SEINIRYELGE

Cohesion Metrics for
Improving Software Quality

TurkU CENTRE for COMPUTER SCIENCE

TUCS Dissertations

No 211, May 2016

Cohesion Metrics for Improving
Software Quality

Sami Makela

To be presented, with the permission of the Faculty of Mathematics and
Natural Science of the University of Turku, for public criticism in
Auditorium Pub3 on May 24, 2016, at 12 noon.

University of Turku
Department of Information Technology
Informaatioteknologian laitos, 20014 Turun yliopisto

2016

Supervisors

Ville Leppanen

Department of Information Technology

University of Turku

Informaatioteknologian laitos, 20014 Turun yliopisto

Olli Nevalainen

Department of Information Technology

University of Turku

Informaatioteknologian laitos, 20014 Turun yliopisto

Timo Knuutila

Technology Research Center

University of Turku

Technology Research Center, 20014 Turun yliopisto

Reviewers

Merik Meriste

Department of Computer Control
Tallinn University of Technology
Ehitajate tee 5, 12616 Tallinn, Estonia
Estonia

Ivan Porres

Department of Department of Information Technologies
Abo Akademi University

Domkyrkotorget 3, 20500 Abo

Opponent

Jyrki Nummenmaa

School of Information Sciences

University of Tampere

School of Information Sciences, FI-33014 University of Tampere

The originality of this thesis has been checked in accordance with the University of Turku quality assurance
system using the Turnitin Originality Check Service.

ISBN 978-952-12-3388-3
ISSN 1239-1883

Abstract

Software product metrics aim at measuring the quality of software. Modu-
larity is an essential factor in software quality. In this work, metrics related
to modularity and especially cohesion of the modules, are considered. The
existing metrics are evaluated, and several new alternatives are proposed.

The idea of cohesion of modules is that a module or a class should consist
of related parts. The closely related principle of coupling says that the
relationships between modules should be minimized.

First, internal cohesion metrics are considered. The relations that are
internal to classes are shown to be useless for quality measurement. Second,
we consider external relationships for cohesion. A detailed analysis using
design patterns and refactorings confirms that external cohesion is a better
quality indicator than internal. Third, motivated by the successes (and
problems) of external cohesion metrics, another kind of metric is proposed
that represents the quality of modularity of software. This metric can be
applied to refactorings related to classes, resulting in a refactoring suggestion
System.

To describe the metrics formally, a notation for programs is developed.
Because of the recursive nature of programming languages, the properties of
programs are most compactly represented using grammars and formal lan-
guages. Also the tools that were used for metrics calculation are described.

ii

Acknowledgments

Thanks to my wife and daughter and friends and relatives. Also thanks
to everybody who has helped this work, especially Ville Leppéanen, Olli
Nevalainen, Jukka Teuhola and Timo Knuutila.

iii

iv

Contents

1 Introduction

1.1

1.2

1.3

1.4

1.5

1.6

1.7

Introduction Lo 1
Mathematical notations 2
1.2.1 Notations for sets and relations 2
1.2.2 Basics of formal languages 3
1.2.3 Probability oo 5
What are software metrics? 5
1.3.1 Processview 6
1.3.2 Improvement of the internal quality 8
1.3.3 Prediction L 9
1.3.4 Anomaly detection 9
Software Development Environments 10
1.4.1 Development environment and programming language 11
1.4.2 Capabilities of development environments 12
1.4.3 Knowledge and software engineering 12
What is software? 13
1.5.1 Semantics of programs 14
1.5.2 Probabilities and relationships 15
1.5.3 Flow of control and data. 15
1.5.4 Interfaces and control flow 16
Refactoring 17
1.6.1 Formal definition of refactoring and related concepts . 18
1.6.2 A simple language 20
1.6.3 Lexicallevel 21
1.6.4 Names i 22
1.6.5 Expressions and temporary variables 22
1.6.6 Sequences and substatements 23
1.6.7 Lambda lifting 23
1.6.8 Generalization of functions 24
1.6.9 Modules 24
Modularity and Objects 24
1.7.1 Modularity in programming languages 25

2

1.7.2 Design heuristics for modularity
1.7.3 Object-Oriented Terminology
1.7.4 Refactoring classes
175 Graphso
1.8 Program Analysis for Design,
1.8.1 Validation of metrics
1.8.2 Classifying Software Entities
1.83 Discussion oo
1.9 TImplementation Lo
1.9.1 Integration with Eclipse IDE
1.9.2 XQuery database 0oL
1.9.3 Relational language
1.94 Example. oo
1.10 Description of the thesis work

Internal Cohesion Metrics
2.1 Introduction
2.1.1 Outline of theresearch
2.2 Internal cohesion
2.2.1 Motivation for Internal Cohesion
2.2.2 Previous research in internal cohesion
2.3 Defining cohesion metrics and attributes
2.3.1 Model for programs
2.3.2 Usagerelation
2.3.3 Fine-grained usage relation
2.3.4 Handling this-passing
2.3.5 Variables
23.6 Methods.
2.3.7 Calculation of cohesion
2.3.8 Othermetrics
2.4 Flattened LCOM
2.4.1 Interpretation of flattened LCOM
2.4.2 Practical tests with flattened LCOM
2.5 Local LCOM
2.5.1 Indirect and direct usage of instance variables by meth-
ods e
2.5.2 Dynamictype. oo
2.5.3 Private methods and variables
2.5.4 Trivialclasses
255 Normalclasses
2.5.6 Discussion oo
2.6 LCOM and inheritance
2.6.1 Sizesofparts

vi

2.6.2 Connection of parent and child classes
2.6.3 Abstractclasses.
2.7 Disconnected cohesion graphs
2.7.1 Disconnected classes
2.8 TCC and other alternatives to LCOM
2.8.1 Comparison of LCOM and TCC
2.8.2 Components and LCOM
2.8.3 Connectedness of cohesion graphs.
2.8.4 Components and TCC
2.8.5 Other alternatives
2.9 Elements of Cohesion
2.9.1 Methods using no fields
2.9.2 Usage of this-variable
2.9.3 Methods using one field
2.9.4 Field relations
2.10 Conclusions e

External Cohesion Metrics
3.1 Imtroduction.,
3.2 Related Worko
3.3 External cohesion metric LCIC
3.4 Definition of LCIC
3.4.1 Amodel of programs,
3.4.2 Constructing the model
3.4.3 Definition of the LCIC metric
344 Callchains
3.4.5 Axioms of cohesion measures
3.5 Experimental results
3.5.1 Statistical analysis 0.
3.5.2 Comparison of LCIC and other cohesion metrics
3.5.3 Classes with high LCIC values
3.5.4 Classes with few clients
3.6 Evaluation of LCIC with design patterns
3.6.1 Abstract factory pattern
3.6.2 Mediator pattern
3.6.3 Statepattern
3.6.4 Composite pattern 0oL
3.6.5 Adapter pattern
3.6.6 Proxypattern.,
3.6.7 Observer pattern
3.6.8 Model-View-Controller design pattern
3.6.9 Visitor pattern L.
3.6.10 Godclass pattern.,

vii

3.6.11 Conclusions 123

3.7 LCIC and refactoring 123
3.7.1 Extract Interface 124
3.72 Extract Class, 125
3.7.3 Extract Superclass oL 126
3.74 Merge Classeso 126
3.75 Move Field, 126
3.7.6 Move Method 127
3.7.7 Move Field in Inheritance Hierarchy 127
3.7.8 Encapsulate Fields 128
3.7.9 Eliminate Call Chains 128
3.7.10 Eliminate Conditionals 128

3.8 Variations e 129
3.8.1 Ignoring interfaces 129
3.8.2 Transitive call relation 130
3.8.3 Ignoring classes with only one variable 132
3.8.4 Interpretation of clients 132
3.85 Reverse LCIC 133
3.8.6 Detecting creation methods 134
3.8.7 Detecting candidates for mediator pattern 134
3.8.8 Points-toanalysis. 135

3.9 Conclusions and Further Work 136

4 Refactoring Metrics 139

4.1 Introduction. 139

4.2 Related research L. 140

4.3 Motivation and Definition of the Metric 141
4.3.1 Cost functiono 142
4.3.2 Definition of cost function 143
4.3.3 Suggestion systemo 145
4.3.4 Significance based analysis. 146

4.4 Quantitative analysis oL 147
4.4.1 Basicmetrics oo 147
4.4.2 Cost function and suggestions 148

4.5 Qualitative analysis Lo 150
4.5.1 Individual suggestions 154
4.5.2 Locally optimal module structure 156
4.5.3 Breakingaclass 0L, 157
4.5.4 Intermodule suggestions 158
4.5.5 Implementing refactorings 159

4.6 Conclusions e 160

5 Conclusions 163

viii

6 Recent work on software cohesion metrics 165

A Mathematical symbols 169

ix

Chapter 1

Introduction

1.1 Introduction

This dissertation is about using program analysis to improve the design
of software. By improving the design of software, we mean improving the
internal quality properties of the software. Improving these internal quality
properties means that the software becomes easier to modify, maintain, or
understand. Good internal quality properties should lead to good external
quality.

Program analysis is a way to analyze the properties of programs. For ex-
ample compilers use program analysis for optimization, and there has been
a lot of research about using program analysis for detecting bugs. Because
of the nature of quality, we are interested in software product metrics [78].
These metrics associate numerical values to software artifacts. Numerous
software product metrics have been proposed to help in the software devel-
opment process.

The design issues can be characterized by design rules or concepts such
as modularity. In the present dissertation, we are concerned about mod-
ularity and more precisely, cohesion [28]. A module is called cohesive, if
the components of the module are related to each other. Cohesion metrics
attempt to measure how good the cohesion of a module is.

In the present work, we will perform an extensive study, where properties
of several different cohesion metrics are investigated. It turns out that ex-
isting cohesion metrics are not well suited for software quality improvement.
A new interpretation of cohesion that can be used for software quality im-
provement is therefore proposed. Finally, we present a way to automatically
suggest refactorings that are related to the modular structure of programs.

In general, an important goal of the software quality research is to make
the software development process more efficient. Specific goals in this dis-
sertation include:

1. Find ways to improve the modular structure of programs.

2. Find useful ways to classify software artifacts; this would improve our
understanding of software.

3. Study properties of software by the means of cohesion metrics.

4. In addition to acquiring information about the quality of programs,
tools are developed to make the programming tasks easier.

We start this introductory chapter by a discussion about the central
role of the software metrics in the analysis of the program quality. An
important aspect here is that the metrics are related to the purpose of the
software. After this, we can describe the semantic meaning of programs. In
addition to the semantic meaning, programs have structure that is related
to the software engineering properties of the programs. In order to describe
these properties we need to consider refactorings, and how they are related
to the programs. Finally we will consider how modules are used in the
programming process.

In particular, the Introduction includes 10 subchapters. In Chapter 1.2
we recall the mathematical notations on sets, relations, languages and prob-
ability. The concept of software metrics is discussed in Chapter 1.3. In the
software development process the development environment plays a central
role. Development environments are discussed in Chapter 1.4. Software
and software analysis are considered in Chapter 1.5. Better understanding
of syntactical concepts in software is gained by considering refactorings in
Chapter 1.6. The concept of modularity is introduced in Chapter 1.7. In
Chapter 1.8 it is explained how the theoretical concepts relate to the practice
of software engineering. Chapter 1.9 discusses the implementation concerns
and Chapter 1.10 introduces the plan of the rest of the work.

1.2 Mathematical notations

To express our ideas, we first have to review some basic notations and con-
cepts from set theory, automata theory [85] and probability [38].

1.2.1 Notations for sets and relations

A set or relation is usually written in capital letters such as A, while the set
elements are small letters such as a. Letters u, w and v are used for words,
x, y and z are numbers and fraktur font is used for elements of programs
such as methods m and fields f.

The notation {a | R(a)} denotes the set of elements for which the pred-
icate R holds.

An ordered pair of elements is notated (a,b). There are associated pro-
jections m1(a,b) = a and my(a,b) = b. The cartesian product of sets A and
B is

AxB={(a,b)|ac Abe B}

Then, a set C C A x B is a relation between sets A and B. The application
notation

Cla) ={b](a;b) € C}

is like function application, but it returns a set. If a set is known to include
only one element a, the set can be used to mean just a. Similarly,

C~t={(b,a) | (a,b) € C}

corresponds to the inverse function. The application notation is extended
to sets by

C(a) = | J Cla)

acA

1.2.2 Basics of formal languages

A word over an alphabet A is either an empty word e or of the form aw,
where a € A and w is a word. Concatenation of words u and w is written
as uw. A language is a set of words.

There are different classes of languages. Probably the most important
classes are the regular languages and the languages that can be recognized
by using Turing machines.

A useful concept that is related to words is a semigroup. A semigroup
is a set A with associative operator * : A — A and an identity element 1
such that 1 xa = a*1 = a. It is useful to consider the case where the
elements of set A are functions and * is the function composition operator.
If we have words w1, .. ., wy, the free semigroup generated by these words is
the smallest semigroup that contains these words and has concatenation as
x. A morphism from semigroup A to B is a function f : A — B such that

flar xaz) = f(a1) * f(az).
Regular languages

The class of regular languages can be defined to be the smallest set of lan-
guages that is closed under the following operations:

e Any finite language is regular.

e Union: if A and B are regular, their union A U B is regular. Often
this union is notated A | B.

e Concatenation: if A and B are regular, then
AB ={wv|w e A,v € B}
is regular.

e Iteration: if A is regular, then

A* = U{al...wn | wi,...,w, € A}
neN

is regular. When n is 0, the notation wjy...w, is interpreted to mean
the empty word.

Regular languages are also closed under intersection and several other useful
operations, for example prefix(A) which stands for the prefixes of all words in
A. Regular languages are also exactly the languages that can be recognized
by using finite state machines.

As an example of regular languages, consider that a method a can call it-
self or method b. Further, method b can call method ¢, which can call a. The
set of all possible call paths would then be (a|abc)*(able) = prefix((alabc)*).
It contains words a, aa, ab, aaa, aab, abc, aaaa, aaab, aabce, abca etc.

Grammars

A common way to define languages is by using grammars. In a grammar, we
have a set of terminals 3 and a set of non-terminals N. Then we have a set
of rules that are pairs (u,v) € (XUN)* x (XUN)*, denoted as u — v. Given
a word w, if w = wiuws, it can be rewritten with rule u — v to wivwy. The
language defined by the grammar is then the subset of ¥* containing words
that can be derived by applying the rules of the grammar beginning from
the initial nonterminal I € N.

For example, the above language prefix((a|abc)*) would be given by the
grammar

I — al

| abel

| ab

A

In general, grammars can represent more languages than regular lan-
guages. In fact, they can generate the languages that are recognizable by
Turing machines.

Turing machines

Turing machines provide a mathematical foundation for computer science
and software engineering. A Turing machine represents an idealized digital
device. There is no limitation of resources and no failures. The two parts
of a Turing machine are the tape that represents the memory, and a finite
state machine that reads from and writes to the memory. A wuniversal Turing
machine is then an idealized computer: after programming, it can simulate
the operation of any Turing machine.

This can be tied up with Section 1.3.1, where the requirements for a
software system are considered. Because the requirements might change, the
behaviour of the system should always be modifiable. We can for example
use different tapes for different users of the system.

The nice aspect of Turing machines is that they show exactly what can
be done with digital devices. The other side of this coin is that many
things such as deciding whether two programs have equivalent semantics
are undecidable.

1.2.3 Probability

Formally, let A be a set of events. Then the probability P(a) of an event
a € A fulfills the following axioms:

e P(a) €[0,1].

e Unit measure: P(A) =1 and P(0) = 0.

e For a countable sequence of pair-wise disjoint event sets a1, as, ... we
have P(|J, a;) = >, P(a;).

The intuitive interpretation of P(a U b) is the probability that either
event a, b or both happen. The interpretation of P(aNb) is that both a and
b happen. Two events a and b are independent, if P(a Nb) = P(a)P(b).

A very useful concept is conditional probability. 1t is defined

P(anb)

P(ah) = —p5as

The intuitive interpretation is the probability that a happens, if b has hap-
pened. Note that there is no assumption of causality between a and b.

1.3 What are software metrics?

Software metrics [39] are simply numerical values associated to different
aspects of software or software development process. First, there is the dy-
namic view to the software, where the software is measured at run-time.

)

The measurements can be extended to the effects to the environment, for
example how many users the software has, and how well the software fulfills
its requirements. Second, we can measure how the software is changed. This
includes measuring the software development process. These two kinds of
metrics correspond to the external and internal quality attributes of soft-
ware. Third, the properties of software artifacts can be measured. These
metrics are called software product metrics. A software artifact can be a
model, design document or source code for the program.

In the present study, we are interested in using software product met-
rics to improve software quality, more specifically the internal quality. In
this improvement process one must first have a clear understanding of inter-
actions between external and internal quality attributes, and how software
product metrics and quality can be connected together.

Considering external measures, we are interested in measuring how well
the software fulfills its requirements. If the internal quality is good, it should
be easy to modify the software so that its external quality is improved.
Software product metrics and internal quality can be connected using the
concept of programming tasks. The tasks are use cases for the software
environment. If programming tasks are easy to perform, the internal quality
tends to be good. On the other hand, it is possible to show dependencies
between a programming task and software product metrics. Using these
tasks, one can define a cost model for a software artifact.

The research and practice of software engineering has been mostly con-
centrated on finding how to design the software instead of improving the
productivity of the software environment. Probably a lot of what is needed
on software environments is the same as on other user interfaces. One can
argue that better identifying the tasks needed in software development helps
finding the issues that are specific to software engineering.

1.3.1 Process view

We can describe the above ideas in the following way. The starting point is
the set of possible requirements (or environments) R. For fulfilling R there
is a set of possible software systems S. The requirements and the software
change, when time elapses. To describe this, let 7 : R — Rand s : R — §
be functions for requirements and software on a given point of time. A
function f : Rx S — R tells how well the software fulfills its requirements (in
production use). Negative values mean that software is useful, and positive
values mean that software is harmful wrt. requirements. The effort of
changing software depends on the previous state of the software, and on the
particular change, so it can be modelled using function e : S x DS — R. Let
¢(to, t1) be the total cost of the software in the time interval from ¢ to ¢;.
(The set DS is the set of changes to S.) If s/(t) represents a change made

6

to software at time ¢, the value of ¢ is the the sum values of f(r(t), s(t)) and
e(s(t), s'(t)) when t € [to, t1].

The cost can be defined to be some empirically measurable property
of the software system like the money or hours spent on developing the
software. As such, it is intended to be the connection point of software
process metrics and software product metrics. If the cost can be split to
several pieces from which it can be calculated, perhaps a better way to
approximate it can be found.

The changes DS above can be thought to be the set of programming
tasks. Clearly effort is needed to make progress on the programming tasks.
Also the current system state can be calculated from these performed tasks.

A problem in defining the improvements of software is that the way the
requirements change can be affected by the changes made to the program.
The software development process can thus be divided into two interacting
parts, where the change depends on the external part and the internal part.

s'(t) = qlr(t),s(t))
r(t) = p(r(t),s(t))

where ¢ describes how the software changes, and p describes how the re-
quirements change, in a given state. Now, given f, p, and e, we should find
the best possible g. This means that based on the knowledge we have, we
should find an optimal way to modify the software.

The two interacting parts correspond to two ways of improving the soft-
ware. The first way to improve a software system is to change it to fulfill
its requirements better. This is related to the semantics of the system. New
requirements might necessitate the addition of new semantic content. The
second way is to change the software in such a way that future changes of the
software will be facilitated. This approach is related to the internal struc-
ture of the program. Because changing requirements are hard to predict,
most work in this question has been concentrated on the internal structure
of programs. The changes that only affect the structure of programs are
called refactorings [43].

The existence of refactorings implies that programs include content with
no semantic meaning, which we call the internal structure of the program.
In a wide sense, this content can be seen to include code documentation,
models and other domain knowledge. To determine what kind of changes
should be made to the internal structure, it is not enough to consider, how
good the internal structure is at a given moment of time. Also the pro-
cess aspect needs to be taken into account. For example, because changing
the model necessitates extra design and programming work, unimportant
changes should not be made. If there are several programmers involved,
radical changes of the model can be unwanted, because that requires re-
learning the program structure.

1.3.2 Improvement of the internal quality

Refactoring can be used to improve the design of programs. For this assume
that it is possible to isolate a piece of internal structure of a software system
into a model. For each model, there is a set of possible models that can be
reached by refactoring the program. The problem of finding a pertinent way
of refactoring the program is reduced to finding a model that is better than
the current one.

A simple way to find good refactorings would be to define the cost of
models, and then attempt to find a better model than the current one. The
problem here is that it might be hard to define the cost of a particular
model. Often it is attempted to improve the design of programs by using
design heuristics. These heuristics stand for rules for making development
decisions. These rules are found by experience gained from software devel-
opment. Two important examples of this kind of rules are code smells from
refactorings [43] and forces from design patterns [44].

The ideas of design heuristics can be formalized by using software met-
rics. The intention is that a software artifact gets low metric values if it
agrees with a design heuristic, and it gets high values in the opposite case.
For example, the metric LCOM [26] tries to describe the design rule for
cohesion. Now, as there are several design heuristics, and many software
metrics, the problem is how to combine them.

To describe how these metrics can be combined, we give the following
framework. Assume there is a metric y : A — R that is intended to represent
some design heuristic. Then there is an associated partial order C,: A x A
between software artifacts

aCubs pla) < pub)

For example, a &, b means that according to the heuristic represented by
the metric p, model a is better than b. With partial orders, the relations
between different metrics can be defined. The partial order T, agrees with
a set of partial orders C,,, if

(Vi:al, b)=al,b

If the partial order of v agrees with partial orders p; for all ¢, then v is a
valid combination of design heuristics ;.

In the simple case, where metric p is defined in terms of metrics v;, that
is, it is a function u(vy,...,vy,), it is a valid combination of the metrics if

o
ov; —
In the ideal case, a design heuristic should agree with the cost of the

model. In practice, to determine whether a software metric implements a
useful design heuristic, at least the following aspects need to be considered.

8

e When the metric gives an alarming value, there should be a design
problem.

e The design problem can be found easily based on the metric values.
For example if metric values always indicate a similar design problem,
it can be found easier.

e The design problems that are found using the metric are not found
easier by some other metrics.

If two metrics give similar results, the one that is simpler and easier to
understand should be used.

1.3.3 Prediction

Software metrics are often used for prediction in software processes [14].
Assume that there is a process metric p that would be useful to estimate.
Further assume that there is a set of metrics v; that can be easily calculated.
Now, linear regression or some other statistical method can be used to get
a formula approximating u from v;.

The only requirement for this kind of metrics is that they are indepen-
dent of other metrics. (Otherwise they would be redundant.) This can be
confirmed using statistical analysis. The most important and obvious metric
for prediction is size of the program. Correspondingly, for design heuristics,
we could have a metric for sizes of modules.

Even if correlation is found to exist between a metric and an external
quality attribute, it cannot be deduced that this metric could be used as
a guideline for software quality improvement. For example, it is generally
thought that as the software matures, the internal quality and maintainabil-
ity of the software become lower while external quality attributes become
better. When this kind of studies have been made with different software
packages, it has been found out that different metrics have had the best
correlation with software quality.

1.3.4 Anomaly detection

Above we presented the top-down approach to software metrics, where de-
sign heuristics are used as a basis for software metrics. An alternative,
bottom-up approach to software metrics is developed in this section. In this
approach, one starts from the basic properties of software artifacts, and tries
to derive design rules for good software from them.

Code smell [43] can be defined to be a binary predicate that is applied to
some part of the program. For each predicate R, the probability that a ran-
dom software artifact has that attribute is P(R). In addition to predicates
it can be convenient to have a random variable V' in some finite set that

tells some property of a part of the program. Then the probability that for
a software artifact the property V' has value a is P(V = a). For numerical
variable X is a numerical variable, notations P(X = n) and P(X < n) are
used. More generally, it is possible to define a distance d that can be used
as P(d(y, X) < t) to find out what is the probability of X being close to the
point y.

The idea of finding anomalies in software is to build a model for predict-
ing the properties of a program block. Assume that according to this kind
of model, the probability of X being near y is P(d(y,X) < t) = p. The
experiment X is repeated n times, i.e. the metrics set X is measured for n
different programs. Assume that m of the total n program parts were close
to y. According to our model, the probability that m items are near y is

p™(1 — p)"~™ and so the probability for less or equal to m items
m ‘ m pi
pr=) pA-p""=0-p") T
zz:% = (L—p)

If probability p* is small, it is an indication of the presence of an anomaly.
Based on the model, there should be more programs with metrics values
that are near y. The system has a design heuristic that causes programmers
to avoid this kind of programs.

The approach presented here is similar to approaches using data min-
ing to find programming patterns. Errors can be detected based on these
patterns [53]. The detectors for these patterns can be thought to be very
specific metrics.

Both top-down and bottom-up approaches have problems. One of the
problems is that the programs have semantic content that is not related to
the quality of programs. To solve this problem, one can consider models that
include knowledge about the software, and estimate the usefulness of this
knowledge. These models can be found by using refactorings. It is easier to
estimate the usefulness of smaller models than that of the whole program.

1.4 Software Development Environments

As seen above, based on the requirements of software, the software can
be divided into two parts: the actual software (called the production en-
vironment), and the development environment that is used to modify the
software. The development environment is about programs, and it is known
precisely what programs are, therefore justifying and defining the field of
software engineering.

The program analysis and metric tools described in this dissertation be-
long to the development environment, so it is important to understand what

10

the development environment is, and what is the purpose of the develop-
ment environment. Another reason why development environments need to
be handled is that programming tasks are performed using the development
environment. If the development environment has more automation, the
costs of programming should be lower.

Given a development environment, any kind of software can be built. On
the other hand, some kind of programs are easier to write in some language A
than in another language B. This issue becomes rather confusing, when one
notes that it is possible to define the syntax and semantics of the language
A in language B. This means that in theory, it does not matter what
kind of language is used. Or perhaps it means that an environment which
supports multiple languages is to be preferred. One conclusion that can
also be drawn is that the size of a program depends on the semantics of the
program (Kolmogorov complexity [57]).

1.4.1 Development environment and programming language

The development environment has to support the following two tasks. First,
it is used to create the production environment, or at least the executable,
which is the basis of the production environment. Second, it is used to
modify the production environment, or create new versions of the executable.
Next we review the history of development environments, and possible future
directions.

Development environments are traditionally built around a programming
language. The source code is converted into an executable by using a com-
piler. The source code is a collection of text files, which are edited using a
text editor. Searching information in source code is done by standard text
search tools. Nowadays there are also tools that use structural representa-
tion of the programs, or type information for searching information.

A debugger is a tool that lets the programmer inspect a production en-
vironment carefully. Another requirement for the debugger is that it links
the concepts in the production environment with the concepts in the devel-
opment environment.

These tools are collected to form an integrated development environment
which may additionally include design tools and project management tools.

Because the source code is in a textual format, it is hard to make modi-
fications to it. For this reason different kinds of refactoring tools have been
developed.

Over time, both development environments and programming languages
have grown more and more complex. Often the development environments
seem arcane and are more cumbersome to use than the systems that are
developed using them.

11

1.4.2 Capabilities of development environments

The capabilities of development environments are related to software quality.
To understand this relation, one has to consider some important program-
ming tasks, and their relation to capabilities of programming environments.

Refactorings are often used to improve the design of programs. Develop-
ment environments include support for performing refactorings. These op-
erations are conceptually simple, but because programs are stored as texts,
they become complex. For example Eclipse [32] includes support for re-
naming variables, methods, and classes, moving methods, etc. to aid the
refactoring operations.

Another important feature is searching for needed methods or classes.
This is usually done using type information, or information about modules.
For classes, they can be searched by name. Once the class has been found,
the method can be selected from a list of names of methods of the class.
The more the class has methods, the harder it is to find the correct method.

The capabilities of development environments have an impact on soft-
ware design. For example, because current development environments have
automatic refactoring tools, one should not anymore be focused on design
rules such as use getters/setters instead of public fields, or use virtual meth-
ods instead of typecase. These can simply be considered as different alter-
natives that can easily be switched into another one by applying refactoring.

1.4.3 Knowledge and software engineering

As an extended viewpoint, software can be understood as knowledge about
tasks that the computer is supposed to perform. In addition, the software
developer needs knowledge about the software itself. This knowledge belongs
into the development environment.

To build or understand software, many types of knowledge are needed.
At least the following ways to encode knowledge about software exist cur-
rently:

e Source code.

e Comments.

e Types.

e Design documents.

e Models (for example UML [90]).

Most of the knowledge is encoded using the programming language,
which is by far the most important tool in software engineering. Models

12

often have knowledge that overlaps with the programming language. Com-
ments are informal, and because of this, they might be incorrect, and cannot
be used as input to automated tools. Types have sometimes been said to be
formal kind of comments.

It would be convenient to have knowledge about design decisions included
in the source code. For example, the design decisions are often made for ef-
ficiency reasons. If this is not documented, one may suspect that a design
error occurs. Because both simple and efficient solution have their advan-
tages, in the ideal case both of these should exist. Knowledge about design
patterns [44] can also be useful. Patterns are elements of the programming
style that is not directly supported by the programming language.

1.5 What is software?

The run-time behaviour of the software, and the connection between the
behaviour of software and software artifacts are shortly discussed in this
section. The behaviour of a program artifact is often called the semantic
meaning of the artifact.

Semantics of the programs are considered here for two reasons. Obvi-
ously the programming tasks are related to the semantics of the programs.
If a programming task is supposed to improve the external quality of pro-
grams, the semantics of a program will be changed. Also the concept of
refactorings is related to the semantics of programs.

The behaviour of software can be observed on several levels. The most
important level is observing the impact of the software on users and the
organization. This impact can be compared to the requirements of the
program.

A naive way to define the semantics of programs would be by stating the
input and output of the program. In this view it is assumed that the program
acts as a function. This function can be partial or non-deterministic. It is
usually assumed that the relation between input and output can be described
using Turing machines.

Notice that changing the input-output semantics does not necessarily
change the impact of the program, because the changes could have been
made for an input that never occurs. On the other hand, changes that only
change the performance, but not the input-output semantics, can have large
impact if the program has real time requirements.

When looking at different parts of the program, one can observe the
state changes in the program. It is assumed that a computer is running the
program, and the changes of the content of the memory of the computer
are recorded. The operational semantics of programming languages usually
works on this level to define the input-output semantics of a program.

13

One of the most important roles for semantics of programs in studying
programming tasks is finding the relationships between the different parts of
the program. For example, if a part is modified, the semantics of the program
can be used to find out which parts of the program need to be tested. It is
easy to see that semantic relationships between software artifacts can have
a drastic effect on the efforts needed for performing programming tasks.
Finding this kind of relationships is a part of the field of program analysis.

It is interesting to consider how one should express the possible observa-
tions that can be made about the state transitions. These observations are
related to concrete parts of the programs, so one has to relate the observa-
tions and the parts of the programs. For this purpose, it is enough to think
the program as an array of characters. The program parts are then subsets
of these array indexes.

1.5.1 Semantics of programs

A program in itself is a formal entity and has well defined semantics as
expressed by Turing machines or some similar formalism. This degree for
formality is a consequence of programs being interpreted by machines.

There are many ways to describe the semantics of programs in math-
ematical terms. The problem in programming language semantics is that
it is hard to state the meaning of programming language constructs. To
illustrate, what makes defining the mathematical semantics of programs dif-
ficult, it is useful to consider the following example. It would be natural to
model the functions of a program using set-theoretical functions. But if the
language supports higher-order functions, a function can take itself as an
argument. The set-theoretical model for this kind of functions would then
be a set that contains itself.

A popular approach for formal definition of programming languages is
operational semantics [76], where each programming language construct is
associated with a state transition. For purposes of the present study, it is
useful to consider the set of all possible executions or runs of the program.
This set can be thought to define the semantics of a program. A run can be
expressed as a sequence of states or state transformations of the program.
Moreover, each run can be given a probability. This model of semantics
corresponds to observing what the computer does at the run time. The
state transformations can be divided into two parts: internal and external.
Internal transformations are performed by the computer, and the external
ones are performed by the environment. For example user input belongs to
the external transformations. From the state transformation, it is possible
to deduce input and output of the program.

The programming languages can be thought to have two kinds of non-
determinism: first, the non-determinism caused by the environment, and

14

second, the internal non-determinism that is caused for example by concur-
rency. If all non-determinism is thought to be external, then the internal
part can be simulated by a Turing machine.

To formally represent the possible state changes, a set of atomic state
transformations can be used. Atomic transformations are either external
or internal. Then the set of all possible state transformations is the free
semigroup of these transformations. Obviously the free semigroup of atomic
internal transformations should describe transformations that can be de-
fined using Turing machines. It can be required that each transformation
corresponds to a unique sequence of atomic transformations.

1.5.2 Probabilities and relationships

In theory, the runs of a program can be derived from the definition of the
programming language. To define the environment, one has to deal with
probabilities of external events.

Empirically, each run of a program is associated with a probability.
Moreover, for our eventual purpose, it is more important to consider how
the programmer inspects the program than how the computer executes it.

1.5.3 Flow of control and data

For program analysis, exact semantics of the programs is not always needed.
That level of precision is reserved to the field of proving program correctness.
Atomic state transformations can be divided into equivalence classes. For
example, instead of whole program state, one might only be interested in
which method the control is at a given state, that is the control flow [4].
Another common possibility is to analyze the data flow [87]. Data flow is
about how the information flows between variables and expressions in the
program.

The concepts from automata theory are useful in program analysis [36,
65]. Adapting these ideas, we use the following general approach to pro-
gram analysis: the type of the analysis is represented by alphabet ¥ which
represents the possible states or locations of the program. Then there is a
language L C »* that represents the program being analyzed. Each word
in the language represents a possible sequence of states in the program.
Then another language P C * represents a property of a program. The
intersection L N P is calculated to see if the program has the property.

To speak about control flow, it is necessary to fix the locations where the
control can go through. For this, there is a set of control locations 2. Then
the set of possible runs B is a subset of all sequences of locations 24*. If the
locations are procedures, there are two ways of moving the control: either
a procedure is called, or a procedure exits. We can say that 2 = {m+, m' |

15

m € M}, where M is the set of all procedures, mt means calling a procedure
m, and m" means returning to method m. Let us assume that the control
always returns to the caller and that the first called procedure is m’. This
can be described by a grammar

B — m‘By
Bn — (0B;)*m'

Now it is possible to define the set of all call stacks for a control sequence
w € B. First we define morphism stack from control transformations to
stack state transformations

stack(m")(um’) = wu
stack(m®)(u) = um

The first transformation pops the last element m’ from the stack um’, and
the next transformation pushes the called method m to stack u € 9*. The
set of all call stacks is then

stack (prefix(w))(e)

where prefix(w) is the set of prefizes of word w, that is, wy € prefix(w) iff
there exists word wy such that w = wjws.

The language containing all possible call stacks helps us to determine the
control relationships between the methods. In practice, some simplifications
are still needed. Let call graph C be a directed graph that has methods as
its vertices. There is an edge from method m; to mg, if it is possible that
method m; calls method my. We can define the language B¢ C B containing
all possible call stacks by grammar

Be — M|...| M,
M, — mi{Mj|(mZ-,mj)€C'}

Note that this language can also contain runs that are not actually possible.

Basic data flow relationships are more complex than basic control flow,
because there are expressions, fields and variables that all need to be taken
into account. Therefore expressions, fields and variables are used as loca-
tions, and the data flow between them defines the possible state transfor-
mations.

Data flow and control flow can have complex relationships. For example,
different stacks might have different data flow possibilities.

1.5.4 Interfaces and control flow

As an example of the relation between data flow and control flow, consider
methods, that are called from an object of a known class. The program

16

locations ¥ are now class-method pairs. Then the internal calls for class ¢
are

I. = (C,f)ﬁ)*

The call graph can now be constructed similarly to the more coarse-
grained algorithm, but this-calls can be resolved more precisely. A way to
further classify objects is using creation sites. Then points-to analysis could
be used for finding out the possible transitions.

There are several ways to define how a method m in a class ¢ might
access a field § in the same class c:

A1<C,m,f) = (c,m)(c,f)
A2(c7m7f = (c,m)[c(c,f)

)
A3(c> m, f) = (C, m)z*(ca f)

The definition A; is direct access, As is internal access, and As is any access.
Similarly, for an external field access, where a method m in a class ¢; might
access a field f in another class ca, we have

m)(c2, f)
)Icl c2(527
m)

m)

Bi(cq, ¢, m,) (¢
Ba(c1,02,m,§) = (e,
(; E I,)*(c2,)

1,m
B3 Cl,CQ,m,f c,m (
E*(C27)

B4(C1,C2,m,f 91

where B is direct call, Bs is the case where ¢; calls ¢ internally and ¢y calls
the field internally, Bs is the case where all call chains that only involve ¢;
and co are considered, and By is any call. A problem in defining software
product metrics is determining which of the possible definitions is the best.

1.6 Refactoring

Changes aiming at improvements in the internal quality of software should
not change the semantic properties of the software. These kind of changes
are called refactorings [43]. Refactoring does not affect the external quality.
We say that the refactorings change the structure of the software. It is
obvious that when talking about improving internal quality, the question is
about refactorings and the structure of the software.

Refactorings and changes that affect the semantics of programs are not
completely disjoint. It can be thought that changing the semantics of a pro-
gram is divided into two parts: first the program is refactored so that the
change is easy to perform, and then the change is performed. Also design
of a program is not completely independent of semantics: different designs
contain different kinds of semantic possibilities. In fact it is impossible to
completely separate the structure of the program from its semantics. Other-
wise there would be only one way to write a program with given semantics.

17

In this section, we propose a formal approach to refactorings. In this
approach, refactorings are linked to structural models, which include non-
semantic knowledge about programs. The purpose of these models is then
evaluated. In addition, the goals of the described refactorings are discussed.

The structural models are related to the internal models of programs in
the development tools. For example a compiler might have for a program
several different internal representations, each of which being closer to the
hardware representation of programs. It can be thought that the hardware
representation has a minimal amount of structure that would be helpful to
programmers, and has almost purely semantic content.

The internal representations of programs in compilers are examples of
data structures that are used to represent programs in development envi-
ronments. Other examples include

e Type checkers.

e Program query tools. It is easy to convert programs into general semi-
structural data that can then be queried using general tools.

e Program editing. Most program editing is currently done using the
textual representation. For example refactorings would be easier to
implement using other kinds of data structures. In model driven de-
velopment, graphical representations are used instead.

In this section we are interested in finding data structures, for which it is
easy to perform refactorings and other modifications to the software. It will
be seen that this kind of data structures can be considered as dual to the
internal representations used in compilers. These data structures contain
only information that is used to help programmers, and have no semantic
content.

1.6.1 Formal definition of refactoring and related concepts

Several approaches to formally define refactorings exist[66, 55]. In this sec-
tion we adapt these approaches to focus on the non-semantic structure of
programs.
Consider a set of programs A. Denote the semantic equality of two
programs a and b by
a=b

Then a refactoring relation is denoted by a — b, where a = b. This means
that a can be refactored into b. It is required that the refactoring relation
is reflexive, transitive and symmetric. These requirements imply that the
refactorings have associated equivalence classes [a]. The set [a] is just the
set of programs that can be reached from a by applying refactorings.

18

Given a refactoring, a programming language A can be divided into
two parts B and C. The language B contains the structure related to
the refactoring, and from the language C' this kind of structure has been
removed. If we have a program a € A, there is a corresponding model
b € B. A refactoring is now any change of the model b. We need to show
how the changes in model are connected to changes in the original program.

More formally, there is a bijection f : A — B x C such that if f(a) =
(b, ¢), then a = ¢ and for each [a], m1(f([a])) = c¢. (Here 7; is the projection
mi((a1,...,an)) = a;.) In other words, the function f converts a program a
to two parts b and ¢, where c is semantically equivalent to a. If a refactoring
is applied to a, the program c will stay the same. The program b has to
change because f is bijective. If the component b is changed, the new a is
uniquely determined by f. The problem is that if ¢ is changed, how should
b and a change? First note that a uniquely determines b. Therefore only
changes induced to a have to be considered.

Now the idea is that the function f gives an editable view b of a. In
general, the function f does not have to be a bijection. It needs to fulfill
the rules for lenses [42]. The theory of updateable views has been used as a
starting point for some research in model synchronization.

In the current case, an updateable view of programs g : A — B consists
of two functions g, : A — B and g : Ry — A. Here the set R; C A x B
determines the valid modifications. The following rule holds for R,: If
g—(a) = b, then (a,b) € R,. It is said that if g_,(a) = b, then b is a view to
program a. Assume that view b is changed to ' and g, (a,b’) = a/. Then
a was updated into ¢’ using the updateable view. Following lenses [42], we
get the following rules for updates:

g(a,9-(a)) = a
g-(9-(a;b)) = b
9« (g<_(a, bl)v b) = g« (a? b)

Dividing language A can now be formulated as two updateable views
g:A— Band h: A — C, for which h,([a]) = ¢. All modifications
are valid for h: R, = A x C. For g, the modifications cannot change the
equivalence class:

1. If a— d/, then Ry(a) = Ry(a’)
2. If g (a,b) = d/, then a — d.

This restriction to Ry, ensures that updates to B represent valid refactorings.
Now we can write the bijection f as

fla) = (9-(a), h(a))

19

Given ¢ and b, we can uniquely determine a. This implies that

ge(a,b) = fH(b, h(a))

Now we can remove A from the equations, and see what is the relation-
ship between B and C. If we now only have b and ¢, then changing b cannot
change c. Given b and c, there is a set By, . = g_([f1(b,¢)]) corresponding
to possible refactorings, and b can be changed inside this set. So the first
form of change is

(b,c) — (V,c)

where b,b’ € Bp.. On the other hand, if ¢ is changed to ¢/, we get a =
f~Y(b,e) and o’ = h, (a,c'), and finally ¥’ = g_,(a’). Therefore the second
form of change is

(b7 C) = (g—>(h<—<f71(b7 C)))? CI)'
For this kind of system, we need two components: the relation R, which tells
how b can be changed, and function h(b,c,c’) = g— (h(f~1(b,c))), which
tells how structure b is changed when semantics ¢ is changed.

There should be a metric that tells how much b is changed. The functions
should be selected so that b changes as little as possible.

Once the program has been divided into models, one has to consider for
each of these models, how it is used to help in program development. These
usage patterns can then be used to define the effect of the model in the
software development process.

1.6.2 A simple language

To show how to use the above framework, define a simple language L C ¥*.
First the lexical structure of the program is ignored by associating with each
s € X* a sequence of symbols S*. These symbols are either builtin symbols
(set B) or names (N); S=BUN.

The syntax of L can be defined using a grammar:

Program — Module*
Module — module N { Method* }
Method — method N [N* | { Command™* }
Command — Expression ;
| { Command* } ;
| N = Expression ;
—- N
| Expression [(Expression ,)* |
| lambda [N* | { Command™ }

Expression

Features such as reference cells and control structures are thought to be
defined as builtin functions. For this, there is a set of builtin function names
F CN.

20

We consider the following kinds of structures in the program:
e Lexical level, indentation, style issues.
e Names and scoping.

e Modules. The order of the items inside modules can be changed. The
items can be moved into different modules.

e Lambda expressions (anonymous functions) can be moved into top-
level.

e Sequences for commands: flatten them.

e Expressions can be flattened using temporary variables.

e The level of generality for functions: remove extra generality.
e Also remove functions with only one parameter.

With more semantic knowledge about builtin functions, new refactorings
can be defined.

1.6.3 Lexical level

The lexical level of a programming language is the most established example
of what we are trying to achieve. By ignoring details such as indentation
and other whitespaces, it is possible to concentrate on syntactical structures.
The indentation is very important for understanding the source code.

The problem is determining how the lexical structure should be changed
when the program has been modified on syntactic level. The previous style
of program should be preserved as much as possible. In the worst case, if
something is changed, the old indentation is completely ignored. An easy
way would be to automate indentation. Manually made changes would be
removed. One can define a distance for programs that measures, how close
the indentation structure is to the original.

In current development environments, the indentation has been mostly
automated. New parts of the programs can be given indentation and white-
spaces by using a pretty-printer, that is applied to the syntactical structure
of programs.

Perhaps the easiest way to implement the internal representation is to
make the lexical tokens to be “objects”. If a new object is added, it will have
new indentation. One could now check that the values of the old objects
have not been changed. So there are lexical objects, O, and these objects are
in a linear order. The lexical objects have associated values and associated
indentation properties.

21

The generation of this structure from the textual representation of the
program is the task of a lexer. The next step is parsing, where lexical
tokens are arranged in a tree structure. This tree structure is completely
determined by the grammar of the language, and each structure can only
have one possible sequence of lexical tokens, so this phase does not need any
additional considerations.

1.6.4 Names

The next important style issue is the naming of variables and other soft-
ware artifacts. This issue does not have as clear-cut solutions as indentation
issues, because there cannot be a universal naming scheme for software ar-
tifacts.

There are two things which tend to do the situation more complex. The
first one is that if the programmer wants to change a name, it has to be
changed everywhere, because there is not an object in the textual represen-
tation that would represent the software artifact. Another complication is
that the programmer might want to give several different names or aliases
to a software artifact. This overlaps with the semantic concept of pointers
or references. Probably the closest thing to this is that name declarations
can be accompanied by comments that describe the purpose of the artifact.

It is not a great problem that local variables cannot have several names.
Global named artifacts such as fields and methods can quite easily have
several different names. First, fields can have getters and setters so that
this is reduced to the case of methods. A method can have another method
with a different name that simply calls the original method. Unfortunately
this workaround might have an overhead on the run time. For classes, the
situation is not as easy.

The lexical objects that represent the same name are replaced with a
name object. In this model, the name objects can be given new values. The
scoping rules generate restrictions for these changes. This seems easier than
indentation: If a new name object is added, it needs to be given a new name
value. For example Eclipse has objects that correspond to named software
artifacts, but are these used for refactorings?

The naming related issues are probably the clearest example of problems
connected to the use of text based program editing.

1.6.5 Expressions and temporary variables

In general, there are three ways to use local variables.

1. If calculation of a value has side-effects, and the value is needed several
times, it can be stored into a local variable (or perhaps in the heap).

22

2. If an expression is used several times, it can be stored into a local
variable to make the program shorter, and perhaps more efficient.

3. If an expression is too long, it can be split by using temporary variables
for subexpressions.

It is simple to remove expressions so that only one form is needed. For
example v = m(e) can be changed to t = e;v = m(t). If variable ¢ is used
only once, the temporary variable can be removed.

1.6.6 Sequences and substatements

An important notion in structured programming is a substatement. For
example if one has statement

while (E) {
S
¥
it has substatements E and S. For refactoring, the important thing about
substatements is that they can be moved into other parts of the program.
Sequences are rather simple structures. If there are nested sequences,
they can almost always be removed. Correspondingly, if a new sequence is
added, it does not need to have any nesting structure. An important thing
to notice about sequences is their substatements. For example the sequence
a; b; ¢ has substatements a, b, ¢, a;b and b;c that can be moved indepen-
dently. The number of substatements depends on variable declarations.
Another concept that is similar to sequences are sets. For example a

class can be thought to be a set of its members, because their order does
not matter.

1.6.7 Lambda lifting

To get a flat function structure, one needs to invent a name for each lambda
expression. All parameters used within these expressions must be passed to
the new functions as arguments. The lambda expressions can be moved up
and down in the function structure this way.

Many languages do not have this kind of functional structure, but for
example Java has inner classes that have a similar purpose.

Because closure creation does not have side-effects, the lambda expres-
sions can be moved up in command sequences, too. For the normal form, it
would be most useful to have all functions on the top level, but for a user, it
is probably best, if the functions are at the lowest possible level. For exam-
ple, it would not make any sense that the arguments to a while-command
would not be shown.

23

1.6.8 Generalization of functions

After the above considerations, each function in the program can be reduced
into a sequence of form

t1 = filvia, ... 010,)

tm = fm(vm,ly cee 'Um,nm)

The refactoring that remains is the generalization of functions. This
means that a part of a function is changed into an argument for the function.
We get a new normal form by cancelling all premature generalizations.

Generalization can be used to find common functionality. Another way
to view generalization is to consider the cut-and-paste operation. For exam-
ple, consider a case where one needs two classes ¢ and ¢/, which are otherwise
equivalent, but in a method a in class ¢, there is a statement s that needs to
be changed into s’. A natural solution would be to copy the class ¢, change
its name to ¢’ and then change the statement s into s’. This solution usually
harms the readability and maintainability of the program. A better solution
is to first generalize the class so that the statement s is given as a parameter
to the class. In practice this specific case is usually done using the template
method pattern.

1.6.9 Modules

For example lambda lifting produces new atoms into modules. For this
reason it might be easier to handle the modules last. In language L, the
notion of modules is very simple, and therefore the only refactoring that is
needed, is moving members between modules. This refactoring is considered
in detail in Chapter 4. Basically the problem is finding the most useful
module structure.

We consider modules in more detail in Section 1.7.

1.7 Modularity and Objects

In Section 1.6, it was shown how parts of the programs that are related to
design can be extracted into smaller parts or models. Out of these models,
the focus of this dissertation is in the module structure of programs.
Modularity [75] is related to the idea that to solve a problem, it must first
be divided into smaller subproblems. In software engineering, the problem
to be solved is creating a program that fulfills its requirements. It can be
thought that a requirement is already a description of what the program
should do. When requirements are divided into smaller specifications, these
specifications become more formal. More details can be added such as the

24

data needed to fulfill the requirements. In fact, often the most important
requirements are about data that should be available.

A modular design approach has several advantages. It improves the
maintainability of the programs. It makes reusing code easier, which in
turn leads to better correctness and performance. It can improve flexibility,
because for example a plug-in mechanism should be easy to implement.

The overall quality of software depends on the architecture of the soft-
ware. One essential part of software architectures is to guarantee good
modularity: All software architectures include descriptions of components
(modules) and their relationships in the system (sometimes this is called the
meta-architecture).

1.7.1 Modularity in programming languages

Several different modularity related constructs have been used in program-
ming languages. Some of the most common ones are

e Methods, functions and procedures.
e (Classes.
o Packages.

Many languages have also the ability to “nest” modules, for example inner
classes and first-class functions.

In many languages, modules or classes can have interfaces, that describe
the types of modules or classes.

Abstract data types are also based on the idea of refactoring: An abstract
data type can be replaced with a similar one, and the semantics of the
program stays the same.

There are three ways to use modules in programs:

1. In basic modularity, a program is just divided into smaller parts.

2. When a module is used via an interface, it can be replaced by another
that uses the same interface. This is the basis for component based
systems. The interfaces describe what kind of components the system
has.

3. Finally, also relations between components are described explicitly.
This can for example be implemented as a function that combines two
components into one composite component.

All these ways have their own uses in the programs. These three uses of
modules also show that the distinction between dynamic and static parts of
the programs is not very clear.

25

1.7.2 Design heuristics for modularity

Three widely accepted measures to evaluate the modularity of software are
the size of modules, the cohesion of modules, and the coupling between
modules. In general, it is considered that modularity is good when there is
low coupling between modules, and high cohesion inside each module [28].

In object oriented design, a class should represent a single logical concept,
and not be a collection of miscellaneous features. Cohesion of a class tells
how well it fulfills this design principle. Coupling on the other hand tells
how strongly classes depend on other classes.

The idea of these heuristics is as follows: If a class is cohesive, the mem-
bers of the module are related and it is useful that they can be found from
the same module. If the size of a class is too large, it becomes harder to find
the needed member in the module, and also understanding what is impor-
tant in the module becomes harder. If a class has a lot of coupling, there
are many related classes, and so the system becomes harder to understand.

The size is usually considered the most important software metric, and
the same holds for modularity. If a module is too large, it is harder to un-
derstand and use. For example a wrong method can be selected if there are
too many methods in one module. If the internal properties are not well
documented, modifications inside the module can have unexpected conse-
quences. On the other hand, if a module has too small size, it might seem
disconnected from the other parts of the program.

1.7.3 Object-Oriented Terminology

The most popular languages today use the concept of classes instead of plain
modules [68]. Therefore we need to consider what is the difference between
these two concepts. It is important to realize that unlike dividing programs
into modules, division into classes contains semantic information. In this
sense the difference is like the difference between indentation and structured
programming.

To understand, what object-oriented programming is about, we intro-
duce a simple formalism that explains how object oriented concepts can be
defined from more basic concepts. This is similar to defining structured
statements in terms of higher order functions.

If there is a set of field names §, then the object store can be expressed
as mapping 0 : J X §F — 0. The set J is the set of object identifiers and the
set ¥ is the set of possible values. It is said that each object has a unique
identifier, and each object has one or several fields with values. Each object
identifier is a possible value in itself, so we have J C . Some languages
also have other values, for example Java has machine integers and floating
point values. These values are semantically different from object values.

26

Another mapping ¢ : J — € gives for each object its class, where € is the
set of classes for a given software. Finally mapping t: € x & — 9N resolves
method signatures into actual methods, where 9 is the set of methods and
G is the set of method signatures in the software. Now method invocation
can be defined as

0.5(v) =t(c(0),5)(0,0)

This means that from object o, the method with signature s is executed. In
addition, value v is given as an argument for the method. Here the object
0 € J is often called the receiver of the method.

To complete this simple semantic model, it would be necessary to asso-
ciate methods with state transformations.

In addition to these concepts, there is the class hierarchy, which is defined
differently for fields and methods.

Creation of a new object just returns a new object identifier, and then
calls a constructor function. It seems that these concepts are almost insep-
arable.

Most complexity of object oriented programming comes from the class
declaration construct. This construct can be thought to define one or more
constructor functions. It can be thought that a class declaration first con-
structs a class lookup table, which is then shared by each object.

As a summary, a class declaration has the following semantic content.

e [t declares mappings from objects to values. These mappings can
only be applied to objects of this class, or to objects of its subclasses.
This corresponds to the implementation where objects and fields are
represented as integers.

e [t declares a lookup table that contains functions. This table is added
to the table that the inherited class has.

e A subset hierarchy is defined for the objects.

An important piece of terminology we need are accessor methods. There
are two kinds of accessors: getters and setters. Getters are methods whose
purpose is to return a value of the field, and setters are methods whose
purpose is to change the value of a field.

1.7.4 Refactoring classes

As we saw, the fields can be interpreted as relations between objects and
values. It is easy to use data structures such as maps instead of fields. This
would however affect the performance negatively. Therefore, when moving
fields, performance considerations must be taken into account. Luckily, it
can usually be argued that the fields are in the correct place, when they

27

are associated with the same kind of object identifiers. There are several
counter-examples, though:

e If a field has often a null value, it would seem that there is some kind of
inefficiency. For example, the field might then represent a hot-key or
voice command that could be used to activate graphical components,
but most components would not have this kind of hot-keys.

e A piece of information might not be central to the intended meaning
of the objects, instead it is auxiliary data for some kind of subsystem
of the application.

For these reasons, it is common that instead of fields, more complex con-
structs are used to describe the properties of objects.

If a method is not called using dynamic binding, it is easy to move the
method by converting it to a method that only operates on a single field or
argument. The placing of methods is only related to the lookup tables.

1.7.5 Graphs

In the literature, metrics related to cohesion and coupling are defined in
terms of graphs. Let G = (V| F) be a graph with the set of vertices V' and
edges E. Then a metric u : G — R calculates some property of the graph.
To define metrics, it is useful to be able to restrict to some subset of graphs,
G (valid graphs). Let ~ be an equivalence relation, which tells when two
graphs are structurally similar.

For example, a graph is bipartite if V = AU B so that F C A x B and
A and B are disjoint. Then the valid graphs could be the bipartite graphs,
and two graphs with Vi = A1 U By and Vo = Ay U Bs could be structurally
similar if their partitions are of the same sizes: |A;| = |A2| and |B1| = | Ba.

Now one can define [G] € G/ = to be the equivalence class of G € G with
respect to relation ~. Then the metric can be normalized into the interval
[0,1] by

(@) 1C) —int p((C)
sup p([G]) — inf p([G])

For example, if the metric p is the number of edges, and the valid graphs

are bipartite graphs 5]

E

*
W = Tim

It is possible to define a metric for the number of pairs of vertices con-
nected by a path with length n («;,), or the number of paths with length n
(Bn). For bipartite graphs, the metrics oy and (1 are the same, and they
count the number of edges. If n is even, we can have two variations: the

28

endpoints of the paths can be restricted to one of the sets A and B. We can
notate oy (G) = ano(G) + o b (G).

To take interfaces into account, each client has an interface through
which it can use the services provided by the components. So we have a
relation R(a,b), that holds if a can use service b. The structural similarity
is now calculated according to this relation. In this case it holds that

For some purposes, it is useful to consider the graphs as probability
spaces. For example if there is a graph with n edges, P(a A b) = %, if
(a,b) € E, and P(a Ab) = 0 otherwise.

1.8 Program Analysis for Design

In this section we describe how program analysis can be used to assist in
software design [56]. There are two levels: improving the software and
improving the software environment.

Using automated analysis techniques, information can be gathered from
a large body of software. This cannot practically be done otherwise. Clas-
sification of software entities is needed to gather more information about
software. This information can then be used when evaluating software met-
rics or refactoring suggestion systems.

The limitation of this approach is that only the software is evaluated.
What is missing is the history of how the development environment has been
used.

1.8.1 Validation of metrics

The focus of this dissertation is in finding metrics that can be used to im-
prove the quality of software. If one wants to use a software metric for
quality improvement, there are several considerations:

e When can a software metric be applied in the development process?
e What kind of problems should be found with the metric?
e How can the problems that were found be fixed?

One reason why an internal cohesion metric should be useful, is that it
can be applied to individual classes, unlike coupling metrics, which need the
whole program to give reliable results. Because of this, such a metric can be
used already at the beginning of software development. When a metric is
used in a software development process, it should provide useful information

29

on the difference between the original and modified software versions. In an
evolving design, adding new features should make the cohesion lower, and a
refactoring should make it higher.

To evaluate the usefulness of a metric, one has to inspect the classes that
the metric indicates having design problems. These problems are classified
to true design problems and valid design decisions. If there seem to be
enough true design problems, the impact of fixing the design problems can
be evaluated. Also the effort needed for fixing the design problems should
be evaluated. If it can be assumed that the impact of fixing the problems is
larger than the effort needed for finding and fixing them, the metric can be
used for software quality improvement.

Looking forward, if there is a refactoring suggestion that is supposed to
implement a design improvement, one can evaluate it using design heuristics.
If all design heuristics agree, then a reliable suggestion has been found.
If design heuristics do not agree, then there are conflicting design issues.
For a heuristic, it is possible to define a cost model that explains why this
design heuristic really improves the software. If a cost model explains several
different heuristics, then there is more evidence for the suitability of both
the design heuristics and the cost model.

On the other hand, it may turn out that by using the metric, no design
problems are found or there were too many false positives. Then one may
attempt to classify the false positive findings, and define a new metric that
does not generate these false positives. If there are still no true design
problems found, a negative example of a design heuristic has been found,
and the assumptions behind the heuristic have to be investigated.

1.8.2 Classifying Software Entities

To better understand the nature of software, the software entities can be
classified. For example local variables can be classified by their roles [84].
This kind of classification helps in finding programming patterns. There are
also many kinds of classifications for classes, see for example [67].

It is required from a good classification that it does not rely on the
programming language, because the constructs in programming languages
can be completely arbitrary. From this requirement it follows that the clas-
sifications might be complex to define formally. On the other hand the
classification should be formally defined so that program analysis can be
used to confirm the results.

A classification can be used to improve the design of programming lan-
guages by offering empirical input into language design. By classifying the
software entities one can find programming patterns that can be a basis of
new language features. On the other hand, it might turn out that some
language features are not useful and should therefore be deprecated.

30

1.8.3 Discussion

As the size of software and the number of programmers working on soft-
ware projects are increasing, measuring the software quality is gaining more
importance. Measuring software quality using software metrics has two po-
tential advantages. First, it can help to predict, how a software process will
succeed, and second, it can help to improve the quality of software.

Code reviews are currently used to improve the quality of software. Soft-
ware metrics automate part of this process.

The quality of software is weakened by design problems. These problems
are caused by program evolution or by errors made in the design phase.
They can make programs error prone, harder to understand and maintain.
At least two characterizations of design problems exist in the literature.
Anti-patterns [19] are modeled after design patterns. Code smells are based
on refactorings [43]. Both kinds of problems can be detected using software
metrics, as is discussed in [56]. Software metrics and refactorings have a
close relationship; metrics are used to find problems that need refactoring,
and the values of metrics should improve as a result of refactoring.

1.9 Implementation

Implementing advanced software product metrics for Java includes several
challenges. The most fundamental one is that global analysis is required
for finding and analyzing semantic properties of programs. For this reason,
the analysis needs to be implemented very efficiently, or it does not scale
to realistic, very large programs. To improve the metrics, more complex
analyses such as points-to analysis are needed. Also the definitions of the
metrics can be complex and the metrics can have several different variations.
Further, Java also has a rather complicated syntax, and the analysis cannot
be done properly until the relevant information has been extracted from the
program.

To overcome these challenges, a framework for efficient software analysis
and metrics calculation is proposed in the present work. This framework
has been implemented as a three-part tool, called QuickMetrics. The first
part is an interface with integrated development environment (IDE). This
component converts the program files into XML files. These files are stored
in the second part, in an XML database. Using a query language XQuery,
the database can be searched, and features needed in software analysis can
be extracted into tables. These tables can then be processed efficiently using
a BDD based language for relational computations.

User-defined analyses and metric calculations can be performed using
a two-step approach, where the needed information is first extracted from
the program using XQuery, and a semantic analysis is then performed using

31

a BDD based analysis step on the relations returned by the query. This
two-step approach comprises the third part of our framework.

1.9.1 Integration with Eclipse IDE

Different software development tools are usually utilized in IDEs. Current
IDESs, such as Eclipse, provide several useful features to help in program-
ming, like syntax and type checking in the program editors, and tools for
refactoring. As a bridge between the software analysis and the develop-
ment environment, the framework of the present work includes a plug-in for
Eclipse IDE, which converts the internal representation of Eclipse to XML,
and vice verse.

The Eclipse plug-in has two parts: an importer and an exporter. The
exporter stores program files into an XML database. This can be done when
the program is compiled to keep the database up-to-date. In general, the
exporter has two parts: parsing and type checking. Both parsing and type
checking can be done using the Eclipse JDT library. Type and binding
information is often needed by analysis, so it is very expedient to store it
into the database.

To make implementation of the analyses easier, the elements stored in the
database must be clearly identified. Top-level types are identified by their
fully qualified names. Type members are identified by the class identifier
and their signature. Expressions and statements are identified by their file
name and location.

The importer can read files from a database. If also comments and line
numbers are stored into the database, no information is lost when trans-
forming into XML and back into text format. In theory, it is possible to
completely remove the text based representation, and store programs only
into the XML database.

Another feature that is useful for IDE integration is getting information
for an element of a program. For example, if an analysis produces a relation
for expressions, the related elements can be easily queried. Analysis rela-
tions are always assumed to be up-to-date. Actually, these relations can be
computed on demand.

It would be possible to store byte codes into a database instead of the
source code. The advantage of this would be that bytecode has less linguistic
constructs. The disadvantage of this solution is that the developers are much
more familiar with the structure of the source code than the structure of byte
code.

32

1.9.2 XQuery database

After the program has been stored into an XML database, it is possible to
use XQuery to extract the information needed by the software analyses. The
database implementation used was pathfinder [81].

Examples of program query systems are magellan [33] and codequest [47].
Like magellan, we use XQuery for querying the code database. However in
magellan there is no easy way to define efficient analyses. Codequest is more
efficient, because it uses a relational back end. Some analyses are easier to
implement using BDDs because they use very large tables.

The code database can be queried in two different ways. Queries that
are useful for software analyses are typically applied to all compilation units,
type declarations, etc. Other kind of queries can be used for searching code.
Searching is more efficient than traditionally in IDESs, as programs are stored
in a database instead of plain text format. It is also possible to do structural
search, and what is still more important, use the included type and binding
information.

In general, the queries are easy to write, and efficient to implement.
However, sometimes the syntax of Java is rather complex to interpret, for
example qualified names may cause problems. For this reason, user-defined
functions can be added to make the writing of queries easier.

Figure 1.1 shows a query that is needed in a points-to analysis. This
query returns all object creation sites. It also returns the class of the created
objects. The value of the variable $prog is the whole program. Tag new is
for object creation expressions. Path expression type / key returns the type
of the created object, and then returns the unique identifier for the class.
This identifier is calculated by the compiler when the program is converted
into XML. The attribute exprid is a unique identifier for each expression in
the program code.

for $cons in $prog //new

where data($cons /type/key) #""

return <p><key>{data($cons /type/key)}</key>
<id>{data($cons /Qexprid)}</id></p>

Figure 1.1: An example query which returns the object creation expressions
with type information.

Because the queries can be calculated separately for each compilation,
it is simple to implement incremental computation efficiently. A driver exe-
cutes the query for each updated compilation unit. The query is executed for
both old and new versions of the unit. To capture changes, we just compare
these results with the old results. The change of a relation is represented as

33

the tuples that have been added to the relation, and the tuples that have
been removed from the relation.

1.9.3 Relational language

With a relational language, several useful analyses can be defined. In prin-
ciple, XQuery can be used to express relational operations. In practise, this
is however too slow for handling recursive queries. A BDD based imple-
mentation is more efficient, especially when relations might have a lot of
redundant information, as is often the case in program analysis.

We have implemented a new BDD based language HD-BDD. Two exist-
ing examples of BDD based languages are bddbddb [91] and CrocoPat [9].
HD-BDD is similar to these languages. Because the syntaxes of bddbddb
and crocopat are based on logic programming, they do not have a natu-
ral support for arithmetic operations, and they are thus not well suited for
metrics calculation. Following the tradition of database query languages,
HD-BDD has good support for metrics.

HD-BDD is a simple functional language with XQuery-like syntax, see
Figure 1.2. HD-BDD has support for three kinds of data types: atoms, rela-
tions and numeric values. Relations are defined between atoms or numeric
values. They are internally represented as BDDs. Atoms belong to finite
domains. Domains and relations are loaded into HD-BDD from XML files
created by database queries.

The language has the following basic operations for relations:

e Intersection of relations,
e Union of relations, and

e For-Where-Return-expression (FWR), see below.

In addition, HD-BDD includes let-binding and mutually recursive defi-
nitions.

The FWR-expression corresponds to a natural join in relational algebra,
and it is similar to the for-expression in XQuery. The semantics of the
FWR-expression is a set comprehension. If we have expression

for (vi1,...,v1n,) iner, ..., (Um1,- s Vmn,) D ey
where vy(1) = vy(1) and. ..and vyq) = vy
return (v, 1y, . . . Up(k))

and expression e; evaluates to relation R;, the relation expressed by the
FWR-expression is

{(Ur(l)) .. .,UT(k)) | (U171, ceey ULm) e Ry,
(Um,la .. -)Um,nm) € Ry,
Vi) = Ug(1) - Vi) = Vg }

34

empty

v

eNe

eUe

e—e

for (v,...,v)ine, ..., (v,...,v) ine
where v =v and...and v =v
return (v,...,v)

| letv = ee

| letrecv = eand...andv=ce

Figure 1.2: The syntax of HD-BDD.

The value of recursive definitions is defined to be the fixpoint, when the
definition is repeatedly applied to an empty set. Combination of FWR-
expressions and recursive definitions is very similar to Datalog like BDD-
based languages. The implementation also supports function definitions.
Recursion can be used freely, and the language has first class functions with
lexical scoping. Relational calculation can be implemented in the usual way
using for example trees, or it can be implemented using BDDs. BDDs are
hard to optimize because their performance can be unpredictable.

Programs written in HD-BDD are interpreted, because most of the time
is spent doing the relational calculations.

1.9.4 Example

As an example analysis using HD-BDD, let us calculate the transitive closure
of call trees. For an analysis of a simple call tree, one needs a table that
contains what methods call each other ($call), and a table which tells which
methods overload some another method ($over).

Table $call_over is formed as follows:

let $call_over :=
for (Scaller,$called) in $call, ($sub, $super) in $over
where $called = $super
return ($caller, $sub)

The table $call_over resolves the dynamic binding of method calls. Every
possible method, that overloads the target method, might be called. Then

35

the transitive closure in the definition of $call;r is calculated:

let rec $call_tr := $call_over U
for (Scaller, $called) in $call_over,
($callerl, $calledl) in $call_tr
where $called = $callerl
return ($caller, $calledl)

The results of the analysis above can be improved using a points-to
analysis. Assume that the results of the points-to analysis are in a table
points where (e,c) € points if the value of expression e can be of class ¢,
and relation call(te,m) states that for the expression te the method m will
be applied. Table resolve has element (¢, m,m’), if the method signature of
m applied to class ¢ would actually call method m’. A table that tells if a
method contains an expression is also needed.

Using points-to analysis, overloading of methods can be resolved as:

let $call_over :=
for ($e,$c) in $points, ($te,$m) in $call,
($m2, $me) in $methods,
($me, $m3, $m4) in $resolve
where $e = $te and $m3 = $m
and $me = $te and $c = $mc
return ($m2, $m4)

Method meo has an expression, which calls a method with the signature m.
In this call, the target can be of class ¢. As a result, ms can call the method
from ¢ with signature m.

1.10 Description of the thesis work

Now that we have described the main ideas behind software product metrics
and related areas, we concentrate on cohesion metrics for software quality
improvement. Cohesion seems to be the property of modularity that is most
hard to capture by metrics.

In Chapter 2, common cohesion metrics are described. It is then evalu-
ated how these metrics can be used as design heuristics. It will turn out that
LCOM like metrics are useless as design heuristics. The reason for this is
that there are some false assumptions in the common definition of cohesion.

Another interpretation of cohesion is presented in Chapter 3. Now exter-
nal relationships between class members are considered instead of internal
ones. A metric called LCIC is defined based on this interpretation. LCIC is
evaluated in the same way as LCOM. Also design patterns and refactorings

36

are considered in this chapter. It is found out that this metric is much better
suited as a design heuristic than LCOM.

In Chapter 4, implementation of a refactoring suggestion system for mod-
ularity is proposed. This is done by defining a metric that measures several
modularity related aspects: size, cohesion, coupling and significance. It is
found out that the quality of the suggestions produced by the metric is good,
and the interpretation of the modularity implicit in our metric is close to
the intuition of programmers.

37

38

Chapter 2

Internal Cohesion Metrics

2.1 Introduction

In this chapter the internal cohesion of software modules is discussed. This
means that the aim is to find out whether a module is cohesive by inspecting
it separately from other parts of the system. FExternal cohesion is studied
in Chapter 3. There, the degree of cohesion is determined by checking how
the module is used by the other parts of the system.

The first task in this chapter is to define what cohesion, and especially
its internal interpretation, means. To make the concept of internal cohe-
sion relevant for the analysis of software quality, one has to show how the
principle of high internal cohesion is related to object-oriented design prin-
ciples. It is important to realize that cohesion is related to the modularity
of software ([28]), and it may be in conflict with object-oriented principles.

For empirical investigation, we propose a family of internal cohesion
metrics for the Java programming language, and then measure these met-
rics for the classes of selected open-source projects. Before investigating
the relation of the metrics to software quality, their statistical properties
are investigated. The most important of these properties is the relation of
internal cohesion metrics to other metrics. The most basic software metric
is the size of software artifacts. It will be shown that internal cohesion is
strictly related to the size of the classes and that it is not simple to separate
cohesion from size.

We compare the results between different metrics variations, and try to
find out what kind of properties these variations measure, and what are
their differences. For metrics that give similar results, we evaluate, which
one is the most natural.

To use a single metric as a design indicator, there needs to exists a
threshold value t such that there is a high probability for the existence of a
design error if the metric value of a component is larger than ¢. To evaluate

39

the metric, it is necessary to inspect the classes and determine whether the
classes have design problems. Because the cohesion metrics measure the
classes as whole, and the size of some classes is large, it is not always easy to
pinpoint what exactly causes the problem in the class. Finding the specific
problem is not the goal of internal cohesion metrics for classes, rather just
finding out which classes have cohesion problems. However, if the metrics
are to be used for quality improvement, eventually the problem needs to be
found.

The practical tests indicate that internal cohesion cannot be used for
software quality improvement. Because of this, it is necessary to evaluate
why the object oriented design principles are not useful when trying to
improve the internal cohesion. To better understand what internal cohesion
means, a classification for the relationships between methods and fields in
classes is proposed.

The most important reason why internal cohesion metrics cannot be used
as reliable quality indicators is that methods do not, and cannot usually
encapsulate the fields of an object.

2.1.1 Outline of the research

The outline of this chapter is as follows. A general definition of an LCOM-
style cohesion metric is first given. With this definition, it is possible to
define internal cohesion metrics by giving different interpretations for graph
cohesion and elements of classes. Exact definitions of the metric variations
and attributes are given in Section 2.3. This formulation is based on a
framework that is similar to that of Briand et al.[15] The definitions are
general enough to be applied to any class-based language.

The most natural way to define cohesion is to include inherited methods
and fields into the calculation of the metrics. This most closely corresponds
to the semantic idea of object-oriented programming. The flattened LCOM
that implements this kind of metric calculation is studied in Section 2.4.
Flattened LCOM can be split into three pieces in a natural way: the cohe-
sion of parent, cohesion of a locally defined part, and connection between
inherited part and locally defined parts. In Section 2.5 we evaluate a local
version of LCOM, where inheritance is not taken into account. This cor-
responds to classes as software artifacts. The connections are studied in
Section 2.6. The most basic way to understand the lack of internal cohesion
is to calculate the most coarse-grained cohesion metrics. This case is con-
sidered in Section 2.7. In Section 2.8, the metric LCC, TCC and dual TCC
are considered. The results of these metrics are between the results from
counting the number of components and LCOM. Finally in Section 2.9, the
reasons for low cohesion will be classified.

This chapter is partially based on publications [58], [59] and [63].

40

2.2 Internal cohesion

To define the concept of cohesion, one first has to define what is meant by a
module, since cohesion is a property of modules. In general, a module is just
a collection of smaller software artifacts. In object oriented programming,
classes have the role of modules: A class is a collection of members, that is,
methods and instance variables. However, as was pointed out in Section 1.7,
the classes are not simple collections: they include semantic content related
to late binding of methods.

If a module is cohesive, the members in the module are similar or related.
Obviously two atoms can be more or less related or similar, so a cohesion
metric is based on a more fundamental metric of the strength of relationship
between methods.

As an example of similarity, one can check whether two methods call
the same methods. In this case, if two atoms are very similar, the similar
component should be refactored out. Another possibility would be checking
if two methods use the same types.

In most proposed measures, relationships are preferred in cohesion mea-
surement over similarity. When looking at internal cohesion, the relation-
ships that are visible by inspecting the module or class are measured. Ba-
sically this means that the relationships we are interested in are methods
calling other methods or accessing fields.

2.2.1 Motivation for Internal Cohesion

Object oriented design (OOD) principles are closely related to the concept
of internal cohesion for classes. In OOD, the first task is to recognize the ob-
jects. The attributes of objects and relations between objects are then found.
In the implementation, the relations between objects are usually translated
into attributes. A class is supposed to encapsulate data by providing high-
level operations on that data. The data are considered as low-level details
that should be hidden.

Associating data with a class is a semantic concept, and therefore not
purely a design concept. This semantic concept is tied to classes as a feature
of object oriented languages. Because it is a language feature, it always over-
rides design considerations. The class construct can be compared to branch-
ing constructs in structured programming. Both structured programming
and object-oriented programming added semantic constructs to program-
ming languages to address design issues. The question now is, should the
semantic concept of classes lead to good internal cohesion.

The key point is that also operations are associated with classes. When
more operations are added for a class, there should be more internal relations
between the fields, and therefore the internal cohesion of the class should

41

become higher. A class is cohesive, if the operations are really related to
each other and the data of the class.

According to the above reasoning, internal cohesion should be a good
way to measure the quality of object oriented programs. However, it will be
seen that the internal cohesion is too rarely high, which makes it impossible
to consider internal cohesion a reliable measure of program quality.

There are two threats for internal cohesion: (i) the fields associated with
an object are not necessarily related, and (ii) the operations might not be
related to objects, but to more complex entities.

One known problem for cohesion measurement is due to the accessor
methods. Accessor methods can be thought to be breaking encapsulation,
and therefore bad design. However accessor methods are used so often that
they are usually ignored when calculating cohesion. Accessors can be seen
as an indication, that many methods should not really associated be with
classes. Object oriented languages also have features, such as friends in
C++, that are meant for more complex understanding of encapsulation.

2.2.2 Previous research in internal cohesion

The first metric to measure internal cohesion in object oriented languages
was Lack of Cohesion On Methods (LCOM), which was introduced by Chi-
damber and Kemerer [25, 26]. This metric is based on the assumption that if
methods and instance variables of a class are interconnected, then the class
is cohesive. Henderson-Sellers [49] defined the metric LCOM™* that is similar
to LCOM, but has a fixed scale of values. Briand et al. [15] observed that
the scale of LCOM* is from 0 to 2, and gave a refined version of this metric
with scale from 0 to 1. Other similar cohesion metrics are LCC (Loose Class
Cohesion) and TCC (Tight Class Cohesion) [11], and CBMC [22].

In addition to these metrics, there is another way to measure cohesion
as proposed by Briand et al [17, 18]. This metric is based on the interfaces
of the classes, ie. what types are used there. Surveys of cohesion metrics
have been made by Briand et al. [15] and Chae et al. [22].

It is characteristic of the research on cohesion metrics that it seems to be
unclear what kind of problems the metrics are expected to find, and for which
kind of programs the metrics give different results. Because of this it is hard
to see which are the advantages and disadvantages in using each metric.
In addition to this problem, applying metrics effectively is hard because
the cohesion values measured by the metrics have hidden dependencies on
other attributes. An example of this is that the metrics tend to give lower
cohesion for big classes. For example the correlation between the number of
local variables and traditionally defined LCOM* is over 0.5. Finally there is
not much empirical validation for the usability of cohesion metrics. Because
of these problems, cohesion metrics are currently not in wide-spread use.

42

2.3 Defining cohesion metrics and attributes

Several metrics have been proposed to measure cohesion of object-oriented
programs. Following the original LCOM metrics [25, 26, 49], most object-
oriented cohesion metrics, as discussed in [11, 10, 21, 37, 23, 22, 40, 8, 34, 5,
29, 64, 24], define a cohesion graph that relates the fields of the class to the
methods of the class. The metric then measures for example the sparseness
or the connectedness of this graph.

A cohesion measure is usually applied to a graph that has methods and
instance variables as nodes and relations describing variable usage as edges.
Measuring cohesion can be varied in five different ways.

1. What is the measured structure: classes, packages, modules?

2. What are the properties of these structures that need to be cohesive?
3. What are the users of these properties?

4. What is the relation between properties and their users?

5. How is the cohesion measured based on this relation?

For the purposes of this chapter, the measured structures are classes, the
properties are the fields, and the users are the methods.

Based on these observations, we give a formal definition of the cohesion
metric framework. First, it is assumed that there are sets for classes €,
methods 99T and instance variables or fields §. To define the above variations
modularly, a cohesion metric is defined to consist of four parts:

1. Relation Meth C 9t x € between methods and classes that should be
used in the measurement.

2. Relation Var C § x € between instance variables and classes that
should be used in the measurement.

3. Mapping Use : € — G that returns for each class a graph describing
when a method uses a variable.

4. Evaluation function for bipartite graphs u : G — [0,1]. Value 0 is in-
terpreted as the best cohesion value, and 1 denotes the worst cohesion.
The measured graphs are bipartite, because they have only relation-
ships between methods and fields, and not for instance between two
methods.

For relations, we use the notation R(a) = {b| b R a}.
To calculate the result of the measure for a class ¢ € €, we first represent
the nodes of the bipartite graph as two sets Meth(c¢) and Var(c). In this graph

43

the edges are between these two sets: {(m,f) € Use(c) | m € Meth(c),f €
Var(c)}. This graph is called the cohesion graph and the metric is calculated
from this graph. The usage relation is not enough to represent the cohesion
graph, because there would be no way to represent a node without any
connections with this relation.

2.3.1 Model for programs

To make measurements of properties of programs, it is useful to first define a
model of programs as described in the introduction. This model can then be
used to give a precise meaning to different variations of the cohesion metric.

The basic locations in the data flow and control flow of the program
are classes €, methods 9t and fields §. Class ¢ € € has a set of locally
defined methods meths(c) C 9t and a set of locally defined instance variables
vars(c) C §. As an additional structure, there is a set parents(c) C € which
is the set of direct parent classes. The reflexive transitive closure parents*(c)
is then the set of all parent classes of ¢. The set of subclasses for a class ¢
can be defined as

subclasses(c) = {¢/ € €| ¢ € parents*(¢)}

A virtual method is a method which can be invoked using dynamic bind-
ing. A wirtual method call is a method call, which is dynamically bound.
A virtual method can also be called statically, for example when a method
calls a method of the base class using super-syntax. Virtual method calls
are described using method signatures &. These signatures are identifiers
that can be used to determine which method is invoked when making a
virtual method call to an object that is an instance of a known class. For
example in Java this could be the method name and the types of the ar-
guments. The set resolve(s, ¢) is a singleton set that contains the method
with signature s in class ¢, and it is the empty set if the class ¢ has no such
method. We extend in the present study this notation for sets of signatures
as resolve(&, ¢) = J,cg resolve(s, ¢).

Note that all sets defined above can be calculated statically: From the
static type of the variable that a method is called from, one can see whether
the method is static or not, and based on the signature, it is possible to
find a corresponding method from the class. What cannot be determined
statically is the dynamic type of an object, but this is not needed in the
present analysis. Instead it is assumed that the object referred by variable
this has some specific class, and the calculations are made based on that.

We also define sets of private and static variables §priv and Fsta, and sets
of private, static and abstract methods Mpriv, Ma and M,ps. The private
fields and methods are methods that can only be called inside the classes.

44

Other methods and fields are called public. Abstract methods are methods
that have only signatures and not an implementation. The set

abstsig(c) = {s € & | resolve(s,c) = {m},m € M,ps}

is the set of abstract method signatures for a class c.

2.3.2 Usage relation

It seems easy to define the relation for usage. One could just have an edge
between a method and the instance variables that it accesses, and other
methods it calls. But it might be wise to make the graph bipartite, because
the methods are compared wrt. instance variables in most definitions of
cohesion metrics. And when indirect usage is considered, there might be a
need for looking this-variables passed as arguments to some methods.

As described in Section 1.5, it is convenient to define language A C ¥*
to describe the usage relationships. The set U C ¥ x 3 describes how a
method uses other locations in the program directly. Given U, it is simple
to define A.

To properly define the usage relation, it is necessary to consider which
syntactic forms the accesses of methods and fields might have. They can be
classified as:

1. access(f, ¢), where § is a field and ¢ is some expression where the field
is accessed. The type of the expression ¢ is type(e). Here it is assumed
that type is the set of subclasses of the corresponding static type.

2. access(f, this) is the access of field from this variable.

3. access(m,eq,...,¢;), where m is a method signature and e; are expres-
sions. The method call can be static.

4. access(m, this, e, ..., ¢;) is a method call from this-variable.

ot

. access(m, super, ¢j, ..., ¢;) is a method call from super-variable.

Probably the most useful formulation of the usage relation is to ignore
this-passing and just have as locations the methods and fields with associated
classes. Then we have

m(c),f(c) € &

That is, the set X of locations in the program consists of methods m and
fields § associated with classes ¢. For each class, it may be assumed that
the associated methods are the methods that are defined in the class or its
superclasses.

The usage relation U consists of pairs [— [', meaning that the location
[uses I'. Relation U can thus be defined by inspecting each location m(c) as
follows:

45

for field access, access(f,¢): m(c) — f(type(e)) € U;

o for field access, access(f, this): m(c) — f(c) € U,

e for method access, access(m’, this, e1,. .., ¢,): m(c) — resolve(m’, ¢)(¢) €
U;

e for a general method access, access(m’, ¢, e1,. .., ¢,): m(c) — resolve(m’, type(e))(c) €
U.

Then for the following sample case

class K {

private K up, down;

public void connectUp(K a) {
this.up = a;
a.connectDown (this);

}

public void connectDown (K a) {
this.down = a;
a.connectUp (this);

}
}

both methods would be seen to access both fields.
As was said above, given relation U one can define language A to be the
smallest set such that

o [€ Aforeach e .
e lfw-le A thenw-[-I'e A if (LI') e U.
We say that language B is valid or satisfiable if
valid(B) = ANB # ()

Indirect usage of methods in a class can be defined in two different ways:
First, only internal calls to this could be included. To implement this we
would drop items 1 and 4 from the definition of U. The second possibility
is to keep the original definition of U and use relation

uses® (¢, my, my) = valid(my(c) - M(c)* - ma(c))

The operator uses* (¢, my, my) returns all the instance variables and abstract
method signatures that are used by the method my, when recursively calling
the target object. If another type of object is called, then what is used in
that call is ignored.

46

Other variations of the uses® operator could be ignoring indirect calcu-
lation completely, or restricting indirection to for example public, private or
locally defined methods.

There are issues related to inner classes that should be addressed here.
An inner class might be defined inside a method, and this inner class might
use the instance variables of the outer class. In this case all the variables used
by the inner class are added to the variables used by the method. For inner
classes, there is still one question, that is how to measure cohesion of the non-
static inner classes, that have been defined as members of classes. Perhaps
the best way would be to handle them like methods in the measurement of
the outer class, and measure the inner classes similarly to inherited classes.
This question is omitted in the present study.

It might be possible to count non-static inner classes as methods in the
outer class. Also, if a method defines an inner class, it is a good idea to
include the instance variables that might be used in that inner class to
the set of variables used by the method. Changing the implementation to
take this into account makes the cohesion higher. Note that this would be
problematic in dynamic methods for calculating the cohesion.

2.3.3 Fine-grained usage relation

Above, the locations of the program were methods associated with possible
types of this-variables. Instead of that, all argument types could be associ-
ated with the methods in the same way. Methods with resolved types are
considered to be locations. They are notated m(cy,...,¢,) € X, where ¢;
stands for the type of the receiver and ¢y to ¢, describe the types of the
arguments. Other locations are of form f(¢) € ¥ for accessing field § from
class c.

For each expression ¢ in method m(cy, ..., ¢,) the possible types are de-
termined as follows:

e If expression ¢ is this, then type(e) = ¢;.
e If ¢ is the i’th argument of the method, then type(e) = ¢;.

e Otherwise, if ¢ has type ¢, then type(e) = subclasses(c).

Then, the method and field access can be defined as follows: For field access
access(f, ¢), we get

m(cy, ...,) — f(type(e)) € U
and for method access access(m, ey, ..., ¢,), we get
m(cy, ..., ¢,) — resolve(m, c)(type(er,...,en)) € U

if ¢ = type(ey).

47

2.3.4 Handling this-passing

As an extended use relation, uses’(m, ¢) is defined to be the set of variables
that first of all includes uses*(m, ¢). In addition, if this-variable is given as
an argument to a static method call, the set includes the instance variables
or methods of the argument objects that are used directly or indirectly, and
adds these to the result set.

There are three variations to this scheme: (i) This-passing into virtual
methods can be ignored, (ii) all known possibilities are combined, or (iii) it
can be assumed that a virtual method uses all members of its arguments.
From now on, we use the alternative (i).

There are two possible call styles: focused argument arg, or normal call
normal. Suppose that there are locations m(i, (s,c)) € X, where s is the
style, ¢ is the index number of the focused argument, and ¢ is the type of
the focused argument.

For each expression ¢ in method m;(c) we determine the possible types
as follows:

e If expression ¢ is this and i = 0, then type(e) = (arg,¢).
e If ¢ is argument 4, then type(e) = (arg, c).
e Otherwise, if ¢ has type ¢/, then type(e) = (normal, subclasses(c’)).

Then the method and field access are defined as follows: For fields access(f, ¢),
we get
m(i, ¢) — f(type(e)) € U

and for methods access(m, e, ..., ey,),
m(%, c) — resolve(m, ¢g);(type(e;)) € U

where ¢p = type(er).

A chain of this-calls is now 21(0,arg)*. This-passing is represented as
M(*,arg). Focused argument is passed forward if M (x,arg). Focused ar-
gument is called again as M(0, arg). This-passing chain is then 9 (x, arg)*.
So the combination of this-chain and this-passing chain is just M(arg)*.

A path for m accessing f in class ¢ is then

m(c) - M(arg)” - f(arg)

2.3.5 Variables

The second issue that needs to be considered when discussing cohesion met-
rics is the concept of fields or instance variables of classes. The most im-
portant source of variation is inheritance. It is not entirely clear whether

48

measuring inheritance should actually be called cohesion and not the closely
related concept of coupling. There are two ways to think about inheritance,
first is that the child class is a kind of module that uses the parent class to
implement a new class, and in the second way the child class is a kind of
module where the features of the parent class are enriched. It is our opinion
that the second way is closer to object oriented thinking, where there are
is-a-relations that describe inheritance, and uses-a-relations for composition.
But if one measures for example cohesion with variables of the parent class
and methods of the child class, one is actually measuring how the parent
and the child are coupled.

The following sets are useful: The set of locally defined instance variables

Si(c) = vars(c)\Fsta

the set of all instance variables

Sa(c) = vars(parents™(¢))\Fsta

the set of inherited instance variables
i(c) = Bal)\Su(c)
and the set of all instance variables ignoring the inherited private variables

Sinp(¢) = Su(e) U (i () \Spriv)

The locally defined private variables are not ignored in the last set. It may
also be necessary to consider variables that are defined locally in the parent
class.

2.3.6 Methods

When considering methods for classes, there are similar issues with inher-
itance as with instance variables. There is also the additional problem of
“simple” or otherwise special methods. Simple methods are methods like
getters and setters, which make the cohesion lower, because they only ac-
cess one variable. On the other hand, almost all classes need this kind of
methods.

One decision that should be made is whether or not constructors should
be included in the set of methods. In the present study it is not done,
because in Java it can be considered that constructors automatically use
every instance variable.

The most obvious set for methods is the set

M (¢) = meths(c)\ (Maps U Msta)

49

which is the set of locally defined methods. But this set includes private
and protected methods, which are not part of the interface, and as imple-
mentation details those should not be measured. The set of public methods
is

f)ﬁp(t) = S)ﬁl(c)\(aﬁpriv U S):nprot)

If inheritance is taken into account, the set of all public methods is
M, (c) = resolve(S,)\ (Mprot U Mpriv)
and the set of inherited public methods is
Mi(c) = Ma () \My(c)

When a method is defined, there are three possibilities: It defines some
new feature, implements some abstract method, or extends some existing
method by redefining it and calling the old one with super-call. The two
last cases might overlap. Notice also that 91;(¢) is not the same as the set of
all methods in the parent class Uc/eparents(c)i)ﬁa(c’), because if some method
is redefined, the old version is not included in 9%;(c).

While considering inheritance, it might be useful to have different sets
with protected methods included, since these form a part of the interface
towards inheriting classes.

The set of methods that use ¢ instance variables is defined as

My (i,¢) = {m € M| |uses™ (¢, m)| =i}

or

M, (2, ¢) = {m € M| |uses™(c,m) N Mp(c)| = i}.
Clearly, the set of instance variables that a method uses, depends on the
class that has gotten the method by inheritance. One use for this definition
is to ignore methods that do not use any instance variables at all. We call
methods that do not use any variables as simple methods. If a method has
no functionality, it is called a stub method.

2.3.7 Calculation of cohesion

The calculation of cohesion from the cohesion graph should only depend on
the structure of the graph. For a bipartite graph G = (V3 U V;, E), where
V1 and V5 are disjoint vertex sets, LCOM™ is simply:

[E]
Val[Val

LCOM(G) =1 —

TCC is calculated as:

[{(a1,a2) € Vo x Vo | E(a1) N E(ag) # 0} — V3

TCC(G)=1-—
(©) A

50

Here E(a) denotes the set of edges in graph G connected to node a. This
gives the ratio of method pairs sharing instance variables. The definition of
TCC is symmetric so the places of methods and variables can be switched.
This reversed calculation method is called rTCC.

| Hlaa2) € Vi x Vi | Bay) N E(az) # 0} — Vi
VA2 — VA

rTCC(G) =

Calculation of CBMC (Cohesion Based on Member Connectivity) is more
complicated. A cut-set of a graph is a set of nodes such that removing these
nodes would make the graph disconnected. Then let mcut(B, G) be the set
of minimal cut-sets in graph G, where there is an additional restriction that
only nodes from set B can be removed. Let also conn(G) be the set of
connected components in bipartite graph G. Then,

CBMC(G) = 1, if V1][15] = ||

CBMC(G) = 0, if | conn(G)| > 1
!

CBMC(G) = max Z CICBMO(G) otherwise.

Cemeut(Vi,G) V1| conn(G\C)|’

G'econn(G\C)

It is also useful to define a more coarse grained metric that measures
the number of connected components in the cohesion graph. This metric is
called the number of components, NOC.

For the instance variable usage of methods, no variations are considered
and it is always computed using (m,f) € Use(c) < f € uses™(m,¢). Then
the cohesion measure is denoted by CALCyrs meths, Wwhere CALC is LCOM,
TCC or CBMC, and the subscripts vars and meths use the same abbrevia-
tions as the measures that count methods or variables. The value 0.0 stands
for the best cohesion for all metrics, and 1.0 indicates the worst cohesion. For
example, LCOM; ;, is LCOM with local variables and non-private methods
and LCOM, , is LCOM with inherited variables and non-private inherited
methods.

2.3.8 Other metrics

Metrics related to the number of fields in a class are NV = |§,,(¢)], NAV =
1Fi(c)], NNPAV = |Finp(c)| and NSTAV = |vars(c) N §s|. The metrics re-
lated to the number of methods for a class ¢ are NNM = |9, (¢)|, NNPM =

|9 ()], NAM = |90 (c)|, NNSM = |90, (¢)\D(c)|, NNSNPM = |9, (¢)\ M (¢)|
and NNSNAM = |9 (¢)\M:(¢)|. Further NABSM = |meths(c) N 9M,| and
NSTAM = |meths(c) N M| are metrics measuring the number of abstract

and static methods.

See Table 2.1 for the rest of abbreviations for the metrics used.

51

NV Number of locally defined variables.

NAV Number of all variables, including inherited ones.

NNPAV Number of all variables, including inherited ones, but not
private inherited ones.

NNM Number of locally defined methods.

NNPM Number of locally defined non-private methods.

NAM Number of inherited and locally defined methods.

NNM w/ n | Number of locally defined non-private methods that access
n instance variables.

NAM w/ n | Number of inherited and locally defined methods that access
n instance variables.

NNSM Number of locally defined methods ignoring simple methods.

NNSNPM | Number of locally defined non-private methods ignoring sim-
ple methods.

NNSNAM | Number of inherited and locally defined methods ignoring
simple methods.

DIT Depth in inheritance tree.

NSC Number of subclasses.

NC Number of constructors.

CC McCabe’s cyclomatic complexity.

ACC Cyclomatic complexity per method in a class.

SZ Size of a class, ie. number of statements in a class.

NSTAV Number of static variables.

NSTAM Number of static methods.

NABSM Number of locally defined abstract methods.

Table 2.1: Abbreviations for various metrics.

2.4 Flattened LCOM

The flattened LCOM is calculated by taking inherited fields and methods
into account. More precisely, it is the metric LCOM,, for corresponding
sets §, for all variables and 9%, for all methods. This metric corresponds
to the run-time idea of class in the object oriented languages, where each
object of the class includes all inherited fields, and each inherited method
can be called from an object of the class.

It is natural to begin the analysis of internal cohesion with LCOM,
because all components of internal cohesion are included there. The cohe-
sion of a class can be decomposed into four parts: LCOM; , measures the
local component, LCOM;; measures the cohesion of the unchanged com-
ponent inherited from the parent, and LCOM;;, and LCOM;; measure the
connection between new and old parts of the class. LCOM, , cannot directly

52

be calculated from these metrics, because the sizes of different components
vary.

2.4.1 Interpretation of flattened LCOM

The only case where consideration of the inheritance is not really needed is
the case where classes inherit directly from the base class java.lang.0Object.

A problem with flattened LCOM is that it depends so much on the base
class. For example, the class java.lang.0Object includes just four methods
that do not use any variables. This automatically decreases the cohesion of
all classes, when inheritance is included. So, if the cohesion value is low, it
is necessary to find out if it is caused by a base class, and by which base
class. Because of this, it is useful to check the difference of the cohesion
values between the base class and the child class.

The following findings should be established

e The results are difficult to interpret.

e The cohesion of the combined class is usually lower than the cohesion
of parts.

e A child class usually has lower cohesion than the base class.
e Cohesion is highly dependent on the size of the classes.

To understand internal cohesion better, it is useful to inspect local co-
hesion, and the connections between the base class and its child classes.

2.4.2 Practical tests with flattened LCOM

A large number of classes (from Eclipse and JDK) was measured using the
flattened LCOM metric. Classes with different metric values were inspected
until it was difficult to find new phenomena associated with cohesion.

Maximal LCOM

Reasons for maximal LCOM, , are mostly the same as for maximal LCOM,j,.
Several classes just define more instance variables without providing any lo-
cal instance methods. A typical example of this is ReverseMap.Entry in
unit jdt.internal.ui. javaeditor.CompilationUnitDocumentProvider.
It has two instance variables. Otherwise it just extends java.lang.0bject.
These are the data classes.

53

High LCOM values (0.8-0.99)

The class java.beans.BeansAppletStub has 6 locally defined methods and
5 locally defined variables for this class. Four of the methods are accessors,
and two do nothing. LCOM, , is 0.92. This class implements an interface,
and therefore some methods do not use any variables. The class is used in
the implementation of another class, and is not a part of the public interface
for the package. Because of this, the class cannot be measured independently
of its client, so LCOM, , does not apply to this class.

The class org.eclipse.ui.views.framelist.FrameAction includes in
total 15 variables and 40 methods. LCOM, , is 0.93. This class implements
a completely orthogonal extension of its parent class. The parent class has
a similar cohesion. Only two of the variables are locally defined. The class
is abstract, and some of its methods will be overridden by the child classes.
For this reason, its bad cohesion value does not mean that there is something
wrong in the implementation.

The class com.sun. java.swing.plaf.windows.XPStyle.GlyphButton
has 3 locally defined and 125 inherited variables, and 5 locally defined and
462 inherited methods. LCOM,, is 0.97. The LCOM values are always
high, no matter how they are measured. The class has 14 disjoint com-
ponents when considering all variables and methods. T'wo components are
caused by unused variables vertical and glyphImage (used only in the
constructor), and others are inherited from javax.swing.JButton. This
class is an example of bad cohesion. The bad cohesion is caused by the size
of the inherited part of the class. This example shows why it does not make
sense to apply LCOM to large classes: In order to be cohesive, the methods
of this class would have to use dozens of fields.

The class jdt.internal.ui.dnd.BasicSelectionTransferDragAdapter
of Eclipse has one locally defined variable and 4 locally defined methods.
Only one of the methods uses the variable. LCOM,, is 0.88, but if the
simple methods are ignored, it becomes 0.0 (LCOM, ans). The three sim-
ple methods are used via virtuality. The LCOM, ans value seems to be a
descriptive measure for the cohesion of this class.

Another Eclipse class core.internal.content.LowLevelIOException
has one locally defined variable, and one accessor method. This class has
LCOM,, 0.8. The parent class java.lang.Throwable has LCOM,, 0.77.
This is an example of how an orthogonal extension can make the LCOM,
higher. There is nothing wrong in the class itself. The class has low cohesion
value because low-level data are attached to the class via inheritance.

Eclipse class team.ui.synchronize.SubscriberParticipant has 3 lo-
cally defined, and 7 inherited variables, and 18 locally defined and 18 inher-
ited methods. LCOM, , is 0.83. This class seems to be quite normal. Some
of the inherited variables are used, and also some inherited methods use the

54

locally defined variables. LCOMj, is 0.53. The relatively low cohesion is
caused by the fact that the inherited variables are not used very much by
the locally defined methods, and on the other hand, the inherited methods
do not access the local variables that much. Also 22 of the methods use
one or zero variables. The class has only one component, so it seems to be
cohesive.

The class com.sun. jmx.snmp.tasks.ThreadService has 11 locally de-
fined variables and 5 locally defined methods. LCOM, j, is 0.64 and LCOM,, ,
is 0.80. This class inherits directly from java.lang.Object. If simple
methods are ignored, the inherited methods from java.lang.0Object are
removed, and the values are the same. Some of the instance variables are

used only by an inner class, so the cohesion cannot be properly measured
with LCOM, 4.

Average LCOM (0.5-0.8)

Eclipse class ui.internal . components.framework.SingletonFactory has
2 locally defined variables as well as 2 locally defined methods. LCOM,,
is 0.75 and LCOM, ;, is 0.25. This shows that the inherited simple methods
from java.lang.0Object can make a big difference in the measure, at least
when the class is small. Clearly, the actual cohesion of the class is good.

The class com.sun. jmx.snmp.IPAcl.AclImpl has one inherited and 2
locally defined variables, and 11 locally defined and 6 inherited methods.
LCOM,, is 0.65. The inherited methods do not use the local variables, but
the new methods use the inherited variables. When simple methods are
ignored, the value is 0.57. The class has only one component, so it seems to
have good cohesion.

The class org.eclipse. jdt.core.dom.DocCommentParser has a total
of 42 variables and 3 locally defined methods. Two of the methods use
most of the variables. The toString-method uses some of the variables.
LCOM,, is 0.65 and, if the simple methods are ignored, it is 0.30. The
class has good cohesion.

In the class org.apache.tools.ant.taskdefs.Exit.NestedCondition,
there are 2 inherited variables and 26 methods out of which one is defined
locally. LCOM, 4 is 0.58, almost the same as the value for the parent class.
Most of the inherited methods use one variable, and because the class does
not have any new variables, but just adds a method that uses one variable,
and therefore the cohesion does not change. The class has two components,
so it does not seem to have good cohesion.

55

Comparison between cohesion of base classes and their child classes

There are 16620 classes in the sample for which LCOM, , is applicable (that
is, there are more than zero instance variables), if the simple methods are
ignored. The local version is applicable in much fewer cases, so it is useful
to study what kind of results are given for the classes where the local case
is not applicable.

In 4138 cases there are no local variables. Out of these, in 2892 cases,
cohesion is the same or almost the same as the parent’s cohesion. In 638
cases, the LCOM, , is higher than the value for the parent and in 608 cases
the LCOM, , is lower.

In the cases where the cohesion is similar in the parent and child, the
child class might override a method, and then this new method uses the
same variables. Also often there is only one variable, and this is used by
every method in which case the cohesion remains.

The class javax.sound.midi.Track.ImmutableEnd0fTrack is an exam-
ple of a class, where the cohesion is lower than for its parent. This class
overrides a method with one that uses no variables. The usual reason for
the cohesion getting lower in the child class is just having methods that do
not use many of the inherited variables.

A typical class that has a better cohesion than its parent is ValueIterator
in unit java.util.HashMap. It implements an abstract method that uses
all inherited instance variables. The implementation of the abstract method
is done by using a protected method of the parent class.

In 2717 cases there are no local non-simple methods. Of these, in 138
cases the cohesion of the child is better, in 395 cases worse than in the
parent, and in 2184 cases there is no difference. In this last category, there
are usually no local variables. It is also possible that for example the parent
had extremal cohesion 0.0 or 1.0.

A typical case, where the child has a worse cohesion, is EventException
in package org.w3c.dom.events, where there is just one public variable
added. This is an example of a base class that has data that is not directly
related to the data that child classes have.

An example of a class that has better cohesion than its parent is Eclipse
class ui.internal.WindowSelectionService. It inherits from an abstract
class AbstractSelectionService, and implements a protected method to
access its instance variable.

Discussion

At least in principle, LCOM, , seems to be the best LCOM variant to rep-
resent the cohesion of a class, because the inheritance is included in it, and
therefore the whole object is considered. Ignoring the simple methods seems

56

0-0.1-02|-03|-04]-05]|-06]| -0.7| -08] -0.9| -1.0| 1.0

0.0-0.1 | 3648 | 78 | 139 | 169 | 252 | 554 | 1051 | 1513 | 1883 | 404 | 703
0.1-0.2 3| 22 2 3 3 0 2 3 4 1 0
0.2-0.3 0 5 9| 12 5 6 4 11 2 1 0
0.3-0.4 1 1 3| 26 5| 36 14 10 12 0 0
0.4-0.5 0 0 11 25| 56| 36 19 16 9 2 0
0.5-0.6 2 8| 15| 17| 31| 210 | 155 92 67 0 1
0.6-0.7 0 0 3 2 7| 41| 395 | 278 84 8 0
0.7-0.8 0 0 0 0 1 13 | 116 | 1535 | 668 32 4
0.8-0.9 1 0 0 0 7 9 71| 354 | 2358 | 506)
0.9-1.0 0 0 0 0 0 5 33 52 | 318 | 25641 2
1.0 7 2 1 1 4 4 9 22 46 17 | 113

Table 2.2: Distribution of the LCOM, , values for classes and their parents.
The cohesion of the 16620 sample classes have been evaluated. Rows stand
for the LCOM, , value ranges of the parent classes and columns for the
LCOM, , value ranges of the corresponding child classes.

a particularly good idea here, since the base classes always have such meth-
ods, in particular the class java.lang.0Object.

One problem with the flattened LCOM is that the result of the measure
usually depends strongly on the parent class. A solution is to calculate the
difference between cohesion of the parent class and the child class. Then the
highest differences would be for classes that inherit java.lang.0Object, and
the measure would be similar to LCOM, ;. This is caused by the fact that
the classes being deeper in the inheritance hierarchy have usually a high lack
of cohesion so the difference cannot be very high there.

Table 2.2 demonstrates the correlation between the flattened LCOM
value for parent and child classes. The table shows that the values of
LCOM, , are most of the time similar to values of parents, except for classes
where the parent has LCOM, . value of 0.0, which usually means that the
parent is java.lang.0Object.

Another problem is that the value LCOM,, depends so much on the
size of the class, especially the number of instance variables. This is the
same problem as with LCOM, ;,, but it is even worse, because including the
inherited part makes the classes bigger. Thus, there is a need to develop
measures that do not depend on the size of classes so much.

There are two possible viewpoints for a class. The first is that it is a kind
of an independent component that can be measured without considering
the inheritance. This is the viewpoint of LCOM, . The second is that the
inheriting class contains the base class, and all the features of the base class

o7

should be used when measuring the cohesion of the child. The metric suited
for this viewpoint is LCOMj ,.

The metrics LCOM; , and LCOM;; measure what kind of inheritance
relation the class uses. These variations are more natural than the varia-
tions with all methods with normal variables, and all variables with normal
methods. The two variations also show more clearly the differences between
different classes. If these metrics indicate that the relation is tight, LCOM,
should give a better idea on the cohesion of the class.

2.5 Local LCOM

The traditional way to define LCOM is to consider only the locally defined
variables and methods. We call this the local LCOM. In this section, we try
to find out what are the weaknesses and advantages of local LCOM. The
test set consists of the JDK and Eclipse source codes.

The most natural way to define local LCOM is LCOM, ;,. Other possibil-
ities are the versions without indirect computation, and the version where
also private methods are included in the computation. First we explain
why LCOM, , can be considered the most natural definition of local LCOM.
Then it is studied for what kind of classes the metric is not applicable at
all. For the applicable classes, it is evaluated whether the results given by
LCOM; ;, are reasonable.

2.5.1 Indirect and direct usage of instance variables by meth-
ods

The reasons why indirect calculation should be preferred is that when ob-
serving a class from outside, the method can be thought to include the
functionality of the called internal methods. Of course now the problem is
that if fields are internal, why should they be measured.

In practice indirect computation is better, because it gives better LCOM
values. Also if accessors of methods are used internally instead of instance
variables, direct computation does not make any sense.

2.5.2 Dynamic type

Another point of variation is handling the dynamic type. Each object ac-
tually has a constant that represents its class at the run time. The use of
this implicit dynamic type variable can be considered as an additional in-
stance variable in the measurements. Basically there are two possibilities:
this-variable is used with instanceof-expression, or a virtual method is called
using this-variable. A problem here is that in Java, all methods are virtual
in principle, but most are not overloaded.

58

2.5.3 Private methods and variables

When comparing all methods (LCOM] ;) and non-private methods (LCOM,),
the two measures give the same value in 15782 of all 21036 classes of the
sample set. In most of these cases, there are no private methods, so the
values are the same because of that reason. In 1364 cases cohesion values
are higher if all methods are ignored, and in 2826 cases higher values are got
by ignoring the private methods. The classes, where the values are equal,
are quite small, and the classes, where values differ, are bigger. There are no
significant differences between classes where LCOMj is higher and where it
is lower than LCOM, ;.

The alternative of ignoring the private methods is more natural, because
the non-private methods define the interface and the private methods are
just implementation details. Because the indirect variable usage calculation
is used, the private methods can be safely ignored. If the indirect calculation
was not used, the situation would be different. Then it would probably be
best to include the private methods into the calculations.

There are some cases where the private methods are used by something
that is not defined in the class itself, for example the serialization meth-
ods like readObject. Another possibility is using reflection to call the pri-
vate methods. It might be useful to include methods like readObject or
finalize into the computation. Adding support for reflection does not
seem to be a good idea.

Protected methods can also be seen as a problem, because they should
be used with inheritance, and the local metric does not consider inheritance.
We choose not to include the protected methods, because this makes more
sense in Section 2.4, when inheritance was considered.

The situation with private variables is similar to that of private methods
in the sense that both variations give similar results. But now, including
private variables into the computation of cohesion is more natural, since all
variables should be defined private anyway.

2.5.4 Trivial classes

There are two cases where LCOM, ;, is inapplicable for a class. The first
is the case when a class has no locally defined variables, and the second is
that a class has no locally defined methods. In both cases, it is said that
the class is trivial.

For 7771 (37%) classes out of 21036, there are no such variables, and
for 4208 (20%) classes there are no locally defined public methods. In total,
there are 8904 (42%) classes without either locally defined variables or locally
defined methods or both. Thus, LCOM,, is only applicable to 63 percent
of all cases, and LCOM, , is applicable to 80 percent of all cases.

59

In 4208 (20%) classes there are no instance methods. Most of these
classes (3076) have no instance variables either. These classes include static
methods, static variables, and/or inner classes. One scenario also is that
a set of classes is defined, and then their dynamic type is used as a tag
meaning that the type information is used as an instance variable value.
This is the case e.g. with the exception classes.

Over a third of the classes (7771) have no locally defined instance vari-
ables at all. To give an idea, what kind of classes these are, one can inspect
the suffixes of the classes. The suffixes for all measured classes are: 1148
Action, 558 Provider, 556 Exception, 583 Impl, 435 Page, 404 Handler, 317
Listener, 311 Dialog, 285 Info, 282 Factory, 279 I, 237 Adapter, 232 Event,
285 Info, 288 Manager, 249 Helper, and 211 Messages. In 690 classes there
is a unique suffix. There are 1582 different suffixes. Of the classes, that
have no locally defined instance variables, 491 have suffix Action, 401 Ex-
ception, 307 Provider, 253 Handler, 222 Helper, 210 Messages, 207 Listener,
186 Factory, 132 Util, and 111 Adapter. From these suffixes one can con-
firm that the reasons for these classes are that the class either implements
a functional pattern (for example Action-classes), or it is used as dynamic
type information (e.g. Exception-classes).

The 4695 (22 %) classes having methods but no variables are classes that
are used like functions. Similarly, classes having variables but no methods
are used as pure data.

2.5.5 Normal classes

In LCOM,, only locally defined variables and methods are used for calcu-
lating the cohesion. For the usage selection, we apply indirect computation,
which also uses inheritance. When analyzing the indirect computation it is
necessary to inspect the inherited methods, because these methods might
call virtual methods from the local class. In turn, these methods then use
locally defined variables.

From Tables 2.3, 2.6, 2.8 and 2.9 it can be seen that LCOM, ;, correlates
best with numbers of locally defined variables (V) and methods (M), and
with the value of LCOM, ,. This seems quite logical, because LCOM,j, is in
a way included in LCOM, ,, and only locally defined variables and methods
are used in the calculation. LCOM, ; does not correlate much with numbers
of inherited variables (IV) or methods (IM), and also not with LCOM; ;, or
LCOM, ;.

Maximal local LCOM

The first question is what kind of classes have the maximum lack of cohesion
(i.e. LCOM = 1). There are 187 (less than 1%) such classes. It is odd that

60

Range | IV V| IM M | Classes
Trivial 8903

1.0 96| 23| 31.1 3.1 187
0.9-1.0 | 14.7 | 13.8 | 61.8 | 31.2 323
0.8-09| 9.6 | 89 |38.7 | 15.7 1152
0.7-0.8 | 73| 6.8|28.5|11.9 1250
0.6-0.7 | 63| 49251 | 87 1617
0.5-0.6 5.8 | 351224 | 6.1 1882
04-05| 45| 43194 | 8.2 740
0.3-04 | 5.5 2.8 214 5.4 1115
0.2-0.3 | 45| 27198 | 5.6 543
0.1-0.2 9.9 2.7120.6 | 6.0 451
0.0-0.1 | 51| 1.720.0| 3.3 2873

| Cor. [0.10 [0.39 [0.09 [0.34 |

Table 2.3: Distribution of classes in JDK and Eclipse based on their
LCOM,; values. The table also shows average numbers of variables and
methods. Rows show the average number of inherited variables (IV), local
variables (V), inherited methods (IM), local methods (M) and number of
classes for a specific range of LCOM], ,. The bottom row shows the correla-

tion with the attribute and LCOM, .

61

a class has instance variables, and then it has instance methods which do
not use these instance variables. In the following, we analyze 5 such cases.
Most of these classes are found in Eclipse.

Eclipse class pde.internal.ui.model.plugin.PluginDocumentHandler
has protected methods that access the only instance variable declared, and
one public method that uses only inherited variables. In our opinion, this
class is well designed and the reason for the bad LCOM value is that the
class is designed to be used via inheritance.

Class java.util.AbstractList is similar. It has one instance variable
that is used only in an inner class (an iterator) and the idea seems to be
that an inheriting class can control the operation of the inner class via that
variable. One can also say that in this case the class is designed to support
its inner classes.

Another example is org.eclipse. jdt.core.dom.Name. It has one vari-
able, index, that is visible to the package, and then there are methods that
either use the inherited variables or this-variable to test the type of the
object. In our opinion, this class is not well designed — instead of exposing
the instance variable index to the package, one should provide methods to
manipulate that variable property and thus fulfill the usual requirement of
encapsulation in object oriented design.

Class org.eclipse.compare.CompareViewerPane has an instance vari-
able but for using the instance variable, the class provides static methods.
It is hard to find a good reason for this.

The Java RMI has class UnicastRemoteObject, which plays a central
role in RMI. It declares 3 instance variables but none of its public instance
methods uses them. The actual use of the instance variables is related to
serialization and reflection. Since this a rather low-level system class, it is
difficult for us to say whether the bad LCOM, ;, value in this case is a sign
of bad design.

As a summary, the problematic cases can be detected using the following
heuristics:

e Check if a class has non-private fields.
e Check if a class has both static and normal members.

If a class has a public field, it would be inconsistent to also have private
fields. If a class has a public field, it would be inconsistent to have accessors
for it. In the test material, there were 16 classes with both public and non-
public fields. There were 32 classes with only public fields, 527 classes with
only private fields, and 193 classes with no fields at all. Having both private
and public fields was detected to be a design anomaly.

Sometimes in larger classes, it might be logical to have both normal and
static members. The most illogical case would be that there are normal fields

62

and only static methods. When checking for normal and static members,
no design anomaly was found. Apparently not much effort is given to keep
static and normal members separate. On the other hand, there was no such
case where there would be normal fields but only static methods.

High local LCOM

The above cases are quite pathological, and the problems that cause them
can possibly be detected in some other ways, too. Next we study what kind
of classes get very high lack of cohesion, but not the maximal one. The
LCOM;;, values for all the classes studied next are above 0.9. The first
observation, based on Table 2.3, is that these classes tend to be quite big
(the average numbers of instance variables and methods are 13.8 and 31.2,
respectively).

In package called com.sun.org.apache.xml.internal.serializer, in
class ToXMLSAXHandler, there are one variable and 37 methods. Its LCOM,
is 0.95, which is due to the fact that most of the methods use its parent class
services to implement the required functionality. In this sense, this class is
badly implemented, since most of the functionality of this class could be
pushed up in the inheritance hierarchy.

This kind of suspicious methods can be identified as follows:

e They do not use any locally defined instance variables.
e They are not called via dynamic binding.

e Even if they were called using dynamic binding, if they use the instance
variables of the parent they are suspected.

When checking for methods that use parent fields directly, 821 such methods
were found. There were 11475 out of 13430 methods that used local fields
internally. It was found out that 341 methods used only the parent directly,
which is a design tendency, the opposite of design anomaly. Dynamic over-
loading and checking if the class has any local fields could not generate an
anomaly. The result was that supposedly problematic cases were found, but
no design anomaly.

The class javax.swing.JTable.AccessibleJTable has 6 variables and
53 methods. Of these, 32 methods do not access any variables, and 11
access only one variable. This class is an inner class, and it uses heavily the
attributes of the outer class. The class is designed to use its outer class —
making it hard to analyze the class with this metric.

The class org.eclipse. jdi.internal.VirtualMachineImpl has 46 vari-
ables and 75 methods. Its LCOM; , is 0.54, so it uses the features of its
parent. Its LCOM, , is 0.88. To see, why the cohesion is low, we can check
how many connected components the cohesion graph of the class has. If we

63

ignore methods that do not use any variables from the cohesion graph, then
there are still 15 disjoint components in the class. There are 8 components
that implement singleton patterns. Some components are for variables that
have only getters and setters. The huge number of components suggests
that this class (or its parent class) is badly designed, but its rather good
LCOM; , suggests that it is designed to strongly lean on its parent class.

The class org.eclipse.ui.internal.WorkbenchWindow has 37 vari-
ables and 70 methods. Of the methods, 37 methods use exactly one vari-
able. All cohesion measures give bad values for this class, except that if
the simple methods are ignored, then there is only one component in the
class. The class javax.swing.text.JTexTComponent is similar. It has 26
instance variables and 67 own public methods. Most of them use only
a few variables and the class consists of several components. The class
org.eclipse.jface.text.TextViewer has 55 variables and 91 methods of
which many are getters and setters. Over 50 methods use only one instance
variable. In our opinion, the main reason for bad LCOM values in the above
cases is simply the large fraction of simple methods and accessors in these
classes. It is not reasonable to expect all methods to operate with majority
of the instance variables.

Eclipse class ui.texteditor.templates.TemplatePreferencePage has
12 variables and 8 methods. There are three disjoint components in the class.
One private function is called only from an anonymous inner class and this
is not measured. This class is partly designed to support its inner classes,
but most of the methods are designed to strongly use the parent class.

Eclipse class jdt.internal.codeassist.InternalCompletionProposal
has only one public setter method, the others are protected. The methods
are mostly getters and setters. There are 11 variables. This class is designed
to be used via inheritance. Some protected methods are actually used by
other classes in the package, not by the inheriting classes, which is somewhat
confusing.

Eclipse class pde.internal .ui.model.plugin.PluginDocumentNode has
10 variables and 29 methods. The methods are mostly getters and setters.
In fact, all methods use exactly one variable. This means that the class has
10 disjoint components. The data might still have something in common,
but it cannot be seen from this class, rather from classes that are using this
class. This class is an example of data class.

The class org.eclipse.swt.internal.ole.win32.COMObject has 82
methods and one variable. Of the methods, 80 are stubs that do not use any
variables (those return a constant value). Otherwise the class has perfect
cohesion. For this kind of classes, ignoring simple methods makes a big dif-
ference. This class is designed to be used via inheritance (or more precisely,
for mapping native objects into Java).

64

Average local LCOM

Eclipse class jdt.debug.ui.launchConfigurations.AppletMainTab has 11
variables and 10 methods. LCOM,, is 0.8. The class uses many private
methods. Most methods use only a few variables, and as is common with
classes that have several variables, the LCOM value becomes high. If simple
methods are ignored, LCOM, ; is 0.6. The class has two different compo-
nents. This split comes from the base class. One can not conclude that this
class is badly designed, although the number of variables is rather high — it
is quite ordinary that all methods do not use all the variables.

Another Eclipse class jdt.internal.debug.ui.JDIModelPresentation
has LCOM;;, 0.84. There are 4 variables and 8 methods. The value is high
because 5 methods do not use any instance variables. Without these meth-
ods, the result would be 0.58. The class has numerous protected and private
methods. LCOMj ans is 0.67. It cannot be concluded that this class is badly
designed.

The class java.nio.ByteBuffer has LCOM, , value 0.86, and LCOM, ,
value of 0.80. There are four different components in the class. The class
is an abstract class, so it cannot be concluded that the class is badly de-
signed. On the other hand, the classes that inherit from it, have similar
characteristics. Some methods use instance variables, not via the self-object
but via another object of type ByteBuffer. Perhaps the calculation should
be refined so that all instance variables used from the class are counted,
and not just the instance variables used from the object. The idiom for
using private variables to implement this kind of methods seems to be quite
common, because in Java it is possible to access private instance variables
of any object of the class, if the method is defined in that class.

One special case is formed by the classes that have only accessor methods.
These classes get LCOM value 1— %, where n is the number of locally defined
variables. For example if there are two variables, the cohesion is 0.5. The
reason why this kind of classes are needed is that they collect two or more
logically connected classes into one data-structure. The problem with them
is that they do not have any operations working on the data, so they are
helper data structures for grouping the data, and not really objects.

Eclipse class jface.text.MarkSelection has 3 variables and 4 meth-
ods. LCOM,,, is 0.67 and LCOM, ays is 0.67. All the methods are getters.
This is a case where TCC gives worse values. This class is not really co-
hesive as there are three separate components. In class ContextService
in package org.eclipse.ui.internal.contexts, there are 2 variables and
14 methods. LCOM, , and LCOM, ans are 0.5, and TCC,4 is 0.36. Each
method uses one variable, so the class has two components. These classes
are not internally cohesive, but they might group the data in a way that is
useful to the clients.

65

The class javax.swing.text.ChangedCharSetException has 2 vari-
ables and 2 getter methods. LCOM,, is 0.5 and LCOM, ans is 0.79. This is
because the superclasses for exceptions have low cohesion.

In our opinion, most classes in the range 0.1-0.7 have no special problems
and the problematic cases can perhaps be best found by calculating the
number of components or by some other metric like TCC. The classes in
this range have usually a small number of variables, so the LCOM values
fall into this range even if most of the methods are just accessors.

Minimal local LCOM

The classes with maximal or almost maximal cohesion are almost always
very small, but there are some exceptions. These classes are usually not
very interesting, but there are lots of them so we study what they are like.

Of the 2873 classes (14% of all) with minimal local LCOM, many have
only one variable. Complexity of the methods seems to vary. It cannot be
concluded that all these classes are well designed, because they are perhaps
too small to implement their own independent functionality.

Eclipse class core.internal.resources.Marker has 2 variables and 20
methods. Of the methods of this class, 17 use both variables. Another simi-
lar class is internal . texteditor.quickdiff.ReferenceSelectionAction
in Eclipse. It has 3 variables and 2 methods. The methods are relatively
complex, and there are two private helper methods.

The class org.eclipse.jdt.ui.search.ElementQuerySpecification
has only one variable and one method. The classes that have maximal
cohesion are usually small, as is obvious from the definition.

There are very few big classes that have maximal or almost maximal
cohesion. One such class is javax.swing.plaf.synth.ImagePainter. It
has 7 variables and 118 methods. Of the methods, 113 access every variable.

2.5.6 Discussion

The evaluation of the classes in the sample set indicates that a good LCOM,
value for a class indicates that the class is well designed with respect to co-
hesion, but a bad value does not always indicate bad design. A very good
LCOM,;, value typically indicates that the class has only a few instance
variables. Often in inheritance, the extension is orthogonal or almost or-
thogonal, meaning that new features added to the inherited class do not
lean on the features defined in the parent class.

It is characteristic for LCOM that bigger classes get low and smaller
classes get high cohesion values. Comparing LCOM, ;, with the inheritance
based measure LCOM,_, tells that LCOM, ,, gives better values when the
extension is orthogonal, and similar values, if the inheritance is used a lot.

66

Also, it is quite rare that LCOM, ;, gives worse values than LCOM, ays for
other reasons than as a result of ignoring simple methods. Ignoring the
simple methods is one option when measuring cohesion. If the number of
these methods is interesting, it can be measured by another metric.

For quite many classes the LCOM, ;, value is bad, although there is only
one component in the sense of LCOM, . This is because such a class has
rather many instance variables and the methods typically use only few of
them. We find that in most cases this is not a sign of bad design.

Some of the common reasons for bad LCOM, ;, values are:

e The class is designed to be used via inheritance.

The class mainly uses inherited features to implement its own features.

The class is designed to support inner classes.
e The class is an inner class designed to use outer classes.

Calculating the number of components might give a better idea about
problems or lack of cohesion for big classes.

There were no cases where local LCOM could have found a design prob-
lem that could not have been found using more simple metrics such as size.

The key for understanding very low cohesion is inspecting methods that
use only one or zero fields. If for some field there are many methods that
only use that field, either the class is a wrapper for the field, or otherwise
the methods are in the wrong place. Another situation for inconsistency
is that a class has a lot of accessors, and a lot of other functionality. It
does not seem likely that this kind of classes could be eliminated. Realising
this can lead to better understanding how the object-oriented principle of
encapsulated data should be used:

e [t is not useful for basic data. Something like relational paradigm is
better.

e Memoized data: this kind of optimization is sometimes useful, and can
be hidden and handled using encapsulation. Perhaps there should be
an own construct for safe memoized data.

e Data structures and associated algorithms: In these cases, the imple-
mentation and specification are quite far away from each other.

Because the principle of encapsulation is the most important motivation for
the definition of internal cohesion, the above observations could explain why
it is hard to find design problems using internal cohesion.

In the previous section, we found out that restricting to a local view of
cohesion is not always a good idea. LCOM,,, did not work for cases where

67

inheritance was used a lot. In fact, the local component of the class is not an
independent entity at all, it just tells how the class differs from the parent
class.

2.6 LCOM and inheritance

In the following sections, the metrics LCOM; ;, and LCOM, ; are considered.
These two metrics are not really cohesion metrics, they measure the con-
nectedness of a parent and its child class. They operate in a similar way
as coupling metrics [16], but strong connectedness should not be considered
harmful for them.

Table 2.4 shows that the distributions of the cohesion metrics vary quite
a lot depending on the used variation. The number of trivial cases, where
there are no instance variables or no methods that are related to the metric,
is quite large for each metric variation. In the following, the reasons behind
the observed cohesion values will be classified.

2.6.1 Sizes of parts
The edges of the cohesion graph can be divided into four parts:

e Edges internal to parent class.
e Edges internal to child class.

e Edges from methods in parent using instance variables of the child
(using dynamic binding).

e Edges from methods in child using instance variables of the parent.

Now we need to answer with how large ratio does each of the four parts
affect the final measure. Table 2.5 shows the relative sizes of different parts
of cohesion graph when calculating LCOM, ans. The local part is the largest
for high cohesion. When cohesion is low, the inherited part is the largest.
Because usually the class inherits from java.lang.0Object or has a large
inherited part, the parts related to LCOM;, and LCOM,; are small on
average.

2.6.2 Connection of parent and child classes

The metric LCOM; , measures how a class extends its parent. When LCOM; ,,
is 1.0, the class defines an orthogonal extension. For high LCOM; , values,
the class is mostly orthogonal, and just relies on some part of the parent
class. When LCOM,; , is low, features of the parent are extended by using
the old ones, which basically is the idea of implementation inheritance.

68

Range | LCOM,, | LCOM;, | LCOM; | LCOM,, | LCOM, s
Trivial 8903 | 12250 7771 3592 4437
0.0-0.1 2873 430 42 69 2935
0.1-0.2 451 84 6 116 313
02-03 543 95 11 173 453
0.3-04 1115 182 48 255 939
04-05 740 131 13 370 889
05-0.6 1882 528 64 912 1753
0.6-0.7 1617 728 189 1860 2416
0.7-08 1250 820 283 3880 2353
0.8-0.9 1152 1331 940 5448 2587
0.9-1.0 323 1801 2231 3512 1952
1.0 187 2656 9408 849 9

Table 2.4: Distribution LCOM values for the JDK and Eclipse classes. Triv-
ial classes are the ones without methods or instance variables. The sample
set has a total of 21036 classes.

Range LCOMi’i LCOMLP LCOM]J LCOMLP
0-0.1 19 6 3 72
0.1-0.2 11 6 7 76
0.2-0.3 18 6 6 70
0.3-0.4 34 7 5 54
0.4-0.5 34 8 6 52
0.5-0.6 28 10 8 54
0.6-0.7 48 8 8 36
0.7-0.8 48 11 12 29
0.8-0.9 o6 11 12 21
0.9-1.0 77 6 10 7
All 43 8 8 41

Table 2.5: Proportion in percentages of different LCOM values from
LCOMg ans- Results are given for different ranges of LCOM, ans.

69

Range | IV]| V[IM M [LCOM,, | LCOM,,, | LCOM;

1.0 84| 18342 36 0.83 0.22 0.59
0.9-1.0 [225] 50[799] 98 0.90 0.49 0.80
0809|134] 36480 8.0 0.86 0.41 0.74
0.7-08 [125] 36 [459] 75 0.81 0.37 0.74
06-07| 86| 21[389] 6.6 0.76 0.27 0.58
0506 6.2] 2.0[221] 4.9 0.73 0.21 0.56
0.0-05| 49| 16 [155] 7.8 0.62 0.14 0.49
| Cor. | 0.16 | 0.10 [0.14 [-0.03 | 0.54 | 0.17 | 0.01

Table 2.6: Average values of selected attributes for different LCOM; ;, ranges,
and the correlations of these attributes with LCOM; ;.

As can be seen from Table 2.4, most of the LCOM, , values are high, in-
dicating rather low usage of inherited features. From Table 2.6 it is seen that
LCOM; ;, correlates best with LCOM, ,. This is partially because LCOM;
is a component when calculating LCOM, ,. Correlation of LCOM; , with
other measures is quite small. In particular it is a surprise that there is
no correlation with the number of locally defined methods. This is a big
difference to the metric LCOM, . A possible explanation for this is that the
correlation between the number of methods and LCOM, ,, is caused by the
correlation of the number of methods and variables, and not because the
number of methods would affect cohesion by itself.

No connection

There are 2656 classes in the sample set which do not use inherited vari-
ables (not even indirectly via calling inherited methods), but instead make
completely orthogonal extensions. Listing the most common suffixes gives
some ideas of their nature: 444 has suffix Action, 192 Provider, 172 Impl,
and 110 Exception.

The exception classes inherit from the class java.lang.Throwable, which
has four instance variables. Two of them are related to stack traces, one is
for linking exception causes, and one is for a detailed error message. The
inherited detailed message variable is rarely used. The methods are mostly
just accessors for locally defined variables.

The action classes are mostly from Eclipse, and they inherit from the
class org.eclipse.jface.Action. This class has several instance variables
that can be used to identify or describe the action, which is a kind of callback
with a run-method. The inheriting classes usually implement this method,
which naturally does not use the instance variables defined in the base class.

The class org.eclipse.ui.dialogs.FilteredList is an example of a

70

larger class that makes an orthogonal extension. It has three disjoint com-
ponents, while its parent org.eclipse.swt.widgets.Composite has only
one. The parent class is needed in creation of child widgets, but this is done
in the constructor. The Composite-nature is used by the child widget, but
not directly by the methods.

A typical example of completely orthogonal extension is a class, where
the parent includes some information that is not directly related to the core
functionality of the child class, for example the name for the action in the
Action classes.

Loose connectedness (0.5-0.99)

The class org.eclipse. jdt.core.dom.BooleanLiteral has 8 inherited vari-
ables and 10 local methods. LCOM;;, is 0.93. Of the methods, 6 use no
variables at all. LCOM,,, is 0.6 and LCOM;; is 0.88. Some inherited vari-
ables are used by a copy method, and others are used by a mechanism that
signals changes. The inherited part is used to help implementing observer
pattern and it is needed for defining a generic method for copying.

The class org.eclipse.ui.views.navigator.SortViewAction has 15
inherited variables and one local method. This method uses one of the
inherited variables and the only locally defined variable, so LCOM; , is 0.93
and LCOM; ;, is 0.0. This is an action class, which implements a function.
The parent class is used to define an instance variable, that is used as an
argument for the function. The base class is used to support implementation
of child classes. This is an example of a class implementing a minor variation
of a rather large base class.

In package org.eclipse. jdt.internal.corext.refactoring.code, in
class AstMatchingNodeFinder.Visitor there is one inherited variable and
84 locally defined methods. LCOM;, is 0.99. The class is almost a pure
orthogonal extension. LCOMj, is 0.01. In this case, the cohesion of parent
is very low, since only one of its methods uses the defined variable. This is
an example of a rarely used variable.

The class javax.swing.text.AbstractDocument.LeafElement has 2
inherited variables and 10 local methods. LCOM; is 0.9 and LCOM,
is 0.8. Technical methods getName and toString are using the inherited
variables, but otherwise the extension is orthogonal.

In unit org.eclipse.debug.internal.ui.views.launch.LaunchView,
in class LaunchViewLabelProvider there are 6 inherited variables and 2
methods. LCOM, ;, is 0.0 and LCOM,;, is 0.66. One method accesses two
inherited variables and the other method accesses three inherited variables.
These variables are used through super-calls. This is an example of a case
where indirect calculation is needed. Inheritance is used by extending the
methods. LCOM,, value is relatively good, but it is still far from the

71

minimal value. This is because the base class is relatively large, and it is
not realistic to assume that the child class would extend all of its features.

In package org.eclipse. jdt.internal.corext.refactoring.rename,
in class RenameVirtualMethodProcessor, there are 8 inherited variables
and 4 methods. LCOM, ;, is 0.58 and LCOM; , is 0.63. Two of the methods
are accessors, but the other two use most of the inherited and locally defined
variables. Also, LCOM;; is 1.0, so LCOM, , is high, 0.88. These two meth-
ods are also examples of methods that are extended by using super-calls.
This is an example of a normal class that is quite tightly related to its base
class.

The class java.util.Collections.SynchronizedList has 2 inherited
variables and 12 local methods. LCOM, ;, is 0.0 and LCOM;, is 0.58. The
inherited variable mutex is used by almost all methods, but the other in-
herited variable ¢ always points to the same object as the local variable
list. This new variable is made to simplify handling of types. The variable
mutex is used to implement synchronization, which is an example of a cross-
cutting feature. This kind of cross-cutting feature connects the elements
of classes even though there might not be any logical connections. This is
similar to methods like toString that use all of the variables, even though
the variables might be completely unrelated.

LCOM; , measures the usage of the base class. There are several ways in
which inheritance can be used, but it seems that LCOM,; ;, cannot be used to
differentiate between them. The child class can use the parent class in many
ways. Another possible situation is that the child class might be strongly
connected to its immediate parent, but that parent has implemented an
orthogonal extension. Other ways to measure orthogonality would be to
measure the proportion of methods that use any of the instance variables,
or the proportion of instance variables that are used. If there are methods
like toString, the proportion of variables that are used would be high,
and the proportion of methods using inherited variables would be low. On
the other hand, if the parent is used for signalling or synchronization, the
proportion of methods would be high, and the amount of variables used
would be low. If the class extends the base class using features of the base
class, both proportions should be high.

Strong connectedness (0.0-0.5)

There are only 922 classes having LCOM; , less than 0.5, and most of these
classes are very small.

The class osgi.framework.adaptor.core.BundleFile.DirBundleFile
in Eclipse has one inherited variable and 6 local methods. Four of these
methods use the inherited variable, and the remaining two are empty stub
methods. LCOM; ;, is 0.33. The parent class defines a variable that contains

72

the data of the object.

The class org.apache.tools.ant.taskdefs.compilers.JavacExternal
has 22 inherited variables and one locally defined method. This method uses
all variables, mostly by calling the inherited methods. The parent class de-
scribes a data set, and the child implements an operation over that set.

In these classes, the parent and the child are very strongly connected.
To characterize what these classes are like, we need to find out what requires
the parent and the child to be separate classes. In the example cases, the
parent had data, and the child had functional code. There were also other
reasonable extensions of the base classes.

Discussion

The first observation is that the inheritance relation is often quite orthog-
onal. One reason for this is that several methods are accessors, and they
are only needed for locally defined variables. Also, there are often a great
number of inherited variables, which makes LCOM; ;, higher. There is much
variation in the way inheritance is used in different cases, so it is hard to
say anything definite based only on the value of LCOM; .

Table 2.7 shows the distribution of classes in JDK and Eclipse for LCOM,
and LCOM; ,. LCOM;j, is usually bigger than LCOM, . The range 0.8-1.0
is the most common for LCOM; , on all values of LCOM, .

Based on LCOM,; ,, the inheritance relations can be classified as follows:
If LCOM;, is 1.0, the inheriting class is orthogonal to the base class. If
LCOM;j,, is greater than LCOM, , and LCOM,;j, the inheritance relation is
not tight. If LCOM;, is similar to LCOM, , and LCOM;j, the inheritance
relation is tight. This comparison might be unfair, because there are usually
many more inherited variables than local ones.

There are certain problems with the above classification. One is that
it does not take into account how the base class uses the inheriting class.
This problem can be addressed with the metric LCOM, ;. Another problem
is that even though the class does not seem cohesive based on LCOM, ;, or
LCOM,,, it might be logically cohesive. For this, one should measure the
clients of the class, and see how the clients use all features of the class.

Often the connectedness is based on methods like toString, which might
use all the variables. These methods do not implement the core function-
ality of the class, they support functionality similar to language run time
features. This is also a problem with cohesion calculations that are based
on measuring the number of connected components.

73

0.0-01-02|-03|-04|-05|-06|-07|-0.8|-09]|-1.0]1.0

0.0-0.1 105 8 3 8 6| 12 1 0 1 1 1
0.1-0.2 19 5 4 4 8 1 3 1 2 0 3
0.2-0.3 23 2 8 5 4 5 1 5 4 0 2
0.3-0.4 32 5| 10| 32 5| 15 8 3 6 2 3
0.4-0.5 30 3 2| 16 9| 19 8) 3 0 3
0.5-0.6 110 22| 19| 29| 27| 8 | 15| 21 15 2] 10
0.6-0.7 741 21| 31| 59| 39| 89| 51| 30| 31 71 10
0.7-0.8 110 21| 32| 61| 37| 115 | 76| 74| 49| 23 8
0.8-0.9 121 | 47| 32| 87| 57| 231 | 170 | 134 | 118 | 29| 12
0.9-1.0 154 | 30| 38| 104 | 80| 238 | 209 | 231 | 273 | 108 | 27
1.0 639 | 39| 72| 103 | 62| 294 | 140 | 103 | 115 | 17| 56

Table 2.7: Distribution of classes according to their LCOM, , and LCOM;
values. Columns stand for LCOM, , ranges and and rows stand for LCOM; ;,
ranges.

2.6.3 Abstract classes

LCOM,; measures how the base class uses the inheriting class. If cohesion is
high with local variables and inherited methods, the base class is used like an
abstract class, and the child class fills the holes left in the implementation
(reification inheritance [67]). Otherwise, the methods overridden by the
child class are not called by the base class.

From the 13265 classes of the sample set that have locally defined in-
stance variables, 3857 got LCOM; ; values below 1.0. This means that most
of the classes do not have any virtual methods that would be called by
methods in the parent class, or they have that kind of methods, but they do
not use any local variables. A very large part of values below 1.0 indicate
very low cohesion. This is no surprise, since reification inheritance is just
one of the 13 ways described in [67]. The mean for LCOM,; is 0.96 for
the applicable cases. Table 2.8 shows that the classes not having inherited
methods using locally defined variables are usually quite small. LCOM,;
only correlates with LCOM, », because LCOM; is often a large component
in LCOM,,,. Otherwise LCOM;; does not depend on the size of the class,
but more on its type.

Eclipse class jdt.internal .ui.workingsets.SelectWorkingSetAction
has LCOM;; value of 0.97. There is one public method run, which uses
all of the locally defined variables. In the parent class, there is a method
runWithEvent, which by default calls the method run. There are also lots
of similar classes inheriting from the same base class, where there are no
locally defined variables. Then the method run does not use any variables

74

Range | IV| V| IM| M |LCOM,, | LCOM;, | LCOM;,
10| 31| 42152 71 0.79 0.40 0.25
0.9-1.0 | 19.1 | 53| 651 89 0.88 0.49 0.81
0809 7.9 35178 | 56 0.77 0.37 0.57
0008 | 41| 29[195]| 6.7 0.58 0.26 0.43
Cor. | 0.00 | 0.06 | 0.01 | 0.03 0.32 0.11 0.01

Table 2.8: Average values of selected attributes for different LCOM, ; ranges,
and the correlations of these attributes with LCOM, ;.

and LCOM;; becomes trivial. The method run can be thought as a func-
tion, and then the method runWithEvent can be thought as a higher-order
function, which gets the function run as an argument via inheritance.

Inorg.eclipse.jdt.internal.ui.refactoring.ExtractTempWizard,
in class ExtractTempInputPage, LCOM,; is 0.98. The method setVisible
uses two of the local variables through protected methods. LCOM, , is 0.90.
For understanding this class, it would be useful to have a tool that shows
which variables a method uses, and which methods it calls.

The class org.apache.tools.ant.taskdefs.XmlProperty has LCOM,;
0.96. LCOM, 4 is 0.89. The parent class has method perform that calls the
locally defined method execute. This method overrides a stub method.

The class SynthTreeUI in package javax.swing.plaf.synth has LCOM,;
0.97. LCOM,,4 is 0.90. Its methods installUI and uninstallUI use al-
most all variables, including the locally defined ones via protected methods
installDefaults and uninstallDefaults.

The class team.internal.ccvs.core.CVSMergeSubscriber in Eclipse
has LCOM;; 0.87. LCOM,, is 0.82. Many of the inherited methods use
variables baseTree and remoteTree via accessor methods that implement
abstract methods. The values are high because there are very many inherited
methods.

The class org.eclipse. jdt.internal.compiler.ast.FieldReference
has LCOM;; 0.89. LCOM,, is 0.99, mostly because there are 343 inher-
ited variables. Locally defined variables are accessed by calling methods
that override stub methods defined in the parent classes. Perhaps this kind
of utility methods should be implemented as static methods, because that
would give more information about what they are like. Similar possibility
is making them final.

The Eclipse class HistoryAction.ImageImageDescriptor in package
pde.internal.ui.view has LCOM;; 0.33. LCOM,, value was calculated
to be 0.25. There is only one variable in the class, and it is used through an
abstract method.

75

In the jdt.internal.corext.refactoring.typeconstraints.typesets
package of Eclipse, class SuperTypesSet has LCOM;; 0.57. LCOM, 4 is 0.67.
Locally defined variables are accessed by simple abstract methods.

The class DebugGraphicsFilter in package javax.swing has LCOM,;
value 0.75. LCOM, , is 0.92. The only local instance variable color is used
via the only locally defined method, which implements a kind of function.

Discussion

Abstract classes can be much more elegant than their alternatives. Other-
wise the code of methods in abstract classes would have to be written for
each class, leading to longer code. This kind of use is related to mixins. On
the other hand, abstract classes are harder to understand, and thus they are
more prone to errors, because the control can move from a parent class to a
child class, and vice versa.

It might be useful to use the technique implemented in the measure tool
to output a model of a class, which can then be used to understand how the
class works.

LCOM;; measures a certain kind of code reuse based on using virtual
methods. There are two ways to use virtual methods when implementing
inherited classes. The virtual methods might implement accessors to data,
or they might implement a function. The former is similar to implementing
a parent class that has abstract data, and then implementing operations on
that data. In both cases the data and operations are separated to different
classes. The parent/child relationship is not so clear on these classes. If mul-
tiple inheritance is supported, these cases could be implemented using two
parent classes where one defines data, and another defines the operations.

In the latter case, the child class implements a function, and the parent
class implements a kind of higher order function based on that function.
This could also be implemented using inner classes to make it more similar
to functional programming.

The value given by LCOM;; is usually very high, so this cannot be used
to classify the classes, it just tells if abstract methods are used at all. Because
there are usually a lot of inherited methods, this metric explains also why
the values of LCOM, , are usually so high.

2.7 Disconnected cohesion graphs

In Section 1.7.5 we studied how to measure the cohesion of graphs. These
metrics can be used for evaluating the cohesion of classes. The metrics for
cohesion graphs are highly related to each other, but they give somewhat
different results. There does not seem to be any logical argument why one
should prefer one of them over the others.

76

Range | IV| V| IM]| M |LCOM,, | LCOM;, | LCOM;
1.0 06| 47| 53| 0.7 0.09 0.04 0.95
0.9-1.0 [221 | 43797 | 74 0.40 0.73 0.73
0809 | 54| 36185 6.0 0.39 0.46 0.79
0.7-08 | 33| 25140 54 0.29 0.31 0.65
0607 16| 24| 99| 59 0.23 0.24 0.72
0506 | 08| 18| 85| 6.0 0.16 0.20 0.63
0.0-05| 06| 1.9 85| 124 0.03 0.08 0.60
Cor. | 0.34 | 0.20 | 0.32 | 0.08 0.34 0.54 0.32

Table 2.9: Average values of selected attributes for different LCOM, 4
ranges, and the correlations of these attributes with LCOM, ,.

The number of (separate connected) components in the cohesion graph
can be used as the most coarse-grained definition of internal cohesion. A
large number of components can be considered as an indicator of low co-
hesion, because there are no internal relations between the components. If
there is only one component, then a member of a class is at least related
to some other member of the class and transitively to every other mem-
ber. This is quite a weak form of cohesion, and therefore, more fine-grained
cohesion metrics have been defined.

If having several components in the cohesion graph is not caused by
design errors, it is unlikely that other cohesion metrics could be used to find
design errors. At least it is possible to find a way to eliminate valid causes
of components from the calculation. In this way, a better metric can be
defined that encodes more design knowledge.

The analysis below will show that most of the components come from
unused variables, or from methods that do not use any variables. In the
following, we establish that simple methods that use no inherited or locally
defined instance variables can usually be justified, so they can be ignored
from the calculation of cohesion. On the other hand, presence of unused
variables is more likely to be due to suboptimal design.

One perspective to modularity related metrics is to consider the worst
possible case of modularity, i.e. the case of just one module. The cohesion
graph would then have a component that represents the code that is actually
used in the program, and the rest of the cohesion graph is related to unused
code.

2.7.1 Disconnected classes

The cohesion graph of a disconnected class has several components. If not
otherwise mentioned, components caused by simple methods are ignored in

7

) i a
LCOM,,, LCOM;; LCOM,,
The traditional way | Measures the virtual Redundant by
to measure cohesion. method usage. LCOM,; and
Good for measuring LCOMy;;.
orthogonal
extensions.
LCOM; LCOM;; LCOM; 5
Measures the usage Measures the parent Redundant by
of inherited class. LCOM;; and
variables. LCOM; p.
LCOM, LCOM, ; LCOM,
Redundant by Redundant by Good for measuring
LCOM;;, and LCOM;; and classes that use the
LCOM,;;. LCOM,;;. features of the
parent class.

Table 2.10: Summary of inheritance and LCOM. Subscript a means all
instance variables or methods, ¢ means all inherited variables or methods, p
means locally defined public methods and | means locally defined variables.

the following, and the inherited part is considered to be included in the
class. The left panel of Table 2.11 shows the distribution of the number of
components for the cohesion graphs of LCOM, ;s and LCOM,, apns. The table
reveals that surprisingly many classes have more than one component. When
inherited properties are included in the classes, they typically have more
components, because in general, the number of components grows when
going lower in the inheritance hierarchy. The largest number of components
for LCOM, pns and LCOM, ans is 1188 in class ORBUtilSystemException
in com.sun.corba.se.impl.logging, and 71 in class GtkWidgetClass in
package org.eclipse.swt.internal.gtk, respectively. The first case is
caused by methods using inherited variables. In the second case, the class
has 71 instance variables.

As an example, consider the class javax.swing.JDialog with 16 com-

ponents. Most of the variables and methods form a single component.

78

Components | NOC ;s | NOC, ans Ratio | Local | Inherited
0 5340 3008 0.0-0.1 216 119

1 9149 7838 0.1-0.2 458 344

2 2863 3610 0.2-0.3 665 499
3 1286 2103 0.3-0.4 722 556

4 742 1462 0.4-0.5 288 401

5 432 1064 0.5-0.6 | 1477 1271
6 283 435 0.6-0.7 693 1458

7 198 288 0.7-0.8 564 1430
8 138 216 0.8-0.9 862 1844
9 93 134 0.9-1.0 604 2270
10- 508 879 1.0 | 14488 10845

Table 2.11: Distribution of classes according to their number of components
and size proportion of the largest component from the class. Simple methods
are ignored. The local case means the cohesion graph used when calculating
LCOM, pns and the inherited case is the cohesion graph that is used with
LCOMa, ans-

Some instance variables are used only by private serialization methods, and
these are not measured in our definition. Analysis shows that the vari-
ables warningString and temporaryLostComponent form their own com-
ponents with their corresponding accessors. The variables modalComp and
modalAppContext are only used by reflection in the package javax.swing.
The variable modalExcluded only seems to be used by constructors. The
variable focusCycleRoot is unused, because all the methods using it have
been overridden. It is clear that identifying components helps in finding
potential problems in the classes.

One clear problem in using NOC as a problem indicator is that meth-
ods like toString might artificially force that the class consists of a single
component. Calculation formulas based on the connectedness of the graph,
like CBMC, or ignoring these kind of special methods might be useful.

As another example, consider class ElementListSelectionDialog from
package org.eclipse.ui.dialogs. The class consists of one connected
component. It inherits from AbstractElementListSelectionDialog, which
has 9 components. That in turn inherits from SelectionStatusDialog,
which has 4 components (inherited from SelectionDialog). The class
ElementListSelectionDialog combines all components from the classes
it inherits to a single component with a method that uses all variables. This
shows that even if a class makes orthogonal extensions, like SelectionDialog
made to org.eclipse.jface.dialogs.Dialog, inheriting classes might make

79

the extensions non-orthogonal. This is because the components might be
conceptually connected, but this cannot be measured by inspecting the class
automatically.

Causes for components

One cause for the formation of a component is an unused variable. A variable
might also become unused, if all the methods using it are overridden. This
is clearly a problem in the implementation and design of classes.

The second cause for a disconnected cohesion graph is that a class is
meant to be used by inheritance. In this case the class should be declared
abstract.

The third cause is that a class defines two or more disconnected fea-
tures. This is the most complex case to analyze. It is possible that the
motivation for disconnected designs comes from clients of the classes. Often
these objects are used as records with plain accessors by the clients. Such
a design is clearly not cohesive, but it might be convenient to group several
features like this. A problem would arise if the clients include code, that
could be implemented as a method in the class. However, extracting such a
client code as a method for the record class might not be feasible, because
the code could also use intensively some other data. It is common that a
large class has an instance variable that is used by accessor methods only.
Similarly, unused variables form disconnected components. In these cases,
it should be checked, whether the component is actually used by any of the
clients. Finally, it is possible that two or more components are so unrelated
that the class should be split into two or more classes.

To separate the cases where there are unused variables from the cases
where the class is used as a record type, one can inspect how large is the
largest component in the class. The right panel of Table 2.11 reveals the
ratio of the size of the largest component with respect to the size of the
whole usage graph. The table indicates that the largest component is often
very large meaning that a large number of components does not directly
imply a bad LCOM value.

Components and inheritance

By using components, we propose a concrete classification of classes. There
are four categories. Fillers are classes that have less components in the
cohesion graph with inheritance than in the local cohesion graph. There
are 1655 fillers in the sample set. These classes override some methods, and
the base class combines their features. Normally extended classes are classes
that have the same number of components as their base class. Adders are
classes that add more components to the base class. Fizers are classes that

80

have less components than their base class. There are 5368 adders and 1286
fixers in the sample. The remaining 14219 classes are normally extended.
Of the adders, 2980 add just one more component.

We give some typical examples of these categories. The Eclipe class
jdt.core.Member is an example of fillers. It consists of 8 components when
examined locally. It includes no locally defined variables, but all of the meth-
ods are not ignored as simple methods because they use inherited variables.
If the inherited methods are counted in, there is only one component. An-
other filler is the class org.apache.tools.ant.listener.AnsiColorLogger.
It has a protected method printMessage that uses all 6 locally defined in-
stance variables. There are no public methods in the class, so the class has
6 components in the local case. The protected method is called from the
parent class. The fillers are examples of classes with inherited methods using
locally defined variables via overridden methods.

An example of fixers is javax.swing.tree.VariableHeightLayoutCache.
This concrete class extends an abstract class, which has several components.
Most fixers are similar to that.

When considering the formation of components, the most important
cases are the adders. Classes of this type are responsible for all disconnected
classes. They often have no inherited variables, because java.lang.0Object
has no variables. An example of this kind of class is java.util.Currency.
An adder class usually has two or three related variables, but it only pro-
vides the accessor methods, and thus the objects of such a class are pairs,
or more generally tuples. The following examples show how it is possible to
find all causes of components by inspecting adders without having to inspect
classes that do not cause them.

Adders are (partially) orthogonal extensions of their parent classes. For
example the class javax.management.monitor.MonitorNotification in-
herits from the class javax.management .Notification. The child class just
includes getters and setters for the instance variables it defines. These noti-
fication classes are examples of classes that are used as records. The needs
of the client for these classes are so various that there are no meaningful
methods that should be included in the class.

2.8 TCC and other alternatives to LCOM

TCC (Tight Class Cohesion) calculates the cohesion as the ratio of method
pairs sharing one or more variable and the number of all possible method
pairs. TCC and CBMC are a kind of opposites, because in TCC, if one
variable is used by all methods, it gives the best cohesion, and in CBMC,
if one method uses all variables, but other methods use just one variable,
it gives low cohesion. Because of this it seems motivated to define met-

81

ric rTCC, which calculates pairs of variables that are both used by some
method. From these definitions, it follows that rTCC ignores methods that
use one or zero instance variables, and TCC ignores unused variables.

On the basis of correlation calculations, it is seen that TCC and rTCC do
not correlate much with the number of variables. On the other hand, rTCC
has strong correlation with the number of components. The advantage of
rTCC over LCOM and TCC is that its correlation is weak with the number
of variables, but its correlation is strong with the number of components.

TCC gives value 1.0 for 687 and rTCC for 2103 classes. When TCC is
1.0, all methods are in different components, and when rTCC is 1.0, each
variable is in its own component. One reason that there are more cases
where r'TCC is 1.0 is that a variable often has two accessors, a getter and a
setter.

Maximal TCC

There are 687 classes with maximal TCC value 1.0. These classes mostly
have only methods that use a single variable and each method uses a different
variable. There are also some methods that use two or more variables that
are not used by any other methods. These classes usually do not have
very many variables (2.6 on average). They tend to inherit directly from
java.lang.0Object, and they have no inherited instance variables.

Maximal rTCC

There are 2103 classes with r'TCC 1.0. In these classes, methods only use
one variable at most. If the class has only simple methods, TCC is 0.0 but
rTCC is 1.0. The average number of variables is 4.4 and each variable forms
its own component.

Class java.net.URL gives rTCC 0.98, and TCC 0.69. One of the vari-
ables is used in several methods, but only one method uses more than one
variables. The class consists of 23 methods, when inherited methods are
included.

2.8.1 Comparison of LCOM and TCC

Considering classes, their average number of variables begins to grow when
LCOM values are above 0.5. First, they grow slowly with increasing LCOM
values, but in the end they grow very quickly. In TCC, the number of values
is generally higher, with peaks at 0.45-0.5 and 0.7-0.75. The first peak is
caused by Eclipse’s AST classes, and the other by Swing.

The number of components grows quite linearly when TCC grows. With
LCOM, the number of components starts growing after 0.3.

82

When there are lots of variables, at least one of these variables might be
such that all methods use it. Then the value of TCC is 0.0, and because
of this, LCOM and TCC do not correlate much. Otherwise they correlate
strongly.

LCOM and TCC correlate least, when considering all variables, includ-
ing inherited ones, and just local methods. This can be explained by the
following reasoning: When there are lots of inherited variables that are never
used, LCOM gives low cohesion, but if there is a local variable that is used
much, TCC gives high cohesion. On the other hand, if there are for example
two methods, and they both use a different variable, TCC gives the lowest
cohesion value, but LCOM gives 0.5.

The relation of TCC with the number of methods is similar to the relation
of LCOM with the number of methods. LCOM correlates strongly with the
number of variables, especially when trivial methods are ignored. On the
other hand, TCC does not correlate at all with this number. This is because
if there are a lot of variables, there might be a variable that is used by all
methods, and then the other variables do not make the cohesion lower. So,
LCOM and TCC values do not correlate when all inherited variables have
been taken into account, because then there are lots of variables. Also when
there are less methods, the correlation is weaker.

Based on the above considerations, TCC and r'TCC should be preferred
to LCOM, because they correlate better with the number of components,
and less with the size of the class. On the other hand, the value given by
LCOM gives more information, and its results are easier to understand. But
the most important case for cohesion values is the situation where there are
no multiple components, and this will be investigated below.

2.8.2 Components and LCOM

It is interesting to compare LCOM and TCC to the number of components
as indicators of problems in class design. It is evident that LCOM and
TCC are more useful for classes that have only one component. If there
are several components, LCOM is not so good measure, but then the class
probably needs to be inspected anyway.

Most big classes have several components, due to unused variables or
unrelated feature sets. In the sample set, there are 10845 classes that consist
of one component, when all inherited variables and methods are considered.
Now if we look at LCOM, , (in Table 2.12) and keep only the classes that
have one component, there are only 64 classes in the 0.9-1.0 range, and 293
in the 0.8-0.9 range. This is an example of the strong correlation between
LCOM and the number of components.

One can generate random cohesion graphs based on the number of vari-
ables, the number of methods and LCOM of a class. The table for this

83

0.0-01-02|-03|-04|-05| -0.6|-0.7|-0.8|-0.9|-1.0

1 6359 | 295 | 421 | 840 | 644 | 774 | 660 | 496 | 293 | 64
2 328 1 18| 33| 79| 237 | 1018 | 645 | 631 | 446 | 171
3 166 2 1 13| 11| 101 | 928 | 453 | 331 | 96
4 141 0 0 3 0 15| 50 | 536 | 438 | 277
5) 61 0 0 3 0 5| 321 100 | 469 | 393
6 o8 0 0 0 0 0 9| 421 220 | 106
7 44 0 1 0 0 1 4 41149 | 85
8 36 0 1 0 0 0 0 91 110 | 59
9 33 0 0 0 0 2 1 3| 63| 32
10- 132 0 0 0 1 1 1 71 67 670

Table 2.12: Number of classes with a certain number of components in the
cohesion graph (as given by rows) and a certain range of LCOM, , (as given
by columns).

randomized graph is very similar to Table 2.12. It seems like the expected
value of the number of components can be determined straightforwardly
from the number of methods, the number of variables, and LCOM (or more
simply, the total number of used instance variables in methods). This is
surprising, because it could be assumed that classes tend to consist of one
component. The interpretation of this result is that internal cohesion is not
a guiding principle in object oriented design.

An example of a class with high LCOM, , (0.87) and one component is
ListDialog in package org.eclipse.ui.dialogs. It has 25 instance vari-
ables, and 27 methods. Of these methods, 20 use only one variable, but
two methods (open and create) use all the instance variables. Another ex-
ample is Eclipse class Browser in package org.eclipse.swt.browser with
LCOM, , value of 0.93. It has 431 methods, and one of them (the method
createCOMInterfaces) uses 48 of the 54 instance variables. This method
is only called by the constructor.

There is often a single method that uses all variables, and keeps the class
as a single component. These methods can either implement the core func-
tionality of the class, or they can for example be a method (like toString)
which artificially connects the class into one component. LCOM values
would still be high, though. To get more precise measurement of cohesion,
a connectedness based methods like CBMC could be used.

2.8.3 Connectedness of cohesion graphs

Often, the connectedness of a component depends on one method or variable.
If this method or variable is not a part of the core functionality of the class,

84

it binds the class together in a way that does not imply cohesion. The idea
of connectedness analysis is to remove nodes (methods or instance variables)
from a cohesion graph, and see if it is still connected.

In most cases, removing a variable splits the class into components easier
than removing methods, for example the accessors of the variable become
components. For this reason, we propose another connectedness analysis
which removes only methods.

One feasible way to implement connectedness analysis could be imple-
mented by removing one or two elements from the graph, and seeing how
many components there are then. When removing variables, one might also
remove the methods that become trivial when they are removed.

For example the class java.util.HashMap has one component, if meth-
ods that use no instance variables are ignored. If the instance variable
entrySet is removed, the methods that use only the variable entrySet
become their own components. On the other hand, if the method clone
is removed, the variables keySet and values form their own components.
These variables are connected by inner classes.

An example of a one-component class is java.awt.JobAttributes. This
class has very high cohesion. Class java.awt.Button has 5 components, but
only one of them is large. The large component has low cohesion, because the
method addNotifyListener is the only method that uses instance variable
nativeInLightFixer.

2.8.4 Components and TCC

Classes where there are several components can always be considered non-
cohesive. Therefore TCC and rTCC are most interesting for one-component
classes.

TCC

With TCC, the range 0.6-0.7 has 248 classes, the range 0.7-0.8 has 76 classes,
and the range 0.8-0.9 has 75 classes.

The class java.security.cert.PKIXBuilderParameters has 13 vari-
ables and 30 non-simple methods. TCC is 0.88. One method (toString)
uses all variables, one uses two, and others use just one variable. This is a
good example of a phenomenon that can be detected using TCC but not by
using the number of components.

A interesting example is in com. sun.org.apache.xpath.internal.axes,
class ChildTestIterator, where there are in total 25 variables. Two meth-
ods use 17 variables. This shows that single-component classes do not always
have methods that use all variables. TCC is 0.82.

85

rTCC

With rTCC, the ranges 0.4-0.5, 0.5-0.6, 0.6-0.7 include 121, 71 and 29 classes,
respectively. If there is one component, it seems that quite often there is a
method that uses all of the variables: r'TCC is 0.0-0.1 in 6674 cases from
the total of 7838 cases.

In class com.sun.org.apache.xml.internal.utils.SAXSourceLlocator,
there are has 5 variables and 8 nontrivial methods. rTCC is 0.60, TCC is
0.64 and LCOM is 0.7. Of the methods, 4 access only one variable, and the
other four access two variables. The first four are setters in the base class,
and the other four are getters that are redefined in the child class. The
setters bind the class together using variable m_locator. So there seems to
exist a genuinely loose cohesion in the class.

The class debug.internal.ui.actions.RemoveAllExpressionsAction
of Eclipse has 7 variables and 8 methods that use variables. TCC is 0.43,
rTCC is 0.61, and LCOM is 0.75. The methods access at most 4 variables.
The class seems to have several related functions, which all need their own
variables.

The class org.eclipse.update.core.model.FeatureModel has 31 vari-
ables and 65 methods. The methods use at most 10 different variables.
rTCC is 0.76. The class is bound together by variable readOnly. This vari-
able is used to implement write protection. It is an example of a variable
that binds the class together artificially.

Conclusions

TCC and rTCC usually give quite good values for classes which consist of
one component, and if the values of the two metrics are weak, they are
usually signs of weak cohesion. It was found out that if there is one variable
or method that is related to all other variables or methods, rTCC and TCC
give the perfect value 0.0. The two measures have the same weaknesses
relating to connectedness but used together, they can detect shallow graphs.

2.8.5 Other alternatives

A natural way to measure the cohesion of a graph that has not yet been
considered is LCC. LCC is lowest, if the class has only one component.
LCC is highest if each method has its own component. In this sense LCC
is the same as the number of components. One improvement of LCC over
NOC is that if there is one method with its own component, LCC gives a
lower value than if there were two components with equal size. A problem
that still remains is that both methods give the highest value for a case
which is not usually bad design (c.f. data class).

86

2.9 Elements of Cohesion

To understand, what internal cohesion might tell about classes, one has to
inspect its constituents. These are

e Methods with no used instance variables.

e Methods with one used instance variable.

e Relations between instance variables used by methods.
e Internal calls between methods.

To analyze causes for disjoint components and low internal cohesion in
general, it is useful to inspect methods with no accessed fields and methods
with only one accessed field. To complete the classification, we classify the
roles and relations of the fields in the methods that use more fields.

In the present work, it is one of the most interesting findings that this
kind of classification can be assisted by modern software analysis tools.
Methods can be divided into groups based on simple syntactic properties
such as which language constructs are used in the methods. Taking n such
properties the methods can be divided into 2™ groups which can then be sys-
tematically inspected to find different concepts. In the process, also design
rules and design anomalies can be found.

Some language design issues make this kind of classification harder. For
example using static fields to help in the classification is difficult, because in
Java, there are two uses for static fields; as global variables, or for defining
enumerations.

Languages such as Java might have operationally similar, but a bit differ-
ent constructs. For example a method can be called in Java in the following
ways:

e Normal dynamic call.

e Dynamic call from this-variable.

Super-method call from this-variable.

Static method call.

Constructor call.

e Super-constructor call.
e This-constructor call.

This shows that the conceptual complexity of objects cannot be hidden by
the language.

87

2.9.1 Methods using no fields

In the test material, there are 1286 methods that do not use any fields.
These methods are in 401 classes. Of these classes, 130 do not have any
locally defined fields. It is clear that the classes that have both methods
using fields and methods not using fields are most interesting.

Of the methods using no fields, 737 are overloaded. This shows that
these methods are often used via dynamic binding. In fact, if these methods
are not used via dynamic binding, they are quite pointless. Another feature
of methods using no fields is that they are almost always very simple: 1231
of them have neither looping nor branching.

Of all methods, there are 374 stub methods with no functionality at all,
not even a return value. There are 1470 methods that only include one
expression. Most of the methods including only one expression are getters.

Of the methods that use no internal variables, 254 have no expressions
and 348 have only one expression. The single expression might be a constant
value for a class that is accessed via dynamic binding. This is a kind of a
variable that depends on the class of the object. This kinds of variables can-
not be implemented as static variables, because each class in the inheritance
hierarchy shares the inherited variables with other classes. This shows that
a class as a run-time entity is different from a class as a language construct.

Based on the properties above, the methods can be classified into four
groups. The first group consists of the methods with no functionality, and
are used via overloading. There are 185 such methods, and they are all the
same. In addition there are 48 such methods that are not overloaded. These
are stub constructors, unimplemented methods, or methods that could be
overloaded, but this is not done in the test material.

A peculiar case are methods that return this-variable, an example of this
is String.toString. There were 6 such methods. It is actually surprising
that there are no more methods of this kind, because identity operations
should be pervasive when modelling domains.

The second group consists of overloaded methods with one expression.
There are 242 such methods. As discussed before, these methods can be
thought to be constant fields, that are related to the class of the object.
They can be used for example to tell what kind of capabilities the class has.
Even if these represent constants, the field or property might be a variable in
other classes in the hierarchy. One possibility is that the method implements
an abstract factory pattern.

The third group has 97 non-overloaded methods with one expression.
These can for example return static fields. Some are deprecated methods
and others are stub methods that throw exceptions. Most are methods that
could be overloaded so they do not differ from the second group.

Methods of the fourth group contain several expressions. They imple-

88

ment the FUNCTION design pattern. In this pattern, an object of a class is
used like first-class functions in functional programming.
As a summary, methods using no fields can be classified to:

1. Stubs: either do nothing or throw an exception.
2. Abstract factory methods.

3. Function design pattern methods. This group does not include all
methods related to the functional pattern, because e.g. a class might
represent a family of functions and then the method would access an
instance variable.

4. Methods only using this-variable.

5. Constant property that is related to a class. Might be a normal prop-
erty in other classes.

If a class implements a functional pattern and has unrelated instance vari-
ables or methods, this can be a signal of low cohesion. Otherwise, these
methods seem to be necessary and parts of sound design.

2.9.2 Usage of this-variable

Even if a method does not use any field, it can still use the this-variable.
One possible use is this-passing, where this-variable is given as an argu-
ment for a method. Another use is testing for equivalence with this. It
should be possible to classify the uses for this-variable.

Of the methods that use no fields, 191 call this-variable. There are the
following possibilities: check the type of this, use this-passing, or call a
method from this that uses no fields. In general, this-variable is most of
the time used for accessing its fields.

For usage of this-variable, there are the same cases as for arguments

e Pass the variable forward.
e Call a method from the variable.
e Just return the argument.

e Store the argument to a variable. This operation is not useful for
this-variable.

This-passing is often used with complex recursive relationships. For
example an object might be a part of a more complex pattern, which de-
termines its properties. Another possibility is that a class A has a static
method, that takes an object of the class A as an argument. Then some

89

methods call the static method with this-passing. Perhaps it is thought that
this way of calling is more efficient than using normal methods.

As a conclusion, only this-passing seems to be problematic. In our opin-
ion, the methods should operate on the fields of the class, and not on the
whole object. However, this-passing is not a true case of not using instance
variables and it is therefore unrelated to cohesion.

2.9.3 Methods using one field

The sample set includes 2743 methods that use exactly one field from the
class they are in. These are the most common methods and so they need to
be inspected carefully.

A large part of these methods does not have any branching or looping
(in fact only 653 methods have looping or branching control structure). A
majority of the methods are not overloaded: 636 methods are used with
overloading. As a more fine-grained approach to complexity of these meth-
ods, the number of expressions in each method was counted, see Table 2.13.

The methods can be classified to categories:

e Getters, which return one of the fields.
e Setters, which modify one field.
e Wrapper method for another method using only one field.

e Wrapper method calling a method from a field.

Note that there can also be getters and setters that get or set several fields.

For a wrapper method calling another method from a field, there are
two possibilities: either a call chain is avoided, or the class is a wrapper for
the field. When a call chain is avoided, there are two conceptually different
cases: the field is a part of the object, or the field is a relation to another
object.

More generally, a getter might be a function on the field. For exam-
ple this kind of method can check for a property of a field. An example is
checking the size of a collection. In Java, there are several collections that
implement an isEmpty-method in the same way as it is already implemented
in an abstract base class of collections. This indicates a need for an analy-
sis for determining whether a method can be moved up in the inheritance
hierarchy.

Methods using one field reveal problems concerning composition of classes.
For example there are useless wrappers of basic data structures (probably
implemented before genericity was added to Java). Another example is the
container pattern for a small set represented as an integer. Another problem
with fields in general is that there is a major conceptual difference between
a field representing an attribute or a relation.

90

Number of expressions | Methods

1 857

2 318

3 321

4 351

5 108

6 or more 788

Total number of methods 2743

Table 2.13: Analysis of the methods using exactly one field of its class,
showing how many expressions these methods use.

Getters

There are several different kinds of getters:
e Simple getters.
e Getters with consistency check.
e Lazy creation of a field.

e Cloning getter: returns a clone of the object contained by the field.
These are useful when the object enforces an additional invariant on
the contained object. Otherwise the client of the object could change
the object into an inconsistent state.

e Conversion from a representation to another. For example a field that
represents an angle could return the value in degrees, while the internal
representation would be in radians.

If lazy creation of fields is applied, one may have different kind of creation
for inherited classes. A problem here is the typing, because the type could
be different but it should not be exposed outside. The listing in Table 2.14
shows how this pattern can be implemented in Java.

Regarding consistency checks, we measured how many null-tests there
are in the source in total. There are 7779 tests for equality using operator
==. Of these, 2929 test for null. In addition, of 6306 tests for inequality
with operator !=, 3986 test for null. Another typical test is for testing if an
object has a given dynamic type and checking for array bounds.

A problem related to getters is that sometimes getters and fields are used
confusingly: A class may have methods that access a field directly, and also
another method that accesses the field via the getter method. It should be
defined in the programming style, which way is used for accessing the field
in a particular situation.

91

class LazyField<T> {
private Factory<I> fac;

private T val = null;
public LazyField (Factory<T> f) {
fac = f;

}

public T get () {
if (val = null) val = fac.create();
return val;

}
}

Table 2.14: Lazy creation of fields in Java.

Setters
Setters can be classified similarly to getters:
e Simple setters.

e Setters that check the argument value.

Set constant, toggle, increment.

Setter to clone or reference.
e Setter may set several fields or construct a new object from arguments.
e Setter converts the argument from one representation into another.

Many setter methods are used for implementing the observable design pat-
tern.

Language features such as generics and enumerations can be used to
achieve great improvements in design of programs. Perhaps similar solu-
tions could be found for the design problems involving getters and setters.
For example traits and other methods of composing classes could be used
to simplify the implementation of the observer pattern. A trait A; B would
mean a class with methods a(z) = A.a(z); B.b(z). A problem is that recur-
sive relations might become confusing traits, similarly to normal inheritance.

Wrappers

Of the methods that are not clearly getters or setters, and still use only one
field, most are wrappers, which call some simple operations from a class.
Wrappers have similar considerations as getters and setters. For example a
wrapper might make some small additional conversion, just like a getter.

92

A common pattern is to have a container as member, and then operations
to add or remove from this container. There are now two possibilities:
the class augments the container with some value, or the class has several
different containers.

If a class implements a complex wrapper for one of its fields, the class can
be thought to have many roles, and therefore low cohesion. This wrapper
could be separated into its own class.

If a complex operation is performed on a field, why would it be in this
class that only contains the field? We can assume that large methods are
more likely to indicate design problems.

More formally, the following design can be considered anomalous: a
method is large, the method uses one field, and the class of the method has
more than one field. In general, the less instance variables a large class uses,
the more suspicious its design is. The correlation between the number of
used fields and the size of methods can be used to confirm this design to
be anomalous. A part of this correlation is caused automatically, because
at least one expression must be added for each access. This kind of method
can also operate on the arguments. An example of this kind of wrapper that
contains functionality that should clearly be moved into the wrapped class
is JProgressBar.getPercentComplete.

If these cases would be fixed so that functionality is moved into their cor-
rect place, it would not improve the cohesion of the original class. However,
the cohesion of the class, where the functionality belongs, might become
higher. This shows that while LCOM cannot be used to find problematic
cases, it can perhaps be used as a design heuristic to find out which refac-
torings are good.

Other observations

It was observed that many objects which were contained in the fields were
directly accessible using getters. Less fields were available for setting. How-
ever, it is often possible to modify the objects that are returned by the
getters. It would be interesting to determine, in how many cases, the un-
derlying objects are really encapsulated.

2.9.4 Field relations

We next investigate what kind of relations can exists between two or more
fields. It turns out that a surprisingly large part of the inspected relations be-
tween fields can be explained by just few programming patterns. A method
that uses two fields can be thought to describe an interaction between the
fields. Most common interactions are related to properties of objects and
states of objects. A problematic, but very common cause of interactions is

93

inlining classes.

Inlining and optimization

Performance related optimizations often cause relations between fields. A
problem is that it might be hard to know if the trade-off between perfor-
mance and simplicity is good, or if it was even considered.

A common optimization is that some simple class is “inlined” inside
another class instead of using the simple class. If the class is very simple, it
might sometimes actually be easier to inline than to use the class. It would
be important to develop tools to detect this kind of inlining.

For example, 2d-coordinates are sometimes inlined so that there are fields
such as x and y (then there are of course the actual implementations of points
and such). One reason is that there is no good language support for vectors
in Java.

A more low-level example is a buffer that has been implemented as an
array. Sometimes an optimized map can be defined so that some keys are
stored in fields while others are stored in a normal map.

An example of another kind of optimization is a method that initializes
a field, and also a related optimization field. For example a container might
have a field that contains the size of the container.

Another related problem in Java is that for values, there is no null-object.
Because of this, an extra field is needed to signal that a field is not set. Also
the validity of a value of a field might depend on the state of the object in
some other way. The natural solution for value types not having null would
be using the corresponding object wrappers (boxed values). Perhaps this is
not done because of performance reasons. Or perhaps it is because boxed
values were cumbersome to use in older versions of Java. Again, it is hard
to tell if this kind of design choices have not been documented in the source
code.

Properties

One cause for interactions are the properties of objects. At first one could
think that the fields contain the properties, since they are mappings from
object identifiers to values. In many cases, the association of properties to
objects can be much more complicated.

A property of an object can be defined by some other object. In this
case the object is a part of a larger system, that is the actual holder of the
property. Also there can be two or more alternatives for where the property
can be found.

One possibility is that the data might have an inheritance-like pattern,
where default values are searched from some kind of prototype object.

94

In addition to properties, also the functionality might have alternatives
(delegation).

These examples show that handling the properties of objects is more
complex than adding fields to classes. The solution is to separate property
handling patterns into their own separate data structures. One challenge is
having the same status for data structures such as trees and graphs as sets,
lists and maps have now.

State of objects

In addition to properties, an object can be thought to have a state. The
properties can be thought to belong to the state, too. State dependant
functionality can be detected by checking if a field involves control flow.

If a state is changed, there might be some associated object that is
signalled: for example an observer or a ”mirror”. Another possibility is that
when making a state change, the cache should be cleared, or the state of
contained objects should be changed.

The value of a field might be related to another field. In this case, this
field represents the state of the other field.

Miscellaneous relationships

In some cases, a field remembers an attribute or previous value of another
field. This corresponds to the follower role of local variables. It can be
thought that each possible role of a variable there is a corresponding role
for fields. For example a method can simply return a commonly needed
expression of two or more attributes. This is similar to the role of temporary
variables.

In concurrent object and field access, there are often objects that are
related to synchronization. This is a natural relation between two objects.
On the other hand, this also is a programming pattern that can be tackled
with for example aspect oriented programming.

One pattern comes from functional programming. If a function has two
parameters, one can make another function that has one of these parameters
fixed. Translated into objects, one field would represent the function object,
and another would represent the fixed parameter.

When inspecting classes, it can be noticed that classes have parameter
roles for the method parameters. Two different methods in a class can have
parameters with the same role. In these cases, usually the same name is
used for both methods. When a parameter role can have several types, an
extra field might be needed for decoding the parameter.

95

Conclusions

When inspecting methods that use two fields, it often seems that the system
could be redesigned so that the methods could involve only one field.

It can be assumed that a common case is that the context of the ob-
ject has two other objects that must be used to implement the necessary
functionality.

To classify the roles of methods more formally, one can use for each
involved variable the following aspects:

e Contained objects.
e Related objects.
e Derived objects (objects that are created based on the object).

Contained and related objects are found using fields. One can also consider
for example derived objects of contained objects etc. This kind of chains
should not be very complex, because they are considered in a context of one
method. To classify a method, the data and control flow in relation to these
considered objects should be inspected.

What seems to be difficult in programming is finding the correct level of
abstraction. In particular, too low-level concepts are often used. Because
only the interface of the class is used by the clients of the class, bad design
decisions internal to the class are not shown outside the class. Therefore the
pressure to remove these problems is small. The emphasis of design can be
thought to be a feature of the waterfall process model, where the design is
thought to be fixed during implementation. In agile models, implementation
is thought to influence design more.

2.10 Conclusions

The key idea for this chapter is that cohesion measures how well the class
is implemented regarding the principle of encapsulation. However, encapsu-
lation is not something that would always be desirable. The actual desired
principle would be that the class has a simple interface. Encapsulation fol-
lows if the internal representation is more complex than the interface. The
ideal case would be that both internal representation and the interface are
simple. In this case encapsulation is not needed.

We can now see that the cohesion of a class cannot always be seen when
inspecting the class in isolation. Because of this, we need to model the
relations of classes. When inspecting relations between classes, it is also
necessary to consider coupling. If the cohesion depends on some other class,
this might be a case of tight coupling. Then, the class with low cohesion

96

can be seen as a utility class. In modern software engineering, using de-
sign patterns and software architectures creates these kinds of simple utility
classes. To solve these problems we need to implement more general metrics
to measure modularity.

The worst case for modularity should be that there is only one class.
We tested a model, where all classes were combined to one, and measured
its cohesion. The measures could not find differences with it and normal
big classes. This gives more support to our argument that internal cohesion
metrics are not enough, some other metrics are needed, too.

It was found out that the cohesion measures depend on the size of the
classes, most strongly on the number of variables. One problem with this
is that the variables should be hidden from the interface as an implemen-
tation detail. We were not able to remove the dependency by using simple
statistical methods. To solve this we might need invariants or some similar
help to determine how the class should be used. It would then be possible
to measure modularity even before the classes have been implemented.

The metrics we investigated seem to give a good idea of what the internal
cohesion of classes is like, even though there still remain some problems.
LCOM is the most basic metric and it also seems that the expected value of
other metrics depends on the value of LCOM. The number of components
is an important measure and perhaps best captures the idea on internal
cohesion. Of other metrics, r'TCC seems to give most useful results.

One problem was that when using the concept of cohesion from mod-
ules to measure the cohesion of classes, it is not simple to know how the
inheritance should be handled. Because of the inheritance, a class can be
thought to be an extendible module. When considering the class as a mod-
ule, all inherited components should be included. But also the nature of the
extension can be useful to determine. It would be particularly helpful, if
there were a way to determine, if the extension actually follows from an is-a
relation, or should composition have been used instead.

In the definitions, it was useful to define the cohesion graph, which was
then used by the different calculation methods. Variating methods and
variables was not that useful, because the useful variations were quite easy
to find.

For measuring cohesion, the call graph seems to be the most useful model
of the program. There are some ways to make the call graph more precise
that should to be investigated. One of these is points-to analysis. Also more
analysis is needed to compare the direct and indirect instance variable use.

We proposed an approach where the class is divided into four different
parts: the inherited part, the locally defined part, and two parts to connect
them. This division was useful to analyze the relationship of cohesion and
inheritance. In particular, it was observed that the part where inherited
methods use locally defined variables, is often empty.

97

So, how could the cohesion metrics be used? The easiest metrics to use
are the ones based on the number of components. If a class has several
components, it needs to be checked whether the components are logically
connected. If the class has unused variables or small components, it must be
analyzed if they are used by some other classes, or if they could be replaced
somehow.

The number of components must be calculated in a way, that does not
cause false positive findings. Because of this, inheritance must be consid-
ered. Indirect computation is not relevant, because connectedness analysis
is transitive anyways. Method calls must be resolved though.

There is a problem when using the internal cohesion metrics for search-
ing suspicious classes: It can be thought that the most suspect case would be
that a class has two cohesive components. However the cohesion measures
usually give worst results when each field has its own disconnected compo-
nent. These classes are mostly so called data classes and they are usually not
examples of bad design, although they can be examples of evolving designs.

If the classes have only one component, perhaps LCOM, TCC or rTCC
can be used. To find out if they are useful, we would have to use them in
software projects. rTCC seems to be a good measure, because it correlates
well with the number of components and is quite independent of the number
of variables.

In the present chapter, two main problems of cohesion metrics were
identified. First, the metrics cannot measure the logical cohesion of classes.
To solve this problem, we will introduce the concept of external cohesion,
where methods are replaced with client classes. The second problem is that
cohesion cannot be used for software quality improvement. For this we will
measure how much refactorings can be used to improve values of the metrics.
For example a class consisting of two cohesive components could be split into
two parts, producing maximal cohesion improvement. Another example is
moving a large method that uses just single field to some better location.

98

Chapter 3

External Cohesion Metrics

3.1 Introduction

Ezxternal cohesion is investigated in this chapter. Instead of internal rela-
tionships, we consider external relationships, where two methods are related,
if they have a common user.

To better understand the relationship between internal and external co-
hesion, one has to consider how the classes are understood by the devel-
opers. There are three alternatives corresponding to different views into
classes. First, a class can be considered as a separate entity with a meaning
independent of its context. This is the internal view of the class, which is
used when writing the class. Second, when a class A is used by another class
B, the other class B uses its client view of the class A. Each client of the
class A has its own view of the class A. Different clients might for example
assign different roles to the class they are using. The third view is the global
view, which is the combination of the two other views. This kind of view
is used in high-level design and code reviews. This view is also natural for
metrics. Client-based metrics are metrics that use the client and internal
views to measure classes. It can be easily seen that client-based metrics are
useful. They are needed for complex refactorings that affect several classes.
For example, in Move Member [43] refactoring, a member is moved between
two classes that are not related by inheritance. Metrics that use only the
internal view cannot reliably assist in such refactorings. On the other hand,
metrics that only give a value for a package or a project make it too hard
to find the reasons for a bad value.

As discussed in the previous chapter, the problem with existing object-
oriented cohesion metrics is that they only use the internal view to the class,
and therefore give a limited account of the cohesion of classes.

If two different clients of a class have very different client views of the
class A they are using, it can be assumed that the class A does not implement

99

a maximally cohesive set of features. To detect this kind of lack of cohesion,
we propose the metric LCIC (Lack of Cohesion In Clients) that measures,
how coherently the clients of a class use it. If all clients use all features of the
class A, then it has clients that have a similar view of the class A. Otherwise,
the class A might have unnecessary features, or it might implement several
different concepts.

During software evolution, new features are added into a class. This can
make the class uncohesive. As an example, consider a class that represents
a point in three-dimensional space. If an application also has a need for
two-dimensional points, it can reuse the 3D point class for this. But in this
case, the point class would have unnecessary features. It would be useful to
detect this kind of usage of classes.

A class is not always used in the same way by all its clients: It then has
different roles for different clients. For example, a communication channel
might have roles for input and output. Different roles can be specified as
interfaces in object-oriented languages such as Java. Because of this, we
have designed our metric LCIC to support classes with several interfaces.

Consider again the point class example. If there are methods drawing
2D graphics into 3D space, there might be classes that use only X- and Y-
coordinates of the point. These classes should use the point through a 2D
interface. Then they can also operate on true 2D points.

The organization of this chapter is as follows. Related works are pre-
sented in Section 3.2. In Sections 3.3 and 3.4 we define the LCIC metric for
Java programs. Experimental results are presented in Section 3.5. The re-
lation of the proposed metric to different design patterns and refactorings is
analyzed in Sections 3.6 and 3.7. LCIC metric is an example of client-based
metrics — in Section 3.8 we discuss possible variations for LCIC. Conclusions
are drawn in Section 3.9.

This Chapter is based on the publications [61], [60] and [62].

3.2 Related Work

Ott and Thuss [74] present slice-based metrics for measuring functional co-
hesion in procedural programs. In these metrics, the measured modules are
sliced based on their output values i.e. only statements that are necessary
for generating a specific output value are left in the program. The sliced
modules are then compared. This is similar to the metric proposed in the
present work, where only variables that are used by clients remain in the
class.

KABA [89] uses static and dynamic analysis about the clients of classes
to refactor class hierarchies. For each object creation site, a new class is
created. The used members of these classes are arranged into a new class

100

hierarchy discovered by concept analysis. The advantage of KABA, com-
pared to a metrics based approach, is that it can suggest and perform valid
refactorings. On the other hand, KABA can only suggest moving members
in a refactoring hierarchy. In addition to this, KABA currently applies only
to bytecode.

Star diagrams [72] are program visualizations that can be used to find
accessor chains and other problems with duplicated code. Because star
diagrams are based on parse trees, the accessor chains must have almost
exactly same code. Our detection of accessor chains does not depend on the
shape of code at all, only on the semantics.

Distance based cohesion [88] by Simon et al. has been used to identify
refactorings. Distance of methods and variables is calculated based on their
similarity. Similarity is based on the methods and variables they use. The
most important difference between this and the present work is that our work
applies to classes, whereas the distance based cohesion applies to methods.

Misic [69, 70] argues that the client-based approach is superior to the
traditional approach, and suggests that the cohesion of a component should
be measured by using the formula of LCOM* with clients and features of the
component. Misic gives the metric in a general fashion and does not fix the
definitions of components, clients or features. The client-based approach for
cohesion measurement is also used by Ponisio and Nierstrasz [77]. Unlike
Misic and us, they use the formula of TCC instead of LCOM*. Ponisio
and Nierstrasz have implemented their metric for calculating the cohesion
of packages.

The automatic detection of design patterns has been concentrated on
detecting the instances of design patterns in existing programs. This kind
of tools usually are able to detect factory methods, see for example [54].

In a book on applying object-oriented metrics by Lanza and Marinescu
[56], only one of the defined metrics (CC) examines the clients of the mea-
sured class. The cohesion metric used there is TCC.

3.3 External cohesion metric LCIC

In object-oriented modelling, a class should represent a single concept from
the problem domain. Internal cohesion metrics try to measure internally,
how well a module represents a single concept. The assumption behind
internal cohesion metrics is that a module represents a single concept, if
the parts of the module are closely interconnected internally. In LCIC, it is
attempted to measure, whether a client views the used module as a single
concept. Further, it is attempted to combine the 'views’ of all clients as
a metric value for the module. The intuition behind this is that a module
represents a single concept, if the parts of a module are connected (e.g. used)

101

by each client. If clients do not view the module as a single concept, it can
be assumed that the module is not well designed with respect to cohesion.

To define the new cohesion metric LCIC (Lack of Cohesion In Clients),
the concepts of modules, clients, and parts of a module are defined first.
It is also necessary to handle different roles of the modules, and define the
formula that calculates the numeric values of the metric from the model.

As modules, we consider flattened classes, which include all locally de-
fined members (fields and methods) and additionally all inherited members.
An alternative definition would be to consider only locally defined mem-
bers. This alternative is however unsatisfactory, because the functionality
of a class cannot be understood without the inherited members.

There are two obvious ways of interpreting what it means that a class is
a client of another class. The first is to consider only direct usages, where a
client uses the methods or instance variables of another class, and another is
to consider all usages transitively. The disadvantage of the latter approach
is that there would be several irrelevant clients, which just use the class via
some other class as a hidden implementation detail. This approach is also
less efficient, because the sets of variables used by methods are then much
larger. The former approach might also cause problems, because a client,
which directly uses an object of a class, might pass that object to another
class, which further accesses it. This problem occurs rarely in practice, so
we choose to primarily consider direct usage.

Next we need to define, what are the parts of a class. A class provides
services to other classes. Methods of a class represent its services. A dis-
advantage of this approach is that there are often utility methods that are
not needed by all clients, for example a class representing sets might have
several methods, but most clients need only methods for adding an element
and testing if an element belongs to the set. One possibility would be to
mark the core methods, or use something like abstract fields [67], but this
would require too much manual support. Another, more promising possibil-
ity is to consider fields of the class as its parts. If a field is not used by the
clients of the class, it is an unused resource for each instance of that class.
For these reasons, we choose instance variables to be the features that are
measured.

A class can have different roles for different kinds of clients. An interface
corresponds to a possible role of a class. In the definition of LCIC, only the
used interfaces are taken into account. If a class has features that cannot be
accessed by the interfaces a client uses, the clients’ inability does not cause
any penalty to the value of LCIC.

To calculate a numeric LCIC value for a target class, we use the same
approach as in LCOM* [49, 15]. The values of LCIC range from 0 to 1,
where 1 represents the worst coherence. For each client, we calculate how
many features it does not use from the class compared to the total number of

102

features of the class that can be accessed through the interfaces available for
the client. LCIC is the average of these ratios when considering all clients of
a given class. By doing this, it is easy to compare LCIC to various internal
cohesion metrics.

3.4 Definition of LCIC

In this section, we give a precise definition of the LCIC metric for Java.
First, a model of the programs is given, and it is described how the model
can be constructed from Java programs. LCIC is finally defined based on
this model.

3.4.1 A model of programs

The model of a program includes a set of members (instance methods and
fields) Mt and a set of classes € C (M), where (M) is the power set of M.
A class is modeled by the set of its members. Because we use the flattened
versions of classes, all classes are pair-wise disjoint sets. For the example
program of Figure 3.1, the set 91 has three elements that represent fields;
variable x in the class A, the inherited variable x in class B, and variable y
in class B. Set 91 contains also all the inherited methods for the classes, so
for the example program (ignoring Java’s implicit superclass Object), the
set is
M = {Test.test,A.x,A.setX,A.getX,B.x,
B.super.setX,B.getX,B.getX,B.y,B.square}

A wview for a class is modeled as a subset of that class. Each superclass
and interface of the class in the program induces a view in the model. Note
that because a client can use a class through several interfaces, all views in
the model need not be representable by an interface or type in the program
code. The set of all possible views is

V={pCMNM|cecovlc}

In the example program, class B has a view that does not contain the
method square() and field y. This view corresponds to the class B seen
through its supertype A. The maximal view for a member m is the class
which contains m.

To complete the model of programs, we define a call relation Call(m, m’, v)
to hold, if a method m directly accesses a member m’ using a view v, where
m’ is a called method or an accessed field.

103

public class A {
protected int x = 2;
public void setX(int xx) {
X = XX;
}
public int getX () {
return x;

}
}

public class B extends A {
private int y = 1;
public int square() {
y = getX ()*getX ();
return y;
}
public void setX(int xx) {
System.out . println (” Setting.” + xx);
super .setX (xx);
}
}
class Test {
public static void test(A a) {

if (a2 = null) return;
a.setX (12);
a.setX (—12);

a.setX (2xa.getX ());

}
}

Figure 3.1: An example program.

104

3.4.2 Constructing the model

To construct a model from a Java program, a set of Java types Type and a set
of Java member signatures MSig are needed. Let Super(t,v) C Typex p(9)
be a supertype relation which holds, iff the type t induces the view v on some
class. Further, let Sig(s,m) C MSigx I be a signature relation which holds,
iff the signature s can be used to access the member m. Additionally, let
Sig, be another signature relation which represents super-calls.

These sets and relations can be easily extracted by a method similar
to the type checking procedure of Java programs. In the example program
(Figure 3.1), there are two types A and B. There are signatures corresponding
to each defined member. The type A induces another view to the class B.
Signatures that are defined for the class A can be used to access members
from B, too.

To calculate the relation Call, all expressions from the method bodies of
each member method m are inspected. The inherited methods have to be
inspected for each class. Call(m,m’,v) is defined as follows:

e [f the method body for m contains a constructor call or a static call of
a method m’, Call(m, m’, v) holds with the maximal view v for m’.

e If the method body for m contains an access f € MSig applied to a
this-object, then there is one member ' € v such that Sig(f, ') holds,
where v is the maximal view for m and /. In this case, Call(m,{, v)
holds. Calls from super are handled in the same way, except that the
relation Sig, is used instead. super- and this-statements in construc-
tors are handled as in normal methods. In the example program of
Figure 3.1, all instance variable accesses are from this. Because the
type of this is known at the time of analysis, the classes A and B are
not clients of each other.

e Assume that the method body contains a dynamic call with signature
f € MSig, which is accessed from an expression with type t € Type.
Then consider the set 2 of all members, which are contained by views
induced by the type t, and can be called via the signature f, that is,

A={me M| Sig(f,m) A Jo. Super(t,n) Am € v}

For each member a; in 2, we calculate a view v; based on the type
of the receiver variable. Then the relation Call(m,a;,v;) holds. In
the example program, the method Test.test accesses the methods
A.getX, A.setX, B.getX and B.setX via views induced by the type A.

e Otherwise, the relation Call(m, m’, v) does not hold.

105

Following these rules, the Call-relation for the program in Figure 3.1 can
be calculated:

Call = {
(A.getX,A.x,2), (A.setX,A.x,2), (B.getX,B.x,B),
(B.setX,B.super.setX,B), (B.square,B.y, B),
(B.square,B.getX,B), (Test.test,A.setX,),
(Test.test,A.getX,), (Test.test,B.setX, By),
(Test.test,B.getX, By}

The views 2, 2B and By are:

A = {A.getX,A.x, A.setX}
B = {B.getX,B.x,B.setX,
B.super.setX,B.square,B.y}
By = {B.getX,B.setX}

3.4.3 Definition of the LCIC metric

For a class ¢ and methods m € ¢, an internal transitive call relation is defined

as
Call¢(m,m’,v) = Call(m,m’, v)V
dm” € c.Call(m,m”, ¢) A Call,(m”, m’, v)

In other words, Call.(m, m’, v) holds, if there is a call chain of methods inside
class ¢, where the first method is m and the last method accesses member
m’ via view v. In the example program, Call; is the same as Call, except
that the methods B.square and B.setX are related to B.x.

The set § C M is the set of fields. We define class ¢ to be a client for
field f € § via view v when

Uses(c,f,0) = Foe&,m ecm” €0.(f €A Call(m',f,0))Vv
(f € 0 A Call(m/,m”, v) A Cally(m”,{,5))

The left term of the disjunction denotes a direct usage of a variable, and the
term on the right denotes a usage via a member method call. As shorthands,
denote Uses(c, f) = Jv.Uses(c, f,v) and Uses(c, ') = 3f € ’.Uses(c, f). In the
example, the class Test is the client for the field x in A and B. Also, the
classes A and B are clients for themselves because they use their own fields:

Uses = {(2A,A.x,2),(B,B.x,B),(B,B.y,B),
(Test,A.x,2), (Test,B.x,By)}

The client view of a class 0 for a client ¢ is the union of views via which
the class ¢ uses members of 0:

View(c, a) = Ufeb,ngmUses(c,f,n) v

clients(?) {c € €| Uses(c,d)}
accessible.(0) = {f € 0| Uses(View(c,0),f)}

106

For example, the client view of B for Test includes only the members that
are accessible by using the methods in A. Using the client view, the set
accessible () is defined as the set of fields accessible from d by the interface
available for ¢. The set clients(c) is the set of clients for the class c.

Now, lack of cohesion per client is the ratio of the features that a client
¢ does not use from the class 0 to the features accessible by the client views
of the class 0 for the client c:

{f € o | Uses(c,)}
|{f € 0 | accessible,(0)}|

Finally, LCIC is the average lack of cohesion of clients for the class 0:
ZcEQUses(c,D) LCIC(C’ D)
|clients ()]

If a class has no clients, LCIC is zero, when the class has no members,
and otherwise one. All classes in the Figure 3.1 have LCIC value 1.

LCIC(c,0)=1—

LCIC(®) =

3.4.4 Call chains

In the following we give a different formulation of the use relation, to make
presenting new variations of LCIC metric easier. A call chain is a sequence
of member-view-pairs 3 = 9 x U. As an abuse of notation, m denotes the
set {(m,) | b € max(m)} and ¢ denotes the set {(m,v) | v C ¢, m € ¢}, where
max(m) is the maximal view for member m. We define the path w - (m,v)
to be valid for the program if the call chain finally accesses member m via
view v after w:

valid(e) = true
valid((m,p)) = meco
valid(w - (m/,0") - (m,v)) = valid(w - (m’,v")) A Call(m’, m, v).

We extend the predicate valid for sets of sequences:
valid(A4) = Jw € A.valid(w).

For example, the set of internal paths for class ¢ is ¢*. The set of internal
field accesses is ¢* - (¢NF) = ¢* N (X* - §). The set of internal field accesses
using view v is ¢* N ((¢,0) - ¥*) N (X* - F). Internal paths for a field f can
be defined as internal,(f) = (max(f)* - f N (max(f),v) - £¥*). Now the Uses
relation can be defined as

Uses(c, f,v) = valid(c - internaly (f)).

Note that if there are three classes a,b,¢ € €, valid(a - b - ¢) means that
there is a chain of methods where a calls ¢ via b, not only that a accesses b
and b accesses c.

It is possible to define a language A C ¥* to be the language such that
valid(B) is equivalent to AN B # ().

107

3.4.5 Axioms of cohesion measures

Briand et al. [15] have proposed a set of axioms for theoretical validation of
cohesion measures. In their model, a class has a set of relationships. This
set is mazimal, if new relationships cannot be added into a class. In the case
of LCIC, a relationship can be defined to be a triple (a, b, ¢), where a and b
are fields in the class, and ¢ is a client that uses both fields a and b.

There are four axioms for the lack of cohesion:

1. Normalization: The values of the metric are in a normalized range
[0,Max]. The definition of LCIC is not normalized, because every
client uses at least one field of the measured class. We can define
normalized versions of lack of cohesion per client and LCIC with range
[0, 1]:

LCIC!(¢,d) = iewdl roro(c,d)

View(c,0)|—1 ;
LCIC/(D) _ cee,Uses(c,0) LCIC (¢,0)

[{ce€|Uses(c,0)}

2. Minimal and maximal values: If the set of relationships inside a class
is maximal, the lack of coherence of the class is zero. If the set of rela-
tionships of a class is minimal, the lack of coherence value is maximal.
This axiom holds for LCIC’, if classes without fields are given LCIC’
value 1.

3. Monotonicity: If a relationship is added into a class, the lack of cohe-
sion does not increase. This property does not hold for LCIC, because
adding a new client that uses only a bit of the class increases the
number of relationships, but increases LCIC.

4. Merging unconnected classes. If two unrelated classes a and b are
combined into class ¢, the lack of cohesion of ¢ is not smaller than the
lack of cohesion of a or it is not smaller than the lack of cohesion of
b. This property holds, if the two unrelated classes do not call each
other and have no common clients.

To fix the problem with monotonicity, the definition of relationship
should be revised. A relationship is a triple (a,b,c), where a and b are
fields in the class, and ¢ is a client that uses both fields a and b or ¢ is
a class that does not use any field of the target class. The monotonicity
property now holds, because if a new client is added for the class, the set
of relationships becomes smaller, unless the client uses all the fields of the
class.

108

3.5 Experimental results

To evaluate the proposed metric LCIC, experiments with LCIC and other
metrics were performed. The following criteria were used to select the soft-
ware suitable for these tests

e The source code should be freely available.

e The project should be of medium range. It cannot be too large, be-
cause otherwise it would take too long time to understand its logic,
and it cannot be too small, either, because then the results would be
trivial. So projects that were around 100000 lines were searched for.

e The code must be written in Java because the metrics tool was de-
signed for Java.

e The software should be in mature state.

Based on these criteria, three projects were chosen: jEdit (161 KLOC, 870
classes), jabref (94 KLOC, 697 classes) and tvbrowser (151 KLOC, 856
classes). The metrics can be calculated for these libraries using the proto-
type of the automated tool that was described in Section 1.9. Even though
the prototype is unoptimized, it can handle projects with 2000 classes in
few minutes, using less than 400 Mb RAM. These results indicate that it is
feasible to calculate LCIC even for large projects.

A statistical analysis was performed for the LCIC-results determined by
the automated tool. Sample cases were then analyzed in detail and reasons
for high LCIC values were classified.

3.5.1 Statistical analysis

Table 3.1 shows the distribution of LCIC values for the three projects in
the sample. Almost half of the classes are of trivial type, which have only
one or zero fields. In these cases, the clients use all fields, if they use some
field, so LCIC does not give a meaningful value for them. In the following
considerations, trivial classes are ignored. Another observation is that a
large part of the classes has very small LCIC values and only few classes
have a very high value.

LCIC correlates with the size of the class. For example, its correla-
tion (Pearson product-moment correlation coefficient) with the number of
inherited variables is 0.38 and with the number of inherited methods the
correlation is 0.32. Correlation with the class size is not surprising, because
in fact almost all metrics correlate strongly with size. LCIC correlates more
clearly with LCOM (correlation 0.59) than other cohesion measures such as
TCC (0.40) and the number of disjoint components in the internal cohesion

109

all | jabref | jedit | tvbrowser

Trivial | 1138 413 | 414 311
0.0-0.1| 561 122 | 138 311
0.1-0.2| 142 23 52 67
0.2-0.3| 112 27 37 44
0.3-0.4 | 131 29 50 52
0.4-05 1| 111 25 54 29
0.5-06] 113 13 76 23
0.6 - 0.7 64 21 26 15
0.7-0.8 34 13 18 3
0.8-0.9 11 8 2 1
0.9-1.0 5 3 2 0
Total | 2422 697 | 869 856

Table 3.1: LCIC values for projects. The cells show the number of classes
in the projects jabref, jEdit and tvbrowser having an LCIC value in certain
range. Trivial classes are classes with one or zero instance variables.

graph (0.30). It also correlates with the number of clients (0.35). It was
observed that LCOM is almost always higher than LCIC. These results are
promising, because one of the problems with LCOM is that it gives high
values for too many classes (false positive findings).

A potential problem with LCIC is that there are not always many clients
for classes. For example, classes which get good LCIC but have several
components in the internal cohesion graph, tend to be used by one or two
clients. Often these classes are inner classes. This is an advantage, because
this kind of helper classes are not harmful. On the other hand, classes which
have only one component, but high LCIC, can have problems that should
be refactored.

In addition to a simple statistical analysis, individual classes were ana-
lyzed to answer the following questions:

e What is the relationship between LCIC and internal cohesion mea-
sures, in particular why is the external cohesion high, even though
internally the classes give very bad cohesion values?

e Do the classes with a high LCIC value have a need for refactoring, and
what kind of refactorings could be applied?

Below we show representative results.

110

3.5.2 Comparison of LCIC and other cohesion metrics

By inspecting a number of classes, it was discovered that LCIC has several
advantages over the common internal cohesion metrics. Despite this, it
turned out that LCIC cannot always replace the internal cohesion metrics.
For example if a class is a main program that has no clients, LCIC cannot
be applied to it.

A problem with the internal cohesion is that a method that makes the
internal cohesion higher may implement functionality that is not central to
the meaning of the class. The class syntax.Token in jEdit is an example
of a class, where LCOM (0.4) is lower than LCIC (0.57). The class has 5
variables and only one method, toString. This method does not really tell
anything about the meaning of the class. Because the clients only use the
public variables of the class, LCOM and other internal cohesion metrics do
not say anything useful about the cohesion of the class.

Perhaps the most visible problem of LCOM is that adding accessor
methods always makes LCOM values higher, compared to classes, where
variables are declared public and used directly. For example, the class
gui.HistoryText in jEdit has several accessor methods. One of the fields
is used by accessors, only. Even though this field is not connected to other
fields internally, all seven clients use it via the accessor method. As a re-
sult, LCOM is 0.625 and LCIC is 0.05. Unlike LCOM, the LCIC value is
not affected by accessor methods. Some proposals for cohesion calculations
suggest automatic checks for detecting accessors, and ignoring the detected
methods from the cohesion graph. However, it is not always easy to auto-
matically detect accessors, because accessors might for example have checks
guaranteeing that data invariants are preserved.

Data classes include a few related members and very little functionality.
If variables that are used simultaneously are grouped together into a data
class, LCIC suggests that this is a case of good cohesion. For example, the
class mods.PersonName in jabref has 3 variables in 2 disjoint components.
There is only one client, which uses all 3 variables. As an example, where
there are several clients, the class journal.UnabbreviatedAction in jabref
has 4 variables with 2 inherited ones in 3 components. Five clients use the
class via the full interface, and five other clients use it via the interface
AbstractWorker. All these clients use all of the features available from the
interface they are using. The three examples show that the variables in a
class can be connected by usage, even if there are no internal connections
inside the class.

If several clients use a class in a limited way, LCIC can be used to rec-
ognize this. The class PluginJAR in jEdit is an example of a class, which
forms one component internally, but has high LCIC (0.64). LCOM and
TCC are high, too. Some clients use most of the variables, but they use

111

the class via different sets of methods. There are also several clients, which
use only one or two variables. The class implements complex functionality
and has 1697 lines of code, therefore it is a good candidate for refactoring.
As another example, the class gui.StatusBar in jEdit has one component,
and its LCIC is 0.63. Many clients use only method setMessage, which is
called from an object received from View.getStatus. This suggests refac-
toring a new method setMessage to the class View. Possibly the method
View.getStatus could be removed.

As a summary, LCIC has the following differences with respect to the
internal cohesion metrics:

e LCIC generally returns lower values than LCOM.

e Accessors and simple methods do not cause any difference to LCIC
values, but they are problematic for the internal cohesion.

e The internal cohesiveness can be caused by functionality that is not
central to the functionality of the class. This is not the case with
LCIC, because the functionality that is used by the client classes is
the central functionality of the class.

e LCIC can be high even if a class forms one component internally.

3.5.3 Classes with high LCIC values

Even though it was shown above that LCIC does not have the problems
associated with internal cohesion metrics, we still need to demonstrate the
usefulness of LCIC. To be useful in improving the quality of software, high
values of the metric have to indicate design problems with high probability.

We performed a small case study about using LCIC to find design prob-
lems. First, LCIC values were calculated for jedit, jabref and tvbrowser. It
was noticed that the classes in tvbrowser had best LCIC values, and there-
fore it would be least likely to find design problems from these classes. The
threshold value was set to 0.5 so that around 5 percent of the classes would
have to be inspected. The classes were inspected using a tool for browsing
call graphs, and the source code of classes. The reasons for high LCIC were
divided into ten categories. If several different reasons were found for a class,
the class was added to all these categories.

Below, we list the discovered causes for high LCIC, and show examples
of this kind of classes. Some high LCIC values were not caused by design
problems, but most of the time, the design of the classes with high LCIC
could be improved. This indicates that LCIC has good potential to find
design problems in software.

When LCIC is high, a class might implement several kinds of function-
ality. For example the class AbstractCardPanel in tvbrowser implements a

112

double linked list, and some additional functionality. The class has 3 fields,
and its LCIC is 0.5. Clearly, the linked list functionality should be separated
from the other functionality.

It was noticed that LCIC can also detect fields that are accessed by call
chaining. In these cases, clients should be passed the needed part instead
of what is now passed. For example, most of the clients for the tvbrowser
class devplugin.ChannelGroupImpl use only one of the 4 fields in the class.
LCIC of the class is 0.68. This is because the class is mostly used through
a call chain

Channel . getGroup (). getId ()

The call chain can be removed by adding a function getGroupId into the
class Channel.

One common reason for high LCIC is that a class includes a lot of data
of which only a part is used by typical clients. Sometimes these classes are
just a lump of data, and sometimes the data are better organized. Basically,
these classes are used like databases, where there is a container of data,
and several clients, which access the same container of data. If none of the
clients needs certain data or if the data can be split into sets that only one
client needs, then there is a problem in the design of the class. The class
ReminderPluginList in tvbrowser is an example of this kind of class. The
objects of this type are stored into a data structure, which is used by several
clients. Additional data are needed by only a few clients. In this case, high
LCIC does not indicate design problems.

LCIC of a class decreases if a new interface is associated with it. For
example, the class MutableChannelDayProgram has methods for adding pro-
grams, getting programs by index, and iterating over the program list. This
class should clearly implement the list interface of JDK. The class has LCIC
value of 0.66 and it has 5 fields.

If there are fields that could be declared as static, LCIC becomes higher.
For example, if a set of fields is used as an enumeration, and they are declared
as final and not static, this makes LCIC high, because it is unrealistic that
all clients would need all cases of an enumeration. The solution is to add
the static modifier to the fields.

Sometimes fields are accessed by a library that is not considered when
calculating LCIC. This causes high LCIC values. For example, objects of
the class simplemarkerplugin.GroupUnmarkAction are passed as callbacks
into a library. Because the library is not measured, two of the fields are left
unused. The class has 3 fields and its LCIC is 0.56. This problem can
be solved by adding the used libraries to the context that is used in the
calculation of LCIC.

LCIC can give bad values, if objects of the class are created and con-
figured by factory-like methods. There are two reasons for creating a new

113

object: The object is a helper object that is used by the creating method or
a class, or the object is created by a factory-like method to be used by other
objects. Perhaps an automatic check could be defined to separate these two
cases. Similar to this, if an object is passed to a part object that uses it
fully, this is not measured.

One of the most common reasons for bad LCIC values is that a class has
fields that are used only in the initialization phase. These variables should
be local variables in methods instead of fields. The fields can for example
include all user interface components in a dialog.

LCIC values become worse, if a class has fields not needed by its clients.
For example the class SelectableItemList has plenty of fields that are only
used by the method setEnabled, which is never used by the application.
However, the program might be extended so that this method would become
used. In any case, GUI components already contain their children, so the
fields contain redundant data. The class has 7 fields and its LCIC is 0.67.
As another example, the class BitmapHeader has three fields that are never
used by the clients. There are a total of 11 fields and the LCIC value is 0.81.

Sometimes fields and methods are used, when an inner class should
have been used instead. This is a special case of uncohesive functional-
ity. LCIC can be used to detect this problem. For example, the class
EditFilterDlg has LCIC value of 0.47. It has 15 fields, and only one client,
SelectFilterDlg. Most of the fields are needed by the callback function
actionPerformed. This callback should be implemented as an inner class,
and not be added as a part of the interface of the class.

As a summary, we recognize the following causes for high LCIC values:

e The class implements several different kinds of functionality.
e The class is used via a call chain.

e The class has unused variables or variables that could be declared as
local or static.

e The class has some rarely used variables.
e The class is created and configured by factory methods.

e The class has a lot of information which it provides. Most clients need
only a part of this information.

The results of the case study are shown in Table 3.2. Out of 42 cases,
we found that 34 cases had design problems that could be fixed to improve
the design of the program. This case study indicates that LCIC produces a
small number of false positives and therefore, it is straightforward to use it
to improve program design.

114

Reason Classes
Call chains 11
Uncohesive functionality
Redundant data

Unused variables

Initialization

Not static

Interface issues
Rarely used data
Factories and passing

N NN | OO

Unmeasured library
Total

.
)

Table 3.2: Classification of reasons for LCIC values that are higher than 0.5
in tvbrowser application. Some classes belong to several categories.

Threats to validity

The size of the case study was quite small. It is not certain that all the
reasons for high LCIC values were found. Different software packages may
have different frequencies of different causes for high LCIC. This is especially
because of inheritance, also the problems can be inherited. For this reason
more studies are needed to confirm the results.

The analysis was based on the relations in the code that directly lead into
the observed metrics values, therefore there is not much space for subjective
interpretation in the classification. On the other hand, it can be argued that
for example call chains do not constitute bad design.

The above weaknesses of LCIC are removed in the Chapter 4, where
more reliable experimental results are given and a model is presented that
explains why the detected classes can be considered to have bad design.

3.5.4 Classes with few clients

One problem with applying LCIC are classes having only one or two clients.
It is hard to get meaningful results for this kind of classes. To analyze
what kind of classes have only a few clients, we inspected the jEdit ap-
plication and the parts of JDK it uses. There were total of 1913 classes.
Of these, 1297 classes had instance variables. Out of these, 96 classes
had no clients. A part of the classes with no clients were classes like
GUIUtilities.UnixWorkaround that are only called using a constructor.
Other classes with no clients were classes that were passed to an external
library that was not included in the measurement.

115

There were 151 classes with one or two clients. Many such classes were
inner classes. For example EditPane.CaretInfo includes variables that are
used by the EditPane class, but cannot be member fields, because they are
related to objects associated with EditPane.

Another example of a class with only one client is PropertyManager. Its
only client is the main class jEdit. Some functionality needed in the main
class has been moved to PropertyManager. The main class implements a
facade that can be used to access the features of PropertyManager.

As a summary, LCIC values for classes with one or two clients were
reliable when applying the measure to the three sample projects.

3.6 Evaluation of LCIC with design patterns

There are at least two reasons, why design patterns should be taken into
account when evaluating metrics. First, design patterns are considered to
be exemplars of good design. Because of this, metrics should give good
values for classes that have been written according to some design pattern.
Second, design patterns are often conceptually complex code compared to
traditional object-oriented code. They use higher order features such as
dynamic binding extensively. If a metric gives bad values for this kind of
classes, it is hard to apply it to a project, where design patterns are used.
Table 3.3 shows that LCIC values for most inspected design patterns are
low. Below we study these cases in detail.
For each related design pattern we consider the following questions:

1. What are the effects of applying a design pattern to the value of LCIC
for all involved classes?

2. Are these effects significant?

3. Are the cases where this design pattern should be used, the same as the
cases where LCIC becomes lower when the design pattern is applied?

4. How do internal cohesion metrics such as LCOM behave with respect
to the design patterns?

The design patterns that are considered here are Abstract Factory, Me-
diator, State, Composite, Adapter, Proxy, Observer, MVC, Visitor and an
anti-pattern God Class.

3.6.1 Abstract factory pattern

The Abstract Factory [44] is an example of creational patterns. This pattern
can be used, when a family of classes needs to be varied at run time. In this
design pattern, there are several factory classes, each with several methods as

116

Design Pattern LCIC
Abstract Factory | High or none
Mediator Improved
State Minimal
Composite Minimal
Adapter Low
Proxy Minimal
Observer Varies
MVC Low
Visitor Varies
God Class Varies

Table 3.3: Summary of design patterns, and their relation to LCIC.

members. These methods are simple methods that just create new objects
(of certain type, related to the factory). We call these methods factory
methods. A factory class implements an interface, which has signatures
for the factory methods. Objects of factory classes are passed to other
objects or are stored in a global variable. These other objects then call
the factory methods to create the objects they require. Figure 3.2 shows a
simple example of a class designed according to the abstract factory pattern.

LCIC is usually minimal for the factory classes, because they seldom have
instance variables. If these classes have configuration variables (like color in
the example), then either the methods use the same configuration variables,
or there are different configuration variables for each factory method. The
clients do not necessarily create all kinds of objects, so in the latter case,
LCIC can become high. LCIC is still lower than the internal cohesion for
the factory class, because there are typically no internal connections. Also,
it can be assumed that a group of classes is more coherent, if the clients
create all classes from the group.

On the other hand, LCIC might become higher for classes that are be-
ing created by the factory methods. If the factory method only calls the
constructor, the access is ignored, because constructors are not measured
in our definition of the Uses relation. If the factory method changes some
attributes, the factory class becomes a client of the created class, which then
only uses a small part of the client. If a class has otherwise few clients, the
effect of factory methods can be significant. Compared to a case, where the
abstract factory pattern has not been applied, the creating class most likely
uses other features besides those needed strictly in the creation phase of the
class. This suggests that LCIC becomes higher, when this design pattern is
applied.

117

public interface AbstractFactory {
I1 makell ();
12 makel2();
I3 makel3 ();

}

public class ConcreteFactoryX
implements AbstractFactory {
private Color color;
public I1 makell() { return new C1(); }
public I2 makel2() { return new C2(color); }
public I3 makel3 () {
C3 elem = new C3();
elem.setColor(color);
return elem;

}
}

public class ConcreteFactoryY
implements AbstractFactory {

}

Figure 3.2: Abstract factory design pattern.

In practice, a class ¢ using an abstract factory uses the created objects
via interfaces (I1, I2 and I3 in the example). This can lead the LCIC
computation method to make ¢ to be a client of all kinds of object types
created by any factory. Points-to-analysis would be needed to get rid of
these non-real clients. However, this issue is not specific to the abstract
factory design pattern.

It is observed that constructors are problematic to LCIC computations.
If constructor calls were included in the LCIC computation, the factory
methods would not have a negative effect on LCIC. The reason for ignoring
the constructor calls is that usually they are done by the clients that want to
use the constructed objects. If these were not ignored, these clients would use
the measured class fully, and therefore they would not contribute anything
useful to the LCIC measurement. The LCIC calculation could be improved,
if there were a way to separate two different kinds of object constructions.
In Section 3.8 one way to recognize the problematic methods is presented.

118

3.6.2 Mediator pattern

The Mediator design pattern [44] is a behavioral pattern that can be applied
when a set of classes has complex internal dependencies. Instead of calling
other objects directly to change their state, the mediator object is called
instead. The mediator then calls the actual objects to change their state.
This improves cohesion and decreases coupling.

The Mediator pattern can often be used to make LCIC lower. Assume
there are classes A, B, C, D and E that all have three variables. If each
class uses one variable from all of the other classes, LCIC of the classes
would be 0.67. Now, if a mediator class M is created, all classes would have
minimal LCIC, assuming that the different clients together use all variables.
In general, LCIC of a mediator might be high, but LCIC values of other
classes become lower.

If all involved classes have low LCIC, applying the mediator pattern
does not make the LCIC values any lower. However, also in this case, the
application of the mediator design pattern removes direct class relationships.
In fact, this might be the most useful case to apply the mediator design
pattern, because there is a maximal number of recursively coupled classes.
Because of this, LCIC is not ideal for detecting, when the mediator design
pattern should be applied. A more specific metric should be designed to
detect the situations where the mediator design pattern should be applied.
One alternative is defined in Section 3.8.

The message dispatcher architecture can be seen as an extreme case of
the mediator pattern. In this kind of architecture, the components do not
directly call other components. Instead, they construct messages that are
sent using a message dispatcher. LCIC of the components in this kind of
architecture should be low, because all the functionality of the component
should be accessible using messages. LCIC of the message classes is not
necessarily high, because some components can ignore parts of the messages.

3.6.3 State pattern

The State design pattern [44] is a behavioral pattern, which is typically
implemented using several small classes. In this pattern, an object might
be in several different states. These states are represented by state objects
of different state classes. Each state object has a method, which handles
an event, and returns a new state. Therefore, the state design pattern
implements a kind of state machine.

Because the state objects have basically only one client, this client should
use all properties of these objects. On the other hand, this kind of small
class can use just few properties of their clients, or modify a single property
of an object. This might make LCIC of the client classes higher.

119

The state objects can be understood as parts of the class, the state of
which they represent. A class that describes the state is strongly connected
to its client, so the internal cohesion of these classes might not be a mean-
ingful concept.

Each state object is not intended to implement a concept, but instead
is a part of a larger concept. This can be seen from the fact that the state
design pattern is best modelled as a state machine, not as a class diagram.

3.6.4 Composite pattern

In the composite pattern [44], there is an interface for components, and a
container class which implements the interface by a combination of objects
that implement this interface. This kind of classes are often used for imple-
menting user interface components or hierarchical document data types.

The core functionality of the classes in this pattern is implemented as
one or more methods. These methods are defined in the composite class to
call the same method from all contained objects. Because of this, the com-
posite class should use other classes in the hierarchy fully via the component
interface and LCIC should be low. If there is additional functionality, like
for example a name for each user interface component, the container object
does not access it. There should not exist very much such data.

If the component classes have a specific functionality that the component
interface does not show, the clients use those component classes via different
interfaces.

3.6.5 Adapter pattern

The Adapter pattern [44] can be used to change the interface of a class
without changing its source code. The adapter pattern is usually needed,
when adding an externally developed class to the code base. An object of
this class is wrapped by an adapter object, which includes a reference to the
underlying object, and methods that follow the interface are implemented
by calling the corresponding methods from the wrapped class.

This kind of definition of interfaces is not supported by LCIC. If the
adapter defines a limited interface, it makes the LCIC values higher. It
might be natural to define this limited interface explicitly. The clients of the
adapter class use it fully because it has only one variable, which represents
the underlying object.

3.6.6 Proxy pattern

A Proxy object [46] can also be used to wrap an object. In this pattern, the
proxy class implements the same interface as the wrapped class. Therefore,
the proxy class should use all features of the class that is being wrapped.

120

Also the clients use the proxy class fully, because there is typically only one
instance variable. Thus, the proxy class is likely to have a very low LCIC
and the LCIC value of the wrapped class is mostly determined by other
clients than the proxy class.

In principle, the definition of LCIC has a problem with proxy-like classes.
If clients only use a few features of an actual wrapped class, then that class
should have high LCIC. However, in practice it can have a low LCIC, if the
actual clients are no longer direct clients of the wrapped class. To solve
this problem, one could ignore classes with only one variable, and consider
indirect usages via them also as direct usages. Another possibility would
be to include all fields transitively, but then the use relation should be
calculated transitively, too. We consider these variations in Section 3.8.

In practice the LCIC is calculated so that the clients of the proxy class
are also marked as clients of the original wrapped class, because the actual
clients are often made to use the proxy via an interface (that is also imple-
mented by the actual wrapped class). If points-to analysis would be used in
the LCIC calculation, the wrapped class might lose some of the non-actual
clients and thus the LCIC of the wrapped class would wrongly improve.

3.6.7 Observer pattern

The Observer pattern [44] has two parts. One is the subject, which is a
class to be monitored. Another is the observer, which receives events (no-
tifications of state change) from the subject. Observers are registered into
subjects, and each subject can have several registered observers. Clearly,
the subject classes are clients of the observers. Observers do not have to
be clients of the subject classes, because the only requirement is that they
receive messages from clients. Observers are typically small utility classes
that have this one singular purpose.

The Observer pattern can be implemented in two ways. If the observed
subject passes itself to the observer when announcing of an event, the ob-
server class becomes a client for the subject class and thus LCIC of the
subject class has a tendency to become higher. If only the part that was
changed is passed, LCIC is not affected. In our opinion the latter approach
is more common. In both cases, the subject class uses the observer classes
only by passing them events, and if the observer classes have other kinds of
functionality and clients, the subject class might be a source of their high
LCIC.

Notice that when a class is made to be observable, the clients which
do not add observers will make LCIC higher. This happens because they
are not using the data needed for storing references to observers. Actually
the Observer pattern makes a subject class to implement another concept
besides its core functionality, and in that sense this pattern is not in line

121

with the goals of the LCIC metric. Perhaps, one should use aspect oriented
programming to separate unrelated functionality.

3.6.8 Model-View-Controller design pattern

The Model-View-Controller (MVC) pattern [44] is used to split the imple-
mentation of user interfaces into three parts called the model, the view and
the controller. There are several ways to apply the MVC pattern. The model
describes the data that can be modified via the user interface. It should not
depend on the user interface at all. When the model is changed, it can
signal the controller using the observer pattern, or the controller might be
responsible for making all the updates into the model and the view. The
view implements the outlook of the user interface. It can read the state of
the model to render the outlook properly. In the Swing library, (almost all)
GUI components are controllers having separate objects for the model and
for the view. The controller handles the events from the view and model.
For example, the model has event handlers to call the controller and the
controller updates the view properly.

The LCIC of the model should be low, because the view should be able
to access all attributes of the model, and the controller should be able to
change all attributes in the model. At least in this case, using fields instead
of methods as features is a good choice, because the view might use the getter
methods of the model, and the controller might use the setter methods.

The LCIC of the view should also be low, because there should be none
or just a few clients besides the controller, and the controller uses extensively
the properties of the view. The LCIC of the controller is not as clear. The
view and model (or rather certain event handlers used to call the controller)
might be quite bad clients of the controller.

3.6.9 Visitor pattern

The Visitor pattern [44] is an example of higher order encoding of data
structures. It allows adding new functionality (a visitor) to data without
modifying the classes representing the data. A visitor is essentially a set
of functions or algorithms applicable to a set of data types. The data in
a structure are described by several classes, where each class represents an
alternative in the polymorphic data structure. The classes have one method,
often called accept, which accepts the visitor. This visitor has a method
(visit) for each alternative of the actual data. Each class has a method that
calls the corresponding method from the visitor. If the polymorphic data
structure has additional data associated with the alternatives, also these are
passed to the visitor.

The LCIC value of a visitor class is not an issue, since such classes often

122

have no instance variables. The visitors on the other hand often use directly
the visited classes, and if that usage is not broad, the LCIC of the visited
classes may suffer.

3.6.10 God class pattern

The God class [19] is an anti-pattern with a large class that implements
functionality that should be moved to smaller classes. This kind of classes
should have high LCIC, if they have several clients.

A god class might make LCIC of other classes higher. For example, it
can have features narrowly complementing the behaviour of some other class
(those features should be moved to that class). On the other hand, a god
class can also have an opposite effect. A god class can have several narrow
methods, which together use a target class broadly. If a god class is split, it
should be split so that the parts using some specific class are kept together.

3.6.11 Conclusions

From the investigations above, we can conclude that LCIC is usually low
for classes that are parts of design patterns. However, using design patterns
might result in a design with several additional small classes. In general, it
is likely that small classes make the LCIC higher.

3.7 LCIC and refactoring

The purpose of refactorings is to improve the quality of code. To evaluate,
how LCIC should be used, it is important to study, how LCIC values change,
when the code is modified using refactorings. It is reasonable to expect that
correctly applied refactorings make the metric values smaller. Below, we
consider the effect of some common refactorings on LCIC. In addition to
the issues considered with design patterns, the following issues are studied.

1. When would LCIC be useful for detecting the need for a certain refac-
toring?

2. How can the place of a refactoring be located?

3. What happens if refactorings are performed excessively? What metric
can be used to prevent this?

Metrics can help locating the classes or other modules of a program that
need some refactoring. One can expect that classes with bad metric values
contain design problems. When such a design problem is found by manually
inspecting or by applying some automated tool, one can apply a refactoring
to it.

123

It is however possible to go one step further. Consider a program sup-
porting a set of automatic or otherwise specified refactorings. For each
refactoring, we hope to give a meaningful metric value, which tells how de-
sirable the refactoring is. Now, the metrics tool can list the best refactorings
it finds, and the user can select the ones that seem reasonable.

The simplest way to achieve the above system is to just apply all pos-
sible refactorings, and then calculate the metrics values for the refactored
programs. The refactorings with the largest improvement can then be se-
lected. In practice, this approach is too inefficient. An efficient algorithm
calculates the metric values directly for the refactorings based only on the
original version of the program (possibly by estimating the metric value for
the refactored program). In addition, the algorithm only needs to return
the best refactorings.

More formally, we can describe a refactoring r as a mapping from pro-
grams to programs: 71 : B — B, where P is the set of programs. The
refactoring metric would be |r| : P — R. If the value of refactoring is
positive, it is a good refactoring, and if the value is negative, it is a bad
refactoring. If r(p) = p, then |r|(p) = 0. A useful property for refactoring
metrics could be that if ro(r1(p)) = r(p), then |r|(p) > |r1](p) + |r2|(r1(p)).
This means that if a refactoring is a composition of two refactorings, this
composition gets as good values as its parts separately. This property means
that there can be added new improved metrics for derived refactorings, i.e.
if it can be detected that a combination of refactorings is good without
performing it. It also implies that if a refactoring is first applied, then can-
celled, it cannot have been useful. Of course, it would be even better if
r|(p) = [ral(p) + [r2l(r1(p))-

In the following, the refactorings Extract Interface, Extract Class, Ex-
tract Superclass, Move Field, Move Method, Call Chains and Encapsulate
are considered. Table 3.4 shows the summary of effects of these refactorings
on LCIC.

3.7.1 Extract Interface

In the Extract Interface refactoring [43], a new interface is created for a
class.

The Extract Interface refactoring always makes LCIC lower after suitable
clients have been changed to use the new interface instead. On the other
hand, a class should not have too many interfaces. This is related to the
depth of inheritance hierarchy, because each super-class defines an interface.

We could also have a metric that tests how many interfaces a class actu-
ally can have in the program. If a class has many clients, it can have several
interfaces. If a class has only one client, then it should not have additional
interfaces.

124

Refactoring Bad Good
Extract Interface Lower | Lower
Extract Class Higher | Lower
Extract Superclass | None Lower
Move Field Higher | Lower
Move Method Higher | Lower
Call Chains - Lower or none
Encapsulate - None

Table 3.4: Refactorings and their effects to LCIC. The second column gives
the effects of bad refactorings, and the third column describes the effects of
good refactorings on LCIC.

If each client has its own interface to the class, then the LCIC value is
necessarily the lowest possible. In Section 3.8, we investigate a variation of
LCIC, where interfaces have no effect on LCIC values.

3.7.2 Extract Class

In the Extract Class refactoring [43], a new class is created from the members
of the class to be refactored.

This refactoring changes LCIC in two ways. First, the clients of the
refactored class might now have different LCIC. Second, the LCIC between
result classes and the classes it uses can change.

The Extract Class refactoring can be used to make LCIC lower in several
ways.

e If rarely used variables are grouped into one class, the created class
possibly has a high LCIC value, but the LCIC value of the original
class decreases.

e If the original class implements two separate features, the LCIC value
of the resulting classes will decrease.

If a class is split in a way that the resulting classes have methods using
different parts of another class C, this makes LCIC of class C higher. This
shows that using the Extract Class refactoring might reveal further problems
in the design of the program.

Detecting the precise location of refactoring can be done in two ways:
find rarely used variables, or find two sets of variables, which have mostly
different clients. To do the latter, variables can be given distances based on
the client classes using them. The class can then be split at the longest edge
in the minimum spanning tree of the variables.

125

3.7.3 Extract Superclass

In the Extract Superclass refactoring [43], a part of the functionality of the
class is moved into a new superclass.

This refactoring makes LCIC lower, if some of the clients for the refac-
tored class need only those features that have been moved to the superclass.
Otherwise, this refactoring is useless.

Detecting this refactoring can be best done with the procedure from
KABA [89]. In this procedure, points-to analysis is used to find out, what
is accessed from the creation site. A new class is created for each creation
site.

Also the uses-relation can be used for detection of this refactoring case.
If the class has most clients using a set of features, these features are the
candidate features for moving to the superclass.

Extracting an abstract superclass also creates a new interface, and there-
fore it makes LCIC lower. Abstract classes can otherwise be ignored, be-
cause they cannot be assumed to be complete classes, and their features are
included in their subclasses anyway.

3.7.4 Merge Classes

This refactoring is the reversal of extract class refactoring. If two unrelated
classes are merged into one, the LCIC value of the combined class becomes
higher. If two classes that share clients are merged, LCIC of the resulting
class is similar to the LCIC of the original classes.

3.7.5 Move Field

In Move Field refactoring [43], a field is moved into another class.

The Move Field refactoring should be used so that LCIC improves. This
happens when a field is moved from a class where it was not used with other
fields, to a class where it is used together with other fields. Methods that
include internal accesses to the field should also be moved.

If a field is moved to a class that includes unrelated fields, LCIC becomes
higher, because the classes that require this field will now get unrelated fields.
If the original fields were unrelated too, the cohesion might not change. This
kind of fields also cause low internal cohesion.

The effect of this refactoring for a class with n fields is at most 1/n.
If several fields are moved simultaneously, the effect might be respectively
larger.

Candidates for this refactoring can be detected using the Uses relation
as follows. First, find a group of fields that are often used together, but
other fields are not used. These fields are the candidates for fields to be
moved. Second, find a class which is used by the clients that only use this

126

group of fields. This class is a candidate for the class where the fields should
be moved into. If such a class is not found, a new class can be created.

This refactoring can be done in two steps: First extract a class with a
group of fields, then merge this with the another class. On the other hand,
extracting a class could be done in two steps: create an empty class, and
then move members to this class.

3.7.6 Move Method

In Move Method refactoring [43], a method is moved into another class.

Because the fields do not change, the LCIC of the classes directly involved
in the refactoring does not change.

If the method caused the original class to be a client for a class A, and the
method uses only a few features from that class, LCIC of class A becomes
lower, if the target class is already a client of this class. Also the reverse
might be true: The added method might be the only one using a client class.
In this sense, LCIC follows the good uses of the refactoring.

If the method accesses internal fields of the class it was originally in, the
new class becomes a client for the original one. This might make the LCIC
of the original class lower or higher, depending on how much the new class
already used from the original one.

If the method accesses internal fields of the class it was moved into, the
LCIC between the original and new classes might become higher.

The effect of direct usage is as follows: The classes using this method no
longer need to be clients for the original class, but they are now clients of
the new one. If the method accesses some internal fields of the new class,
the LCIC of the new class becomes lower. If the method accesses some fields
of the old class, the LCIC of old class becomes higher.

Based on the effects above, a candidate for moving a method can be
found as follows. First, the candidate method uses the class, into which it
should be moved, more than the class in which it is. Second, the clients
that use this method are mostly the clients that use the new class, instead
of being clients of the old one. Third, the set of used classes for the method
intersects with the set of used classes in the new class.

3.7.7 Move Field in Inheritance Hierarchy

Moving Field in Inheritance Hierarchy [43] is an important special case of
the Move Field refactoring.

For example, if a field that is not used in the superclass is moved down
in the inheritance hierarchy, LCIC of the superclass improves. LCIC of the
subclass stays the same, because in both cases the class includes the field.

127

Searching for candidates for this refactoring can be done in the following
way: If there is a field that is only used by one subclass of the superclass, it
can be moved into that subclass.

A field that should be moved into a superclass, cannot be found that
easily. If there were such a field, then also other subclasses should have this
kind of field. Unfortunately, recognizing similar parts from classes is hard
to do automatically.

3.7.8 Encapsulate Fields

In the Encapsulate Fields refactoring [43], public fields are changed to ac-
cessor methods.

The Encapsulate Fields refactoring has no effect on LCIC. This is in
contrast to LCOM, which becomes higher, if an accessor method is added.
Some definitions of LCOM do not take indirect access into account, so re-
placing internal accesses by the new accessor methods makes the cohesion
even worse.

3.7.9 Eliminate Call Chains

In Eliminate Call Chains refactoring [43], accesses such as a.b().c() are
changed into accesses a.bc() and a new method bc is created.

The need for the Eliminate Call Chains refactoring can be sometimes
detected using LCIC. The clients have a reference to an object, and they
use the call chain to determine some property of a subobject of this object.
When the call chain is eliminated, the client will not anymore be a client for
the class of the subobject.

One can also go overboard with this refactoring, and expose all methods
of subobjects by adding delegate-methods to the containing object. The
number of methods metric is one possibility for detecting this. Another
metric would be the ratio of simple methods and number of fields.

If several fields are accessed using chaining on the same field, it is not
necessary to refactor the class, and in this case LCIC does not give high
values.

Another refactoring related to call chains is the Create Temporary Vari-
able refactoring. This refactoring cannot be found using LCIC. Star dia-
grams [72] can be used to find this refactoring.

3.7.10 Eliminate Conditionals

One of the more complex refactorings is changing conditionals to dynamic
binding. This refactoring generates several small classes. These might use
only a small part of the classes used by the original large class, making LCIC
higher. This kind of classes are closely related to the class they are using.

128

For example, a class might represent a test for the used class to determine
if a field has a certain value. This kind of classes should be collected into
a class, where they form inner classes, and they should together define one
client, which uses all features of the class they are related to.

3.8 Variations

Analysis of the experimental results (Section 3.5) and the theoretical valida-
tion using design patterns and refactorings (Sections 3.6 and 3.7) revealed
several possible improvements to LCIC.

One type of classes that have high LCIC values are classes that contain
a lot of data and have clients that modify or use a small part of this data.
This suggests that classes might not be the right solution as clients of the
classes.

Also, for classes that have only one field, it is hard to get useful informa-
tion about cohesion. A possible solution would be to check, how the clients
of this class use the underlying field. Several design patterns create this kind
of classes, at least in the most pure form of these patterns.

It was also found out that adding interfaces might make LCIC artificially
low. Because of this, we consider a variation where the interfaces have no
effect on results.

It turned out that in some cases the direct calculation of client relation-
ships does not give good results, so we define two variations for calculating
client relationships: transitive calculation, and calculation that handles sin-
gle variable classes in a special way.

We also propose methods to detect factory-like methods and possible
sets of classes to apply the mediator pattern.

3.8.1 Ignoring interfaces

It is possible that interfaces for classes have been badly designed. In this
case, it might be useful to ignore interfaces when calculating LCIC. We give
a version of LCIC that ignores interfaces:

, HFe0|Uses(c,f)}|
LCIC;(c,0) =1 Yk

Instead of the fields accessible by the client, all fields in the class are included.
The disadvantage of using this simplified version of LCIC is that in most
cases the interfaces are well designed, which causes false positives.
Of 1201 classes with LCIC values in jEdit and related part in JDK, 615
classes get higher values when interfaces are not used. There are following
reasons for this:

129

e There are private fields, which are never used by the methods of the
class. Because of this, they are not accessible from any external inter-
face. It is also possible that some variables become impossible to use
by inheritance.

e The class is possibly used through a very generic interface, for example
it implements a toString-method. The effect of this kind of interfaces
becomes too big, if large programs are used. There are at least two
ways to avoid this. The first is to give less weight to this kind of
accesses, based on how many classes implement the interface. The
second one is to use points-to analysis to rule out impossible clients.

The simplest solution is to omit java.lang.0Object from the calcula-
tions. After this has been done, 506 classes with higher values remain.
In only 296 cases the difference between LCIC and LCIC}; is larger
than 0.1.

e In the remaining cases, the clients use the classes via limited interfaces.
There are several reasons why not everything is accessible via the
interface.

One way to give different weights for client ¢ of class s based on the
interfaces is
1
min{classes(v) | v C9,f € d, Uses(c,f,0)}

weight(c,0) =

where classes(v) is the number of classes implementing the view that corre-
sponds to interface v. This weight is smaller for classes that access the other
class via a common interface.

Table 3.5 shows the average LCIC values for classes with a different
number of interfaces. It is observed that there is strong positive correlation
between the number of interfaces and LCIC. This is probably because the
classes with a lot of interfaces are generally deep in the inheritance hierar-
chy. On the other hand, there is some correlation between the number of
interfaces and the difference of LC'IC;; and LCIC values.

We also measured, how well the interfaces cover the classes that imple-
ment them. Usually the interfaces cover almost everything from the classes.
In some cases, there are limited interfaces that only access very small parts
of the class implementing them.

3.8.2 Transitive call relation

One possible variation for LCIC is to use a transitive call relation instead
of the direct one. In this case, classes will be clients of the measured class,
if some of the classes they use, use transitively the measured class.

130

Interfaces | Classes | Average LCIC
2 204 0.30
3 309 0.21
4 232 0.21
5 198 0.25
6 78 0.32
7 58 0.38
8 30 0.44
9 63 0.48
10 37 0.54
11- 188 0.57

Table 3.5: Numbers of classes with a certain number of interfaces. Only the
class Object has one interface. The largest amount of interfaces is 39.

The transitive call relation is defined as follows:
Uses™ (¢, f,0) = valid((c - X*) N (X* - (¥ — max(f)) - internal,(f)))

The relation Uses*(c, f,v) holds, if class ¢ has a method m which transitively
calls via view v a method that accesses field f.

The problem with using this definition for LCIC is that intuitively the
direct relationship has much more meaning than the transitive one.

When considering transitive calls relations, it becomes harder to define
what is meant by the client interface. We define it to mean the union of
interfaces used in all transitive calls from the client class.

The transitive call relation can be used in another way. If a client directly
uses a variable, also transitive uses can be included:

View*(c,0) = U v

§€0,0C0,Uses™ (c,f,v)
accessible; (0) = {f € 0| Uses(View"(¢,?),0,f)}

LOIC*(e,d) = 1 Il
Zceclients(b) LCIC(C’ D)

LCIC*(d) = |clients ()|

The cases where transitive calculation gives better results could be cases
where a piece of data is first passed to a second method which accesses it,
and then passed to a third method, which accesses it more. However, this

131

does not seem to be good design. It would be better if the accesses to data
were in one method, because this would improve the cohesion.

Another way to use the transitive call relation is to have a transitive
member relation, too. Instead of fields of the class, one can also inspect all
fields of the contained objects. In this case, it could be useful to consider
the call relation transitively.

If types(f) is the set of views of possible classes that field f can point to,
the set of all possible fields accessible from class ¢ can be defined as:

fields(¢) = Utypes(f)u U fields(c)

fec o etypes(f)
fields,(¢) = fields(accessibleg(c))

Now, the transitive version of LCIC can be defined as:

|{f € fields(?) | Uses*(c,§)}|
|fields, ()]

LCIC™ (¢,0) =1—
It is not clear how to take interfaces into account in this variation.

3.8.3 Ignoring classes with only one variable

Classes that have only one variable do not contribute anything useful to
normal LCIC calculation. These classes could be handled so that if a class
is used via them, it is considered to be a direct usage.

This variation can be easily defined. First we define sets of classes with
different numbers of variables €, = {c¢ € € | |¢| = n}. Then we can define
possible paths for class ¢ accessing field f via interface v as ¢ - (€o U €1)* -
internaly (f).

The classes in jEdit use variables from 1201 classes. Of these, 142 have
only one variable. Some of these classes need only one variable to implement
some simple functionality. Some are abstract classes, where this variable is
not related to the central functionality of the class. Quite small part of these
classes implemented adapter or some other design pattern.

3.8.4 Interpretation of clients

It was found out that the notion of clients is the most difficult to define
properly. One simple variation is to consider only declared methods in the
class instead of all inherited methods. Experiments were made to find out
on what kind of classes this makes a difference.

There are two interpretations for what does a method access. One can
consider just the direct accesses, or all indirect accesses can be taken into

132

account, also the ones via the parent class. In the experiments, indirect
accessed were included.

In theory, the non-flat clients have some advantages. They are usually
more cohesive than the flat versions. They also have less classes they use,
because they are smaller. However, our experiments show that only 25
classes of 1187 get more than 0.1 decrement in LCIC when non-flat clients
are used, while 326 classes have more than 0.1 increment. The decrements
only happen, when there is a parent class that uses some class partially. The
increments happen when there are child classes that use some class partially.
The latter case seems to be more common.

There are other possibilities that could be used as interpretations of
clients, like:

e Packages are seen as clients of classes. In this case, the classes with
high LCIC can be assumed to have problems.

e In addition to inherited classes also the child classes can be included.
In this case, inheritance hierarchies are seen as clients.

e (Classes are classified manually to define the clients.

Exploring these alternatives is left as a topic of future work.

3.8.5 Reverse LCIC

No matter how cohesive the class is, the clients can still use it differently

from what was intended. To analyze this phenomenon metric values can

be calculated from the inverse of the use-relation. Denote by rLCIC the

external cohesion metric calculated for the inverse use-relation. A class gets

high rLCIC if it does not use all features from the classes that it uses.
rLCIC is calculated as follows:

ZDG@ Uses(c,0) LCIC(C?D)
LCIC(c) = e
rLCIC(c) |{o € €| Uses(c,0)}|

If there is a class that has only one feature that the client uses, this
immediately makes the rLCIC high. Some classes, like java.lang.Class are
like this. Because java.lang.Object uses java.lang.Class, if flattened
clients are used, all classes get lower rLCIC.

After the effects of java.lang.0bject have been eliminated, rLCIC still
gives generally higher values than LCIC. The classes that get high cohesion,
usually use a set of many classes through some interface. This use can
happen in the parent classes. In its current form, rLCIC does not produce
very interesting results.

133

3.8.6 Detecting creation methods

There are two uses for created objects: either they are used by the creator,
or they are returned from factory-like methods, which we call here creation
methods. These creation methods should not use the objects they create.
There are several uses for being able to detect this kind of methods. One
application is to improve the LCIC metric. There, the factory methods
could be left out from the computation, because they are not real clients for
the classes they create. Another application would be in points-to analysis.
There we could use creation method calls as creation sites.

Our procedure for detecting creation methods is the following: Assume
that a creation method creates an object of a certain class. Then, intrapro-
cedural analysis is used to determine, if the created object can be returned
from the object. Passing the created object to a field or another method is
ignored.

Of the 19963 methods in the test group (jEdit and JDK parts), 3856
methods create objects. Of these methods 792 (around 4% of all methods)
were detected as creation methods. These were of following kinds:

e Methods that construct objects from arguments or global data by for
example parsing.

Methods for copying a target object.

Accessor methods that return temporary objects for accessing the class
further.

Accessor methods implementing singleton design pattern.

Methods that implement functions on immutable objects.
e Actual factory methods, which just create new objects.

Almost all detected methods only created the objects, and did not use
them to implement their functionality. A large amount of objects that
were created by undetected methods were exceptions and utility objects
like StringBuffer-objects.

3.8.7 Detecting candidates for mediator pattern

When designing a metric to detect candidates for applying the mediator
pattern, one has to find cliques from the usage graph of the program. It can
be assumed that the pattern should only be applied, when there are recursive
relationships involved. In the case of non-recursive relationships, the classes
should just be divided into layers. Candidates for applying the mediator
pattern can be found in the following way. First, construct a symmetric

134

relation between classes that use each other. This relation relates classes
that have a direct recursive relationship. Then, inspect classes which have
many such related classes.

We can define the relations for use with different orders, where use of
order 0 is a direct use, use of order 1 is a use via one other class and so
on. If all recursive use relationships are considered, it might give unrealistic
results, at least if no points-to analysis is made (for example container classes
would have this kind of relationships). Let I,, denote the set of paths where
there are n interclass calls. More formally define that the call path w is in
I,, if the path contains n possibly overlapping occurrences from set | J{cc’ |
¢, € € ¢+ }, which is the set of interclass calls. Further, denote the set
of paths where there are n or less interclass calls by I<, = {,,<,, Im. Now
we can define use relation with order n as -

Uses"(a,b) = wvalid(a-X*-bNI<y,)

A relation and a metric to search for candidates for applying the mediator
design pattern can now be defined as

M, (a,b) = Uses"(a,b) A Uses"(b,a)

pn(a) = |{be€ | My,(a,b)}

Good values for n should be quite small (0,1 or 2), because even if the cliques
are bigger, at least a part of them should be found already with small values.

3.8.8 Points-to analysis

Points-to analysis can be used to make resolving method calls more pre-
cise. This means that we get a new call relation Call,;. This relation is
constructed similarly to the old one, but now we also have available the
results from points-to analysis, which allows us to reduce alternatives when
resolving dynamic binding.

There are two advantages in using a points-to analysis. First, points-to
analysis makes the analysis more efficient. Second, points-to analysis also
reduces the number of artificial clients in the analysis. The latter could also
be a disadvantage, because reducing the amount of possible clients might
make the results of LCIC dependent on a small set of clients.

Initial experiments show that the number of virtual method calls can be
reduced to 1/10’th of what was the naive approach.

Some challenges remain in defining a suitable points-to analysis for LCIC.
For example, if objects are stored into containers such as ArrayList, when
an element is read from the container, a simple points-to analysis would
assume that it could be of any type that has been stored in that kind of
container.

135

3.9 Conclusions and Further Work

We proposed a metric LCIC that measures how coherently the clients use
a class according to the roles that have been specified for it. The proposed
metric can be used to find several different kinds of design problems such as
classes that should be split, and unnecessary accessor chains. Using these
metrics, a number of design problems were localized in popular open source
projects.

By examining programs with different kinds of LCIC values and reason-
ing about the behaviour of LCIC when using refactorings or design patterns,
we derived several variations of LCIC. Some variations were shown to be im-
provements and some were only useful to confirm original design decisions.
Some variations need more experimental studies before any conclusions can
be drawn.

Finding the intended purposes of methods would be useful for metrics
calculation and program comprehension. As a starting point we defined a
simple analysis for finding factory methods. This analysis can be used to
omit factory methods from LCIC calculations and make points-to analysis
more precise.

To fully leverage the power of metrics, one can use a combination of
metrics. More analysis should be conducted in order to state what kinds of
problems the metric proposed in the present study can help to detect, and
what kind of metric combinations can be used to find these flaws. Our intent
is also to search for other client based metrics and test their applicability.
As an example we are going to experiment with a metric to search for cliques
of classes, where the mediator design pattern should be applied.

There are even more ways to define variations for LCIC. One possibility
would be to consider methods as features instead of fields. Another possi-
bility would be to change the calculation of LCIC so that classes with more
clients are given more weight. This kind of metrics would point out the most
used classes with problems. A more complex approach would be to consider
client relations as slices. Another alternative is to develop metrics, which
measure the lifetime of an object using some kind of flow analysis.

The relationship between metrics and refactorings must be elaborated
further. An interesting approach would be to consider a set of refactorings
and a metric, and then find the refactored program, which gives the minimal
metric value. There are at least two challenges that must be faced to get
started. First, one has to fix an example, which suits for this kind of research.
Second, one needs to find out, what kind of model of programs is needed
for this example. Once this has been done, one could be able to show the
relationships between the selected metrics and refactorings.

Another related approach is to define metric values directly for refactor-
ings, instead of program structures such as classes. In this case, the user can

136

just select the best refactorings to improve the quality of the program. In
the next chapter we will give such a metric. We will also show that this kind

of refactoring metric can be defined in a way that essentially encompasses
intuitive ideas about modularity.

137

138

Chapter 4

Refactoring Metrics

4.1 Introduction

In this dissertation, the interest is in improving the quality of programs by
the aid of software metrics. If a metric value for a software artifact indicates
bad quality, a design problem can often be identified [56]. In the previous
chapter, it was shown that the metric LCIC is suited for finding many such
design problems. The next step is solving the design problem by refactoring
the source code [43]. The basics for refactoring were discussed in Section
1.6.

In current development environments such as Eclipse, both metrics calcu-
lation and refactoring can be done automatically. To automate the process
further, a refactoring suggestion system [71] can be used. Using metrics,
these systems suggest refactorings that should improve the quality of soft-
ware. Without a suggestion system, the refactoring has to be determined
manually by inspecting the source code or a model of the program. Using the
experience gained by inspecting cohesion metrics, we propose a suggestion
system for the design problems that are related to cohesion and modularity
in general.

The previous suggestion systems are based on the following idea: The
metrics values are first calculated, and then tested against threshold values.
Then a boolean expression is used to determine whether a refactoring is
suggested or not. In addition to software metrics with threshold values, code
smells [43] can be used. A code smell is a “warning sign” that is considered
to indicate a design problem. Formally they are just binary predicates that
test for some feature of a relevant part of the program.

As an alternative for this method, the use of refactoring metrics is in-
troduced in the present work. These metrics are applied directly to possible
refactorings. The advantage is that by using refactoring metrics, the most
important suggestions can be recognized. Because refactoring metrics give

139

suggestions for improvements, they are also more reliable in finding design
problems than traditional metrics. This is because the traditional metric
values might depend on the semantic purpose of the software artifact, but
refactoring metrics measure refactorings void of any semantic content. The
refactoring metrics are a further development of an idea in Chapter 2, where
the difference between metric values was seen as the most useful indicator.

In this study, we concentrate on Move Member -refactorings, where fields
or methods of classes are moved into other classes. These refactorings are
related to coupling and cohesion of classes. CBO and LCOM [26] are the
original examples of metrics that measure coupling and cohesion. LCIC
measures the cohesion of classes by inspecting the clients of the classes.
In Chapter 3 it was observed that high LCIC values often imply design
problems, some of which are related to Move Member -refactorings. These
observations will be used here when proposing a refactoring metric.

Because each refactoring might have several different kinds of heuristics
that can be used to determine whether a refactoring operation should be
applied (see for example [12]), some care is needed when defining refactoring
metrics. Basically a cost function is formed for the system, and then it is
evaluated how the refactorings change the value of the cost function. The
cost function should be selected so that the cost grows when the metric
values associated with different heuristics grow.

The plan of the chapter is following: First related work is discussed. In
Section 4.3 a definition is given for the proposed refactoring metric and the
associated suggestion system. In Section 4.4 the properties of a selected
open source program are analyzed using the cost function and traditional
metrics. Section 4.5 contains an analysis of individual suggestions generated
by the proposed suggestion system. In the last section we make conclusions.

4.2 Related research

Most research on refactoring has been focused on finding new kinds of refac-
torings and performing refactorings correctly. The research for software
metrics has been concentrated on finding design problems.

Du Bois et al. [12] present metrics based guidelines for applying some
refactorings. Their guidelines for Move Member refactoring are

e Move methods that do not use local resources.
e Move methods that are not called internally.
e Move methods that are used by a single external class.

These heuristics are similar to the ones discovered by the metric of the
present research.

140

Lanza and Radunescu [56] present several metrics based detectors for
design problems. Similar detectors are used for suggestion systems such as
T-Rex [71] for TTCN-3 test specifications.

Bryton and Abreu present a suggestion system for modularity oriented
refactoring [20]. They intend to find out which metrics would be useful
by inspecting refactored software and comparing their metrics. No specific
metrics or results were discussed in their work.

Sarkar et al. [86] propose a set of metrics that can be used for auto-
matic or semi-automatic modularization of source code. Their metrics are
more related to packages than classes. They propose that modules should be
formed based on similarity of service. They argue that internal call relation-
ships should not be used as an indicator of cohesion. The same approach is
used in our refactoring suggestion system, where mostly external relations
are considered.

Joshi and Joshi [52] observed that current metrics are too coarse-grained
to be used for refactoring. They proposed microscopic coupling metrics
RMC and RIC that apply to relations between methods and coupled classes.
In our terminology, the metrics RMC and RIC are refactoring metrics for
the Move Member refactoring. These metrics work similarly to our metric
in the sense that they count the relationships between methods and classes.
A similar work is the fine-grained metrics [35] proposed by English et al.
They used the metrics to investigate how the C++ friend construct is used.

Simon et al. [88] present a distance based metric and visualization to
assist in refactoring. This work is probably the closest to our approach.
Their definition of distance between methods is similar to our notion of
probability. They define distance as follows: Each method is represented by
a set of used members. If sets are A and B, then their distance is

|AN B
|AU B|

Our formula for determining whether two singleton modules should be com-

bined is
|AN B

Al + |B|
The visualization based approach of Simon et al. might not scale well into
large programs.

<0
2

4.3 Motivation and Definition of the Metric

To define the refactoring metrics, one has to have a suitable model of the
programs. Since we are only interested in the module structure of the pro-
gram, it is just assumed that there is a set 2 of atoms and a set 4 of modules

141

or compilation units. The modular structure is a function M : 24 — 4 that
returns the module containing the atom. Similarly M~!(u) returns the
atoms in unit u. It is assumed that there are k atoms i.e. |A| = k. In
our implementation of the metric for Java, the atoms are the methods and
fields of classes, and the modules are compilation units or files. The reasons
that compilation units are used instead of classes are that (i) inner classes
cannot be separated from their outer classes when considering modularity,
and (ii) if there are several classes in a compilation unit, they are usually
closely related.

4.3.1 Cost function

In the previous chapters we were only interested in the cohesion, which is
just one design heuristic that is related to modularity. Other such heuris-
tics are coupling and size of modules. It is not a good idea to define the
suggestion system based on these metrics, because there is a far superior
way to approach the issue. This is simply to take a step back, and forget
about these heuristics. We simply calculate the cost of the module structure,
which tells directly how good the module structure is. The design heuristics
are still useful, however. They can be used to make sure that the definition
of the cost function follows our intuition about good design. To develop a
good cost function, it should agree with as many heuristics as possible. It
is also possible that our intuitions are proven false.

To find a suitable cost function, the following approach is used: Consider
a very simple programming task, and estimate how long it takes to perform
this kind of task. Refactorings should make this time smaller. The task
we select is understanding the implementation of a method. This kind of
understanding is needed for example if a programmer wants to modify the
functionality of the method, or a programmer is inspecting the sources to
find a bug. It is assumed that this task is related to the modular structure
of the program, because it is in general harder to understand a method if
it calls methods from many different modules. Also, if the called modules
are large, understanding and writing the method is hard, because it may be
hard to find the called method from a large class. The method can be found
in some other way, but then the module structure was not used.

To give a more precise description of the programming task, it is assumed
that the programmer wants to understand the implementation of atom a. To
do this, she needs to inspect all related atoms to understand their function-
ality. Because the atoms are structured into modules, the related modules
need to be inspected. In the current research, the related atoms are the
atoms that are called from atom a. In a more advanced model, also atoms
that call atom a could be included, because it might be useful to understand
how the atom is used.

142

As a summary, the proposed methodology has the following advantages

e For each case, we get a concrete explanation why the system makes
the suggestion.

e The system can be improved by taking more features into account in
the cost function.

e User interface research can be used to assist in developing the cost
function.

e The cost function does not depend on the semantics of the program.

4.3.2 Definition of cost function

To define a cost y(M) for modular structure M, we start from simple pro-
gramming tasks. Formally, the tasks that programmers perform can be
thought to be events in a probability space. Each task to € 20 has a set of
involved atoms (fields or methods) (o). The probability space can now be
used to describe the relations between atoms:

P(a) =P({rn €W |aecA()})

Here P(a) is called the probability of the atom. This can be seen as a gen-
eralization of using graphs [15] or hypergraphs for describing relationships
between atoms. The probability of a module u depends on the probability of
its atoms, i.e. P(u) = P(M~!(u)). Once these probabilities have been cal-
culated, it can be assumed that they approximate also the relations caused
by future methods.

The programming task we are now interested in is understanding the im-
plementation of a method by finding the descriptions of the called methods.
If the module structure is not used, the task is not related to the module
structure. Assume that the probabilities for looking up the methods are
uniform and independent.

The cost of inspecting a module u can be defined in several ways. It is
defined here simply as

Y(u) = M) +o

Here we assume that inspecting each member of the module costs 1, and
inspecting a new module additionally costs o units. The first component of
~(u) measures the size of the module. It can be thought that larger modules
are harder to understand. Adding the term o makes the cost function mea-
sure the coupling of the system, because it counts how many modules are
used by the atoms. Therefore we call o the coupling factor. The coupling
factor is a constant that should be determined before evaluating the system
cost. Increasing the coupling factor makes the optimal modules larger. If

143

the coupling factor is 0, the system considers modules with size 1 to be op-
timal. On the other hand, if size is not taken into account, having only one
module would produce optimal results.

To estimate the average cost of a programming task, the probability that
a module is needed has to be calculated. For each module u, the cost is the
probability that the module is needed in a task P(u) multiplied by the cost
of inspecting the module v(ut). The total cost for module structure M is
then

M) = 3 Py ()
uetl
The module structure M is optimal, if there is no such M’ that v(M’) <
v (M).

To generate suggestions for refactoring, one should be able to estimate
the probability of any set of atoms. First it is necessary to approximate the
probability of a single atom a. To accomplish this a relation vector of a
is used, notated da. It is first assumed that there is a k-dimensional vector
space with basis A = {ay,...,a;}, which is equal to set of tasks. Basically,
the relation vector represents the weights of the users of the atom.

k
a= E T;a;
=1

where 0 < x; < 1. Note that a; is a basis vector, similar to i and j in the
usual notation xi+ yj. To give relation vectors values, consider dot product
(a,b) with another atom b. In the implementation, (a,b) = 0 if b does not
directly call or access a. If b calls a, and there are n different virtual methods
that could be called on the call site, then it holds that (a,b) = % Currently,
only type information is used to determine, which virtual methods can be
called on a call site. From the definition it follows that if there is only one
alternative method that can be called, then (a,b) = 1. If virtual methods
are ignored, then a is simply the set of methods that call a.

Because each task is thought to have the same probability, it is defined
that the probability of a vector v =73, x;a; is

> Ti
P(v) = =i
(v) = &
The combination of vectors v =)", z;a; and v/ = >, y;a; is defined as

vov = Z max{z;, y; }a;

7

The idea is that it is assumed that

P({b1,...,bp}) =P(b1 & ... ®by)

144

For example a® b would represent the module that has atoms a and b. Now
the relation vectors can be used to calculate the probability of any module.
Notice that if virtual calls are ignored, the combination is simply a set union.
Another possibility to define the combination would be

vev = Z(ﬂfi +Yi — Yivi) %

i

Notice that both definitions of & are associative and commutative. This can
be used to make the implementation of the suggestion system more efficient.

The above notion of probability is related to cohesion: If atoms have a
similar set of users or related modules, they have similar associated vectors.
A cohesive class contains similar atoms, and therefore it should have a low
probability compared to the probability of its parts. If a class has low
cohesion, the probability is close to the sum of the probabilities of its parts.
Another factor that probability measures is significance. A significant class
is used more often than other classes, which makes its probability higher.

Notice that v(M) can be given by a direct formula based on the costs
of tasks instead of costs of units

yM)=D" Y max{(b,a)[ae M H(u)}y(w)

bEA ueM(2A(b))

It is easy to see that this formula is equivalent to the definition of (M)
given before.

4.3.3 Suggestion system

We have now shown how to calculate the cost (M) of the system. The
formula for the cost takes into account the size, the significance and the
cohesion of the modules, and also the coupling of the system. We consider
these to be the most important design heuristics related to the modularity
of programs. Next it is shown how the cost function can be used to make
suggestions to improve the system.

Consider three simple refactorings that can be used to improve the mod-
ular structure of the programs:

e Detach an atom a to a new module u: detachy, 4.
e Combine two modules u and u': combine, .
e Move an atom a from module u to another module 1': move, , 4.

Notice that Extract Class -refactoring can be implemented as a detach and
several moves. However, the extraction is then implemented as several steps,
and therefore the best suggestions for extracting classes might not be found.

145

Let us formalize the refactoring suggestions by using the mapping M.
If combine, /(M) = M’ then

M@ = u if a € M)
M'(a) = M(a) otherwise

If detachy q(M) = M, then

M) = wu for some u' where M~1(u') = ()
M m(a) ifb#a

~

—~
o

~—

If movey y o(M) = M’, then

M) = v
M) = M(b) ifb#a

These suggestions are evaluated using their improvement i.e. how much
they make the cost lower.
The set of possible suggestions is then

S = {combine,, |u,u €} U
{detachyq |u e UNaeA} U
{move, o |u, 0 € UNa €A}

A modular structure M is locally optimal if there is no such suggestion r € S
for which v(M) > ~v(r(M)).

For efficiency reasons, it is necessary to define when two atoms are re-
lated. The atoms a and b are related, if (a,b) > 0 or (b,a) > 0. Modules u
and v are related if there are such related atoms a and o’ that a € M~1(u)
and o’ € M~1(t/). The best suggestions involving two modules are always
between related modules.

Using the above concepts it is now possible to state how to find a locally
optimal module structure. First let Mg be an initial module structure.
One possible way is to find some suggestion r € S such that v(r(My)) <
v(Moy), and then repeat this procedure until there is no such suggestion.
The suggestion r can for example be the first suggestion that was found
or the best possible suggestion. A locally optimal module structure can be
found faster, if several suggestions are performed at the same time. It is safe
to perform suggestions for unrelated modules.

4.3.4 Significance based analysis

Assume there are n programmers working on a program that has modular
structure M. Each programmer performs m tasks. Then, the total system
cost is nmy(M). If the cost for performing a change is z, the effort needed

146

for a programmer to accommodate the change is y, and the set of involved
atoms is %, then the cost caused by performing the change is

z[A| +ny(l — (1 - P(A))™)[A
The set 2 can be calculated for refactoring r as
A(r, M) ={a e A |r(M)(a) # M(a)}
The total improvement for refactoring r is then
nm(y(M) —y(r(M))) — z|A(r, M)| — ny(1 — (1 — P(A(r, M)))™)[2A(r, M)

This is quite easy to calculate, but now the system would need more param-
eters.

4.4 Quantitative analysis

The purpose of the following analysis is to determine what kind of features
the cost function (M) and the suggestion system have in practice. The
evaluation proceeds in two phases. To understand better, how the proposed
metric works, some more basic metrics are considered first. This helps in
understanding what kind of software the package contains. Then the results
produced by the cost function are analyzed, and we give a high-level analysis
of how the suggestion system works. In Section 4.5 individual suggestions
given by the system are analyzed.

4.4.1 Basic metrics

The tool was applied to a medium sized open source program, jEdit. The
inspected package includes 6396 members. Of these, 715 are never used
anywhere. One may assume that there are two factors that cause this phe-
nomenon. First, plug-ins can be written in Java for jEdit, and second, the
functionality of the editor can also be extended using a scripting language,
which uses reflection to call members. Table 4.1 shows that most of the
methods have less than four users, but some have very many users.

As discussed in Section 4.3, dynamic binding is taken into account so that
each use has weight 1, which is divided between possible methods. Currently,
only type information is used for resolving dynamic binding, but a points-to
analysis might give more precise results. The distribution of weighted users
can be seen in the middle of Table 4.1. The correlation between weighted
and unweighted case is 0.66. This means that while the values are similar
in general, there is a clear difference that is caused by weighting.

Next it was measured how many units use the members, see the right
panel of Table 4.1. Occasions in which a unit uses its own members were

147

WCM M NCU M

NCl\/ll 18;\2 0| 699 0| 2765
5 11476 1| 1587 111672
31’05 2|1 1390 2| 481

11 430 3| 744 31 192

5T 230 41 399 4| 109

6 150 5| 216 5 67

=T 104 6| 136 6 44

31 150 7 96 7 42

9 1 8 71 8| 101

10 60 9 61 9 26
120 | 211 10 44 10 13
51 | 143 11-20 | 145 11-20 57
21- 66 21- 85

Table 4.1: Left panel: histogram giving for each number of calling meth-
ods (NCM) the number of members (M). Middle panel: the same but the
methods are weighted (WCM) based on dynamic binding. Right panel: unit
users (NCU) are considered for members.

ignored. The results are collected into the right panel of Table 4.1. Members
such as toString -methods are used by very many units. Most of the
time, fields are not used by external units. This kind of metrics could be
useful when determining in which order the IDE suggests completions for
member names: members with most uses should be shown before rarely used
members.

Table 4.2 shows an analysis of the number of members in the units.
There are 275 compilation units. In the majority of these, there are more
than 10 members.

Unit usage calculates, how many times the members of the units are used.
This value basically represents the weight of the unit in our framework. More
precisely, to calculate the weight of the unit, one has to take the weights of
method calls into account. The unit usage and unit weight distributions are
shown in the middle and right panels of Table 4.2.

4.4.2 Cost function and suggestions

The cost of modules was evaluated next. The coupling factor was set to o
= 30. The total cost for all units was 1040491. Table 4.3 shows the largest
costs for units. These units account for about half of the total cost. This
indicates that the focus of our suggestion system should be in splitting these
large classes into more manageable pieces.

148

- NCM | Units WCM | Units

NOl\/ll Umtg 0 16 o0 7S
5 9 10- 26 10- 40

3 10 20- 34 20- 41

1 15 30- 20 30- 25

5 3 40- 22 40- 25

6 - 50- 12 50- 16

- B 60- 11 60- 16

3 10 70- 14 70- 8

9 15 80- 10 80- 7

0 11 90- 9 90- 4
1120 6 100- 5 100- 4
51 99 110- 39 110- 17
210- 27 210- 14

Table 4.2: Left panel: histogram giving for each number of members (NOM)
the number of units. Middle panel: the number of members calling the
units (NCM) is calculated. Right panel: the same, but the callers are now
weighted (WCM).

The strategy described in Section 4.3 was applied to determine a locally
optimal module structure. There are two alternatives for the initial module
structure My: One can start from the original module structure, or from
singleton modules, where each atom initially has its own module.

Starting with original modules there were 4211 suggestions. When per-
forming these, the total cost decreases from 1040491 to 485129. Starting
from singleton modules, there are 5579 suggestions and the total cost de-
creases from 734532 to 458346. To get a high level idea, how the cost of
the system changes, Figure 4.1 shows the measured system cost after per-
forming each suggestion. After 38 suggestions, the improvement has been
100000 units. After 163 improvements, the cost has decreased 200000 units
compared to the initial state, and after 388 suggestions, it has decreased
another 100000 units. Even after 1000 suggestions, the remaining sugges-
tions improve the system over 130000 units. This shows that in practice,
it is impossible to approach a locally optimal module structure by apply-
ing individual suggestions. For best results, the system could be used from
the beginning of the project. On the other hand, by performing only few
suggestions, a large improvement can be achieved.

Figure 4.2 shows how much improvement the individual suggestions
would make. After several steps have been made, the improvement of the
suggestions lowers in general. However there are still suggestions that have

149

Unit Cost | LOC
textarea.TextArea | 173445 | 6059
jEdit | 127822 | 4043
buffer.JEditBuffer | 65570 | 2475
View | 46765 | 1724

GUIUtilities | 33047 | 1789

Buffer | 30216 | 1998
browser.VFSBrowser | 26658 | 1975
MiscUtilities | 23760 | 1803

Table 4.3: Units with largest costs.

large improvements. It seems that large improvements are still possible after
a local optimum has been found. Figure 4.3, illustrates that starting from
singleton modules (each atom has its own module) makes some difference.
The first bumps are caused by combining two atoms into one module, and
the bumps at the end are caused by discrete values for improvements.

4.5 Qualitative analysis

When determining whether the proposed system is any good, one should
keep in mind that in practice, the most important factor in software de-
velopment is the informal knowledge of the developers. We call this the
subjective view. Another factor is caused by the concrete software artifacts,
the objective view to the software. Not all knowledge of the subjective view
can be extracted from the objective view.

To get definite results on whether a suggestion system is good or not,
we would need to have several similar projects; then a part of the projects
would use the suggestion system, and another part of the projects would
not use it. This setup seems to be impossible, since much resources would
be needed for the projects, and the tool should also be mature enough.

Another alternative would be to experimentally measure how much time
the programming tasks take. This would however not give definite results,
since the total effect of the modular structure was not actually measured.
A study that could for example show a strong correlation between the time
for understanding a method and the time for modifying a method is also
required. The setup would have to be constructed very carefully so that the
result would not strongly depend on unknown factors. This kind of study is
more related to program comprehension than the suggestion system itself.
If this kind of study were performed, it could be used to improve our system
by modifying the assumptions we made in Section 4.3.

150

X

q-_
m_

L)

o

—

g

= N —

-

c

[@)

IS

()

>

)

o <

£
o_
- _]
|

I I I I
0 1000 2000 3000

Step

Figure 4.1: The change of the system cost when starting from the original
system using o = 30.

Given that we have limited resources and the system is still quite imma-
ture, the following methodology is used to validate the proposed system:

e Identify the use cases for the system.
e For each use case, identify what kind of suggestions are desired.

e Analyze the suggestions given by the system against these criteria.

An issue is that the suggestions would now be analyzed against the design
heuristics that can be shown to be included in the metric by construction.
What makes the analysis interesting, is seeing how the system resolves con-
flicting heuristics in practice. Another point of interest is to determine,
whether the subjective view is compatible with the results of our system.
This issue is most evident when forming new modules.

151

X
X
X
o
AN X X X
X X
X
X
e |
N
L)
(@]
—
g
= v o
> o
(8]
c
()
>
o
L o
n
o
o |
o

100 150 200 250 300

Size

Figure 4.2: The amounts of improvements of steps, starting from the original
system using o = 100.

The outcome of this study would be to identify practical problems in the
system, and if the suggestions seem to have a good quality, a more matured
tool should be implemented. The results of the study should give some ideas
about how to further develop the system.

Quality of suggestions

There are several criteria that can be used for evaluating the quality of sug-
gestions. One important requirement is that the suggestions should be easy
to perform. Programming environments can perform several refactorings
automatically. In Section 4.5.5 we show how to perform the refactorings
suggested by our system.

A very important criterium is that the suggestions should have a large

152

0 X
o X
X
o X x
~ x xx X
w X 5 x XX %
=) §>< § X
> - x ¥ K ox0 g x x
s X % % X Eggxxxx x X
> X gx
5 Xx§ §§§X
%Q_xgé% §><
& .
Hi
|
o g;
X
&
2 K
| T |
5 10 15

Size

Figure 4.3: The amounts of improvements of steps, starting from singleton
modules using o = 10.

effect. Current proposals for refactoring suggestion systems do not take this
into account properly. If the threshold values are changed to be more strict,
the system would find representative cases of design problems. However,
the design problem might be in an insignificant part of the program. Even
if the quality of the system is improved, the time taken by making the
improvement might never be got back.

Another important criterion is that the reasoning behind the suggestions
should be easy to understand. This is because eventually it is the program-
mer, who has to decide, whether the suggestion should be performed. To aid
this task, visualization tools or other similar tools could be useful. It would
also be helpful to have some kind of predefined categories for the reasons
why the suggestions have been made. This kind of categories can hopefully
be found by inspecting suggestions.

153

As another criterion, some kind of concept of reliability is needed for
suggestions. For example, if an atom related to a suggestion has several
suggestions with similar values, the reliability of the suggestion is not very
good. Also, if a member is rarely used, the suggestions related to it might
be unreliable, because the probabilities that are associated with it are not
very reliable.

Use cases

On a basic level, the refactoring suggestion system has only one use case:
Find design problems related to the modularity of the program. More spe-
cific use cases that we consider are:

e Finding the most problematic classes.

Finding the best suggestions.

Finding a locally optimal module structure.

Breaking a large class into smaller pieces.
e Finding suggestions for moving members between modules.

Finding the most problematic classes was already considered in Section 4.4.
Other cases are evaluated below.

4.5.1 Individual suggestions

The first 50 suggestions given by the system were investigated, and it was
evaluated what kind of effects would performing them have.

Table 4.3 lists the classes with largest costs. As the first observation,
most of the suggestions are related to these classes. Breaking these classes
should be a priority in any suggestion system for modularity. Another obser-
vation about the importance of suggestions is that as can be expected, the
first suggestions are about methods that are used very often. Also classes
with lower cohesion get more important suggestions than more cohesive
classes.

Most of the time, the members of the formed modules are closely related.
The methods that are moved into the same module often have been grouped
in the source code. Some suggestions move methods to related existing
classes. These are effects that are caused by the notion of cohesion in our
system. It is harder to see the effects of coupling in our system. In fact, the
coupling of the system is slightly increased, because so many small modules
are formed.

The first suggestions are related to the class jEdit. Three methods from
this class, getProperty, getBooleanProperty and getIntegerProperty,

154

are moved to form a new module. These methods are used over 1000 times
in the source code, and therefore they are essential for understanding and
modifying the software. In fact the property-related methods are already
grouped in the source code, but this grouping is done using the features of
the jEdit-editor itself, and not using language features. This case is an ex-
ample of an important property that the proposed system has: The module
structure that is suggested by the system is similar to the programmer’s
intuition of the module structure of the program (although there are some
clear differences). Another important property is that the proposed system
rarely produces false positives, and the suggestions reflect real concerns in
the module structure of the program.

One observation is that call-chains are detected. A call-chain means
that an object is often called as a.b().c(). This should be replaced by a.d(),
where d is a new method that calls b and c. The reason why call-chains
are detected is that they create a close relationship between two methods in
different classes. This should not be surprising, because already LCIC [60]
detected call-chains.

An example of a detected call-chain is the method getStatus from class
View. This method is often used in call-chains as the first called method.
The suggestion is to move the method into class StatusBar, because this is
the class that is returned by the method. The result would be that all status
bar related methods would be in their own module. The problem with this
is the fact that traditionally in OO design, the status bar is thought to be
contained by the view, and therefore the relation is expressed as a field in
the class that represents the view.

Another observation is that just as one can see from Figure 4.2, some-
times related members are moved in sequences. After the first related mem-
ber has been moved, the next related members can have suggestions with
very high values.

Some problems can also be observed. Large methods might cause un-
reliable relationships. Too small methods can cause similar problems. To
make the effect of these methods smaller, lower probability could be given
to the tasks associated with them.

Perhaps the worst problem with this use case is that often the inter-
mediate moves are confusing. Several large classes have to be broken into
smaller pieces, and the suggestions are interleaved, so it is hard to see what
is happening. Also the formed modules can be modified later to form better
modules. To solve this problem, the classes should be broken into pieces
independently, or the locally optimal module structure should be used.

As a summary, the best suggestions are concentrated on important parts
of the program, and they detect design problems, but they might be confus-
ing to use.

155

4.5.2 Locally optimal module structure

One reason to inspect a locally optimal module structure is that as can
be seen from Figure 4.1, it is impossible to get close to a locally optimal
situation by performing individual suggestions. Also the suggestions might
be confusing, because several classes are being broken at the same time.

Using the singleton modules, the refactorings were applied using the
standard strategy until a locally optimal module structure was found. The
generated modules usually fall into the following categories:

e Existing classes, or parts of them.

e Inner classes.

e Virtual methods with the same signature.
e Constructors and utility methods.

The most closely related members are the constructor for class Log,
and fields ERROR and DEBUG from the same class. The second most re-
lated members are endCompoundEdit and beginCompoundEdit from class
JEditBuffer. The relation between these two methods is so strong, that a
programming error can be suspected if they are not used together.

The first closely related members that belong to different classes are
jEdit.getSettingsDirectory and MiscUtilities.constructPath. This
is an example of two related methods that have a different level of generality,
since the method constructPath could be used by any program that uses
the file system. The level of generality cannot be detected by the proposed
refactoring suggestion system.

Often almost all members of the modules originate from one class. Ad-
ditionally, there is often some related member from another class. The fact
that the generated module structure has similarities with the original struc-
ture shows that the suggestion system captures something essential about
the way programs are structured into modules. The explanation is that if a
class is cohesive, the users of the data structured by the class want to use
several fields of the data, thus generating relations between these fields. On
the other hand, it is possible that some features of classes cause artificial
relations between its members.

Virtual methods with the same signature are sometimes grouped into
modules. This happens when the method signature is called many times,
and there is not much relation with the other members in the class.

If a method is used rarely, it is often in the same module as its clients.
This is not always the most logical solution, but the rarely used methods
have also small weight in the system. Basically there is not enough evidence
to determine where they belong.

156

Strongly coupled classes are usually broken into modules, which have
members from the coupled classes. This kind of modules might implement
one functionality. This means that the involved classes have stronger cou-
pling than cohesion.

As a summary, the most important observation is that the classes formed
by the suggestion system follow the original structure of the program. This
shows that the forming of modules is not purely based on subjective or exter-
nal factors. Locally optimal modules are probably not too useful otherwise.
Instead, the classes can be broken separately.

4.5.3 Breaking a class

To evaluate how breaking individual classes works, the classes TextArea,
jEdit and View were inspected carefully. Again, singleton methods were
used as a starting point, and a locally optimal module structure was found
using the standard strategy.

The core functionality of the classes (if exists) forms the core module of
the original class. The core module is also the largest module. This is be-
cause in general, the most important members are in larger modules, and less
important members are in smaller modules. For example the class TextArea
has a core module with 18 members containing fields caret, caretLine and
buffer.

Members that have no users are often in singleton modules. The idea is
that these members are then hidden when they are not used.

If the coupling factor is large, the related functionality is not always com-
bined. The suggested modules are smaller than what would seem reasonable
from the subjective viewpoint. The first possibility is that the subjective
viewpoint is wrong and the modules should be very small. Another possibil-
ity is that some of the assumptions can be modified so that larger modules
would be generated. For example, we could add vector components for each
original module. The last possibility is that purely subjective factors have so
large impact that the system can never be improved significantly. At least
the found modules can be used as a starting point for breaking the class.

One issue that weakens the reliability of the suggestions is that there
are accessor methods for the fields. This is because the accessor methods
and the fields can be used interchangeably. The accessor methods can be
thought to be too small methods for the reliability of the suggestion system.
As an additional observation, these accessor methods can form their own
modules. This is an example of layers in the module structure. In general,
the suggestion system does not take layers into account.

Almost always the formed modules contain members with related func-
tionality. A larger piece of functionality can be divided into several modules.
Sometimes there are several methods that implement similar functionality.

157

These methods might not be in the same module because another one is
redundant.

If there are some kind of usage patterns for members of the class, they
generate strong relationships between the members in the patterns.

A problem with breaking classes is that it is not clear what the most
important suggestions are. For example, there might be an obvious way to
break an average sized class, but this might not be found first. Instead, the
best suggestion would probably be for the largest classes.

Because of the complexity of the relationships, visualization could help
in breaking a class at least in the following ways

e See how close the methods are to other methods.
e See how close the modules are to methods.
e See how close modules are to each other.

As a summary, the system can be used to find cohesive parts in the
classes. These parts are in line with the intuition of the programmer. The
found parts can be used to divide the class into smaller modules to make
the software significantly easier to understand and learn.

4.5.4 Intermodule suggestions

The remaining use case is finding members that should be moved into other
modules, that is, finding interclass modifications. A difficulty in this lies in
separating the interclass modifications from intraclass ones. We first broke
all classes using the method described in the previous use case. Then we
checked for the suggestions for the whole system. It was observed that this
gave a better local optimum than starting from singleton modules, or from
original modules directly.

One common reason for intermodule suggestions is the existence of call
chains. The call chains are now detected more clearly than when considering
the best suggestions overall, because the size of the modules is not an issue
anymore. Another similar possibility is that a method a is always called
with a(b(z)). In this case, the call to b should be moved into a. These two
examples show that there are other refactorings than Move member that
should be considered for improving the module structure.

Closely related members are combined into one module. This kind of
modules are related to some functionality. Because the classes were first
broken into small pieces of functionality, there might be some kind of vertical
properties, where some functionality, whose implementation was divided into
several classes is now moved into one module.

A member can be moved to a closely related module. This happens when
the functionality of the member is more closely related to the functionality

158

of the new module than to the functionality of the old one. For example the
Feature Envy code smell can cause this kind of situation.

A problem is that sometimes a member is more general than the program,
i.e. it could be used in some other program, too. The probability of this
kind of members cannot be estimated correctly by the system. Because of
this, a member that is general, can be moved into a module that should not
have so general members.

The proposed system gives very good suggestions for interclass refactor-
ings, but there is one problem. The improvement of the cost function is
small compared to the improvement that is gained by breaking the classes.

4.5.5 Implementing refactorings

Sometimes it might be hard to immediately see how a member can be moved
into another module. One of the reasons is that in programming language
design, little or no attention is given for making programs easier to modify or
refactor. Perhaps the opposite is true: The language is supposed to enforce
a good, object-oriented style. In practice this means that a large number
of classes are either (i) tiny helper classes that are needed to overcome the
limitations of the OO paradigm, or (ii) huge classes with tons of methods
and fields.

A generic way to move fields is simple enough: Just make a static variable
that is a mapping from objects to the type of field. Moving methods is more
difficult because of dynamic binding. A new movable concept is needed
that represents the method signature. This kind of implementation for the
proposed refactorings might sometimes be cumbersome and lead to ugly
looking code.

As an alternative for moving a method into another module, perhaps
the method should be broken into two pieces, and only the other part of the
method should be moved, then.

A part of the class can be quite easily extracted into a new class. Then
a reference can be added into the original one. The problem is that if
the refactoring is performed many times, the original class might become a
collection of fields with low cohesion.

Eliminating call chains should be used in applicable situations. In the
case where a method is only used in a call chain, the chained call can be
moved into this method.

Sometimes the system suggests creation of a module, where there are
several methods with same signature. If the module seems reasonable, the
visitor pattern can be used to implement it.

As a summary, it is possible to implement the suggested refactorings.
Sometimes implementing them is cumbersome, and better alternatives should

159

be used. A more fine-grained suggestion system should help with these is-
sues.

4.6 Conclusions

The concept of refactoring metrics bridges the gap between metrics and
refactorings. Our results indicate that refactoring metrics can be used as a
basis for a refactoring suggestion system.

One important property of the proposed metric is that the locally op-
timal module structures found using the metric seemed to be quite reason-
able, and often followed the original structure. This was achieved because
the metric actually attempts to approximate the role of modules in the soft-
ware process. It is unlikely that a metric that approximates a single design
heuristic would have the same property.

In general, the quality of examined suggestions seems to be good. More
investigation is needed to establish this. For example, one could measure
the number of generated modules with different sizes, and perform a more
detailed analysis of how similar the generated module structure is to the
original structure developed by programmers. Also automatic categorization
of the suggestions would be useful.

More comparisons with other approaches should be made. Compared
to the threshold based approach, the advantage is that our system can dis-
tinguish which suggestions are the most important ones. The disadvantage
might be that it is harder to accommodate new refactorings in our system.
The research for refactoring suggestion systems is still new, and there are
some obvious approaches that have not yet been tried. For example, lin-
ear regression has been used to approximate some empirical value-based on
metrics [13]. The result from linear regression could be used as the cost
function for a refactoring suggestion system.

A way to extend the scope of the refactoring suggestion system would
be studying different or more complex notions of tasks. Focusing on pro-
gramming operations means that also the programming environment (IDE)
should be taken into account when defining metrics. The reason for this is
that the programming environment includes tools for refactoring and pro-
gram comprehension. These tools are related to the cost of refactoring and
programming tasks. Monitoring programmer behavior can be used to gather
empirical information about these tasks [82].

One of the most likely directions for better tool support in software
development is model driven development. We envision that software models
will have a larger role in the future of software metrics. For example, it
needs to be evaluated, whether traditional design heuristics are any good
when these models are used. It is also possible that different models and

160

tasks are relevant on different phases of a software process, for example,
different kinds of models should be used in design and maintenance phases.

The module structure considered in our system should be regarded as
some kind of software model. This model represents a very raw form of
modularity. The system can be extended by considering more advanced
concepts of modularity, such as layers, interfaces and information hiding.
Refactorings should be defined to reveal the software engineering properties
of these software artifacts.

The most pressing issue that needs to be addressed in further research is
accommodating refactorings such as Remove Call Chain. These refactorings
are clearly related to the modular structure of the programs, even though
they do not directly modify it. One possible approach for this issue is
as follows: Similarly as we used Move Member -refactorings to define the
modular structure, we now use other refactorings to define other models.
Then cost functions can be defined for these models. Once these models have
been defined, they can also be used for refactoring of programs. Techniques
from model driven development can be used to synchronize models and the
source code.

161

162

Chapter 5

Conclusions

This dissertation had three different parts dealing with internal cohesion,
external cohesion, and a refactoring metric for modularity.

It turned out that internal cohesion can not be reliably used as a reliable
design heuristic; we found a number of programming patterns that were
responsible for bad internal cohesion. Then we turned to external cohesion,
which was shown to be a better indicator of program quality.

A problem with external cohesion metrics was that further analysis is
needed to identify the actual design problems. This problem was solved
by introducing refactoring metrics, which produce concrete suggestions for
the programmer. Our analysis shows that the proposed refactoring metric
produces reliable suggestions. Practical tests with it indicated that there
still remain some possibilities to further development of the metric so that
it matches even better with programmer intuition.

When developing refactoring metrics, two topics for further studies were
recognized:

e Developing new technologies that transform programs from being col-
lections of text files to more structured pieces of data. This is related
to model driven engineering.

e Finding out what kind of changes are made for programs. This would
help us to find out what kind of operations the development environ-
ment should support.

The contributions of the present study can be divided into two categories:
practical and scientific. On the practical front, the following issues are
relevant:

e Software analysis tools. A set of tools were developed, but the most
important was the use of off-the-shelf tools like XQuery. To make
program analysis mainstream, easy to use file or database formats are
necessary.

163

e Mathematical notations. Compact mathematical notations have to be
developed, so perhaps one day software engineering will live up to its
name.

e Software product metrics. The metrics developed here should be useful
in monitoring and improving the modularity of software.

Let us sketch two opposite approaches for producing knowledge about
software engineering. The first is to consider the process of writing software
with an experimental approach. For example it could be monitored how stu-
dents make software in a controlled environment. The second is to consider
the software as a historical artifact. In this approach for example the Linux
source code could be important, and the software made by students has
zero significance. The first approach is probably useful for research about
software process or teamwork, and the second is more relevant to software
product metrics.

Concerning internal cohesion of programs, the following finding was most
important: Given the number of fields and methods, and number of con-
nections between them, each cohesion graph has equal probability. (Recall
that cohesion graph contains the relationships between fields and methods
in a class.) To the extent this statement is true, it is impossible for internal
cohesion metrics to tell anything useful about software quality. Other im-
portant findings related to internal cohesion were related to the concept of
design anomaly and discovering design rules.

Concerning external cohesion, it was found out that the module structure
of programs can be derived from the internal relations in the program and
the properties of the development environment. This finding is important,
because otherwise it could have been argued that the module structure de-
pends on the domain model, and cannot be evaluated using software product
metrics.

To sum up, we found principles (size, cohesion, coupling and significance)
that govern the modularity and our theory explains the reason these prin-
ciples are valid. This may eventually lead to a new methodology to create
programs that are guaranteed to have good quality.

164

Chapter 6

Recent work on software
cohesion metrics

In this chapter we give an overview of the new work that has been published
since finishing our research in Chapters 2, 3 and 4.

Several studies have focused on finding new ways to empirically evaluate
software metrics and to show their relation to software quality. Among
others Arora [7] et al. study the quality of Java library classes. The metrics
that they consider are CK and MOOD metrics sets. In the study of Jassim
and Altaani [51] the statistical properties relating to metrics are considered
using linear regression.

Radjenovié¢ et al. [80] have made an extensive review of attempts to
relate software metrics to software faults. In this study, cohesion metrics
were not found to be particularly effective in predicting faults. Another
similar study was made by Jabangwe et al. [50]. They considered other
quality attributes in addition to fault prediction. Cohesion metrics were
found to be quite effective in this work. Also in the study of Goyal, Sandra
and Singh [45], where interaction between metrics was considered, it was
found that LCOM was influential in interaction with other variables. By
interaction it is meant that if there are two variables x and y, then the
model used for linear regression would be « + Sz + vy + dxy. The term xy
is the interaction term. He et al. [48] attempted to find a minimal set of
metrics for fault prediction. The set they ended up with was LOC, CBO
and LCOM.

Machine learning techniques can be used to improve metrics based fault
prediction. For example Rodrigues et al. [83] used subgroup discovery to
generate rules for fault predictions. Basically this technique can be used to
find rules that are similar to the kind proposed by Lanza [56]. The metrics
suite used by them was CK.

The fact that several studies mostly consider metrics that have been

165

defined before year 2000 shows that it is hard for new metrics to gain pop-
ularity despite the efforts to develop better metrics and to show that they
have better properties than the previous ones. From this it would appear
that not much progress has been made on the field of software metrics in
past two decades.

Many of the current studies follow the same ideas as before. For example
new formulae are proposed for calculating the cohesion graph, or a more
procedural cohesion based on concept of slices are proposed. A slice of a
procedure is a part that is related to a certain variable. For example a
forward-slice is the part of a procedure that depends on an argument, and a
backwards-slice is the part that is related to a return value. Based on these
slices, one can define a more fine-grained cohesion measure between variables
and methods. For example Yang et al. [92] have studied this kind of metrics.
Their results show that slice based metrics are statistically independent from
other cohesion metrics. On the other hand, metrics that are defined by just
taking the square-root of an old metric would be statistically independent,
so it remains an open question what is the additional information gained by
these types of metrics.

Some work has been made to use metrics for software quality improve-
ment. One possibility is applying the metrics at package level. For example
Abdeen et al. [1] proposed new cohesion and coupling metrics for pack-
ages. These metrics are quite similar to metrics that have been proposed for
classes. In a follow up [2], these metrics were applied to improve the quality
of modularity in the program. A search for better modular structure was
made based on a combination of existing metrics. A more elegant approach
would have perhaps been to define a metric that evaluates the quality of
modularity.

Another effort that considers refactorings was by O’Cinneide et al. [27].
Effects of refactorings into cohesion metrics were considered in that work.
It was observed that when performing refactorings related to modularity,
values of different cohesion metrics change to different directions. Among
the cohesion metrics they considered were LSCC, LCOM and TCC.

Al Dallal [30] has made research on the impact of inheritance on cohesion
metrics. He has also considered the impact of inheritance of variables and
methods separately. Another topic considered by Al Dallal was to improve
the applicativity of cohesion metrics, that is, to change the definitions of
metrics so that more classes get metrics values.

Al Dallal and Briand [3] defined a metric LSCC based on similarity of
methods. The notion of similarity they considered was how many accessed
variables they share. The authors also considered the relation of refactorings
to their metric. The definition of LSCC is as follows. Assume the class has
a set of methods M and set of fields §, and a relation R(m, f) holds when m

166

uses field v. Then the similarity of methods m; and my is

|R(m175) N R(m27 8{)|
i

sim(ml, m2) =

LSCC for the class is the average of similarity for all pairs {my, my} C 9:

sim(ml,mg)
L =
sec {ml%}em S Cm| 15 =2)

Al Dallal and Briand also defined a similar cohesion metric called HSCC.
This metric applies to UML diagrams instead of source code.

An interesting new metric has been proposed by Drouin, Badri, and
Toure [31]. Their metric Quality Indicator (Qi) attempts to give a value
that approximates the overall quality of a class. Let P(mj...m, | m) de-
note the probability that when method m is called, the method m directly
calls methods m;...m,, in the given order. The probabilities are assigned in
such a way that in an if-statement each branch is considered to have equal
probability, and in loops, the probability of exiting the loop is 1/4. Then
Qi is defined by a system of equations, where for each method there is an
equation

Qi(m) = Qi*(m) Y P(my...my | m)Qi(my)- - -Qi(m,)

The system of equations is solved iteratively. Qi*(m) is the intrinsic quality
assurance indicator, and it is calculated as

Qir(m) =1— 1 — te(m)ce(m)

max cc(9)
Here cc(m) is cyclomatic complexity of method m and tc(m) is test coverage
percentage. Test coverage percentage is the percentage of paths that are
covered by the automated tests related to the method. The Qi value of a
class is the product of the @i values of its methods. The authors found
out that the value of the metric was quite stable when the software evolved,
compared to other metrics that varied a lot more.

One trend is adding annotations to code to mark which parts of the code
implement which feature of a program. Apel and Beyer [6] show how cohe-
sion metrics can be defined for these features. Their metrics use distance
based clustering of features. Olszak and Jorgensen [73] consider remodular-
ization of programs based on features.

Qu et al. [79] used the concept of modularity from networking theory,
and applied it to call graphs. The program was grouped into modules,
and then a cohesion metric for classes was defined based in these modules.

167

A problem with this approach is that it is not immediately clear how the
concept of modularity in networking theory is related to quality of programs.

Fokaevs et al. [41] considered Extract Class refactorings. The approach
they used is distance based clustering.

168

Appendix A

Mathematical symbols

Symbol | Pronunciation Meaning

a,be A | Atom in Chapter 4, otherwise any set.

,0ed C Classes.

e E Expression.

fes F Fields.

[L Location.

me M M | Methods, in Chapter 3 includes fields.

M M Modules.

7 mu Metric.
peP P

s€6 S Method signatures.

te® T Types.

ueil U Compilation units.

ve'’Y A% Views.

169

170

Bibliography

1]

2]

Hani Abdeen, Stéphane Ducasse, and Houari Sahraoui. Modularization
metrics: Assessing package organization in legacy large object-oriented
software. In Reverse Engineering (WCRE), 2011 18th Working Con-
ference on, pages 394-398. IEEE, 2011.

Hani Abdeen, Houari Sahraoui, Osama Shata, Nicolas Anquetil, and
Stéphane Ducasse. Towards automatically improving package struc-
ture while respecting original design decisions. In Reverse Engineering
(WCRE), 2013 20th Working Conference on, pages 212-221. IEEE,
2013.

Jehad Al Dallal and Lionel C Briand. A precise method-method
interaction-based cohesion metric for object-oriented classes. ACM
Transactions on Software Engineering and Methodology (TOSEM),
21(2):8, 2012.

Frances E Allen. Control flow analysis. In ACM Sigplan Notices, vol-
ume 5, pages 1-19. ACM, 1970.

H. Aman, K. Yamasaki, H. Yamada, and M.-T. Noda. A Proposal
of Class Cohesion Metrics Using Sizes of Cohesive Parts. In T.Welzer
et al., editor, Proc. of Fifth Joint Conference on Knowledge-based Soft-
ware Engineering, pages 102—-107. IOS Press, 2002.

Sven Apel and Dirk Beyer. Feature cohesion in software product lines:
an exploratory study. In Software Engineering (ICSE), 2011 33rd In-
ternational Conference on, pages 421-430. IEEE, 2011.

Deepak Arora, Pooja Khanna, Alpika Tripathi, Shipra Sharma, and
Sanchika Shukla. Software quality estimation through object oriented
design metrics. IJCOSNS International Journal of Computer Science and
Network Security, 11(4), 2011.

L. Badri and M. Badri. A Proposal of a New Class Cohesion Crite-
rion: An Empirical Study. Journal of Object Technology, Special issue:
TOOLS USA 2003, 3(4):145-159, April 2004.

171

[9]

[10]

[11]

[12]

[13]

[14]

Dirk Beyer. Relational programming with CrocoPat. In Proceed-
ings of the 28th International Conference on Software Engineering
(ICSE 2006, Shanghai, May 20-28), pages 807-810. ACM Press, New
York (NY), 2006.

Dirk Beyer, Claus Lewerentz, and Frank Simon. Impact of Inheritance
on Metrics for Size, Coupling, and Cohesion in Object-Oriented Sys-
tems. In ITWSM ‘00: Proceedings of the 10th International Workshop
on New Approaches in Software Measurement, LNCS 2006, pages 1-17,
London, UK, 2000. Springer-Verlag.

James M. Bieman and Byung-Kyoo Kang. Cohesion and Reuse in an
Object-Oriented System. In ACM SIGSOFT Symposium on Software
Reusability, pages 259-262, 1995.

Bart Du Bois, Serge Demeyer, and Jan Verelst. Refactoring - improving
coupling and cohesion of existing code. In WCRE ‘04: Proceedings
of the 11th Working Conference on Reverse Engineering (WCRE’04),
pages 144-151, Washington, DC, USA, 2004. IEEE Computer Society.

L.C. Briand, J. Wüst, and H. Lounis. Replicated Case Studies
for Investigating Quality Factors in Object-Oriented Designs. Empirical
Software Engineering, 6(1):11-58, 2001.

Lionel Briand, Khaled El Emam, Sandro Morasca, Khaled El,
Emam Sandro Morasca, Centre De Recherche Informatique De, Centre
De Recherche Informatique De, and Piazza L. Da Vinci. Theoretical
and empirical validation of software product measures. Technical re-
port, ISERN-95-03, International Software Engineering Research Net-
work, 1995.

Lionel C. Briand, John W. Daly, and Jirgen Wiist. A unified frame-
work for cohesion measurement in object-oriented systems. Empirical
Software Engineering: An International Journal, 3(1):65-117, 1998.

Lionel C. Briand, John W. Daly, and Jiirgen K. Wiist. A unified
framework for coupling measurement in object-oriented systems. IEEFE
Transactions on Software Engineering, 25(1):91-121, January/Febru-
ary 1999.

Lionel C. Briand, Sandro Morasca, and Victor R. Basili. Measuring
and Assessing Maintainability at the End of High Level Design. In Pro-
ceedings of Internaltional Conference on Software Maintenance, pages
88-97, 1993.

172

[18]

Lionel C. Briand, Sandro Morasca, and Victor R. Basili. Defining and
validating high-level design metrics. Technical Report CS-TR-3301, De-
partment of Computer Science, University of Maryland, College Park,
MD, 20742, June 1994.

William J. Brown, Raphael C. Malveau, Hays W. McCormick III, and
Thomas J. Mowbray. AntiPatterns: Refactoring Software, Architec-
tures, and Projects in Crisis. John Wiley & Sons, New York, 1998.

Srgio Bryton and F. Brito e Abreu. Modularity-oriented refactoring. In
Proceedings of the 12th European Conference on Software Engineering
and Reengineering, pages 294-297. IEEE Computer Society, 04 2008.

H.S. Chae and Y.R. Kwon. A Cohesion Measure for Classes in Object-
Oriented Systems. In Proc. of the Fifth International Software Metrics
Symposium, pages 58—166, 1998.

H.S. Chae, Y.R. Kwon, and D.H. Bae. A Cohesion Measure for Object-
Oriented Classes. Software - Practice & Experience, 30(12):1405-1431,
2000.

H.S. Chae, Y.R. Kwon, and D.H. Bae. Improving Cohesion Metrics for
Classes by Considering Dependent Instance Variables. IEEE Transac-
tions on Software Engineering, 30(11):826-832, November 2004.

7Z.-Q. Chen, B.-W. Xu, and Y.-M. Zhou. Measuring class cohesion based
on dependence analysis. Journal of Computer Science and Technology,
19(6):859-866, 2004.

S.R. Chidamber and C.K. Kemerer. Towards a Metric Suite for Ob-
ject Oriented Design. In Proceedings of ACM SIGPLAN International
Conference on Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA’91), Sigplan Notices 26(11), pages 197 — 211,
1991.

S.R. Chidamber and C.K. Kemerer. A Metrics Suite for Object Ori-
ented Design. IEEE Transactions on Software Engineering, 20(6):476—
493, June 1994.

Mel O Cinnéide, Laurence Tratt, Mark Harman, Steve Counsell, and
Iman Hemati Moghadam. Experimental assessment of software metrics
using automated refactoring. In ESEM, pages 49-58, 2012.

L.L Constantine and E. Yourdon. Structured design. Prentice Hall,
1979.

173

[29]

[30]

[31]

32]
33]

[36]

[37]

[38]

[39]

[40]

G.W. Cox, L.H. Etzkorn, and W.E. Hughes. Cohesion Metric for
Object-Oriented Systems Based on Semantic Closeness from Disam-
biguity. Applied Artificial Intelligence, 20(5):419-436, 2006.

Jehad Al Dallal. The impact of inheritance on the internal quality
attributes of java classes. Kuwait journal of science & engineering, 39,
2012.

Nicholas Drouin, Mourad Badri, and Fadel Tour. Analyzing software
quality evolution using metrics: An empirical study on open source
software. Journal of Software, 8(10), 2013.

http://www.eclipse.org/.

Michael Eichberg, Daniel Germanus, Mira Mezini, Lukas Mrokon, and
Thorsten Schfer. QScope: an Open, Extensible Framework for Mea-
suring Software Projects. In Proceedings of 10th European Conference
on Software Maintenance and Reengineering (CSMR), pages 113 — 122.
IEEE Computer Society, 2006.

K. El Emam, S. Benlarbi, N. Goel, and S.N. Rai. The Confounding
Effect of Class Size on the Validity of Object-Oriented Metrics. IEEE
Transactions on Software Engineering, 27(7):630-650, 2001.

Michael English, Jim Buckley, and Tony Cahill. Fine-grained software
metrics in practice. In ESEM ’07: Proceedings of the First Interna-
tional Symposium on Empirical Software Engineering and Measure-
ment, pages 295-304, Washington, DC, USA, 2007. IEEE Computer
Society.

Javier Esparza and Jens Knoop. An automata-theoretic approach to
interprocedural data-flow analysis. In Foundations of Software Science
and Computation Structures, pages 14-30. Springer, 1999.

L. Etzkorn, C. Davis, and W. Li. A Practical Look at the Lack of
Cohesion in Methods Metric. Journal of Object-Oriented Programming,
pages 27-34, September 1998.

Willliam Feller. An introduction to probability theory and its applica-
tions, volume 2. John Wiley & Sons, 2008.

Norman Fenton and James Bieman. Software metrics: a rigorous and
practical approach. CRC Press, 2014.

L. Ferndndez and R. Pe na. A Sensitive Metric of Class Cohesion.
Information Theories and Applications, 13(1):82-91, 2006.

174

[41]

[42]

[43]

[44]

[49]

[50]

Marios Fokaefs, Nikolaos Tsantalis, Eleni Stroulia, and Alexander
Chatzigeorgiou. Identification and application of extract class refac-

torings in object-oriented systems. Journal of Systems and Software,
85(10):2241-2260, 2012.

J. Nathan Foster, Michael B. Greenwald, Jonathan T. Moore, Ben-
jamin C. Pierce, and Alan Schmitt. Combinators for bidirectional tree
transformations: A linguistic approach to the view-update problem.
ACM Transactions on Programming Languages and Systems, 29(3):17,
May 2007.

M. Fowler. Refactoring: Improving the Design of FExisting Code.
Addison-Wesley, 1999.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley, 1995.

Rinkaj Goyal, Pravin Chandra, and Yogesh Singh. Identifying influ-
ential metrics in the combined metrics approach of fault prediction.
SpringerPlus, 2(1):627, 2013.

Mark Grand. Patterns in Java, volume 1: a catalog of reusable design
patterns illustrated with UML. John Wiley & Sons, Inc., New York,
NY, USA, 1998.

Elnar Hajiyev, Mathieu Verbaere, and Oege de Moor. Codequest:
Scalable source code queries with datalog. In Dave Thomas, editor,
ECOOP’06: Proceedings of the 20th European Conference on Object-
Oriented Programming, volume 4067 of Lecture Notes in Computer Sci-
ence, pages 2—27, Berlin, Germany, 2006. Springer.

Peng He, Bing Li, Xiao Liu, Jun Chen, and Yutao Ma. An empir-
ical study on software defect prediction with a simplified metric set.
Information and Software Technology, 59:170-190, 2015.

B. Henderson-Sellers. Object-Oriented Metrics: Measures of Complez-
ity. Prentice Hall, 1996.

Ronald Jabangwe, Jiirgen Borstler, Darja Smite, and Claes Wohlin.
Empirical evidence on the link between object-oriented measures and
external quality attributes: A systematic literature review. Empirical
Software Engineering, 20(3):640-693, 2013.

Firas Jassim and Fawzi Altaani. Statistical approach for predicting
factors of mood method for object oriented. CoRR, abs/1302.5454,
2013.

175

[52]

[54]

[59]

[60]

[61]

Padmaja Joshi and Rushikesh K. Joshi. Microscopic coupling metrics
for refactoring. In CSMR ‘06: Proceedings of the Conference on Soft-
ware Maintenance and Reengineering, pages 145-152, Washington, DC,
USA, 2006. IEEE Computer Society.

Huzefa Kagdi, Michael L. Collard, and Jonathan I. Maletic. Comparing
approaches to mining source code for call-usage patterns. In MSR ‘07:
Proceedings of the Fourth International Workshop on Mining Software
Repositories, page 20, Washington, DC, USA, 2007. IEEE Computer
Society.

Rudolf K. Keller, Reinhard Schauer, Sébastien Robitaille, and Patrick
Pagé. Pattern-based reverse-engineering of design components. In ICSE
‘99: Proceedings of the 21st international conference on Software engi-
neering, pages 226-235, Los Alamitos, CA, USA, 1999. IEEE Computer
Society Press.

Ralf Lammel. Towards generic refactoring. In Proceedings of the 2002
ACM SIGPLAN workshop on Rule-based programming, pages 15-28.
ACM, 2002.

Michele Lanza and Radu Marinescu. Object-Oriented Metrics in Prac-
tice. Springer, 2006.

Ming Li and Paul M.B. Vitnyi. An Introduction to Kolmogorov Com-
plexity and Its Applications. Springer Publishing Company, Incorpo-
rated, 2008.

Sami Makeld and Ville Leppénen. Taking Purpose of Class into Con-
sideration in Cohesion Metrics. In Varmo Vene Merik Meriste, editor,
Proceedings of the Ninth Symposium on Programming Languages and
Software Tools, pages 112 — 125, 2005.

Sami Mékeld and Ville Leppénen. Observation on Lack of Cohesion
Metrics. In Proceedings of the International Conference on Computer
Systems and Technologies (CompSysTech’06), 2006.

Sami Mékela and Ville Leppéanen. A Software Metric for Coherence of
Class Roles in Java Programs. In Proceedings of the 5th International
Symposium on Principles and Practice of Programming in Java, PPPJ
2007, pages 51-60. ACM, 2007.

Sami Makeld and Ville Leppanen. Client based Object-Oriented Co-
hesion Metrics. In COMPSAC ‘07: Proceedings of the 31st Annual
International Computer Software and Applications Conference - Vol.
2- (COMPSAC 2007), pages 743-748, Washington, DC, USA, 2007.
IEEE Computer Society.

176

[62]

[63]

[64]

[65]

[66]

Sami Makela and Ville Leppéanen. Client-Based Cohesion Metrics for
Java Programs. Science of Computer Programming, 72(5-6):355-378,
2009.

Sami Makela and Ville Leppanen. Experimental Evaluation of Inter-
pretations for Local Cohesion Metrics. In Proceedings of the 2009 In-
ternational Conference on Software Engineering Research and Prac-
tice(SERP’09), pages 389-395. CSREA Press, 2009.

A. Marcus and D. Poshyvanyk. The Conceptual Cohesion of Classes.
In Proceedings, 21st IEEE International Conference on Software Main-
tenance (ICSM’05), pages 133-142, 2005.

David Melski and Thomas Reps. Interconvertibility of a class of set con-
straints and context-free-language reachability. Theoretical Computer
Science, 248(1):29-98, 2000.

Tom Mens, Niels Van Eetvelde, Serge Demeyer, and Dirk Janssens.
Formalizing refactorings with graph transformations. Journal of Soft-
ware Maintenance and Evolution: Research and Practice, 17(4):247—
276, 2005.

B. Meyer. Object-Oriented Software Construction. Prentice Hall, New
York, second edition, 1997.

Bertrand Meyer. Object oriented software construction. 1988.

Vojislav B. Misic. Cohesion is structural, coherence is functional: Dif-
ferent views, different measures. In IEEE METRICS, pages 135—, 2001.

Vojislav B. Misic. Measuring the coherence of software product line
architectures. In Software Engineering Research and Practice, pages
364-372, 2003.

Helmut Neukirchen, Benjamin Zeif}, Jens Grabowski, Paul Baker, and
Dominic Evans. Quality assurance for TTCN-3 test specifications. Soft-
ware Testing, Verification and Reliability (STVR), 18:71-97, June 2008.

Alexis O’Connor, Macneil Shonle, and William Griswold. Star diagram
with automated refactorings for Eclipse. In FEclipse ‘05: Proceedings
of the 2005 OOPSLA workshop on Eclipse technology eXchange, pages
16-20, New York, NY, USA, 2005. ACM Press.

Andrzej Olszak and Bo Ngrregaard Jgrgensen. Remodularizing java
programs for improved locality of feature implementations in source
code. Science of Computer Programming, 77(3):131-151, 2012.

177

[74]

L. Ott and J. Thuss. Slice based metrics for estimating cohesion. In
Proceedings of the First IEEE-CS International Software Metrics Sym-
posium, pages 78-81, 1993.

David Lorge Parnas. On the criteria to be used in decomposing systems
into modules. Communications of the ACM, 15(12):1053-1058, 1972.

Gordon D Plotkin. A structural approach to operational semantics.
1981.

Laura Ponisio and Oscar Nierstrasz. Using context information to re-
architect a system. In Proceedings of the 3rd Software Measurement
European Forum 2006 (SMEF’06), pages 91-103, 2006.

Sandeep Purao and Vijay Vaishnavi. Product metrics for object-
oriented systems. ACM Comput. Surv., 35(2):191-221, 2003.

Yu Qu, Xiaohong Guan, Qinghua Zheng, Ting Liu, Lidan Wang, Yuqiao
Hou, and Zijiang Yang. Exploring community structure of software call
graph and its applications in class cohesion measurement. Journal of
Systems and Software, 108:193-210, 2015.

Danijel Radjenovié¢, Marjan Hericko, Richard Torkar, and Ales
Zivkovi¢. Software fault prediction metrics: A systematic literature
review. Information and Software Technology, 55(8):1397-1418, 2013.

Jan Rittinger, Jens Teubner, and Torsten Grust. Pathfinder: A Re-
lational Query Optimizer Explores XQuery Terrain. In Proceedings

of BTW Conference (Datenbanksysteme fr Business, Technologie und
Web), pages 617620, 2007.

Romain Robbes and Michele Lanza. A change-based approach to soft-
ware evolution. Electron. Notes Theor. Comput. Sci., 166:93-109, 2007.

Daniel Rodriguez, Roberto Ruiz, Jose C Riquelme, and Rachel Harri-
son. A study of subgroup discovery approaches for defect prediction.
Information and Software Technology, 55(10):1810-1822, 2013.

Jorma Sajaniemi. An empirical analysis of roles of variables in novice-
level procedural programs. In HCC' ‘02: Proceedings of the IEEE 2002
Symposia on Human Centric Computing Languages and Environments
(HCC’02), page 37, Washington, DC, USA, 2002. IEEE Computer So-
ciety.

Arto Salomaa. Formal languages. Academic Press Professional, Inc.,
San Diego, CA, USA, 1987.

178

[36]

[87]

[88]

[89]

[92]

Santonu Sarkar, Avinash C. Kak, and N S. Nagaraja. Metrics for an-
alyzing module interactions in large software systems. In APSEC "05:
Proceedings of the 12th Asia-Pacific Software Engineering Conference,
pages 264-271, Washington, DC, USA, 2005. IEEE Computer Society.

Micha Sharir and Amir Pnueli. Two approaches to interprocedural data
flow analysis. New York University. Courant Institute of Mathematical
Sciences. ComputerScience Department, 1978.

Frank Simon, Frank Steinbruckner, and Claus Lewerentz. Metrics
Based Refactoring. In Proceedings of the European Conference on Soft-
ware Maintenance and Reengineering (CSMR), pages 30-38, 2001.

Mirko Streckenbach and Gregor Snelting. Refactoring class hierarchies
with KABA. In OOPSLA ‘04: Proceedings of the 19th annual ACM
SIGPLAN conference on Object-oriented programming, systems, lan-
guages, and applications, volume 39, pages 315-330, New York, NY,
USA, October 2004. ACM Press.

http://www.uml.org/.

John Whaley, Dzintars Avots, Michael Carbin, and Monica S. Lam.
Using Datalog and Binary Decision Diagrams for Program Analysis.
In Kwangkeun Yi, editor, Proceedings of the 3rd Asian Symposium on
Programming Languages and Systems, volume 3780 of LNCS, pages
97-118. Springer-Verlag, November 2005.

Yibiao Yang, Yuming Zhou, Hongmin Lu, Lin Chen, Zhenyu Chen,
Baowen Xu, Hareton Leung, and Zhenyu Zhang. Are slice-based cohe-
sion metrics actually useful in effort-aware post-release fault-proneness
prediction? an empirical study. Software Engineering, IEEE Transac-
tions on, 41(4):331-357, 2015.

179

NaunRrUNE

v ®

10.
11.

12,
13.
14.
15.
16.

17.
18.
19.
20.

21.

22.

23.

24.
25.

26.

27.

28.
29.
30.
31.
32.
33.

34.
35.

37.
38.
39.

40.

Turku Centre for Computer Science
TUCS Dissertations

Marjo Lipponen, On Primitive Solutions of the Post Correspondence Problem
Timo Kakola, Dual Information Systems in Hyperknowledge Organizations
Ville Leppdnen, Studies on the Realization of PRAM

Cunsheng Ding, Cryptographic Counter Generators

Sami Viitanen, Some New Global Optimization Algorithms

Tapio Salakoski, Representative Classification of Protein Structures

Thomas Langbacka, An Interactive Environment Supporting the Development of
Formally Correct Programs

Thomas Finne, A Decision Support System for Improving Information Security
Valeria Mihalache, Cooperation, Communication, Control. Investigations on
Grammar Systems.

Marina Waldén, Formal Reasoning About Distributed Algorithms

Tero Laihonen, Estimates on the Covering Radius When the Dual Distance is
Known

Lucian Ilie, Decision Problems on Orders of Words

Jukkapekka Hekanaho, An Evolutionary Approach to Concept Learning

Jouni Jarvinen, Knowledge Representation and Rough Sets

Tomi Pasanen, In-Place Algorithms for Sorting Problems

Mika Johnsson, Operational and Tactical Level Optimization in Printed Circuit
Board Assembly

Mats Aspnads, Multiprocessor Architecture and Programming: The Hathi-2 System
Anna Mikhajlova, Ensuring Correctness of Object and Component Systems
Vesa Torvinen, Construction and Evaluation of the Labour Game Method
Jorma Boberg, Cluster Analysis. A Mathematical Approach with Applications to
Protein Structures

Leonid Mikhajlov, Software Reuse Mechanisms and Techniques: Safety Versus
Flexibility

Timo Kaukoranta, Iterative and Hierarchical Methods for Codebook Generation in
Vector Quantization

Gabor Magyar, On Solution Approaches for Some Industrially Motivated
Combinatorial Optimization Problems

Linas Laibinis, Mechanised Formal Reasoning About Modular Programs
Shuhua Liu, Improving Executive Support in Strategic Scanning with Software
Agent Systems

Jaakko Jarvi, New Techniques in Generic Programming - C++ is more Intentional
than Intended

Jan-Christian Lehtinen, Reproducing Kernel Splines in the Analysis of Medical
Data

Martin Biichi, Safe Language Mechanisms for Modularization and Concurrency
Elena Troubitsyna, Stepwise Development of Dependable Systems

Janne Nappi, Computer-Assisted Diagnosis of Breast Calcifications

Jianming Liang, Dynamic Chest Images Analysis

Tiberiu Seceleanu, Systematic Design of Synchronous Digital Circuits

Tero Aittokallio, Characterization and Modelling of the Cardiorespiratory System
in Sleep-Disordered Breathing

Ivan Porres, Modeling and Analyzing Software Behavior in UML

Mauno Ronkkd, Stepwise Development of Hybrid Systems

Jouni Smed, Production Planning in Printed Circuit Board Assembly

Vesa Halava, The Post Correspondence Problem for Market Morphisms

Ion Petre, Commutation Problems on Sets of Words and Formal Power Series
Vladimir Kvassov, Information Technology and the Productivity of Managerial
Work

Frank Tétard, Managers, Fragmentation of Working Time, and Information
Systems

41.
42.
43.
44.
45.

46.

47.
48.
49.
50.
51.

52.
53.
54.

55.

56.
57.

58.
59.

60.
61.
62.
63.
64.
65.

67.
68.
69.
70.
71.
72.

73.
74.

75.

76.
77.

78.

79.

80.

81.
82.

83.

84.
85.

Jan Manuch, Defect Theorems and Infinite Words

Kalle Ranto, Z,-Goethals Codes, Decoding and Designs

Arto Lepistd, On Relations Between Local and Global Periodicity

Mika Hirvensalo, Studies on Boolean Functions Related to Quantum Computing
Pentti Virtanen, Measuring and Improving Component-Based Software
Development

Adekunle Okunoye, Knowledge Management and Global Diversity — A Framework
to Support Organisations in Developing Countries

Antonina Kloptchenko, Text Mining Based on the Prototype Matching Method
Juha Kivijarvi, Optimization Methods for Clustering

Rimvydas Ruksénas, Formal Development of Concurrent Components

Dirk Nowotka, Periodicity and Unbordered Factors of Words

Attila Gyenesei, Discovering Frequent Fuzzy Patterns in Relations of Quantitative
Attributes

Petteri Kaitovaara, Packaging of IT Services — Conceptual and Empirical Studies
Petri Rosendahl, Niho Type Cross-Correlation Functions and Related Equations
Péter Majlender, A Normative Approach to Possibility Theory and Soft Decision
Support

Seppo Virtanen, A Framework for Rapid Design and Evaluation of Protocol
Processors

Tomas Eklund, The Self-Organizing Map in Financial Benchmarking

Mikael Collan, Giga-Investments: Modelling the Valuation of Very Large Industrial
Real Investments

Dag Bjorklund, A Kernel Language for Unified Code Synthesis

Shengnan Han, Understanding User Adoption of Mobile Technology: Focusing on
Physicians in Finland

Irina Georgescu, Rational Choice and Revealed Preference: A Fuzzy Approach
Ping Yan, Limit Cycles for Generalized Liénard-Type and Lotka-Volterra Systems
Joonas Lehtinen, Coding of Wavelet-Transformed Images

Tommi Meskanen, On the NTRU Cryptosystem

Saeed Salehi, Varieties of Tree Languages

Jukka Arvo, Efficient Algorithms for Hardware-Accelerated Shadow Computation
Mika Hirvikorpi, On the Tactical Level Production Planning in Flexible
Manufacturing Systems

Adrian Costea, Computational Intelligence Methods for Quantitative Data Mining
Cristina Seceleanu, A Methodology for Constructing Correct Reactive Systems
Luigia Petre, Modeling with Action Systems

Lu Yan, Systematic Design of Ubiquitous Systems

Mehran Gomari, On the Generalization Ability of Bayesian Neural Networks
Ville Harkke, Knowledge Freedom for Medical Professionals — An Evaluation Study
of a Mobile Information System for Physicians in Finland

Marius Cosmin Codrea, Pattern Analysis of Chlorophyll Fluorescence Signals
Aiying Rong, Cogeneration Planning Under the Deregulated Power Market and
Emissions Trading Scheme

Chihab BenMoussa, Supporting the Sales Force through Mobile Information and
Communication Technologies: Focusing on the Pharmaceutical Sales Force

Jussi Salmi, Improving Data Analysis in Proteomics

Orieta Celiku, Mechanized Reasoning for Dually-Nondeterministic and
Probabilistic Programs

Kaj-Mikael Bjork, Supply Chain Efficiency with Some Forest Industry
Improvements

Viorel Preoteasa, Program Variables — The Core of Mechanical Reasoning about
Imperative Programs

Jonne Poikonen, Absolute Value Extraction and Order Statistic Filtering for a
Mixed-Mode Array Image Processor

Luka Milovanov, Agile Software Development in an Academic Environment
Francisco Augusto Alcaraz Garcia, Real Options, Default Risk and Soft
Applications

Kai K. Kimppa, Problems with the Justification of Intellectual Property Rights in
Relation to Software and Other Digitally Distributable Media

Dragos Truscan, Model Driven Development of Programmable Architectures
Eugen Czeizler, The Inverse Neighborhood Problem and Applications of Welch
Sets in Automata Theory

86.

87.

88.

89.

91.

92.
93.

94.
95.
97.

98.
99.

100.

101.

102.
103.

104.
105.
106.
107.
108.

109.
110.

111.

112,
113.

114.
115.

116.
117.

118.
119.

120.
121.
122,
123.
124,
125,

126.
127.

Sanna Ranto, Identifying and Locating-Dominating Codes in Binary Hamming
Spaces

Tuomas Hakkarainen, On the Computation of the Class Numbers of Real Abelian
Fields

Elena Czeizler, Intricacies of Word Equations

Marcus Alanen, A Metamodeling Framework for Software Engineering

Filip Ginter, Towards Information Extraction in the Biomedical Domain: Methods
and Resources

Jarkko Paavola, Signature Ensembles and Receiver Structures for Oversaturated
Synchronous DS-CDMA Systems

Arho Virkki, The Human Respiratory System: Modelling, Analysis and Control
Olli Luoma, Efficient Methods for Storing and Querying XML Data with Relational
Databases

Dubravka Ili¢, Formal Reasoning about Dependability in Model-Driven
Development

Kim Solin, Abstract Algebra of Program Refinement

Tomi Westerlund, Time Aware Modelling and Analysis of Systems-on-Chip
Kalle Saari, On the Frequency and Periodicity of Infinite Words

Tomi Karki, Similarity Relations on Words: Relational Codes and Periods
Markus M. Mdkeld, Essays on Software Product Development: A Strategic
Management Viewpoint

Roope Vehkalahti, Class Field Theoretic Methods in the Design of Lattice Signal
Constellations

Anne-Maria Ernvall-Hytonen, On Short Exponential Sums Involving Fourier
Coefficients of Holomorphic Cusp Forms

Chang Li, Parallelism and Complexity in Gene Assembly

Tapio Pahikkala, New Kernel Functions and Learning Methods for Text and Data
Mining

Denis Shestakov, Search Interfaces on the Web: Querying and Characterizing
Sampo Pyysalo, A Dependency Parsing Approach to Biomedical Text Mining
Anna Sell, Mobile Digital Calendars in Knowledge Work

Dorina Marghescu, Evaluating Multidimensional Visualization Techniques in Data
Mining Tasks

Tero Santti, A Co-Processor Approach for Efficient Java Execution in Embedded
Systems

Kari Salonen, Setup Optimization in High-Mix Surface Mount PCB Assembly
Pontus Bostrom, Formal Design and Verification of Systems Using Domain-
Specific Languages

Camilla J. Hollanti, Order-Theoretic Mehtods for Space-Time Coding: Symmetric
and Asymmetric Designs

Heidi Himmanen, On Transmission System Design for Wireless Broadcasting
Sébastien Lafond, Simulation of Embedded Systems for Energy Consumption
Estimation

Evgeni Tsivtsivadze, Learning Preferences with Kernel-Based Methods

Petri Salmela, On Commutation and Conjugacy of Rational Languages and the
Fixed Point Method

Siamak Taati, Conservation Laws in Cellular Automata

Vladimir Rogojin, Gene Assembly in Stichotrichous Ciliates: Elementary
Operations, Parallelism and Computation

Alexey Dudkov, Chip and Signature Interleaving in DS CDMA Systems

Janne Savela, Role of Selected Spectral Attributes in the Perception of Synthetic
Vowels

Kristian Nybom, Low-Density Parity-Check Codes for Wireless Datacast Networks
Johanna Tuominen, Formal Power Analysis of Systems-on-Chip

Teijo Lehtonen, On Fault Tolerance Methods for Networks-on-Chip

Eeva Suvitie, On Inner Products Involving Holomorphic Cusp Forms and Maass
Forms

Linda Mannila, Teaching Mathematics and Programming — New Approaches with
Empirical Evaluation

Hanna Suominen, Machine Learning and Clinical Text: Supporting Health
Information Flow

Tuomo Saarni, Segmental Durations of Speech

Johannes Eriksson, Tool-Supported Invariant-Based Programming

128.

129,

130.

131.

132.

133.

134.
135.

136.
137.
138.
139.
140.
141.
142,
143.
144,
145.
146.

147.
148.

149.
150.
151.
152,
153.

154.
155.

156.
157.
158.
159.
160.
161.

162.
163.

164.
165.

166.

Tero Jokela, Design and Analysis of Forward Error Control Coding and Signaling
for Guaranteeing QoS in Wireless Broadcast Systems

Ville Lukkarila, On Undecidable Dynamical Properties of Reversible One-
Dimensional Cellular Automata

Qaisar Ahmad Malik, Combining Model-Based Testing and Stepwise Formal
Development

Mikko-Jussi Laakso, Promoting Programming Learning: Engagement, Automatic
Assessment with Immediate Feedback in Visualizations

Riikka Vuokko, A Practice Perspective on Organizational Implementation of
Information Technology

Jeanette Heidenberg, Towards Increased Productivity and Quality in Software
Development Using Agile, Lean and Collaborative Approaches

Yong Liu, Solving the Puzzle of Mobile Learning Adoption

Stina Ojala, Towards an Integrative Information Society: Studies on Individuality
in Speech and Sign

Matteo Brunelli, Some Advances in Mathematical Models for Preference Relations
Ville Junnila, On Identifying and Locating-Dominating Codes

Andrzej Mizera, Methods for Construction and Analysis of Computational Models
in Systems Biology. Applications to the Modelling of the Heat Shock Response and
the Self-Assembly of Intermediate Filaments.

Csaba Raduly-Baka, Algorithmic Solutions for Combinatorial Problems in
Resource Management of Manufacturing Environments

Jari Kyngas, Solving Challenging Real-World Scheduling Problems

Arho Suominen, Notes on Emerging Technologies

J6zsef Mezei, A Quantitative View on Fuzzy Numbers

Marta Olszewska, On the Impact of Rigorous Approaches on the Quality of
Development

Antti Airola, Kernel-Based Ranking: Methods for Learning and Performace
Estimation

Aleksi Saarela, Word Equations and Related Topics: Independence, Decidability
and Characterizations

Lasse Bergroth, Kahden merkkijonon pisimman yhteisen alijonon ongelma ja sen
ratkaiseminen

Thomas Canhao Xu, Hardware/Software Co-Design for Multicore Architectures
Tuomas Makila, Software Development Process Modeling — Developers
Perspective to Contemporary Modeling Techniques

Shahrokh Nikou, Opening the Black-Box of IT Artifacts: Looking into Mobile
Service Characteristics and Individual Perception

Alessandro Buoni, Fraud Detection in the Banking Sector: A Multi-Agent
Approach

Mats Neovius, Trustworthy Context Dependency in Ubiquitous Systems

Fredrik Degerlund, Scheduling of Guarded Command Based Models
Amir-Mohammad Rahmani-Sane, Exploration and Design of Power-Efficient
Networked Many-Core Systems

Ville Rantala, On Dynamic Monitoring Methods for Networks-on-Chip

Mikko Pelto, On Identifying and Locating-Dominating Codes in the Infinite King
Grid

Anton Tarasyuk, Formal Development and Quantitative Verification of
Dependable Systems

Muhammad Mohsin Saleemi, Towards Combining Interactive Mobile TV and
Smart Spaces: Architectures, Tools and Application Development

Tommi J. M. Lehtinen, Numbers and Languages

Peter Sarlin, Mapping Financial Stability

Alexander Wei Yin, On Energy Efficient Computing Platforms

Mikotaj Olszewski, Scaling Up Stepwise Feature Introduction to Construction of
Large Software Systems

Maryam Kamali, Reusable Formal Architectures for Networked Systems
Zhiyuan Yao, Visual Customer Segmentation and Behavior Analysis - A SOM-
Based Approach

Timo Jolivet, Combinatorics of Pisot Substitutions

Rajeev Kumar Kanth, Analysis and Life Cycle Assessment of Printed Antennas for
Sustainable Wireless Systems

Khalid Latif, Design Space Exploration for MPSoC Architectures

167.
168.
169.
170.
171.
172,

173.
174.

175.
176.

177.
178.
179.
180.
181.
182.
183.
184.
185.
186.
187.
188.

189.
190.

191.
192,
193.
194.
195.
196.
197.
198.
199.
200.
201.
202.
203.
204.
205.

206.

Bo Yang, Towards Optimal Application Mapping for Energy-Efficient Many-Core
Platforms

Ali Hanzala Khan, Consistency of UML Based Designs Using Ontology Reasoners
Sonja Leskinen, m-Equine: IS Support for the Horse Industry

Fareed Ahmed Jokhio, Video Transcoding in a Distributed Cloud Computing
Environment

Moazzam Fareed Niazi, A Model-Based Development and Verification Framework
for Distributed System-on-Chip Architecture

Mari Huova, Combinatorics on Words: New Aspects on Avoidability, Defect Effect,
Equations and Palindromes

Ville Timonen, Scalable Algorithms for Height Field Illumination

Henri Korvela, Virtual Communities — A Virtual Treasure Trove for End-User
Developers

Kameswar Rao Vaddina, Thermal-Aware Networked Many-Core Systems
Janne Lahtiranta, New and Emerging Challenges of the ICT-Mediated Health and
Well-Being Services

Irum Rauf, Design and Validation of Stateful Composite RESTful Web Services
Jari Bjorne, Biomedical Event Extraction with Machine Learning

Katri Haverinen, Natural Language Processing Resources for Finnish: Corpus
Development in the General and Clinical Domains

Ville Salo, Subshifts with Simple Cellular Automata

Johan Ersfolk, Scheduling Dynamic Dataflow Graphs

Hongyan Liu, On Advancing Business Intelligence in the Electricity Retail Market
Adnan Ashraf, Cost-Efficient Virtual Machine Management: Provisioning,
Admission Control, and Consolidation

Muhammad Nazrul Islam, Design and Evaluation of Web Interface Signs to
Improve Web Usability: A Semiotic Framework

Johannes Tuikkala, Algorithmic Techniques in Gene Expression Processing: From
Imputation to Visualization

Natalia Diaz Rodriguez, Semantic and Fuzzy Modelling for Human Behaviour
Recognition in Smart Spaces. A Case Study on Ambient Assisted Living

Mikko Pankadala, Potential and Challenges of Analog Reconfigurable Computation
in Modern and Future CMOS

Sami Hyrynsalmi, Letters from the War of Ecosystems - An Analysis of
Independent Software Vendors in Mobile Application Marketplaces

Seppo Pulkkinen, Efficient Optimization Algorithms for Nonlinear Data Analysis
Sami Pyéttiala, Optimization and Measuring Techniques for Collect-and-Place
Machines in Printed Circuit Board Industry

Syed Mohammad Asad Hassan Jafri, Virtual Runtime Application Partitions for
Resource Management in Massively Parallel Architectures

Toni Ernvall, On Distributed Storage Codes

Yuliya Prokhorova, Rigorous Development of Safety-Critical Systems

Olli Lahdenoja, Local Binary Patterns in Focal-Plane Processing — Analysis and
Applications

Annika H. Holmbom, Visual Analytics for Behavioral and Niche Market
Segmentation

Sergey Ostroumov, Agent-Based Management System for Many-Core Platforms:
Rigorous Design and Efficient Implementation

Espen Suenson, How Computer Programmers Work - Understanding Software
Development in Practise

Tuomas Poikela, Readout Architectures for Hybrid Pixel Detector Readout Chips
Bogdan Iancu, Quantitative Refinement of Reaction-Based Biomodels

Ilkka Torma, Structural and Computational Existence Results for Multidimensional
Subshifts

Sebastian Okser, Scalable Feature Selection Applications for Genome-Wide
Association Studies of Complex Diseases

Fredrik Abbors, Model-Based Testing of Software Systems: Functionality and
Performance

Inna Pereverzeva, Formal Development of Resilient Distributed Systems
Mikhail Barash, Defining Contexts in Context-Free Grammars

Sepinoud Azimi, Computational Models for and from Biology: Simple Gene
Assembly and Reaction Systems

Petter Sandvik, Formal Modelling for Digital Media Distribution

207.

208.
209.

210.
211.

Jongyun Moon, Hydrogen Sensor Application of Anodic Titanium Oxide
Nanostructures

Simon Holmbacka, Energy Aware Software for Many-Core Systems
Charalampos Zinoviadis, Hierarchy and Expansiveness in Two-Dimensional
Subshifts of Finite Type

Mika Murtojarvi, Efficient Algorithms for Coastal Geographic Problems
Sami Madkeld, Cohesion Metrics for Improving Software Quality

TURKU

CENTRE for
COMPUTER

SCIENCE

http://www. tucs.fi
tucs@abo.fi

),

University of Turku
Faculty of Mathematics and Natural Sciences

e Department of Information Technology

e Department of Mathematics and Statistics
Turku School of Economics

e Institute of Information Systems Science

Abo Akademi University

Faculty of Science and Engineering
e Computer Engineering
e Computer Science

Faculty of Social Sciences, Business and Economics
e Information Systems

ISBN 978-952-12-3388-3
ISSN 1239-1883

Sami Mikela Cohesion Metrics for Improving Software Quality

Sami Mikeld Cohesion Metrics for Improving Software Quality

