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4 Abstract 

Anna M. Knittle
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ABSTRACT

ErbB4 is a member of the epidermal growth receptor family (EGFR/ErbB1, ErbB2, 
ErbB3, ErbB4) of receptor tyrosine kinases. ErbB receptors are activated by extracellular 
growth factor ligands, and control the activity of intracellular signaling pathways that 
regulate fundamental cellular processes such as proliferation, differentiation and survival. 
ErbB receptors are necessary for the development and homeostasis of several tissues, 
and aberrant ErbB signaling is a common feature of human pathologies, such as cancer. 
Accordingly, several regulatory mechanisms are required to ensure the appropriate 
function of ErbB receptors.  

This thesis aimed to characterize novel regulatory mechanisms of ErbB4 signaling, with a 
focus on ubiquitin and ubiquitin-like post-translational modifications. ErbB4 is expressed 
as functionally distinct isoforms, and the results of this thesis indicate that ErbB4 is 
ubiquitinated, endocytosed and degraded in an isoform-specific manner. Ubiquitination, a 
signal for endocytosis and degradation, was catalyzed by a ubiquitin ligase that specifically 
interacted with one of the isoforms. This study also demonstrated that ErbB4 intracellular 
domain (ICD), released by ErbB4 isoforms that undergo regulated intramembrane 
proteolysis, is modified by small ubiquitin-like modifier (SUMO). SUMOylation promoted 
the nuclear accumulation of ErbB4 ICD and regulated the nuclear signaling of ErbB4. 

Together, these findings represent novel molecular mechanisms that regulate the stability, 
subcellular localization and activity of ErbB4. Moreover, this study demonstrates for the 
first time that SUMOylation controls the function of an ICD of a receptor tyrosine kinase 
in the nucleus. The post-translational regulation of quantitative and qualitative aspects 
of ErbB4 signaling may have implications for the function of ErbB receptors in both 
normal tissues and cancer. Finally, the findings of this thesis can potentially be extended 
to provide new understanding on the mechanisms that regulate the functions of receptor 
tyrosine kinases other than ErbB4.

Key words: endocytosis, ErbB4, isoform, nuclear signaling, SUMO, ubiquitin



 Tiivistelmä 5

Anna M. Knittle

Translaation jälkeiset modifikaatiot ErbB4-signaloinnin säätelyssä

Turun yliopisto
Lääketieteellinen tiedekunta
Lääketieteellinen biokemia ja genetiikka
Turun molekyylilääketieteen tohtoriohjelma (TuDMM)
Turun biolääketieteen tohtoriohjelma (TuBS)
MediCity-tutkimuslaboratorio

TIIVISTELMÄ

ErbB4 on ErbB-reseptoriperheeseen (EGFR/ErbB1, ErbB2, ErbB3, ErbB4) kuuluva 
tyrosiinikinaasireseptori. ErbB-reseptorit sitovat solun ulkopuolisia kasvutekijöitä ja 
aktivoivat näin solunsisäisiä signalointireittejä. ErbB-välitteinen signalointi säätelee 
solujen kasvua, erilaistumista ja selviytymistä, ja on välttämätöntä useiden kudosten 
kehityksen ja toiminnan säätelyssä. ErbB-reseptorien aktiivisuutta ja toimintaa säädellään 
tarkasti, ja häiriintynyt ErbB-signalointi on keskeinen tekijä syövän ja eräiden muiden 
sairauksien synnyssä ja etenemisessä. 

Tämän tutkimuksen tavoitteena oli löytää uusia molekyylitason mekanismeja, jotka 
säätelevät ErbB4-reseptorin toimintaa. Tutkimus keskittyi erityisesti ubikitiinin 
kaltaisiin translaation jälkeisiin modifikaatioihin. ErbB4 esiintyy erilaisina 
alamuotoina, ja tutkimuksessa havaittin eroja alamuotojen ubikitinaatiossa, 
endosytoosissa ja hajotuksessa. Tutkimuksessa löydettiin ubikitiiniligaasi, 
joka sääteli vain tietyn ErbB4:n alamuodon ubikitinaatiota aiheuttaen ErbB4:n 
endosytoosin ja hajotuksen. Tutkimuksessa havaittiin myös, että ubikitiinin kaltainen 
SUMO-modifikaatio (engl. small ubiquitin-like modifier) säätelee ErbB4-reseptorin 
proteolyyttisesti katkeavista alamuodoista irtoavan solunsisäisen osan toimintaa. 
SUMO-modifikaatio sääteli ErbB4:n solunsisäisen osan määrää tumassa ja ErbB4:n 
tumasignaloinnin aktiivisuutta.

Tutkimuksessa tehdyt havainnot osoittavat, että translaation jälkeiset modifikaatiot 
säätelevät ErbB4-reseptorin hajotusta, solunsisäistä sijaintia ja signalointia. 
Tutkimuksessa osoitettiin ensimmäistä kertaa, että SUMO-modifikaatio säätelee 
tyrosiinikinaasireseptorin solunsisäisen osan toimintaa tumassa. Translaation jälkeiset 
modifikaatiot voivat vaikuttaa ErbB-reseptorien toimintaan sekä terveessä että 
syöpäkudoksessa. Tutkimuksen tulokset ErbB4-reseptorin uusista säätelymekanismeista 
saattavat myös olla laajennettavissa muihin tyrosiinikinaasireseptoreihin. 

Avainsanat: alamuoto, endosytoosi, ErbB4, SUMO, tumasignalointi, ubikitiini
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ABBREVIATIONS

ADAM  a disintegrin and metalloproteinase
Akt   v-akt murine thymoma viral oncogene homolog
ATP  adenosine triphosphate
Cbl  casitas B-lineage lymphoma
CRM1  chromosomal region maintenance 1
CYT   cytoplasmic
DUB  deubiquitinating enzyme
EGF   epidermal growth factor
EGFR  epidermal growth factor receptor
ERα	 	 estrogen	receptor	α
ErbB  v-erb-b avian erythroblastic leukemia viral oncogene homolog
ERK  extracellular signal-regulated kinase
ETS  v-ets avian erythroblastosis virus E26 oncogene homolog
GRB2  growth factor receptor-bound protein 2
GST  glutathione S-transferase
GTP  guanosine triphosphate
HB-EGF heparin-binding EGF-like growth factor
HECT  homologous to E6-AP carboxyl terminus
ICD   intracellular domain
Itch  itchy E3 ubiquitin protein ligase
JM   juxtamembrane
LRIG1  leucine-rich repeats and immunoglobulin-like domains-1
MAPK  mitogen activated protein kinase
MEK  mitogen activated protein kinase kinase
MIG6  mitogen-induced gene 6
MVB  multivesicular body
Myc  v-myc avian myelocytomatosis viral oncogene homolog
NEDD4 neural precursor cell expressed, developmentally downregulated 4
NES  nuclear export signal
NLS  nuclear localization signal
NRDP1  neuregulin receptor degradation protein-1
NRG   neuregulin
PDGFR  platelet-derived growth factor receptor
PDK1  3-phosphoinositide dependent kinase 1
PI3K   phosphoinositol-3 kinase
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PIAS   protein inhibitor of activated STAT
PLC   phospholipase C
PML  promyelocytic leukemia
PTB  phosphotyrosine-binding
PTEN  phosphatase and tensin homolog 
PTM  post-translational modification
PTP   protein tyrosine phosphatase
Rab5  ras-related protein Rab5
Rab7  ras-related protein Rab7
Raf  v-raf murine leukemia viral oncogene homolog
RALT  receptor-associated late inducer
RanBP2 Ran-binding protein 2
RanGAP1 Ran GTPase-activating protein 1
Ras  rat sarcoma 
RIP  regulated intramembrane proteolysis
RING  really interesting new gene
RTK   receptor tyrosine kinase
SENP  sentrin-specific protease
SH2   Src homology 2 domain
SHC  Src homology 2 containing
SIM  SUMO interaction motif
SOCS  suppressors of cytokine signaling
SOS  son of sevenless
SP-RING Siz/PIAS-RING
STAT   signal transduced and activator of transcription
SUMO  small ubiquitin-like modifier
TAB2	 TGF-β	activated	kinase	1/MAP3K7	binding	protein	2
NCoR   nuclear receptor corepressor
TACE	 	 tumor-necrosis	factor-α	converting	enzyme
TM   transmembrane domain
TOPORS topoisomerase I-binding, arginine/serine rich
UBD  ubiquitin-binding domain
UBL  ubiquitin-like modifier
YAP  yes-associated protein
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1 INTRODUCTION

The ErbB family of receptor tyrosine kinases consists of epidermal growth factor receptor 
(EGFR, ErbB1), ErbB2, ErbB3, and ErbB4. ErbB receptors are activated by the binding 
of extracellular EGF-like growth factors, and transmit the growth factor signal into the 
activation of intracellular signaling cascades. Through these signaling cascades ErbB 
receptors regulate fundamental cellular processes such as proliferation, differentiation 
and survival, and play essential roles in embryonic development and the homeostasis of 
adult tissues. Accordingly, the function of ErbB receptors must be tightly controlled, and 
aberrant ErbB signaling is a common feature of human pathologies, including cancer.

The function of many proteins involved in signal transduction is regulated by post-
translational modifications. Post-translational modifications, which include the 
attachment of ubiquitin and ubiquitin-like polypeptides in addition to small chemical 
groups, represent a fast and often reversible way to regulate protein function. Chains 
of ubiquitin molecules often function as proteolytic degradation signals, and the 
ubiquitination-induced lysosomal degradation of activated EGFR is a well-characterized 
example of ubiquitination as a negative regulator of cellular signaling. The attachment 
of ubiquitin-like proteins, however, typically regulates their target proteins by non-
proteolytic mechanisms, for example by inducing changes in the activity or subcellular 
localization. 

Although many aspects of ErbB signaling have been extensively studied, the roles 
of post-translational ubiquitin, and in particular ubiquitin-like modifications in ErbB 
receptor function are largely unexplored. This thesis focuses on one member of the 
ErbB family, ErbB4, and elucidates how ErbB4 signaling is regulated by ubiquitin and 
ubiquitin-like modifications. Identification of the molecular mechanisms that modify 
the output of ErbB4 signaling will expand the understanding of ErbB4 function in both 
healthy and diseased tissues. 

 



12 Review of the Literature 

2 REVIEW OF THE LITERATURE

2.1 Receptor tyrosine kinases

Protein phosphorylation is a post-translational modification that regulates intracellular 
signaling pathways. Protein kinases are enzymes that catalyze the transfer of the 
γ-phosphate group from adenoside triphosphate (ATP) to an amino acid residue of a 
protein substrate. The human genome encodes over 500 protein kinases, of which at 
least 90 are protein tyrosine kinases. 55 protein tyrosine kinases are transmembrane 
receptors referred to as receptor tyrosine kinases (RTK), which are further divided in 
19 subfamilies. RTKs mediate extracellular growth factor signals across the plasma 
membrane, and control fundamental cellular processes. The activity of RTKs is tighly 
controlled during normal embryonic development and homeostasis of adult tissues, 
but aberrant RTK function is associated with pathologies, especially cancers (Blume-
Jensen and Hunter, 2001; Lemmon and Schlessinger, 2010; Wheeler and Yarden, 
2015).

2.2 ErbB receptors

The ErbB or epidermal growth factor (EGF) receptor subfamily of RTKs consists 
of epidermal growth factor receptor (EGFR, or ErbB1) (Ullrich et al., 1984), ErbB2 
(Coussens et al., 1985), ErbB3 (Plowman et al., 1990) and ErbB4 (Plowman et al., 
1993a) (Figure 1). The receptors are called ErbB for the close similarity of the amino 
acid sequence of EGFR with the amino acid sequence of avian erythroblastic leukemia 
retroviral oncoprotein v-erb-B (Downward et al., 1984). ErbB receptors are also called 
HER receptors, an abbreviation for human EGF receptor. 

ErbB receptors are transmembrane type I glycoproteins of approximately 180 kilodaltons. 
They share a common structure with other receptor tyrosine kinases, with an extracellular 
domain, a single α-helical transmembrane domain, and an intracellular domain (Figure 
1). The ErbB extracellular domain mediates receptor activation via ligand binding 
and receptor dimerization. The transmembrane domain docks ErbB receptors to the 
plasma membrane, and has minor roles in receptor activation. The ErbB intracellular 
domain contains tyrosine kinase activity and a carboxy (C)-terminal tail, including 
phosphorylated tyrosine residues that serve as binding sites for the intracellular signaling 
molecules upon receptor activation (Lemmon et al., 2014).
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Figure 1. Structures and ligands of ErbB receptors. Top: ErbB ligands grouped according 
to their receptor-binding specificities. EGF, epidermal growth factor; HB-EGF, heparin-binding 
EGF-like growth factor; NRG, neuregulin; TGFα, transforming growth factor α. Bottom: 
Schematic structures of ErbB receptors in the inactive conformation. ErbB receptors have a ligand-
binding	 extracellular	 domain,	 a	 single	 α-helical	 transmembrane	 domain,	 and	 an	 intracellular	
domain containing a tyrosine kinase domain (indicated in red) and carboxy-terminal tail (C). The 
extracellular domain of ErbB2 is constitutively in an active conformation. The kinase domain of 
ErbB3 is inactive. The receptor structures are modified from Burgess et al., 2003 and Zhang et 
al., 2006.

2.2.1 Ligands of ErbB receptors
The four ErbB receptors are activated by 11 EGF-like polypeptide ligands that have 
different receptor-binding preferences (Figure 1). Ligands that bind to and activate 
EGFR include EGF, heparin-binding EGF-like growth factor (HB-EGF), transforming 
growth factor α (TGF-α), amphiregulin, betacellulin, epigen, and epiregulin (Riese et al., 
1996a; 1996b; 1998; Strachan et al., 2001). In addition to EGFR, HB-EGF, betacellulin 
and epiregulin also activate ErbB4 (Riese et al., 1996a; Elenius et al., 1997a; Riese et al., 
1998). Neuregulins (NRG) are ligands that activate either both ErbB3 and ErbB4 (NRG-
1 and NRG-2), or ErbB4 only (NRG-3 and NRG-4) (Plowman et al., 1993b; Carraway 
et al., 1994; Carraway et al., 1997; Chang et al., 1997; Zhang et al., 1997; Harari et al., 
1999). No EGF-like ligands that directly bind to ErbB2 have been identified, an anomaly 
explained by the crystal structure of the ErbB2 extracellular domain (Cho et al., 2003; 
Garrett et al., 2003). 



14 Review of the Literature 

The EGF-like ligands are synthesized as transmembrane precursor proteins. Proteolytic 
processing by extracellular proteases, referred to as shedding, releases the soluble ligand 
into the extracellular space and controls autocrine and paracrine signaling. Additionally, 
transmembrane forms of some EGF-like ligands can bind to receptors in neighboring 
cells, and transmit signals in juxtacrine fashion (Singh and Harris, 2005; Blobel et al., 
2009).

2.2.2 Activation of ErbB receptors
Structural studies have illustrated how ligand binding to the extracellular domain of 
ErbB receptors is converted to the activity of the intracellular tyrosine kinase domain. 
In the absence of ligand, ErbB receptors exist as monomers, and the extracellular 
domain of EGFR, ErbB3 and ErbB4 is in a closed, autoinhibited conformation (Cho 
and Leahy, 2002; Garrett et al., 2002; Bouyain et al., 2005) (Figure 2). Ligand binding 
to the extracellular subdomains I and III results in a major structural reconfiguration, 
and the stabilization of an open, active conformation. In this active conformation, the 
extracellular subdomains II and IV mediate receptor dimerization (Garrett et al., 2002; 
Ogiso et al., 2002; Burgess et al., 2003). Notably, the extracellular domain of ErbB2 
is constitutively in the active conformation, and thus ready to dimerize without ligand 
binding. The active conformation of ErbB2 is stabilized by an interaction interface of 
subdomains I and III in a manner that resembles the ligand-induced stabilization of the 
active conformation of other ErbB receptors. The interaction interface also buries the 
ligand-binding surface, explaining the inability of ErbB2 to bind to ligands (Cho et al., 
2003; Garrett et al., 2003) (Figure 1). 

The dimerization of ErbB extracellular domains promotes the formation of an 
asymmetric dimer of the intracellular tyrosine kinase domains. In the asymmetric dimer, 
the C-terminal lobe of one kinase molecule (referred to as the activator kinase) makes 
contacts with the N-terminal lobe of another kinase molecule (referred to as the receiver 
kinase) (Figure 2). These interactions stabilize the active conformation of the receiver 
kinase, which in turn phosphorylates the activator kinase in trans (Zhang et al., 2006; 
Qiu et al., 2008). The intracellular juxtamembrane region and the transmembrane domain 
further stablize the active asymmetric kinase dimer (Bocharov et al., 2008; Brewer et al., 
2009; Jura et al., 2009). 

The allosteric activation mechanism of ErbB receptors does not require catalytic activity 
of the activator kinase. Thus, ErbB3, which lacks important catalytic residues and is 
practically inactive, can function as an activator in the asymmetric kinase dimer of ErbB 
heterodimers (Guy et al., 1994; Zhang et al., 2006; Shi et al., 2010). 
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Figure 2. Activation of ErbB receptors. Left: Inactive receptor monomers adopt a closed 
conformation, in which the dimerization interface (indicated by an oval) of the subdomains II 
and IV is masked. Middle: Ligand (indicated in blue) binding to the subdomains I and III induces 
structural reconfiguration, and receptors adopt an open conformation where the dimerization 
interface is exposed. Right: Dimerization of the extracellular domains, mediated by the 
subdomains II and IV, promotes the formation of an asymmetric dimer of the tyrosine kinase 
domains (indicated in red). The C-terminal lobe of the activator kinase makes contacts with 
the N-terminal lobe of the receiver kinase, resulting in stabilization of the active conformation 
and autophosphorylation of the receptor dimer. Yellow circles indicate phosphorylated tyrosine 
residues. Modified from Burgess et al., 2003 and Zhang et al., 2006.

2.2.3 Signaling pathways activated by ErbB receptors
The ligand-induced activation of the ErbB kinase domain results in the autophosphorylation 
of several tyrosine residues in the receptor’s C-terminal tail. Autophosphorylation sites 
are determined by the activating ligand and, as ErbB receptors can form homo- and 
heterodimers, the composition of the receptor dimer (Olayioye et al., 1998; Sweeney 
et al., 2000). Indeed, the C-terminal tail is the least conserved domain of ErbBs, and 
each receptor has different preferences for signaling and adaptor proteins that recognize 
the phosphorylated tyrosines (Schulze et al., 2005). The signaling and adaptor proteins 
associate with ErbB receptors via their Scr homology (SH) or phosphotyrosine-binding 
(PTB) interaction domains, and link the receptors to downstream signaling cascades 
including the mitogen-activated protein kinase (MAPK), phosphoinositol 3-kinase 
(PI3K), phospholipase C (PLC)-γ, and signal transducer and activator of transcription 
(STAT) pathways (Figure 3). The activity of these signaling processes translates receptor 
activation to cellular responses including proliferation, differentiation, migration, and 
survival (Lemmon and Schlessinger, 2010). 
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Figure 3. Signaling pathways activated by ErbB receptors. Signaling and adaptor molecules 
(indicated in grey) are recruited to the phosphorylated tyrosine residues (indicated in yellow) in 
receptor C-terminal tails, and initiate intracellular signaling pathways that mediate different cellular 
responses. Akt, v-akt murine thymoma viral oncogene homolog; DAG, diacylglycerol; ERK, 
extracellular signal-regulated kinase; GRB2, growth factor receptor-bound protein 2; IP3, inositol-
1,4,5-triphosphate; MEK, mitogen activated protein kinase kinase; PCK, protein kinase C; PDK1, 
3-phosphoinositide dependent kinase 1; PI3K, phosphoinositol 3-kinase; PLCγ, phospholipase 
C-γ; Raf, v-raf murine leukemia viral oncogene homolog; Ras, rat sarcoma; SHC, Src homology 2 
containing; SOS, son of sevenless; STAT, signal transducer and activator of transcription.

The MAPK pathway can be activated by all ErbB receptors. Phosphorylated ErbB 
receptors harbor docking sites for the SH2 domain containing adaptor protein growth 
factor receptor-bound protein 2 (GRB2), or the SH2 and PTB domain containing 
adaptor protein Src homology 2 containing (SHC), which recruit the guanide nucleotide 
exchange factor son of sevenless (SOS) to the plasma membrane (Schulze et al., 2005; 
Lemmon and Schlessinger, 2010). SOS activates the small GTPase Ras, which in turn 
triggers a kinase cascade comprising Raf (MAPK kinase kinase), MEK (MAPK kinase) 
and ERK (MAPK). Activated ERK translocates into the nucleus where it can activate 
several transcription factors, including Myc and transcription factors belonging to the 
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AP-1 and ETS families. The activation of these transcription factors leads to changes in 
gene expression to promote various cellular responses, most prominently proliferation 
(Roberts and Der, 2007; Shaul and Seger, 2007).

PI3K pathway is another key signaling pathway activated by ErbB receptors. ErbB3 
and ErbB4 have binding sites for the SH2 domain containing PI3K regulatory subunit 
p85 (Schulze et al., 2005). The PI3K catalytic subunit p110 catalyzes the conversion 
of phosphatidylinositol-4,5-phosphate to phosphatidylinositol-3,4,5-phosphate, which 
recruits Akt and 3-phosphoinositide dependent kinase 1 (PDK1). PDK1 phosphorylates 
Akt, which becomes activated and phosphorylates downstream targets involved in cell 
survival, metabolism and cytoskeletal rearrangements (Luo et al., 2003). In addition 
to the direct PI3K activation by ErbB3 and ErbB4, ErbB receptors can activate this 
pathway indirectly via Ras (Rodriguez-Viciana et al., 1994). 

Another phosphoinositol signaling pathway is initiated by the recruitment of PLCγ to the 
activated ErbB receptors by its SH2 domains. EGFR, ErbB2 and ErbB4 phosphorylate 
PLCγ, leading to its activation (Margolis et al., 1990; Peles et al., 1991; Vecchi et al., 
1996). Activated PLCγ hydrolyzes phosphatidylinositol-4,5-phosphate to secondary 
messengers diacylglycerol and inositol-1,4,5-triphosphate, which in turn stimulate the 
release of calcium and calcium dependent signaling, as well as the activation of protein 
kinase C (Rhee, 2001). The PLCγ pathway regulates diverse cellular processes including 
proliferation, differentiation and migration (Yang et al., 2013). 

ErbB receptors also activate STAT proteins, transcription factors that were initially implicated 
as cytokine signal transducers (Schindler, 2002). Different ErbB receptors activate different 
STAT proteins. EGFR activates STAT1, STAT3 and STAT5 (Olayioye et al., 1999; Schulze 
et al., 2005), and ErbB4 activates STAT5 (Jones 1999; Olayioye et al., 1999; Schulze et al., 
2005). The inactive STATs reside in the cytosol as monomers, and are activated through 
phosphorylation-induced dimerization. STAT dimers translocate to the nucleus where they 
regulate gene expression (Schindler, 2002). In the context of EGFR signaling, STAT-mediated 
transcriptional responses promote proliferation and survival (Quesnelle et al., 2007). ErbB4, 
in turn, activates STAT5 to promote differentiation (Long et al., 2003).

2.2.4 Nuclear signaling of ErbB receptors
In addition to the classical signaling pathways activated by ErbB receptors at the cell 
surface, ligand-activated ErbB receptors can be shuttled to the nucleus where they may 
function as transcriptional regulators (Chen and Hung, 2015). All ErbB receptors have 
been observed to localize in the nucleus (Xie and Hung, 1994; Marti et al., 1991; Ni et al., 
2001; Offterdinger et al., 2002). Unique among ErbB receptors, ErbB4 can translocate 
into the nucleus as a soluble intracellular receptor fragment (Ni et al., 2001).

The nuclear translocation mechanism of EGFR has been studied in detail. Ligand-
activated receptors are first internalized via clathrin mediated endocytosis, and sorted from 
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endosomes to a retrograde vesicular trafficking route, which transports them to the trans-
Golgi network and endoplasmic reticulum (Lo et al., 2006; Wang et al., 2010a) (Figure 4). 
All ErbB receptors contain a tripartite nuclear localization signal (NLS) in the intracellular 
juxtamembrane region, which allows them to be transported to the nuclei via interactions 
with nuclear transport receptors importin 1α and β (Lo et al., 2006; Hsu and Hung, 2007). 
Finally, SEC61 translocon activity is required to release transmembrane EGFR from the 
lipid membrane (Liao and Carpenter, 2007; Wang et al., 2010b). A similar translocation 
mechanism requiring endocytosis and importin β has been described for ErbB2 and ErbB3 
(Giri et al., 2005; Wang et al., 2012; Reif et al., 2016). 
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Figure 4. Nuclear translocation and signaling of ErbB receptors. Full-length ErbB receptors 
are transported to the nucleus via vesicular transport, and interactions with importin 1 and SEC61 
translocon. ErbB4 undergoes regulated intramembrane proteolysis mediated by tumor-necrosis 
factor α	converting	enzyme	(TACE)	and	γ-secretase,	and	is	translocated	into	the	nucleus	as	a	soluble	
intracellular fragment. Nuclear ErbB receptors can regulate transcription. TF, transcription factor.
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The nuclear translocation of ErbB4 intracellular fragment is initiated by a two-step 
proteolytic process called regulated intramembrane proteolysis (RIP) (Figure 4). Of 
note, although ErbB4 was the first RTK described to undergo RIP, many other RTKs 
have since been identified as RIP substrates (Merilahti et al., unpublished). First, the 
extracellular domain of ErbB4 is shed by tumor-necrosis factor α converting enzyme 
(TACE/ADAM17), generating a membrane-tethered receptor fragment (m80) and a 
soluble extracellular fragment (Rio et al., 2000). This proteolytic event is stimulated by 
phorbol esters or ligand binding (Vecchi et al., 1996; Zhou and Carpenter, 2000). Next, 
the m80 fragment is cleaved by γ-secretase complex, releasing the intracellular domain 
(ICD) into the cytosol (Ni et al., 2001; Lee et al., 2002). The soluble ICD contains a 
nuclear localization signal that mediates the nuclear translocation (Williams et al., 2004; 
Hsu and Hung, 2007). 

Nuclear ErbB receptors have been demonstrated to promote proliferation by regulation 
of gene expression (Chen and Hung, 2015). For example, nuclear EGFR associates with 
cyclin D1 promoter and nuclear ErbB2 associates with cyclooxygenase-2 promoter, 
promoting their transcription (Lin et al., 2001; Wang et al., 2004). ErbB receptors do not 
contain DNA-binding domains, but instead regulate gene expression via interactions with 
DNA-binding transcription factors (Chen and Hung, 2015). In addition to transcriptional 
coregulatory functions, nuclear EGFR has been shown to phosphorylate and regulate the 
function of proliferating cell nuclear antigen (Wang et al., 2006). 

Nuclear ErbB4 ICD regulates transcriptional processes by modifying the activity 
of transcriptional activators and repressors. The signaling mechanisms and cellular 
responses of ErbB4 ICD will be discussed in more detail in section 2.3.1.

2.2.5 Negative regulation of ErbB signaling
The signaling of ligand-activated ErbB receptors is attenuated by reversible and 
irreversible negative regulatory mechanisms. Receptor dephosphorylation and 
endocytosis-mediated receptor degradation are rapid mechanisms to downregulate 
signaling. In contrast, the synthesis of protein inhibitors represents a delayed negative 
regulatory mechanism (Citri and Yarden, 2006). 

Protein tyrosine phosphatases (PTP) are enzymes that catalyze the removal of phosphate 
groups from phosphotyrosines, thus inactivating RTKs. The human genome encodes 
more than one hundred PTPs (Tonks, 2006). Several of them, for example protein 
tyrosine phosphatase 1B, have been shown to dephosphorylate and inactivate ErbB 
receptors (Haj et al., 2003; Monast et al., 2012). 

Receptor endocytosis is the major downregulation mechanism of activated RTKs, 
including EGFR. The receptors are constitutively internalized from the plasma 
membrane, but ligand binding increases the internalization rate resulting in the rapid 
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retention of receptors in early endosomes (Goh and Sorkin, 2013). Although clathrin-
mediated internalization is the major and fastest internalization pathway for ligand-
activated EGFR, clathrin-independent pathways may also be involved (Sigismund et al., 
2005; Goh and Sorkin, 2013). Once internalized, the receptors can be recycled back to 
the plasma membrane in recycling endosomes, or trafficked further into multivesicular 
bodies and sorted for lysosomal degradation. This sorting event is regulated by post-
translational ubiquitin modification, mediated by ubiquitin ligase Cbl (Levkowitz et al., 
1999; Goh and Sorkin, 2013) (Figure 5). Unlike EGFR, the ligand-induced endocytosis 
and degradation of ErbB2, ErbB3 and ErbB4 has been reported to be inefficient (Baulida 
et al., 1996). However, the stability of ErbB2, ErbB3 and ErbB4 is regulated by other 
ubiquitin-dependent mechanisms. The role of ubiquitination in the degradation of ErbB 
receptors will be discussed in more detail in section 2.4.1. 
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Figure 5. Ubiquitination and the endocytosis of EGFR. Activated EGFR is ubiquitinated 
(indicated in orange) by Cbl. Ubiquitinated receptors are trafficked from early endosomes 
to multivesicular bodies (MVB). In MVBs the ubiquitinated receptors are recognized by the 
endosomal sorting complex required for transport (ESCRT), and sorted for intraluminal vesicles 
and further to lysosomes. Alternatively, the receptors can be deubiquitinated and recycled back 
to the cell surface.

In addition to rapid downregulation by dephosphorylation and endocytosis, ErbB 
signaling is controlled by ligand-inducuble protein inhibitors that form a negative 
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feedback loop. These protein inhibitors include leucine-rich repeats and immunoglobulin-
like domains-1 (LRIG1), receptor-associated late inducer/mitogen-induced gene 6 
(RALT/MIG), and suppressors of cytokine signaling (SOCS) (Anastasi et al., 2003; Gur 
et al., 2004; Laederich, 2004; Kario et al., 2005). While LRIG1 and SOCS enhance ErbB 
receptor ubiquitination and degradation, RALT/MIG6 binds to the kinase domain and 
inhibits the formation of the kinase dimer (Gur et al., 2004; Laederich, 2004; Kario et 
al., 2005; Zhang et al., 2007). 

2.2.6 ErbB receptors in embryonic development
The importance of ErbB signaling in normal tissues has been illustrated in genetic 
knockout studies. Egfr deficient mice die before preimplantation or survive until a 
few weeks after birth, depending on the genetic background (Miettinen et al., 1995; 
Threadgill et al., 1995). These mice demonstrate defective epithelial and central nervous 
system development (Miettinen et al., 1995; Threadgill et al., 1995; Sibilia et al., 1998).

Erbb2 null mice die at embryonic day 10.5 due to the lack of ventricular trabeculae, which 
results in cardiac failure (Lee et al., 1995). ErbB2 is also critical in the development 
of the nervous system, and Erbb2 deficient mice demonstrate defects in neural crest-
derived tissues such as cranial ganglia and Schwann cells (Lee et al., 1995; Erickson et 
al., 1997; Woldeyesus et al., 1999).

Erbb3 deletion also results in embryonic lethality. Erbb3 null mice die at embryonic 
day 13.5 due to the abnormal development of cardiac cushions, which leads to defective 
atrioventricular valves and cardiac failure (Erickson et al., 1997; Riethmacher et al., 
1997). Inactivation of Erbb3 also results in severe neuropathies, especially in the 
peripheral nervous system, due to defective Schwann cell development (Riethmacher 
et al., 1997). Similar to ErbB2, Erbb3 is required for the development of cranial ganglia 
(Erickson et al., 1997; Riethmacher et al., 1997).

Inactivation of Erbb4 results in embryonic lethality, and Erbb4-/- mice have defects in 
the development of the heart, central nervous system, mammary gland, kidney and testis. 
These studies are reviewed in section 2.3.4. 

2.2.7 ErbB receptors in cancer
Dysregulation of growth factor signaling is a common feature of cancer (Hanahan and 
Weinberg, 2000; 2011). Since the identification of EGFR and ErbB2 as homologs of 
avian and rodent oncogenes, v-erb-B (Downward et al., 1984) and neu (Schechter et al., 
1984), the role of ErbB signaling in cancer has been extensively studied. While EGFR 
and ERBB2 are well-established oncogenes driving tumors of epithelial tissues and the 
central nervous system, ErbB3 has been implicated in cancer as a co-receptor able to 
promote signaling from EGFR and ErbB2 (Arteaga and Engelman, 2014). Compared to 
other ErbB receptors, the role of ErbB4 in cancer is poorly defined (section 2.3.5).
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ErbB signaling in cancer can be abnormally activated by overexpression, somatic mutations, 
or increased ligand availability (Arteaga and Engelman, 2014). For example, a subset of 
breast cancers overexpresses ERBB2 due to genetic amplification (Slamon et al., 1987), 
and substitutions and deletions of EGFR have been found in subsets of non-small cell lung 
cancers and glioblastomas (Sugawa et al., 1990; Lynch et al., 2004; Paez, 2004; Pao et al., 
2004). Additionally, failure to attenuate signaling contributes to the aberrant activity of 
ErbB receptors in cancer (Avraham and Yarden, 2011; Mellman and Yarden, 2013). 

Several drugs have been developed and approved for clinical use to treat cancers with 
overexpressed or mutated ErbB receptors. Drugs targeting ErbB receptors are either 
small-molecule tyrosine kinase inhibitors that typically compete with ATP, or monoclonal 
antibodies that bind to the receptor extracellular domain. For example, trastuzumab, a 
monoclonal antibody targeting ErbB2, is approved to treat breast cancer patients with 
ERBB2 amplification, and erlotinib, a small-molecule tyrosine kinase inhibitor, is used in 
non-small cell lung cancer patients with EGFR mutations (Arteaga and Engelman, 2014).

2.3 ErbB4 receptor

The ERBB4 gene is expressed as four isoforms that are generated by alternative 
messenger RNA splicing. Two of the isoforms differ in the extracellular juxtamembrane 
region (JM-a and JM-b) and two differ in the intracellular cytoplasmic domain (CYT-1 
and CYT-2) (Figure 6). Through these structurally and functionally distinct isoforms, 
ErbB4 can activate both classical RTK-induced signaling pathways (reviewed earlier in 
section 2.2.3), as well as RIP-mediated signaling. 
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Figure 6. Schematic structure of ErbB4 isoforms. Alternative splicing generates four isoforms 
that differ at juxtamembrane (JM) or cytoplasmic (CYT) domains. JM-a isoforms, but not JM-b 
isoforms, include a tumor-necrosis factor α converting enzyme (TACE) cleavage site. Subsequent 
cleavage	by	γ-secretase	releases	a	soluble	intracellular	domain.	CYT-1	isoforms,	but	not	CYT-2	
isoforms, contain a sequence that has binding sites for PI3K (YTPM; indicated in bold) and WW 
domain containing proteins (PPAY; indicated in italics). Black indicates transmembrane domain 
and red indicates tyrosine kinase domain. Modified from Määttä et al., 2006.
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2.3.1 Extracellular juxtamembrane isoforms of ErbB4
The JM isoforms of ErbB4, JM-a and JM-b, include either exon 16 or exon 15, respectively, 
resulting in amino acid and structural differences in the extracellular juxtamembrane 
region (Figure 6). The JM-a isoform includes a 23 amino acid sequence with a cleavage 
site for TACE, resulting in the shedding of the JM-a extracellular domain (Elenius et 
al., 1997b; Rio et al., 2000). In contrast, the JM-b isoform includes a shorter 13 amino 
acid sequence and lacks the TACE cleavage site (Elenius et al., 1997b). TACE cleavage 
triggers a second proteolytic cleavage by γ-secretase complex, releasing a soluble ErbB4 
ICD (Ni et al., 2001; Lee et al., 2002) (Figure 4).

Soluble ErbB4 ICD can translocate into the nucleus as described in section 2.2.4, but 
also reside in the cytosol and accumulate in the mitochondria (Ni et al., 2001; Naresh 
et al., 2006). Nuclear ErbB4 ICD associates with, and either promotes or represses, the 
activity of transcriptional regulators including yes-associated protein (YAP), STAT5A, 
estrogen receptor α (ERα), ETO2, the TAB2-NCoR complex, activator protein 2 (AP-
2), KRAB associated protein 1 (KAP1), and hypoxia-inducible factor 1 α (HIF-1α) 
(Komuro et al., 2003; Williams et al., 2004; Linggi and Carpenter, 2006; Sardi et al., 
2006; Zhu et al., 2006; Gilmore-Hebert et al., 2010; Sundvall et al., 2010; Paatero et al., 
2012). Soluble ErbB4 ICD is an active tyrosine kinase (Linggi et al., 2006), but only a 
few studies have addressed the role of ErbB4 kinase activity in ICD-mediated signaling 
(Linggi and Carpenter, 2006; Muraoka-Cook et al., 2006; Naresh et al., 2006). Currently, 
the only known phosphorylation substrate of ErbB4 ICD is MDM2, a ubiquitin ligase 
that is critical for regulating p53 protein level (Arasada and Carpenter, 2005). 

Cellular responses mediated by RIP-dependent ErbB4 signaling have been elucidated in 
studies that compare JM-a and JM-b isoforms, or in studies that employ mutagenesis of 
the γ-secretase cleavage site or ectopic expression of the soluble ICD. Cleavable JM-a 
CYT-2, but not the non-cleavable JM-b CYT-2, promotes the proliferation and survival 
of breast cancer and myeloid cells (Määttä et al., 2006) and regulates tubulogenesis of 
kidney epithelial cells (Zeng et al., 2007). JM-a CYT-2 and JM-b CYT-2 have different 
target genes and promote opposing cellular effects in serum starved fibroblasts: JM-a 
promotes survival, whereas JM-b mediates apoptosis (Sundvall et al., 2010). In vivo, 
JM-a, but not JM-b, regulates astrogenesis in the developing brain (Sardi et al., 2006). 
The function of JM-a CYT-1 in promoting mammary epithelial cell differentiation 
requires an intact γ-secretase cleavage site, and the ectopically expressed soluble ICD 
can regulate differentiation in vitro and in vivo (Muraoka-Cook et al., 2006; 2009). 

2.3.2 Cytoplasmic isoforms of ErbB4
The cytoplasmic (CYT) isoforms either include (CYT-1) or exclude (CYT-2) exon 26, 
encoding a 16 amino acid sequence near the C-terminus (Figure 6). The CYT-1-specific 
sequence contains a binding site for the SH2 domain of PI3K p85 subunit (YTPM), and 
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can activate PI3K (Elenius et al., 1999). Moreover, the CYT-1-specific sequence has a 
PPXY motif that can bind to WW domain containing proteins such as YAP (Komuro et 
al., 2003; Omerovic et al., 2004). 

In studies comparing the cellular responses mediated by different cytoplasmic isoforms, 
CYT-1, but not CYT-2, was shown to promote survival and chemotaxis of fibroblasts, 
survival of medulloblastoma cells, and anchorage-independent growth of ovarian cancer 
cells in a PI3K-dependent manner (Kainulainen et al., 2000; Ferretti et al., 2006; Paatero 
et al., 2013). 

The cytoplasmic isoforms differ in their stability, tyrosine phosphorylation, and 
subcellular localization (Määttä et al., 2006; Sundvall et al., 2007). Compared to CYT-
1, JM-a CYT-2 is more stable and constitutively phosphorylated (Määttä et al., 2006). 
Consistently, only JM-a CYT-2 promotes the survival of myeloid cells, possibly through 
its constitutive tyrosine kinase activity (Määttä et al., 2006). JM-a CYT-2 produces more 
ICD, and ICD of CYT-2 localizes to the nuclei more efficiently than that of CYT-1 
(Määttä et al., 2006; Sundvall et al., 2007). Similar to different JM isoforms (2.3.1), CYT 
isoforms regulate the expression of different target genes (Wali et al., 2014a).

In the context of the mammary gland, inducible expression of ErbB4 ICD of CYT-1 type 
promotes differentiation both in vitro and in vivo, while CYT-2 suppresses differentiation 
and promotes proliferation (Muraoka-Cook et al., 2009). However, a more recent in vivo 
study comparing the mammary gland-specific overexpression of full-length JM-a CYT-
1 and JM-a CYT-2 reported that CYT-1 suppresses mammary gland differentiation, 
and induces neoplasia (Wali et al., 2014b). In contrast, CYT-2 was shown to suppress 
mammary gland differentiation only mildly, but induce a low incidence of hyperplasia 
(Wali et al., 2014b). Despite the partially conflicting findings, these studies demonstrate 
that the cytoplasmic isoforms of ErbB4 have different signaling potentials also in vivo.

2.3.3 Expression of ErbB4 isoforms
ErbB4 messenger RNA expression has been analyzed in various mouse and human 
tissues. The highest ErbB4 expression levels are observed in the nervous system, kidney, 
salivary and thyroid glands, testis, and heart and skeletal muscle (Elenius et al., 1997b; 
1999; Junttila et al., 2005; Veikkolainen et al., 2011). 

The alternative splicing of ErbB4 messenger RNA is regulated in a tissue-specific 
manner, resulting in tissue-specific isoform expression patterns. Epithelial tissues, such 
as those in the kidney and mammary gland, exclusively express the cleavable JM-a 
isoform, while mesenchymal tissues such as the heart and skeletal muscle tissue express 
JM-b either dominantly or together with JM-a (Junttila et al., 2005; Veikkolainen et al., 
2011). Both JM-a and JM-b are expressed in nervous tissues such as the brain and the 
cerebellum, but they have been reported to be present in different cell types (Elenius et 
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al., 1997b; Junttila et al., 2005; Veikkolainen et al., 2011). In contrast to JM isoforms, 
both CYT isoforms are usually expressed in the same cell types, although not always in 
the same quantities (Junttila et al., 2005; Veikkolainen et al., 2011). 

2.3.4 ErbB4 in embryonic and adult tissues
Similar to other ErbB receptors, reviewed in section 2.2.6, ErbB4 is essential during 
embryonic development, and Erbb4-/- mice die at embryonic day 10.5. Like Erbb2-

/- mice, they demonstrate lack of ventricular trabeculae resulting in cardiac failure 
(Gassmann et al., 1995). A conditional deletion of Erbb4 in ventricular cardiomyocytes 
during embryogenesis leads to dilated cardiomyopathy in adult mice (García-Rivello et 
al., 2005).

ErbB4 is also required for the development of the nervous system. Erbb4-/- mice 
demonstrate defective neural innervation of the hindbrain, migration of the cranial neural 
crest cells, and abnormalities in the cerebellum (Gassmann et al., 1995; Tidcombe et al., 
2003). 

The function of ErbB4 in the mammary gland has been revealed in genetic inactivation 
studies using heart-specific ERBB4 transgene expression to rescue the embryonic lethality 
of the Erbb4 null embryos, or conditional mammary gland-specific Erbb4 deletion in 
adult mice (Long et al., 2003; Tidcombe et al., 2003). These mice fail to lactate due to 
impaired differentiation of the mammary lobuloalveoli and reduced STAT5-mediated 
milk gene expression (Long et al., 2003; Tidcombe et al., 2003). 

Conditional mouse knockout models have also demonstrated roles for ErbB4 in the 
kidney and the male reproductive system. Kidney-specific deletion of Erbb4 during 
embryonic development results in kidney dysfunction with mispolarization in the 
collecting duct epithelia and larger ductal lumens (Veikkolainen et al., 2012). Erbb4 
inactivation in testis Sertoli cells during embryogenesis reduces testis size and produces 
aberrant organization of testicular seminiferous tubules, resulting in reduced fertility 
(Naillat et al., 2014). 

2.3.5 ErbB4 in cancer 
ErbB4 is expressed in several cancer types, and both increased and decreased expression 
compared to non-neoplastic control tissue have been reported (Hollmén and Elenius, 
2010). For example, overexpression of ErbB4 has been reported in ovarian cancer 
and central nervous system malignancies, and reduced expression in bladder cancer 
(Gilbertson et al., 2002; Memon et al., 2004; Ferretti et al., 2006; Steffensen et al., 2008). 
Both overexpression and reduced expression of ErbB4 have been reported in breast 
cancer (Srinivasan et al., 1998; Witton et al., 2003; Junttila et al., 2005). 
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ErbB4 expression can be associated with favorable or poor prognosis (Hollmén and 
Elenius, 2010). In breast cancer ErbB4 is usually expressed in tumors with estrogen- and 
progesterone receptor-positive, ErbB2-negative, well-differentiated phenotype, which is 
a breast cancer subtype that is associated with favorable prognosis (Bacus et al., 1996; 
Knowlden et al., 1998; Kew et al., 2000; Pawlowski et al., 2000; Sundvall et al., 2008). 
However, in two breast cancer studies, high ErbB4 expression is associated with poor 
prognosis (Bièche et al., 2003; Lodge et al., 2003), despite the association of ErbB4 
expression with estrogen receptor positivity (Bièche et al., 2003). Another example of 
the association of ErbB4 expression with favorable prognosis is bladder cancer, and an 
example of the association of ErbB4 expression with poor prognosis is medulloblastoma 
(Gilbertson et al., 1997; Memon et al., 2004).

While experimental in vitro and in vivo models have revealed unique functions 
for different ErbB4 isoforms (sections 2.3.1 and 2.3.2), only a few studies have 
specifically analyzed the expression or prognostic significance of ErbB4 isoforms in 
cancer. Increased expression of CYT-1 isoform is associated with more aggressive 
medulloblastoma subtype and decreased survival in serous ovarian cancer (Ferretti et 
al., 2006; Paatero et al., 2013). The expression levels of CYT-1 and CYT-2 isoforms 
have also been reported to vary in breast cancer (Machleidt et al., 2013; Fujiwara et 
al., 2014; Kiuchi et al., 2014). Nuclear ErbB4 immunoreactivity, which potentially 
represents the soluble ICD, is frequently detected in breast cancer irrespective of the 
breast cancer subtype (Srinivasan et al., 2000). Nuclear ErbB4 epitope is associated 
with decreased survival when compared to the localization of ErbB4 epitope at the 
cell surface (Junttila et al., 2005). Conversely, cytoplasmic and membranous ErbB4 
staining are associated with increased survival (Aqeilan et al., 2007; Thor et al., 
2009).   

Cancer sequencing studies collected in the cBioPortal database (www.cbioportal.
org) have identified ERBB4 mutations in varying frequencies in several cancer types 
including lung cancer, melanoma, gastric cancer and colorectal cancer. Some cancer-
associated ERBB4 mutations have been functionally characterized. ERBB4 mutations 
found in melanoma have been shown to be oncogenic, and the lung cancer mutations 
were found to alter the signaling properties of ErbB4 or promote receptor activation 
(Prickett et al., 2009; Tvorogov et al., 2009; Kurppa et al., 2016). 

Although the role of ErbB4 in cancer is less well characterized than that of other ErbB 
family members, drugs that target ErbB4 are available. Afatinib, a pan-ErbB tyrosine 
kinase inhibitor that inhibits ErbB2 and ErbB4 in addition to EGFR, is approved in 
several countries for the treatment of metastatic non-small cell lung cancer with EGFR 
kinase domain mutations (Solca et al., 2012; Modjtahedi et al., 2014).
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2.3.6 ErbB4 in non-neoplastic diseases
Aberrant ErbB4 signaling has been implicated in neurological disorders. Together with 
NRG1, ERBB4 is a candidate susceptibility gene in schizophrenia (Stefansson et al., 
2002; Nicodemus et al., 2006; Norton et al., 2006; Silberberg et al., 2006). Intriguingly, 
some of the identified genetic ERBB4 variants are associated with increased expression 
of the JM-a CYT-1 isoform in postmortem brain studies of schizophrenia patients 
(Silberberg et al., 2006; Law et al., 2007). In addition to schizophrenia, genetic variants 
of ERBB4 have been identified in amyotrophic lateral sclerosis. These include causative 
germ line and sporadic coding sequence mutations that inhibit ErbB4 activity in vitro 
(Takahashi et al., 2013). 

ErbB4 is required for cardiac development during embryogenesis and for the 
maintenance of adult heart function (Gassmann et al., 1995; García-Rivello et al., 2005). 
The ErbB4/NRG-1 signaling system has also been shown to regulate the proliferation 
of cardiomyocytes in response to ischemic heart injury (Bersell et al., 2009). Notably, 
therapeutic administration of NRG-1 improves cardiac function in experimental models 
of ischemic heart injury (Bersell et al., 2009; Galindo et al., 2013), and in patients with 
chronic heart failure (Gao et al., 2010; Jabbour et al., 2011). 

2.4 Post-translational modification by ubiquitin and SUMO

Cell signaling is regulated at multiple levels. Compared to altering cell behavior by 
transcriptional responses, post-translational modification of existing proteins provides a 
fast and often transient way of controlling the activity of signaling pathways. In addition 
to small molecules such as phosphate groups, proteins can be modified with much larger 
polypeptides. 

The first example of an entire protein acting as a post-translational modification (PTM) 
was ubiquitin (Hershko and Ciechanover, 1998). Subsequently, many other ubiquitin-like 
modifiers (UBL) including small ubiquitin-like modifier (SUMO) have been discovered. 
UBLs share a similar three-dimensional structure with ubiquitin, and a pathway by which 
they are covalently conjugated to substrates. First, UBL precursors are proteolytically 
processed to mature forms. Ubiquitin, which is expressed as a polyubiquitin precursor, 
is processed to mature ubiquitin monomers, and SUMO is cleaved to expose a carboxy-
terminal motif necessary for conjugation. Next, UBLs are activated by an E1 enzyme in 
an ATP-dependent reaction, and then transferred to an E2 conjugating enzyme. Finally, 
the composite action of E2 and E3 ligase, or the activity of E3 alone, ligates UBLs 
to a lysine residue in a target protein by an isopeptide bond, or to an amino-terminal 
methionine residue by a peptide bond. Attachment of UBLs is reversible, and specific 
proteases catalyze the cleavage reactions (Hochstrasser, 2009) (Figure 7).
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Figure 7. Conjugation of ubiquitin-like modifiers. Ubiquitin-like modifier (UBL; indicated in 
orange) precursors are proteolytically processed to mature forms, and activated by E1 in an ATP-
dependent manner. E2 conjugating and E3 ligating enzymes attach UBLs to a single or multiple 
lysine (K) residues of target proteins (indicated in red). Some UBLs can also form polymeric 
chains. Specific proteases catalyze the deconjugation of UBLs.

The consequences of UBL conjugation are diverse. The UBL ”tag” may create or mask 
interaction surfaces, induce or interfere with other PTMs, or induce conformational 
changes (Hochstrasser, 2009). Functionally, by altering the stability, activity or 
localization of proteins, they participate in most signaling events and cellular processes 
(sections 2.4.1 and 2.4.2). Indeed, the activity of RTKs including ErbB receptors is tighly 
regulated by ubiquitination (Goh and Sorkin, 2013). Additionally, post-translational 
modifications of EGFR and insulin-like growth factor receptor 1 (IGF-1R) by SUMO, 
and EGFR by another UBL, NEDD8, have been described (Oved et al., 2006; Sehat et 
al., 2010; Packham et al., 2015).

2.4.1 Ubiquitination
Ubiquitin is a small, 76 amino acid polypeptide (Figure 8). Ubiquitin is one of the 
most highly conserved proteins in eukaryotes, with only three conservative amino acid 
changes from yeast Saccharomyces Cerevisiae to Homo Sapiens. The human ubiquitin 
system comprises a vast signaling network, including two ubiquitin E1 enzymes, 
approximately 35 ubiquitin E2s, and at least 600 E3 ubiquitin ligases in the genome. 
Conversely, ubiquitination is reversed by approximately 80 deubiquitinating enzymes 
(DUB) that control the level of ubiquitination along with the E3s (Komander and Rape, 
2012; Williamson et al., 2013). The ubiquitin signal is recognized by different ubiquitin 
binding domains (UBD) that have been identified in over 200 proteins (Husnjak and 
Dikic, 2012).
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Figure 8. Structures of ubiquitin and SUMO1. Structures of ubiquitin (orange) and SUMO1 
(blue) were obtained from Research Collaboratory for Structural Bioinformatics Protein Data 
Bank (RCSB PDB; accession codes are 1ubq for ubiquitin, and 1a5r for SUMO1) and visualized 
using UCSF Chimera software. Despite their low amino acid sequence homology, ubiquitin and 
SUMO share a similar three-dimensional structure.

Types of ubiquitin modification
Proteins can be conjugated with a single ubiquitin molecule, referred to as 
monoubiquitination, or with a single ubiquitin at multiple lysine residues, referred to 
as multimonoubiquitination (Komander and Rape, 2012). For example, EGFR has been 
shown to be multimonoubiquitinated (Haglund et al., 2003; Mosesson et al., 2003). 
Ubiquitin contains seven lysines, and each of them can be conjugated with ubiquitin 
molecules leading to the formation of polyubiquitin chains. While all linkages (K6, K11, 
K29, K33, K48, K63) have been reported, substrates are mainly known for the most 
commonly used K48 and K63-linked chains (Peng et al., 2003; Komander and Rape, 
2012). A polyubiquitin chain can also form in a head-to-tail manner by modification of the 
amino-termini of ubiquitin molecules (Walczak et al., 2012). The type of ubiquitination 
can be controlled by an E2, an E3, or a specific E2-E3 complex, and it determines the 
effect of the modification on substrate function (Kim et al., 2007; Kim and Huibregtse, 
2009; Ye and Rape, 2009; Komander and Rape, 2012). 
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E3 ubiquitin ligases 
Members of the large and diverse group of E3 ligases are key regulators of ubiquitination. 
They directly interact with the target protein and thus determine the specificity of 
ubiquitination. The ubiquitin E3s can be classified into three major types depending on 
their characteristic domains, which mediate the ubiquitin transfer to the target protein. 
Really interesting new gene (RING) type E3s recognize the substrate and function as 
scaffolds between substrate and E2s, which catalyze the ubiquitin transfer (Deshaies and 
Joazeiro, 2009). RING E3s are the most abundant type of ubiquitin ligases, comprising 
more than 95% of human E3s (Deshaies and Joazeiro, 2009). In contrast to RING E3s, 
much smaller groups of homologous to E6-AP carboxyl terminus (HECT) and RING-
between-RING (RBR) E3s ligases are true enzymes. They receive the ubiquitin molecule 
from the E2, and subsequently catalyze the ubiquitin transfer to the substrate (Rotin and 
Kumar, 2009; Wenzel and Klevit, 2012).

Functions of ubiquitin modification
Ubiquitination regulates nearly all cellular processes through proteolytic, but also non-
proteolytic mechanisms. The proteolytic pathways controlled by ubiquitination include 
proteasomal degdaration, endocytosis and lysosomal degradation, and autophagy. The 
non-proteolytic functions are based on the interactions of the ubiquitinated substrate 
with effector proteins that contain UBDs (Husnjak and Dikic, 2012; Komander and 
Rape, 2012). 

Ubiquitination was first discovered as a signal for proteasomal degradation 
(Ciechanover, 2015). The proteasome is a large multi-subunit protein complex that 
recognizes polyubiquitin-tagged proteins with UBDs, and degrades them into peptides 
in an ATP-dependent manner (Navon and Ciechanover, 2009). All polyubiquitin 
chains, except those with K63- and amino-terminal linkages, may mediate proteasomal 
degradation (Xu et al., 2009). The ubiquitin-proteasome system controls the levels, and 
thus the activity, of many intracellular signaling proteins. For example, ubiquitination 
regulates the cell cycle by the periodic degradation of cyclins and cyclin-dependent 
kinase inhibitors (Teixeira and Reed, 2013). Another important function of the 
ubiquitin-proteasome system is the elimination of misfolded proteins (Navon and 
Ciechanover, 2009).

Ubiquitination is also a sorting signal in the endocytic pathway, targeting plasma membrane 
proteins for lysosomal degradation (Piper et al., 2014). The role of ubiquitination in the 
endocytosis of EGFR has been extensively studied (Goh and Sorkin, 2013; Piper et 
al., 2014). Upon ligand binding, autophosphorylation of EGFR recruits the RING-type 
E3 ligase Cbl, which binds to EGFR either directly with its SH2-domains or via the 
SH2-domain containing adaptor protein GRB2 (Levkowitz et al., 1996; 1999; Jiang et 
al., 2003) (Figure 5). Cbl modifies EGFR with ubiquitin monomers and polyubiquitin 
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chains that primarily contain K63-linkages (Haglund et al., 2003; Mosesson et al., 
2003; Huang et al., 2006). One model suggests that the ubiquitinated receptors are 
recognized by the UBDs of EGFR pathway substrate 15 (EPS15) and Epsin, which 
in turn assemble the receptors to clathrin-coated pits through their interactions with 
clathrin adapter protein complex 2 (Goh and Sorkin, 2013). However, the role of this 
mechanism in EGFR endocytosis is unclear, as ubiquitination of EGFR is not essential 
for the internalization step (Huang et al., 2007). Instead, ubiquitination is required for the 
degradation of EGFR, which is thought to reflect the irreversible ubiquitin-dependent 
sorting of EGFR from early endosomes into the intraluminal vesicles of multivesicular 
bodies (MVB) (Huang et al., 2006; Goh and Sorkin, 2013). According to this model, 
the ubiquitinated receptors are recognized by the UBDs of endosomal sorting complex 
required for transport (ESCRT)-0 at the limiting membrane of the MVB. Subsequently, 
the action of ESCRT complexes I-III direct the receptors into the intraluminal vesicles 
of the MVB, which further targets them into lysosomes where they are degraded (Piper 
et al., 2014) (Figure 5).

Ubiquitination of ErbB receptors 
Along with platelet-derived growth factor (PDGF) β-receptor, EGFR was among the 
first RTKs reported to be ubiquitinated in response to ligand stimulation (Mori et 
al., 1992; Galcheva-Gargova et al., 1995). Numerous studies have since establised 
the key role of ubiquitination and Cbl in ligand-induced degradation of EGFR (Goh 
and Sorkin, 2013). A few other E3 ligases have also been reported to ubiquitinate 
EGFR. For example, RING-type E3 ligases RNF126 and Rabring7 were shown 
to function downstream of Cbl to further promote EGFR ubiquitination and late 
endosomal sorting (Smith et al., 2013). Furthermore, DUB activity in the endocytic 
pathway before the ubiquitin-dependent sorting step promotes EGFR recycling 
to the plasma membrane and delays degradation (Figure 5). These DUBs include 
ubiquitin specific protease (USP) 2a in early endosomes, associated molecule with 
the SH3 domain of STAM (AMSH) and ubiquitin specific protease 8 in MVBs, and 
Cezanne-1 (McCullough et al., 2004; Mizuno et al., 2005; Berlin et al., 2010; Pareja 
et al., 2011; Liu et al., 2012).

ErbB2, ErbB3 and ErbB4 are also ubiquitinated. However, in contrast to EGFR, they 
do not interact with Cbl, and are thought to be endocytosed inefficiently  (Baulida et al., 
1996; Levkowitz et al., 1996). In agreement with this observation, ubiquitin ligases that 
interact with ErbB2, ErbB3 and ErbB4 are often reported to regulate the steady-state 
levels and induce proteasomal instead of lysosomal degradation. ErbB2 is ubiquitinated 
by carboxyl-terminal HSP70-interacting protein (CHIP), an E3 ligase containing a RING-
related U-box (Xu et al., 2002; Zhou et al., 2003; Deshaies and Joazeiro, 2009). ErbB3 
is ubiquitinated by a RING-type E3 ligase neuregulin receptor degradation protein-1 
(NRDP1) and a HECT-type E3 ligase neural precursor cell expressed, developmentally 
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downregulated-4 (NEDD4) (Diamonti et al., 2002; Qiu and Goldberg, 2002; Huang et 
al., 2015). In addition to ErbB3, NRDP1 also regulates steady-state levels of ErbB4 
(Diamonti et al., 2002). A multisubunit RING-type E3 ligase anaphase-promoting 
complex/cyclosome (APC/C) induces the proteasomal degradation of soluble ErbB4 
ICD (Strunk et al., 2007). 

2.4.2 SUMOylation
SUMOs are approximately 100 amino acid polypeptides highly conserved in evolution. 
Mammalian cells express three SUMO proteins that share only about 20% amino acid 
sequence identity with ubiquitin, but have a similar three-dimensional structure; the 
”ubiquitin fold” (Figure 8). The amino acid sequence of SUMO1 is approximately 50% 
identical with SUMO2 and SUMO3, which are nearly identical and jointly referred 
to as SUMO2/3 (Flotho and Melchior, 2013). SUMO1 and SUMO2/3 are conjugated 
to distinct, but also overlapping substrates (Vertegaal et al., 2006). Unlike SUMO1, 
SUMO2/3 are able to form polymeric chains through internal lysine residues (Tatham 
et al., 2001). 

The SUMOylation machinery 
In contrast to ubiquitination, a considerably smaller set of enzymes regulates 
SUMOylation. Human cells express a single heterodimeric SUMO E1 enzyme (SUMO 
activating enzyme 1/2) and a single SUMO E2 enzyme, UBC9 (Flotho and Melchior, 
2013). Consequently, UBC9 is required for SUMO conjugation to all substrates, 
and genetic inactivation of Ubc9 in mice results in early embryonic lethality due to 
chromosome condensation and segregation  defects  (Nacerddine et al., 2005). Even in 
the abscence of an E3 ligase, UBC9 can directly interact with and modify some target 
proteins, but the prescence of E3s usually promotes SUMOylation (Flotho and Melchior, 
2013). 

The currently known human SUMO E3 ligases include the protein inhibitor of activated 
STAT (PIAS) protein family (PIAS1, PIASxα and β, PIAS3, PIASy) (Kahyo et al., 
2001; Sachdev et al., 2001; Kotaja et al., 2002) and Ran-binding protein 2 (RanBP2) 
(Pichler et al., 2002). PIAS proteins contain a Siz/PIAS(SP)-RING domain similar to 
the RING of E3 ubiquitin ligases, and they function as scaffolds between the SUMO-
loaded E2 and substrates (Figure 9). Despite their well-characterized role as SUMO 
E3 ligases, PIAS proteins also have SP-RING-independent functions. These functions 
require their SUMO interaction motif (SIM), or domains that mediate protein-protein or 
protein-DNA interactions (Figure 9) (Rytinki et al., 2009). RanBP2 is a SUMO E3 ligase 
that is not RING- or HECT-type (Pichler et al., 2004). Instead, its E3 ligase activity can 
be attributed to a stable multisubunit complex of RanBP2, UBC9 and SUMO-modified 
Ran GTPase-activating protein-1 (RanGAP1) (Werner et al., 2012). Other proteins that 
stimulate SUMOylation of specific targets, but that are not classified as definite SUMO 
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E3 ligases have been reported. Examples of these include Polycomb 2 and TOPORS 
(Kagey et al., 2003; Weger et al., 2005).

Figure 9
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Figure 9. Schematic structure of PIAS proteins. All PIAS proteins have a similar domain 
architecture with N-terminal SAP (scaffold attachment factor-A/B, acinus and PIAS) and PINIT 
domains, SP-RING, and SIM. The SAP and PINIT domains mediate DNA binding and subcellular 
localization, respectively (Rytinki et al., 2009). SP-RING domain interacts with UBC9 and is 
essential for the E3 ligase activity. SIM interacts with SUMO non-covalently.

SUMOylation is a reversible modification catalyzed by SUMO isopeptidases (SUP). 
The human sentrin-specifc protease (SENP) family, which deSUMOylates many targets, 
consists of SENP1, -2, -3, -5, -6 and -7 (Gong et al., 2000; Kim et al., 2000; Nishida 
et al., 2000; 2001; Gong and Yeh, 2006; Lima and Reverter, 2008). The more recently 
characterized desumoylating isopeptides 1 and 2 (Shin et al., 2012) and ubiquitin-
specific protease-like 1 (Schulz et al., 2012) have a limited number of targets compared 
to SENPs.

It is still unclear how substrate specificity is achieved with the limited number of SUMO 
E3 ligases and isopeptidases. Subnuclear compartmentalization of the SUMO machinery 
may play a role in regulating target selection. Indeed, (de)SUMOylating enzymes are 
concentrated in promyelocytic leukemia (PML) nuclear bodies and nuclear pores (Saitoh 
et al., 2006; Palancade and Doye, 2008; Sahin et al., 2014b), and the specificities of 
SENPs are partially controlled by their localization in nuclear pores, nucleoli or 
nucleoplasm (Gong et al., 2000; Nishida et al., 2000; Hang and Dasso, 2002; Zhang 
et al., 2002; Gong and Yeh, 2006). In addition, the SUMOylation machinery has been 
suggested to simultaneously modify a functionally related group of proteins, rather than 
individual targets (Jentsch and Psakhye, 2013).

Target lysine selection
Unlike ubiquitination, SUMO is conjugated to a defined lysine residue or residues in a 
target	protein.	SUMOylation	frequently	occurs	on	a	consensus	motif	ΨKx(E/D)	where	Ψ	
is a large hydrophobic residue and x is any amino acid (Rodriguez et al., 2001; Hendriks 
and Vertegaal, 2016). Notably, UBC9 directly interacts with the consensus motif 
(Sampson et al., 2001). Several variations of the consensus motif have been identified. 
For	example,	the	consensus	motif	can	be	inverted	to	E/DxKΨ	(Matic	et	al.,	2010),	or	
extended to include a proline-directed serine phosphorylation site (phosphorylation-
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dependent	 SUMOylation	 motif;	 ΨKxExxSP)	 that	 enhances	 UBC9	 binding	 and	 thus	
SUMOylation (Hietakangas et al., 2006; Mohideen et al., 2009).    

Despite the well-defined consensus motif, unbiased proteomic screens have revealed that 
up to 50 % of the identified SUMO acceptor lysines do not match the consensus (Matic 
et al., 2010; Hendriks et al., 2014). Selection of a non-consensus site can be dependent 
on non-covalent interaction of the SUMO-loaded UBC9 with a SIM present in a target 
protein (Lin et al., 2006). Alternatively, SUMO E3 ligases that interact with both UBC9 
and target protein may direct acceptor site selection (Flotho and Melchior, 2013).

Functions of SUMO modification
The consequences of SUMOylation are diverse and depend on the substrate. In contrast 
to ubiquitination that often results in target proteolysis, SUMOylation is usually a non-
proteolytic modification and can thus function as a reversible molecular switch regulating 
the activity, localization, or stability of its targets. SUMOylation is best characterized in 
nuclear processes such as transcription and nuclear transport, but also in the regulation 
of signal transduction pathways (Flotho and Melchior, 2013). 

A considerable group of SUMO substrates are transcriptional regulators, whose activity 
can be modulated, typically repressed, by SUMOylation (Garcia-Dominguez and Reyes, 
2009). SUMOylation can repress transcription by recruiting chromatin modifying 
enzymes such as histone deacetylases, or by inducing the formation of repressor 
complex via SUMO-SIM interactions (Garcia-Dominguez and Reyes, 2009) (Figure 
10). SUMOylation can also alter the activity of transcriptional regulators by targeting 
them into nuclear subdomains, such as promyelocytic leukemia (PML) nuclear bodies 
(Sachdev et al., 2001; Ross et al., 2002; Bernardi and Pandolfi, 2007). 

SUMOylation regulates the subcellular localization of many targets. In fact, SUMO was 
initially discovered as a post-translational modifier targeting RanGAP1 to the nuclear 
pore complex (Matunis et al., 1996; Mahajan et al., 1997). SUMOylation can promote 
either nuclear or cytoplasmic accumulation, depending on the target protein (Huang et 
al., 2003; Wood et al., 2003) (Figure 10). Although the mechanisms of how SUMO 
regulates subcellular localization are not known for most targets, SUMOylation has 
been reported to regulate nuclear export (Du et al., 2008; Bassi et al., 2013; Santiago 
et al., 2013). SUMOylation adjacent to the nuclear export signal (NES) of Krüppel-like 
transcription factor 5 inhibits its interaction with a nuclear export receptor, resulting in the 
inhibition of export and nuclear accumulation (Du et al., 2008). Similarly, SUMOylation 
is required for the nuclear accumulation of phosphatase and tensin homolog (PTEN), 
and the nuclear localization of SUMOylation deficient PTEN can be rescued by a 
chemical inhibitor of nuclear export (Bassi et al., 2013). Conversely, SUMOylation of 
tumor suppressor protein p53 facilitates its nuclear export by promoting the disassembly 
of p53-export receptor complex in the cytosol (Santiago et al., 2013).
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Figure 10. Examples of SUMO functions. SUMOylation can either promote or inhibit 
kinase activity. SUMOylation regulates the subcellular localization of many target proteins, 
promoting either nuclear or cytosolic localization. SUMOylated proteins can also accumulate 
in subnuclear structures such as promyelocytic leukemia (PML) bodies. SUMOylation regulates 
many transcriptional processes. Transcription factor (TF) SUMOylation can activate or repress 
transcription. SUMOylation may induce repression via the recruitment of corepressor (CoR) 
complexes or chromatin modifying enzymes (HDAC, histone deacetylase).

More recently, the role of SUMOylation in regulating signal transduction pathways has 
been elucidated. Kinases are a prominent group of SUMOylated proteins, as indicated 
by a proteome-wide study (Merbl et al., 2013), and SUMOylation of many kinases 
has been biochemically characterized. For example, SUMOylation has been shown 
stimulate the autophosphorylation of focal adhesion kinase, and the activity Akt towards 
it substrates (Kadare et al., 2003; Li et al., 2013; de la Cruz-Herrera et al., 2014) (Figure 
10). Conversely, SUMOylation of MEK inhibited its activity towards ERK by interfering 
with the MEK-ERK interaction (Kubota et al., 2011).
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3 AIMS OF THE STUDY

The general aim of this study was to identify and characterize novel post-translational 
modifications that regulate ErbB4 function. The signaling mechanisms and regulation of 
ErbB receptors have been extensively studied. However, the roles of post-translational 
ubiquitin, and in particular ubiquitin-like modifications in ErbB signaling are less well 
characterized. Identification of the molecular mechanisms that modify the output of 
ErbB signaling will expand the understanding of ErbB function in healthy and diseased 
tissues.

CYT-1 and CYT-2 isoforms of ErbB4 have different degradation rates, suggesting that 
an isoform-specific, post-translational mechanism such as ubiquitination differentially 
regulates their stability. As the cytoplasmic isoforms represent functionally distinct 
ErbB4 proteins, it is important to understand the molecular mechanisms regulating the 
abundance of each. Moreover, little is known about the mechanisms that control the 
subcellular localization and nuclear functions of ErbB4 ICD. Since SUMOylation is 
involved in many nuclear signaling processes, it could represent a novel mechanism to 
regulate the signaling of an ICD of a receptor tyrosine kinase.

To understand the roles of ubiquitin and ubiquitin-like modifications in ErbB4 signaling, 
the specific aims of this thesis were:

1) To functionally characterize the ubiquitination of ErbB4 isoforms.

2) To characterize the SUMO modification of ErbB4 intracellular domain.

3) To analyze the role of the SUMO system in ErbB4 function.
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4 MATERIALS AND METHODS

4.1 Cell culture (I-III)

The cell lines used in the study are listed in Table 1. MCF-7, OVCAR-3, and WM-266-
4 are human cancer cell lines that express ErbB4 endogenously. COS-7, HEK293, and 
HEK293T cells were used for transient expression of proteins from expression plasmids 
(4.2). Stable NIH 3T3-7d cell lines (Zhang et al., 1996; Elenius et al., 1999) were used 
for internalization analyses (4.8). Phoenix-Ampho HEK293T cells were used to produce 
retroviruses (4.1.2). HC11 and MDA-MB-468 cells were used to study differentiation in 
three-dimensional cultures (4.15).

COS-7, HEK293, MDA-MB-468, NIH 3T3-7d, Phoenix-Ampho HEK293T, and WM-
266-4 cells were cultured in Dulbecco’s Modified Eagle Medium (DMEM) (Lonza). 
HC11, MCF-7 and OVCAR-3 cells were cultured in Roswell Park Memorial Institute 
(RPMI) 1640 (Lonza). Both culture media were supplemented with 10% fetal calf serum 
(Biowest), 2 mM L-glutamine (Lonza), and 50 units/ml penicillin-streptomycin solution 
(Lonza).	The	 culture	medium	of	HC11	 cells	was	 further	 supplemented	with	 5	μg/ml	
insulin (Sigma-Aldrich) and 10 ng/ml EGF (Sigma-Aldrich or R&D), the medium of 
MCF-7	cells	with	10	μg/ml	insulin	and	1	nM	17-β-estradiol	(Sigma-Aldrich),	and	the	
medium	of	OVCAR-3	cells	with	10	μg/ml	insulin.

Table 1. Cell lines used in the study. 

Cell line Type Species Used in
COS-7 Kidney fibroblast-like cell African green monkey I, II, III
HC11 Mammary epithelial cell Mouse II, III
HEK293 and HEK293T Embryonic kidney cell Human II
MCF-7 Mammary adenocarcinoma cell Human II, III
MDA-MB-468 Mammary adenocarcinoma cell Human II
NIH 3T3-7d Fibroblast Mouse I
OVCAR-3 Ovarian carcinoma cell Human I
Phoenix-Ampho HEK293T Embryonic kidney cell Human II, III
WM-266-4 Melanoma cell Human II

4.1.1 Transient transfection (I-III)
COS-7, HEK293, HEK293T, and Phoenix-Ampho HEK293T cells were transiently 
transfected with expression plasmids (4.2) with FuGENE6 transfection reagent 
(Promega). MCF-7 and WM-266-4 cells were transiently transfected with Lipofectamine 
2000 (ThermoFischer Scientific). Transfections were carried out according to the 
manufacturers’ protocols.
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4.1.2 Generation of stable cell lines with retroviral infection (II, III)
Stable HC11 and MDA-MB-468 cell lines expressing different ErbB4 constructs 
were generated by retroviral infection. For retrovirus production, retroviral expression 
plasmids (4.2) encoding wild-type or mutant ErbB4 were transfected into Phoenix-
Ampho HEK293T virus packaging cells. Retrovirus-containing media were harvested 
36 hours after transfection, and incubated on recipient cells for 8 hours in the presence 
of 8 µg/ml polybrene (Sigma-Aldrich). To generate stable cell lines, infected cells were 
selected with 2 µg/ml puromycin (Sigma-Aldrich). 

4.2 Expression plasmids (I-III)

Mammalian and retroviral expression plasmids were used to express the indicated wild-
type and mutant proteins in cell lines and to produce retroviruses, respectively. Bacterial 
expression plasmids were used to express recombinant proteins in Escherichia coli. 

The expression plasmids listed in Table 2 were generated in this study using standard 
molecular cloning procedures. Amino acid substitutions were introduced to expression 
plasmids by site-directed mutagenesis. Retroviral pBABE-ErbB4JM-aCYT-2 and 
pBABE-ErbB4JM-bCYT-2 plasmids were generated using restriction enzymes and 
ligation as described in (II). All generated constructs were verified by sequencing. 

The expression plasmids listed in Table 3 have been previously described. The references 
of these plasmids are described in (I-III).

Table 2. Expression plasmids generated in this study.
Insert Backbone Purpose Used in
ErbB4 ICD2-K1002/1143/1181/1202R-HA pcDNA3.1(+) Mammalian expression III
ErbB4 ICD2-K1143/1181/1202R-HA pcDNA3.1(+) Mammalian expression III
ErbB4 ICD2-K1202R-HA pcDNA3.1(+) Mammalian expression III
ErbB4 ICD2-K714/719/722R-HA pcDNA3.1(+) Mammalian expression III
ErbB4 ICD2-K714R-HA pcDNA3.1(+) Mammalian expression III
ErbB4 ICD2-K719R-HA pcDNA3.1(+) Mammalian expression III
ErbB4 ICD2-K722R-HA pcDNA3.1(+) Mammalian expression III
ErbB4 ICD2-V721/V723/L724A-HA pcDNA3.1(+) Mammalian expression III
ErbB4 JM-aCYT-2-K714R-HA pcDNA3.1(+) Mammalian expression III
ErbB4 JM-aCYT-1-P1054A-HA pcDNA3.1(+) Mammalian expression I
ErbB4 JM-aCYT-1-Y1056F-HA pcDNA3.1(+) Mammalian expression I
ErbB4 JM-aCYT-2-K714R-HA pBABE-puro Retroviral III
ErbB4 JM-aCYT-2-V675A-HA pcDNA3.1(+) Mammalian expression II
ErbB4	JM-aCYT-2-ΔNLSI/II-HA pcDNA3.1(+) Mammalian expression II
ErbB4 JM-bCYT-1-P1054A-HA pcDNA3.1(+) Mammalian expression I
ErbB4 JM-bCYT-1-Y1056F-HA pcDNA3.1(+) Mammalian expression I
ErbB4 JM-aCYT-2 pBABE-puro Retroviral II
ErbB4 JM-bCYT-2 pBABE-puro Retroviral II
FLAG-PIAS3-C299S pFLAG Mammalian expression II, III
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Table 3. Previously described expression plasmids.
Insert Backbone Purpose Used in
6xHis-SUMO1 pSG5 Mammalian expression II, III
6xHis-SUMO3 pcDNA3.1(-) Mammalian expression II, III
ErbB4 ICD1-HA pcDNA3.1(+) Mammalian expression II
ErbB4 ICD2-GAL4 pSG424 Mammalian expression II
ErbB4 ICD2-GST pGEX-6P-1 Bacterial expression II
ErbB4 ICD2-HA pcDNA3.1(+) Mammalian expression II, III
ErbB4 ICD2-K751R-HA pcDNA3.1(+) Mammalian expression III
ErbB4	ICD2-ΔC-GST pGEX-6P-1 Bacterial expression II
ErbB4	ICD2-ΔC-HA pcDNA3.1(+) Mammalian expression III
ErbB4	ICD2-ΔN-GST pGEX-6P-1 Bacterial expression II
ErbB4	ICD2-ΔN-HA pcDNA3.1(+) Mammalian expression III
ErbB4 JM-aCYT-1-HA pcDNA3.1(+) Mammalian expression I
ErbB4 JM-aCYT-1-Myc pcDNA3.1(+) Mammalian expression I
ErbB4 JM-aCYT-2-HA pcDNA3.1(+) Mammalian expression I, II, III
ErbB4 JM-aCYT-2-HA pBABE-puro Retroviral III
ErbB4 JM-aCYT-2-Myc pcDNA3.1(+) Mammalian expression I
ErbB4 JM-bCYT-1-HA pcDNA3.1(+) Mammalian expression I
ErbB4 JM-bCYT-2-HA pcDNA3.1(+) Mammalian expression I
FLAG-CRM1 p3xFLAG-CMV-10 Mammalian expression III
FLAG-Itch pCMV5-FLAG1 Mammalian expression I
FLAG-Itch-C830A pCMV5-FLAG1 Mammalian expression I
FLAG-PIAS1 pCMV5-FLAG Mammalian expression II
FLAG-PIAS3 pFLAG Mammalian expression II, III
FLAG-PIASxα pFLAG Mammalian expression II
FLAG-PIASy pFLAG Mammalian expression II
FLAG-SENP1 pcDNA3.1(-) Mammalian expression III
FLAG-SENP1-C603A pcDNA3.1(-) Mammalian expression III
FLAG-SENP2 pFLAG-CMV Mammalian expression III
FLAG-SENP6 pFLAG-CMV Mammalian expression III
FLAG-SENP7 p3xFLAG-CMV-10 Mammalian expression III
FLAG-Ubiquitin pEF Mammalian expression I
GAL4-driven Firefly luciferase pFR-Luc GAL4 activity reporter II
GFP-Rab5a pEGFP-C3 Mammalian expression I
GFP-Rab7 unknown Mammalian expression I
GFP-SENP3 pEGFP-C3 Mammalian expression III
GFP-SENP5 pEGFP-C3 Mammalian expression III
GFP-SUMO1 pEGFP Mammalian expression II
GST-Itch-WW pGEX-KT Bacterial expression I
GST-Itch-WW1 pGEX-KT Bacterial expression I
GST-Itch-WW2 pGEX-KT Bacterial expression I
GST-Itch-WW3 pGEX-KT Bacterial expression I
GST-Itch-WW4 pGEX-KT Bacterial expression I
HA-Ubiquitin pMT123 Mammalian expression I
HA-Ubiquitin-K48R pMT123 Mammalian expression I
HA-Ubiquitin-K63R pMT123 Mammalian expression I
Myc-Itch pRK Mammalian expression I 
Myc-Itch-C830A pRK Mammalian expression I
Omni-YAP2 pcDNA4-HisMaxB Mammalian expression II
PML-3 unknown Mammalian expression II, III
Renilla luciferase pTK-RL Control reporter II
STAT5a pME18S Mammalian expression III
WWOX-Myc pCMV-Myc Mammalian expression II
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4.3 Primary antibodies (I-III)

Primary antibodies (Table 4) were used to detect proteins of interest or their epitope tags 
by immunofluorescence, immunoprecipitation, in situ proximity ligation assay (PLA), 
and Western blotting. 

Table 4. Primary antibodies used in the study. Application abbreviations: IF, immunofluorescence; 
IP, immunoprecipitation; PLA, in situ proximity ligation assay; WB, Western blotting. Company 
abbreviations: CST, Cell Signaling Technology; SBCT, Santa Cruz Biotechnology. * FK1 antibody 
recognizes polyubiquitinated conjugates; FK2 antibody recognizes mono- and polyubiquitinated 
conjugates.

Antigen
Cat#/
Clone Company Type Application Used in

Actin sc-1616 SCBT Goat polyclonal WB I, II, III
Akt sc-1618 SCBT Goat polyclonal WB III
c-Myc 9E10 Zymed Mouse monoclonal IF, WB I, II
EGFR sc-03 SCBT Rabbit polyclonal IP I
ErbB4 sc-283 SCBT Rabbit polyclonal WB I, II
ErbB4 HFR-1 Abcam Mouse monoclonal IF, IP, PLA II, III
ErbB4 HFR-1 Neomarkers Mouse monoclonal IP I
ErbB4 E200 Abcam Rabbit monoclonal WB, IF I, II, III
Erk 9102 CST Rabbit polyclonal WB III
FLAG M2 Sigma-Aldrich Mouse monoclonal IP, WB I, II, III
GFP sc-9996 SCBT Mouse monoclonal WB III
GST GE Heathcare Goat polyclonal WB I, II
HA 3F10 Roche Rat monoclonal IF, WB I, II, III
HA HA-7 Sigma-Aldrich Mouse monoclonal WB III
HA 6E2 CST Mouse monoclonal IP, WB III
HA ab18181 Abcam Mouse monoclonal WB II
HSP90 AC88 Calbiochem Mouse monoclonal WB II
Itch 611198 BD Biosciences Mouse monoclonal WB I
Lamin B sc-6217 SCBT Goat polyclonal WB II, III
MEK1/2 4694 CST Mouse monoclonal WB II, III
mono- and poly-Ub* FK2 Enzo Mouse monoclonal WB I
Omni sc-7270 SCBT Mouse monoclonal WB II
PCNA sc-56 SCBT Mouse monoclonal IP, WB I
phospho-Akt 9271 CST Rabbit polyclonal WB III
phospho-ErbB4 4757 CST Rabbit monoclonal WB III
phospho-Erk1/2 9101 CST Rabbit polyclonal WB III
phospho-STAT5 9351 CST Rabbit polyclonal WB III
phospho-tyrosine 4G10 produced in house Mouse monoclonal WB III
PIAS3 sc-46682 SCBT Mouse monoclonal IF, WB II
PIAS3 ab22856 Abcam Rabbit polyclonal IF, PLA II
PML sc-966 SCBT Mouse monoclonal IF II
PML sc-5621 SCBT Rabbit polyclonal WB II
PML 36.1-104 Millipore Mouse monoclonal IF II
poly-Ub* FK1 Enzo Mouse monoclonal WB I
STAT5 sc-835 SCBT Rabbit polyclonal WB II, III
SUMO1 ab1172 Abcam Rabbit polyclonal IF II
Ubiquitin P4D1 SCBT Mouse monoclonal WB I
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4.4 Growth factors and inhibitors (I-III)

The growth factors and chemical inhibitors used in the study are listed in Table 5. The 
concentrations and incubation times in each experiment are indicated in the sections 
describing the experimental procedures.

Table 5. Growth factors and inhibitors used in the study.

Reagent Application Company Used in
EGF EGFR stimulation in 

internalization analysis and 
HC11 culture 

Sigma-Aldrich or 
R&D

I, II, III

HB-EGF EGFR stimulation in 
internalization analysis

Sigma-Aldrich I

NRG-1-β1 
(referred to as NRG-1)

ErbB4 stimulation R&D I, II, III

ALLN  
(N-Acetyl-Leu-Leu-Nle-CHO)

Inhibition of proteasomes Calbiochem I

Cycloheximide Inhibition of translation Sigma-Aldrich I, III
GSI IX Inhibition	of	γ-secretase Calbiochem II
Leptomycin B Inhibition of nuclear export Sigma-Aldrich II, III
LY294002 Inhibition of PI3K Calbiochem I
N-ethylmaleimide Inhibition of SUMO isopeptidases Sigma-Aldrich II
PMA  
(Phorbol 12-myristate 13-acetate)

Stimulation of ErbB4 cleavage Sigma-Aldrich I

4.5 Small interfering RNAs (II)

Small interfering RNAs (siRNA) were used to downregulate the expression of PIAS3 
and PML (4.9.3, 4.12, 4.15). The sequences of siRNA oligonucleotides are listed in 
Table 6. Cells were transfected with siRNAs at final concentrations of 20-50 nM using 
Lipofectamine 2000 (ThermoFischer Scientific) according to the manufacturer’s protocol. 
Knockdown efficacy was confirmed using Western blotting or immunofluorescence 
analysis. 

Table 6. siRNA oligonucleotides.

Target Sequence Company Species Used in
Non-silencing control Cat#SI03650318 Qiagen - II
Non-silencing control Cat#AM4611 Ambion - II
PIAS3 GGUCGAAGUUAUUGACUUGTT Ambion Human II
PIAS3 GGUGCAGCUAAGGUUCUGUTT Ambion Human II
PIAS3 GGGACCCUUCUACAAAAACTT Ambion Mouse II
PIAS3 GGUUAAUGGGAAACUCUGCTT Ambion Mouse II
PML CCAAGAUCUAAACCGAGAATT Qiagen Human II
PML GGAGCAGGAUAGUGCCUUUTT Qiagen Human II
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4.6 Cell lysis, immunoprecipitation and Western blotting (I-III)

To prepare cell lysates for immunoprecipitation and Western blotting, cells were washed 
with PBS, lysed in lysis buffer (1% Triton X-100, 10 mM Tris-Cl pH 7.4, 150 mM 
NaCl, and 1 mM EDTA) supplemented with protease and phosphatase inhibitors (5 mM 
NaF, 10 µg/ml aprotinin, 10 µg/ml leupeptin, 1 mM Na3VO4, 2 mM PMSF, and 10 mM 
Na4P2O7), and centrifuged at 16 000 x g for 10 minutes. Protein concentration of the 
supernatants was measured by Bradford protein assay (Bio-Rad). 

Immunoprecipitation was used in degradation, interaction and receptor activation studies, 
and in post-translational modification analyses (4.7-4.11, 4.13). Cells lysates were pre-
cleared with 30 µl protein G agarose (GE Healthcare or Santa Cruz Biotechnology) at 
4 °C for 1 hour, and subjected to immunoprecipitation with antibodies recoginizing the 
protein of interest and 30 µl protein G agarose at 4 °C overnight. Beads were washed 
four times with 1 ml of lysis buffer to remove non-specific binding, and heated at 95 °C 
for 5 minutes in Laemmli loading buffer to elute and denature the precipitated proteins.

Western blotting was used to determine the abundance and phosphorylation of ectopic and 
endogenous proteins in cell lysates, and to analyze immuno- and pull-down precipitates 
(4.7-4.15). Cell lysates were denatured by heating at 95 °C for 5 minutes in Laemmli 
loading buffer. Samples were separated by SDS-PAGE and transferred to nitrocellulose 
membranes. Membranes were incubated with primary antibodies as indicated in 
original publications, followed by horseradish peroxidase (HRP)-conjugated anti-goat, 
anti-mouse, anti-rabbit and anti-rat secondary antibodies (Santa Cruz Biotechnology). 
Signals were detected using enchanced chemiluminescence (ThermoFischer Scientific).

4.7 Internalization of cell surface receptors (I)

The internalization rates of ErbB4 isoforms from the cell surface were analyzed by 
measuring the uptake of iodinated NRG-1 into the cytosol. As a control, the internalization 
rates of EGFR upon EGF and HB-EGF stimulus were measured. All growth factors 
were iodinated as previously described (Elenius et al., 1997a). NIH 3T3-7d transfectants 
stably expressing ErbB4 isoforms or EGFR were treated with 20 ng/ml 125I-NRG-1, 
125I-EGF, or 125I-HB-EGF for 1, 5, 10 or 15 minutes. Cells were washed with an acidic 
buffer (pH 2.8) to remove cell surface-bound growth factors, and lysed with NaOH 
to release internalized growth factors. Radioactivity in acidic washes (containing cell 
surface-bound growth factors) and cell lysates (containing internalized growth factors) 
were measured with a γ-counter to determine the ratio of internalized versus cell surface 
growth factors. Representative data of reproduced experiments are shown.

The abundance of membrane-associated ErbB4 upon ligand stimulus was analyzed using 
biotin-labeling of cell surface proteins. COS-7 transfectants were starved without serum, 
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and stimulated with 50 ng/ml NRG-1 for 0, 5, 15 or 30 minutes. Cells were washed with 
DMEM, incubated with 0.5 mg/ml EZ-linked Sulfo-NHS-LC-Biotin (ThermoFischer 
Scientific) for 45 minutes to biotinylate cell surface proteins, and lysed. Cell lysates were 
immunoprecipitated with anti-ErbB4 antibody, and the precipitates were analyzed by 
SDS-PAGE and Vectastain ACB HRP-kit (Vector Laboratories) to detect the abundance 
of biotinylated ErbB4. Signal intensities were quantified using MCID M5+ software. 
Representative data of reproduced experiments are shown.

4.8 Degradation of ErbB4 (I, III)

4.8.1 Analysis of ErbB4 half-life using metabolic labeling (I)
Metabolic labeling with [35S]methionine was used to determine the degradation rates of 
ErbB4 isoforms. As a control, the degradation rate of EGFR was measured. COS-7 cells 
were transfected with ErbB4 isoforms or EGFR, and metabolic labeling was carried 
out by incubating the cells first with methionine-free medium for 2 hours, followed 
by incubation with methionine-free medium containing 20 µCi/ml  [35S]methionine 
(MP Biomedicals) for 1 hour. After metabolic labelling, cells were incubated with 
methionine-free medium for additional 0, 2, 4 or 6 hours, and lysed. The abundances 
of ErbB4 and EGFR in cell lysates were analyzed by immunoprecipitation, followed by 
SDS-PAGE and autoradiography to detect the abundances of [35S]methionine-labeled 
receptors. Signal intensities were quantified using MCID M5+ software. Representative 
data of reproduced experiments are shown.

4.8.2 Analysis of ErbB4 half-life using cycloheximide (I, III)
Degradation analysis utilizing a translation inhibitor cycloheximide was used to study 
the stability of ErbB4 isoforms and the role of Itch in ErbB4 degradation (I), and to 
determine the stability of SUMOylation deficient ErbB4 (III). In all analyses, COS-7 
transfectants were starved without serum, and treated with 100 µg/ml cycloheximide for 
0, 2, 4 or 6 hours. The abundances of ErbB4 protein in cell lysates, and when indicated, 
Itch, were analyzed by Western blotting. The data were quantified as ErbB4 signal 
intensities relative to Actin abundance using ImageJ software. Representative results of 
at least three independent experiments are shown. 

4.9 Interaction analyses (I-III)

4.9.1 Coimmunoprecipitation (I-III)
The interactions of ErbB4 with Itch (I), PIAS3 (II), and CRM1 (III) were characterized 
by coimmunoprecipitation. To study the interactions of ErbB4 isoforms and PPXY-
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domain mutants with Itch (I), COS-7 transfectants were lysed and subjected to 
immunoprecipitation with antibodies recognizing ErbB4 or epitope-tagged Itch. 
Coprecipitating proteins were analyzed by Western blotting with antibodies recognizing 
epitope-tagged Itch or ErbB4. To study the interaction of endogenous ErbB4 and Itch, 
OVCAR-3 cells were treated with 50 ng/ml NRG-1 for 10 minutes to stimulate ErbB4 
phosphorylation, and lysed. Lysates were subjected to immunoprecipitation with anti-
ErbB4 antibody, followed by Western blot analysis with anti-Itch antibody. The interaction 
of ErbB4 and PIAS3 (II) was studied by using COS-7 transfectants. Cell lysates were 
subjected to immunoprecipitation with antibodies recognizing ErbB4 or epitope-tagged 
PIAS3, and precipitates were analyzed by Western blotting with antibodies recognizing 
epitope-tagged PIAS3 or ErbB4. The interaction of ErbB4 and CRM-1 (III) was studied 
similarly in COS-7 transfectants, by using antibodies recognizing epitope-tagged ErbB4 
and epitope-tagged CRM1. All coimmunoprecipitation experiments were reproduced at 
least twice. 

4.9.2 Glutathione-S-transferase pull-down assay (I, II, III)
Glutathione-S-transferase (GST) pull-down assay was used to study the interactions of 
ErbB4 with WW domains of Itch (I), ErbB4 with PIAS proteins (II), and ErbB4 with 
SUMO1 (III). For all experiments, GST fusion proteins were expressed in BL-21 DE3 
strain of Escherichia coli (Invitrogen), affinity-purified using Glutathione Sepharose 4B 
(GE Healthcare), and eluted with a buffer containing 20 mM glutathione, 100 mM NaCl, 
0.5% Triton X-100, and 1 mM dithiothreitol.

To study the interactions of ErbB4 with WW domains of Itch (I), GST fusion proteins 
including each, or all four of the WW-domains of Itch, were incubated with lysates 
of COS-7 cells expressing epitope-tagged ErbB4. COS-7 cells were lysed (0.5% 
Triton X-100, 150 mM NaCl, 50 mM Tris-HCl, pH 7.5), and aliquots of the lysates 
corresponding to 1000 µg of total protein were incubated with 10 µg of GST fusion 
proteins and 25 µl of Glutathione Sepharose 4B at 4°C for 6 hours. Beads were washed 
four times with 1 ml of lysis buffer to remove non-specific binding, and heated at 95 
°C for 5 minutes in Laemmli loading buffer to elute and denature precipitated proteins. 
Ppull-down precipitates were separated with SDS-PAGE, and analyzed by Western 
blotting with antibodies recognizing epitope-tagged ErbB4 and GST fusion proteins. 
Representative data of three independent experiments are shown.

To characterize the interactions of ErbB4 with PIAS proteins (II), GST fusion proteins 
including C- or N-terminal deletion of ErbB4 ICD were incubated with lysates of 
COS-7 cells expressing epitope-tagged PIAS proteins. GST pull-down was performed 
as described above. Pull-down precipitates were analyzed by Western blotting with 
antibodies recognizing epitope-tagged PIAS proteins and GST fusion proteins. 
Representative data of at least three independent experiments are shown. 
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To study the non-covalent interaction of ErbB4 with SUMO1 (III), GST-SUMO1 fusion 
protein was incubated with COS-7 lysate expressing epitope-tagged ErbB4 ICD or 
PIASy (a positive control for non-covalent SUMO1-binding). GST pull-down assay was 
performed as described above. Pull-down precipitates were analyzed by Western blotting 
with antibodies recognizing epitope-tagged ErbB4, PIASy, and GST fusion proteins.

4.9.3 In situ proximity ligation assay (II)
The interaction between endogenous ErbB4 and PIAS3 was analyzed using PLA, which 
allows for detection of endogenous protein complexes in situ (Söderberg et al., 2008). 
MCF-7 cells were starved without serum, treated with 50 ng/ml NRG-1 for 15 minutes to 
stimulate ErbB4 phosphorylation, and fixed with methanol. Fixed cells were incubated 
with anti-ErbB4 and anti-PIAS3 antibodies, and proximity ligation was carried out with 
Duolink II in situ PLA kit (Olink Biosciences) following the manufacturer’s protocol. 
PLA signals were detected by confocal microscopy, and classified as cytosolic or nuclear 
depending on their colocalization with DAPI. The specificity of the interactions was 
controlled using siRNAs targeting PIAS3 (4.5). The PLA experiment was carried out 
twice. Differences between two groups were examined using t tests. 

4.10 Ubiquitination of ErbB4 (I)

The ubiquitination of ErbB4 was studied by using COS-7 transfectants expressing ErbB4 
and ubiquitin constructs, and OVCAR-3 cells, which express ErbB4 endogenously. To 
study the role of Itch in ErbB4 ubiquitination, wild-type or mutant Itch was cotransfected. 
Lysine-to-arginine ubiquitin mutants were used to analyze the polyubiquitination of 
ErbB4. 

Cells were starved without serum, and when indicated, treated with 50 ng/ml NRG-1 for 
10 or 30 minutes to stimulate ErbB4 phosphorylation, 100 ng/ml PMA for 30 minutes 
to stimulate ErbB4 cleavage, or with 150 µM ALLN for 2 hours to inhibit proteasomes. 
Cells were lysed, and the lysates were subjected to immunoprecipitation with anti-ErbB4 
antibody. Precipitates were analyzed for ErbB4 ubiquitination by Western blotting using 
antibodies recognizing epitope-tagged ubiquitin, endogenous ubiquitin, or specific 
ubiquitin conjugates. The expression of Itch was analyzed using antibodies recognizing 
epitope-tagged Itch. All experiments were reproduced at least twice.

4.11 SUMOylation of ErbB4 (II, III)

The SUMOylation of ErbB4 ICD was studied using COS-7, HEK293, MCF-7, and WM-
266-4 transfectants expressing ErbB4 ICD and epitope-tagged SUMO constructs. To 
study the role of SUMO E3 ligases and isopeptidases in ErbB4 SUMOylation, wild-type 
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or mutant PIAS3 (II) or SENP proteins (III) were cotransfected. The role of PIAS3 was 
further studied using RNA interference (II) (4.5). C- or N-terminal deletion and lysine-
to-arginine amino acid substitution constructs of ErbB4 ICD were used to identify the 
SUMO acceptor lysine (III). Representative data of at least two independent experiments 
are shown.

The SUMOylation of ErbB4 was analyzed by Western blotting with ErbB4 antibody, 
or immunoprecipitation with ErbB4 antibody followed by Western blotting with ErbB4 
antibody (II). SUMO-modified ErbB4 was observed as higher molecular weight species 
compared to unmodified ErbB4. To inhibit the activity of SUMO isopeptidases, 20 mM 
N-ethylmaleimide was added in lysis and immunoprecipitation buffers. Alternatively, 
cells were lysed in a denaturing buffer (8 M urea, 0.1 M Na2HPO4/NaH2PO4, 10 mM 
Tris-HCl	pH	7.0,	10	mM	imidazole,	10	mM	β-mercaptoethanol),	and	His-tagged	SUMO	
conjugates were precipitated using Ni2+-NTA agarose (Qiagen) (II, III). After extensive 
washing, the His-SUMO conjugates were eluted with elution buffer (200 mM imidazole, 
5	%	 SDS,	 150	 mM	Tris-HCl	 pH	 6.8,	 30	 %	 glycerol,	 720	 mM	 β-mercaptoethanol),	
separated by SDS-PAGE, and analyzed for ErbB4 by Western blotting. When indicated, 
the expression of epitope-tagged PIAS3 and SENP proteins was analyzed by Western 
blotting.

4.12 Subcellular localization of ErbB4 (I-III)

4.12.1 Immunofluorescence analyses of ErbB4 in cytoplasmic vesicles (I)
The subcellular localization of ErbB4 isoforms and PPXY domain mutants in cytoplasmic 
vesicles was analyzed by immunofluorescence using COS-7 transfectants. Cells were 
cultured on coverslips, and fixed and permeabilized with methanol at -20°C for 15 
minutes. After washing with PBS, fixed cells were incubated with primary antibodies for 
2 hours, and Alexa Fluor conjugated fluorescent secondary antibodies (ThermoFischer 
Scientific) for 45 minutes. Both primary and secondary antibodies were diluted in PBS 
containing 3% bovine serum albumin. Nuclei were visualized with DAPI (a fluorescent 
DNA stain; Sigma-Aldrich). Coverslips were mounted with Vectashield (Vector 
Laboratories) or Mowiol 4-88 (Sigma-Aldrich) mounting medium, and the images were 
acquired with confocal microscopy. When indicated, cells were treated with 20 µM 
LY29400 for 4 hours to inhibit PI3K, or with 50 ng/ml NRG-1 for 0, 5 or 30 minutes 
to stimulate ErbB4 phosphorylation. The role of Itch in the subcellular localization of 
ErbB4 isoforms was studied by cotransfection of wild-type or mutant Itch. The identity 
of cytoplasmic vesicles was determined by coexpressing fluorescent-protein-tagged 
Rab-proteins. Representative data of experiments reproduced several times are shown.
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4.12.2 Immunofluorescence analyses of ErbB4 in cell nuclei (II, III) 
The roles of PIAS proteins in the localization of ErbB4 in cell nuclei versus cytosol were 
determined using overexpression and RNA interference of PIAS proteins, followed by 
immunofluorescence analysis as described (4.12.1) (II). Depending on the experimental 
setup, COS-7 transfectants, HC11 retroviral cell lines, and MCF-7 cells were used. 
When indicated, cells were treated with 5 µM GSI IX for 4 hours to inhibit γ-secretase, 
25 ng/ml leptomycin B for 3 hours to inhibit nuclear export, or 50 ng/ml NRG-1 for 0 
or 45 minutes to stimulate ErbB4 phosphorylation. Quantification of nuclear ErbB4 in 
HC11 cells was performed using ImageJ software. Differences between two groups were 
examined using t tests. (II). 

The localization of ErbB4 mutant constructs with or without PIAS3 overexpression 
was analyzed to characterize the roles of γ-secretase cleavage site (II), and nuclear 
import (II) and export signals (III) in determining the subcellular localization. In these 
experiments, COS-7 cells expressing wild-type or mutant constructs of ErbB4 were 
scored for predominantly cytosolic (more signal in the cytosol than in the nucleus) or 
nuclear (equal signal in the nucleus and in the cytosol or more signal in the nucleus than 
in the cytosol) staining in at least 200 randomly selected cells. Differences between two 
groups were examined using t tests in (II). Frequences of nuclear staining intensities 
were examined using the Chi-squared test in (III).

The colocalization of ErbB4 with SUMO1, PIAS3, and PML was analyzed in COS-
7 transfectants, and the colocalization of endogenous ErbB4 with SUMO1 and PML 
in leptomycin B- and NRG-1-treated WM-266-4 cells (II). Representative data of 
reproduced experiments are shown. The colocalization of ErbB4 with PIAS3 and 
PML was analyzed quantitatively in HC11 cells (n=15 for PIAS3 and n=10 for PML) 
retrovirally expressing ErbB4 using BioimageXD software (Kankaanpää et al., 2012) 
(II). 

4.12.3 Subcellular fractionation (II, III)
The localization ErbB4 in cell nuclei versus cytosol was also analyzed by subcellular 
fractionation with a NE-PER kit (ThermoFischer Scientific), followed by Western 
blotting detection of the proteins of interest. Antibodies against Lamin B (a nuclear 
marker) and MEK1/2 (a cytosolic marker) were used to control the fractionation. 

The subcellular localization of overexpressed ErbB4 was studied in COS-7 cells upon 
PIAS3 overexpression, and that of endogenous ErbB4 in MCF-7 cells upon RNA 
interference of PIAS3 (II). The role of SUMOylation in nuclear localization of ErbB4 
was characterized in MCF-7 transfectants expressing wild-type or SUMOylation 
deficient ErbB4, with or without overexpression of PIAS3 (III). Representative data of 
at least two independent experiments are shown. To study the role of nuclear export in 
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subcellular localization of ErbB4, MCF-7 cells were treated with 0, 5, 10 or 20 ng/ml 
leptomycin B for 3 hours to inhibit nuclear export (III).

4.13 ErbB4 tyrosine phosphorylation and activity of signaling pathways 
(III)

The basal tyrosine phosphorylation of wild-type and SUMOylation deficient ErbB4 
mutant was studied by using COS-7 transfectants. Cells were serum starved and 
lysed, and lysates were subjected to immunoprecipitation with anti-ErbB4 antibody. 
Precipitates were analyzed by Western blotting for phosphotyrosine content. To analyze 
the activity of signaling pathways downstream of wild-type and SUMOylation deficient 
ErbB4, COS-7 transfectants were serum starved and stimulated with 50 ng/ml NRG-1 
for 10 minutes. Cell lysates were analyzed by Western blotting for the phosphorylation 
of Akt, ERK and STAT5 with phospho-specific antibodies. Representative data of three 
independent experiments are shown.

4.14 ErbB4-mediated transactivation (II)

A previously described transactivation assay (Komuro et al., 2003), where ErbB4 ICD 
fused to the GAL4 DNA-binding domain and YAP coactivate the transcription of a Firefly 
luciferase reporter gene driven by GAL4 binding sites, was used to study the transcriptional 
coregulatory activity of ErbB4. PIAS proteins were cotransfected to analyze their role 
in ErbB4-mediated transactivation, and a cotransfected Renilla luciferase construct was 
used as an internal control. Firefly and Renilla luciferase activities were measured with 
Dual-Luciferase Assay Reporter System (Promega). The expression of PIAS proteins 
and YAP were controlled by Western blotting. The experiment was repeated three times, 
and differences between two groups were examined using t tests.

4.15 Three-dimensional Matrigel cultures (II, III)

When cultured in a reconstituted basement membrane matrix such as Matrigel, normal 
breast epithelial cells are able to form structurally and functionally differentiated 
mammary acini (Petersen et al., 1992). In contrast, transformed breast carcinoma cells 
grow in disorganized colonies (Petersen et al., 1992). The function of ErbB4 in this 
system was characterized by using MDA-MB-468 human breast cancer cells (II) and 
HC11 mouse mammary epithelial cells (II, III), both retrovirally expressing ErbB4 
(4.1.2). Single cell suspensions were suspended into Matrigel (MDA-MB-468) or 
Growth Factor Reduced Matrigel (HC11) in triplicates on 96-well plates, supplemented 
with 50 ng/ml NRG-1, and maintained cell culture incubator for 6-20 days as indicated 
(II, III). Both Matrigels were obtained from Corning. Colonies were counted from three 
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to four independent views through the whole thickness of the Matrigel, and classified 
as undifferentiated colonies or differentiated acini on the basis of their morphology as 
described (Tvorogov et al., 2009). To study the function of the soluble ErbB4 ICD in 
MDA-MB-468 cells, ErbB4 RIP was inhibited with 5 µM GSI IX (II). The function of 
the soluble ICD in HC11 cells was analyzed by comparing the effects of the cleavable 
and non-cleavable ErbB4 isoforms on the three-dimensional growth (II). For RNA 
interference experiments, cells were transfected with siRNAs targeting PIAS3 or PML 
(4.5), or with negative control siRNAs, and suspended into Matrigel 24 hours after 
siRNA transfection (II). The role of ErbB4 SUMOylation was determined by comparing 
retroviral HC11 cell lines expressing wild-type and SUMOylation deficient ErbB4 (III). 
All experiments were reproduced two to four times. Differences between two groups 
were examined using t tests (II), or one-way analysis of variance followed by pairwise 
comparisons using t-tests (III). Correction for multiple testing was performed using the 
Benjamini-Hochberg procedure (III).
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5 RESULTS

5.1 ErbB4 isoforms are differentially endocytosed (I)

Ligand-stimulated endocytosis followed by lysosomal degradation is a well-characterized 
mechanism to downregulate RTK signaling. While EGFR undergoes efficient 
endocytosis, other ErbB receptors including ErbB4 have been previously considered 
endocytosis-impaired (Baulida et al., 1996). However, ErbB4 CYT-1 isoform has been 
shown to localize in cytoplasmic vesicles (Määttä et al., 2006). Moreover, CYT-1 and 
CYT-2 isoforms have been reported to have different degradation rates, suggesting that 
isoform-specific mechanisms regulate their stability (Sundvall et al., 2007).

Immunofluorescence microscopy of COS-7 cells expressing different ErbB4 isoforms 
demonstrated that CYT-1 isoforms localized in cytoplasmic vesicles more frequently 
than CYT-2 isoforms (I, Fig 1B and C). To address whether the localization of ErbB4 
CYT-1 in cytoplasmic vesicles was associated with faster internalization, the uptake 
of 125I-labelled NRG-1 was measured. The ligand-stimulated internalization of CYT-1 
was significantly faster than that of CYT-2 (I, Fig 1D, left) and had kinetics similar to 
EGFR, which is efficiently internalized (I, Fig 1D, right). To analyze the identity of the 
CYT-1-positive cytoplasmic vesicles, ErbB4 isoforms were coexpressed with Rab5 or 
Rab7, markers for early and late endosomes, respectively (Zerial and McBride, 2001). 
Confocal microscopy demonstrated that CYT-1, but not CYT-2, clearly colocalized 
with Rab5 and Rab7 (I, SI Fig 5). As these results indicated that ErbB4 CYT-1 was 
endocytosed, the degradation rates of the cytoplasmic isoforms were analyzed. Indeed, 
the half-life of CYT-1 was shorter than that of CYT-2 (I, Fig 4C, lanes 1-4, and SI Fig 
6B). Taken together, these data demonstrate that ErbB4 CYT-1 isoform is endocytosed 
and degraded more efficiently than CYT-2. 

5.2 ErbB4 CYT-1 functionally interacts with Itch E3 ubiquitin ligase (I)

The ErbB4 CYT-1 isoform contains a 16 amino acid sequence that is absent from CYT-2. 
This sequence harbors a PI3K binding motif (Elenius et al., 1999). However, a chemical 
inhibitor of PI3K activity did not prevent the targeting of CYT-1 into the endocytic 
vesicles, indicating that CYT-1 endocytosis was not PI3K-dependent (I, Fig 2C). The 
CYT-1-specific sequence also has a PPXY motif that has been shown to interact with 
WW-domain containing proteins (Komuro et al., 2003). Analysis of the PPXY motif 
mutants Y1056F and P1054A demonstrated that this motif was indeed necessary for the 
targeting of CYT-1 into the endocytic vesicles (I, Fig 2B and D).
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Ubiquitination is a key regulator of receptor endocytosis (Goh and Sorkin, 2013). In 
accordance with the previously reported difference in the ubiquitination of the membrane-
tethered m80 fragments produced by different cytoplasmic isoforms (Sundvall et al., 
2007), ErbB4 CYT-1 was ubiquitinated more efficiently compared to CYT-2 (I, Fig 2E). 
Interestingly, similar to endocytosis, efficient ubiquitination of ErbB4 CYT-1 required 
the intact CYT-1-specific PPXY motif (I, Fig 2G and H).

The requirement of the PPXY motif in the ubiquitination and endocytosis of CYT-1 
suggested that this motif could function as a binding site for WW-domain containing 
ubiquitin ligases of the NEDD4 family. They contain a C2 domain that mediates 
membrane targeting, a catalytic HECT domain, and two to four WW domains that 
interact with PPXY motifs (Rotin and Kumar, 2009) (Figure 11). To test for an interaction 
between ErbB4 and two candidate NEDD4 family proteins, coimmunoprecipitation of 
ErbB4 with either NEDD4 or Itch was analyzed. While no interaction between ErbB4 
and NEDD4 was detected (data not shown), ErbB4 associated with Itch (I, Fig 3A and 
B, and SI Fig 7). The efficient interaction between ErbB4 CYT-1 and Itch required an 
intact PPXY motif (I, Fig 3C), as well as Itch WW domains 1 and 2 (I, Fig 4D and E). A 
weak interaction of ErbB4 CYT-2 with Itch was also detected, possibly mediated by the 
two PPXY domains shared between ErbB4 cytoplasmic isoforms (I, Fig 3A) (Komuro 
et al., 2003). 

Figure 11
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Figure 11. Schematic structure of NEDD4 family proteins. All NEDD4 family proteins have 
a similar domain architecture with an N-terminal C2 domain, two to four WW domains, and a 
C-terminal HECT domain. The C2 domain mediates membrane targeting, WW domains interact 
with substrate PPXY motifs, and HECT is a catalytic domain.

To analyze the functional consequences of ErbB4-Itch interaction, the role of Itch in 
the ubiquitination of ErbB4 was studied. Coexpression of wild-type Itch, but not the 
catalytically inactive mutant (that interacted with ErbB4; I, Fig 3A), stimulated ErbB4 
ubiquitination (I, Fig 4A). Itch-induced ubiquitination was detected with an antibody 
that recognizes both mono- and polyubiquitinated proteins (FK2), but not with a 
polyubiquitin-specific antibody (FK1) (I, Fig 4B). Itch also induced the ubiquitination of 
ErbB4 when ubiquitin mutants unable to form K48- or K63-linkages were overexpressed 
(I, SI Fig 8). These results suggest that Itch catalyzes mono- or multimonoubiquitination 
of ErbB4. In addition to ubiquitination, overexpression of wild-type, but not catalytically 
inactive Itch also promoted the targeting of CYT-1 into endocytic vesicles (I, Fig 4D, and 
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SI 4B), and enhanced the degradation of CYT-1 (I, Fig 4C). In keeping with the weaker 
association of ErbB4 CYT-2 with Itch, CYT-2 stability and subcellular localization were 
only weakly affected by Itch overexpression (I, Fig 4C and D). Taken together, these data 
indicate that ErbB4 CYT-1 contains a binding site for WW-domain containing Itch E3 
ubiquitin ligase, which regulates ubiquitination, endocytosis and degradation of ErbB4 
CYT-1 isoform.

5.3 ErbB4 ICD is SUMOylated (II)

Ligand-induced RIP generates a soluble ErbB4 intracellular domain, which can 
translocate into the nucleus and coregulate transcription (section 2.3.1). However, little 
is known about the mechanisms that regulate the subcellular localization and functions 
of ErbB4 ICD. Many nuclear proteins are post-translationally modified by SUMO, and 
SUMOylation regulates processes such as nucleo-cytoplasmic transport and transcription 
(section 2.4.2). Therefore, we aimed to determine whether ErbB4 ICD is SUMOylated.

To examine the presumed SUMOylation, COS-7 cells expressing ErbB4 ICD and His- 
or GFP-tagged SUMO1 were lysed in the prescence of a SUMO isopeptidase inhibitor, 
and analyzed by Western blotting. In addition to the unmodified ErbB4 ICD (∼80 kDa), 
Western blot analyses revealed higher molecular weight ErbB4 species, corresponding 
to the size of ErbB4 ICD modified with His- or GFP-tagged SUMO (∼90 kDa and 
∼120 kDa, respectively) (II, Fig 1G). Higher molecular weight ErbB4 species were also 
detected when cells expressing ErbB4 ICD and His-SUMO were lysed and subjected to 
Ni2+-NTA agarose pull-down to purify SUMOylated proteins in denaturing buffer (II, 
Fig S2A-D). Similar results of ErbB4 ICD SUMOylation were obtained using different 
cell lines, as well as with His-tagged SUMO3 (II, Fig S2A-D). These data demonstrate 
that ErbB4 ICD can be covalently conjugated to SUMO1 and SUMO3 (II, Fig S2A-D). 

5.4 PIAS3 promotes and SENPs reverse ErbB4 ICD SUMOylation (II, III)

To characterize the interactions of ErbB4 ICD with SUMO E3 ligases, GST-tagged 
ErbB4 deletion constructs were produced in bacteria, and incubated with cell lysates 
expressing PIAS proteins (II, Fig 1A-B). PIAS3 and PIASy interacted with a construct 
containing the kinase domain of ErbB4 (II, Fig 1C), but no interactions between ErbB4 
and PIAS1 or PIASxα were detected. The physical interaction of ErbB4 and PIAS3 was 
further validated using coimmunoprecipitation (II, Fig 1D) and in situ proximity ligation 
(II, Fig 1E-F) assays. Coexpression of wild-type PIAS3, but not the SP-RING disrupted 
PIAS3 mutant, promoted the SUMOylation of ErbB4 ICD (II, Fig 1H). Furthermore, 
RNA interference of PIAS3 inhibited ErbB4 SUMOylation (II, Fig S2E). These results 
demonstrate that PIAS3 functions as a SUMO E3 ligase for ErbB4. 
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To identify factors negatively regulating ErbB4 SUMOylation, the activities of the SENP 
family of SUMO isopeptidases towards SUMOylated ErbB4 ICD were analyzed. Both 
SENP1 and SENP2 could efficiently deconjugate SUMO1 and SUMO3 from ErbB4 ICD 
(III, Fig 2A and B). DeSUMOylation was dependent on the catalytic activity of SENP1 
(III, Fig 2A). SUMO2/3-specific SENPs were less potent in reducing the level of SUMO 
modified ErbB4 ICD, but SENP5 overexpression reduced ErbB4 SUMOylation (III, 
Fig 2C). These results indicate that ErbB4 ICD SUMOylation is a reversible process, 
catalyzed by SENP1, SENP2 and SENP5.

5.5 Identification of the ErbB4 SUMOylation site (III)

The amino acid sequence analysis of ErbB4 ICD revealed two ΨKxE SUMOylation 
consensus motifs, a shorter KxE consensus motif, and an inverted consensus motif 
DxKΨ. To examine whether these lysines could function as ErbB4 SUMOylation sites, 
they were replaced with arginines by site-directed mutagenesis (III, Fig 1A), and the 
mutant constructs were compared with wild-type ErbB4 ICD for their SUMOylation. 
However, consensus site mutations had no effect in the pattern of ErbB4 SUMOylation 
(III, Fig 1B and S1). A possibility of SIM-directed SUMOylation was also excluded, as 
ErbB4 ICD did not interact non-covalently with SUMO1 in a GST pull-down assay (III, 
Fig S2). These results indicate that the SUMOylation of ErbB4 is not consensus motif- 
nor SIM-directed.

The analysis of ErbB4 deletion constructs indicated that only a construct containing 
the kinase domain was SUMOylated (III, Fig S4). Of note, ErbB4 kinase domain also 
interacted with PIAS3 (II, Fig 1C). Intriguinly, three lysines (K714, K719 and K722) 
were located within a previously suggested functional domain, a leucine rich putative 
nuclear export signal (Ni et al., 2001) (III, Fig 1C). Site-directed mutagenesis and Western 
blot analyses of these non-consensus sites revealed that the replacement of lysine 714 
with an arginine was sufficient to disrupt the formation of the ∼90 kD SUMO modified 
ErbB4 ICD (III, Fig 1D and S1). A structural model of active ErbB4 kinase domain 
indicated that K714 is accessible to the SUMOylation machinery (III, Fig 1G). Finally, 
the analysis of ErbB4 amino acid sequences from different species showed that the 
SUMO modification site is conserved in vertebrates (III, Fig 1H), suggesting functional 
importance. Taken together, these data demonstrate that the non-consensus lysine 714 is 
the major SUMO acceptor site in ErbB4 ICD.

5.6 SUMOylation promotes nuclear accumulation of ErbB4 ICD (II, III)

Nuclear ErbB4 immunoreactivity is frequently detected in breast cancer (Srinivasan et 
al., 2000). However, in cultured cells that express cleavable ErbB4 JM-a isoform either 
endogenously or ectopically, nuclear localization of ErbB4 epitope is barely detectable 
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(II, Fig 2A, 3 and 4). Interestingly, endogenous ErbB4-PIAS3 complexes were detected 
in the nucleus (II, Fig 1E and F). When full-length cleavable ErbB4 JM-a isoform was 
visualized in cells coexpressing PIAS3 or PIASy, strong nuclear ErbB4 signal was 
detected (II, Fig 2A). In accordance with these data, RNA interference of PIAS3 reduced 
nuclear ErbB4 immunoreactivity (II, 2F, 6G and H) and ErbB4 ICD protein level in 
the nuclear fraction (II, 2G). Furthermore, ErbB4, SUMO1, and PIAS3 were found to 
colocalize in subnuclear structures identified as PML nuclear bodies (II, Fig 3 and 4). The 
PIAS3-stimulated nuclear accumulation of ErbB4 required intact γ-secretase cleavage 
and SUMOylation sites (II, Fig 2D and E; III, Fig 3), as well as a functional NLS (II, Fig 
2E). These results indicate that PIAS3-stimulated SUMOylation promotes the nuclear 
accumulation of soluble ErbB4 ICD, and that NLS-mediated nuclear translocation is 
required for the accumulation. 

Because the identified SUMO modification site was located within a sequence resembling 
NES (III, Fig 1C), the role of nuclear export in ErbB4 subcellular localization was 
further examined. Interference of nuclear export with a chemical inhibitor promoted the 
nuclear accumulation of ErbB4 ICD (II, Fig S4; III, Fig 5A). ErbB4 ICD was also found 
to interact with chromosomal region maintenance 1 (CRM1), a major nuclear export 
receptor for proteins (III, Fig 5B). Replacement of the hydrophobic NES residues with 
alanines resulted in an increased nuclear localization of ErbB4 ICD, indicating that these 
residues were critical for the nuclear export (III, Fig 5D and E). These results imply that 
nuclear export regulates the nuclear accumulation of ErbB4 ICD. Taken together, these 
data are consistent with a model in which ErbB4 SUMOylation at K714 promotes the 
nuclear accumulation by interfering with the nuclear export.

5.7 SUMOylation is required for nuclear signaling of ErbB4 ICD (II, III)

To assess whether the major SUMOylation site is required for basic functions of ErbB4, 
wild-type and K714R ErbB4 were compared for their phosphorylation, and ability 
to activate signaling cascades. Wild-type and SUMOylation deficient mutant ErbB4 
demonstrated efficient constitutive tyrosine phosphorylation in the absence of ligand, 
both in the context of soluble ICD and full-length cleavable JM-a CYT-2 isoform (III, 
Fig 7A). Upon ligand stimulation, both wild-type and K714R ErbB4 were equally 
efficient to activate Akt, ERK1/2 (III, Fig 7B), and STAT5A (III, Fig 7C). These data 
indicate that the major SUMOylation site does not regulate NRG-induced activation of 
signaling pathways downstream of ErbB4 at the cell surface.

As soluble ErbB4 ICD is a constitutively active tyrosine kinase, the relationship between 
ErbB4 phosphorylation status and SUMOylation was examined. Kinase-dead ErbB4 
ICD was efficiently SUMOylated, indicating that SUMOylation was independent 
of the intrinsic catalytic activity of ErbB4 (III, Fig 6). The analysis of tyrosine 
autophosphorylation of SUMOylated ErbB4 ICD revealed that the SUMO-modified 
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ErbB4 ICD was phosphorylated, in fact to a higher extend than the unmodified ErbB4 
(III, Fig 6). 

Nuclear ErbB4 ICD can function as a transcriptional coregulator (section 2.3.1). As 
the SUMO system often regulates transcriptional processes, the role of PIAS3 in the 
transcriptional coregulatory activity of ErbB4 ICD was analyzed. Overexpression of 
PIAS3 repressed transcription in a model system where ErbB4 ICD and YAP coactivate 
expression of a luciferase gene (II, Fig 5). The repressive effect of PIAS3 was dependent 
on its SP-RING domain, an indication that the SUMO E3 ligase activity of PIAS3 was 
required (II, Fig 5). 

To characterize the role of SUMOylation in cellular responses regulated by ErbB4, an in 
vitro model of mammary gland differentiation was used. Stable transfectants of human 
breast cancer (MDA-MB-468) and mouse mammary epithelial (HC11) cells expressing 
empty vector or ErbB4 JM-a CYT-2 were generated, and analyzed for three-dimensional 
growth in Matrigel. A high proportion of vector control cells grew in spherical or acinar 
structures, and were thus classified as differentiated. However, a significantly smaller 
proportion of ErbB4 expressing cells formed spheres but grew in undifferentiated, 
disorganized colonies instead (II, Fig 6B and F). Inhibition of ErbB4 RIP by a γ-secretase 
inhibitor (MDA-MB-468 cells; II, Fig 6A and B), or by expression of the non-cleavable 
JM-b isoform (HC11 cells; II, Fig 6E and F), increased the formation of mammary acini, 
indicating that ErbB4-mediated inhibition of differentiation was ICD-dependent. PIAS3 
and PML were required for the inhibitory function of ErbB4 ICD, as demonstrated by 
the partial rescue of the phenotype upon RNA interference of PIAS3 or PML (II, Fig 6C, 
D and G). Finally, cells expressing the SUMOylation deficient K714R mutant of ErbB4 
were comparable to vector control cells in their ability to differentiate, demonstrating that 
ErbB4 SUMOylation was required for the function of ErbB4 ICD in this model system 
(III, Fig 8B). Taken together, these data indicate that PIAS3-induced SUMOylation 
regulates the nuclear signaling of ErbB4 ICD.
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6 DISCUSSION

6.1 NEDD4 family ligases as regulators of ErbB4 ubiquitination

Cbl is the major regulator of ubiquitination and degradation of activated RTKs, such as 
EGFR, PDGFRα and β, and hepatocyte growth factor receptor (Levkowitz et al., 1999; 
Miyake et al., 1999; Peschard et al., 2001; Goh and Sorkin, 2013). However, ErbB4 does 
not interact with Cbl, and ErbB4 has been reported to be endocytosis-impaired (Baulida 
et al., 1996; Levkowitz et al., 1996). This study revealed that the ubiquitination of ErbB4 
is regulated in an isoform-specific manner by Itch, a NEDD4-family E3 ubiquitin ligase 
(I). In contrast to the central role of Cbl in mediating RTK ubiquitination, TrkA receptor, 
fibroblast growth factor receptor 1, and more recently ErbB3 have all been reported to be 
ubiquitinated by NEDD4-like ligases (Arévalo et al., 2006; Persaud et al., 2011; Huang 
et al., 2015). The specificity of Itch-mediated ErbB4 CYT-1 ubiquitination was achieved 
by the interaction of CYT-1-specific PPXY motif with the WW-domains of Itch (I, Fig 
3). ErbB4-Itch interaction, as well as the ubiquitination and internalization of ErbB4 
were stimulated by NRG-1, suggesting ligand-induced endocytosis and lysosomal 
degradation similar to that of EGFR (I, Fig 1, 2F, and SI Fig 7). Thus, the function of Itch 
is different from the previously identified steady-state ubiquitination and degradation of 
ErbB4 by NRDP1 (Diamonti et al., 2002). In contrast to Cbl, the interaction of NEDD4-
like ligases with RTKs is not dependent on the RTK autophosphorylation. However, 
ligand-induced RTK activation has been shown to enhance the ubiquitin ligase activity 
of NEDD4 by inducing its tyrosine phosphorylation (Persaud et al., 2014). 

The type of EGFR ubiquitination has been studied by comparing the signals obtained 
with ubiquitin antibodies that recognize both mono- and polyubiquitinated proteins, or 
polyubiquitinated proteins only. Based on these analyses, EGFR has been suggested to 
be monoubiquitinated (Haglund et al., 2003). Instead of a defined band representing 
monoubiquitinated EGFR, the signal detected with ubiquitin antibodies is smeary. 
This pattern has been proposed to arise from multimonoubiquitination of EGFR, as the 
attachment of multiple ubiquitin monomers, together with receptor phosphorylation and 
glycosylation, would result in receptor species of different molecular weights (Haglund 
et al., 2003). However, proteomic studies have shown that EGFR is mainly conjugated 
with K63-linked polyubiquitin chains (Huang et al., 2006; 2013). Although experimental 
conditions may affect the type of ubiquitination detected, multiple monoubiquitination 
and K63-linked polyubiquitin chains are both considered as important sorting signals in 
the endocytic pathway (Piper et al., 2014). 

In this study, the analyses of ErbB4 ubiquitination type were in part based on the 
same mono- and polyubiquitin-specific antibodies that have been used to study the 
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ubiquitination of EGFR (Haglund et al., 2003) (I, Fig 4B). In alignment with EGFR, 
the data suggested mono- or multimonoubiquitination of ErbB4. Additionally, lysine-to-
arginine ubiquitin mutants unable to form K48- or K63-linked polyubiquitin chains were 
utilized (I, SI Fig 8). The ubiquitin signal was also detected upon the overexpression of 
ubiquitin mutant constructs, suggesting that ErbB4 is not modified with K48- or K63-
linked polyubiquitin chains. 

It should be noted that analytical methods may affect the type of ubiquitination detected, 
and that the methodology to study ubiquitination has improved since the experiments for 
this study were carried out. Ubiquitin is a highly abundant protein, and overexpression of 
ubiquitin mutants does not overcome the endogenous ubiquitin pool. Thus, the detected 
polyubiquitin chains may also contain K48- and K63-linkages, and the ubiquitin mutant 
constructs may function as chain-terminating mutants, rather than as tools to prevent 
the formation of a specific polyubiquitin chain. In fact, Meijer et al. reported that the 
Itch binding site mediates K63-linked polyubiquitination of ErbB4 CYT-1 (Meijer et 
al., 2013). K63-linked polyubiquitination is plausible, as NEDD4 and Itch have been 
shown to catalyze the formation these linkages (Kim et al., 2007; Scialpi et al., 2008). 
At present, ubiquitin chain linkages can be analyzed with linkage-specific antibodies, or 
by using a recently developed Ubiquitin Chain Restriction (UbiCRest) method, which 
utilizes the linkage-specificity of DUBs (Hospenthal et al., 2015). Finally, to refine the 
experimental setup, ubiquitination of ErbB4 could be studied in ubiquitin pull-down 
experiments using denaturing conditions. A denaturing system would confirm the 
covalent ubiquitin modification of ErbB4, and formally exclude the possibility of the 
detected ubiquitin signal arising from an ErbB4-interacting, ubiquitinated protein. 

Notably, the Itch-induced ubiquitination and degradation of ErbB4 CYT-1 has been 
confirmed by other researchers. Omerovic et al. showed that Itch interacted with and 
ubiquitinated ErbB4 CYT-1 (Omerovic et al., 2007). Moreover, two other NEDD4-family 
ligases, NEDD4 and WWP1, have been shown to be functionally similar to Itch in their 
ability to interact with, ubiquitinate, and promote the degradation of ErbB4 CYT-1 (Feng 
et al., 2009; Li et al., 2009; Zeng et al., 2009). Together, the results of this thesis and the 
above-mentioned studies indicate a key role for the NEDD4 family of E3 ubiquitin ligases 
as regulators of ErbB4 CYT-1 ubiquitination and stability. The NEDD4-like ligases may 
be functionally redundant, or alternatively regulate the ubiquitination of ErbB4 CYT-1 
in a physiologically relevant manner in different tissue contexts. For example, while 
both Itch and WWP1 are expressed in breast cancer, including the estrogen receptor-
positive breast cancer subtype where ErbB4 is typically expressed, WWP1 is frequently 
overexpressed due to amplification  (Chen et al., 2007; 2009; Salah et al., 2014). WWP1 
could thus regulate the ubiquitination of ErbB4 CYT-1 in this context. 
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6.2 Isoform-specific ubiquitination may induce qualitative and quantitative 
changes in ErbB4 signaling

Failure to attenuate ErbB signaling by endocytosis and degradation results in enhanced 
signaling. Indeed, defective RTK endocytosis can lead to malignant transformation (Wells 
et al., 1990). Different mechanisms may contribute to deficient downregulation and 
thus ongogenic ErbB signaling in cancer. EGFR overexpression may prolong signaling 
due to the limited capacity of the endocytic machinery (French et al., 1994). ErbB2 
overexpression, on the other hand, enhances the recycling of EGFR/ErbB2 heterodimers, 
partially due to reduced receptor ubiquitination (Levkowitz et al., 1996; Lenferink et 
al., 1998). Additionally, cancer-associated deletion and kinase domain mutants escape 
efficient Cbl-mediated ubiquitination and degradation, resulting in prolonged signaling 
that contributes to the oncogenic properties of the mutant receptors (Huang et al., 1997; 
Han et al., 2006; Grandal et al., 2007; Shtiegman et al., 2007). 

The finding that the abundance of ErbB4 cytoplasmic isoforms is differentially regulated 
at post-translational level may explain some of the functional differences of ErbB4 
isoforms. While CYT-1 isoforms were efficiently downregulated in the presence of active 
NEDD4-like E3 ligases (I, Fig 4C and SI Fig 9), CYT-2 isoforms were degradation-
resistant and could thus remain active. Accordingly, ErbB4 CYT-2 isoform, but not 
CYT-1, is capable of promoting ligand-independent cell survival and proliferation in 
vitro (Määttä et al., 2006). ErbB4 CYT-2 also produces more ICD, perhaps due to its 
increased stability compared to CYT-1 (Määttä et al., 2006). The difference in stability 
could thus allow enhanced signaling of CYT-2 type ICD in the nucleus. 

Although EGFR is efficiently endocytosed upon ligand stimulus, heterodimerization 
with endocytosis-impaired ErbB2 or ErbB3 attenuates EGFR degradation (Lenferink 
et al., 1998). Interestingly, endocytosis-resistant ErbB4 CYT-2, but not CYT-1, has 
a related function in providing stability to EGFR/ErbB4 heterodimers (Kiuchi et 
al., 2014). As ErbB2 and ErbB3 also heterodimerize with ErbB4, isoform-specific 
ubiquitination and degradation of ErbB4 may regulate the stability and signaling 
output of all ErbB receptors in tissues where they are coexpressed. Moreover, as the 
cytoplasmic isoforms of ErbB4 are expressed together in the same tissues, including 
malignant tissues, CYT-2 could also provide stability to CYT-1/CYT-2 dimers in 
addition to ErbB heterodimers. Such dimers would allow for stronger CYT-1-mediated 
signaling, for example through PI3K, while retaining CYT-2 function. Thus, CYT-1/
CYT-2 dimers could represent a more potent ErbB4 signaling unit compared to the 
function of either isoform alone.

Finally, ErbB4 CYT-1 isoform is overexpressed relative to CYT-2 in medulloblastoma, 
ovarian cancer and schizophrenia (Ferretti et al., 2006; Silberberg et al., 2006; Law et al., 
2007; Paatero et al., 2013). These findings suggest that stoichiometry of ErbB4 isoforms 
is relevant in tissue homeostasis and pathology. While increased CYT-1 signaling can be 
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achieved through mechanisms that promote CYT-1 expression, insufficient activity of 
NEDD4-like E3 ubiquitin ligases that control CYT-1 levels post-translationally may also 
contribute to the malignant role of CYT-1 in these tissues.

6.3 SUMOylation of ErbB4 ICD

SUMOylation is an inducible, reversible, and typically non-proteolytic post-translational 
modification that acts as a molecular switch to alter the activity, localization or stability 
of its target proteins (Flotho and Melchior, 2013). SUMOylation is a predominantly 
nuclear modification, and the majority of SUMO-modified proteins are involved in 
nuclear processes (Hendriks and Vertegaal, 2016). However, reversible SUMOylation 
cycles also control the activity of many critical signal transduction proteins (Kubota et 
al., 2011; de la Cruz-Herrera et al., 2014).

The results of this study demonstrated that the intracellular domain of ErbB4 is 
SUMOylated (II, Fig 1G). Although this conclusion is based on experiments where ErbB4 
ICD was ectopically expressed, it is supported by other data presented in this study. First, 
endogenous ErbB4 was shown to interact with a SUMO E3 ligase PIAS3, and colocalize 
with SUMO1 (II, Fig 1E and 4). Second, the PIAS3-ErbB4-interaction was functionally 
relevant, demonstrated by the role of PIAS3 as a regulator of the subcellular localization 
of ErbB4 in breast cancer cells (II, Fig 2F and G). Finally, mutation of a single lysine 
residue resulted in the loss of SUMO-modified ErbB4 ICD (III, Fig 1). 

Like the majority of SUMO-modified proteins, only a minor proportion of ErbB4 ICD 
was SUMOylated without overexpressing SUMO. Indeed, many proteins are thought 
to be quantitatively SUMOylated only in response to a stimulus, such as cellular stress 
or activation of a specific signaling pathway (Flotho and Melchior, 2013). Even upon 
specific stimuli SUMOylation is a transient modification due to the activity of SUMO 
isopeptidases, and only a small fraction of a target protein is modified at a given time. 
This complicates the detection of SUMO modification without overexpression of 
SUMO, or SUMO together with a target protein. 

SUMOylation status of many proteins changes upon DNA damage, or oxidative or 
proteotoxic stress (Saitoh and Hinchey, 2000; Tempé et al., 2008; Golebiowski et al., 
2009; Sahin et al., 2014a; Hendriks et al., 2015). Intriguingly, the soluble ErbB4 ICD, 
which is detected at low abundance in normal cell culture conditions, accumulates upon 
cellular stress (Knittle et al., unpublished observations). This observation raises the 
possibility that RIP-mediated ErbB4 signaling plays a role in cellular stress conditions, 
and raises the question of whether SUMOylation regulates ErbB4 ICD function in such 
signaling contexts. Identification of a stress stimulus that induces the SUMOylation of 
endogenous ErbB4 ICD should be a focus of future studies. 
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Although ErbB4 contains SUMOylation consensus motifs, a single non-consensus 
lysine residue 714 in the kinase region was shown to serve as the major SUMOylation 
site (III, Fig 1). Indeed, not all lysine residues that perfectly fit the consensus motif are 
modified (Matic et al., 2010; Hendriks et al., 2014). Other factors, such as non-covalent 
interactions of the target protein with SUMO or a SUMO E3 ligase can influence the 
lysine selection (Flotho and Melchior, 2013). In the case of ErbB4 ICD, the selection of 
SUMOylation site may be directed by PIAS3, which interacted with the ErbB4 kinase 
region. 

In addition to ErbB4, many other RTKs produce soluble ICDs via RIP (Merilahti et 
al., unpublished). Although the possible nuclear functions of these RTK ICDs are yet 
to be discovered, SUMOylation could represent a more general mechanism to regulate 
RTK ICDs. At present, two other RTKs, IGF-1R and EGFR, have been shown to be 
SUMOylated (Sehat et al., 2010; Packham et al., 2015). However, even though IGF-1R 
is a RIP substrate releasing a soluble ICD, these reports suggest SUMOylated of the full-
length receptors (McElroy et al., 2007).

6.4 Mechanisms of SUMOylation-induced nuclear accumulation of ErbB4 

Despite the accumulating evidence of nuclear localization and functions of ErbB4 ICD, 
the factors determining its subcellular distribution have remained poorly characterized. 
Previous studies have characterized a functional NLS, and suggested that nuclear export 
contributes to the subcellular localization of ErbB4 (Ni et al., 2001; Williams et al., 
2004; Määttä et al., 2006; Hsu and Hung, 2007). However, in cultured cells that express 
full-length cleavable ErbB4 JM-a isoform, only low levels of nuclear ErbB4 epitope 
are detected, even when ErbB4 is overexpressed. This study demonstrated that PIAS3-
induced SUMOylation promotes the nuclear accumulation of ErbB4 ICD. Thus, the 
results of this study expand the understanding of the molecular mechanisms that regulate 
the subcellular localization of ErbB4 ICD.

Both wild-type and SUMOylation deficient ErbB4 ICD were detected in the nucleus (III, 
Fig 3). Moreover, PIAS3, a SUMO E3 ligase that stimulated the SUMOylation, promoted 
the nuclear accumulation of ErbB4 ICD only when ErbB4 NLS was intact (III, Fig 3). 
These results indicate that SUMOylation is not necessary for the nuclear translocation 
per se. Intriguingly, the ErbB4 SUMO modification site resided within a functional 
nuclear export signal (III, Fig 1 and 5). Du et al. showed that SUMOylation of Krüppel-
like factor 5 to a lysine adjacent to NES inactivated its nuclear export, and presented a 
number of proteins whose nuclear accumulation is promoted by SUMOylation and that 
have a NES in close proximity to the modification site (Du et al., 2008). While further 
experiments are needed to define the mechanism, the results presented in this thesis 
suggest a model in which SUMO conjugation at lysine 714 interferes with the interaction 
of ErbB4 NES with nuclear export receptors, resulting in nuclear accumulation.
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6.5 Insights into the role of SUMOylation in ErbB4 signaling

ErbB4 has an established role in mammary gland biology regulating the lobuloalveolar 
differentiation during lactation (Jones et al., 1999; Long et al., 2003; Tidcombe et al., 
2003). Previous studies have suggested a differentiation promoting role for the soluble 
ICD of CYT-1 type, but a proliferation promoting role for the CYT-2 ICD (Muraoka-
Cook et al., 2006; 2009). Accordingly, the results of this study showed that RIP-mediated 
signaling of ErbB4 CYT-2 inhibited the differentiation of mouse mammary epithelial 
cells, and instead promoted growth in undifferentiated structures (II, Fig 6F). A similar 
ErbB4 RIP-dependent conversion toward a more malignant phenotype was induced in 
human breast cancer cells (II, Fig 6B). Significantly, SUMOylation was required for the 
differentiation-inhibiting function of ErbB4 ICD, as demonstrated by RNA interference 
of PIAS3 and mutagenesis of the modification site (II, Fig 6C and G; III, Fig 8B). Similar 
results produced by the two approaches indicate that although PIAS proteins sometimes 
regulate their interaction partners in a manner that is independent of their SUMOylation 
(Rytinki et al., 2009), the SUMO modification of ErbB4 is mechanistically involved. 
Since the mutation of the modification site did not disrupt the kinase activity or classical 
RTK-activated signaling pathways downstream of the full-length ErbB4, or influence its 
stability, it is likely that the loss-of-function phenotype upon inhibition of SUMOylation 
is due to decreased nuclear ErbB4 signaling.

ErbB4 ICD regulates many transcriptional events in mammary epithelial cells, including 
the activation of STAT5A-mediated transcription  (Jones et al., 1999; Wali et al., 
2014a). SUMOylation could thus regulate ErbB4 function by altering its activity in 
transcriptional processes. Indeed, PIAS3 overexpression repressed the transcriptional 
coregulatory activity of ErbB4 ICD (II, Fig 5).  The mechanism of altered transcriptional 
activity could in turn involve the sequestration of ErbB4 in PML nuclear bodies (II, 
Fig 3 and 4). PML bodies contain ErbB4-interacting transcriptional regulators, and may 
thus provide a site for formation of transcriptional regulatory complexes (Khan et al., 
2001; Fleischer et al., 2006; Lapi et al., 2008). Like PIAS3 and ErbB4 SUMOylation 
site, PML was also required for the ErbB4 ICD-mediated inhibition of differentiation 
(II, Fig 6D). Finally, although SUMO E3 ligase activity of PIAS3 was not necessary in 
promoting colocalization of ErbB4 with PML (II, Fig 3), the fraction of ErbB4 in PML 
bodies may still be SUMOylated, as most proteins in these nuclear bodies are (Bernardi 
and Pandolfi, 2007). 

In addition to repressive effects on ErbB4 ICD-dependent transcription, SUMOylation 
enhanced the autophosphorylation of ErbB4 (III, Fig 6). Intriguingly, SUMOylation has 
been shown to stimulate the activity of both tyrosine and serine/threonine kinases and 
modulate the phosphorylation status of many proteins (Kadare et al., 2003; Yao et al., 
2011; de la Cruz-Herrera et al., 2014). As the nuclear localization of ErbB4 ICD is kinase 
activity-dependent (Muraoka-Cook et al., 2006; Sundvall et al., 2007), SUMOylation 
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could contribute to the nuclear accumulation through increased tyrosine phosphorylation. 
One can also speculate that SUMOylated ErbB4 ICD could be more active towards 
its nuclear phosphorylation substrates. Currently, the molecular mechanism by 
which SUMOylation promotes kinase activity of ErbB4 or other kinases is unknown. 
Hypothetically, SUMOylation could induce a conformational change resulting in more 
efficient activation of a kinase domain, or make the activated kinases poorer substrates 
for specific phosphatases.

6.6 SUMOylation may regulate ErbB4 function in breast cancer 

The expression of PIAS3 has been shown to be increased in breast cancer (Wang and 
Banerjee, 2004; McHale et al., 2008). The relatively highest expression is detected in 
the estrogen receptor-positive, lobular subtype (In Silico Trancriptomics database; ist.
medisapiens.com, (Kilpinen et al., 2008)). Intriguingly, the overexpression of PIAS3 has 
been reported to promote the proliferation of estrogen receptor-positive breast cancer 
cells, but conversely to inhibit the proliferation of estrogen receptor-negative breast 
cancer cells (Yang et al., 2016). The overexpression of PIAS3 also induced resistance 
to anti-estrogen hormone therapy in estrogen receptor-positive breast cancer cells (Yang 
et al., 2016). At the molecular level, PIAS3 promotes ERα expression as well as its 
SUMOylation, which activates ERα-mediated transcription (Sentis et al., 2005; Park 
et al., 2011). Together, these studies suggest an oncogenic role for PIAS3 in estrogen 
receptor-positive breast cancer, a subtype in which ErbB4 is also expressed. 

In breast cancer the localization of ErbB4 epitope in different cellular compartments is 
associated with different clinical outcomes (Junttila et al., 2005; Aqeilan et al., 2007; 
Thor et al., 2009). In particular, nuclear ErbB4 staining is associated with poor prognosis, 
as compared to the localization of ErbB4 epitope at the cell surface (Junttila et al., 2005). 
It is interesting to speculate whether ErbB4 SUMOylation could be induced in PIAS3-
overexpressing, estrogen receptor-positive breast cancers. Indeed, SUMOylation could 
represent a molecular mechanism controlling the nuclear accumulation and potentially 
oncogenic activity of ErbB4 ICD in breast cancer. 

To address this hypothesis, the SUMOylation status of ErbB4 should be studied in 
breast cancer tissue samples. Although the analysis of SUMOylation in tissue samples 
is complicated compared to cell culture models, SUMOylation of some target proteins 
has been detected in mouse tissue using denaturing lysis and immunoprecipitation with 
SUMO antibodies (Becker et al., 2013). PLA can also be applied to analyze protein 
SUMOylation in tissue sections, allowing the detection of SUMOylated proteins in situ 
(Sahin et al., 2016). The PLA results should be interpreted with caution, however, as 
the detection PLA signal does not require covalent SUMO modification, but rather the 
proximity of SUMO with the target protein. Lastly, the potential correlation between 
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the abundance of PIAS3 and nuclear ErbB4 epitope could be analyzed in breast cancer 
tissue sections by immunohistochemistry.

The results of this study demonstrated that ErbB4 ICD inhibits the differentiation of 
normal and malignant breast epithelial cells, and that SUMOylation was required for 
this function (II, Fig 6; III, Fig 8). While the molecular mechanism remains elusive, it 
potentially involves altered transcriptional or kinase activity upon ErbB4 SUMOylation, 
or merely the increased abundance of nuclear ErbB4 ICD (II, Fig 2 and 5; III, Fig 3 
and 6). These results give an indication that SUMOylation may promote oncogenic 
signaling ErbB4 ICD, but additional research is required to determine the relevance of 
SUMOylation on ErbB4 function in the context of breast cancer. Future experimentation 
should involve in vitro and in vivo models of breast cancer comparing the activities of wild-
type and SUMOylation-deficient ErbB4. For example, the function of SUMOylation-
deficient ErbB4 could be characterized using a xenograft mouse model of breast cancer, 
in which tumor growth is dependent on ErbB4 RIP (Hollmén et al., 2012). The recently 
developed clustered regularly interspaced short palindromic repeats-CRISPR associated 
(CRISPR-Cas)-system enables genome editing (Wright et al., 2016), and provides a 
valuable tool to characterize the role of a modification site without ectopic expression of 
a mutated protein. As such, CRISPR-Cas-engineered breast cancer cell lines expressing 
SUMOylation-deficient ErbB4 could be useful models for future studies. 
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7 CONCLUSIONS

This thesis aimed to characterize novel regulatory mechanisms of ErbB4 signaling, with 
a focus on two post-translational modifications: ubiquitination and SUMOylation. 

Based on the results of this study (summarized in Figure 12), the following key 
conclusions can be made: 

1) Ubiquitination, endocytosis and degradation of ErbB4 are regulated in an isoform-
specific manner through the action of Itch E3 ubiquitin ligase. Targeting of CYT-1, 
but not CYT-2 isoforms to degradation may result in quantitative and qualitative 
changes in ErbB signaling.

2) The intracellular domain released by the cleavable ErbB4 isoforms is modified by 
SUMO. SUMOylation is induced by PIAS3 SUMO E3 ligase, and regulates the 
nuclear localization and differentiation-inhibiting function of the soluble ErbB4 
ICD. Thus, SUMOylation is a novel mechanism controlling the signaling of an 
ICD of a receptor tyrosine kinase in the nucleus.

Together, these findings offer new insights into the molecular mechanisms that regulate 
the stability, subcellular localization, and transcriptional and kinase activities of ErbB4. 
The regulation of quantitative and qualitative aspects of ErbB4 signaling may have 
implications for the ErbB-regulated biological processes in both healthy tissues and 
cancer. Thus, further studies are warranted to explore the role of post-translational 
regulation of ErbB4 signaling in these contexts. Finally, the findings of this thesis can 
potentially be extended to provide new understanding on the mechanisms that regulate 
the functions of receptor tyrosine kinases other than ErbB4.
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Figure 12. A model of post-translational modifications in ErbB4 signaling. A) The interaction 
of Itch E3 ubiquitin ligase results in isoform-specific ubiquitination, endocytosis and degradation 
of CYT-1 isoforms, while CYT-2 isoforms are resistant to Itch-induced degradation. CYT-
2 isoforms can thus mediate prolonged signaling of ErbB4 homo- and ErbB heterodimers. B) 
Regulated intramembrane proteolysis of the ErbB4 JM-a isoforms, mediated by tumor-necrosis 
factor α converting enzyme (TACE) and γ-secretase, releases a soluble ErbB4 intracellular 
domain (ICD) into the cytosol. The ICD translocates into the nucleus and is SUMOylated by 
PIAS3 SUMO E3 ligase. SUMOylation promotes the nuclear accumulation and alters the nuclear 
signaling of ErbB4 ICD. CYT, cytoplasmic; JM, juxtamembrane; TACE, tumor-necrosis factor 
α converting enzyme. 
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