
Implementation of a Secure Multiparty

Computation Protocol

M.Sc.(Tech.) Thesis
University of Turku
Department of Future Technologies
Networked Systems Security
October 2017
Tahsin Civan Mert Dönmez

Supervisors:
Antti Hakkala M.Sc.(Tech.)
Nanda Kumar Thanigaivelan M.Sc.(Tech.)

The originality of this thesis has been checked in accordance with the University of Turku quality assurance system using the Turnitin
OriginalityCheck service.

UNIVERSITY OF TURKU
Department of Future Technologies

Tahsin Civan Mert Dönmez: Implementation of a Secure Multiparty
Computation Protocol

M.Sc.(Tech.) Thesis, 122 p., 16 app. p.
Networked Systems Security
October 2017

Secure multiparty computation (SMC) allows a set of parties to jointly compute a
function on private inputs such that, they learn only the output of the function, and the
correctness of the output is guaranteed even when a subset of the parties is controlled
by an adversary. SMC allows data to be kept in an uncompromisable form and still be
useful, and it also gives new meaning to data ownership, allowing data to be shared in
a useful way while retaining its privacy. Thus, applications of SMC hold promise for
addressing some of the security issues information-driven societies struggle with.

In this thesis, we implement two SMC protocols. Our primary objective is to gain
a solid understanding of the basic concepts related to SMC. We present a brief survey
of the field, with focus on SMC based on secret sharing. In addition to the protocol im-
plementations, we implement circuit randomization, a common technique for efficiency
improvement. The implemented protocols are run on a simulator to securely evaluate
some simple arithmetic functions, and the round complexities of the implemented
protocols are compared. Finally, we attempt to extend the implementation to support
more general computations.

Keywords: MPC, SMC, secure multiparty computation, implementation, secret
sharing

Acknowledgements
I would like to thank Antti Hakkala, M.Sc.(Tech.), and Nanda Kumar Thanigaivelan,

M.Sc.(Tech.), for being my supervisors. Many thanks go to Josefine Wegert for being a

good friend, and for proofreading the thesis. Last but not least I thank my family for their

support and encouragement.

i

Contents

List of Figures vi

List of Tables vii

List of Abbreviations viii

1 Introduction 1

1.1 Thesis Structure . 3

2 Preliminaries 5

2.1 Secure Multiparty Computation (SMC) 5

2.1.1 Players and Other Parties . 6

2.1.2 Network Model . 6

2.1.3 Adversary Model . 7

2.1.4 Definition of Security . 9

2.2 Consensus Broadcast . 12

2.3 Circuit Evaluation . 12

2.3.1 Boolean Circuits . 13

2.3.2 Arithmetic Circuit . 14

2.3.3 Boolean Circuits vs. Arithmetic Circuits 15

2.4 Secret Sharing . 16

ii

2.4.1 Shamir’s Secret Sharing Scheme 16

2.4.2 General Linear Secret Sharing Schemes 18

2.5 Verifiable Secret Sharing . 18

2.5.1 Commitment via Redundant Sharing 19

2.6 Preprocessing Model . 20

2.6.1 Circuit Randomization . 20

2.7 Oblivious Transfer . 22

2.7.1 Generating Multiplication Triples Using OT 23

2.7.2 OT-Extension . 26

2.8 Homomorphic Encryption Schemes . 26

2.8.1 Fully Homomorphic Encryption 26

2.8.2 Additively Homomorphic Encryption 27

2.8.3 Semi-Homomorphic Encryption 27

2.8.4 Somewhat Homomorphic Encryption 27

2.9 Zero-knowledge Proofs . 27

2.9.1 Proofs of Knowledge . 30

2.9.2 Zero-Knowledge Verification of Multiplication Triples 30

3 A Brief Survey of SMC: Theory and Applications 32

3.1 Other Approaches to Privacy-Preserving Computations 32

3.1.1 Data anonymization . 32

3.1.2 Randomized Response Techniques 33

3.1.3 Homomorphic Encryption Schemes 33

3.2 Secure Multiparty Computation . 34

3.2.1 Garbled Circuits . 35

iii

3.2.2 Feasibility Results . 38

3.2.3 SMC Frameworks and Other Implementations 39

3.3 Applications of SMC . 42

3.3.1 Auctions . 42

3.3.2 Procurement . 43

3.3.3 Benchmarking . 43

3.3.4 Privacy Preserving Data Mining 44

3.3.5 Electronic Voting . 45

3.3.6 Set Intersection . 46

3.3.7 Other Applications . 47

3.3.8 Synergy with Blockchains . 48

4 Specification of Implemented Protocols 51

4.1 Overview of the Protocols . 51

4.1.1 Protocol CEPS (Circuit Evaluation with Passive Security) 52

4.1.2 Protocol CEAS (Circuit Evaluation with Active Security) 53

4.2 Security of the Protocols . 54

4.2.1 Network Model . 54

4.2.2 Adversary Model . 54

4.2.3 Security . 55

5 Implementation 56

5.1 A Motivating Example . 56

5.2 Simulator . 61

5.2.1 Simulating the Network . 63

5.2.2 Simulator Options . 64

iv

5.2.3 Simulating an Active Adversary 67

5.3 Circuit Generator . 69

5.4 Protocols . 70

5.4.1 PCEPS . 70

5.4.2 PCEAS . 76

5.4.3 Local Operations on Commitment Records 81

5.4.4 Subprotocols Used by PCEAS 84

5.4.5 Cases of Malicious Behaviour 101

5.4.6 Implementation of Circuit Randomization 105

6 Round Complexities and General Computing 110

6.1 Round Complexities . 110

6.1.1 PCEPS vs. PCEAS . 111

6.1.2 PCEAS vs. PCEAS,CR . 113

6.2 Performing General Computations . 114

6.2.1 Remembering Previous Results 114

6.2.2 Building a Circuit For Comparison 115

7 Concluding Remarks 121

Bibliography 123

A Appendix 146

A.1 Source Code Availability . 146

A.2 Dependencies . 146

A.2.1 FLINT: Fast Library for Number Theory 146

A.2.2 Boost C++ Libraries . 147

v

A.3 Building . 147

A.4 Running . 148

A.5 Project Structure . 148

A.6 Sample Code . 148

A.6.1 Method runPceps() . 148

A.6.2 Method runPceas() . 152

vi

List of Figures

5.1 A Motivating Example . 57

5.2 Simulator Overview . 62

5.3 Circuits after input sharing . 72

5.4 Circuits after local computations . 73

5.5 Visualization of a degree reduction . 74

5.6 Circuits after computation . 75

5.7 Table of commitment records . 82

5.8 Target selection . 90

6.1 Comparator circuit . 116

6.2 CXOR . 117

6.3 CMS1 . 118

6.4 CSUB . 119

6.5 CΣXY . 120

A.1 Project Structure . 149

vii

List of Tables

5.1 Computation requests made by Data.org. 59

5.2 Private inputs of the input providers. 59

5.3 Computation results revealed to Data.org. 61

5.4 Values of Cmax for the given T and N . 68

6.1 Total number of communication rounds required by the protocols. 111

6.2 Total number of communication rounds required by PCEAS for the com-

putations in Section 5.1. 113

6.3 Number of communication rounds required by the protocols in computa-

tion phase. 113

6.4 Summary of the secure comparisons. 119

viii

List of Abbreviations

APT Advanced Persistent Threat

AS Autonomous System

BGP Border Gateway Protocol

CDCF Cross-Domain Cooperative Firewall

CEAS Circuit Evaluation (with) Active Security

CEPS Circuit Evaluation (with) Passive Security

CR Circuit Randomization

FHE Fully Homomorphic Encryption

IP Internet Protocol

ISP Internet Service Provider

MAC Massage Authentication Code

MPC Multiparty Computation

OT Oblivious Transfer

P2P Peer-to-Peer

PRSS Pseudorandom Secret Sharing

PRZS Pseudorandom Zero Sharing

PoK Proof of Knowledge

SFE Secure Function Evaluation

SHE Somewhat Homomorphic Encryption

ix

SMC Secure Multiparty Computation

VPN Virtual Private Network

VSS Verifiable Secret Sharing

ZKP Zero-Knowledge Proof

ZKPoK Zero-Knowledge Proof of Knowledge

ZKPoPK Zero-Knowledge Proof of Plaintext Knowledge

1

Chapter 1

Introduction

We live in the Information Age; an era marked by the central role of information in most

societies. Information is created, transfered, stored, and processed at an ever increasing

rate. An estimated capacity of more than 1020 bytes of storage and more than 1021 bytes of

transmission per second has been reached almost a decade ago, taking into account only

general-purpose computers [66]. A 2013 article [98] reports that 90 percent of world’s

data had been generated within the previous two years. It is estimated that, a handful of

big organizations each process more than 1016 bytes of data per day, and the amount of

data stored by hoarders such as Google1 and NSA2 is estimated to be on the scale of 1019

bytes [68].

Information with varying degrees of confidentiality have become assets for various

kinds of organizations. Organizations use the available data to improve their services

and to make better decisions. However, these benefits do not come without a cost.

Information-driven societies have seen the emergence of new problems such as large scale

data breaches [95], mass surveillance [90], and even mass manipulation [55].

A blog post titled ’Crypto is Dead; Long Live Crypto!’ [99] points out that, one cannot

1https://www.google.com/intl/en/about/
2https://www.nsa.gov/

Chapter 1. Introduction 2

obtain an ultimate solution to such problems through traditional uses of cryptography,

such as encryption and authentication. The very reason behind the collection of data is

that, it will be processed at some point. As we do not know yet how to efficiently operate

on encrypted data, whatever we encrypt to protect, will have to be decrypted before it can

be of any use. Moreover, with the emergence of advanced persistent threats (APTs), it

is not unreasonable to assume that some attacker is already inside the security parameter,

possibly holding the decryption key. Secure multiparty computation (SMC, or secure

MPC) is an alternative way of using cryptography, that can address these issues. SMC

allows a set of parties to jointly compute a function on private inputs such that, they

learn only the output of the function (i.e. the privacy of the inputs are preserved) and

correctness of the outputs is guaranteed, even when a subset of the parties is controlled by

an adversary. In typical use cases of SMC, parties involved are mutually distrustful, but

one can also imagine the case of multiple machines owned by a single party, performing

SMC to collectively decrypt and process confidential data. No single machine would have

the key, and no single machine would see the plaintext. Now it would not be enough for

the APT to compromise a single machine holding the decryption key, but every single one

of the machines would have to be compromised.3

In addition to solving the dilemma of keeping data in a useful form or keeping data

in an uncompromisable form, SMC also gives new meaning to data ownership and data

sharing. With regard to data sharing, we are faced with another dilemma: On the one

hand, people would like to make their data available in order to benefit from customized

and/or improved services, or in order to contribute to advancing research or improving

administrative decisions,4 but on the other hand, people often want to keep their data

3This is true, assuming that the SMC protocol used can handle a dishonest majority. Otherwise compro-
mising a smaller subset of the machines might suffice.

4Consider, for example, a citizen making her health care data available to a medical research company.

Chapter 1. Introduction 3

private and under their control. SMC allows input providers to make their data available

as input to computations without ever revealing them. As a consequence, this way of

sharing data has the beneficial properties of reversibility and controllability. For example,

the access control system proposed in [112] leverages these two properties, and allows

the input provider to control how her data is used, and block access at a later time if she

wishes so. In short, the input provider retains the ownership of her data.

While the promises of SMC might look too good to be true at first sight, its theoretical

foundations are solid. SMC have been rigorously studied since the early 80s. Keller et

al. [75] note that, ever more efficient SMC protocols have been discovered in the last

decade, changing the status of SMC from a purely theoretical study, to a research field

with practical applications. Following figures demonstrate this rapid move: Performing

a single AES block encryption (via SMC) took 60 seconds in 2009, only hundredth of

a second in 2013 [99], and a 2016 article [75] reports a 100 to 1000 fold throughput

increase compared to what was possible in 2013. Moreover, these promising results are

for protocols that work with strict and realistic adversary models: As long as one of the

participants is honest, any number of players that deviate from the protocol in arbitrary

ways can be tolerated.

1.1 Thesis Structure

In this thesis, we implement two SMC protocols: PCEPS [41, p.38] and PCEAS [41,

p.117].5 For PCEAS , we also implement circuit randomization [13], which is a common

technique for efficiency improvement. Our main objective is to gain an understanding of

5PCEPS and PCEAS stand for Protocol (for) Circuit Evaluation (with) Passive Security and Protocol
(for) Circuit Evaluation (with) Active Security, respectively. Formal definitions of these protocols are given
in Chapter 4, after the preliminaries.

Chapter 1. Introduction 4

the basic ideas and concepts related to SMC, and to solidify that understanding by means

of the implementations. Additionally, we aim to gain insight into the inner workings

of state-of-the-art SMC protocols. Finally, we aim to gain familiarity with the past and

current state of the research field.

The rest of the thesis is structured as follows. Chapter 2 briefly covers some con-

cepts, techniques, and cryptographic primitives that are needed for the presentation of the

following chapters. Chapter 3 presents a short survey of the research field, with focus

on SMC based on secret sharing. Some important theoretical results, and a few selected

SMC implementations and applications are mentioned. Chapter 4 provides an overview

of the implemented protocols PCEPS and PCEAS , and summarizes the results of formal

security analysis of these protocols. Chapter 5 describes in detail the protocol implemen-

tations and the implementation of the simulator, which provides an environment where

the protocols can be executed. In Chapter 6, we first securely evaluate a few simple arith-

metic functions to observe and to compare the round complexities of the implemented

protocols. Next, the implementation is extended to support more general computations.

In particular, the computing parties are provided with the ability to remember shares from

previous computations, and a custom arithmetic circuit is built for a specific computation,

namely, secure comparison of integers. In Chapter 7, we conclude the thesis with closing

remarks.

5

Chapter 2

Preliminaries

This chapter briefly covers the concepts, techniques, and cryptographic primitives that

are needed for the presentation of following chapters. The presentation of Section 2.1 is

mostly based on the related sections from [41, 17]. The presentations of Sections 2.2 -

2.6 follow closely [41].

2.1 Secure Multiparty Computation (SMC)

Secure multiparty computation [109, 108] allows a set of possibly mutually distrusting

parties to perform computations on private inputs, such that the following two properties

are satisfied even when a subset of the players are dishonest1:

• Correctness: Computation yields the correct result.

• Privacy: No new information is released other than the result of the computation.

In this section, we make this definition more concrete.

1Some alternative definitions require an additional property: fairness or robustness. These properties
are defined in Section 2.1.4.

Chapter 2. Preliminaries 6

2.1.1 Players and Other Parties

The parties who participate in the computation will be referred to as players (or computing

parties). Other parties of interest are input providers and data users. An input provider

provides one or more of the private inputs used in the computation. Computation result is

opened to the data users. Input providers and data users will be collectively referred to as

users.

2.1.2 Network Model

Existence of secure peer-to-peer channels between every pair of players, and between

every player-user pair is assumed. Additional assumptions might be made, such as the

existence of a consensus broadcast channel (See Section 2.2).

Synchronous Networks

Entities on the network have synchronized clocks,2 which allow collective definition of

communication rounds. A communication round is defined by its start time and duration.

Communication proceeds in rounds and there is an upper bound on message delivery time.

The upper bound on message delivery time constrains the definitions of the communica-

tion rounds, such that the following condition always holds: any honest player, who tries

to deliver a message during round r, will always have it delivered at the beginning of

round r + 1. This constraint allows to distinguish an honest player, who experiences net-

work delay, from a dishonest player, who does not send her messages at the time specified

by the protocol. Communication on synchronous networks is inherently inefficient in the

sense that, each round has to last at least as long as the worst-case delivery time.

2In the current context, entities on the network are players, input providers, and data users.

Chapter 2. Preliminaries 7

Asynchronous Networks

Messages may be delivered out of order, but any message that is sent will eventually be

delivered.

2.1.3 Adversary Model

A concrete adversary model addresses the following considerations about an adversary.

Active Adversary vs. Passive Adversary

Dishonest behaviour is modeled by assuming an adversary corrupting a subset of the

players. The degree of control the adversary has over a corrupted player defines the cor-

ruption. Adversaries can be classified according to the corruption they cause. A passive

adversary can read the internal states of corrupted players. An active adversary can, in

addition to reading internal states, make the corrupted parties deviate arbitrarily from the

protocol. A passive adversary is sometimes referred to as a semihonest adversary or hon-

est but curious adversary in the literature. An active adversary is sometimes referred to as

a malicious adversary in the literature.

Static Adversary vs. Adaptive Adversary

An adaptive adversary is allowed to choose the players to corrupt during protocol exe-

cution, based on information gathered up to that point. A static adversary cannot adapt

her choice (of players to corrupt) to information gathered during the computation, and is

assumed to make the choice before protocol execution starts.

Chapter 2. Preliminaries 8

Computational Power

An adversary may be, for example, unbounded or polynomially bounded in terms of com-

putational power.

Message Scheduling Capabilities

Rushing is an adversary behaviour defined in the context of synchronous networks, where

an adversary may be able to delay the sending of messages within a round. A rushing

adversary is allowed to prepare the messages to be sent by corrupted players at the end of

round r+1, based on information contained in all the messages sent to corrupted players

at the end of round r.

In asynchronous networks, an adversary may be able to delay the sending of messages

arbitrarily. This allows the adversary to use the information read from honest players’

messages, in the process of constructing her own messages.

Corruption Capabilities and Adversary Structures

In threshold-t model, an adversary can corrupt up to t players. It is sometimes useful

to consider more powerful models, which take into account other factors, such as the

differences between players in terms of susceptibility to corruption. For example, on a

network with N machines Mi, it might take twice as much resources to compromise one

of M1 or M2, compared to any one of the others.3 It could be useful to be able to express

that, an adversary is capable of compromising any three of the machines M3, ...,MN, or

one of M1, M2 and one other weaker machine, but not M1 and M2 together.

Threshold-t model can be generalized by considering a set A of a subset of players

instead of a single threshold value [41]. Set A contains all possible subsets of players

3Perhaps, M1 and M2 are better protected because they hold pieces of a master key.

Chapter 2. Preliminaries 9

that can be corrupted by the adversary. The special case of all subsets of size less than t

corresponds to the threshold-t model. A feasibility result regarding SMC, which will be

mentioned in Section 3.2.2, demonstrates the greater power of this more general adversary

model. When expressed in the threshold-t model, the feasibility result tells that, for a

particular number of players n0, it is not possible to have active, information theoretic

security for more than t0 corruptions. On the other hand, when expressed in terms of the

more general adversary structure, it is possible to have active security even when subsets

of size greater than t0 are corrupted. The reason why greater than t0 corruptions can be

tolerated is that, the general adversary model, with its superior expressive power, allows

one to express that certain players cannot be simultaneously corrupted.

2.1.4 Definition of Security

It is possible to describe security in terms of a set of desirable properties. Two properties,

correctness and privacy, are defined in Section 2.1. Two additional properties are defined

below:

• Robustness: The adversary cannot prevent honest parties from receiving the com-

putation result (for example, by aborting prematurely).

• Fairness: Once the adversary receives information about the computation result,

she can no longer prevent honest parties from also receiving it. In other words,

fairness is a weaker version of robustness, which requires the robustness property

to hold only in cases where the adversary learns the computation result.

This is not a full list of properties one can come up with. With property-based security

definitions, there are concerns such as the security definition being application dependent

and the possibility of missing some properties [82].

Chapter 2. Preliminaries 10

Simulation-Based Security

The proof of a cryptographic protocol often takes place in a game-based setting, and

in case of computational security, it involves a reduction to an assumed hard problem.

Formal analysis of SMC protocols, on the other hand, are often formalized in a simulation-

based setting [61, 35]. The notion of simulation-based security definition is also known

as the real/ideal paradigm.

In the ideal model, input providers send their private inputs to a trusted third-party,

who performs the computation and shares the result with the data users. In the real model,

players run the SMC protocol to perform the computation. Security of an SMC protocol π

is defined with respect to an ideal functionality (or intended functionality) F, which should

be regarded as the specification of π. This specification determines the behaviour of the

trusted third-party. Proving the security of π is equivalent to finding, for every possible

adversary, a simulator S interacting with F, such that the output of S is indistinguishable

from the output of π.4 Existence of such simulators can be put into words in the following

alternative ways:

• If an attack exists in the real model, it also exists against the trusted third-party

(represented by F) in the ideal model. Since no attacks exist against the trusted

third-party (by definition), no attack exists against π.

• The adversary can simulate the real model, given the information she obtains in the

ideal model. Hence, against π in the real model, the adversary cannot achieve more

than what she could achieve against the trusted third-party in the ideal model.

• π is proved to be secure with respect to F.

4Simulator S can be thought of as the ideal model adversary.

Chapter 2. Preliminaries 11

• π is at least as secure as F.

• π securely implements F.

Tolerable Adversary

Simulation-based definition of security is based on the indistinguishability of the real

model from the ideal model. Consequently, computational power of the tolerable adver-

sary must be specified for a precise definition of security. The following definitions are

concerned with the computational power of the tolerable adversary [17]:

A protocol is information-theoretically secure if it tolerates a computationally-

unbounded adversary. An information-theoretically secure protocol is

• perfectly secure, in case of perfect indistinguishability.

• statistically secure, if a negligible probability of error is allowed.

A protocol is computationally secure (or cryptographically secure), if it can only tolerate

a computationally-bounded adversary.

The following definitions are concerned with other capabilities of the tolerable adver-

sary [17]:

• A protocol is actively secure if it tolerates an active adversary, and passively secure

if it can only tolerate a passive adversary.

• A protocol is adaptively secure if it tolerates an adaptive adversary, and statically

secure if it can only tolerate a static adversary.

Chapter 2. Preliminaries 12

2.2 Consensus Broadcast

Let’s assume that, at some point during its execution, a protocol expects the participating

parties to broadcast a message. If party Pi is corrupted by an active adversary, in general,

there is no guarantee that all other parties will receive the same broadcast message from

Pi. A stronger version of broadcast, called consensus broadcast (or Byzantine agree-

ment), guarantees that all honest parties receive the same message even when the sender

is actively corrupted. Cramer et al. [41] note that, consensus broadcast can be considered

as a special case of secure function evaluation, where a single player provides the input

m, and every other player receives m as the computation result.

2.3 Circuit Evaluation

Most SMC protocols perform secure evaluation of either Boolean circuits, or arithmetic

circuits, over a finite ring or field [75]. A circuit is a collection of gates and connect-

ing wires. A circuit can be thought of as an acyclic directed graph [41], where gates

correspond to nodes, and wires correspond to edges. A circuit can have any number of

incoming wires, onto which the inputs are assigned prior to evaluation. A circuit can have

any number of outgoing wires, onto which the evaluation results are assigned at the end

of evaluation. Each gate of the circuit has a specific number of incoming wires which

depend on the type of gate, and any number of outgoing wires. When the computation of

a gate is complete, result is assigned to all of its outgoing wires. Secure evaluation of a

circuit is specified by an SMC protocol.

The implemented protocols PCEPS and PCEAS evaluate arithmetic circuits.

Chapter 2. Preliminaries 13

2.3.1 Boolean Circuits

A set of Boolean functions is functionally complete, if every Boolean function can be

expressed in terms of its elements. For example, each one of the sets {∧,⊕}, {∧,¬}, and

{|}5 are functionally complete.

It is advantageous to use a single type of gate (NAND gate) for building hardware

circuits. However, in the context of SMC, Boolean circuits are often built out of AND

and XOR gates, as this makes optimizations such as Free XOR possible [78].

It follows from functional completeness that, any function that is feasible to compute,

can be specified as a polynomial-size Boolean circuit [41]. Hence, the ability to securely

evaluate Boolean circuits, implies the ability to securely evaluate functions. In the con-

text of SMC, the ideal functionality corresponding to this ability is referred to as secure

function evaluation (SFE).

General Secure Computing

It is possible to extend the ability to securely evaluate functions, to more general secure

computations. A relevant result from the field of computability theory is that, while a

Boolean circuit is only capable of computing a single Boolean function on a fixed number

of inputs, a (uniform) family of circuits is capable of computing the unbounded set of

functions computed by a Turing machine [94].

Cramer et al. [41] note that the SFE ideal functionality can be extended to a more gen-

eral reactive functionality, as follows. Reactive functionality would use the ideal function-

ality SFE to securely evaluate functions depending on both the internal state and inputs

from players. In addition to delivering the outputs to the players, it would also update the

internal state.

5| is the Sheffer stroke, or NAND.

Chapter 2. Preliminaries 14

While theoretically possible, attaining the ability to perform general secure computa-

tions involves practical challenges. For example, because of the particular way correct-

ness of an evaluation is verified, SPDZ6 does not allow the use of private secret shared

data in subsequent function evaluations. Consequently, SPDZ does not support reactive

functionalities. An SMC protocol based on SPDZ, whose online phase supports reactive

functionalities, is proposed in [49]. Another example of such practical considerations

comes from Zyskind et al. [112], who report that their Turing-complete SMC interpreter

handles conditional statements depending on secret values by evaluating both branches.

2.3.2 Arithmetic Circuit

It is argued in the previous section that, general computations can be achieved through

evaluation of Boolean circuits. In order to make the same claim for arithmetic circuits,

it is enough to notice that any Boolean circuit can be simulated by arithmetic operations

in the underlying field [41]. Boolean values true and false can be encoded as 1 and 0,

respectively. Then, the negation of a bit b (¬b) can be simulated by 1− b,7 and the logical

conjunction of two bits b1 and b2 (b1 ∧ b2) can be simulated by b1 · b2. Because the set

{∧,¬} is functionally complete, any Boolean function can be simulated.

Arithmetic circuits are made up of addition (ADD), multiply-by-constant (CMUL),

and multiplication (MUL) gates. While ADD and MUL gates have two input wires, a

CMUL gate have a single input wire and the gate itself is labeled by a constant α ∈ Fp,

where Fp is the underlying field and α is used as one of the multiplicands.

A large part of the cost associated with the evaluation of arithmetic circuits comes

from computation of MUL gates. For SMC protocols that work in the honest majority

6SPDZ is an SMC protocol, which is discussed in Section 3.2.3.
71 + b · (−1)

Chapter 2. Preliminaries 15

setting, such as PCEPS and PCEAS , this cost is mostly in the form of network communi-

cations, whereas for protocols that work in the dishonest majority setting,8 cost of local

computations associated with the use of expensive public-key cryptography tend to domi-

nate. An extreme case on this end is the trivial SMC protocol based on fully homomorphic

encryption, which is outlined in Section 3.1.3.

2.3.3 Boolean Circuits vs. Arithmetic Circuits

SMC comes in two flavours: SMC based on secret sharing and SMC based on garbled

circuits.9 Usually the former evaluates arithmetic circuits, and the latter evaluates binary

circuits.10 Keller et al. [75] note that, protocols for secure evaluation of Boolean circuits

can usually do with only symmetric cryptography, whereas protocols evaluating arith-

metic circuits usually require more expensive public key cryptography techniques, except

in the honest majority setting. However, SMC protocols based on secret sharing, which

evaluate arithmetic circuits, have the desirable property that computation of ADD and

CMUL gates come almost for free. Especially when the computation heavily involves

arithmetics over a large field, which is often the case for application areas such as bench-

marking and auctions [21], arithmetic circuit is the natural choice. Of course, there are

also cases where Boolean circuits are the most compact way to express the desired com-

putation [50]. For arithmetic circuits, by using a large enough field, in other words by

choosing a p that is large compared to the inputs, one can avoid modular reductions. As

a result, additions and multiplications in Fp directly correspond to integer addition and

multiplication.

8In the dishonest majority setting, up to n− 1 out of n of the players may be corrupted by an adversary.
9More is said about this categorization in Section 3.2.

10An exception is the arithmetic variant of Yao’s construction introduced in [6].

Chapter 2. Preliminaries 16

2.4 Secret Sharing

Secret sharing was first introduced back in 1979 [97, 25], and since then it has become

a fundamental cryptographic primitive [41]. A (t, n)-threshold secret sharing scheme

divides a secret into n pieces called shares, such that, less than t shares reveal no infor-

mation about the secret, but with t or more shares, the secret can be reconstructed.

2.4.1 Shamir’s Secret Sharing Scheme

Shamir’s secret sharing scheme [97] is based on polynomials over a finite field F. In order

to share a secret s ∈ F, one first chooses a random polynomial fs(x) ∈ F[x] of degree

at most d such that fs(0) = s. Then, to every other player Pj , the share sj = fs(j) is

privately sent. In accordance with the notation in [41], the set of shares will be denoted

by [s; fs]d. Let t = d + 1 be the threshold and n be the total number of players. The

scheme is a (t, n)-threshold scheme. It follows from Lagrange interpolation that, any set

of d or fewer shares contains no information on secret s, and s can be reconstructed from

any t or more shares [41]. For an SMC protocol based on Shamir’s secret sharing, such as

PCEPS and PCEAS , the former yields an upper bound on the number of corrupted players,

and the latter yields a lower bound on the number of honest players (See Section 5.2.3).

Perfect security of PCEPS and PCEAS stems from the fact that, the secret sharing

scheme perfectly hides a secret. Communication-free computation of ADD and CMUL

gates stems from the linearity of the secret sharing scheme. These are examples that

demonstrate the intimacy between an SMC protocol (based on secret sharing) and the

underlying secret sharing scheme. SMC based on secret sharing is sometimes referred to

as share computing in the literature [30].

Chapter 2. Preliminaries 17

Lagrange Interpolation

If f(x) is a polynomial of degree at most d over a field F, and if C is a subset of F with

|C| = d+ 1, then

f(x) =
∑
i∈C

fiδi(x)

where

δi(x) =
∏

j∈C,j 6=i

x− j
i− j

are the Lagrange basis polynomials.

Recombination Vector

It follows from Lagrange interpolation that, for all polynomials f(x) of degree at most d

and for n < |F|, there exists a vector r = (r1, ..., rn) such that

f(0) =
d+1∑
i=1

rif(i)

where ri ∈ F is given by

ri = δi(0)

This vector r is referred to as the recombination vector [41]. In relation to the SMC

implementations presented in this work, recombination vector depends only on the pro-

tocol parameters p, (t, n), and on the subset C, which corresponds to the set of players

whose shares are combined in order to recover the secret s = f(0). Hence, all players can

independently calculate the recombination vector.11

11It is not a requirement that the players agree on the set of shares to combine, and hence they could
in theory use different recombination vectors. As far as the implementations presented in this work are
concerned, all honest players agree on the set of shares to combine.

Chapter 2. Preliminaries 18

2.4.2 General Linear Secret Sharing Schemes

Cramer et al. [41] note that, basing SMC protocols on more general linear secret sharing

schemes (than Shamir’s Secret Sharing Scheme) might bring the following benefits:

• handling general adversary structures

• removing the dependency between the number of players and the size of the field

underlying the secret sharing scheme12

Shamir’s secret sharing scheme, being a threshold scheme, can handle the threshold-t

model naturally, but it cannot handle more general adversary structures as it is. Some

level of generalization can be achieved externally, for example, by generating more shares

than there are players, and distributing different number of shares to different players.

2.5 Verifiable Secret Sharing

The cryptographic primitive Verifiable Secret Sharing (VSS) was first introduced in [38].

VSS adds the following property on top of the secret sharing primitive: Each player

can verify that, every player received a valid share of the secret,13 while possessing no

knowledge about the secret.

In context of protocol PCEAS , VSS is used to prevent corrupted players from distribut-

ing inconsistent shares. VSS is implemented as suggested in [41]. As with ordinary secret

sharing, a player who wants to share a secret s chooses a random polynomial. But as an

additional step, the player commits to each coefficient of this polynomial. Linearity al-

lows construction of commitments to the shares generated from the polynomial. Finally,

12Shamir’s secret sharing scheme imposes the constraint n < |F|.
13In other words, the distributed set of shares are consistent, and the received share is an element of that

set.

Chapter 2. Preliminaries 19

instead of privately sending shares, commitments to shares are transferred by running a

secure protocol. These steps are explained in detail in Section 5.4.4. The point to make

here is that, in this particular construction, VSS is built on top of commitment.

2.5.1 Commitment via Redundant Sharing

In protocol PCEAS , commitment to a value a ∈ F is achieved by secret sharing a along

with redundant information to be used in consistency checks [41]. Instead of a univariate

polynomial as in Shamir’s secret sharing, a symmetric bivariate polynomial

fa(x, y) =
∑
i,j

αi,jx
iyj

is sampled, where

fa(0, 0) = α0,0 = a

For the commitment, a player Pk receives not an ordinary share, but a whole univariate

polynomial

fk(x) = fa(x, k) =
∑
i

(
∑
j

αi,jk
j)xi

which is referred to as a verifiable share in the following chapters. In accordance with the

notation in [41], a set of verifiable shares will be denoted by [[s; fs]]d.

Protocol PCEAS leverages the symmetric property of the sampled polynomials

fa(x, y) to allow consistency checks (See Section 5.4.4).

Chapter 2. Preliminaries 20

2.6 Preprocessing Model

An SMC protocol in the preprocessing model assumes a trusted dealer, who knows noth-

ing about the function to be evaluated and the private inputs to be used in the evaluation

[50]. Trusted dealer supplies raw material for the computation before it starts. An SMC

protocol is run in the online phase to carry out the secure computation, making use of the

supplied raw material. Trusted dealer is implemented by another secure protocol, which

is run in the preprocessing phase (or offline phase).14 The purpose of this is to push part

of the work, that is costly in terms of local computations or network communications, to

the preprocessing phase. Having an efficient online phase increases the practical value of

an SMC system. One practical concern is that one would not want players come and go

during actual function evaluation. Such circumstances might be more tolerable during a

preprocessing phase. Knowing the list of participants and the time of computation (i.e.

time of running the online phase) well in advance, can make a preprocessing phase more

feasible, and this is the case for many application scenarios of SMC.

2.6.1 Circuit Randomization

Circuit randomization is a technique for efficiency improvement, introduced by Beaver

in [13]. It involves secure computation of multiplication triples with randomly picked

multiplicands in the preprocessing phase, and a trick to make use of those triples for more

efficient computation of MUL gates in the online phase.15 The trick involves the use of

the identity

a · b = x · y + e · b+ d · a− e · d

14The reason it is called an offline phase is not because it does not require network communication, but
because it can be carried out off the peek hours [102].

15Multiplication triples are sometimes referred to as Beaver triples.

Chapter 2. Preliminaries 21

where (x, y) are multiplicands of a triple generated in preprocessing, (a, b) are the inputs

of a multiplication gate being computed during online phase, e = a − x, and d = b − y.

Linearity of the commitment or encryption scheme is leveraged in order to make multi-

plication triples (a, b, a · b), out of multiplication triples generated in the preprocessing

phase.16

Section 5.4.6 explains how PCEAS uses this technique, and in Section 6.1.2, the effi-

ciency increase of the online phase is observed and quantified. However, circuit random-

ization is not just about moving cost from online phase to preprocessing phase [41]. It also

opens the way for an overall efficiency increase, as it is possible to come up with more

efficient ways of generating a batch of multiplication triples with random multiplicands,

compared to the efficiency of generating them individually at each MUL gate. For exam-

ple, Hyperinvertible Matrices [18, 17] and Pseudorandom Secret Sharing (PRSS) [42, 47]

can be used for efficient generation of random sharings,17 and Packed Secret Sharing [56]

can be used for generation of multiplication triples in a parallel fashion. An implementa-

tion of a preprocessing phase using PRSS and Hyperinvertible Matrices can be found in

project VIFF (See Section 3.2.3).

The preprocessing phase implementation in this thesis work does not use any tech-

niques for efficient generation of multiplication triples. In this case, moving cost from

online phase to preprocessing phase is indeed the only benefit of using circuit randomiza-

tion. Basically, for each triple, committed shares to two random sharings are generated,

and these are multiplied in a way similar to what is done for computation of multiplication

gates in a run without circuit randomization. Since generating random sharings require

16Linearity follows from the scheme having the proper homomorphic properties. The scheme could be,
for example, a homomorphic commitment scheme as in the case of protocol PCEAS , or a SHE scheme as
in the case of SPDZ [50].

17Generation of random sharings basically means generation of consistent shares for secret random val-
ues [17].

Chapter 2. Preliminaries 22

interaction, overall cost actually increases compared to a run without circuit randomiza-

tion. While this triple generation process is not efficient, it still allows us to accurately

compare the online phases in terms of efficiency.

Another way of generating multiplication triples, namely, generation of multiplication

triples using oblivious transfer, is discussed in Section 2.7.1. An implementation of this

approach can be found in project SPDZ.

2.7 Oblivious Transfer

Oblivious Transfer (OT) was introduced as a cryptographic primitive in 1981 [93].18 Since

then, a few variants have been studied in addition to the original one. Beaver [12] lists

three OT variants:

• OT (Rabin’s original protocol): Alice sends bit b. Bob receives either (0, 0)

(“failed”) or (1, b) (“received b“) uniformly at random. Alice does not know

which of the two happened. [93]

• 1
2

OT (1-out-of-2 OT): Alice has input bits b0 and b1. Bob receives (c, bc) for a

random c outside his control. Alice does not learn c. [53]

•
(

2
1

)
OT (Chosen 1-out-of-2 OT)19: Alice has input bits b0 and b1. Bob chooses

c ∈ {0, 1} and obtains bc. Alice does not learn c.

For each variant, several protocols exist with different security properties and efficiency.

18According to [39], the idea appeared earlier in another context in [106].
19In some sources, chosen 1-out-of-2 OT is referred to as 1-out-of-2 OT, and 1-out-of-2 OT is referred to

as random OT.

Chapter 2. Preliminaries 23

Equivalence between OT and 1
2

OT is shown in [44]. Beaver [14] demonstrates that,

other variants can be obtained from a number of precomputed 1-out-of-2 or chosen 1-out-

of-2 OTs. Generalizations of OT variants also exist [34, 71]. For example, a generaliza-

tion of
(

2
1

)
OT is

(
n
1

)
OT [34].

OT creates an asymmetry in knowledge, between the participants. Beaver [12] notes

that, this asymmetry makes OT a natural basis for achieving security in a wide variety

of interactive protocols, including SMC. Killian [77] has shown that, secure two-party

computation can be based on OT, i.e. given a protocol POT implementing OT, there exists

a protocol PSFE which implements two-party secure function evaluation with uncondi-

tional security. This result is extended to SMC in [45], by showing that, given OT, bit

commitment, and a consensus broadcast channel, MPC with unconditional security and

fairness is possible, even when any number of players may arbitrarily deviate from the

protocol.

PCEPS and PCEAS do not use the OT primitive. However, OT is mentioned in Chapter

3, as it plays an important role in some state-of-the-art SMC protocols.

2.7.1 Generating Multiplication Triples Using OT

This section explains how two players P1 and P2 can generate a multiplication triple

c = ab over F2 using OT. Before going any further, it is useful to note that, when written

in terms of the shares, a triple has the form

c1 ⊕ c2 = (a1 ⊕ a2)(b1 ⊕ b2) = (a1b1)⊕ (a1b2)⊕ (a2b1)⊕ (a2b2) (2.1)

where, ci is player Pi’s share of the product.

Chapter 2. Preliminaries 24

Using
(

2
1

)
OT

Gilboa [59] proposes a protocol for generation of multiplication triples in Fp using
(

2
1

)
OTs. A description of the protocol, for the special case F2, is given in [40]:

• Each player Pi chooses at random (ai, bi) ∈ (F2)
2 as her shares for the multipli-

cands.

• P1 chooses at random r1 ∈ F2 and runs a
(

2
1

)
OT with inputs (r1, a1 ⊕ r1), acting

as the sender. P2 uses b2 as the selection bit. Hence, P2 learns r1 if b2 is 0, a1 ⊕ r1

otherwise. Therefore, once the OT is complete, P2 will know a1b2 ⊕ r1.

• Similarly, P2 chooses at random r2 and runs a
(

2
1

)
OT with inputs (r2, a2 ⊕ r2),

acting as the sender. P1 uses b1 as the selection bit to learn a2b1 ⊕ r2.

• P1 calculates c1 = r1⊕a1b1⊕a2b1⊕r2 and P2 calculates c2 = r2⊕a2b2⊕a1b2⊕r1.

To see that c1 and c2 are indeed shares of the product, we note that c1 ⊕ c2 has the form

given in Equation 2.1.

Using 1
2

OT

• Each player Pi chooses at random (ri1, ri2) ∈ (F2)
2 to be used as inputs to OTs.

• P1 runs a 1
2

OT with inputs (r11, r12), acting as the sender. P2 receives r1x, which

she uses as her share for the first multiplicand a. P1 computes r11 ⊕ r12, which she

uses as her share for the second multiplicand b.

• Similarly, P2 runs a 1
2

OT with inputs (r21, r22), acting as the sender. P1 receives

r2y, which she uses as her share for the first multiplicand a. P2 computes r21 ⊕ r22,

which she uses as her share for the second multiplicand b.

Chapter 2. Preliminaries 25

• Following the OTs, P1 has her shares for the multiplicands set to

a1 = r2y b1 = r11 ⊕ r12

and P2 has her shares for the multiplicands set to

a2 = r1x b2 = r21 ⊕ r22

where r2y ∈ {r21, r22} and r1x ∈ {r11, r12}.

Finally, P1 calculates

c1 = a1b1 ⊕ a1 ⊕ r11r12

and P2 calculates

c2 = a2b2 ⊕ a2 ⊕ r21r22

To see that c1 and c2 are indeed shares of the product, we first note that

a1 ⊕ r21r22 = r2yr21 ⊕ r2yr22 = a1b2

which is easy to verify considering the two possible values of r2y. Similarly,

a2 ⊕ r11r12 = a2b1

Hence c1 ⊕ c2 has the form given in Equation 2.1, and c1 and c2 are indeed shares of the

product.

Chapter 2. Preliminaries 26

2.7.2 OT-Extension

All known OT protocols require public-key cryptography [75]. Beaver [12] has shown

that, it is possible to extend OTs in the sense that, many OTs can be generated from a few

seed OTs, using symmetric primitives.20 By doing so, cost of many OTs can be reduced

to the cost of a few public-key operations, plus the cost of relatively cheap symmetric-key

operations. Following this feasibility result, several more efficient OT-extension schemes

have been proposed with both passive [70] and active [74] security.

Chou and Orlandi [39] point to the analogy between OT-extension and hybrid encryp-

tion, where a symmetric key is encapsulated using a public-key cryptosystem, and then

used to encrypt large amounts of data. Clearly, OT-extension can provide a substantial

performance boost when large number of OT’s are needed, and one such scenario is the

generation of multiplication triples in the preprocessing phase.

2.8 Homomorphic Encryption Schemes

This section provides brief descriptions of four types of homomorphic encryption

schemes, which are relevant in the context of SMC. PCEPS and PCEAS do not use

any (homomorphic) encryption schemes, but these schemes are mentioned in Chapter 3,

as they are used in some other SMC protocols.

2.8.1 Fully Homomorphic Encryption

A fully homomorphic encryption (FHE) scheme is homomorphic with respect to both

addition and multiplication, and hence allow arbitrary computations on ciphertexts. First

20Extension can be regarded as going from k bits to m > k bits, or alternatively, as going from k OTs to
m > k OTs [110].

Chapter 2. Preliminaries 27

realization of a FHE scheme is introduced in [57].

2.8.2 Additively Homomorphic Encryption

An additively homomorphic encryption scheme allows computation of linear combina-

tions of ciphertexts.

2.8.3 Semi-Homomorphic Encryption

A semi-homomorphic encryption scheme [21] is a weaker version of an additively homo-

morphic encryption scheme, where additively homomorphic behaviour is allowed to be

broken if the plaintext value corresponding to the input ciphertext is not sufficiently small.

2.8.4 Somewhat Homomorphic Encryption

A somewhat homomorphic encryption (SHE) scheme [51, 107] is a weaker version of a

FHE scheme. Unlike a FHE scheme that allows an arbitrary number of operations, a SHE

scheme limits the number of operations that can be carried out on the ciphertexts. In the

context of SMC, this would mean that, only circuits of a limited depth can be calculated.

SHE schemes are sometimes also called leveled homomorphic encryption schemes.

2.9 Zero-knowledge Proofs

A zero-knowledge proof (ZKP) can be informally described as a proof that does not reveal

anything other than the validity of the assertion [60].21 The notion of a ZKP was first

21This is similar to how SMC is defined informally: The computation does not reveal anything other than
the result.

Chapter 2. Preliminaries 28

introduced in [63], which also introduces the notion of an interactive proof, as a multi-

round randomized two-party protocol between a prover and a verifier. More formally, a

ZKP has the following properties [60]:

• Completeness: Prover is able to convince the verifier of the validity of any true

assertion with high probability.

• Soundness: Prover is not able to convince the verifier of the validity of a false

assertion, except with small probability.22

• Zero-knowledge: Anything that is feasibly computable from the proof is also feasi-

bly computable from the (proved) assertion itself.

First two properties, completeness and soundness, define an interactive proof system.

In the context of SMC, zero-knowledge proofs play an important role in enforcing

conformance to a protocol [60]. A generic way of transforming a passively secure proto-

col into an actively secure protocol is outlined in [60, 61]:

• Step 1: Each player makes commitments to all her inputs.

• Step 2: Each player proves that she has knowledge of her own inputs using zero-

knowledge proofs-of-knowledge (See Section 2.9.1). This guarantees that the com-

mitments to inputs can be opened. This step has to be carried out in such a way that,

a player cannot fix her inputs in a way that depends on the inputs of other players.

• Step 3: Players jointly generate a sequence of random bits for each player, to be

used as inputs to the passively secure protocol.23 The generation is carried out

22This probability is called the soundness error.
23For example, part of the generated random bits might later be used as the coefficients of a sampled

polynomial, during the emulation of the passively secure protocol.

Chapter 2. Preliminaries 29

such that, a player only knows her own sequence of random bits, but every player

possesses a commitment to each generated sequence.

• Step 4: (This step is necessary (and sufficient) for robustness, and can be omitted

otherwise.) Each player shares her inputs and random bits with other players via

a VSS protocol. Now, if any dishonest player Pk leaves prematurely, remaining

players can run the protocol on behalf of Pk as well, using the shares Pk left behind,

and hence, prevent premature termination of the protocol.

• Step 5: Finally, the passively secure protocol is emulated. At each step of the emu-

lated protocol, players are expected to provide a ZKP for each message they send, to

prove that the message was indeed formed in accordance with the emulated proto-

col. This is possible, because every message m of a player P running the emulated

protocol depends only on the inputs and random bits of P , and the messages P has

received so far. Inputs and random bits are determined by the commitments from

Steps 1-3, and previous messages have been sent over a broadcast channel. Thus,

the next message m is a function of publicly known strings. By the result obtained

in [62], it is possible to prove in zero-knowledge that m is formed in accordance

with the emulated protocol.

This process does not necessarily yield an efficient protocol, but it leads to the important

feasibility result in [61], for the case of actively secure MPC. In several efficient SMC

protocols with active security, variations of ZKPs and related notions, such as proofs of

knowledge and non-interactive zero-knowledge proofs, play similar roles. In particular,

Section 2.9.2 outlines how they can be used to achieve an actively secure preprocessing

phase. PCEPS and PCEAS do not use ZKPs. However, some cases of their use in other

protocols are mentioned in Chapter 3.

Chapter 2. Preliminaries 30

2.9.1 Proofs of Knowledge

Proofs of knowledge (PoK) are interactive proofs in which the prover asserts knowledge

of a particular object, and not merely its existence [60]. A zero-knowledge proof-of-

knowledge (ZKPoK) additionally possesses the zero-knowledge property.

In particular, a zero-knowledge proof of plaintext knowledge (ZKPoPK) [8, 73] proves

knowledge of a plaintext m of some ciphertext C = E(m) in a given public encryption

scheme, without revealing anything about m.

As we shall also see for the example protocol in Section 2.9.2, a ZKPoK requires

input(s) from the verifier in the form of a challenge. If this was not the case, following

an accepted proof, the verifier could assume the role of a prover and replay the proof to

another verifier, having it accepted. But this would mean that either the zero-knowledge

property was violated in the first run of the protocol or the soundness property was vio-

lated in the second run.

2.9.2 Zero-Knowledge Verification of Multiplication Triples

An example use case of ZKPs in the context of SMC involves proving the correctness

of multiplication triples generated in a preprocessing phase. Two specific examples are

the protocols in [21] and [50]. Preprocessing phases of both protocols are based on ho-

momorphic encryption schemes, and use ZKPoKs to prove that ciphertexts of generated

multiplication triples satisfy a multiplicative relation. These protocols are relatively com-

plex, and this makes the basic idea harder to notice. Instead, a simpler protocol [41, 43]

will be considered.24 This protocol ensures correctness of a multiplication triple in zero-

knowledge, in the context of information theoretically secure MPC. In contrast to the

24See Commitment Multiplication Protocol in [43] and Section 12.5.3 in [41].

Chapter 2. Preliminaries 31

protocols in [21] and [50], in this setting one deals with commitments instead of cipher-

texts, and the requirement for a homomorphic encryption scheme becomes a requirement

for a homomorphic commitment scheme. The outline of the protocol is given below:

• Step 1: Prover P makes three commitments [a], [b], [c] to values a, b, c ∈ F, respec-

tively. P asserts that, c = ab. P chooses random β and makes commitments [β]

and [βb].

• Step 2: Verifier V generates and publishes a random challenge r.

• Step 3: P opens the commitment [r1] = r[a] + [β], revealing r1. P also opens the

commitment [z] = r1[b]− [βb]− r[c], to reveal z.

• Step 4: If a commitment opening fails or z 6= 0, then V rejects the proof.

• Step 5: Steps 2-4 are repeated until soundness error is small enough.

Clearly, if P is honest, r1 is a random value, and z being 0 tells nothing but the validity of

the assertion. Note that, the smaller |F| is, the more repetitions will be needed to achieve

a desired soundness error, and the less efficient the protocol will become.

32

Chapter 3

A Brief Survey of SMC: Theory and

Applications

This chapter presents a brief survey of the research field, with focus on SMC based on

secret sharing. Some important theoretical results, and a few selected SMC implementa-

tions and applications are mentioned.

3.1 Other Approaches to Privacy-Preserving Computa-

tions

Before focusing on SMC, it might be useful to take a step back and look at some other

approaches.

3.1.1 Data anonymization

Data anonymization methods can be considered relevant, in the sense that, often the pur-

pose of application is to make data available for computation while preserving privacy.

Privacy preservation has a more restricted meaning here, as the real goal is to prevent

Chapter 3. A Brief Survey of SMC: Theory and Applications 33

identification of data with a person or a legal entity. Data anonymization is regarded as

the standard way of protecting medical records [4]. While the basic idea is easy to under-

stand, application turns out to be quite challenging. This is demonstrated by cases such

as the deanonymizations of the AOL and Netflix datasets [10, 88].

3.1.2 Randomized Response Techniques

One approach that was originally proposed as a survey technique in [104], is randomized

response techniques. The main idea can be captured by considering an example in the

original setting, a survey interview. The respondent privately tosses a coin. She responds

’yes’ to the question if the toss result is ’heads’, and responds with her actual answer,

otherwise. Individual answers are hidden by the randomness of the coin toss, but a collec-

tion of answers can still be useful to the interviewer, because half of the ’no’ answers are

converted to a ’yes’, and hence, the real ratio of ’no’ answers is double the observed ratio.

This basic idea has been improved and generalized over the years. Some applications in

the area of privacy-preserving data mining can be found in [2, 3, 54]. Relevant concepts

are statistical databases and differential privacy [52].

3.1.3 Homomorphic Encryption Schemes

Another approach is to deploy special encryption schemes which allow computations on

ciphertexts. With a FHE scheme at hand, SMC becomes a trivial task, and can be achieved

as follows [41]:

• First, parties collaborate to generate a key pair. At the end of this phase, parties

agree on a single public key, and the corresponding private key is secret shared

among them.

Chapter 3. A Brief Survey of SMC: Theory and Applications 34

• Next, input providing parties encrypt their inputs using the public key and publish

the ciphertexts. Because the scheme is fully homomorphic, each party is able to

compute a result ciphertext using the input ciphertexts, without any need for inter-

action.

• Finally, parties collaborate to decrypt the computed result.

Obviously, this is a constant-round solution; the amount of interaction required is inde-

pendent of the computation performed. This makes an interesting contrast with informa-

tion theoretically secure MPC, which usually suffers from high communication overhead,

and local computations are less of a concern. While FHE allows a constant-round solu-

tion, the computational overhead is too high to allow practical applications. For example,

Gentry et al. [58] reports an evaluation time of 36 hours for a single AES encryption

operation. Weaker, but faster versions of homomorphic encryption schemes, such as SHE

schemes and semi-homomorphic encryption schemes, play a role in some SMC systems.

3.2 Secure Multiparty Computation

SMC protocols can often be categorized into one of two classes: SMC protocols based on

secret sharing and SMC protocols based on garbled circuits. SMC protocols implemented

for this thesis work are based on secret sharing, hence circuit garbling is only briefly

touched upon. The following subsection outlines the garbling technique by Yao, and

provides references to a few selected publications that enhanced the original idea over the

years. The rest of the chapter focuses on work related to SMC based on secret sharing.

Chapter 3. A Brief Survey of SMC: Theory and Applications 35

3.2.1 Garbled Circuits

Emergence of SMC as a research field is often attributed to the work of Yao [108].1

Yao’s protocol is a 2-party protocol based on a symmetric encryption scheme and OT.

The protocol allows any function to be securely evaluated by two players. It is historically

associated with the Millionaires’ Problem [109]: Two millionaires want to know which

of them is richer, but neither of them want to tell the other how much he or she owns.

The protocol does not treat the players symmetrically. One player is the garbler, and

the other is the evaluator. As the name suggests, the garbler garbles the circuit, which

involves garbling each gate of the circuit. For each gate, the garbler maps the binary

values in the truth table to encryption keys,2 and then encrypts each mapped output in

a row of the truth table with the keys corresponding to the inputs in that row. Only the

evaluator evaluates the (garbled) circuit. The circuit for this specific problem would be a

comparator circuit accepting as inputs the bits in the binary representation of the wealth

of each millionaire. Obviously, the involvement of the symmetric encryption scheme is

to prevent the evaluator from learning the inputs of the garbler. The OT scheme, on the

other hand, is there to enable the evaluator to compute the garbled gates. The protocol

proceeds as follows:

• The evaluator receives from the garbler a garbled table for each gate, and also the

garbled inputs of the garbler.

• The final missing piece of information needed by the evaluator to evaluate the cir-

cuit is her own garbled inputs, as the un-garbled inputs she possesses is no good

1Yao [108] does not explain the protocol, but according to [41, 19], it is mentioned in oral presentations
of this work.

2As the actual inputs are not known, garbling a gate necessarily involves preparing a garbled table for
all possible input values.

Chapter 3. A Brief Survey of SMC: Theory and Applications 36

for evaluating the garbled circuit. The evaluator receives garbled versions of her

inputs from the garbler by running a chosen 1-out-of-2 OT protocol, once for each

input bit. This way, the garbler does not learn the input bits of the evaluator, and

the evaluator learns the garbled versions of her input bits.

• As a consequence of the way garbling is carried out, garbled inputs can be used as

decryption keys to remove the double encryption on gate outputs. The evaluator is

able to open (exactly) one row from each gate’s garbled table, which is enough to

compute all gates and reveal the mapped circuit output.

• Finally, the garbler and the evaluator cooperate once more to combine the mapped

output held by the evaluator, with the mapping information known to the garbler,

to reveal the computation result.

A more detailed description of the protocol can be found in [100]. A formal description

and a proof of security are given in [83].

Generalization

Until 1990, the statement that, more complex functions (i.e. functions requiring more

complex circuits to express them) require more interaction (or communication rounds) to

securely evaluate in the multiparty setting, had been a sensible hypothesis [16]. Beaver et

al. [16] proved this hypothesis wrong by introducing the constant-round BMR protocol.3

SMC protocols based on secret sharing mostly follow the GMW-paradigm [61].4 As it

generalizes Yao’s protocol to the multiparty setting, the GMW-paradigm takes a gate-by-

gate approach, i.e. many two-party computations take place at each gate, in the process of

3The BMR protocol is named after the authors of [16].
4The GMW-paradigm is named after the authors of [61].

Chapter 3. A Brief Survey of SMC: Theory and Applications 37

obtaining shares of a gate output from shares of gate inputs. Beaver at al. [16] break from

the GMW-paradigm, and take another approach to generalizing Yao’s 2-party protocol. In

this approach, garbled circuit and garbled inputs are public. Unlike Yao’s protocol, there

is no distinction between the players, such as garbler and evaluator; players interact to

construct the garbled circuit and the garbled inputs collectively. Each player evaluates

the garbled circuit on its own without any need for interaction, so the constant-round

complexity of the 2-party protocol is preserved.

Lindell et al. [84] have shown that the BMR protocol [16] can be combined with

an SMC protocol based on secret sharing (such as the SPDZ protocol [50]) for the pre-

processing phase, to obtain a protocol which is both efficient and constant-round. Even

though most of communication overhead can be pushed into a preprocessing phase in

protocols based on secret sharing, it is not possible to totally eliminate communication

overhead from the online phase.5 The online phase of the proposed protocol, on the other

hand, consists of each party locally evaluating a garbled circuit, and therefore it is fast

even when the network is slow.

Bellare et al. [19] provide a formalization of several concepts related to garbled cir-

cuits, and introduce garbling schemes, which are meant to be used as primitives.

Optimization

Two of the several optimizations developed for garbled circuits are free-xor [78] and row-

reduction [92]. A list of works related to optimization of garbled circuits can be found in

[9].

5This is also the case for PCEAS . See Section 5.4.6.

Chapter 3. A Brief Survey of SMC: Theory and Applications 38

Implementation

Early notable implementations of SMC based on garbled circuits are Fairplay and Fair-

playMP (See Section 3.2.3). Two more recent implementations are presented in [67, 79].

3.2.2 Feasibility Results

Results concerning the feasibility of SMC were established back in 1980s. One such

result concerns Byzantine Generals and Consensus problems. Bracha [33] has shown

that, with n parties, t of which might be corrupted (or Byzantine), solutions exist with a

round complexity ofO(log n) for t =
n

(2 + δ)
, if cryptographic methods are allowed, and

for t =
n

(3 + δ)
, otherwise. A completeness theorem for protocols with honest majority

is given in [61]. Another completeness theorem which concerns information theoretic

SMC, and is more relevant to the implemented protocols, is given in [23]. Ben-Or et

al. [23] have shown that, in the absence of Byzantine parties, no set of size t < n
2

of

players gets any information other than the evaluation result. If Byzantine behaviour is

allowed, corresponding bound is t < n
3
. In the same work, it is also proven that these

bounds are tight. For example, in the non-Byzantine case, n
2

passive dishonest parties

will always be able to collaborate to break privacy. PCEPS and PCEAS are similar to

the passively secure and actively secure protocols proposed in [23].6 Given the existence

of authenticated private channels between each pair of parties, any general multiparty

protocol can be solved when t < n
3
, such that the secrecy of inputs are unconditional [36].

This result follows from the work of Lamport et al. [80], which has shown that Byzantine

6One difference is that, multiplication gates are computed differently. Another difference (between the
actively secure protocol in [23] and PCEAS) is that, PCEAS performs VSS in a relatively indirect and less
efficient way, but can be generalized more easily to work with other linear secret sharing schemes [41].

Chapter 3. A Brief Survey of SMC: Theory and Applications 39

Generals problem is solvable with perfect security when pairs are connected by secure

point-to-point channels and t < n
3
.

The results above concern SMC over synchronous networks. SMC over asynchronous

networks is studied, for example, in [22, 24].

Following the feasibility results, complexity of SMC has been studied extensively. A

list of related work is given in [48].

3.2.3 SMC Frameworks and Other Implementations

Fairplay and FairplayMP

Both systems allow the computation to be expressed in a high-level language, and convert

it to a Boolean circuit. Fairplay system [85] allows secure computation between two

parties, and evaluates the generated circuit using Yao’s protocol. FairplayMP [20] is an

extension of Fairplay to the multiparty setting. It evaluates the generated circuit using a

protocol, which is based on the BMR protocol.

Sharemind

Sharemind [29] is one of the early attempts at realizing large scale SMC. The system is

based on the earlier theoretical results given in [23, 36, 15], and SMC is based on secret

sharing. Sharemind provides information theoretic security. Number of players are fixed

at three, and only a single corruption by a passive adversary can be tolerated.

Virtual Ideal Functionality Framework (VIFF)

VIFF [103] is an SMC framework. Damgård et al. [47] propose an SMC protocol based

on secret sharing, and report on its implementation using the VIFF framework. Proposed

Chapter 3. A Brief Survey of SMC: Theory and Applications 40

protocol is secure against an adaptive and active adversary corrupting less than n
3

play-

ers. The protocol provides information theoretic security if secure point-to-point channels

and Byzantine agreement is given. However, for efficiency reasons, point-to-point chan-

nels are implemented using standard encryption tools and broadcast channel implementa-

tion uses public-key signatures. Therefore, the implementation of the protocol (on VIFF

framework) provides computational security. The protocol uses circuit randomization,

and the user is allowed to choose from two different preprocessing phase implementa-

tions: one based on Pseudorandom Secret Sharing and the other based on Hyperinvertible

Matrices.

SPDZ

SPDZ [76] is an SMC software system that combines various techniques and protocols

developed over the years.7 Following three papers constitute the theoretical background

for SPDZ.

Bendlin et al. [21] identify a number of semi-homomorphic encryption schemes, and

show that they can be used in the construction of an efficient preprocessing phase. Pro-

posed protocol is often referred to as BDOZ.8 Its online phase uses information theoretic

MACs of shares to achieve information theoretic security against an active adversary.

Its preprocessing phase can be based on one of several semi-homomorphic encryption

schemes. Players use ZKPoPKs to prove that their ciphertexts are correctly computed.

ZKPoKs are used to prove that ciphertexts of generated multiplication triples satisfy a

multiplicative relation (See Section 2.9.2). Homomorphic property is leveraged in the

construction of zero-knowledge proofs. While the ZKPs used in the preprocessing phase

7At the time of writing, SPDZ software system has three major versions: SPDZ, SPDZ2, and MASCOT
[105].

8Protocol BDOZ is named after the authors of [21].

Chapter 3. A Brief Survey of SMC: Theory and Applications 41

work with any field Fp, they become less efficient for small values of p, for the same rea-

son given at the end of Section 2.9.2. We have seen in Section 3.2.2 that, unconditionally

secure protocols cannot exist in the dishonest majority setting. BDOZ protocol works in

the dishonest majority setting, and its preprocessing phase has both a statistical security

parameter and a computational security parameter associated with it.

Damgård et al. [50] introduce a more efficient online phase (compared to that pro-

posed in [21]), which is statistically secure against an active and adaptive adversary cor-

rupting majority of the players, when synchronous communication and secure point-to-

point channels are given. The work required for running the proposed online phase is

larger by only a small constant factor, compared to the work required for evaluating the

circuit in the clear.9 The increase in efficiency comes from using the MAC of the secret

itself, instead of MACs of its shares, which is the case for the protocol proposed in [21].

Instead of each player having her own MAC key, a single global key is secret shared, so

that checking of MACs is possible, while forging is not. Preprocessing phase is based

on a SHE scheme. It adapts the ZKPoPK proposed in [21]. Generation of multiplication

triples involve parallel evaluation of several small circuits with a single multiplication

gate.10

Nielsen et al. [89] introduce TinyOT, an efficient, actively secure two-party computa-

tion protocol based on OT. It is claimed that the introduced actively secure OT-extension

is nearly equivalent to the passively secure OT-extension [70] in terms of efficiency.

At the time of writing, codebase for SPDZ software system [101] includes implemen-

tation of the online phase from [50], and implementation of the preprocessing phase from

9When the circuit is evaluated in the clear, players first reveal their secrets, and then evaluate the circuit
on their own.

10Recall that, homomorphism of a SHE scheme would break for large circuits. Also note that, these
circuits are independent of the circuit to be evaluated in the online phase.

Chapter 3. A Brief Survey of SMC: Theory and Applications 42

MASCOT [75].11 MASCOT is a protocol based on OT, which provides active security in

the dishonest majority setting, same as the above mentioned protocols, but brings signif-

icant efficiency improvements to the preprocessing phase compared to each one of them.

Large part of the efficiency improvement comes from the actively secure OT-extension

introduced in [74], which is even more efficient compared to the OT-extension of TinyOT.

Generation of multiplication triples in MASCOT preprocessing phase is based on Gilboa’s

method [59], which was presented in Section 2.7.1 for the simplest case.

SPDZ software system allows the user to express the computation via a python-based

front-end, and supports floating point and fixed point operations.

3.3 Applications of SMC

Keller et al. [75] note that, there has been a growing interest in applications of SMC, as

several efficient protocols with realistic adversary assumptions, and implementations ca-

pable of handling complex computations have emerged in the last decade. In this section,

some application scenarios and applications that appeared in the literature [41, 75, 91] are

discussed briefly.

3.3.1 Auctions

An auction can be carried out in several ways. Perhaps the most familiar type of auction

involves an item on sale and multiple bidders, where the highest bid wins. A bidder

Alice does not want to reveal the maximum price she is willing to pay, as otherwise

an auctioneer could collaborate with another bidder to raise the price just below Alice’s

maximum price.

11MASCOT is short for ’Malicious Arithmetic Secure Computation with Oblivious Transfer’.

Chapter 3. A Brief Survey of SMC: Theory and Applications 43

A Double Auction in Denmark

Bogetoft et al. [31] report a nationwide double auction that took place in Denmark in

2008. In the auction, contracts entitling farmers to sugar-beet production have been ex-

changed. The parties involved were Danisco, the buyer of sugar-beet, and DKS represent-

ing the farmers. Both parties had reasons not to have the other party act as the auctioneer.

Hiring a consultancy house to act as a trusted third-party was considered too expensive

a solution. SMC was deployed instead, and the role of the auctioneer was played by a

multiparty computation. 25000 tons of production rights changed owner in the auction.

3.3.2 Procurement

In a typical procurement, a public institution asks companies to bid for a contract. Con-

tract specifies the job public institution needs done, and the lowest bid wins. Bidders are

often competing companies. A bidder Alice does not want to reveal her bid to another

bidder Bob, otherwise Bob could win the contract by making an offer that is only slightly

lower.

3.3.3 Benchmarking

In a typical benchmark analysis, multiple companies in the same line of business provide

inputs to a trusted third-party to see how well they perform compared to the others. All

participants are interested in learning the result, but none of them want their inputs leaked

to other participants.

Chapter 3. A Brief Survey of SMC: Theory and Applications 44

Benchmarking for Danish Banks

Damgård et al. [46] report a confidential benchmarking that involved several Danish

banks and a consultancy house,12 where the participating banks jointly evaluated the risks

associated with their customers using the SPDZ protocol. Use of SMC allowed the banks

and the consultancy house to retain the privacy of their customer data.

3.3.4 Privacy Preserving Data Mining

A typical use case for data mining involves one or more databases, such as those kept

within health care systems or tax systems of countries. Coordinated access to such

databases can be very valuable for the purposes of research and administration. On the

other hand, such access might be abused for compiling complete dossiers on individuals

and there is a growing privacy concern.

Tax Fraud Detection in Estonia

In 2013, Estonian parliament proposed a legislation that requires companies to declare

their purchase and sales invoices to be used in risk analysis and fraud detection, but it

was vetoed on the grounds of confidentiality breach and other concerns. Bogdanov et al.

[27] report on the Estonian Tax and Customs Board’s evaluation of a tax fraud detection

system, which uses Sharemind SMC framework13 to address the confidentiality concern.

A Statistical Study in Estonia

Bogdanov et al. [28] report on a statistical study conducted by the Estonian Center of

Applied Research in 2015. The study linked the database of individual tax payments

12The consultancy house was involved as an additional input provider, not as a trusted third-party.
13See Section 3.2.3.

Chapter 3. A Brief Survey of SMC: Theory and Applications 45

from the Estonian Tax and Customs Board and the database of higher education events

from the Ministry of Education and Research, to look for correlations between working

during university studies and failing to graduate in time. Over ten million tax records and

half a million education records were analyzed using Sharemind SMC framework.

3.3.5 Electronic Voting

Secure evaluation of a function as simple as

f(x1, . . . , xn) =
n∑
i=1

xi

can be interpreted as voting on a yes/no decision. A player Pi would provide input xi = 1

to vote yes and xi = 0 to vote no. Computation result would give the number of yes

votes. Ballot secrecy seems to come naturally with SMC, but a voting scheme often has

to satisfy additional requirements, such as public verifiability.

Low-Latency Voting from SMC

Baum et al. [11] extend the SPDZ protocol with the additional property of public verifia-

bility. The standard network model is enhanced with an idealization of a public append-

only bulletin board, the ideal functionality FBulletin, on which the transcript of the protocol

is published. Anyone with access to the transcript of the protocol can verify the correct-

ness of the computation; whether or not she participated in the computation, and even if

all the participants were corrupted. As an example application scenario for the protocol,

Baum et al. [11] suggest replacing mix-nets used in electronic voting schemes such as

Helios [1], with an SMC-based implementation of shuffling.

Chapter 3. A Brief Survey of SMC: Theory and Applications 46

3.3.6 Set Intersection

Set intersection problem involves parties, who have their own sets of items, and want

to find out whether or not an item appears in all of the sets. For example, an investiga-

tion agency might have a list of suspects, an airline might have a list of passengers, and

they could run an SMC protocol to find out whether any of the suspects are among the

passengers, while retaining the privacy of their lists.

Cross-Domain Cooperative Firewall (CDCF)

A CDCF allows two collaborative networks F and H to enforce each other’s firewall

rules [37]. In a typical scenario, a roaming user makes a VPN connection from a foreign

network F to her home network H , in order to preserve the privacy of her communica-

tions. Firewall of network F (FF) wants the traffic going through the encrypted tunnel

inspected, to ensure that it obeys the rules defined for F , but it does not want to reveal

its firewall rules to the firewall of network H (FH), which is capable of performing the

inspection. Cheng et al. [37] propose a design for a privacy-preserving CDCF, which

involves an oblivious membership verification algorithm. The private inputs are the fire-

wall rules enforced by FF , and the connection descriptors of any connections made by

the roaming user. The former input is provided by FF , and is a collection of 4-tuples14

and associated verdicts. The verdict can be, for example, accept or deny, for a particular

4-tuple. The latter input is provided by FH , and is a 4-tuple that describes a connection.

Oblivious membership verification has to be run only once at the time of connection setup,

and packets are dropped depending on the precomputed result.

14A 4-tuple includes two IP address-port pairs, one for the source and one for the destination.

Chapter 3. A Brief Survey of SMC: Theory and Applications 47

3.3.7 Other Applications

Satellite Collision Analysis

Countries do not want to reveal orbital information about their strategic satellites to other

countries, but they also want to avoid collisions. Kamm and Willemson [72] demonstrate

the feasibility of computing the probability of a collision between satellites using SMC,

where private inputs are the orbital information provided by satellite operators. They used

Sharemind SMC framework to implement the collision analysis.

Inter-Domain Routing

The Internet is made up of administrative domains called Autonomous Systems (ASes),

and the routes between them are computed by the Border Gateway Protocol (BGP). ASes

want to keep their routing policies private, because they can leak information about their

business relationships with other ASes. While BGP does not require ASes to explicitly

reveal their routing policies, these policies are susceptible to inference attacks. Gupta et

al. [64] suggest computation of routes using SMC, providing ASes with provable privacy

guarantees. Asharov et al. [7] report on an application of SMC to inter-domain routing.

They convert neighbor relation and neighbor preference BGP algorithms into circuits and

evaluate them using the GMW protocol [61].

Inter-Domain Network Monitoring

Iacovazzi et al. [69] report on an SMC-based implementation for inter-domain network

monitoring, where providers of private inputs are individual ISPs.

Chapter 3. A Brief Survey of SMC: Theory and Applications 48

3.3.8 Synergy with Blockchains

A typical blockchain is a data structure made up of timestamped blocks linked by hash

pointers to form a tamper-evident chain [87], and is managed by a peer-to-peer network of

peers running a specific protocol, such as the Bitcoin [86] protocol. This section discusses

the synergy which seems to exist between SMC and cryptocurrencies, and more generally,

between SMC and blockchain technologies.

Andrychowics et al. [5] note that the standard definition of SMC guarantees only the

emulation of a trusted third-party. According to this definition, SMC does not guarantee

correctness of inputs, and if an action is to be taken based on the output of the compu-

tation, it does not guarantee that the output will be respected. Andrychowics et al. [5]

claim that it is possible to address these issues by linking the inputs and outputs with

Bitcoin transactions, for example in the form of security deposits. Cryptocurrencies offer

a variety of ways to enforce distributed business logic, from the relatively simple timed

commitments of Bitcoin, to Ethereum [26] smart contracts written in a Turing-complete

language. A notion that becomes relevant in this aspect is covert security. This relaxed

security model does not require that the probability of getting away with cheating is neg-

ligible. However, it is still required that deviations from the protocol are detected with a

high probability. A covertly secure variant of the SPDZ protocol is proposed in [49]. Re-

laxation of security requirements results in a more efficient protocol, as expected. With

the addition of a mechanism that can enforce punishment on cheaters (and/or a mech-

anism that rewards repeated honest behaviour), covert security might suffice for some

practical applications. Andrychowics et al. [5] also note that, in addition to addressing

the issues of incorrect inputs and disrespected outputs, fees and security deposits can be

used to enhance robustness and fairness. For example, players might refrain from repeat-

edly joining computations just to abort prematurely, in order to avoid the financial cost

Chapter 3. A Brief Survey of SMC: Theory and Applications 49

associated with the loss of security deposits.

Security of a typical blockchain comes from a combination of cryptography and in-

centive engineering [87]. While the immutability property of a blockchain comes with

cryptographic guarantees, achieving decentralized consensus strongly relies on having

properly incentivized participants. Not having some sort of currency associated with the

blockchain might make the incentive engineering part difficult, if not impractical. Hav-

ing said that, there are also possible benefits to an SMC system, originating purely from

having access to a blockchain materializing a public immutable ledger, irrespective of

whether or not a currency is associated with it. Zyskind et al. [111] note that, in the case

of a blockchain managing access to private data, laws and regulations concerning access

to private data (and also any rules that may be set by the data owner) can be programmed

into the blockchain and enforced automatically.15 They also note that, even when the

enforcement fails or was not possible to begin with, the immutable ledger could act as a

temper-proof access log, which can be used as legal evidence. Note that regulations and

rules enforced on the computations might as well be of technical nature. For example,

consider a rule such as "No query is answered with respect to less than six records.". This

is a real-life example of a rule used for the purpose of inference control [4].16 With a

blockchain assuming the role of a manager, one can go beyond access control based on

identities. Contents of computations can be managed and logged, and inference control

mechanisms can be implemented. The standard definition of SMC, based on emulation

of a trusted third-party, clearly provides no guarantees with respect to inference control.

A trusted third-party, provided with secret inputs x1 and x2, will evaluate the function

15This can be achieved, for example, via smart contracts.
16Even when the query is prepared with the intention of revealing a statistical result about a group of

people, if the criteria are not chosen carefully, it might end up revealing information about a specific indi-
vidual.

Chapter 3. A Brief Survey of SMC: Theory and Applications 50

f(x1, x2) = x1 without complaint, and make the output public. Hence this is another

area, where a blockchain can complement the security provided by SMC.

Enigma

Zyskind et al. [112] describe Enigma as a decentralized computation platform, which

utilizes SMC in order to "overcome the public nature of blockchains". Shares of private

data are held in a distributed hashtable, and an external blockchain is used to manage

access control and identities. External blockchain additionally has the critical role of

implementing the FBulletin ideal functionality defined in [11] (See Section 3.3.5). The

SMC protocol used by the Enigma platform is the publicly verifiable version of SPDZ

proposed in [11].

51

Chapter 4

Specification of Implemented Protocols

The two main SMC protocols implemented for this thesis work are PCEPS and PCEAS .

A third implemented protocol is PCEAS,CR, which is a version of PCEAS that uses cir-

cuit randomization. PCEAS,CR is composed of PCEAS,P and PCEAS,O, the protocols for

preprocessing and online phases, respectively. This chapter provides brief overviews of

PCEPS and PCEAS , and summarizes the results of formal security analysis of PCEPS ,

PCEAS , and PCEAS,CR.

4.1 Overview of the Protocols

The starting point for all the implementations in this thesis work are the protocol descrip-

tions given in [41]. These descriptions will be expanded into a few dozen pages of text,

when the protocols and their implementations are described in Chapter 5. However, the

original brief descriptions serve better for getting a quick overview of the protocols. Such

descriptions for PCEPS and PCEAS are presented below.1 Similar descriptions for the

other protocols can be found in [41].2

1Both descriptions are adapted from [41]. See page 38 for PCEPS and page 117 for PCEAS .
2See pages 111, 113, 127, 128 for subprotocols used in PCEAS , and page 170 for PCEAS,O.

Chapter 4. Specification of Implemented Protocols 52

4.1.1 Protocol CEPS (Circuit Evaluation with Passive Security)

PCEPS

• Input Sharing Phase: For each private input xi, corresponding input provider distributes

the set of shares [xi; fxi]d.

• Computation Phase: As long as the circuit has gates waiting to be processed, players pick

the next gate to be processed and does one of the following depending on the type of gate:

– Addition Gate (ADD): Players hold [a; fa]d and [b; fb]d for the gate inputs a and b,

respectively. Players compute [a; fa]d + [b; fb]d = [a+ b; fa + fb]d.

– Multiply-by-constant Gate (CMUL): Players hold [a; fa]d and [b; fb]d for the gate

inputs a and b, respectively. Players compute α[a; fa]d = [αa;αfa]d.

– Multiplication Gate (MUL): Players hold [a; fa]d and [b; fb]d for the gate inputs a

and b, respectively. Players compute [a; fa]d ∗ [b; fb]d = [ab; fafb]2d. Each player

Pi distributes the set of shares [h(i); fi]d, where h = fafb, by definition. Players

compute ∑
i

ri[h(i); fi]d =
∑
i

[h(0); rifi]d =
∑
i

[ab; rifi]d

where r is the recombination vector defined in Section 2.4.1.

If there are no more gates to compute, players move on to the output reconstruction phase.

• Output Reconstruction Phase: For an output wire of the circuit that has value y assigned

to it, players hold [y; fy]d. Each player Pi securely sends fy(i) to the data users, who use

Lagrange interpolation to obtain the result y = fy(0).

Chapter 4. Specification of Implemented Protocols 53

4.1.2 Protocol CEAS (Circuit Evaluation with Active Security)

PCEAS

• Input Sharing Phase: For each private input xi, corresponding input provider distributes

the set of shares [[xi; fxi]]d by running the VSS protocol (See Section 5.4.4). If a VSS fails,

honest players learn that the corresponding input provider is corrupt, and use a default input

instead of xi.

• Computation Phase: As long as the circuit has gates waiting to be processed, players pick

the next gate to be processed and does one of the following depending on the type of gate:

– Addition Gate (ADD): Players hold [[a; fa]]d and [[b; fb]]d for the gate inputs a and

b, respectively. Players compute [[a; fa]]d + [[b; fb]]d = [[a+ b; fa + fb]]d.

– Multiply-by-constant Gate (CMUL): Players hold [[a; fa]]d and [[b; fb]]d for the

gate inputs a and b, respectively. Players compute α[[a; fa]]d = [[αa;αfa]]d.

– Multiplication Gate (MUL): Players hold [[a; fa]]d and [[b; fb]]d for the gate inputs

a and b, respectively. Players compute [[a; fa]]d ∗ [[b; fb]]d = [[ab; fafb]]2d. This

involves each player running the commitment multiplication protocol (See Section

5.4.4) to prove that their multiplications were carried out correctly, and may fail for

up to d players. Each player Pi distributes the set of shares [[h(i); fi]]d by running

the VSS protocol, where h = fafb, by definition. These VSS runs may also fail for up

to d players. Let C be the indices of the players for which the previous commitment

multiplication and VSS runs did not fail. Players compute

∑
i∈C

ri[[h(i); fi]]d =
∑
i∈C

[[h(0); rifi]]d =
∑
i∈C

[[ab; rifi]]d

where rC is the recombination vector defined in Section 2.4.1.

Chapter 4. Specification of Implemented Protocols 54

If there are no more gates to compute, players move on to the output reconstruction phase.

• Output Reconstruction Phase: For an output wire of the circuit that has value y assigned

to it, players hold [[y; fy]]d. Each player Pi opens its committed share for y to the data

users by running the designated open protocol (See Section 5.4.4). Data users use Lagrange

interpolation to obtain the result y = fy(0).

4.2 Security of the Protocols

Rigorous security analysis of a protocol requires an exact problem definition and usually

takes the form of a mathematical proof, as previously mentioned in Section 2.1.4. Problem

definition includes network model, adversary model, and a clarification of what is meant

by security. In this section, only the problem definitions and the results are provided. The

proofs can be found in [41].

4.2.1 Network Model

It is assumed that the parties are on a synchronous network, and secure peer-to-peer chan-

nels exist between every pair of players, and between every player-user pair.

4.2.2 Adversary Model

A threshold-t adversary is assumed.

Chapter 4. Specification of Implemented Protocols 55

4.2.3 Security

Let n be the number of players. If the assumptions about the network and the adversary

given above hold, then

• PCEPS is perfectly, adaptively, and passively secure, when t < n
2
.

• PCEAS and PCEAS,CR are perfectly, adaptively, and actively secure, when t < n
3
.

56

Chapter 5

Implementation

This chapter describes in detail the protocol implementations and the implementation of

the simulator, which provides an environment where the protocols can be executed. Please

refer to Appendix A for information regarding the software project, including source code

availability.

5.1 A Motivating Example

This section presents a motivating example, and the details of the implementations are

presented in the following sections. An imaginary scenario involving an application of

SMC is considered. An attempt is made to realize this scenario using the implementations

that are presented in this work. The scenario is depicted in Figure 5.1.

Actors involved are a population of potential input providers, a pool of computing

parties (or players), an entity called the manager, and a data user that will be referred to as

Data.org. The manager and the pool of computing parties together make up Compute.org.

Input providers are users of a service provided by Compute.org. By using this service,

they grant Compute.org permission to use their data in certain computations, possibly in

exchange for some sort of compensation. Thanks to the involvement of SMC, they never

Chapter 5. Implementation 57

FIGURE 5.1: A depiction of the imaginary scenario.

have to reveal their private inputs. They can make their data (i.e. their inputs for any

previous calculations) unavailable to Compute.org at any later time, if they wish so.

Data.org might be, for example, a market research company. It calls Compute.org

and tells them that it requires the result of a certain computation. Once sufficiently many

input providers agree to provide data for this computation, Compute.org performs the

computation and reveals the result to Data.org, again possibly in exchange for some sort

of compensation. Data.org receives the result it needs without the costs and risks asso-

ciated with operating on and storing confidential data. Furthermore, more people might

want to provide them with data, if they know that their data will not be revealed to any

other party, and the people who participate might provide data more honestly.

The part of Compute.org that is of interest in the current context is the pool of com-

puting parties. The other part, manager, does not get involved in the computation. It

is tasked with processing computation requests, locating input providers, and mediating

Chapter 5. Implementation 58

connections. It mediates the connections between the input providers and computing par-

ties, and also between the computing parties and data users such as Data.org. Computing

parties might be, for example, on a regular P2P network, possibly slightly modified to

match the needs of the particular SMC protocol (See Section 2.1.2). Computing par-

ties perform the computations, and reveal the results to the data users. SMC will allow

Compute.org to remain oblivious to both the inputs, and the computation result.

The chosen SMC protocol must be compatible with the realities of this particular

application domain. In other words, the assumptions of the protocol about the network and

the adversary must hold, and the security provided by the protocol must be sufficient. In

order to quantify and manage incentives, and limit corruption, game theory and incentive

engineering could be utilized in the system’s design. In the event of success, the realities

of the application domain would be transformed in a favorable way, possibly allowing the

use of a less demanding, more efficient SMC protocol. Furthermore, an SMC protocol

is indifferent to the correctness of provided inputs. Eventually, one has to assume that

the input providers provide correct inputs. Again, incentive engineering could be utilized

in the system’s design to make that assumption more realistic. These matters related to

the overall system design will not be discussed further. Instead, focus will be on the

realization of the secure computations.

Data.org makes the two computation requests shown in Table 5.1, and ten input

providers accept to provide inputs for these computations. It is no coincidence that the

chosen inputs, monthly income and drug use history,1 are usually regarded as highly confi-

dential information. Assumed private inputs of the participants are as shown in Table 5.2.2

Circuit description strings3 for mean value (µ) and standard deviation (σ) computations

1Let’s assume that the input drug use history corresponds to the answer of a question such as “Have you
ever used an illegal drug?”.

2As the values are arbitrarily chosen, the unit of currency does not matter and is omitted.

Chapter 5. Implementation 59

TABLE 5.1: Computation requests made by Data.org.

Computation Inputs Required

Mean value of incomes of Monthly income (Numeric)
people with a history of drug use (µ) History of drug use (Boolean)

Standard deviation of incomes of Monthly income (Numeric)
people with a history of drug use (σ) History of drug use (Boolean)

TABLE 5.2: Private inputs of the input providers.

Income Drug use Income Drug use

Input provider 1 800 NO Input provider 6 600 NO
Input provider 2 400 YES Input provider 7 200 YES
Input provider 3 600 YES Input provider 8 300 NO
Input provider 4 0 YES Input provider 9 500 YES
Input provider 5 500 YES Input provider 10 700 YES

are

Cµ =
10∑
i=1

drugi ∗ incomei

Cσ =
10∑
i=1

drugi ∗ ((incomei + (µ · −1)) ∗ (incomei + (µ · −1)))

where drugi is 1 if the ith input provider has ever used an illegal drug, 0 otherwise.

incomei is the monthly income of ith input provider.

Note that, evaluation of these circuits will not directly yield the mean value and stan-

dard deviation. To obtain those, it is necessary to know the number of people with a

3A circuit description string is exactly what its name suggests. It is discussed further in Section 5.3.

Chapter 5. Implementation 60

history of drug use. Hence, computing parties will also evaluate

CD =
10∑
i=1

drugi

In order to avoid finding multiplicative inverses and taking square roots in this exam-

ple, it is assumed that Compute.org reveals the results of all three evaluations to Data.org.

Then, Data.org calculates

µ =
result(Cµ)

result(CD)
(5.1)

σ =

√
result(Cσ)

result(CD)
(5.2)

In general, one has to be careful about revealing intermediary results when multiple

computations are carried out. In this case, compute.org should only reveal result(CD), if

the agreement with the input providers included all three computations.

Another complication arises from the fact that, Cσ contains µ, which is equal to evalu-

ation result of Cµ times a constant factor. Computing parties should either hold on to their

shares for result(Cµ) until the computation of Cσ, or they should somehow receive µ as

input, if they want to avoid performing the same mean value computation multiple times.

Both options are easy to implement. The first option is discussed in Section 6.2.1. The

problem with this approach in this particular case is that, at the end of first computation,

computing parties do not hold shares of the mean value, but rather they hold shares of

a constant multiple of it. Since the second computation is not linear in µ, this approach

cannot be used without computing multiplicative inverses. Luckily, the second option is

readily applicable to our case. Using the results result(Cµ) and result(CD) revealed to

Chapter 5. Implementation 61

TABLE 5.3: Computation results revealed to Data.org.

result(Cµ) result(Cσ) result(CD) µ σ

2900 348572 7 414 223

it, data user will calculate µ as in Equation 5.2, and secret share it for the second compu-

tation. Hence, the second computation will be run with inputs secret shared by both the

input providers and the data user Data.org.

This scenario is run with the inputs given in Table 5.2. Evaluation is done by executing

protocol PCEAS . Results of secure evaluations revealed to Data.org, and µ and σ values

calculated from these, are shown in Table 5.3. Note that, restricting ourselves to integers

have cost us in terms of accuracy. The real values up to two significant digits are

Cµ = 414.29

Cσ = 241.03

This is not a weakness associated with SMC in general. For example, the application

of SMC to satellite collision analysis, mentioned in Section 3.3.7, makes heavy use of

floating-point arithmetic.

5.2 Simulator

The most practical way of executing the implemented protocols, requires the simulation of

the environment in which they are executed. While the protocol implementations are the

main focus of this chapter, in this section, the simulation part of the project is presented.

An overview of the simulator is given in Figure 5.2. Main responsibilities of the simulator

are

Chapter 5. Implementation 62

FIGURE 5.2: Overview of the simulator.

• reading the options file (See Section 5.2.2)

• creating and initializing Party objects

• simulating the network (See Section 5.2.1)

• simulating an active adversary (See Section 5.2.3)4

4Simulation of an active adversary is not applicable to executions of PCEPS .

Chapter 5. Implementation 63

Simulator gets the circuit generator (See Section 5.3) to generate a circuit from the

circuit description string it reads from the options file. It then provides each player with

its own copy of the generated circuit.

Simulator logs the contents of all the sent messages, and can optionally5 log internal

states6 of the parties at specified times.

5.2.1 Simulating the Network

Implemented protocols require as communication resource secure peer-to-peer channels,7

which are usually implemented using cryptography. It is mentioned in Section 3.2.2 that

the Byzantine Generals problem is solvable with perfect security within the setting as-

sumed for PCEAS . Hence, even though PCEAS requires consensus broadcast, it is not

required to make a separate assumption about the existence of a broadcast channel. In-

deed, it is stated in Section 4.2.1 that, the protocols require only synchronization and exis-

tence of secure peer-to-peer channels from the network. However, in this work, consensus

broadcast is not implemented as a subprotocol,8 and has to be simulated, in addition to

these two.

The implemented protocols are executed on a simulated network: both the secure

peer-to-peer channels and the broadcast channel are simulated.

5See VERBOSE in Pceas.h.
6An example of internal state information is the state of the table of commitment records, previously

mentioned in Section 5.4.3.
7A secure channel provides authenticity, integrity, and confidentiality guarantees for the messages sent

over it.
8An implementation of consensus broadcast could be built on top of the simulated secure peer-to-peer

channels.

Chapter 5. Implementation 64

Synchronization

Simulation of synchronous communication is achieved via a synchronizer thread, which

keeps the computing threads (players) in step with each other by means of locks and

condition variables. As seen in Figure 5.2, players notify the synchronizer when they

require interaction to continue with the execution of the protocol, and the synchronizer

notifies the players when a communication round has taken place, so that the players can

continue executing the protocol. Transmission of messages takes place after all players

become interactive, and is simulated by swapping pointers to the containers holding the

message objects. Within a single communication round, each player sends

• at most one private message to each of the other players via the corresponding

secure peer-to-peer channel

• at most one broadcast message via the consensus broadcast channel

Messages on the simulated network are delivered instantly. We do not impose a spe-

cific timeout to distinguish between delayed and maliciously omitted messages. Case of

a maliciously omitted message can be simulated by a call to interact() when the

outgoing message buffer is empty.9 Note that calls to interact() are part of network

simulation and are exempt from malicious behaviour (See Section 5.2.3).

5.2.2 Simulator Options

When the simulator is run, it first reads the options file opt under options folder. The

following can be configured by editing this file:

• Protocol parameters

9Message buffers reside in SecureChannel and ConsensusBroadcast classes.

Chapter 5. Implementation 65

• The protocol to execute

• Input providers and their private inputs

• Data user

• Parties that are corrupted by an (active) adversary (See Section 5.2.3)

• Circuit description string (See Section 5.3)

• Sequential run flag and related parameters (See Section 6.2.1)

• Comparator options (See Section 6.2.2)

Protocol Parameters

Protocol parameters are

• N : Number of players

• T : Threshold for the secret sharing scheme

• p: Field prime

The (Shamir) secret sharing scheme underlying the implemented protocols uses polyno-

mials over the finite field Z/pZ. Prime p is referred to as the field prime.10 Implemented

protocols do not allow 2-party secure computation, hence it is required that N > 2. As

mentioned in Section 2.3.3, p must be chosen large enough in order to avoid modular re-

ductions and be able to add and multiply integers optimally. Finally, there is the constraint

N < p from Section 2.4.2.

10Z/mZ is a field if and only if m is a prime.

Chapter 5. Implementation 66

Specifying the Protocol to Execute

User chooses one of the three implemented protocols (PCEPS , PCEAS , PCEAS,CR) to ex-

ecute.

Players and Users

Parties run on their own threads and communicate with each other by sending and re-

ceiving message objects through the simulated channels.11 Players (computing parties),

input providers, and data users are all modeled by Party class. In order to simplify the

implementation, the following assumptions are made:

• input providers and data users are both subsets of the players

• there is a single data user

Simulator assigns parties unique identifiers called partyID, which range from 1 to N .

Players who have the additional role of an input provider or a data user are specified in

the options file. For input providers, in addition to partyIDs, the private input values

and their labels (See Section 5.3) are also specified.

Computing parties work on the shares of private inputs provided to them by the input

providers. Recall that VSS guarantees consistency of shares. Only constraint for being

an input provider (for a PCEAS run) is to be able to run VSS with the N computing

parties. Similarly, only constraint for being a data user (for a PCEAS run) is to be able to

participate in the opening of shares as receivers, and to be able to combine the shares to

recover the result. Upon recovering the computation result, the data user simply writes it

to the standard output stream.

11Message and other classes can be found inside message folder.

Chapter 5. Implementation 67

5.2.3 Simulating an Active Adversary

An inspection of the implementation of PCEAS reveals that, most of the code is there

to handle cases of deviation from the protocol, and several code blocks gets activated

only in case of malicious behaviour. While there is not much that can be done in terms

of testing, for observing the effects of semihonest behaviour, malicious behaviour can be

simulated to test whether the implementation behaves as expected. This is what we did for

the implementation of PCEAS . Certain cases of malicious behaviour (See Section 5.4.5)

are hard-coded into the implementation. Any player, who is marked as corrupted by an

active adversary in the options file, executes these cases.12 Many more cases of malicious

behaviour could be included, but the existing cases are enough to achieve almost full

coverage of the previously mentioned code blocks. Cases of malicious behaviour can be

enabled individually or collectively by modifying the macro definitions TEST_CASE_X

and TEST_ALL in Pceas.h.

Determining Cmax

N and T together determine the maximum number of corrupted players that can be tol-

erated, Cmax. The degree of polynomials used for secret sharing will be denoted by D,

where D = T − 1. It is required that the honest players are able to interpolate, and T

shares are needed to do that. Therefore, we have

N − Cmax > D

12Note that, the contents of the options file are decided before the simulation starts, and as a result, only
a static adversary can be simulated.

Chapter 5. Implementation 68

TABLE 5.4: Values of Cmax for the given T and N .

(T,N) Cmax

(2,3) 0
(2,4) 1
(2,7) 1
(3,7) 2

(3,10) 2
(4,10) 3

However, during computation of multiplication gates, one has to deal with polynomials

of degree 2D.13 Hence, the actual constraint is

N − Cmax > 2D (5.3)

It is also required that the corrupted parties are not able to gather their shares and interpo-

late. This yields the second constraint

Cmax ≤ D (5.4)

In this case, there is no need to consider computation of multiplication gates, as doing

so yields a less restrictive constraint. Cmax for a given (T,N) pair can be found using

Equation 5.3 and Equation 5.4 together. Table 5.4 shows values ofCmax for a few selected

(T,N) pairs. As expected, combining equations 5.3 and 5.4 to eliminate D yields

N − Cmax > 2Cmax

13Two polynomials of degree D get multiplied.

Chapter 5. Implementation 69

or

Cmax <
N

3

5.3 Circuit Generator

We provide a minimalistic circuit generator, which allows avoiding the tedious work of

hard-coding arithmetic circuits. A simple recursive descent parser parses a given circuit

description string, generates the necessary Gate and Wire objects, and assembles them

into a Circuit object. An example circuit description string is (a+b)*(b.2). The

symbols ’+’, ’.’, and ’*’ represent ADD, CMUL, and MUL gates, respectively. a

and b are labels. A label can be a single alphabetic character as in the example, or a

string of characters starting with an alphabetic character and possibly containing numeric

characters. Due to left recursion, symbols are consumed from left to right. Parenthesis

can be used to affect the order of MUL and CMUL gates within the circuit. For exam-

ple, (a+b)*(b.2) and (a+b)*b.2 would yield different circuits.14 Other than being

part of labels, numeric characters are allowed only as multiplier values associated with

CMUL gates. In this case, they always follow a ’.’, possibly with a preceding ’-’ for a

negative value.

Labels allow the players to match private inputs of input providers with the input wires

of their circuits. During the input sharing phase, each player will expect to receive shares

for each label specified in the circuit description string, that was used to build the circuit

it is computing.

If a label is used more than once in the circuit description string, multiple input wires

are assigned the input value associated with that label. Again considering the circuit

14Though, both circuits would yield the same result.

Chapter 5. Implementation 70

generated from (a+b)*(b.2) as an example, label b will be assigned both to one of

the input wires of the ADD gate, and to the single input wire of the CMUL gate. By the

end of input sharing phase, each player will have assigned its share of the input associated

with label b, to all input wires labeled with b.

5.4 Protocols

This section describes the implementations of PCEPS , PCEAS and PCEAS,CR. It also

serves as a detailed presentation of these protocols’ inner workings.

5.4.1 PCEPS

PCEPS is a very simple protocol, whose implementation comes almost for free if PCEAS

is implemented. PCEPS is included as a separate protocol mostly because it serves as

a stepping stone in describing PCEAS . Furthermore, having both protocols separately al-

lows us to appreciate the increase in complexity during the transition from passive security

to active security.

An overview of PCEPS is given in Section 4.1.1. Below, we go through each phase of

the protocol for a simple circuit. To keep things manageable, we consider the minimum

possible number of computing parties, which is 3. Party P1 and party P2 are given the ad-

ditional role of an input provider, and party P3 is given the role of a data user. Description

string for the circuit to evaluate is (a+b)*(b.2). The circuit is chosen so that, it has

one gate of each type and it is as simple as possible. P1 and P2 will provide their inputs

with labels a and b, respectively. P1’s private input is 2, and P2’s private input is 3. With

these inputs, the expected evaluation result is 30. The field prime p is chosen to be 31.

T is chosen to be 2, which is the minimum non-trivial value. With these choices, PCEPS

Chapter 5. Implementation 71

tolerates a passive adversary corrupting a single computing party. Choices for protocol

parameters and private inputs are summarized below.

(T,N) = (2, 3) p = 31 a = 2 b = 3

Computing parties start execution of the protocol by running some sanity checks on pro-

tocol parameters, and then they calculate the recombination vector as described in Section

2.4.1 to obtain

r = (3, 28, 1)

Input Sharing Phase

Data providers P1 and P2 each sample a polynomial of degree D and distribute shares of

their secrets to each computing party (or player). We assume that P1 sampled

f(x) = 2 + 5x

and P2 sampled

g(x) = 3 + 17x

Constant terms are the values of the secrets to be secret shared, and randomly chosen

coefficients of x1 terms will hide the values of the secrets. Players distribute the shares:

P1 : f(1) = 7(label : a) −→ P1 P2 : g(1) = 20(label : b) −→ P1

P1 : f(2) = 12(label : a) −→ P2 P2 : g(2) = 6(label : b) −→ P2

P1 : f(3) = 17(label : a) −→ P3 P2 : g(3) = 23(label : b) −→ P3

Chapter 5. Implementation 72

Note that, P1 and P2 send shares to themselves, as they are both input providers and

players. Circuit of each player at the end of input sharing phase is shown in Figure 5.3.

FIGURE 5.3: Circuit of each player at the end of input sharing phase.

Computation Phase

Computation order of the gates has no effect on the result, but players have to be able to

agree on the order. The implementations presented in this work achieve this by numbering

the gates during circuit generation. All players compute the gate that has the smallest gate

number, and is computable, meaning it has not yet been computed and all its input wires

are assigned values. When there are no more computable gates, computation phase ends.

ADD and CMUL gates are computed locally. Circuit of each player after computa-

tion of first two gates is shown in Figure 5.4.

Computation of multiplication gates requires interaction between the players. They

first calculate a product locally by multiplying the values assigned to the input wires.

Chapter 5. Implementation 73

FIGURE 5.4: Circuit of each player after computation of ADD and
CMUL gates.

This product, however, is not a T -share: Two polynomials of degree, D = T − 1, get

multiplied to yield a polynomial of degree 2D. To obtain T -shares, they first distribute

shares of their local products, in the same way input providers shared their secrets in

input sharing phase. We assume that P1, P2 and P3 sampled h1(x) = 26 + 29x, h2(x) =

30 + 7x, h3(x) = 11 + 18x, respectively, where the constant terms are the local products

of the players, and coefficients of x1 terms are randomly chosen. Players distribute the

shares:

P1 : h1(1) = 24 −→ P1 P2 : h2(1) = 6 −→ P1 P3 : h3(1) = 29 −→ P1

P1 : h1(2) = 22 −→ P2 P2 : h2(2) = 13 −→ P2 P3 : h3(2) = 16 −→ P2

P1 : h1(3) = 20 −→ P3 P2 : h2(3) = 20 −→ P3 P3 : h3(3) = 3 −→ P3

Chapter 5. Implementation 74

Next, player Pi produces T -share si by arranging the received shares into a vector and

performing a dot product with the recombination vector r.

P1 : s1 = (24, 6, 29) · r = 21

P2 : s2 = (22, 13, 16) · r = 12

P3 : s3 = (20, 20, 3) · r = 3

This process of obtaining shares of lower degree from shares of higher degree is called

degree reduction. Figure 5.5 visualizes the degree reduction that took place above. Local

products of the players can be seen lying on a polynomial of degree 2, whereas the shares

si lie on a polynomial of degree 1. Player Pi assigns T -share si to the output wire of its

FIGURE 5.5: Visualization of the degree reduction process.

Chapter 5. Implementation 75

multiplication gate. As there are no more gates to compute, computation phase is over.

Circuit of each player at the end of computation phase is shown in Figure 5.6.

FIGURE 5.6: Circuit of each player at the end of computation phase.

Output Reconstruction Phase

Each player privately sends her share of the evaluation result to the data user (in this case

P3) via the corresponding secure peer-to-peer channel. Data user combines the shares by

performing a dot product with the recombination vector to obtain

(21, 12, 3) · r = 30

which is the expected result.

Chapter 5. Implementation 76

5.4.2 PCEAS

Due to the complexity of PCEAS , it is not possible to present a tractable example to explain

the protocol, as it was done for PCEPS . As PCEAS is described, focus will be on things

that has to be done differently in order to achieve active security. From an implementation

point of view, the most significant difference from PCEPS is that, commitments are used

instead of elements of the underlying field. For example, wires are assigned commitments,

and operations that take place during gate computations are carried out on commitments.

This requires each player to keep and manage a table of all commitments (See Section

5.4.3), both their own and those belonging to other players, in such a way that all honest

will agree at all times on existing commitments. A player who makes a commitment will

be referred to as the owner of that commitment. In order to be able to keep a consistent

view of existing commitment records, players perform local operations on other players’

commitments, in addition to performing them on their own. In such cases, we will say

that players perform the operation locally and consistently. Unlike with ordinary shares

in PCEPS , a player can perform operations on committed shares owned by other play-

ers. For example, a player can meaningfully add two commitment records, even when

she is not the owner of the commitments.15 As the protocol evaluates arithmetic circuits,

it is necessary to be able to add commitments, multiply commitments with a constant,

and multiply commitments. In similarity with PCEPS , multiplication of commitments

cannot be done locally, unlike addition and multiplication-with-constant. Addition and

multiplication-with-constant are needed not just for gate computations, but also for cre-

ating linear combinations of existing commitments as part of some of the subprotocols,

which are described later in this chapter. For circuit randomization, it is also necessary to

be able to add commitments with a constant and subtract commitments from one another.

15Though, the commitments used as operands must have the same owner.

Chapter 5. Implementation 77

These operations can be expressed in terms of addition and multiplication-with-constant,

and are discussed further in Section 5.4.6.

A particular naming scheme is used in order to provide commitment records with

unique names (or identifiers). The naming scheme allows players to agree on a unique

name without the need to communicate, and it plays an important role in local and consis-

tent computations. Obviously, players do not have access to the circuits of other players,

but the naming scheme allows a player to work out the name of the corresponding com-

mitment owned by any other player, by inspecting the name of the commitment in her own

circuit. Another benefit of using this naming scheme is that, it prevents actively corrupted

players from crafting names that will cause name conflicts. If a player P broadcasts a

name that does not fit the naming scheme, for some commitment she intends to make,

all honest players can agree that P is corrupted. The details of the naming scheme are

omitted.

Execution of some parts of the protocols result in creation of numerous commitment

records that are only temporarily useful. For example, we shall see in Section 5.4.4 that,

in step 3 of protocol Commitment Transfer, each player ends up creating up to 4·D·N new

commitment records.16 Only 2N of these records are used in the following steps. More-

over, Commitment Transfer itself is called consecutively N times during a single VSS.

In order to prevent inflation of the tables holding the commitment records, a mechanism

to remove the unwanted commitment records is deployed. All the commitment records,

except those which are marked as permanent, are removed at certain points during the

protocol execution. This purging mechanism is referred to as cleanup of records in the

rest of this work.

16D records are created as result of multiplication-with-constant operations. D records are created as
result of addition operations. With 2 polynomials per transfer, and assuming none of the N transfers are
erroneous, total is 4 ·D ·N records per transfer.

Chapter 5. Implementation 78

PCEAS is designed such that malicious behaviour will be noticed by honest players.

Each honest player keeps a set of players who were detected to be maliciously corrupted.

All honest players will agree on this set of corrupted players at all times.

Preserving the agreement between honest players on matters such as existence of com-

mitment records and set of corrupted players, is crucial for the protocols’ functioning. It

is possible to have cases where a single honest player is certain that some player behaved

dishonestly but there is no way all honest can agree on this at that particular step of the

protocol. In such cases, protocol will leave the handling of dishonest behaviour to future

rounds. The implementations presented in this work respect this principle, and update

commitment records and set of corrupted players only when an agreement between honest

players is possible. Often, an agreement is possible when evidence of dishonest behaviour

arrives from the broadcast channel. Players run sanity checks on information contained in

both private and broadcast messages. For example, if some player includes in a message

its intention to run a protocol on a particular commitment, the receiver checks from its

table of records whether the commitment exists and whether the sender of the message

is actually the owner of the commitment.17 If the message is a broadcast message and

the check fails, sender can be (and will be) marked as corrupt right away, as all honest

players agree at all times on which commitments exist and who their owners are, which

in turn allow them to agree that the sender is corrupted. As a second example, absence

of a broadcast message will also get a player marked as corrupt, if the protocol required

the message to be sent, but the player did not send it. As the protocols are detailed in the

following sections, a check performed on received messages is mentioned only if it is a

core part of the protocol, and the kinds of checks mentioned above are omitted.

17These conditions hold for all the subprotocols used in PCEAS .

Chapter 5. Implementation 79

In PCEPS , computing the recombination vector once at the very beginning is suffi-

cient. In PCEAS , on the other hand, each time a player is marked as corrupt, recom-

bination vector has to be recomputed.18 Furthermore, each time a player is marked as

corrupt, honest players check whether the number of corrupted players C exceeds Cmax

(See Section 5.2.3). If C > Cmax, then the assumption about the corruption capability of

the adversary was wrong, and all honest players abort execution.

PCEAS uses VSS, Commitment Multipication, and Designated Open Commitment as

subprotocols. These protocols are described in Section 5.4.4.

An overview of PCEAS is given in Section 4.1.2. Players start execution of the protocol

by running some sanity checks on protocol parameters. If sanity checks are passed, input

sharing phase starts. Following sections describe each phase of the protocol.

Input Sharing Phase

Input providers run protocol VSS consecutively, as many times as needed, until every

honest player has all the input wires of her circuit assigned. Players who are not input

providers, and input providers who ran out of secrets to secret share, passively partici-

pate. To prevent a malicious input provider from withdrawing an input and causing other

players to be stuck in an infinite loop, honest players note the number of distinct labels

in their circuits, NL, and run VSS at most NL times. Note that, the maximum number of

iterations required is equal to NL, and it is observed when all the secrets are provided by

a single party. If an input is withheld, all honest players complain that an input is missing

and stop execution. Once all inputs have been secret shared, each honest player locates

18Shares of players marked as corrupt are effectively excluded. Obviously, when a share is excluded, a
different recombination vector is needed to obtain the same result.

Chapter 5. Implementation 80

the received shares within her table of commitments, and assigns them to input wires with

matching labels. Finally, players do a cleanup of records.

Computation Phase

Until there are no more computable gates, honest players pick the next computable gate

and compute it. ADD and CMUL gates are computed locally and consistently. For an

ADD gate, a player retrieves the two commitments assigned to the input wires and adds

them. For a CMUL gate, there is a single input wire, and the commitment on that wire

is multiplied with the multiplier of the gate, which is a value in Z/pZ.

A MUL gate cannot be computed locally. A player retrieves the two commitments

assigned to the input wires of the gate, and runs the protocol Commitment Multiplication

with these commitments, creating a commitment to a local product in the process. As is

the case with PCEPS , these local products of T -shares are not T -shares of the product and

a degree reduction is needed. Each player distributes committed shares of its local prod-

uct by running the protocol VSS. Both Commitment Multiplication and VSS might cause

some players to be marked as corrupt, and more than 2D shares are needed to uniquely

determine a polynomial of degree 2D. If honest players are left with enough shares when

those sent by players marked as corrupt are excluded, each honest player combines the re-

maining committed shares of local products using the recombination vector. In this case,

degree reduction requires more effort than performing a dot product. Players locally and

consistently multiply their committed shares with the corresponding elements of the re-

combination vector, and take a sum of these commitments, again locally and consistently,

to obtain committed T -shares.

After each gate computation, players do a cleanup of records. When there are no more

gates to compute, players enter the output reconstruction phase of the protocol.

Chapter 5. Implementation 81

Output Reconstruction Phase

Players locate their shares of the computation result and open it to the data user by run-

ning the protocol Designated Open Commitment. A party can be the target of a single

designated open operation at a time, and all shares have to be opened to the same party.

Hence, players are required to take turns for opening their shares: When one player opens

its share to the data user, other players passively participate. Once the players are done

opening their shares, if more thanD T -shares have been received from players not marked

as corrupt, the data user forms a vector from the opened values of these committed shares.

The vector is formed by ordering the opened values with respect to their openers. The data

user calculates the dot product of this vector with the recombination vector. Reducing the

result of the dot product modulo field prime p yields the computation result.

5.4.3 Local Operations on Commitment Records

Describing the local operations on commitment records requires knowledge about the

structure of a commitment record. In this section, first the table of commitment records

and the relevant fields of a commitment record are introduced, and then the local opera-

tions are described.

Table of Commitment Records

A table of commitment records is part of the internal state of a player and holds a collection

of commitment records. Each commitment record in the table contains several pieces

of information. In addition to information describing the corresponding commitment, a

commitment record also holds information related to management of the record, and state

information with regard to protocols that are being executed (or were executed) on the

Chapter 5. Implementation 82

corresponding commitment. Only the fields that describe a commitment are mentioned

here.

Figure 5.7 shows a simplified view of a table of commitment records. We assume that

there are only three players: P1, P2 and P3. Further, we assume that p1c1, p2c1, p3c1

are the names of the only commitments made up to that point, whose owners are P1, P2

and P3, respectively. Figure 5.7 shows only names, verifiable shares fi(x, j), and univari-

ate polynomials F0(x). Two other fields of interest are share and opened value. Share

corresponds to an ordinary share, similar to the ones mentioned in the PCEPS example

presented in Section 5.4.1, and is equal to the verifiable share (a univariate polynomial

over Z/pZ) evaluated at 0. Opened value is the value originally committed to, and also

the value revealed when the commitment is opened. Opened value is equal to F0(x) (also

a univariate polynomial over Z/pZ) evaluated at 0. These fields are further discussed in

Section 5.4.4.

FIGURE 5.7: A simplified view of a table of commitment records. (One
for each player.)

Chapter 5. Implementation 83

Addition of Commitments

Addition of two commitments is carried out as follows. The player P performing the

operation creates a new commitment record to hold the result of the operation. Share field

of the new record is set to the sum of share fields of the operands. If P is the owner of

the operands, two additional fields of the commitment record must be set. Field F0(x) is

set to the sum of the corresponding fields of the operands, via an addition of polynomials

over Z/pZ. Field opened value is set to the value obtained by evaluating the F0(x) field

of the new commitment record at 0. Finally, the new record is marked as done, which

indicates that it is not a record belonging to a commitment in progress.19

Multiplication of a Commitment With a Constant

Multiplication of a commitment with a constant c is carried out in a way similar to addi-

tion of commitments. The player P performing the operation creates a new commitment

record to hold the result of the operation. Share field of the new record is set to the product

of the share field of the operand and the constant c, which are both in Z/pZ. If the owner

of the operand is the player performing the operation, field F0(x) of the new commitment

record is set to F0(x) of the operand multiplied by c, via multiplication of a polynomial

over Z/pZ by a constant. Field opened value is set to the value obtained by evaluating

the F0(x) field of the new commitment record at 0. Finally, the new record is marked as

done.

19If a record is not marked as done, it means that the protocol Commitment is still being run, and the
corresponding commitment has not been made yet.

Chapter 5. Implementation 84

5.4.4 Subprotocols Used by PCEAS

In this section, the protocols that are used within PCEAS are described. Each of these

subprotocols are artificially split into several steps, in order to make their description

easier.20

Commitment

By running protocol Commitment, a player commits to a value a ∈ Z/pZ. Recall from

Section 2.5.1 that, commitment is achieved via redundant sharing. After successful com-

pletion of the protocol, commitment owner cannot open the commitment (by running

either Open Commitment or Designated Open Commitment) with a value different than a

(binding property), and a is hidden in the sense that it is secret shared among N parties.

Commitments happen in parallel, in the sense that, while one honest player is committing

to some value, all other honest players are simultaneously committing to some values of

their own.

In step 1 of the protocol, commitment owner samples a symmetric bivariate polyno-

mial f(x, y) of degreeD, such that the zero coefficient is equal to a. The first communica-

tion round takes place, and the commitment owner privately sends to each other player Pj

the verifiable share f(x, j). Players update their table of commitments from the broadcast

commitment intents. While other players store only the name and their verifiable shares

for this commitment, the owner also stores the univariate polynomial F0(x) = f(x, 0),

which will later allow her to open the commitment (Figure 5.7). At this stage, commit-

ment records are not yet marked as done, and they remain this way until the final stage of

this protocol.

20Splitting was not done based on communication rounds: A single step might span any number of
rounds.

Chapter 5. Implementation 85

In step 2, for each ongoing commitment, each player calculates points on received

verifiable shares and privately sends them to every other player. These values will be

referred to as verifiers. To give an example, we consider the scenario described in Section

5.4.3. For commitment p3c1, P1 will evaluate its verifiable share f3(x, 1) at x = 2

and send it to P2, and P2 will evaluate its own verifiable share for the same commitment

f3(x, 2) at x = 1, and send it to P1. An actively corrupted player might send an invalid

verifier to one or more parties, for one or more of the commitments. See Case 1 in Section

5.4.5.

In step 3, players perform consistency checks on the verifiers. If the verifiable shares

were indeed generated from a symmetric bivariate polynomial, players should observe

that the verifiers they received from other players are consistent with the polynomial they

received as their own verifiable share. Continuing with the example given above, one of

the checks performed by P1 and P2 for commitment p3c1 is to compare f3(1, 2) and

f3(2, 1). In case of an inconsistency, a dispute is broadcast. For example, if P2 observes

that the values do not match, she broadcasts a message which says ’P2 is disputing the

verifier sent by P1 for the commitment p3c1’.

In step 4, a player takes a note of every dispute broadcast (in its table of commitment

records) for future use, and for disputes concerning her own commitment, she broadcasts

every disputed value. Continuing with the example given above, for the dispute received

from P2 concerning the verifier sent by P1, P3 would evaluate f3(1, 2) using the symmetric

bivariate polynomial it sampled at the beginning, and broadcast it. An actively corrupted

owner might refuse to broadcast for one or more disputes. See Case 2 in Section 5.4.5.

In step 5, honest players expect to see that owners have broadcast values for all dis-

putes concerning their commitments, and that every value they have broadcast is consis-

tent with the previously received verifiable share. Unless both conditions hold, an honest

Chapter 5. Implementation 86

player will broadcast a message, saying that it accuses the commitment owner. Players

store the broadcast values in their tables of commitment records for future use. An ac-

tively corrupted player might make false accusations at this stage. See Case 3 in Section

5.4.5.

In step 6, players first update their tables of commitment records with the broadcast

accusations. If an owner is accused, she broadcasts the verifiable share for the accusing

party, which is supposed to be the same as that privately sent to the accusing party during

the very first communication round. An accused owner who is actively corrupted might

refuse to broadcast a verifiable share for one or more accusations. See Case 4 in Section

5.4.5.

In step 7, honest players check for each commitment, whether verifiable shares of

all accusing players were broadcast by the owners, and whether every verifiable share

broadcast is consistent with both the points broadcast previously in Step 4 and with the

verifiable shares received in Step 1. If a commitment owner failed to broadcast a verifiable

share, or if the broadcast verifiable share is inconsistent with previous messages, an honest

player will accuse the commitment owner.

So far, players may have observed signs of malicious behaviour, but no judgment

has been passed. The idea behind the protocol is to force corrupted players broadcast

information, so that inconsistencies will eventually get them caught, while ensuring that

all that broadcast information does not break the hiding property or hurt privacy. To be

able to keep that balance, one relies on the assumption about the corruption capability of

the adversary. More specifically, in the eighth and last step, where the honest players will

finally pass judgment, the number of accusations will be weighed against the maximum

number of corrupted players.

In step 8, players first update their table of commitments with accusations made in step

Chapter 5. Implementation 87

7. If a commitment owner broadcast inconsistent information or if more than D players

accused the commitment owner (meaning, at least one honest player accused),21 then all

honest players will agree that the commitment owner is corrupted and the intended com-

mitment will fail. Otherwise, the commitment will succeed, and each player will set as its

share for the commitment, the received verifiable share evaluated at 0. Basically, at this

moment, the verifiable shares have completed their task, and players can perform local

operations on successful commitments by operating on their shares. Whether the com-

mitment succeeded or failed, all honest players mark the commitment record as done. If

the owner’s broadcasts were consistent, and the number of accusations is nonzero, but

less than or equal to D, then a tolerable number of corrupted players tried to sabotage

the commitment. In this case, honest players will behave the same way they would if the

number of accusations were 0. If a commitment fails, all honest players mark the owner

as corrupt, and force a public commitment to 0. Honest players force a public commitment

to a particular value a, by locally updating the record corresponding to the commitment,

as if the value committed to by the owner were a. By forcing a public commitment, hon-

est players can continue executing the protocol, and safely use this commitment record

if it is required at a later stage. Computation result will not be affected by the forced

commitment, as the owner is now marked as corrupt and will be excluded from recombi-

nation. In case of success, there is one tricky case that has to be taken care of. An actively

corrupted owner may behave maliciously at the start, but later behave honestly and have

her commitment accepted. Assume that player Pk accuses the owner, and have the owner

broadcast a new verifiable share in step 6, which is different from the one Pk (privately)

received previously. Then, in step 8, Pk should update the record corresponding to this

commitment such that it uses the broadcast verifiable share, as it is this broadcast one

21Recall that Cmax ≤ D (See Section 5.2.3).

Chapter 5. Implementation 88

which passed the consistency checks in step 7. Pk will know that the commitment owner

is corrupted, but there is no way all honest can agree on this, because inconsistency in-

volves the verifiable share sent to Pk privately. The owner will not be marked as corrupt

by any player. The best protocol Commitment can do in this case is to (eventually) force

honest behaviour, if the commitment is to succeed.

Open Commitment

By running protocol Open Commitment, a player opens a commitment it has previously

made. While one honest player is opening a commitment, other honest players might

be simultaneously opening commitments of their own. However, there are cases where

an honest player will just passively participate in the openings of other players, without

opening a commitment herself.

It was mentioned in the previous section that, in step 1 of protocol Commitment, com-

mitment owner stores F0(x) = f(x, 0) to be used when opening the commitment. In step

1 of Open Commitment, F0(x) is broadcast by the player opening the commitment, along

with the commitment identifier (or name). By broadcasting a polynomial different than

that used during the commitment, a corrupted player might try to open her commitment

with a different value. See Case 5 in Section 5.4.5.

In step 2, players update corresponding commitment records with the broadcast poly-

nomials. Protocol Open Commitment guarantees that, if the opening succeeds, by eval-

uating this polynomial at 0, players will get the originally committed value. Further in-

teraction is required to decide success. For each commitment being opened, each player

broadcasts her share, which was stored in step 8 of protocol Commitment. An actively

corrupted player might broadcast a different share to sabotage an opening. See Case 6 in

Section 5.4.5.

Chapter 5. Implementation 89

In step 3, for each commitment being opened, each player counts the number of shares

broadcast, that are consistent with the polynomial broadcast in step 1. For example, P1

evaluates F0(x) at x = 2 and if it is equal to the share broadcast by P2 in step 2, P1

increments the number of consistent shares by one. As the total number of consistent

shares is solely determined by information from consensus broadcast, all honest players

will agree on it. If total number of consistent shares is greater than 2D,22 then the opening

succeeds and the commitment record is marked as opened. Otherwise, the opening fails,

and all honest players mark the opening player as corrupt.

Designated Open Commitment

Protocol Designated Open Commitment uses Open Commitment as a subprotocol. By

running Designated Open Commitment, a player opens a commitment it has previously

made, to a single player, which will be referred to as the target. While one honest player is

running Designated Open for a commitment, other players might be running Designated

Open for a commitment of their own, but with a different target. There are cases where

an honest player will passively participate in the openings of other parties, without doing

a designated open herself. Targets are determined by the target selection scheme. The

target selection scheme guarantees that a player is targeted by at most one honest player

at a time, and it is also used in Transfer Commitment and VSS protocols. Before going

further, we briefly explain this scheme.

The target selection scheme allows us to keep the homogeneity of roles among the

players, and allows the players to run the same protocol simultaneously while receiving

no more than one private message from any single player in a single communication

round. Figure 5.8 depicts the target selection scheme for N = 4. With four players, three

22Recall that N − Cmax > 2D (See Section 5.2.3).

Chapter 5. Implementation 90

iterations are needed so that each player gets a chance to select every other player as target

(exactly) once.23

FIGURE 5.8: Target selection scheme for N = 4.

Step 1 of Designated Open Commitment is similar to that of Open Commitment. One

difference is that, F0(x) is privately sent to the target party instead of being broadcast.

Commitment identifier (or name) and identifier of the target (partyID) is broadcast

separately, so that all players know about ongoing designated open runs. Thanks to the

target selection scheme, each player knows which opening player is allowed to target her

at any round, hence honest players will notice when an invalid designated open intention

23For none of the protocols that uses this scheme (Designated Open Commitment, Transfer Commitment,
VSS), it makes sense for a party to select itself as the target.

Chapter 5. Implementation 91

is broadcast. By privately sending a polynomial different than that used in the commit-

ment (F0(x)), a corrupted player might try to (designated) open her commitment with a

different value. See Case 7 in Section 5.4.5.

In step 2, players who are selected as targets of a designated open, update their com-

mitment records with the privately sent polynomial. Protocol Designated Open Commit-

ment guarantees that, if the opening succeeds, by evaluating this polynomial at 0, players

will get the value originally committed to. However, further interaction is required to de-

cide success. For each commitment being designated opened, each player privately sends

her share to the corresponding target. An actively corrupted player might privately send a

different share to sabotage an opening. See Case 8 in Section 5.4.5.

In step 3, for the commitment being designated opened to her, a player counts the

number of privately sent shares, that are consistent with the polynomial privately sent to

her in step 1. If total number of consistent shares is not greater than 2D, an honest target

will broadcast a message, saying that she rejects the designated open.

In step 4, an honest commitment owner whose designated open got rejected in step 3,

runs Open Commitment protocol with the same commitment. Players who don’t have to

open a commitment, passively participate in openings of other players. For each desig-

nated open that was rejected, if the subsequent Open Commitment fails, opening player is

marked as corrupt and designated open also fails. Otherwise, designated open succeeds.

If the designated open was not rejected in step 3, honest players mark their records for

this commitment as designated opened to the corresponding target. An actively corrupted

player whose designated open got rejected in step 3, might refuse to run Open Commit-

ment. See Case 9 in Section 5.4.5.

Chapter 5. Implementation 92

Transfer Commitment

Protocol Transfer Commitment uses Commitment, Designated Open Commitment, and

Open Commitment protocols as subprotocols. By running Transfer Commitment, a player

(who will be referred to as the source of transfer, or source) transfers a commitment she

previously made, to a single player (who will be referred to as the transfer target, or

target). After successful completion of the protocol, transfer target will end up being the

owner of a new commitment, such that the committed value in the new commitment is

guaranteed to be equal to the value committed to by the source in the original transferred

commitment. Furthermore, players other than the transfer target will learn nothing about

this value.

While one honest player is running Transfer Commitment, every other honest player

simultaneously runs Transfer Commitment to transfer a commitment of their own. The

target selection scheme, which was previously described in Section 5.4.4, guarantees that

a player is never the target of more than one commitment transfer (with an honest transfer

source).

In step 1, players broadcast identifiers of the commitments they intend to transfer,

and identifiers of the transfer targets. Following a communication round, players read

the broadcast messages to enforce the target selection scheme and to initialize the list of

transfers they will keep internally. Each honest player runs Designated Open with the

commitment they intend to transfer, where the open target is the target of transfer. In the

steps that follow, some of the transfers will be marked as erroneous if malicious behaviour

is observed from either the source or the target. In the rest of this section, transfers which

have not (yet) been marked as erroneous, will be referred to as ongoing transfers.

In step 2, players update their list of transfers according to the results of the Desig-

nated Open runs from step 1. If a commitment to be transferred was not opened to the

Chapter 5. Implementation 93

transfer target, transfer is marked as erroneous. Otherwise, an honest target makes a com-

mitment to the value opened to it, by running protocol Commitment. Players, who are

targets of erroneous transfers passively participate in the commitments of others. An ac-

tively corrupted player might make a commitment to a value different than the one opened

to her by the source. See Case 10 in Section 5.4.5.

In step 3, players update their list of transfers according to the results of the Commit-

ment runs. If a commitment failed, corresponding transfer is marked as erroneous. In the

rest of this step, transfer target and transfer source will have to work together to create a

piece of evidence to convince other players that the commitment being transferred, and

the new commitment made by the transfer target are to the same value. Each source of an

ongoing transfer will sample a univariate polynomial of degree D, whose constant term is

equal to the opened value of the commitment being transferred, and commit to every co-

efficient by running protocol Commitment. Sources of erroneous transfers will passively

participate in commitments of others. If an honest source samples a polynomial in this

step, she privately sends the coefficients to the transfer target, so that the target can do its

part in creation of the necessary evidence. An actively corrupted transfer source might

send a wrong value, i.e. a value different than the committed value, for one or more of the

coefficients. See Case 11 in Section 5.4.5.

Following a communication round, each target who received coefficients, commits

to each of the received coefficients, by running the protocol Commitment D times. No

more commitments will occur in the rest of the protocol. Each player goes over her list

of transfers and marks a transfer as erroneous if one or more of the commitments associ-

ated with the transfer failed. Next, for each ongoing transfer, each player will locally and

consistently create committed shares, once from the source’s version of the sampled poly-

nomial, and once from the target’s version of the sampled polynomial. As an example, we

Chapter 5. Implementation 94

consider a single transfer, where the commitment being transferred is commit_source,

the commitment made by the transfer target in step 2 is commit_target, commitments

made by the source to the coefficients are coeff_sourcei, and commitments made by

the target to the privately received coefficients are coeff_targeti. For this transfer,

committed shares created from source’s version of the polynomial are

share_sourcek = commit_source+
D∑
i=1

ki · coeff_sourcei

and committed shares created from target’s version of the polynomial are

share_targetk = commit_target+
D∑
i=1

ki · coeff_targeti

Once all honest players carry out the local operations described above, sources and targets

are able to distribute the evidence mentioned earlier. Note that each player is the source

of (exactly) one transfer, and target of (exactly) one other transfer. First, each player

will assume the role of a transfer source, and if the corresponding transfer has not been

marked as erroneous, run Designated Open N − 1 times to open the committed share

share_sourcek to every other player Pk.24 Next, each player will assume the role of

a transfer target, and if the corresponding transfer has not been marked as erroneous, run

Designated Open N − 1 times to open the committed share share_targetk to every

other player Pk.

In step 4, for each ongoing transfer, each player will use the provided evidence to

determine whether or not the commitment being transferred, and the new commitment

made by the transfer target are to the same value. For each ongoing transfer, a player

24Target for the consecutive Designated Open runs at each iteration and the transfer target are both
determined by the target selection scheme. Consequently, we have a target selection scheme running within
a target selection scheme.

Chapter 5. Implementation 95

Pk checks whether share_sourcek and share_targetk have been opened to her,

and whether the opened values are equal. If not, she rejects that transfer. In the end, Pk

broadcasts a message, listing all the transfers she rejects. An actively corrupted player

might reject one or more transfers even though the opened values are equal. See Case 12

in Section 5.4.5.

Following a round of communication, each player takes note of the broadcast rejec-

tions. If a player provided evidence in step 3 (either as the source or as the target), for each

rejection, she opens again the shares of the rejecting player, but this time to all players

by running protocol Open Commitment. What we have here is the execution of a com-

mon strategy, which can also be observed in other parts of protocol PCEAS: A portion of

shares are revealed to resolve claims of malicious behaviour, while the upper bound on

the number of corrupted players ensures that privacy is not breached.

In order to minimize the number of times protocol Open Commitment is run, players

go over all rejections to determine the maximum number of openings a single player has to

make. Each player opens the commitments it has to open, and then passively participates

in the rest of the openings.

Next, players go over the list of transfers once again. If a source or target player failed

to open a commitment for any of the rejections, she is marked as corrupt and the transfer is

marked as erroneous. For each rejection associated with an ongoing transfer, each player

checks whether or not the opened values are equal. If the opened values turned out to

be same, honest players will know that the rejector lied and can mark her as corrupt.25

Otherwise, the transfer is marked as erroneous. At this point, the protocol is done with

transfers having honest targets and sources.

In step 5, players handle the transfers which have been marked as erroneous at some

25Marking dishonest rejectors is optional. Omitting it does not affect the security of the protocol.

Chapter 5. Implementation 96

point during the execution of the protocol. For each erroneous transfer, transfer source

opens the commitment being transferred, by running the Open Commitment protocol.

Note that, at this point it is known that either the source or the target is corrupted, hence

no information is being revealed that is not already known to the adversary. Here, an

actively corrupted transfer source might refuse to open her commitment. See Case 13 in

Section 5.4.5.

Following the openings, each player goes over the list of erroneous transfers. If a

source failed to open her commitment, she is marked as corrupt, and nothing else needs

to be done for this transfer. As we shall see later when the VSS protocol is described,

honest players will simply assume 0 for the values of shares they receive from corrupted

players. If the source did open her commitment, honest players force the transfer target to

do a public commitment to the opened value: every honest player updates the commitment

record corresponding to the commitment made by the transfer target in step 2, such that

the committed value is equal to the value opened by the source. Note that the protocol

does not in general allow honest players to pinpoint the corrupted player. What honest

players know is that, one or both of the source-target pair is corrupted for an erroneous

transfer.

Commitment Multiplication

Protocol Commitment Multiplication uses Commitment, Designated Open Commitment,

and Open Commitment protocols as subprotocols. By running Commitment Multiplica-

tion, a player creates a new commitment (which is referred to as the committed product)

from two existing commitments (which are referred to as the committed multiplicands).

If the player is honest, opened value of the committed product is the product of opened

values of the two committed multiplicands. If the protocol succeeds, all players will know

Chapter 5. Implementation 97

that the value committed to is indeed the product, but they will learn nothing about the

opened values of the committed multiplicands and the committed product. While one

honest player is running Commitment Multiplication, every other honest player simul-

taneously runs Commitment Multiplication with different committed multiplicands. A

player can multiply commitments only if she is the owner of both of them. The player

who carries out the multiplication is referred to as the multiplication owner.

In step 1, players commit to the product of opened values of the multiplicands by run-

ning protocol Commitment, creating the committed product in the process. An actively

corrupted multiplication owner might make a commitment to a value different than the

product. See Case 14 in Section 5.4.5. Following the commitments, each player broad-

casts a message, including identifiers of the committed multiplicands and identifier of the

committed product.

In step 2, each player reads the broadcast messages and stores a list of multiplications

internally. In the following steps, if malicious behaviour is observed from any multipli-

cation owner, the corresponding multiplication will be marked as erroneous. In the rest

of this section, multiplications which have not (yet) been marked as erroneous, will be

referred to as ongoing multiplications. Each multiplication owner samples two univari-

ate polynomials of degree D, such that the constant terms are the opened values of the

committed multiplicands. These polynomials will be referred to as f and g. Multipli-

cation owner then multiplies f and g to obtain h, which is a polynomial of degree 2D.

Note that, if the multiplication is done honestly, constant term of h will be equal to the

opened value of the committed product. Next, each multiplication owner commits to each

coefficient of these three polynomials, by consecutively running protocol Commitment.

Following the commitments, each player goes over its list of multiplications, and if one

or more commitments associated with a multiplication failed, the multiplication is marked

Chapter 5. Implementation 98

as erroneous.

In step 3, purpose of a multiplication owner is to provide other players with evidence

that the committed multiplicands and the committed product form a multiplication triple.

For each ongoing multiplication, each player locally and consistently creates committed

shares. As an example, we consider a single multiplication, where the committed multipli-

cands are mult1 and mult2, the committed product is prod, and commitments made to

coefficients of f , g, h are coeff_fi, coeff_gi, coeff_hj , respectively. Committed

shares created for this multiplication are:

share_fk = mult1+
D∑
i=1

ki · coeff_fi

share_gk = mult2+
D∑
i=1

ki · coeff_gi

share_hk = prod+
2D∑
j=1

kj · coeff_hj

Once all honest players carry out the local operations as described above, multiplication

owners are able to distribute the evidence mentioned earlier. An honest multiplication

owner runs Designated Open N − 1 times for each one of f , g and k, to open the com-

mitted shares share_fk, share_gk and share_hk to every other player Pk. At each

iteration, target for designated open is determined by the target selection scheme.

In step 4, players use the shares provided by multiplication owners to determine

whether or not the multiplications are honestly performed. For each ongoing multipli-

cation, a player Pk checks whether fk, gk and hk have been opened to her, and whether

the opened values form a multiplication triple, with opened value of hk as the product.

If not, she rejects that multiplication. In the end, Pk broadcasts a message, listing all the

Chapter 5. Implementation 99

multiplications she rejects. An actively corrupted player might reject one or more mul-

tiplications even though the opened values form a multiplication triple. See Case 15 in

Section 5.4.5.

In step 5, players take note of the broadcast rejections. If a player distributed shares in

step 3, for each rejection, she opens again the shares of the rejecting player, but this time

to all players by running protocol Open Commitment. In order to minimize the number

of times protocol Open Commitment is run, players go over all rejections to determine

the maximum number of openings a single player has to make. Each player opens the

commitments it has to open, and then passively participates in the rest of the openings.

Next, players go over the list of multiplications in order to handle rejections. If a

multiplication owner failed to open a committed share for any of the rejections, or if the

opened values are not the operands and product of a multiplication, multiplication owner

is marked as corrupt. Otherwise, honest players will know that the rejector lied and can

mark her as corrupt.26

Verifiable Secret Sharing (VSS)

Protocol VSS uses Commitment and Transfer Commitment protocols as subprotocols. VSS

is called within PCEAS during the input sharing phase when the input providers secret

share their private inputs, and during the computation of multiplication gates when the

players secret share their local products prior to degree reduction. By running the VSS

protocol, a player distributes committed shares of a secret. The player, who distributes

the committed shares, is referred to as the distributing player. A VSS run is referred to

as an ongoing VSS, if the distributing player has not yet been marked as corrupt. After

completion of the protocol, either all honest players hold consistent shares of the secret,

26Marking dishonest rejectors is optional. Omitting it does not affect the security of the protocol.

Chapter 5. Implementation 100

or all honest players agree that the distributing player is corrupted. While one honest

player is running VSS, every other honest player simultaneously runs VSS for a secret of

their own. If the distributing player does not already own a commitment to the secret to

be secret shared, first she commits to it by running protocol Commitment.

In step 1, each distributing player samples a univariate polynomial of degree D, such

that the constant term is equal to the secret, and commits to each coefficient of the polyno-

mial, by consecutively running protocol Commitment D times. Each distributing player

broadcasts the identifier of the commitment to her secret. If VSS is being run during input

sharing phase, sender also includes in the message the label associated with the private

input.

If one or more of the commitments in step 1 failed, corresponding distributing players

are already marked as corrupt by all honest players by the time step 2 begins. In step 2,

each player goes over the broadcast messages. For each ongoing VSS, each player will

locally and consistently create committed shares. As an example, we consider a single

VSS, where the commitment to the secret is secret, and commitments made to the

coefficients are coeffi. Committed shares created for this VSS are

sharek = secret+
D∑
i=1

ki · coeffi

At this stage, honest players have stored commitment records for every share of every

player. If VSS is being run during input sharing phase, players also store the labels read

from the messages, without breaking their association with the shares.

In step 3, each honest distributing player transfers the shares sharek to every other

player by calling Transfer Commitment consecutively N−1 times, where the transfer tar-

get at each iteration is determined by the target selection scheme. During these transfers,

Chapter 5. Implementation 101

some players might be marked as corrupt. However, even when the source of malicious

behaviour cannot be pinpointed, consistency of shares is guaranteed via the forced public

commitments, which take place in the final step of the Transfer Commitment protocol.

Following the transfers, each player checks -not only for the shares transferred to her, but

for all the shares- whether the distributing player is marked as corrupt.27 If a distributing

player Pi is corrupt, honest players will do a public commitment to 0, i.e. they will locally

create a committed share of 0 with Pi as its owner, and use this instead of the shares re-

ceived from Pi.28 Finally, if VSS is being run during the input sharing phase, committed

share is updated with the label stored in step 2.

5.4.5 Cases of Malicious Behaviour

This section describes the cases of malicious behaviour, which can be simulated for pro-

tocol PCEAS . Some of the cases have player identifiers hard-coded into them, so care

should be taken when choosing the corrupted players. When stating the effect of mali-

cious behaviour for a particular case, it is assumed that all other cases are deactivated.

Case 1

In step 2 of protocol Commitment, corrupted player(s) sends a defective verifier to player

P1 for all commitments. As a result, P1 disputes all commitments. At Step 4, owners

broadcast values for all disputes. Broadcast values are accepted. No player gets accused,

and all commitments succeed.

27Following a transfer, owner of a committed share is the transfer target. Hence, identifier of the dis-
tributing player is stored separately within the commitment record.

28The choice of value 0 is arbitrary and have no effect on the computation result, as the corrupted player
will be excluded from recombination.

Chapter 5. Implementation 102

Case 2

In step 4 of protocol Commitment, corrupted player(s) refuses to broadcast in response to

disputes concerning her commitment. As a result, her commitment fails and she is marked

as corrupt.

Case 3

In step 5 of protocol Commitment, corrupted player(s) makes a false accusation directed

at player P1. P1 broadcasts the verifiable share of the accuser. Eventually, commitment of

(wrongfully) accused P1 succeeds. Furthermore, accusing player updates its record with

the newly broadcast verifiable share.29

Case 4

In step 6 of protocol Commitment, corrupted player(s) refuses to broadcast verifiable

shares in response to accusations concerning her commitment. As a result, her com-

mitment fails and she is marked as corrupt.

Case 5

In step 1 of protocol Open Commitment, corrupted player(s) broadcasts the negative of

the polynomial used in commitment, hence tries to open her commitment as negative of

the value originally committed to. As a result, her opening does not succeed and she is

marked as corrupt by all honest players. Openings of other players are not affected.

29Though, this is not the case where this code piece realizes its true purpose. It is meant for handling
a commitment owner who starts maliciously, but later behaves honestly to have her commitment accepted.
This case was mentioned during the description of step 8 of protocol Commitment.

Chapter 5. Implementation 103

Case 6

In step 2 of protocol Open Commitment, instead of broadcasting her share, a corrupted

player(s) increments her share by 1 and broadcasts that value, for all ongoing commitment

openings. Despite the sabotage attempt, openings of honest players succeed.

Case 7

In step 1 of Designated Open Commitment protocol, corrupted player(s) privately sends

to the target, the negative of the polynomial used in commitment, hence tries to open

her commitment with the negative of the value originally committed to. As a result, her

designated open gets rejected and she is forced to open her commitment by running Open

Commitment.

Case 8

In step 2 of Designated Open Commitment protocol, instead of (privately) sending her

share, a corrupted player(s) increments her share by 1 and sends that value, for all ongo-

ing designated open runs. Despite the sabotage attempt, designated open runs of honest

players succeed.

Case 9

In step 4 of Designated Open Commitment protocol, corrupted player(s) refuses to open

her commitment (by running Open Commitment), after her designated open gets rejected

by the target. As a result, she is marked as corrupt by all honest players. Designated open

fails and her commitment remains unopened.

Chapter 5. Implementation 104

Case 10

In step 2 of Transfer Commitment protocol, corrupted transfer target(s) increments the

value opened to her by transfer source P3 by 1, and makes a commitment to the incre-

mented value instead. As a result, the transfer from P3 to the corrupted target is rejected

by the honest players. P3 opens her commitment in step 5, and the commitment made by

the corrupted target is overridden by the forced public commitment to the value opened

by P3.

Case 11

In step 3 of Transfer Commitment protocol, corrupted transfer source(s) privately sends

a coefficient value (for the first coefficient) to transfer target P3, where the value sent is

the value committed to incremented by 1. As a result, transfer gets rejected by the honest

players. Corrupted source opens her commitment in step 5, and the commitment made by

P3 is overridden by the forced public commitment to the value opened by the corrupted

source.

Case 12

In step 4 of Transfer Commitment protocol, corrupted player(s) rejects the transfer from

player P3 to player P1, where P1 and P3 are both set as honest players. As a result, P1

and P3 are forced to open the committed shares associated with the rejection, which they

previously opened to the corrupted player via Designated Open. In step 5, each honest

player checks the opened values. They match, and the transfer from P3 to P1 is not marked

as erroneous.

Chapter 5. Implementation 105

Case 13

In step 5 of Transfer Commitment protocol, corrupted transfer source(s), whose transfer

is marked as erroneous, refuses to open her commitment. As a result, she is marked as

corrupt by all honest players.

Case 14

In step 1 of Commitment Multiplication protocol, corrupted player(s) increments the value

she calculated as the product by 1, and makes a commitment to the incremented value

instead. As a result, multiplication is rejected by all honest players. Corrupted multipli-

cation owner is forced to open her commitments in step 5, and is marked as corrupt by all

honest players, as the opened values are not the operands and product of a multiplication.

Other multiplications are not affected.

Case 15

In step 4 of Commitment Multiplication protocol, corrupted player(s) rejects the multi-

plication of honest player P3. As a result, P3 is forced to open the committed shares

associated with the rejection, which she previously opened to the corrupted player via

Designated Open. In step 5, each player observes that the opened values are the operands

and product of a multiplication. P3 is not marked as corrupt. Rejector is marked as corrupt

by all honest players.

5.4.6 Implementation of Circuit Randomization

It was mentioned in Section 2.6 that a protocol in the preprocessing model runs in two dis-

tinct phases: preprocessing phase and online phase. When the simulator is set to run with

Chapter 5. Implementation 106

protocol PCEAS,CR, the protocol for the preprocessing phase (PCEAS,P) is run right before

the protocol for the online phase (PCEAS,O), as we saw no reason to temporally separate

their executions for simulations. Recall that, our purpose in using circuit randomization

is to decrease the interactivity required for computation of multiplication gates. Hence, it

is no surprise that, computation of multiplication gates is different in PCEAS,O, compared

to PCEAS . First, the implementation of the preprocessing phase is described.

PCEAS,P - Preprocessing Phase

In preprocessing phase, purpose of the players is to generate and store sufficiently many

multiplication triples. Normally, preprocessing phase is independent of the circuit to be

evaluated, but for the sake of convenience, instead of making a guess for sufficiently many,

we peek at the circuit and count multiplication gates. Minimum number of triples needed

is equal to the number of multiplication gates, because using a triple twice will leak in-

formation. Lets assume M triples are needed. An internal data structure is initialized to

hold M multiplication triples. The generation of a single triple is described below.

Each player Pi randomly chooses two values r1i, r2i ∈ Z/pZ, each of which will be

used for one of the multiplicands. For the first multiplicand, each Pi runs protocol VSS to

distribute T -shares of r1i. Next, using homomorphism of the commitment scheme, all the

received committed shares are added up to form the random sharing:

[[r]] =
∑
i

[[r1i]]

Value r is not known to any of the players. Note that, even though the shares are summed

up, any linear combination with nonzero coefficients would do. As long as a single player

is honest, r will be a random value. [[r]] is used as the committed share for the first

Chapter 5. Implementation 107

multiplicand. Committed share for the second multiplicand is computed in a similar way,

using r2i instead of r1i:

[[r′]] =
∑
i

[[r2i]]

Next, each player runs protocol Commitment Multiplication with the commitments to the

multiplicands, creating in the process a commitment to their product. Each party runs

protocol VSS again, this time to distribute committed shares of the product. Note that

these shares (of the product) are not T -shares, so a degree reduction will be needed before

a triple of T -shares is obtained. Players store their shares for the operands and the product

of this multiplication triple, in the data structure that holds the triples.

PCEAS,O - Online Phase

Only the computation of multiplication gates will be described, because the rest of

PCEAS,O is the same as PCEAS . Computation of multiplication gates in PCEAS,O requires

two new kinds of local operations: addition with a constant and subtraction.

Adding a constant c to a commitment comm is done by first creating a commitment

record with c as the committed value, and owner of comm as the owner.30 Then the two

commitment records are added, as described in Section 5.4.3.

Subtraction of commitments can be expressed in terms of addition and multiplication

with a constant. The commitment being subtracted is multiplied by the constant −1, as

described in Section 5.4.3, and then added to the other commitment.

Players start computation of a multiplication gate by locating the multiplication triple

they generated in preprocessing phase for this particular gate. The two commitments

assigned to the input wires of the gate are retrieved. The multiplicands of the triple will

30Note that, owner of comm may be different than the player performing the operation.

Chapter 5. Implementation 108

be denoted by x and y, and the gate inputs will be denoted by a and b. Players locally and

consistently create the following new commitments via subtraction of commitments

e = a− x

d = b− y

and then each player opens e and d, by running protocol Open Commitment twice.

Next, players perform degree reduction on the shares of the product, which they re-

ceived and stored during the preprocessing phase. They remove the shares distributed by

players marked as corrupt, and if they are left with more than 2D shares, they combine

these using the recombination vector to obtain T -shares. The T -share of the product will

be denoted by x · y.

Using the triple (x, y, x.y), inputs a and b, and the identity from Section 2.6.1

a · b = x · y + e · b+ d · a− e · d

players will form a committed T -share for the product of a and b, which will be denoted

by a · b. Note that e and d were opened to all players and will be treated as constant

values. The usual local operations are carried out on commitments, except that addition

with a constant is used for adding −e · d. All local operations are performed locally and

consistently. Players assign their committed T -share a · b to all output wires of the gate.

Gate computation is completed.

The only part of PCEAS,O that requires interaction is the part where e and d are opened

by running protocol Open Commitment twice. For PCEAS on the other hand, computa-

tion of a multiplication gate requires running Commitment Multiplication and VSS, both

of which have relatively high round complexity. With circuit randomization, the cost of

Chapter 5. Implementation 109

running these protocols are pushed to the preprocessing phase. In Section 6.1.2, the num-

ber of communication rounds required in computation phases of PCEAS,O and PCEAS are

compared.

110

Chapter 6

Round Complexities and General

Computing

In this chapter, we first securely evaluate a few simple arithmetic functions to observe

and to compare the round complexities of the implemented protocols. Next, we attempt

to extend the implementation to support more general computations. In particular, the

computing parties are provided with the ability to remember shares from previous com-

putations, and a custom arithmetic circuit is built for a specific computation, namely,

secure comparison of integers.

6.1 Round Complexities

In this section, the implemented protocols are executed in order to observe and to compare

their performance in terms of the number of required communication rounds.

Chapter 6. Round Complexities and General Computing 111

TABLE 6.1: Total number of communication rounds required by the proto-
cols.

PCEPS PCEAS

(T,N)] Corrupted C1 C2 C3 C1 C2 C3

(2, 4) 0 4 5 6 475 741 1007
(3, 7) 0 4 5 6 1405 2164 2923
(3, 7) 1 - - - 1423 2194 2965
(3, 7) 2 - - - 1441 2224 3007
(4, 10) 0 4 5 6 2815 4307 5799

6.1.1 PCEPS vs. PCEAS

We start with a circuit containing a single multiplication gate, then we double and triple

the amount. Description strings for the circuits to be evaluated are

C1 : x1 ∗ x2

C2 : x1 ∗ x1 + x1 ∗ x2.2

C3 : x1 ∗ x1 + x1 ∗ x2.2 + x2 ∗ x2

In addition to the number of multiplication gates (M), protocol parameters T and N ,

and the number of actively corrupted players (only for PCEAS) are varied. All cases

of malicious behaviour are enabled during the runs, so the actively corrupted players

specified in the options file run every case of malicious behaviour described in Section

5.4.5. Table 6.1 shows the parameters chosen, and the total number of communication

rounds required for evaluating the circuits (Totalround). For all runs, we have p = 4973,

x1 = 10, x2 = 11.1

For protocol PCEPS , while Totalround increases with the number of multiplication

1Options files used for these runs are round_complexity_c1, round_complexity_c2 and
round_complexity_c3. They can be found under options folder.

Chapter 6. Round Complexities and General Computing 112

gates M ,2 it is independent of the number of players N . However, as N increases, each

player has to send a greater number of messages per round, and eventually longer rounds

might be required.

For protocol PCEAS , Totalround increases with both M and N . Inspection of the

protocol descriptions given in Section 4.1.1 and Section 4.1.2 suggests that both protocols

requireO(M) rounds, and the values observed for Totalround, given in Table 6.1, support

this claim. Understanding how exactly Totalround increases with N is not as easy as it

was for M . However, one can easily see why the increase occurs, just by looking at what

it takes to share a secret via the VSS protocol: a player has to execute a multi-round

protocol for each additional player. The results on the second, third and fourth rows of

Table 6.1 shows that, malicious behaviour has an effect on Totalround: an active adversary

can increase the runtime of the protocol, but not indefinitely. The increase in Totalround

may stem from several different cases. For example, during Transfer Commitment, a

false rejection from a corrupted player can force additional executions of protocol Open

Commitment, as mentioned in Case 12 in Section 5.4.5.

As one goes for more meaningful computations, total number of rounds required

might become unmanageably large. Table 6.2 shows the total number of rounds required

by PCEAS for the mean value and standard deviation calculations carried out in Section

5.1. There we had p = 100000007, and the private inputs were given in Table 5.2.3

2As the total number of rounds required depends on the evaluated circuit, by definition, PCEPS is not a
constant-round protocol.

3Options files used for these runs are motiv_mean_times_sum,
motiv_stdev_sq_times_sum and motiv_sum_bdrug. They can be found under options
folder.

Chapter 6. Round Complexities and General Computing 113

TABLE 6.2: Total number of communication rounds required by PCEAS
for the computations in Section 5.1.

(T,N)] Corrupted CD Cµ Cσ

(4, 10) 0 1323 17528 33733

TABLE 6.3: Number of communication rounds required by the protocols
in computation phase.

PCEAS PCEAS,CR

(T,N) C1 C2 C3 C1 C2 C3

(2, 4) 267 533 799 7 13 19
(3, 7) 760 1519 2278 7 13 19
(4, 10) 1493 2985 4477 7 13 19

6.1.2 PCEAS vs. PCEAS,CR

We use the same three circuits C1, C2, and C3 that were used in Section 6.1.1. Table 6.3

shows the number of communication rounds required (Compround) in computation phases

of PCEAS and PCEAS,CR.4 For all runs, we have p = 4973, x1 = 10, x2 = 11. Number

of actively corrupted players is 0. It was noted in Section 5.4.6 that, all the interaction

that takes place in computation phase of PCEAS,CR is due to a constant number of Open

Commitment runs. Therefore, it is no surprise that

• a drastic reduction in Compround is observed, compared to PCEAS

• Compround does not depend on N

4Gate computation in PCEAS,CR occurs during the online phase, so it could also be said that the com-
parison is between computation phases of PCEAS and PCEAS,O.

Chapter 6. Round Complexities and General Computing 114

6.2 Performing General Computations

Secure computations performed in the previous sections involved only addition and mul-

tiplication of integers. This section presents two extensions to the simulator, which enable

more general computations. In Section 6.2.1, players are given the ability to remember

the result of a previous computation, effectively giving them a restricted version of an

internal state. In Section 6.2.2, the simulator is given the ability to generate and evaluate

a family of circuits custom-made for secure comparison of integers.

6.2.1 Remembering Previous Results

It was mentioned in Section 2.3.1 that, SFE can be extended to a reactive functionality by

keeping and maintaining internal state. Later, during the computation of standard devia-

tion in Section 5.1, we were faced with a situation, where an efficient solution required

the players to keep their shares from the mean value calculation. The simulator is ex-

tended, so that the shares from previous evaluations are remembered, when it is run with

the sequential run option.

Sequential Run

If a computation repeats within a circuit description string, circuit generator will not at-

tempt any optimizations. For example, (a*b) occurs twice in (a*b)+(a*b) and the

generated circuit will have two MUL gates when one would be enough.5 A way to avoid

this undesirable situation is to do a sequential run.6 When sequential run is enabled via

5If we hard-coded this circuit, we could add two output wires coming out of the single MUL gate and
feed them as inputs to the ADD gate.

6Sequential run is implemented for PCEAS only.

Chapter 6. Round Complexities and General Computing 115

the options file,7 players hold on to their shares of the computation result from the first

computation, and assign them to appropriate wires in the circuit for the second computa-

tion. For the example given above, first run would evaluate (a*b), and second run would

evaluate c+c, where players would assign their shares for the result of first computation

to wires labeled with c. This feature takes us one step closer to a reactive functionality.

6.2.2 Building a Circuit For Comparison

Protocol Compare [41, p.192] is a protocol for secure comparison of private inputs. The

protocol suggests a particular way of comparing integers, which is conservative in terms

of multiplication operations.8 The circuit generator is extended with the ability to gener-

ate arithmetic circuits, which mimic the way Protocol Compare compares its inputs. The

generated circuits are referred to as comparator circuits. If a comparator circuit can com-

pare secrets with at most lmax bits in their binary representations, we will say that lmax is

the size of the comparator circuit. A flag in the options file, when set to true, tells the

simulator that the circuit generator is to build a comparator circuit of a given size. Size of

the circuit is also read from the options file.9

Let the private inputs be a, b ∈ Z/pZ. Let binary representations of a and b be

al . . . a1a0 and bl . . . b1b0, respectively. Indices run from 0 to l, where l = lmax − 1 =

blog2(max(a, b))c. Result r will be 1, if a > b, and 0 otherwise.10 An overview of the

circuit is shown in Figure 6.1. We look at the internals of the named boxes shown in the

figure, in the following subsections.

7A sample options file for a sequential run is example_sequential_run, and it can be found under
options folder.

8This is how the SMC application mentioned in Section 3.3.1 handles comparisons.
9A sample options file for secure comparison is example_comparator, and it can be found under

options folder.
10The asymmetry between inputs of the circuit can be observed in inputs to CΣXY . See Figure 6.1.

Chapter 6. Round Complexities and General Computing 116

FIGURE 6.1: Overview of the comparator circuit.

CBITS Box

For secure comparison of two committed shares, committed shares to each bit in their

binary representations are needed. Figure 6.1 shows CBITS boxes decomposing shares

into individual bits of their binary representations. Cramer et al. [41] present a protocol

for this functionality, which could be converted into a CBITS circuit. But for the sake of

brevity, CBITS boxes are omitted, and instead we start with the binary representations of

the inputs. Hence, an input provider, who wants her secret compared to another value,

secret shares each bit in the secret’s binary representation separately.

CXOR Box

A CXOR box XOR’s the two bits provided as inputs. XOR of two bits ai and bi can be

expressed as ai + bi − 2aibi. Corresponding arithmetic circuit is shown in Figure 6.2.

Chapter 6. Round Complexities and General Computing 117

Within the comparator circuit, the l+1 CXOR boxes serve to identify the indices at which

FIGURE 6.2: Internals of CXOR.

binary representations of the inputs differ.

CMS1 Box

This box finds the index of the most significant 1 in the binary representation provided as

input. Let the index of most significant 1 be k for input cl . . . c1c0. Then, this box outputs

dl . . . d1d0, where dk = 1 and dj = 0 for all j 6= k. Hence, when the whole comparator

circuit is considered, k is the index of the most significant bit such that ai 6= bi. Internals

ofCMS1 are shown in Figure 6.3. When the circuit is evaluated with PCEAS , internal input

wires labeled with ’1’ are to be assigned a committed share to value 1.11 CSUB boxes used

within CMS1 subtract second input from the first. Internals of a CSUB box are shown in

Figure 6.4.

11See @labelOne in the sample options file example_comparator.

Chapter 6. Round Complexities and General Computing 118

FIGURE 6.3: Internals of CMS1.

CΣXY Box

CΣXY box computes the sum
∑

i aidi for the two bit vectors ai and di provided as inputs.

This sum is also the result output from the comparator circuit. Considering the output of

CMS1, di = 1 only at index k, and because ak 6= bk, ak = 1 only when bk = 0. Hence,

the sum is 1 if and only if a > b, and we have the desired behaviour. Internals of CΣXY

are shown in Figure 6.5.

Chapter 6. Round Complexities and General Computing 119

FIGURE 6.4: Internals of CSUB .

TABLE 6.4: Summary of the secure comparisons.

Comparison Result Size Rounds

6 > 5 1 3 9337
6 > 6 0 3 9337
6 > 7 0 3 9337
15 > 10 1 4 12234
31 > 10 1 5 15131

Secure Comparisons

This section summarizes the results of a few sample secure comparisons. Comparator

circuits of varying sizes are evaluated using protocol PCEAS . Table 6.4 shows the inputs,

result, and the number of communication rounds required (Totalround). For all runs, we

have (T,N) = (3, 7), p = 4973. Number of actively corrupted players is 0.

It was noted in Section 6.1.1 that, round complexity of PCEAS is O(M), where M is

the number of multiplication gates in the circuit. Inspecting the internals of a comparator

circuit reveals that, number of multiplication gates within a comparator circuit of size lmax

is 3 · lmax, hence we expectO(S) round complexity, where S is the size of the comparator

circuit. The results in Table 6.4 suggest that, (Totalround, S) pairs fit on a line of slope 3,

as expected.

Chapter 6. Round Complexities and General Computing 120

FIGURE 6.5: Internals of CΣXY .

121

Chapter 7

Concluding Remarks

We implemented two SMC protocols, PCEPS and PCEAS . We also implemented

PCEAS,CR, a version of PCEAS which uses circuit randomization. However, we did

not implement an efficient preprocessing phase. Doing so would increase the practical

value of the PCEAS,CR implementation. While the honest majority assumptions of the

implemented protocols may seem restrictive, there exists application scenarios where

honest majority assumption makes sense, and some examples were mentioned in Section

3.3. Chapter 6 can be regarded as a general -in the sense that, no specific application

scenario is considered- evaluation of the presented implementations’ practical value.

It was observed that, the number of communication rounds required for performing a

computation becomes a concern, when a high number of computing parties are involved,

and/or when the computation is complex and a high number of multiplication gates have

to be computed. It was also observed that, additional effort is required in order to go

beyond secure evaluation of simple arithmetic functions.

Creating an implementation with practical value is not one of the objectives stated

in Section 1.1. Frameworks, implementations (See Section 3.2.3), and libraries [96, 81]

with superior integrity and efficiency are readily available. However, for achieving our

primary objective, namely, gaining a solid understanding of the basic concepts related to

Chapter 7. Concluding Remarks 122

SMC, we believe that reinventing the wheel was the better choice, and we are positive

that the presented implementations have served their purpose in this respect.

123

Bibliography

[1] Ben Adida. “Helios: Web-based Open-audit Voting”. In: Proceedings of the 17th

Conference on Security Symposium. SS’08. San Jose, CA: USENIX Association,

2008, pp. 335–348. URL: http://dl.acm.org/citation.cfm?id=

1496711.1496734.

[2] Dakshi Agrawal and Charu C. Aggarwal. “On the Design and Quantification of

Privacy Preserving Data Mining Algorithms”. In: Proceedings of the Twentieth

ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems.

PODS ’01. Santa Barbara, California, USA: ACM, 2001, pp. 247–255. ISBN: 1-

58113-361-8. DOI: 10.1145/375551.375602. URL: http://doi.acm.

org/10.1145/375551.375602.

[3] Rakesh Agrawal and Ramakrishnan Srikant. “Privacy-preserving Data Mining”.

In: Proceedings of the 2000 ACM SIGMOD International Conference on Man-

agement of Data. SIGMOD ’00. Dallas, Texas, USA: ACM, 2000, pp. 439–450.

ISBN: 1-58113-217-4. DOI: 10.1145/342009.335438. URL: http://

doi.acm.org/10.1145/342009.335438.

[4] Ross J. Anderson. Security Engineering: A Guide to Building Dependable Dis-

tributed Systems. 2nd ed. Wiley Publishing, 2008. ISBN: 9780470068526.

http://dl.acm.org/citation.cfm?id=1496711.1496734
http://dl.acm.org/citation.cfm?id=1496711.1496734
http://dx.doi.org/10.1145/375551.375602
http://doi.acm.org/10.1145/375551.375602
http://doi.acm.org/10.1145/375551.375602
http://dx.doi.org/10.1145/342009.335438
http://doi.acm.org/10.1145/342009.335438
http://doi.acm.org/10.1145/342009.335438

BIBLIOGRAPHY 124

[5] Marcin Andrychowicz, Stefan Dziembowski, Daniel Malinowski, and Łukasz

Mazurek. “Secure Multiparty Computations on Bitcoin”. In: 2014 IEEE Sympo-

sium on Security and Privacy. May 2014, pp. 443–458. DOI: 10.1109/SP.

2014.35.

[6] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. “How to Garble Arithmetic

Circuits”. In: Proceedings of the 2011 IEEE 52Nd Annual Symposium on Foun-

dations of Computer Science. FOCS ’11. Washington, DC, USA: IEEE Computer

Society, 2011, pp. 120–129. ISBN: 978-0-7695-4571-4. DOI: 10.1109/FOCS.

2011.40. URL: http://dx.doi.org/10.1109/FOCS.2011.40.

[7] Gilad Asharov, Daniel Demmler, Michael Schapira, Thomas Schneider, Gil

Segev, Scott Shenker, and Michael Zohner. “Privacy-Preserving Interdomain

Routing at Internet Scale”. In: Proceedings on Privacy Enhancing Technologies

(PoPETs) 2017.3 (2017). To appear, pp. 143–163. URL: http://thomaschn

eider.de/papers/ADSSSSZ17.pdf.

[8] Yonatan Aumann and Michael O. Rabin. A Proof of Plaintext Knowledge Protocol

and Applications. Manuscript. June 2001.

[9] Marshall Ball, Tal Malkin, and Mike Rosulek. “Garbling Gadgets for Boolean and

Arithmetic Circuits”. In: Proceedings of the 2016 ACM SIGSAC Conference on

Computer and Communications Security. CCS ’16. Vienna, Austria: ACM, 2016,

pp. 565–577. ISBN: 978-1-4503-4139-4. DOI: 10.1145/2976749.2978410.

URL: http://doi.acm.org/10.1145/2976749.2978410.

[10] Michael Barbaro and Tom Zeller. “A Face Is Exposed for AOL Searcher No.

4417749”. In: New York Times (2006). URL: http://query.nytimes.co

http://dx.doi.org/10.1109/SP.2014.35
http://dx.doi.org/10.1109/SP.2014.35
http://dx.doi.org/10.1109/FOCS.2011.40
http://dx.doi.org/10.1109/FOCS.2011.40
http://dx.doi.org/10.1109/FOCS.2011.40
http://thomaschneider.de/papers/ADSSSSZ17.pdf
http://thomaschneider.de/papers/ADSSSSZ17.pdf
http://dx.doi.org/10.1145/2976749.2978410
http://doi.acm.org/10.1145/2976749.2978410
http://query.nytimes.com/gst/fullpage.html?res=9E0CE3DD1F3FF93AA3575BC0A9609C8B63
http://query.nytimes.com/gst/fullpage.html?res=9E0CE3DD1F3FF93AA3575BC0A9609C8B63

BIBLIOGRAPHY 125

m/gst/fullpage.html?res=9E0CE3DD1F3FF93AA3575BC0A9609C

8B63.

[11] Carsten Baum, Ivan Damgård, and Claudio Orlandi. “Publicly Auditable Secure

Multi-Party Computation”. In: Security and Cryptography for Networks: 9th In-

ternational Conference, SCN 2014, Amalfi, Italy, September 3-5, 2014. Proceed-

ings. Ed. by Michel Abdalla and Roberto De Prisco. Cham: Springer International

Publishing, 2014, pp. 175–196. ISBN: 978-3-319-10879-7. DOI: 10 . 1007 /

978-3-319-10879-7_11. URL: http://dx.doi.org/10.1007/

978-3-319-10879-7_11.

[12] Donald Beaver. “Correlated Pseudorandomness and the Complexity of Private

Computations”. In: Proceedings of the Twenty-eighth Annual ACM Symposium

on Theory of Computing. STOC ’96. Philadelphia, Pennsylvania, USA: ACM,

1996, pp. 479–488. ISBN: 0-89791-785-5. DOI: 10.1145/237814.237996.

URL: http://doi.acm.org/10.1145/237814.237996.

[13] Donald Beaver. “Efficient Multiparty Protocols Using Circuit Randomization”.

In: Proceedings of the 11th Annual International Cryptology Conference on Ad-

vances in Cryptology. CRYPTO ’91. London, UK, UK: Springer-Verlag, 1992,

pp. 420–432. ISBN: 3-540-55188-3. URL: http://dl.acm.org/citation

.cfm?id=646756.705383.

[14] Donald Beaver. “Precomputing Oblivious Transfer”. In: Advances in Cryptology

— CRYPT0’ 95: 15th Annual International Cryptology Conference Santa Bar-

bara, California, USA, August 27–31, 1995 Proceedings. Ed. by Don Copper-

smith. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995, pp. 97–109. ISBN:

http://query.nytimes.com/gst/fullpage.html?res=9E0CE3DD1F3FF93AA3575BC0A9609C8B63
http://query.nytimes.com/gst/fullpage.html?res=9E0CE3DD1F3FF93AA3575BC0A9609C8B63
http://query.nytimes.com/gst/fullpage.html?res=9E0CE3DD1F3FF93AA3575BC0A9609C8B63
http://dx.doi.org/10.1007/978-3-319-10879-7_11
http://dx.doi.org/10.1007/978-3-319-10879-7_11
http://dx.doi.org/10.1007/978-3-319-10879-7_11
http://dx.doi.org/10.1007/978-3-319-10879-7_11
http://dx.doi.org/10.1145/237814.237996
http://doi.acm.org/10.1145/237814.237996
http://dl.acm.org/citation.cfm?id=646756.705383
http://dl.acm.org/citation.cfm?id=646756.705383

BIBLIOGRAPHY 126

978-3-540-44750-4. DOI: 10.1007/3-540-44750-4_8. URL: http:

//dx.doi.org/10.1007/3-540-44750-4_8.

[15] Donald Beaver. “Secure Multiparty Protocols and Zero-knowledge Proof Systems

Tolerating a Faulty Minority”. In: J. Cryptol. 4.2 (Jan. 1991), pp. 75–122. ISSN:

0933-2790. DOI: 10.1007/BF00196771. URL: http://dx.doi.org/

10.1007/BF00196771.

[16] Donald Beaver, Silvio M. Micali, and Phillip Rogaway. “The Round Complexity

of Secure Protocols”. In: Proceedings of the Twenty-second Annual ACM Sym-

posium on Theory of Computing. STOC ’90. Baltimore, Maryland, USA: ACM,

1990, pp. 503–513. ISBN: 0-89791-361-2. DOI: 10.1145/100216.100287.

URL: http://doi.acm.org/10.1145/100216.100287.

[17] Zuzana Beerliová-Trubíniová. “Efficient Multi-Party Computation with Information-

Theoretic Security”. PhD dissertation. ETH ZURICH, 2008. URL: http://

www.crypto.ethz.ch/alumni/trubini/Beerli08.pdf.

[18] Zuzana Beerliová-Trubíniová and Martin Hirt. “Perfectly-Secure MPC with Lin-

ear Communication Complexity”. In: Theory of Cryptography: Fifth Theory of

Cryptography Conference, TCC 2008, New York, USA, March 19-21, 2008. Pro-

ceedings. Ed. by Ran Canetti. Berlin, Heidelberg: Springer Berlin Heidelberg,

2008, pp. 213–230. ISBN: 978-3-540-78524-8. DOI: 10.1007/978-3-540-

78524-8_13. URL: http://dx.doi.org/10.1007/978-3-540-

78524-8_13.

[19] Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. “Foundations of Gar-

bled Circuits”. In: Proceedings of the 2012 ACM Conference on Computer and

Communications Security. CCS ’12. Raleigh, North Carolina, USA: ACM, 2012,

http://dx.doi.org/10.1007/3-540-44750-4_8
http://dx.doi.org/10.1007/3-540-44750-4_8
http://dx.doi.org/10.1007/3-540-44750-4_8
http://dx.doi.org/10.1007/BF00196771
http://dx.doi.org/10.1007/BF00196771
http://dx.doi.org/10.1007/BF00196771
http://dx.doi.org/10.1145/100216.100287
http://doi.acm.org/10.1145/100216.100287
http://www.crypto.ethz.ch/alumni/trubini/Beerli08.pdf
http://www.crypto.ethz.ch/alumni/trubini/Beerli08.pdf
http://dx.doi.org/10.1007/978-3-540-78524-8_13
http://dx.doi.org/10.1007/978-3-540-78524-8_13
http://dx.doi.org/10.1007/978-3-540-78524-8_13
http://dx.doi.org/10.1007/978-3-540-78524-8_13

BIBLIOGRAPHY 127

pp. 784–796. ISBN: 978-1-4503-1651-4. DOI: 10.1145/2382196.2382279.

URL: http://doi.acm.org/10.1145/2382196.2382279.

[20] Assaf Ben-David, Noam Nisan, and Benny Pinkas. “FairplayMP: A System for

Secure Multi-party Computation”. In: Proceedings of the 15th ACM Confer-

ence on Computer and Communications Security. CCS ’08. Alexandria, Vir-

ginia, USA: ACM, 2008, pp. 257–266. ISBN: 978-1-59593-810-7. DOI: 10 .

1145/1455770.1455804. URL: http://doi.acm.org/10.1145/

1455770.1455804.

[21] Rikke Bendlin, Ivan Damgård, Claudio Orlandi, and Sarah Zakarias. “Semi-

homomorphic Encryption and Multiparty Computation”. In: Proceedings of the

30th Annual International Conference on Theory and Applications of Crypto-

graphic Techniques: Advances in Cryptology. EUROCRYPT’11. Tallinn, Esto-

nia: Springer-Verlag, 2011, pp. 169–188. ISBN: 978-3-642-20464-7. URL: http:

//dl.acm.org/citation.cfm?id=2008684.2008699.

[22] Michael Ben-Or, Ran Canetti, and Oded Goldreich. “Asynchronous Secure Com-

putation”. In: Proceedings of the Twenty-fifth Annual ACM Symposium on The-

ory of Computing. STOC ’93. San Diego, California, USA: ACM, 1993, pp. 52–

61. ISBN: 0-89791-591-7. DOI: 10.1145/167088.167109. URL: http:

//doi.acm.org/10.1145/167088.167109.

[23] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. “Completeness Theo-

rems for Non-cryptographic Fault-tolerant Distributed Computation”. In: Pro-

ceedings of the Twentieth Annual ACM Symposium on Theory of Computing.

http://dx.doi.org/10.1145/2382196.2382279
http://doi.acm.org/10.1145/2382196.2382279
http://dx.doi.org/10.1145/1455770.1455804
http://dx.doi.org/10.1145/1455770.1455804
http://doi.acm.org/10.1145/1455770.1455804
http://doi.acm.org/10.1145/1455770.1455804
http://dl.acm.org/citation.cfm?id=2008684.2008699
http://dl.acm.org/citation.cfm?id=2008684.2008699
http://dx.doi.org/10.1145/167088.167109
http://doi.acm.org/10.1145/167088.167109
http://doi.acm.org/10.1145/167088.167109

BIBLIOGRAPHY 128

STOC ’88. Chicago, Illinois, USA: ACM, 1988, pp. 1–10. ISBN: 0-89791-264-

0. DOI: 10.1145/62212.62213. URL: http://doi.acm.org/10.

1145/62212.62213.

[24] Michael Ben-Or, Boaz Kelmer, and Tal Rabin. “Asynchronous Secure Computa-

tions with Optimal Resilience (Extended Abstract)”. In: Proceedings of the Thir-

teenth Annual ACM Symposium on Principles of Distributed Computing. PODC

’94. Los Angeles, California, USA: ACM, 1994, pp. 183–192. ISBN: 0-89791-

654-9. DOI: 10.1145/197917.198088. URL: http://doi.acm.org/

10.1145/197917.198088.

[25] George R. Blakley. “Safeguarding cryptographic keys”. In: Proceedings of the

1979 AFIPS National Computer Conference. Monval, NJ, USA: AFIPS Press,

1979, pp. 313–317.

[26] Blockchain App Platform. URL: https://www.ethereum.org/.

[27] Dan Bogdanov, Marko Jõemets, Sander Siim, and Meril Vaht. “How the Estonian

Tax and Customs Board Evaluated a Tax Fraud Detection System Based on Secure

Multi-party Computation”. In: Financial Cryptography and Data Security: 19th

International Conference, FC 2015, San Juan, Puerto Rico, January 26-30, 2015,

Revised Selected Papers. Ed. by Rainer Böhme and Tatsuaki Okamoto. Berlin,

Heidelberg: Springer Berlin Heidelberg, 2015, pp. 227–234. ISBN: 978-3-662-

47854-7. DOI: 10.1007/978-3-662-47854-7_14. URL: http://dx.

doi.org/10.1007/978-3-662-47854-7_14.

[28] Dan Bogdanov, Liina Kamm, Baldur Kubo, Reimo Rebane, Ville Sokk, and Riivo

Talviste. Students and Taxes: a Privacy-Preserving Social Study Using Secure

http://dx.doi.org/10.1145/62212.62213
http://doi.acm.org/10.1145/62212.62213
http://doi.acm.org/10.1145/62212.62213
http://dx.doi.org/10.1145/197917.198088
http://doi.acm.org/10.1145/197917.198088
http://doi.acm.org/10.1145/197917.198088
https://www.ethereum.org/
http://dx.doi.org/10.1007/978-3-662-47854-7_14
http://dx.doi.org/10.1007/978-3-662-47854-7_14
http://dx.doi.org/10.1007/978-3-662-47854-7_14

BIBLIOGRAPHY 129

Computation. Cryptology ePrint Archive, Report 2015/1159. http://eprint

.iacr.org/2015/1159. 2015.

[29] Dan Bogdanov, Sven Laur, and Jan Willemson. “Sharemind: A Framework for

Fast Privacy-Preserving Computations”. In: Proceedings of the 13th European

Symposium on Research in Computer Security: Computer Security. ESORICS

’08. Malaga, Spain: Springer-Verlag, 2008, pp. 192–206. ISBN: 978-3-540-88312-

8. DOI: 10.1007/978-3-540-88313-5_13. URL: http://dx.doi.

org/10.1007/978-3-540-88313-5_13.

[30] Dan Bogdanov, Riivo Talviste, and Jan Willemson. “Deploying Secure Multi-

Party Computation for Financial Data Analysis”. In: Financial Cryptogra-

phy and Data Security: 16th International Conference, FC 2012, Kralendijk,

Bonaire, Februray 27-March 2, 2012, Revised Selected Papers. Ed. by Angelos

D. Keromytis. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 57–64.

ISBN: 978-3-642-32946-3. DOI: 10.1007/978-3-642-32946-3_5. URL:

http://dx.doi.org/10.1007/978-3-642-32946-3_5.

[31] Peter Bogetoft, Dan Lund Christensen, Ivan Damgård, Martin Geisler, Thomas

Jakobsen, Mikkel Krøigaard, Janus Dam Nielsen, Jesper Buus Nielsen, Kurt

Nielsen, Jakob Pagter, Michael Schwartzbach, and Tomas Toft. “Financial Cryp-

tography and Data Security”. In: ed. by Roger Dingledine and Philippe Golle.

Berlin, Heidelberg: Springer-Verlag, 2009. Chap. Secure Multiparty Computation

Goes Live, pp. 325–343. ISBN: 978-3-642-03548-7. DOI: 10.1007/978-3-

642-03549-4_20. URL: http://dx.doi.org/10.1007/978-3-

642-03549-4_20.

[32] Boost C++ Libraries. URL: http://www.boost.org/.

http://eprint.iacr.org/2015/1159
http://eprint.iacr.org/2015/1159
http://dx.doi.org/10.1007/978-3-540-88313-5_13
http://dx.doi.org/10.1007/978-3-540-88313-5_13
http://dx.doi.org/10.1007/978-3-540-88313-5_13
http://dx.doi.org/10.1007/978-3-642-32946-3_5
http://dx.doi.org/10.1007/978-3-642-32946-3_5
http://dx.doi.org/10.1007/978-3-642-03549-4_20
http://dx.doi.org/10.1007/978-3-642-03549-4_20
http://dx.doi.org/10.1007/978-3-642-03549-4_20
http://dx.doi.org/10.1007/978-3-642-03549-4_20
http://www.boost.org/

BIBLIOGRAPHY 130

[33] Gabriel Bracha. “An O(Lg N) Expected Rounds Randomized Byzantine Generals

Protocol”. In: Proceedings of the Seventeenth Annual ACM Symposium on Theory

of Computing. STOC ’85. Providence, Rhode Island, USA: ACM, 1985, pp. 316–

326. ISBN: 0-89791-151-2. DOI: 10.1145/22145.22180. URL: http://

doi.acm.org/10.1145/22145.22180.

[34] Gilles Brassard, Claude Crepeau, and Jean-Marc Robert. “All-or-Nothing Disclo-

sure of Secrets”. In: Advances in Cryptology — CRYPTO’ 86: Proceedings. Ed.

by Andrew M. Odlyzko. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987,

pp. 234–238. ISBN: 978-3-540-47721-1. DOI: 10.1007/3-540-47721-

7_17. URL: http://dx.doi.org/10.1007/3-540-47721-7_17.

[35] Ran Canetti. “Universally Composable Security: A New Paradigm for Crypto-

graphic Protocols”. In: Proceedings of the 42Nd IEEE Symposium on Founda-

tions of Computer Science. FOCS ’01. Washington, DC, USA: IEEE Computer

Society, 2001, pp. 136–. ISBN: 0-7695-1390-5. URL: http://dl.acm.org/

citation.cfm?id=874063.875553.

[36] David Chaum, Claude Crépeau, and Ivan Damgard. “Multiparty Unconditionally

Secure Protocols”. In: Proceedings of the Twentieth Annual ACM Symposium on

Theory of Computing. STOC ’88. Chicago, Illinois, USA: ACM, 1988, pp. 11–19.

ISBN: 0-89791-264-0. DOI: 10.1145/62212.62214. URL: http://doi.

acm.org/10.1145/62212.62214.

[37] Jerry Cheng, Hao Yang, Starsky Wong, Petros Zerfos, and Songwu Lu. “Design

and Implementation of Cross-Domain Cooperative Firewall”. In: 2007 IEEE In-

ternational Conference on Network Protocols. Oct. 2007, pp. 284–293. DOI: 10.

1109/ICNP.2007.4375859.

http://dx.doi.org/10.1145/22145.22180
http://doi.acm.org/10.1145/22145.22180
http://doi.acm.org/10.1145/22145.22180
http://dx.doi.org/10.1007/3-540-47721-7_17
http://dx.doi.org/10.1007/3-540-47721-7_17
http://dx.doi.org/10.1007/3-540-47721-7_17
http://dl.acm.org/citation.cfm?id=874063.875553
http://dl.acm.org/citation.cfm?id=874063.875553
http://dx.doi.org/10.1145/62212.62214
http://doi.acm.org/10.1145/62212.62214
http://doi.acm.org/10.1145/62212.62214
http://dx.doi.org/10.1109/ICNP.2007.4375859
http://dx.doi.org/10.1109/ICNP.2007.4375859

BIBLIOGRAPHY 131

[38] Benny Chor, Shafi Goldwasser, Silvio M. Micali, and Baruch Awerbuch. “Veri-

fiable Secret Sharing and Achieving Simultaneity in the Presence of Faults”. In:

Proceedings of the 26th Annual Symposium on Foundations of Computer Sci-

ence. SFCS ’85. Washington, DC, USA: IEEE Computer Society, 1985, pp. 383–

395. ISBN: 0-8186-0844-4. DOI: 10.1109/SFCS.1985.64. URL: https:

//doi.org/10.1109/SFCS.1985.64.

[39] Tung Chou and Claudio Orlandi. “The Simplest Protocol for Oblivious Transfer”.

In: Proceedings of the 4th International Conference on Progress in Cryptology –

LATINCRYPT 2015 - Volume 9230. New York, NY, USA: Springer-Verlag New

York, Inc., 2015, pp. 40–58. ISBN: 978-3-319-22173-1. DOI: 10.1007/978-

3-319-22174-8_3. URL: http://dx.doi.org/10.1007/978-3-

319-22174-8_3.

[40] Geoffroy Couteau. What are the ways to generate Beaver triples for multiplication

gate? Nov. 19, 2016. URL: https://crypto.stackexchange.com/

questions/41651/what-are-the-ways-to-generate-beave

r-triples-for-multiplication-gate/41660#41660 (visited on

2017).

[41] Ronald Cramer, Ivan Bjerre Damgård, and Jesper Buus Nielsen. Secure Multi-

party Computation and Secret Sharing. 1st. New York, NY, USA: Cambridge

University Press, 2015. ISBN: 1107043050, 9781107043053.

[42] Ronald Cramer, Ivan Damgård, and Yuval Ishai. “Share Conversion, Pseudo-

random Secret-Sharing and Applications to Secure Computation”. In: Theory of

Cryptography: Second Theory of Cryptography Conference, TCC 2005, Cam-

bridge, MA, USA, February 10-12, 2005. Proceedings. Ed. by Joe Kilian. Berlin,

http://dx.doi.org/10.1109/SFCS.1985.64
https://doi.org/10.1109/SFCS.1985.64
https://doi.org/10.1109/SFCS.1985.64
http://dx.doi.org/10.1007/978-3-319-22174-8_3
http://dx.doi.org/10.1007/978-3-319-22174-8_3
http://dx.doi.org/10.1007/978-3-319-22174-8_3
http://dx.doi.org/10.1007/978-3-319-22174-8_3
https://crypto.stackexchange.com/questions/41651/what-are-the-ways-to-generate-beaver-triples-for-multiplication-gate/41660#41660
https://crypto.stackexchange.com/questions/41651/what-are-the-ways-to-generate-beaver-triples-for-multiplication-gate/41660#41660
https://crypto.stackexchange.com/questions/41651/what-are-the-ways-to-generate-beaver-triples-for-multiplication-gate/41660#41660

BIBLIOGRAPHY 132

Heidelberg: Springer Berlin Heidelberg, 2005, pp. 342–362. ISBN: 978-3-540-

30576-7. DOI: 10.1007/978-3-540-30576-7_19. URL: http://dx.

doi.org/10.1007/978-3-540-30576-7_19.

[43] Ronald Cramer, Ivan Damgård, and Ueli Maurer. “General Secure Multi-party

Computation from Any Linear Secret-sharing Scheme”. In: Proceedings of the

19th International Conference on Theory and Application of Cryptographic Tech-

niques. EUROCRYPT’00. Bruges, Belgium: Springer-Verlag, 2000, pp. 316–334.

ISBN: 3-540-67517-5. URL: http://dl.acm.org/citation.cfm?id=

1756169.1756200.

[44] Claude Crépeau. “Equivalence Between Two Flavours of Oblivious Transfers”.

In: A Conference on the Theory and Applications of Cryptographic Techniques

on Advances in Cryptology. CRYPTO ’87. London, UK, UK: Springer-Verlag,

1988, pp. 350–354. ISBN: 3-540-18796-0. URL: http://dl.acm.org/

citation.cfm?id=646752.704744.

[45] Claude Crépeau, Jeroen van de Graaf, and Alain Tapp. “Committed Oblivious

Transfer and Private Multi-Party Computation”. In: Advances in Cryptology —

CRYPT0’ 95: 15th Annual International Cryptology Conference Santa Barbara,

California, USA, August 27–31, 1995 Proceedings. Ed. by Don Coppersmith.

Berlin, Heidelberg: Springer Berlin Heidelberg, 1995, pp. 110–123. ISBN: 978-

3-540-44750-4. DOI: 10.1007/3-540-44750-4_9. URL: http://dx.

doi.org/10.1007/3-540-44750-4_9.

http://dx.doi.org/10.1007/978-3-540-30576-7_19
http://dx.doi.org/10.1007/978-3-540-30576-7_19
http://dx.doi.org/10.1007/978-3-540-30576-7_19
http://dl.acm.org/citation.cfm?id=1756169.1756200
http://dl.acm.org/citation.cfm?id=1756169.1756200
http://dl.acm.org/citation.cfm?id=646752.704744
http://dl.acm.org/citation.cfm?id=646752.704744
http://dx.doi.org/10.1007/3-540-44750-4_9
http://dx.doi.org/10.1007/3-540-44750-4_9
http://dx.doi.org/10.1007/3-540-44750-4_9

BIBLIOGRAPHY 133

[46] Ivan Damgård, Kasper Damgård, Kurt Nielsen, Peter Sebastian Nordholt, and

Tomas Toft. Confidential Benchmarking based on Multiparty Computation. Cryp-

tology ePrint Archive, Report 2015/1006. http://eprint.iacr.org/

2015/1006. 2015.

[47] Ivan Damgård, Martin Geisler, Mikkel Krøigaard, and Jesper Buus Nielsen.

“Asynchronous Multiparty Computation: Theory and Implementation”. In: Pro-

ceedings of the 12th International Conference on Practice and Theory in Public

Key Cryptography: PKC ’09. Irvine. CA: Springer-Verlag, 2009, pp. 160–179.

ISBN: 978-3-642-00467-4. DOI: 10.1007/978-3-642-00468-1_10. URL:

http://dx.doi.org/10.1007/978-3-642-00468-1_10.

[48] Ivan Damgård, Yuval Ishai, Mikkel Krøigaard, Jesper Buus Nielsen, and Adam

Smith. “Scalable Multiparty Computation with Nearly Optimal Work and Re-

silience”. In: Proceedings of the 28th Annual Conference on Cryptology: Ad-

vances in Cryptology. CRYPTO 2008. Santa Barbara, CA, USA: Springer-Verlag,

2008, pp. 241–261. ISBN: 978-3-540-85173-8. DOI: 10.1007/978-3-540-

85174-5_14. URL: http://dx.doi.org/10.1007/978-3-540-

85174-5_14.

[49] Ivan Damgård, Marcel Keller, Enrique Larraia, Valerio Pastro, Peter Scholl, and

Nigel P. Smart. “Practical Covertly Secure MPC for Dishonest Majority – Or:

Breaking the SPDZ Limits”. In: Computer Security – ESORICS 2013: 18th Eu-

ropean Symposium on Research in Computer Security, Egham, UK, September 9-

13, 2013. Proceedings. Ed. by Jason Crampton, Sushil Jajodia, and Keith Mayes.

http://eprint.iacr.org/2015/1006
http://eprint.iacr.org/2015/1006
http://dx.doi.org/10.1007/978-3-642-00468-1_10
http://dx.doi.org/10.1007/978-3-642-00468-1_10
http://dx.doi.org/10.1007/978-3-540-85174-5_14
http://dx.doi.org/10.1007/978-3-540-85174-5_14
http://dx.doi.org/10.1007/978-3-540-85174-5_14
http://dx.doi.org/10.1007/978-3-540-85174-5_14

BIBLIOGRAPHY 134

Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 1–18. ISBN: 978-3-

642-40203-6. DOI: 10.1007/978-3-642-40203-6_1. URL: http:

//dx.doi.org/10.1007/978-3-642-40203-6_1.

[50] Ivan Damgård, Valerio Pastro, Nigel Smart, and Sarah Zakarias. “Multiparty

Computation from Somewhat Homomorphic Encryption”. In: Proceedings of the

32Nd Annual Cryptology Conference on Advances in Cryptology — CRYPTO

2012 - Volume 7417. New York, NY, USA: Springer-Verlag New York, Inc.,

2012, pp. 643–662. ISBN: 978-3-642-32008-8. DOI: 10.1007/978-3-642-

32009-5_38. URL: http://dx.doi.org/10.1007/978-3-642-

32009-5_38.

[51] Marten van Dijk, Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan. “Fully

Homomorphic Encryption over the Integers”. In: Proceedings of the 29th Annual

International Conference on Theory and Applications of Cryptographic Tech-

niques. EUROCRYPT’10. French Riviera, France: Springer-Verlag, 2010, pp. 24–

43. ISBN: 3-642-13189-1, 978-3-642-13189-9. DOI: 10.1007/978-3-642-

13190-5_2. URL: http://dx.doi.org/10.1007/978-3-642-

13190-5_2.

[52] Cynthia Dwork. “Differential Privacy: A Survey of Results”. In: Proceedings of

the 5th International Conference on Theory and Applications of Models of Com-

putation. TAMC’08. Xi’an, China: Springer-Verlag, 2008, pp. 1–19. ISBN: 3-540-

79227-9, 978-3-540-79227-7. URL: http://dl.acm.org/citation.

cfm?id=1791834.1791836.

[53] Shimon Even, Oded Goldreich, and Abraham Lempel. “A Randomized Protocol

for Signing Contracts”. In: Commun. ACM 28.6 (June 1985), pp. 637–647. ISSN:

http://dx.doi.org/10.1007/978-3-642-40203-6_1
http://dx.doi.org/10.1007/978-3-642-40203-6_1
http://dx.doi.org/10.1007/978-3-642-40203-6_1
http://dx.doi.org/10.1007/978-3-642-32009-5_38
http://dx.doi.org/10.1007/978-3-642-32009-5_38
http://dx.doi.org/10.1007/978-3-642-32009-5_38
http://dx.doi.org/10.1007/978-3-642-32009-5_38
http://dx.doi.org/10.1007/978-3-642-13190-5_2
http://dx.doi.org/10.1007/978-3-642-13190-5_2
http://dx.doi.org/10.1007/978-3-642-13190-5_2
http://dx.doi.org/10.1007/978-3-642-13190-5_2
http://dl.acm.org/citation.cfm?id=1791834.1791836
http://dl.acm.org/citation.cfm?id=1791834.1791836

BIBLIOGRAPHY 135

0001-0782. DOI: 10.1145/3812.3818. URL: http://doi.acm.org/

10.1145/3812.3818.

[54] Alexandre Evfimievski, Ramakrishnan Srikant, Rakesh Agrawal, and Johannes

Gehrke. “Privacy Preserving Mining of Association Rules”. In: Proceedings of

the Eighth ACM SIGKDD International Conference on Knowledge Discovery and

Data Mining. KDD ’02. Edmonton, Alberta, Canada: ACM, 2002, pp. 217–228.

ISBN: 1-58113-567-X. DOI: 10.1145/775047.775080. URL: http://

doi.acm.org/10.1145/775047.775080.

[55] Facebook reveals news feed experiment to control emotions. Guardian News and

Media Limited. June 29, 2014. URL: https://www.theguardian.com/

technology/2014/jun/29/facebook-users-emotions-news-

feeds (visited on 2017).

[56] Matthew Franklin and Moti Yung. “Communication Complexity of Secure Com-

putation (Extended Abstract)”. In: Proceedings of the Twenty-fourth Annual ACM

Symposium on Theory of Computing. STOC ’92. Victoria, British Columbia,

Canada: ACM, 1992, pp. 699–710. ISBN: 0-89791-511-9. DOI: 10 . 1145 /

129712.129780. URL: http://doi.acm.org/10.1145/129712.

129780.

[57] Craig Gentry. “Fully Homomorphic Encryption Using Ideal Lattices”. In: Pro-

ceedings of the Forty-first Annual ACM Symposium on Theory of Computing.

STOC ’09. Bethesda, MD, USA: ACM, 2009, pp. 169–178. ISBN: 978-1-60558-

506-2. DOI: 10.1145/1536414.1536440. URL: http://doi.acm.

org/10.1145/1536414.1536440.

http://dx.doi.org/10.1145/3812.3818
http://doi.acm.org/10.1145/3812.3818
http://doi.acm.org/10.1145/3812.3818
http://dx.doi.org/10.1145/775047.775080
http://doi.acm.org/10.1145/775047.775080
http://doi.acm.org/10.1145/775047.775080
https://www.theguardian.com/technology/2014/jun/29/facebook-users-emotions-news-feeds
https://www.theguardian.com/technology/2014/jun/29/facebook-users-emotions-news-feeds
https://www.theguardian.com/technology/2014/jun/29/facebook-users-emotions-news-feeds
http://dx.doi.org/10.1145/129712.129780
http://dx.doi.org/10.1145/129712.129780
http://doi.acm.org/10.1145/129712.129780
http://doi.acm.org/10.1145/129712.129780
http://dx.doi.org/10.1145/1536414.1536440
http://doi.acm.org/10.1145/1536414.1536440
http://doi.acm.org/10.1145/1536414.1536440

BIBLIOGRAPHY 136

[58] Craig Gentry, Shai Halevi, and Nigel P. Smart. “Homomorphic Evaluation of the

AES Circuit”. In: Proceedings of the 32Nd Annual Cryptology Conference on

Advances in Cryptology — CRYPTO 2012 - Volume 7417. New York, NY, USA:

Springer-Verlag New York, Inc., 2012, pp. 850–867. ISBN: 978-3-642-32008-8.

DOI: 10.1007/978-3-642-32009-5_49. URL: http://dx.doi.

org/10.1007/978-3-642-32009-5_49.

[59] Niv Gilboa. “Two Party RSA Key Generation”. In: Proceedings of the 19th An-

nual International Cryptology Conference on Advances in Cryptology. CRYPTO

’99. London, UK, UK: Springer-Verlag, 1999, pp. 116–129. ISBN: 3-540-66347-

9. URL: http://dl.acm.org/citation.cfm?id=646764.703977.

[60] Oded Goldreich. Foundations of Cryptography: Volume 1. New York, NY, USA:

Cambridge University Press, 2006. ISBN: 0521035368.

[61] Oded Goldreich, Silvio M. Micali, and Avi Wigderson. “How to Play ANY Men-

tal Game”. In: Proceedings of the Nineteenth Annual ACM Symposium on Theory

of Computing. STOC ’87. New York, New York, USA: ACM, 1987, pp. 218–

229. ISBN: 0-89791-221-7. DOI: 10.1145/28395.28420. URL: http:

//doi.acm.org/10.1145/28395.28420.

[62] Oded Goldreich, Silvio M. Micali, and Avi Wigderson. “Proofs That Yield Noth-

ing but Their Validity or All Languages in NP Have Zero-knowledge Proof Sys-

tems”. In: J. ACM 38.3 (July 1991), pp. 690–728. ISSN: 0004-5411. DOI: 10.

1145/116825.116852. URL: http://doi.acm.org/10.1145/

116825.116852.

[63] Shafi Goldwasser, Silvio M. Micali, and Charles Rackoff. “The Knowledge Com-

plexity of Interactive Proof-systems”. In: Proceedings of the Seventeenth Annual

http://dx.doi.org/10.1007/978-3-642-32009-5_49
http://dx.doi.org/10.1007/978-3-642-32009-5_49
http://dx.doi.org/10.1007/978-3-642-32009-5_49
http://dl.acm.org/citation.cfm?id=646764.703977
http://dx.doi.org/10.1145/28395.28420
http://doi.acm.org/10.1145/28395.28420
http://doi.acm.org/10.1145/28395.28420
http://dx.doi.org/10.1145/116825.116852
http://dx.doi.org/10.1145/116825.116852
http://doi.acm.org/10.1145/116825.116852
http://doi.acm.org/10.1145/116825.116852

BIBLIOGRAPHY 137

ACM Symposium on Theory of Computing. STOC ’85. Providence, Rhode Island,

USA: ACM, 1985, pp. 291–304. ISBN: 0-89791-151-2. DOI: 10.1145/22145.

22178. URL: http://doi.acm.org/10.1145/22145.22178.

[64] Debayan Gupta, Aaron Segal, Aurojit Panda, Gil Segev, Michael Schapira, Joan

Feigenbaum, Jenifer Rexford, and Scott Shenker. “A New Approach to Inter-

domain Routing Based on Secure Multi-party Computation”. In: Proceedings

of the 11th ACM Workshop on Hot Topics in Networks. HotNets-XI. Red-

mond, Washington: ACM, 2012, pp. 37–42. ISBN: 978-1-4503-1776-4. DOI:

10.1145/2390231.2390238. URL: http://doi.acm.org/10.

1145/2390231.2390238.

[65] William Hart, Fredrik Johansson, and Sebastian Pancratz. FLINT: Fast Library

for Number Theory. 2015. URL: http://www.flintlib.org/.

[66] Martin Hilbert and Priscila López. “The World’s Technological Capacity to Store,

Communicate, and Compute Information”. In: Science 332.6025 (2011), pp. 60–

65. ISSN: 0036-8075. DOI: 10.1126/science.1200970. eprint: http:

//science.sciencemag.org/content/332/6025/60.full.pdf.

URL: http://science.sciencemag.org/content/332/6025/60.

[67] Yan Huang, Chih-hao Shen, David Evans, Jonathan Katz, and Abhi Shelat. “Effi-

cient Secure Computation with Garbled Circuits”. In: Information Systems Secu-

rity: 7th International Conference, ICISS 2011, Kolkata, India, December 15-19,

2011, Procedings. Ed. by Sushil Jajodia and Chandan Mazumdar. Berlin, Hei-

delberg: Springer Berlin Heidelberg, 2011, pp. 28–48. ISBN: 978-3-642-25560-1.

DOI: 10.1007/978-3-642-25560-1_2. URL: http://dx.doi.org/

10.1007/978-3-642-25560-1_2.

http://dx.doi.org/10.1145/22145.22178
http://dx.doi.org/10.1145/22145.22178
http://doi.acm.org/10.1145/22145.22178
http://dx.doi.org/10.1145/2390231.2390238
http://doi.acm.org/10.1145/2390231.2390238
http://doi.acm.org/10.1145/2390231.2390238
http://www.flintlib.org/
http://dx.doi.org/10.1126/science.1200970
http://science.sciencemag.org/content/332/6025/60.full.pdf
http://science.sciencemag.org/content/332/6025/60.full.pdf
http://science.sciencemag.org/content/332/6025/60
http://dx.doi.org/10.1007/978-3-642-25560-1_2
http://dx.doi.org/10.1007/978-3-642-25560-1_2
http://dx.doi.org/10.1007/978-3-642-25560-1_2

BIBLIOGRAPHY 138

[68] Mikael Huss and Joel Westerberg. Data size estimates. June 24, 2014. URL: http

s://followthedata.wordpress.com/2014/06/24/data-size-

estimates/ (visited on 2017).

[69] Alfonso Iacovazzi, Alessandro D’Alconzo, Fabio Ricciato, and Martin Burkhart.

“Elementary Secure-multiparty Computation for Massive-scale Collaborative

Network Monitoring”. In: Comput. Netw. 57.17 (Dec. 2013), pp. 3728–3742.

ISSN: 1389-1286. DOI: 10.1016/j.comnet.2013.08.017. URL: http:

//dx.doi.org/10.1016/j.comnet.2013.08.017.

[70] Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank. “Extending Oblivious

Transfers Efficiently”. In: Advances in Cryptology - CRYPTO 2003: 23rd Annual

International Cryptology Conference, Santa Barbara, California, USA, August

17-21, 2003. Proceedings. Ed. by Dan Boneh. Berlin, Heidelberg: Springer Berlin

Heidelberg, 2003, pp. 145–161. ISBN: 978-3-540-45146-4. DOI: 10 . 1007 /

978-3-540-45146-4_9. URL: http://dx.doi.org/10.1007/978-

3-540-45146-4_9.

[71] Yuval Ishai and Eyal Kushilevitz. “Private simultaneous messages protocols with

applications”. In: Proceedings of the Fifth Israeli Symposium on Theory of Com-

puting and Systems. June 1997, pp. 174–183. DOI: 10.1109/ISTCS.1997.

595170.

[72] Liina Kamm and Jan Willemson. “Secure Floating Point Arithmetic and Private

Satellite Collision Analysis”. In: Int. J. Inf. Secur. 14.6 (Nov. 2015), pp. 531–548.

ISSN: 1615-5262. DOI: 10.1007/s10207-014-0271-8. URL: http:

//dx.doi.org/10.1007/s10207-014-0271-8.

https://followthedata.wordpress.com/2014/06/24/data-size-estimates/
https://followthedata.wordpress.com/2014/06/24/data-size-estimates/
https://followthedata.wordpress.com/2014/06/24/data-size-estimates/
http://dx.doi.org/10.1016/j.comnet.2013.08.017
http://dx.doi.org/10.1016/j.comnet.2013.08.017
http://dx.doi.org/10.1016/j.comnet.2013.08.017
http://dx.doi.org/10.1007/978-3-540-45146-4_9
http://dx.doi.org/10.1007/978-3-540-45146-4_9
http://dx.doi.org/10.1007/978-3-540-45146-4_9
http://dx.doi.org/10.1007/978-3-540-45146-4_9
http://dx.doi.org/10.1109/ISTCS.1997.595170
http://dx.doi.org/10.1109/ISTCS.1997.595170
http://dx.doi.org/10.1007/s10207-014-0271-8
http://dx.doi.org/10.1007/s10207-014-0271-8
http://dx.doi.org/10.1007/s10207-014-0271-8

BIBLIOGRAPHY 139

[73] Jonathan Katz. “Efficient and Non-malleable Proofs of Plaintext Knowledge and

Applications”. In: Proceedings of the 22Nd International Conference on The-

ory and Applications of Cryptographic Techniques. EUROCRYPT’03. Warsaw,

Poland: Springer-Verlag, 2003, pp. 211–228. ISBN: 3-540-14039-5. URL: http:

//dl.acm.org/citation.cfm?id=1766171.1766189.

[74] Marcel Keller, Emmanuela Orsini, and Peter Scholl. “Actively Secure OT Exten-

sion with Optimal Overhead”. In: Advances in Cryptology – CRYPTO 2015: 35th

Annual Cryptology Conference, Santa Barbara, CA, USA, August 16-20, 2015,

Proceedings, Part I. Ed. by Rosario Gennaro and Matthew Robshaw. Berlin, Hei-

delberg: Springer Berlin Heidelberg, 2015, pp. 724–741. ISBN: 978-3-662-47989-

6. DOI: 10.1007/978-3-662-47989-6_35. URL: http://dx.doi.

org/10.1007/978-3-662-47989-6_35.

[75] Marcel Keller, Emmanuela Orsini, and Peter Scholl. “MASCOT: Faster Malicious

Arithmetic Secure Computation with Oblivious Transfer”. In: Proceedings of the

2016 ACM SIGSAC Conference on Computer and Communications Security. CCS

’16. Vienna, Austria: ACM, 2016, pp. 830–842. ISBN: 978-1-4503-4139-4. DOI:

10.1145/2976749.2978357. URL: http://doi.acm.org/10.

1145/2976749.2978357.

[76] Marcel Keller, Dragos Rotaru, Peter Scholl, and Nigel Smart. SPDZ Software.

University of Bristol. 2016. URL: https://www.cs.bris.ac.uk/Resea

rch/CryptographySecurity/SPDZ/ (visited on 2017).

[77] Joe Kilian. “Founding Cryptography on Oblivious Transfer”. In: Proceedings

of the Twentieth Annual ACM Symposium on Theory of Computing. STOC ’88.

Chicago, Illinois, USA: ACM, 1988, pp. 20–31. ISBN: 0-89791-264-0. DOI: 10.

http://dl.acm.org/citation.cfm?id=1766171.1766189
http://dl.acm.org/citation.cfm?id=1766171.1766189
http://dx.doi.org/10.1007/978-3-662-47989-6_35
http://dx.doi.org/10.1007/978-3-662-47989-6_35
http://dx.doi.org/10.1007/978-3-662-47989-6_35
http://dx.doi.org/10.1145/2976749.2978357
http://doi.acm.org/10.1145/2976749.2978357
http://doi.acm.org/10.1145/2976749.2978357
https://www.cs.bris.ac.uk/Research/CryptographySecurity/SPDZ/
https://www.cs.bris.ac.uk/Research/CryptographySecurity/SPDZ/
http://dx.doi.org/10.1145/62212.62215
http://dx.doi.org/10.1145/62212.62215

BIBLIOGRAPHY 140

1145/62212.62215. URL: http://doi.acm.org/10.1145/62212.

62215.

[78] Vladimir Kolesnikov and Thomas Schneider. “Improved Garbled Circuit: Free

XOR Gates and Applications”. In: Proceedings of the 35th International Collo-

quium on Automata, Languages and Programming, Part II. ICALP ’08. Reyk-

javik, Iceland: Springer-Verlag, 2008, pp. 486–498. ISBN: 978-3-540-70582-6.

DOI: 10.1007/978-3-540-70583-3_40. URL: http://dx.doi.

org/10.1007/978-3-540-70583-3_40.

[79] Benjamin Kreuter, Abhi Shelat, and Chih-Hao Shen. “Billion-gate Secure Com-

putation with Malicious Adversaries”. In: Proceedings of the 21st USENIX Con-

ference on Security Symposium. Security’12. Bellevue, WA: USENIX Associa-

tion, 2012, pp. 14–14. URL: http://dl.acm.org/citation.cfm?id=

2362793.2362807.

[80] Leslie Lamport, Robert Shostak, and Marshall Pease. “The Byzantine Generals

Problem”. In: ACM Trans. Program. Lang. Syst. 4.3 (July 1982), pp. 382–401.

ISSN: 0164-0925. DOI: 10.1145/357172.357176. URL: http://doi.

acm.org/10.1145/357172.357176.

[81] LIBSCAPI - The Secure Computation API. URL: https://github.com/

cryptobiu/libscapi.

[82] Yehuda Lindell. Tutorial on Secure Multi-Party Computation. IBM T.J.Watson.

URL: http://u.cs.biu.ac.il/~lindell/research-statements

/tutorial-secure-computation.ppt (visited on 2017).

[83] Yehuda Lindell and Benny Pinkas. “A Proof of Security of Yao’s Protocol for

Two-Party Computation”. In: J. Cryptol. 22.2 (Apr. 2009), pp. 161–188. ISSN:

http://dx.doi.org/10.1145/62212.62215
http://dx.doi.org/10.1145/62212.62215
http://doi.acm.org/10.1145/62212.62215
http://doi.acm.org/10.1145/62212.62215
http://dx.doi.org/10.1007/978-3-540-70583-3_40
http://dx.doi.org/10.1007/978-3-540-70583-3_40
http://dx.doi.org/10.1007/978-3-540-70583-3_40
http://dl.acm.org/citation.cfm?id=2362793.2362807
http://dl.acm.org/citation.cfm?id=2362793.2362807
http://dx.doi.org/10.1145/357172.357176
http://doi.acm.org/10.1145/357172.357176
http://doi.acm.org/10.1145/357172.357176
https://github.com/cryptobiu/libscapi
https://github.com/cryptobiu/libscapi
http://u.cs.biu.ac.il/~lindell/research-statements/tutorial-secure-computation.ppt
http://u.cs.biu.ac.il/~lindell/research-statements/tutorial-secure-computation.ppt

BIBLIOGRAPHY 141

0933-2790. DOI: 10.1007/s00145-008-9036-8. URL: http://dx.

doi.org/10.1007/s00145-008-9036-8.

[84] Yehuda Lindell, Benny Pinkas, Nigel P. Smart, and Avishay Yanai. “Efficient

Constant Round Multi-party Computation Combining BMR and SPDZ”. In:

Advances in Cryptology – CRYPTO 2015: 35th Annual Cryptology Confer-

ence, Santa Barbara, CA, USA, August 16-20, 2015, Proceedings, Part II. Ed. by

Rosario Gennaro and Matthew Robshaw. Berlin, Heidelberg: Springer Berlin Hei-

delberg, 2015, pp. 319–338. ISBN: 978-3-662-48000-7. DOI: 10.1007/978-

3-662-48000-7_16. URL: http://dx.doi.org/10.1007/978-3-

662-48000-7_16.

[85] Dahlia Malkhi, Noam Nisan, Benny Pinkas, and Yaron Sella. “Fairplay—a Se-

cure Two-party Computation System”. In: Proceedings of the 13th Conference on

USENIX Security Symposium - Volume 13. SSYM’04. San Diego, CA: USENIX

Association, 2004, pp. 20–20. URL: http://dl.acm.org/citation.

cfm?id=1251375.1251395.

[86] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. 2008. URL:

https://bitcoin.org/bitcoin.pdf.

[87] Arvind Narayanan. “Bitcoin and Cryptocurrency Technologies”. University Lec-

ture. 2017. URL: https://www.coursera.org/learn/cryptocurr

ency/lecture/EYEAo/hash-pointers-and-data-structures

(visited on 2017).

[88] Arvind Narayanan and Vitaly Shmatikov. Shmatikov How To Break Anonymity of

the Netflix Prize Dataset. arxiv cs/0610105. 2006.

http://dx.doi.org/10.1007/s00145-008-9036-8
http://dx.doi.org/10.1007/s00145-008-9036-8
http://dx.doi.org/10.1007/s00145-008-9036-8
http://dx.doi.org/10.1007/978-3-662-48000-7_16
http://dx.doi.org/10.1007/978-3-662-48000-7_16
http://dx.doi.org/10.1007/978-3-662-48000-7_16
http://dx.doi.org/10.1007/978-3-662-48000-7_16
http://dl.acm.org/citation.cfm?id=1251375.1251395
http://dl.acm.org/citation.cfm?id=1251375.1251395
https://bitcoin.org/bitcoin.pdf
https://www.coursera.org/learn/cryptocurrency/lecture/EYEAo/hash-pointers-and-data-structures
https://www.coursera.org/learn/cryptocurrency/lecture/EYEAo/hash-pointers-and-data-structures

BIBLIOGRAPHY 142

[89] Jesper Buus Nielsen, Peter Sebastian Nordholt, Claudio Orlandi, and Sai She-

shank Burra. “A New Approach to Practical Active-Secure Two-Party Computa-

tion”. In: Proceedings of the 32Nd Annual Cryptology Conference on Advances

in Cryptology — CRYPTO 2012 - Volume 7417. New York, NY, USA: Springer-

Verlag New York, Inc., 2012, pp. 681–700. ISBN: 978-3-642-32008-8. DOI: 10.

1007/978-3-642-32009-5_40. URL: http://dx.doi.org/10.

1007/978-3-642-32009-5_40.

[90] NSA Spying Timeline. Electronic Frontier Foundation. 2017. URL: https://

www.eff.org/nsa-spying/timeline# (visited on 2017).

[91] Valerio Pastro. “Zero-Knowledge Protocols and Multiparty Computation”. PhD

dissertation. Aarhus University, 2013. URL: http://www.cs.yale.edu/

homes/pastro-valerio/au/thesis.pdf.

[92] Benny Pinkas, Thomas Schneider, Nigel P. Smart, and Stephen C. Williams. “Se-

cure Two-Party Computation Is Practical”. In: Proceedings of the 15th Interna-

tional Conference on the Theory and Application of Cryptology and Information

Security: Advances in Cryptology. ASIACRYPT ’09. Tokyo, Japan: Springer-

Verlag, 2009, pp. 250–267. ISBN: 978-3-642-10365-0. DOI: 10.1007/978-

3-642-10366-7_15. URL: http://dx.doi.org/10.1007/978-3-

642-10366-7_15.

[93] Michael O. Rabin. How To Exchange Secrets with Oblivious Transfer. Harvard

University Technical Report 81 talr@watson.ibm.com 12955 received 21 Jun

2005. 2005. URL: http://eprint.iacr.org/2005/187.

http://dx.doi.org/10.1007/978-3-642-32009-5_40
http://dx.doi.org/10.1007/978-3-642-32009-5_40
http://dx.doi.org/10.1007/978-3-642-32009-5_40
http://dx.doi.org/10.1007/978-3-642-32009-5_40
https://www.eff.org/nsa-spying/timeline#
https://www.eff.org/nsa-spying/timeline#
http://www.cs.yale.edu/homes/pastro-valerio/au/thesis.pdf
http://www.cs.yale.edu/homes/pastro-valerio/au/thesis.pdf
http://dx.doi.org/10.1007/978-3-642-10366-7_15
http://dx.doi.org/10.1007/978-3-642-10366-7_15
http://dx.doi.org/10.1007/978-3-642-10366-7_15
http://dx.doi.org/10.1007/978-3-642-10366-7_15
http://eprint.iacr.org/2005/187

BIBLIOGRAPHY 143

[94] John E. Savage. Models of Computation: Exploring the Power of Computing. 1st.

Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc., 1997, p. 372.

ISBN: 0201895390. URL: http://cs.brown.edu/~jes/book/.

[95] Risk Based Security. 2016 Data Breach Trends. Year In Review. Risk Based

Security, Jan. 1, 2017. URL: https://pages.riskbasedsecurity.

com/hubfs/Reports/2016%20Year%20End%20Data%20Breac

h%20QuickView%20Report.pdf?utm_campaign=2016+Year+

End+Data+Breach+QuickView+Report&utm_source=hs_aut

omation&utm_medium=email&utm_content=41076100&_hse

nc=p2ANqtz- 9YSFTnUDy2n3azbjo5khYqM1kprhERFPK6le6JE3Ds

BfqVSB5oLIlqqsPdst0oTqFYV7jWcPiXrG12iNfaCjTySbT4_w&_hs

mi=41076100 (visited on 2017).

[96] SEPIA: Security through Private Information Aggregation. URL: http://sep

ia.ee.ethz.ch/index.html.

[97] Adi Shamir. “How to Share a Secret”. In: Commun. ACM 22.11 (Nov. 1979),

pp. 612–613. ISSN: 0001-0782. DOI: 10.1145/359168.359176. URL: htt

p://doi.acm.org/10.1145/359168.359176.

[98] SINTEF. Big Data, for better or worse: 90% of world’s data generated over last

two years. ScienceDaily. May 22, 2013. URL: www.sciencedaily.com/

releases/2013/05/130522085217.htm (visited on 2017).

[99] Nigel Smart. Crypto is Dead; Long Live Crypto! Mar. 4, 2013. URL: https:

//mpclounge.wordpress.com/2013/03/04/crypto-is-dead-

long-live-crypto/ (visited on 2017).

http://cs.brown.edu/~jes/book/
https://pages.riskbasedsecurity.com/hubfs/Reports/2016%20Year%20End%20Data%20Breach%20QuickView%20Report.pdf?utm_campaign=2016+Year+End+Data+Breach+QuickView+Report&utm_source=hs_automation&utm_medium=email&utm_content=41076100&_hsenc=p2ANqtz-9YSFTnUDy2n3azbjo5khYqM1kprhERFPK6le6JE3DsBfqVSB5oLIlqqsPdst0oTqFYV7jWcPiXrG12iNfaCjTySbT4_w&_hsmi=41076100
https://pages.riskbasedsecurity.com/hubfs/Reports/2016%20Year%20End%20Data%20Breach%20QuickView%20Report.pdf?utm_campaign=2016+Year+End+Data+Breach+QuickView+Report&utm_source=hs_automation&utm_medium=email&utm_content=41076100&_hsenc=p2ANqtz-9YSFTnUDy2n3azbjo5khYqM1kprhERFPK6le6JE3DsBfqVSB5oLIlqqsPdst0oTqFYV7jWcPiXrG12iNfaCjTySbT4_w&_hsmi=41076100
https://pages.riskbasedsecurity.com/hubfs/Reports/2016%20Year%20End%20Data%20Breach%20QuickView%20Report.pdf?utm_campaign=2016+Year+End+Data+Breach+QuickView+Report&utm_source=hs_automation&utm_medium=email&utm_content=41076100&_hsenc=p2ANqtz-9YSFTnUDy2n3azbjo5khYqM1kprhERFPK6le6JE3DsBfqVSB5oLIlqqsPdst0oTqFYV7jWcPiXrG12iNfaCjTySbT4_w&_hsmi=41076100
https://pages.riskbasedsecurity.com/hubfs/Reports/2016%20Year%20End%20Data%20Breach%20QuickView%20Report.pdf?utm_campaign=2016+Year+End+Data+Breach+QuickView+Report&utm_source=hs_automation&utm_medium=email&utm_content=41076100&_hsenc=p2ANqtz-9YSFTnUDy2n3azbjo5khYqM1kprhERFPK6le6JE3DsBfqVSB5oLIlqqsPdst0oTqFYV7jWcPiXrG12iNfaCjTySbT4_w&_hsmi=41076100
https://pages.riskbasedsecurity.com/hubfs/Reports/2016%20Year%20End%20Data%20Breach%20QuickView%20Report.pdf?utm_campaign=2016+Year+End+Data+Breach+QuickView+Report&utm_source=hs_automation&utm_medium=email&utm_content=41076100&_hsenc=p2ANqtz-9YSFTnUDy2n3azbjo5khYqM1kprhERFPK6le6JE3DsBfqVSB5oLIlqqsPdst0oTqFYV7jWcPiXrG12iNfaCjTySbT4_w&_hsmi=41076100
https://pages.riskbasedsecurity.com/hubfs/Reports/2016%20Year%20End%20Data%20Breach%20QuickView%20Report.pdf?utm_campaign=2016+Year+End+Data+Breach+QuickView+Report&utm_source=hs_automation&utm_medium=email&utm_content=41076100&_hsenc=p2ANqtz-9YSFTnUDy2n3azbjo5khYqM1kprhERFPK6le6JE3DsBfqVSB5oLIlqqsPdst0oTqFYV7jWcPiXrG12iNfaCjTySbT4_w&_hsmi=41076100
https://pages.riskbasedsecurity.com/hubfs/Reports/2016%20Year%20End%20Data%20Breach%20QuickView%20Report.pdf?utm_campaign=2016+Year+End+Data+Breach+QuickView+Report&utm_source=hs_automation&utm_medium=email&utm_content=41076100&_hsenc=p2ANqtz-9YSFTnUDy2n3azbjo5khYqM1kprhERFPK6le6JE3DsBfqVSB5oLIlqqsPdst0oTqFYV7jWcPiXrG12iNfaCjTySbT4_w&_hsmi=41076100
https://pages.riskbasedsecurity.com/hubfs/Reports/2016%20Year%20End%20Data%20Breach%20QuickView%20Report.pdf?utm_campaign=2016+Year+End+Data+Breach+QuickView+Report&utm_source=hs_automation&utm_medium=email&utm_content=41076100&_hsenc=p2ANqtz-9YSFTnUDy2n3azbjo5khYqM1kprhERFPK6le6JE3DsBfqVSB5oLIlqqsPdst0oTqFYV7jWcPiXrG12iNfaCjTySbT4_w&_hsmi=41076100
http://sepia.ee.ethz.ch/index.html
http://sepia.ee.ethz.ch/index.html
http://dx.doi.org/10.1145/359168.359176
http://doi.acm.org/10.1145/359168.359176
http://doi.acm.org/10.1145/359168.359176
www.sciencedaily.com/releases/2013/05/130522085217.htm
www.sciencedaily.com/releases/2013/05/130522085217.htm
https://mpclounge.wordpress.com/2013/03/04/crypto-is-dead-long-live-crypto/
https://mpclounge.wordpress.com/2013/03/04/crypto-is-dead-long-live-crypto/
https://mpclounge.wordpress.com/2013/03/04/crypto-is-dead-long-live-crypto/

BIBLIOGRAPHY 144

[100] Pete Snyder. Yao’s Garbled Circuits. URL: https://www.cs.uic.edu/

pub/Bits/PeterSnyder/Yaos_Garbled_Circuits_-_Recent_

Directions_and_Implementations_slides.pdf (visited on 2017).

[101] SPDZ-2. University of Bristol. 2016. URL: https://github.com/bristo

lcrypto/SPDZ-2 (visited on 2017).

[102] VIFF Development Team. Preprocessing. 2007. URL: http://viff.dk/

doc/preprocessing.html (visited on 2017).

[103] VIFF Development Team. VIFF, the Virtual Ideal Functionality Framework.

2007. URL: http://viff.dk/ (visited on 2017).

[104] Stanley L. Warner. “Randomized Response: A Survey Technique for Eliminating

Evasive Answer Bias”. In: Journal of the American Statistical Association 60.309

(1965). PMID: 12261830, pp. 63–69. DOI: 10.1080/01621459.1965.

10480775. eprint: http://www.tandfonline.com/doi/pdf/10.

1080/01621459.1965.10480775. URL: http://www.tandfonline

.com/doi/abs/10.1080/01621459.1965.10480775.

[105] What is SPDZ? Part 3: SPDZ specifics. University of Bristol. Nov. 4, 2016. URL:

https://bristolcrypto.blogspot.fi/2016/11/what-is-

spdz-part-3-spdz-specifics.html (visited on 2017).

[106] Stephen Wiesner. “Conjugate Coding”. In: SIGACT News 15.1 (Jan. 1983),

pp. 78–88. ISSN: 0163-5700. DOI: 10 . 1145 / 1008908 . 1008920. URL:

http://doi.acm.org/10.1145/1008908.1008920.

[107] David Wu. Somewhat Practical Homomorphic Encryption. crypto.stanford.edu.

2014. URL: https://crypto.stanford.edu/~dwu4/talks/Securi

tyLunch0214.pdf (visited on 2017).

https://www.cs.uic.edu/pub/Bits/PeterSnyder/Yaos_Garbled_Circuits_-_Recent_Directions_and_Implementations_slides.pdf
https://www.cs.uic.edu/pub/Bits/PeterSnyder/Yaos_Garbled_Circuits_-_Recent_Directions_and_Implementations_slides.pdf
https://www.cs.uic.edu/pub/Bits/PeterSnyder/Yaos_Garbled_Circuits_-_Recent_Directions_and_Implementations_slides.pdf
https://github.com/bristolcrypto/SPDZ-2
https://github.com/bristolcrypto/SPDZ-2
http://viff.dk/doc/preprocessing.html
http://viff.dk/doc/preprocessing.html
http://viff.dk/
http://dx.doi.org/10.1080/01621459.1965.10480775
http://dx.doi.org/10.1080/01621459.1965.10480775
http://www.tandfonline.com/doi/pdf/10.1080/01621459.1965.10480775
http://www.tandfonline.com/doi/pdf/10.1080/01621459.1965.10480775
http://www.tandfonline.com/doi/abs/10.1080/01621459.1965.10480775
http://www.tandfonline.com/doi/abs/10.1080/01621459.1965.10480775
https://bristolcrypto.blogspot.fi/2016/11/what-is-spdz-part-3-spdz-specifics.html
https://bristolcrypto.blogspot.fi/2016/11/what-is-spdz-part-3-spdz-specifics.html
http://dx.doi.org/10.1145/1008908.1008920
http://doi.acm.org/10.1145/1008908.1008920
https://crypto.stanford.edu/~dwu4/talks/SecurityLunch0214.pdf
https://crypto.stanford.edu/~dwu4/talks/SecurityLunch0214.pdf

BIBLIOGRAPHY 145

[108] Andrew C. Yao. “How to generate and exchange secrets”. In: 27th Annual Sym-

posium on Foundations of Computer Science (sfcs 1986). Oct. 1986, pp. 162–167.

DOI: 10.1109/SFCS.1986.25.

[109] Andrew C. Yao. “Protocols for Secure Computations”. In: Proceedings of the 23rd

Annual Symposium on Foundations of Computer Science. SFCS ’82. Washington,

DC, USA: IEEE Computer Society, 1982, pp. 160–164. DOI: 10.1109/SFCS.

1982.88. URL: http://dx.doi.org/10.1109/SFCS.1982.88.

[110] Michael Zohner. More Effiicient Oblivious Transfer. Oct. 29, 2013. URL: http:

//www.cs.cornell.edu/~asharov/slides/ALSZ13.pdf (visited

on 2017).

[111] Guy Zyskind, Oz Nathan, and Alex Pentland. “Decentralizing Privacy: Using

Blockchain to Protect Personal Data”. In: Proceedings of the 2015 IEEE Secu-

rity and Privacy Workshops. SPW ’15. Washington, DC, USA: IEEE Computer

Society, 2015, pp. 180–184. ISBN: 978-1-4799-9933-0. DOI: 10.1109/SPW.

2015.27. URL: http://dx.doi.org/10.1109/SPW.2015.27.

[112] Guy Zyskind, Oz Nathan, and Alex Pentland. “Enigma: Decentralized Computa-

tion Platform with Guaranteed Privacy”. In: CoRR abs/1506.03471 (2015). URL:

http://arxiv.org/abs/1506.03471.

http://dx.doi.org/10.1109/SFCS.1986.25
http://dx.doi.org/10.1109/SFCS.1982.88
http://dx.doi.org/10.1109/SFCS.1982.88
http://dx.doi.org/10.1109/SFCS.1982.88
http://www.cs.cornell.edu/~asharov/slides/ALSZ13.pdf
http://www.cs.cornell.edu/~asharov/slides/ALSZ13.pdf
http://dx.doi.org/10.1109/SPW.2015.27
http://dx.doi.org/10.1109/SPW.2015.27
http://dx.doi.org/10.1109/SPW.2015.27
http://arxiv.org/abs/1506.03471

146

Appendix A

Appendix

A.1 Source Code Availability

Source code of the project can be accessed either at

https://github.com/mertdnmz/pceas/tree/master/Pceas/src

or at

https://sourceforge.net/p/pceas/code/ci/master/tree/Pceas/

src/.

A.2 Dependencies

The program is implemented with C++ and uses C++11 features.

A.2.1 FLINT: Fast Library for Number Theory

We used FLINT Library [65] (version 2.5.2) for number theoretic operations. In particu-

lar, we used

• fmpz and fmpz_vec classes for operations involving integers

https://github.com/mertdnmz/pceas/tree/master/Pceas/src
https://sourceforge.net/p/pceas/code/ci/master/tree/Pceas/src/
https://sourceforge.net/p/pceas/code/ci/master/tree/Pceas/src/

Appendix A. Appendix 147

• fmpz_mod_poly class for operations involving polynomials over Z/pZ

We also rely on FLINT Library for random number generation. FLINT internally

uses a linear congruential generator. When players want to generate random numbers

as they run the protocol, they use their partyID and the randomness they get from

std::random_device as seeds. Hence, players pick different randoms in consecu-

tive runs.1

Symmetric bivariate polynomials over Z/pZ (class SymmBivariatePoly) are im-

plemented on top of FLINT’s fmpz_mod_poly class.

A.2.2 Boost C++ Libraries

We used /tokenizer.hpp and /algorithm/string.hpp classes from Boost Li-

brary [32], for parsing the options file.

A.3 Building

The project was built and run on a machine running 64-bit Ubuntu (16.04). Linux

GCC toolchain (5.4.0 20160609 Ubuntu 5.4.0-6ubuntu1 16.04.4) was used to build the

project. Compiler option -std=c++0x (ISO C++ 11 Language Standard), and linker

flags -lmpfr -lgmp -pthread are required. One needs FLINT [65] and its de-

pendencies installed on the system. Please refer to FLINT’s documentation for these

installations.

1It might be useful to change this behaviour for debugging. See NO_RANDOM in Pceas.h.

Appendix A. Appendix 148

A.4 Running

An options file template and sample options files (including those used for the runs men-

tioned in Chapter 5 and Chapter 6) can be found along with the source code, under

options folder. In order to run the simulator, make sure that the options folder

(containing the options file opt) is in the same directory with the binary :

/.../Release$ ls

options Pceas

/.../Release$./Pceas

A.5 Project Structure

Project structure and source files included in the project are shown in Figure A.1.

A.6 Sample Code

Complete source code is too large to include in printed text. Please refer to Appendix A.1

if you need source code of the project.

This section includes the source code for two selected methods, which roughly cor-

respond to the outlines given in Section 4.1.1 and Section 4.1.2 for protocols PCEPS and

PCEAS , respectively. Both methods are from class Party.

A.6.1 Method runPceps()

1

2 /**

3 * Protocol ’CEPS’ (Circuit Evaluation with Passive Security)

4 */

Appendix A. Appendix 149

FIGURE A.1: Project Structure.

5 void Party::runPceps() {

6

7 sanityChecks();

8 setRecombinationVector();//calculate recombination vector

9

10 // Step 1 of 3 :input sharing

11 const unsigned long CIRCUIT_INPUT_NUM = circuit->getInputCount();

12 auto const& secretsMap = secrets->getSecrets();

13 auto it = secretsMap.begin();

14 vector<MessagePtr> messages;

15 while (messages.size() < CIRCUIT_INPUT_NUM) {

16 if (it != secretsMap.end()) {//if still has secrets to share

17 fmpz_set_ui(value, it->second);

18 distributeShares(value, it->first);

19 it++;

20 }

21

22 interact();

Appendix A. Appendix 150

23

24 for (ulong i = 0; i < N; ++i) {//receive shares sent

25 //"outward clocking"

26 if (channels[i]->hasMsg()) {//only data providers are expected to send messages

27 messages.push_back(channels[i]->recv());

28 }

29 }

30 }

31 for (auto const& m : messages) {

32 circuit->assignInput(m->getShare(), m->getInputLabel());

33 }

34

35 // Step 2 of 3 : computation

36 Gate* g;

37 while ((g = circuit->getNext()) != nullptr) {

38 switch (g->getType()) {

39 case ADD:

40 case CONST_MULT:

41 g->localCompute();

42 fmpz_mod(g->getLocalResult(), g->getLocalResult(), FIELD_PRIME);//reduce

43 g->assignResult(g->getLocalResult());

44 break;

45 case MULT:

46 g->localCompute();

47 fmpz_mod(g->getLocalResult(), g->getLocalResult(), FIELD_PRIME);//reduce

48 distributeShares(g->getLocalResult());

49

50 interact();

51

52 _fmpz_vec_zero(shares, N);

53 for (ulong i = 0; i < N; ++i) {//receive shares sent by other parties

54 //"outward clocking"

55 if (!channels[i]->hasMsg()) {//Even if the protocol could handle some missing

shares, we stop here because our assumption(no active cheaters) is violated.

56 throw PceasException("A party fails to participate.");

57 }

58 fmpz_set(shares+i, channels[i]->recv()->getShare());

59 }

Appendix A. Appendix 151

60 // We produce a degree D Shamir share, via degree reduction, by recombining local

shares for a degree 2D polynomial

61 _fmpz_vec_dot(g->getLocalResult(), recombinationVector, shares, N);

62 fmpz_mod(g->getLocalResult(), g->getLocalResult(), FIELD_PRIME);//reduce

63 g->assignResult(g->getLocalResult());

64 break;

65 }

66 }

67

68 // Step 3 of 3 : output reconstruction

69

70 // find output gate’s output and send it privately to the data user

71 MessagePtr m = newMsg();

72 m->setShare(circuit->retrieveOutput());

73 channels[dataUser-1]->send(m);

74

75 interact();

76

77 if (pid == dataUser) {// data user performs interpolation to find f(0) and prints it

78 ulong receivedShareCount = 0;

79 _fmpz_vec_zero(shares, N);

80 for (ulong i = 0; i < N; ++i) {//receive shares sent by other parties

81 if (channels[i]->hasMsg()) {//T+1 shares will be enough, others will remain as zero

(effectively excluding them from the upcoming dot product).

82 fmpz_set(shares+i, channels[i]->recv()->getShare());

83 receivedShareCount++;

84 }

85 }

86 if (receivedShareCount > D) {//need at least T = D+1 shares for interpolation

87 _fmpz_vec_dot(value, recombinationVector, shares, N);

88 fmpz_mod(value, value, FIELD_PRIME);

89 cout << "Evaluation result : " << MathUtil::fmpzToStr(value) << endl;

90 } else {

91 cout << "Data user did not receive enough shares to recover evaluation result. "

92 << "(Protocol cannot tolerate active cheaters.)" << endl;

93 }

94 }

95

Appendix A. Appendix 152

96 end();

97 }

A.6.2 Method runPceas()

1

2 /**

3 * Protocol ’CEAS’ (Circuit Evaluation with Active Security)

4 */

5 void Party::runPceas(bool circuitRandomization, bool finalRun) {

6

7 sanityChecks();

8 setRecombinationVector();//note : we will recalculate recombination vector each time we

mark a party as corrupt

9

10 if (circuitRandomization) {

11 // Preprocessing phase for ’CEAS with Circuit Randomization’ - generates

multiplication triples

12 runPreprocessing();

13 commitments->cleanUp();//to keep commitment table size managable, we remove records

which are no longer needed

14 }

15

16 {// Step 1 of 3 :input sharing

17 const unsigned long CIRCUIT_INPUT_NUM = circuit->getInputCount();

18 auto const& secretsMap = secrets->getSecrets();

19 auto it = secretsMap.begin();

20 ulong inputSharingLoopCounter = 0;//any single party will loop at most

CIRCUIT_INPUT_NUM times. we use this fact to break loop and end protocol if any

dishonest refuse to distribute a share.

21 while (commitments->getInputShareCountReceivedBy(pid) < CIRCUIT_INPUT_NUM &&

inputSharingLoopCounter < CIRCUIT_INPUT_NUM) {

22 const string inputSharingUniqueSuffix = to_string(inputSharingLoopCounter);

23 if (it != secretsMap.end()) {//distribute shares of each secret

24 fmpz_set_ui(value, it->second);

25 distributeVerifiableShares(value, inputSharingUniqueSuffix, it->first, false, true

);

26 it++;

Appendix A. Appendix 153

27 } else {

28 /*

29 * Note : Ideally, if a party does not have any input to distribute, it should just

30 * passively participate in distribution process of others (VSS is highly

interactive).

31 * For simplifying the implementation, we make these parties distribute some

arbitrary value,

32 * which will be ignored. This does not increase the number of rounds required.

33 */

34 fmpz_zero(value);

35 distributeVerifiableShares(value, inputSharingUniqueSuffix, NONE, false, true);

36 }

37 inputSharingLoopCounter++;

38 }

39 commitments->cleanUp();//to keep commitment table size managable, we remove records

which are no longer needed

40 vector<CommitmentRecord*> inputShares = commitments->getInputSharesReceivedBy(pid);

41 if (inputShares.size() < CIRCUIT_INPUT_NUM) {

42 throw PceasException("Missing inputs.");

43 }

44 if (inputShares.size() > CIRCUIT_INPUT_NUM) {

45 throw PceasException("Received more inputs than expected.");

46 }

47 for (auto const& is : inputShares) {

48 circuit->assignInputCid(is->getCommitid(), is->getInputLabel());

49 #ifdef VERBOSE

50 cout << "Party " << to_string(pid) << " assigns wire " + is->getInputLabel() + " : \

nCID = " << is->getCommitid()

51 << "\nOpenedVal = " << MathUtil::fmpzToStr(is->getOpenedValue()) << endl;

52 #endif

53 }

54 }

55 interact();

56 #ifdef VERBOSE

57 cout << "Gate computation phase starts." << endl;

58 #endif

59 // Step 2 of 3 : computation

60 Gate* g;

Appendix A. Appendix 154

61 while ((g = circuit->getNext()) != nullptr) {

62 switch (g->getType()) {

63 case ADD:

64 {

65 AdditionGate* ag = static_cast<AdditionGate*>(g);

66 for (PartyId k = 1; k <= N; ++k) {

67 /*

68 * To keep the commitment records synchronized, we do all other parties local

computations, in addition to our own.

69 */

70 const CommitmentId share_k_1 = getShareNameFor(k, ag->getInputCid1());

71 const CommitmentId share_k_2 = getShareNameFor(k, ag->getInputCid2());

72 CommitmentId add_k = addCommitments(share_k_1, share_k_2);

73 CommitmentId result_k = makeShareName(NOPARTY, k, to_string(g->getGateNumber()),

false, false, true);

74 commitments->rename(add_k, result_k);

75 CommitmentRecord* cr_k = commitments->getRecord(result_k);

76 if (cr_k == nullptr || cr_k->getOwner() != k) {//should not happen

77 throw PceasException("Wire is assigned invalid commitment.");

78 }

79 cr_k->setPermanent();

80 if (k == pid) {

81 g->assignResult(cr_k->getCommitid());

82 #ifdef VERBOSE

83 cout << "Party " << to_string(pid) << " assigns output to gate# " << g->

getGateNumber() << " (addition gate) : \nCID = "

84 << cr_k->getCommitid() << "\nOpenedValue = " << MathUtil::fmpzToStr(cr_k->

getOpenedValue()) << endl;

85 #endif

86 }

87 }

88 }

89 break;

90 case CONST_MULT:

91 {

92 ConstantMultGate* cmg = static_cast<ConstantMultGate*>(g);

93 for (PartyId k = 1; k <= N; ++k) {

94 /*

Appendix A. Appendix 155

95 * To keep the commitment records synchronized, we do all other parties local

computations, in addition to our own.

96 */

97 const CommitmentId share_k = getShareNameFor(k, cmg->getInputCid());

98 CommitmentId mult_k = constMultCommitment(cmg->getConstant(), share_k);

99 CommitmentId result_k = makeShareName(NOPARTY, k, to_string(g->getGateNumber()),

false, false, true);

100 commitments->rename(mult_k, result_k);

101 CommitmentRecord* cr_k = commitments->getRecord(result_k);

102 if (cr_k == nullptr || cr_k->getOwner() != k) {//should not happen

103 throw PceasException("Wire is assigned invalid commitment.");

104 }

105 cr_k->setPermanent();

106 if (k == pid) {

107 g->assignResult(cr_k->getCommitid());

108 #ifdef VERBOSE

109 cout << "Party " << to_string(pid) << " assigns output to gate# " << g->

getGateNumber() << " (const. mult. gate) : \nCID = "

110 << cr_k->getCommitid() << "\nOpenedValue = " << MathUtil::fmpzToStr(cr_k->

getOpenedValue()) << endl;

111 #endif

112 }

113 }

114 }

115 break;

116 case MULT:

117 {

118 MultiplicationGate* mg = static_cast<MultiplicationGate*>(g);

119 if (circuitRandomization) {

120 //construct a common representation (common to all honest parties) for a * b,

using existing multiplication triples (generated in preprocessing phase)

121 auto it = triples.find(g->getGateNumber()); // x, y, x*y

122 if (it == triples.end()) {

123 throw PceasException("Missing triple.");

124 }

125 CommitmentId e_pid, d_pid;

126 for (PartyId k = 1; k <= N; ++k) {//To keep the commitment records synchronized,

we do all other parties local computations, in addition to our own.

Appendix A. Appendix 156

127 const CommitmentId input1_k = getShareNameFor(k, mg->getInputCid1());

128 const CommitmentId input2_k = getShareNameFor(k, mg->getInputCid2());

129 CommitmentId e = substractCommitments(input1_k, makeTripleName(k,

MultiplicationTriple::M1, g->getGateNumber())); // a - x

130 CommitmentId d = substractCommitments(input2_k, makeTripleName(k,

MultiplicationTriple::M2, g->getGateNumber())); // b - y

131 CommitmentId eNew = makeTripleName(k, MultiplicationTriple::E, g->getGateNumber()

);

132 CommitmentId dNew = makeTripleName(k, MultiplicationTriple::D, g->getGateNumber()

);

133 commitments->rename(e, eNew);

134 commitments->rename(d, dNew);

135 if (k == pid) {

136 e_pid = eNew;

137 d_pid = dNew;

138 }

139 }

140 /*

141 * We open e and d, and other parties will open theirs(e’ = a - x’, d’ = b - y’)

142 * Note that, these ’open’s are the only interactions we need in order to process

the multiplication gate.

143 * Via circuit randomization, much of the cost due to interactions for

multiplications are pushed

144 * to the preprocessing phase, in which triples are (ideally - see ’

runPreprocessing’) generated

145 * in parallel, rather than one at a a time.

146 */

147 open(e_pid);//INTERACTIVE

148 open(d_pid);//INTERACTIVE

149 MultiplicationTriple& triple = it->second;

150 auto& receivedShares = triple.receivedShares;

151 CommitmentId result_pid;

152 //eliminate shares for which the sender of share is known to be dishonest (we

marked parties as corrupt in previous steps)

153 receivedShares.erase(remove_if(receivedShares.begin(), receivedShares.end(), [this

](CommitmentRecord* cr){return isCorrupt(cr->getDistributer());}),

receivedShares.end());

154 if (receivedShares.size() > 2*D) {

Appendix A. Appendix 157

155 sort(receivedShares.begin(), receivedShares.end(), [](CommitmentRecord* is1,

CommitmentRecord* is2){return is1->getDistributer() < is2->getDistributer()

;});

156 result_pid = runDegreeReduction(receivedShares, g->getGateNumber());

157 #ifdef VERBOSE

158 this_thread::sleep_for(chrono::milliseconds(pid*700));

159 cout << "Party " << to_string(pid) << " recombined x.y : " << MathUtil::fmpzToStr

(commitments->getRecord(result_pid)->getOpenedValue()) << endl;

160 #endif

161 } else {

162 /*

163 * Since deg(h) = 2D, we needed more than 2D shares for recombination.

164 * This protocol tolerates <= N / 3 dishonest.

165 * Not having enough shares means, our assumption failed. We stop execution..

166 */

167 throw PceasException("More dishonest than the protocol can handle.");

168 }

169 for (PartyId k = 1; k <= N; ++k) {//To keep the commitment records synchronized,

we do all other parties local computations, in addition to our own.

170 CommitmentRecord* ek = commitments->getRecord(makeTripleName(k,

MultiplicationTriple::E, g->getGateNumber()));

171 CommitmentRecord* dk = commitments->getRecord(makeTripleName(k,

MultiplicationTriple::D, g->getGateNumber()));

172 if (ek == nullptr || !ek->isOpened() || dk == nullptr || !dk->isOpened()) {

173 addCorrupt(k);//all honest will agree

174 if (k == pid) {//keep corrupt parties alive for running test cases

175 g->assignResult(result_pid);

176 }

177 continue;

178 }

179 const CommitmentId input1_k = getShareNameFor(k, mg->getInputCid1());

180 const CommitmentId input2_k = getShareNameFor(k, mg->getInputCid2());

181 const CommitmentId result_k = makeShareName(NOPARTY, k, to_string(g->

getGateNumber()), false, false, true);

182 CommitmentId temp_k = makeTripleName(k, MultiplicationTriple::PROD, g->

getGateNumber());

183 //[[a * b]] = [[x * y]] + e[[b]] + d[[a]] - e.d

184 commitments->rename(result_k, temp_k);//initialize temp_k with [[x * y]]

Appendix A. Appendix 158

185 temp_k = addCommitments(temp_k, constMultCommitment(ek->getOpenedValue(),

input2_k)); // result_k += e[[b]]

186 temp_k = addCommitments(temp_k, constMultCommitment(dk->getOpenedValue(),

input1_k)); // result_k += d[[a]]

187 fmpz_mul(value, ek->getOpenedValue(), dk->getOpenedValue());

188 #ifdef VERBOSE

189 if (k == pid) {

190 cout << "Party " << to_string(pid) << "a,b : " << MathUtil::fmpzToStr(

commitments->getRecord(input1_k)->getOpenedValue()) << "\t" << MathUtil::

fmpzToStr(commitments->getRecord(input2_k)->getOpenedValue()) << endl;

191 cout << " a.b + e.d : " << MathUtil::fmpzToStr(commitments->getRecord(temp_k)->

getOpenedValue()) << " e.d : " << MathUtil::fmpzToStr(value) << endl;

192 }

193 #endif

194 fmpz_neg(value, value);

195 temp_k = constAddCommitment(value, temp_k); // result_k -= e.d

196 commitments->rename(temp_k, result_k);

197 CommitmentRecord* cr_k = commitments->getRecord(result_k);

198 if (cr_k == nullptr || cr_k->getOwner() != k) {//should not happen

199 throw PceasException("Wire is assigned invalid commitment.");

200 }

201 cr_k->setPermanent();

202 if (k == pid) {

203 g->assignResult(cr_k->getCommitid());

204 #ifdef VERBOSE

205 cout << "Party " << to_string(pid) << " assigns output to gate# " << g->

getGateNumber() << " (mult. gate) : \nCID = "

206 << cr_k->getCommitid() << "\nOpenedValue = " << MathUtil::fmpzToStr(cr_k->

getOpenedValue()) << endl;

207

208 cout << "Triple used were (M1, M2, E, D) : " << MathUtil::fmpzToStr(triple.

firstMult->getOpenedValue()) << "\t" << MathUtil::fmpzToStr(triple.

secontMult->getOpenedValue()) << "\t" << MathUtil::fmpzToStr(commitments->

getRecord(e_pid)->getOpenedValue()) << "\t" << MathUtil::fmpzToStr(

commitments->getRecord(d_pid)->getOpenedValue()) << endl;

209 cout << "Received shares were : " << endl;

210 for (auto const& s : receivedShares) {

211 cout << MathUtil::fmpzToStr(s->getOpenedValue()) << "\t";

Appendix A. Appendix 159

212 }

213 cout << endl;

214 #endif

215 }

216 }

217 } else {

218 /*

219 * [[ab;f.g]]_2t = [[a;f]]_t * [[b;g]]_t

220 */

221 CommitmentId localMult = multiplyCommitments(mg->getInputCid1(), mg->getInputCid2

());

222 distributeVerifiableShares(localMult, to_string(g->getGateNumber()));

223 vector<CommitmentRecord*> receivedShares = commitments->getVSSharesReceivedBy(pid)

;

224 //eliminate shares for which the sender of share is known to be dishonest (we

marked parties as corrupt in previous steps)

225 receivedShares.erase(remove_if(receivedShares.begin(), receivedShares.end(), [this

](CommitmentRecord* cr){return isCorrupt(cr->getDistributer());}),

receivedShares.end());

226 if (receivedShares.size() > 2*D) {

227 sort(receivedShares.begin(), receivedShares.end(), [](CommitmentRecord* is1,

CommitmentRecord* is2){return is1->getDistributer() < is2->getDistributer()

;});

228 CommitmentId result = runDegreeReduction(receivedShares, g->getGateNumber());

229 g->assignResult(result);

230 #ifdef VERBOSE

231 cout << "Party " << to_string(pid) << " assigns output to gate# " << g->

getGateNumber() << " (mult. gate) : \nCID = "

232 << result << "\nOpenedValue = " << MathUtil::fmpzToStr(commitments->getRecord(

result)->getOpenedValue()) << endl;

233 #endif

234 } else {

235 /*

236 * Since deg(h) = 2D, we needed more than 2D shares for recombination.

237 * This protocol tolerates <= N / 3 dishonest.

238 * Not having enough shares means, our assumption failed. We stop execution..

239 */

240 throw PceasException("More dishonest than the protocol can handle.");

Appendix A. Appendix 160

241 }

242 }

243 }

244 break;

245 }

246 commitments->cleanUp();//to keep commitment table size managable, we remove records

which are no longer needed

247 }

248 interact();

249 #ifdef VERBOSE

250 cout << "Gate computation phase ends." << endl;

251 #endif

252 {

253 // Step 3 of 3 : output reconstruction

254 // find output gate’s output and send it privately to the data user

255 CommitmentId result = circuit->retrieveOutputCid();

256 for (ulong i = 0; i < N; ++i) {//since parties can not designatedOpen to the same

party in parallel, they will take turns

257 PartyId k = i + 1;

258 if (k != dataUser) {

259 if (k == pid) {//our turn to ’designatedOpen’ share to dataUser

260 designatedOpen(result, dataUser, true);//INTERACTIVE

261 } else {//We will not ’designatedOpen’ anything, but will participate in other’s ’

designatedOpen’s.

262 //note that single share per party is automatically enforced due to target

selection scheme used in ’designatedOpen’

263 const PartyId target = getTargetFromSource(pid, k, dataUser);//(when party k is

opening to dataUser, we can only open to...)

264 designatedOpen(NONE, target, true);//INTERACTIVE

265 }

266 }

267 }

268 if (pid == dataUser) {

269 //We mark the share we have as output. (we did not ’designatedOpen’ to self.

270 //Shares from other parties have been marked during the ’designatedOpen’s above.)

271 commitments->getRecord(result)->markAsOutput();

272 vector<CommitmentRecord*> outputShares = commitments->getOutputShares();

273 if (outputShares.size() > N) {

Appendix A. Appendix 161

274 throw PceasException("Too many output shares");

275 }

276 //eliminate shares for which we have no access to the value, and for which it is

known that sender of share (owner of ’designatedOpen’ed commitment) is known to

be dishonest

277 outputShares.erase(remove_if(outputShares.begin(), outputShares.end(), [this](

CommitmentRecord* cr){return !cr->isValueOpenToUs() || isCorrupt(cr->getOwner())

;}), outputShares.end());

278 if (outputShares.size() > D) {

279 //use Lagrange interpolation to find output value and print it

280 _fmpz_vec_zero(shares, N);

281 for (auto const& os : outputShares) {//T = D+1 shares will be enough, others will

remain as zero (effectively excluding them from the upcoming dot product).

282 ulong arrIndex = os->getOwner() - 1;

283 fmpz_set(shares+arrIndex, os->getOpenedValue());

284 }

285 _fmpz_vec_dot(value, recombinationVector, shares, N);

286 fmpz_mod(value, value, FIELD_PRIME);

287 cout << "Evaluation result : " << MathUtil::fmpzToStr(value) << endl;

288 } else {

289 /*

290 * Since deg(f) = D, we needed more than D shares for recombination.

291 * This protocol tolerates <= N / 3 dishonest.

292 * Not having enough shares means, our assumption failed. We stop execution..

293 */

294 cout << "Data user did not receive enough shares to recover evaluation result. "

295 << "(More dishonest than the protocol can handle)" << endl;

296 }

297 }

298 }

299 if (finalRun) {

300 end();

301 } else {

302 interact();

303 }

304 }

	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Thesis Structure

	Preliminaries
	Secure Multiparty Computation (SMC)
	Players and Other Parties
	Network Model
	Adversary Model
	Definition of Security

	Consensus Broadcast
	Circuit Evaluation
	Boolean Circuits
	Arithmetic Circuit
	Boolean Circuits vs. Arithmetic Circuits

	Secret Sharing
	Shamir's Secret Sharing Scheme
	General Linear Secret Sharing Schemes

	Verifiable Secret Sharing
	Commitment via Redundant Sharing

	Preprocessing Model
	Circuit Randomization

	Oblivious Transfer
	Generating Multiplication Triples Using OT
	OT-Extension

	Homomorphic Encryption Schemes
	Fully Homomorphic Encryption
	Additively Homomorphic Encryption
	Semi-Homomorphic Encryption
	Somewhat Homomorphic Encryption

	Zero-knowledge Proofs
	Proofs of Knowledge
	Zero-Knowledge Verification of Multiplication Triples

	A Brief Survey of SMC: Theory and Applications
	Other Approaches to Privacy-Preserving Computations
	Data anonymization
	Randomized Response Techniques
	Homomorphic Encryption Schemes

	Secure Multiparty Computation
	Garbled Circuits
	Feasibility Results
	SMC Frameworks and Other Implementations

	Applications of SMC
	Auctions
	Procurement
	Benchmarking
	Privacy Preserving Data Mining
	Electronic Voting
	Set Intersection
	Other Applications
	Synergy with Blockchains

	Specification of Implemented Protocols
	Overview of the Protocols
	Protocol CEPS (Circuit Evaluation with Passive Security)
	Protocol CEAS (Circuit Evaluation with Active Security)

	Security of the Protocols
	Network Model
	Adversary Model
	Security

	Implementation
	A Motivating Example
	Simulator
	Simulating the Network
	Simulator Options
	Simulating an Active Adversary

	Circuit Generator
	Protocols
	PCEPS
	PCEAS
	Local Operations on Commitment Records
	Subprotocols Used by PCEAS
	Cases of Malicious Behaviour
	Implementation of Circuit Randomization

	Round Complexities and General Computing
	Round Complexities
	PCEPS vs. PCEAS
	PCEAS vs. PCEAS,CR

	Performing General Computations
	Remembering Previous Results
	Building a Circuit For Comparison

	Concluding Remarks
	Bibliography
	Appendix
	Source Code Availability
	Dependencies
	FLINT: Fast Library for Number Theory
	Boost C++ Libraries

	Building
	Running
	Project Structure
	Sample Code
	Method runPceps()
	Method runPceas()

