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ABSTRACT 
Jatropha curcas (L.) is a multipurpose oil bearing shrub assumed to be able to survive in 
a wide range of ecological conditions across the tropical regions of the world. The thesis 
is composed of two parts, the first one based on experimental research, and the second 
one on literature reviews. In the experimental part, I assessed the effects of simulated 
herbivory and drought stress on defence, physiology and compensatory growth of J. 
curcas seedlings (I and II). In the latter part I reviewed arthropod herbivores, seed yield 
and genetic variability of J. curcas across the globe (III and IV).  Experimental results 
showed that the highest concentration of flavonoids was found in the leaves of J. curcas 
seedlings exposed to 50 % herbivory stress and grown in 200 mm y-1 rainfall, whereas the 
lowest growth and biomass was produced by J. curcas seedlings exposed to 25 % 
herbivory stress and grown in 200 mm y-1 rainfall (I and II). J. curcas seedlings exhibited 
an undercompensatory growth response to herbivory stress in all the drought stress levels 
(II). Our literature review showed that arthropod herbivore load associated with J. curcas 
was relatively low (78 species) across the globe. Flower and fruit feeders were more 
common than foliage feeders (III). The highest average genetic diversity was observed, as 
expected, within the native range of J. curcas (IV) with record levels observed in 
populations sampled in the State of Chiapas of Mexico. The annual seed yield varied 
greatly across the globe from 26 to 11,150 kg ha-1; the global mean annual seed yield was 
2,220 kg ha-1. Age had a linear whereas rainfall and plant density had a significant 
quadratic effect on seed yield. Differences in seed yields of J. curcas across the globe 
might be due to differences in site-specific agro-climatic, soil fertility and genetic factors 
as well as agronomic practices applied to achieve a high seed yield (IV). Further genetic 
improvements will be required to produce cultivars which can provide consistently high 
seed and oil yields. My results contribute to promote commercial production of J. curcas 
by providing more information on the ecological requirements of the species. 
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TIIVISTELMÄ 
Jatropha curcas (L.) on monikäyttöinen öljykasvi, joka menestyy hyvin vaihtelevissa 
ekologisissa olosuhteissa maapallon trooppisilla alueilla. Väitöskirjani koostuu kahdesta 
osasta, kokeellisesta ja kirjallisuuteen perustuvasta. Kokeellisessa osassa tutkin 
simuloidun herbivorian ja kuivuus käsittelyjen vaikutusta Jatropha curcaksen 
siementaimien fysiologiaan, puolustukseen ja kompensaatiokasvuun (I ja II). Työni 
jälkimmäisessä osassa tarkastelen kirjallisuuteen perustuen lajilla tavattavia niveljalkais 
herbivoreja sekä siemensadon ja geneettisen monimuotoisuuden vaihtelua 
levinneisyysalueen eri osissa (III ja IV). Kokeissa havaittiin korkeimmat 
flavonoidipitoisuudet niiden kasvien lehdissä, joiden lehtipinta-alasta oli poistettu 50 % ja 
joiden saama sademäärä oli 200 mm v-1, kun taas kasvu oli hitainta ja biomassa pienin 
niillä kasveilla, joiden lehtipinta-alasta oli poistettu 25 % ja joiden saama sademäärä oli 
200 mm v-1 (I ja II). Jatropha curcaksen kasvuvaste herbivoriaan oli alikompensoiva 
kaikissa kuivuus käsittelyissä (II). Kirjallisuuskatsaus osoitti niveljalkais herbivorian 
olevan melko vähäistä (kokonaislajimäärä 78 lajia) levinneisyysalueen eri osissa. Kukkien 
ja hedelmien syöjät olivat lehtibiomassan syöjiä yleisempiä (III). Odotusten mukaisesti 
geneettinen monimuotoisuus oli suurin lajin alkuperäis alueilla (IV); korkein 
monimuotoisuus aste havaittiin Meksikossa Chiapasin osavaltion populaatioissa. 
Vuotuinen siemensato vaihteli levinneisyysalueen eri osissa suuresti välillä  
26-11,150 kg ha-1 keskisadon ollessa 2,220 kg ha-1. Kasvin ikä vaikutti satoon 
lineaarisesti mutta sademäärä ja kasvitiheys kvadraattisesti. Jatrophan siemensadon 
vaihtelu eri alueiden välillä voi johtua paikallisista ilmasto- ja maaperä olosuhteista, 
geneettisistä tekijöistä tai sadon lisäykseen käytetyistä viljely tekniikoista (IV). Siemen- 
ja öljysadon lisääminen vaatii geneettisesti parempien lajikkeiden käyttöönottoa. Työni 
tulokset hyödyttävät Jatrophan viljely hankkeita tuottamalla tarvittavaa tietoa lajin 
ekologisista kasvupaikka vaatimuksista. 
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1. INTRODUCTION 

1.1. Biology and productivity of J. curcas 

J. curcas (Euphorbiaceae) is a perennial deciduous and multipurpose oil bearing shrub 
with great but so far not fully realized economic potential (Achten et al. 2008; Achten et 
al. 2010; Heller 1996; Maes et al. 2009a). It grows upto 8-10 m height under appropriate 
environmental conditions, and individual plants may produce seed for 50 years (Fairless 
2007; Heller 1996).  It is a monoecious shrub with female and male flowers located in the 
same inflorescences, female flowers located at the apical and male flowers at the 
subordinate positions (Brittaine and Lutaladio 2010; Heller 1996; Raju and Ezradanam 
2002). Flowers are small and white, and there are usually significantly more male than 
female flowers (Raju and Ezradanam 2002). Initially the fruit is green but its colour 
changes from yellow to black in the course of ripening (Heller 1996). A fruit contains 
three seeds and each seed contains 35 - 60 % of non-edible oil that can be used as biofuel 
directly blended with fossil fuels (Heller 1996; Jongschaap et al. 2007; Kumar and 
Sharma 2008; Openshaw 2000). Due to climate change and gradual depletion of fossil 
fuel reserves many researchers and policy makers have shown interest in this shrub as a 
potential source of biofuel production (Fairless 2007; Jongschaap et al. 2007; Kumar and 
Sharma 2008; Openshaw 2000).  

J. curcas can thrive in a wide range of ecological conditions from arid to humid tropical 
environments (250 - 3,000 mm y-1 and 15 - 40 °C) (Achten et al. 2008; Carels 2009; Khair 
and Atta 2009). It grows up to 1,500 m altitude above the sea level in Nepal (Lama 2010), 
and is very common below 500 m altitude in the tropical parts of the world (Heller 1996). 
J. curcas, grows rapidly, requires a lot of light and prefers well drained and aerated soils 
(Carels 2009; Kumar and Sharma 2008). As its root system has one tap root and four 
lateral shallow roots, it can effectively extract water and nutrients from all soil layers 
(Carels 2009; Krishnamurthy et al. 2012; Heller 1996). Although J. curcas may survive in 
arid and semi-arid conditions, rapid growth and high seed yields are only achieved on 
sites with a fair amount of rainfall and deep enough soils (45 cm) (Carels 2009; 
Krishnamurthy et al. 2012). It is sensitive to water logging and frost (Gimeno et al. 2012; 
Heller 1996), and is not browsed by vertebrate herbivores (Heller 1996). Due to its 
ecological flexibility, it has been considered a useful plant for biofuel production, erosion 
control and land rehabilitation (Achten et al. 2008; Fairless 2007; Openshaw 2000; 
Pandey et al. 2011; Wani et al. 2012).  

As noted above, J. curcas is considered a drought resistant species able to grow and 
survive in drought prone areas (Heller 1996; Jongschaap et al. 2007; Kumar et al. 2012). 
It utilizes drought avoidance strategies during periods of drought (Maes et al. 2009a). 
These include reduction of stomatal conductance and leaf size (Diaz-Lopez et al. 2012; 
Maes et al. 2009a), an effective osmotic adjustment mechanism (Silva et al. 2010), and 
accumulation of organic solutes in leaves during the drought periods (dos Santos et al. 
2013). Furthermore, J. curcas leaves have effective mechanisms against drought-induced 
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photo-oxidative damage (Silva et al. 2012). As it is a stem succulent shrub, small water 
losses in leaves may be balanced by water import from stem (Maes et al. 2009a).  

Although J. curcas can tolerate moderate drought, its profitable cultivation in arid or 
semi-arid regions may be questioned (Fini et al. 2013). At least the seed yield in low 
rainfall sites is considered economically unprofitable (Maes et al. 2009b). Despite low 
direct economic benefits in such sites, it may still provide important ecosystem services 
such as carbon sequestration or soil erosion control in vulnerable areas (Wani et al. 2012). 
J. curcas is still considered as a semi-wild plant (Rajaona et al. 2013; Singh et al. 2013) 
and its compensatory growth responses to herbivore damage in various ecological 
conditions are poorly known. Earlier studies have focused on growth responses of J. 
curcas against drought and herbivory stress separately (Achten et al. 2010; Grimm and 
Maes 1997; Maes et al. 2009a; Sharma and Srivastav 2011). Many studies have, however, 
shown that multiple stress factors may have non-additive effects on plants and thus 
interactions cannot be reliably modeled on the basis of studies performed on single stress 
factors (Bansal 2015). 

Although J. curcas is considered herbivory resistant, some arthropod herbivores have 
been reported to be associated with it (Grimm and Maes, 1997; Ranga Rao et al. 2010). 
Grimm and Maes (1997) reported 15 Hemipteran herbivores and Ranga Rao et al. (2010) 
40 insects pests observed to feed on J. curcas. All these pieces of evidence implicate that 
J. curcas may be vulnerable to invertebrate herbivores. Plants under herbivory stress may 
produce secondary metabolites, especially phenolics, as their defense mechanism 
(Agrawal 2011; Coley et al. 1985). The principal plant defense hypotheses are the growth 
differentiation balance hypothesis, carbon-nutrient balance hypothesis, optimal defense 
hypothesis and growth rate or resource availability hypothesis (Bryant et al. 1983; Coley 
et al. 1985; Herms and Mattson 1992; Rhoades and Cates 1976).  Making accurate 
predictions and testing of these hypotheses is not easy for a number of reasons (Stamp 
2003). Little information is available on secondary metabolites of J. curcas and their 
roles. 

Although there has been no definite consensus on the geographical origin of J. curcas, a 
recent study indicates that Mexico belongs to its centres of origin (Guo et al. 2016). J. 
curcas has been disseminated across the tropical regions of the world first by Portuguese 
seafarers and later by others interested in its economic value (Heller 1996). However, 
comprehensive information on genetic diversity of J. curcas in different parts of its 
current range has been lacking, and earlier studies have provided contradictory results 
(Gupta et al. 2008; Kumar et al. 2009; Pioto et al. 2015; Rosado et al. 2010). One of my 
objectives was to consolidate available genetic information scattered in a high number of 
studies to generate a more complete genetic picture of this plant both within its native and 
non-native range.  

Since its introduction to new areas, it has been utilized for oil-based soap production, 
medicinal purposes and as a hedgerow plant around agricultural fields (Heller 1996; 
Prasad et al. 2012). J. curcas plantations in arid and semi-arid sites improve the 
biological, physical and chemical properties of soil by depositing a large amount of 
organic material (Wani et al. 2012). Although some authors have been optimistic about its 
productivity also in degraded and low precipitation areas (Fearless 2007; Openshaw 
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2000), others have been more sceptical mainly based on modest seed yields obtained from 
mono plantations (GTZ 2003; Pohl 2010).  

1.2. Purpose of the thesis 

My thesis is composed of two parts, the first one based on experimental research (I and 
II) and the second one (III and IV) on literature reviews. The objective of article I was to 
measure the composition and changes in concentrations of flavonoids in leaves of J. 
curcas seedlings under simulated herbivory and/or drought stress and to assess their 
possible role either as antioxidants or as antiherbivory chemicals. Article II mainly 
focused on the effects of simulated herbivory and drought stress on physiology, 
compensatory growth responses and resource allocation in J. curcas seedlings to identify 
the ecological threshold levels necessary for the successful establishment of J. curcas 
seedlings at different agro-climatic conditions in the field. Article III focused on first 
compiling a list of all arthropod herbivores associated with J. curcas across the globe, 
secondly on performing a biogeographical analysis of observed herbivory patterns, thirdly 
on investigating the importance of native versus alien herbivores in all the continents, and 
finally on compiling data on the feeding ecology and taxonomic distribution of arthropod 
herbivores in different areas of the current range of J. curcas. The last article IV focused 
to review the genetic and seed yield variability of J. curcas across the globe, and more 
specifically, to review factors responsible for the observed genetic diversity and wide seed 
yield variability.  
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2. MATERIALS AND METHODOLOGY 

2.1. Experimental setup 

For articles I and II, the experiment was carried out in a greenhouse in the Ruissalo 
Botanical Garden of the University of Turku, Finland. Seeds of J. curcas were collected 
on November 2010 in Nepal. Seeds were sown in seed beds on 2 May 2011 and 
transplanted into pots after emergence of two true leaves. A 32- factorial experiment was 
set up with two factors: artificial herbivory and drought stress. Both treatment factors had 
three intensity levels and all treatment combinations had nine replications. Seedlings were 
irrigated simulating three different levels of annual rainfall (1,900 mm, 800 mm and 200 
mm), and subjected to three different levels of artificial herbivory stress (0 %, 25 % and 
50 %) mimicking damage caused by foliage feeder arthropod herbivores. Invertebrate 
herbivory was simulated by cutting 0 %, 25 % or 50 % of each leaf blade of the seedlings 
by scissors and different rainfall levels by variable irrigation levels. Treatments were 
imposed on 74 days old J. curcas seedlings, which were raised in optimal growth 
conditions. Eighty one seedlings were grown in nine different growth conditions (9 
seedlings in each growth condition) in terms of artificial herbivory stress and drought 
stress. All other abiotic factors were the same and kept constant for all the seedlings 
during the treatment period (I and II).   

2.2. Leaf sample collection and flavonoid analysis 

Leaf samples were collected three times from the same J. curcas seedlings, once before 
and twice after imposing treatments. Leaf samples were packed in aluminium foil 
immediately after detaching them from the seedlings and put into a collection box at 0 °C 
before transport to freezer. Leaf samples were stored at ˗20 °C before freeze-drying and 
chemical analysis. Flavonoid analysis was performed in the Natural Chemistry Research 
Group, Department of Chemistry, University of Turku, Finland. Ultra-high performance 
liquid chromatography coupled with diode array detection and mass spectrometry (UPLC-
DAD-MS/MS) was used to analyse flavonoids from plant extracts (I). Frozen leaves were 
lyophilized and extracts were prepared. All J. curcas extracts were analysed by the rapid 
and selective finger printing tools developed by Engström et al. (2015). All flavonoids 
were detected and quantified at 349 nm by using quercetin rutinoside as an external 
standard (I). 

2.3. Photosynthesis data 

PAM-2100 Chlorophyll Fluorometer was employed to measure photosynthesis in study 
plants (PSII). Yield of PSII electron transfer (Y) was calculated as Y= (F'M-FS)/F'M. The 
second leaf (20-30 days old leaves) from the stem base to tip was used to measure 
photosynthesis. Measurements were taken three consecutive days from the same leaf. 
Erratic fluorescence data points were omitted from the data before further analysis (II).  
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2.4. Growth and biomass measurements 

Diameter (mm) at base and height (cm) of J. curcas seedlings was measured on the 30th 

day of every month for thirteen months during the experiments. In final harvesting, 
leaves, branches and roots were separated from the stem and their fresh weights were 
recorded immediately after harvest. Dry weights were measured after oven drying at 84 
°C for 48 h until constant weights were obtained. Root-shoot ratio of seedlings was 
calculated dividing total dry roots biomass by dry total aboveground biomass (II).  

2.5. Data collection in literature reviews 

Articles III and IV were based on literature. Data were extracted from the online 
available published and unpublished literature with the help of various online research 
engines using key words (e.g. insect, arthropod herbivores, genetic diversity, seed yield, 
productivity of J. curcas).  For article III, all the available data on arthropod herbivores 
associated with J. curcas was extracted from the available online documents. Native 
ranges of arthropod herbivores were checked from online sources and references books. 
In the biogeographical analysis arthropod herbivores were categorized within each region 
(Central and South America, Africa and Asia) based on their origin and status in the new 
area. J. curcas was considered a native species in Latin America, and introduced 
elsewhere (Heller 1996). Arthropod herbivores were further segregated based on their 
feeding guild (III). For article IV, genetic data were extracted from 46 published articles. 
Percentages of polymorphic bands detected by different molecular markers on J. curcas 
across the globe were extracted to measure genetic diversity. Seed yield data were 
extracted from 92 published and unpublished literary sources collected with help of 
various online search engines. Seed yield data were analysed separately for each region 
(Latin America, Africa and Asia). All available background information (both biotic and 
abiotic) that could explain seed yield variability of J. curcas was extracted (IV).   

2.6. Reliability of online collected data 

The validity of results of my review papers depends on the reliability and coverage of data 
in published or unpublished literature. For article III, the most comprehensive studies 
were performed by Grimm and Maes (1997), Nielsen (2010) and Shanker and Dhyani 
(2006). For article IV, genetic data were extracted from 46 published articles whereas 
seed yield data were collected from 49 published peer-reviewed articles, 4 dissertations 
and 39 blue documents covering 38 countries (19 from Africa, one from South Asia, 8 
from South East Asia and 10 from Latin America). Cai et al. (2010), Maghuly et al. 
(2015), Santos et al. (2016), and Zhang et al. (2011) analyzed genetic diversity of J. 
curcas on a quite large number of accessions across the globe. Some authors have also 
done remarkable studies on seed yield (Achten et al. 2008; Jongschaap et al. 2007; 
Santoso et al. 2014; Singh et al. 2013; van Eijck et al. 2014; Wahl et al. 2012). In articles 
III and IV, I synthesized data collected from these and other literary sources. 
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2.7. Statistical analyses 

All flavonoid and growth data with repeated measures were analyzed by SAS 9.4 
statistical software (I and II). Data of biomass, biomass characteristics and photosynthesis 
were analyzed by IMB SPSS 22 Statistics using a two-way ANOVA (II). Arthropod 
herbivory, genetic diversity and seed yield variability data were also analyzed by the 
GLM procedure of the SAS statistical software (v. 9.4) and the IMB SPSS 22 Statistics 
(III and IV).  
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3. RESULTS AND DISCUSSION 

3.1. Defensive responses of J. curcas 

Among the nine treatment combinations, the highest concentrations of flavonoids were 
found in the leaves of seedlings grown in the least favourable treatment combination (50 
% defoliation × 200 mm y-1 rainfall; I). Concentration of flavonoids in leaves of seedlings 
was primarily influenced by drought stress caused by simulated rainfall and the effects of 
simulated herbivory were considered negligible (I). Results of article I thus emphasize the 
antioxidant role of flavonoids in leaves of J. curcas rather than their possible 
antiherbivory function. These results are supported by an earlier study (Close and 
McArthur 2002). 

Under drought stress, plants reduce utilization of incoming light energy (Henández and 
Breusegem 2010) which increases production of reactive oxygen species (ROS) (Close 
and McArthur 2002).  Under this situation, plants produce antioxidant enzymes to 
scavenge ROS and thereby reduce oxidative damage (Close and McArthur 2002; 
Henández and Breusegem 2010; Massad et al. 2012) and photodamage (Agati et al. 2011; 
Agati and Tattini 2010; Close and McArthur 2002; Hakala-Yatkin et al. 2010; Herms and 
Mattson 1992; Miean and Mohamed 2001). As leaf samples were collected from the 
lower canopy of seedlings, they represented in the most extreme treatment combination 
those leaves that had been exposed to higher intensity of light than leaves representing 
less stressful treatment combinations (I). This is because leaf sizes in the most extreme 
treatment combination were due to severe drought much smaller than those in other 
treatments (Fini et al. 2013; Maes et al. 2009a). According to our interpretation, sunlight 
and drought were the main factors that had triggered increases in flavonoid concentrations 
in the leaves of seedlings (I). 

In the experiment, we originally assumed that concentrations of flavonoids in the leaves 
of seedlings might increase as a response to herbivory stress (I). The resource availability 
hypothesis states that slowly growing plants from resource-poor sites are better defended 
against herbivory stress than fast growing plants from resource rich sites (Agrawal 2011; 
Coleyet al. 1985). Similarly, the growth differentiation hypothesis claims that plants 
invest more in secondary metabolism than growth in sites with resource scarcity (Herms 
and Mattson 1992). The seedlings grown under extreme treatment combination might be 
incapable to uptake all the nutrients unlike the seedlings grown in more favourable 
treatment combinations. However, the seedlings exposed to extreme treatment 
combination produced three times more defensive flavonoid compounds in their leaves 
than seedlings with the same level of herbivory stress but grown under higher 
precipitation conditions (≥ 800 mm y-1, I). Similar results were observed by Khan et al. 
(2011). We therefore concluded that the high concentrations of flavonoids in the leaves of 
J. curcas seedlings grown in the extreme treatment combination were mainly due to 
effects of drought stress rather than to effects of simulated herbivory stress (I).  
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3.2. Photosynthesis of J. curcas 

Among the nine treatment combinations, the lowest PSII yield was observed in the leaves 
of J. curcas seedlings exposed to the extreme treatment combination (II). This might be 
due to drought stress, which forces closing of stomata and reduces CO2 concentration 
inside drought-stressed leaves (Diaz-Lopez et al. 2012; Fini et al. 2013; Maes et al. 
2009a). Drought stress also triggers production of ROS, which hamper photo-inhibition of 
PSII (Cruz de Carvalho 2008) and hinder the repair of photoinhibited PSII centers 
(Tyystjärvi 2013; Wadhwa et al. 2013). Despite these inhibitory effects of drought, the 
plant is able to continue photosynthesis during long periods of drought due to its efficient 
protective mechanisms such as synthesis of compatible solutes and use of the stem as a 
water reservoir for leaves (see Introduction; dos Santos et al. 2013; Maes et al. 2009a).  
Possible further increases in water deficit would decrease the turgor pressure in leaves of 
J. curcas progressively and could lead to cessation of photosynthesis (Silva et al. 2010).  
Effects of simulated herbivory stress on PSII yield of J. curcas were negligible in 
comparison to effects of drought stress (II). Simulated herbivory and drought stress in 
combination reduced total leaf area and thereby opened the canopy so that higher intensity 
of sunlight could reach the leaves in lower portions of seedlings, where we measured the 
PSII yield. Increased exposure to sunlight may have lowered the PSII yield in these 
treatments due to partial closure of the reaction centers due to higher light intensity 
(Retuerto et al. 2006).  

3.3. Growth and biomass allocation of J. curcas 

Herbivory stress had maximum effects on stem biomass production in the extreme 
drought stress (200 mm y-1) and higher effects on root biomass production on seedlings 
grown under lower drought stress conditions (≥ 800 mm y-1; II). Seedlings grown in 
medium drought stress (800 mm y-1) benefitted from herbivory stress (II). These results 
parallel those of an earlier study, which showed that growth of J. curcas starts to decline 
when the optimal rainfall level of 1,500 mm y-1 is exceeded; relatively good growth was 
already observed at the level of 900 mm y-1 (Trabucco et al. 2010). According to another 
study J. curcas requires 200 mm y-1 rainfall to survive, 600 mm y-1 to bear fruits and at 
least 900 mm y-1 for proper growth (Foidl et al. 1996; Krishnamurthy et al. 2012). Our 
experiment confirmed that seedlings grown under 200 mm y-1 rainfall just survived but 
did not grow well (II). Herbivory stress increased the root-shoot ratio of seedlings in 
extreme drought stress but reduced the root-shoot ratio in lower drought stress conditions 
(II). These phenomena might be explained by retarded root growth and development 
caused by herbivory (Erbilgin et al. 2014; Masters et al. 1993).  

3.4. Compensatory growth response of J. curcas 

Plants response to herbivore damage by compensating damaged vegetative tissue as 
quickly as possible (Strauss and Agrawal 1999). When growth of a damaged plant is 
lower than that of an undamaged plant, the response of plant is considered an 
undercompensatory growth response (Strauss and Agrawal 1999). Our experimental 
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results showed that the response of seedlings to herbivory stress was undercompensatory 
because growth of all the herbivory stressed seedlings was lower than growth of 
unharmed seedlings and compensatory growth response varied among the different 
drought stress levels (II). Responses of plants to herbivory stress depend on surrounding 
environments (Maschinski and Whitham 1989; Wise and Abrahamson 2005). Apparently 
no single herbivory model can explain the responses of plants to herbivory as the 
responses vary greatly not only among sites but also among plant species (Hawkes and 
Sullivan 2001; Karban et al. 1999).  

3.5. Arthropod herbivory load of J. curcas across the globe 

Our literature review showed that there were 78 arthropod herbivores associated with J. 
curcas across the globe, 54 % of them belonging to Hemiptera and 49 % of species 
reported from the native range (III). Ranga Rao et al. (2010) reported 40 arthropod 
herbivore species of J. curcas across the globe. Based on these results, the arthropod 
herbivore load associated with it seems low in comparison to other tropical plant species 
(Bellotti et al.1985; Bellotti and Schoonhoven 1978).  

The low arthropod herbivore load of J. curcas may be explained by three factors. First, 
the low herbivore load may be caused by the presence of toxic chemicals such as phorbol 
ester in its seeds and leaf tissue. Phorbol esters are toxic even in low concentrations (Goel 
et al. 2007). Studies show that many insect herbivores have been reported to be 
significantly affected by J. curcas extracts (Ratnadass and Wink 2012). Zhang et al. 
(2009) reported 41 different chemical compounds from J. curcas. Second, invasive plants 
may experience relatively low herbivore pressure in their exotic range due absence of 
their native specialized herbivores (Cripps et al. 2006), and the fact that generalist 
herbivores in the new areas usually do not prefer newly introduced hosts (Keane and 
Crawley 2002). My results seem consistent with this hypothesis. The highest number of 
arthropod herbivores species were observed within its native range (III). Third, 
introduced plant species having many confamilial species suffer greater amounts of 
herbivory stress than species without confamilials in their new area (Alain et al. 2006; 
Tahvanainen and Niemelä 1987). Although this seems to be the case for some invasive 
plants (Cappuccino and Carpenter 2005; Dawson et al. 2008), it does not seem to hold for 
J.curcas because it is not isolated taxonomically outside its native range (III). Although 
the literature review showed generally low arthropod herbivore loads on J. curcas (III), 
herbivore load may increase in future if monoculture plantations gain more prevalence. 

3.6. Genetic diversity of J. curcas across the globe 

Our literature review showed that genetic diversity is high within the native and moderate 
in the non-native range of J. curcas (IV). Genetic uniformity was reported among the 
plants from Africa and Asia (Montes Osorio et al. 2014; Santos et al. 2016; Xu et al. 
2012) whereas Zhang et al. (2011) reported genetic differences between the Asian and 
African populations. African plants may have separated from the main group after 
introduction to Cape Verde, and Indian plants may descend from two distinct germplasms 
(Guo et al. 2016; Pamidimarri and Reddy 2014). Genetic analysis done on the largest 
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3.2. Photosynthesis of J. curcas 
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number (907) of accessions collected from 53 regions covering 15 countries showed that 
genetic diversity does not increase with increasing geographical distance (Maghuly et al. 
2015). The highest genetic diversity (42 unique fragments) was observed among plants 
from the State of Chiapas in Mexico in the native range of J. curcas (Pecina-Quintero et 
al. 2014; Pecino-Quintero et al. 2011). High genetic diversity is typical for plant 
populations in their centre of origin, and may be promoted by pollination biology (Guo et 
al. 2016; Pamidimarri and Reddy 2014; Rincón-Rabanales et al. 2016). A more complete 
analysis of history of global dissemination of the species might help to explain the 
observed geographical patterns of genetic diversity (IV). Further genetic improvements 
will be required to produce cultivars which can provide consistently high seed and oil 
yields. For instance, germplasms from the State of Chiapas in Mexico, the area of highest 
recorded genetic diversity, might provide useful genetic material for such improvements. 

3.7. Seed yield of J. curcas 

Results of linear models showed that age had a linear and rainfall and plant density had 
quadratic effects on seed yield (IV). Rainfall had different effects on seed yield in the 
three different continents whereas age had significant linear effects on seed yield in all 
continents. In addition to these factors, there are other potentially even more important 
factors such as soil fertility and agronomic practices of which enough data were not 
available. The impact of these factors on seed yield has, however, been discussed in 
literature (IV).   

The seed yield of J. curcas varied hugely from 26 kg ha-1 y-1 in Africa to 11,250 kg ha-1 y-1 

in South Asia (IV). Earlier studies have reported similar results (Achten et al. 2008; 
Brittaine and Lutaladio 2010; Jongschaap et al. 2007; Heller 1996; van Eijck et al. 2014; 
Wahl et al. 2012). Parawira (2010) reported that 1-2 years old plants can yield 7,800 kg 
ha-1 y-1 in optimal growth conditions. As the first mono plantations of J. curcas have been 
established relatively recently (GEXSI 2008), earlier high seed yield reports may be 
extrapolations from hedgerow plants (IV). More realistic achievable seed yields range 
from 500 to 2,000 kg ha-1 y-1(van Eijck et al. 2010). Half of the reported seed yields fall 
below 1,536 kg ha-1 y-1, which also parallels earlier studies (IV). A study done by GTZ 
(2004) in India concluded that a realistic expected seed yield would be 700 kg ha-1 y-1, but 
observed a yield of only 70 kg ha-1 y-1 in rain fed conditions in Maharastra (Prueksakorn 
et al. 2010). Seed yields on barren lands in China varied from 1,700 to 2,200 kg ha-1 y-1 

(Pohl 2010). In Cape Verde, seed yields were 700 - 2,250 kg ha-1 y-1(GTZ 2003). One-
year-old plantations produced a seed yield of 595 kg ha-1 y-1 in Brazil (Dalchiavon et al. 
2013). All these studies show that seed yields of J. curcas in different parts of the world 
may be surprisingly low and vary greatly. Seed yield variability of J. curcas may be due 
to variation in site specific agro-climate, soil fertility, adopted agronomic practices and 
genetic differences among plants (IV).  
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4. CONCLUSION 
My experimental results show that growth and defense of J. curcas seedlings are 
primarily influenced by drought stress and not by herbivory stress (I and II). J. curcas 
produces flavonoids in its leaves primarily to protect leaf tissues against oxidative and 
photodamage caused by drought and light stress (I). It has an undercompensatory growth 
response to herbivory stress, with growth decreasing with increasing drought stress level 
(II). Experimental results show that it needs at least 800 mm y-1 rainfall for an 
economically viable productivity level (II).  Levels of arthropod herbivory are generally 
low; the highest herbivory pressure was recorded within its native range (III). Latin 
American plants have the highest genetic diversity, and the low genetic diversity observed 
elsewhere may be caused by founder effects (IV). Reported seed yields vary hugely 
across the globe due to differences in site specific agro-climatic conditions, soil fertility, 
agronomic practices and genetic background of the plants (IV). Further genetic 
improvements will be required to produce cultivars which can provide consistently high 
seed and oil yields. 

 
 
Topics for further research 

1. Effects of genetic and climatic factors on seed yield  
2. Epigenetic elasticity of J. curcas and its effects on seed yield  
3. Identifying plants with elite seed yield traits from local populations for production 

of cultivars for local plantations  
4. Allelopathic effects of J. curcas on agricultural crops  
5. In situ ecophysiology of J. curcas 
6. Impact of nutrients and water on sex ratio of J. curcas flowers  
7. Impact of topography on seed yield and oil content of J. curcas 
8. Effects of inbreeding depression and heterosis on seed yield of J. curcas 
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