneck for the GPU implementation was due to the
memory accesses as the algorithm performs only a small number of arithmetic
operations between the accesses. Also the synchronous execution of the work-
items in a wavefront? can be a significant problem for a GPU implementation,
although that was not studied in the article. One might also note that the

3This is the wavefront divergence problem described in Section 2.6.2.

50

GPU used in the tests was more high-end than the CPU, making the speedup
seem somewhat better than would be achieved with more balanced hardware.

4.4 P4: Performance tuning and sparse traversal
technique for a cell-based fetch length algorithm
on a GPU

The fourth article continued investigating a GPU implementation of the cell-
based algorithm. A new sparse rasterization algorithm for line segments was
developed, and a great speedup was achieved by using both sparse rasteri-
zation and sorting of study points. Now, a quad-core 3.5 GHz Intel Core i7
3770K processor and an AMD Radeon R9 280X GPU were used. For the
implementation the main change is that the GPU does not require parallel
operations within a single work-item, unlike the older Radeon 5850.

The first optimizations were low-level modifications that decreased the
resource usage of the compute kernel in the GPU, achieving higher occupancy
than before and, as a result, better performance. Next, the data structures
were reorganized to decrease the amount of memory accesses and to improve
their speed by using the OpenCL image data structure.

Unsuccessful divergence optimizations were then done, as described in
the appendix of the article. One of them replaced a study point with a new
one when its processing was finished. The problem in the approach was
that for each study point a varying number of cells are traversed in order
to find the next nonempty cell intersected by the half line starting at the
study point. Similarly, the number of intersection computations is different
for different nonempty cells. The number of cells to traverse to find the
next nonempty cell was observed to be far greater when finding the first
nonempty cell than when looking for the next cells to examine. Because
of the synchronous operation of the work-items in a wavefront on a GPU,
all points were then forced to proceed at the same slower speed as the new
points.

Another attempt was targeted at the inner loops of the algorithm. In
particular, instead of finding the next nonempty cell for one study point, it
was done for several points. A nested loop is not suitable here because it is
subject to the same synchronizity requirements as the original one. Instead,
a variable was introduced for keeping track of the ordinal number of the
current study point, incrementing it when the rasterization was ready for the
current point. The basic reason for expecting this change to be useful is that
the sum of iteration counts tends to be less variable than the iteration counts
themself. Unfortunately, keeping track of a greater number of study points
requires a greater number of hardware registers, decreasing kernel occupancy.
Furthermore, the GPU does not allow an indexed access to the registers, so

51

the slower LDS memory had to be used instead. Although this change also
decreased performance, it was seen to be potentially useful: The original
implementation was slower than the new one if the kernel occupancies of the
implementations were limited to the same value.

A more successful change was sparse traversal. The idea is to make the
search for the next nonempty cell more efficient by skipping over several
nonempty cells at a time. The map is augmented by including in each
cell a number indicating the minimum number of transitions required to
hit a nonempty cell when starting from the current cell (Figure 4.3). A
transition is here a horizontal, vertical or diagonal move from a cell to one of
its 8 neighbor cells. With this information the rasterization can immediately
proceed to a cell that is outside the area that is known to be empty of line
segments. Note that the rasterization will still examine many cells that are
empty. For instance, in Figure 4.3 only three of the cells at the distance 3
are nonempty. A more accurate distance map would accelerate the search
for nonempty cells, but the preprocessing time would increase because such
a map would not be the same for all fetch line directions.

The greatest improvement in performance was obtained by presorting
the study points. The objective of the sorting is to have wavefronts contain
points that are geometrically close to each other. Then, similar memory
accesses are usually required when processing the points. The wavefront
divergence problem is also reduced because in many cases the fetch lengths
for nearby points will be similar. Like for the sparse traversal, the sorting
must be fast in order to have a positive effect on the total performance of
the algorithm. Cell-based sorting was used where points belonging to the
same sorting cell are consecutive in the sorted order. The sorting cells were
allowed to be different from the map cells in order to adapt the sorting for
different densities of study points. No particular order is defined for points
belonging to the same cell. Still, one must choose an order for the points
that are in different cells. For this a zig-zag ordering (Figure 4.4) of the
cells was used. The first row of cells is traversed from the left to the right,
then the second row of cells from the right to the left, and so on. This order
avoids cases where geometrically distant cells are close to each other in the
sorted order.

The improvement of performance caused by the different optimizations
depended on the number and locations of study points and on the size of
the map. With randomly located 100 million study points all low-level op-
timizations together improved performance by more than 60%, while for
study points lying in a regular grid the corresponding improvement was
25%. With a smaller map only small improvements were obtained using the
low-level optimizations. Sparse rasterization generally yielded an additional
improvement of 40% — 50%, although both smaller and larger speedups were
observed in some of the tests. Sorting greatly improved performance (up to

52

Figure 4.3: Sparse rasterization skips over several empty cells in one step.
The number 3 shown in the current cell indicates how far from the cell the
sparse rasterization step may proceed. The distances for other cells are not
shown. The nonempty cells are shown as small bolded squares while the
larger bolded square indicates the area over which a single rasterization step
can skip (P4).

more than 7-fold) with randomly located study points while a smaller effect
was found for the grid data (ca. 35% — 70% improvement). Using sparse
traversal in addition to sorting gave the best performance, in some cases
more than twice as good as sorting alone.

The map used in the tests was quite dense in islands. Additional tests
were done by increasing the number of cells used to represent the map, to
simulate sparser and denser maps. With a very sparse map more than 40-
fold speedup was achieved when using all the optimizations. Only randomly
located study points were used in these tests, although the grid data is likely
closer to what a researcher of geography would use.

The running times of the different algorithms are summarized in Ta-
ble 4.1. Since the tests were performed on different computers, the results
include the effects of both algorithm optimization and the increased per-
formance of computers. The first computer was equipped with a 1.92 GHz
AMD Athlon processor and 1 GiB memory, the second with AMD Phenom

53

Figure 4.4: Partial sorting of study points. The points belonging to the same
cell occupy consecutive positions in the sorted order, but there is no specific
order for different points in the same cell. The cells are visited in a zig-zag
order (shown by arrows) when merging the point lists of the different cells
into a single list.

9850 CPU, 4 GiB main memory and an ATI Radeon 5850 GPU (1 GiB,
725 MHz, 1440 ALUs, 2 TFLOPS). The third machine had an Intel Core
i7 3770K CPU, 8 GiB main memory and an AMD Radeon R9 280X GPU
(3 GiB, 1100 MHz, 2048 ALUs, 4.5 TFLOPS). Tests were also performed
with different numbers of vertices and study points, depending on what was
feasible with the particular computers used for the tests.

4.5 P5: Optimising an observational water moni-
toring network for Archipelago Sea, South West
Finland

In the fifth article the number of sites in a water quality monitoring network
had to be reduced in order to reduce economic cost. A dataset containing
observations collected during several years was available. Around 4.5% of
observations were missing and the number of observations was rather small:
For each of the 60 sites in the network there were only 21 observations of each

54

Table 4.1: Running times (in seconds) of the fetch length algorithms. The
first two columns give the numbers of vertices and study points. IVTree, VS
and RS 10 m refer to the interval tree method , vector based sweep and raster
based sweep (cell size 10 m) algorithm. GPU and GPU2 are similar GPU
implementations of the cell-based algorithm, running on different machines.
GPU3 uses both sparse rasterization and sorting for increased performance.
The fetch lengths were computed in 48 directions, except for lines marked
by * (2 directions). The study points were placed randomly, except for the
case marked by (G) (regular grid). (P1, P2, P3, P4)

Computer C1 C2 C3
V| |S| IVTree VS RS 10m | GPU | GPU2 GPU3
53301 10000 10.2 13.1 11.8 | 0.19 - -
213204 200000 212 76.5 54.5 - - -
3411264 50000%* 31.7 44.3 35.1 - - -
3411264 500000* 654.1 62.4 52.5 - - -
53301 5000000 - - - | 8.52 1.16 0.16
3411264 5000000 - - - 17.8 4.10 0.43
3411264 100 - 106 - - - - 81.4 4.75
3411264 100 - 10° (G) - - S| o147 a4t

of the four water-quality parameters. Some observations were also clearly
erroneous.

The erroneous observations were found by comparing each observation to
the mean value of the same site for the same quantity. If the difference was
large compared to the standard deviation of the quantity in question, the
observation was removed. Then, missing values were replaced with estimated
values, i.e., imputed. For the imputation two advanced imputation methods
and three simple methods were evaluated using a dataset that was obtained
by removing observations randomly from the original dataset. The simple
methods replaced a missing value by the mean value of the same quantity. As
a refinement site-specific mean values were used instead of the global mean.
Also year-specific means were tested but no improvement to site means was
obtained. The advanced methods (BPCA and Amelia II) were superior to the
simple methods. However, in the actual dataset typically all observations of
a particular site and time were missing together. Additional tests were done
with this pattern of missing values. Then BPCA was inferior to site mean
imputation, and Amelia II and site mean imputation had a similar accuracy.
The advantage of Amelia II is that it can generate several different estimates
for the missing values, allowing one to observe the uncertainty caused by the
imputation. Therefore the imputation was done using Amelia II, generating
five imputed datasets.

55

Site pruning was then done using the algorithms described in Section 3.3.
10, 20 and 30 sites were removed from the network. The number of neighbors
in the statistical model was 3 or 5, and the pruning was done separately
using each of the 5 different imputed datasets. In terms of total estimation
error, the local pruning heuristic with taboo list performed worst, followed
by the same heuristic without the taboo list, and the pruning with total costs
performed best. However, the differences in heuristics, number of neighbours
and the different imputed datasets led to differences in the pruned network.
The pruned networks were most dissimilar when removing a small number
of sites, whereas with 30 sites removed the final networks were somewhat
similar to each other. This indicates a lack of robustness in the results,
partially caused by the small amount of data available.

While the results were not robust with respect to which sites were re-
moved, the situation was better when considering the total estimation error.
That is, if the site pruning was done with a given set of parameters (type
of heuristic, number of neighbours and imputed dataset) and the total es-
timation error was computed using another imputed dataset, the network
was still better than a random selection of sites. In total, 15000 randomly
selected networks were compared with those produced by the heuristics.

The running time of the heuristics was rather long, perhaps as a result
of being implemented using the statistical software R instead of a general
purpose programming language. In total about one week of time was re-
quired for all the experiments, including the time required for manual work.
However, given the sensitivity of the results to the imputation of missing
data, performance tuning or further refinements of site pruning heuristics
were not considered.

The developed site pruning heuristics can be seen as a special case of
the delete-only method (see [21]) with suitably chosen cost functions. In
hindsight, investigating the effects of missing values and their imputation
was perhaps the most important result of the work. The pruning results
were somewhat sensitive to the small differences between datasets caused
by different imputations. This sends a clear message that one should not
simply ignore the problem of incomplete data even when only a small subset
of observations are missing, around 5% in this case.

56

Chapter 5

Conclusions

From a computer science perspective, the problem of determining fetch
lengths (RG1) has been solved for practical purposes. Although the first
presented algorithm based on interval trees is no better than the brute-force
algorithm in the worst case, with realistic data it was still fast enough to be
applied for large datasets. The vector-based sweep line algorithm improved
the performance by an order of magnitude when compared to the interval tree
method using semi-artificial data. The sweep line algorithm also improves
on the worst case time complexity. For determining a fetch length the al-
gorithm only needs to examine a path from the root of a balanced binary
search tree to one of its leaves. For a single study point, this gives a reduc-
tion of worst-case time complexity from O(n) to O(logn) when compared to
the same operation in the interval tree method. A small improvement to the
implemented version is possible, though, as described earlier, by sorting only
the vertex points of the islands instead of all study points and end points.
The raster-based sweep line method was slightly faster than the vector-based
version when using a reasonably small cell size. However, a shortcoming of
the method is that study points that are close to a shoreline may not be clas-
sified correctly as being interior or exterior points, because rasterization loses
precision. The vector-based algorithm is therefore more useful in practice.
The above three algorithms (interval tree method and vector- and raster-
based sweep algorithms) were implemented on a computer with a single-core
processor. No attempt was therefore made to parallelize them. The interval
tree method could easily perform the different fetch length queries in parallel.
However, building the interval tree might be more difficult to do in parallel
and it requires a significant amount of time. Parallel implementations for
the sweep line algorithms may also be difficult to realize, since the algorithm
is dealing with data structures that are updated every time a new end point
is processed. A small number of cores could easily be used by performing
the fetch length computations for the different directions at the same time.

o7

An algorithm that can be more easily adapted for parallel processing was
published by other researchers [5]. Although their implementation was serial,
it was clear that the fetch lengths for different study points could easily be
done in parallel when using the cell-based approach. The preprocessing time
of the algorithm is also so low that it is not necessary to parallelize that
step, although it could be done if needed. The cell-based algorithm is also
faster in practice than the interval tree or sweep line algorithms. However,
in the worst possible case the cell-based algorithm is even slower than the
brute-force algorithm.

When the parallel implementation of the cell based algorithm is done for
a GPU instead of a multi-core CPU, new challenges arise. The algorithm is
memory-intensive! and the amount of work done for different study points
can vary greatly. The first point means that a GPU is unlikely to achieve its
peak performance, while the latter one means that the handling of divergent
execution paths on a GPU can further reduce performance.

Nevertheless, the algorithm was first implemented for a GPU with only
minor low-level modifications. This already yielded good performance, but
the introduction of a new rasterization algorithm (sparse rasterization) and
simple presorting further improved the execution speed of the algorithm.
Using a modern computer, more than 1000 million fetch lengths per second
were computed with a map containing 3.4 million vertices.

Further research on the subject should likely no longer focus on fetch
lengths but on modeling the waves in a water area in a more realistic manner,
taking into account also the depth of the water. This allows incorporating
natural phenomena such as the diffraction of waves. It is noteworthy, though,
that some further work based on fetch lengths has been published [36]. As
a possible improvement to fetch lengths using depth information to modify
fetch lengths was proposed. In addition, the sensitivity of model results to
parameters such as the number of fetch line directions was studied, with
the observation that the models are sensitive to such parameters and further
work should be done in order to be able to choose them in a rational manner.

The water quality monitoring network problem was considered in the
last article covered in this thesis. While the method was practical, achieving
the research goal RG2, there were several subject areas for further research.
From a computer science perspective the site selection algorithm is the most
obvious candidate for improvement. The error measure used in the work
could also be reconsidered. In particular, one might consider what kind of
analyses are actually done using the water quality data. For instance, if
the water quality is interpolated for points that do not coincide with the
measurement points, it would be sensible to perform the same kind of inter-

!Memory intensive means here that the amount of arithmetic operations is small com-
pared to the amount of memory accesses.

58

polation using a reduced set of observational sites, removing the sites that
least affect the result of the interpolation. Dealing with missing and incorrect
values could possibly also benefit from a more application-specific approach.

59

60

Bibliography

1]

2]

3]

[4]

[5]

(6]

17l

8]

9]

Thomas H. Cormen, Charles E. Leiserson, Ronald R. Rivest. Introduc-
tion to algorithms, The MIT Press, USA, 20th printing, 1998.

Jan Ekebom, Pasi Laihonen, Tapio Suominen. A GIS-based step-wise
procedure for assessing physical exposure in fragmented archipelagos.
Estuarine, Coastal and Shelf Science, 57(5-6), pp. 887-898, 2003.

Harri Tolvanen, Tapio Suominen. Quantification of openness and wave
activity in archipelago environments. Estuarine, Coastal and Shelf Sci-
ence, 64 (2-3), 2005, pp. 436-446.

Jason Rohweder, James T. Rogala, Barry L. Johnson, Dennis Ander-
son, Steve Clark, Ferris Chamberlin, Kip Runyon. Application of Wind
Fetch and Wave Models for Habitat Rehabilitation and Enhancement
Projects. pubs.usgs.gov/0f/2008/1200/pdf/ofr2008-1200_web. pdf,
2008. Accessed 20 May 2015.

S. Yang, J. H. Yong, J. G. Sun, H. J. Gu, J. C. Paul, A cell-based algo-
rithm for evaluating directional distances in GIS. International Journal
of Geographical Information Science, 24(4), pp. 577-590, 2010.

Hendrik L. Tolman. A Third-Generation Model for Wind Waves on
Slowly Varying, Unsteady, and Inhomogeneous Depths and Currents.
Journal of Physical Oceanography, 21, pp. 782-797, 1991.

Michel Benoit, Frederic Marcos, Francoise Becq. Development of a third
generation shallow-water wave model with unstructured spatial mesh-
ing. Coastal Engineering Proceedings, 1996, no. 25, pp. 465-478.

N. Booij, R.C. Ris, L.H. Holthuijsen. A third-generation wave model
for coastal regions: 1. Model description and validation. Journal of geo-
physical research, vol. 104, no. C4, pp. 7649-7666, 1999.

Ole R. Sgrensen, Henrik Kofoed-Hansen, Morten Rugbjerg, Lars S.
Sgrensen. A third-generation spectral wave model using an unstruc-
tured finite volume technique. Coastal Engineering 2004, Proceedings
of the 29th International Conference, chapter 71, pp. 894-906.

61

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

[20]

[21]

Jinhai Zheng, Hajime Mase, Zeki Demirbilek, Lihwa Lin. Implementa-
tion and evaluation of alternative wave breaking formulas in a coastal
spectral wave model. Ocean Engineering, 35(11-12), pp. 1090-1101,
2008.

D. Lundqvist, D. Jansen, T. Balstroem, C. Christiansen. A GIS-Based
Method to Determine Maximum Fetch Applied to the North Sea-Baltic

Sea Transition. Journal of Coastal Research, vol. 22, no. 3, 2006, pp.
640-644.

Michael Ian Shamos, Dan Hoey. Proc. 17th Annu. IEEE Symp. Foun-
dations of Computer Science, pp.208-215, 1976.

J.L. Bentley, T.A. Ottmann, Algorithms for Reporting and Counting
Geometric Intersections. IEEE Transactions on Computers, vol.28, no.
9, pp. 643-647, September 1979, doi:10.1109/TC.1979.1675432.

D.S. Andrews , J. Snoeyink , J. Boritz , T. Chan , G. Denham , J.
Harrison , C. Zhu. Further Comparison of Algorithms for Geometric
Intersection Problems. Proc. 6th Int’l. Symp. on Spatial Data Handling,
1994.

HELCOM, 2014. Eutrophication status of the Baltic Sea 2007-2011 - A
concise thematic assessment. Baltic Sea Environment Proceedings No.
143. Available online at http://www.helcom.fi/Lists/Publications/
BSEP143.pdf. Accessed 1.6.2015.

R.J.A. Little, D.B. Rubin. Statistical Analysis with Missing Data, 2nd
ed., John Wiley, Hoboken, NJ, 2002.

Gary King, James Honaker, Anne Joseph, Kenneth Scheve. Analyzing
Incomplete Political Science Data: An Alternative Algorithm for Multi-
ple Imputation. American Political Science Association, pp. 49-69, 2001.

Peter Schmitt, Jonas Mandel, Mickael Guedj. A Comparison of Six
Methods for Missing Data Imputation. J Biom Biostat 6:224, 2015. doi:
10.4172/2155-6180.1000224.

J. Honaker, G. King, M. Blackwell. Amelia II: A Program for Missing
Data. Journal of Statistical Software, vol. 45, issue 7, 2011.

Nicholas J. Horton, Stuart R. Lipsitz. Multiple Imputation in Practice:
Comparison of Software Packages for Regression Models With Missing
Variables. The American Statistician, 55(3), pp. 244-254, 2001.

Sergey Frolov, Anténio Baptista, Michael Wilkin. Optimizing fixed ob-
servational assets in a coastal observatory. Continental Shelf Research,
28(19), 2008, pp. 2644-2658.

62

[22]

23]

[24]

[25]

[26]

[27]

28]

[29]

[30]

[31]

[32]

[33]

Sergios Theodoridis, Konstantinos Koutroumbas. Pattern recognition.
Academic Press, USA, 1999.

Pengfei Lin, Rubao Ji, Cabell S. Davis, Dennis J. McGillicuddy Jr. Op-
timizing plankton survey strategies using Observing System Simulation
Experiments. Journal of Marine Systems, 82(4), 2010, pp. 187-194.

Mark de Berg, Marc van Kreveld, Mark Overmars, Otfried Schwarzkopf.
Computational Geometry Algorithms and Applications, 2nd edition,
Springer, Germany, 2000.

H Edelsbrunner, L J Guibas. Topologically sweeping an arrangement.
STOC ’86 Proceedings of the eighteenth annual ACM symposium on
Theory of computing, pp. 389-403, 1986. doi: 10.1145/12130.12171.

Stefan Hertel, Martti Mantyld, Kurt Mehlhorn, Jurg Nievergelt. Space
sweep solves intersection of convex polyhedra. Acta Informatica, 21(5),
pp. 501-519, 1984.

Efthymios G. Anagnostou, Leonidas J. Guibas, Vassilios G. Polimenis.
Topological sweeping in three dimensions. Volume 450 of the series Lec-
ture Notes in Computer Science, pp. 310-317, 2005.

J. Boissonnat, F.P. Preparata, Robust Plane Sweep for Intersecting Seg-
ments. SIAM Journal on Computing, vol. 29, issue 5, pp. 1401-1421,
2000.

V. Akman, W. R. Franklin, M. Kankanhalli, C. Narayanaswmi. Geo-
metric computing and uniform grid technique. Computer-Aided Design,
21(7), pp. 410-420, 1989.

AMD, AMD Accelerated Parallel Processing OpenCL™Programming
Guide, 2013. Available at http://developer.amd.com/wordpress/
media/2013/07/AMD_Accelerated_Parallel_Processing_OpenCL_
Programming Guide-rev-2.7.pdf

B.R. Gaster, L. Howes, D.R. Kaeli, P. Mistry, D. Schaa, Heteroge-
neous Computing with OpenCL. Revised OpenCL 1.2 edition. Morgan-
Kaufmann, USA, 2013.

Khronos OpenCL Working Group, Editor Aaftab Munshi, The OpenCL
Specification, Version: 1.2, Document Revision: 19. 2012. Available at
https://www.khronos.org/registry/cl/specs/opencl-1.2.pdf

AMD, Reference Guide: Southern Islands Series Instruction Set
Architecture, 2012. Available at http://developer.amd.com/
wordpress/media/2012/12/AMD_Southern_Islands_Instruction_
Set_Architecture.pdf

63

[34]

[35]

[36]

J.G. Cleary, G. Wyvill. Analysis of an algorithm for fast ray tracing
using uniform space subdivision. The Visual Computer 1988; 4 (2), 65-
83.

K.V. Mardia, J.T. Kent, J.M. Bibby, 1979. Multivariate Analysis. Aca-
demic Press, London.

Austen Pepper, Marjetta L. Puotinen. GREMO: A GIS-based generic
model for estimating relative wave exposure. The 18th World IMACS
Congress and MODSIMO09 International Congress on Modelling and
Simulation, pp. 1964-1970, 2009.

64

Part 11

Publication reprints

Publication 1

Mika Murtojérvi, Tapio Suominen, Harri Tolvanen, Ville Leppénen, Olli S.
Nevalainen. Quantifying distances from points to polygons—applications
in determining fetch in coastal environments. Computers & Geosciences
33 (7), 2007, 843-852. DOI: 10.1016/j.cageo.2006.10.006. Reprinted with

permission from Elsevier.

COMPUTERS
K GEOSCIENCES

LSEVIER Computers & Geosciences 33 (2007) 843-852

www.elsevier.com/locate/cageo

Quantifying distances from points to polygons—applications in
determining fetch in coastal environments

Mika Murtojirvi®™*, Tapio Suominen®, Harri Tolvanen®,
Ville Leppinen®, Olli S. Nevalainen®

dDepartment of Information Technology and Turku Centre for Computer Science (TUCS), University of Turku, FI-20014, Finland
®Department of Geography, University of Turku, FI-20014, Finland

Received 14 October 2005; received in revised form 6 October 2006; accepted 7 October 2006

Abstract

Distance from a point to adjacent borderlines is a variable that has many applications in environmental research.
Geographical information systems (GIS) include tools for measuring such distances, but these tools are inefficient if there
are multiple, i.e. millions of distances to be calculated. In this paper we propose an efficient algorithm which calculates the
distances in multiple predetermined directions from a large number of points to polygon borders.

The problem is significantly simplified by the fact that the distances are calculated in some directions, only. An interval
tree is utilized for efficiently retrieving those line segments describing the coastal lines and the borders of the islands that
are relevant in determining these distances. The algorithm is also robust so that it gives meaningful results in the presence
of rounding errors regardless of the positions of the study points with respect to the polygon borders. In coastal
environments the straight-line distance from a point to the nearest shoreline over an open water surface is referred to as
fetch length. The fetch lengths in multiple directions indicate general openness around a studied point and it may also be
used as a variable in wave power calculations. An implementation of the algorithm was used for calculating fetch data for
the archipelago of SW-Finnish coast in the Baltic Sea. The map data contained 3 million vertices and fetch lengths were
calculated for 2.5 million points in 48 directions. The algorithm enabled determining fetch lengths in the complex
archipelago environment quickly in high spatial accuracy and it may have applications also in other geographical research
and image processing.
© 2007 Elsevier Ltd. All rights reserved.

Keywords: Efficient algorithms; GIS; Fetch length; Exposure; Computational geometry

1. Introduction

Borders and transitional zones in the landscape
are significant biogeographical environments. Hu-
man influence causes sharp boundaries, such as

*Corresponding author. Tel.: +35823338658;
fax: +35823338600.
E-mail address: mika.murtojarvi@it.utu.fi (M. Murtojérvi).

0098-3004/$ - see front matter © 2007 Elsevier Ltd. All rights reserved.

d0i:10.1016/j.cageo.2006.10.006

roads and edges of cultivated areas. In natural
environments abiotic factors like soil characteristics
may change over a short distance and the biotic
environment usually reflects the change. The physi-
cal or biological environment may apparently
change sharply, but the neighboring environments
influence each other to a certain degree. Distance
and direction to borderlines are hence important
parameters in environmental sciences.

844 M. Murtojirvi et al. | Computers & Geosciences 33 (2007) 843-852

One of the most fundamental borders in nature is
the littoral zone between terrestrial and aquatic
environments. On the shores both abiotic and biotic
environments are dynamic. Wave activity is a
principal force affecting the littoral zone. Many of
the methods for estimating wave effects require the
measurement of fetch length, i.e. the straight-line
distance in the wind direction where the friction
between moving air and the water surface interact to
create waves. Thus, the fetch is the distance from a
studied point to the nearest shoreline in a given
direction (Ekebom et al., 2003; Hakansson, 1981;
Tolvanen and Suominen, 2005).

A simple method to quantify general openness
of a selected point is to calculate the average of
the distances to nearest land in directions of
equal and predetermined intervals. A commonly
applied method 1is the effective fetch (F.r), in
which the distances from a point to shore are
weighted according to the cosine of the angle
between the line direction and central radius, i.e.
line which is set at right-angle to the shoreline or to
the direction which yields the highest F.; value
(Anon, 1977).

Geographical information systems (GIS) offer
cartographical tools for such calculations (Ekebom
et al., 2003; Tolvanen and Suominen, 2005). The
essential procedure in fetch length measurement is
the same as determining intersections of lines.
However, the tools in GIS software packages do
not include optimized vector calculation algorithms
that would suit the fetch quantification in large
volumes. The operations in GIS would include vast
data sets and the vector overlay operations in very
large batches do not work efficiently.

We present an efficient and easily applicable
algorithm for determining distances from points to
polygons in large quantity. The algorithm has been
applied in coastal studies but it may have applica-
tions in other geographically oriented sciences as
well. This research originates from a practical
project where it was necessary to produce spatially
detailed fetch data in the fragmented archipelago
environment of SW Finland. The work required
efficient calculation of fetch lengths for multiple
study points in 48 fetch line directions. Due to
these preconditions both the number of fetch lines
and the number of island shoreline segments, i.e. the
detailed island polygons of 1:20 000 map data,
were considerable. The produced numerical data
should be feasible to be used as an estimation of
exposure as such or as base data for more

sophisticated calculations, such as effective fetch
and wave power.

The problem of finding line segments that
intersect a given line was transformed into the
problem of finding all intervals that contain a given
real number. This was done by rotating the map
coordinate system so that the studied line is parallel
to the x-axis. Checking whether the half line (i.e.
that part of the study line which emanates from the
study point to the direction of the positive x-axis)
also intersects the line segments can be done by
comparing the x-coordinates of the intersection
point and the starting point of the half line. Based
on these observations, an algorithm for determining
the fetch lengths for a set of points is presented. The
efficiency of a Java based implementation of the
algorithm was tested using real world and semi-
artificial input data. The performance was found
high enough for making fetch length based wave
exposure estimations for large areas. In addition to
the implementation of the actual algorithm, a
simple software application' that has a graphical
user interface and uses MySQL database for 1/O
was produced.

2. Definition of fetch length

We assume that the shoreline data are available in
such a format that an island i is represented as
an ordered sequence of two-dimensional points
(Pi1sPi> - - s Pim;)» Where the points form a simple
polygon approximating the shoreline of the island
when connected in the specified order and the point
p; 1s both the first and the last point of the polygon.
The outline of the island thus consists of line
segments Vi1 = P;1Pp,Vi2 = PppPi3s - - - » Vimy = Pim,Di1 -
As we need neither the information that the line
segment v; belongs to island i nor the order of these
line segments within the islands, we can simply
consider the map data to consist of a set of line
segments V = {v,vs,...,0,}. As input data we also
have a set of points P = {p,p,,...,p,} and a set of
angles ©® = {01,0,,...,0,}. The fetch lengths are to
be calculated for all points p € P for all angles
0 € ©. There are no restrictions on the locations of
the points, so we must be careful about special cases
such as points that lie on a line segment.

Let us denote by dy(p, v) the distance from a point
p to the intersection of a line segment v and the half

"Murtojirvi, 2005. Software available by email: mianmu@
utu.fi.

M. Murtojirvi et al. | Computers & Geosciences 33 (2007) 843-852 845

line starting from p and running in direction 0
relative to the direction of the positive x-axis.
If there is no such intersection, it is defined
that dy(p,v) = co. In the definition of fetch
length different cases have to be separated. These
deal with points that are not inside any polygon,
inside a polygon or on the boundary of a polygon. If
the point is on the boundary of a polygon it still has
to be observed whether the half line is directed
towards the interior or towards the exterior of the
polygon. This gives us a formal definition of fetch
length:

min{dy(p,v)|v € V'}

L(p,0) =

In the last alternative (p is on the boundary of a
polygon and the half line points outwards from
the polygon), the condition dy(p,v)>0 is required
because dy(p,v) =0 holds for a line segment
that contains the point p. Note that the cases of
the definition where the point p is on the boundary
of a polygon actually also cover the cases where
the point p is either outside or inside a polygon

(Fig. 1).

P1

Fig. 1. Fetch lengths for five points in horizontal direction 6 = 0
(i.e. from left to right). Horizontal lines represent distances to
nearest intersections of half lines and line segments of the map.
Dashed lines indicate zero fetch lengths, solid lines have lengths
that correspond to fetch lengths. Points p, and p; are boundary
points. Fetch length for p; is 0 due to inward direction of its half
line. Point p, is an exterior point and p, an interior point. Half
line originating from ps does not intersect any line segments, and
fetch length for ps in direction 6 = 0 is co.

3. Determining fetch lengths
3.1. Starting point for the calculations

The fetch lengths may be calculated for an individual
study point or for example multiple points located
equidistantly to create an exposure classification for a
stretch of shoreline. Sometimes spatially continuous
surfaces in raster format are needed in order to estimate
the wave climate or spatial distribution of exposure.
The number of required fetch values may then be
several millions. This practically rules out using manual

if p is not inside any polygon,

0 if pis inside a polygon,

0 if pis on the boundary of a polygon and
its immediate vicinity on the half line under study is
inside a polygon,

\ min{dy(p,v)|v € V and dy(p,v)>0} otherwise.

methods for determining fetch. The complexity of
shoreline data also varies according to the coastal
environments and map scale. Efficiency and memory
consumption of an algorithm for determining fetch
lengths are therefore important.

It was assumed that the fetch lengths need to be
calculated in predetermined directions for a very large
number of study points. Therefore it is acceptable that
an algorithm for determining fetch lengths performs
preprocessing for speeding up its operation. An
obvious method for solving this problem without
preprocessing is to calculate for the study point p, the
distances dy(p,, v) for all line segments v of the island
polygons, and select the shortest distance. Typically,
the majority of the shoreline segments do not intersect
the given fetch line and most of the time is spent
considering distances that are infinite by definition. If
most or all of the line segments that do not intersect
the fetch line are eliminated from consideration, the
saving in time may be considerable.

We first consider the determination of fetch
length in the special case where the fetch lines under
consideration are horizontal, more specifically
0 = 0. The determination of fetch lengths in other
directions can easily be transformed into this special
case by rotating the coordinate system. The
determination consists of two basic steps, checking
whether a given point is an interior or an exterior
point and finding the minimum among the candi-
date distances.

846 M. Murtojirvi et al. | Computers & Geosciences 33 (2007) 843-852

3.2. Point in polygon check

The first part of the problem, determining
whether a given point is inside or outside a polygon,
is a well-known problem and an algorithm that
solves this problem is discussed by Preparata and
Shamos (1988). The algorithm is based on the
observation that, except for some special cases, the
number of intersections between a horizontal half
line whose endpoint is p, and the line segments of
the polygon is even if and only if p, is outside the
polygon. As special cases one must consider
line segments whose end point lies on the half
line, because each end point belongs to two line
segments, in contrast to other points of the line
segments which belong to only one line segment.

In the aforementioned algorithm, line segments
whose lower end point lies on the half line are not
considered when counting the number of intersec-
tions. The algorithm also determines correctly
whether the given point is inside some polygon
when the input data consist of the line segments of
multiple non-intersecting polygons. In the problem
at hand the only difference is that a point on the
boundary of a polygon is considered to be inside the
polygon (i.e. the fetch length is zero) if and only if
its immediate vicinity in the direction 6 (0 = 0 in the
rotated coordinate system) is inside the polygon.
The only needed modification to the algorithm is
that also line segments that contain the point p, are
ignored when counting the number of intersections.
Since the operation of detecting whether a point lies
on a line segment is done with finite precision, one
must allow that p, is some small distance away from
a line segment and still consider that p, is on the line
segment.

Without preprocessing, the algorithm for deter-
mining whether a point is inside a polygon runs in
time O(n), where n is the number of line segments
(or, equivalently, the total number of vertex points
of all island polygons) in the map data. This time
can be reduced considerably with some preproces-
sing that is also used for reducing the number of line
segments to which the distances dy(p,,v) are
calculated (see Section 3.3).

3.3. Closest intersection point

Another part of the problem is determining the
shortest distance between the study point p, =
(x5, »,) and an intersection of the horizontal half
line with a line segment in the set V, i.e.

min{dy(p,, v)|v € V'}, where 0 = 0. A horizontal line
with a given y-coordinate y, intersects the line
segments whose lower and upper endpoints p; =
(x,,y) and p,=(x,y, fulfill the condition
y;<y,<p,. This is the same test one would perform
if one were to check whether the interval [y, y,]
overlaps the vertical interval [y, y,]. Thus, a known
algorithm for finding intervals that overlap a given
interval can also be used for finding all line segments
that intersect a given horizontal line.

An example of such an efficient algorithm and a
suitable data structure, called the interval tree, can be
found in Cormen et al. (2001). The data structure is
basically a balanced binary search tree whose nodes
contain the desired intervals and, in addition, each
node contains the largest value (highest end point)
contained in any of the intervals stored in the subtree
rooted at that node. The intervals are ordered by
their lower end points. Such a tree can be built in
O(nlogn) time and all intervals that overlap a given
interval can be found in O(min(klogn,n)) time,
where 7 is the number of intervals in the tree and k is
the number of intervals in the tree that overlap the
given interval.

With real-world map data the number of line
segments that intersect a horizontal line (i.e. k) can
be expected to be quite small compared to the total
number of line segments # in the map data. Such a
situation along with a situation where the use of an
interval tree is of little value is shown in Fig. 2. The
latter situation occurs rarely in practice, and the use
of an interval tree is expected to lead to good
performance. It should be noted that algorithms
that can find the overlapping intervals in O(k +
log(n)) time are known (McCreight, 1985; Preparata

Fig. 2. Finding closest intersections. Line segments marked with
a circle (square) are taken into account when determining fetch
length for point p,(p,). Intersection points marked with a double
circle (double square) are closest intersection points for p,(p,).

M. Murtojirvi et al. | Computers & Geosciences 33 (2007) 843-852 847

and Shamos, 1988). For our purposes the data
structure and algorithms given in Cormen et al.
(2001) are sufficiently efficient.

For calculating the coordinates of the intersection
point p=(X,y) of a line segment v and the
horizontal line passing through the study point
ps = (x5,), it 1s also necessary to store additional
information, e.g. the x-coordinates of the two end
points of the line segments with each interval. For
the line segment v = pip, () = (X1, 7)) Py = (Xus 1)
that is not horizontal, the coordinates (X, y) of the
intersection point p are then simply

G —-y)
Yu =i

X = X1 + (xu - xl)a

(1)
y = Vs

The distance is do(p,, v) = X — X, if this expression is
positive. Otherwise the intersection point is not on
the half line whose direction is 6 = 0 but in the
direction 0 = 7.

Because the method for removing irrelevant line
segments from consideration returns a result set that
contains all the line segments that intersect the
horizontal half line with starting point p,, it can also
be used for speeding up the point-in-polygon testing
by using the observation mentioned before: if an
intersection point satisfies the condition X — x;>0,
the intersection is located in the direction 0 = 0.
Counting the number of such line segments, except
for those whose lower end point lies on the half line,
yields the same number of intersections as the
method described in Section 3.2. Determining
whether p, is an inner point of some polygon
therefore has the same time complexity as determin-
ing the intersection points (i.e. O(nlogn) preproces-
sing time and O(min(k logn, n)) query time).

For half lines with inclination 00 we rotate the
coordinates using the well-known equations (Arf-
ken and Weber, 1995):

2)

x" = xcos(0) + ysin(0),
V' = —xsin(0) + y cos(0).

4. Algorithm for determining fetch lengths

Algorithm fetch_length first rotates the coordi-
nates of all points by 0 radians. An interval tree is
then constructed for restricting the distance calcula-
tions to relevant line segments. The intersection

points along with their number are determined for
each point using the tree, see Fig. 2. The number of
intersections is used for determining whether the
studied point is an interior or an exterior point. The
fetch length is then set to min{dy(p,, v)lv € V'} or 0
depending on whether the number of intersections is
even or odd.

It is easy to modify algorithm fetch_length so that
the angles 6 and 0 + n are handled simultaneously.
In this case, one must record the minimum distances
to line segments and the number of intersections in
both directions. Among other important modifica-
tions are those that increase the robustness of the
algorithm, see Sections 5.1 and 6.

Algorithm fetch_length. An algorithm for determin-
ing fetch lengths in direction 0 for all points in the
set P. The function ‘rotate’ rotates the given
coordinates according to formula (2) and the
function ‘calculate_x’ calculates the x-coordinate
of the intersection of a line segment and a horizontal
line according to formula (1), using the coordinates
of the given points in the rotated coordinate system.
The nodes of the interval tree contain the end points
of the real-valued intervals and also the end points
of the line segment whose projection the interval
is. These end points are retrieved using the function
get_endpoints. Function ‘get_overlapping_seg-
ments’ returns all intervals stored in the interval
tree whose intersection with the given interval is
non-empty. It is assumed that each study point p, in
P has a data structure for storing the results

L(p;, 0).

Procedure fetch_length(P: set of points, V: set of
line segments, 0: real)
ivtree <— an empty interval tree
for each point p, in P {
(x},¥,) < rotate(xy, y,, 0)
}
for each line segment v = p;p, in V{
(x],y)) < rotate(xy, y, 0)
(x5, 5) < rotate(xa, y,, 0)
ymin <~ mln{yllﬂyIZ}
Ymax < max{yy, y5}
inree-add(Dmin7 ymax]? pl ’p2)

}
for each point p; in P {

S <« ivtree.get_overlapping_segments ([y},);])
mindist < 00

num_intersections < 0

for each interval I in S{

848

(py,p,) < I.get_endpoints
X' <« calculate_x(py, ps, %)
if X' — x>0 then {
if X' — x, <mindist then mindist < X" — x|
if y, #1.get y,,,, then num_intersections <
num_intersections +1

}
}

if num_intersections is even then
L(p,, 0) < mindist
else L(p,,0) <0
}

5. Implementation of the algorithm
5.1. Specifications

In order to test the efficiency of algorithm
fetch_length and demonstrate its usability, two
programs were created using Java programming
language. The first program was used for testing the
performance of the algorithm, and it only includes
an implementation of the algorithm and some 1/O
functionality that is required for reading the map
data. Another program was created for a case study
and this version includes a basic user interface and
uses MySQL database for accessing the data. Both
programs share the same implementation of the
algorithm.

It should be noted that our implementation
differed slightly from algorithm fetch length. One
difference is that the distances were calculated
simultaneously for angles 6 and 6 + © as outlined
before. This approximately doubles the efficiency of
the algorithm. Another difference was that the

Table 1
Running times for an implementation of algorithm fetch_length

M. Murtojirvi et al. | Computers & Geosciences 33 (2007) 843-852

condition ¥ — x>0 was not considered sufficient
for determining that the point p, is not on a line
segment [because of the possibility of rounding
errors. A function was therefore included for
determining whether a point is close enough to a
line segment so that it should be considered to lie on
the line segment. This test consists of two phases.
The first phase tests whether the point is inside a
bounding box whose sides are parallel to the
coordinate axes. The box includes the line segment
and some small tolerance ¢ of extra space in all
directions. If the point lies outside this box, the
point is farther than ¢ units away from the segment.
Otherwise its distance to the line segment is
calculated and compared to ¢. If the point passes
both of these tests, it 1s considered to lie on the line
segment.

5.2. Performance test

The efficiency of the algorithm was tested using a
PC equipped with 1 GB RAM and AMD Athlon
2600 + processor (1.92 GHz). The Java environ-
ment used for compiling and executing the program
was Sun’s J2SE version 5.0. As input data we had a
shoreline map of a portion of the Finnish archipe-
lago. The map consisted of 1277 polygons which
contained a total of 53300 vertices. For testing the
efficiency of the algorithm with a larger number of
polygons and points, semi-artificial map data were
created by tiling several copies of the map next to
each other.

The running times of our implementation in some
cases are given in Table 1. The performance of the
algorithm is found to be adequate for the purposes
for which it is intended. Constructing the interval

Case Points in P Points in V Angles Tree generation time (s) Total time (s)
1 50000 53301 48 4.7 30.5
2 50000 213204 48 18.1 72.2
3 50000 479709 48 44.6 130.1
4 50000 852816 48 84.3 198.8
5 50000 1918 836 48 183.3 3734
6 50000 3411264 48 398.4 657
7 50000 6449421 48 732.9 1103.3
8 10000 5330100 48 635 697
9 50000 5330100 48 Not measured 957.4

10 200000 5330100 48 Not measured 1276.1

“Points in P” represents number of points for which fetch lengths were calculated. “‘Points in V”* represents number of vertices in island
polygons. Times required for loading test data and saving results are excluded.

M. Murtojirvi et al. | Computers & Geosciences 33 (2007) 843-852 849

tree requires a significant amount of time, and
therefore the algorithm performs best when the
fetch lengths are required for a large number of
points. The total time in case 8 consists almost
entirely of the interval tree generation time, and
cases 9 and 10 show how the required time grows if
the number of calculation points is increased. From
the table one can also observe that while the tree
generation time is significant, it is still small enough
so that the calculations can be performed efficiently
in relatively small batches of calculation points even
if the tree is regenerated for each batch.

5.3. Case study

The algorithm was used in a case study to
examine the exposure on a 40km x 40km area in
SW Finland. The study area is characterized by
numerous islands and complex shoreline (Frisén
et al., 2005). The objective of the study was to test
the calculation method and to find a proper way to
store, visualize and use the data. Two sets of input
data were needed, i.e. the shoreline data and the
calculation points. The shoreline data of the Finnish
coast are based on polygon map data (1:20000)
produced by the National Land Survey of Finland.
The shoreline for other parts of the Baltic Sea was
derived from the Europe Countries database (ESRI,
2005). The shoreline data include altogether 3
million vertices. The coordinate pairs were stored
in a MySQL database, see Table 2 for sample data
expressing a portion of a polygon border.

Two approaches were used when defining the
study points. In the first approach, points were
positioned on a regular grid on the water surface and
in the second case equidistantly along the shoreline.
The coordinate pairs of the grid were created by a

Table 2

A sample input table for island polygon vertex data

ISL_ID PID X y

600000 0 3373 690.75 7306959
600000 1 3373679 7306962
600000 2 3373661.5 7306972.5
600000 3 3373 639.75 7306979.5
600000 4 3373 604.75 7307001.5

Each line contains identification numbers and x- and y-
coordinates (Finnish coordinate system YKJ) of one vertex
point. PID is an identification number of a point within an island
and ISL_ID is an identification number of an island. Five
consecutive points that belong to one island are shown.

Table 3
Input table for study points

1D X y

0 3223 582.95863 6719997.70291
1 3224049.02434 6718 849.19557
2 3224039.36884 6718851.79776
3 3224029.71334 6718 854.39995
4 3224020.05785 6718857.00214

simple PHP script but they could be created by GIS
tools or a spreadsheet program as well. The grid
points covered the study area equidistantly 25m
apart and their number was 2.56 million. The
calculation points along the shoreline were created
using GIS tools. The shoreline points were located
equidistantly 10 m apart and their total number was
270 000. Both sets of points were stored in a MySQL
database including point ID and cartesian x- and
y-coordinates (Table 3).The overall workflow in-
cluding the operation of algorithm fetch length is
illustrated in Fig. 3.

The calculations were performed on a desktop
computer (Pentium 4 CPU 2.79GHz, 1.00GB
RAM) in batches of at most 100000 points. The
total calculation time for shoreline points P, was
approximately 0:39h and for point grid data P;
4:55h. The results can be stored directly into the
MySQL database but it was noticed that writing the
results to a text file was much faster. The resulting
text files were finally imported into a MySQL
database. The data include the identification num-
bers and the fetch lengths in 48 directions for each
point. The distances were converted to integers in
order to limit the file size. The shoreline fetch
database was linked to GIS to be used as a thematic
layer with other geographical data sets. We pro-
duced a sample map of shoreline exposure with
average fetch values over the 48 directions on a
small study area in SW Finland, see Fig. 4. Another
map was produced to portray the exposure values
on the water surface. We grouped the 48 lines by
eight compass directions, resulting in six lines for
each direction, and calculated the average fetch for
each compass sector. The raster map pixel value is
the highest such sector average for each cell in the
water area, see Fig. 5.

6. Discussion

We presented an efficient and easy way to
determine fetch lengths in different predetermined

850 M. Murtojirvi et al. | Computers & Geosciences 33 (2007) 843-852

Export map data Generate study
from GIS points using GIS
or other software
v \ 4

For each value of angle 6 call algorithm
fetch_length

A 4

Process the fetch length data further by
using GIS or other software

Algorithm fetch_length

- Rotate map vertex data and study
points
- Generate interval tree

»
L
A

A

Find next study point p

s

A 4

- Determine intersection points for p
as illustrated in Fig. 2

- Select shortest distance mindist from
D, to an intersection point.

- Let n be the number of intersection
points that lie to the right of p;

- Set L(p,,0) to 0 if n is odd and to
mindist if n is even

D, is the last
point?

done

Fig. 3. Workflow in determining and using fetch lengths. Operation of algorithm fetch_length is shown on right.

directions for a large number of study points. The
observation leading to our algorithm was the fact
that, typically, a fetch line intersects only a small
fraction of the shoreline segments in a map. In our
test cases, for example, there were approximately 50
intersections for each fetch line in the shoreline data
set consisting of 53000 vertices. However, the tree
generation in our algorithm is relatively time-
consuming. Calculating fetch lengths for a small
number of points could thus be done more
efficiently with a more straightforward algorithm
that does not require preprocessing.

While the efficiency of our algorithm is good, it is
unlikely to be optimal. The algorithm determines
the distances to all the line segments of the map that
intersect the line passing through the point under
consideration, although it would be sufficient to
calculate only the shortest such distance. One
promising approach for further reducing the num-
ber of measured line segments is the sweep line
technique (Preparata and Shamos, 1988). In our

case study, however, the calculations had to be done
in relatively small batches due to the high memory
requirements. The performance of an algorithm
when the number of calculation points is moder-
ately high was therefore most important.

Also the robustness of an algorithm in the
presence of rounding errors was found crucial when
determining a quantity that depended on whether
the point lies on a line segment. Although algorithm
fetch_length and the extension described in Section
5.1 were not totally satisfactory, the situation
was easily remedied. We only needed to replace
the statement S < ivtree.get_overlapping segments
(Iv;, ¥.]) by a statement that returns all line segments
that may be closer than & units away from p,,
namely S <« ivtree.get . xoverlapping segments
(7, — &, +).

The spatial resolution and level of detail of the
resulting data far exceed the capability of standard
GIS software. For instance, an average fetch map of
our whole study area in SW Finland was previously

M. Murtojirvi et al. /| Computers & Geosciences 33 (2007) 843-852 851

Average fetch (km) Teeqy j
0-1 % :
e1-2 i — Tt
. 2.3 “ % T
0 1 2 km A "
0
. ! g
\\’ T gy
@ R |)
fc
R
SR SRR R
f-‘ i & s - ™ o s
L3 Lol —
< we))
"‘ x7- + 4
.
€

Fig. 4. Average fetch lengths in a sample region measured for 48
directions (out of which 24 have zero length) for points on
shoreline.

Maximum fetch (km)

Jo-2 EEM+-s

o Bl
N

Fig. 5. Highest average fetch lengths (mean of six line lengths)
out of eight compass directions for each 25m x 25m cell.

produced for a grid with 1000 m cell size using GIS
(Tolvanen and Suominen, 2005), while with the
present algorithm the spatial resolution was im-
proved to 25m in a fraction of the time in
comparison to the GIS software. The advantages
of using a specialized algorithm instead of a

standard desktop GIS software are probably related
to the less complex input data structure, i.e. no
topological data are needed when points of P are
expressed by coordinate pairs and shorelines as
coordinate pairs of vertices, not as complete
polygons. This lowers the memory consumption of
the algorithm.

The output data, whether used for a water surface
grid or for a shoreline exposure classification, can be
utilized in new contexts. The data allow for calculat-
ing different exposure parameters, such as averages,
maximums or effective fetch. In addition to fetch
length variables, the data can be further refined as
part of wave power calculations.

The actual wave formation is a function of fetch,
wind speed and duration and the characteristics of
water (Anon, 1977, 1984; Kahma and Calkoen,
1991, Pethick, 1991). In addition, the propagating
waves bend due to friction between water particles
and sea bed. This results in phenomena known as
refraction and diffraction (Gamito and Musgrave,
2002; Pethick, 1991). Refraction and diffraction are
not incorporated in the proposed algorithm. These
variables are incorporated in more sophisticated
wave models, but these models are not easily
applicable in complex archipelago environments
due to lack of detailed bathymetry and wind data.
Such models would also require a high calculation
capacity because the spatial resolution needs to be
very detailed due to shoreline complexity. Even
though wave activity is not a linear function of the
distances over which the wind is affecting the
surface water, fetch is an essential concept since it
can be used to quantify general exposure. While
recognizing the limitations to model actual wave
behavior, relatively accurate calculations concern-
ing wave power can be made based on the fetch
data. Classifications based on long term average
winds or detailed temporal analyses are among
interesting applications incorporating wind data
(Tolvanen and Suominen, 2005).

The presented algorithm was applied in coastal
research with good results. However, also other
disciplines could benefit from the ability to quantify
distances and directions to polygon borders. Land-
scape ecology, for instance, considers patch sizes
and distances. Ecological units in the landscape
interact through boundaries, which are equivalent
to polygon outlines like shorelines. Also disciplines
such as archeology and infrastructure studies would
likely have needs to quantify directional distances in
the landscape.

852 M. Murtojirvi et al. | Computers & Geosciences 33 (2007) 843-852

Acknowledgments

The authors wish to thank professor Risto
Kalliola for comments on the manuscript. The
Department of Geography and Laboratory of
Computer Cartography at the University of Turku
provided hardware and software facilities for the
research.

References

Anon, 1977. Shore Protection Manual, vol. 1, third ed. U.S.
Army Corps of Engineers, Coastal Engineering Research
Center, Washington DC.

Anon, 1984. Shore Protection Manual, vol. 1, fourth ed. U.S.
Army Corps of Engineers, Coastal Engineering Research
Center, Washington DC.

Arfken, G.B., Weber, H.J., 1995. Mathematical Methods for
Physicists, fourth ed. Academic Press, USA, 1029pp.

Cormen, T., Leiserson, C., Rivest, R., Stein, C., 2001. Introduction to
Algorithms, second ed. MIT Press, Cambridge, MA, USA,
1180pp.

Ekebom, J., Laihonen, P., Suominen, T., 2003. A GIS-based step-
wise procedure for assessing physical exposure in fragmented

archipelagos. Estuarine, Coastal and Shelf Science 57,
887-898.

ESRI, 2005. Data & Maps, Europe Countries SDC feature
database. ESRI Inc., Redlands, CA, USA.

Frisén, R., Johansson, C., Suominen, V., 2005. Archipelagos in
the Baltic Sea. In: Seppild, M. (Ed.), The Physical Geography
of Fennoscandia. Oxford University Press, Oxford, pp.
267-281.

Gamito, M., Musgrave, F., 2002. An accurate model of wave
refraction over shallow water. Computers & Graphics 26,
291-307.

Hakansson, L., 1981. A Manual of Lake Morphometry. Springer,
Berlin, 78pp.

Kahma, K., Calkoen, C.J., 1991. Reconciling discrepancies in the
observed growth of wind-generated waves. Journal of
Physical Oceanography 22, 1389-1405.

McCreight, E.M., 1985. Priority search trees. SIAM Journal on
Computing 14, 257-276.

Pethick, J., 1991. An Introduction to Coastal Geomorphology,
fiftth ed. Edward Arnold, London, 260pp.

Preparata, F., Shamos, M., 1988. Computational Geometry, an
Introduction, second ed. Springer, New York.

Tolvanen, H., Suominen, T., 2005. Quantification of openness
and wave activity in archipelago environments. Estuarine,
Coastal and Shelf Science 64, 436-446.

Publication 11

Mika Murtojéarvi, Ville Leppénen, Olli S. Nevalainen. Determining direc-
tional distances between points and shorelines using sweep line technique.
International Journal of Geographical Information Science 23(3), 2009, 355
368. DOI: 10.1080/13658810801909607.

This article is included only in the printed version of the thesis.

Publication 111

Mika Murtojarvi, Ville Leppédnen, Olli S. Nevalainen. A parallel GPU im-
plementation of an algorithm for determining directional distances. Inter-
national Conference on Computer Systems and Technologies - CompSys-
Tech’11, Vienna, Austria, 2011, 198-203. DOI: 10.1145/2023607.2023642.
(©) 2011 Association for Computing Machinery, Inc. Reprinted by permis-
sion.

International Conference on Computer Systems and Technologies - CompSysTech’11

A parallel GPU implementation of an algorithm for determining
directional distances

Mika Murtojarvi, Ville Leppéanen and Olli S. Nevalainen

Abstract: The paper describes a parallel implementation of a cell-based algorithm for determining
directional distances from points to polygons. Such distances have been applied, e.g., in coastal research.
While the parallelization of the algorithm is in principle straightforward, the limitations of GPU devices lead to
challenges in obtaining good performance. Our simple parallel GPU implementation achieves 8-fold speedup
compared to a CPU implementation, yet maximal possible speedup is not achieved.

Key words: Computational Geometry, Directional Distance, GPGPU.

1. INTRODUCTION

Distances from points to shorelines have been used, e.g., in coastal research for
estimating wave exposure [3]. Of particular importance are quantities called fetch lengths
(Fig. 1). For a given study point and direction, the fetch length is the distance from the
point to the nearest land area. For a point that is located on a shoreline, fetch length is
zero if the direction points into land area. Otherwise, the fetch length for a point on a
shoreline is defined similarly as when the point is in open water. The application to wave
exposure estimation results because waves in a water area grow in amplitude when wind
interacts with them over a distance, although other factors must also be considered [3].

Figure 1. Fetch lengths for one study point in 48 directions.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.

CompSysTech'11, June 16-17, 2011, Vienna, Austria.
Copyright ©2011 ACM 978-1-4503-0917-2/11/06...$10.00.

198

International Conference on Computer Systems and Technologies - CompSysTech’11

Geographical information systems (GIS) offer tools for determining directional
distances. However, if distances are required for millions of study points, the tools have
turned out to be too slow [6]. Therefore algorithms (e.g. [6], [7], [8]) have been developed
for this purpose. The algorithms assume that the map is represented as a set of polygons,
where one polygon represents the border of an island or the shoreline of the mainland.
Some algorithms also require that fetch lengths are computed in the same directions for all
study points [6], [7]. This assumption makes finding fetch lengths efficiently easier without
being too restrictive for the geographical applications. Nevertheless, the fetch length
algorithm [8] that has performed best in practical tests does not require the distances to be
determined in the same directions for all study points. The algorithm [8] is based on
uniform subdivision of the map. A fetch length is found by traversing the grid cells of the
map in the direction of the fetch line until a cell that contains a line segment intersecting
the fetch line is found. The worst-case time complexity of the algorithm [8] is not good, but
this is often not relevant with real-world digital maps where the line segments describing
the shorelines are short compared to the size of the map.

One appealing feature of the cell-based fetch length algorithm [8] is that it has very
short preprocessing times. After the preprocessing step, the fetch length computations can
be done independently for all study points. Therefore, when traditional CPUs are used, it is
straightforward to make an efficient parallel implementation of the algorithm.

A modern computer may also have another powerful processor, called GPU (graphics
processing unit). GPUs can be several times faster than CPUs in terms of peak floating
point performance. For example, the ATl Radeon 5850 used in this study has peak floating
point performance of 2088 Gflops, whereas the quad-core AMD Phenom 9850 CPU (2.5
GHz) is capable of 80 Gflops [1]. To appreciate the challenges in implementing algorithms
on GPUs, let us review some characteristics of the GPU used in this work [1]. At the
lowest level, the Radeon 5850 GPU has 1440 Processing Elements, capable of performing
floating point and integer operations. The Processing Elements are grouped into Stream
Cores. One Stream Core has five processing elements and circuitry for flow control, and
there are thus 288 Stream Cores. Each Stream Core can execute a thread of a program.
However, the Stream Cores are not independent. The Radeon 5850 has 18 independent
Compute Units, each containing 16 Stream Cores. Within a Compute Unit, all Stream
Cores execute the same instruction on each clock cycle. Furthermore, to hide the latencies
of arithmetic operations and memory accesses, each Stream Core executes the same
instruction with different data for four consecutive clock cycles. For program correctness it
is not necessary to know these details, but performance implications can be significant.
With suitably crafted program code the synchronous execution of the threads within a
Compute Unit can reduce the performance to 1/64" of the theoretical peak performance.

Memory accesses are also a potential bottleneck. For instance, the onboard memory
(Global Memory) of the Radeon 5850 can transfer 128 GB/s in the best case [1]. Given
that a single-precision floating point number requires 4 bytes, the transfer rate leads to a
performance of only 32 Gflops if every operation requires reading one new value from the
memory. To avoid such bottlenecks there are small cache memories on the GPU. The
Radeon 5850 has 8 kB of level 1 cache in each Compute Unit and there is also 512 kB of
slower level 2 cache. Each Compute Unit also contains 32 kB of local memory (LDS, Local
Data Store). Unlike the caches, the contents of the LDS need to be modified explicitly in
the program. It can therefore be difficult to use the LDS to yield good performance.

This study deals with a parallel implementation of the algorithm [8] on a GPU device
and compares its speed to the same algorithm running on a CPU.

2. Solving the fetch length problem

199

International Conference on Computer Systems and Technologies - CompSysTech’11

2.1 Fetch length algorithms

Both approximate and exact methods for determining fetch lengths have been
developed [3], [6], [7], [8]. Also an approximate algorithm for determining the maximum
fetch length is known [5]. However, the implementations of the approximate algorithms
have not been much faster than the exact algorithms. We focus on the exact cell-based
algorithm [8] because of its good performance and relative ease of parallelization.

In the uniform subdivision approach [8] the plane is divided into rectangular cells by
vertical and horizontal lines. Consecutive horizontal (and vertical) lines defining the
subdivision of the plane into cells are at equal distance from each other. Each cell contains
a list of all line segments of the map that are partially or entirely within that cell. The
algorithm can be implemented using relatively simple data structures. The cells can be
organized as a two-dimensional array and the contents of a cell can be represented by a
variable-sized one-dimensional array. The preprocessing step of the algorithm rasterizes
the line segments of the map to find the cells to which they are stored. The preprocessed
map can be used for determining fetch lengths in any direction. Computing a fetch length
is similarly based on rasterization. To find a fetch length, the cells through which the fetch
line passes are traversed until a cell that contains a line segment intersecting the fetch line
(within the cell) is found. Within each cell the intersections of the line segments of the cell
with the fetch line are found using a brute force search that considers all line segments of
the cell. A cell usually only contains a small number of line segments and the brute force
scan is therefore efficient. Indeed, it has been found [8] that the cell-based approach
outperforms the sweep line based method [7] with real-world maps, even if it performs
more intersection computations. Furthermore, the preprocessing times of the algorithm
were found to be less than one second with a map containing up to one million line
segments [8]. Therefore it is not necessary to parallelize the preprocessing step to achieve
good performance. The processing of the different study points, on the other hand, can
easily be done in parallel. However, for an efficient implementation on a GPU there are
several difficulties. One challenge is that the memory accesses can be scattered,
consecutive memory positions being accessed in consecutive iterations only when the
rasterization of a fetch line proceeds in a horizontal direction. The fetch lengths for the
study points may also differ significantly from each other. This can cause inefficiencies in a
GPU implementation where all threads within a group proceed synchronously.

2.2 A parallel GPU implementation of the cell-based algorithm

We implemented the uniform subdivision based method [8] using OpenCL 1.0 [4].
Using OpenCL allows easy evaluation of the speedup that is achieved by using a GPU
instead of a CPU, since the same program can be compiled for both devices. However,
there are significant differences between the devices and ultimately separate OpenCL
implementations of the algorithm were developed for the CPU and GPU. The OpenCL
programs running on a GPU or a CPU are also referred to as compute kernels.

The preprocessing of the algorithm is fast [8] and it was therefore implemented as a
sequential C program running on the CPU. The preprocessing stores the line segments of
the map into grid cells. This step was implemented using a rasterization algorithm that has
been described by Cleary and Wyvill in the context of ray tracing [2]. The result of the
preprocessing is a two-dimensional array where each element contains a list of all line
segments of the map that are at least partially inside the grid cell. For the OpenCL
compute kernel this array was transformed into two one-dimensional arrays. The first of
the arrays (segments) contains the line segments that intersect each cell. A line segment is

represented as a four-element vector of floating point numbers. The line segments of the
same cell are stored in consecutive positions of the array segments . Different cells contain

a different number of line segments, and the second array (positions) contains the indices

200

International Conference on Computer Systems and Technologies - CompSysTech’11

of the first line segments of the cells in the array segments . Thus, the line segments of a
cell i are found in positions segments| positions[il]...., segments| positions[i+1]—1]. Here
i=y-num_cells x+x, where x and y give the position of the cell in the original two-
dimensional array of cells and num cells x is the number of cells in the horizontal

direction. The number of cells is chosen as in [8]: num_cells_x:’\/n-w/h‘ and

num_cells_y=‘«/n-h/w , where num _cells _y is the number of cells in the vertical

direction, » is the number of line segments in the map and w and % are the width and the
height of the map. Thus, there are approximately as many cells as there are line segments
in the map, and the cells have nearly the same size in vertical and horizontal direction.

For the OpenCL compute kernel, we implemented two simple approaches. In both
cases a single invocation of a kernel computes the fetch length for one study point.
OpenCL takes care of invoking the kernel the specified number of times. Thus, the source
code of the kernels is similar to a sequential C implementation except that there is no outer
loop iterating the computation through the study points. Different directions of the fetch
lines are processed separately, because the amount of memory available to an OpenCL
compute kernel is only 512 MB for the Radeon 5850 with 1 GB of memory.

The first compute kernel (K1) processes at every iteration of the rasterization all line
segments that are stored in the current cell. It then proceeds to the next cell within the
same iteration of its outer loop. This approach might be highly inefficient on a GPU device.
For example, if only one of the cells processed by a group of Stream Cores contains line
segments, all threads that are executed on cores within the same compute unit proceed
synchronously with the thread that needs to process line segments.

In the second kernel (K2) the rasterization of a fetch line proceeds until a nonempty
cell is found. All line segments in this nonempty cell are then processed. The procedure
ends if a line segment intersects the fetch line within the cell. Otherwise the rasterization is
continued until the next nonempty cell. Also this approach can lead to some of the threads
being idle due to the differences in fetch lengths and numbers of line segments in
nonempty cells. However, this approach may lead to somewhat smaller negative
consequences than K1 resulting from the synchronous execution of the threads.

3. Experimental results

The two implementations (K1 and K2) of the algorithm were tested using an AMD
Phenom X4 9850 quad-core CPU and an ATl Radeon 5850 GPU. The computer had 4 GB
of main memory and 1 GB of memory for the GPU and it was running 64-bit Linux
operating system. All operations that are used frequently in the algorithm were optimized
separately for the CPU and the GPU. The map contained 53301 vertices. Larger maps
were generated for performance testing by tiling several copies of the map next to each
other. Different numbers of study points were generated randomly within the map area.

The running times of the kernels that are faster on each device (K1 for the CPU and
K2 for the GPU) are shown in Table 1. When the number of study points is small, the
execution times are smaller on the CPU. With a large number of points the algorithm runs
faster on the GPU than on the CPU. The performance difference depends on the size of
the map. When the size of the map was increased from 53301 to 3.4 million vertices, the
execution time of the algorithm increased considerably on the CPU. On the GPU the time
increased less than on the CPU. In general, the algorithm runs about 4-8 times faster on
the GPU than on the quad-core CPU with a large number of study points. In comparison, a
parallel brute force algorithm for determining fetch lengths was found to perform 20 times
faster on the GPU than on the CPU; this is close to the difference between the floating
point performances of the devices. The rasterization was also almost 20 times faster on
the GPU than on the CPU when the rasterization was performed to the border of the map

201

International Conference on Computer Systems and Technologies - CompSysTech’11

without memory accesses. For the rasterization the difference is even greater than
expected considering that on the GPU some of the threads are idle due to different
distances from the study points to map borders. Indeed, it was possible to construct a case
where the rasterization worked over 50 times faster on the GPU than on the CPU.

Table 1. Kernel execution times on an AMD Phenom 9850 X4 quad core CPU and on

an ATl Radeon 5850 GPU. In all cases fetch lengths were determined in 48 directions.

Study CPU K1 GPU K2

Vertices | points (s) (s) GPU speedup
53301 1000 0.01 0.02 0.41
53301 100000 0.68 0.19 3.59
53301 5000000 31.63 8.52 3.71
213204 1000 0.01 0.02 0.61
213204 100000 1.02 0.24 4.26
213204 5000000 47.42 10.57 4.48
852816 1000 0.02 0.03 0.68
852816 100000 1.81 0.29 6.19
852816 5000000 86.57 13.24 6.54
3411264 1000 0.03 0.04 0.93
3411264 100000 2.96 0.39 7.67
3411264 5000000 147.49 17.82 8.28

Possible explanations for the smaller than expected difference in performance
between the CPU and the GPU are the synchronous operation of the threads and the
smaller caches in a GPU. In further tests the fetch lines were rasterized but the
intersection tests were omitted. Two cases were tested. In the first case the fetch line was
rasterized to the first nonempty cell and in the second case to the border of the map. In
both cases similar memory accesses were performed. The relative times between these
two test cases indicate how much rasterization work the CPU and GPU perform compared
to rasterizing to the border of the map. As can be seen in Table 2, the relative times of
rasterizing to border vs. rasterizing to the first nonempty cell are slightly lower on the GPU,
suggesting that the synchronous execution of the threads on the GPU explains a part of
the worse than optimal performance. Note that for the GPU the comparison is to a time
that is already affected by the synchronous execution of the threads.

The most significant bottleneck on the GPU, at least for the rasterization, seems to
be the time required for memory accesses. It was observed that memory accesses slow
down the rasterization to the border of the map by a factor of 7 on the GPU with a small
map but only 1.6-fold on the CPU. With a larger map memory accesses affected
performance on both devices: when the map contained 3.4 million vertices, memory
accesses slowed down the rasterization by a factor of 7 and 9 on the CPU and GPU,
respectively. Then, the larger caches of the CPU could not likely achieve good hit rates.

Table 2. Running times for rasterizing the fetch lines to the first nonempty cell and to

the border of the map on the CPU and the GPU. In all cases, there were 5 million study
points and 48 directions. Ratio gives the time required for rasterizing to the border divided
by the time required for rasterizing to the first nonempty cell.

GPU CPU ratio ratio
Vertices | (s) GPU, to border (s) | (s) CPU, to border (s) | (GPU) (CPU)
53301 2.93 17.06 13.66 81.43 5.83 5.96
213204 4.12 40.03 18.16 193.28 9.71 10.64

202

International Conference on Computer Systems and Technologies - CompSysTech’11

852816 5.69 88.75 40.89 764.86 15.61 18.71

3411264 8.24 183.33 88.41 2690.76 22.24 30.44

4. CONCLUSIONS AND FUTURE WORK

A cell-based algorithm for evaluating fetch lengths was implemented on a GPU. lts
performance was found to be much better than that of the same algorithm running on a
quad-core CPU. However, the performance difference was smaller than ideal. For the
rasterization step of the algorithm, memory accesses were found to be the most significant
explanation for the worse than expected performance. Suitable sorting of the study points
might improve the performance. It remains to be determined whether memory accesses
are the most important bottleneck also for the entire algorithm.

The implementation was not work-efficient on a GPU, because the fetch lengths and
the numbers of line segments in nonempty cells vary. The efficiency could be improved by
organizing the work in a different way.

REFERENCES

[1] Advanced Micro Devices, Inc. (2011, Jan). AMD Accelerated Parallel Processing
OpenCL™ Programming Guide (v1.2). [Online]. Available:
http://developer.amd.com/gpu/AMDAPPSDK/assets/

AMD _Accelerated Parallel_Processing_OpenCL_Programming_Guide.pdf.

[2] J.G. Cleary and G. Wyvill, “Analysis of an algorithm for fast ray tracing using
uniform space subdivision,” The Visual Computer, vol. 4, no.2, pp. 65-83, 1988.

[3] J. Ekebom, P. Laihonen and T. Suominen, ” A GIS-based step-wise procedure for
assessing physical exposure in fragmented archipelagos,” Estuarine, Coastal and Shelf
Science, vol 57, no. 5-6, pp. 887-898, Aug. 2003.

[4] Khronos Group. (2009, Oct. 6). OpenCL 1.0 Specification (revision 48). [Online]
Available: http://www.khronos.org/registry/cl/specs/opencl-1.0.pdf

[5] D. Lundqvist, D. Jansen, T. Balstroem and C. Christiansen, “A GIS-Based Method
to Determine Maximum Fetch Applied to the North Sea—Baltic Sea Transition,” Journal of
Coastal Research, vol. 22, no. 3, pp. 640-644, 2006.

[6] M. Murtojarvi, T. Suominen, H. Tolvanen, V. Leppanen and O. S. Nevalainen,
"Quantifying distances from points to polygons — applications in determining fetch in
coastal environments,” Computers & Geosciences, vol. 33, no. 7, pp. 834-852, July 2007.

[7] M. Murtojarvi, V. Leppanen and O.S. Nevalainen, "Determining directional
distances between points and shorelines using sweep line technique,” International
Journal of Geographical Information Science, vol. 23, no. 3, pp. 355-368, Mar. 2009.

[8] S. Yang, J. H. Yong, J. G. Sun, H. J. Gu and J. C. Paul, “A cell-based algorithm for
evaluating directional distances in GIS,” International Journal of Geographical Information
Science, vol. 24, no. 4, pp. 577-590, Apr. 2010.

ABOUT THE AUTHORS
Doctoral student Mika Murtojarvi MSc, adjunct professor Ville Lepp&dnen PhD and
professor Olli S. Nevalainen PhD, Department of Information Technology & Turku Centre
of Computer Science (TUCS), FI-20014, University of Turku, Finland. E-mail:
mika.murtojarvi@utu.fi, ville.leppanen@utu.fi, olli.nevalainen@utu.fi.

203

Publication IV

Mika Murtojarvi, Olli S. Nevalainen, Ville Leppénen. Performance tuning
and sparse traversal technique for a cell-based fetch length algorithm on
a GPU. Concurrency and Computation: Practice and Experience 27 (17),
2015, 5114-5133. DOI: 10.1002/cpe.3529. Reprinted with permission from
John Wiley and Sons.

CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE
Concurrency Computat.: Pract. Exper. (2015)
Published online in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/cpe.3529

Performance tuning and sparse traversal technique for a cell-based
fetch length algorithm on a GPU

Mika Murtojirvi’*, Olli S. Nevalainen® and Ville Leppinen®

YWaadin Ltd, FI-20540 Turku, Finland
2Department of Information Technology and Turku Centre for Computer Science (TUCS), University of Turku,
FI-20014 Turku, Finland

SUMMARY

For determining distances (fetch lengths) from points to polygons in a two-dimensional Euclidean plane,
cell-based algorithms provide a simple and effective solution. They divide the input area into a grid of cells
that cover the area. The objects are stored into the appropriate cells, and the resulting structure is used for
solving the problem. When the input objects are distributed unevenly or the cell size is small, most of the
cells may be empty. The representation is then called sparse. In the method proposed in this work, each cell
contains information about its distance to the nonempty cells. It is then possible to skip over several empty
cells at a time without memory accesses. A cell-based fetch length algorithm is implemented on a graphics
processing unit (GPU). Because control flow divergence reduces its performance, several methods to reduce
the divergence are studied. While many of the explicit attempts turn out to be unsuccessful, sorting of the
input data and sparse traversal are observed to greatly improve performance: compared with the initial GPU
implementation, up to 45-fold speedup is reached. The speed improvement is greatest when the map is very
sparse and the points are given in a random order. Copyright © 2015 John Wiley & Sons, Ltd.

Received 01 October 2014; Revised 19 February 2015; Accepted 10 April 2015

KEY WORDS: GPGPU; sparse rasterization; cell-based algorithms

1. INTRODUCTION

In computational geometry, cell-based algorithms have found applications, for example, in deter-
mining intersections of line segments [1], inclusion tests [2], and finding minimal distances from a
set of study points to polygons [3]. The operating principle of these methods is relatively simple.
As a preprocessing step, the considered area is divided by evenly-spaced horizontal and vertical
lines into equal-sized cells, and the input objects are stored into the appropriate cells. The resulting
cell-based representation is then used for solving the problem of interest.

1.1. Fetch length problem

The problem of determining distances from a given set of study points to shorelines originates from
coastal research, where such distances are called fetch lengths [4]. It is assumed that the map of
islands and the mainland is represented as polygons. The problem is then equivalent to finding, for
each study point p and direction 6, the smallest distance d(p, 8) from p to the border or the interior
of a polygon in the direction 6.

*Correspondence to: Mika Murtojérvi, Vaadin Ltd, FI-20540 Turku, Finland.
TE-mail: mianmu2 @hotmail.com

Copyright © 2015 John Wiley & Sons, Ltd.

M. MURTOJARVT, O. S. NEVALAINEN AND V. LEPPANEN

1.2. Previous work

When the number of study points is small, the fetch length problem can be solved simply by iterating
over all line segments of the map for every study point and direction, recording the smallest found
distances for the study points in the given directions. However, when the number of both study points
and line segments of the polygons is large, this method is no longer efficient enough. Most published
algorithms for the fetch length problem therefore aim at limiting the number of line segments that
need to be examined. The present study also deals with this case where there are numerous study
points and line segments.

An algorithm that utilizes the tools available in geographical information systems (GIS) has been
applied for determining fetch lengths [4, 5]. While the algorithm has been described in some detail,
it is difficult to determine whether it uses any method for limiting the number of intersection com-
putations; that depends on the operation of the libraries that were used for clipping line segments
with polygons.

Interval trees [6] and sweep line technique [7] have been used for limiting the number of inter-
section computations. Both approaches are based on the assumption that the fetch lengths are
determined in the same directions for all study points. One can then rotate the map and point data
and, after the rotation, determine the lengths in the horizontal direction. Then, for determining
the fetch length for a point, the method based on interval trees performs an intersection computa-
tion for every line segment that intersects the horizontal line passing through the point. The sweep
line method restricts the number of intersection computations further by keeping the line segments
sorted in the horizontal direction. For a given study point, it is then only necessary to perform the
intersection computation for at most one line segment for each level of a balanced binary search
tree containing the line segments intersected by the current horizontal sweep line. The interval tree
method has been reported to compute fetch lengths faster than the method using GIS software even
when the distance between study points was decreased from 1000 to 25 m, a 1600-fold increase in
the number of points [6]. When the number of study points is large, the sweep line method has been
reported to be several times faster than the interval tree method [7].

One shortcoming of these methods is that they seem difficult to parallelize. In the interval tree
method, the queries could be easily performed in parallel, but building the interval tree is more
difficult. The sweep line method considers all study points and end points of the line segments
in the order of increasing y-coordinate. The tree structure is also updated at every end point of a
line segment.

Raster-based methods for the fetch length problem are also available [7, 8]. The inherent short-
coming of these methods is that the accuracy of the results depends on the resolution of the
rasterization.

In practice, a cell-based algorithm [3] has been found to be the most efficient published algorithm
for determining fetch lengths. When the number of study points is large, it has achieved fourfold
performance compared with the sweep line-based method. The speedup is even greater when this
number is small. The greater speedup in the latter case is to some extent explained by the fact that
the algorithm uses the same data structure for all directions: there is no need to rotate the map data.
In this approach, the map is divided into equal-sized cells by vertical and horizontal lines. For an
illustration of the fetch length problem and its cell-based solution, see Figure 1.

The objects stored in the cells are the line segments of the polygon borders. The preprocess-
ing step stores each line segment in all cells that it intersects. The result of the preprocessing
is a two-dimensional array of cells with each cell containing a list of line segments. The num-
ber of cells is chosen so that the expected number of segments in a cell is small. More precisely,
the numbers of cells in the horizontal and the vertical direction are cells, = [+/n(w/h)] and
cells, = [y/n(h/w)], where n is the total number of line segments in the input data and w and &
are the width and the height of the input area [3]. If the segments are short, there is approximately
one line segment per cell. Otherwise, the formula could be refined to take into account the lengths
of the segments. Nevertheless, the line segments are often distributed unevenly, and there may be
areas containing empty cells and cells containing several line segments.

Copyright © 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2015)
DOI: 10.1002/cpe

SPARSE RASTERIZATION FOR A GPU ALGORITHM

Figure 1. Determining directional distance for point p in one direction using a cell-based approach. The
cells with broken lines are examined, starting from the cell containing p.

The processing step determines the directional distances for the study points and is similar to the
preprocessing phase. Given a point p and a direction 6, the algorithm examines, starting from the
cell containing p, the cells intersected by the half-line originating from p and having direction 6. If
a cell is empty, the algorithm proceeds to the next cell intersected by the half-line. In a non-empty
cell, all line segments stored in the cell are examined for possible intersection with the half-line.
If one or more intersections are found inside the current cell, the distance computation is ready.
Otherwise, the algorithm proceeds to the next cell. The process of visiting the cells intersected by
a line segment or a half-line is called traversal or rasterization and is performed in the order of
increasing distance from the starting point. The pseudocode of the algorithm is given in Section 2.

The distance computations for different study points or directions are independent of each other
and can be performed in parallel. A simple GPU implementation of the algorithm has been reported
to significantly outperform a parallel implementation running on a quad-core CPU [9]. Nevertheless,
there are several factors that may limit the performance of the algorithm on a GPU.

Traversing empty cells requires very little arithmetic, but a memory access is needed in each
cell to find out whether it is empty. Memory accesses are then an obvious target for optimization.
The sparseness of the data can be exploited by examining only a part of the empty cells during
the processing phase. Both sorting and sparse techniques have been used, for example, in computer
graphics [10, 11], but for the cell-based distance determination algorithm, new variations of these
general techniques are required.

1.3. The operation of a graphics processing unit

Another factor that may limit the performance of an algorithm on a GPU is divergent control flow.
To illustrate the problem, consider as a concrete example the Radeon R9 280X GPU (AMD, Sun-
nyvale, CA, USA) that is used in most of the tests in this article. For a more detailed description of
the GPU or the almost identical Radeon 7970, see [12, 13] and [14]. The GPU consists of 32 com-
pute units (CU). Each compute unit contains one scalar ALU (Arithmetic and Logic Unit) and four
vector ALUs (VALU), each VALU containing 16 processing elements. The scalar ALU is used, for
example, for the branching decisions required by a program. The vector ALU is, from the program-
mer’s point of view, a 64-wide single instruction, multiple data (SIMD) unit, that is, an instruction of
the VALU applies the same operation on each element of a vector consisting of 64 (32-bit) values.
Because the VALU is physically only 16-wide, it performs each instruction in four parts.

The organization of the GPU is hidden from an OpenCL programmer; the use of vector instruc-
tions is handled automatically by the compiler. The typical execution model of GPU programs
(compute kernels) makes the process reasonably easy for the compiler. Namely, it is typical to apply
the same compute kernel for a large number of items, called work-items in OpenCL. It is then
straightforward to use the (logically 64-wide) SIMD unit for processing 64 work-items in parallel.
Such a block of work-items is called a wavefront. The only difficulty is that the compute kernel

Copyright © 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2015)
DOI: 10.1002/cpe

M. MURTOJARVT, O. S. NEVALAINEN AND V. LEPPANEN

may contain conditional statements that should be executed by some but not all work-items of the
wavefront. This can be handled by masking operations. Before entering a conditional block, the con-
dition is evaluated for all work-items, obtaining an execution mask. Then, the conditional block is
evaluated using vector instructions. As a result of the execution mask, only those work-items whose
condition is true will actually update any variables. This method allows the GPU to correctly exe-
cute conditional code blocks. From a performance point of view, they can still be problematic. In the
worst case, all but one of the work-items of a wavefront have been masked out of execution, leading
to a loss of performance. For more details, see [12].

Divergent control flow within a wavefront, also called wavefront divergence, can be a signifi-
cant problem for the cell-based distance determination algorithm. For some study points, it is only
necessary to find the first nonempty cell and process its segments to determine the distance. If no
intersection is found in the first nonempty cell, the process is repeated until an intersection is found
or the map border is reached. The number of cells that are traversed to find the first non-empty
cell also depends on the position of the point and on the direction. Finally, different nonempty cells
contain different numbers of line segments.

1.4. Plan of the work

Optimization of the cell-based fetch length algorithm for a GPU is studied in the present work. While
the algorithm is simple to implement, improving its performance using low-level and high-level
optimizations turns out to be more difficult than was expected. Indeed, many of our experiments
are unsuccessful. The main contributions of the article are a sparse rasterization algorithm for line
segments and a simple yet effective partial sorting method. The aim of the sorting is to make the
work-items of the same wavefront to access a similar set of cells, improving the use of cache mem-
ories and reducing the negative effects of wavefront divergence. In this work, it is assumed that
the fetch lengths are determined in the same directions for all study points. Otherwise, the sorting
algorithm would need to be refined to also consider the directions.

This article is organized as follows. Section 2 describes the studied problem and the initial imple-
mentation of the cell-based algorithm. Low-level performance tuning is discussed in Section 3. This
includes reducing unnecessary register usage and optimizing the memory access patterns of the algo-
rithm. A summary of the failed attempts to reduce the effects of wavefront divergence is also given.
A more comprehensive discussion of the attempts can be found in the Appendix. In Section 4, we
propose a sparse traversal algorithm and partial sorting of the study points. Results of performance
tests are summarized in Section 5. Section 6 concludes the paper.

2. DETERMINING FETCH LENGTHS

A cell-based algorithm for solving the fetch length problem is given in [3]. The initial GPU imple-
mentation of the algorithm is similar to that described in [9]. The rasterization algorithm used in
both the preprocessing and the processing phases of the algorithm is based on the algorithm by
Cleary and Wyvill [15].

The rasterization algorithm is the basis for sparse rasterization (Section 4.1) and is briefly
reviewed here. The algorithm keeps track of the indices (7, j) (the column and the row) of the cur-
rent cell. Initially, (i, j) is the cell containing the starting point p of the line segment or half-line.
The variables dx and dy contain the distances from p to the next points where the segment crosses
vertical and horizontal cell borders, respectively. If dx < dy, the rasterization next proceeds in the
horizontal direction. Then, i is incremented by px and dx by dx, where px = =£1 and dx is the
distance between two consecutive points where the segment crosses a vertical cell border. Similar
updates are done when the rasterization proceeds vertically. For an illustration of the rasterization
algorithm, see [15] or Section 4.1.

Because the preprocessing (building the cell-based acceleration structure) only needs to be per-
formed once regardless of the number of study points and directions, its performance is less
important than that of the processing phase. The focus of optimization is therefore on the processing
phase. For one study point p and direction 6, the processing is shown in Algorithm 1.

Copyright © 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2015)
DOI: 10.1002/cpe

SPARSE RASTERIZATION FOR A GPU ALGORITHM

Algorithm 1 Determining a directional distance [3].

procedure DIRECTIONALDISTANCE(Map m, Point p, Direction)
Initialize dx, dy, dx, dy, i, j, px and py using m, p and 0
minDist := oo; nearestSegment :=null; ready = false
numLines :=linesInCell(m, (i, j))
while not ready do
while numLines = 0 and inBounds(m, (i, j)) do
if dx < dy then
i:=i+4 px;dx :=dx + dx
else
Jj=Jj+py;dy:=dy+dy
numLines :=linesInCell(m, (i, j))

for all line segments in the cell (i, j) of m do
update minDist, nearestSegment and ready if necessary
numLines :=0
return getDistance(p, 0, nearestSegment)

The inner while-loop of the algorithm finds the next non-empty cell on the half-line originating
from p and having direction 6. The for-loop examines all line segments of the current cell (i, j)
for intersection with the half-line within the cell. If there are such intersections, the outer loop is
terminated by setting the variable ready to true. Otherwise, the outer loop is repeated in order to
find the next non-empty cell along the half-line. The process continues until an intersection is found
or the border of the map is reached.

The initial GPU implementation of the algorithm stores all line segments of all cells in one
linear array (segments), arranged so that the line segments of any particular cell are in consecu-
tive positions of the array. Another array (firstSegment) contains, for every cell, the index of
the first line segment of the cell in segments. The segments of a cell (i, j) are thus stored in
segments[firstSegment(i, j),..., firstSegment(i +1, j)—1]. The representation is compact,
but two memory accesses are required to test whether a given cell is empty.

Although the algorithm can be used when the directions 6 are different for different points, in
this article, the directions are supposed to be the same for all points. This corresponds to an actual
use case [4] and allows the sharing of some variables for all study points. Different directions are
handled using separate kernel launches. In the initial implementation, there are as many work-items
as there are study points. The compute kernel is then similar to Algorithm 1.

3. LOW LEVEL PERFORMANCE TUNING

Algorithm 1 was implemented as an OpenCL compute kernel. Low level performance tuning was
then done to identify unnecessary register usage and to rearrange the cell representation of the map
so that it can be accessed efficiently. The tuning was done on the level of OpenCL program code.
The effects of program code modifications are then not entirely predictable, because an attempted
optimization may already have been done by the compiler. A profiling and debugging tool (AMD
CodeXL) was used to obtain information on the resource usage of the compiled kernel.

3.1. The memory hierarchy of the graphics processing unit

Low level performance tuning depends on the characteristics of the particular GPU used for running
the algorithm. A simplified block diagram of the Radeon R9 280X GPU is shown in Figure 2. As
stated earlier, the GPU consists of 32 CU, each containing one scalar ALU (SALU) and four VALUs.

As for the memory hierarchy [12, 13], each CU contains general purpose registers, cache, and
LDS (local data share) memory. The 16 KiB read/write level 1 cache is shared among the four
VALUSs of the CU, as is the 64 KiB LDS memory. In contrast to the cache, the contents of the LDS

Copyright © 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2015)
DOI: 10.1002/cpe

M. MURTOJARVT, O. S. NEVALAINEN AND V. LEPPANEN

RAM (3 GiB)
| L2 cache (768 KiB)
I

| |
Compute Unit (CU 1) CU 32

| L1 cache (16 KiB)
I |

SALU VALU 1 VALU 4

) L]]
SGPR VGPR e o e |VGPR
(8 KiB) (64 KiB) (64 KiB)

| I
LDS memory (64 KiB)

Figure 2. The structure of the Radeon R9 280X GPU. Global data share (GDS) memory is not shown.
SALU, scalar Arithmetic and Logic Unit; VALU, vector Arithmetic and Logic Unit; LDS, local data share.

are explicitly maintained by the compute kernel. Each VALU also contains 256 vector registers
(VGPR) with a vector size of 64 32-bit values, for a total of 64 KiB of register space (256 KiB
in a compute unit containing four VALUSs). Similarly, a SALU contains 8 KiB of scalar registers
(SGPR). Shared among the CU, there is 768 KiB of level 2 cache. Finally, the board contains 3 GiB
of global memory.

The memory spaces differ greatly in performance. The global memory has the lowest bandwidth
(288 GB/s), followed by the 1.2 and L1 caches and the LDS memory. The registers can be accessed
much faster than any other memory, with a total bandwidth of 27,000 GiB/s [13]#. This range of
bandwidth needs to be taken into account in efficient implementations of algorithms.

The resources of a CU or a VALU are shared among all wavefronts running on the same unit.
Low level performance tuning then has possibly conflicting goals: Resource requirements should be
reduced to allow running a greater number of active wavefronts, but the performance characteristics
of the different memory spaces need to be taken into account.

3.2. Improving kernel occupancy

Kernel occupancy is defined as the ratio of the number of active wavefronts and the maximum
number of active wavefronts supported by the device [14]. On a GPU, it is usual that there are more
active wavefronts than units executing them. The active wavefronts then run in a time-interleaved
fashion,that is, the hardware repeatedly switches the wavefronts that are currently running. This can
hide some of the latency associated with memory accesses [14] because it may be possible to run
another wavefront when one or more wavefronts are waiting for a memory access. A greater number
of active wavefronts gives better possibility for covering the latency.

Reducing the register usage. On the Radeon R9 280X, three resources may affect the kernel occu-
pancy: vector registers (VGPRs), scalar registers (SGPRs) and LDS memory [12, 14]. The initial
implementation did not use LDS memory, leaving the required numbers of VGPRs and SGPRs as
optimization targets. Using the AMD CodeXL profiling tool VGPRs were found to be the main lim-
iting factor: The kernel required 40 registers, and at most, six wavefronts could then run on a vector
ALU. The maximum supported number of wavefronts per VALU is 10 [13], so the kernel occupancy
was 60%.

The guide does not state the bandwidths for the memory spaces of the R9 280X. However, Radeon 7970 is identical to
R9 280X except for clock speeds. The R9 280X used in this article has 1500 MHz memory clock and 1100 MHz clock
speed for the compute units. Because of hardware failure, the performance tests of this section were run on a Radeon
7950, whereas the R9 280X is used in Section 5. The GPUs differ in clock speeds and the number of CU (28 in Radeon
7950).

Copyright © 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2015)
DOI: 10.1002/cpe

SPARSE RASTERIZATION FOR A GPU ALGORITHM

Because the directions 6 are the same for all study points, several variables (dx, dy, px, py) in
Algorithm 1 are also the same for all points. Their values can be stored in the SGPRs instead of
the VGPRs. This was done by precomputing these four values using the CPU and giving them as
parameters to the kernel. Other possibilities for reducing register usage were also found in the initial
implementation. For instance, contrary to the pseudocode, the variable nearestSegment was not
a reference to a segment but contained all four coordinates of the end points of the segment. By
reducing the VGPR usage, the kernel occupancy was improved to 80%. This had a significant effect
on performance: The running time of a test case was reduced from 4.5 to 3.4 s. Further reducing
VGPR usage did not improve performance, because the number of active wavefronts was limited to
8 also by the required scalar registers. It is also possible to use the LDS (or global memory) instead
of registers for some variables to further increase kernel occupancy. However, these memory spaces
are slower than the registers, leading to a loss of performance when frequently used variables are
stored in them.

3.3. Arranging the data

As told before, our initial implementation stores the map using two arrays, segments and
firstSegment. Two memory accesses (firstSegment(i, j)and firstSegment(i +1, j)) are
required to determine whether a particular cell is empty. Because ca. 84% of the cells were empty
in the test map, the memory accesses of the empty cells require a considerable amount of time. By
using slightly more memory to store the map data, the number of memory accesses was reduced to
one for an empty cell. Now, a third array numSegments contains the number of line segments in
each cell.

A two-dimensional array may not be an ideal data structure for cell traversal (the inner while-loop
of Algorithm 1) on a GPU. GPUs contain dedicated hardware for the processing of image data, and
OpenCL has a data type that can use this hardware [14]. The OpenCL image data type is suitable for
storing the contents of the two-dimensional arrays, firstSegment and numSegments. Because
there were only a small number of line segments in each cell (at most 59 and on average six segments
in a non-empty cell), 16-bit integers were used in the structure numSegments. In the case study,
the use of OpenCL images improved performance, but only when the arrays numSegments and
firstSegment were stored as two separate images.

The initial implementation checked after each rasterization step that the current cell is still in the
map area. The bounds-checking can be eliminated by surrounding the map with a thin strip of values
that do not occur in the actual map area [15]. When OpenCL images are used, even indexing outside
this augmented map can be allowed. An appropriate sampler [16] then returns the border value.

3.4. Wavefront divergence

As stated earlier, the Radeon R9 280X processes the work-items in groups of 64 items, called wave-
fronts [12]. The work-items of a wavefront share a single program counter and hence execute the
same sequence of instructions. Divergent control flow, such as conditional statements or loops with
varying numbers of iterations, may lead to poor utilization of the hardware as some of the work-
items of a wavefront need to be masked out of execution. Control flow divergence within a wavefront
occurs in all three loops of Algorithm 1, because their iteration counts depend on the location of the
study point processed by the work-item. Also the if-else block needs to execute both the if-branch
and the else-branch if the wavefront contains work-items choosing the if-branch and work-items
choosing the else-branch. This cannot happen when the rasterization direction is horizontal or ver-
tical but for other directions the location of a study point within its cell affects the choices made in
the rasterization loop. Compared with the loop, the divergence caused by the if-else block is minor:
In the worst case, the amount of work required for the if-else block is twice the amount of work that
would be required if the work-items were fully independent threads.

Unfortunately, the attempts to improve performance by reducing wavefront divergence were
unsuccessful. The techniques that were tested include

(1) replacing a study point with a new one when its processing is carried out,

Copyright © 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2015)
DOI: 10.1002/cpe

M. MURTOJARVT, O. S. NEVALAINEN AND V. LEPPANEN

(2) proceeding the rasterization for multiple study points instead of only one in Algorithm 1, and
(3) low-level tuning for if-else blocks.

These techniques are described and analyzed in more detail in the Appendix, but here is a short
summary of the results. The first and second methods require that one work-item processes multiple
study points. The rationale behind the first method is that after each iteration of the outer loop, the
number of active work-items in a wavefront decreases as the processing becomes ready for some
study points. This causes the later iterations to underutilize the SIMD units of the GPU. However,
the first iteration of the outer loop tends to do much more work than the other iterations. Then,
replacing the finished study points with new ones worsens the divergence problem in the inner
loops as the wavefronts contain study points in both the first and in the later iterations of the outer
loop. The second method is based on the knowledge that the sum of iteration counts of several
independent points tends to be less variable than the iteration counts themselves. Implementing
the method required using the LDS memory to gain fast indexed access to the variables of the
different study points. Because the LDS is small, kernel occupancy was reduced, leading to a loss
of performance. The effect of the low-level modifications of the if-else block was too small to
measure reliably.

4. SPARSE RASTERIZATION AND PARTIAL SORTING

Traversing empty cells can require a significant amount of time in the cell-based algorithm. When
most cells of the map are empty, the performance of the rasterization can be improved by skipping
over several empty cells in a rasterization step. This requires a revised cell traversal algorithm and a
preprocessing step that computes the skip distances for the cells. The skip distances must be chosen
so that all non-empty cells along a half-line are traversed. On the other hand, the distances can be
conservative so that some empty cells are still traversed.

4.1. Sparse rasterization algorithm

The rasterization algorithm by Cleary and Wyvill [15] is used as the basis for the proposed sparse
rasterization algorithm (SRA). As in the original algorithm, the variables dx and dy give the dis-
tances from the starting point of the half-line to the next vertical and horizontal cell borders, both
measured along the half-line. The integer-valued variables i and j contain the x- and y-coordinates
of the current cell. It is assumed that the map coordinates have been scaled so that all x-coordinate
and y-coordinate lie in the ranges [0, cells, + 1] and [0, cells, + 1], respectively. A cell with
coordinates (i, j) then contains a point (x, y)ifi <x <i+landj <y <j+1.

If it is known that the next d cells are empty, these cells can be traversed without performing
additional memory accesses. When run on a GPU, the traversal might still be inefficient because
of wavefront divergence: If the work-items of the same wavefront require different numbers of
rasterization steps, the running time of the wavefront is determined by the work-item requiring the
greatest number of steps. Therefore, the rasterization algorithm is modified to proceed by multiple
cells in one step. In the distance map of SRA, each empty cell of the map stores a number D
indicating that the rasterization may proceed from the cell until D horizontal or vertical transitions
have been performed, whichever comes first (Figure 3).

This means that at the rasterization step, either dx and i are incremented by D - dx and D - px
or dy and j are incremented by D - dy and D - py, respectively. It remains to determine which of
these cases applies and how to update the other two variables.

The smallest distance from the study point p to the first cell (on the half-line) that is horizontally
D cells away from the current cell is dx + (D —1)dx. A similar formula applies for the first cell that
is vertically D cells away from the current cell. The rasterization meets the cells in an increasing
order of their distance from the starting point, so the number of horizontal transitions is D exactly
if dx + (D —1)dx < dy + (D — 1)dy. Otherwise, the rasterization proceeds vertically by D cells.
The number of transitions in the other direction is given by the following lemma.

Copyright © 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2015)
DOI: 10.1002/cpe

SPARSE RASTERIZATION FOR A GPU ALGORITHM

Y0¥

Y

Figure 3. Sparse rasterization in a current cell containing the distance D = 3. Rasterization may proceed
directly to the nearest cell (bolded cell on the right) that is not contained in the area that is known to be
empty (the bolded big square). The distances of other cells than the current cell are not shown.

R

Lemma 4.1
Suppose that a sparse rasterization step moves horizontally by D cells, where D is the distance
stored in the current cell. It then moves vertically by D’ = [(dx + (D — 1)dx — dy)/dy] cells.

Proof

Consider the operation of the non-sparse rasterization algorithm, starting from the current cell and
proceeding until D horizontal transitions have been done. Let dx’ and dy’ stand for the values of the
variables dx and dy in the target cell and let dx” and dy” be their values before the last transition in
the non-sparse rasterization. Because the last transition is horizontal, the value of the variable dy is
the same before and after the last transition, dy” = dy’ = dy + D’-dy. The value of the variable dx
before the transition is dx” = dx’ —dx = dx + (D — 1)dx. The non-sparse rasterization algorithm
makes a horizontal transition if and only if the current value of dx is no greater than that of dy.
For the transition entering the target cell, this means that dx” < dy”, that is, dx + (D — 1)dx <
dy + D’ - dy. Solving for D’ gives that D’ = (D — l)g—; + (dx — dy)/dy. It is also clear that
D’ is the smallest integer satisfying the inequality, for otherwise the variable dy would have been
incremented when it was greater than dx + (D — 1)dx. Thus, D" = [(D — l)g—; + (dx —dy)/dy],
which is equivalent to the lemma. O

A similar formula can be derived for the case where the number of vertical transitions is D. The
rasterization step of SRA is shown in Algorithm 2.

Algorithm 2 Sparse rasterization step in a cell with distance D.
dx_cand :=dx + (D — 1)dx
dy_cand :=dy + (D —1)dy
inc_x_steps :=inc_y_steps =D
if dx_cand < dy_cand then
inc_y_steps = [(dx_cand — dy)/dy]
else
inc_x_steps = |(dy_cand —dx)/dx + 1]
i:=i+ px-inc_x_steps;j:=j 4 py-inc_y_steps
dx :=dx + 0x -inc_x_steps;dy :=dy + dy -inc_y_steps

Algorithm 2 is slightly asymmetric with respect to the formulas for computing inc_x_steps and
inc_y_steps. This follows from the condition dx < dy in the non-sparse rasterization step of
Algorithm 1. The other steps of Algorithm 1 are the same as before.

Copyright © 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2015)
DOI: 10.1002/cpe

M. MURTOJARVT, O. S. NEVALAINEN AND V. LEPPANEN

4.2. Preprocessing the map

When SRA is used, a preprocessing step is required for computing the distance information for each
cell. Here, a distance map that is the same for all directions is used. The number D stored in a cell is
the minimal number of vertical, horizontal, and diagonal transitions between neighboring cells that
must be made in order to reach a non-empty cell starting from the given cell.

The computation of the distance map starts by an initial pass that finds all distance-0 (non-empty)
cells. These cells are stored into a queue’®. All other cells, including the border cells, are given the
value oo. The distance-1 cells are then those neighbors of the distance-0 cells that do not themselves
have distance 0. They are now inserted into another queue, making it easy to find the distance-2 cells.
The process is repeated, with increasing distances, until all cells have been given a finite distance.
This preprocessing step is similar to the breadth-first search (BFS) algorithm [17]. The difference is
that in the BFS algorithm, there is one starting node that is given the distance 0, whereas in the map
preprocessing, there are several distance-0 cells. Otherwise, the two algorithms are almost identical
when one considers the cell-based map as a graph whose nodes (cells) are connected to all (up to
8) their neighboring cells that share either a borderline (the vertical and horizontal neighbors) or a
border point (the diagonal neighbors) with the cell.

To reduce the amount of memory operations, the distances and the numbers of line segments of
the non-empty cells can be stored into the same array. This can be done by using positive numbers
to represent distances and negative numbers to represent the numbers of line segments in the non-
empty cells. The value O is stored into the border cells to indicate that rasterization cannot proceed
any further. When the OpenCL image data type and a suitable sampler are used, bounds checking
can still be avoided.

4.3. Partial sorting

When the distances are determined in the same directions for all study points, one can expect points
that are geometrically close to each other to require accessing the same or almost the same cells.
The fetch lines originating from such points may also end in the same or nearby objects, which leads
to similar iteration counts in the loops of Algorithm 1. This means that inefficiency caused by both
memory accesses and by wavefront divergence can be reduced by having the wavefronts consist of
points that are close to each other. The work-items (here corresponding to points) are assigned to
wavefronts in a sequential order on the Radeon R9 280X [13], that is, the first 64 work-items form
the first wavefront, and the rest of the work-items are assigned to wavefronts in a similar manner.
The geometrical proximity of the points belonging to the same wavefront can thus be achieved by
sorting them before any other processing is carried out. However, preprocessing must be fast to
improve the overall performance.

A simple cell-based sorting method is used here. A separate initially empty list of points is stored
in each cell. Then, the set of study points is scanned, and each point is assigned to the list of the cell
in which the point lies. Finally, the lists are merged to form the sorted list of points.

The cells are traversed in a zigzag order when merging the point lists. The first row of cells
is traversed from left to right, then the second row from right to left, and so on. Compared
with lexicographic order, this order reduces the occurrence of cases where two points are close
to each other in the sorted order but far from each other geometrically. In the lexicographic
order, the rightmost cell of a row would be followed by the Ileftmost cell of
the next row, leading to cases where points belonging to the same wavefront are
horizontally far from each other. The sorting is called partial because there is no specific order
for points belonging to the same cell. The sorting can use a different division of the input
area into cells than the map, because the optimal sorting cell size may depend on the density
of the study points.

$The data structure is called a queue just to emphasize the similarity to the breadth-first search algorithm.

Copyright © 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2015)
DOI: 10.1002/cpe

SPARSE RASTERIZATION FOR A GPU ALGORITHM

4.4. An optimization for a large number of study points

The cell-based fetch length algorithm has been designed so that it can determine a distance for a
point in any direction. However, if the distances were needed only in the horizontal direction, the
procedure could be made more efficient. The rasterization algorithm then only needs to move in
one direction, eliminating the need for several variables and possibly increasing kernel occupancy.
Finding out whether a half-line and a line segment intersect, and if so determining the intersection
point, is also simpler in the case where the half-line is horizontal. When sparse rasterization is used,
the distance map can easily be constructed to contain the exact skip distances, eliminating the need
for traversing almost all empty cells. The distance map computation can be implemented as a right-
to-left scan of each row of the cell representation of the map. A non-empty cell has a distance zero,
and for an empty cell, the distance is increased by one compared with the right neighbor of the cell.

In practice, the fetch lengths may be required in the same directions for all study points, but most
of the directions are neither horizontal nor vertical. It is then necessary to rotate the map so that
in the rotated map the distances are determined horizontally, the fetch lines extending right from
the study points. As the cell representation of a rotated map differs from the representation of the
original map, it needs to be rebuilt for each direction. The same is true for the skip distance map. The
execution times of these procedures depend on the characteristics of the map, but not on the number
or location of study points. Hence, when the number of study points is large enough, performing the
fetch length determination on a rotated map can be faster than on the original map.

5. PERFORMANCE TESTING

Performance testing was done for different variants of the fetch length determination algorithm
on a computer with 8 GiB memory, Intel Core i7 3770K CPU (Santa Clara, CA, USA) and AMD
Radeon R9 280X GPU. The operating system was 64-bit openSUSE 12.3 Linux. A map of a small
portion of the Finnish Archipelago was used as input data. The original map contained 1278 islands
represented as polygons with a total of 53,301 vertices. Because of the rather small size of the input
map, larger semi-artificial maps were obtained by tiling several copies of the original map next
to each other. In all cases, the same number of copies was tiled in the horizontal and the vertical
direction. The preprocessing steps (building the cell structure, sorting, and distance map generation
for sparse rasterization) were implemented as serial algorithms running on the CPU.

The cell-based algorithm was also implemented as both a serial and a parallel algorithm running
on the CPU. The algorithm has been reported to outperform the plane sweep algorithm [3] which,
in turn, is faster than the algorithm based on interval trees [7]. The method using GIS software [4,
5] is also known to be much slower than the interval tree method [6]. The sweep line and interval
tree methods are also difficult to fully parallelize. For these reasons, only the cell-based method was
implemented for the performance testing.

For the set of study points, two generation strategies were tested. The first strategy chooses the
locations of the study points randomly in the map area, with uniform distribution. This can be
expected to be a difficult case for the performance of the cell-based algorithm, because memory
accesses are highly scattered. Another strategy was to place the points in a n % m grid covering
the entire map area and with n and m chosen so that the total number of points (nm) was as
desired. It was further preferred that n and m are relatively close to each other: in all tested cases
max(n/m,m/n) < 2.5.

5.1. Tests with fixed sparseness

In the first set of tests, all maps were almost equally sparse, because they were obtained by tiling the
same map, and the same formula for computing the number of cells was used. The computations
were carried out for 48 directions for every study point, using a separate run of the compute kernel
for the different directions. The running times of the different kernels are shown in Table 1. Note
that non-kernel times will be discussed separately and are not included in the table. In tests with

Copyright © 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2015)
DOI: 10.1002/cpe

M. MURTOJARVT, O. S. NEVALAINEN AND V. LEPPANEN

Table I. Kernel running times (in seconds) of determining fetch lengths in 48 directions. The first two columns

give the numbers of polygon vertices and study points. G indicates that the study points were placed in a

grid, in other cases, the locations of the study points were random. ‘CPU serial’ is an unoptimized serial

implementation of the algorithm. ‘Init.” refers to the initial GPU implementation of the algorithm, ‘Occ.’ to

its occupancy-optimized version. ‘2buf’ uses a separate table containing the numbers of line segments in the

cells. ‘Im.” is like “2buf’ but uses OpenCL images. ‘SRA’ uses sparse traversal, ‘Sort’ presorts the data, and
‘So+SRA’ uses both presorting and sparse traversal.

Vertices Points Serial CPU Init. Occ. 2buf Im. SRA Sort So 4+ SRA
53,301 1,000,000 12.2 0.23 0.20 0.19 0.19 0.12 0.06 0.05
53,301 5,000,000 58.9 1.16 1.02 0.90 0.92 0.56 0.27 0.16
213,204 1,000,000 16.8 0.32 0.29 0.26 0.26 0.17 0.09 0.07
213,204 5,000,000 83.8 1.57 1.39 1.25 1.26 0.84 0.29 0.23
852,816 1,000,000 26.3 0.53 0.54 043 037 0.28 0.14 0.09
852,816 5,000,000 130 2.60 2.59 2.09 1.81 1.38 0.74 0.33
3,411,264 1,000,000 37.9 0.84 0.85 0.71 0.54 0.35 0.20 0.12
3,411,264 5,000,000 188.3 4.10 4.13 344 253 1.76 0.74 0.43
3,411,264 25-10° 966 20.4 20.5 17.1 12.5 8.54 2.39 1.63
3,411,264 100 - 106 — 81.4 81.9 683 499 39.1 7.00 4.75
53,301 1,000,000 (G) 10.3 0.11 0.097 0.088 0.090 0.072 0.060 0.048
53,301 5,000,000 (G) 50.0 0.36 0.33 0.30 0.30 0.26 0.19 0.15
3,411,264 5,000,000 (G) 82.1 1.12 0.99 0.93 0091 0.54 0.67 0.44
3,411,264 25-10 (G) 400 4.53 3.90 3.60 3.60 2.34 2.41 1.66
3,411,264 100 -10° (G) — 14.7 12.6 11.8 11.7 7.90 7.00 4.77

GPU, graphics processing unit; SRA, sparse rasterization algorithm.

more than 10 million study points, memory transfers from the GPU to main memory were omitted
because there was not enough main memory to store all the results. The CPU version was also not
tested in these cases.

The CPU versions were mainly intended as a starting point for developing the GPU compute
kernels. They were implemented in C language but were less optimized than the GPU versions. As
a result, the performance difference between the serial CPU implementation and the initial GPU
implementation was greater than expected. A parallel version of the CPU algorithm was also tested
(results not shown in the table). When using random study point data, it was found to be four to five
times faster than the serial version on the quad-core CPU with Hyper-Threading, capable of running
eight threads simultaneously. With grid data, the parallel CPU version was about three times faster
than the serial version.

The performance difference between the different GPU compute kernels depended somewhat on
the location generation strategy of the study points. For random data, the occupancy optimizations
(‘Occ.’(Section 3.2)) had very little and sometimes negative effect on performance, whereas with
grid data these optimizations slightly improved performance. Using a separate buffer (‘2buf’) for
storing the numbers of line segments in the cells improved performance, since only one memory
access was then needed to determine whether a given cell is empty. Using the OpenCL image data
type (‘Im’.) had a positive effect when using random data, but with grid data the benefit was very
small. Sparse rasterization (‘SRA’) reduced the number of memory accesses and rasterization steps,
leading to better performance with both datasets. The sparse rasterization step is, however, more
complicated than that of the original rasterization, and in a dense map the method can have a negative
effect on performance. For a worst case test, the distances of the nonempty cells were artificially
setto D = 1. Then, in a test case the implementation using SRA required 20% more time than the
non-sparse version. The difference can be attributed to the increased complexity of the rasterization
step, since the kernel occupancy was the same (80%) in both cases and both methods traversed the
same cells.

The greatest improvement in performance was obtained by sorting the study points. For the grid
data most of the benefit was already achieved by the sorting caused by the point generation method:
the study points were sorted in a lexicographic order, with a horizontal row of points being consec-
utive in the order. The partial sorting (’Sort’) did have a positive effect on performance with both

Copyright © 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2015)
DOI: 10.1002/cpe

SPARSE RASTERIZATION FOR A GPU ALGORITHM

data sets but for randomly chosen study points the benefit was far greater than for grid data. Sort-
ing was also the only method whose performance improved considerably, i.e., processing time per
study point was decreased, when the number of study points was very large (greater than 5 - 10°).
The cells used in the sorting corresponded to blocks of cells in the map. It was required that there is
on average at least a user-specified number N, of study points in a sorting cell. This was achieved
by merging the sorting cells so that there were cells,/n and cells, /n cells in the horizontal and
the vertical direction. For the test case involving the largest map and 5 million study points, best
performance was achieved by merging the cells so that there are at least 16 points / cell. The same
number N, = 16 was used in all tests. The merging was only done for the cell-based sorting, i.e.
the cell representation of the map was unaffected.

Using sparse rasterization in addition to sorting further reduced the kernel time. With the largest
map the preprocessing time required for building the distance map was 0.18 seconds (note that this
is non-kernel time and is not included in Table I). Sparse rasterization then improved performance
compared to only sorting the data when at least 5 million study points were used, but with 1 million
points, the preprocessing time exceeded the difference (0.10 s) in kernel running times. The partial
sorting required 0.57 seconds for 5 million study points. Building the cell-based representation of
the largest map required ca. 0.7 s. All preprocessing phases used single-threaded implementations
running on the CPU. Transferring data between the main memory and the global memory of the
GPU required 0.3 s for 5 million study points and a map with 3.4 million vertices.

The optimization for a very large number of study points, that is, computing the distances in a
horizontal direction and rotating the map when necessary (Section 4.4), was only tested with 10
million study points and in one horizontal direction. In that case, the method was ca. 40% faster
than the generic implementation when sorting and sparse rasterization were used. However, when
the distances are determined in 48 directions, the method using rotation would need to build 48
cell representations of the map! instead of only one for the generic implementation. The distance
map computation also needs to be performed separately for each direction to get a map that allows
skipping as many empty cells as possible. One may then calculate that with 100 million study
points and 48 directions (Table I), a 40% speedup would save about 1.36s. Because 47 additional
cell structures and distance maps need to be built, they would need to be built in less than 0.029 s
for one direction, while the actual time using a serial implementation was more than 0.8 s. This
might be possible with a parallel GPU implementation, but the total speedup taking into account
the additional preprocessing times would be minor, and a full implementation of the method was
therefore omitted.

5.2. The impact of sparseness

To study how sparseness affects the performance of the different variations of the cell-based
algorithm, the formula for computing the number of cells was modified into cellsy(x) =
[Voa-n(w/h)] and cellsy (o) = [/o-n(h/w)], where w and & are the width and the height of
the map. In other words, compared with the original formula, the total number of cells was multi-
plied (approximately) by the expansion factor «. In all tests, there were 10 million randomly chosen
study points and 3.4 million vertices in the map. The results of this test are shown in Figure 4.

As expected, sparse rasterization is most useful when the map has large empty areas, correspond-
ing to the tests with a large value of &. When used together with the partial sorting, up to 45-fold
performance compared with the initial implementation is achieved when o = 7.5. Sparse rasteri-
zation alone yields up to 13-fold performance and partial sorting alone up to 11-fold performance
compared with the initial implementation. At lower expansion factors, partial sorting improves
performance more than sparse rasterization, and in all tested cases, partial sorting with sparse traver-
sal is at least as efficient as sorting alone. The use of OpenCL images without sorting or sparse
rasterization gives at most 2.9-fold performance compared with the initial implementation.

IIn our test cases this could be reduced to 12 because the same map could be used for two vertical and two horizontal
directions. Distance maps are still required for every direction.

Copyright © 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2015)
DOI: 10.1002/cpe

M. MURTOJARVT, O. S. NEVALAINEN AND V. LEPPANEN

y
i

Perf. (rel. to self at o

Perf. (rel. to self with same)
g |

0 T T T T T T 1 T
01 2 3 4 5 6 7 8 o 1 2 3 4 5 6 7 8

Expansion factor a Expansion factor a

Figure 4. The impact of sparseness on the performance (Perf.) of the different methods. The dashed lines

represent methods using sparse rasterization (triangle: SRA, double triangle: SRA + sorting), solid lines

non-sparse versions (square: initial, tilted square: OpenCL image, circle: sorting). Left: The performance of

each method compared with itself with expansion factor « = 1. Right: The performance of each method
compared with the initial implementation.

The tests indicate that the initial implementation performs best when the number of cells is
slightly reduced (the left panel of Figure 4). It is then 41% faster (when o = 0.5) than with the
original number of cells. The version using OpenCL images without sorting also performs best with
a = 0.5, but it only gains 8% performance compared with using ¢ = 1. The sparse rasterization
or sorting alone performs best when o« = 1, but when they are used together, best performance is
achieved with @« = 2.5. For all methods, the expansion factor has a significant effect on perfor-
mance: The sparse methods prefer a high expansion factor, the non-sparse methods, a relatively low
expansion factor. However, even with expansion factor 0.1, sparse rasterization was as efficient as
the initial implementation or the version using OpenCL images alone.

6. CONCLUSIONS

An algorithm [3] for determining directional distances was studied to improve its performance on
a GPU. Successful low-level optimization included reducing register usage to improve kernel occu-
pancy, reducing the number of memory accesses in empty cells, and using the OpenCL image data
type. On the other hand, many attempts to reduce the negative effects of wavefront divergence were
unsuccessful. One of these decreased kernel occupancy while another one replaced the finished
study points with new ones to reduce the occurrence of cases where some work-items of a wavefront
are idle for the entire iteration of the outer loop of the algorithm. However, this had a negative effect
on the divergence in the inner loops. Using different kernel invocations for the different iterations
of the outer loop increased non-kernel time, leading to reduced overall performance.

The greatest performance increase was achieved by partially sorting the study points before deter-
mining the distances. The sorting was designed so that geometrically close points tend to be close
to each other in the sorted order. Because geometrically close points can be expected to require a
similar sequence of cells to be traversed, the sorting can improve cache hit rate and reduce wave-
front divergence. The sorting had the greatest positive effect on performance when the study points
were initially in a random order, but for study points located in a grid improvement by sorting was
still observed.

Sparse traversal improved the performance of the algorithm by skipping over several empty cells
in a rasterization step. While the effect of sparse traversal was in general smaller than that of sorting,
the method was equally useful for both grid and random data. The best performance was achieved
by using both partial sorting and sparse traversal.

A simple distance map that is the same for all directions was used for the sparse traversal. The
skip distances could be further increased if a direction-specific distance map was used instead.
Computing several maps increases the preprocessing time, and a parallel implementation for this
preprocessing would then be necessary.

Copyright © 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2015)
DOI: 10.1002/cpe

SPARSE RASTERIZATION FOR A GPU ALGORITHM

An area for further research is applying the sparse rasterization and the sorting methods to
other problems. A problem similar to fetch length determination has been studied when simulat-
ing wireless communication channels [18]. Intersection problems [1], proximity queries [19], and
point-in-polygon tests [20] are examples of problems where sorting or sparse techniques could also
be useful. However, the required preprocessing steps limit the usability of these techniques to cases
where the same cells are accessed frequently.

APPENDIX A

The attempts to reduce the negative effects of wavefront divergence were briefly discussed in
Section 3.4. Here, the reasons for why the methods were not successful are studied in more detail.
Because of hardware failure, the tests of this section were done on a Radeon 7950 instead of the
Radeon R9 280X. The cards use the same graphics processing unit (GPU), but on the Radeon 7950,
only 28 of the 32 compute units are enabled, and the clock speed is lower.

A.1. Low level divergence optimization

Low level divergence optimization methods include replacing if-blocks with functionally equivalent
code using no conditional statements but using conditional statements when they can prevent the
evaluation of significant code segments for the entire wavefront.

The first optimization can be used for the if-else block of Algorithm 1. Because the test dx < dy
has the value O or 1, the if-branch can be replaced by i := i+ px-(dx < dy);dx := dx+0x-(dx <
dy). The else-block can be modified similarly. In this modified rasterization step, both the if-branch
and else-branch are always evaluated. However, the arithmetic in the branches is very simple, and
in most cases, both branches are evaluated also in the original algorithm: The evaluation of a branch
is only avoided if no work-items in a wavefront take that branch. In practice, the effect of this
change on performance was minor. In some cases, small performance improvements (up to 1.5%)
were consistently seen, but in other cases, there was no or slightly negative change in performance.
Other attempts to deal with this source of divergence were even less successful, causing a loss of
performance because of using a slower memory space (LDS) than the registers to gain indexed
access to variables such as dx and dy.

The second optimization was used in the intersection detection test that consisted of two phases.
In a majority of cases, the first phase was already sufficient for establishing that the half-line does not
intersect the current line segment. It was then faster to return the result (that there is no intersection)
than to compute the result of the second phase. Other parts of the algorithm, such as the determina-
tion of an intersection point, were similarly tuned by experimentation to get the best performance.
The variants of intersection tests that were found to perform best were used in all performance tests
of this article, that is, they were not re-tuned for the different performance tests.

A.2. The outer loop

An iteration of the outer while-loop of Algorithm 1 finds the next non-empty cell and tests all
segments of the cell for intersection with the half-line. The process continues until an intersection
is found or the border of the map is reached. In the case study, the number of iterations of the outer
loop ranged from 1 to over 50. In 56% of cases, at least two iterations were required and at least
five iterations were required in 8% of cases. Low utilization of the SIMD units can then be expected
after the first iteration.

A potential solution to the divergence problem of the outer loop has been used in path tracing [21].
It can be applied to the fetch length determination problem by using less work-items than there are
study points. When a study point has been processed, a new point takes its place. Several different
implementations of the idea are possible:

(1) The variables for all points can be initialized and stored in global memory as a preprocessing
step.
(2) The initialization can be done when the processing of a new study point starts.

Copyright © 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2015)
DOI: 10.1002/cpe

M. MURTOJARVT, O. S. NEVALAINEN AND V. LEPPANEN

(3) The set of points processed by a work-item can be determined before execution.

(4) The set of points processed by a work-item can be determined dynamically by using global or
local memory atomic operations.

(5) If a work-item processes a small number of study points, their variables can be stored in a fast
memory space so that switching to a new point can be done effectively.

Unfortunately, all implementations of the aforementioned variations led to worse performance
than the initial implementation. A possible reason is that the first iteration of the outer loop takes
more time than the other iterations. When a new study point takes the place of a finished study
point, it begins its first iteration. Because of the SIMD execution, the other work-items are forced
to proceed at the same slower rate as the work-item processing the new study point. To explore the
reasons for the disappointing results of the experiments, a closer look at the execution of the parallel
implementation is needed.

A.2.1. Modeling the execution time. There are two difficulties in developing a model for the running
time of Algorithm 1 on a GPU: the effects of SIMD execution and global memory accesses. For
arithmetic operations and register—register transfers, it is reasonable to assume that the execution
time of a wavefront does not depend on the number of active work-items, because the operations are
performed in parallel for the wavefront. The access to global memory, however, is shared among all
execution units of the GPU. On the Radeon 7950, the bandwidth of the global memory is 300 bytes
in clock cycle [13]. There are 1792 processing elements on the GPU, so it is possible to saturate the
memory bus even if many work-items are idle. Once the memory bus is saturated, the time taken
by a memory-bound wavefront is expected to grow almost linearly with the number of active work-
items, because eventually all of them need their data from the global memory. A further difficulty
originates from the two-level cache memory hierarchy. Instead of attempting to model the effects of
the memory system, two highly simplified models are used to study whether the first iteration takes
more time than the other iterations. If this is the case, replacing finished points with new ones can be
expected to reduce performance because of wavefront divergence within the inner loops. Otherwise,
it is possible that the observed reduction of performance resulted from an insufficient exploration of
the different implementation choices.

Model 1: The time taken by n active work-items is supposed to be directly proportional to the
number 7. This model is best suited for a single-core CPU, but if the number of work-items is large,
the parallel nature of the GPU can essentially be ignored. The model is then a simplification of the
case where global memory accesses limit the performance.

Model 2: The time required for a task is supposed to be directly proportional to the number of
wavefronts regardless of the numbers of active work-items in the wavefronts. This model is suitable
for a case where only SIMD execution limits performance. The model does not take into account
the divergence within the inner loops. Further tests are therefore performed to bound the degree of
divergence in the inner loops.

For Model 1, suppose that the first iteration of the outer loop requires #; and the other iterations ¢,
time. A study point requiring i iterations then takes t = t; + (i — 1)z, time to process. Let p; be the
probability that exactly i iterations of the outer loop are required for a study point. Then, according
to Model 1, the expected time required for a study point is [22]

Imax I'le
T =E@) =Y (pi- (1 +G—Dn)=tn+nYy (pili—1). (1)
i=1 i=2

where Ip,x is the maximum number of iterations required for any study point. When there are n
points and w points can be processed in parallel, multiplying the right-hand side of Equation (1) by
n/w gives the expected total execution time.

The times ¢; and #, can be determined by first running only the first iteration of the outer loop.
This gives #; for the given input data, hardware, and number of study points. In another test, the
algorithm is run until completion to obtain the total execution time Tt((,}). The estimates for the

Copyright © 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2015)
DOI: 10.1002/cpe

SPARSE RASTERIZATION FOR A GPU ALGORITHM

probabilities p; can be determined by recording the numbers of times that a work-item requires i
iterations, for all values of i. Because recording the iteration counts increases the execution time, it
is done in a run whose execution time is discarded. The time 75 is finally solved from Equation (1).

Model 2 is based on the probabilities P; that a wavefront requires exactly i iterations. A wavefront
requires exactly 7 iterations if some of its work-items require exactly i iterations, and all of them
require at most i iterations. A different formulation, however, leads to a simpler derivation for P;: A
wavefront requires exactly i iterations if all of its work-items require at most i iterations, but it is not
true that all work-items require at most i —1 iterations. Let B; stands for the event that all work-items
of the wavefront require at most i iterations and let the number of work-items in a wavefront be N.
Then P; = Pr(B; \ Bi—1) = Pr(B;) — Pr(B;_1). The probability that an individual work-item
requires at most i iterations is le=1 p;. For a set of N independent work-items, the probability

that all of them require at most i iterations is then Pr(B;) = (Z;=1 p j) and

i N i—1 N
P =Pr(B)—Pr(Bi-)=|>_p;i | =D pi| - ©)
j=1 Jj=1
The total execution time is then
Ima,\' Imax
T =Y P-(ti+G-D)=t+16Y PGi-1. 3)
i=1 i=2

As before, it is assumed that there are much more wavefronts than there can be active wavefronts
on the device. Otherwise, the assumption that the execution time is directly proportional to the
number of wavefronts is not true, because it is not possible to perform enough work in parallel. The
times 71 and 7, are determined as in Model 1.

A.2.2. Experimental results. For testing the possible difference between the times for the first and
the other iterations of the outer while-loop, a semi-artificial map containing 3.4 million vertices was
used. The map was obtained by tiling 64 copies of a real-world map in an 8 x 8§ pattern. Five million
points were selected randomly from the map area, and fetch lengths were determined for them in 48
directions. The probabilities p; and the running times of the first iteration (¢;) and of all iterations
(TK(,t1), thf)) were determined as described earlier. Because the OpenCL compute kernel determined
distances in one direction at a time, the reported times are the sums of 48 kernel execution times for
the batch of 5 million points. The iteration counts of the loops were determined separately for the
different directions, because otherwise the derived iteration count probabilities for the wavefronts
would not correspond to the actual use case where the directions are handled separately.

The first iteration required #; = 2.48 s, while all iterations took Tt((,%) = Té,? = 3.44s. However,
kernel occupancy was 100% when determining #; but only 80% for Tt(()}). Another experiment was
therefore performed where the kernel occupancy was limited to 80% by introducing an LDS buffer
of appropriate size. Surprisingly, the running time of the first iteration was then slightly lower than
with 100% occupancy, 1 = 2.29s.

Estimates for the iteration count probabilities p; were determined as described previously. Using
these estimates, the value of the expression lei"z‘ pi - (i — 1) was ca. 1.17. Equation (1) then gives
t, =~ 0.99 s, that is, according to Model 1, the first iteration takes more than twice the time of the
other iterations, 1 ~ 2.31,.

For Model 2, the probabilities P; were determined using formula 2, wavefront size N = 64, and
the probabilities p;. For coefficient of #, in Equation 3, the average value of the coefficients obtained
for the different directions was used. Then, Zilfg P; - (i — 1) ~ 6.60. Using this and the times
1 &~ 2.29s and Tu(f) ~ 3.44 s, Equation (3) gives t, ~ 0.174 s, so t; ~ 13.1t,. The difference of
the results for the two models suggests that SIMD execution can have a large effect on the execution
of the algorithm.

Copyright © 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2015)
DOI: 10.1002/cpe

M. MURTOJARVT, O. S. NEVALAINEN AND V. LEPPANEN

The expected iteration counts were then determined for the inner loops of the wavefronts using
Equation (2). The results indicated that on the first iteration of the outer loop, a wavefront may
require, on average, up to 15 times as many iterations of the inner while-loop than its work-items
would require when considered individually. For most directions, this difference was much smaller,
with an average ratio of 8.6. For the inner for-loop, the ratio did not depend much on the direction
and was on average 3.8. Because both ratios are smaller than the ratio of the execution times' of the
first and the other iterations, Model 2 also indicates that the first iteration is more time-consuming
than the other iterations even when the SIMD execution of the inner loops is taken into account.

It was also observed that the first iteration of the outer loop requires on average about eight
times as much rasterization steps as the other iterations to find the next non-empty cell. The average
numbers of line segments in the cell, on the other hand, were quite similar for the first and the other
iterations of the outer loop (6.0 vs. 7.4 segments). It can then be expected that replacing a study point
whose processing is ready with a new one considerably increases the execution time of the inner
while-loop for the wavefront but does not have much effect on the for-loop. A memory bottleneck
was also evident: It was up to 15 times faster to perform the rasterization to the map border when
the memory accesses were omitted.

Another approach was also tested for dealing with the problem that the number of active work-
items in a wavefront decreases as the outer loop proceeds. In that approach, the kernel was
terminated after each iteration of the outer loop, and the remaining active work-items were han-
dled using another invocation of the compute kernel, in effect regenerating the wavefronts so that
they consist of active work-items. This approach was also not beneficial because of increased
non-kernel time.

A.3. The inner loops

In the preceding tests, the first iteration of the outer loop required more time than all the other
iterations together. The analysis of the inner loops is therefore performed assuming that the outer
loop is in its first iteration. Similar observations can be made for the other iterations, but the number
of active work-items in a wavefront is not a constant for the other iterations of the outer loop.

Depending on the position of a study point, a variable number of cells are traversed in the inner
while-loop of Algorithm 1 before reaching a non-empty cell. Because of the SIMD execution, the
number of iterations required by a wavefront is determined by the work-item requiring the greatest
number of iterations. The number of iterations required for a wavefront is I, r = max 1 Ii, where
N is the number of work-items in the wavefront and /; is the number of iterations requlred by the
work-item i of the wavefront.

Suppose, then, that B wavefronts are run after each other on a compute unit. The total number of
iterations is

Tor = lef = Z (I}faﬁl’) 4

=1

where 17, and I; / are the iteration counts for the Jj th wavefront and for the ith work-item of the
jth waveflront

The total number of iterations can be lowered by having each work-item compute a distance for
a batch of B points instead of only one. The rasterization can then be implemented as given in
Algorithm 3, where j is the index of the current study point, p[j] is the current study point, and
cur_cell(p[j]) is the current cell for the study point p[j]. The outer loop and the intersection
detection phase are similar to Algorithm 1 and are omitted. As in Algorithm 1, rasterization and
intersection computation phases are repeated until the distance computation is ready for all points.
The number of remaining points in the batch decreases as the outer loop proceeds. This can be

IThis is not a necessary condition for the conclusion to hold. In general, the divergence in the other iterations of the outer
loop should also be considered. Here, even the most unfavorable assumption of no divergence in the other iterations
leads to the conclusion.

Copyright © 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2015)
DOI: 10.1002/cpe

SPARSE RASTERIZATION FOR A GPU ALGORITHM

handled in Algorithm 3 by decreasing B and rearranging the points or by ensuring that all points
whose processing is ready are considered to lie in a non-empty cell.

Algorithm 3 Finding the next nonempty cells for B points.
ji=1
while j < B do
if cur_cell(p[j]) is empty then
set cur_cell(p[j]) to the next cell
else
ji=j+1

Taken individually, work-item i would require Zf=1 1 l:i iterations of the while-loop. The number
of iterations for the whole wavefront is then equal to the maximal number of iterations of its work-
items, that is,

B
o N j

Itot - rln:a;(; Ii : (5)
The formula (4) of I is a sum of maximums while It/Ot (5) is a maximum of sums. Hence, the
modified rasterization requires less iterations than the original one. The actual degree of reduction
depends on the distribution of the iteration counts of the rasterization. Choosing a large batch size B
reduces wavefront divergence, but it also increases the resource requirements of the compute kernel,
because several variables are required for all active points. These variables need to be stored in a

fast memory space to allow quickly switching between points in Algorithm 3.

The attempts to improve rasterization performance using this method were unsuccessful because
of lowered kernel occupancy. Rasterization uses four variables (dx, dy, i, and j) for each study
point, and the LDS memory was found to be the only suitable memory space for allowing fast
indexed access to these variables. There is 16 KiB of LDS memory in each vector ALU on the
Radeon 7950. With only B = 4 study points/work-item, N = 64 work-items/wavefront, and four
32-bit variables for each study point, 4 KiB LDS memory is required for one wavefront. Only four
active wavefronts/vector ALU can then be running, corresponding to 40% kernel occupancy. The
reduced occupancy has an unfavorable impact on performance, as does the slower operation of the
LDS memory compared with the registers (VGPRs).

Although this method was unsuccessful, the tests indicated that it might work on a device with
more LDS memory: when the original kernel was limited to the same number of active wavefronts
as the batched version, it was slower than the batched version. With B = 16, the rasterization
performance of the batched version was more than twofold compared with the original version, but
both implementations were slow because only one wavefront was running on each vector ALU.

The batched approach can also be used for the intersection detection phase. Similarly to the
rasterization phase, no speedup was obtained.

REFERENCES

1. Andrews DS, Snoeyink J, Boritz J, Chan T, Denham G, Harrison J, Zhu C. Further comparison of algorithms
for geometric intersection problems. Proceedings of the Sixth International Symposium on Spatial Data Handling,
Taylor & Francis: London; Bristol, Pa, 1994; 709-724.

2. Zalik B, Kolingerova I. A cell-based point-in-polygon algorithm suitable for large sets of points. Computers &
Geosciences 2001; 27(10):1135-1145.

3. Yang S, Yong JH, Sun JG, Gu HJ, Paul JC. A cell-based algorithm for evaluating directional distances in GIS.
International Journal of Geographical Information Science 2010; 24(4):577-590.

4. Ekebom J, Laihonen P, Suominen T. A GIS-based step-wise procedure for assessing physical exposure in fragmented
archipelagos. Estuarine, Coastal and Shelf Science 2003; 57(5-6):887-898.

5. Tolvanen H, Suominen T. Quantification of openness and wave activity in archipelago environments. Estuarine,
Coastal and Shelf Science 2005; 64(2-3):436-446.

Copyright © 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2015)
DOI: 10.1002/cpe

6.

7.

8.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

M. MURTOJARVI O. S. NEVALAINEN AND V. LEPPANEN

Murtojiarvi M, Suominen T, Tolvanen H, Leppdnen V, Nevalainen OS. Quantification of openness and wave activity
in archipelago environments. Computers & Geosciences 2007; 33(7):843-852.

Murtojdrvi M, Leppédnen V, Nevalainen OS. Determining directional distances between points and shorelines using
sweep line technique. International Journal of Geographical Information Science 2010; 23(3):355-368.

Rohweder J, Rogala JT, Johnson BL, Anderson D, Clark S, Chamberlin F, Runyon K. Application of wind
fetch and wave models for habitat rehabilitation and enhancement projects. pubs.usgs.gov/of/2008/1200/pdf/
ofr2008-1200_web.pdf. [Accessed on 19 November 2014].

. Murtojdrvi M, Leppidnen V, Nevalainen OS. A parallel GPU implementation of an algorithm for determining direc-

tional distances. Computer Systems and Technologies, 12th International conference, CompSysTech ’11, Association
for Computing Machinery: New York, NY, 2011; 198-203.

Garanzha K, Loop C. Fast ray sorting and breadth-first packet traversal for GPU ray tracing. Computer Graphics
Forum 2010; 29(2):289-298.

Barringer R, Akenine-Moller T. A4 : asynchronous adaptive anti-aliasing using shared memory. ACM
Transactions on Graphics (TOG) - SIGGRAPH 2013 Conference Proceedings; 32(4):100:1-100:9. article no. 100.
DOI: 10.1145/2461912.2462015.

Advanced Micro Devices. Reference Guide: Southern Islands Series Instruction Set Architecture: Advanced Micro
Devices, Inc, 2012. (Available from: http://developer.amd.com/wordpress/media/2012/12/AMD_Southern_Islands_
Instruction_Set_Architecture.pdf.) [Accessed on 31 August 2014].

AMD Accelerated Parallel Processing OpenCLTM Programming Guide: Advanced Micro Devices, Inc, 2013.
(Available from: http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/2013/07/AMD_Accelerated_Parallel
Processing_OpenCL_Programming_Guide-rev-2.7.pdf.) [Accessed on 31 August 2014].

Gaster BR, Howes L, Kaeli D R, Mistry P, Schaa D. Heterogeneous Computing with OpenCL (2nd ed). Morgan
Kaufmann: USA, 2013.

Cleary JG, Wyvill G. Analysis of an algorithm for fast ray tracing using uniform space subdivision. The Visual
Computer 1988; 4(2):65-83.

Munshi A. The OpenCL specification, Version 1.2, document revision 19. Khronos OpenCL working group, 2012.
(Available from: http://www.khronos.org/registry/cl/specs/opencl-1.2.pdf.) [Accessed on 22 August 2013].

Cormen TH, Leiserson CE, Rivest RL, Stein C. Introduction to Algorithms. The MIT Press: Cambridge,
Massachusetts, 2009.

Bai S, Nicol D M. Acceleration of wireless channel simulation using GPUs. 2010 European Wireless
Conference (EW 2010). Institute of Electrical and Electronics Engineers (IEEE), posted on 2010:841-848.
DOI: 10.1109/EW.2010.5483525, (to appear in print).

Knorr EM, Ng RT. Algorithms for mining distance-based outliers in large datasets. Proceedings of the 24rd
International Conference on Very Large Data Bases, Morgan Kaufmann Publishers Inc: San Francisco, 1998;
392-403.

Zhang J, You S. Speeding up large-scale point-in-polygon test based spatial join on GPUs. Proceedings of the
1st ACM SIGSPATIAL International Workshop on Analytics for Big Geospatial Data, Association for Computing
Machinery: 2012; 23-32.

Novik J, Havran V, Dachsbacher C. Path regeneration for interactive path tracing. Proc, EUROGRAPHICS Short
Papers. The European Association for Computer Graphics, 2010; 61-64.

DeGroot MH, Schervish M. Probability and Statistics (3rd ed). Addison-Wesley: USA, 2002.

Copyright © 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2015)

DOI: 10.1002/cpe

Publication V

Mika Murtojarvi, Tapio Suominen, Esa Uusipaikka, Olli S. Nevalainen. Op-
timising an observational water monitoring network for Archipelago Sea,
South West Finland. Computers € Geosciences 37 (7), 2011, 844-854. DOI:
10.1016/j.cageo.2011.01.006. Reprinted with permission from Elsevier.

Computers & Geosciences 37 (2011) 844-854

journal homepage: www.elsevier.com/locate/cageo

Contents lists available at ScienceDirect

Computers & Geosciences

Optimising an observational water monitoring network for Archipelago Sea,

South West Finland

Mika Murtojirvi ®*, Tapio Suominen”, Esa Uusipaikka ¢, Olli S. Nevalainen ?

@ Department of Information Technology and Turku Centre for Computer Science (TUCS), University of Turku, FI-20014, Finland
b Department of Geography, University of Turku, FI-20014, Finland
€ Department of Statistics, University of Turku, FI-20014, Finland

ARTICLE INFO

Article history:

Received 3 September 2009
Received in revised form

28 January 2011

Accepted 31 January 2011
Available online 1 March 2011

Keywords:

Water quality

The Baltic Sea
Observational network

ABSTRACT

Water quality monitoring in topographically fragmented archipelago coasts calls for a dense observa-
tional network. However, visiting multiple sites and analyzing the samples requires a significant
amount of work, leading to considerable economic cost. It is of interest to determine an efficient set of
sites, which still offers adequate information on the water quality with a sufficient spatial accuracy.
A method for optimizing an existing observational network is proposed. The method is concretized by
applying it for an observational network in the Archipelago Sea, South West Finland. The network is
pruned with the requirement that the observations of the removed sites can be estimated using those
of the remaining sites. Suboptimal heuristics are used in pruning to keep the computational time
acceptable. Some observations are not available and need to be estimated (imputed) before the
pruning. For the network in the Archipelago Sea, the results of the pruning are somewhat sensitive to

Pruning algorithms

differences in imputed datasets and heuristics used for site selection.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The European Union’s Water Framework Directive (WFD)
(Anonymous, 2000) obliges the member states to provide suffi-
cient data for an effective coastal and sea area management.
However, similar sampling designs cannot be applied for all
the surface waters, and monitoring must be adapted accord-
ing to environmental conditions; factors such as the variabi-
lity of the monitored quantities should be taken into account
(e.g., Anonymous, 2003a; Ferreira et al., 2007; Nordic Council of
Ministers, 2006). Special cases in this sense are the transitional
estuarine and coastal waters, where highly dynamic water quality
regimes require spatially and/or temporally dense sampling
designs.

The state of the Baltic Sea has become a serious concern during
recent decades (e.g., HELCOM, 2009). It is an inland sea with
limited water exchange with the oceanic waters, which results in
both vertical and horizontal gradients of water properties. The sea
is also located in relatively high latitudes where the annual
temperature range is wide, inducing strong temporal physical,
chemical, and biological cycles in the waters above the permanent
halocline (e.g., Myrberg and Leppdranta, 2009; Wulff et al., 2001).
The drainage basin of the Baltic Sea is densely populated and the

* Corresponding author. Tel.: +358 2 333 8658; fax: +358 2 333 8600.
E-mail address: mika.murtojarvi@utu.fi (M. Murtojarvi).

0098-3004/$ - see front matter © 2011 Elsevier Ltd. All rights reserved.
doi:10.1016/j.cageo.2011.01.006

anthropogenic influence on water quality is significant in the
region. The excess of nutrients in the sea water is evident, and has
led to the process of eutrophication with its multiple implications
to chemical and biological environments (HELCOM, 2009).

For evaluating the water quality in the Baltic Sea, expedient
water quality monitoring is needed. This is an especially challenging
task in the Archipelago Sea, SW Finland, where the topographically
fragmented coastal waters set demanding prerequisites for the
design of monitoring programs (Erkkild and Kalliola, 2007). The
area is located between two large subbasins of the Baltic Sea, and its
waters originate from adjacent sea basins and from the mainland.
Thus, the Archipelago Sea has both sill and transitional estuary
characteristics, and a spatially dense network of observed stations is
necessary.

There are multiple monitoring programs ongoing in the area.
The most extensive of them includes 60 sites in the eastern half of
the Archipelago Sea (Fig. 1). The sampling of these sites is limited
to three annual field campaigns in July-August. However, even
these field campaigns incur considerable economic costs due to
causes such as the required human labor of visiting the sites and
analyzing the samples. It is therefore of interest to find out
whether a smaller set of sites would be sufficient for monitoring
water quality. More specifically, the primary focus of this article is to
find a subset of the 60 sites located in the eastern Archipelago Sea
such that the observations done at the rest of the sites can be
estimated with a sufficient accuracy using the observations of the
sites in this subset.

M. Murtojdrvi et al. / Computers & Geosciences 37 (2011) 844-854 845

Z081E

60°N :
L Finland

=l

Swedéi'[p

50 km

Level 1 Zones
—— Level 2 Zones

¢ Observation site
® Prioritized site

Only site in zone

Fig. 1. Observational network. Thick lines enclose the level 1 zones (inner, middle, and outer archipelago) and the thin lines the level 2 zones within them. Prioritized sites

and the sites which are the only sites in their level 2 zones are also marked.

The observations of a site s are modeled by fitting a multivariate
linear model (see, e.g., Mardia et al., 1979) based on the observations
of the other sites so that the modeled values at site s match the
observed ones as well as possible. The goodness of fit is used as an
indication of whether the removal of the site is feasible. Only a certain
number of the nearest neighbors of a site are used in the models. This
choice is based on the assumption that nearby sites tend to behave
more similarly to each other than sites that are far apart. These
regression models are then used in the network pruning process.

In addition to the fitted statistical models, other factors must also
be considered when evaluating an observational network and the
significance of a site. First, the network must cover the monitored
area with a reasonable spatial density. To attain an evenly distributed
network, we use hierarchical typology of the transitional and coastal
waters. The typology is based on physical and chemical properties
such as salinity and wave exposure (Anonymous, 2003b). The
typology used here has two levels; first the Archipelago Sea was
divided to inner, middle, and outer zones (i.e., level 1 zones) for the
purposes of the Water Framework Directive (Vuori et al., 2006). The
typology has been further refined into smaller regions (level 2 zones)
by the local environmental authorities (Anonymous, 2009; Rautio
et al., 2008). In the present study it is a precondition that if there are
sites within a level 2 zone, at least one of them must remain. The
second factor to consider is that some of the sites should not be
removed. For example, a site might already have long and coherent
time series and its sampling should continue.

Although the primary focus of this article is the method for finding
a good subset of the observation sites, there are also two dataset-
specific preprocessing steps that are described for completeness.
Some observations are missing and some are believed to be incorrect.
An incorrect observation may result from an erroneous sampling and
a contaminated water sample or from a typing error. Because
incorrect observations may have an effect on the accuracy of the
obtained statistical models, an attempt is made to detect and remove
them before the network optimization process. Many of the outliers
(Barnett and Lewis, 1978), i.e., observations that are significantly
different from the others, can be easily recognized either manually or
by using an automated procedure. A simple automated method was
adopted in this study to recognize possible outliers, although con-
sideration of whether to remove an observation was eventually done
for each observation separately. The other data-related problem,

missing observations, is solved by restricting the considerations to a
time period when the amount of missing observations is relatively
small and by using imputation for estimating the missing observations
(King et al., 2001; Little and Rubin, 2002; Oba et al., 2003).

There are some known approaches that could be used for the
network optimization problem. For example, cluster analysis
(Shrestha and Kazama, 2007; Singh et al., 2005; Theodoridis and
Koutroumbas, 1999) has been used in many research areas, and it
could identify sets of sites whose observations behave similarly to
each other. However, if the observations of a site can only be
explained using the observations of several other sites, cluster
analysis might fail to identify good candidate sites for removal. The
problem of network optimization has also been specifically addressed
in several articles (e.g., Frolov et al., 2008; Lin et al., 2010; Sakov and
Oke, 2008). In many cases, network optimization is based on the
results of dynamic simulation that takes into account the known
physical and chemical processes. The goal is to choose the observa-
tion sites in such a way that the simulated field of interest can be
reproduced as well as possible given the constraints (e.g., the allowed
number of sites) of the optimization. In these approaches, also the
observations of the selected sites are obtained using the simulation.
A similar network construction has also been done using observed
values instead of simulation (Sakov and Oke, 2008). In principle, these
methods could be used for the purposes of this article, but the
problem is the lack of both a high-resolution observational dataset
and a simulation model that has been validated in the target area.

While the proposed method is discussed in the context of
optimizing a specific observational network for water quality mon-
itoring, the approach is of a general nature and it is expected to be
applicable also in other research areas where one has to plan on
making measurements with minimal cost and good accuracy. The
pruning algorithms are implemented in R language (R Development
Core Team, 2010).

2. Materials and methods

2.1. Material

The water quality monitoring started in the Archipelago Sea by
the 1960s with few annual observations. Most frequent sampling

846

was done in the years 2002-2008 when the data were collected
three times annually, usually at weeks 29, 32, and 35 (in July-
August). In most cases all 60 observation sites are sampled within
4 days. The years 2002-2008 are considered here and as a result
the data consist of 21 more or less simultaneous samplings from
60 sites (Fig. 1). Four most commonly analyzed water properties
with coherent time series were selected. Chlorophyll-a is one of
the photosynthetic pigments of phytoplankton and its content is
used, alongside with the total concentrations of two main
nutrients, nitrogen (N:) and phosphorus (Py¢), as a measure of
eutrophication level. Secchi depth, i.e., a measure of visibility in
the water, is routinely measured in the field. The Ny samples are
taken from the depth of 1 m and they are analyzed according to
the standard SFS-EN ISO 11905-1 (Finnish Standards Association
(SFS), 1998). Also Py, samples are collected from 1 m and they are
analyzed according to an in-house analysis method, which is
based on the Lachat QuickChem method 10-115-01-4-F. The
chlorophyll-a samples are taken from the surface layer as a
combined sample, where the lowest limit of the subsamples is
chosen as twice the Secchi depth. Chlorophyll is analyzed spectro-
photometrically from an ethanol extract according to the stan-
dard SFS 5772 (Finnish Standard Association (SFS), 1993). The
laboratory analyses are made by Water Protection Association of
South West Finland. The Secchi depths are determined visually by
the white cap (diameter 100 mm) of a Limnos water sampler. The
number of observations is altogether 5040, out of which about
4.5% (Table 1) are missing.

2.2. Methods

Solving the network optimization problem requires a model for
the observations and a site pruning algorithm. Two preprocessing

Table 1
Properties of the water quality quantities in the time period 2002-2008.

Variable Unit Range Mean Missing Outliers
Secchi m 0.6-6.7 2.8 59 (4.7%) 2 (0.17%)
Neot pugL™! 120-650 350 55 (4.4%) 5 (0.41%)
Prot pugL~! 10-50 23 57 (4.5%) 5 (0.42%)
Chlo-a pugL! 1.1-15 43 58 (4.6%) 1 (0.08%)
The total number of observations of each quantity is 1260.
T
40 |
£ 554
2] " 0. . o. -
n.i 20 : A ., - . ‘. <
10 4 *
(1] v v .
2002 2003 2004 2005 2006 2007 2008 2009
10
< &{
2 6] * s
?] .
o 4 4
E 1 L] L] LY . L] .
(& 24 o . . 1Y

1]
2002 2003 2004 2005 2006 2007 2008 2009

-1
Niot b8 |

Secchim

M. Murtojdrvi et al. / Computers & Geosciences 37 (2011) 844-854

steps, outlier elimination and imputation, are used for dealing with
incorrect and missing observations (Fig. 2). These steps are followed
by two intermediate steps: (1) choosing the number of neighbors for
the statistical models and (2) choosing a heuristic to use as the site
pruning method. Finally, the network is pruned using the parameters
determined in these two steps. The pruning process is repeated with
several different numbers of sites to remove.

The workflow is illustrated diagrammatically in Fig. 3. The
preprocessing steps (outlier elimination and imputation) are
separate from the other steps of the pruning process, and they
can easily be replaced with other methods or even omitted.
Omitting these steps should only be considered with datasets
with very few missing or incorrect values. The remaining three
steps, on the other hand, are more tightly related to the pruning
process. As was stated earlier, the observations of the nearest
neighbors of a site are used for fitting a multivariate linear model
to the observations of the site in question. The number of

Eliminate outliers

}

1

1

I

1

1

1

I

i

i Select imputation method:
. 1) Generate datasets for testing
! 2) Impute using different methods
1

I

1

1

I

1

1

1

I

1

1

3) Select imputation method based on
the accuracy of the imputation

v

Impute missing values

Select the number of neighbours to use
in the linear models

}

Select the site pruning algorithm

)

Remove the desired number(s) of sites
using the selected pruning algorithm

Fig. 3. The workflow of the network optimization process, shown on a coarse level.

1200 .
1000
800
600
400 .
200
0

1] T
2002 2003 2004 2005 2006 2007 2008 2009

Fig. 2. Observations of four quantities at a sample site in the time period 2002-2008. One observation (P, in 2002) is missing, and one outlier (N, in 2006) is visible. The
horizontal lines show the limits of the outlier detection procedure for this particular site; values that are outside this range are subjected to further examination. Imputed

values are shown by triangles.

M. Murtojdrvi et al. / Computers & Geosciences 37 (2011) 844-854 847

neighbors to use is therefore a parameter of the pruning process
that must be chosen. Furthermore, the heuristics used in the
pruning process are not guaranteed to give optimal results with
respect to any error metric. Therefore, tests with three different
heuristics are performed in order to select the site pruning
algorithm. The actual pruning is then carried out using the values
for the parameters that were chosen in the previous steps.

2.2.1. Outlier elimination

The outlier elimination is based on a method that is sometimes
called Wright’s procedure (Barnett and Lewis, 1978). The method
rejects samples that deviate from the sample mean by more than
a specified number of sample standard deviations. Because the
mean values of the observations differ among the sites, the
procedure is modified slightly. The observations are compared
to the site mean of the quantity. Also, site-dependent (zone-wise)
standard deviation is used, where the zones correspond to the
prespecified level 1 zones. Sample g; is thus considered a possible
outlier if

|Gi—Tsite| = €*Sq.zonecsitey» W

where ¢y, is the sample mean of the quantity q at the site and
Sq.zonesitey 1S the sample standard deviation of the observations of
this quantity within the level 1 zone of the site. Constant ¢ should
be chosen so that most incorrect observations but only a small
amount of correct observations are discarded. However, it may be
impossible to verify which observations are incorrect, and the
choice of the constant c is then at least partially guided by
subjective means such as visual inspection of the data. Another
guiding principle is that the method should only reject a small
number of samples as it was expected that only a few observa-
tions out of 1000 might be erroneous. The same value c=3 is used
for all sites and quantities, but due to differences in the zone-wise
standard deviations the acceptance region will be wider for some
sites and quantities than for others. For the purposes of the
present study the simple outlier procedure worked well enough;
the number of detected outliers remained low and they were
clearly distinguished. When datasets with a greater fraction of
incorrect values are used, one should study the literature
(e.g., Barnett and Lewis, 1978) for more advanced outlier detec-
tion procedures.

2.2.2. Imputation

Although only 4.5% out of all the observations were missing
before outlier elimination (Table 1), the problem of missing data
cannot be ignored, because multilinear models (see Section 2.2.3)
are used during the network pruning. The model used in the
pruning process represents the observations of a quantity at a
given site as a linear combination of the observations of the same
quantity at several nearest neighbors of the site. In such a model,
the modeled value of a quantity is missing whenever the
observation of the same quantity at any neighboring site is
missing. Depending on the size of the neighborhood a significant
fraction of the modeled values could have a missing value, and
the number of observations of each site (21 for each quantity) is
relatively low even without the problem of missing values.

To produce a complete data matrix, the missing values are
imputed; i.e., they are replaced with estimated values. For the theory
of missing value imputation, see Little and Rubin (2002) and for
applications, see Horton and Kleinman (2007), King et al. (2001), Oba
et al. (2003), and Troyanskaya et al. (2001). The imputation methods
are based on the assumption that there are dependencies between
the observed quantities. In the water quality dataset the intervari-
able correlations were indeed statistically significant, although the
absolute values of the correlation coefficients were rather small: the

absolute values of Pearson’s correlations between the four quantities
ranged from 0.16 to 0.53 before eliminating outliers. Missing data
were ignored in computing the correlations. Another characteristic of
the dataset is that in many cases all observations of a particular site
and time are unavailable, so the imputation methods cannot be
expected to perform very well. Furthermore, the imputation methods
evaluated in this study have been developed for different application
areas, and it is necessary to test how they perform compared to
simpler approaches with the water quality data.

Three simple (ad hoc) and two advanced imputation methods
were evaluated in the present study. The first simple method
replaces each missing value with the mean of all observed values
of the quantity in question. The second method uses site means
instead of global means. Also in this method the observations of
all years are used for computing the mean values. A further
refinement is to take also time into account: only the observa-
tions of the same year and site are used for computing the means.

The more advanced imputation packages are BPCA impute
(Oba et al., 2003) and Amelia II (Honaker et al., 2010). BPCA has
been successfully used in bioinformatics. Amelia II has been
designed for social science applications, and it can handle time-
series cross-sectional (TSCS) data. The concept of TSCS data has
been defined, e.g., in the following way: “Time-series cross-
section data are characterized by having repeated observations
on fixed units, such as states or nations” (Beck and Katz, 1995). In
the water quality dataset, the units correspond to the different
observation sites. Amelia Il (unlike BPCA) is a multiple imputation
package, i.e., it generates several estimates for the same missing
values, reflecting the uncertainty in the imputation.

2.2.3. Statistical models

Multivariate linear models (Mardia et al., 1979) are used for
modeling the observations of the potential sites to be removed.
The observation number i of a quantity g at site s is modeled as

qsi= | %sq+ Z Bs/,q%’,i +Us, gi 2)
s e knn(s)

where a4 is a constant term for the site and quantity in question,
knn(s) is the set of k nearest neighbor sites of s, and ugg; is the
residual, i.e., the error in estimating the observation using the
linear model. The set knn(s) contains the sites that have not been
removed from the network and have smaller distance to site s
than any other sites that have not been removed from the
network. The coefficients o4 and S, are determined for each
quantity so that the sum of squares of the residuals, where
summation is over all observations i, is minimal (Mardia et al.,
1979). Fitting models of this kind can be done using standard
statistical software.

For specifying a cost function for the site pruning process, the
estimation error for a single site (s) and time (i) is first defined as
the Mahalanobis distance (Mardia et al., 1979) given by the
formula

esi=((q,;— 95" = (g5 ;—q,) "2, 3)

where (g; is the vector containing the ith observations of all
quantities at site s and q;; is the vector of linear estimates of the
quantities, as given by (2) without the residual term ug4;. In the
case of the water quality dataset these vectors contain four
elements, which is the number of different quantities taken into
account in the modeling. Matrix X is the covariance matrix that
contains the variances of the different quantities and their
covariances. In practice, X is replaced by its estimate X, obtained
based on the observed data. As in outlier elimination, different
covariance matrices are used for the three different zones. Hence,
larger differences between the observed and the modeled values

848 M. Murtojdrvi et al. / Computers & Geosciences 37 (2011) 844-854

are allowed in the zones where the observations vary more. The
total average estimation error of the observations of site s is
computed as

(o)

where n; is the total number of observations per quantity at site s.
The goodness of the result of the optimization process is

defined as a cost function related to the entire network. It is

defined as the sum of the estimation errors eg over all sites

e= > e 5)
sedel

where del is the set of sites that have been removed from the
network.

2.2.4. Network optimization

The goal of network optimization is to find a set of sites that
can be removed so that the cost function (5) is minimal, given a
specified number d, of sites to be removed (i.e., |del| =d,). The
observational network considered in this work contains originally
ns=60 sites, and there are 20 subsets of this set. When the

") diff
do 1fferent

selections of dj sites to remove. For example, if 30 of 60 sites need
to be removed, there are approximately 1.2 x 10'7 subsets to
evaluate if the optimal solution is to be found. This number is too
great to test in an acceptable amount of time, and resorting to
suboptimal heuristic solutions is justified.

The problem of selecting subsets of a given set has been
studied, e.g., in the context of network optimization (Frolov
et al.,, 2008) and in the field of pattern recognition (Theodoridis
and Koutroumbas, 1999). One simple and efficient method is
called sequential backward selection in the field of pattern recogni-
tion, and it is also known as a delete-only optimization algorithm
(Frolov et al., 2008). The method starts with the whole network
and removes the site that is in some sense a good choice for
removal, e.g., the site whose observations can be modeled best
using the observations of other sites that are still in the network.
Then, another site is removed from the remaining network, and
the process is repeated until some termination criterion is met.
The backward selection technique never considers moving a
removed site back to the network, which limits its capability of
finding good solutions. Furthermore, even if a limit is set on the
allowed estimation error of a site, this limit may be exceeded
when the algorithm terminates. This can happen if one or more of
the nearest neighbors of a site are removed from the network
after the site has been removed. In that case different sites will be
used for estimating the observations of the site in the final
network and in the network that existed when the site was
removed. Despite these shortcomings, the three implemented
heuristics are based on this scheme of removing sites iteratively
according to a cost function. It should be noted that an exchange-
type algorithm that both deletes and adds sites has been shown to
perform slightly better than the delete-only algorithm (Frolov
et al., 2008). However, it was observed in Frolov et al. (2008) that
the difference between the results of the delete-only and
exchange-type algorithms is rather small, and the exchange-type
algorithm must be run several times using different randomly
initialized networks as starting points in order to achieve better
results than the delete-only algorithm.

number of sites to be removed is fixed, there are

2.24.1. Greedy pruning with local costs. The first algorithm
(referred to as pruning_local_taboo) was originally designed for
removing a small number of sites from the observational network.

At each iteration it removes from the set of removal candidates
the site with the smallest estimation error (4). Because removing
one of the neighbors of a removed site s might change the esti-
mation error of s, all neighbors of s are also removed from the set
of removal candidates; i.e., they are added to a taboo list. The
procedure is repeated until no more sites can be removed. This
happens when the set of removal candidates is empty, specified
number of sites has been removed, or when the observations of
none of the remaining sites can be estimated well enough. The
latter condition requires comparing the estimation errors of the
sites to a specified threshold 6. If the number of sites to remove is
given, one may search for the smallest value of 0 that allows
removing the given number of sites. Another possibility is to use
an infinite value for ¢ and let the algorithm prune the desired
number of sites. In the case of the algorithm pruning_local_taboo
using an infinite 6 can lead to the (undesirable) removal of sites
with high estimation errors.

If k neighbors are used for estimating the observations of a site
and the total number of sites is ng, at most (ns /(k+1)} sites can be
removed by the above method. For removing a somewhat greater
number of sites, pruning local_taboo repeats the procedure by
removing all sites from the taboo list and continuing the execution
of the algorithm. In this case the estimation errors of removed sites
may exceed 6. A postprocessing step moves the sites that can no
longer be estimated well enough back to the observational network.
Since the idea behind the taboo list is largely lost when several sites
must be removed, another variation of this algorithm is also tested.
This second algorithm (referred to as pruning_local_notaboo) is
similar to the first one, but it does not use the taboo list. This
increases the number of sites from which the algorithm may choose
the most promising one for removal.

2.2.4.2. Greedy pruning with total costs. The two algorithms out-
lined above may not make even a locally optimal choice with
respect to the cost function (5). The greedy choices only consider
the estimation error of each site to be removed, but removing a
site s affects the estimation errors of those sites that have already
been removed and contain s among k nearest neighbors. There-
fore, as a third algorithm, a method that removes sites based on
the cost function (5) is tested (referred to as pruning_total). It
should be noted that this criterion does not guarantee that the
estimation error of a removed site is small. One site gives only a
relatively small contribution to the total estimation error, and the
estimation errors of several other sites may be affected when site
s is removed. Again, a threshold 0 may be used to prevent large
estimation errors. However, the use of thresholds has significant
drawbacks. One is the difficulty of selecting a suitable threshold
value, and the other is that once a threshold is given, it may not be
possible to remove the desired number of sites.

3. Results
3.1. Outlier elimination

Based on visual inspection, value c=3 was selected for the
outlier elimination threshold in Eq. (1); i.e., observations deviat-
ing by more than 3 standard deviations from the site mean were
considered as possible outliers. The outlier elimination process
was done separately for all four water quality quantities included
in the analysis (see Table 1). The values of chlorophyll-a were
transformed by taking (natural) logarithms before outlier elim-
ination. The number of detected outliers was rather low (Table 1),
and the detected outliers were also considered questionable using
a subjective evaluation. All of the detected outliers were removed
before proceeding to the next preprocessing step, imputation.

M. Murtojdrvi et al. / Computers & Geosciences 37 (2011) 844-854

3.2. Imputation

Because the real values of the missing observations are
unknown, two sets of artificial data matrices were generated for
testing the imputation methods. Both sets contained five matrices
in order to obtain a reasonably accurate estimate of the imputa-
tion errors. The matrices were obtained by randomly removing
from the water quality data 5% of the nonmissing observations of
all four quantities Py, Nyop, chlorophyll-a, and Secchi. To reflect
the patterns of the full dataset, it was required that at least two of
the three observations of any combination of site, year, and
quantity remain in the dataset. In the first set of five artificial
matrices (dataset I), the removal was done independently for the
different quantities. However, in the original dataset it was
typical that all observations of a particular site and time are
missing; i.e., the site was not visited at all in certain occasions. To
test the accuracy of the imputation methods in such cases,
another set of five artificial data matrices was constructed
(dataset A) so that all water quality parameters were removed
for the randomly selected sites and times. Also in this case 5% of
the observations were removed.

Experimentation was done with the advanced imputation meth-
ods to find the parameters that lead to the best imputation results
(see Table 2). In all tests the observation times were used as
imputation parameters, in addition to the water quality quantities.
In some of the tests also the coordinates of the sites were included.
With BPCA these additional variables were handled in the same way
as any other variables. With Amelia II additional tests were made
where the data were considered as TSCS data with the site IDs
separating the sites from each other, and the time points of the
observations defined the time series nature of the data. The imputa-
tion errors in comparison to the original removed values (RMSE, root
mean square error) were determined for each of the five imputation
methods and both sets of five artificial data matrices. For Amelia I the
means of 20 imputations were compared to the observed values.

The root mean square errors (RMSE) of the five different
imputation methods are summarized in Table 2 for dataset I and
dataset A. For dataset I, i.e., when observations of different
quantities were removed independently, the advanced imputa-
tion methods (BPCA and Amelia II) gave better or similar results
compared to the site mean imputation, which, in turn, performed
better than the mean imputation based on both site and year of
observation. Simple mean imputation performed worst. With
Amelia II it was also possible to handle the dataset as TSCS data,
and it improved the results slightly with dataset I. When all
observations of a particular time and site were removed simulta-
neously (dataset A), advanced imputation methods performed
mostly worse than site mean imputation. The exception was
Amelia II with the option of treating the dataset as TSCS data,
which gave similar results to the site mean imputation. One may

Table 2

849

also note that with dataset A the advanced imputation methods
that use only water quality quantities and time perform similarly
to the simple mean imputation. This could be expected, because
there are no clear trends in the water quality quantities in the
observed time period. The intervariable correlations are of no use,
either, because whenever the observation of one quantity is
missing in this dataset, the observations of the other quantities
are missing as well. Including coordinates improved the imputa-
tion results, but site mean imputation performed still better than
the advanced imputation methods. Treating the dataset as TSCS
data allows Amelia II to determine different means for the
observations of the different sites. In fact, Amelia II allows even
trends in time, and they can be different for different sites. This
option, however, did not seem to have much effect on the results.

On the basis of these results, two imputation methods perform
better than the others. One is Amelia II with the TSCS option, and
the other is a combination of BPCA and site mean imputation. In
the combined imputation method missing observations are
imputed using BPCA when some observations are available and
site mean imputation is used when all observations are missing
for a particular site and time. The main advantage of the
combined imputation method is ease of use: any analysis only
needs to be performed once, because the method generates only
one imputed dataset. There is, however, also a significant draw-
back: when only one imputed dataset is used, it is not possible to
study whether reasonable but different imputations would lead
to different results. For this reason, the multiple imputation
package Amelia II is used in the final network pruning process,
using five different imputations. Amelia II could also be used for
the intermediate steps (selecting the pruning heuristic and the
number of neighbors to use in the models), but to reduce the
amount of work the combined single-imputation method is used
here. The dataset used for the imputations used in the remaining
part of this work is the original dataset with the outliers removed.

3.3. Network optimization

3.3.1. Choosing the number of neighbors

The dataset used in all these tests was obtained using the
combined imputation method (BPCA and site mean). A series of
experiments was conducted. (1) To determine whether the
neighborhood size has an effect on the pruning results, network
pruning was performed using three, five, and seven neighbors in
the models. (2) To see whether the neighborhood size can be
determined on the basis that the errors of the models do not
change much beyond some neighborhood size, the estimation
errors were determined for several sites using three different
neighborhood sizes. (3) To test how the fitted models perform
outside their fitting period, the sample was partitioned into a
training set and a testing set. The training set was used for fitting

Imputation errors (RMSE) of three ad hoc methods (mean, mean (site), and mean (site, year)) and two advanced imputation methods (BPCA, Amelia II).

Mean Mean (site) Mean (site, year) BPCA (1) BPCA (2) Amelia (1) Amelia (2) Amelia (3)
Secchi (I) 1.09 0.65 0.73 0.92 0.67 0.93 0.68 0.59
Niot (I) 54.06 43.61 43.50 34.82 34.01 35.49 33.09 33.27
Peot (1) 5.45 4.41 4.58 443 4.39 4.54 4.51 4.07
Chlo-a (I) 2.21 1.76 2.07 1.36 1.37 1.41 1.40 1.44
Secchi (A) 1.10 0.70 0.74 1.10 0.80 1.11 0.82 0.70
Niot (A) 54.97 43.63 44.30 53.95 48.22 54.76 49.07 44.08
Peot (A) 5.88 4.77 5.11 5.88 5.75 5.90 5.86 4.89
Chlo-a (A) 2.10 1.78 2.01 2.06 1.95 2.07 2.03 1.81

In BPCA (1) and Amelia II (1) water quality quantities and time were taken into account, in BPCA (2) and Amelia II (2) also the coordinates of the sites were considered.
In Amelia II (3) the time-series cross-sectional (TSCS) nature of the data was taken into account. Rows marked with (I) correspond to dataset I, and the rest to dataset A.
In dataset I observations were removed independently of each other, in dataset A all observations of the selected sites and times were removed.

850 M. Murtojdrvi et al. / Computers & Geosciences 37 (2011) 844-854

the models and the testing set for evaluating the estimation
errors. As before, the test was repeated using three, five, and
seven neighbors in the models. Several different partitions of the
data into the training set and the testing set were also used.

In the first test, the network pruning was performed using
the heuristic pruning_total. When 20 sites were removed, 15 of
the removed sites were the same using five or seven neighbors.
The same was true with three or seven neighbors. When using
three or five neighbors, the results agreed in 14 cases out of 20.
Thus, the number of neighbors has some effect on the results of
the pruning process, and further tests are required to determine
the number of neighbors to use in the models.

During the second test it was observed that the observations of
some sites were modeled surprisingly well using only three
neighbors, but some observations of the removed sites were not
modeled well even with seven neighbors. More specifically, the
value of the cost function (Eq. (4)) was about 0.62 for the site that
was estimated best using three neighbors, whereas the cost was
1.17 for the site that was estimated worst using seven neighbors.
For the same sites, increasing the number of neighbors decreased
the cost (4), as can be expected in multivariate regression (note
that a smaller neighborhood of a site is a strict subset of a larger
neighborhood of the same site). For the tested neighborhood
sizes, one could not observe any particular neighborhood size
beyond which the costs (4) no longer change significantly. The
results of the test were thus inconclusive.

In the third test it was observed how much the modeled values
deviate from the reality after the time period that is used for fitting
the models. This is relevant because when the monitoring of a site has
been stopped, only modeled values for that site are available. In this
test only a part of the data are used for fitting the models (i.e., as a
training set), and the rest of the data (the testing set) are used for
evaluating the error (4). In the first test case the data were divided
approximately in half: the first 11 observations of each site and
quantity were used for fitting the models and the remaining 10 were
used for evaluating the fit. The smallest and largest values of the
function (4) were determined using different neighborhood sizes
(3, 5, and 7 sites). The smallest and largest errors increased with
increasing neighborhood size, in contrast to the case when the same
data were used for fitting and evaluating the models. The most
dramatic increase was in the largest estimation error: when the
number of neighbors was increased from three to seven, the largest
estimation error (4) increased from about 2.8 to 7.5. The smallest
error increased from 0.9 to 1.3. Further testing was done by comput-
ing the sum of the errors (4) over all sites using different numbers of
neighbors in the models. When the number of neighbors was
increased, this sum increased: it was 88, 107, and 147 for three, five,
and seven neighbors, respectively. Similar tests were also performed
using a larger training set. In that case, the influence of the size of the
neighborhood on the accuracy of the models outside their fitting
periods was smaller, but for all sizes of the training set using seven
neighbors led to the worst results outside the fitting periods. Using
three neighbors outperformed using five neighbors, except in the case
where only one observation (the latest one) of each site and quantity
was used for evaluating the function (4).

Based on these results, using a relatively small neighborhood is
best justified: the models that use a large number of neighbors only
behave well in the time periods for which they were fitted. In the case
of the dataset used in this study, the network pruning process is
carried out twice, using three and five neighbors in the models.

3.3.2. Comparing the pruning heuristics

None of the heuristics described in Section 2.2.4 are guaran-
teed to give optimal results with respect to error measures (4) or
(5), even if pruning_total bases its operation on function (5). Thus,

the heuristics are compared to see which one of them performs
best. In these tests, five neighbors are used in the linear models,
and all observations are used for fitting the linear models and
evaluating functions (4) and (5). The dataset is the same as
in Section 3.3.1, i.e., obtained using the combined imputation
method.

Test 1. When 0 was the average of the smallest and largest
estimation errors (4) of the sites, pruning_local_taboo and prunin-
g local_notaboo removed the same 18 sites, although in a differ-
ent order. The heuristic pruning_total removed 15 sites, 14 of
which were the same as with the two other heuristics. Because
pruning_total removed a different number of sites compared to
the other heuristics, the total estimation errors (5) are not
comparable to each other. Therefore, as another test, the same
number of sites (18) was removed using pruning_total without
using a threshold value. The total estimation error (5) of the
obtained solution was lower than those of the solutions obtained
using the other heuristics with threshold values, but the differ-
ence was very small (less than 2%). More surprisingly, the largest
site-specific estimation error (4) was also almost the same.
Although the estimation errors were similar, only 15 of the 18
removed sites were the same as in the solution obtained using the
other two heuristics. All heuristics were fast enough to be
practical, although pruning_total was much slower than the other
two heuristics.

Test 2. As another test, 20 sites were removed without using
thresholds, and 16 of the removed sites were the same for prunin-
g _local_notaboo and pruning_total. The results for pruning_local_taboo
agreed with both pruning_local_notaboo and pruning_total in 15 of the
20 sites. The total estimation errors (5) for the heuristics pruning_
local_taboo, pruning_local_notaboo, and pruning_total, were 17.1, 16.5,
and 15.9, respectively. The largest estimation errors (4) were virtually
the same for pruning_local_notaboo and pruning total, whereas for
pruning_local_taboo the error was somewhat higher (about 1.15 vs.
0.99). Removing sites randomly led to worse results than any of the
heuristics, but when the best random network selection out of 1000
was evaluated, error measures (4) and (5) were very similar to those
of the worst performing heuristic, pruning_local_taboo. The running
time of the repeated random selection was higher than that of any
tested heuristics.

As a conclusion, the results obtained using the three different
heuristics are quite similar in terms of which sites are removed.
Nevertheless, some differences in the values of the objective
functions (4) and (5) are observed. With respect to these objective
functions, the local heuristic without the taboo list (pruning_local_
notaboo) is a reasonable pruning method even when the total
estimation error is considered. With the taboo list (pruning_local_
taboo) the local heuristic performs well if a threshold value for the
estimation errors can be specified, but without a threshold it per-
forms worse than the other heuristics. With larger datasets the low
execution times of the local heuristics may be an important benefit
when compared to pruning_total. With the present water quality
dataset the running times of all heuristics are acceptable. The network
optimization process is performed using pruning_total because of its
best performance according to cost function (5). Even the site-specific
estimation errors (4) of pruning total were competitive with the
heuristic pruning_local_notaboo that performed best with respect to
this criterion. Hence, although in principle the heuristic pruning_total
might have the undesirable property of removing sites with rather
high estimation errors, in practice such behavior is rare with the
water quality dataset.

3.3.3. Network pruning
The pruning process was carried out using three and five
neighbors of each site in the linear models and removing 10, 20,

M. Murtojdrvi et al. / Computers & Geosciences 37 (2011) 844-854

and 30 sites from the network (leaving 50, 40, and 30). The
heuristic pruning_total without a threshold was used. To gain
information on how sensitive the results are to the imputation of
missing data, the process was repeated using five different
imputed datasets obtained using Amelia II. All imputed datasets
were based on the water quality dataset with outliers removed.
This gives five possibly different sets of removed sites for each
number of neighbors and number of removed sites.

The modeled and measured values of the four quantities are
shown in Fig. 4 for one of the removed sites in the case where 30
sites were removed from the network and five neighbors were
used in the models. While considerable differences between the
observed and the modeled values can be seen in some cases,
especially in Secchi depths, most of the modeled values are close
to the observations for this particular site. Fig. 5 shows a scatter
plot of the results of the linear models. All observed and modeled
values of the 30 removed sites and four quantities are included in
the figure. One can observe that there can be considerable
differences between the modeled and the observed values and
that the models tend to somewhat reduce the range of the values,
i.e, the modeled values corresponding to the most extreme
observations often lie closer to the mean of the quantity than
the observed values do. Nevertheless, most values of the quan-
tities are reproduced reasonably well by the models.

851

A simple way to test the similarity of the results is to count
how many times each site appears in the different removal sets
(del). Ideally the same sites would occur in all removal sets,
reflecting that the uncertainty caused by the imputation is small.
However, this is not the case (Table 3). When 30 sites are
removed from the network, the agreement on which sites to
remove is relatively good, the same 22 or 23 sites being removed
regardless of which imputed dataset is used, depending on the
neighborhood size (3 or 5) in linear models. When 20 sites are
removed, the agreement between different imputations is worse.
When 10 sites are removed, the removal sets are rather dissimilar
with three neighbors in the models but more similar with five
neighbors. The good agreement between the removal sets, when a
large number of sites are removed, is partially explained by the
constraints of the optimization: at least one site in each pre-
specified area must remain in the network, and some of the sites
must not be removed. On the other hand, the poor agreement of
the result sets in other cases does not tell whether the obtained
solutions are poor; several different networks may be good with
respect to function (5). It was found (data not shown) that the
network obtained using one imputed dataset was suboptimal
with respect to the cost function (5) when evaluated using
another imputed dataset, but in all 15 tested cases the result
was clearly better than the best of 1000 randomly pruned

Site 61372
30 500 -
Sl 4004 5
g + é + 4 & ° g 2
207 :35 © s ¢ s 5 & 9 4 g
— S 300 & P o+)
2 % S s T :
2 T
107 + 2
o 3
= 200 +
10
100
5 -
0 0 -
T T T T T T T T T T T T T T T T
2002 2004 2006 2008 2002 2004 2006 2008
10 4
8 +
+ 3 4 3 ° t
ho ° 3 + 7t ° °
2 64 ® ° 4+ F o 9
@© o + + € © o £ +
| =S = 24 ¢ 4+ & @ o+
=) + ® 9 * o 9] o
5 4 ° A ®
ey |8
+
+ * © o ¢ * 1
o
2 -
0 0 +
T T T T T T T T T T T T T T T T
2002 2004 2006 2008 2002 2004 2006 2008

Fig. 4. The modeled and observed values of the four quantities at one particular removed site, when 30 sites were removed and five neighbors were used in the models.

Circles indicate the modeled values and plus signs the observed values.

852

Modelled Py (ug I'")

T T T T T T T
15 20 25 30 35 40 45
Observed Py (ug I'")

10

(o]
|

Modelled Chlo-a (ug I'")

T
2 4 6 8 10
Observed Chlo-a (ug I'")

Modelled Ny (ng I'")

M. Murtojdrvi et al. / Computers & Geosciences 37 (2011) 844-854

500

400

300

200

T T T T
200 300 400 500

Observed Ny (ug I'")

Modelled Secchi (m)

Observed Secchi (m)

Fig. 5. The modeled and observed values of the four quantities for all 30 removed sites when five neighbors are used in the models. The horizontal coordinate of each circle
gives the observed value and the vertical coordinate gives the modeled value corresponding to the same observation. The solid line represents the ideal case where the

modeled and observed values are the same.

Table 3
The numbers of sites removed in exactly 0, 1, 2, 3, 4, or 5 (# occ) pruning runs
using five different imputed datasets and three or five neighbors (3 or 5) in linear
models.

Occ 3 neighbors 5 neighbors
10 del 20 del 30 del 10 del 20 del 30 del

0 44 32 22 47 33 24
1 5 4 5 2 4 2
2 4 4 3 1 2 3
3 3 3 3 2 5 5
4 2 6 5 0 3 3
5 4 11 22 8 13 23

The numbers of deleted sites range from 10 to 30. The entries on row # occ=0
indicate how many sites were never removed by the pruning algorithm, those on
row # occ=>5 indicate how many sites were removed in all the pruning runs, and
in general the entries in the row # occ=i indicate how many sites were removed
in exactly i pruning runs out of five. Sites that were removed in 1-4 runs appear
due to the differences in imputed datasets; the pruning process itself is
deterministic.

networks. In this sense the uncertainty caused by the missing
values is small enough so that the results of the pruning
algorithms are useful.

Using five neighbors led to better agreement between the
removal sets than using three neighbors. For the results with five
neighbors and five repetitions of the pruning process (with five
different imputed datasets), see the left column of Fig. 6. The
figure shows, for every site, how many different imputed datasets
led to the removal of the site in the pruning.

Missing data had an effect on the results; i.e., different
imputations led to different removal sets, as is seen from the fact
that there are symbols on the map that indicate that a site was
removed 1-4 times. When considering the similarity of the result
sets, sites that have been removed 0 or 1 times are strongest
candidates to stay in the network. Similarly sites that were
removed 4 or 5 times are good candidates for removal. Human
judgment is emphasized for sites that were removed 2 or 3 times.

The pruning process was also executed without any precondi-
tions on site removal; i.e., in this case there were no prioritized
sites that could not be removed and no requirement that at least
one site in each level 2 zone should remain in the network. Then,
using three neighbors gave more coherent results, and the results
are shown in the right column of Fig. 6. It is observed that the
areas where the observational network was originally unneces-
sarily dense are similar whether the prioritization for precondi-
tions is used or not. One should note that the removal of a site in

M. Murtojdrvi et al. / Computers & Geosciences 37 (2011) 844-854 853

Number of Number of
L] times removed L] times removed
(m] - m o n n "o
] "1 L] 1
& 2 ® 2.3 & A @23
- st X 4 ol 2] X 4
X o X 6 e g o X 6
[m] 9 X X
X __| Prioritized B 1 - - -
. 10 km n Xm » 10 km
—-— LR ® —-—
[m] % R " ag,
oy a"n"
o X | []
[| [] [] | |
[] X
[]
S [L [
L X
[] u
Number of Number of
L tlrl::s r;r‘r’wvcd X tirl::s n;r:aved
Ll » o] n o
.l m 1 u m 1
® 2-3 ® 2-3
" [
n X a X8 9o X 4
Y B x;:' X 5 N X 5
L I | (] L)
X% X ’_I‘!I [] Prioritized ® 5 Xm g
% et L) [m] 10 km n e . 10 km
m N I — (] . u]
i % 5 X. ey] % " ot ol X
] o9 X "y
L e s =" T en
X x - X - -
X - u X X L]
m X] X
noeese L B
m] X
] [
Number of Number of
L tir‘:::: n;:wved X ti:'lr:s r;maved
Ll n o L n o
.l m 1 X. "1
® 2-3 ® 2-3
" n
b ®
XX- x4 X Xe X 4
X e 4 X 5 x n ® X 5
" m m| e o X
X % X ’_! Prioritized X @ 3 A
X xK X X._.L F!I 10 km s X N L 10 km
m X T — - . u n —-—
o X.X 5 . X 8.gtie &
L] o9 X ® %
0 x = S ® . X ® - LS
x X [] % =]
X o [] % *]
m X] X
n X'y 2] o Xig
[m] X
] [

Fig. 6. Sites removed using 0, 1, 2, 3, 4, and all 5 different imputed datasets. Black rectangle (site removed 0-1 times) indicates that the site could not be estimated with
good accuracy using the surrounding sites and thus should not be removed from the network. The numbers indicate how many different imputed datasets (out of 5) led to
the removal of the site during the pruning process. In the uppermost, middle, and lowermost panels 30, 20, and 10 sites, respectively, were removed for each imputation. In
the left column the prioritized sites, which could not be removed, are shown with a white enclosing rectangle. In the right column such prioritizing was not applied.

the pruning process does not necessarily mean that the measured
values of the site are similar in magnitude with those of its
neighbors. This is because the multiple regression models are
allowed to add offsets and to scale the measured values when
fitting a model to the observations.

4. Discussion

A method for removing sites from an observational network
was presented. The method was applied for pruning an existing
monitoring network. To deal with the imperfections in the
observed data (missing and incorrect observations) two prepro-
cessing steps, outlier detection and imputation, were used.
A multiple imputation package (Amelia II) was used in order to
see whether different imputations of the missing data lead to
different pruning results. In the case of the sample observational

network used in this study, the results were found to be
somewhat sensitive to the differences in imputed datasets.
Nevertheless, the pruning results are still useful. While different
imputations led to different pruned networks, any of these
solutions could be considered to be good even when evaluated
using a different imputed dataset. In particular, the pruning
algorithm always outperformed random removal of sites,
although altogether as many as 15,000 different randomly pruned
networks were evaluated. The random removal method was also
time-consuming compared to the pruning algorithm due to the
fact that it has to evaluate a large number of different networks to
find an acceptable solution.

The pruning algorithms had the option of using a threshold
value 6 for preventing the algorithms from removing sites whose
observations cannot be estimated well based on their neighbors.
When the number of sites to remove is given, one may search for
the smallest value of 0 that allows the removal of the specified

854 M. Murtojdrvi et al. / Computers & Geosciences 37 (2011) 844-854

number of sites. In the case of algorithms pruning_local_notaboo
and pruning_total, one may also select 6=co, because these
algorithms tended to remove sites (roughly) in the order of
increasing estimation error (data not shown).

There were several limitations in our method. (1) Spatial
aspects were mostly ignored. The knowledge of the locations of
the sites was only used for determining the nearest neighbors of
each site. It could be useful to study the spatial variability using
statistical methods (e.g., Schabenberger and Gotway, 2005).
(2) The observations of the different sites were treated as if they
were taken simultaneously, although visiting all 60 sites requires
up to 4 days. Because the sites were sampled infrequently, in the
present work it was not possible to study whether the violation of
the assumption of simultaneous observations is relevant in
practice. While a dataset with more frequent sampling would
be required to properly study this feature, some practical support
for the methodology is given by the fact that the models often
gave acceptable results, in many cases even when different time
periods were used for fitting the models and for evaluating the
accuracy of the model. (3) The pruning algorithms base their
operation on a relatively simple cost function, and there may well
be other important factors to consider. Human consideration of
the results is therefore still important in a successful pruning
process. (4) The models used in the pruning process were based
only on statistical fits; i.e., they did not incorporate any knowl-
edge of the physical, chemical, and biological processes affecting
water quality. Models that take such processes into account have
recently been used in network optimization (e.g., Lin et al., 2010).
In such studies one may, e.g., treat the results of the simulation as
the “truth” that should be reproduced as well as possible given
the simulated observations at a limited number of observation
sites. (5) The possibility of changing the locations of the observa-
tion sites cannot be taken into account using the methodology
used in this work. It was considered that the sites that remain in
the network should have continuous time series based on
measurements. Removing a site results in temporally and spa-
tially fragmented data structure, which decreases the applicabil-
ity of the water quality data (Erkkild and Kalliola, 2007). In the
case of the Archipelago Sea, the history and the purpose of
the monitoring must be carefully considered when pruning the
observational network. The goal of the monitoring is to offer
information on the development of water quality with sufficient
spatial accuracy, in view of the fact that the aim is to follow the
general features of the water quality, not the behavior of a single
bay or local subbasin.

Acknowledgments

The authors thank the South West Finland regional environ-
ment center for providing their field data and Janne Suomela for
his comments. The study was partially funded by the Academy of
Finland (Project 114083). The authors also thank the reviewers for
their valuable suggestions.

References

Anonymous, 2000. Directive 2000/60/EC of the European parliament and of the
council of 23 October 2000 establishing a framework for Community action in
the field of water policy. Official Journal of the European Communities L 327,
1-73.

Anonymous, 2003a. Common implementation strategy for the Water Framework
Directive (2000/60/EC). Monitoring under the Water Framework Directive.
Guidance Document No. 7, Office for Official Publications of the European
Communities, Luxemburg, 153 pp.

Anonymous, 2003b. Common implementation strategy for the Water Framework
Directive (2000/60/EC). Transitional and coastal waters—typology, reference

conditions and classification systems. Guidance Document No. 5, Office for
Official Publications of the European Communities, Luxemburg, 107 pp.

Anonymous, 2009. Varsinais-Suomen pintavesien toimenpideohjelma vuoteen 2015
(action plan for the surface waters of the Southwest Finland until 2015). Southwest
Finland Regional Environment Centre, Turku, 155 pp [in Finnish]. ¢http://www.
ymparisto.fi/download.asp?contentid=112398&lan=fi > (accessed 11 August 2010).

Barnett, V., Lewis, T., 1978. Outliers in Statistical Data. Wiley, Chichester 365 pp.

Beck, N., Katz, J.N., 1995. What to do (and not to do) with time-series cross-section
data. American Political Science Review 89 (3), 634-647.

Erkkild, A., Kalliola, R., 2007. Spatial and temporal representativeness of water
monitoring efforts in the Baltic Sea coast of SW Finland. Fennia 185 (2),
107-132.

Ferreira,].G., Vale, C,, Soares, C.V., Salas, F., Stacey, P.E., Bricker, S.B., Silva, M.C.,
Marques, J.C., 2007. Monitoring of coastal and transitional waters under the
E.U. Water Framework Directive. Environmental Monitoring and Assessment
135, 195-216.

Finnish Standard Association (SFS), 1993. SFS 5772. Veden a-klorofyllipitoisuuden
madrittaminen. Etanoliuutto. Spektrofotometrinen menetelmad (determination
of chlorophyll a in water. Extraction with ethanol. Spectrophotometric
method). Finnish Standards Association, Helsinki, 3 pp [in Finnish].

Finnish Standards Association (SFS), 1998. SFS-EN ISO 11905-1. Water quality.
Determination of nitrogen. Part 1: method using oxidative digestion with perox-
odisulfate (ISO 11905-1:1997). Finnish Standards Association, Helsinki, 23 pp.

Frolov, S., Baptista, A., Wilkin, M., 2008. Optimizing fixed observational assets in a
coastal observatory. Continental Shelf Research 28 (19), 2644-2658.

HELCOM, 2009. Eutrophication in the Baltic Sea—an integrated thematic assess-
ment of the effects of nutrient enrichment and eutrophication in the Baltic Sea
region. In: The Baltic Sea Environment Proceedings 115B, Helsinki Commis-
sion, Helsinki, 148 pp.

Honaker, J., King, G., Blackwell, M., 2010. Amelia II: A Program for Missing Data.
(http://gking.harvard.edu/amelia/docs/amelia.pdf> (accessed 11 August
2010).

Horton, NJ., Kleinman, K.P., 2007. Much ado about nothing: a comparison of
missing data methods and software to fit incomplete data regression models.
The American Statistician 61 (1), 79-90.

King, G., Honaker, J., Joseph, A., Scheve, K., 2001. Analyzing incomplete political
science data: an alternative algorithm for multiple imputation. American
Political Science Review 95 (1), 49-69.

Lin, P., Ji, R., Davis, C.S., McGillicuddy]Jr., D.J., 2010. Optimizing plankton survey
strategies using observing system simulation experiments. Journal of Marine
Systems 82 (4), 187-194.

Little, RJ.A., Rubin, D.B., 2002. Statistical Analysis with Missing Data, second ed.
John Wiley, Hoboken, NJ, 381 pp.

Mardia, K.V., Kent,].T., Bibby, J.M., 1979. Multivariate Analysis. Academic Press,
London 518 pp.

Myrberg, K., Leppdranta, M., 2009. Physical Oceanography of the Baltic Sea.
Springer-Praxis Books In Geophysical Sciences, Berlin, 378 pp.

Nordic Council of Ministers, 2006. Ecological status classification of marine waters.
Indicator Development and Monitoring Requirements, TemaNord 2006:582.

Oba, S., Sato, M., Takemasa, I., Monden, M., Matsubara, K., Ishii, S., 2003. A Bayesian
missing value estimation method for gene expression profile data. Bioinfor-
matics 19 (16), 2088-2096.

R Development Core Team, 2010. R: A Language and Environment for Statistical
Computing. <http://www.r-project.org/) (accessed 11 August 2010).

Rautio, L.M.,, Siiro, P., Haldin, L., Storberg, K.-E., Nuotio, E., Westberg, V. (Eds.),
2008. Ehdotus Kokemdenjoen-Saaristomeren-Selkimeren Vesienhoitoalueen
Vesienhoitosuunnitelmaksi Vuoteen 2015 (Proposal for the Water Manage-
ment Plan in the Area of Kokemadki-Archipelago Sea-Bothnian Bay until 2015).
Western Finland Regional Environment Centre, Vaasa 231 pp [in Finnish].
¢ http://[www.ymparisto.fi/download.asp?contentid=93401&lan=FI »

(accessed 11 August 2010).

Sakov, P., Oke, P.R., 2008. Objective array design: application to the tropical Indian
Ocean. Journal of Atmospheric and Oceanic Technology 25, 794-807.

Schabenberger, O., Gotway, C.A., 2005. Statistical Methods for Spatial Data
Analysis. Chapman and Hall/CRC Press, Boca Raton, Florida, 488 pp.

Shrestha, S., Kazama, F., 2007. Assessment of surface water quality using multi-
variate statistical techniques: a case study of the Fuji river basin, Japan.
Environmental Modelling and Software 22 (4), 464-475.

Singh, K.P., Malik, A., Sinha, S., 2005. Water quality assessment and apportionment
of pollution sources of Gomti river (India) using multivariate statistical
techniques—a case study. Analytica Chimica Acta 538 (1-2), 355-374.

Theodoridis, S., Koutroumbas, K., 1999. Pattern Recognition. Academic Press, San
Diego, 625 pp.

Troyanskaya, O., Cantor, M., Sherlock, G., Brown, P., Hastie, T., Tibshirani, R.,
Botstein, D., Altman, R.B., 2001. Missing value estimation methods for DNA
microarrays. Bioinformatics 17 (6), 520-525.

Vuori, K.-M.,, Bdck, S., Hellsten, S., Karjalainen, S., Kauppila, P., Lax, H.-G., Lepisto, L.,
Londesborough, S., Mitikka, S., Niemeld, P., Niemi,]., Perus,]., Pietildinen, O.-P.,
Pilke, A., Riihimaki, J., Rissanen, J., Tammi, J., Tolonen, K., Vehanen, T., Vuoristo,
H., Westberg, V. 2006. Suomen Pintavesientyypittelyn ja Ekologisen
Luokittelujdrjestelmdn Perusteet [the Basis for Typology and Ecological Clas-
sification of Water Bodies in Finland], Suomen Ympadristd 807. Finnish
Environment Institute, Helsinki 151 pp [in Finnish]. ¢ http://www.ymparisto.
fi/download.asp?contentid=48905&lan=fi), (accessed 11 August 2010).

Waulff, F., Rahm, L., Larsson, P. (Eds.), 2001. A Systems Analysis of the Baltic Sea.
Springer-Verlag, Berlin, 455 pp.

NounkrwWwNH

L ®

10.
11.

12,
13.
14.
15.
16.

17.
18.
19.
20.

21.

22.

23.

24.
25.

26.

27.

28.
29.
30.
31.
32.
33.

34.
35.
36.
37.
38.
39.

40.

Turku Centre for Computer Science
TUCS Dissertations

Marjo Lipponen, On Primitive Solutions of the Post Correspondence Problem
Timo Kakola, Dual Information Systems in Hyperknowledge Organizations
Ville Leppdnen, Studies on the Realization of PRAM

Cunsheng Ding, Cryptographic Counter Generators

Sami Viitanen, Some New Global Optimization Algorithms

Tapio Salakoski, Representative Classification of Protein Structures

Thomas Langbacka, An Interactive Environment Supporting the Development of
Formally Correct Programs

Thomas Finne, A Decision Support System for Improving Information Security
Valeria Mihalache, Cooperation, Communication, Control. Investigations on
Grammar Systems.

Marina Waldén, Formal Reasoning About Distributed Algorithms

Tero Laihonen, Estimates on the Covering Radius When the Dual Distance is
Known

Lucian Ilie, Decision Problems on Orders of Words

Jukkapekka Hekanaho, An Evolutionary Approach to Concept Learning

Jouni Jarvinen, Knowledge Representation and Rough Sets

Tomi Pasanen, In-Place Algorithms for Sorting Problems

Mika Johnsson, Operational and Tactical Level Optimization in Printed Circuit
Board Assembly

Mats Aspnads, Multiprocessor Architecture and Programming: The Hathi-2 System
Anna Mikhajlova, Ensuring Correctness of Object and Component Systems
Vesa Torvinen, Construction and Evaluation of the Labour Game Method
Jorma Boberg, Cluster Analysis. A Mathematical Approach with Applications to
Protein Structures

Leonid Mikhajlov, Software Reuse Mechanisms and Techniques: Safety Versus
Flexibility

Timo Kaukoranta, Iterative and Hierarchical Methods for Codebook Generation in
Vector Quantization

Gabor Magyar, On Solution Approaches for Some Industrially Motivated
Combinatorial Optimization Problems

Linas Laibinis, Mechanised Formal Reasoning About Modular Programs
Shuhua Liu, Improving Executive Support in Strategic Scanning with Software
Agent Systems

Jaakko Jarvi, New Techniques in Generic Programming - C++ is more Intentional
than Intended

Jan-Christian Lehtinen, Reproducing Kernel Splines in the Analysis of Medical
Data

Martin Biichi, Safe Language Mechanisms for Modularization and Concurrency
Elena Troubitsyna, Stepwise Development of Dependable Systems

Janne Nappi, Computer-Assisted Diagnosis of Breast Calcifications

Jianming Liang, Dynamic Chest Images Analysis

Tiberiu Seceleanu, Systematic Design of Synchronous Digital Circuits

Tero Aittokallio, Characterization and Modelling of the Cardiorespiratory System
in Sleep-Disordered Breathing

Ivan Porres, Modeling and Analyzing Software Behavior in UML

Mauno Ronkkd, Stepwise Development of Hybrid Systems

Jouni Smed, Production Planning in Printed Circuit Board Assembly

Vesa Halava, The Post Correspondence Problem for Market Morphisms

Ion Petre, Commutation Problems on Sets of Words and Formal Power Series
Vladimir Kvassov, Information Technology and the Productivity of Managerial
Work

Frank Tétard, Managers, Fragmentation of Working Time, and Information
Systems

41.
42.
43.
44.
45.

46.

47.
48.
49.
50.
51.

52.
53.
54.

55.

56.
57.

58.
59.

60.
61.
62.
63.
64.
65.
66.

67.
68.
69.
70.
71.
72.

73.
74.

75.

76.
77.

78.

79.

80.

81.
82.

83.

84.
85.

Jan Manuch, Defect Theorems and Infinite Words

Kalle Ranto, Z,-Goethals Codes, Decoding and Designs

Arto Lepistd, On Relations Between Local and Global Periodicity

Mika Hirvensalo, Studies on Boolean Functions Related to Quantum Computing
Pentti Virtanen, Measuring and Improving Component-Based Software
Development

Adekunle Okunoye, Knowledge Management and Global Diversity — A Framework
to Support Organisations in Developing Countries

Antonina Kloptchenko, Text Mining Based on the Prototype Matching Method
Juha Kivijarvi, Optimization Methods for Clustering

Rimvydas Ruksénas, Formal Development of Concurrent Components

Dirk Nowotka, Periodicity and Unbordered Factors of Words

Attila Gyenesei, Discovering Frequent Fuzzy Patterns in Relations of Quantitative
Attributes

Petteri Kaitovaara, Packaging of IT Services — Conceptual and Empirical Studies
Petri Rosendahl, Niho Type Cross-Correlation Functions and Related Equations
Péter Majlender, A Normative Approach to Possibility Theory and Soft Decision
Support

Seppo Virtanen, A Framework for Rapid Design and Evaluation of Protocol
Processors

Tomas Eklund, The Self-Organizing Map in Financial Benchmarking

Mikael Collan, Giga-Investments: Modelling the Valuation of Very Large Industrial
Real Investments

Dag Bjorklund, A Kernel Language for Unified Code Synthesis

Shengnan Han, Understanding User Adoption of Mobile Technology: Focusing on
Physicians in Finland

Irina Georgescu, Rational Choice and Revealed Preference: A Fuzzy Approach
Ping Yan, Limit Cycles for Generalized Liénard-Type and Lotka-Volterra Systems
Joonas Lehtinen, Coding of Wavelet-Transformed Images

Tommi Meskanen, On the NTRU Cryptosystem

Saeed Salehi, Varieties of Tree Languages

Jukka Arvo, Efficient Algorithms for Hardware-Accelerated Shadow Computation
Mika Hirvikorpi, On the Tactical Level Production Planning in Flexible
Manufacturing Systems

Adrian Costea, Computational Intelligence Methods for Quantitative Data Mining
Cristina Seceleanu, A Methodology for Constructing Correct Reactive Systems
Luigia Petre, Modeling with Action Systems

Lu Yan, Systematic Design of Ubiquitous Systems

Mehran Gomari, On the Generalization Ability of Bayesian Neural Networks
Ville Harkke, Knowledge Freedom for Medical Professionals — An Evaluation Study
of a Mobile Information System for Physicians in Finland

Marius Cosmin Codrea, Pattern Analysis of Chlorophyll Fluorescence Signals
Aiying Rong, Cogeneration Planning Under the Deregulated Power Market and
Emissions Trading Scheme

Chihab BenMoussa, Supporting the Sales Force through Mobile Information and
Communication Technologies: Focusing on the Pharmaceutical Sales Force

Jussi Salmi, Improving Data Analysis in Proteomics

Orieta Celiku, Mechanized Reasoning for Dually-Nondeterministic and
Probabilistic Programs

Kaj-Mikael Bjork, Supply Chain Efficiency with Some Forest Industry
Improvements

Viorel Preoteasa, Program Variables — The Core of Mechanical Reasoning about
Imperative Programs

Jonne Poikonen, Absolute Value Extraction and Order Statistic Filtering for a
Mixed-Mode Array Image Processor

Luka Milovanov, Agile Software Development in an Academic Environment
Francisco Augusto Alcaraz Garcia, Real Options, Default Risk and Soft
Applications

Kai K. Kimppa, Problems with the Justification of Intellectual Property Rights in
Relation to Software and Other Digitally Distributable Media

Dragos Truscan, Model Driven Development of Programmable Architectures
Eugen Czeizler, The Inverse Neighborhood Problem and Applications of Welch
Sets in Automata Theory

86.

87.

88.
89.
90.

91.

92.
93.

94.

95.
96.
97.
98.
99.

100.

101.

102.
103.

104.
105.
106.
107.
108.

109.
110.

111.

112,
113.

114.
115.

116.
117.

118.
119.

120.
121.
122,
123.
124,
125,

126.
127.

Sanna Ranto, Identifying and Locating-Dominating Codes in Binary Hamming
Spaces

Tuomas Hakkarainen, On the Computation of the Class Numbers of Real Abelian
Fields

Elena Czeizler, Intricacies of Word Equations

Marcus Alanen, A Metamodeling Framework for Software Engineering

Filip Ginter, Towards Information Extraction in the Biomedical Domain: Methods
and Resources

Jarkko Paavola, Signature Ensembles and Receiver Structures for Oversaturated
Synchronous DS-CDMA Systems

Arho Virkki, The Human Respiratory System: Modelling, Analysis and Control
Olli Luoma, Efficient Methods for Storing and Querying XML Data with Relational
Databases

Dubravka Ili¢, Formal Reasoning about Dependability in Model-Driven
Development

Kim Solin, Abstract Algebra of Program Refinement

Tomi Westerlund, Time Aware Modelling and Analysis of Systems-on-Chip
Kalle Saari, On the Frequency and Periodicity of Infinite Words

Tomi Karki, Similarity Relations on Words: Relational Codes and Periods
Markus M. Mdkeld, Essays on Software Product Development: A Strategic
Management Viewpoint

Roope Vehkalahti, Class Field Theoretic Methods in the Design of Lattice Signal
Constellations

Anne-Maria Ernvall-Hyténen, On Short Exponential Sums Involving Fourier
Coefficients of Holomorphic Cusp Forms

Chang Li, Parallelism and Complexity in Gene Assembly

Tapio Pahikkala, New Kernel Functions and Learning Methods for Text and Data
Mining

Denis Shestakov, Search Interfaces on the Web: Querying and Characterizing
Sampo Pyysalo, A Dependency Parsing Approach to Biomedical Text Mining
Anna Sell, Mobile Digital Calendars in Knowledge Work

Dorina Marghescu, Evaluating Multidimensional Visualization Techniques in Data
Mining Tasks

Tero Santti, A Co-Processor Approach for Efficient Java Execution in Embedded
Systems

Kari Salonen, Setup Optimization in High-Mix Surface Mount PCB Assembly
Pontus Bostrom, Formal Design and Verification of Systems Using Domain-
Specific Languages

Camilla J. Hollanti, Order-Theoretic Mehtods for Space-Time Coding: Symmetric
and Asymmetric Designs

Heidi Himmanen, On Transmission System Design for Wireless Broadcasting
Sébastien Lafond, Simulation of Embedded Systems for Energy Consumption
Estimation

Evgeni Tsivtsivadze, Learning Preferences with Kernel-Based Methods

Petri Salmela, On Commutation and Conjugacy of Rational Languages and the
Fixed Point Method

Siamak Taati, Conservation Laws in Cellular Automata

Vladimir Rogojin, Gene Assembly in Stichotrichous Ciliates: Elementary
Operations, Parallelism and Computation

Alexey Dudkov, Chip and Signature Interleaving in DS CDMA Systems

Janne Savela, Role of Selected Spectral Attributes in the Perception of Synthetic
Vowels

Kristian Nybom, Low-Density Parity-Check Codes for Wireless Datacast Networks
Johanna Tuominen, Formal Power Analysis of Systems-on-Chip

Teijo Lehtonen, On Fault Tolerance Methods for Networks-on-Chip

Eeva Suvitie, On Inner Products Involving Holomorphic Cusp Forms and Maass
Forms

Linda Mannila, Teaching Mathematics and Programming — New Approaches with
Empirical Evaluation

Hanna Suominen, Machine Learning and Clinical Text: Supporting Health
Information Flow

Tuomo Saarni, Segmental Durations of Speech

Johannes Eriksson, Tool-Supported Invariant-Based Programming

128.

129,

130.

131.

132.

133.

134.
135.

136.
137.
138.
139.
140.
141.
142,
143.
144.
145.
146.

147.
148.

149.
150.
151.
152,
153.

154.
155.

156.
157.
158.
159.
160.
161.

162.
163.

164.
165.

166.

Tero Jokela, Design and Analysis of Forward Error Control Coding and Signaling
for Guaranteeing QoS in Wireless Broadcast Systems

Ville Lukkarila, On Undecidable Dynamical Properties of Reversible One-
Dimensional Cellular Automata

Qaisar Ahmad Malik, Combining Model-Based Testing and Stepwise Formal
Development

Mikko-Jussi Laakso, Promoting Programming Learning: Engagement, Automatic
Assessment with Immediate Feedback in Visualizations

Riikka Vuokko, A Practice Perspective on Organizational Implementation of
Information Technology

Jeanette Heidenberg, Towards Increased Productivity and Quality in Software
Development Using Agile, Lean and Collaborative Approaches

Yong Liu, Solving the Puzzle of Mobile Learning Adoption

Stina Ojala, Towards an Integrative Information Society: Studies on Individuality
in Speech and Sign

Matteo Brunelli, Some Advances in Mathematical Models for Preference Relations
Ville Junnila, On Identifying and Locating-Dominating Codes

Andrzej Mizera, Methods for Construction and Analysis of Computational Models
in Systems Biology. Applications to the Modelling of the Heat Shock Response and
the Self-Assembly of Intermediate Filaments.

Csaba Raduly-Baka, Algorithmic Solutions for Combinatorial Problems in
Resource Management of Manufacturing Environments

Jari Kyngas, Solving Challenging Real-World Scheduling Problems

Arho Suominen, Notes on Emerging Technologies

J6zsef Mezei, A Quantitative View on Fuzzy Numbers

Marta Olszewska, On the Impact of Rigorous Approaches on the Quality of
Development

Antti Airola, Kernel-Based Ranking: Methods for Learning and Performace
Estimation

Aleksi Saarela, Word Equations and Related Topics: Independence, Decidability
and Characterizations

Lasse Bergroth, Kahden merkkijonon pisimman yhteisen alijonon ongelma ja sen
ratkaiseminen

Thomas Canhao Xu, Hardware/Software Co-Design for Multicore Architectures
Tuomas Madkila, Software Development Process Modeling — Developers
Perspective to Contemporary Modeling Techniques

Shahrokh Nikou, Opening the Black-Box of IT Artifacts: Looking into Mobile
Service Characteristics and Individual Perception

Alessandro Buoni, Fraud Detection in the Banking Sector: A Multi-Agent
Approach

Mats Neovius, Trustworthy Context Dependency in Ubiquitous Systems

Fredrik Degerlund, Scheduling of Guarded Command Based Models
Amir-Mohammad Rahmani-Sane, Exploration and Design of Power-Efficient
Networked Many-Core Systems

Ville Rantala, On Dynamic Monitoring Methods for Networks-on-Chip

Mikko Pelto, On Identifying and Locating-Dominating Codes in the Infinite King
Grid

Anton Tarasyuk, Formal Development and Quantitative Verification of
Dependable Systems

Muhammad Mohsin Saleemi, Towards Combining Interactive Mobile TV and
Smart Spaces: Architectures, Tools and Application Development

Tommi J. M. Lehtinen, Numbers and Languages

Peter Sarlin, Mapping Financial Stability

Alexander Wei Yin, On Energy Efficient Computing Platforms

Mikotaj Olszewski, Scaling Up Stepwise Feature Introduction to Construction of
Large Software Systems

Maryam Kamali, Reusable Formal Architectures for Networked Systems
Zhiyuan Yao, Visual Customer Segmentation and Behavior Analysis - A SOM-
Based Approach

Timo Jolivet, Combinatorics of Pisot Substitutions

Rajeev Kumar Kanth, Analysis and Life Cycle Assessment of Printed Antennas for
Sustainable Wireless Systems

Khalid Latif, Design Space Exploration for MPSoC Architectures

167.
168.
169.
170.
171.
172,

173.
174.

175.
176.

177.
178.
179.
180.
181.
182.
183.
184.
185.
186.
187.
188.

189.
190.

191.
192,
193.
194.
195.
196.
197.
198.
199.
200.
201.
202.
203.
204.
205.

206.

Bo Yang, Towards Optimal Application Mapping for Energy-Efficient Many-Core
Platforms

Ali Hanzala Khan, Consistency of UML Based Designs Using Ontology Reasoners
Sonja Leskinen, m-Equine: IS Support for the Horse Industry

Fareed Ahmed Jokhio, Video Transcoding in a Distributed Cloud Computing
Environment

Moazzam Fareed Niazi, A Model-Based Development and Verification Framework
for Distributed System-on-Chip Architecture

Mari Huova, Combinatorics on Words: New Aspects on Avoidability, Defect Effect,
Equations and Palindromes

Ville Timonen, Scalable Algorithms for Height Field Illumination

Henri Korvela, Virtual Communities — A Virtual Treasure Trove for End-User
Developers

Kameswar Rao Vaddina, Thermal-Aware Networked Many-Core Systems
Janne Lahtiranta, New and Emerging Challenges of the ICT-Mediated Health and
Well-Being Services

Irum Rauf, Design and Validation of Stateful Composite RESTful Web Services
Jari Bjorne, Biomedical Event Extraction with Machine Learning

Katri Haverinen, Natural Language Processing Resources for Finnish: Corpus
Development in the General and Clinical Domains

Ville Salo, Subshifts with Simple Cellular Automata

Johan Ersfolk, Scheduling Dynamic Dataflow Graphs

Hongyan Liu, On Advancing Business Intelligence in the Electricity Retail Market
Adnan Ashraf, Cost-Efficient Virtual Machine Management: Provisioning,
Admission Control, and Consolidation

Muhammad Nazrul Islam, Design and Evaluation of Web Interface Signs to
Improve Web Usability: A Semiotic Framework

Johannes Tuikkala, Algorithmic Techniques in Gene Expression Processing: From
Imputation to Visualization

Natalia Diaz Rodriguez, Semantic and Fuzzy Modelling for Human Behaviour
Recognition in Smart Spaces. A Case Study on Ambient Assisted Living

Mikko Pankdald, Potential and Challenges of Analog Reconfigurable Computation
in Modern and Future CMOS

Sami Hyrynsalmi, Letters from the War of Ecosystems - An Analysis of
Independent Software Vendors in Mobile Application Marketplaces

Seppo Pulkkinen, Efficient Optimization Algorithms for Nonlinear Data Analysis
Sami Pyéttidla, Optimization and Measuring Techniques for Collect-and-Place
Machines in Printed Circuit Board Industry

Syed Mohammad Asad Hassan Jafri, Virtual Runtime Application Partitions for
Resource Management in Massively Parallel Architectures

Toni Ernvall, On Distributed Storage Codes

Yuliya Prokhorova, Rigorous Development of Safety-Critical Systems

Olli Lahdenoja, Local Binary Patterns in Focal-Plane Processing — Analysis and
Applications

Annika H. Holmbom, Visual Analytics for Behavioral and Niche Market
Segmentation

Sergey Ostroumov, Agent-Based Management System for Many-Core Platforms:
Rigorous Design and Efficient Implementation

Espen Suenson, How Computer Programmers Work - Understanding Software
Development in Practise

Tuomas Poikela, Readout Architectures for Hybrid Pixel Detector Readout Chips
Bogdan Iancu, Quantitative Refinement of Reaction-Based Biomodels

Ilkka Torma, Structural and Computational Existence Results for Multidimensional
Subshifts

Sebastian Okser, Scalable Feature Selection Applications for Genome-Wide
Association Studies of Complex Diseases

Fredrik Abbors, Model-Based Testing of Software Systems: Functionality and
Performance

Inna Pereverzeva, Formal Development of Resilient Distributed Systems
Mikhail Barash, Defining Contexts in Context-Free Grammars

Sepinoud Azimi, Computational Models for and from Biology: Simple Gene
Assembly and Reaction Systems

Petter Sandvik, Formal Modelling for Digital Media Distribution

207.

208.
209.

210.

Jongyun Moon, Hydrogen Sensor Application of Anodic Titanium Oxide
Nanostructures

Simon Holmbacka, Energy Aware Software for Many-Core Systems
Charalampos Zinoviadis, Hierarchy and Expansiveness in Two-Dimensional
Subshifts of Finite Type

Mika Murtojarvi, Efficient Algorithms for Coastal Geographic Problems

TURKU

CENTRE for
COMPUTER

SCIENCE

http://www. tucs.fi
tucs@abo.fi

),

University of Turku
Faculty of Mathematics and Natural Sciences

e Department of Information Technology

e Department of Mathematics and Statistics
Turku School of Economics

e Institute of Information Systems Science

Abo Akademi University

Faculty of Science and Engineering
e Computer Engineering
e Computer Science

Faculty of Social Sciences, Business and Economics
e Information Systems

ISBN 978-952-12-3372-2
ISSN 1239-1883

Mika Murtojarvi Efficient Algorithms for Coastal Geographic Problems

Mika Murtojarvi Efficient Algorithms for Coastal Geographic Problems

