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“No one supposes that all the individuals of the same species are cast in the same 

actual mould. These individual differences are of the highest importance for us, for 

they are often inherited” 

 

Charles Darwin, Origin of Species  
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ABSTRACT 

Individuals within populations often show repeatable behavioural differences which reflect variation 

in personality. In contrast to human personality, which has been extensively studied by 

psychologists for several decades, animal personality has only recently drawn the attention of 

behavioural ecologists. Animal personality is now known as a widespread phenomenon in nature 

and has been increasingly studied over the last 15 years due to its important ecological and 

evolutionary implications. Importantly, the mere existence and maintenance of personality, when 

individuals are expected to be behaviourally flexible, remains a puzzle which needs to be solved. 

The bulk of animal personality studies aims at understanding the evolution and causation of animal 

personality, and has shown that personality is often related to individual performance such as 

survival and reproductive success. In this context, quantitative genetics provide a framework to 

study the evolution of animal personality. This is because personality traits vary continuously within 

populations and can be considered as quantitative traits comparable to size, determined by many 

genes which are inherited according to Mendelian rules. Unfortunately, the uptake of ideas and 

concepts of quantitative genetics to the study of animal personality has been slow and questions 

related to personality development, although essential to understand its evolution, have been 

understudied. The main aim of my thesis is to provide a quantitative genetics view of personality in 

a wild population of blue tits (Cyanistes caeruleus). The research presented in this thesis addresses a 

range of classical themes in evolutionary quantitative genetics in the context of animal personality 

evolution, that is, heritability, genetic correlations, (correlated) selection and plasticity. Indeed, 

quantitative genetic approaches were applied to two behavioural responses to handling measured in 

adults and nestlings and showed that that these two responses are heritable and reflect aspects of 

blue tits’ personality. Although these personality traits are genetically correlated in nestlings, the 

genetic correlation between them disappears in adults because of developmental plasticity. In 

addition, the personality traits measured in adults are linked to their survival and reproductive 

success, and one of these traits shows an age-related decline which is consistent with predictions 

from evolutionary theories of senescence. Finally, a variance-partitioning description of assortative 

mating shows that the approach traditionally used for estimating assortative mating in fixed traits is 

largely inappropriate when applied to labile traits such as behaviour. Alternative approaches 

allowing for a better estimation of assortative mating and other sources of phenotypic resemblance 

between mated partners are then introduced. In addition to providing some methodologies and 

examples to facilitate the use of quantitative genetics in the study of personality, this thesis shows 

the merits of adopting this framework, which has the potential to move personality research further. 

This is because applying quantitative genetics to the study of animal personality not only enables 

answering questions that have been overlooked, such as age-related plasticity, but also gives insight 

into potential mechanisms maintaining variation in personality. 
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TIIVISTELMÄ 

Saman populaation yksilöiden välillä on toistuvia käyttäytymiseroja, jotka kuvaavat yksilöiden 

välisiä persoonallisuuseroja. Psykologit ovat tutkineet ihmisen persoonallisuutta usean 

vuosikymmenen ajan, kun taas käyttäytymisekologit ovat vasta viime aikoina kiinnittäneet 

huomiota eläinten persoonallisuuksiin. Nykyään eläinten persoonallisuuden tiedetään olevan yleinen 

ilmiö luonnossa, ja koska persoonallisuuspiirteillä on tärkeitä ekologisia ja evolutiivisia seurauksia, 

aiheen tutkimus on lisääntynyt viimeisen 15 vuoden aikana. Silti on epäselvää miksi 

persoonallisuuseroja on yleensä olemassa, ja miksi niitä ylläpidetään tilanteissa joissa yksilöiden 

käyttäytymisen oletettaisiin olevan joustavaa. Suurin osa alan tutkimusta, mikä pyrkii ymmärtämään 

syitä eläinten persoonallisuuseroille ja niiden evoluutiolle, on osoittanut, että persoonallisuus on 

usein sidoksissa yksilön suorituskykyyn, kuten selviytymiseen ja lisääntymismenestykseen. 

Kvantitatiivinen genetiikka tarjoaakin puitteet eläinten persoonallisuuden evoluution tutkimiseen, 

sillä persoonallisuuspiirteet vaihtelevat populaatioiden sisällä ja niitä voidaan pitää kvantitatiivisina 

piirteinä samaan tapaan kuin eläimen kokoa, joka määräytyy mendelistisesti perittyjen geenien 

kautta. Kvantitatiivisen genetiikan ideoiden ja konseptien omaksuminen eläinten 

persoonallisuustutkimukseen on kuitenkin ollut hidasta. Lisäksi persoonallisuuden kehittymistä on 

tutkittu vain vähän, huolimatta sen välttämättömyydestä persoonallisuuden evoluution tutkimiselle. 

Väitöskirjani tarkoituksena on tarjota kvantitatiiviseen genetiikkaan perustuva näkemys eläinten 

persoonallisuudesta käyttäen sinitiaisten (Cyanistes caeruleus) luonnonpopulaatiota. Tämän 

väitöskirjan tutkimukset käsittelevät evolutiivisen kvantitatiivisen genetiikan klassisia teemoja, 

kuten perinnöllisyyttä, geneettistä korrelaatiota, valintaa ja plastisuutta eläinten persoonallisuuden 

evoluution näkökulmasta. Kvantitatiivisen genetiikan metodeja käytettiin analysoimaan kahta eri 

käyttäytymisvastetta, jotka mitattiin aikuisilla ja poikasilla niitä käsiteltäessä. Havaittiin, että nämä 

kaksi käyttäytymisvastetta sekä periytyvät että heijastavat sinitiaisen persoonallisuutta. Vaikka 

kyseiset persoonallisuuspiirteet ovat geneettisesti korreloituneita poikasilla, korrelaatio häviää 

aikuisilla. Tämä johtuu todennäköisesti kehityksen plastisuudesta. Aikuisilla sinitiaisilla 

persoonallisuuspiirteet ovat yhteydessä eloonjäämiseen ja lisääntymismenestykseen. Toinen 

piirteistä kuitenkin heikkenee iän myötä ja on näin ollen yhtenevä vanhenemisen evoluutioteorian 

oletusten kanssa. Tämä väitöskirja kuvaa valikoivan pariutumisen varianssin jakaantumista 

kvantitatiivista genetiikkaa hyödyntäen. Kuvaus osoittaa, että menetelmät, joita on perinteisesti 

käytetty valikoivan pariutumisen arvioimiseen pysyvistä piirteistä ovat suurelta osin 

soveltumattomia muuttuvien piirteiden, kuten persoonallisuuden tutkimiseen. Väitöskirja esittelee 

myös vaihtoehtoisia lähestymistapoja, joiden avulla voi erottaa toisistaan valikoivasta 

pariutumisesta ja muista syistä johtuvan lisääntymisparien ilmiasujen yhteneväisyyden. 

Kvantitatiivisen genetiikan menetelmien ja käytännön esimerkkien lisäksi tämä väitöskirja esittelee 

myös kyseisen metodologian hyödyt. Kvantitatiivisen genetiikan käyttö edistää eläinten 

persoonallisuustutkimusta, sillä se ei ainoastaan vastaa huomiotta jääneisiin kysymyksiin, kuten 

ikään liittyvään plastisuuteen, vaan lisää myös ymmärrystä mekanismeista, jotka ylläpitävät 

persoonallisuuden vaihtelua. 
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I. INTRODUCTION  

1.1 Animal personality in behavioural ecology  

Anybody who spends sufficient time observing animals might notice that individuals of the 

same species differ in their behaviour, just as humans do. Interestingly, these behavioural 

differences between individuals, termed “personality” are not restricted to domestic 

animals and have also been found in the wild across a variety of taxa ranging from 

gastropods and arthropods to mammals and birds (Gosling et al. 2001). Although animal 

personality research has a long history which started in the early days of ethology (van 

Oers & Naguib 2013), it is only in the end of the 20th century that personality in wild 

animals started to receive attention from behavioural ecologists. Because animal 

personality is a widespread phenomenon in nature which has ecological and evolutionary 

implications, animal personality research has been increasing continuously (Réale et al. 

2010) and has been integrated into evolutionary biology and different fields of ecology, 

ranging from community ecology (Quinn 2015) and population dynamics (Tuck et al. 

2015) to conservation (Sinn et al. 2014), social networks (Krause et al. 2010) and spatial 

ecology (Harrison et al. 2015).  

In behavioural ecology, animal personality is commonly defined as behavioural differences 

between individuals that are maintained over time and across situations (Réale et al. 2007). 

For instance, in a population, individuals differ in their behaviour in that some individuals 

tend to always take more risks than other individuals and these differences are largely 

maintained across repeated measurements and in different contexts (e.g. presence or 

absence of predator cues). The presence of personality can be tested by measuring 

repeatedly the behavioural response of individuals over time or in different contexts 

(Figure 1).  

Although each individual can vary in its response between two measurements (𝜎𝑤𝑖𝑡ℎ𝑖𝑛
2 ), 

individuals vary in their average response (𝜎𝑏𝑒𝑡𝑤𝑒𝑒𝑛
2 ) and the rank orders are largely 

maintained. The total variance observed in the population (𝜎𝑡𝑜𝑡𝑎𝑙
2 ) is the sum of the 

variances between and within individuals and the presence of personality variation in a 

population can be tested by estimating behavioural repeatability (R) (Nakagawa & 

Schielzeth 2010): 

𝑅 =  
𝜎𝑏𝑒𝑡𝑤𝑒𝑒𝑛

2

𝜎𝑡𝑜𝑡𝑎𝑙
2       (1) 

Note that R is similar to the intra-class correlation metric used in other fields such as in 

psychology.  A repeatability significantly different from zero means that a significant part 

of the total variance for a trait in the population is caused by differences between 

8 Introduction
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individuals and hence that this trait reflects an aspect of personality of these individuals. 

Repeatability has been found in various species, where individuals of different ages or 

sexes have been tested in different settings (e.g. wild, field enclosure, lab) and contexts 

(e.g. predation risk, population density) for any type of behavioural response (e.g. 

emergence time, distance travelled, agonistic behaviour), with these responses sometimes 

being grouped into distinct categories labelled as boldness, exploration, activity, 

aggressiveness, and sociability (Réale et al. 2007). In a meta-analysis, Bell et al. (2009) 

showed that the repeatability of behaviour is on average 37%, which means that 37% of 

the observed variation in behavioural traits is caused by differences between individuals, 

with the rest being caused by environmental or unexplained (residual) variation. 

 

Figure 1: Schematic illustration of the behavioural responses of three individuals that have been 

measured at two different times (T1 and T2). Individuals vary in their average response (elevation 

of each bird) and each individual can vary in its response between two measurements (length of the 

double-headed arrows or slope of the response). The black double-headed arrow represents the total 

variance observed in the population. 

In addition, different behavioural traits have often been found to correlate within 

populations, forming what are called “personality axes” in psychology and “behavioural 

syndromes” in ecology (Sih et al. 2004). Personality axes and behavioural syndromes 

constitute an important feature of personality but differ in that personality axes attempt to 

describe variation in personality using different latent factors upon which different 

behavioural traits load whereas a behavioural syndrome simply refers to a suite of 

behavioural traits that are correlated across individuals. While the former has been mainly 

studied in humans and non-human primates before being extended to domestic and wild 

animals, the latter appeared more recently in behavioural ecology. For example, human 

personality traits are grouped into five axes (conscientiousness, agreeableness, 

9Introduction
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neuroticism, openness, and extraversion) which may or may not be shared by other species 

(Gosling & Mehta 2013). In contrast, behavioural syndromes are commonly reported as 

phenotypic correlations between pairs of traits (e.g. boldness and aggression or time of 

emergence and activity) and are, on average, positive (Garamszegi et al. 2012). 

Interestingly, the mere existence of personality in animals implies that individuals cannot 

express the entire range of behavioural responses that are expressed in the population (see 

double-headed arrows in figure 1). In addition, a behavioural syndrome consisting of a 

positive correlation between boldness and aggressiveness implies that an individual cannot 

be the boldest and the least aggressive in the population. This means that individuals are to 

some extent constrained in their behavioural responses, which challenges the expectation 

of individuals flexibly adjusting their behaviour to cope with any change in external or 

internal factors. Tinbergen’s (1963) four questions (current utility, mechanism, ontogeny 

and phylogeny) constitute a framework that is generally adopted by behavioural ecologists 

to understand the existence of any specific behaviour and can be applied to the study of 

personality. To date, much of empirical studies in behavioural ecology have focused on the 

first question, and measured the fitness consequences of personality in natural or captive 

populations. 

Some hypotheses for the existence and maintenance of personality include purely 

phenotypic mechanisms such as stable-state differences, state-behaviour feedbacks, and 

negative frequency-dependence (Dall et al. 2004, Sih & Bell 2008, Wolf et al. 2007, Wolf 

et al.2008, Luttbeg & Sih 2010, Wolf & McNamara 2012, Sih et al. 2015, reviewed in 

Brommer & Class 2017b). These hypotheses derive from the individual optimization 

theory based on the idea that each individual’s phenotype is optimal and results from a 

balance between the benefits and costs that are determined by its own state (Brommer & 

Class 2017b). Other hypotheses that have been gaining popularity and empirical support 

invoke natural selection, be it frequency-dependent, correlational, or spatiotemporally 

heterogeneous, to explain the maintenance of personality variation (Dingemanse & Réale 

2013). These hypotheses will be detailed below. Importantly, the presence of genetic 

variation underlying personality variation is a necessary condition for personality traits to 

respond to selection which therefore has to be tested.                   

1.2 Evolutionary quantitative genetics applied to personality  

1.2.1 Heritability of personality 

Quantitative genetics provide a framework for studying the evolution of personality. This 

is because personality varies continuously within populations, and can be considered as a 

quantitative trait comparable to size or offspring production. Hence, provided that 

personality is heritable and under selection, quantitative genetics will allow making 

predictions regarding its evolution. In the situation of a behavioural trait measured 
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repeatedly in different individuals, the response beh of an individual i measured at time t 

can be described using the equation: 

𝑏𝑒ℎ𝑖𝑡 = 𝜇 + 𝜇𝐹 + 𝑖𝑛𝑑𝑖 + 𝜀𝑖𝑡   (2) 

where μ is the mean behaviour over all the individuals measured, μF  is the deviation from 

the mean due to fixed effects (e.g. sex of the individual),  indi is the individual-specific 

deviation from the overall mean and εit is the residual deviation for each individual at each 

observation. These two deviations are assumed to be independent and normally distributed 

with a mean of zero and a certain variance σ
2
 noted as 𝑖𝑛𝑑~𝑁(0, 𝜎𝑖𝑛𝑑

2 )   and  

𝑟𝑒𝑠~𝑁(0, 𝜎𝑟𝑒𝑠
2 ), where 𝜎𝑖𝑛𝑑

2  is equivalent to between-individual variance, 𝜎𝑟𝑒𝑠
2

 is 

equivalent to within-individual variance and the phenotypic variance 𝜎𝑝ℎ𝑒𝑛
2  resulting from 

their sum is equivalent to the total variance introduced in the previous section (Falconer & 

MacKay 1996). 

𝜎𝑝ℎ𝑒𝑛
2 = 𝜎𝑖𝑛𝑑

2 + 𝜎𝑟𝑒𝑠
2

     (3) 

Note that for fixed traits (e.g. skeleton size in adult birds) that can be measured without 

error, the residual variance is usually very small and hence the phenotypic variance mostly 

reflects the variance in individual-specific deviations, while in labile traits such as 

behaviour, residual variance accounts for a substantial part of the phenotypic variance. As 

in the previous section, repeatability is calculated as the ratio of the individual-specific 

variance on the phenotypic variance. However, some of the individual-specific variance is 

due to differences in the genes that individuals inherit from their parents while the 

remaining variance is due to environmental factors that are kept constant within 

individuals (e.g. long-lasting effects of early–life environment).  

The advantage of using a quantitative genetics approach is that it allows further 

partitioning of the variance between individuals into its genetic and environmental causes. 

Indeed, quantitative traits are assumed to be encoded by many loci that are inherited 

according to Mendelian rules and that act additively such that the genotypic value of a trait 

is the sum of the contribution of each loci on this trait. The individual-specific deviation of 

individual i results from the sum of its breeding value (ai) and the environmental effects 

that are conserved across repeated measures (permanent environmental effects, pei), and 

both deviations are assumed to be independent and identically distributed and noted as 

𝑎~𝑁(0, 𝜎𝑎
2) and  𝑝𝑒~𝑁(0, 𝜎𝑝ℎ𝑒𝑛

2 ): 

𝑖𝑛𝑑𝑖 = 𝑎𝑖 + 𝑝𝑒𝑖     (4) 

𝑏𝑒ℎ𝑖𝑡 = 𝜇 + 𝜇𝐹 + 𝑎𝑖 + 𝑝𝑒𝑖 + 𝜀𝑖𝑡  (5) 
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Using a quantitative genetic approach, it is thus possible to partition further the variance in 

individual-specific values into variance caused by additive genetic effects and permanent 

environment variance. The phenotypic variance is thus the sum of these two variance 

components and the residual variance (Falconer & MacKay 1996). 

𝜎𝑝ℎ𝑒𝑛
2 = 𝜎𝑎

2 + 𝜎𝑝𝑒
2 + 𝜎𝑟𝑒𝑠

2    (6) 

By convention, non-additive genetic sources of phenotypic variance such as dominance 

variance (due to interactions within loci) and epistatic variance (due to interactions 

between loci) and their interaction are assumed to be negligible, although they are likely to 

be more important for behaviours than morphological traits (Meffert et al. 2002, Stirling et 

al. 2002). These effects are challenging to estimate due to high and specific data 

requirements, and thus focusing on additive genetic effects, while keeping in mind that 

non-additive genetic effects are ignored, may be a reasonable first step. 

Because only traits that are heritable can respond to selection and thus evolve, much 

emphasis is generally laid on estimating additive genetic variance in traits and their 

heritability (h
2
), which is the ratio of additive genetic variance on the phenotypic variance 

(Falconer & MacKay 1996): 

ℎ2 =
𝜎𝑎

2

𝜎𝑝ℎ𝑒𝑛
2       (7) 

Heritability of personality traits has been measured in the wild and in the lab using 

different approaches. These approaches all hinge on the fact that related individuals look 

more similar than unrelated individuals because they share some of their genes, the most 

commonly used approaches being parent-offspring regressions, full-sib analyses 

(Dingemanse et al. 2002), selection lines (Drent et al. 2002) and animal models (detailed 

below) which have gained popularity over the recent years. Overall, the heritability of 

behaviours is lower than the heritability of morphological traits but similar to the 

heritability of life-history traits (Stirling et al. 2002). A more recent meta-analysis showed 

that heritability is generally low for behavioural traits (0.14), but additive genetic variance 

accounts for 52% of the between-individual variance in behaviour (“heritability of 

personality”, Dochtermann et al. 2015).  

1.2.2 Genetic correlations between personality traits 

As previously mentioned, suites of behavioural traits have been shown to covary between 

individuals. As for phenotypic variance, the phenotypic covariance between traits can be 

decomposed into additive genetic, permanent environment, and residual covariance 

(Dochtermann & Roff 2010). For instance, two behavioural traits (beh1 and beh2) can be 

described separately:   
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𝑏𝑒ℎ1𝑖𝑡 = 𝜇𝑏𝑒ℎ1 + 𝜇𝐹
𝑏𝑒ℎ1 + 𝑎𝑖

𝑏𝑒ℎ1 + 𝑝𝑒𝑖
𝑏𝑒ℎ1 + 𝜀𝑖𝑡

𝑏𝑒ℎ1 

𝑏𝑒ℎ2𝑖𝑡 = 𝜇𝑏𝑒ℎ2 + 𝜇𝐹
𝑏𝑒ℎ2 + 𝑎𝑖

𝑏𝑒ℎ2 + 𝑝𝑒𝑖
𝑏𝑒ℎ2 + 𝜀𝑖𝑡

𝑏𝑒ℎ2  (8) 

where the deviations a, pe, ε stem from identical and independent distributions (Searle 

1961) and follow a bivariate normal distribution (BVN): 

[
𝑎𝑖

𝑏𝑒ℎ1

𝑎𝑖
𝑏𝑒ℎ2] ~𝐵𝑉𝑁(0, 𝛴𝑎), 𝛴𝑎 = [

𝜎𝑎
2𝑏𝑒ℎ1

𝜎𝑎
𝑏𝑒ℎ1−𝑏𝑒ℎ2

𝜎𝑎
𝑏𝑒ℎ1−𝑏𝑒ℎ2 𝜎𝑎

2𝑏𝑒ℎ2 ]  

[
𝑝𝑒𝑖

𝑏𝑒ℎ1

𝑝𝑒𝑖
𝑏𝑒ℎ2] ~𝐵𝑉𝑁(0, 𝛴𝑝𝑒), 𝛴𝑝𝑒 = [

𝜎𝑝𝑒
2𝑏𝑒ℎ1

𝜎𝑝𝑒
𝑏𝑒ℎ1−𝑏𝑒ℎ2

𝜎𝑝𝑒
𝑏𝑒ℎ1−𝑏𝑒ℎ2 𝜎𝑝𝑒

2𝑏𝑒ℎ2 ] 

[
𝜀𝑖

𝑏𝑒ℎ1

𝜀𝑖
𝑏𝑒ℎ2] ~𝐵𝑉𝑁(0, 𝛴𝑟𝑒𝑠), 𝛴𝑟𝑒𝑠 = [

𝜎𝑟𝑒𝑠
2𝑏𝑒ℎ1

𝜎𝑟𝑒𝑠
𝑏𝑒ℎ1−𝑏𝑒ℎ2

𝜎𝑟𝑒𝑠
𝑏𝑒ℎ1−𝑏𝑒ℎ2 𝜎𝑟𝑒𝑠

2𝑏𝑒ℎ2 ] 

𝛴𝑝ℎ𝑒𝑛 = 𝛴𝑎 + 𝛴𝑝𝑒 + 𝛴𝑟𝑒𝑠= [
𝜎𝑝ℎ𝑒𝑛

2𝑏𝑒ℎ1
𝜎𝑝ℎ𝑒𝑛

𝑏𝑒ℎ1−𝑏𝑒ℎ2

𝜎𝑝ℎ𝑒𝑛
𝑏𝑒ℎ1−𝑏𝑒ℎ2 𝜎𝑝ℎ𝑒𝑛

2𝑏𝑒ℎ2 ] 

𝛴𝑖𝑛𝑑 = 𝛴𝑎 + 𝛴𝑝𝑒 = [
𝜎𝑖𝑛𝑑

2𝑏𝑒ℎ1
𝜎𝑖𝑛𝑑

𝑏𝑒ℎ1−𝑏𝑒ℎ2

𝜎𝑖𝑛𝑑
𝑏𝑒ℎ1−𝑏𝑒ℎ2 𝜎𝑖𝑛𝑑

2𝑏𝑒ℎ2 ]   (9) 

where: 

σ is the covariance between both behaviours  

Σ is the variance-covariance matrix on the different levels.  

𝜎𝑎
𝑏𝑒ℎ1−𝑏𝑒ℎ2 denotes the genetic covariance resulting from either linkage disequilibrium 

(association between genes coding independently for different traits, due to drift, selection, 

or assortative mating) or pleiotropy (a subset of genes influencing one trait influences 

another trait). 

𝜎𝑝𝑒
𝑏𝑒ℎ1−𝑏𝑒ℎ2 denotes the permanent environment covariance due to environmental effects 

that are conserved across repeated measurement and affecting both traits simultaneously 

𝜎𝑟𝑒𝑠
𝑏𝑒ℎ1−𝑏𝑒ℎ2 denotes the residual covariance between traits due to external processes 

affecting both traits simultaneously, for instance if traits are measured at the same time by 

the same observer of in the same environment.  
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𝜎𝑖𝑛𝑑
𝑏𝑒ℎ1−𝑏𝑒ℎ2 denotes the covariance between traits that is due to individual-specific effects 

and is the sum of the covariance on the additive genetic and permanent environmental 

levels. 

Correlations are more often used in the study of behavioural syndromes than covariances 

because they are unitless measures of the strength of association between two traits on the 

different levels. The phenotypic correlation (𝐶𝑜𝑟𝑝ℎ𝑒𝑛
𝑏𝑒ℎ1−𝑏𝑒ℎ2) between two behaviours 

results from the sum of the correlations on different levels, weighed by the proportion of 

the phenotypic variance that these levels explain (Dingemanse et al. 2012):  

𝐶𝑜𝑟𝑝ℎ𝑒𝑛
𝑏𝑒ℎ1−𝑏𝑒ℎ2 = √

𝜎𝑎
2𝑏𝑒ℎ1

𝜎𝑝ℎ𝑒𝑛
2𝑏𝑒ℎ1 ∗

𝜎𝑎
2𝑏𝑒ℎ2

𝜎𝑝ℎ𝑒𝑛
2𝑏𝑒ℎ2 ∗ 𝐶𝑜𝑟𝑎

𝑏𝑒ℎ1−𝑏𝑒ℎ2 + √
𝜎𝑝𝑒

2𝑏𝑒ℎ1

𝜎𝑝ℎ𝑒𝑛
2𝑏𝑒ℎ1 ∗

𝜎𝑝𝑒
2𝑏𝑒ℎ2

𝜎𝑝ℎ𝑒𝑛
2𝑏𝑒ℎ2 ∗ 𝐶𝑜𝑟𝑝𝑒

𝑏𝑒ℎ1−𝑏𝑒ℎ2 

+√
𝜎𝑟𝑒𝑠

2𝑏𝑒ℎ1

𝜎𝑝ℎ𝑒𝑛
2𝑏𝑒ℎ1 ∗

𝜎𝑟𝑒𝑠
2𝑏𝑒ℎ2

𝜎𝑝ℎ𝑒𝑛
2𝑏𝑒ℎ2 ∗ 𝐶𝑜𝑟𝑟𝑒𝑠

𝑏𝑒ℎ1−𝑏𝑒ℎ2              (10) 

Behavioural syndromes can be reported as correlations on the phenotypic, individual and 

genetic levels, although the latter is the most relevant metric for studying the evolution of 

personality. Indeed, estimating the additive genetic (co)variance matrix for behaviour, 

commonly termed G matrix (Σa), is important for predicting the response of multiple 

behaviours to selection, because genetic correlations, especially when caused by 

pleiotropy, can impede the independent evolution of traits and thus constitute evolutionary 

constraints (Dochtermann & Dingemanse 2013). Estimating genetic correlations between 

traits requires large amounts of data which can be challenging especially in natural 

populations. Therefore, most studies rather use the phenotypic correlation because it is 

assumed to be a reliable proxy for the genetic correlation and does not require any pedigree 

information or repeated measures. This assumption, called the Cheverud’s conjecture, has 

been tested for behavioural traits by Dochtermann (2011), who found that, although similar 

in sign, phenotypic correlations typically underestimate genetic correlations between 

behaviours. In contrast, correlations on the individual-level might be a better proxy for 

genetic correlations between behaviours because approximately half of the between-

individual variance is due to additive genetic effects (Dochtermann et al. 2015). In 

addition, the between-individual correlation per se is of interest to behavioural ecologists 

since the existence of personality depends on the sole presence of between-individual 

variation in behaviour (Dingemanse et al. 2012). Although estimating it only requires 

repeated measures for individuals without pedigree information, this requirement might 

still represent a considerable sampling effort which is why many studies take the 

“individual gambit” and only estimate phenotypic correlations (Brommer 2013). Contrary 

to expectations, it has been recently shown that phenotypic correlations between 
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behaviours indeed constitute a good proxy for between-individual correlations (Brommer 

& Class 2017), although the reason for this is not yet clear. 

1.2.3 Plasticity in personality 

The previously-mentioned hypotheses for the evolution of personality, combined with 

empirical studies focusing on a specific ontogenetic stage or limited to one population in 

which individuals share relatively similar environments, might give the false impression 

that personality is long-term stable and context-general. In fact, behavioural traits are 

labile, which means that individuals can plastically adjust their behaviour to variations in 

their internal state (age, energy stock) or external environment (predation risk, 

temperature). Personality traits can thus be plastic and repeatable at the same time. 

Plasticity in personality traits has received an increasing interest of the recent years and 

quantitative genetics provides a framework for studying it (Dingemanse et al. 2010). This 

is because behavioural plasticity can be seen in a population on different levels: i) the 

population mean can change in response to environmental variation ii) individuals can vary 

in their response to the same environmental variation iii) individuals’ plastic responses 

themselves can be heritable (Figure 2, Brommer 2013b). Two approaches are commonly 

used to study plasticity: the reaction norm approach and the character-state approach.  

The reaction norm approach is a function-valued trait approach in which the trait values on 

different levels are allowed to vary as a function of an environmental variable. Reaction 

norms are generally used in ecology and genetics to represent the diversity of phenotypes 

that can be produced by one genotype across an environmental gradient (or other gradients 

such as age or time). The reaction norm approach can be visualised by plotting for every 

individual (or genotype) its phenotypic values against an environmental gradient or across 

(in general two) different situations. Reaction norms are not necessarily linear but for 

simplicity are represented as linear slopes in Figure 2. Every line (or individual or 

genotype) of the reaction norm is characterized by its elevation and its slope. In the 

context of personality research, each line’s elevation (intercept at the mean-centered 

environment, Nussey et al. 2007) represents each individual’s (or genotype’s) 

“personality” and each slope represents each individual’s (or genotype’s) plastic response. 

Hence, individuals can vary in their elevation and in their slopes. Between-individual 

variation in elevation (or intercept) indicates that the behavioural trait is repeatable and 

between-individual variation in slopes indicates that there is between-individual variation 

in plasticity or individual-environment interaction (IxE)(Figure 1d). Whether this 

between-individual variation in plasticity is due to plasticity itself being heritable (GxE) 

can be investigated by testing whether the same pattern is found on the genetic level 

(Figure 2f,g). Finding evidence for IxE but not for GxE means that individuals differ in 

their plasticity because of experiencing consistently different environmental factors 

(PExE). These factors can be past environmental effects that are long-lasting (e.g. 

maternal effects) or environmental effects experienced by the individual that are consistent 
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across measurement events. One important feature of reaction norms is the covariance 

between slope and elevation. This covariance can generate changes in individual or 

genetic variance over the environmental gradient. For instance, a positive covariance 

between elevation and slope can be seen when lines are “fanning out” and generates an 

increase in variance. A negative covariance can be seen when lines are “fanning in” or 

crossing (Figure 2 f, g). This will generate a decrease in variance, sometimes followed by 

an increase when lines are crossing. Therefore, IxE and GxE generate changes in 

individual and additive genetic variances and hence changes in repeatability and 

heritability estimates at different points of the environmental gradient.  

 

Figure 2: Schematic illustration showing behavioural plasticity on different levels. For simplicity, 

only linear plasticity is drawn here, but the same hierarchical structure applies to non-linear 

relationships. On the population level, (a) the environment-specific mean behaviour may be 

invariant across the environmental gradient, but (b) may also vary. On the individual and genetic 

levels, deviations from these environment-specific means are considered. (c) All individuals show 

the same deviation from the average behaviour at every value of the environmental gradient, and 

there is no between-individual variation in plasticity (no IxE). Alternatively, (d) individuals differ in 

their environment-specific deviation from the environment -specific means, showing variation in 

plasticity (IxE). Despite the presence of IxE, (e) Genotype – environment interaction (GxE) may be 

absent, or (f) GxE occurs without the ranking of genotypes changing across environment (reaction 

norms not crossing within the environmental gradient), or (g) GxE where the ranking of genotypes 

changes (reaction norms cross).As a result of GxE, additive genetic variance can change across the 

environmental gradient. For instance, it can decrease when lines are “fanning in” (f) or it can show a 

curvilinear pattern (g). (Reproduced from Brommer & Class 2017b. In: Vonk, Weiss & Kuczaj 

(eds) Personality in nonhuman animals.doi:10.1007/978-3-319-59300-5.ISBN:978-3-319-59299-2) 
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The reaction norm approach cannot be used when behavioural responses have been 

measured across more than two discrete contexts and when these cannot be ordered. An 

alternative is to use the character-state approach to test for IxE and GxE (Brommer 

2013b). This approach is a multivariate approach in which the same trait measured into n 

different contexts is considered as n different response variables. Hence, in the same way 

as multiple behaviours can be correlated on different levels, the same behaviour can be 

correlated across contexts on the phenotypic, individual or genetic levels. For instance, a 

cross-context correlation close to 1 on the individual level means that individual ranks are 

largely maintained across the different contexts while a cross-context correlation different 

from 1 indicates changes in individual ranks (IxE). The cross-context correlation can be 

negative when individual ranks are reversed between the two contexts (if individuals that 

have the highest scores in context 1 have the lowest scores in context 2 and vice versa). 

The same applies to cross-context correlations on the genetic and permanent-environment 

levels. Note that this approach should be used for a reasonable number of contexts because 

its dimensionality increases greatly with n. 

There is empirical evidence for IxE and GxE in personality traits using these two 

approaches. For instance, different literature reviews showed that the cross-environmental 

correlation of rankings for personality traits is generally moderate (median estimate =0.4, 

Brommer 2013b) or varies from very low to very high values in fish (Killen et al. 2016), 

which suggests that IxE might be common. Random regressions have been used more 

often to test for IxE in personality traits and individuals have been shown to vary in their 

plasticity as a function of food availability (Kontiainen et al. 2009), predation risk (Mathot 

et al. 2011), temperature (Betini & Norris 2012), time of the year (Dingemanse et al. 

2012b), brood size (Nicolaus et al. 2012), number of trials (Ensminger & Westneat 2012), 

or reproductive status (Favreau et al. 2014). On the genetic level, evidence for heritable 

behavioural plasticity mainly comes from selection experiments where animals from 

different lines selected for high and low personality scores differ in their plasticity 

(Koolhaas et al. 1999, Øverli et al. 2005, Carere et al. 2005). However, evidence for GxE 

in personality traits based on the two approaches described above remains scarce 

(Dingemanse et al. 2012b), presumably due to a lack of power (Brommer 2013b). 

1.2.4 Evolutionary theories explaining the existence and maintenance of 

personality 

There is now abundant evidence that personality traits are heritable and related to fitness 

(Smith & Blumstein 2008) and thus can respond to selection. Because directional selection 

tends to erode additive genetic variance, the existence of heritable personality variation 

within populations raises a “classical” question in evolutionary quantitative genetics: what 

mechanisms can prevent the erosion of additive genetic variation for personality traits and 

thus maintain their existence? Below, I shortly review the main mechanisms that have been 

proposed and their empirical support (also see Brommer & Class 2017b). 
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Mutation-selection balance 

Under the mutation-selection balance scenario, genetic variation in personality traits is 

maintained thanks to mutations occurring at every generation which restores the loss of 

additive genetic variance caused by stabilizing selection, where individuals deviating from 

the optimal phenotype are eliminated (Zhang & Hill 2005, Nettle 2006, Penke et al. 2007). 

One empirical study in humans supports the mutation-selection theory for personality traits 

(Verweij et al. 2012). 

Disruptive selection and sexual selection 

Genetic variation in personality traits can be maintained by disruptive selection if 

individuals expressing extreme phenotypes (compared to the population mean) achieve a 

higher fitness than individuals with intermediate phenotypes (Lynch & Walsh 1998). 

Disruptive selection for personality traits has been shown empirically in eastern chipmunks 

(Bergeron et al. 2013) and in garter snakes (Brodie 1992). Assortative mating can be 

considered as a source of disruptive selection on personality if males and females that are 

assortatively mated regarding their personalities achieve a higher reproductive success than 

disassortative pairs. Differences in reproductive success between assortative and 

disassortative pairs have been found in the wild and in the lab and in diverse taxa 

(Dingemanse et al. 2004, Both et al. 2005, Sinn et al. 2006, Spoon et al. 2006, Schuett et 

al. 2011, Gabriel & Black 2012, Ariyomo & Watt 2013, Kralj-Fišer et al. 2013, Harris et 

al. 2014, David et al. 2015).  

Sexual antagonistic selection 

Genetic variation in personality can be maintained by sexual antagonistic selection when a 

behavioural trait that is positively genetically correlated across sexes is selected for in 

opposite directions in males and females (Rice & Chippindale 2001). Cross-sex genetic 

correlations are on average high (0.77± 0.09) for behavioural traits (Poissant et al. 2010) 

suggesting that intersexual conflicts are likely to occur in these traits. Sexual antagonistic 

selection on personality has been found in great tits (Dingemanse et al. 2004) and in comb-

footed spiders (Pruitt & Riechert 2009).  
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Balancing selection 

Environmental factors generally vary in time and/or space, generating antagonistic 

selection pressures over time/space which can maintain between-individual variation in 

behaviour (Nettle 2006, Penke et al. 2007, Koolhaas et al. 2007, Dingemanse & Réale 

2013). For instance, different personality types are favoured under high or low predation 

risk, shy individuals being more likely to survive than bold individuals when predation risk 

is high, while bold individuals are more likely to outcompete shy individuals over resource 

acquisition when the predation risk is low. Because predation risk can vary in time or 

space, different personality types will be favoured in different circumstances and overall 

both phenotypes will achieve a similar fitness. This hypothesis is generally well supported 

by studies in wild and captive populations showing that fluctuations in food abundance 

(Dingemanse et al. 2004, Montiglio et al. 2014, Both et al. 2005, Kontiainen et al. 2009, 

Quinn et al. 2009, Le Coeur et al. 2015, Vetter et al. 2016), density (Cote et al. 2008, Le 

Galliard et al. 2015, Quinn et al. 2009, Nicolaus et al. 2016), predation risk (Réale & 

Festa-Bianchet 2003), and environmental variability in time (Réale et al. 2009,Taylor et al. 

2014) or space (Monestier et al. 2015) can act to maintain variation in personalities by 

alternatively selecting different personality types over time/space. Under negative 

frequency-dependent selection, which can be considered as a type of fluctuating selection, 

the fitness of individuals expressing a heritable behavioural tactic decreases as the 

frequency of individuals expressing the same tactics in the population increases. At 

equilibrium, the different phenotypes achieve equal fitness payoffs and genetic variation 

underlying personality can be maintained. Empirical evidence for this mechanism 

maintaining behavioural variation however remains scarce and only a few studies showed 

frequency-dependent selection on heritable personality traits (Fitzpatrick et al. 2007, Pruitt 

& Riechert 2009). Finally, non-equilibrium dynamics can also be considered as a form of 

fluctuating selection which can maintain phenotypic variation in personality that may (or 

may not) be associated with genetic variation (Wolf & Weissing 2010).  

Genotype-Environment or Genotype-Age Interaction 

Genotype-environment or genotype-age interactions can maintain genetic variation in 

personality when there is additive genetic variation for plasticity in behavioural traits and 

when different phenotypes are favoured in different environments or at different ages. 

Provided there is no perfect plastic response for any given genotype and that 

environmental conditions vary within individuals, there would be no optimal genotype but 

instead a range of genotypes that achieve a similar fitness and would be maintained in the 

population (Roff 1997). As discussed above, there are still few empirical studies showing 

GxE in behaviours but evidence for IxE is accumulating. 
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Pace-of-life syndromes 

While the mechanisms described above can also be invoked to explain the existence and 

maintenance of behavioural syndromes, one hypothesis, which is at the intersection of the 

phenotypic mechanisms mentioned in the first section and the genetic mechanisms detailed 

above, is becoming increasingly popular: the pace-of-life syndrome (POLS) (Réale et al. 

2010b). Although it was first used to describe between-species differences in life-history 

and physiology, the POLS framework has recently been extended to within-species 

differences and personality variation. Under the POLS hypothesis, variation in personality 

traits can be maintained because personality coevolved with life-history and physiological 

traits. Hence, individuals vary in their life-history strategies, behaviour and physiology 

which together form a “pace-of life” syndrome allowing them to either live a “fast” (early 

reproduction, short-lived) or a “slow” life (late reproduction, long-lived). Overall, 

individuals with slow or fast POLS would achieve an equal fitness and the different POLS 

would be maintained in the population. Importantly, this hypothesis generates predictions 

regarding the sign of the associations between behavioural, life-history and physiological 

traits. For instance, individuals that are on average bolder, or fast explorers are predicted to 

mature and reproduce earlier, have a lower body condition, weaker immune system, a 

higher metabolism and a shorter lifespan. There has been a strong interest in studying 

POLS since Réale et al. (2010b) introduced the idea of including personality to POLS. 

However, empirical evidence for this hypothesis remains equivocal (Brommer & Class 

2017b), which suggests that the links between behavioural, life-history and physiological 

traits might not be universal but vary between systems due to different selection pressures, 

as already pointed out by Réale et al. (2010b). These mixed results might also be due to 

inappropriate methodologies, most studies looking at correlations between behaviour and 

life-history or physiological traits, although the link between these traits and the general 

pace-of-life of individuals was not formally tested. Setting up a general framework for 

testing for POLS would greatly help in moving further towards an understanding of the 

existence and maintenance of personality variation. 
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II. CHALLENGES AND AIMS OF THE THESIS 

Although quantitative genetics has proven to be a valuable approach to the understanding 

of evolution and is commonly used in evolutionary biology studies, the uptake of the ideas 

and concepts of quantitative genetics in the study of animal personality has been slow. 

Indeed, while the number of studies on animal personality has increased spectacularly 

since 2006, and is now reaching 250 published articles per year, the number of studies 

reporting heritability in personality traits has been slowly increasing and reached a 

maximum of 20 published articles per year (Figure 3). One likely reason for this is that the 

detection of heritability, genetic correlations and GxA in fixed traits usually requires 

substantial amounts of data in order to reach sufficient statistical power, and these 

requirements can be even higher for behavioural traits because they are labile and 

generally have a low heritability. These data requirements include information on the 

population pedigree and/or repeated measures for individuals, which can be challenging to 

obtain for certain systems and take considerable time and effort to collect, particularly in 

the wild. The advantages of studying evolution of traits in wild populations are however 

numerous compared to artificial populations. Applying quantitative genetics to wild 

populations indeed allows for a better understanding of the evolution of traits (their 

variation and the selective forces acting on them) in a complex and realistic context, where 

extrapolations from artificial experiments often do not hold (Kruuk et al. 2014). 

Fortunately, the data required for such analyses can be collected in relatively common 

settings, as evidenced by the increasing application of quantitative genetics to ecological or 

behavioural studies in natural populations over the last decade (Kruuk et al. 2014). 

 

Figure 3: Number of articles using the keywords “personality” (blue line) and “personality AND 

heritab*” (red line) published from 1990 to 2016 (search performed on Web of Knowledge, refining 

for studies in zoology, ecology, evolutionary biology, and veterinary sciences). 
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The main aim of my thesis is thus to provide a quantitative genetics view of personality in 

a wild population of passerines breeding in nest boxes, which is a “classical” study system 

in ecology. In addition to providing some methodologies and examples to facilitate the use 

of quantitative genetics in the study of personality, this thesis also aims at showing the 

merits of adopting this framework, which has the potential to move personality research 

further. For instance, the question of the ontogeny of personality has been largely 

overlooked by behavioural ecologists and would deserve more attention. Indeed, studying 

ontogeny, one of Tinbergen’s four questions, is essential to reach a deeper understanding 

of the evolution of animal personality and its mechanisms. Fortunately, quantitative 

genetics already provides approaches that can be applied to the study of personality 

development, since development can be viewed as age-related plasticity. In addition, and 

as already mentioned, behavioural traits differ from morphometric traits in that a 

considerable part of their phenotypic variation is due to residual variation and plastic 

responses. Hence, some of the metrics that are widely used for estimating quantitative 

genetic parameters in morphometric traits might not be appropriate when applied to 

behaviour. This might be the case for the assortative mating correlation, a common metric 

used in the calculation of heritability which has important evolutionary consequences. The 

work presented in my thesis addresses the following questions: 

1. Are behavioural responses to handling heritable and genetically correlated? 

(Chapter I) 

2. What are their consequences for survival and reproductive success? (Chapter I) 

3. Is there age-related plasticity in personality? 

a) Does personality remain constant during development? (Chapter II,III) 

b) Does personality undergo senescence? (Chapter IV) 

4. How to estimate assortative mating for personality traits?(Chapter V) 
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III. MATERIAL AND METHODS 

3.1 Study species  

Three chapters of this thesis (I, II, IV) are based on a long-term data set collected in a wild 

population of blue tits (Cyanistes caeruleus), a small passerine from the Paridae family, 

which is a common resident breeder throughout temperate and subarctic Europe. Blue tits 

are often found in habitats consisting of deciduous and mixed woodlands with a large 

proportion of oak and usually breed in tree holes although they readily use nest boxes. The 

data used in this thesis was collected in a population breeding in nest boxes and established 

in 2003 near the city of Tammisaari in South-Western Finland (60°01′ N, 23°31′ E). 

Before the work presented in this thesis, data on this population has been collected for a 

doctoral thesis on animal personality (Kluen 2012) and other studies (e.g. Brommer 2004, 

Pitala et al. 2009, Fresneau et al. 2014). In this population, blue tits generally start laying 

eggs in the end of April, although the first egg is laid on average in early May (mean 

laying date on 4
th
 of May, sd=6 days), and the clutch size consist of 8-14 eggs (mean=10.2, 

sd=1.6). Females generally start incubating eggs after laying the penultimate egg and the 

incubation period lasts 13 days during which they are provisioned by males. In blue tits, 

both parents take part in the provisioning of nestlings, which mainly consume caterpillars. 

Young blue tits generally fledge on the third week after hatching (18-22 days old), and 

females sometimes initiate second but smaller broods, while males continue providing 

parental care to the fledglings.  

3.2 Study site 

The study site consists of approximately 10km
2
 of boreal forest, which is mainly composed 

of Scots pine (Pinus sylvestris), Norway spruce (Picea abies), downy and silver birch 

(Betula pubescens and Betula pendula), and differs from other study sites used for Paridae 

in Western Europe in that the oak is very rare and therefore plays no role in food 

availability during the breeding season. The number of boxes in the study site varied 

between years due to destruction by forestry activities, natural degradation, and predation 

by woodpeckers, but boxes were regularly replaced so that this number remained between 

330 and 400 over the years. Nest boxes had a 26 mm diameter entrance-hole to only allow 

blue tits and coal tits (Periparus ater) (Dhondt & Eyckerman 1980) and were attached to 

trees using a rope at approximately 1.5m high. 

3.3 Population monitoring 

Every year approximately 100 broods were monitored during the breeding season, which 

lasts from late April to mid-July. Starting from the last week of April, each box was 

checked at weekly intervals to establish i) the laying date (based on the assumption that 

females lay one egg a day, Perrins 1979), ii) the clutch size, and, when the clutch size was 
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complete and incubation had started, iii) predict the hatching date (calculated as laying 

date + clutch size + 13-1). Starting from one day before the expected hatching date, nests 

were visited daily in the afternoon, and on the day of hatching (day 0) nestlings were 

weighed together to estimate the average mass of the brood, which was used for the cross-

fostering protocol performed on day 2 (see below). Between day 5 and day 9, adults were 

caught in the box while feeding the young. They were identified thanks to a metal ring on 

their left leg, or were ringed if previously unringed. The sex was determined on the basis 

of the presence or absence of a brood patch, which only females have, and the age was 

determined based on the coloration of their primary coverts as either one year old or older 

(Svensson 1992). Morphometric and behavioural measurements were taken at the same 

time following the protocol described below. On day 9, nestlings were weighed and ringed 

to allow lifetime identification, and, on day 16, morphometric and behavioural 

measurements were taken using the same protocol as for adults. This protocol was not 

performed in nestlings from second broods, which were only ringed. The percentage of 

ringed nestlings which survived and bred in the population on subsequent years 

(recruitment rate) is on average 5% (mean=0.05, sd=0.03). No information on the 

occurrence of natal dispersal outside of the study site is available for this population so the 

recruitment rate is likely to be lower than the true survival rate of the nestlings during their 

first year. 

3.4 Morphometric and behavioural measurements  

After an adult individual was taken out of the bag in which it was kept, morphometric 

measurements were taken (following the same order for each individual). First, tarsus 

length (measured twice) and head size (measured from the back of the skull to the tip of 

the bill) were measured using a sliding calliper (accuracy, 0.1 mm). Then, wing length and 

tail length were measured using a ruler. During these measurements, the aggressive 

behaviour of the bird (biting, pecking, flapping wings) was observed and scored from 1 

(passive from the beginning) to 5 (fighting continuously), reflecting the propensity of the 

bird to calm down during the morphometric measurements. For instance, a bird fighting 

during the measurement of the tarsus -a measurement which can be quite uncomfortable 

for the bird- and calming down thereafter is given a score of 3. This behavioural response 

is called “handling aggression” (HA) and has been measured from 2006 onwards.  After 

the morphometric measurements, the bird was held still on its back and breath rate (BR) 

was recorded twice, defined as the time it took for the bird to take 30 breaths. BR was then 

calculated as the average of these two measurements and expressed as a number of breaths 

per second. BR can be considered as a measure for the bird’s stress response to handling 

(Carere & van Oers 2004), and has been measured from 2007 onwards. Finally, the bird 

was weighed using a 20g Pesola spring balance (accuracy, 0.1 g) before being released. 

The handling of each bird, when performed by an experienced observer, takes 

approximately 5 minutes. The measurement of nestlings’ morphological and personality 

traits followed a similar protocol which only differed in that BR was measured before the 
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other traits. Until 2011, nestlings were all taken from the nest on day 16 and placed 

individually in small paper bags which were randomized prior to morphometric and 

behavioural measurements. After 2011 this procedure changed, so that all the nestlings 

were placed together in a large paper bag. This change, however, did not affect the 

measurement of HA and BR in nestlings because the genetic correlation between each 

behaviour before and after 2011 does not differ from unity (Chapter I). 

 

Personality traits in this population were the subject of a previous doctoral thesis (Kluen 

2012) and additional behavioural traits have been studied such as neophobia-related 

behaviours in a cage test (Kluen et al. 2012), measured from 2008 to 2010 (abandoned 

thereafter due to logistical constraints) and nest-defence behaviours measured since 2007 

(Fresneau et al. 2014). Although some of these traits were found to be repeatable and thus 

reflect aspects of the birds’ personality (Kluen et al. 2012, Fresneau et al. 2014), the 

present thesis focuses on the two handling behaviours described above because they 

provide numerous advantages. Firstly, both traits have been measured since 2006 and 

2007, and thus phenotypic data spans 7 to 8 generations, which facilitates the use of 

quantitative genetic analyses. Importantly, phenotypic data for HA and BR covers the 

lifespan of individuals from early life (nestlings) to late adulthood, which allows studying 

personality within individuals throughout their ontogeny. Furthermore, these two 

behaviours can readily be compared with behavioural traits commonly studied in the 

personality and coping style literature. Indeed, HA can be considered as a measure of 

docility (Réale et al. 2007) - a high HA indicating a low docility- and proactive individuals 

are expected to be less docile (Koolhaas et al. 2007). In addition, BR is commonly 

measured as a stress response because it is mediated by the activation of the 

parasympathetic system which is generally higher in reactive individuals (Koolhaas et 

al.1999, Carere et al. 2001). Finally, analyses performed in Chapter I showed that HA and 

BR are heritable and related to individuals’ performance (see Results section), which was 

not the case for nest defence behaviour (unpublished results). Hence both traits allow 

studying the evolution and ontogeny of personality and are the focus of chapters II and IV. 

3.5 Cross-fostering 

A reciprocal cross-fostering procedure was carried out from 2007 to 2010 on the second 

day after hatching. During this procedure, an equal number of nestlings were swapped 

between pairs of nests, called “dyads”, which were formed based on similar hatching dates, 

average weights of hatchlings, and, if possible, brood sizes. If the brood sizes differed 

between two nests in a dyad, the number of nestlings which were swapped was 

approximately half the size of the smallest brood. Before the procedure, each nestling was 

weighed and marked by clipping a unique combination of its toe nails. The choice of 

which nestlings were cross-fostered was done random-systematically by first tossing a coin 

for the heaviest nestling in one nest and then alternating the cross-fostering treatment down 

the size-hierarchy of the brood. 
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3.6 Statistical analyses  

3.6.1 Analyses of the fitness consequences of personality traits 

Survival selection analysis 

A capture-mark-recapture (CMR) analysis was performed using the software MARK 

(White & Burnham 1999) in Chapter I to test whether individuals’ survival probability of 

surviving from one year to the next was affected by their personality traits. Logistic 

regressions, where individuals’ probability of surviving (φ) and being captured (p) was a 

function of personality, age, sex, year and their interactions, were fitted for HA and BR 

separately. The first measure of each personality trait was used for each individual, but, in 

case measurements were missing, the individual was given the sex-specific mean value for 

this trait (Cooch & White 2012). CMR models are based on the encounter history of each 

individual consisting of a suite of 1s and 0s for each year; 1 for a year during which the 

individual was encountered and 0 otherwise. After confirming that the data met the 

assumptions from the Cormack-Jolly-Seber model (CSJ) using a Goodness-of-fit test, all 

the possible combinations of covariates and their interactions were tested for p while the 

full model was fitted for φ. These models were compared using Akaike Information 

Criterion (AICc), and the model with the lowest AICc was considered the best model. The 

best model for p was then fitted while the same procedure was performed to find the best 

model for φ. 

Recruitment selection analysis 

Generalized linear mixed models were fitted in Chapter I to study the effects of parents’ 

personality traits and their interaction on the recruitment probability of their genetic and 

foster offspring. These models were fitted for HA and BR separately, and included only 

information on broods that were cross-fostered to separate genetic from environmental 

effects of parents’ personality traits. In these models, each nestling’s recruitment status (1 

if recruited, 0 if not) was modelled as a function of its genetic and foster parents’ 

personality traits, the interaction between its genetic parents’ personality traits, the 

interaction between its foster parents’ personality traits, and the year, while nest of origin 

and nest of rearing were fitted as random effects to account for heterogeneity across these 

levels. These models assumed a binomial error distribution and a logit link and were run in 

R (R Development Core Team 2013) using the “glmer” function from the package“lme4” 

(Bates 2005). Each covariate was standardized by its mean and standard deviation to allow 

comparison of the effect sizes and properly model the interactions. A positive interaction 

between the values of males and females forming pairs indicated recruitment selection for 

assortative mating. This means that pairs where both the male and the female have an 

above-average personality score achieve a higher reproductive success (their offspring 

have a higher probability to recruit) than pairs composed of average parents. The statistical 
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significance of fixed effects was calculated by comparing models with and without each 

variable using LRT, where the likelihood was approximated using Laplace integration 

(Bolker et al. 2008). 

3.6.2 Quantitative genetics analyses 

Animal model 

HA and BR were considered as quantitative traits which vary continuously in the 

population. An animal model, which is a type of linear mixed-effect model, was used to 

estimate additive genetic, permanent environment, and residual variances for both traits. 

The covariance between HA and BR on these levels was estimated using a multivariate 

animal model. The animal model uses information on the relatedness between individuals 

based on the population pedigree (Lynch & Walsh 1998, Kruuk 2004) and is noted: 

𝑦 = 𝑋𝛽 + 𝑍𝐴𝒖𝐴 + 𝑍𝑃𝐸𝒖𝑃𝐸 + 𝜺 

where y is a vector containing all observations on all individuals (here HA and BR 

separately or jointly), β is a vector of one or more fixed effects (here observer, sex, age and 

year), X represents a design matrix (of 0’s and 1’s) relating the appropriate fixed effects to 

each individual. The vector uA denotes additive genetic effects which are fitted as random 

effects, and ZA is the design matrix relating the appropriate additive genetic effects to each 

individual. Similarly, ZPE uPE denotes the random effect structure on the permanent 

environment level and finally, ε is a vector of residual errors. The additive genetic 

(co)variance matrix (also called G matrix) and its elements was estimated using 

information on the coefficient of coancestry θij between individuals i and j, as derived from 

the pedigree (see below). The mixed model was solved using Restricted Maximum 

Likelihood (REML), as implemented in ASReml and ASReml-R (VSN International, 

Hemel Hempstead, U.K., Butler et al. 2009). 

Multivariate animal models were used in Chapters I and II, where they allowed the 

calculation of the G matrix for HA and BR in adults (Chapter I), or as a character-state 

approach (Chapter II) to estimate cross-ontogeny correlations for HA and BR. In animal 

models, the statistical significance of fixed effects is tested using a Wald test while the 

statistical significance of additive genetic (co)variances is tested by constraining each of 

these (co)variances in different models that are compared with the initial model using a 

likelihood ratio test (LRT) with one degree of freedom (Wilson et al. 2010). 

Multivariate mixed models were also used to analyse simulated assortative mating data in 

Chapter V where they allowed estimation of the correlation between hypothetical 

personality traits in males and females on the between-pair and within-pair levels (by 
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fitting pair identity as a random effect). Simulations were performed in R and these models 

were run using the package “asreml”. 

Random regression (animal) model 

Random regression models were fitted in Chapter IV to study age-related plasticity in HA 

and BR separately. Random regression models are linear mixed models which allow the 

variance in random effects to vary as a function of a continuous variable, here being age 

(Wilson et al. 2007b), and can be used to test for IxA, GxA and PExA in personality traits. 

For instance, in a random regression modelling individual-level plasticity, the behavioural 

response beh of individual i measured at time t is modelled as: 

 

𝑏𝑒ℎ𝑖,𝑡 =  𝜇 +  𝐴𝑔𝑒𝑖,𝑡 + 𝐹𝐼𝑋𝐸𝐷𝑖,𝑡 + 𝑓𝑖𝑛𝑑(𝑥, 𝐴𝑔𝑒) + 𝜀𝑖(,𝑡) 

where μ is the overall fixed-effect mean, Agei,t the  mean-centred age effect (fitted as a 

factor) and FIXEDi,t a vector of additional fixed effects (here sex, year and observer) 

associated with individual i at measure time t. The random regression function find(x, Age) 

is an orthogonal polynomial of order x on the individual level and captures deviation from 

the mean effect of Age (Henderson 1982). The presence of IxA in beh can be statistically 

tested by comparing models with increasing values of x using LRT (cf. Brommer et al. 

2010b). While a zero-order polynomial (x=0) only models individual variation in 

intercepts, a first order polynomial (x=1) allows estimating individual variation in 

intercepts, linear slopes and the covariance between them. Therefore, there is evidence for 

IxA if the model where x>0 significantly improves the model fit compared to x=0 (Wilson 

et al. 2008; Brommer et al. 2010b; Charmantier et al. 2014). If a significant IxA is found, 

the function find(x, Age) can be further partitioned into fa(x, Age) and fpe(x, Age) describing 

orthogonal polynomials of order x on the level of additive genetic and permanent 

environment effects respectively. Lastly, εi,t is the residual for individual i at the time it is 

measured. Residual errors can be age-specific (heterogeneous) or correlated across ages 

(homogeneous, noted as εi). This can be tested by comparing the fit of models with 

heterogeneous and models with homogeneous residuals using LRT. 

Because the age at the time of measurement is heterogeneously distributed in the 

population, an overall effect of age on personality on the population level can be due to 

either selecting removing certain individuals from the population (between-individual 

level) or individuals changing as they age (within-individual level) (Kreft et al. 1995, van 

de Pol & Verhulst 2006).  While the former indicates the action of selection on personality 

traits, the second indicates age-related plasticity in behaviour. Whether population-level 

change in personality is due to selective disappearance or individual plasticity was first 

investigated by replacing the fixed effect variable Agei,t by each individual’s mean age and 

age at the time of measurement centred on its mean. The statistical significance of each age 
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variable was then tested using a Wald test. If there was age-related plasticity on the level of 

the population, individual mean-centred age was used as the age variable in the random 

regression function to allow for a more accurate estimation of the random regression 

parameters (Hofmann & Gavin 1998, Nezlek 2001, Enders & Tofighi 2007, Blozis & Cho 

2008, Curran & Bauer 2011, Ke & Wang 2014, Wang & Maxwell 2015). The random 

regression analysis in Chapter IV was performed in ASReml. 

Population pedigree 

The population pedigree used for these analyses is a social pedigree, were nestlings 

hatched in the same nest are assumed to be full siblings, all sired by the male who provides 

care for them (social father). However, errors in paternal links are likely to occur when 

using a social pedigree because some of the offspring in a nest may have been sired by 

another male than the social father (extra-pair paternity). Although the rate of extra-pair 

paternity in this population is not yet known, it has been estimated between 7% and 25% in 

nine blue tit populations (Brommer et al. 2010). Based on simulation, this level of extra-

pair paternity is likely to cause relatively small error in the estimation of the quantitative 

genetic parameters (Charmantier & Réale 2005). This was also shown by simulations 

performed in Chapter II. 
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IV. RESULTS AND DISCUSSION 

4.1 Heritability and selection on two behavioural responses to handling (I) 

In the first chapter of this thesis, we investigated whether HA and BR, two behavioural 

responses expressed during handling, are heritable and under selection in adults. Indeed, a 

previous study carried out in this population showed that these two traits are repeatable 

(R= 0.40 ± 0.05 for HA and 0.18 ± 0.05 for BR, see Kluen et al. 2014) and thus reflect 

aspects of blue tits’ personality. Using univariate and multivariate animal models, we first 

showed that HA and BR constitute heritable aspects of the birds’ personality (h
2
 = 0.35± 

0.07 and 0.20± 0.07 respectively) that are uncorrelated on the genetic level (–0.02±0.20). 

Both traits are thus heritable and can respond to selection independently. We found that 

repeatability is about 40%  for both traits, which is in line with what has been found for 

behavioural traits (37%, Bell et al. 2009). For BR, the “heritability of personality” (defined 

by Dochterman et al. 2015 as the ratio of VA on VI) is 48%, which is very close to the 

average heritability of personality and implies that additive genetic effects and permanent 

environmental effects, due to parental or long-term environmental effects (including 

positive feedback loops), equally determine the between-individual variation in this trait. 

In contrast, 81% of the between-individual variation in HA is due to additive genetic 

effects, which is within the range that can be expected for aggression and antipredator 

behaviours (Dochterman et al. 2015). These heritability estimates mirror those obtained for 

the same traits in nestlings in the same population (Brommer & Kluen 2012). We found a 

positive residual correlation (0.18±0.05) between HA and BR, which also found by Kluen 

et al. 2014, but no genetic correlation between them. This positive residual correlation 

might be due to measurement error or correlated plasticity, both traits being measured 

during the same day and handling event. The absence of a behavioural syndrome between 

HA and BR in adults contrasts with  Brommer and Kluen (2012), where these traits were 

strongly genetically correlated. Whether this behavioural syndrome disappears due to 

selection or age-related plasticity was investgated in Chapter II. 

We then analysed whether each trait was under survival selection and found that the 

apparent survival probability in the population depended mainly on the year and on the 

interaction of sex and BR. Indeed, females with a higher BR had a lower probability to 

survive from one year to the other while the males’ probability of survival, although 

slightly higher than females’, was not affected by BR (Figure 4). In contrast, HA did not 

affect the apparent survival probability. Although we can only speculate about what causes 

the negative impact of a high BR on females’ survival probability, it could be argued that 

this might not be caused by an increased predation risk because BR does not affect the 

probability of being captured. Birds that are not caught on some years may indeed be more 

cautious, and would be less likely to be predated. Alternatively, the negative impact of BR 
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on females’ survival could be caused by a lower competing ability over food resources 

during winter (Nilsson et al. 2011). 

 

Figure 4: Probability of apparent survival of adult blue tit males and females as a function of their 

breath rate (n of breaths/s) based on capture–mark–recapture (CMR) analysis of encounter data 

covering 2007–2012, as reported in Table 2. For clarity, we plot the survival selection only for the 

year 2007, but this pattern was the same in the other years (except for differences in average 

survival between years), as there was no significant interaction with year (Table 2). Solid lines 

represent the values estimated by the binomial model for males (blue) and females (red) and the 

dashed lines represent the 95% confidence intervals. The CMR analyses was based on values of 

breath rate standardized to zero mean and unit SD, but we, here, plot the relationship of apparent 

survival and breath rate on the data scale, based on values (1.4–3.0 breaths/s) which contain 95% of 

its observed distribution. (Reproduced from Class et al. 2014. Ecology and Evolution 4:427-440. 

doi:10.1002/ece3.945; see original publication I). 

In a third step, we investigated whether each personality trait affected individuals’ 

reproductive success through genetic or parental effects and whether there was selection 

for assortative mating based on these personality traits. We found that the offspring’s 

probability to recruit was affected by the year and increased with foster fathers’ HA, 

especially when paired with females with similar HA scores (Figure 5). There was indeed a 

significant interaction between foster parents’ HA scores, indicating the presence of 

selection for assortative mating mediated by parental effects. In addition, birds mated 

assortatively regarding their HA score (Pearson’s correlation between males and females’ 

first HA score r=0.19; 95% CI: [0.067, 0.31]), and a positive impact of foster fathers’ HA 

was also found on the nestlings’ mass at 16 days old, which has been shown to impact their 

survival probability after fledging (e.g. Garnett 1981, Tinbergen & Boerlijst 1990, Naef-
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Daenzer et al. 2001, Monrós et al. 2002). Finally, the effect of genetic parents’ HA was 

systematically non-significant and BR did not influence in any way the offspring’s 

recruitment probability. These results are in agreement with other studies in the wild 

showing that partners with similar personalities achieve higher reproductive success (Both 

et al. 2005, Gabriel & Black 2012, David et al. 2015). In this study we demonstrated that 

this positive effect of personality on the offspring recruitment is independent from genetic 

effects (the genetic quality of parents or their genetic compatibility), but is instead caused 

by parental effects which were previously shown in a lab population of zebra finches 

(Schuett et al. 2011). We can exclude a bias in the apparent recruitment of offpsring due to 

effects of foster parents’ HA on their offspring’ natal dispersal because foster parent’s HA  

had no effect on the natal dispersal of the recruits within the study site. Therefore, several 

non-exclusive hypotheses can be proposed to explain these results. These hypotheses 

include a better foster male’s ability to obtain good territories (Nilsson & Smith 1985, 

Naef-Daenzer et al. 2001), a higher investment of males in parental care (Dickens et al. 

2008, Grieco 1999), a higher investment of females mated with these males in parental 

care (Mutzel et al. 2013), or a better synchronization of partners over parental care (Spoon 

et al. 2006, Royle et al. 2014). 

 

Figure 5: Illustration of the effect of foster parents’ handling aggression on the offspring’s 

probability of recruitment as based on reciprocal cross-fostering carried out in 2007–2010, derived 

from the model coefficients reported in Table 3. Recruitment selection is plotted here for the year 

2007 only, but is qualitatively the same in other years since there was no interaction with year 

(Table 3). The analysis was based on handling aggression standardized to zero mean and unit SD, 

but is here plotted on the data scale. The probability of recruitment was calculated for foster fathers 

paired with highly aggressive (score = 5, red), intermediate (score = 3, green) and nonaggressive 

(score = 1, blue) females. (Reproduced from Class et al. 2014. Ecology and Evolution 4:427-440. 

doi:10.1002/ece3.945; see original publication I). 
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4.2 Developmental stability of a behavioural syndrome (II) 

In Chapter II, we investigated the developmental stability of a behavioural syndrome 

caused by a genetic correlation. Indeed, the previous finding that HA and BR were 

uncorrelated in adults despite their strong genetic correlation in nestlings (rA=-0.50±0.15, 

Brommer & Kluen 2012) was puzzling and deserved further investigation. Adopting a 

quantitative genetic approach to the study of personality development can provide some 

insights into what causes behavioural syndromes. For example, a behavioural syndrome 

that is consistent over an individual’s ontogeny can indicate either that the genetic 

architecture is strictly maintained, or that a functional link exists between them, referred to 

as structured pleiotropy (De Jong 1990). In the first case, there is no GxA, while in the 

second there can be GxA, albeit the relative rankings of genotypes for both traits are 

maintained across age classes such that their correlation is unchanged. Two possible 

mechanisms can explain changes in genetic correlations over the course of development: 

selection and plasticity. Selection, by favouring certain combinations of traits, can 

eliminate a genetic correlation between two traits if this genetic correlation is caused by 

linkage disequilibrium. Under this scenario, nestlings in which the genes coding for HA 

and BR were associated would thus disappear from the population before adulthood. 

Secondly, the genetic correlation between the two behaviours can be caused by GxA 

occurring in one or both traits (Figure 6). Indeed, the expression of genes determining one 

or both behaviours might have changed over time, for instance turning “on” or “off” or 

changing in their effect sizes, which would have changed each individual’s breeding value 

for one or both behaviours and thus their genetic correlation. 

Using a character-state approach, we first confirmed the previous finding that the genetic 

correlation between HA and BR was strongly negative in nestlings (-0.49±0.09) and did 

not differ from zero in adults (0.07±0.16). We then demonstrated that the genetic 

correlation did not disappear due to selection, because the genetic correlation between HA 

and BR offspring did not statistically differ between recruited and non-recruited nestlings 

but did differ significantly between nestlings and adults. In contrast, we found evidence for 

GxA because the cross-ontogeny correlation for HA and BR, although positive (0.38±0.10 

for HA and 0.50±0.11 for BR), differed significantly from 1. The hypothesis that the 

genetic correlation between HA and BR disappeared during ontogeny because the two 

behavioural traits underwent GxA was further supported by our simulations. Genetic 

correlations between traits can constitute evolutionary constraints (Lynch & Walsh 1998), 

and a meta-analysis suggested that genetic correlations between behavioural traits might 

constrain their independent evolution to higher extent than for life-history traits 

(Dochtermann & Dingemanse 2013). Altogether, our results show that genetic correlations 

underlying behavioural syndromes can change during the ontogeny because of 

developmental processes, and thus that behavioural syndromes might not be as 

evolutionarily constrained as previously thought. Because the assumption of the lifelong 

stability of behavioural syndromes might lead to inaccurate predictions of their 
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evolutionary trajectories, this study underlines the importance of considering personality 

and behavioural syndromes at multiple ontogenetic stages and calls for incorporating 

quantitative genetics to the study of personality from a lifetime perspective. 

 

Figure 6: Theoretical plot illustrating the notions of consistency over the ontogeny, genotype-age 

interaction (GxA) and selection on the genetic correlation between trait 1 and trait 2. In (a,b),each 

line represents one individual, which is reported as a point in (c,d ). In (a), the rank order of the 

individuals’ breeding values for trait 1 remains stable across ontogeny. In (b), the rank order of the 

breeding values for trait 2 is different in young and adults because of GxA. As a consequence, the 

positive genetic correlation between trait 1 and trait 2 in young individuals (c) disappears in adults 

(d). Figures (e) and (f) represent the breeding values of nestlings that recruited (red) or not (grey), 

assuming a 5% recruitment probability. In (e), the breeding values of the two traits are not 

negatively correlated in recruits, which is why the genetic correlation is 0 when these individuals 

are measured as adults. In (f), the individuals are selected randomly and thus the correlation stays 

negative when they are measured as adults. (Reproduced from Class & Brommer 2015. Proceedings 

of the Royal Society B. 282:20142777. doi:10.1098/rspb.2014.2777; see original publication II). 
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4.3 Consequences of behavioural plasticity for the life-long stability of 

personality (III) 

Although age-related plasticity in personality has been well studied by psychologists and 

animal breeders, it has largely been overlooked by behavioural ecologists. This chapter 

aims at drawing the attention of behavioural ecologists to the occurrence of IxA and GxA 

in behaviour and its consequences for repeatability and heritability across ages and for the 

stability of behavioural syndromes. Indeed, individual differences in plasticity that are 

heritable can be expected whenever there is a population-level change in the expression of 

behavioural trait. For instance, average personality changes over the lifetime of individuals 

have been well documented in humans (McCrae et al. 2000) and non-human species 

(Suomi et al. 1996, King et al. 2008, Sinn et al. 2008, Kubinyi et al. 2009, Réale et al. 

2009, Dammhahn 2012, Seltmann et al. 2012, Massen et al. 2013, Fisher et al. 2015, Hall 

et al. 2015). 

In this chapter, we first provide a quantitative genetic description of GxA and of the 

methods used for its detection, which is similar to what I described earlier in this thesis for 

GxE. Importantly, we show that the occurrence of IxA (or GxA) can cause changes in 

between-individual (or genetic) variance and changes in behavioural rankings of 

individuals (or genotypes) across ontogenetic stages (see Figure 2 for GxE). The 

occurrence of IxA (or GxA) can hence alter behavioural repeatability (or heritability) 

across ages. We then reviewed empirical evidence for age-related changes in repeatability 

as well as estimates of cross-ontogeny correlations for single behaviours. The direction of 

the age-related changes in repeatability has been difficult to predict: a lower repeatability 

in juveniles than in adults can be expected due to ongoing developmental changes, but the 

opposite can also be expected due to highly constrained developmental trajectories in 

juveniles (Biro & Stamps 2008). One meta-analysis did not find any difference in 

repeatability in juveniles and adults (Bell et al. 2009), but mostly included studies which 

focussed on only one ontogenetic stage. Based on the very few studies estimating 

repeatability in both juveniles and adults, we found that repeatability was on average 

slightly lower for juveniles than for adults, although the difference was small, only 

concerned vertebrates (e.g. David et al. 2012, Petelle et al. 2013), and some studies 

(Fratkin et al. 2013, Bajer et al. 2015) found opposite results. The few available estimates 

do not, therefore, allow us to draw any conclusion about potential age-related changes in 

repeatability. In contrast, studies reporting phenotypic correlations of behaviours across 

ages were more abundant. Using both significant and non-significant estimates, we found 

that the cross-ontogeny correlations of behaviours are generally positive and on average 

moderate (0.3). These results are consistent with the predictions from GxA or IxA causing 

rank-order changes, and thus cross-ontogeny correlations lower than 1 for behaviours. 

However they do not constitute evidence for GxA or IxA because we only included 

estimates on the phenotypic level which constitute most of the estimates available for 
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behaviours. To date, Chapter II constitutes rare evidence for a low cross-ontogeny 

correlation between behaviours on the genetic level.  

From a theoretical point of view, correlations between behaviours are also expected to 

change as a result of IxA or GxA. This was empirically shown in Chapter II, where two 

behaviours forming a behavioural syndrome undergo GxA, which causes their genetic 

correlation to disappear. In this study, we used simulations to demonstrate that a 

behavioural syndrome caused by a strong genetic correlation between behaviours in 

juveniles can decrease, disappear, or change sign if at least one of the traits undergoes GxA 

between during the part of the ontogeny considered. A few empirical studies indeed found 

changes in the magnitude (e.g. Guenther & Trillmich 2012) or the sign (e.g. Kanda et 

al.2012) of phenotypic correlations between behaviours over age, although here again they 

do not constitute direct evidence for GxA.  

To summarize, this chapter showed the importance of considering age-related plasticity in 

behaviour in personality research because of its consequences for repeatability, heritability 

and the stability of behavioural syndromes over the lifetime.  Our review of the available 

studies using phenotypic data suggests that IxA and GxA might be common, although 

direct evidence remains scarce. In contrast, the relative roles of environmental vs. genetic 

effects for lifetime changes in personality have been well documented in humans (Bergen 

et al. 2007, Bornovalova et al. 2009, Kandler 2012, Kandler et al. 2013). In order to 

encourage future studies of IxA and GxA in behaviour, we also detailed two quantitative 

genetic approaches, namely the character-state approach, which was used in Chapter II, 

and the random regression approach, which we implemented in Chapter IV. The latter 

approach has recently been used to investigate IxA in behaviour (Fisher et al. 2015, 

Polverino et al. 2016). 

4.4 Senescence in two behavioural responses to handling (IV) 

In this chapter, we investigated the life-long stability of HA and BR and tested for the 

presence of IxA and GxA using the random-regression approach introduced in Chapter 

III.  This approach has often been used to study senescence, which is defined as a decline 

in the fitness of individuals as they age (Medawar 1952, Williams 1957,Hamilton 1966) 

and has been found across many animal taxa (Nussey et al. 2013, Jones et al. 2014). 

Evolutionary explanations for the occurrence of senescence predict that traits that are 

positively linked with fitness will show an age-related decline associated with GxA 

(Promislow et al. 1996, Wilson et al. 2008, Charmantier et al. 2014). These explanations 

hinge on the fact that selection becomes weaker as individuals age because relatively few 

individuals live long enough to get old. As a result, deleterious mutations decreasing 

individual performance in late life may accumulate due to random processes (Medawar 

1952) or may invade the population because they increase individual performance in early 

life (Williams 1957). The consequence of either of these processes is the presence of 
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additive genetic variation in the rate of ageing, or GxA, which can be considered as the 

“fingerprint” of evolved senescence (Wilson et al. 2008, Charmantier et al. 2014). Because 

most personality traits are heritable (Dochtermann et al. 2015) and linked with fitness 

(Smith & Blumstein 2008), just as HA and BR in this population (Chapter I), they might 

also undergo senescence, which can be investigated by first testing whether traits that are 

positively related to fitness decline with age and then testing if individuals or genotypes 

differ in their rate of ageing.  Alternatively, the asset protection principle predicts that 

personality traits increasing reproductive success will increase over age as the individual’s 

residual reproductive value decreases (Clark 1994, Wolf et al. 2007). We found that HA 

decreases linearly over age in the population and that this decrease is unlikely to be due to 

selective disappearance of highly aggressive individuals or to habituation, but rather 

caused by age-related plasticity (Figure 7). This population-level decline in HA, which is 

positively related to reproductive success in males, contrasts with the asset protection 

principle, but is consistent with predictions from the senescence hypothesis. In addition, 

the random regression approach applied to HA further showed that individuals differ in 

their rate of age-related decline (IxA), but failed to provide support for GxA, presumably 

because of low power. Interestingly, we found an age-related decrease in between-

individual variance in HA, which, if associated with a decline in additive genetic variance, 

contrasts with both theoretical predictions (Charlesworth & Hughes 1996) and empirical 

studies finding a stable or increasing additive genetic variance over age (Brommer et al. 

2007, Wilson et al. 2007, Brommer et al. 2010b). Alternatively, this decline in between-

individual variance could be caused by a decline in permanent environment variance, 

although most of the individual variance in slopes (0.26) seems to be due to additive 

genetic effects (0.21) rather than permanent environment effects (0.04). However, it is 

important to keep in mind that this pattern was found on the individual-centred age scale, 

which makes its interpretation difficult. Altogether, these results show an age-related 

decline associated with individual differences in plasticity in a personality trait, and 

suggests the occurrence of senescence in this trait. An important next step to confirm this 

hypothesis and rule out the possibility of selection favouring an age-related decrease in HA 

will be to test whether the link between HA and fitness is constant over age.  

In contrast, we did not find any age-related change in BR, which raises the question of 

which personality traits are expected to undergo senescence. Because the occurrence of 

senescence in reproductive success or survival has not been formally tested in this 

population, we can only speculate about possible causes for why HA would undergo 

senescence but not BR. For example, in great tits (Parus major), a closely related species, 

fertility declines after the first year of reproduction (Bouwhuis et al. 2009) while mortality 

remains relatively constant (Jones et al. 2014). This pattern is in line with our findings in 

that the personality trait showing a senescent decline is the one associated with 

reproductive success while the personality trait associated with survival does not change 

with age. This potential link between senescence in fitness traits and personality would 
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deserve further investigation in this population, but also empirical work in other systems to 

test for its generalization.  For instance, personality traits could show different ageing 

patterns depending on how strongly they relate to the fitness component showing the 

strongest age-related decline. 

 

Figure 7: Predicted patterns for age-related changes in a behavioural trait (a-c) and results obtained 

for handling aggression (HA)(d). Plots (a) to (c) are theoretical representations of the different 

individual patterns (grey lines) possibly underlying a population-level decline in a behavioural trait 

over age (dashed black line). In (a), the mean population decline over age is caused by the 

disappearance of individuals with high values of the trait (between-individual effect). In (b), all the 

individuals express age-related plasticity (within-individual effect). In (c), individuals vary in age-

related plasticity: there is an individual-age interaction (IxA). In (d), predicted individual and mean 

values of HA are plotted as a function of individual mean-centred age. Grey lines representing 

individual values were derived from model 3 and plotted for the 406 individuals who have multiple 

measurements for HA. The black line represents the mean HA as a function of individual mean-

centred age. (Modified from Class & Brommer 2016. Behavioral Ecology and Sociobiology 5:733-

744. doi:10.1007/s00265-016-2096-0; see original publication IV). 
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4.5 A quantitative genetic view of assortative mating for labile traits (V) 

This last chapter demonstrates that the metric used for estimating assortative mating in 

wild populations in ecology and evolutionary studies, including quantitative genetic 

analyses, can be biased when applied to labile traits such as behaviour. Indeed, assortative 

mating is commonly calculated as the correlation between males and females phenotypes 

across mated pairs (Jiang et al. 2013), and it is generally assumed that the phenotypic 

resemblance of partners resulting from non-random mate choice captures associations in 

“intrinsically determined” trait values (Kirkpatrick & Barton 1997; m = h
2
r, where m is the 

correlation between breeding values and r the phenotypic correlation, see Falconer & 

Mackay 1996). However, using a variance partitioning description for labile traits (or traits 

measured with error), we show that the correlation between phenotypes of paired 

individuals does not only arise due to the correlation between their individual-specific 

values (“true assortative mating”), but can also be due to (short term) shared environmental 

effects on the phenotypes of paired individuals or correlated measurement error.  

Importantly, these processes are likely to be common for labile traits, which respond 

plastically to environmental factors often varying in time and space, and we show that their 

relative contribution to the phenotypic correlation between mated partners depends on the 

repeatability of the traits (Figure 8). For instance, the phenotypic correlations between 

“fixed” traits that are highly repeatable (R~1) in males and females will mostly reflect the 

correlation between their individual-specific values.  In contrast, most behavioural traits 

are less than 50% repeatable, and hence the correlation between the phenotypes of mated 

individuals will mostly reflect covariance due to shared environmental effects or correlated 

measurement error.  

We introduced different statistical approaches which can be used to estimate assortative 

mating in labile traits, or in traits measured with error: i) The correlation between mean 

phenotypes of males and females of each unique pair (CIM), ii) The correlation between 

randomized values of individuals (CIR) iii) Between- and within-pair correlations derived 

from bivariate mixed-effects models. One critical aspect for the performance of these 

different approaches is the number of replicated measures on the individual level for the 

CIM and CIR approaches, and on the pair level for the bivariate mixed model approach. 

Although the amount of replication on both levels is similar if individuals forming pairs 

always survive and remate, they are likely to be different in most natural populations 

where individuals mate with different partners due to divorce or to the death of their 

previous partner. We thus investigated the relative performance of the introduced 

approaches using simulations of assortative mating in two hypothetical populations (the 

“immortal albatross” and the “bluish tit”) characterized by stable or unstable pair 

compositions and monitored once or twice per breeding season for a few (3) years or for 

many (10) years. Data was generated and analysed using each approach for scenarios 

where the phenotypic correlation between males and females was due either to the 
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correlation between their individual-specific values (assortative mating only scenario) or to 

shared environmental effects (common environment only scenario).  

As predicted, we found that the performance of both individual-level approaches critically 

depends on the number of replicates within individuals, while the performance of the pair-

level approach depends on the number of replicates within pairs. Importantly, both CIM 

and CIR approaches are biased towards the phenotypic correlation when the number of 

replicates is low, which in the “common environment only” scenario increases the risk of 

spuriously detecting assortative mating when it is absent (Type I error). In contrast, the 

bivariate mixed model approach, although the most conservative, provides consistently 

unbiased estimates of assortative mating, common environment correlation, and residual 

correlation. Therefore, the bivariate mixed model was the best approach for this worked 

example, and we showed that adopting a study design where repeated measures are taken 

on the level of the pair drastically increased its statistical power. Because the performance 

of each approach depends on the characteristics of the population (e.g. repeatability of the 

trait, rates of mortality and divorce, population size), we advised the use of simulations to: 

i) choose the best statistical approach given the data already collected, or ii) choose the 

best sampling design and the best statistical approach based on the characteristics of the 

population and the trait repeatability. 

Recently, there has been an increasing interest in estimating assortative mating based on 

personality traits and estimating its impact on fitness (Dingemanse et al. 2004, Both et al. 

2005, Sinn et al. 2006, Spoon et al. 2006, Schuett et al. 2011, Gabriel & Black 2012, 

Ariyomo & Watt 2013, Kralj- Fišer et al. 2013, Harris et al. 2014, David et al. 2015). 

Indeed, assortative mating has been proposed as a mechanism contributing to the evolution 

and maintenance of personality (see above). Therefore, the field of animal personality 

research would benefit from adopting a variance-partitioning approach allowing to 

accurately estimating assortative mating and assessing the importance of environmental 

and residual covariance for the phenotypic resemblance between partners. In addition, we 

argue that the approaches described in this paper are not restricted to assortative mating for 

repeatedly expressed traits such as behaviour, physiology, or metabolism but can be 

applied to a wider range of traits, contexts, and mating systems. We do, however, point out 

some issues, such as that the occurrence of permanent environmental effects that are 

correlated between partners and indirect (genetic) effects (e.g. when partners’ personalities 

converge after mating) can be confounded with assortative mating in the pair-level 

approach introduced here. Solving these issues would require either partitioning the 

between-pair covariance further to the genetic and permanent environmental levels, or, 

because phenotyping individuals before and after they form pairs can be difficult, further 

developments of statistical approaches using data of individuals mating repeatedly with 

different partners. 
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Figure 8: Correlations at multiple levels shape the overall phenotypic correlation between paired 

individuals. In a), phenotypes of paired males and females (𝑧𝑖𝑡
𝑀 , 𝑧𝑗𝑡

𝐹 ) are determined by individual-

specific values (𝑖𝑛𝑑𝑖
𝑀 , 𝑖𝑛𝑑𝑗

𝐹), environmental effects (𝑒𝑖𝑡
𝑀, 𝑒𝑗𝑡

𝐹) and measurement error (𝑚𝑒𝑖𝑡
𝑀, 𝑚𝑒𝑗𝑡

𝐹), 

where 1/3 of the phenotypic variation is due to individual differences and the remainder to residual 

variation (ε=me+e). Correlations can exist at each level (dashed arrows); the phenotypic correlation 

equals (Eqn. 2) 𝑟𝑧𝑀,𝑧𝐹= 1/3*𝑟𝑖𝑛𝑑𝑀,𝑖𝑛𝑑𝐹  + 2/3*𝑟𝜀𝑀,𝜀𝐹 . The phenotypic correlation thus b) 

underestimates or c) overestimates the correlation caused by assortative mating. (Reproduced from 

Class et al. 2017. Methods in Ecology and Evolution 38:42-49. doi:10.1111/2041-210X.12837; see 

original publication V). 
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V. CONCLUSIONS AND FUTURE DIRECTIONS 

This thesis addressed a range of classical themes in evolutionary quantitative genetics in 

the context of animal personality evolution. Indeed, the first four chapters of this thesis 

applied quantitative genetic approaches to personality traits measured in the wild to 

estimate their heritability (I) and the genetic correlation between them (II, III), study their 

plasticity across the ontogeny (II, III, IV), and whether selection acts on them (I, IV) or 

on their correlation (II). The most important findings of chapters I,II, and IV are: i) HA 

and BR, two behavioural responses to handling measured in adult and nestling blue tits, are 

heritable and linked with adults’ performance in the wild. While BR decreases females’ 

survival, HA increases males’ reproductive success, especially when paired with females 

that are similar in their HA score. This positive interaction of both parents’ HA on their 

reproductive success suggests the presence of selection for assortative mating, which is 

mediated by parental care only; ii) Although HA and BR are genetically correlated and 

form a behavioural syndrome in nestlings, their correlation disappears in adults not 

because of correlated selection but because of developmental plasticity, and more 

specifically genotype-age-interactions; iii) HA in adults declines within individuals over 

their lifetime, and individuals vary in their rates of decline, which suggests the occurrence 

of senescence in HA. 

Altogether, these findings raise the question of the maintenance of additive genetic 

variance in HA and BR, given that both traits are under directional selection. Although this 

thesis does not provide clear evidence for any of the evolutionary mechanisms potentially 

maintaining additive genetic variation in personality, the results obtained suggest that some 

of them may be occurring in this population. For instance, there is selection for assortative 

mating based on HA on the phenotypic level, which, if present on the genetic level could 

help maintain additive genetic variation in HA in the population. In addition, there is 

evidence for GxA during the first year of life in blue tits which may help maintaining 

additive genetic variation in HA and BR if selection favours different phenotypes in 

nestlings and in adults. In contrast, selection analyses in Chapter I showed no evidence 

for fluctuating selection on personality because there was no significant interaction 

between personality and year. Because these analyses only included a few years of data, 

new selection analyses including a now longer study period could be performed in future 

studies. Furthermore, selection for personality traits differs between the sexes but does not 

act in opposite directions. Although each trait is highly genetically correlated across the 

sexes (unpublished results), these results do not support sexually antagonistic selection as a 

mechanism maintaining additive genetic variation in HA and BR. Finally, whether HA or 

BR are part of a pace-of-life syndrome has not yet been tested and would deserve proper 

investigation. 

Importantly, three chapters of this thesis focused on the ontogeny of personality to 

underline its importance for studying the evolution of personality, and to encourage further 
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empirical work on this question using the tools provided by quantitative genetics. 

Personality changes over the lifetime of individuals have been well reported and the 

sources of between-individual variation in these changes investigated in humans and non-

human primates. In contrast, behavioural ecology studies, despite an increasing interest in 

estimating the sources of between-individual variation in behaviour, are mostly focused on 

a limited part of the ontogeny of their subjects. While behavioural ecology studies would 

benefit from adopting a lifetime perspective, psychology studies have implemented 

quantitative genetic approaches such as random regression analyses, but do not report 

lifetime changes in the amount of additive genetic or between-individual variance 

(Mroczek & Spiro 2003, Terracciano et al. 2005). Studying lifetime changes in personality 

using a quantitative genetic framework in different taxa would allow comparative studies 

of personality development and provide valuable insights into the evolution and phylogeny 

of this fascinating phenomenon. 

Finally, the fifth chapter of this thesis shows that the approach traditionally used for 

estimating assortative mating in “fixed” traits is largely inappropriate when applied to 

labile traits such as behaviour. Fortunately, alternative approaches are available to 

accurately estimate assortative mating and other sources of phenotypic resemblance 

between mated partners, which are often assumed to be absent in quantitative genetic 

analyses (Falconer & MacKay 1996). Further developments of these approaches might 

enable the answering of new questions such, as the occurrence of indirect genetic effects 

between partners, or the niche-specialization hypothesis (Dingemanse & Araya-Ajoy 

2015). One important aspect of this last chapter is that it questioned one assumption that is 

traditionally made for fixed traits but might not be appropriate for behaviour. Another 

important assumption that is often made, mostly by convenience, is the minor role of 

dominance genetic variance in quantitative traits (Lynch & Walsh 1998). In fact, a 

substantial amount of dominance variance can be expected in personality traits because 

they are closely related to fitness, (Mousseau & Roff 1987, Crnokrak & Roff 1995). 

Although dominance variance was found in personality in humans (Eaves et al. 1998, 

Keller et al. 2005, Pilia et al. 2006), captive primates (Adams et al. 2012), and from 

various laboratory or agricultural populations (reviewed in Wolak & Keller 2014), 

estimates from wild populations remain scarce. This is because estimating dominance 

variance requires a large amount of data on specific types of relatives, which can be 

difficult to collect in wild populations. Avian study systems such as the blue tit population 

studied for this thesis, characterized by relatively large family sizes, extra-pair offspring, 

and pedigree records for many generations, are nevertheless good candidates for estimating 

dominance variance (Wolak & Keller 2014). Accounting for dominance variance in 

personality traits in the wild will not only allow for a better estimation of its different 

variance components, but is also of interest due to its many evolutionary implications, 

especially in the mechanisms maintaining additive genetic variation in personality (Roff 

1997, Wolak & Keller 2014). 
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