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Abstract 

ABSTRACT 

UNIVERSITY OF TURKU 
Faculty of Science and Engineering  
Department of Chemistry and Turku PET Centre 
Thomas Keller: Radiosynthesis of [18F]F-DPA with Various Molar Activities for 
the Imaging of Neuroinflammation 
Doctoral Dissertation, 142 pp. 
Doctoral Programme in Physical and Chemical Sciences  

The use of radioisotopes as a means to non-invasively look into living subjects 
influenced both diagnostic and therapeutic medicine in the past century. Nowadays 
positron emission tomography (PET), employing short-lived radioisotopes such as 
carbon-11 and fluorine-18, is routinely used in nuclear medicine. 

The aims of this thesis were to explore a new route by which radioactive 
[18F]fluoride could be converted into [18F]F2. Furthermore an aim was to explore 
various synthesis routes for the production of [18F]F-DPA, a novel translocator 
protein (TSPO) specific tracer for activated microglia in neuroinflammation. 
[18F]F-DPA is an analogue of the routinely used [18F]DPA-714. The efficacy of 
the new tracer was investigated by small animal PET imaging of both healthy 
animals and a mouse model of Alzheimer’s Disease (APP/PS1-21). Various 
synthesis routes were developed for the production [18F]F-DPA, these gave the 
same product but with differing molar activities (Am), thereby enabling the study 
of the effect that varying Am has on the imaging of TSPO. 

The new method employing vacuum UV photon illumination was successfully 
applied to synthesise [18F]F2, and the resulting fluorine gas could be further used 
in the production of [18F]F-DPA. The [18F]F-DPA produced by the various 
synthesis methods differed only in the Am’s achieved. The nucleophilic labelling 
route resulted in [18F]F-DPA with a hundred-fold higher Am. The higher Am 
increased the uptake of the tracer to TSPO in the APP/PS1-21 mouse brain. It was 
found that [18F]F-DPA presented greater metabolic stability in vivo than [18F]DPA-
714. Furthermore, [18F]F-DPA was able to detect neuroinflammation in mouse 
brain even when it was produced with a low Am. 

Keywords: Molar Activity, Specific Activity, [18F]F-DPA, [18F]F2, Electrophilic 
fluorination, [18F]Selectfluor, Cu-mediated fluorination, TSPO, APP/PS1-21



Tiivistelmä 

TIIVISTELMÄ 

TURUN YLIOPISTO 
Luonnontieteiden ja tekniikan tiedekunta 
Kemian laitos ja Turun PET-keskus 
Thomas Keller: [18F]F-DPA: radiosynteesi ja molaarisen aktiivisuuden vaikutus 
neuroinflammation kuvantamiseen 
Väitöskirja, 142 s 
Fysikaalisten ja kemiallisten tieteiden tohtoriohjelma 

Radioisotooppien käyttöönotto lääketieteellisessä kuvantamisessa on vaikuttanut 
sekä diagnostisiin tutkimuksiin että hoidon seurantaan. Positroniemissio-
tomografiakuvantamista (PET), joka hyödyntää lyhytikäisillä radionuklideilla, 
kuten hiili-11 ja fluori-18, leimattuja merkkiaineita, käytetään nykyään 
rutiininomaisesti isotooppilääketieteessä. 

Tämän väitöstyön tavoitteina oli tutkia uutta menetelmää, jonka avulla PET-
merkkiaineiden leimausprekursorina käytettävä [18F]fluoridi voidaan liittää 
fluorikaasuun, F2. Lisäksi tutkittiin synteesireittejä aktivoituneen mikroglian 
ilmentämään translokaattoriproteiiniin (TSPO) sitoutuvalle merkkiaineelle [18F]F-
DPA:lle, joka kuvastaa neuroinflammaation määrää. [18F]F-DPA on yleisesti 
käytössä olevan [18F]DPA-714 merkkiaineen analogi. [18F]F-DPA:n toimivuutta 
TSPO-kuvantamiseen tutkittiin sekä terveiden että Alzheimer-tautimallin hiirten 
(APP/PS1-21) aivoissa pieneläinPET-kameralla. Työssä selvitettiin myös miten 
merkkiaineen molaarisen aktiivisuuden vaihtelu vaikutti TSPO-kuvantamiseen. 

Uusi UV-fotoniavusteinen menetelmä fluori-18 leimatun fluorikaasun 
tuottamiseksi osoitettiin toimivaksi. Lisäksi osoitettiin, että tällä menetelmällä 
tuotettua 18F-leimattua fluorikaasua voitiin käyttää [18F]F-DPA:n 
leimaussynteesiin. Eri synteesimenetelmillä valmistettu [18F]F-DPA erosi vain 
[18F]F-DPA:n molaarisen aktiivisuuden suhteen. Nukleofiilisellä 
synteesimenetelmällä pystyttiin tuottamaan [18F]F-DPA:ta noin sata kertaa 
suuremmalla molaarisella aktiivisuudella kuin muilla menetelmillä. Suurempi 
molaarinen aktiivisuus lisäsi merkkiaineen TSPO-sitoutumista APP/PS1-21 -
hiirten aivoissa. Lisäksi havaittiin, että [18F]F-DPA oli elimistössä pysyvämpi ja 
herkempi erottamaan neuroinflammaation hiiren aivoissa kuin [18F]DPA-714 
myös silloin kun se tuotettiin matalalla molaarisella aktiivisuudella. 

Avainsanat: Fluori-18, molaarinen aktiivisuus, spesifinen aktiivisuus, [18F]F-
DPA, [18F]F2, elektrofiilinen fluorinaatio, [18F]Selectfluori, Cu-avusteinen 
fluoraus, TSPO, APP/PS1-21
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12 Introduction 

1 INTRODUCTION 

Positron Emission Tomography (PET) is a valuable imaging technique that allows 
us to visualise dynamic biological processes in a living body. This is achieved by 
monitoring the distribution of biologically active molecules that have been labelled 
with one of many possible positron-emitting radionuclides. This thesis is based on 
4 studies (I – IV) that encompass various radiochemical and preclinical stages in 
the development of a new tracer molecule. These studies have resulted in 4 original 
publications, which are accordingly referred to by the same Roman numerals. 
Some main topics of these studies (I-IV) and well as their relation to one another 
are outlined in Figure 1. 

  

Figure 1: Interrelation of the various studies included in this thesis. 

Radiochemistry, or the chemistry of radioisotopes, is a crucial part of PET, since 
positron-emitting radioisotopes need to be incorporated into biologically active 
molecules to make tracers. Radiochemistry is distinctly different from the 
corresponding non-radioactive chemistry since several considerations need to be 
made when working with radioisotopes. These include but are not limited to; time-
constraints which are dependent on the half-life of the radioisotope and need to be 
met to ensure enough radioactivity at the end of the synthesis, as well as 
minimising sources of contamination by the naturally occurring, non-radioactive, 
isotope of the element used for labelling. 

[18F]F-DPA

VUV [18F]F2STUDY IV

Electrophilic
18F-fluorination

Comparison with
[18F]DPA-714

STUDY III

STUDY I
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The work presented herein focusses on the use of fluorine-18, the most commonly 
employed PET-radionuclide, in the synthesis of tracer molecules. In standard 
organic chemistry, electrophilic and nucleophilic fluorination reactions are 
complementary reactions that are employed indiscriminately. In the case of 
fluorine-18 chemistry, due to numerous factors, nucleophilic reactions are often 
used for labelling in preference to electrophilic reactions. Nevertheless the 
electrophilic fluorine-18 labelling approach still represents a valuable route for the 
production of radiotracers, namely due to the simplicity and ease of reactions 
employing F2, given the necessary equipment. 

This thesis explores the use of both nucleophilic as well as electrophilic fluorine-
18 labelling routes for the synthesis of [18F]F-DPA (Figure 2). This molecule is a 
promising new tracer for the imaging of the translocator protein (TSPO), a 
mitochondrial membrane protein that is involved in the transport of cholesterol and 
is over-expressed in conditions of neuroinflammation. Despite the existence of 
many radioligands for TSPO imaging there are numerous limitations associated 
with various TSPO radiotracers. One such shortcoming is the metabolic instability 
of the radiolabel in some radiotracers, such as [18F]DPA-714. This results in the 
formation of small non-specifically binding radiometabolites which decrease the 
quality of PET images. [18F]F-DPA was developed to address this issue of 
metabolic instability by introducing the 18F-label a metabolically stable position. 

 

Figure 2: Outline of various stages of [18F]F-DPA syntheses and preclinical evaluation discussed 
within this work. 

Preclinical evaluation is a vital aspect in the development of any new radiotracer 
because it provides an idea of how the radiotracer behaves in a living being. This 
is crucial for shedding light on key characteristics, such as the metabolic stability 
and the specificity of the tracer for the target of interest, which can be pivotal in 
the acceptance or rejection of a potential new radiotracer for clinical use. 
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2 REVIEW OF LITERATURE 

2.1 Positron Emission Tomography 

The conception and evolution of the imaging modality that we have come to know 
as Positron Emission Tomography, or PET, has been ongoing for approximately 
the past 100 years. It started in the 1920s with the invention of the particle 
accelerator know as a cyclotron. In the late 1920s Dirac postulated the existence 
of electrons with positive energy (Dirac 1928, 1930). However, it was not until 
1932, that the positron itself was discovered by C.D. Anderson (Anderson 1933), 
an achievement which earned him the Nobel Prize in Physics in 1936. When 
irradiating samples of boron, magnesium and aluminium with α-particles from 
polonium, Frederic Joliot and Irene Curie discovered that radiation could be 
detected from the samples even after the radioactive source had been removed. 
This led them to the conclusion that a transmutation had occurred and that the 
resulting compounds were emitters of positrons (Curie and Joliot 1933a, 1933b, 
1934a). Curie and Joliot hypothesised that in the case of boron the 10B(α,n)13N 
nuclear reaction had occurred and confirmed the presence of an isotope of nitrogen 
by synthesising ammonia (Curie and Joliot 1934b, Joliot and Curie 1934). This 
transmutation of elements to form new isotopes of different elements spurred 
Ernest O. Lawrence, who was developing and working with cyclotrons at the time, 
to explore the possibility of using cyclotron irradiation to the same end. His 
deuteron-bombardment of various elements resulted in numerous transmutations 
and the formation of several radioisotopes (Henderson et al. 1934, Lawrence 1934, 
1935, Lawrence et al. 1935a, 1935b, McMillan and Lawrence 1935). The 
discovery of positrons and man-made, neutron-poor, positron-emitting 
radionuclides opened the door to a new field of research. In 1953 Sweet and 
Brownell reported the first use of positron-emitters for the localisation of brain 
tumours by detecting annihilation radiation (Brownell and Sweet 1953). 

As the name suggests PET employs positron-emitting radionuclides to generate a 
slice-wise image of radioactivity distribution in a living subject. The short-lived 
positron-emitting radionuclides employed are chemically bound to bioactive 
molecules of interest. When these, so called, radiopharmaceuticals are 
administered to the subject of the study they are distributed throughout the entire 
body and accumulate in certain locations depending on the identity of the molecule 
in question. 

The decay of a positron-emitting radionuclide results in the generation of a 
positron. However, the emitted positron typically has a low energy and is not very 
penetrating hence it has a short range of travel within tissue. After emission the 
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positron scatters in the nearby tissue, losing energy with each collision, until it has 
decelerated to the extent that it can interact with an electron. Since the positron is 
the antiparticle of an electron the particles annihilate and create two gamma 
photons (511 keV) which, to conserve momentum, travel in approximately 
opposite directions. These emitted gamma photons can be detected by a ring of 
scintillation detectors and used to generate an image of the radioactivity 
distribution. When carried out over time, a PET scan provides a dynamic image of 
how the radioactivity is distributed during the scan. Depending on the identity of 
the bioactive molecule that has been labelled, this provides insight into functional 
processes occurring within the living subject. 

The ability to see non-invasively into living patients and to quantitatively monitor 
where certain bioactive molecules accumulate has had a great impact on the 
diagnosis and monitoring of diseases as well as on the field of drug development. 
PET is now routinely used for diagnosing and monitoring the progression of 
diseases such as; many forms of cancer, various neurological conditions including 
Alzheimer’s disease (AD), stroke and Multiple Sclerosis, to name a few, and 
different cardiac conditions. 

Table 1: Some of the most commonly employed radionuclides in PET (Clementi et al. 1967, 
International Atomic Energy Agency; Nuclear Data Section; A-1400 Vienna; Austria, National 
Nulcear Data Center; Brookhaven National Laboratory; NY 11973-5000; Upton) 

Radionuclide t½ (min) Decay 
mode 

β+ energy max. 
(MeV) 

Atomic radius 
(pm) 

Carbon - 11 20.4 99.8% β+ 
0.2% EC 0.96 67 

Nitrogen - 13 10.0 
99.8% β+ 

0.2% EC 
1.20 56 

Oxygen - 15 2.0 
99.9% β+ 

0.1% EC 
1.73 48 

Fluorine - 18 109.8 96.7% β+ 
3.3% EC 0.63 42 

Copper - 64 762.1 
17.6% β+ 
43.7% EC 
38.5% β- 

0.65 145 

Gallium - 68 67.7 88.9% β+, 
11.1% EC 

1.90(87.7%) 
0.82(1.2%) 136 

Most conditions or diseases that are studied favour different biologically active 
molecules and these can be labelled with a range of various positron-emitting 
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isotopes. Like their respective non-radioactive counterparts each different 
radionuclide brings chemical properties which can impart various characteristics 
to the labelled tracer molecule. In addition to the various chemical properties the 
different radionuclides also have varying radiological properties which have to be 
carefully considered when selecting a radionuclide for the labelling of a 
biologically active molecule. Some of the most commonly employed radionuclides 
in PET are listed in Table 1. In addition to the characteristics listed, there are other 
attributes such as the positron range in tissue and biological half-life of the 
molecule to be labelled, to consider when selecting a radionuclide for the 
production of a tracer for PET. 

2.2 Chemistry of fluorine and its isotopes 

The element fluorine was first isolated in its elemental state by the electrolysis of 
potassium hydrogen fluoride and dry hydrogen fluoride by Moissan in 1886 
(Moissan 1886). This achievement earned Moissan the Nobel Prize in Chemistry 
in 1906. 

Fluorine has several properties that make it a particularly interesting and useful 
element. It has the highest electronegativity of all the elements and due to this a 
small atomic radius. This small atomic radius, together with the high electron 
density, and resulting electron repulsion, in diatomic fluorine gas results in the F2 
molecule having a relatively low bond energy compared to the other halogens 
(Table 2). 

Table 2: Atomic radius, bond length and bond energy of various halogens (Greenwood and 
Earnshaw 1997, Huheey et al. 1993, Slater 1964, Sutton 1965) 

Molecule Covalent radius 
(pm) Bond length (pm) Bond energy 

(kJ/mol) 

F2 71 142 158 

Cl2 99 199 243 

Br2 114 228 193 

I2 133 267 151 

Thanks to the high electronegativity of fluorine, its covalent bonds with other 
elements are highly polar in character. The partial charges of the dipole attract one 
another and cause these covalent bonds to be very strong. Due to the relatively low 
bond energy of the F-F bond and very high strengths of the fluorine bond when it 
is bound to other elements, fluorine is one of the most reactive elements. In fact, 
the C-F bond is the strongest single bond to carbon that any element can form. 
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Table 3: Bond length and strength of some C-F bonds (Chambers 2004, O’Hagan 2008) 

Molecule C-F Bond 
length (pm) 

Bond energy 
(kJ/mol) 

MeF 139 459.8 

CH2F2 136 500 

CHF3 133 533.5 

CF4 132 546.0 

The strength of the C-F bond increases with each consecutive fluorine that is added 
to the geminal carbon (Chambers 2004) (Table 3) resulting in a very low reactivity 
of perfluorinated compounds, such as polytetrafluoroethylene (Teflon). 

While fluorine is not native to many naturally occurring bioactive molecules, 
fluorine can be used to impart certain useful properties including improved 
metabolic stability and higher lipophilicity to bioactive compounds (Gillis et al. 
2015, Shah and Westwell 2007). As a result, its presence has become increasingly 
more prevalent in pharmaceutical compounds. 

Apart from the natural isotope, fluorine-19, fluorine has two radioisotopes with 
sufficiently long half-lives to allow for practical application. These are the 
positron-emitting radioisotopes; fluorine-18 (t½ = 109.8 min) and fluorine-17 (t½ = 
64.5 s). Even though fluorine radiochemistry is dominated by the longer-lived 
fluorine-18 radioisotope, the relatively short-lived fluorine-17 has found 
applications including in the field of PET. Due to the very short half-life of 
fluorine-17, its use is very limited and it has been employed exclusively as 
[17F]fluoromethane for the study of blood flow (Barnhart et al. 2005, Converse et 
al. 2001, 2004, Dabbs et al. 2001, Ferrarelli et al. 2004, Mulholland et al. 1987, 
Roberts et al. 2000). 

2.2.1 Photochemical reactions of fluorine 

Photochemical reactions of fluorine, those in which a part or all the activation 
energy required for the reaction to proceed is supplied by an incident photon, have 
been studied since the 1960s. Since fluorine gas usually has a very high reactivity, 
these reactions, requiring external energy, have been employed for the synthesis 
of relatively exotic compounds such as XeF2 (Holloway 1966, Streng and Streng 
1965a, Weeks et al. 1962), XeF4 (Šmalc et al. 1976), XeF6 (Lutar et al. 1980), KrF2 

(Streng and Streng 1965b) and SF6 (Armendia and Schumacher 1985). 
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Excimer lasers 

Exotic fluorine-containing species can also be employed for the generation of 
photons, as in the case of some excimer lasers. 

The term “laser” was first used by Gould in 1959 as an acronym for Light 
Amplification by Stimulated Emission of Radiation (Gould 1959). Numerous 
types of laser exist nowadays. One of these types are the “excimer” lasers. These 
employ an electric discharge to produce excited dimers (exci-mers) which can be 
either heteroatomic or homoatomic in nature. These excimers are molecules that 
can only exist in the excited state, specifically with one of the 2 atoms being in an 
excited electron state. When an excimer passes its energy to a photon, via 
stimulated emission, the bond of the excimer will break giving the two unbound 
atoms of the ground state. 

The first excimer laser to be developed had a wavelength of 172 nm and employed 
a noble gas dimer (Xe2). Since then other homo- and hetero-atomic excimer lasers 
have been developed that employ other noble gases or noble gas halides. Typically, 
these emit radiation in the ultraviolet or vacuum ultraviolet range and have found 
use in a range of fields such as high-resolution photo-lithography and medicine 
where they are used for Lasik eye surgery. The ArF excimer laser (wavelength 193 
nm) is used in both applications. 

𝐸𝐸 =
ℎ𝑐𝑐
𝜆𝜆

 

Equation 1: Formula for calculating the energy of a photon using the Planck constant (h), speed 
of light (c), and wavelength (λ) 

The energy of light is inversely proportional to the wavelength. The energy of a 
photon can be calculated from its wavelength, the speed of light and the Planck 
Constant according to the equation in Equation 1. Hence the energy of light is often 
referred to simply by the wavelength. 

2.2.2 Fluorine – 18 

Fluorine-18 has a particularly useful set of radiochemical properties which have 
made it one of the most commonly used PET radioisotopes. The decay mode of 
fluorine-18 is quite clean, decaying 96.7% by positron emission. It is the emitter 
of the lowest energy positrons (β+ energy max: 0.6335 MeV). Due to this the 
positrons have an accordingly low range in tissue and tissue-equivalent materials 
and hence high resolution PET images can be obtained when using fluorine-18 
(Alva-Sánchez et al. 2016). 
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Furthermore the high yield of production of fluorine-18 by a cyclotron via the 
18O(p,n)18F nuclear reaction on an enriched water target, together with the half-life 
(t½ = 109.8 min) which is sufficiently long to allow for multistep syntheses to be 
performed as well as for the distribution of labelled products to PET facilities 
without on-site cyclotrons, makes fluorine-18 the most commonly employed 
radionuclide for the production of tracers for PET. 

2.2.3 Cyclotron production of [18F]F- and [18F]F2 

Historically, numerous nuclear reactions have been employed for the production 
of fluorine-18. Nowadays the field of fluorine-18 production is dominated by the 
18O(p,n)18F (Nickles et al. 1984) reaction for the production of [18F]fluoride or 
fluorine-18 labelled fluorine gas ([18F]F2) and the much less common 20Ne(d,α)18F 
(Casella et al. 1980) reaction, for the generation of [18F]F2. The 18O(p,n)18F 
reaction reported by Nickles et al. was carried out for the first time using protons 
accelerated using a tandem Van der Graff accelerator. However, nowadays 
cyclotrons are much more commonly employed in the synthesis of PET 
radionuclides due to the much more compact size of medical cyclotrons compared 
to other particle accelerators. 

Most commonly, fluorine-18 is employed for radiolabelling in the form of the 
[18F]fluoride which is azeotropically dried to increase reactivity. However [18F]F2 
is an invaluable reagent for the labelling of certain compounds. In particular, 
electrophilic 18F-fluorination with [18F]F2 or [18F]F2-derived radiolabelling 
reagents can provide a fast and synthetically simple route to label electron rich 
aromatics, which can be difficult to access using the nucleophilic [18F]fluoride. 
[18F]F2 gas can be produced in-target via the nuclear reactions described above and 
subsequent isotope exchange reaction of the fluorine-18 produced with non-
radioactive “carrier” F2 gas. 

2.3 18F-Fluorination 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑟𝑟 𝑀𝑀𝑐𝑐𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 (𝐴𝐴𝑚𝑚) =
𝐴𝐴𝑐𝑐𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑀𝑀𝑜𝑜 𝐶𝐶𝑀𝑀𝐶𝐶𝐶𝐶𝑀𝑀𝐶𝐶𝐶𝐶𝐶𝐶 (𝑀𝑀𝑀𝑀𝑀𝑀)
𝐴𝐴𝐶𝐶𝑀𝑀𝐶𝐶𝐶𝐶𝑎𝑎 𝑀𝑀𝑜𝑜 𝐶𝐶𝑀𝑀𝐶𝐶𝐶𝐶𝑀𝑀𝐶𝐶𝐶𝐶𝐶𝐶 (𝐶𝐶𝑀𝑀𝑀𝑀)

 

Equation 2: Definition of molar activity 

Molar activity (Am) (Equation 2), formerly referred to as specific activity, can be 
described as the molar concentration of activity for a particular radionuclide. It is 
defined as the measured radioactivity per mole of compound (Coenen et al. 2017); 
typically the units are in GBq/µmol or TBq/µmol for PET tracers. Since Am is 
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calculated from the radioactivity of a compound, which decays with time 
depending on the half-life of the radionuclide, it is necessary to refer to the time 
point for which the Am is calculated. Most often these are key points in the reaction 
such as the end of bombardment (EOB) or the end of the synthesis (EOS), or in 
the case of clinical or preclinical work; the time of injection (TOI). 

𝑀𝑀𝑀𝑀𝑀𝑀𝑎𝑎𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑇𝑇ℎ𝑒𝑒𝑀𝑀𝑟𝑟𝑒𝑒𝑎𝑎𝑎𝑎𝑐𝑐𝑀𝑀𝑀𝑀 𝐴𝐴𝑚𝑚 =
𝑁𝑁𝐴𝐴𝑀𝑀𝐶𝐶2
𝑎𝑎½

 

Equation 3: Maximum theoretical Am defined as a function of Avogadro’s Constant (NA) and the 
t½ 

As shown in Equation 3, the maximum theoretical Am for a particular radionuclide 
is inversely proportional to its t½. However, in practice the Am can be affected by  
numerous factors depending on the identity of the radioisotope in question as well 
as on the production route employed. 

In the case of carbon-11, one of the main issues affecting the Am is the high natural 
abundance carbon-containing molecules and the subsequent possibility of 
contamination of cyclotron-produced synthons such as [11C]CO2 or [11C]methane 
by their non-radioactive counterparts. This presents a much more significant 
problem in the case of [11C]CO2 where the natural abundance of the non-
radioactive analogue is 330 ppm compared to [11C]methane which has a non-
radioactive natural abundance of 1.6 ppm (Elsinga 2002). Oxygen-15 which has 
the shortest t½ of all the commonly employed radioisotopes in PET and is hence 
typically employed as O2, CO, CO2 or water can likewise suffer from 
contamination by naturally occurring oxygen-16 containing analogues. 

In the case of fluorine-18, numerous parameters have been studied with respect to 
their impact on the resulting Am. These include; the irradiation time, dose rate and 
anionic contaminants from the target as described by Solin et al. (Solin et al. 1988) 
as well as contamination from materials (Berridge et al. 2009, Link et al. 2012, 
Savisto et al. 2018), reagents (Link et al. 2012) and solid phase extraction resins 
(Lu et al. 2009). 

Am is an important parameter for PET tracers, because a low Am will result in a 
high injected mass of tracer. The portion of this that is not radioactive will compete 
with the radioactively labelled molecules for the same biological target. While a 
high Am is not crucial in all cases, for example when the biological target being 
studied is very abundant, the high injected mass of non-radioactive “cold” 
compound when a low Am tracer is employed can have a marked effect on the 
kinetics of the tracer uptake and subsequent washout (Delforge et al. 1993, Eberl 
et al. 2017). 
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The variation in the Am’s obtained for syntheses of tracers for PET stems from the 
labelling methodologies that are employed as well as the prevalence of sources of 
contamination by the non-radioactive isotope. Hence due to the necessary addition 
of carrier F2 gas during the production of [18F]F2 the resulting gas and any 
subsequently labelled electrophilic 18F-fluorination or PET tracers have 
accordingly low Am’s. The post-target, high voltage-promoted production method 
for [18F]F2 yields the highest Am of all the electrophilic [18F]F2 production methods. 
However, at best this has been reported to be 55 GBq/µmol (Bergman and Solin 
1997). In contrast, the Am’s achieved during nucleophilic 18F-fluorinations 
typically range between 10 GBq/µmol to 5 TBq/µmol, and hence this fluorination 
methodology is often selected in favour of an electrophilic approach since the 
resulting PET tracers will be able to provide good data and images even when the 
biological target in not very abundant. 

2.3.1 Isotope exchange reactions of fluorine 

The isotope exchange reaction between fluorine-18 and fluorine-19 was first 
studied by Dodgen and Libby in 1949. Their work explored the thermal and 
photochemical induced exchange reactions between hydrogen halides and the 
halogens in the gaseous state. The findings showed that while 19F/18F exchange 
reaction between [18F]HF and F2 did not proceed under the photochemical 
conditions (light of a mercury arc) or at room temperature, heating the reaction 
mixture in a brass vessel at 200 °C for approximately an hour was sufficient to 
accomplish the isotope exchange (Dodgen and Libby 1949). Since then, fluorine 
isotope exchange reactions were further studied between HF and halogen fluorides 
(Rogers and Katz 1952) as well as between fluorine and the halogen fluorides 
(Bernstein and Katz 1952). 

In the late 1970s and 1980s the concept of isotope exchange was applied to the 
production of [18F]F2. Casella et al. employed the 20Ne(d,α)18F nuclear reaction, 
irradiating a Ne/0.1% F2 target with a 15-µA deuteron beam at 14 MeV to 
successfully produce [18F]F2 (Casella et al. 1980). The 2-shoot method, described 
by Nickles et al. (Nickles et al. 1984), employed a 2-µA proton beam at 10 MeV 
to irradiate an enriched [18O]O2 target. This resulted in the formation of fluorine-
18 which adsorbed onto the nickel walls of the target chamber. Subsequently the 
chamber was evacuated, the remaining [18O]O2 target gas was recovered and the 
chamber was filled with 3% F2 in a noble gas. A further irradiation of the chamber 
with a 2-µA proton beam at 10 MeV resulted in the 19F/18F isotope exchange 
reaction and the production of [18F]F2. The isotope exchange reaction can also be 
used for the synthesis of other fluorination reagents such as [18F]XeF2. [18F]XeF2 

is a milder electrophilic 18F-fluorination reagent which was first synthesised by 
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19F/18F fluoride exchange between XeF2 and [18F]HF, [18F]SiF4, and [18F]AsF5 in 
1981 (Schrobilgen et al. 1981) since then [18F]XeF2 can has also been synthesised 
by isotope exchange with the 18F fluoride ion (Constantinou et al. 2001, Lu and 
Pike 2010, Vasdev et al. 2002). 

Alternatively the fluoride isotopic exchange reaction can also be employed for the 
nucleophilic 18F-labelling of aromatics as described in 1981 by Cacace et al. 
(Cacace et al. 1981). The aromatic 19F/18F isotope exchange reaction depends 
strongly on the substituents present on the aromatic ring (Blom et al. 2009, Cacace 
et al. 1982). Despite this, aromatic isotope exchange has been used as a synthesis 
route for the production of several tracers for PET such as 6-[18F]fluoro-L-DOPA 
(Al-Labadi et al. 2006, Wagner et al. 2009), N-methyl-[18F]flumazenil (Ryzhikov 
et al. 2004) and [18F]1-benzyl-N-(3,4-difluorobenzyl)-2-isopropyl-6-(2-
methoxyethoxy)-1H-indole-3-carboxamide (Rokka et al. 2013). However due to 
the relatively high amount of the fluorine-19 isotope present during these reactions 
the Am’s of the final products are quite low, in the order of 100 MBq/µmol – 1 
GBq/µmol. 

2.3.2 Post-target production of [18F]F2 

Due to the necessary addition of carrier F2, the [18F]F2 gas synthesised by 
cyclotron-production methods and any labelling reagents derived from the [18F]F2 
gas suffer from the downside of relatively low molar activity (Am). 

A post-target synthesis of higher Am [18F]F2 from cyclotron produced [18F]fluoride 
was reported by Bergman and Solin in 1997 (Bergman and Solin 1997) (Figure 3). 
This approach utilises [18F]fluoride from the cyclotron which is azeotropically 
dried and reacted with iodomethane to give [18F]fluoromethane ([18F]MeF) by a 
standard nucleophilic 18F-fluorination procedure. After purification by gas 
chromatography the [18F]MeF is mixed with carrier F2 gas, and the resulting 
mixture is exposed to a high voltage electrical discharge (approximately 30 kV). 
The electrical discharge atomises the gases within the reaction chamber and they 
subsequently rearrange to give various fluorine-18 labelled products. 

Figure 3: Post-target production of [18F]F2 
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When the quantity of carrier F2 gas is significantly higher than that of the initial 
[18F]MeF (i.e. m >> n), the reaction produces an appreciable yield of the [18F]F2 
gas. The product of this synthetic approach has a much higher Am (55 GBq/μmol) 
(Bergman and Solin 1997) than the [18F]F2 from the cyclotron production methods 
(0.1-1.3 GBq/μmol) (Blessing et al. 1986, Hess et al. 2000). 

Recently, the post-target production method was studied further by replacing the 
carrier F2 gas with SF6, a less toxic and easier to handle source of fluorine 
(Krzyczmonik et al. 2017). 

 

Figure 4: Post-target production of [18F]F2 gas using SF6 

In this proof-of-concept study it was demonstrated that SF6 can indeed be used as 
an alternative to carrier-F2 (Figure 4). The Am of the resulting F2 gas was assessed 
by performing labelling reactions, such as the synthesis of 6-[18F]fluoro-L-DOPA, 
and determining the Am of the resulting product. The Am obtained with the optimal 
conditions was 2.2 ± 0.5 GBq/μmol. This Am is approximately the same as that 
which can be attained using the in-target cyclotron production methods. 

2.3.3 Nucleophilic 18F-fluorination 

Due to the relative ease of production of the [18F]fluoride and the high 
electronegativity of fluorine, the nucleophilic SN2 and SNAr approaches are those 
most commonly used for the introduction of fluorine-18 into organic molecules. 
This extensive field of research has been reviewed at length several times (Van 
Der Born et al. 2017, Coenen and Ermert 2018, Damont et al. 2013, Gouverneur 
et al. 2019, Gu et al. 2011, Hollingworth and Gouverneur 2012, Jacobson et al. 
2014, Petersen et al. 2017, Preshlock et al. 2016a, Schirrmacher et al. 2007, 2017, 
Tredwell and Gouverneur 2012). 

Under some conditions the solvated fluoride ion can act as a good nucleophile 
(Kim et al. 2008, Vincent and Hillier 2005). However, typically the solvation shell 
surrounding fluoride along with the resulting partial charge neutralisation hinders 
nucleophilic reactions under aqueous conditions (Jacobson et al. 2014). The 
nucleophilic character of the fluoride increases with dryness (Vlasov 1993) and 
hence the nucleophilic approach is dependent on a sufficiently high level of 
dryness of the [18F]fluoride. This is achieved by replacing the fluoride’s counterion 
with an alkali metal, usually potassium, and the azeotropic distillation and 
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complexation of the metal counterion in a cryptand or crown-ether (such as 
Kryptofix 222 or 18-crown-6) thereby enabling the [18F]fluoride complex to be 
soluble in dry organic solvents (Jacobson et al. 2014). 

While aliphatic fluorination reactions are not so sensitive to trace amounts of water 
(Block et al. 1986) and occasionally even benefit from the presence of trace 
amounts of water (Briard and Pike 2004, Kilbourn et al. 1986), aromatic 
fluorinations require a more meticulous drying procedure and higher level of 
dryness to adequately decrease the solvation (Vlasov 1993). However, there is a 
downside that is associated with the more thorough drying procedure, that is; as 
the dryness of the fluoride increases so does its tendency to stick on the reaction 
vessel walls (Brodack et al. 1986, Gnade et al. 1981, Nickles et al. 1986). This 
results in the loss of a portion of [18F]fluoride from the reaction mixture and a 
subsequent decrease in radiochemical yield (Coenen et al. 1981). Recently, Kwon 
et al. reported an approach by which the lengthy drying procedure can be avoided 
(Kwon et al. 2018). This approach employs a mixed organic solvent system which 
lessens the effect of the water present, and was successfully applied for the 
synthesis of three model PET radiopharmaceuticals. 

  

Figure 5: Direct aliphatic fluorination for the synthesis of [18F]DPA-714 

Aliphatic fluorination, via the SN2 mechanism, is a routinely employed 
methodology for the synthesis of various tracer molecules for PET. This approach 
is typically a synthetically simple approach that involves the direct substitution of 
a suitable leaving group with [18F]fluoride. Typically, leaving groups such as 
various sulfonic esters or halogens are employed, however careful consideration 
must be made when selecting which specific leaving group to use. Depending on 
the reaction conditions and the lability of the leaving group, a competing 
elimination side reaction can occur (Coenen 2007). Because elimination reactions 
are base-promoted, particular attention must be paid to the basicity of the 
potassium source as well as the ratio of base to cryptand or crown-ether used in 
the formation and drying of the [18F]KF complex (Jacobson et al. 2014). Numerous 
18F-labelled tracers are produced by this method, including 2-deoxy-2-[18F]fluoro-
D-glucose ([18F]FDG) (Hamacher et al. 1986), the most commonly used of all PET 
radiotracers, [18F]fluoroethyl-L-tyrosine (Hamacher and Coenen 2002), 
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[18F]florbetapir ([18F]AV-45) (Choi et al. 2009, Zhang et al. 2005) and N,N-
diethyl-2-[4-(2-[18F]fluoroethoxy)phenyl]-5,7-dimethylpyrazolo[1,5-
a]pyrimidine-3-acetamide ([18F]DPA-714) (James et al. 2008) (Figure 5), to name 
a few. 

 

Figure 6: Synthesis and use of [18F]fluoroethyltosylate synthon 

Alternatively the radioactive label can be introduced onto a synthon such as 
[18F]fluoroethyltosylate, [18F]fluoroethylazide or [18F]4-fluoro-1-butyne which 
can subsequently be further used for synthesis. This method can be applied for the 
synthesis of relatively small molecules such as [18F]fluoroethyl-L-tyrosine (Wester 
et al. 1999) (Figure 6) which can also be produced by direct aliphatic fluorination.  

The copper (I) catalysed Huisgen cycloaddition of an alkyne and azide (Figure 7) 
in particular is a valuable method for the fluorine-18-labelling of larger 
biomolecules such as of proteins (Gill and Marik 2011, Glaser and Årstad 2007, 
Marik and Sutcliffe 2006), since its can be carried out under quite mild condition 
that will be tolerated by biomolecules. The downside of employing prosthetic 
groups as labelling reagents for biomolecules lies in the necessary purification of 
both the prosthetic group as well as the final molecule (Jacobson et al. 2014, 
Kiesewetter et al. 2011). Despite these time-consuming purifications, 18F-labelled 
prosthetic groups have been employed in the synthesis of numerous PET tracers 
based on biomolecules (Schirrmacher et al. 2017). 

 

 

Figure 7: Synthesis and use of [18F]synthons for copper (I) catalysed Huisgen cycloaddition 

In some cases the aliphatic 18F-labelling of an organic molecule results in the 
radioactive label being on a metabolically unstable position, in particular when the 
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labelling position is on the C-terminal end of an alkoxy chain as in the case of 
[18F]DPA-714 (Peyronneau et al. 2013). In such cases the nucleophilic 18F-
fluorination of an aromatic ring can provide a more robust labelling position with 
respect to metabolism. 

Figure 8: Nucleophilic aromatic 18F-fluorination (EWG: Electron Withdrawing Group) 

While the nucleophilic labelling of aromatic rings, via SNAr, can be achieved with 
high Am, the reaction is critically dependent on the presence of a suitable leaving 
group, as well as an electron withdrawing substituent on the ortho or para position 
relative to the leaving group (Jacobson et al. 2014, Preshlock et al. 2016a). As a 
result, direct, late stage nucleophilic fluorination of insufficiently activated 
aromatic rings is far from facile. 

Various methodologies have been developed to implement the labelling of 
aromatic rings and the most common approaches employ, aryl nitro or ammonium 
compounds (Tredwell and Gouverneur 2012), hypervalent iodine compounds 
(Pike 2018, Yusubov et al. 2013) such as diaryliodonium salts (Pike and Aigbirhio 
1995) and iodonium ylides (Satyamurthy et al. 2010), aryl boronic esters (Tredwell 
et al. 2014), or aryl stannanes (Gamache et al. 2016, Zarrad et al. 2017)(Figure 8).  

The nucleophilic aromatic fluorination of many aryl compounds is highly 
dependent of the presence of activating electron withdrawing groups on the ortho 
or para positions (Jacobson et al. 2014, Preshlock et al. 2016a). In the case of the 
diaryl iodonium salts, the regioselectivity of the radiofluorination is driven by the 
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“ortho effect” wherein an ortho substituent present on the aromatic rings directs 
the 18F-fluorination to that same ring, despite the steric and electronic contributions 
(Gail et al. 1997). Recently, reactions for the chemoselective 18F-fluorination of  
diaryliodonium salts have been developed employing electron-rich spectator aryl 
rings such as 2,4,6-trimethoxybenzene (Kwon et al. 2019) to minimise the 
formation of 18F-fluorinated aromatic side products. The 18F-fluorination of 
diaryliodonium salts has also been applied to the synthesis of functionalised 
[18F]fluoroarenes which can be used as prosthetic groups for further labelling 
(Chun and Pike 2013). In the case of iodonium ylides the auxiliary group is not 
susceptible to radiofluorination as is the case with diaryliodonium salts, hence 
measures do not need to be taken to ensure chemoselectivity (Hill and Holland 
2015, Pike 2018, Rotstein et al. 2016). This lack of side reactions makes this 
methodology a very attractive approach for the synthesis of tracer molecules 
(Rotstein et al. 2014, Yusubov et al. 2013). Recently it has been adapted for use in 
microfluidic reactors (Calderwood et al. 2015), by this approach two molecules of 
interest were synthesised, the PET tracer [18F]FPEB and 4-[18F]fluorobenzyl azide 
a prosthetic group that can be used for the click reaction. 

Recently many groups have been working on copper-mediated 18F-fluorination as 
nucleophilic procedures for the introduction of fluorine-18. Gouverneur et al. 
developed the Cu-mediated 18F-fluorination of aryl boronic esters (Tredwell et al. 
2014) and this approach has been shown to be applicable to the synthesis of 
numerous radiopharmaceutical compounds of interest (Preshlock et al. 2016b, 
Tredwell et al. 2014). Since then, due to the low efficacy of the reaction in the 
presence of “high” amounts of carbonate (Zlatopolskiy et al. 2015), numerous 
research groups have explored alternatives to the potassium carbonate and 
kryptofix combination typically used for the drying of the [18F]fluoride 
(Antuganov et al. 2019, Giglio et al. 2017, Mossine et al. 2017, Schäfer et al. 2016, 
Zischler et al. 2017). These studies have resulted in this versatile methodology 
being applied to the synthesis of numerous PET tracers as model molecules 
(Wilson et al. 2018), these include: 4‐L‐[18F]fluorophenylalanine (Antuganov et 
al. 2017, 2019), [18F]F‐DPA, [18F]DAA1106, 6‐[18F]FDA, 6‐[18F]fluoro-L-DOPA 
(Zischler et al. 2017), 6‐[18F]fluoro‐L‐tryptophan (Schäfer et al. 2016) and 5-
[18F]fluoro-α-methyl tryptophan (Giglio et al. 2017). Although automation of the 
Cu-mediated 18F-fluorination of aryl boronic esters methodology for application in 
clinical production is proceeding, the radiochemical purification of products 
proves to be somewhat troublesome (Mossine et al. 2018). A slight modification 
of the reaction conditions also makes the reaction applicable to the fluorination of 
boronic acids (Mossine et al. 2015).  

 Cu-mediated nucleophilic fluorination has proven to be quite a versatile 
methodology that is not limited to aryl boronic esters as precursors.  It has been 



28 Review of literature 

applied to the fluorination of various diaryliodonium salts (Ichiishi et al. 2014a, 
2014c, 2014b, McCammant et al. 2017, Zlatopolskiy et al. 2015) and to the C-H 
fluorination of arenes (Lee et al. 2019). Recently, the Cu-mediated nucleophilic 
fluorination of stannyl precursors has also been reported recently both in organic 
chemistry (Gamache et al. 2016) as well as radiochemistry (Makaravage et al. 
2016). 

2.3.4 Umpolung approach 

Umpolung refers to inverting the polarity of a functional group thereby changing 
how it reacts. Ritter et al. have worked extensively with transition metal complexes 
to achieve both aryl as well as fluoride umpolung. The fluoride umpolung reaction 
reported by Lee et al. (Lee et al. 2011) employs a palladium complex to couple 
with the [18F]fluoride resulting in a complex which functions as an electrophilic 
18F-fluorination reagent. The possibility of reductive elimination from the 
intermediate 18F-containing complex is minimised by using multi-dentate ligands. 
A fluorine transfer occurs between the 2 palladium complexes and results in the 
oxidation of Pd in the aryl containing complex and the formation of an 18F-labelled 
aryl fluoride (Figure 9). 

 

Figure 9: Fluoride umpolung reaction achieved through use of a Pd-complexes 

The alternative aryl umpolung was reported also by Lee et al. (Lee et al. 2012).  
However, this employed an aryl-nickel complex and a hypervalent iodine oxidant 
to achieve the reaction (Figure 10). The one-step nature of this reaction, together 
with the ability to use the [18F]fluoride in its aqueous form, rather than 
azeotropically dried [18F]fluoride makes this procedure more favourable. 
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Figure 10: Aryl umpolung reaction achieved through formation of a Ni-complex 

Metal-free aryl umpolung reactions for the fluorination of phenols, anilines, N-aryl 
acetamides and N-aryl sulphonamides have also been reported by various groups. 
These employ hypervalent iodine (III) reagents that undergo reduction during the 
reaction thereby enabling the inversion of polarity. 

The oxidative fluorination of phenols was initially described by Bienvenu et al. 
(Bienvenu et al. 2002) and subsequently inspired the work on the metal-free 
oxidative 18F-fluorination of phenols (Gao et al. 2012) and N-arylsulfonamides 
(Buckingham et al. 2015) by the Gouverneur group and on the para-selective 
fluorination of anilides by Tian et al. (Tian et al. 2013). 

 

Figure 11: Synthesis of [18F]fluoro-benzoxazepines from o-styrilamides using [18F]fluoro-
benziodoxole 

Recently, [18F]fluoro-benziodoxole was reported as a no-carrier-added 
electrophilic fluorination reagent (Cortés González et al. 2018). Fluoride 
umpolung is achieved here by use of a hypervalent iodine compound which is 
labelled by an initial nucleophilic 18F-fluorination reaction to displace a tosyl group 
(Figure 11). Subsequently it can be used in the synthesis of [18F]fluoro-
benzoxazepines by electrophilic fluorocyclisation of o-styrilamides. However, for 
now, this approach is limited to the synthesis of [18F]fluoro-benzoxazepines. 
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2.3.5 Electrophilic 18F-Fluorination 

During early days of PET tracer production, due to the simplicity and robustness 
of the chemistry involved, many fluorine-18 labelled tracers, such as [18F]FDG 
(Ido et al. 1978), were synthesised by electrophilic methods (Figure 12). 

 

Figure 12: Synthesis of 2-deoxy-2-[18F]fluoro-D-glucose and 2-deoxy-2-[18F]fluoro-D-mannose 
by an electrophilic approach using [18F]F2 

Since then many of these electrophilic synthesis methods have been abandoned in 
favour of nucleophilic approaches that were developed with the intention of 
increasing yields and in particular Am’s of the final products. Despite the numerous 
nucleophilic 18F-fluorination methodologies available, electrophilic 18F-
fluorination can still provide an alternative, fast and synthetically simple way of 
introducing fluorine-18 into organic molecules. Hence, numerous electrophilic 
18F-fluorination reagents have been developed and studied. 

 

Figure 13: Synthesis of various “mild” 18F-fluorination reagents 
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The simplest of these reagents is [18F]F2 gas, the production of which has already 
been discussed. While being the structurally simplest of the reagents it is also the 
most reactive and hence can in some cases lead to the production of undesired 
poly-fluorinated side-products. To tame the reactivity of fluorine gas various 
milder electrophilic reagents have been developed (Figure 13). These include 
[18F]XeF2 (Chirakal et al. 1984, Schrobilgen et al. 1981, Sood et al. 1983), O-F 
type reagents such as [18F]acetyl hypofluorite (Salvadori et al. 1982), and N-F 
reagents such as [18F]N-fluorobenzenesulfonimide ([18F]NFSi) (Teare et al. 2007) 
and [18F]Selectfluor bis(triflate) (Teare et al. 2010). 

The 1-alkyl-4-fluoro-1,4-diazoniabicyclo[2.2.2]octane (Selectfluor) salts were 
first reported as electrophilic fluorination reagents by Banks et al. (Banks et al. 
1992). The fluorine-18 labelled analogue, [18F]Selectfluor bis(triflate), was 
subsequently developed (Teare et al. 2010) and its worth as fluorination reagent 
was demonstrated by its use in the synthesis of 6-[18F]fluoro-L-DOPA (Figure 14) 
(Stenhagen et al. 2013). 

 

Figure 14: Synthesis of [18F]Selectfluor bis(triflate) and its use in the synthesis of 6-[18F]fluoro-
L-DOPA from N-formyl or N-boc protected aryl trimethylstannane FDOPA precursor. 

There are numerous beneficial properties that make [18F]Selectfluor bis(triflate) a 
valuable tool for electrophilic 18F-fluorination. It is relatively easy to produce from 
[18F]F2 gas and can be used for labelling reactions without the need for prior 
purification. In contrast to [18F]F2 gas, [18F]Selectfluor bis(triflate) is employed as 
a solution in acetone and this allows for longer reaction times. Furthermore, the 
crude [18F]Selectfluor bis(triflate) solution from the labelling with [18F]F2 gas is 
easily portioned for multiple reactions and the crude stock solution can be stored 
for a matter of hours. 

Electrophilic 18F-fluorination of aromatics without the presence of a suitable 
leaving group to direct the reaction generally results in formation of 18F-fluorinated 
isomers as demonstrated by Firnau et al. (Firnau et al. 1986). Various metal or 
pseudometal-containing leaving groups have been employed to direct the 
fluorination position. These include; Li and MgBr (Satyamurthy et al. 1990), alkyl 
and aryl silanes (Coenen and Moerlein 1987, Di Raddo et al. 1984, Speranza et al. 
1985), stannanes (Adam et al. 1981, 1984, Coenen and Moerlein 1987, Namavari 
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et al. 1992) or germanes (Coenen and Moerlein 1987) and most recently boron-
containing groups (Stenhagen et al. 2013). 

Recently the 18F-fluorination of unactivated C-H bonds has been reported by 
Nodwell et al. (Nodwell et al. 2017). The reaction employs a photoactivated 
decatungstate catalyst to effect hydrogen atom abstraction. Subsequently, 
[18F]NFSi acts as a source of fluorine-18 to achieve the labelling reaction. This 
novel synthesis was used to make a number of 18F-labelled amino acids which were 
successfully employed in the imaging cancers in mice. The milder electrophilic 
18F-fluorination reagents are largely produced from [18F]F2 gas, and hence suffer 
from some of the same drawbacks associated with the use of [18F]F2 gas for 
labelling. Due to the necessary addition of non-radioactive fluorine gas and the 
reactivity profile of the resulting [18F]F2, at least half of the radioactivity is lost by 
this approach. Also this dilution of 18F-fluoride with 19F-fluorine results in 
relatively low Am’s compared to nucleophilic labelling approaches. Despite this, 
electrophilic 18F-fluorination is still employed for the production of some tracers, 
such as; 6-[18F]fluoro-L-DOPA (Forsback et al. 2008), [18F]CFT (Forsback et al. 
2012) and [18F]EF5 (Eskola et al. 2005). 

2.4 Translocator protein 18kDa 

The translocator protein 18kDa (TSPO), previously known as the peripheral 
benzodiazepine receptor, is a mitochondrial protein that is found on the outer 
mitochondrial membrane. It has numerous roles within the body that depend on 
the tissue that is being studied. The high levels of TSPO found is steroid-producing 
organs stem from its key role in the transport of cholesterol into mitochondria 
(Lacapère and Papadopoulos 2003, Li et al. 2016, Papadopoulos et al. 1997). 

 

Figure 15: Translocator protein 18 kDa (TSPO) – location and function 

Within the mitochondria, cholesterol is converted into pregnenolone by scission of 
a side chain and the pregnenolone produced can subsequently be further used in 
the synthesis of various steroids. Alternatively, the cholesterol in mitochondria can 
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be used in the formation of new mitochondrial membrane when the cells undergo 
growth or repair (Figure 15). 

Increased expression of TSPO has been observed in numerous inflammatory 
responses. In particular, the brains of individuals that suffer from various 
neurological conditions, amongst others; stroke, traumatic brain injury, multiple 
sclerosis  and AD, often show an overexpression of TSPO and as a result it has 
been accepted as a biomarker for neuroinflammation and activation of microglia 
(Banati 2002). 

Microglia are phagocytic cells that are found in the central nervous system (CNS). 
They account for approximately 10% of the cells in the brain, and under normal 
conditions they are distributed throughout the brain. In the case of AD and many 
other neurological conditions, the various associated irregularities and foreign 
objects cause the microglia to activate and fulfil their main function, to act as the 
immune defence of the CNS. They phagocytise foreign material as well as plaques 
and dead or dying cells, to decrease the resulting inflammation. 

In AD, neuroinflammation and microglial activation occur primarily in the tissue 
directly surrounding the amyloid plaques. Hence, rather than imaging the disease 
pathology directly, using TSPO-specific radioligands provides insight into the 
extent and progression of the disease by visualising the body’s response to the 
disease pathology. 

2.4.1 PET tracers for TSPO 

Numerous tracers based on various substructures and labelling methodologies 
have been used for the PET imaging of TSPO distribution, especially within the 
brain (Damont et al. 2013). The most commonly used of the first generation TSPO-
specific ligands is N-butan-2-yl-1-(2-chlorophenyl)-N-methylisoquinoline-3-
carboxamide (PK-11195). It was first developed by Le Fur et al. in 1983 and was 
shown to potently inhibit binding of other TSPO-ligands of the time (Le Fur et al. 
1983a, 1983b). The structure of the ligand lent itself well to the labelling with a 
[11C]methyl substituent and this was achieved in 1984 by Camsonne et al. 
(Camsonne et al. 1984) (Figure 16). 
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Figure 16: Synthesis of [11C]PK11195 

The success of [11C]PK11195 as a TSPO ligand for imaging with PET drove the 
further development of different motifs that could also be labelled and used to 
visualise TSPO distribution. These present an extensive list of compounds that 
have been labelled with either fluorine-18 or carbon-11 for PET or iodine-123 for 
single-photon emission computer tomography (SPECT). Some of the main motifs 
that these are based on include; the benzodiazepines ([11C]Ro5-4864 (Coenen et 
al. 1981)), vinca alkaloids ([11C]Vinpocetine (Gulyás et al. 1999)), dihydro-9H-
purinacetamide ([11C]AC-5216 (Zhang et al. 2007) and [11C]DAC (Zhang et al. 
2009), indoleacetamides ([11C]SSR180575 (Thominiaux et al. 2010) and [18F]GE-
180 (Wadsworth et al. 2012)), the phenoxyarylacetamides; such as 
[18F]FEDAA1106 and [18F]FMDAA1106 (Zhang et al. 2003), [18F]FEPPA 
(Wilson et al. 2008), and [11C]PBR28 (Briard et al. 2005, 2008) to name a few, 
and the imidazopyridines (Table 4) and bioisosteric pyrazolopyrimidines (Table 
5). 

The lower positron energy, and hence lower positron range, of fluorine-18 
compared to that of carbon-11 means that PET images collected with 18F-labelled 
tracers have superior image quality. This together with the longer half-life of 
fluorine-18 and the implication this has on the possibility of tracer distribution and 
the use of one tracer batch for imaging several patients, means that there is much 
focus devoted to the development of 18F-fluorinated radiotracers (Best et al. 2019, 
Vivash and O’Brien 2015).  
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Table 4: Second Generation TSPO-specific PET radiopharmaceuticals based on the imidazopyridine acetamide motif 

 
(Boutin et al. 2007, 
Mattner et al. 2015, 

Thominiaux et al. 2007) 

(Perrone et al. 2016) 

(Fookes et al. 2008, 
Katsifis and Fookes 

2008) 

(Fookes et al. 2008, 
Katsifis and Fookes 

2008) 

(Bourdier et al. 2014) 

Ki = 1.6 nM in rat 

Ki = 0.3 nM in rat 

Ki = 5.8 nM in rat 

Ki = 3.7 nM in rat 

Ki = 2.4 nM in rat 

R1: I, R2: [11C]Me, R3: Me, 
R4: Me 

R1: [18F]OCH2CH2F, R2: Pr,  
R3: Pr, R4: Cl 

R1: [18F]CH2CH2F, R2: Me, 
R3: Et, R4: H 

R1: [18F]OCH2CH2F, R2: Et, 
R3: Et, R4: H 

R1: OEt, R2: [11C]Me, R3:    
R4: Cl 

[11C]CLINME 

[18F]CB251 

[18F]PBR102 

[18F]PBR111 

[11C]PBR170 
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Table 5: Second Generation TSPO-specific PET radiopharmaceuticals based on the pyrazolopyrimidine acetamide motif 

(James et al. 2005, 
Selleri et al. 2001) 

(Tang et al. 2013) 

(James et al. 2008) 

(Fookes et al. 2008) 

(Tang et al. 2013) 

(Damont et al. 2015a) 

(Tang et al. 2013, 2014) 

(Fookes et al. 2008) 

Ki = 4.7 nM in rat 

Ki = 12.2 nM in rat 

Ki = 7.0 nM in rat 

Ki = 5.6 nM in rat 

Ki = 9.7 nM in rat 

Ki = 0.9 nM in rat 

Ki = 0.3 nM in rat 

Ki = 4.1 nM in rat 

R1: [11C]Me, R2: Me 

R1: [18F]CH2CH2F, R2: Me 

R1: [18F]CH2CH2F, R2: Et 

R1: [18F]CH2CH2CH2F, 
R2: Me 

[11C]DPA-713 

[18F]DPA-714 

[18F]VUIIS1008 

[18F]PBR146 
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When many of these second generation TSPO-tracers were used for PET imaging 
or their binding was evaluated by in vitro studies, a substantial variability in 
binding potential between different subjects could be observed (Kreisl et al. 2010, 
Owen et al. 2010, 2011). It was found that in humans a single nucleotide 
polymorphism (rs6971) means that subjects can be broadly divided into 3 
categories in terms of tracer binding to TSPO (Owen et al. 2012). High-affinity 
and low-affinity binders, each of which express a single binding site with either 
high or low affinity, and mixed-affinity binders which express similar numbers of 
high and low affinity binding sites (Owen et al. 2011). It has been shown that 
polymorphism sensitive TSPO-tracers such as [11C]PBR28 have the same binding 
site as the first generation ligand, [11C]PK11195, as demonstrated by their ability 
to displace one another in vitro and in vivo (Imaizumi et al. 2008, Kreisl et al. 
2010). However, despite this common binding site, [11C]PK11195 does not show 
such a great sensitivity to the polymorphism (Ikawa et al. 2017). Due to this 
[11C]PK11195 has not been phased out as TSPO ligand in favour of the newer 
candidates. On the contrary, development of compounds closely related to 
[11C]PK11195 structurally, such as [11C]ER176, has been ongoing in recent years 
(Fujita et al. 2017, Ikawa et al. 2017). 

2.4.2 Mouse model of Alzheimer’s disease 

The APP/PS1-21 mice are transgenic (TG) animals that contain the human 
transgenes for the amyloid precursor protein (APP) with the KM670/671NL or 
“Swedish” mutation and for presenilin-1 (PSEN-1) with the L166P mutation. 

APP is an integral membrane protein, which, when hydrolysed, forms beta amyloid 
(Aβ). The deposition of Aβ results in the formation of amyloid plaques which is 
the characteristic pathology associated with AD and plays a central role in 
neurodegeneration. The Swedish mutation is in fact a double mutation in which 2 
amino acids, lysine and methionine, have been replaced by asparagine and leucine 
and was first discovered in 2 Swedish families that were genealogically linked 
(Mullan et al. 1992). This double mutation in the APP gene results in an increased 
production of Aβ. 

The L166P mutation to the PSEN-1 gene was first reported by Moehlmann et al. 
and is a relatively rare mutation that results in an early onset of AD symptoms 
(Moehlmann et al. 2002). Presenilin-1 is a core component of the gamma secretase 
complex which is also an integral membrane protein and has been shown to have 
a key role in Aβ regulation, and mice that express mutant Presenelin-1 display 
increased Aβ their brains (Duff et al. 1996). 
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The APP/PS1-21 developed by Radde et al. (Radde et al. 2006) coexpress the 
amyloid precursor protein Swedish mutation and the very aggressive presenilin-1 
mutation under the control of a neuron-specific Thy1 promoter. The resulting 
cerebral amyloidosis starts at 6 – 8 weeks and there is a threefold increase in the 
number of neocortical microglia between 1 and 8 months of age. 

2.4.3 [18F]F-DPA 

All of the pyrazolopyrimidine and related imidazopyridine tracers discussed thus 
far have a common shortcoming, that is, the relative instability of the labelling 
position with respect to metabolic cleavage (Peyronneau et al. 2011, 2013). This 
instability arises from the use of metabolically unstable linker chains for the 
binding of the labels to the bioactive part of the molecules. The metabolism results 
in the formation of small radioactively-labelled fragments which add non-specific 
signal to PET scans and autoradiography images. This limitation has driven the 
development of new metabolically fortified analogues that are less susceptible to 
loss of the radiolabel (Banister et al. 2014, Damont et al. 2015a). 

N,N-Diethyl-2-(2-(4-fluorophenyl)-5,7-dimethylpyrazolo[1,5-a]pyrimidin-3-
yl)acetamide (F-DPA) was first synthesised and reported by Selleri et al. (Selleri 
et al. 2001) as part of a larger study which identified the 2-arylpyrazolo[1,5-
a]pyrimidin-3-yl acetamides as a potent and selective new class of TSPO (then 
PBR) specific ligands. In this study, F-DPA was shown to have a binding affinity 
(Ki TSPO = 9.2 ± 1.0 nM) and selectivity (Ki CBR > 1 µM) similar to those of 
PK11195 (Ki TSPO = 9.3 ± 0.5 nM, Ki CBR > 1 µM). 

Several years later, following the development and successful use of related 
compounds such as [18F]DPA-714 and [11C]DPA-713, [18F]F-DPA was postulated 
to be a potential metabolically resistant analogue of [18F]DPA-714 and the 
synthesis of [18F]F-DPA was reported by Damont et al. (Damont et al. 2015b). The 
nucleophilic synthesis was achieved using a range of precursors. The leaving 
groups employed were the fluoride, for 19F/18F fluoride exchange, nitro, tri-
methylammonium and hypervalent iodine, in the form of the diaryliodonium salt. 
However the reactions were found challenging and not sufficiently reliable to merit 
preclinical evaluation. In parallel to the work described herein, Zischler et al. 
further explored the possibility of a nucleophilic 18F-fluorination reaction for the 
synthesis of [18F]F-DPA, this time a boronic ester precursor was employed for a 
Cu-mediated fluorination reaction (Zischler et al. 2017). This study did not report 
an Am for the final product, however two other tracer synthesised by the same 
approach during the course of the study were obtained in approximately 40 GBq/ 
µmol. The nucleophilic 18F-fluorination for preclinical evaluation was developed 
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by Wang et al. wherein a spirocyclic iodonium ylide-precursor was employed 
(Wang et al. 2017) (Figure 17). This synthetic approach yielded the final product 
with an Am of 96 ± 22 GBq/μmol, sufficient to perform in vivo preclinical 
evaluation. The [18F]F-DPA made by this approach was evaluated in a rat model 
of ischemic stroke and in a mouse model of AD (APP/PS1). This study 
demonstrated that [18F]F-DPA can be used for the imaging of neuroinflammation 
in both of the models employed. The binding affinity (Ki: 2.0 ± 0.8 nM) was found 
to be consistent with prior reports and a blocking with PK11195 indicated a high 
in vivo specificity. 

 

Figure 17 : Syntheses of [18F]F-DPA from various precursors
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3 AIMS OF THE STUDY 

The aims of this work were to study various new 18F-fluorination methodologies 
and to apply these to the synthesis of [18F]F-DPA, a novel tracer for TSPO. 

The specific aims for each study were: 

Study I To develop a synthesis of [18F]F-DPA. 

To investigate whether the new tracer candidate penetrates the blood 
brain barrier. 

To compare the in vivo metabolism with that of [18F]DPA-714 in 
healthy rats. 

Study II To evaluate the efficacy of [18F]F-DPA for visualising 
neuroinflammation in the transgenic APP/PS1-21 mouse model of 
Alzheimer’s disease. 

To observe the [18F]F-DPA uptake in the Alzheimer’s disease model 
at different ages. 

Study III To explore alternative syntheses for the production of [18F]F-DPA, 
via nucleophilic routes, with the intention of increasing Am  

To compare the effect that differing Am’s have on in vivo and ex vivo 
imaging of transgenic APP/PS1-21 mice. 

To assess the usefulness of different labelling methodologies for the 
synthesis of TSPO tracers. 

Study IV  To explore an alternative route for the post-target production of 
[18F]F2, by employing a VUV-laser to promote the isotopic exchange 
reaction. 

To use the resulting [18F]F2 for the synthesis of [18F]F-DPA via 
[18F]Selectfluor bis(triflate). 
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4 MATERIALS AND METHODS 

4.1 Production of 18F-fluorination reagents 

4.1.1 Production and drying of [18F]fluoride (I – IV) 

Aqueous [18F]fluoride was produced from 18O-enriched water via the 18O(p,n)18F 
nuclear reaction. The 17 MeV proton beam was generated by either a CC-18/9 
cyclotron (Efremov Scientific Institute of Electrophysical Apparatus, St. 
Petersburg, Russia) or an MGC-20 cyclotron (Efremov Scientific Institute of 
Electrophysical Apparatus, Leningrad, USSR) (Table 6). 

Table 6: Details of cyclotrons used for the production of [18F]fluoride 

The K222/K+[18F]F- complex was formed by drying the cyclotron-produced 
aqueous [18F]fluoride with MeCN at 100 °C under a flow of helium in the presence 
of K222 and a source of potassium (K2CO3 or a 9:1 mixture of K2CO3/K2C2O4). 
Two subsequent additions of MeCN were made, each followed by evaporation of 
the solvent. In the case of Cu-mediated reactions, to ensure sufficiently high 
dryness, a more thorough drying procedure was employed. The azeotropic 
distillations were carried out with an elevated temperature (120 °C) and for a 
longer time (8 min each) under a flow of He (Figure 18). 

 

Figure 18: Cyclotron production of fluorine-18 via the (p,n) reaction on an oxygen-18 enriched 
water target, followed by azeotropic distillation and drying 

Study Cyclotron Target Details Pre-reaction procedures 

I – IV MGC-20 0.8 mL silver target 
None, target contents directly 

transported to the reaction 
vessel 

II & 
III CC-18/9 2.3 mL niobium target 

Target contents passed over 
anion exchange cartridge, eluted 

aqueous K222 and K2CO3 
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4.1.2 High voltage discharge-promoted production of [18F]F2 and subsequent 
synthesis of [18F]Selectfluor bis(triflate) (I – III) 

[18F]F2 gas was synthesised according to the procedure previously described by 
Bergman and Solin (Bergman and Solin 1997) (Figure 3). Initially [18F]MeF was 
synthesised from the dry K222/K+[18F]F- complex by the addition of MeI (1.5 
mmol) in MeCN heating of reaction mixture under reflux for 1 min. The [18F]MeF 
produced was purified by gas chromatography and trapped in a stainless-steel loop 
submerged in liquid nitrogen. 

After trapping, the stainless steel loop was allowed to warm up to room 
temperature and the [18F]MeF was mixed with carrier F2 gas, approximately 1 
µmol in Ne (0.5% F2/Ne), in a quartz discharge chamber (Table 7, Figure 19 
Chamber A). The 19F/18F isotopic exchange reaction was promoted by applying a 
high-voltage electrical discharge (30.5 ± 1.0 kV, 10 s) through the gas mixture. 

[18F]Selectfluor bis(triflate) was synthesised from [18F]F2 following the procedure 
previously reported by Teare et al. (Figure 14) (Teare et al. 2010). [18F]F2, 
produced by high voltage-promoted isotope exchange, was bubbled through a 
solution of 1-chloromethyl-4-aza-1-azoniabicyclo[2.2.2]octane triflate and LiOTf 
in acetone-d6. No purification was necessary and the resulting [18F]Selectfluor 
bis(triflate) could be used “as is” for further electrophilic 18F-labelling, 
alternatively, the crude solution of [18F]Selectfluor bis(triflate) in acetone-d6 could 
be stored as a stock 18F-labelling reagent solution for later experiments. 

4.1.3 Vacuum ultraviolet photon-promoted production of [18F]F2 (IV) 

Various chambers and reflective coatings were tested for the illumination-
promoted isotopic exchange reaction and these are described in Table 7. 

Table 7: Dimensions of the discharge chamber (A) and various illumination chambers (B-E) 

Chamber Volume (cm3) Coating(s) tested 

A 1.7 none 

B 10.3 TiO2 

C 
9.8 

Al 

D TiO2 

E 4.1 Al 

After the trapped [18F]MeF had warmed up to room temperature and expanded into 
the illumination chamber (Table 7, Figure 19, Chambers B - E), the carrier F2 (0.1 
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– 1.7 µmol) in Ne was added to the reaction chamber. The 19F/18F isotopic 
exchange reaction was promoted by illumination with 193 nm VUV photons from 
the laser. 

The aluminium coating of chambers C and E was achieved using a vacuum 
evaporator while the TiO2 of the end of chamber B and the entire chamber D was 
applied in the form of TiO2-containing reflective paint. 

 

Figure 19: Discharge chamber (A) and Illumination chamber (B-E) designs and dimensions 

For the evaluation of the VUV-photon-promoted production of [18F]F2, [18F]NFSi 
was selected as a model molecule to assess the electrophilic 18F-fluorination ability 
of the resulting gas mixture (Figure 20). [18F]NFSi was chosen primarily due to 
the simplicity of the radio-HPLC analysis (Figure 21) and labelling reaction. 

 

Figure 20: Synthesis of [18F]NFSi 

The gas mixture produced by VUV-photon illumination of the [18F]MeF/F2/Ne gas 
mixture was bubbled through a solution of NFSi precursor in a 9:1 solution of 
MeCN and H2O (total volume 1 mL). The resulting crude solution of [18F]NFSi 
was analysed by radio-HPLC (Table 8 Entry 6). The non-isolated radiochemical 
yields and Am’s were calculated based on the radio-HPLC analyses of the crude 
reaction products. The Am’s were decay corrected to the EOS. 
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[18F]NFSi Chromatogram
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Figure 21: An example analytical chromatogram obtained for [18F]NFSi produced from VUV-
illumination generated [18F]F2. The [18F]NFSi product has an elution time of 9.6 min, the UV 
active compound with a retention time of 4.1 min corresponds to the unreacted NFSi precursor. 

4.2 HPLC analytical and preparative systems 

Three different HPLC-columns were employed during Studies I – IV. The details 
of the employed eluents and retention times are described in Table 8. 
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Table 8: Details of radioHPLC systems used in the Studies I-IV 

Product 
elution time 

(min) 
20 - 22 

22 - 23 

115 

Various 

4.3 

5.6 

64.2 

9.6 

Product 

[18F]DPA-714 

[18F]F-DPA 

[18F]F-DPAN 

Various 

[18F]DPA-714 

[18F]F-DPA 

[18F]F-DPAN 

[18F]NFSi 

Flow 
(mL/min) 

4 

6 

4 

4 

2 

1.5 

Eluent  System 

65% A 
35% B 

0 - 5 min: 100% A 
5 - 55 min: 0 - 22% B 

55 min on: 22% B 

70% A 
30% B 

70% A 
30% B 

0 - 5 min: 100% A 
5 - 55 min: 0 - 22% B 

55 min on: 22% B 

0 - 10 min 5 - 20% B 

Eluents 

A: 0.1M AcONH4 
B: MeCN 

A: 0.1M AcONH4 

(pH 8.5) 
B: MeCN 

A: 0.1% HCOOH 
acid 

B: MeCN 

A: 0.025M 
NaH2PO4 (pH 3.5) 

B: MeCN 

A: H2O 
B: MeCN 

Column 

Waters  
X-Terra Prep RP18  

(10 µm, 7.8 x 300 mm) 

Waters  
X-Terra Prep RP18  

(7 µm, 7.8 x 300 mm) 

Merck Chromolith 
Performance RP-18e  

(10 µm, 4.6 x 100 mm) 

Waters Atlantis dC18,  
(5 µm, 3.9 × 150 mm) 

Use 

Preparative 
A

nalytical 

Study 

I – III 

III 

I 

I – III 

III 

IV 

Entry 

1 

2 

3 

4 

5 

6 
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4.3 Synthesis of [18F]DPA-714 using the nucleophilic 18F-fluorina-
tion device (I) 

The device employed for the nucleophilic 18F-fluorination reactions is an in-house 
constructed device, a technical representation of this device is showed in Figure 
22. 

 

Figure 22: Technical diagram of device used for nucleophilic 18F-fluorination reactions. 

Following the formation of the dry K222/K+[18F]F- complex, the synthesis of 
[18F]DPA-714 was carried out as previously described in literature (Figure 5) 
(James et al. 2008), however a longer, 10 min, reaction time was employed. After 
preparative radioHPLC, (Table 8 Entry 1) the product-containing fraction was 
collected, concentrated and formulated for injection. This was implemented using 
a Waters Sep-Pak Light tC18 cartridge to trap radioligand. After washing with 
water, the [18F]DPA-714 was eluted with ethanol and diluted with saline. The 
resulting 10% ethanolic solution was suitable for intravenous injection, the final 
product was analysed by radioHPLC (Table 8 Entry 4). 

4.4 Synthesis of F-DPA precursors (I, II, III and unpublished) 

The precursors for the syntheses of [18F]F-DPA were synthesised from para-iodo-
benzaldehyde according to previously described procedures (Damont et al. 2015a), 
which were used to arrive at I-DPA, the iodinated analogue (Figure 17). 
Subsequently, the two different precursors; 2-(5,7-dimethyl-2-(4-
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(tributylstannyl)phenyl)pyrazolo[1,5-a]pyrimidin-3-yl)-N,N-diethylacetamide 
(Figure 23, Compound 1) and 2-(5,7-dimethyl-2-(4-(4,4,5,5-tetramethyl-1,3,2-
dioxaborolan-2-yl)phenyl)pyrazolo[1,5-a]pyrimidin-3-yl)-N,N-diethylacetamide 
(Figure 23, Compound 2) were produced from this by applying and modifying 
previously reported reactions (Landge et al. 2012, Skaff et al. 2005) the conditions 
of which are outlined in Figure 23. 

 

Figure 23: Synthesis of [18F]F-DPA labelling precursors from I-DPA 

4.5 Electrophilic syntheses of [18F]F-DPA (I, II, III and un-
published) 

4.5.1 Electrophilic 18F-Fluorination of Compound 1 (I – III & unpublished) 

The synthesis of [18F]F-DPA was initially attempted using discharge-produced 
[18F]F2. For this, the [18F]F2 was bubbled through a solution of the Compound 1 in 
freon-11 or acetone-d6 containing AgOTf as an additive. 

The products of these reaction were analysed using the same analytical HPLC 
system described for [18F]DPA-714, where the non-radioactive F-DPA was found 
to have a retention time of 5.6 min (Table 8 Entry 4). Following an unsuccessful 
identification of even traces of the desired [18F]F-DPA product, a second analytical 
HPLC method was developed to enable mass spectroscopy to be carried out on the 
collected fractions (Table 8 Entry 3). 

After the unsuccessful initial attempts to synthesise [18F]F-DPA from Compound 
1 using [18F]F2, [18F]Selectfluor bis(triflate) was selected as an alternative, milder, 
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electrophilic 18F-fluorination reagent (Figure 24). Initially, to test this hypothesis, 
reactions were carried out with 1 equivalent of Compound 1 and AgOTf (2 
equivalents) that were added to 200 µL of a stock solution of [18F]Selectfluor 
bis(triflate) in acetone-d6 (total radioactivity: approx. 500 MBq). The reaction 
mixture was stirred at 45 °C and samples were taken for radio-HPLC analysis after 
15 and 60 min. 

The effect of a higher concentration of reactants in the reaction mixture was also 
investigated. For this, following the addition of the [18F]Selectfluor bis(triflate), 
half of the acetone was evaporated at room temperature under a flow of helium. 
These reactions were sampled at 15 and 30 min. Radio-HPLC anaylsis of the crude 
reaction product was carried out to determine the non-isolated radiochemical yield. 

 

Figure 24: Synthesis of [18F]F-DPA using [18F]Selectfluor bis(triflate) 

After the initial test reactions, the final conditions chosen for the synthesis of 
[18F]F-DPA for preclinical evaluation were: 1 eq. F-DPA precursor (Compound 
1), 2 eq. AgOTf, a double concentration of reagents and a reaction time of 15 min. 
The entire crude stock of the [18F]Selectfluor bis(triflate) was used in these 
reactions for the production of [18F]F-DPA. Following HPLC purification (Table 
8 Entry 1), the same formulation procedure described for [18F]DPA-714 was 
employed for the formulation of [18F]F-DPA for injection. For the large scale 
reactions for preclinical evaluation, radiochemical yields were calculated from the 
total radioactivity of the final product (decay corrected to EOB) expressed as a 
percentage of the [18F]Selectfluor radioactivity (also decay corrected to EOB). 
Am’s were calculated from the radioactivity measured for the product fraction 
collected from the analytical radio-HPLC of the crude product, decay corrected to 
EOB. 
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Post-target VUV-illumination-produced [18F]F2 was also used to synthesise 
[18F]Selectfluor bis(triflate) and subsequently [18F]F-DPA. These reactions 
employed F2 (1.7 µmol) for the isotope exchange reaction. The [18F]F-DPA 
labelling reaction was carried out using the optimised conditions described above. 

4.5.2 Electrophilic 18F-Fluorination of Compound 2 using [18F]Selectfluor 
bis(triflate) (Unpublished) 

Fluorination of Compound 2 (Figure 25) was achieved by following the previously 
described procedure (Stenhagen et al. 2013). Compound 2 was initially premixed 
with NaOH in MeOH by stirring the mixture at room temperature for 3 h. After 
the mixture had been cooled to 0 °C, AgOTf was added and the mixture was stirred 
at 0 °C for a further 30 min. 

 

Figure 25: Synthesis of [18F]F-DPA from Compound 2 using [18F]Selectfluor bis(triflate) 

The radiolabelling itself was achieved by adding [18F]Selectfluor bis(triflate) to the 
premixed reaction mixture and further stirring the resulting solution for 10 min at 
room temperature. The crude reaction mixture was analysed by radio-HPLC 
(Table 8 Entry 4) and non-isolated radiochemical yield and Am were determined. 
For Am calculations the activity was decay corrected to the EOB. 

4.6 Nucleophilic syntheses of [18F]F-DPA (III) 

4.6.1 Copper-mediated 18F-Fluorination of Compound 1 (III) 

In the case of Compound 1, the drying procedure was performed with only K2CO3 

as the potassium source (Figure 26). Upon cooling, the Cu(OTf)2(pyr)4 (2.8 eq) in 
MeCN was added to the K222/K[18F]F complex and the resulting mixture was 
stirred at room temperature. After 10 min the solvent was evaporated and the 
labelling precursor (Compound 1) in DMA was added and the resulting reaction 
mixture heated under reflux for 10 min. 
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Figure 26: Nucleophilic Syntheses of [18F]F-DPA from Compounds 1 and 2 

4.6.2 Copper-mediated 18F-Fluorination of Compound 2 (Unpublished) 

For the 18F-fluorination of Compound 2, the procedure for the drying of the 
[18F]fluoride was carried out employing the 9:1 mixture of K2CO3/K2C2O4 as the 
potassium source (Figure 26). Upon drying, Compound 2 and Cu(OTf)2(pyr)4 (1.2 
eq) in DMA were added to the K222/K[18F]F complex and the reaction was heated 
under reflux for 10 min. 

4.6.3 HPLC purification, analysis and formulation for injection 

The same procedure was employed for the purification of the products from either 
reaction (Table 8 Entry 2). Following the reaction, the solvent was evaporated to 
reduce the volume of the crude mixture by half, the remaining reaction mixture 
was diluted with the 1.5 mL of the aqueous phase of the preparative HPLC system 
(0.1 M aq. AcONH4 pH 8.5) and injected onto the HPLC column for purification. 

The product-containing fraction was collected and diluted with water and the 
radioligand was trapped on a Waters Sep-Pak Light tC18 cartridge. After the 
cartridge was washed with water, the [18F]F-DPA was eluted using ethanol which 
was then diluted with 0.1 M phosphate buffer, giving a 10% ethanolic solution that 
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was suitable for intravenous injection. The final product was analysed by radio-
HPLC (Table 8 Entry 5) to determine non-isolated radiochemical yield, 
radiochemical purity and Am (decay corrected to EOB). 

4.7 Preclinical evaluations of [18F]F-DPA and comparison with 
[18F]DPA-714 

The experimental animals used for the preclinical work in Studies I – III are 
outlined in Table 9. The ethical permissions for each study are outlined in the 
studies themselves (Studies I – III). 

Table 9: A summary of the animals used in Studies I – III. SD = Sprague Dawley, TG = transgenic 
mouse model of Alzheimer’s disease, APP/PS1-21, WT = wildtype, 

Study Species 
Strain/ 

Genotype  
n Gender 

Weight 
(g) 

Age 
(months) 

I Rats SD 36 m 290 ± 30 2 

II Mice 
TG 31 16 f, 15 m 29.5 ± 5.7 4.5 – 19 

WT 19 9 f, 10 m 29.0 ± 6.8 4.5 – 24 

III Mice 
TG 3 1 f, 2 m 26.5 ± 3.1 

9 
WT 3 2 f, 1 m 38.1 ± 1.7 

Initially [18F]F-DPA was evaluated in healthy Sprague Dawley rats, to determine 
its metabolic profile in vivo and blood-brain barrier penetration (Study I). 
Subsequently, this led to Studies II and III where the [18F]F-DPA was evaluated in 
a transgenic (TG) APP/PS1-21 mouse model of AD. APP/PS1-21 mice were 
originally purchased from Koesler (Rottenburg, Germany) and further bred with 
C57BL/6Cn mice in the Central Animal Laboratory of University of Turku. 
Wildtype (WT) mice from the same litter were used as control animals. 

4.7.1 In vivo PET imaging and tracer kinetics 

In vivo PET imaging for Studies I – III was carried out on the animals described in 
Table 9. After being anaesthetised with 2.5% isoflurane/oxygen gas, the animals 
underwent a 10-minute computed tomography (CT) scan for attenuation correction 
and anatomical reference. Following this, a 60 min dynamic PET scan was started 
and the radiotracer was administered intravenously. The scanning was carried out 
using an Inveon Multimodality PET/CT tomograph (Siemens Medical Solutions, 
Knoxville, TN, USA). 
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Table 10: Summary of details of in vivo imaging from Studies I – III. Molar activity (Am) is given 
for the time of injection. Volumes of interest (VOIs) were: WB (whole brain), FC (frontal cortex), 
CTX (neocortex), HIPP (hippocampus), cerebellar cortex (CB), parietotemporal cortex (PTC), 
STR (striatum), THA (thalamus) and HYP (hypothalamus) 

Study Route of 
Tracer 

production 

Injected 
activity 
(MBq) 

Injected 
mass 

(µg/kg) 

Am 
(GBq/µmol) 

VOIs 

I Electrophilic 31.4 ± 2.1 10 ± 2 4.1 ± 0.4 
WB, heart, 
lungs, liver, 

kidneys 

II Electrophilic 6.9 ± 0.6 50 ± 30 2.4 ± 1.2 
WB, FC, 

CTX, HIPP, 
CB 

III 
Electrophilic 6.8 ± 0.1 38 ± 15 2.3 ± 1.0 

PTC, HIPP, 
WB 

Nucleophilic 7.0 ± 0.2 0.34 ± 0.13 260 ± 110 

The PET scan took 51 frames at the following intervals: 30 x 10 s, 15 x 60 s, 4 x 
300 s and 2 x 600 s. For the image analysis, the dynamic PET images were first 
co-registered with corresponding CT image and subsequently the PET/CT images 
were aligned with an averaged mouse MRI template. Volumes of interest (VOIs) 
were drawn over the regions specified in Table 10. Time–activity curves (TACs) 
and standardised uptake values (SUVs) were obtained from the VOIs. SUVs were 
calculated from the concentration of radioactivity signal in a certain tissue, 
expressed as a percentage of the total injected dose per gram of tissue, by dividing 
by the total body weight of the imaging subject. 

4.7.2 Ex vivo brain autoradiography (II & III) 

Since Studies II and III involved the use of animal models of AD disease, the 
radioactivity accumulation in the brain was studied ex vivo as well as in vivo. After 
the in vivo studies the mice were sacrificed by cardiac puncture. For Study III this 
was carried out after imaging with the high Am [18F]F-DPA. After the animal was 
dissected, the whole brain (WB) was weighed and the radioactivity was measured, 
the brain was then frozen and sliced using a cryomicrotome. The brain slices, 
mounted on glass slides, were exposed onto an imaging plate for around 4 hours. 

The exposed imaging plates were scanned using Fuji BAS-5000 reader and the 
resulting images were analysed. Regions-of-interest (ROIs) were drawn in the 
frontal cortex (FC), hippocampus (HIPP), cerebellar cortex (CB), lateral ventricle 
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(LV) and hypothalamus (HYP) (Study II) and FC, parietotemporal cortex (PTC), 
striatum (STR), HIPP, thalamus (THL) and HYP (Study III). The data was 
presented as region-of-interest to hypothalamus ratios. 

4.7.3 Ex vivo biodistribution (I & II) 

Biodistribution studies were carried out with [18F]DPA-714 (Study I) and [18F]F-
DPA (Studies I and II). The animals were injected with tracer and sacrificed at 
different time-points (described in Table 11). In the case of the Study II 60-minute 
animals, n > 3 since these were some of the animals that had been used for in vivo 
PET studies. The sacrificed animals were dissected, the tissues collected were 
weighed and the radioactivity was measured and reported as the percentage of 
injected dose per gram of tissue (%ID/g). 

Table 11: Summary of tracers, injected doses (IDs), time points and n’s for the biodistribution 
studies of Studies I and II 

4.7.4 Specificity (II) 

To demonstrate the specificity of [18F]F-DPA for the TSPO, a blocking study was 
performed. This entailed pre-treating three 15 month-old transgenic APP/PS1-21 
mice with PK11195 (1 mg), a competitively binding TSPO ligand, 30 minutes 
before the tracer injection (Hardwick et al. 2005). These animals were scanned in 
vivo and ex vivo brain autoradiography was carried out. The data was compared 
with that of 15-month-old TG animals that had not been pre-treated. 

4.7.5 Radio-TLC analysis (I – III) 

To assess the stabilities of the tracers with respect to in vivo metabolism, the 
amount of the unchanged tracer and its radioactive metabolites from plasma and 
brain homogenate were analysed by radio-TLC. These samples were taken from 
the animals used for the ex vivo biodistribution studies and hence have the same 
time-points. The deproteinised samples were spotted onto a silica gel 60 TLC plate 

Study Tracer ID (MBq) Time points 
(min) 

n per time point 

I 
[18F]DPA-714 29.0 ± 2.1 

5, 15, 30, 60, 90 3 
[18F]F-DPA 30.7 ± 1.5 

II [18F]F-DPA 6.8 ± 0.6 5, 15, 30, 60 
3 (5, 15, 30 min) 

19 (60 min) 
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and developed with DCM and MeOH (9:1 v/v). After this the plates were dried 
and exposed onto an imaging plate for approximately 4 hours. Following the 
exposure, the imaging plates were scanned and the digital images were analysed 
to generate radiochromatograms (Figure 27). 

 

Figure 27: Example of radio-TLC analysis of mouse plasma with overlaid derived 
radiochromatograms 

4.7.6 Immunohistochemical staining (II) 

Immunohistochemical staining was performed using the ionised calcium binding 
adaptor molecule 1 (Iba1) to visualise the Iba1-immunoreactive microglia, this was 
carried out as described previously by Takkinen et al. (Takkinen et al. 2017). 

4.8 Statistical methods (I – IV) 

Statistical tests were performed on the data collected to determine the statistical 
significance of the differences between various groups. For Studies I and III, a 
two-tailed unpaired t-test was used to test the difference between the ex vivo blood 
activities for the two radiotracers (Study I), between SUVs and ratios calculated 
from autoradiographs of TG and WT animals when they were imaged with either 
high or low Am [18F]F-DPA. 

Study II involved more detailed statistical analyses of the data. For this study, the 
ANOVA model was used to test the differences between TG and WT animals 
regarding the uptake of tracer in various brain regions, measured both in vivo and 
ex vivo, at different ages. 

In Study IV the significance of differences between non-isolated radiochemical 
yields as well as Am’s achieved with the different conditions was tested using the 
unpaired t-test. 

In all the studies, differences were considered to be statistically significant when 
the p value was less than 0.05. 
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5 RESULTS 

5.1 Electrophilic Syntheses of [18F]F-DPA (I – III and unpublished) 

The initial direct fluorination reactions attempted employing [18F]F2 and the 
stannylated precursor (Compound 1) did not result in the synthesis of the desired 
[18F]F-DPA product. Analysis of the crude reaction mixture revealed that radio-
fluorination did indeed occur. However, the radiofluorinated products eluted at 
approximately the same time as the unreacted precursor. These fractions were 
analysed by mass spectroscopy (MS) revealing the presence of mono, di, tri, tetra 
and even penta-fluorinated species (Figure 28). 

 

Figure 28: Attempted syntheses of [18F]F-DPA from Compound 1 

Following the initial attempts to synthesise [18F]F-DPA, the reaction was 
attempted using [18F]Selectfluor bis(triflate) as the electrophilic source of fluorine-
18. This approach yielded the desired [18F]F-DPA. Optimisation of this reaction 
was carried out on a small scale, the different parameters studied were reaction 
volume and reaction time. 

The optimised reaction conditions which were subsequently used for the synthesis 
of [18F]F-DPA from Compound 1 for preclinical evaluation were; a 15-minute 
reaction time and a reaction volume of 100 µL. An analytical radio-HPLC 
chromatogram of the crude reaction mixture is presented in Figure 29. 
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Electrophilic 18F-Fluorination of Compound 1; Crude Reaction Mixture
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Figure 29: Example analytical radio-HPLC chromatogram of the crude product of the 
electrophilic 18F-fluorination reaction carried out using the stannyl precursor (Compound 1). The 
[18F]F-DPA product has a retention time of 5.8 min. The UV active compound eluting at 4.2 min 
corresponds to the protonated analogue 

The optimised reaction conditions which were subsequently used for the synthesis 
of [18F]F-DPA from Compound 1 for preclinical evaluation were; a 15-minute 
reaction time and a reaction volume of 100 µL. An analytical radio-HPLC 
chromatogram of the crude reaction mixture is presented in Figure 29. 

Table 12: Summary of [18F]F-DPA syntheses for preclinical studies in Studies I – III. 
Radiochemical yield was calculated from the radioactivity of the product expressed as a 
percentage of the total radioactivity of [18F]Selectfluor bis(triflate) with both values being decay 
corrected to EOB. The Am’s are decay corrected to the end of bombardment. 

The reaction conditions optimised in Study I were employed for the subsequent 
studies and the results from the electrophilic syntheses for the animal experiments 
are summarised by study in Table 12. 

Study [18F]Selectfluor 
bis(triflate) activity 

(GBq) 

Radiochemical 
yield (%) 

Am 
(GBq/µmol) 

Radiochemical 
purity (%) 

I 7.5 ± 0.8 15 ± 3 7.8 ± 0.5 > 99 

II 7.5 ± 2.3 15 ± 3 7.5 ± 2.3 > 99 

III 9.1 ± 2.0 16 ± 4 9.0 ± 2.9 > 99 
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Electrophilic 18F-fluorination of Compound 2; Crude Reaction Mixture
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Figure 30: Example analytical radio-HPLC chromatogram of the crude product of the 
electrophilic 18F-fluorination reaction carried out using the boronic ester precursor (Compound 
2). The [18F]F-DPA product has a retention time of 5.8 min. The UV active compound eluting at 
4.2 min corresponds to the protonated analogue. 

The electrophilic 18F-fluorination of Compound 2 (results unpublished) was 
carried out following a previously described procedure for the labelling of the 
boronic ester precursors (Stenhagen et al. 2013). The [18F]F-DPA product was 
obtained in 12.5 ± 4.6% non-isolated radiochemical yield, determined from 
analytical radio-HPLC (Figure 30), with an Am of 10.4 ± 3.1 GBq/µmol (decay 
corrected to EOB). This yield and Am obtained are on par with those of the 
electrophilic 18F-fluorination reactions of Compound 1 (Study III, Table 12). 

5.2 Synthesis of [18F]F2 by VUV-photon promoted isotopic ex-
change (IV) 

The first parameters to be studied were the shape and coating of the illumination 
chamber. For this the reactions were carried out with relatively large amounts of 
carrier. The [18F]F2 produced in these reactions was used in the synthesis of 
[18F]NFSi which was subsequently analysed by radio-HPLC, results of these 
reactions are presented in Table 13. The [18F]NFSi radiochemical yields were 
calculated based on area of the [18F]NFSi peak in the analytical radio-HPLC 
radiochromatogram, expressed as a percentage of the total area under the 
chromatogram. The Am’s determined for the [18F]NFSi product were decay 
corrected to the EOS. 

Optimisation of the illumination times indicated that, with the conditions studied, 
increasing the number of pulses from 15000 to 30000 pulses resulted in an increase 
yield and Am of the resulting [18F]NFSi. However, no further increase could be 
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seen when 60000 pulses were used. Hence illuminations of 30000 pulses were 
employed in the remainder of the study. 

Table 13: Optimisation of chamber shape and coating material. * based on radio-HPLC analysis 
of the crude product. Am’s are decay corrected to EOS. 

Chamber Chamber details Carrier F2 
(nmol) 

Am 
(GBq/µmol) 

Non-isolated 
[18F]NFSi 

radiochemical 
yield *(%) 

B 
T-Shaped 

TiO2 coated end 
1260 0.04 - 0.15 34 - 36 

C 
30 mm Spherical 

Al coated 
1280 0.04 - 0.12 15 

D 
30 mm Spherical 

TiO2 coated 
1280 0.04 - 0.10 5 – 9 

E 
20 mm Spherical 

Al coated 
1090 0.04- 0.05 9 - 13 

For the optimisation of the amount of carrier F2 gas the reactions were carried out 
employing approximately 3 GBq of starting [18F]fluoride activity. Various 
quantities of carrier F2 were assessed (Table 14), while the yield of the resulting 
[18F]NFSi decreased as the amount of F2 was lowered, the Am increased until 190 
nmol after which it too decreased. 

Table 14: Results from the reactions for the optimisation of carrier F2 amounts. * based on radio-
HPLC analysis of the crude product. Am’s are decay corrected to EOS. 

Carrier F2 
(nmol) 

Am 
(GBq/µmol) 

Non-isolated 
[18F]NFSi 

radiochemical yield 
*(%) 

1720 0.07 ± 0.05 29 ± 2 

1180 0.16 ± 0.07 31 ± 3 

380 0.66 ± 0.41 23 ± 5 

190 0.93 ± 0.43 13 ± 6 

95 0.57 ± 0.37 5 ± 2 
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Finally, the amount of starting activity was increased approximately ten-fold and 
the reaction was carried out using the optimised conditions. This reaction resulted 
in a non-isolated [18F]NFSi yield of 13 ± 3% (based on radio-HPLC analysis of the 
crude product) and an Am of 10.3 ± 0.9 GBq/µmol (decay corrected to EOS). These 
results are in line with those of the reactions performed using 190 nmol F2 and the 
lower starting activity, the yield is the same, while the Am, like the starting activity, 
is approximately ten-fold higher. 

5.2.1 Synthesis of [18F]F-DPA using VUV-photon promoted isotopic ex-
change produced [18F]F2-derived [18F]Selectfluor bis(triflate) (un-
published results) 

The applicability of using [18F]F2 generated by VUV-photon illumination-
promoted isotopic exchange to synthesise [18F]Selectfluor bis(triflate) and 
subsequently [18F]F-DPA was assessed. 1.7 µmol of carrier F2 was used for the 
isotopic exchange reaction. [18F]F-DPA was produced in 4 - 33% non-isolated 
yield (based on radio-HPLC analysis of the crude product) with an Am of 0.071 ± 
0.017 GBq/µmol (decay corrected to EOS). This Am agrees with that which was 
previously achieved using this quantity of carrier (Table 14). 

5.3 Copper-mediated nucleophilic 18F-fluorination (III and un-
published)  

The results of the nucleophilic 18F-fluorination reactions using stannyl (Compound 
1) and boronic ester (Compound 2) precursors are summarised in Table 15. 

Table 15: Results of Cu-mediated nucleophilic 18F-fluorinations of Compounds 1 and 2, the 
radiochemical yield (RCY) was calculated from the analytical radio-HPLC of crude reaction 
samples, Am is decay corrected to EOB. 

Study Precursor Non-isolated 
Radiochemical yield (%) Am (GBq/µmol) 

III Compound 1 11.4 ± 1.0 990 ± 150 

Unpublished Compound 2 15.5 ± 10.5 27 - 2040 

The copper-mediated 18F-fluorination of the initially assessed boronic ester 
precursor did indeed yield the desired product in approximately 16% RCY (based 
on radio-HPLC analysis of the crude product). However, the chromatographic 
purification and analysis proved problematic. The difficulty of separating the UV 
peak corresponding to [18F]F-DPA from a co-eluting UV active compound resulted 
in the wide range of apparent Am’s determined. 
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The next copper-mediated 18F-fluorination employed the stannylated precursor. 
This reaction was first attempted as a one-pot reaction with DMA or MeCN as the 
reaction solvent. However, neither of these reactions afforded the product. It was 
found that for this precursor, the dried [18F]fluoride complex needs to be pre-stirred 
with the copper (II) triflate in acetonitrile for 10 min prior to the labelling reaction, 
for which the solvent needs to be changed to DMA. The results of this reaction are 
presented in Table 15. 

5.4 Preclinical evaluation (I – III) 

[18F]F-DPA synthesised from Compound 1 by electrophilic (Studies I – III) and 
nucleophilic (Study III) approaches underwent evaluation in a preclinical setting. 
In Study I, [18F]F-DPA was compared with the related tracer [18F]DPA-714 in 
healthy Sprague Dawley (SD) rats. For this study, [18F]DPA-714 was synthesised 
according to well described procedures in 43 ± 7% radiochemical yield (calculated 
from [18F]fluoride activity) and with an Am >1 TBq/µmol (decay corrected to 
EOB). 

5.4.1 In vivo 

Initial in vivo PET imaging carried out in SD rats demonstrated that [18F]F-DPA 
quickly passes through the blood-brain barrier and subsequently quickly washes-
out (Figure 31). 

 

 

Figure 31: In vivo PET images of healthy Sprague Dawley rats summed over 0-5 and 40-60 min 
and the derived time activity curve for the whole brain. Acquired using [18F]F-DPA synthesised 
by the electrophilic route, Am at time of injection: 4.1±0.4 GBq/μmol. 

Cortical TACs from in vivo PET imaging of mice using [18F]F-DPA produced by 
an electrophilic route (Figure 32) demonstrated that in mice the kinetics follow 
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those observed previously in rats, a sharp initial uptake of radioactivity followed 
by rapid wash-out and an equilibrium that was reached at about 20 to 40 min after 
tracer-injection. 

In transgenic APP/PS1-21 mice, the shapes of how cortical SUVs (Figure 32) vary 
with time depends on the age of the animal. Between 4.5 to 6 months the curves 
for TG mice strongly resemble the TACs of the age-matched WT animals. The 
level at which the curve plateaus, between 20 and 40 min, increases with age until 
12 months and does not increase further to 15 months. At 19 months the plateau 
level and the height of the graph in general decrease relative to 15 months and are 
about the same as those of 12 - 24 month old WT animals. 
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Figure 32: Graphs showing the variation of cortical standardised uptake values (SUVs) with time 
in transgenic APP/PS1-21 and wildtype animals at different ages. The curves are means without 
standard deviations for clarity. Acquired using [18F]F-DPA synthesised by the electrophilic route, 
Am at time of injection: 2.4±1.2 GBq/μmol. 

The study of [18F]F-DPA SUVs averaged over 20-40 min (Figure 33) shows that 
at the early ages studied (4.5 – 9 months) the uptake of [18F]F-DPA in the brains 
of TG and WT animals does not differ significantly. The first significant increase 
can be seen at 9 months, the SUVs of TG animals then plateau between 12 and 15 
months and a distinct drop can be seen at 19 months. 
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Figure 33: Frontal cortex (A) and hippocampus (B) standardised uptake values (SUVs) of 
transgenic APP/PS1-21 (TG) and wildtype (WT) mice at different ages averaged over 20-40 min. 
(** p < 0.01, *** p < 0.001). Acquired using [18F]F-DPA synthesised by the electrophilic route, 
Am at time of injection: 2.4±1.2 GBq/μmol. 

The use of [18F]F-DPA with different Am’s for imaging was performed in Study 
III. The in vivo results from this, shown in Figure 34, demonstrate that while the 
[18F]F-DPA produced by an electrophilic route has a high initial uptake and fast 
washout, the higher Am [18F]F-DPA, produced by the nucleophilic route, has a 
lower initial uptake and slower washout. This slower washout also means that the 
TACs do not reach a plateau even by the end of the 60 min scan. 
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Figure 34: Standardised uptake values (SUVs) over 0-60 min for the parietotemporal cortices, 
hippocampi and whole brains of transgenic APP/PS1-21 (TG) and wildtype (WT) animals imaged 
with either high Am [18F]F-DPAN or low Am [18F]F-DPAE. Values are means ± SD, n=3 per group. 
Statistical analyses were carried out to determine the significance of differences between the 
SUVs of TG and WT mice averaged over the 20-40 and 40-60 min periods. (* p < 0.05, ** p < 
0.01, *** p < 0.001). Am at time of injection: 260 ± 110 GBq/µmol and 2.3±1.0 GBq/µmol for 
[18F]F-DPAN and [18F]F-DPAE respectively. 

Comparison of averaged SUVs over 20-40 and 40-60 min for [18F]F-DPA 
produced by electrophilic or nucleophilic routes, indicated by brackets and 
asterisks to denote the level of significance, (Figure 34) reveals that imaging with 
high Am [18F]F-DPA results in higher statistically significant difference between 
the SUVs of WT and TG animals during both intervals. Regardless of whether the 
imaging was carried out with high or low Am [18F]F-DPA, the differences between 
SUVs always have higher statistical significance during the 20-40 min interval. 

5.4.2 Ex vivo brain autoradiography (II & III) 

The ex vivo imaging of brain slices obtained after sacrifice showed that this higher 
resolution imaging modality allows significant differences between WT and TG 
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animals to be observed already at 4.5 months in the FC. The ROI/HYP ratios 
follow a similar trend to that already described for SUVs, increasing until 15 
months and dropping at 19 months (Figure 35). 
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Figure 35: Ex vivo autoradiography results showing frontal cortex (FC) and hippocampus (HIPP) 
to hypothalamus (HYP) ratios determined from autoradiography of brain slices from transgenic 
APP/PS1-21 (TG) and wildtype (WT) animals at different ages. Shown are the individual values 
as well as the means ± SD when n ≥ 3. (** p < 0.01, *** p < 0.001). Acquired using [18F]F-DPA 
synthesised by the electrophilic route, Am at time of injection: 2.4±1.2 GBq/μmol. 

The use of higher Am [18F]F-DPA (Study III), showed an increased separation 
between the ROI/HYP ratios of TG and WT in regions such as FC and CTX 
compared to the low Am [18F]F-DPA (Figure 36). Only in the FC, the FC/HYP 
ratio obtained using high Am [18F]F-DPA is significantly higher than that acquired 
using low Am [18F]F-DPA. No significant differences can be observed between the 
WT ROI/HYP ratios acquired with either high or low Am [18F]F-DPA. 
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Figure 36: Ex vivo brain autoradiography results showing frontal cortex (FC), parietotemporal 
cortex (PTC), striatum (STR) and hippocampus (HIPP) to hypothalamus (HYP) ratios of 9 month 
WT and TG animals injected with either high or low molar activity (Am) [18F]F-DPA. Shown are 
the individual values as well as the means ± SD (n = 3 – 5). (** p < 0.01, *** p < 0.001). Acquired 
using [18F]F-DPA synthesised by both nucleophilic (high Am) and electrophilic (low Am) routes. 
Am at time of injection: 260±110 GBq/µmol and 2.6±1.6 GBq/μmol. 

5.4.3 Ex vivo biodistribution 

Comparison of the biodistribution of [18F]DPA-714 and [18F]F-DPA was carried 
out in healthy SD rats (Figure 37). This data shows that the radioactivity from these 
two tracers accumulates similarly in various tissues, particularly in TSPO rich 
organs such as the heart, lungs and kidneys as well as in steroid-producing organs 
such as the liver and adrenals. 
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Figure 37: Comparison of [18F]DPA-714 and [18F]F-DPA (synthesised by the electrophilic route) 
distribution in healthy Sprague Dawley rats. The values presented are means ± SD of the 
percentage of injected dose per gram (%ID/g) of tissue (n=3 per time point). 

The plasma from animals that had been administered with either tracer was 
analysed to determine the fraction of radioactivity that is not bound to plasma 
proteins. [18F]DPA-714 showed a relatively high 33 ± 9% of free radioactivity in 
the plasma at 15 minutes after injection. However, at the same time point, only 7 
± 3% of the radioactivity from [18F]F-DPA was unbound to plasma proteins. 
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5.4.4 Specificity study in mice 

 

Figure 38: In vivo images of the brains of 15-month APP/PS1-21 (TG) and 15-month TG blocked 
mice (left and right respectively) and the derived cortical Standardised uptake values (SUV) time-
activity curves (TACs). Mean ± SD, n = 3/group. Acquired using [18F]F-DPA synthesised by the  
electrophilic route. Am at time of injection: 2.5±0.6 GBq/μmol. 

Pre-treatment with the TSPO-specific ligand PK11195 before tracer 
administration resulted in a significant drop in the radioactivity uptake in the brains 
of the 15-month TG studied relative to the non-pretreated 15-month TG animals. 
This can be seen in both the in vivo data (Figure 38) as well as the ex vivo 
autoradiography images (Figure 39) and the derived data (Figure 40). 

 

Figure 39: 12-month wildtype (WT) and 15-month transgenic APP/PS1-21 (TG) blocked and not 
blocked ex vivo mouse brain autoradiography images acquired using [18F]F-DPA synthesised by 
the  electrophilic route (top row) and corresponding Iba1-stained slices (bottom row) 

The data collected by ex vivo autoradiography corroborates the in vivo 
observations and a significant difference can be seen between the 15-month TG 
animals and the pre-treated counterparts in all the brain regions studied. 

0 20 40 60
0.0
0.3
0.6
0.9
1.2
1.5
1.8

15 mo TG blocked15 mo TG

Cortical TACs

Time (min)

SU
V



68 Results  

FC/HYP HIPP/HYP CB/HYP LV/HYP
0

1

2

3

4

0

5

10

15

20

25

Ra
tio

Ratio (LV/CBG
)

15 mo TG 15 mo TG blocked

***

**

*

*

 

Figure 40: Derived, frontal cortex (FC), hippocampus (HIPP), cerebellar cortex (CB) and lateral 
ventricle (LV) to hypothalamus (HYP) ratios calculated from autoradiographs for 15-month 
transgenic APP/PS1-21 (TG) blocked and non-blocked mice. (* p < 0.05, ** p < 0.01, *** p < 
0.001). Acquired using [18F]F-DPA synthesised by the  electrophilic route. Am at time of injection: 
2.5±0.6 GBq/μmol. 

5.4.5 Radio-TLC analysis of radiometabolites 

In Study I, analysis of the radiometabolic profile of [18F]F-DPA was performed to 
discern whether the positioning of the fluorine-18 label directly on the aromatic 
ring conferred greater stability with respect to metabolic cleavage of the radiolabel 
compared to [18F]DPA-714. 
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Figure 41: Graphs showing extent of [18F]F-DPA and [18F]DPA-714 metabolism in plasma and 
brain of Sprague Dawley rats. [18F]F-DPA was synthesised by the  electrophilic route. 

The results from SD rats (Figure 41) demonstrated that in the plasma [18F]F-DPA 
and [18F]DPA-714 metabolise quickly and after 90 min the unchanged tracers 
account for approximately 30% and 10% of the remaining radioactivity 
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respectively. However, in the brain there is a much more apparent difference 
between the two tracers. In the case of [18F]DPA-714, the unchanged tracer 
accounts for approximately 50% of the remaining activity 90 min after tracer 
injection. While more than 90% of the remaining radioactivity can be attributed to 
the unchanged [18F]F-DPA at the same time point. 

When the radiometabolic profile of [18F]F-DPA was studied in mice, it was found 
that after 60 min more than 70% of the remaining radioactivity in the plasma comes 
from the unchanged [18F]F-DPA. Furthermore, no radiometabolites can be 
observed in the brain and the unmetabolised [18F]F-DPA accounts for more than 
99% of the remaining radioactivity. 
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6 DISCUSSION 

The work presented in this thesis addresses the issue of Am in the synthesis of PET 
tracers by different approaches and the use of tracers with different Am’s for PET 
imaging. 

It is well known that a high Am is generally favourable for PET imaging, this 
together with the relative ease of the nucleophilic 18F-fluorination methodology 
means that the majority of 18F-labelled tracers are made by the nucleophilic 
approach. Nevertheless the complementary electrophilic 18F-fluorination 
methodology can provide an alternative synthetic route, which can, depending on 
the compound of interest, be synthetically simpler than the nucleophilic approach.  

[18F]F2 which is used for the electrophilic 18F-fluorination approach is a very 
reactive, corrosive and toxic species which requires specialised equipment to 
handle properly. This is not available at many PET centres and is one of the 
contributing factors to the limited use of electrophilic 18F-fluorination for PET 
tracer synthesis. Another shortcoming of the use of electrophilic 18F-fluorination 
for the labelling of PET tracers is the relatively low Am that can be achieved by 
this approach. Even the post-target production approach, which was developed by 
Bergman and Solin to increase the Am, and was employed throughout this thesis 
can, at best, achieve Am’s of around 55 GBq/µmol. 

It has been shown in this work that a high proportion of non-radioactive compound 
affects the washout profile of the tracer and decreases the difference between the 
SUVs of TG and WT animals. However, the issue of Am plays a more critical role 
in the imaging of small animals, where there is a tendency to push the limits of the 
injected dose. Hence, in preclinical work, minimising the proportion of the non-
radioactive, competitively binding, analogue is favourable, particularly in the case 
of small-animal imaging and when there is low target abundance. In a clinical 
setting, although high Am is favourable, in certain instances it is not crucial, as is 
demonstrated by the continued use of numerous PET tracers, such as 6-[18F]fluoro-
L-DOPA, [18F]CFT and [18F]EF5, synthesised by the electrophilic route. 

Despite the downsides associated with electrophilic 18F-fluorination, it is a useful 
tool in the initial development of PET tracers, when Am is not crucial, particularly 
when the alternative nucleophilic method proves troublesome. 
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6.1 Electrophilic 18F-fluorination reactions for the production of 
[18F]F-DPA (I – IV and unpublished) 

Despite the testing of several reaction conditions, including the use of silver as an 
additive, as well as the high reactivity of F2 and usual effectiveness of the organo-
tin as a leaving group, none of the [18F]F-DPA was observed, when the direct 18F-
fluorination of the stannyl precursor was attempted with [18F]F2. 

The development of a new HPLC purification method, employing mobile phases 
suitable for mass spectroscopy (MS), allowed investigation into the identity of 
these 18F-fluorinated species. MS was carried out on these fractions and it was 
found that the masses corresponded to mono, di, tri, tetra and even penta-
fluorinated species. 

The element tin has several stable isotopes with varying abundancies, with 116Sn 
118Sn and 120Sn being the most abundant. These, together with the less abundant 
isotopes, result in characteristic tin lines which are observed in the mass spectra of 
tin-containing compounds. Figure 42 shows the 605 – 755 m/z region of the mass 
spectrum obtained for the late-eluting 18F-fluorinated species. 

 

Figure 42: Mass spectrum for the late-eluting 18F-fluorinated species (605 – 755 m/z region) 

The molecular weight of the stannylated precursor of F-DPA is 625.5, the peaks 
corresponding to this can be seen in the 620 – 630 range of the spectrum. The 
subsequent group of peaks has a mass that is approximately 19 higher and this 
trend follow for each on the subsequent peaks shown. This, together with the 
characteristic tin-lines confirmed that there were poly-fluorinated tin containing 
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species. The specific fluorination positions were not identified, however shown in 
Figure 43 are some of the possible locations of the labels. 

 

Figure 43 : Possible sites of 18F-fluorination in the perfluorinated tin-containing species 

To avoid the unwanted 18F-polyfluorination reactions, [18F]Selectfluor bis(triflate) 
was employed for the next reactions attempted. [18F]Selectfluor bis(triflate) which 
can be made from [18F]F2 gas with relative ease, is a milder 18F-fluorination 
reagent, which, once produced can be stored as a stock solution and used for 
multiple reactions. Furthermore since the [18F]Selectfluor bis(triflate) is dissolved 
in solution this can allow for longer reaction times as well as heating and stirring 
if necessary. 

Table 16: Comparison of the use of VUV-illumination and HV discharge for the synthesis of 
[18F]F2 in the production of [18F]F-DPA. Am’s are decay corrected to EOS. * based on radio-HPLC 
analysis of the crude product 

Carrier F2 
amount (µmol) 

Excitation 
method 

[18F]Selectfluor 
bis(triflate) 

Activity (MBq) 

[18F]F-DPA 

Am 
(GBq/µmol) 

non-isolated 
radiochemical 

yield (%) * 

1.7 VUV-
illumination 347 ± 49 0.07 ± 0.02 16 ± 15 

1.7 HV 
discharge 500 ± 13 0.90 ± 0.11 33 ± 3.6 

The synthesis of [18F]F-DPA using [18F]Selectfluor bis(triflate) derived from 
[18F]F2 made by various post-target production routes has also been studied. 
Employing VUV-illumination for the generation of [18F]F2 gave the [18F]F-DPA 
product in appreciable yield and with an Am that is on the same level as those 
reported for the [18F]NFSi production carried out using that level of carrier. 
However, both the RCY and Am obtained by this route are significantly lower than 
those achieved when using the HV discharge to promote the isotopic exchange 
reaction (Table 16). 

When using SF6 derived [18F]F2 to produce [18F]Selectfluor bis(triflate) and 
subsequently [18F]F-DPA, the final product was obtained in 1.3 GBq/µmol Am but 
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in quite low 2% RCY (determined by radio-HPLC analysis of the crude product) 
(Krzyczmonik et al. 2017). 

6.2 Nucleophilic 18F-fluorination reactions for the production of 
[18F]F-DPA (III and unpublished) 

During Study III, different labelling approaches were studied for the synthesis of 
[18F]F-DPA. It was found that when employing Compound 1 as the precursor for 
the copper-mediated nucleophilic 18F-fluorination reaction, it was favourable to 
pre-stir the copper triflate with the [18F]fluoride in acetonitrile prior to the labelling 
reaction. However, in those cases when Compound 2 was used, such a pre-stir was 
not necessary.  

It has previously been hypothesised that acetonitrile has a crucial stabilising role 
on an intermediate Cu[18F]FOTf complex in copper-mediated nucleophilic 
fluorinations of aryl-stannanes (Gamache et al. 2016). In these fluorination 
reactions of tin containing precursors (Gamache et al. 2016, Makaravage et al. 
2016) the only species that can act as a stabilising ligand is acetonitrile. In contrast, 
the reaction for the labelling of Compound 2 proceeds despite the absence of 
acetonitrile. This may be due to the fact that the labelling protocol for boronic 
esters which was applied for this reaction (Preshlock et al. 2016a, 2016b, Tredwell 
et al. 2014) employs a mixture of potassium oxalate and carbonate as the potassium 
source for the formation of the K222/K[18F]F complex. The oxalate can potentially 
act as a stabilising ligand for the intermediate Cu[18F]FOTf complex. 

The hypothesis that the intermediate Cu[18F]FOTf complex requires a stabilising 
ligand is supported by numerous recently reported studies on the Cu-mediated 
radiofluorination of aryl pinacol boronates carried out in tandem with the work 
reported in this thesis. Antuganov et al. found that the addition of pyridine can 
significantly improve the radiofluorination yield of when using cesium carbonate 
and kryptofix as solubilising agents for the [18F]fluoride (Antuganov et al. 2017).  

Zichler et al. applied the Cu-mediated radiofluorination methodology to the 
synthesis of [18F]F-DPA (Zischler et al. 2017) and showed that the presence of 
various alcohols can enhance the radiofluorination yield. For that study Et4NHCO3 

was used in place of K2CO3/K222/KOTf/Py for elution of the [18F]fluoride. Since 
Et4NHCO3 cannot act as a stabilising ligand for the hypothesised intermediate 
species the reaction would not proceed without the addition of an alcohol. No Am 
was reported for [18F]F-DPA synthesised by this approach, however the model 
molecules 6-[18F]FDA and 6-[18F]Fluoro-L-DOPA also synthesised during the 
course of the study were obtained in 39 and 37 GBq/µmol respectively. 
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Although Compound 2 was successfully used as a precursor for the synthesis of 
[18F]F-DPA by a nucleophilic route, the preparative HPLC purification as well as 
radio-HPLC analysis of the crude and final products proved to be troublesome. 
This problem has also been reported in a recent study by Mossine et al. employing 
the Cu-mediated 18F-fluorodeboronation reaction for the synthesis of PET tracers 
(Mossine et al. 2018). Mossine et al. explored alternative reaction conditions to 
minimise the formation of the unwanted co-eluting impurity. However together 
with decreasing the concentration of the by-product these resulted in a decrease in 
radiochemical yield, hence alternative HPLC methods were developed. 

The 18F-fluorination reaction of Compound 1 yielded [18F]F-DPA with a high 
molar activity, ten-fold higher that that reported by Wang et al. (Wang et al. 2017) 

Due to the relative ease of the reactions, HPLC-purification and radio-HPLC 
analysis employing Compound 1 as a precursor compared to those reactions using 
Compound 2, only the products from the labelling reactions performed using the 
stannylated precursor, Compound 1, were used for preclinical evaluation. 

6.3 Metabolism of [18F]F-DPA (I & II) 

Increased stability with respect to metabolism, compared to [18F]DPA-714, was 
observed when the metabolic profile of [18F]F-DPA was studied in rats. This 
demonstrated that, as postulated, the fluorine-18 label is more stable on the 
aromatic position compared to the terminal position of the alkoxy chain in 
[18F]DPA-714. The metabolism of [18F]DPA-714 has been studied in detail by 
Peyronneau et al. (Peyronneau et al. 2013) and various fragments were identified 
by mass spectrometry. A variation could be observed between the metabolism of 
[18F]DPA-714 between rats and baboons. However, in each species defluorination 
of [18F]DPA-714 by O-deethylation did occur. In Study I, metabolism of both 
[18F]DPA-714 and [18F]F-DPA was observed. However, in the case of [18F]F-DPA, 
due to the location of the 18F-fluorine on the aromatic ring, the tracer was found to 
metabolise to a lower extent. 

Unexpectedly, despite the generally faster metabolism of mice, compared to rats, 
no metabolism of [18F]F-DPA could be observed when mouse brain homogenate 
was analysed by radio-TLC (Study II and III). This difference may either arise 
from interspecies variation of metabolic pathways, alternatively the mice may have 
a faster rate of excretion of radioactive metabolites from the brain. 
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6.4 Preclinical evaluation of [18F]F-DPA 

The preclinical evaluation carried out in healthy SD rats during Study I, proved 
that [18F]F-DPA, like [18F]DPA-714, can easily pass the blood-brain barrier and 
enter the brain. The evaluation during Study II further demonstrated that [18F]F-
DPA accumulates more in the brains of TG animals compared to the age-matched 
WT counterparts. While this only represents a significant difference for in vivo 
imaging at 12 months, the ex vivo results exhibit a significant difference as early 
as 4.5 months. 

Whereas the cerebellum had been previously used, with [18F]DPA-714, as a 
reference region for the calculation of ratios from SUVs and autoradiographs 
(Takkinen et al. 2017) during Study II it was found that when using [18F]F-DPA, 
the cerebellum does not represent a valid region to be used as a reference. 
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Figure 44: Linear regression analysis of transgenic APP/PS1-21 and wildtype cerebellum 
standardised uptake values (SUVs20-40). Acquired using [18F]F-DPA synthesised by the 
electrophilic route, Am at time of injection: 2.4±1.2 GBq/μmol. 

Although there is no significant increase in cerebellar [18F]F-DPA uptake between 
successive age groups, it was observed that there is an overall increase in both TG 
as well as WT animals over the entire age periods studied (Figure 44). 
Immunohistochemical staining of brain slices using Iba1 (Figure 45) demonstrated 
that the hypothalamus is a region that remain relatively clear of neuroinflammation 
and the accompanying microglial activation and hence this was used as the 
reference region for the calculation of ratios from autoradiographs.  

However, during in vivo imaging a high uptake of radioactivity can be observed in 
the pituitary gland (Figure 38). Due to the proximity of the hypothalamus to the 
pituitary gland, the hypothalamus could not however be used as a reference region 
for calculating SUV ratios. 
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Figure 45: Immunohistochemical staining using Iba1 of brain slices from 6-month wildtype (WT) 
and transgenic APP/PS1-21 (TG) and 19-month TG mice. 

Pre-treatment of 15-month TG animals with PK11195 was performed to assess the 
specificity of [18F]F-DPA for the TSPO target. Significantly higher tracer uptake 
was seen in all brain regions of age-matched mice which had not undergone pre-
treatment. These findings were in line with concurrent work where the blocking of 
[18F]F-DPA with PK11195 was studied in a rat model of ischemic stroke (Wang 
et al. 2017). 

As expected, the ROI/HYP ratios for the FC, HIPP and CB for the blocked animals 
were approximately 1, thereby proving that, due to the blocking, the radioactivity 
was equally distributed in the brain. While not complete, a blocking effect was also 
seen in the LV where vast amounts of TSPO are present. 

Since Am is an oft-addressed subject with regards to PET tracers, a comparison of 
in vivo data collected from the same animals with high and low Am batches of the 
same tracer is important for the development of this novel tracer and for the future 
development of 18F-fluorination methodologies. The Am’s obtained from the two 
different labelling strategies employed varied by a factor of approximately 100, 
since the injected dose was kept approximately equal, the injected mass of tracer 
hence also varied 100-fold. 

A greater difference could be observed between the in vivo data of TG and WT 
when they were imaged with high Am [18F]F-DPA compared to when they were 
imaged using the low Am tracer. The high Am [18F]F-DPA showed significantly 
higher uptake in TG versus WT animals in all the brain regions studied in vivo. 
Furthermore, apart from the striatum, the TG animals showed a significantly 
higher uptake when they were imaged with high Am versus low Am tracer. The 
SUVs for this comparison were averaged over different time intervals depending 
on the Am of the [18F]F-DPA employed. The analysis was carried out thus since 
the low Am tracer showed the greatest difference between WT and TG animals 
already at 20-40 min post-injection, while the high Am tracer gave the best 
separation in the 40-60 min interval. 
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Naturally, ex vivo comparison could not be performed in the same animals. 
However when the ex vivo data from different animals were compared, a trend 
similar to that described earlier for in vivo data was seen. 

The varying Am had a pronounced effect on the shapes of the TACs (Figure 34) 
due to the relatively high proportion of non-radioactive F-DPA in the low Am 

tracer. The shape of those TACs resembles similar graphs for animals that have 
been pre-treated or co-injected with a competitively binding ligand (Delforge et al. 
1993, Eberl et al. 2017, James et al. 2008, Samson et al. 1985), a sharp initial 
uptake followed by a relatively fast clearance. The time-activity curves for [18F]F-
DPA distribution in APP-PS1 mice were reported by Wang et al. (Wang et al. 
2017). Although these are reported in a different model of AD, they nevertheless 
provide a valuable comparison. The Am of [18F]F-DPA obtained by Wang et al. (96 
± 22 GBq/μmol) is conveniently between those achieved by the electrophilic and 
nucleophilic 18F-fluorination approaches employed in Study III. Visual inspection 
of the shapes of the TACs confirmed that as expected the shape is approximately 
in between those of [18F]F-DPAE and [18F]F-DPAN (Figure 34). The initial uptake 
is not as sudden as that seen for [18F]F-DPAE but faster than for [18F]F-DPAN. 
Similarly the subsequent washout of radioactivity is faster than [18F]F-DPAN but 
not as fast as [18F]F-DPAE. 
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Figure 46: Ratio of standardised uptake value (SUV) time-activity curves (TACs) obtained from 
the PTC and WB of APP/PS-1-21 and WT mice using high and low molar activity (Am) [18F]F-
DPA 

Ratios of the high Am and low Am cortical TACs was calculated for PTC and WB 
of TG and WT animals (Figure 46). The differing kinetics observed for the two 
different Am’s (Figure 34) result in the steep initial increase in the shape of the 
SUVN/SUVE ratio graphs, peaking at approximately 1.5, subsequently the TG and 
WT graphs vary from one another. In the case of the TG graphs, the presence 
specific binding and respective Am’s of the tracer used for imaging cause an 
approximately one and a half times higher uptake of radioactivity in not only the 
PTC but the entire brain when the animals are imaged with high Am [18F]F-DPA.  
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The SUVN/SUVE ratio graph for WT animals shows that following the initial peak 
which is a result of the varying kinetics, the curve gradually decreases to 
approximately 1 (indicated by the dashed line). This suggests that due to the lack 
of specific binding there is very little difference between the uptake of radioactivity 
in the brains of WT animals when they are imaged with high or low Am [18F]F-
DPA. This is in line with the results seen from the ratios calculated from 
autoradiographs (Figure 36). 

6.5 Study limitations 

The studies presented herein have expanded on numerous aspects of the 
radiochemistry of fluorine-18 for the synthesis of PET tracers as well as on the use 
of the novel TSPO-specific radioligand [18F]F-DPA for the imaging of 
neuroinflammation in the APP-PS1-21 model of AD. Nevertheless there are 
certain limitations that can be associated with these studies. Some of these are 
addressed below. 

The post-target production of [18F]F2 for electrophilic 18F-fluorination requires 
specialised equipment which is not commonly available. This limits the 
applicability of electrophilic fluorination to the field of PET radiochemistry as a 
whole. Regardless, the development and use of electrophilic 18F-fluorination 
methodologies for labelling is an important field, since it can allow access to some 
molecules that prove to be difficult to label by a nucleophilic approach. 

Careful consideration needs to be made when planning preclinical studies, since 
the principles of the 3Rs (Replacement, Reduction and Refinement) should be 
adhered to whenever possible. However, minimising the numbers of experimental 
animals can affect the data, specifically it can limit the significance of statistical 
comparisons. Throughout the studies involving experimental animals, the 3Rs 
were adhered to whenever possible. Bar a few exceptions, the group size was n = 
3 for all ages and time-points. While n = 3 is sufficient to perform statistical 
analysis, increasing group size can increase the significance of the data and lessen 
skew from outlying data. 

It is well know that humans possess a single nucleotide polymorphism (rs6971) 
which separates individuals into 3 categories in terms of tracer binding to TSPO, 
high, mixed and low-affinity binders (Owen et al. 2012). The majority of TSPO-
specific radiotracers are sensitive to this polymorphism, this includes [18F]DPA-
714 upon which [18F]F-DPA is based. Hence, in order to make accurate 
conclusions from the PET data collected from humans, genotyping must be carried 
out. While this is not the case in rodents, it somewhat limits the potential of [18F]F-
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DPA translation into humans. Nevertheless [18F]F-DPA can be used to study 
neuroinflammation models in animals.  

There is some contention within the PET community as to the usefulness of TSPO 
as a target for imaging. This mainly arises due to the ubiquitous prevalence of 
TSPO throughout the body. It is difficult to find a suitable non-binding region that 
can be employed as a reference tissue in the brain. Although TSPO-specific 
radiotracers can be used for AD imaging, they do not image the disease pathology 
directly but rather visualise the resulting neuroinflammation. However, the over-
expression of TSPO in a range of medical conditions means that TSPO-specific 
tracers can be used to study a range of diseases including numerous neurological 
conditions, cancers, and addiction (Kohno et al. 2019, Li et al. 2016). 
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7 CONCLUSIONS 

Study I – An electrophilic route for the synthesis of [18F]F-DPA was employed 
using [18F]Selectfluor bis(triflate). The investigation of the alternative, more direct, 
electrophilic 18F-fluorination employing [18F]F2 demonstrated that F2 gas is too 
reactive for the precursor and results in the formation of perfluorinated products. 
The Am of the resulting tracer (7.8 ± 0.5 GBq/µmol) was enough for preclinical 
evaluation to show that the tracer crosses the blood-brain barrier into the brains of 
healthy rats and has more metabolic stability than [18F]DPA-714. 

Study II – The imaging of APP/PS1-21 mice at different ages using [18F]F-DPA 
showed that it can be used to detect elevated TSPO in diseased animals. Whereas 
the in vivo PET data shows the first significant elevation in TSPO at 12 months of 
age, the higher resolution autoradiography imaging allows visualisation of the 
significant elevation already at 4.5 months. A blocking study involving pre-
treatment of the animals with PK11195 resulted in a significantly reduced uptake 
of [18F]F-DPA, indicating that [18F]F-DPA and PK11195 have a common TSPO 
binding site. 

Study III – Alternative electrophilic and nucleophilic syntheses were studied for 
the synthesis of [18F]F-DPA. Nucleophilic 18F-fluorination of a stannylated 
precursor by a copper-mediated reaction resulted in the desired product with very 
high Am (0.99 ± 0.15 TBq/µmol). Investigation of the effect a one-hundred-fold 
increased Am has on preclinical imaging, revealed a change of the washout profile 
and a 1.5 fold increase of specific uptake in animals with elevated TSPO. Reactions 
employing a boronic ester precursor resulted in problematic purifications and very 
long reaction times. 

Study IV – a) VUV-illumination can be used in place of high voltage discharge to 
promote the 18F/19F isotopic exchange reaction for the post-target synthesis of 
[18F]F2. The chamber shape, coating, and amount of carrier are all important 
parameters that must be considered since they can greatly affect the yields and 
Am’s obtained. The optimal conditions produced [18F]F2 that could be used for the 
labelling of model molecules with an Am of 0.93 ± 0.43 GBq/µmol, and when a 
ten-fold starting activity was used; 10.3 ± 0.9 GBq/µmol. 

b) [18F]F2 produced by VUV illumination of [18F]MeF and F2 mixture can be used 
for the synthesis [18F]Selectfluor bis(triflate) which can further be used in the 
labelling of [18F]F-DPA. 
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