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Lingonberry (Vaccinium vitis-idaea) is a wild, abundant, easy to pick, and highly 

nutritious uncultivated berry. Lingonberries are usually consumed as such, or as 

juices, jams, and purees. Enzymatic treatment is traditionally used to extract 

higher juice yields and to increase the yields of various compounds, such as 

anthocyanins and other phenolic compounds, in the juice. The outcome of 

enzymatic treatment is dependent upon the type of enzyme, concentration, 

incubation time and temperature.  

The aim of this work was to study how different enzymes (pectinases, cellulose, 

β-glucosidase) impact on the flavour-active compounds of lingonberry juice. 

Volatile compounds in freshly pressed lingonberry juices were detected using gas 

chromatography coupled with mass spectrometry. Seven types of lingonberry 

juice samples were studied, two of which were references without enzyme 

treatment and five were treated with different enzymes. With each of the seven 

types of treatments the independent parameters studied were minimum and 

maximum enzyme dosage, and incubation times of 1 hour and 3 hours. The juices 

for each treatment were prepared in triplicate, and samples from treated juices 

were taken in triplicate.  

From lingonberry juice samples, 34 volatile organic compounds were identified 

by comparing their mass spectra with those in the mass spectral library. The 

impact of different treatment conditions on these compounds was determined by 

using multivariate statistical methods. Peak areas were expressed with respect 

to internal standards. Incubation with enzymes increased the total concentrations 

of volatile organic compounds all around more than incubation without enzymes. 

Pectinases derived from a classic strain of Aspergillus niger increased the yields 

of juice and concentration of volatile organic compounds the most. The 

compounds identified were generally terpenes, alcohols, aldehydes, esters and 

ketones present in small quantities. VOCs with highest overall concentrations 

found were ethyl acetate, ethyl benzoate, 2-methyl-3-buten-2-ol, benzaldehyde, 

pentanal, hexanal, undecane, α-Pinene, linalool L and diacetyl.   

KEYWORDS: Volatile organic compounds (VOCs), enzymes, lingonberry, 
flavour, SPME–GC-MS 
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1 Introduction  

An increasing demand for various berries for consumer and industrial needs has 

been identified in Europe. Although many berries are grown in Europe, demand 

is much higher than European production. This rising demand is in literature 

attributed to consumers’ increased knowledge of the health benefits of berries 

and thus an interest in consumption of berry based products (CBI and Ministry of 

Foreign Affairs, 2018). Lingonberry (Vaccinium vitis-idaea L.) has received lesser 

attention than cranberry (Vaccinium macrocarpon Ait.) and bilberry (Vaccinium 

myrtillus), which has led to less increase in lingonberry consumption, when in 

comparison to cranberries or bilberries. These berries are often consumed as 

fresh fruits and processed products, such as dietary supplements and juices 

(Alejandro Vazquez-Cruz et al., 2012; Bujor et al., 2018). Sensory studies have 

demonstrated that for consumer acceptance and preference for berries the key 

properties are taste, aroma, and appearance. These properties are followed by 

potential health benefits gained from berry consumption (Miettinen, 2004; 

Verbeke, 2006). Verbeke (2006) concludes that it is a very risky strategic option 

to bet on consumer willingness to compromise on the taste, aroma, or 

appearance of foods for potential health benefits.  

Many consumers base their perception of quality on sensory attributes, and the 

aroma of berries is one of the key properties determining the perception and 

acceptability of products by consumers. Aroma is a complex mixture of many 

volatile compounds. Berry fruits produce hundreds of volatile and non-volatile 

aroma compounds contributing to the overall flavour, and the flavour depends on 

several factors such as concentration and composition of these volatiles, climate 

and soil properties, growing practices, maturity stage and storage conditions. All 

plants can emit volatile organic compounds (VOCs), and genotypic variation can 

be seen in the content and composition of these molecules. Is essential to identify 

the key VOCs, that carry the unique aroma character of the berry, as they provide 

the principal characteristic flavour and sensory identity of the berry. As aroma is 

one of the most important traits of fruit quality, the study of VOCs has gained 

increasing attention in recent years (Hadi et al., 2013). 
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2 Berries 

2.1 The characteristics of berries  

The composition of berry fruits consists of flesh tissue, peel,  and seeds or stones. 

Rigid cell wall holds together the flesh cells, which can be many micrometres 

thick. These cell walls gives the fruits a defined shape and protects them from 

external shocks and internal pressure. The major polysaccharides are pectin, 

hemicelluloses and cellulose in the primary cell wall  (Whitehurst and Oort, 2010).  

Most commonly berries are consumed either as fresh, frozen, or dried. They are 

as well commonly used in the food industry, where they are processed into food 

products and dietary supplements. The most commonly consumed genera 

include: Fragaria (strawberries), Rubus (raspberries, black-berries), Vaccinium 

(blueberries, bilberries, lingonberries, cranberries), and Ribes (currants, 

gooseberries) (Alejandro Vazquez-Cruz et al., 2012). 

2.2 Lingonberry 

In Finland lingonberry (Vaccinium vitis-idaea), also known as cowberry, along 

with bilberry is the most abundant berry species found in the forests. Lingonberry 

plant is a wild shrub, whose fruits and aerial parts are rich in bioactive phenolic 

compounds. Lingonberry plants can be found in different parts of Europe, 

northern America and northern Asia (Ek et al., 2006; Tian et al., 2018). The 

lingonberry plant requires plenty of sun light and dry growing conditions. The 

plants can be found typically in light pine-dominated (sub-xeric) heath forests 

(figures 1 and 2). 
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Figure 1. Flowering lingonberries in a typical Finnish xeric heath forest 

photographed in Raisio, Finland 2.6.2018. 

Figure 2. Ripening lingonberries in a xeric heath forest photographed in Kaarina, 

Finland 11.8.2018. 

The flavour of lingonberries is described in literature as acidic, bitter and 

astringent. This is due the high amount of organic acids, especially citric acid. 

Lingonberries contain excessive amounts of benzoic acid (0.6–1.3 g/L free 

benzoic acid in lingonberry juice), and high amounts of other organic acids 

leading to a pH of below 4, which contributes to the acidity of the berry 



4 
 

(Viljakainen et al., 2002). Lingonberries are known to contain a relatively high 

concentration of sugars, but the sweetness is probably masked by acids, 

including benzoic acid (Viljanen et al., 2014). When lingonberry juice is stored in 

warm conditions, the concentration of benzoic acid in is known to  increase even 

more. At low pH benzoic acid inhibits both the growth of bacteria and yeast. 

Thanks to these traits, benzoic acid is one of the most used preservatives in foods 

(Brul, 1999). As most microorganisms cannot ferment processed lingonberries 

because of the high benzoic acid concentration, lingonberry products can in most 

cases be conserved without addition of preservatives (Visti et al., 2003). 

In Finland picking wild berries has maintained its popularity as a household and 

recreational activity. This popularity can be attributed to the Finnish “everyman’s 

rights”. These rights grant unrestricted access to both private and public land, in 

which people have the right to pick berries and mushrooms. In other Nordic 

countries, which also maintain these rights, the popularity of berry picking has 

been in decline (Turtiainen et al., 2011).  

In Finland the total yearly lingonberry yields vary in a range from 129 to 386 

million kg. The utilisation rates of lingonberries have been from approximately 8% 

to nearly 10%, varying on a yearly basis. In 2011–2013 an average of 20.4 million 

kilograms of lingonberries were harvested in Finland yearly. These numbers are 

rough estimates, and because they are not based on accurate data about the 

total berry yield, they area also mostly hypothetical (Turtiainen et al., 2011) Figure 

3 describes the flow of Finnish lingonberries from forests to households during 

this time. For the Finnish berry industry, it is troublesome that a growing portion 

of Finnish lingonberries is sold straight from the harvesters to relatives and friends 

or straight to institutional kitchens and restaurants.  
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Figure 3. the flow of domestic lingonberries from forests to households in 2011-

2013. Adapted from (Vaara, 2015). 

As foreign demand for Finnish wild berries grows the domestic berry industry 

affords to use less domestic wild berries. This leads to importing of berries for the 

needs of domestic berry industry. The majority of Finnish wild berries are 

exported as unprocessed and thus the added value of processing remains 

untapped (Vaara, 2015).  
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3 Volatile organic compounds of fruits 

3.1 Description of volatile organic compounds 

By one definition volatile organic compounds (VOCs) are low-molecular-weight 

organic compounds, which evaporate easily at room temperature (Pennerman et 

al., 2016). The aroma of berries is resulted form the composition and 

concentration of VOCs in a genus- and species-specific way. Research on 

chemistry of fruit flavour focused earlier on the volatiles that characterize the 

specific fruit flavour. As strawberries and then grapes have had the greatest effort 

devoted to them, other berries have not been studied as vigorously. Currently 

most of the volatiles that characterize the flavour of berries with commercial 

importance have been identified (Reineccius, 2010). Chemically VOCs can be 

classified as aldehydes, alcohols, esters, ketones, lactones, and terpenoids (Hui, 

2010).  

The different concentrations of the VOCs often determine aroma properties. 

Many fruits produce VOCs in significant numbers as indicators of fruit ripening. 

They are produced in various concentrations: some in trace amounts, others in 

relatively large quantities. The concentrations found are not strictly correlated 

with importance to sensory properties. Some of those VOCs, which are below the 

thresholds of most analytical instruments, may still be detected by human 

olfaction. GC-MS is in terms of instrumentation the standard method in flavour 

studies. More than 360 VOCs have been identified in strawberries, over 270 in 

mangos, and over 147 in blackberries. These VOCs are formed and impacted by 

the studied species, cultivars, cultural managements, maturity and postharvest 

handling and storage (Hui, 2010; Reineccius, 2010). Only a few of the VOCs 

emitted by strawberries are the major ones contributing to the characteristic 

strawberry aroma. These contributing VOCs in strawberries are predominately 

esters, which comprise from 25% to 90% of the total VOCs in ripe, fresh fruit. In 

different strawberry cultivars furanones, ketones, sulphur and terpenes 

compounds are some important contributors to characteristic aroma. in 

strawberry fruit alcohol dehydrogenase and acyltransferase may be two enzymes 

involved with synthesis of ester VOCs. Mango fruits flavour is contributed mostly 

by monoterpenes, esters, and lactones (Hui, 2010; Kafkas and Kafkas, 2005; 

Schieberle and Hofmann, 1997).  
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All the VOCs do not give humans an odour sensation, especially in the low 

quantities they are often found in food matrices. Only some of the volatile 

compounds create and odour sensation  when reaching the olfactory epithelium. 

In the olfactory epithelium they dissolve into the mucus, and may bond with 

olfactory receptors creating an odour sensation (Kalua et al., 2007). Flavour is 

given by perception of both taste and odour. The perception of both are also 

impacted by other sensory inputs. While most of the flavour compounds interact 

with the olfactory receptors in the nose, some of these flavour compounds also 

have an impact on the taste. Many natural VOCs have chiral centres and can 

exist as enantiomeric forms. These different enantiomeric forms can even have 

different aroma characteristics, and significantly different sensory thresholds 

(Malowicki et al., 2008). 

 

3.2 Volatile flavour-active compounds in Vaccinium species  

The aroma of berries of Vaccinium species is impacted by hundreds of volatile 

compounds, including acids, aldehydes, alcohols, esters, ketones, and terpenes. 

These volatile compounds are detectable in Vaccinium species with high 

variability according to environmental, genetic, and the stage of ripening 

differences (Farneti et al., 2017; Viljanen et al., 2014; Zhu et al., 2016). 

3.2.1 Lingonberries 

The volatile flavour-active composition of lingonberries (Vaccinium vitis-idaea) 

has only been studied previously in two studies. The first study conducted in the 

1960’s studied volatiles from extracted essential oil (Anjou and Sydow, 1967). 

The more recent one by Viljanen et al. (2014) made more throughout insights on 

bioprocessed lingonberries and identified 38 volatile chemical compounds (8 

aldehydes, 6 ketones, 7 alcohols, 7 terpenes, 5 esters, 2 acids and 3 other 

compounds) by SPME-GC/MS. Aldehydes octanal and nonanal were related to 

lingonberry-like flavour in sensory evaluation. Of the acids 3-methylbutanoic acid 

was related to sweetness along with sugars glucose and fructose.  

 

Figure 4. Structure of octanal. 
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Figure 5. Structure of nonanal. 

 

Figure 6. Structure of 3-methylbutanoic acid. 

Anjou and Sydow (1967) describe 2-methylbutanoic acid as the most 

characterizing aromatic compound in lingonberry as the typical lingonberry-like 

aroma disappears when 2-methylbutanoic acid is neutralized. 

  

Figure 7. Structure of 2-methylbutanoic acid. 

3.2.2 Blueberry 

Farneti et al., (2017) characterized blueberry aroma from four different Vaccinium 

species: V. corymbosum L., V. virgatum Aiton, V. myrtillus L., and V. 

cylindraceum with 106 compounds. The compounds that are synthesized by the 

fruit in the ripe stage are mostly responsible for the recognisable blueberry aroma. 

These compounds include linalool and majority of monoterpenes, (Z)-2-hexen-1-

ol, and hexanal. In the last stage of ripening are synthesized esters, such as ethyl 

acetate, methyl isovalerate, ethyl isovalerate, methyl 2-methylbutanoate. 

 

Figure 8. Structure of linalool L. 

 

Figure 9. Structure of ethyl acetate. 

https://en.wikipedia.org/wiki/File:2-Methylbutanoic_acid.png
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3.2.3 Cranberry  

The key aroma volatile compounds in cranberry (Vaccinium macrocarpon Ait.) 

according to (Zhu et al., 2016) are hexanal, hexen-1-ol, (E)-2-hexenal, pentanal, 

hexanol, β-ionone, linalool, 2-methylbutanoic acid, benzoic acid, cis-3-hexenyl 

acetate, and 4-mercapto-4-methyl-2-pentanone. These aldehyde, terpenoid and 

sulfuric compounds were found to contribute the most to the aroma profile of the 

studied cranberries.  

 

Figure 10. Structure of hexanal. 

 

Figure 11. Structure of 4-Mercapto-4-methyl-2-pentanone. 

Cysteine, cystine, and methionine are sulfur-containing amino acids, which are 

the major precursors of the sulfur-containing compounds (Zhu et al., 2016). 

3.3 Factors influencing volatile organic compound composition 

As various factors influence the composition of VOCs produced in fruits, it is 

important understand these factors in order to improve the organoleptic quality of 

fruits. The volatile composition in fresh fruit is continuously changing due to the 

complex nature of the volatile profiles. The VOCs that are mainly responsible for 

fruit flavour are biosynthesized through metabolic pathways. This biosynthesis 

occurs during maturing, postharvest handling, and storage. For most fruits the 

production of VOCs is mostly related to fruit ripening (Hui, 2010).  

The genetic background of fruit cultivars impacts the composition and 

concentration of VOCs clearly. With tomatoes the insertion of rin gene, which 

reduces ethylene production, results in some reduction in flavour volatiles and 

flavour quality. Cultivated strawberries are rich with monoterpene-linalool and the 

sesquiterpene nerolidol, while wild-type varieties are rich in oleafinic 

monoterpenes and myrenyl acetate (Hadi et al., 2013; Nile and Park, 2014).  
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Maturity of the fruit is considered the critical factor impacting the quantity and 

quality of VOCs in fruit. Fruit should be harvested at the right maturity to ensure 

best possible VOC quality. The realities of economics force fruit producers to 

harvest immature fruits in order to increase storage and shelf life, resulting in 

lacking flavour due to incomplete biosynthesis of VOCs during maturing. In 

strawberries furanone and esters are present in fully matured fruit, as in immature 

fruits C6 aldehydes are dominant. In cantaloupe melons total VOCs increase 

linearly with increasing maturity. During maturing factors such as sunlight, 

fertilization, chemical applications, and water availability have an impact on 

flavour. The highest quantities of VOCs in grapes can be achieved when the vines 

are under moderate nitrogen supply and mild water deficit. The use of 

Aminoethoxyvinylglycine (AVG) on apples and pears, which is a plant regulator 

used delaying fruit maturity, leading to benefits such as a reduction in pre-harvest 

fruit drop and improved fruit quality, is known to adversely affect the production 

of some VOCs in “Golden Delicious” apples  (Hadi et al., 2013; Salas et al., 2011).  

During storage temperature has a significant impact on the flavour of fruits. In 

honeydew melons and cantaloupe storage temperature of 4 °C caused the 

decline of acetate esters and increase of non-acetate esters after two days of 

cold storage. This change is suspected to lead in to an imbalance of characteristic 

VOCs to these fruits (Beaulieu, 2007). Storage atmosphere is modified in order 

to maintain the quality of fruits for extended periods. Controlled atmosphere 

conditions may alter the production of VOCs by reducing the fruits capacity to 

produce ethylene. (Hadi et al., 2013). 

An organoleptic assay should support the chemical analysis of VOCs, since all 

the volatile compounds are not responsible for the aroma. An organoleptic assay 

is used to identify the "character impact" and the "contributory" flavour 

compounds to create a description of the odour of the components (Rizzolo et 

al., 1992).  

VOCs can be classified in two groups: as primary or secondary. Primary VOCs 

are present in intact fruit tissue, and secondary VOCs are produced because of 

tissue disruption. Often VOCs are only released when tissue disruption occurs. 

The disruption causes previously compartmentalized enzymes and substrates to 
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interact. This disruption can be for example mashing of berries mechanically. 

Some VOCs can found as bound to sugars as glucosinolates or glycosides. 

Glycosides of VOCs in berries are mainly O-diglycosides, O-β-D-glucosides, and 

in lesser amounts, triglycosides. As glycosidically bound volatiles are often found 

in greater proportion than free volatiles, they are important source of VOCs.  The 

fruits maturation, processing and storage, or the action of enzymes, acids or heat 

may release the odorous aglycones from the sugar moiety. It should be taken in 

to consideration when performing analysis of VOCs, that the aroma profiles and 

final aroma interpretation will differ when taking samples from either intact or 

disrupted fruit tissues (Hui, 2010).   
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4 Enzymes  

“Catalysis can be described formally in terms of a 
stabilization of the transition state through tight binding to 
the catalyst.”  

 -William P. Jencks, article in Advances in Enzymology, 1975 

4.1 Enzymes generally 

In 1878 the term “enzyme” was first coined by Kuhne, and in 1883 Duclaux coined 

the term “substrate”. Although enzyme activity had been identified previously, it 

was not until 1926 that Sumner crystallized the first enzyme (urease) from bean 

flour at Cornell University, demonstrating that enzymes existed (Campbell and 

Drake, 2013).  

The application of enzymes in the food processing is an important branch of 

biotechnology. Enzymes are the proteins that catalyse virtually all the chemical 

reactions occurring in biological systems, and thousands of enzymes have been 

identified and characterized. Enzymes cause enormous increases in reaction 

rates by lowering reactions energy barriers through optimal orientation of the 

reactants often using temporary bond formation between substrate and enzyme. 

All the processes in nature require enzymes in order to occur at significant rates. 

When a proteins native structure is altered its new structure, or conformation, is 

called denatured. The potential for inactivation of enzymes by pH change, 

temperature increase, UV-bleaching, etc. follows the same denaturation 

principles as proteins normally. Enzymes are selective for their substrates and 

therefore catalyse only a few reactions form among many possibilities (Campbell-

Platt and International Union of Food Science and Technology, 2009; Whitehurst 

and Oort, 2010).  

Enzymes are globular proteins ranging in size from just over 60 to more than 

2500 amino acids. The three-dimensional structure of the enzyme determine its 

activities. It is noteworthy that only a small part of the enzyme molecule is directly 

involved in catalysis, as most enzymes are much larger than the substrates they 

act on. The small section involved in the catalysis contains not more than a few 

amino acids and is called the active site of the enzyme. Normally the substrate is 

bound by the enzyme near, or even in, the active site. There are several factors 
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influencing the reaction rate at which enzymes proceed. These include enzyme 

concentration, substrate concentration, temperature, pH,  and the presence of 

any activators or inhibitors (Whitehurst and Oort, 2010). 

4.2 Enzymes in food processing 

Enzymes have several advantages in food processing and production. Enzymes 

allow milder processing conditions, resulting in preservation of valuable attributes 

of food and food components, as they can catalyse reactions under very mild 

conditions. They also can improve and modify the nutritional, functional and 

sensory properties of ingredients and products. As enzymes are more specific in 

their action than chemical reactants, higher quality products can be generated via  

enzyme-catalysed processes. These enzyme-catalysed processes will have 

fewer side reactions and by-products generating higher quality products. The use 

of enzymes in the extraction of biomolecules from plants is a promising alternative 

to traditional solvent extraction methods. Enzymatic extraction as a technology is 

gaining more interest for being eco-friendly, benign, sustainable and efficient 

(Nadar et al., 2018; Whitehurst and Oort, 2010). 

Some of importance to the food industry include the production of high fructose 

corn syrups by using glucose isomerase, saccharification of starch by amylases 

in baking and brewing, juice clarification by using cellulases and pectinases, 

production of low lactose milk by using lactase, cheese making by rennin, and 

meat tenderization by proteases such as papain, bromelain and ficin. The cell 

wall degrading enzymes (hemicellulase and cellulose) are used to extract 

vegetable oil (olive and canola / rape seed) in aqueous process by liquefying the 

structural cell wall components of the oil-containing crop. Enzymatic treatment is 

used to extract a higher yield in juice processing. The enzymes used are mainly 

pectinase, cellulose, and hemicellulase. Enzyme addition increases the release 

of various phenolics and increases juice extraction yield. Enzymatic treatment 

also improves juice appearance and quality in terms of reduced viscosity and 

improved filterability (Campbell-Platt and International Union of Food Science 

and Technology, 2009; Whitehurst and Oort, 2010).   
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Regarding the VOCs enzymes can have important applications for the industry. 

Naturally non-odorous and non-volatile precursors represent an important source 

of fragrant compounds in aroma. During fruit maturation β-glucosidases, which 

are endogenous enzymes, release this aroma potential. The extraction efficiency 

of traditional extraction techniques is decreased by the existence of various 

polysaccharides such as hemicelluloses, starch, and pectin in large amounts 

inside the cell wall described in figure 8 (Rocha et al., 2005). 

 

 

Figure 12. Representation of primary cell wall structure of plant material. Adapted 

from (Acosta-Estrada et al., 2014). 

Cellulose, hemicellulose and pectin can be hydrolysed by using β-glucosidase, 

cellulose, and pectinase enzymes. At the molecular level cellulose is an 

unbranched polymer consisting of 1000 to 1 million D-glucose units, linked 

together with β-1,4 glucosidic bonds. β-glucosidase can break these β-1,4 

glucosidic bonds in glucosides. The naturally occurring endogenous β-

Structural proteins 

Cellulose 

Starch 

Hemicellulose 

Pectin 
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glucosidase enzymes are low in activity and cannot release the whole aroma 

potential. Therefore experiments have been performed with exogenous β-

glucosidases. (Nadar et al., 2018). The use of these exogenous β-glucosidases 

allow the release of volatile compounds in higher concentrations, producing 

juices with richer aroma, being more intense and complex (Rocha et al., 2005). 

Pectic substances are chemically high-molecular-weight carbohydrate polymers 

which are present in the cell wall of higher plants. Pectins consist of a chain of 

galacturonic acid units which are linked by α -1,4 glycosidic bonds (Flutto, 2003). 

Pectinase enzyme splits polygalacturonic acid into monogalacturonic acid by 

opening glycosidic linkages (Mojsov, 2016). Cellulases are the enzymes that 

hydrolyze β-1,4 linkages of insoluble cellulose at the solid/liquid interface, 

generating soluble oligosaccharides, cellobiose, and glucose (Mojsov, 2016). 

Enzymatic degradation and extraction of the biomaterial depends upon the type 

of enzyme and their characteristic property to carry forward reactions with 

accurate specificity, incubation time, incubation temperature, enzyme 

concentration, agitation, pH, use of different enzyme combinations and their 

ability to react under mild conditions. For every enzyme the optimum pH for 

enzymatic hydrolysis is different. Very high or low pH values usually result in a 

total loss of activity for many enzymes. pH is also a factor in the stability of 

enzymes (Nadar et al., 2018; Whitehurst and Oort, 2010). The optimal 

temperature is also dependant on the specific enzymes used. Like most chemical 

reactions, the rate of an enzyme-catalysed reaction increases as the temperature 

is raised. The activity of most enzymes will increase by 50 to 100% by a ten 

degree rise in temperature. Variations in reaction temperature as small as 1 or 2 

Celsius degrees may introduce changes of 10 to 20% in the results (Worthington 

Biochemical Corporation, 1972). Many enzymes are adversely affected by high 

temperatures, which complicates things when searching the optimal treatment 

temperatures. Incubation in too high temperatures can cause a loss in enzyme 

activity alongside with the inactivation of proteins and other bioactive molecules. 

Incubating at too low temperatures does not accelerate the action of enzymes 

consequently leading to less extraction efficiency of various biomolecules  (Nadar 

et al., 2018). Prolonged incubation time may increase the solubilisation of plant 

cell wall components, but too long incubation time can lead to lesser energy 
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efficiency and product quality (Babbar et al., 2016). Higher enzyme concentration 

promote plant cell wall solubilisation, which may be a result from better interaction 

between the enzyme and substrate (Zhang et al., 2007). 

4.3 Application of exogenous enzymes and their impact on food 

volatile aroma compounds 

The most commonly used exogenous enzyme applications in food matrices and 

studies presenting the impact of exogenous enzymatic treatments in food 

matrices are described below in some detail. 

4.3.1 Wines and fruit juices 

The studies that are presented next suggest that wine aroma can be improved 

by hydrolysing odourless aroma precursors into VOCs. Hydrolysis can be 

enhanced by using exogenous enzymes such as glycosidases, β-glucosidases 

and pectinases. Higher polysaccharide content might cause higher retention of 

volatile compounds. 

Glucosidases are used to improve the flavour of wines by releasing glycosidically 

bound flavour precursors and especially volatile terpenes. This is because in 

grapes terpenols are mostly found in odourless, glycosidically bound forms. It has 

been shown that the inclusion of exogenous enzymes during or after fermentation 

is the most effective way to improve the hydrolysis of aroma precursors and to 

achieve an increase in wine aroma (Aryan et al., 1987; Longo and Sanromán, 

2006). The study of the aromatic potential of apricot juice and muscat wine 

revealed in the 1990’s that along with a free fraction of volatile terpenols there 

exist naturally non-volatile and non-odorous precursors and they represent a 

significant source of VOCs. During fruit maturation this aromatic potential was 

naturally revealed by endogenous β-glucosidases. But since these endogenous 

enzymes cannot liberate the whole aromatic potential because of their low 

activity, hydrolytic experiments were made with exogeneous β-glucosidases. 

Immobilized and free β-glucosidases were used to treat the apricot fruit juice and 

muscat wine. These enzymes were more efficient in releasing bound terpenes 

without changing the aromatic character of the terpenes than acid hydrolysis. A 

following GC−MS analysis indicated a significant increase in the concentrations 

of VOCs. In the apricot fruit juice namely linalool, α- and γ-terpinene, α-terpineol, 
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2-phenylethanol, and α-pinene concentrations increased. In the muscat wine the 

concentrations of nerol, geraniol, linalool, 2-phenylethanol, and benzyl alcohol 

increased (Gueguen et al., 1996). 

Enzyme preparations from Trichoderma harzianum and Aspergillus niger were 

used for aroma release (Sun et al., 2018). Studies have shown that these 

pectinase enzymes can impact the wine aroma by 

increasing VOC concentrations. In a study in winemaking the use of a pectinase 

enzyme preparation containing relevant glycosidase activities resulted in 

increase in the levels monoterpenes, C13-norisoprenoids, and benzene 

derivatives. These increases may have resulted from the hydrolysis of 

glycosidically bound aroma compounds (Cabaroglu et al., 2003). The addition of 

exogenous glycosidases enhances greatly aromas in wines in relation with the 

aromatic potential of grape varieties by hydrolysing odourless aroma precursors 

into volatile varietal compounds, such as terpenes and C13-norisoprenoids. 

Sensory evaluations confirm, that the improvement is obvious for red and for 

white wines. In these sensory evaluations enzymatically treated wines were 

always evaluated fruitier and more intense (Grassin and Fauquembergue, 1996). 

However, Sun et al. report that some glycosidase preparations of fungal origin 

can cause collateral hydrolysis reactions and form unwelcome aromas (Sun et 

al., 2018). Leino and Kallio, (1993) fermented black currant juice in to wine using 

yeast enzymes. They discovered the concentrations of volatiles such as ethyl 

hexanoate, ethyl octanoate, and some esters to increase considerably. They also 

observed terpenoids and some esters to decrease in concentration and attributed 

this to the fermentation process.  

In a study pectolytic enzymes were used in apricot, peach and pear fruit juice 

manufacture. These enzymes affected the behaviour of the volatile compounds 

by modifying the polysaccharides composition. Volatile compounds with highest 

concentrations determined in untreated apricot juices were benzaldehyde, some 

esters, norisoprenoids, and terpenoids. The most abundant volatile compounds 

in untreated peach samples were benzaldehyde, methyl and ethyl acetate, and 

some lactones. The most abundant volatile compounds in untreated pear 

samples were hexanal, cinnamaldehyde, methyl and ethyl decadienoates, and 

farnesenes. Farnesene is a constituent of the natural coating of apples and pears 

https://www.sciencedirect.com/topics/food-science/aspergillus
https://www.sciencedirect.com/topics/chemistry/terpene


18 
 

and other fruit. The used enzymes enhanced the flavour of apricots in pleasant 

aroma volatiles such as terpenes and norisoprenoids. Peaches treated with 

pectolytic enzyme contained the lowest concentrations of VOCs. The authors 

constitute this to the higher retention of volatile compounds caused by high 

polysaccharide content in these samples. In pear fruit the pectolytic treatment did 

not increase the concentration of the most important VOCs of pears, 

decadienoate esters (Riu-Aumatell et al., 2005). 

Terpenes might not be released from their glucoside precursors in blackcurrant 

nectar by the action of β-glucosidase enzyme treatment. In a study on black 

currant nectar only α-humulene changed significantly in concentration, and it 

decreased. The study proposed that in this certain matrix the β-glucosidase 

activity was inhibited by the glucose and fructose from the black currants (Iversen 

et al., 1998).   

 

4.3.2 Tea 

Recent advances showcase the untapped potential in tea industry for exogenous 

enzymatic treatments in strengthening the aroma volatile compositions. 

Monoterpene alcohols and aromatic alcohols are present as monosaccharide or 

disaccharide glycoside precursors in fresh leaves of tea plants. It has been 

reported that the quality of tea has been improved by introducing exogenous 

enzymes such as polyphenol oxidase, peroxidase, tannase, cellulase, pectinase, 

protease, laccase, α-galactosidase, and β-glucosidase into tea processing in 

order to  hydrolyse glycosidic aroma precursors (Ni et al., 2017; Su et al., 2010; 

Zhang and Du, 2015). Ni et al. (2017) showcase these advances in a recent 

study, where green tea was treated with enzyme extracts of Aspergillus niger.  

The treatment had a significant impact on sensory indexes, increasing toasty and 

mushroom aroma, and volatile constituents. The contents of eucalyptol, hexanol, 

benzaldehyde, cis-3-hexenol, and 1-octen-3-ol increased. Furthermore, GC–O 

analysis showed that an increase in 1-octen-3-ol strengthened the mushroom 

aroma. 
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4.3.3 Applications in bakery, meat, and dairy products 

In bread making industrial enzyme preparations often have a role as a secondary 

effect in flavour formation. Fermentation and baking are most of the time the 

primary sources of the flavour of bread. The three enzymic systems that are 

related to bread flavour are proteases, amylases, and lipoxygenases. The 

formation of flavouring peptides is the only direct role of enzymes in bread flavour. 

The main role of enzymes regarding VOCs is to form precursors related to 

flavour-forming processes. As such enzymes are of foremost importance in 

generating bread flavour (Martínez-Anaya, 1996). 

In meat industry exogenous enzymes are used to tenderize meat through 

proteolysis. Consumers’ perception of overall meat quality is impacted by multiple 

properties, but tenderness is viewed as one of the most important (Sullivan and 

Calkins, 2010). The flavour of processed meat is a result from enzymatic action 

(Toldrá and Flores, 2000). Aroma is considered the most important quality 

parameter of ham. The ham aroma is produced by chemical and enzymatic 

mechanisms during the post-mortem process via proteolysis and lipolysis, which 

are the main enzymatic reactions impacting formation of flavour precursors and 

meat flavour (Maehashi et al., 1999; Marušić et al., 2011). During ham production 

the formation of numerous volatile compounds is resulted from lipid disintegration 

and subsequent oxidation of free fatty acids. These VOCs include aldehydes, 

alcohols, esters, aliphatic and aromatic carbohydrates, short-chain fatty acids, 

and furan derivatives (Marušić et al., 2011). Bitter peptides resulted from the 

hydrolysis of proteins however often limit the use of protein hydrolysates in food 

products (Longo and Sanromán, 2006). 

The use of lipases and proteases may result in increased concentration of VOCs 

in meat products. A study investigating protease treatment of crayfish-processing 

by-products identified enzymatic treatment causing an increase in the 

concentration of pyrazines and benzaldehyde (Baek and Cadwallader, 1996). In 

another study protease-mediated catalysis was found as an alternative to 

produce a savoury flavouring product, which is traditionally produced by heating 

a protein source at acidic pH, hydrolysed vegetable protein. In this study 

enzymatic treatment increased alcohols formation, and pyrazine formation 

through Maillard reactions (Aaslyng et al., 1998). 
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Milk contains several endogenous enzymes which may affect flavour, such as 

proteinases, lipases,  lactoperoxidase, and catalase. Exogenous enzymes are 

often added to milk or milk products for functions such as flavour (lipases in 

certain cheeses),  milk clotting (chymosin), catalase to deactivate hydrogen 

peroxide), and bleaching of whey products (fungal peroxidases). Enzymes are 

also produced during the cheesemaking process from nonstarter bacteria or 

starter culture (Campbell and Drake, 2013). In a dairy related study, the use of 

enzyme preparations including lipases, esterases, proteases, and peptidases to 

produce enzyme-modified flavour-enhanced cheese was researched. When 

incubating curd with enzymes up to 30-fold flavour enhancements were reached 

when compared to non-incubated natural cheese (Kilcawley et al., 1998). 

In another study the effect of four different commercial lipases on the flavour 

profiles of lipolysed milk fat was researched. The most potent volatiles resulting 

from lipolysis were determined with gas GC–MS and GC–O. Forty‐six volatile 

compounds were identified and quantified by GC–MS. Nineteen volatile 

compounds were major contributors to the characteristic flavour of the lipolysed 

samples. The most contributing aroma compounds resulting from the use of these 

lipases were hexanoic acid, 2‐nonanone, 2‐undecanone, butanoic acid, δ‐

dodecalactone, and hexanal (Wang and Xu, 2009). 
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5 Aim 

In this master’s thesis work the VOCs in lingonberry juice were characterised and 

the impact of different enzymatic treatments (pectinases, cellulase, β-

glucosidase) on these identified VOCs were studied. The enzymatic treatment 

parameters studied were incubation time and enzyme concentration with each 

enzyme used. The impacts of enzymatic treatments on VOCs were studied with 

GC-MS. The volatile composition of lingonberries has only been studied 

previously by Anjou and Sydow (1967) and impacts of enzymatic treatment by 

Viljanen et al. (2014).  

Aldehydes octanal and nonanal were expected to be found, as they were related 

to lingonberry-like flavour in sensory evaluation in a study by Viljakainen et al. 

(2014). 2-methylbutanoic acid was expected to be found in large quantities as 

Anjou and Sydow (1967) propose. 

In addition to the free fraction of volatile compounds, the precursors which are 

naturally non-odorous and non-volatile, also represent an important source of 

fragrant compounds in aroma. As presented in the literature overview, it would 

be expected that the VOC composition would be modified by hydrolysing 

odourless aroma precursors into VOCs. It was expected that some or all the 

enzymatic treatments would increase the measured quantities of VOCs in the 

samples. It was also expected that higher enzyme concentration and incubation 

time would result in better interaction between the enzyme and substrate, thus 

promoting plant cell wall solubilisation and release of VOCs.  
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6 Materials and Methods 

6.1 Preparation of lingonberry juices 

Seven types of lingonberry juice samples were studied: enzymatically treated 

with Rohapect Classic (AB Enzymes GmbH, Germany), Rohament CL (AB 

Enzymes GmbH, Germany), Rohapect UF (AB Enzymes GmbH, Germany), Beta 

Glucosidase 16L (Biocatalysts Limited, United Kingdom), NF10 (a research 

enzyme) and Without Enzyme & Heat treatment and Without enzyme. The 

independent parameters studied were incubation time and enzyme dosage.  

A total number of 201 samples were studied with GC/MS. Figures 13 and 14 

describe the flow of work. Before analysis the enzymes were inactivated with 

NaCl and an internal standard was added. Each sample was analysed in 

triplicate, and peak areas were expressed with respect to internal standard.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13. Lingonberry juice treatment and analysis chart. 
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Figure 14. Sample preparation scheme. 

Each of the treatments were done in triplicate, and triplicate samples for the GC-

MS were prepared from each of the treatments. In figure 14 the number 1 

describes the one of the five enzymatic treatments (5*36=180 samples). Number 

2 describes the “without enzyme” treatment (=18 samples), and number 3 

describes the “without enzyme & heat” treatment (=3 samples). 

6.2 Sample materials 

Frozen, ripe lingonberries (Vaccinium vitis-idaea) of Finnish origin were obtained 

as frozen from a local distributor, Arctic International Oy c/o Marjex-tuotteet. 

(Nurmijärvi, Finland). The lingonberries were stored at −20 °C until use. 

 

1. 2. 

3. 
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6.3 Enzymatic treatments and juice processing 

Seven types of lingonberry juice samples were studied, of which two were 

references without enzyme treatment: (1) Without Enzyme & Heat treatment, (2) 

Without enzyme; (3) enzymatically treated with Rohapect Classic, (4) Rohament 

CL, (5) Rohapect UF, (6) Beta Glucosidase 16L, and (7) NF10.  

Rohapect UF (CAS-No.: 9032-75-1) contains an enzyme complex, whose single 

enzyme activities are special pectinases and arabinases. The pectinase is 

derived from a “classic” strain of Aspergillus niger. Cellulase Rohament CL (CAS-

No.: 9012-54-8) is an enzyme preparation for hydrolysing non-starch 

polysaccharides, containing cellulase for degradation of cellulose and other 

enzymes to degrade plant cell wall polysaccharides such as beta-glucans and 

xylans. Produced by controlled fermentation of a classical strain of Trichoderma 

reseei. Rohapect Classic (CAS-No.: 9033-35-6) is an enzyme preparation 

containing pectolytic activities produced by controlled fermentation of a classical 

strain of Aspergillus niger. Beta Glucosidase™ 16L (G016L) is an exo-

carbohydrase containing cellulase and hemicellulase activities for removing the 

glucose entity and releasing the active flavour from inactive glucoside forms 

produced from Trichoderma longibrachiatum. NF 10 a developmental enzyme, 

pectinase with strong side activities, e.g. betaglucosidase 

 

Figure 15. Used commercial enzymes. 
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Lingonberry juices were prepared in batches of 200 grams. Berries were thawed 

in a microwave oven, mashed with a Bamix mixer (Bamix M13, Mettlen, 

Switzerland) and warmed up in a water bath to the incubation temperature. 

Procedures and analyses were carried out by using different incubation times, 

dosages and various enzymes shown in table 1. 

Table 1. Sample preparation scheme. 

 

The enzymatic treatments were performed by incubating the mashed berry 

samples in a thermostatically controlled water bath under constant stirring in 

plastic Minigrip® reclosable bags. Juicing the enzymatically treated berry mashes 

was performed with HAFICO HP 2 H Tincture Press (FISCHER Maschinenfabrik, 

Germany) at 150 kg/cm2 pressure.  

6.4 Analysis of volatile compounds with GC/MS 

For analysis of volatile compounds, 2 ml of lingonberry juice samples were 

weighed into 20-mL headspace vials. 4-methyl-2-pentanol was used as internal 

 
Sample 1 Sample 2 Sample 3 Sample 4 

(1) Without Enzyme & Heat  X1=none 
   

 
X2=none 

   

(2) Without Enzyme X1=none X1=none 
  

  X2=1h X2=3h 
  

(3) Rohament Classic X1=minimum X1=minimum X1=maximum X1=maximum 

  X2=1h X2=3h X2=1h X2=3h 

(4) Rohament CL X1=minimum X1=minimum X1=maximum X1=maximum 

  X2=1h X2=3h X2=1h X2=3h 

(5) Rohapect UF X1=minimum X1=minimum X1=maximum X1=maximum 

  X2=1h X2=3h X2=1h X2=3h 

(6) Beta Glucosidase X1=minimum X1=minimum X1=maximum X1=maximum 

  X2=1h X2=3h X2=1h X2=3h 

(7) NF10 X1=minimum X1=minimum X1=maximum X1=maximum 

  X2=1h X2=3h X2=1h X2=3h 
     

All samples were made in triplicate. The independent parameters studied were enzyme dosage 

X1 (minimum / maximum) and incubation time X2 (1h / 3h). Incubation temperature was 50 °C 

for all samples except reference samples (“Without enzyme & heat”).  
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standard (10 µg/sample). Samples were analysed by GC/MS according to a 

method optimized by Ph. D Alexis Marsol. The HS-SPME technique itself was 

invented in paper by (Arthur and Pawliszyn, 1990), and the method used in this 

work was a modification from the method used in (Marsol-Vall et al., 2018).  The 

analytes were injected at 200 C in the split injector (split flow 10.0 mL/min) to the 

gas chromatograph (Thermo Scientific™ TRACE™ 1310, Switzerland) coupled 

with an MS detector (Thermo Scientific™, TSQ™ 8000 Evo Triple Quadrupole 

GC-MS/MS, Switzerland) and SPME autosampler (Thermo Scientific™, TriPlus 

RSH™ Autosampler, Switzerland). Analytes were separated on an SPB®-624 

Capillary GC Column (60 m × 0.25 mm, df 1.40 μm; Sigma-Aldrich, Germany), 

with a constant flow of 1.6 mL/min, using helium as carrier gas. The temperature 

programme started at 50 °C with 3 minutes holding time, then increased 5 °C/min 

up to 160 °C, followed by 10 °C/min increase up to 225 °C, where the temperature 

was kept for 15 minutes.  

 

Figure 16. Trace 1310 gas chromatograph coupled to a TSQ 8000 EVO mass 

spectrometer and a TriPlus RSH multipurpose autosampler used in this work. 
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6.5 Data analysis and identification of volatile compounds 

Compounds were tentatively identified by comparing their mass spectra with 

those in the NIST MS Search 2.0 Mass Spectral Library (National Institute of 

Standards and Technology, USA) and comparing with Kovats indices found in 

the literature. The literature sources compared with were Flavornet (Acree and 

Arn, 2004) and Viljanen et al. (2014). The Kovats index of each compound was 

calculated based on n-alkanes (C3–C26). 

The formula to obtain Kovats indexes was 

𝐼 = 100𝑛 + 100𝑧
(log 𝑡 𝑅𝐴 − log 𝑡 𝑅𝑛)

(log 𝑡 𝑅𝑁 − log 𝑡 𝑅𝑛)
 

where I is the Kovats index, n is the number of carbon atoms in the smaller n-

alkane, z is the difference in the carbon atoms in the smaller and larger n-alkanes, 

A is the unknown compound, N is the number of carbon atoms in the larger n-

alkane, and tR is the retention time (Nič et al., 2009). 

The data was screened using TraceFinder™ 4.1 software to automatically 

integrate the chromatography peaks. Each sample was analysed three times and 

normalised peak areas were expressed with respect to internal standard 

(compound area/ISTD area). Principal component analysis (PCA) was applied to 

study the differences between different enzymatic treatments. 
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7 Results and discussion 

7.1 Volatile compounds in studied lingonberry juices 

A total number of 34 volatile chemical compounds were identified by GC-MS from 

lingonberry juice samples (Table 3); 8 aldehydes, 5 ketones, 2 alcohols, 8 

terpenes, 6 esters, and 5 other compounds. In the literature, only two research 

papers were found on volatile compounds in lingonberries (Anjou & Von Sydow, 

1967), in which essential oil was extracted from berries, and (Viljanen et al., 

2014), in which only one enzymatic treatment with an enzymatic mixture was 

studied as a part of a larger bioprocessing study. A chromatogram of untreated 

lingonberry juice is presented in Fig 17. 

When comparing the results from this study to those form Viljanen et al. (2014), 

some quick conclusions can be made. Firstly, the number of compounds 

identified is somewhat different, as described in table 2.  

Table 2. Comparison of identified compounds between Nuutinen and Viljanen et 

al. (2014). 

Group Nuutinen Viljanen et al. (2014) 

Aldehydes 8 8 

Ketones 5 6 

Alcohols 2 7 

Terpenes 8 7 

Esters 6 5 

Acids 0 2 

Other 5 3 

Total 34 38 

 

The reason for this disparity is explained by differences in used GC-MS 

methodology, credibility of identification, and differences in used lingonberry 

material. Viljanen et al. (2014) describe aldehydes nonanal and octanal as having 

http://www.sciencedirect.com/science/article/pii/S0308814614002040?via%3Dihub#b0010
http://www.sciencedirect.com/science/article/pii/S0308814614002040?via%3Dihub#b0010
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a lingonberry-like aroma in sensory evaluations. Unfortunately, of those two only 

octanal could be identified reliably in this study. Of the acids Viljanen et al. (2014) 

highlights 3-metylbuthanoid acid as prominent one, being related to sweetness. 

This acid was also identified in this study but could not be taken in to account due 

to poor separation in most samples. Of the 34 identified compounds in this study, 

15 are different from those identified by Viljanen et al. (2014). See table 3 for the 

identified compounds and a comparison of which compounds were found in both 

studies. The odour descriptions in table 3 are adapted from Flavornet (Acree and 

Arn, 2004), and are used when discussing the possible impact of the enzymatic 

treatments.  

The concentration of volatile compounds changed during the enzymatic 

treatments and these changes are presented here on a treatment basis, taking in 

to account the independent parameters; incubation time and dosage.  
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Table 3. The identification of volatile compounds with their odour descriptions. 

RI C 

RETENTION 
TIME/MIN 
(PEAK 
NUMBER) 

COMPOUND 

FOUND IN 
VILJANEN 
ET AL. 
(2014) B 

ODOUR DESCRIPTION A 

 Aldehydes 
 

 
 

738 15.30 (10) Pentanal X Almond, malt, pungent 
843 19.53 (13) Hexanal X Grass, tallow, fat 
947 23.58 (15) Heptanal  Strong fruity 
1019 26.26 (18) (Z)-2-Heptenal X Fatty, oily, with fruity overtones 
1036 26.86 (20) Benzaldehyde X Almond, burnt sugar 
1047 27.25 (21) Octanal X Fat, soap, lemon, green 
1086 28.64 (26) Undecane  Alkane 
1199 32.36 (35) Decanal  soap, orange peel, tallow  
 Ketones 

 
 

 

- 8.12 (2) Acetone  Solvent, ethereal, apple, pear 
630 11.11 (5) Diacetyl X Butter 
731 15.00 (9) 2-Pentanone X Ether, fruit 
1034 26.78 (19) 6-Methyl-5-hepten-2-

one 
X Pepper, mushroom, rubber 

1128 30.05 (30) Acetophenone X Must, flower, almond 
 

  
 

 

 Alcohols 
 

 
 

- 7.26 (1) Ethanol X Alcohol 
655 12.06 (7) 2-methyl-3-buten-2-ol  Fruity 
 

  
 

 

 Terpenes 
 

 
 

957 23.97 (16) α-Pinene X Pine, turpentine 
1051 27.40 (22) D-Limonene X Citrus, mint 
1054 27.50 (23) β-Cymene X Solvent, gasoline, citrus 
1064 27.85 (24) Eucalyptol X Mint, sweet 
1075 28.25 (25) γ-Terpinene  Lemon 
1101 29.15 (27) Terpilonene  Sweet, fresh, piney citrus 
1124 29.90 (29) Linalool L X Flower, lavender 
1192 32.14 (34) Terpinen-4-ol  Turpentine, nutmeg, must 
 

  
 

 

 Esters 
 

 
 

639 11.46 (6) Ethyl acetate X Pineapple 
711 14.16 (8) Methyl isobutyrate  Etherial, diffusive, fruity, sweet 
749 15.71 (11) Methyl butanoate  Ether, fruit, sweet 
1136 30.30 (31) Methyl benzoate X Brune, lettuce, herb, sweet 
1150 30.76 (32) Benzyl acetate  Fresh, boiled vegetable 
1188 32.00 (33) Ethyl benzoate X Camomile, flower, celery, fruit 
 

  
 

 

 Other    
- 8.70 (3) Acetylhydrazine   
599 9.93 (4) Hexane  Alkane 
803 17.94 (12) 4-methyl-2-pentanol 

(ISTD) 
  

961 23.06 (14) Styrene X Balsamic, gasoline 
- 24,54 (17) Octamethylcyclotetrasi

loxane 
  

AODOUR DESCRIPTIONS FROM FLAVORNET (ACREE AND ARN, 2004), B X = FOUND 
CRETENTION INDEX 
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Figure 17. GC/MS chromatogram of lingonberry juice “without enzyme & heat” sample.  

The retention times and numbers refer to peaks listed in table 3. Peak 12 is internal standard, 4-methyl-2-pentanol. The following ten 

peaks were not taken into comparison of enzymatic treatment: 18 ((Z)-2-Heptenal), 22 (D-Limonene), 25 (γ-Terpinene), 27 

(Terpinolene), 28 (2 Octenal), 30 (Acetophenone), 31 (methyl benzoate), 32 (Benzyl acetate), 34 (Terpinen-4-ol), and 35 (Decanal) 

due to poor separation or insufficient identification.  
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7.2 Comparison of enzymatic treatments 

Principal component analysis was used to study the data collected from GS/MS 

analysis of lingonberry juice volatiles.  

 

Figure 18. Scores of PCA model for lingonberry juice samples (n=197 x 5 

samples) classified according to volatile contents (n=25). The colours signify the 

different enzymatic treatments. 

From PCA four distinct separate groups can be identified. Group A consists of 

samples treated with Rohapect UF (RohapectUF-2) minimum dosage and 3-hour 

incubation. Group B consists of samples treated with Rohapect UF (RohapectUF-

3/1) 1-hour incubations. Group C consists of samples treated with Rohapect 

Classic (RohapectClassic-1/3) 1-hour incubations. Group D consists of all the rest 

treatments including samples treated with Rohapect UF (Rohapect UF 4) and 

Rohapect Classic (Rohapect Classic 2/4).  

In tables 4 - 9 the normalized peak areas (compound area/ISTD area; average ± 

SD) of volatile flavour compounds of lingonberry juices are represented with 

different enzymatic treatments. The impact of enzyme concentration and 

incubation time were studied with each treatment.  
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Figure 19. Sum of normalized peak areas (compound area/ISTD area) of 

aldehydes, ketones, alcohols, terpenes, and esters within each treatment.  

Figure 19 visualises the impact of studied treatments on the total concentration 

of VOCs. Rohapect UF treatment can be singled out as resulting in largest 

increase in total VOCs. Beta Glucosidase treatments with minimum dosage 

resulted in decrease in total VOCs. Otherwise the enzymatic treatments result in 

increases when compared with non-enzymatic treatments, regardless of 

incubation time.  
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7.2.1 Non-enzymatic treatments 

With these samples the only changing factor was the incubation time. Incubation 

time of 3-hours increased the total concentration of VOCs, whereas the difference 

between 0-hour and 1-hour incubation times are negligible.  

Aldehyde concentrations increased along with increased incubation time. 

Diacetyl concentrations also increased with incubation time, which might have an 

unsatisfactory impact on the flavour. α-Pinene concentrations were higher with 1-

hour incubation than with 3-hour incubation, which was the only compound with 

this behaviour. Ester concentrations either decreased or stayed relatively same 

with incubations. As esters are linked to sweet flavours, this decrease might have 

an impact on the observed sweetness of the juices.   
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Table 4. Normalized peak areas (compound area/ISTD area; average ± SD) of 

volatile compounds of lingonberry juices with non-enzymatic treatment. 

Compound 
No enzyme, no 
heat (REF) 

No enzyme, 1h 
incubation 

No enzyme, 3h 
incubation 

Aldehydes       

Pentanal 0.056±0.001 0.068±0.01 0.083±0.018 

Hexanal 0.066±0.005 0.097±0.022 0.114±0.015 

Heptanal 0.009±0.001 0.01±0.003 0.01±0.002 

Benzaldehyde 0.024±0.001 0.059±0.015 0.12±0.015 

Octanal 0.005±0.001 0.011±0.006 0.011±0.004 

Ketones    

Acetone 0.13±0.005 0.082±0.012 0.112±0.015 

Diacetyl 0.066±0.002 0.129±0.021 0.157±0.02 

2-Pentanone 0.042±0.001 0.043±0.005 0.058±0.007 

6-Methyl-5-hepten-2-one 0.024±0.001 0.03±0.006 0.033±0.006 

Alcohols    

Ethanol 0.943±0.006 0.831±0.131 1.013±0.156 

2-methyl-3-buten-2-ol 0.092±0.004 0.079±0.019 0.107±0.025 

Terpenes    

α-Pinene 0.07±0.004 0.182±0.082 0.132±0.027 

β-Cymene 0.036±0.016 0.043±0.017 0.049±0.008 

Eucalyptol 0.057±0.004 0.047±0.013 0.044±0.007 

Linalool L 0.104±0.012 0.133±0.033 0.231±0.04 

Esters    

Ethyl acetate 0.332±0.005 0.239±0.036 0.248±0.029 

Methyl isobutyrate 0.011±0 0.011±0.001 0.013±0.003 

Methyl butanoate 0.047±0.002 0.049±0.007 0.058±0.007 

Ethyl benzoate 0.075±0.004 0.042±0.011 0.068±0.012 

Other    

Acetylhydrazine 0.031±0.001 0.028±0.005 0.032±0.004 

Hexane 0.009±0.001 0.02±0.003 0.02±0.003 

Styrene 0.025±0.004 0.01±0.005 0.01±0.004 
Octamethylcyclotetrasilox
ane 0.057±0.012 0.081±0.018 0.108±0.041 

Undecane 0.246±0.015 0.239±0.031 0.29±0.054 
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Figure 20. PCA model for lingonberry juices with non-enzymatic treatment (n=36 samples) classified according to volatile contents 

(n=24)
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7.2.2 Rohapect Classic treatment 

Maximum dosage resulted in increase of total concentration of VOCs, whereas 

longer incubation time decreased the total concentration of VOCs.  

With Rohapect Classic enzymatic treatment the concentration of aldehydes 

generally increased. The concentration of octanal didn’t see significant changes. 

Hexanal and Benzaldehyde concentrations doubled with all treatments.  Ketones 

diacetyl and 2-pentanone increased their concentrations with maximum dosages. 

Acetone levels decreased with minimum dosages. Terpenes decreased with all 

treatments, except linalool L, which saw significant increase in concentration with 

all treatments. The decrease was slighter with 1-hour max dosage treatment.  

Ester concentrations decreased more with minimum dosage. Ethyl acetate 

concentration grew with maximum dosages.    

The changes in total concentrations are slight and varied, as can be deducted 

from the increases and decreases with different treatments. The impact of 

increased linalool L concentrations might have a slight impact on flowery flavour 

of the juices. On the other hand, it is a moot point to speculate without sensory 

evaluation. Octanal is the only compound in this study that Viljanen et al. (2014) 

refer to as having impact on sensory evaluations, and its concentrations did not 

change with this treatment. The increased diacetyl concentration might cause 

unsavoury flavour. In PCA model the impact of incubation time explains 82 % of 

differences in samples. 
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Table 5. Normalized peak areas (compound area/ISTD area; average ± SD) of 

volatile compounds of lingonberry juices with Rohapect Classic treatment. 

Compound REF 
Rohapect 
Classic 1  1h 
min dosage 

Rohapect 
Classic 2 3h 
min dosage 

Rohapect 
Classic 3  1h 
MAX dosage 

Rohapect 
Classic 4 3h 
MAX dosage 

Aldehydes           
Pentanal 0.056±0.001 0.071±0.006 0.064±0.002 0.086±0.013 0.081±0.018 
Hexanal 0.066±0.005 0.115±0.015 0.111±0.052 0.141±0.028 0.122±0.023 
Heptanal 0.009±0.001 0.008±0.002 0.008±0.004 0.01±0.002 0.007±0.002 
Benzaldehyd
e 0.024±0.001 0.082±0.01 0.101±0.051 0.08±0.01 0.111±0.03 
Octanal 0.005±0.001 0.006±0.002 0.005±0.002 0.008±0.002 0.005±0.001 
      
Ketones           
Acetone 0.13±0.005 0.092±0.014 0.116±0.061 0.131±0.025 0.148±0.039 
Diacetyl 0.066±0.002 0.095±0.01 0.089±0.045 0.118±0.025 0.109±0.027 
2-Pentanone 0.042±0.001 0.044±0.004 0.044±0.009 0.053±0.007 0.054±0.006 
6-Methyl-5-
hepten-2-
one 0.024±0.001 0.036±0.006 0.031±0.015 0.038±0.007 0.035±0.007 
      
Alcohols           
Ethanol 0.943±0.006 1.403±0.238 1.237±0.583 1.784±0.334 1.53±0.391 
2-methyl-3-
buten-2-ol 0.092±0.004 0.132±0.009 0.145±0.085 0.162±0.029 0.184±0.057 
      
Terpenes           
α-Pinene 0.07±0.004 0.025±0.006 0.026±0.019 0.044±0.029 0.022±0.02 
β-Cymene 0.036±0.016 0.026±0.007 0.03±0.015 0.038±0.01 0.029±0.01 
Eucalyptol 0.057±0.004 0.038±0.005 0.03±0.012 0.047±0.008 0.034±0.008 
Linalool L 0.104±0.012 0.185±0.018 0.223±0.127 0.216±0.04 0.243±0.042 
      
Esters           
Ethyl acetate 0.332±0.005 0.307±0.064 0.287±0.1 0.422±0.08 0.369±0.079 
Methyl 
isobutyrate 0.011±0 0.013±0.001 0.025±0.006 0.015±0.002 0.022±0.008 
Methyl 
butanoate 0.047±0.002 0.037±0.008 0.043±0.009 0.048±0.008 0.051±0.005 
Ethyl 
benzoate 0.075±0.004 0.058±0.005 0.062±0.026 0.079±0.011 0.082±0.015 
      
Other           
Acetylhydraz
ine 0.031±0.001 0.034±0.009 0.035±0.017 0.055±0.011 0.051±0.012 
Hexane 0.009±0.001 0.015±0.002 0.013±0.003 0.016±0.003 0.016±0.003 
Styrene 0.025±0.004 0.013±0.005 0.011±0.008 0.01±0.004 0.009±0.002 
Octamethylc
yclotetrasilox
ane 0.057±0.012 0.063±0.026 0.068±0.024 0.077±0.037 0.096±0.05 
Undecane 0.246±0.015 0.222±0.016 0.211±0.039 0.176±0.017 0.215±0.018 



39 
 

 

Figure 21. PCA model for Rohapect Classic treated lingonberry juices (n=36 samples) classified according to volatile contents (n=24).
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7.2.3 Rohament CL treatment 

All treatments with Rohament CL resulted in increase in total VOCs. Maximum 

dosage had bigger impact than longer incubation time. 

With Rohament CL enzymatic treatment the concentration of all aldehydes 

increased. Pentanal and hexanal increased their concentration the most with 1-

hour maximum dosage treatment. Benzaldehyde increased in concentration the 

most with 3-hour maximum dosage treatment. All ketones increased in 

concentration with all treatments. Acetone and diacetyl increased the most in 

concentration with 3-hour maximum dosage treatment. All terpenes except 

eucalyptol increased in concentration with all treatments. Eucalyptol 

concentrations decreased slightly with 3-hour incubation times. Other terpenes 

increased the most in concentration with 3-hourincubation times. All ester, except 

ethyl benzoate, concentrations increased with all treatments. 1-hour maximum 

dosage yielded the highest increases in concentrations.  

These overall increases could have an impact on the overall strength of the 

flavour sensation. The increased diacetyl concentration might cause unsavoury 

flavour. In PCA model the impact of incubation time explains 62% of differences 

in samples  
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Table 6. Normalized peak areas (compound area/ISTD area; average ± SD) of 

volatile compounds of lingonberry juices with Rohament CL treatment. 

Compound REF 
RohamentCl 
1 1h min 
dosage 

RohamentC
L 2 3h min 
dosage 

RohamentCL 
3 1h MAX 
dosage 

RohamentCL 
4 3h MAX 
dosage 

Aldehydes           

Pentanal 0.056±0.001 0.089±0.02 0.084±0.02 0.125±0.017 0.092±0.038 

Hexanal 0.066±0.005 0.176±0.033 0.184±0.042 0.245±0.046 0.21±0.099 

Heptanal 0.009±0.001 0.016±0.006 0.014±0.004 0.017±0.005 0.018±0.007 
Benzaldehyd
e 0.024±0.001 0.105±0.023 0.131±0.027 0.109±0.028 0.152±0.06 

Octanal 0.005±0.001 0.014±0.004 0.009±0.002 0.016±0.003 0.012±0.004  
          

Ketones           
Acetone 0.13±0.005 0.099±0.02 0.179±0.056 0.154±0.035 0.203±0.07 

Diacetyl 0.066±0.002 0.121±0.023 0.129±0.048 0.141±0.046 0.159±0.031 

2-Pentanone 0.042±0.001 0.053±0.007 0.052±0.007 0.065±0.009 0.058±0.007 
6-Methyl-5-
hepten-2-
one 0.024±0.001 0.04±0.008 0.045±0.011 0.055±0.011 0.054±0.022  

          

Alcohols           

Ethanol 0.943±0.006 1.438±0.248 1.517±0.364 1.824±0.437 1.579±0.615 
2-methyl-3-
buten-2-ol 0.092±0.004 0.168±0.034 0.178±0.032 0.207±0.051 0.191±0.058 

Terpenes           

α-Pinene 0.07±0.004 0.131±0.038 0.121±0.045 0.149±0.058 0.179±0.051 

β-Cymene 0.036±0.016 0.057±0.009 0.056±0.009 0.064±0.014 0.065±0.027 

Eucalyptol 0.057±0.004 0.058±0.01 0.048±0.008 0.067±0.011 0.053±0.016 

Linalool L 0.104±0.012 0.18±0.037 0.174±0.032 0.213±0.038 0.219±0.063 

Esters           
Ethyl acetate 0.332±0.005 0.359±0.053 0.405±0.091 0.504±0.101 0.412±0.174 
Methyl 
isobutyrate 0.011±0 0.037±0.004 0.023±0.01 0.041±0.005 0.033±0.009 
Methyl 
butanoate 0.047±0.002 0.057±0.008 0.058±0.009 0.071±0.009 0.063±0.009 
Ethyl 
benzoate 0.075±0.004 0.055±0.01 0.045±0.018 0.06±0.009 0.064±0.022 

Other           
Acetylhydraz
ine 0.031±0.001 0.033±0.006 0.049±0.011 0.056±0.012 0.053±0.018 

Hexane 0.009±0.001 0.021±0.004 0.023±0.004 0.027±0.005 0.027±0.005 

Styrene 0.025±0.004 0.039±0.014 0.023±0.01 0.036±0.016 0.032±0.029 
Octamethylc
yclotetrasilox
ane 0.057±0.012 0.067±0.013 0.056±0.014 0.065±0.011 0.083±0.077 
Undecane 0.246±0.015 0.379±0.033 0.35±0.054 0.351±0.022 0.322±0.06 
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 Figure 22. PCA model for Rohament CL treated lingonberry juices (n=36 samples) classified according to volatile contents (n=24)
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7.2.4 Rohapect UF treatment 

Generally, the normalised peak areas are clearly the highest with Rohapect UF 

treatment when compared with all treatments. With maximum dosage, longer 

incubation time yields larger total concentration of VOCs. With minimum dosage, 

shorter incubation time yields more total VOCs. This could be a possible mistake 

in the labelling of the data (sample sets 1 & 2 were mixed possibly), or otherwise 

this phenomenon  should be looked in to closer in following studies.  

All aldehydes grew in concentration. Hexanal and benzaldehyde grew in 

concentration significantly. All ketones grew in concentration, the most with 3-

hour maximum dosage treatment. All terpenes grew in concentration. 1-hour 

incubation time favoured the increase with minimum dosage, and 3-hour 

incubation with maximum dosage. All esters grew in concentration. 

The significantly increased benzaldehyde and diacetyl concentrations might 

cause unsatisfactory flavour. On the other hand, the general increase in all 

treatments might lead to overall stronger lingonberry flavour sensation. In PCA 

model the impact of incubation time explains 43 % of differences in samples 
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Table 7. Normalized peak areas (compound area/ISTD area; average ± SD) of 

volatile compounds of lingonberry juices with Rohapect UF treatment. 

Compound REF 
RohapectUF 
4 1h min 
dosage 

RohapectUF 
1 3h min 
dosage 

RohapectUF 
2 1h MAX 
dosage 

RohapectUF 
3 3h MAX 
dosage 

Aldehydes           

Pentanal 0.056±0.001 0.16±0.102 0.107±0.025 0.103±0.015 0.161±0.094 

Hexanal 0.066±0.005 0.365±0.253 0.191±0.068 0.195±0.094 0.171±0.111 

Heptanal 0.009±0.001 0.02±0.01 0.014±0.005 0.017±0.005 0.016±0.013 
Benzaldehyd
e 0.024±0.001 0.204±0.113 0.229±0.133 0.368±0.18 0.591±0.386 

Octanal 0.005±0.001 0.016±0.012 0.012±0.003 0.011±0.004 0.015±0.009 

Ketones           

Acetone 0.13±0.005 0.256±0.174 0.199±0.049 0.185±0.082 0.334±0.185 

Diacetyl 0.066±0.002 0.231±0.151 0.17±0.054 0.236±0.074 0.343±0.207 

2-Pentanone 0.042±0.001 0.099±0.059 0.072±0.015 0.07±0.013 0.105±0.062 
6-Methyl-5-
hepten-2-
one 0.024±0.001 0.099±0.057 0.045±0.01 0.061±0.021 0.061±0.032 

Alcohols           

Ethanol 0.943±0.006 3.005±1.927 2.183±0.619 2.866±0.975 4.043±2.493 
2-methyl-3-
buten-2-ol 0.092±0.004 0.373±0.211 0.359±0.158 0.497±0.204 0.909±0.486 

Terpenes           

α-Pinene 0.07±0.004 0.211±0.171 0.169±0.064 0.379±0.189 0.266±0.229 

β-Cymene 0.036±0.016 0.12±0.091 0.084±0.021 0.117±0.036 0.132±0.093 

Eucalyptol 0.057±0.004 0.116±0.075 0.063±0.023 0.126±0.042 0.134±0.082 

Linalool L 0.104±0.012 0.511±0.253 0.274±0.065 0.257±0.065 0.378±0.197 

Esters           

Ethyl acetate 0.332±0.005 0.808±0.524 0.656±0.272 1.186±0.478 1.596±0.971 
Methyl 
isobutyrate 0.011±0 0.023±0.016 0.029±0.019 0.009±0.009 0.063±0.035 
Methyl 
butanoate 0.047±0.002 0.098±0.065 0.069±0.017 0.063±0.016 0.091±0.056 
Ethyl 
benzoate 0.075±0.004 0.212±0.122 0.098±0.028 0.178±0.044 0.212±0.115 

Other           
Acetylhydraz
ine 0.031±0.001 0.099±0.069 0.067±0.023 0.11±0.038 0.157±0.094 

Hexane 0.009±0.001 0.022±0.016 0.021±0.006 0.014±0.004 0.029±0.019 

Styrene 0.025±0.004 0.063±0.02 0.049±0.035 0.158±0.084 0.11±0.096 
Octamethylc
yclotetrasilox
ane 0.057±0.012 0.168±0.11 0.211±0.114 0.153±0.117 0.231±0.201 

Undecane 0.246±0.015 0.323±0.208 0.383±0.079 0.26±0.03 0.47±0.327 
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Figure 23. PCA model for Rohapect UF treated lingonberry juices (n=36 samples) classified according to volatile contents (n=24).
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7.2.5 Beta glucosidase treatment 

Beta glucosidase treatment is the only one where the total concentration of VOCs 

decreases with both 1-hour incubation time treatments. 

On average when comparing the 3-hour incubation and 1-hour incubation, the 

normalised peak areas are twice as large in the 3-hour incubation group. By 

percentage in the aldehyde group the difference is on average 50.9 %, in the 

ketone group 56.4 %, in the alcohol group 59.4 %, in the terpene group 30.2 %, 

and in the ester group 48.2 %. Figure 24 highlights this clear impact of incubation 

time. Sensory evaluations for beta glucosidase treated juices with different 

incubation times would be of most interest, as the differences in the 

concentrations are the clearest with this treatment. My hypothesis is that the 

general lingonberry like flavour is identifiably stronger with samples with the 3-

hour incubation time.  

In PCA model the impact of incubation time explains 65 % of differences in 

samples, meaning incubation time is the dominant factor concerning VOC 

concentration.  Dosage seems to have no impact on normalized peak areas of 

volatile compounds of lingonberry juices with the Beta Glucosidase treatment 

 

Figure 24. The clear impact of incubation time with beta glucosidase treatment 

with selected compounds (n = 11). 
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Table 8. Normalised peak areas (compound area/ISTD area; average ± SD) of 

volatile compounds of lingonberry juices with Beta Glucosidase treatment. 

Compound REF 

Beta 
Glucosidase 
1 1h min 
dosage 

Beta 
Glucosidase 
2 3h min 
dosage 

Beta 
Glucosidase 
3 1h MAX 
dosage 

Beta 
Glucosidase 
4 3h MAX 
dosage 

Aldehydes           
Pentanal 0.056±0.001 0.048±0.008 0.094±0.031 0.054±0.003 0.11±0.025 
Hexanal 0.066±0.005 0.117±0.031 0.2±0.053 0.117±0.019 0.204±0.034 
Heptanal 0.009±0.001 0.01±0.003 0.015±0.007 0.009±0.002 0.016±0.004 
Benzaldehyd
e 0.024±0.001 0.088±0.017 0.206±0.075 0.088±0.019 0.228±0.04 
Octanal 0.005±0.001 0.007±0.002 0.011±0.004 0.006±0.001 0.011±0.003 
Ketones           
Acetone 0.13±0.005 0.052±0.012 0.18±0.057 0.055±0.008 0.186±0.038 
Diacetyl 0.066±0.002 0.059±0.015 0.137±0.046 0.064±0.012 0.153±0.029 
2-Pentanone 0.042±0.001 0.032±0.002 0.061±0.012 0.035±0.002 0.071±0.011 
6-Methyl-5-
hepten-2-
one 0.024±0.001 0.035±0.008 0.06±0.022 0.036±0.005 0.077±0.022 
Alcohols           
Ethanol 0.943±0.006 0.694±0.17 1.671±0.637 0.838±0.128 1.731±0.386 
2-methyl-3-
buten-2-ol 0.092±0.004 0.092±0.027 0.236±0.101 0.097±0.028 0.285±0.046 
Terpenes           
α-Pinene 0.07±0.004 0.08±0.024 0.127±0.018 0.071±0.023 0.157±0.021 
β-Cymene 0.036±0.016 0.055±0.012 0.068±0.013 0.05±0.007 0.079±0.014 
Eucalyptol 0.057±0.004 0.044±0.011 0.053±0.008 0.044±0.006 0.061±0.011 
Linalool L 0.104±0.012 0.196±0.035 0.24±0.039 0.202±0.036 0.274±0.056 
Esters           
Ethyl acetate 0.332±0.005 0.202±0.042 0.474±0.157 0.239±0.039 0.551±0.105 
Methyl 
isobutyrate 0.011±0 0.004±0.002 0.012±0.002 0.006±0 0.018±0.004 
Methyl 
butanoate 0.047±0.002 0.027±0.004 0.052±0.009 0.03±0.003 0.066±0.012 
Ethyl 
benzoate 0.075±0.004 0.064±0.01 0.073±0.018 0.062±0.008 0.08±0.018 
Other           
Acetylhydraz
ine 0.031±0.001 0.02±0.004 0.048±0.015 0.027±0.004 0.058±0.012 
Hexane 0.009±0.001 0.002±0 0.007±0.001 0.003±0.001 0.012±0.004 
Styrene 0.025±0.004 0.029±0.007 0.046±0.018 0.026±0.012 0.057±0.013 
Octamethylc
yclotetrasilox
ane 0.057±0.012 0.168±0.098 0.266±0.298 0.197±0.207 0.116±0.035 
Undecane 0.246±0.015 0.065±0.021 0.239±0.056 0.082±0.029 0.366±0.1 
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Figure 25. PCA model for Beta Glucosidase treated lingonberry juices (n=36 samples) classified according to volatile contents (n=24).
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7.2.6 NF10 treatment 

The impact on total concentration of VOCs is hard to attribute to neither 

incubation time or enzyme dosage.   

On average when comparing the 3-hour incubation and 1-hour incubation the 

normalised peak areas are larger in the 3-hour incubation group. Interestingly in 

the 3-hour incubation the higher dosage seems to reduce the concentration of 

measured volatiles, as in the 1-hour incubation the higher dosage increases the 

concentration of measured volatiles.  

All aldehydes, ketones, and terpenes grew in concentration with all treatments, 

more with 3-hour incubation time. Esters grew in concentration the most with 3-

hour incubation with minimum dosage. Ethyl benzoate decreased slightly in 

concentration, except with 1-hour maximum dosage treatment.  

These overall increases could have an impact on the overall strength of the 

flavour sensation. 
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Table 9. Normalized peak areas (compound area/ISTD area; average ± SD) of 

volatile compounds of lingonberry juices with NF10 treatment. 

Compound REF 
NF10 1 1h 
min dosage 

NF10 2 3h 
min dosage 

NF10 3 1h 
MAX dosage 

NF10 4 3h 
MAX dosage 

Aldehydes           

Pentanal 0.056±0.001 0.087±0.023 0.147±0.054 0.111±0.021 0.122±0.039 

Hexanal 0.066±0.005 0.189±0.019 0.255±0.066 0.22±0.038 0.224±0.056 

Heptanal 0.009±0.001 0.015±0.003 0.023±0.008 0.018±0.005 0.018±0.007 
Benzaldehyd
e 0.024±0.001 0.091±0.007 0.201±0.054 0.12±0.023 0.188±0.055 

Octanal 0.005±0.001 0.01±0.001 0.014±0.004 0.013±0.002 0.011±0.003 
            

Ketones           

Acetone 0.13±0.005 0.109±0.016 0.248±0.09 0.139±0.024 0.211±0.068 

Diacetyl 0.066±0.002 0.109±0.018 0.249±0.111 0.15±0.026 0.19±0.071 

2-Pentanone 0.042±0.001 0.06±0.006 0.097±0.028 0.072±0.011 0.081±0.02 
6-Methyl-5-
hepten-2-
one 0.024±0.001 0.046±0.005 0.065±0.017 0.062±0.012 0.061±0.014 
            

Alcohols           

Ethanol 0.943±0.006 1.361±0.229 1.973±0.671 1.549±0.431 1.661±0.557 
2-methyl-3-
buten-2-ol 0.092±0.004 0.17±0.022 0.3±0.09 0.193±0.034 0.256±0.088 
            

Terpenes           

α-Pinene 0.07±0.004 0.138±0.026 0.195±0.056 0.161±0.033 0.183±0.046 

β-Cymene 0.036±0.016 0.07±0.011 0.089±0.025 0.075±0.016 0.076±0.018 

Eucalyptol 0.057±0.004 0.063±0.006 0.067±0.021 0.07±0.012 0.063±0.013 

Linalool L 0.104±0.012 0.172±0.017 0.287±0.065 0.217±0.053 0.304±0.08 
            

Esters           

Ethyl acetate 0.332±0.005 0.404±0.058 0.519±0.161 0.465±0.122 0.444±0.136 
Methyl 
isobutyrate 0.011±0 0.016±0.002 0.064±0.016 0.019±0.003 0.047±0.017 
Methyl 
butanoate 0.047±0.002 0.062±0.007 0.102±0.031 0.072±0.016 0.084±0.023 
Ethyl 
benzoate 0.075±0.004 0.072±0.008 0.066±0.014 0.084±0.018 0.066±0.017 
            

Other           
Acetylhydraz
ine 0.031±0.001 0.041±0.006 0.06±0.022 0.052±0.014 0.052±0.017 

Hexane 0.009±0.001 0.011±0.001 0.029±0.008 0.012±0.002 0.024±0.008 

Styrene 0.025±0.004 0.035±0.013 0.037±0.021 0.045±0.013 0.032±0.009 
Octamethylc
yclotetrasilox
ane 0.057±0.012 0.093±0.029 0.361±0.263 0.14±0.128 0.32±0.083 

Undecane 0.246±0.015 0.28±0.021 0.578±0.149 0.279±0.049 0.464±0.125 
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Figure 26. PCA model for NF10 treated lingonberry juices (n=36 samples) classified according to volatile contents (n=24).
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7.3 Lingonberry juice yields 

Generally higher enzyme concentration should result in better interaction 

between the enzyme and substrate, thus promoting plant cell wall solubilisation. 

The yields of juices treated with Beta Glucosidase and Rohapect UF behave 

according to this principle. The percentage difference between the lowest yield, 

which was the reference sample, and the highest yield, Rohapect Classic 

treatment with 3-hour incubation time with maximum dosage, is a mere 11.3. 

The highest yields were obtained with Rohapect Classic treatment, with which 

the increased enzyme dosage and incubation time gave little more results.  

Table 10. Yields of juice pressing with used treatments. 

Treatment Incubation time 
(h) 

Enzyme dosage Yield (%) 

Without enzyme 3 0 63.3 
  1 0 75.2 

 (REFERENCE) 0 0 69.9 

     
Rohapect Classic 1 minimum 80.2 
  1 maximum 80.6 
  3 minimum 80.3 
  3 maximum 81.2 
     
Rohament CL 1 minimum 71.3 
  1 maximum 73.7 
  3 minimum 68.7 
  3 maximum 68.7 
     
Rohapect UF 1 minimum 74.1 
  1 maximum 78.2 
  3 minimum 72.9 
  3 maximum 74.2 
     
Beta Glucosidase 1 minimum 71.5 
  1 maximum 75.6 
  3 minimum 72.9 
  3 maximum 77.3 
     
NF 10 1 minimum 72.0 
  1 maximum 72.4 
  3 minimum 68.9 
  3 maximum 70.2 
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As in a larger scale production prolonged incubation time may increase the 

solubilisation of plant cell wall components, but too long incubation time can lead 

to lesser energy efficiency and product quality, these small-scale results hardly 

justify tripling the incubation time. With Rohament CL, Rohapect UF, and NF 10 

the longer incubation times resulted in lesser yields. According to these small-

scale results, the best yield results are gained with Rohapect Classic treatment, 

as the minimum dosage and 1-hour incubation time lead to best results by 

efficiency.  
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8 Conclusions 

Using the studied enzymes increased the total concentrations of VOCs all around 

more than just heat treatments, except with the special case of Beta Glucosidase, 

as seen in figure 19. Rohapect Classic treatment offers the best juice yields and 

has some impact on total concentration of VOCs with maximum dosage. 

Rohapect UF treatment offers largest increases in total concentration of VOCs 

but helps little with juice yields. Both are pectinases derived from a “classic” strain 

of Aspergillus niger. A mixture of these products might offer the best combined 

yields of juice and VOCs. The enzymes chosen for this study were all 

commercially available, except for the developmental enzyme NF10, and were 

known to be used in applications in food industry. The enzyme dosages were 

selected based on the recommended minimum and maximum dosages by the 

enzyme manufacturers.   

The results propose that various VOCs can be impacted by the treatments used 

in this study, and that the use of enzymes during the processing of lingonberry 

juice has an impact on the volatile composition with different behaviours 

depending on the used treatment. Generally, lingonberries aroma is prevailed by 

terpenes, with alcohols, aldehydes, esters and ketones present in small 

quantities. VOCs with highest overall concentrations found were ethyl acetate, 

ethyl benzoate, 2-methyl-3-buten-2-ol, benzaldehyde, pentanal, hexanal, 

undecane, α-Pinene, linalool L and diacetyl.   

The general observations Viljanen et al. (2014) made with enzymatic treatments 

were that the concentrations of aldehydes remained unchanged or decreased, 

the amount of 2-pentanone increased, and that the enzymes had little effect on 

terpenes, except for the amount of α-Pinene, which increased significantly. In this 

study the concentrations of aldehydes increased with all treatments, the 

concentration of 2-pentanone increased with all treatments except beta 

glucosidase 1-hour incubations, and terpene concentrations increased.  

Continuing this study with sensory evaluation and GC-O would offer better 

understanding of the relation between measured volatiles and their impact on the 

sensory quality of enzymatically treated lingonberry juices. In order characterise 
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the changes in glycosidically bound volatiles during enzymatical treatments 

further research is required.  

Terpenes were expected to be liberated from their glucoside precursors via the 

action of β-glucosidase during the enzyme treatment. This reaction did not occur 

in significance with these treatments with lingonberry juice. The answer might be 

that the terpene concentrations are just rather low in the studied lingonberries, 

and thus beta glucosidase treatment offers little use.  

The assignment of key flavour compounds would be a logical next step in 

studying lingonberry VOCs. The contribution of compounds, such as these 34 

identified in this study, to the overall aroma could be evaluated with the relative 

odour activity value (ROAV). This is a practise used by Multari et al. (2018) in 

University of Turku.  
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