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Abstract

This report describes TV white space network measurements and trials con-
ducted in Finnish WISE projects during 2011-2014. A TV White Space test network
environment was developed and built in Turku, Finland, to aid in standardization
and to demonstrate technical capabilities of TV white space networks. The test net-
work environment was the first in Europe having a geolocation database to control
the frequency use. This report introduces interference measurements conducted to
aid in the standardization work in CEPT/ECC SE43 group. These measurements
and the work in the SE43 group served as base information in the creation of an
ETSI harmonised standard for TV white space devices, ETSI EN 301 598. The re-
port also presents two application pilot trials conducted to demonstrate the technical
feasibility of TV white space networks: a long-term video surveillance trial in Turku
and Helsinki area public transport ticket sales and transit information screens trial.
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1 Introduction

This report describes TV white space (TVWS) network measurements and trials
conducted in WISE and WISE2 projects in Finland during 2011-2014. The TV white
space test network environment was developed and built to aid in the standardization
work, and to demonstrate technological capabilities of TVWS to industry. A project
consortium including universities, geolocation database provider, regulator, digital
terrestrial television (DTT) broadcaster and user equipment manufacturer began its
work in WISE project [1] in 2011. The objective of the project was to construct
a testbed to study the use of cognitive radios utilizing white spaces of the UHF
broadcasting band (470-790 MHz), follow closely the topics in CEPT/ECC SE43
and contribute the results obtained in the project within SE43. The first phase of
WISE project (2011-2013) focused on the interference measurements to protect the
incumbents (Digital terrestrial TV and PMSE users) within the DTT band, while the
second phase (WISE2, 2013-2014) focused on the application pilot trials.

Figure 1: Original WISE consortium in the middle and extended consortium of
WISE2 at the outer circle

The WISE project partners in the first phase were University of Turku, Turku
University of Applied Sciences, Aalto University, Nokia, Digita, Fairspectrum, and
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Finnish Communications Regulatory Authority (FICORA). Additional industrial part-
ners were introduced in the second phase: Nokia Siemens Networks, Elektrobit,
Teleste, Suomen Turvakamera Oy, Satel, Helsingin Seudun Liikenne, City of Jyväskylä
(Local traffic), Viola Systems, Insta DefSec and QEM Software. Figure 1 illustrates
the consortium partners in both the first (inner circle) and the second phase (both
circles).

The first chapter gives a brief introduction to the conducted TVWS trials and the
European level standardisation work, which was the main reason to build a test net-
work environment for TVWS. The second chapter presents the TVWS test network
environment, related radio license, geolocation database and its radio environment
mapping techniques, and the device emission measurements conducted for the white
space devices (WSD) used in the application pilot trials. The third chapter describes
interference measurements conducted to study the protection of incumbents in sce-
narios under consideration in CEPT/ECC SE43 project team. The fourth chapter
describes a video surveillance application pilot trial and the application pilot trials
conducted with a public transport authority. Finally, the concluding remarks are
given.

1.1 Technical work in CEPT/ECC SE43 group

Following a request from the Electronic Communications Committee (ECC), Euro-
pean Conference of Postal and Telecommunications Administrations (CEPT) Work-
ing Group Spectrum Engineering (WG SE) established a new project team, Spectrum
Engineering 43 (SE43), at its 53rd meeting in May 2009. SE43 began its work with
“Technical and operational requirements for the possible operation of cognitive ra-
dio systems in the “White Space” of the frequency band 470-790 MHz” [2]. SE43
met for the first time in June 2009, and completed the work at its 16th meeting in
December 2012. All stakeholders were involved in the SE43 work: administrations,
industry, operators, Programme Making and Special Events (PMSE) representatives,
and broadcasters.

SE43 was mandated to:

• Define technical and operational requirements for the operation of cognitive
radio systems in the white spaces of the UHF broadcasting band (470-790
MHz) to ensure the protection of incumbent radio services/systems and in-
vestigate the consequential amount of spectrum potentially available as “white
space”.

• Provide, if required, technical assistance on further issues related to white
spaces and cognitive radio systems that ECC may identify in the future.

• Liaise directly with relevant groups within ECC and European Telecommuni-
cations Standards Institute (ETSI) as necessary [3].

The outcome of the first phase of the work was ECC report 159 (Technical and
operational requirements for the possible operation of cognitive radio systems in the

2



“University of Turku Technical Reports, No.12 — October 2016”

‘white spaces’ of the frequency band 470-790 MHz) [4], which was released in Jan-
uary 2011. The report still had a number of technical and regulatory issues requiring
further consideration, but it was decided that instead of updating it, two comple-
mentary reports would be released. The interference measurements conducted in
this report addressed the issues mentioned in ECC report 159, and contributed to
the second phase of SE43 work, which resulted in two complementary reports: ECC
report 185 (Complementary Report to ECC Report 159 Further definition of technical
and operational requirements for the operation of white space devices in the band
470-790 MHz) [5] and ECC Report 186 (Technical and operational requirements for
the operation of white space devices under geo-location approach) [6], which were
released in January 2013.

The reports produced in SE43, and ECC reports in general, are studies in support
of a harmonisation measure and have no direct regulatory power. Their importance
is nevertheless immense, as they are used to aid in the European regulation and
standardisation. The European Telecommunications Standards Institute (ETSI) is
the official European standards organization which works under mandates from the
European Commission to prepare harmonised standards under the provisions of
Radio and Telecommunication Terminal Equipment (R&TTE) Directive [7]. ETSI
BRAN (Broadband Radio Access Networks) has used the reports produced by SE43
as the basis of its "Harmonised European Standard EN 301 598: White Space Devices
(WSD); Wireless Access Systems operating in the 470 MHz to 790 MHz TV broadcast
band; Harmonised Standard covering the essential requirements of article 3.2 of
the R&TTE Directive" [8]. This harmonised standard includes RF requirements to
prevent harmful interference from WSDs by ensuring that the wanted radiated power
and unwanted radiated power do not exceed specific limits, which have been set by
using the results of the studies in SE43. The first phase of WISE project contributed
to the creation of this standard, while in the second phase of the project the standard
was used to measure if the WSDs used in the application pilot trials comply with the
harmonised standard (see section 2.3). In June 2016, R&TTE was replaced by Radio
Equipment Directive (RED) [9], and the harmonised standards are currently being
revised to meet the updated requirements of RED.
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2 WISE - White Space Test
Environment for Broadcast
Frequencies

Turku TV white space test environment was set up in WISE project [1] to develop and
validate technical solutions, accelerate commercial utilization of white spaces, and to
support the contributions to the regulation and standardisation work in CEPT/ECC
SE43 group. The test network and radio laboratory are located in Turku, Finland.
TV White space equipment has also been installed and trialled in different locations
in Helsinki for use-case piloting.

The TVWS test network environment consists of the following components:

• A commercial level DVB-T terrestrial TV broadcast test network with three
transmitters. The test network makes it possible to study the co-channel and
adjacent channel interference of cognitive radios to real TV broadcasts.

• A complementary simulation environment developed by University of Turku
and Aalto University.

• A full cognitive radio license for the TVWS frequency range 470 MHz - 790
MHz.

• Fairspectrum geolocation database.

• The Turku University of Applied Sciences radio laboratory, which is equipped
with e.g. white space radios, spectrum analysis and spectrum measurement
equipment.

FICORA has issued a test radio license for cognitive radio devices in the TV
White Space frequencies for Turku University of Applied Sciences. The license covers
the 470-790 MHz frequency range and a 40 km x 40 km area surrounding Turku,
Finland. This area is illustrated with a rectangle in Figure 2. Nearly 300 000 people
live in the radio license area. The license is the first in Europe having a geolocation
database in control of the frequency use [10].

Radio license conditions are the following:
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Figure 2: Radio license area

• Area: Turku region, 40 km x 40 km range (Figure 2).

• Max +44 dBm EIRP for fixed station / base station.

• Max +30 dBm EIRP for mobile station / terminal.

• Maximum transmitter power: +31 dBm.

• Antenna gain 0-14 dBi (omni or directional antenna).

• Antenna height: Max 40 m above sea level.

• Polarization: vertical.

• Channel width: 6 MHz or 8 MHz.

• Number of transmitters: 1 Neul base station and terminal, 1 Carlson Wireless
base station and 5 terminals.

• Transmission frequencies and power of the white space devices are controlled
by a geolocation database. The database makes the decisions based on the
location of the TVWS radio transmitters and information on the primary users
to be protected.

Fairspectrum provides the geolocation database for the TVWS test network ac-
cording to the FICORA license rules. The TV White Space radios of the test network
are from US manufacturer Carlson Wireless. One base station and five terminals are

5



“University of Turku Technical Reports, No.12 — October 2016”

at our disposal. They operate in 470-786 MHz frequency bands, and both US 6
MHz and ETSI 8 MHz channel spacing can be used [11]. A prototype base station
and terminal from UK-based Neul are also at our disposal.

The test network environment offers full control and flexibility in defining trans-
mission parameters of the DVB-T network. Support for finding test locations and
routes, estimating white space availability, and other relevant information is available
through simulations, calculations and signal level field measurements. Computer
simulations can be used to verify and interpolate measurement results.

The test environment enables a wide range of testing possibilities in diverse
environments, such as:

• Service piloting.

• Interference management, protection ratios and co-existence.

• Algorithm development and optimization.

2.1 Geolocation and PMSE databases

The radio license requires that the incumbent users of the UHF TV band need to be
protected from any harmful interference. A geolocation database is used to provide
protection for DTT and PMSE incumbents operating in the band from interfering
white space devices. In practice, the geolocation database contains coverage maps of
the incumbent DTT networks. These coverage maps are used to calculate maximum
allowed transmission powers for interference-free operation of the WSDs at their
current geographical locations.

The incumbent PMSE users operating in the UHF TV band are wireless micro-
phones. Turku University of Applied Sciences has developed a wireless microphone
database to collect their operating parameters and locations to allow their protec-
tion. This database provides the data to the geolocation database, which is then
able to calculate the needed protection for both DTT and PMSE users. The protec-
tion zones are defined as geographical areas, which are then converted to polygons.
Geolocation database utilizes these polygons in the calculation of available channels
and their associated power levels for different geographical locations. Geometrical
computation makes the geolocation database efficient, fast, and easily customizable
for various environments, regulations, and rules.

Before it can begin to transmit on TVWS frequencies, a WSD needs to connect
to a geolocation database, and request available channels and their power levels by
sending its capabilities (antenna height, operational location, device type and device
emission class) and transmission parameters. The geolocation database calculates
WSD’s radio coverage area and analyzes the DTT and PMSE transmissions within
that coverage area, and finally provides the WSD with a channel to operate in and
the maximum allowed power level in that channel.

The geolocation database can also be accessed using the web interface or a mo-
bile client software, which is illustrated in Figure 3. Both allow the user to select
a location from a map, and to see the location’s channel availability information

6



“University of Turku Technical Reports, No.12 — October 2016”

Figure 3: Geolocation database client software

calculated by the geolocation database. The channel information shows the avail-
ability and the maximum transmission power for WSD devices in each TV channel.
Channels listed with grey colour are not available for WSD usage. Web and mobile
clients use Protocol to Access White-Space Databases (PAWS) [12] to communicate
with the geolocation database.

PMSE Incumbent Manager was developed as a cloud-based web service, where
the users can add their PMSE devices to the PMSE database. The PMSE Incumbent
Manager allows the users to add their wireless microphones by setting their location
on a map and selecting a channel from the list of available channels. Time, loca-
tion and frequency of a wireless microphone are needed by the PMSE database to
enable the calculation of their protection. The user first selects the location of the
wireless microphone on a map, after which the PMSE Incumbent Manager requests
the channel and use time information. This information is then communicated to
the geolocation database.

2.2 Radio environment mapping algorithms for the
geolocation database

The key factor in TVWS operation is to calculate accurate maximum allowable
power limits for WSDs. Accurate limits guarantee that the interference to the primary
network remains within acceptable limits, while it also maximizes the throughput of
the TVWS system. Too strict power levels limit the TVWS throughput, while too
lenient limits cause harmful interference to the incumbents.

Radio environment mapping (REM) presents a more accurate alternative for sig-
nal level calculations than propagation modeling. Here we introduce hybrids of
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Figure 4: Estimated field strength values for Turku DTT test network area with
the methods used in [13]. a) presents a prediction based on a propagation model.
In b) and c), the field strength is estimated by interpolating the samples obtained
from locations chosen with MMSD by using IDW and OK methods. The sampling
locations in d) are selected by minimizing the MUKV, and the field strengths are
estimated with UK interpolation. Grey crosses indicate the locations where the field
measurements have been performed.

measurement campaigns and computer simulations, which have been used to vali-
date the signal levels of DTT network in the geolocation database, and thus also the
validity of the incumbent protection provided by the geolocation database.

In the creation of a radio environment map, measurements are conducted at
some locations, and interpolation techniques are used to estimate values at locations
which have not been measured. A sampling scheme makes decisions on where the
samples are obtained from, i.e. the measurement locations. Since field measurements
are resource-consuming, it is important to design a sampling scheme which allows
an optimal estimation(interpolation) of the radio environment with a given number
of measurement locations.

To overcome the limitations arising from using only radio propagation models or
suboptimal field measurement locations, we have proposed a geostatistical modeling
procedure for estimating the radio environment in [13]. An optimal sampling scheme
was designed by using spatial simulated annealing (SSA) to minimize the mean uni-
versal kriging variance (MUKV) needed in the Universal kriging (UK) interpolation.

Figure 4 shows an estimation based on a propagation prediction model in a), and
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in b) and c) the estimation is performed by interpolating the minimum mean short-
est distance (MMSD) scheme using inverse distance weighted interpolation (IDW)
and ordinary kriging (OK) methods. These are earlier calculation and interpolation
methods, to which the novel contribution in d) is compared. In d) the sampling loca-
tions are found by minimizing the MUKV with SSA, and the field strength estimates
for unsampled locations are determined by UK.

Field measurements have been performed in locations indicated by gray crosses.
SSA algorithm was able to find the optimal measurement locations in 200 iterations.
The measurement locations are strictly limited to the street network within the test
area, and the modeling procedure was verified with an extensive measurement cam-
paign performed in an operational DTT test network in Turku. Pixel size of 6 m x 6
m was used for this 2010 m x 2085 m area of the test network.

The proposed method of [13] presented in d) of Figure 4 was the most accurate
according to the used metrics: mean absolute error (MAE), normalized root mean
square error (NRMSE) and Pearson correlation coefficient. It significantly improved
the precision of local field strength estimates compared to using only propagation
model (a), or by interpolating the field measurement values sampled on a regular
grid (b and c).

In [14], we have designed an efficient technique for improving the REM estimation
in scenarios where relatively small numbers of measurement samples are available.
The proposed multivariate kriging method utilizes correlated secondary information
obtained from a terrain based propagation prediction model [15] to complement the
measurement data. Considerable improvement in prediction accuracy is achieved
compared to univariate interpolation methods.

The proposed techniques can be utilized in designing sensing networks, or in
measurement campaigns for REM. The radio environment maps can be used in the
TV white space geolocation databases to calculate accurate protection levels for the
DTT networks. The accurate signal level estimations also help in search of locations
with specific signal level within the test network, such as in the outdoor reference
geometry measurements of section 3.1.1.

2.3 Device emission class measurements

Prior to performing trials in the TVWS test network, the unwanted emissions levels
of a WSD need to be verified. ETSI EN 301 598 harmonised standard for white
space devices [8] is used for this purpose. This standard is based on the SE43 work,
as described in section 1.1. The standard defines 5 different device emission classes
for WSDs. This class is an important parameter in the geolocation database, and it
is used in the calculation of allowed transmitter power level for the WSDs. A correct
classification is essential to avoid harmful interference to incumbents of the UHF TV
band.

Turku University of Applied Sciences (TUAS) Radio laboratory has a measure-
ment system to conduct unwanted emission measurements to define and verify the
device emission class according to the ETSI EN 301 598 [8]. The WSD adjacent
channel leakage ratios (ACLRs) are measured within the 470 to 790 MHz TVWS
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operational band, and the emissions outside the band are measured from 30 MHz
to 4 GHz. Table 1 of [8] presents the requirements for Adjacent Channel Leakage
Ratio (ACLR) for different emission classes, and table 2 of [8] the requirements for
transmitter unwanted emission limits outside the 470 to 790 MHz band.

The measurement requirements for prescan sweeps are: resolution bandwidth of
100 kHz in 30-1000MHz and 1 MHz in 1-4 GHz frequency bands, peak detection,
and trace mode max hold. Emissions which are above the limits in the pre-scan
shall be individually measured in a frequency band wide enough to capture each
identified emission using continuous sweep, root mean square (RMS) detector and
max hold trace mode.

The better the classification of the device under test (DUT) is, the less out of band
(OOB) emissions there are and the more power can be granted by the geolocation
database for WSD operation. Class 1 is the highest class with lowest unwanted
emissions, while class 5 is the lowest classification for a WSD. The performance of
the DUT is usually not constant in different channels. For example, a DUT can pass
class 1 criteria on most of the channels, but on some channels it only passes class 4
criteria. The worst measurement result defines the classification of the DUT, so in
this case the DUT would pass only as class 4 device even though it performs better
in most of the channels.

10
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3 Measurements contributed
to CEPT/ECC SE43

This chapter describes the measurements conducted in the WISE project to investi-
gate the technical and regulatory issues defined to need more consideration in ECC
report 159. The DTT-WSD protection ratio measurements of section 3.1 have been
contributed to CEPT/ECC SE43 in [16, 17, 18, 19] and the PMSE measurements of
section 3.2 in [20, 21]

3.1 Protection ratio measurements in reference ge-
ometries defined in ECC report 159

The existing primary, licensed users in the radio spectrum are also known as in-
cumbents. Their transmissions need to be protected from harmful interference from
secondary users, such as white space devices. Various methodologies have been
used to develop protection criteria for the incumbents in the UHF TV band, includ-
ing calculations with parameters from ECC, International Telecommunication Union
Radiocommunication sector (ITU-R) and ETSI deliverables. During the last few
years, several measurement campaigns regarding the use of WSDs in TV frequencies
have been conducted, but these efforts have not been able to clearly give safe opera-
tional rules for WSDs. This has resulted in a number of different recommendations
for the technical and operational requirements that should be applied to WSDs op-
erating in the frequency band 470-790 MHz in order to protect the incumbent DTT
transmissions and PMSE wireless microphones within the band.

Technical work to define European-wide protection ratio proposals was started
in CEPT/ECC project team SE43. The issue is discussed in ECC report 159 [4], and
a proposed solution is to use reference geometries in the calculation of coupling loss
between the devices. Several different reference geometries are proposed to simulate
different DTT reception scenarios. The path losses in the reference geometries of the
ECC report 159 are calculated as free space losses with certain assumptions on the
used antennas. Two cases must be distinguished when considering the interference
caused by a WSD to DTT reception. In the first case the WSD and the victim DTT
receiver are separated by a relatively large distance and interference is primarily
of co-channel type. The DTT receiver location can be estimated as the nearest
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possible pixel of the DTT service area in question, and the coupling loss between
the WSD and DTT receiver can be calculated based on their distance and a suitable
propagation model. In the second case the WSD and the victim DTT receiver
are within the same pixel. In this case the interference is typically of adjacent
channel type, as co-channel operation is not possible within the DTT service area.
Calculating the coupling loss in this case is problematic as nothing is known about
the geometry between the WSD and the DTT receiver, only that they may exist
within the same pixel and thus their distance is constrained by the pixel dimensions.

An indoor and an outdoor reference geometry representing worst-case scenarios
for DTT reception were created to enable the measurement and studies of adjacent-
channel operation in such problematic cases. The reference geometries were pre-
sented in ECC report 159, and were naturally chosen as the scenarios for the field
measurement studies of protection ratios between WSDs and DTT.

In [22] protection ratio (PR) is defined as the minimum value of the signal-
to-interference ratio required to obtain a specific reception at the receiver input.
Formally, this ratio is defined as

P R(fpri , fwsd) =
Ppri(fpri)

Pwsd,max(fwsd)
(3.1)

that is, the ratio of the received TV signal power centered at frequency fpri to the
maximum allowable power transmitted by the WSD at center frequency fwsd . In
these measurements, the maximum WSD transmit power is determined as the limit
where error-free TV reception is still possible according to a subjective criterion
corresponding approximately to ESR5 criterion [23].

The presented measurement campaigns can be considered as the first practical
testing of the proposed theoretical reference geometry WSD scenarios, but also as
a source of realistic numerical estimates for the minimum protection ratios between
WSD transmitters and TV receivers; as such, the given data can be used for example
in further WSD system development, simulation, and performance evaluation. The
results have been contributed to the SE43 group meetings in [16, 17, 18, 19] and
published in 7th International Conference on Cognitive Radio Oriented Wireless
Networks (CROWNCOM 2012, Stockholm, Sweden, June 18–20, 2012) [24].

3.1.1 Field measurements in outdoor reference geometry

The outdoor reference geometry defined in ECC report 159 and used in the field
measurements is for rooftop antenna DTT reception at 10 m height with a portable
WSD at 1.5 m height and 22 m away from the DTT reception antenna. An omni-
directional antenna is assumed for the WSD, so that a polarization discrimination
of 3 dB is possible, but in the measurements a directional antenna with horizontal
polarization for the WSD was also used to increase the available WSD equivalent
isotropically radiated power (EIRP). The DTT antenna specified in the reference ge-
ometry has a gain of +9.15 dBi, which is assumed to drop by 0.45 dB to the direction
of the WSD 22 m away. The antenna is described in ITU-R BT 1368 [25]. This
geometry aims to represent a worst-case scenario: if the WSD is situated closer, the
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Figure 5: Outdoor reference geometry.

antenna gain will drop, and if the WSD is further away the free space loss will in-
crease, decreasing the interfering signal power at the DTT receiver. The considered
outdoor reference geometry is illustrated in Figure 5.

Figure 6: TVWS radio antenna at 1,5m above ground level (on the right) and 10m
DTT reception antenna (on the left) in an outdoor reference geometry measurement.

The outdoor measurements study the maximum possible WSD power in the cor-
responding reference geometry before the received picture fails. The measurements
were done at three different DTT signal levels. The first was at an input level of -80
dBm, 3 dB from the sensitivity limit of the receiver, corresponding to the situation
where the DTT receiver is located at the edge of the service area. The second was
with an input level of -70 dBm and the third with -62 dBm input level at the receiver.
The locations of the measurements were selected so that a suitable signal level was
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achieved with a Yagi antenna at a height of 10 m. One field measurement location
and measurement antenna setup is shown in Figure 6.

Interference measurements were performed with the WSD operating on the co-
channel N and on adjacent channels N −1, N −2, N −3 N −4 and N +9. The WSD
transmission power was increased until errors were detected in the picture and then
decreased by 1 dB steps until no errors were visible during an observation period of
several tens of seconds, corresponding roughly to the ESR5 criterion [23]. Then the
power fed to the WSD transmission antenna was measured in the co-channel case.
In the adjacent channel cases, the received WSD interference power at the DTT
receiver input was also measured and used to calculate the corresponding protection
ratio. It should be noted that with the WSD operating on the adjacent channel N +9
in the scenario with DTT signal strength -62 dBm, the WSD transmission power was
insufficient to produce errors in the DTT reception, and the true protection ratio is
higher than given here. This case is marked with bold text in Table 1, which shows
a summary of the maximum WSD power levels for different frequencies and DTT
input levels. The corresponding Field Strength (FS) at the DVB-T reception site is
also shown, as well as the protection ratio calculated with formula 3.1. The ACLR
values for each measurement and the laboratory measurements of the DTT receivers
can be found in [17].

Table 1: Outdoor protection ratios with 64-QAM DVB-T

Frequency (MHz) / (Channel)

DVB-T level -80 dBm DVB-T level -70 dBm DVB-T level -62 dBm

WSD PR WSD PR WSD PR

EIRP FS EIRP FS EIRP FS

(dBm) (dbµV/m) (dB) (dBm) (dbµV/m) (dB) (dBm) (dbµV/m) (dB)

578 / (N-4) 18.9 94.0 48.4 32.5 107.6 51.9 36.4 111.5 49.0

586 / (N-3) 18.3 93.4 47.5 21.5 96.6 40.6 23.0 98.1 35.4

594 / (N-2) 15.2 90.2 44.1 18.7 93.7 38.4 20.5 95.5 33.2

602 / (N-1) 1.7 77.0 31.4 13.3 88.6 33.2 12.8 88.1 25.9

610 / (N) -50.0 24.7 -19.7 -36.5 38.2 -16.2 -30.0 44.7 -17.7

682 / (N+9) 20.9 95.6 51.1 33.8 108.5 53.7 38.5 113.2 48.4
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3.1.2 Field measurements in indoor reference geometry

1.5 m 1.5 m

2 m

Mobile DTT reception at 1.5m
above ground level

-34.72 dBWSD DTT

Figure 7: Indoor reference geometry.

The portable indoor reference geometry defined in ECC report 159 and used in
these measurements is shown in Figure 7. Both the DTT reception antenna and the
WSD transmitter are at a height of 1.5 m and 2 m away from each other. Omni-
directional antennas are assumed for both the WSD and DTT with no polarization
discrimination. This was achieved in the measurements by using two similar omni-
directional antennas with a nominal gain of 2 dBi.

All indoor measurements were performed in an old school building constructed
mainly of brick and concrete, whose windows are without any metallised shielding.
The building, measurement locations, and transmitter direction are illustrated in
Figure 8. It should be noted that DTT transmissions penetrate this type of build-
ing better than a modern office building. The following rooms were used for the
measurements:

• ”Muotoilutila” (Muo): a small rooftop space used for project works.

• L229: class room in L-wing, second floor

• C20: class room in C-wing, second floor

• L321: class room in L-wing, third floor

The ”Muotoilutila” is a small room on top of the C-wing and has a window
towards the transmitter. All other rooms have windows perpendicular to the trans-
mitter direction, so no direct signal was received in these cases.
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Figure 8: Indoor measurement premises.

The rooms where the measurements were performed have a different geometries
and thus different reflections from the surroundings. Therefore the coupling losses
also differ between the rooms, even though the distance between the WSD and DTT
is constant. The coupling losses were measured in each room in the 2 m reference
geometry. A comparison between these and a calculated free-space loss (FSL) is
shown in Figure 9. Even though the number of measurements is not large enough
to give statistically reliable results, a clear trend in the measurements is that the
coupling loss is higher than the FSL.
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Figure 9: Free-space loss and coupling losses in different rooms.

The indoor measurements studied again the maximum possible WSD power in
the reference geometry before the DTT reception failed. Most of the measurements
were done close to the sensitivity limit of the DTT receiver, corresponding to the
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situation where the DTT receiver is located at the edge of the service area or in
otherwise difficult indoor conditions. The protection ratios were calculated from the
measured WSD and DTT powers at the DTT receiver input. Results are shown in
Table 2. In one measurement, L 229 2m/N-4, the available WSD power was not high
enough to cause any errors, and thus the calculated protection ratio is likely to be
lower than the real value would be. This case is marked with bold text in Table 2.
The protection ratio values are rather consistent. The greatest spread is in the values
at N-1 (602 MHz). On average, the co-channel protection ratio is between -20 and
-25 dB, protection ratio on channel N-1 is between 25 and 35 dB, on N-2 between
39 and 42 dB, and on N-3 and N-4 between 40 and 45 dB. The variations are at
least partly due to different channel conditions at different locations. The laboratory
measurements performed to calibrate the measurement setup are explained in [18].

Table 2: Indoor protection ratios with 256-QAM DVB-T2

Frequency (MHz) / (Channel)
Protection ratio with 32k 256-QAM 3/5 in room

Muo 2m L229 2m C20 2m L321 2m Average

578 / (N-4) 43.0 40.1 43.9 44.5 42.9

586 / (N-3) 41.9 42.5 42.9 40.1 41.9

594 / (N-2) 39.5 40.8 40.9 38.9 40.0

602 / (N-1) 25.6 28.6 35.0 30.7 30.0

610 / (N) -23.5 -23.6 -22.8 -23.8 -23.4
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3.2 PMSE wireless microphone measurements

PMSE is a term, which covers equipment that supports broadcasting, news gathering,
theatrical productions, sport events and such. The PMSE operating on the TV White
Space frequencies are wireless microphones. Geolocation databases are currently
considered to be the primary method of protecting PMSE users as sensing techniques
are currently not sufficient to provide reliable protection for PMSE, and the range of
potential deployment scenarios causes large variability in the sensing thresholds. In
the following we outline a measurement campaign conducted to evaluate interference
between WSD and PMSE devices in a real use scenario.

Two theatres in Helsinki were used for the measurement campaign. Helsinki
City Theatre, located in Kallio, is the biggest theatre in Helsinki. The main building
was built in the 1960’s and is a traditional concrete and steel construction. It has
two stages, a big stage with 947 seats and a smaller stage with 400 seats. The
Arena Theatre is a smaller 515-seat theatre nearby. Arena is located in a larger
brick building built in 1923. Illustrations of both theatres are available in the full
measurement report [20].

Two sets of analogue microphones were used in the measurements, altogether
four microphones and two receivers. The purpose was to use microphones in real
operating conditions, and therefore the receivers were placed at realistic places in the
theatres. At the main stage, the receiver was placed in the middle of a balcony above
the audience. In the Arena theatre, the receivers were placed on the balcony as well,
and close to the existing antenna installations in the theatre. In both arenas, the
microphone to receiver link in the measurements was somewhat more demanding
than with the existing installations. The microphone receivers were using small whip
antennas attached directly to the receivers.

During the measurements we found out that there is a large difference in the
results depending on how the microphones are used. The worst case, but also most
realistic, was the belt pack microphone attached to a person moving around the
stage. The loss due to the bodies of the actors and the movement is at its highest
in this scenario. Therefore the most realistic scenarios were the ones where the
microphones were attached to people moving around the stage and simulating real
actors, sometimes even going behind the stage.

Interference to the PMSE equipment was caused by a simulated WSD operating
on the co- or adjacent channel. The measurements were performed with the WSD in
several locations inside and outside the building. Figure 10 illustrates the locations of
the microphones and PMSE receivers, and the WSD locations (yellow circles) inside
the Helsinki City Theatre. Subjective evaluation was used to determine when the
WSD was causing audible interference.

The measurements clearly show that a WSD operating co-channel with the PMSE
causes interference on very low power levels (-15 dBm ... +5 dBm) when the WSD
is in the vicinity of the PMSE equipment. Thus, the co-channel operation of PMSE
equipment and WSDs is not possible in the vicinity of PMSE receivers. The pro-
tection ratios on the adjacent channel were approximately +30dBm and on the next
adjacent channels +40 dBm or more. These values would allow adjacent channel
operation with reasonable power levels for the WSDs located close to PMSE equip-
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Figure 10: Locations of the PMSE equipment and WSD transmitters measured at
Helsinki City Theatre. Figure adopted from [20].

ment. In the measurements conducted at Helsinki City Theatre it was not possible
to cause co-channel interference at a distance of 560 m with the maximum transmit
power of approximately 10 W.

The results of the measurement campaign were presented in 12th SE43 meeting
in Cambridge, UK, in December 2011 [20, 21]. The key findings were included in ECC
report 185 [5] and the full measurement report added as an annex to the report.
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4 Application pilot trials

This chapter presents two TVWS application pilot trials conducted during the sec-
ond phase of WISE project in 2013-2014. The first presented application pilot trial
was a long-term video surveillance trial in the Turku TVWS test network environ-
ment. The second was an application pilot trial with the public transport authority
in Helsinki, where the TVWS devices were tested to provide connectivity for their
ticket sales and information screen systems. The application pilot trials are covered
in more detail in these Bachelor’s theses made at Turku University of Applied sci-
ences: the video surveillance trial in [26, 27] and the public transport trial in [28].
The theses are in Finnish.

4.1 Video surveillance trial

The video surveillance application pilot trials were conducted utilizing the TUAS ra-
dio laboratory commercial TVWS cognitive radio systems from Carlson[11], cognitive
radio license from FICORA and the Fairspectrum geolocation database. The data
transmitted over the TVWS radio link was video signal from surveillance cameras.

Carlson TVWS radio system performance measurements were first conducted to
verify the performance data provided by the manufacturer. This data was used in the
system deployment design and field trial planning. Carlson system supports 16Mbps
data rate, but it has asymmetric uplink/downlink speeds (30/70%). This is because
the system is designed to provide rural broadband service, where more capacity is
typically needed in the downlink direction. In video surveillance application this is
not an optimal ratio, as the video cameras are installed in the terminal sites and the
video content delivery needs higher bit rates in the uplink than the camera control
data in the downlink direction does. Thus, the asymmetry should be the other way
around to provide optimal performance for the video surveillance application. The
data rate in both directions depends on the used modulation and error correction
coding. The system supports 16-QAM, QPSK and BPSK modulation with several
different code rates. Maximum bitrates measured in the laboratory tests were 10
Mbps for downlink and 6 Mbps for uplink with 16QAM modulation and ¾ code
rates.

Experimental research and several field measurement campaigns were conducted
to investigate the interference between DTT receivers and Carlson TVWS radio
systems (i.e. white space devices). Interference from the adjacent (N +1 and N − 1)
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and alternate channels (N+/−2,3,4, ...) was measured using commercial DTT signals
from the local broadcasting stations, and also from more distant DTT broadcasting
stations.

In the first interference measurement campaign, the TVWS radio terminal an-
tenna was mounted in the same mast with the DTT reception antenna, and separate
antennas with distances of 2 to 5 meters were also used. Field strengths from the
remote DTT transmitters were measured to study the effects to the TVWS radio base
station uplink co-channel reception. The protection ratios between the TVWS radio
and the DTT signal in the adjacent channel are in order of 20-50 dB for commercial
TVs and set-top boxes (STBs). The measurement data and results of this campaign
were used in the verification and further development of the geolocation database.

4.1.1 TVWS video surveillance system setup

The video surveillance application was designed and implemented with Carlson
TVWS radio system and two commercial standard definition (SD) and high defini-
tion (HD) video cameras. Base station and the terminals were installed within the
Turku TVWS test network license area. The base station was located at a rooftop
of ICT-city building and the camera sites were at Sepänkatu with a distance of 1.6
km and at Lemminkäisenkatu with a distance of 200 meters. The cameras and
their related equipment in the sites were on installed on rooftops at 15-20 meters
AGL and the base station antenna on a rooftop at a height of 30 meters AGL. Base
station antenna is omnidirectional, and the terminal antennas are log-periodic direc-
tional antennas. The TVWS radio system terminal access is based on time division
multiplexing(TDM), where the terminals share the payload time slots depending on
the data rate required for the service. Hence, the two cameras share the time slots
between the short control transmissions of the base station. The locations of the
terminals and the base station are illustrated in Figure 11.

Video camera and TVWS radio settings were the following:

• Site1/200m link. Camera: resolution 1920x1080 at 25 frames per second (fps).
Terminal: modulation 16-QAM with a code rate of ¾.

• Site 2/1.6 km link. Camera: resolution 1280x720 at 25 fps. Terminal: modula-
tion QPSK with a code rate of ¾.

Measured SNR in the Site 1 link was 27 dB, which supports the use of high
modulations. Site 1 camera was pointed towards a motorway with almost constant
traffic and movement in the picture. Video setting Variable Bit Rate (VBR) gave
better quality than Constant Bit Rate (CBR). Bitrate of 3 Mbps was sufficient for
smooth video.

On Site 2, the measured SNR was 15-20 dB. Site 2 antenna was pointing over
the roofs of nearby buildings, resulting in stationary picture content and minor
movements. CBR setting and 2 Mbps were provided sufficient picture quality in this
environment.

The maximum uplink bitrates in the sites were the mentioned 3 Mbps and 2
Mbps, as only 30% of the bandwidth was used for uplink due to the asymmetry in
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Figure 11: Transmitter and base station locations of the TV white space wireless
video surveillance system.

the time-division multiplexing of the TVWS radio system. HD video surveillance
application can be implemented with Carlson TVWS cognitive radio system, but the
70%/30% downlink/uplink ratio is far from optimal. 10%/90% ratio could support
12-13 Mbps capacity for cameras. Depending on the video parameters and bitrates,
this could allow installation of 5-6 cameras and terminals to be used with one base
station.

4.1.2 Long term measurements for the TVWS video surveillance
system

Long term field measurements were conducted to investigate the reliability of the
TVWS cognitive radio link and the service quality in real-time video surveillance.
The TVWS radio system is connected to the geolocation database through Internet.
The database controls the TVWS radio system and can evacuate the TVWS radio
transmissions if the primary user needs the frequency resources which are utilized by
the TVWS radio. TVWS radio channel SNR could be seriously decreased by remote
DTT transmissions, which can propagate over long distances in certain weather and
atmospherical conditions. Man-made noise can also cause similar effects.

The TVWS radio system downlink and uplink traffic information is stored by the
system control manager software. The variation between the day and night times
can be clearly noticed in the traffic. The data rate during the night time is very low,
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Figure 12: Uplink SNR (dB) for allowed UHF TV channels.

as it is very dark outside and the camera is directed towards a dark horizon. The
downlink traffic is always very low, but the variation between day and night is also
present in this direction. When the video monitoring software is set to recording
mode, it tries to minimize the amount of stored data and the variation between day
and night is present. If the recording mode is not in use, the data rate is constant
throughout the whole day.

Uplink SNR for all the allowed channels for TVWS operation in the UHF band
was measured and recorded between 23.2.2015 and 13.3.2015. Figure 12 illustrates
that a decrement in the channel SNR can be seen in three of those channels. The
highest decrement is 7 dBs in channel 31, but channels 34 and 35 have also decreased
2-5 dBs during three consecutive days. The base station antenna is omnidirectional
and located higher AGL than the directional antennas of the terminals. This causes
higher received DTT signal levels at the base station antenna, which result in a
stronger decrease in the signal quality in the uplink direction from the terminals.

4.2 Public transport application pilot trial

The purpose of the public transport application pilot trial was to create radio links
in white space frequencies in real operating conditions with real use cases. Helsinki
Regional Transport Authority (in Finnish: Helsingin seudun liikenne (HSL)) is re-
sponsible for planning and procuring the public transportation in greater Helsinki
area with its 1.1 million inhabitants. The public transportation in the area includes
bus, tram, metro, ferry and commuter train services.

HSL uses many different types of services using wireless communications, from
which two use cases were chosen as the pilot trials to investigate the eligibility of
TVWS radio links in them: ticket sales and real time transit information screens.
Currently both of the systems are implemented with 3G mobile broadband connec-
tions. The goal was to study if a TVWS system could replace these 3G commu-

23



“University of Turku Technical Reports, No.12 — October 2016”

nication systems. The main difference between the use cases is that ticket sales
uses two-way communications, while the transit information screens only receive the
information updates and do not communicate back anything.

The higher the base station antenna mast of the TVWS system is, the higher
the DTT channel signal levels will be at the antenna. These high DTT signal levels
present a huge challenge for the low-power TVWS terminal uplink connectivity to the
base station. However, this problem only exists in the ticket sales application, where
two-way communications are used. The transit information screen application allows
use of higher antenna installations for the TVWS base stations as no information is
transmitted back to the base station from the TVWS terminals.

FICORA issued a test license for the application pilot trial for the central Helsinki
area. The license was valid only during the measurement days and only for the
Carlson TVWS cognitive radios[11], which were to be controlled by the geolocation
database.

The properties of the equipment HSL used in their applications were tested in
laboratory environment before the field measurements. The TWVS radios were used
as their communication method to investigate the connection requirements for each
application. The ticket sales required a faster connection, which required the use of
16-QAM modulation with our TVWS radio. The information screens require very
low data rates, and thus the necessary throughput could be achieved with BPSK
modulation. With the knowledge obtained on the required modulations and their
sensitivity levels, propagation models were then used to create initial estimations on
the possible link distances that could be achieved with the TVWS radios in both of
the application pilots.

4.2.1 Ticket sales trial

The base station antenna was installed on a rooftop at a height of 45 meters above
ground level in the ticket sales application. The terminal was used in the measure-
ment locations with an antenna installed to a 4-meter tripod. To achieve comparable
results between different locations, channel 41 (634 MHz) was used for all of the mea-
surements. Transmission powers of 23.2 dBm for downlink and 20.7 dBm for uplink
were used. The interference level at the base station antenna was already high
enough to cause interference for the uplink transmissions, as could be expected with
the combination of strong DTT signals and the antenna on a high rooftop. This
resulted in very short link distances for the ticket sales application, which needed
two-way communications with low latency.

The ticket sales application became extremely slow if modulations of lower order
than 16-QAM were used, making them practically unusable. 16-QAM uplink needed
line of sight to operate in the urban environments of Helsinki. The information
screens that only require communications in downlink direction and could be oper-
ated with lower order modulations were also measured and tested in the locations
with more success. Still, the used TVWS radios can not be recommended for this
application in an urban environment. The longest achieved radio link distance was
only 1166 meters.
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4.2.2 Transit information screen trial

Another measurement campaign focusing on the transit information screens was
conducted to further analyse the propagation characteristics of UHF TV frequencies
in city environment. With the transit information screens, the base station antenna
height was not as problematic anymore as no uplink connectivity was required. The
base station antenna was installed to a TV tower with an antenna height of 99.1 m
above ground level (128.3 m above sea level). The base station antenna installation
is shown in Figure 13.

Figure 13: Base station antenna in Pasila TV tower.

The base station had a vertically polarized panel antenna (Rymsa AT15-250) with
a 26 degree main lobe directed to south (169 °). An antenna installed at this height
picks up distant DTT transmissions at very high power levels. As can be seen from
Figure 14, the measured DTT signal levels from the antenna are so high that they
make the uplink connectivity towards the base station very difficult. Vacant channel
24 (498 MHz) was used for all of the measurements conducted with this antenna
installation.

The transit information screens where the measurements were conducted are
installed to tram stops, which allowed us to build a portable measurement setup and
use the trams to move between the measurement locations. The tram stops for the
measurements were chosen mainly within the main lobe of the base station antenna.
In addition, two places in Pikku-Musta and Iso Mustasaari islands were measured,
as well as the signal level on the ferry from the mainland to these islands. Figure
15 shows an overview of the measurement results on a map. All of the locations
with green signal levels (higher than -70 dBm) in central Helsinki were measured in
places with a lot of open space or at higher elevations, e.g. hills. Even in the islands,
7km away from the base station, the signal levels were significantly better than in the
city centre 3-5 km from the base station. The islands had a lot of open space and
line-of-sight conditions towards the base station antenna, while central Helsinki is
full of tall buildings and thus non-line-of-sight conditions. The locations close to the
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Figure 14: Channel powers in Pasila TV tower (Antenna gain 12 dBi, vertical polar-
ization).

open space of Töölönlahti bay and up on the higher elevations of the Observatory
hills were the only locations with consistent signal levels and operating conditions in
central Helsinki.

Thus, the environment proved to be too challenging for the used TVWS radios.
However, in the islands even the uplink worked well. The TVWS radios used in
the measurements are not built for urban environments, which could be seen from
the measurement results. In the rural-like conditions of the islands they performed
well. Point-to-point operation with line-of-sight provides good connection with these
radios in rural conditions, but they can not be recommended for non-line-of-sight
operating conditions in urban environments required by these application pilots.
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Figure 15: Pasila TV tower signal levels at measurement locations.
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5 Conclusions

This report has presented a TV white space test network environment built in Turku,
Finland, and its related geolocation database. The interference measurements con-
ducted in the test network environment contributed to the standardization work in
CEPT/ECC SE43 project team, whose results and reports have been used to create
an ETSI harmonised standard for TV white space devices. The geolocation database
and its interference protection algorithms have been developed and validated concur-
rently with the realistic protection ratio information obtained from the interference
measurements in field conditions.

The technological capabilities of TV white space cognitive radios have been
demonstrated to the industry through different application pilot trials. The pene-
tration and range in the TVWS frequencies are extremely good, but the equipment
used in the application pilot trials was more suitable for fixed or rural installations
than for mobile use or urban environment. However, with accurately defined use
cases and appropriate equipment, the demonstrations have shown that commercial
deployments of TVWS radios are possible from the technological viewpoint. The
regulatory insecurity within the TVWS frequency band, and particularly the intro-
duction of 700 MHz and 800 MHz bands – formerly used for TV transmissions –
for wireless broadband in Europe have created an unstable environment for invest-
ments in TVWS networks. From technological and regulatory viewpoints there are
no obstacles for the European national administrations to build TVWS networks.
In the UK such networks are already operational, but it is yet to be seen what will
happen regarding TVWS network deployments in Finland.

Even if TVWS networks will not be deployed in Finland, the research conducted
in the field of TVWS has been and will be beneficial for the development of future
5G wireless networks, as spectrum sharing and incumbent protection will play a
huge role in the networks operating on frequencies below 6 GHz.

WISE project was part of Tekes’ Trial Environment for Cognitive Radio and
Network programme (2011-2015). Currently the Turku test network is used to study
licensed shared use of UHF band in the Future of UHF project [29], which belongs
to Tekes’ 5thGear programme [30] and into 5G test network Finland ecosystem [31].
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