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The solar wind plasma flows around the magnetosphere in the magnetosheath, down-
stream of the Earth’s bow shock. Within the magnetosheath, jets with higher earth-
ward velocities than their surroundings are often observed. These jets can trigger
many types of effects when impacting the magnetopause, the boundary of the mag-
netosphere. Lately, observations have linked jets to triggering magnetic reconnec-
tion, which connects the solar wind’s interplanetary magnetic field (IMF) with the
Earth’s magnetic field and allows solar wind mass and energy to enter the magneto-
sphere. Magnetic reconnection is efficiently driven during southward IMF, when the
IMF is anti-parallel to the Earth’s northward field at the subsolar magnetopause.
In this thesis, we statistically study how the IMF orientation controls where jets oc-
cur and how often they impact the subsolar magnetopause, and whether jets could
statistically affect magnetopause reconnection.

We use measurements from the Time History of Events and Macroscale Interactions
during Substorms (THEMIS) satellites and from the OMNI solar wind data set from
the years 2008–2011. We find that jets are 9 times more common downstream of the
quasi-parallel shock, where the local shock normal is almost parallel with the IMF,
than downstream of the quasi-perpendicular shock. Jets larger than 1 Earth radius
are estimated to hit the subsolar magnetopause 5–60 times per hour depending on
the IMF orientation. During northward IMF, jets exhibit southward fields close to
the magnetopause more often than the non-jet magnetosheath. This suggests that
the magnetic field within jets is statistically favorable for enhancing reconnection
during the more quiet northward IMF conditions.

These results highlight the role of magnetosheath jets in the transport of solar wind
energy into the magnetosphere. Impacts and the effects of jets are estimated to be
very common downstream of the quasi-parallel shock. Magnetopause reconnection
is a key process in space weather and jets are expected to enhance this process when
it is generally suppressed. In the future, it is important to investigate the physical
mechanisms behind these results and how often jets actually trigger magnetopause
reconnection.

Keywords: space physics, magnetosheath, magnetosheath jets, magnetosphere, in-
terplanetary magnetic field, solar wind, magnetic reconnection
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Aurinkotuulen plasma virtaa Maan magnetosfäärin ohi keulashokin alavirrassa si-
jaitsevassa pyörteisessä välivyöhykkeessä, jossa havaitaan usein ympäröivää plas-
maa nopeampia suihkuvirtauksia. Nämä suihkuvirtaukset voivat aiheuttaa monen-
laisia prosesseja törmätessään magnetosfäärin reunaan, magnetopausiin. Viime ai-
koina suihkuvirtaukset on liitetty magneettisen rekonnektion kytkemiseen magneto-
pausilla. Rekonnektiossa aurinkotuulen planeettainvälinen magneettikenttä (IMF)
yhdistyy Maan magneettikentän kanssa mahdollistaen aurinkotuulen ja sen ener-
gian virtauksen magnetosfääriin. Tämä prosessi on erityisen yleinen IMF:n ollessa
eteläinen eli vastakkaissuuntainen Maan kentän kanssa. Tässä tutkielmassa tutki-
taan IMF:n suunnan vaikutusta suihkuvirtausten esiintyvyyteen ja siihen kuinka
usein ne törmäävät magnetopausiin, sekä suihkuvirtausten mahdollista tilastollista
vaikutusta magnetopausin rekonnektioon.

Tutkielmassa käytetään Time History of Events and Macroscale Interactions during
Substorms -satelliittien (THEMIS) ja OMNI-aurinkotuuliaineiston mittauksia vuo-
silta 2008–2011. Tutkielman tulosten mukaan pitkittäisen keulashokin, missä IMF ja
shokin normaali ovat lähes pitkittäiset, alavirrassa suihkuvirtauksia havaitaan 9 ker-
taa useammin kuin poikittaisen shokin alavirrassa. Maan sädettä suurempia suihku-
virtauksia arvioidaan törmäävän tutkittavaan magnetopausiin 5–60 kertaa tunnissa
riippuen IMF:n suunnasta. Pohjoisen IMF:n aikaan suihkuvirtauksissa on magne-
topausin lähellä selvästi useammin eteläistä magneettikenttää kuin normaalisti, eli
niiden magneettikenttä on tällöin tilastollisesti suotuisa lisäämään rekonnektiota.

Tutkielman tulokset korostavat pyörteisen välivyöhykkeen suihkuvirtausten roo-
lia aurinkotuulen energian välittämisessä magnetosfääriin. Suihkuvirtauksien
törmäysten magnetopausiin, ja siten myös niiden vaikutusten, arvioidaan olevan
todella yleisiä pitkittäisen shokin alavirrassa. Magnetopausin rekonnektio on kes-
keinen prosessi avaruussäässä, ja suihkuvirtausten voidaan odottaa lisäävän tätä
rauhallisemman pohjoisen IMF:n aikaan. Jatkossa on tärkeää tutkia fysikaalisia me-
kanismeja näiden tulosten taustalla ja sitä kuinka yleistä suihkuvirtausten kytkemä
magnetopausin rekonnektio todellisuudessa on.

Asiasanat: avaruusfysiikka, pyörteinen välivyöhyke, pyörteisen välivyöhykkeen
suihkuvirtaukset, magnetosfääri, planeettainvälinen magneettikenttä, aurinkotuuli,
magneettinen rekonnektio
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Acronyms and abbreviations

AU astronomical unit
BS bow shock
CDF cumulative distribution function
CIR co-rotating interaction region
CME coronal mass ejection
ESA Electrostatic Analyzer/European Space Agency
FGM Fluxgate Magnetometer
FTE flux transfer event
GIPM Geocentric Interplanetary Medium coordinate system
GPE Geocentric Plasma Ecliptic coordinate system
GSE Geocentric Solar Ecliptic coordinate system
GSM Geocentric Solar Magnetospheric coordinate system
HCS heliospheric current sheet
IMF interplanetary magnetic field
IMP Interplanetary Monitoring Platform spacecraft
KS2 two-sample Kolmogorov-Smirnov test
MHD magnetohydrodynamics
MP magnetopause
MSH magnetosheath
NASA National Aeronautics and Space Administration
SLAMS short large amplitude magnetic structure(s)
SW solar wind
SZA solar zenith angle
THEMIS Time History of Events and Macroscale Interactions

during Substorms spacecraft
ULF ultra-low frequency
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Introduction

The interplanetary space is filled with charged particles originating from the Sun

and cosmic ray sources outside of our solar system (Crosby, 2007). A constant flow

of electrons and positive ions from the Sun makes up the solar wind (Parker, 1958).

During its propagation, this plasma also drags out the Sun’s magnetic field, forming

the interplanetary magnetic field (IMF). On top of the solar wind that in itself

varies in composition and speed, the Sun exhibits many types of events that release

high-energy particles and clouds of plasma and magnetic fields into space. These

so-called space weather events can be very harmful for our modern infrastructure

consisting of technological systems on ground and in space, and for life (Bothmer

and Daglis, 2007).

Fortunately, the Earth is protected by its magnetic field which prevents most

charged particles from getting to the surface of the Earth. However, variations in

the solar wind and the IMF can weaken this shield (Bothmer and Zhukov, 2007).

Moreover, the Earth’s magnetic field also has adverse effects as it guides charged

particles down the magnetic field lines towards the Earth’s polar regions and traps

charged particles into the magnetosphere, the area under the influence of the Earth’s

magnetic field, holding them in radiation belts around the Earth (Crosby, 2007). As

our presence in the near-Earth space and beyond increases, our satellites and astro-

nauts need to be protected from these hazards, along with the modern technology

and infrastructure on ground that we take for granted. Space physics is the field

that studies this complex environment of the Earth’s magnetosphere and its coupling

with the solar wind, as a part of the near-Earth space environment.

In this thesis, we look into the interaction of the solar wind with the Earth’s

magnetosphere and study the region called the magnetosheath, where the solar wind

flows around the magnetosphere. The basic structure of the system is illustrated

in Figure 1. The solar wind is supersonic which leads to the formation of a bow

shock in front of the Earth, just like in front of a supersonic jet flying through
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Figure 1. The Earth’s magnetosphere in a meridian plane, where up is north and down

is south. The solar wind flows out from the Sun into the interplanetary space, carrying

its magnetic field with it forming the interplanetary magnetic field (IMF). The Earth’s

magnetic field stands as an obstacle to this supersonic flow, such that a bow shock is

formed. The shocked solar wind flows around the Earth in the magnetosheath, between

the bow shock and the magnetopause, where jets with higher earthward velocities are

often observed. The image is not to scale. The background image credit: SOHO (ESA &

NASA).

the air. The shock compresses and slows down the solar wind which can then

flow around the Earth’s magnetosphere in the magnetosheath, between the bow

shock and the outer boundary of the magnetosphere, the magnetopause. Within the

magnetosheath, plasma regions comparable to the size of the Earth with significantly

higher earthward velocities than the background flow are often observed (Plaschke

et al., 2018, and the references therein). These plasma structures have been named

magnetosheath jets. The first observations of such structures were made over 20 years

ago by Němeček et al. (1998), but during the last couple of years, these jets have been

associated with multiple types of phenomena affecting the Earth’s magnetosphere,

which has led to a growing interest in these structures. These phenomena include,

e.g., auroral brightenings (Wang et al., 2018) and the excitation of standing waves on

the magnetopause (Archer et al., 2019). Following these observations, understanding

where and when magnetosheath jets occur has become increasingly more important.

The IMF conditions greatly affect the dynamics of the Earth’s magnetosphere

(Eastwood et al., 2015, and the references therein). The IMF orientation affects the

structure of the bow shock, which is believed to be closely linked to the formation
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of magnetosheath jets (Hietala et al., 2009; Hietala and Plaschke, 2013; Karlsson

et al., 2015), and it also determines the underlying magnetic field patterns in the

magnetosheath (Fairfield, 1967). As the Earth’s magnetic field points northward

on its side of the subsolar magnetopause, a process called magnetic reconnection is

driven when the magnetic field on the magnetosheath side points in the opposite

direction — southward (Cassak and Fuselier, 2016, and the references therein). This

process is naturally more prevalent during intervals of southward IMF. Magnetic re-

connection connects the IMF and the Earth’s magnetic field and it is a key process

in transporting solar wind mass and energy into the magnetosphere (Cassak and

Fuselier, 2016). Therefore, it is of great interest to study the magnetic field within

magnetosheath jets because if it differs from the surrounding magnetic field, a jet

could proposedly trigger or suppress this process when impacting the magnetopause

(Hietala et al., 2018). Evidence of an event where a jet triggered magnetic recon-

nection has in fact already been provided by Hietala et al. (2018). However, in the

event they studied, the magnetopause was too thick for reconnection to occur and

it was the high dynamic pressure of the jet that caused the magnetopause to be

compressed and ultimately led to reconnection. Additionally, in the case study of

Nykyri et al. (2019), jets were suggested to have triggered magnetopause reconnec-

tion which then led to observed reconnection in the tail of the magnetosphere. In

this event, which occured during northward IMF conditions, intervals of southward

magnetic field within the magnetosheath were associated with jets.

In this thesis, we statistically study the magnetic characteristics of magnetosheath

jets using 2008–2011 Time History of Events and Macroscale Interactions during

Substorms (THEMIS) spacecraft data (Angelopoulos, 2008) from the magnetosheath

and OMNI multi-spacecraft solar wind data (King and Papitashvili, 2005). We in-

vestigate how the IMF orientation controls where and how often these jets occur.

We study their impact rates on the subsolar magnetopause as they are directly re-

lated to the prevalence of jet-induced effects in the magnetosphere. We note that

this aforementioned study and its results have already been published by Vuorinen
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et al. (2019). As jets have been linked to magnetopause reconnection events, we

study the magnetic properties of jets themselves to better understand the role jets

may have in affecting this key process in the magnetospheric dynamics.

We find that the IMF controls jet occurrence with jets occurring 9 times as

often downstream of the quasi-parallel bow shock, where the IMF is almost parallel

to the local shock normal, in comparison to the quasi-perpendicular region, where

the IMF is almost perpendicular to the normal. Jets larger than 1 Earth radius in

diameter are estimated to hit the subsolar magnetopause around 5–60 times per hour

depending on the IMF orientation. Our results on the jets’ magnetic fields close to to

the magnetopause indicate that jets do not have statistical effect on magnetopause

reconnection during southward IMF. However, we find that the magnetic field inside

jets is favorable for enhancing the occurrence of magnetopause reconnection during

northward IMF when the occurrence of reconnection would otherwise be low.

This thesis is organized as follows. We describe the background of the topics

in Chapter 1. In Chapter 2, we describe the data and methods that were used in

this study. In Chapter 3, we present the results and discuss them in Chapter 4. We

summarize the results and give the conclusions in Chapter 5. In the end, in Chapter

6, we provide a brief outlook on possible future studies on the topic.

1 Background

In this chapter, we briefly describe the Earth’s space environment, starting from

the solar wind and the interplanetary magnetic field in Section 1.1. We use the

solar wind data set of our statistical study (described in detail in Section 2.1) to

provide supporting examples. Then we move on to the structure of the Earth’s

magnetosphere and aim to understand its dynamics in relation to the solar wind

and IMF conditions in Section 1.2. As the dynamics of the bow shock are believed

to be in a key role in jet generation (Plaschke et al., 2018, and the references therein),

we give a compact explanation of collisionless shocks in space in order to understand

the proposed formation mechanisms of magnetosheath jets. In Section 1.3, we also
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describe the process of magnetic reconnection at the subsolar magnetopause. Lastly,

in Section 1.5, we delve into the topic of magnetosheath jets — their occurrence,

properties, and impacts on the magnetosphere.

1.1 The solar wind and the interplanetary magnetic field

The solar wind is a continuous flow of charged particles from the Sun that fills

the whole solar system (Parker, 1958). This plasma originates from the hot out-

ermost part of the solar atmosphere, the corona. Observationally, the solar wind

is supersonic and it can be divided into two categories (Kallenrode, 1998, and the

references therein): fast and slow solar wind. At around 1 AU (149,597,871 km,

the astronomical unit) distance from the Sun where the Earth is located, the fast

solar wind typically exhibits velocities in the range of 400–800 km/s and densities

typically around 3 ions/cm3. It originates from the Sun’s coronal holes where the

magnetic field lines are open, that is, one of their ends extends to space. Here, the

solar wind is able to escape the Sun along the field lines without much resistance.

Fast solar wind is generally stable with not much variation. Slow solar wind has

velocities in the range 250–400 km/s and densities around 8 ions/cm3 at 1 AU. It

comes from regions of closed magnetic field lines: the edges of the coronal holes or

from the streamer belt region near the solar equator during solar minima. It is much

more variable in nature, and during a solar maximum the slow solar wind is observed

to originate from a wide range of latitudes (Hansteen, 2009). In the data set used in

this thesis, which consists of solar wind data from the years 2008–2011, the medians

of the solar wind speed and density were 360 km/s and 6.8 ions/cm3, respectively,

but there is a lot of variation in both quantities. The year 2008 marked the start

of a new solar cycle (NOAA: Space Weather Prediction Center, 2019). It started

with a solar minimum and the solar activity began to rise significantly during the

year 2011. Thus, most of our measurements were taken during the solar minimum,

which explains why the solar wind was of the slow type.

The solar wind drags the Sun’s magnetic field with it, forming the interplanetary
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Figure 2. The interplanetary magnetic field (the yellow arrows) and the heliospheric

current sheet (blue) around the Sun, which is in the center. Credit: J. Jokipii, University

of Arizona (Heliophysics Science Division at NASA’s GSFC, 2012).

magnetic field (Parker, 1958). The magnetic field is said to be frozen into the

solar wind. This means that the magnetic field follows the plasma motion, i.e., it

convects (advects, to be exact) with the solar wind (Kallenrode, 1998). This frozen-

in condition is usually fulfilled in space plasmas due to their high conductivity which

causes convection of the magnetic field to dominate over its diffusion (Koskinen,

2011). Therefore, as the Sun rotates around its axis, the ends of magnetic field

lines frozen-in at the solar surface are dragged along with the rotation and the ends

frozen into the radially out-flowing solar wind are dragged outward from the Sun.

This results in the so-called Parker spiral pattern of the IMF, illustrated as the

yellow arrows in Figure 2. The slower the solar wind speed, the tighter the spiral is

wound into. On average, this Parker spiral makes a ∼ 45◦ angle with the Sun-Earth

line at 1 AU, where the Earth is located. This was also the most common value

for the spiral angle in our data set. However, this a low-order approximation, as

the IMF orientation is greatly affected by different solar wind structures and thus it

keeps varying also at 1 AU (Koskinen, 2011). The magnitude of the IMF is in the

nanotesla range and in our data set its median was 4.3 nT, which represents typical

IMF conditions (Eastwood et al., 2015).

The polarity or the direction of the IMF, whether the field points earthward or

sunward, also varies following the polarity of the Sun’s magnetic field (Kallenrode,

1998). The neutral line on the Sun between the different polarities, inward and
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outward, is not aligned with the equator of the Sun but instead keeps crossing it.

As the field is dragged out from the Sun, the heliospheric current sheet (HCS) (shown

in blue in Figure 2) is formed between the northward and southward magnetic field

regions of different polarities, obeying the Ampère’s law:

∇×B = µ0J, (1)

where B is the magnetic field, µ0 is the permeability of vacuum and J is the current

density. The HCS has an undulating structure due to the inclinations of the neutral

line combined with the Parker spiral. As the Earth moves through space, it keeps

crossing the wavy HCS and the polarity of the IMF at Earth varies. In our data

set, the IMF vector component parallel to the Sun-Earth line was sunward 60 % of

the time and, conversely, anti-sunward 40 % of the time.

The solar wind also exhibits waves, turbulence and many types of transient events

and structures (Kallenrode, 1998). Several types of discontinuities, such as shock

waves (described in Section 1.2), can also form within the solar wind. Importantly,

these disturbances and structures also cause variations in the IMF due to the frozen-

in condition. For example, co-rotating interaction regions (CIRs) and coronal mass

ejections (CMEs) are two common large-scale structures in the solar wind. CIRs

form between streams of slow and fast solar wind as the fast solar wind catches up

with the slow solar wind causing the plasma and the spiral magnetic field lines to

pile up (Koskinen, 2011). CMEs, on the other hand, are large magnetized plasma

structures released from the corona (Kallenrode, 1998). Many CMEs are fast enough

to drive shock waves ahead of them while propagating in the solar wind. Since the

Earth’s magnetosphere (described in Section 1.2) is small compared to the size scale

of these transients and to spatial IMF fluctuations in general, the solar wind and

IMF conditions can be approximated to be homogeneous but time-variant around

Earth. In this study, we assume the solar wind conditions across the whole subsolar

bow shock region to be uniform.
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1.2 Structure and dynamics of the Earth’s magnetosphere

As mentioned in Section 1.1, the solar wind is supersonic and shock waves can form

within the solar wind. This is analogous to a shock forming in front of a supersonic

aircraft. In everyday fluids, gases and liquids, the sound speed is the speed of

mechanical waves or disturbances in the medium (Kallenrode, 1998). Sound waves

cannot bring information about an approaching supersonic aircraft before the arrival

of the aircraft itself (Burgess and Scholer, 2015). Therefore, the air in front of the

aircraft cannot deflect and the aircraft catches the sound waves which ultimately

steepen into a shock wave. The shock wave transforms kinetic energy of the flow into

thermal energy, and thus slows down the flow and abruptly increases the temperature

and the sound speed of the medium (Kallenrode, 1998). As a result, the shock

transforms the upstream supersonic flow into a subsonic downstream flow which

can then divert around the aircraft.

The same process can occur in plasmas, e.g., the solar wind, that are ionized flu-

ids in which electric and magnetic fields are important for the dynamics (Koskinen,

2011). Plasma shocks are in fact ubiquitous in the universe and they are important

acceleration sites of charged particles (Balogh et al., 2005). The closest one to us is

the bow shock formed in front of the Earth’s magnetosphere. In this case, the Earth’s

magnetic field acts as an obstacle to the supersonic solar wind. While particle colli-

sions play an important role in gas-dynamical shocks by causing the dissipation of

kinetic energy into thermal energy, collisions are rare in the low-density solar wind

plasma (Kallenrode, 1998). In such collisionless plasma shocks, the dissipation is

caused by the interaction of the particles and the magnetic field (Kallenrode, 1998).

In plasmas, there are also additional speeds for the propagation of disturbances:

the Alfvén speed and the fast and slow magnetosonic speeds (Burgess and Scholer,

2015). Since the solar wind is also super-Alfvénic and super-fast-magnetosonic, the

Earth’s bow shock is a so-called fast-mode shock, like most astrophysical shocks

(Burgess and Scholer, 2015). A fast-mode shock is characterized by an increase of
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the magnetic field magnitude across the shock. In our data set (described in Section

2.1), the median magnetic field magnitude in the subsolar magnetosheath was 26 nT

and the median IMF magnitude was 4.3 nT.

The theory of magnetohydrodynamics (MHD) allows us to calculate how the

macroscopic properties of plasma change across a shock (Koskinen, 2011). MHD

treats plasma as a magnetized fluid and combines the equations of hydrodynamics

and electromagnetism. Ideal MHD, which makes simplifying assumptions of the

Ohm’s law, e.g., that of infinite conductivity, provides us with the Rankine-Hugoniot

jump conditions that describe how the macroscopic properties of plasma change in

dynamic equilibrium over an infinitely thin but infinitely wide planar discontinuity

between two homogeneous plasma regions (upstream and downstream):

[ρVn] = 0 (2)[
ρVVn +

(
P +

B2

2µ0

)
n̂− BnB

µ0

]
= 0 (3)[(

1

2
ρV 2 +

γP

γ − 1
+
B2

µ0

)
Vn −

BnB ·V
µ0

]
= 0 (4)

[Bn] = 0 (5)

[VnBt − BnVt] = 0. (6)

The notation [a] = a2−a1 refers to the change of quantity a across the discontinuity,

from the upstream value a1 to the downstream value a2. V is the bulk flow velocity,

B is the magnetic field, P is the plasma pressure, ρ is the mass density, µ0 is the

vacuum permeability, and γ is the polytropic index. The vector components parallel

to the discontinuity normal n̂ are denoted with the subscript n and the components

tangential to the discontinuity are denoted with the subscript t. The jump conditions

are based on the conservation of mass, momentum, and energy (Eqs. (2)–(4)). The

last two conditions (Eq. (5)–(6)) are based on two of the Maxwell’s equations:

∇ ·B = 0 (7)

∇× E = 0, (8)
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Gauss’ law for magnetism and Faraday’s law in the steady state, respectively.

The Rankine-Hugoniot relations can be used to model multiple types of discon-

tinuities, shocks being one of them. Shocks are solutions where there is mass flow

Vn > 0 across the discontinuity. Across a shock, Vn decreases and ρ increases (Bur-

gess and Scholer, 2015). The angles that the shock normal makes with the upstream

bulk velocity and with the upstream magnetic field determine the shock geometry

and the dynamics of the shock (Burgess and Scholer, 2015). The angle between

the flow and the shock normal largely determines how much the total flow velocity

is slowed down and compressed because the deceleration is the most efficient for

the Vn component. This is why shocks are commonly characterized by their Alfvén

Mach number MA = V1n/V1n,A, the ratio between the upstream normal bulk velocity

component and the upstream characteristic Alfvén wave speed V1n,A = B1n/
√
µ0ρ1.

The Alfvén Mach number describes the strength of the shock.

The angle between the upstream shock normal and the upstream magnetic field

is notated with θBn. On top of its role in the MHD jump conditions, it is also very

important for the kinetic structure of the shock. A shock region with θBn < 45◦ is

called a quasi-parallel shock and correspondingly a region with θBn > 45◦ is a quasi-

perpendicular shock (Balogh et al., 2005). Particles reflected from the shock cause

the macroscale structures of quasi-parallel and quasi-perpendicular shock regions to

be very different. At a quasi-perpendicular shock, particles reflecting from the shock

get swiftly carried downstream by the flow as they cannot move perpendicular to the

magnetic field (Burgess and Scholer, 2015). Hence, these particles do not have time

to largely affect the macroscopical structure of the shock, and a quasi-perpendicular

shock transition is sharp. In contrast, at quasi-parallel bow shock regions, where the

IMF is nearly parallel to the local shock normal, some of the solar wind particles can

gain enough energy during the shock transition to reflect and escape far upstream of

the shock along these field lines (Burgess and Scholer, 2015). The escaping particles

and their interaction with the in-flowing solar wind cause the quasi-parallel shock to

be extended upstream into a turbulent foreshock region. The foreshock exhibits, e.g.,



12

field-aligned backstreaming particle distributions and ultra-low frequency (ULF)

waves (Eastwood et al., 2005).

Observations (e.g., Schwartz and Burgess, 1991; Lucek et al., 2008) and simu-

lations (e.g., Blanco-Cano et al., 2009, 2011) have shown that foreshock processes

cause the quasi-parallel shock itself to be structured and corrugated. Schwartz and

Burgess (1991) suggested that the structure of the quasi-parallel shock could be

explained with short large amplitude magnetic structures (SLAMS) that merge into

the shock. SLAMS are around 10-second pulsations of enhanced magnetic field ob-

served advecting toward the bow shock in the foreshock region (Schwartz, 1991).

They are formed from steepened ULF waves (Giacalone et al., 1993). In this pic-

ture, the quasi-parallel shock consists of a patchwork of SLAMS (Schwartz and

Burgess, 1991), and this uneven structure causes the observed rippling of the shock

surface. This theory has gained supporting observational evidence, e.g., by Lucek

et al. (2008).

The global position of the bow shock varies as the dynamic pressure of the solar

wind compresses the magnetosphere (e.g., Formisano, 1979; Merka et al., 2005). A

typical stand-off distance of the bow shock on the Sun-Earth line is around 13RE

(RE = 6,371 km, the Earth’s radius) from the center of the Earth (Koskinen, 2011).

The shape of the bow shock is determined by the shape of the obstacle (Burgess and

Scholer, 2015), so the Earth’s bow shock is approximately shaped like a paraboloid

around the Sun-Earth line due to the form of the dayside magnetopause that encloses

the Earth’s magnetic field. This is illustrated in a 2D cross-section in Figure 1. Due

to the curvature of the bow shock, the direction of the shock normal vector varies

greatly along the shock and the local shock dynamics change with different parts of

the bow shock being quasi-parallel and quasi-perpendicular even during a constant

IMF orientation (Burgess and Scholer, 2015). Furthermore, as the IMF orientation

varies with time due to changes in solar wind conditions, the local shock dynamics

change. In Figure 3, we can see illustrations of the locations of the foreshock and

the quasi-parallel and quasi-perpendicular bow shock regions during three different
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Figure 3. A sketched figure of the approximate locations of the foreshock region (gray) and

the quasi-perpendicular (brown) and quasi-parallel (turquoise) regions of the bow shock

(BS) for three different IMF orientations with IMF cone angles: (a) αGIPM ∼ 0◦, (b)

αGIPM ∼ 45◦, and (c) αGIPM ∼ 90◦. The figures are presented in the plane containing the

IMF and with the XGIPM-axis anti-parallel to the solar wind velocity. The GIPM frame

is described in Section 2.2. The figure is adapted from Vuorinen et al. (2019) and licensed

under CC BY.

IMF orientations. During radial IMF (Figure 3a), the subsolar magnetosheath is

downstream of the quasi-parallel shock. As the obliquity of the IMF increases,

one side of the bow shock becomes quasi-parallel and the other becomes quasi-

perpendicular (Figure 3b) and, finally, the subsolar magnetosheath is downstream

of the quasi-perpendicular shock (Figure 3c).

Once the solar wind has been slowed down, compressed, and deflected by the bow

shock, it can flow around the magnetosphere in the magnetosheath. Fairfield (1967)

demonstrated using IMP 1 and IMP 2 (Interplanetary Monitoring Platform) satellite

data that the IMF is convected into the magnetosheath along with the shocked solar

wind. According to the results, the IMF conditions largely determine the properties

of the magnetic field within the magnetosheath and IMF discontinuities can be

later observed in the magnetosheath as well. Despite the magnetosheath being a

turbulent plasma region filled with fluctuations, the results showed that its magnetic

field is actually more ordered than the IMF. This had been previously predicted by

the hydromagnetic flow models of, e.g., Spreiter et al. (1966): the field lines are

https://creativecommons.org/licenses/by/4.0/
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draped around the magnetosphere with the tendency of becoming tangential to the

magnetopause.

The magnetopause separates the magnetospheric plasma and the magnetosheath

plasma, and their respective magnetic fields, following the frozen-in condition of high

conductivity space plasmas (described in Section 1.1). A low-order estimation of its

location can be determined by the pressure balance between the magnetic pressure of

the magnetosphere and the dynamic pressure of the solar wind (Kallenrode, 1998).

A typical subsolar stand-off distance of the magnetopause is around 10RE from

the center of the Earth. The Earth’s magnetic field deflects the incoming charged

magnetosheath particles by the magnetic Lorentz force:

F = qv×B, (9)

where q is the charge of the particle, v is its velocity, and B is the Earth’s magnetic

field in this case. As positive and negative charges are deflected in opposite direc-

tions, currents are produced. The magnetopause is in fact a current layer wrapped

around the Earth’s magnetic field. On the nightside of the magnetosphere, the solar

wind pulls the magnetosphere outward, forming a tail region that extends to over a

hundred Earth radii (Kallenrode, 1998). However, between the closed dayside field

lines and those open nightside field lines that are dragged to the tail, there are two

special regions, the southern and northern polar cusps, where the magnetic fields

are weak and particles can freely stream into the polar regions (Kallenrode, 1998).

1.3 Magnetic reconnection at the subsolar magnetopause

The dayside magnetopause is not a perfect boundary, either. The magnetosheath

magnetic field and the Earth’s magnetic field can reconnect to each other, allowing

magnetosheath plasma and magnetospheric plasma to mix. This process of magnetic

reconnection is a fundamental process in plasma physics, ubiquitous in plasmas all

around the universe (Yamada et al., 2010): it is the process that releases high-

energy particles and magnetic clouds from the surface of the Sun, allows the transfer
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of solar wind mass and energy into the magnetosphere, and also occurs in fusion

reactors. Magnetic reconnection at the magnetopause and in the tail of the Earth’s

magnetosphere plays a very significant role in space weather events.

As explained for the heliospheric current sheet (Section 1.1) and the magneto-

pause (Section 1.2), a local magnetic field gradient between two plasma popula-

tions leads to a formation of a current sheet between these two regions following

the Ampère’s law (Eq. (1)) (Koskinen, 2011). In thin current sheets, the current

density can become high enough for the resistivity increase so that the frozen-in

condition is ultimately broken down and the plasma loses control of the magnetic

field (Koskinen, 2011). This allows for the diffusion of the magnetic field to take

place. In magnetic reconnection, the field gradients are large and the diffusion hap-

pens abruptly. Such large gradients are usually obtained by large magnetic shear,

meaning that the angle between the magnetic field vectors on the opposite sides

of the interface is large. Thus, magnetic reconnection tends to occur where the

magnetic fields of the two populations are almost anti-parallel (Cassak and Fuselier,

2016). Reconnection arranges the magnetic topology by minimizing magnetic en-

ergy (Yamada et al., 2010). This happens on the X-line or the neutral line between

the two plasmas, where the magnetic field magnitude becomes very small due to

the cancellation between the fields of the two populations. The magnetic energy

released during this process is transformed into thermal and kinetic energy of the

plasma.

In magnetopause reconnection, the magnetosheath magnetic field and the mag-

netospheric field connect to each other and the plasmas of these two regions are

mixed (Cassak and Fuselier, 2016). On the Earth’s side of the magnetopause, the

magnetospheric magnetic field does not exhibit large variations. The field is typically

around 50–60 nT and points northward close to the subsolar magnetopause (Cassak

and Fuselier, 2016). Therefore, the magnetic field conditions on the magnetosheath

side, affected by the upstream solar wind conditions, largely determine the occur-

rence of magnetopause reconnection. This is illustrated in Figure 4. Reconnection
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Figure 4. Sketches illustrating the magnetic field configuration in the solar wind (SW),

magnetosheath (MSH), and the magnetosphere (MS) during (a) northward and (b) south-

ward IMF in the meridian plane where north points upward. During northward IMF, the

occurrence of dayside magnetopause reconnection is low and the magnetic field piles up in

front of the magnetopause. During southward IMF, dayside magnetopause reconnection

is very common. The orange cross is the X-line, extending in and out of the page, where

the magnetic field becomes very weak and the reconnection of the field takes place. The

red arrows represent plasma flows accelerated by the reconnection.

at the subsolar magnetopause is not that common during northward IMF when the

magnetic shear is low (Cassak and Fuselier, 2016). This leads to the accumulation of

magnetic flux in front of the magnetopause and the formation of the so-called mag-

netic pile-up layer (Phan et al., 1994). Due to the increase of magnetic pressure,

plasma density has to decrease in order to maintain pressure balance. Therefore,

plasma is squeezed away along the field lines. This layer of magnetic pile-up and

decrease of plasma density is also called the plasma depletion layer (Phan et al.,

1994). In contrast, when the IMF is aligned southward, the magnetic shear is high

and reconnection at the subsolar magnetopause is driven efficiently (Cassak and

Fuselier, 2016) with magnetic field energy being constantly released at the dayside

magnetopause (Phan et al., 1994). In Figure 4b, we can also see an illustration of

how the field lines reconnect at the X-line and the plasma flows away from the re-

connection site. The solar wind then drags these newly opened field lines to the tail

of the magnetosphere. Magnetic reconnection allows for the magnetosheath plasma

to enter the magnetosphere along these reconnected field lines.
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1.4 Magnetospheric coordinate systems

When studying magnetic fields in the magnetosphere, the Geocentric Solar Magneto-

spheric coordinate system (GSM) is commonly used (e.g., Eastwood et al., 2015). In

this frame, the XGSM-axis is along the Sun-Earth line pointing sunward. The XGSM–

ZGSM-plane contains the Earth’s magnetic dipole axis with the direction of positive

ZGSM corresponding to the north pole of the magnetic dipole. The YGSM-axis com-

pletes the coordinate system in the right-handed sense. In this frame, a northward

magnetic field has BZ,GSM > 0 and a southward magnetic field has BZ,GSM < 0.

Another widely used frame is the Geocentric Solar Ecliptic coordinate system

(GSE) (e.g., Hapgood, 1992). The XGSE-axis is equivalent to the XGSM-axis. The

other two axes are defined as follows: the XGSE–YGSE plane spans the ecliptic plane,

i.e., the Earth’s plane of orbit around the Sun, with the YGSE-axis pointing against

the Earth’s orbital velocity. The ZGSE-axis completes the coordinate system by

pointing northward perpendicular to the ecliptic plane.

1.5 Magnetosheath jets

Just like many types of transient structures are observed in the solar wind, there are

different kinds of plasma entities present in the magnetosheath flow. In this thesis,

we will focus on magnetosheath jets that are localized enhancements of dynamic

pressure:

Pdyn = ρV 2. (10)

These structures are interesting because, due to their high dynamic pressure, they

can have significant effects on the magnetosphere and the ionosphere (the ionized

layer of the Earth’s upper atmosphere) when interacting with the magnetopause

(Plaschke et al., 2013). A comprehensive review of magnetosheath jets was recently

published by Plaschke et al. (2018). We will be using this review as a guiding

reference in this section but also cover new results that have been reported after

this review was published.
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1.5.1 History

The study of magnetosheath jets or similar structures started over 20 years ago when

observations of transient ion flux (ρV ) enhancements in the magnetosheath were first

published by Němeček et al. (1998). Since then, these phenomena have gained in-

creasing popularity among space physicists, and what started as case studies (e.g.,

Němeček et al., 1998, 2000; Hietala et al., 2009; Archer et al., 2012) has led to large

statistical studies (e.g., Archer and Horbury, 2013; Plaschke et al., 2013; Gutynska

et al., 2015). Ultimately, it has been found that the magnetosheath exhibits many

types of enhancements of dynamic pressure, density, velocity, or flux with different

types of properties and origins (see Plaschke et al. (2018) for a review). During the

last couple of years, case studies have linked magnetosheath jets to various magneto-

spheric phenomena such as particular type of auroras (Wang et al., 2018), triggering

of magnetopause magnetic reconnection (Hietala et al., 2018; Nykyri et al., 2019),

and just recently, excitation of magnetopause standing waves (Archer et al., 2019).

There are still many open questions regarding these transient structures, namely

how they are formed and what is their importance in the solar wind-magnetosphere

interaction. These topics are actively studied and, e.g., there is a lot of effort put

into the development of simulations of the bow shock where the jets are expected to

be formed. Jet-like structures have already been observed in many 2D simulations

(e.g., Hao et al., 2016; Palmroth et al., 2018) and currently, the first 3D simulations

of representable size are being developed.

1.5.2 Definitions

As reviewed by Plaschke et al. (2018), many different names and definitions have

been used for dynamic pressure enhancements in the magnetosheath (Savin et al.,

2008; Amata et al., 2011; Hietala et al., 2012; Archer et al., 2012; Archer and Hor-

bury, 2013; Savin et al., 2014). Similar types of magnetosheath transients have also

been studied with thresholds imposed on other quantities such as flux (Němeček

et al., 1998), density (Karlsson et al., 2012, 2015; Gutynska et al., 2015), earthward
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velocity (Hietala et al., 2012; Gunell et al., 2014), and total pressure (Dmitriev and

Suvorova, 2015). As shown by Plaschke et al. (2018), these different definitions

exhibit partly overlapping selections of events and partly different properties.

In this thesis, we will be using the definition of magnetosheath jets given by

Plaschke et al. (2013) for the study of the subsolar magnetosheath. They studied

the subsolar magnetosheath using 2,736.9 hours of data from the Time History of

Events and Macroscale Interactions during Substorms (THEMIS) spacecraft from

the years 2008–2011. They defined jets such that the earthward ion dynamic pressure

within a jet has to exceed half of the solar wind total ion dynamic pressure, that

was averaged over the preceding five minutes. I.e., in the GSE frame:

Pdyn,MSH,X = ρMSHV
2
MSH,X >

1

2
Pdyn,SW =

1

2
ρSWV

2
SW. (11)

They defined jets specifically as enhancements of earthward dynamic pressure be-

cause these jets are the most likely ones to impact the magnetopause and cause

processes that affect the Earth. Furthermore, the threshold is based on the dynamic

pressure of the solar wind to make sure that these transients are not just solar

wind discontinuities, but structures that are actually formed at some point when

the solar wind interacts with the foreshock-bow shock system and flows within the

magnetosheath.

In Figure 5, we have spacecraft measurements where we can see an example of

such a jet event. In the bottom panel (e), we can see a time series of dynamic

pressure in the magnetosheath (the black line). The dynamic pressure exceeds half

of the solar wind dynamic pressure (the blue line). The moment of highest dynamic

pressure is notated with t0 and the whole jet interval is defined as the interval when

the dynamic pressure is over 1/4 of the total solar wind dynamic pressure (the green

line). The criteria of Plaschke et al. (2013) also require that within the one-minute

long intervals before and after the jet, called pre-jet and post-jet intervals, the ion

velocity in the XGSE-direction (the blue line in panel (b)) has to exceed half of that

value at t0 (the dash-dotted horizontal line). This ensures that jets are truly localized
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Figure 5. THEMIS C time series data of an example magnetosheath jet illustrating the

jet selection criteria. The figure is from Plaschke et al. (2013) and licensed under CC BY.

entities and consecutive peaks are not counted as individual jets. Ultimately they

obtained a set of 2,859 observed jets.

In addition to the results of Plaschke et al. (2013), we will also be discussing the

results of another large statistical study of dynamic pressure enhancements pub-

lished by Archer and Horbury (2013). They used THEMIS data from 2008 totaling

1,361 hours of dayside magnetosheath data. The selection criteria applied by them

differ from those of Plaschke et al. (2013). Archer and Horbury (2013) used the

background magnetosheath dynamic pressure as their threshold value for dynamic

pressure enhancements, defining them as magnetosheath plasma regions with lar-

ger than a 100 % increase in total ion dynamic pressure compared to a 20-minute

running average. Using these criteria, they obtained 2,617 dynamic pressure en-

hancements. According to the comparison made by Plaschke et al. (2018), in which

they applied the Plaschke et al. (2013) criteria to the data set used by Archer and

https://creativecommons.org/licenses/by/3.0/
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Horbury (2013), 83 % of the enhancements found by Archer and Horbury (2013)

were not magnetosheath jets on the standards of Plaschke et al. (2013). Conversely,

53 % of jets identified with Plaschke et al. (2013) criteria were not dynamic pressure

enhancements defined by Archer and Horbury (2013). This shows that different

definitions produce significantly different data sets. Therefore, results obtained for

one definition cannot be directly applied to another without investigation.

1.5.3 Occurrence

Plaschke et al. (2013) found that jets are observed more often closer to the bow shock

than to the magnetopause (Figure 6a) and their occurrence is strongly controlled

by only one parameter: the orientation of the interplanetary magnetic field (IMF).

More precisely, they reported that in the subsolar magnetosheath, jets mostly occur

during low IMF cone angle conditions, that is, when the acute angle between the

the Sun-Earth (the XGSE-axis) and the IMF is small (< 45◦) (Figure 6b). Low IMF

cone angle conditions correspond to the subsolar magnetosheath being downstream

of the quasi-parallel shock because the bow shock normal is almost parallel to the

XGSE-axis at the subsolar bow shock region. Thus, the IMF cone angle αGSE can be

used to estimate θBn. Similar results relating these structures to the quasi-parallel

shock had already been reported in case studies by, e.g., Němeček et al. (2000), Savin

et al. (2008), and Hietala et al. (2009). This result also agrees with the conclusion of

Archer and Horbury (2013) that dynamic pressure enhancements mostly occur with

small θBn, that is, downstream of the quasi-parallel bow shock. In a large statistical

study of subsolar magnetosheath THEMIS data and 1,312 density enhancements,

Gutynska et al. (2015) also reported the same dependence on low IMF cone angle

and θBn. These results indicate that the quasi-parallel shock and the foreshock

region play important roles in jet generation and, in general, more transients are

observed downstream of the quasi-parallel shock.

Archer and Horbury (2013) also found that the IMF tends to be steadier than

usual during jet observations, suggesting that solar wind variations are not a primary
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(a) (b)

Figure 6. Plaschke et al. (2013) results on the distributions of (a) relative radial positions

between the magnetopause and the bow shock and (b) GSE IMF cone angle conditions

for all magnetosheath observations (red), jet observations at t0 (blue) and jets normalized

by all magnetosheath distributions (black). These figures are reproduced from Plaschke

et al. (2013) (licensed under CC BY). We have included 95 % Clopper-Pearson binomial

confidence intervals and used slightly different corrections for solar wind aberration in the

model bow shocks and magnetopauses.

driver of jets. This result suggests that a stable foreshock region provides good

conditions for jet formation. However, interestingly, Archer and Horbury (2013)

did not observe increased occurrence rates closer to the bow shock, but actually

closer to the magnetopause for those transients that were observed downstream of

the quasi-perpendicular shock. This strongly indicates that the definition used by

Archer and Horbury (2013) includes transients generated by different mechanisms.

According to the observational results provided by Plaschke et al. (2013) and

backed by the simulation results of Hao et al. (2016), jets occur randomly without

any preferred recurrence times. Using the data set of Plaschke et al. (2013), we

calculate that the occurrence rate of jets in the subsolar magnetosheath is around

3 jets per hour (4 % of all magnetosheath observations made up by jet intervals)

during the favorable low IMF cone angle conditions (< 30◦). For high cone angles

(≥ 60◦), 0.3 jets occurred per hour (0.4 % of observations made up by jet intervals).

In the Archer and Horbury (2013) study, the fractions made up by the dynamic

pressure intervals in all dayside magnetosheath observations were 3 % downstream

of the quasi-parallel shock and 0.5 % downstream of the quasi-perpendicular shock.

https://creativecommons.org/licenses/by/3.0/
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The first one increases to 10 % when only considering observations in the subsolar

magnetosheath, defined by the aberrated solar zenith angle (SZA) θSZA < 30◦ (the

angle between an Earth-centered position vector and the Sun-Earth line). There-

fore, their selection criteria seem to find more dynamic pressure enhancements than

Plaschke et al. (2013).

Although magnetosheath jets have been extensively linked to the quasi-parallel

shock, the spatial occurrence of jets has not yet been studied in detail. In this

thesis, we aim to provide quantitative results on where jets occur during different

IMF orientations.

1.5.4 Properties

For most, the term jet evokes an image of a very elongated bursty structure. How-

ever, in multi-spacecraft observations magnetosheath jets have been found to be

plasma blobs with a typical scale size of around 1RE (Plaschke et al., 2018, and the

references therein). While the scale size is somewhat agreed upon, different studies

have given different results on the shape of jets. Plaschke et al. (2016) found jets

to have larger size perpendicular to their flow direction than parallel to their flow

direction (estimated median values of 0.93RE and 0.49RE, respectively) but Archer

and Horbury (2013) found the opposite.

Plaschke et al. (2013) observed jets exhibiting dynamic pressure around 3–25

times the ambient background magnetosheath dynamic pressure, and Archer and

Horbury (2013) observed dynamic pressure enhancements of 2–15 times the ambient

value. While dynamic pressure is also a function of density, both studies reported

most transients being dominated by the velocity increases. Archer and Horbury

(2013) observed 82 % of their jets to have increase in both quantities, density and

velocity. They could link the events observed close to the subsolar magnetopause

to the events where density decreases and concluded that they were most likely flux

transfer events (FTEs) associated with reconnection events at the magnetopause.

FTEs are not included in the data sets of Plaschke et al. (2013) because they do
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not exhibit high earthward velocities. Plaschke et al. (2013) reported 89.5 % of jets

were associated with a density increase.

Both Plaschke et al. (2013) and Archer and Horbury (2013) observed that the

velocities within the jets were usually super-Alfvénic and sometimes even higher

than the local magnetosonic velocity in the subsolar region. Therefore, some jets

should develop bow waves that can eventually steepen into shock fronts of their own.

Observational evidence of a jet-driven bow wave was recently published by Liu et al.

(2019). The propagation direction of jets also tends to deviate from the background

flow, at least according to Plaschke et al. (2013) who reported a median of 28.6◦ and

Hietala and Plaschke (2013) who reported a range of 20◦–34◦. Hietala and Plaschke

(2013) concluded that jets exhibit velocities that are more aligned anti-parallel to

the Sun-Earth line and as the jets move closer to the magnetopause, the deflection

from the background flow grows. According to them, this suggests that while the

background flow keeps diverting due to the approaching magnetopause, jets continue

more or less along their original propagation direction.

The magnetic field magnitude inside jets can be larger or smaller than within the

pre-jet magnetosheath plasma, with increases being slightly more common (Plaschke

et al., 2013; Archer and Horbury, 2013). In addition, Karlsson et al. (2015) have

studied magnetosheath density enhancements called plasmoids which usually exhibit

a clear decrease or increase in magnetic field magnitude. Some of these plasmoids

have higher velocities than the surrounding magnetosheath and these fast plamoids

tend to exhibit increased magnetic field magnitudes. Besides the field magnitude,

the magnetic field within jets has not been studied in detail. We will take a closer

look at this important property, mainly focusing on the north-south component of

the magnetic field because of its significance for magnetopause reconnection.

1.5.5 Possible formation mechanisms

As jets are observed more often closer to the bow shock than to the magnetopause

and most jets are linked to the quasi-parallel shock, it seems reasonable to assume
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Figure 7. Bow shock ripples have been proposed to produce magnetosheath jets. Here the

arrows at the bow shock denote flow velocity and the darker the blue in the magnetosheath,

the higher the plasma density. (a) Flow that is parallel to the local shock normal is slowed

down efficiently. (b) A rippled shock can produce faster moving regions of plasma. (c)

The rippling of the bow shock could therefore produce jets. Shocks can also develop in

the magnetosheath when the backstreaming flow from the magnetopause interacts with

the high-speed jet. The figure is from Hietala et al. (2012) and licensed under CC BY.

that the formation of most jets is related to foreshock processes (Plaschke et al.,

2018, and the references therein). Consequently, several jet formation mechanisms

related to the nature of the turbulent foreshock region and the quasi-parallel shock

have been suggested. Here we consider the two most promising ones: bow shock

ripples and short large amplitude magnetic structures (SLAMS) that were both

described in Section 1.2.

Hietala et al. (2009) proposed that local curvature variations of the bow shock,

which are inherent to the quasi-parallel shock, could be responsible for jet generation.

According to the Rankine-Hugoniot jump conditions described by Eqs. (2)–(6),

a ripple in the shock surface can theoretically produce less decelerated flows of

compressed solar wind plasma. This process is illustrated in Figure 7. Here we

give a simplified explanation for the mechanism. See Hietala et al. (2009, 2012)

and Hietala and Plaschke (2013) for more detailed explanations and derivations.

https://creativecommons.org/licenses/by/3.0/
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Assuming a high MA shock, the tangential velocity component of the flow does not

change much across the shock: V2t ≈ V1t (Hietala et al., 2012). However, the normal

component of the flow changes according to Eq. (2): V2n = ρ1V1n/ρ2 = V1n/rcomp

(rcomp > 1 is the shock compression ratio). Therefore, as the acute angle α between

the upstream plasma velocity and the local shock normal grows, the deceleration

of the plasma flow at the shock decreases. This is illustrated in Figures 7a and

7b. Thus, a ripple geometry, such as the one shown in Figure 7c, could guide less

decelerated plasma into a localized plasma region — a jet. Hietala and Plaschke

(2013) studied the bow shock ripple mechanism and, according to their results, 97 %

of their jet observations could be explained with this formation mechanism. They

modelled the ripples as sinusoidal waves present 12 % of the time with the amplitude

to wavelength ratio of around 0.1RE to 1.1RE. The amplitude corresponds quite

well to observational estimations of SLAMS sizes by Lucek et al. (2008) and the

wavelength was tuned to produce jets with transverse sizes of 0.5–1.0RE, matching

the estimations from observations.

Karlsson et al. (2015) suggested that jets, especially their fast paramagnetic

plasmoids associated with an increase of magnetic field magnitude, are SLAMS that

have travelled from the foreshock region to the magnetosheath through the rippled

shock. This was the case in the simulation run by Palmroth et al. (2018), where a

SLAMS-type structure crossing the shock was observed as a jet. The formation of

this jet is shown in Figure 8. Here we can also see the corrugated structure of the

quasi-parallel shock. However, as SLAMS are magnetic transients, jets formed via

this mechanism would be expected to feature enhanced magnetic fields which is not

the case for a large fraction of magnetosheath jets (Plaschke et al., 2013; Archer and

Horbury, 2013).

Not every jet is observed downstream of the quasi-parallel shock. Even though

according to Archer and Horbury (2013), jets are associated with steadier IMF than

usual, a small fraction of jets can result from solar wind discontinuities: abrupt

rotations in the IMF orientation turning the shock from quasi-perpendicular to



27

t = 275 s t = 295 s t = 300 s t = 310 s

XGSE (RE)

Y
G

S
E
 (
R

E
)

6

-8

-6

4

2

-4

-2

0

10 12 14 16 10 12 14 16 10 12 14 1610 12 14 16 Pdyn
(nPa)

0.00

1.50

1.00

0.50

XGSE (RE) XGSE (RE) XGSE (RE)

Figure 8. Snapshots showing the time evolution of a jet forming in the simulation run

by Palmroth et al. (2018) from a SLAMS travelling through the shock (shown with the

white arrows). The coloring represents the total dynamic pressure. The solar wind flows

in the −X-direction and meets the bow shock at the boundary where the dynamic pres-

sure decreases abruptly and the magnetosheath starts. The IMF cone angle is 30◦ and

the foreshock region is at the bottom, where upstream dynamic pressure enhancements

can be seen. The black contour corresponds to the Plaschke criterion of jet intervals:

Pdyn,MSH,X = 1
4Pdyn, SW. The figure is adapted from Palmroth et al. (2018) and licensed

under CC BY.

quasi-parallel or vice versa (Archer et al., 2012). Likewise, in the 2D simulations

of Lin et al. (1996b) and Lin et al. (1996a), magnetosheath pressure pulses were

formed when IMF rotational discontinuities interacted with the bow shock.

1.5.6 Observed effects

Magnetosheath jets interact with the surrounding plasma in the magnetosheath and

can cause many types of effects when colliding into the magnetopause (Plaschke

et al., 2018, and the references therein). These effects can be observed in the mag-

netosphere and sometimes even in the ionosphere. In Figure 9, the passage of jets

from the bow shock to the magnetopause is illustrated along with some of the most

prevalent jet-induced effects.

Plaschke and Hietala (2018) studied the flow patterns around jets using multi-

spacecraft observations. They reported that jets accelerate the magnetosheath

plasma in front of them and push the plasma to the side. In addition, ambient

plasma behind the jet flows in to fill the wake left behind by the fast-moving jet.

https://creativecommons.org/licenses/by/4.0/
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Figure 9. An illustration of jets originating from the rippled bow shock and possible effects

in the magnetosphere and ionosphere following a jet hitting the magnetopause. The figure

is from Plaschke et al. (2018) and licensed under CC BY.

Similarly, Plaschke et al. (2020) studied the effect of jets on the magnetosheath

magnetic field. They found that jets alter the background magnetosheath magnetic

field by dragging the field lines and aligning the field with their flow. However, they

found the change in the median angle to be only 10◦.

Due to the high dynamic pressure of jets, they have been observed to produce

large indentations into the magnetopause when colliding into it (e.g, Amata et al.,

2011; Archer et al., 2012; Hietala et al., 2009). Dmitriev and Suvorova (2012) showed

that such indentations can also rebound in the opposite direction by reporting an

event where the magnetopause expanded, compressed, and expanded again. In a

recent study, Archer et al. (2019) observed a magnetosheath jet colliding into the

magnetopause and exciting magnetopause standing surface waves, confirming the

existence of magnetopause eigenmodes. Here, the jet set the dayside magnetic field

lines into oscillating motion and the oscillations reflected from the ends of the field

lines in the ionosphere.

As discussed before in Section 1.3, magnetic reconnection at the subsolar mag-

netopause is highly dependent on the orientation of the magnetic field on the side

of the magnetosheath. Jets have been proposed to be able to locally affect mag-

https://creativecommons.org/licenses/by/4.0/
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netopause reconnection in multiple ways (Hietala et al., 2018): by impacting the

magnetopause and making it thinner, by changing plasma beta (the ratio of plasma

pressure and magnetic pressure) shear, or via altering the magnetic shear either by

indenting the magnetopause or via the magnetic fields of jets themselves. Hietala

et al. (2018) analyzed multi-spacecraft data and were able to provide observational

evidence of an event where a jet triggered reconnection at the magnetopause. In this

event the magnetic shear angle was already high but the magnetopause was unusu-

ally thick. The jet impact compressed the magnetopause until magnetic reconnection

took place. Compression of the magnetopause increases the current density which

is important for the diffusion of the magnetic field and for magnetic reconnection,

as described in Section 1.3. Nykyri et al. (2019) recently studied an event where

the IMF was northward but jets with southward BZ,GSM were observed within the

magnetosheath. They observed magnetic reconnection at the tail and suggested

based on timing analysis that the jets may have triggered dayside magnetopause re-

connection which ultimately led to the observed reconnection at the tail. Following

these studies, we are interested in whether the magnetic field within jets statistically

provides favorable conditions for affecting the occurrence of magnetic reconnection,

either for enhancing or suppressing it.

Jets can also have effects inside the magnetosphere and on the ionosphere. Mag-

netopause surface waves drive magnetic field compressing ULF waves within the

inner magnetosphere (Archer et al., 2013). The magnetopause indentations caused

by jets compress the magnetosphere which may lead to acceleration of magneto-

spheric particles (Lee et al., 2016). Magnetospheric compressions could also lead

to outer radiation belt electrons escaping into the magnetosheath (Plaschke et al.,

2018). This has not yet been linked to jets but is typical during compression of

the magnetopause. Jets have also been linked to transient density enhancements

in the outer magnetosphere which could be associated with impulsive penetration

of magnetosheath plasma into the magnetosphere (e.g. Gunell et al., 2012). Re-

garding ionospheric signatures, Hietala et al. (2012) reported enhanced flows in the
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ionosphere that could be associated to increased particle precipitation into the iono-

sphere due to the magnetopause impacts of jets. Additionally, Wang et al. (2018)

provided evidence for a direct link between jets and discrete and diffuse auroral

brightenings.

The aforementioned phenomena are not exclusively consequences of magneto-

sheath jets but can also occur as consequences of solar wind discontinuities. Sim-

ilarly, phenomena that have not yet been linked to jets but have been observed

following solar wind discontinuities may be consequences of magnetosheath jets. It

is clear that jets play a role in the transfer of solar wind energy and momentum

into the magnetosphere. What is interesting about jets is that their occurrence and,

therefore also the effects, are controlled by the orientation of the IMF. Here we will

quantitatively study the IMF control of the spatial distribution of jets in more de-

tail and estimate how often jets hit the subsolar magnetopause, as this is important

for understanding the significance of their effects on the magnetosphere. We will

specifically focus on the magnetic field within jets to understand how they might

affect magnetic reconnection at the magnetopause.

2 Data and methods

In this chapter, we describe the data and the different models, coordinate systems,

and statistical methods used in this thesis.

2.1 Observational data sets

We use the data set of Plaschke et al. (2013). Here, we concisely describe its char-

acteristics. The measurements were made by the five THEMIS (Time History of

Events and Macroscale Interactions during Substorms) spacecraft named A, B, C,

D, and E during 2008–2011 (Angelopoulos, 2008). The THEMIS spacecraft orbit

the Earth in highly elliptical orbits with different apogees. The data were gathered

from the dayside subsolar magnetosheath within 7–18RE from the center of the

Earth and within θSZA < 30◦ (the angle between an Earth-centered position vector
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and the Sun-Earth line). In this thesis, we use data from two instruments: the

Fluxgate Magnetometer (FGM) (Auster et al., 2008) and the Electrostatic Analyzer

(ESA) (McFadden et al., 2008). The measurements of different instruments were

interpolated to a shared timeline with 1-second cadence.

The solar wind and interplanetary magnetic field data corresponding to the

THEMIS observations were obtained from the high-resolution OMNI data set (King

and Papitashvili, 2005). The OMNI data set is composed of multiple different space-

craft’s measurements of the solar wind at different points and then extrapolated to

the bow shock. To obtain representable values of the general solar wind and IMF

conditions during the magnetosheath observations, the one-minute cadence OMNI

data were averaged over the five minutes preceding the THEMIS measurements.

By requiring the density observed by THEMIS spacecraft to exceed twice the

solar wind density, it was made sure that the spacecraft were not in the solar wind.

Similarly, the energy flux of 10 keV ions was required to be smaller than that of

1 keV ions, to make sure the spacecraft were not in the magnetosphere where there

are hot ion populations related to, e.g., magnetospheric currents. Taking all the

magnetosheath data intervals longer than two minutes and with all the necessary

quantities available, Plaschke et al. (2013) ended up with 2,736.9 hours of mag-

netosheath data. Finally, the jets were identified from the magnetosheath data with

the criteria described in Section 1.5.2 and illustrated in Figure 5, yielding 2,859 jets

and a total of 125,897 data points in these jet intervals.

2.2 GIPM coordinate system

As the orientation of the interplanetary magnetic field determines the locations of

the quasi-parallel and quasi-perpendicular regions of the bow shock, it is helpful to

move to a plane which contains the IMF vector and map the observations in this

plane. This allows us to easily compare the locations of jet observations to the

location of the quasi-parallel shock. For this purpose, we have chosen to use the

Geocentric InterPlanetary Medium coordinate system (GIPM), first described by
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Bieber and Stone (1979) and later used, e.g., by Verigin et al. (2006) and Dimmock

and Nykyri (2013) in magnetosheath studies. In this Earth-centric frame, shown in

Figure 10, the XGIPM-axis is anti-parallel to the solar wind velocity vector, with or-

bital aberration taken into account, i.e., with the Earth’s ∼ 30 km/s orbital motion

removed. The YGIPM-axis is in the plane that contains the IMF and the XGIPM-axis,

that is, basically in the BIMF–VSW-plane. The GIPM unit vectors in GSE coordin-

ates (described in Section 1.4) can be derived as functions of VSW = (VX , VY , VZ)

and BIMF = B = (BX , BY , BZ) (Verigin et al., 2006):

X̂GIPM =
(−VX ,−VY − 30 km/s,−VZ)√
V 2
X + (VY + 30 km/s)2 + V 2

Z

(12)

ŶGIPM =


(−B + (B · X̂GIPM)X̂GIPM)

|B− (B · X̂GIPM)X̂GIPM|
, if B · X̂GIPM > 0

(B− (B · X̂GIPM)X̂GIPM)

|B− (B · X̂GIPM)X̂GIPM|
, if B · X̂GIPM < 0

(13)

ẐGIPM = X̂GIPM × ŶGIPM. (14)

In the GIPM frame, the IMF cone angle between the XGIPM-axis and the IMF is

defined as

αGIPM = arccos (|B · X̂GIPM|/B) ∈ [0◦, 90◦]. (15)

This angle always opens toward the quadrant where XGIPM > 0 and YGIPM < 0,

meaning that as the IMF cone angle grows, the quasi-parallel bow shock moves to-

ward the negative part of the YGIPM-axis as can be seen in Figure 3. Therefore, by ex-

amining their YGIPM-coordinates, we can compare the occurrence of magnetosheath

jets downstream of the quasi-parallel and quasi-perpendicular shock regions.

We separate the data into three subsets by the IMF cone angle: αGIPM ∈ [0◦, 30◦)

representing quasi-radial IMF, αGIPM ∈ [30◦, 60◦) representing oblique IMF, and

αGIPM ∈ [60◦, 90◦] representing high cone angle IMF. We chose these limits because

the location of the quasi-parallel bow shock region varies considerably between these

three cases, as can be seen in Figure 3. The subsolar magnetosheath can be con-

sidered to be downstream of the quasi-parallel shock during quasi-radial IMF and
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Figure 10. An illustration of the GIPM reference frame. The XGIPM-axis is anti-parallel

to the solar wind velocity and the YGIPM-axis is defined such that the XGIPM–YGIPM-plane

contains the IMF and the cone angle opens toward negative side of the YGIPM-axis. The

observation area within the subsolar magnetosheath is sketched in grey. The figure is

adapted from Vuorinen et al. (2019) and licensed under CC BY.

downstream of the quasi-perpendicular shock during high cone angle IMF. During

oblique IMF, the subsolar magnetosheath is downstream of both, so that the quasi-

parallel region is more on the negative side of YGIPM. These cone angle ranges also

contain sufficient numbers of jet observations: 970, 1,403, and 486, respectively. The

median values of the IMF cone angle within each range were 21.4◦, 47.3◦, and 75.2◦.

2.3 Normalization methods

2.3.1 Normalization of spacecraft positions by the solar wind dynamic

pressure

As explained in Section 1.2, the dynamic pressure of the solar wind affects the global

size of the magnetosphere-bow shock system. We compare observations made during

solar wind conditions that differ from one another, so we have to normalize the

observed spacecraft positions. For this purpose, we apply the widely used relation

(e.g., Spreiter et al., 1966; Formisano, 1979; Merka et al., 2005):

rnorm = robs

(
Pdyn,SW,obs

P dyn,SW

)1/6

. (16)

https://creativecommons.org/licenses/by/4.0/
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Here, the normalized distance rnorm from the Earth is obtained by scaling the

measured distance robs, which was observed when the solar wind dynamic pres-

sure was Pdyn,SW,obs, by the data set average of the solar wind dynamic pressure:

P dyn,SW = 1.76 nPa (assuming protons only).

2.3.2 Renormalization by all magnetosheath observations

Since the spacecraft have spent different amounts of time in different locations, in

order to get the real observed occurrence rates of jets, we have to relate the number

of observed jets to the total number of magnetosheath observations made in that

particular region. Taking the durations of observation intervals into account, we can

also obtain units of jets per unit time.

2.4 Bow shock and magnetopause models

We study the magnetic field within jets at different distances from the magnetopause.

For that purpose, we use bow shock and magnetopause models to calculate the

relative radial positions of the spacecraft between the magnetopause (F = 0) and

the bow shock (F = 1):

F = (r − rMP)/(rBS − rMP). (17)

Here, r is the radial distance of the spacecraft measured from the center of the

Earth, and rMP and rBS are the distances of the magnetopause and the bow shock,

respectively, along that same line. The models contain some uncertainty and some

magnetosheath observations do not fit between the expected bow shock and the

magnetopause locations. Therefore, when we use the relative positions, we neglect

observations that are not contained within the range F ∈ [−0.1, 1.1]. 3 % of jet

interval observations and 5 % of non-jet magnetosheath observations are outside of

these limits. We also use these models for visualization purposes when presenting

two-dimensional distributions of jets in the XGIPM–YGIPM-plane. Both of the fol-

lowing models are empirical models, i.e., they are based on observed bow shock or

magnetopause crossings.
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2.4.1 Merka et al. (2005) bow shock model

The bow shock models were published by Merka et al. (2005). When determining

the distances of observations from the bow shock, we use the model made for the

Geocentric Plasma Ecliptic coordinate frame (GPE) which is the GSE frame rotated

in the XY -plane such that the solar wind flows anti-parallel to the X-axis (Merka

and Szabo, 2004). The frame also corrects for the orbital motion of the Earth. The

model bow shock is calculated for each measurement separately using the prevailing

solar wind quantities at that time.

For visualization, we use the GIPM frame model and plot different curves for each

cone angle range. The input parameters of the model are the solar wind dynamic

pressure, for which we use the mean of the whole data set P dyn,SW = 1.76 nPa, and

the Alfvén Mach number MA (using magnetic field magnitude |B|) for which we

have calculated the means for each cone angle subset: 11.5, 9.92, and 9.74 (from the

lowest to the highest cone angles).

2.4.2 Shue et al. (1998) magnetopause model

The model magnetopauses are based on the model presented by Shue et al. (1998).

For the distance calculations, we use the original model that is rotationally symmet-

ric around the XGSM-axis corrected for orbital motion. Again, we calculate the model

for each observation separately. When using the model for visualization, we plot the

model around the XGIPM-axis which is anti-parallel to the aberration-corrected solar

wind velocity. This is justified since the solar wind velocity is almost radial and we

only use the models for visualization. In this case, the input parameters for the

models are the solar wind dynamic pressure, for which we use P dyn,SW = 1.76 nPa,

and the medians of IMF BZ,GSM for each cone angle: 0.066 nT, −0.143 nT, and

0.332 nT.
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2.5 Statistical methods

2.5.1 Confidence intervals

When studying the spatial distribution of jets and the magnetic field distributions

of jets, we want to estimate the uncertainty of these results. We estimate the errors

with 95 % significance level (λ = 0.05 error rate) binomial proportion confidence

intervals using the Clopper-Pearson method (e.g., Brown et al., 2001), which is re-

garded as a conservative method. The lower and upper limits of the confidence

interval [plower, pupper] are, respectively, the solutions of p corresponding to the fol-

lowing equations:

Pr
p

(X ≥ x) = λ/2 (18)

Pr
p

(X ≤ x) = λ/2, (19)

where X ∼ Bin(N, p), x is the number of successes, N is the number of trials, and

p is the probability of success for each trial.

2.5.2 Estimating the magnetopause impact rates

We estimate how often jets hit the subsolar magnetopause during different IMF

orientations using the model presented by Plaschke et al. (2016). Here, we will briefly

describe the key points and ideas of the model. The model has been developed using

multi-spacecraft jet observations within the Plaschke et al. (2013) data set, which

is also used in this thesis. The model is based on the distribution of jet diameters

D⊥ in the direction perpendicular to their flow direction. This distribution can be

estimated by looking at what nearby spacecraft observed in the plane perpendicular

to the jet propagation direction. The data set includes 662 jet observations where

there was a second spacecraft in this plane. A total of 655 of them were observed

by THEMIS A, D, and E which orbit closer to the Earth and to the magnetopause

than THEMIS B and C. Due to this, we only use data gathered by these spacecraft

when estimating the magnetopause impact rates. As Plaschke et al. (2013) have
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shown before, jets are more common close to the bow shock (Figure 6a). Thus, in

order to get representable estimations of the impact rates, we need to use data from

close to the magnetopause.

Plaschke et al. (2016) looked at the two-spacecraft observations as a function of

the separation distance between the two spacecraft. They investigated how common

it is that two spacecraft at given separations both see the same jet, as these prob-

abilities allow us to deduce information about the sizes of the jets. Based on these

fractions, they found that the observations could not be explained with a constant

perpendicular jet diameter D⊥, but found a good fit with an exponential probability

distribution P⊥ of D⊥:

P⊥ = exp (−D⊥/D⊥0)/D⊥0, (20)

with D⊥0 = 1.34RE.

Multiplying the total number of observed jets per unit time (Qobs) with the

probability distribution P⊥ and integrating over the perpendicular sizes D⊥, they

could calculate the observation rates of jets within a given size range defined by the

integration limits. As these estimations were made based on observations close to

the magnetopause, they assumed that these jets will also impact the magnetopause.

When calculating the estimated number of jets impacting on the whole reference

area Aref of the subsolar magnetopause, they had to correct for the jets that were

not observed by the spacecraft because, naturally, the spacecraft cannot observe

all jets hitting this area as a spacecraft is measuring at a single point. They did

the correction by calculating that the probability that a spacecraft sees the jet is

the ratio of the jet area (projected onto the reference area) Ajet and the reference

area Aref. They used Aref = 102R2
E which is a circular area perpendicular to the

Sun-Earth line limited by θSZA = 30◦ and the average radial distance 11.4RE of the

observations. The final formula (see Plaschke et al. (2016) for a detailed derivation)
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for the impact rate of jets larger than D⊥min on the reference area Aref is:

Qimp =

∫ ∞
D⊥min

Aref

Ajet

QobsP⊥dD⊥ (21)

=
4Aref cosφQobs

πD⊥0

∫ ∞
D⊥min

e−D⊥/D⊥0
dD⊥
D2
⊥
. (22)

Here φ is the mean angle between the jet propagation direction and the −X̂GSE

unit vector. In this thesis, the input values for Qobs and φ during different IMF

orientations are from lowest to highest cone angle range: 2.93 h−1 & 25.7◦, 1.26 h−1

& 24.7◦, and 0.261 h−1 & 23.8◦.

2.5.3 Kolmogorov-Smirnov test

We compare the magnetic field within jets to the magnetic field within the non-jet

magnetosheath in Section 3.2. For this purpose, we use a non-parametric test to

validate our results. We use the two-sample Kolmogorov-Smirnov test (KS2-test)

to test whether two samples are from the same continuous distribution (e.g., Press

et al., 2007). This test can be applied without knowing the underlying distribution,

as it compares the empirical cumulative distribution functions (CDFs) of the two

samples. The test statistic is the maximum absolute difference between the two

CDFs SN1(x) and SN2(x) of the independent variable x:

D = max
x
|SN1(x)− SN2(x)| . (23)

The null (alternative) hypothesis of the test is that the two samples are from the

same (different) continuous distributions.

2.5.4 Spearman rank-order correlation coefficient

We also calculate the correlation between the IMF and the magnetic field in the

magnetosheath and within jet intervals using the Spearman rank-order coefficient.

This correlation coefficient rs measures the ordinal correlation between two variables

x and y (Press et al., 2007). The data of each variable are ranked from the lowest

value (rank 1) to the highest value (rank W = number of data points) so that each
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pair (xi, yi) corresponds to a rank-pair (Ri, Si). The correlation coefficient is then

calculated as the Pearson correlation coefficient that measures linear correlation

between the ranks R and S. The formula for Spearman rank-order correlation

coefficient becomes (Press et al., 2007):

rs =

∑
i (Ri −R)(Si − S)√∑

i (Ri −R)2
√∑

i (Si − S)2
. (24)

rs = 0 indicates no linear rank correlation and values 1 and −1 indicate complete

positive and negative linear rank correlation, respectively (Press et al., 2007).

2.5.5 Generating magnetosheath samples following similar solar wind

distributions as the jets

After classifying the jets based on their relative position between the magnetopause

and the bow shock (as described in Section 2.4), we compare the magnetic field

within jets to the corresponding non-jet magnetosheath magnetic field observations.

As already reported by, e.g., Plaschke et al. (2013) and Archer and Horbury (2013),

jet occurrence is strongly controlled by one parameter: the IMF cone angle, as jets

occur preferentially during low cone angle IMF. Therefore, it can be assumed that

the magnetic field within jets is probably different than the average magnetosheath

magnetic field simply due to the fact that the IMF conditions were different, on

average. Furthermore, in our data set, jets closer to the magnetopause tend to be

observed during lower cone angle conditions than those observed closer to the bow

shock (A. LaMoury, private communication). To take this into account, we generate

samples of non-jet magnetosheath observations that follow the same IMF cone angle

distribution as the jets observed at the same relative position range between the bow

shock and the magnetopause.

We apply the widely-used method of inverse transform sampling (e.g., Ross,

2013). The samples are obtained as follows. We start by computing the CDFs of

the relative radial positions (Figure 6a) and the IMF GSE cone angles (Eq. (15),

but using GSE vectors; Figure 6b) for the jet interval observations. For the relative
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positions we take the CDF over F ∈ [−0.1, 1.1] with a bin width of 0.2, and for the

cone angles [0◦, 90◦] we used a bin width of 5◦. Our results were not very sensitive

to these selections. As a CDF gets values from [0, 1], we can generate random

samples from the distribution by generating uniformly distributed pseudorandom

numbers (0, 1) with a Mersenne Twister generator (MathWorksTM, 2018). Each

random number corresponds to a bin in the discrete CDF. First, we draw a relative

position bin and sample the cone angle bin from the cone angle distribution of that

bin. Then we look for all non-jet magnetosheath observations belonging to both of

these bins and randomly select one of these observations. This process is repeated

until we have the sample size that we want.

We also compare the minima and maxima of the jet intervals to those of sim-

ilar non-jet magnetosheath intervals. The non-jet intervals are obtained by first

sampling one observation for that interval, following the relative position and IMF

cone angle distributions of jet t0 (moment of the highest dynamic pressure) meas-

urements. Then subsequent (or preceding) magnetosheath observations are added

to the interval until we have the desired interval length. The distribution of jet

interval lengths does not vary very much for different relative positions in the mag-

netosheath so we always sample the interval length from the distribution of all jet

interval lengths.

3 Results

In this chapter, we present the results of our study in two parts. First, in Section

3.1, we look at how the IMF orientation controls where magnetosheath jets occur

and how often these jets impact the subsolar magnetopause. These results have been

previously published in Vuorinen et al. (2019). Secondly, in Section 3.2, we present

the results on the magnetic field within the jet intervals and evaluate whether jets

could enhance or suppress magnetic reconnection at the subsolar magnetopause.
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3.1 IMF control of jet occurrence and magnetopause impact

rates

In Figure 11, we present the spatial occurrence rates of jets for the three different

IMF orientations, from quasi-radial to high cone angle IMF, as functions of YGIPM

and ZGIPM. The observations have been normalized to P dyn,SW = 1.76 nPa and

renormalized by the distribution of all magnetosheath observations, as described in

Section 2.3. The jet observations are the data points corresponding to the time t0

within the jet interval, that is, the moment of the highest dynamic pressure. Due to

their large uncertainties, we have left out the outermost bins for YGIPM containing

two (0.07 %) jets and 3,984 (0.04 %) magnetosheath observations in total, and for

ZGIPM 1,465 (0.01 %) magnetosheath observations. We can see clear differences in

the three histograms for both coordinates, as expected based on previous studies

(Archer and Horbury, 2013; Plaschke et al., 2013, Figure 6b). The jet occurrence

is the highest for quasi-radial IMF (αGIPM ∈ [0◦, 30◦); in blue) and lowest for high

cone angle IMF (αGIPM ∈ [60◦, 90◦]; in orange). The quasi-radial IMF corresponds

to the subsolar magnetosheath being mostly downstream of the quasi-parallel shock

and the high cone angle IMF downstream of the quasi-perpendicular shock.

In the case of YGIPM positions in Figure 11a, the distributions vary in shape.

The distribution for quasi-radial IMF is quite flat with a little bit higher occurrence

rates on the negative side of the YGIPM-axis, although this is within the error bars.

Overall, during quasi-radial IMF the number of observed jets is around 1–2 per

hour per RE. For the case of high cone angle IMF, the distribution is flat with an

approximate occurrence rate of a jet observed once in five hours per RE. Taking the

average of the six bins in the middle with moderate error bars for these two cone

angle ranges, we calculate that jets occur 9 times more often during quasi-radial

IMF than during high cone angle IMF. The error bars give this factor limits of 6–14.

The case in between, corresponding to oblique IMF (in purple) with intermediate

cone angles αGIPM ∈ [30◦, 60◦), looks very different. The occurrence rates clearly
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Figure 11. Histograms presenting the numbers of observed jets per hour per RE in

the subsolar magnetosheath as functions of (a) YGIPM and (b) ZGIPM (normalized to

P dyn,SW = 1.76 nPa) during the three different IMF orientations. The error bars represent

95 % binomial proportion confidence intervals obtained by the Clopper-Pearson method.

Figure (a) is adapted from Vuorinen et al. (2019) and licensed under CC BY.

increase when YGIPM decreases, and this increase seems to be monotonous. The

distribution meets that of quasi-radial IMF in the negative end of the YGIPM-axis

and likewise that of high cone angle IMF in the positive end of the YGIPM-axis.

Looking at the Figure 11b, the distributions of ZGIPM positions have a more or

less flat shape for all three IMF orientations, within the error bars. As an excep-

tion, the rightmost bin [6RE, 8RE] for the oblique IMF is interestingly high, with

the occurrence rate almost matching that of the quasi-radial IMF. However, the

uncertainties in these bins are high, and statistically more reliable results for these

regions can be obtained when more data is available. All in all, there does not seem

to be a clear dependence on ZGIPM for jet occurrence.

In Figure 12, we present 2D maps of the more interesting case, the XGIPM–YGIPM-

plane. The jet observations have again been normalized by the mean solar wind

pressure 1.76 nPa and renormalized by the distribution of all magnetosheath obser-

vations. The maps consist of 2RE×2RE squares but we neglect cells with fewer than

1,000 magnetosheath observations. Furthermore, cells with ≥ 1,000 magnetosheath

observations but with no jets are notated with white cells with dashed outlines. We

https://creativecommons.org/licenses/by/4.0/
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Figure 12. 2D maps presenting the numbers of observed jets per R2
E as functions of

XGIPM and YGIPM (normalized to P dyn,SW = 1.76 nPa) during the three different IMF

orientations: (a) quasi-radial, (b) oblique, and (c) high cone angle IMF. The squares with

fewer than 1,000 magnetosheath observations are shown in white and the squares with

more than that but zero jets are dashed. Magnetic field lines are plotted in the solar

wind on the left and they represent the middle cone angle of each range. The grey cones

represent the whole cone angle range. Model magnetopauses and bow shocks have been

plotted as described in Section 2.4. The figure is adapted from Vuorinen et al. (2019) and

licensed under CC BY.

immediately see that jets are most frequently observed close to the bow shock as

reported before by Plaschke et al. (2013) and seen in Figure 6a. The same trends

are visible as in Figure 11: jets are observed on the whole width of the YGIPM-axis

during quasi-radial IMF, during oblique IMF jets mainly occur on the negative side

of the axis and the number of jets all around the subsolar magnetosheath drops for

high cone angle IMF. For the last case, the jet occurrence is higher on the edges of

the YGIPM-axis as could be expected assuming that these areas are downstream of

the edge of the quasi-parallel shock. However, as seen in Figure 11, the error bars

are large in these regions. Similarly, the darker spot at XGIPM = [14RE, 16RE) and

YGIPM = [2RE, 4RE) only contains one jet leading to high uncertainty.

Next, we present the estimations of the magnetopause impact rates of three

different sized (0.5–1.0RE, 1.0–2.0RE, and > 2.0RE) jets in Figure 13. As de-

scribed in Section 2.5.2, these are sizes of jets perpendicular to their propagation

https://creativecommons.org/licenses/by/4.0/
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Figure 13. Estimations of the numbers of jets impacting the 30◦ solar zenith angle (SZA)

subsolar magnetopause per hour for three size scales perpendicular to the jet propagation

direction: 0.5–1.0 RE, 1.0–2.0 RE, and geoeffective jets > 2.0 RE. These are presented

separately for the three IMF cone angles. The figure is from Vuorinen et al. (2019) and

licensed under CC BY.

direction. Plaschke et al. (2016) considered jets with perpendicular diameters larger

than 2.0RE to be geoeffective, meaning that signatures of such jets colliding into the

magnetopause can be observed at Earth. We find, similarly to Plaschke et al. (2016),

that this type of geoeffective jets impact the magnetopause approximately 9.4 times

per hour during quasi-radial IMF, 4.1 times per hour during oblique IMF and 0.85

times per hour during high cone angle IMF. Here, on top of those largest jets, we

looked at smaller scale sizes as well. We find that jets larger than 1.0RE impact the

magnetopause 5–56 times per hour depending on the IMF orientation. Jets smaller

than that collide into the subsolar magnetopause much more frequently bringing the

total impact rates of all sized jets up: 3.5 jets per minute during quasi-radial IMF

and 0.31 jets per minute during high cone angle IMF.

3.2 Magnetic field within jets

In Figure 14, we present histograms of the magnetic field GSM components and

magnitude within jet intervals (in blue) and non-jet magnetosheath observations

(in red): these are visibly different. The KS2-test rejects the null hypotheses with

https://creativecommons.org/licenses/by/4.0/
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Figure 14. The distribution of jet interval and non-jet magnetosheath observations as a

function of (a) BX,GSM, (b) BY,GSM, (c) BZ,GSM, and (d) |B|. The error bars were calcu-

lated as 95 % binomial proportion confidence intervals with the Clopper-Pearson method.

BX BY BZ |B|

jet interval

mean 2.27 nT −2.86 nT −0.333 nT 19.5 nT
median 1.93 nT −3.05 nT −0.161 nT 18.2 nT

std 9.45 nT 13.6 nT 13.3 nT 9.30 nT
skewness 0.037 0.048 −0.022 0.558

non-jet

mean −0.022 nT −3.54 nT 2.27 nT 27.1 nT
median 0.199 nT −5.30 nT 0.967 nT 25.8 nT

std 6.54 nT 19.7 nT 21.7 nT 13.7 nT
skewness −0.120 2.34 0.198 6.93

Table 1. The means, medians, standard deviations, and skewnesses of BX , BY , BZ , and

|B| distributions of jet interval and non-jet observations in the GSM frame.

p < 0.001, indicating high significance, for all these quantities. This suggests that

the underlying distributions of each of the quantities are not identical between the jet

interval and the non-jet observations. The means, medians, standard deviations, and

skewnesses of these data sets are presented in Table 1. As can also be seen in Figure

14a, the jet intervals have a larger variance in BX than the non-jet magnetosheath.

Conversely, we can also see in Figure 14b for BY and in Figure 14c for BZ , that the
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variances are larger within the non-jet magnetosheath. |B| and its variance within

our jet intervals tend to be smaller than within the non-jet magnetosheath. The

results suggest that the magnetic field is statistically different within jet intervals

compared to normal magnetosheath plasma. However, it should be noted that in

order to make further conclusions from these comparisons, the distributions should

be classified by relative position between the magnetopause and the bow shock and

also by the upstream IMF conditions. All in all, these results give us confidence to

study the fields further and, thus, we will look at the BZ in more detail.

As discussed before, the BZ component is important for magnetopause reconnec-

tion because it dominates the magnetic shear angle at the subsolar magnetopause

between the magnetosheath magnetic field on one side and the northward (BZ > 0)

Earth’s magnetic field on the other side. We also know that the IMF orientation in-

fluences the magnetosheath magnetic field, so we divide the data into two categories:

northward IMF with BIMF
Z,GSM > 0 and southward IMF with BIMF

Z,GSM < 0. Note that

the terms southward and northward are not strict here because we do not consider

the other magnetic field components. In Figure 15, we present the BZ distributions

of jet interval and non-jet observations separately for these two categories. The

means, medians, standard deviations, and skewnesses of both of these categories are

presented in Table 2. We can see that the orientation of the IMF clearly affects

the BZ within the magnetosheath. During northward IMF, the jets and the non-jet

magnetosheath tend to have more northward (positive) values of BZ and vice versa.

In fact, the Spearman rank-order correlation coefficient between BZ in the non-jet

magnetosheath and corresponding BIMF
Z,GSM in the solar wind is 0.7784 (p < 0.001)

which indicates high positive rank correlation. For jet intervals, the corresponding

value was 0.5257 (p < 0.001), indicating that the correlation between the IMF and

the magnetic field BZ in jets is not as strong as for the non-jet magnetosheath. The

distributions during northward and southward IMF do not seem to be symmetric.

We test this by using the KS2-test. The non-jet MSH distributions are not sym-

metrical according to the KS2-test that rejects the null hypothesis (p < 0.001). We
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(a) (b)

Figure 15. The magnetic field component BZ,GSM for jet interval (blue) and non-jet (red)

observations for (a) northward IMF (BIMF
Z,GSM > 0) and (b) southward IMF (BIMF

Z,GSM < 0).

The confidence limits were calculated as 95 % binomial proportion confidence intervals

with the Clopper-Pearson method.

can see that the non-jet distribution has higher absolute values during northward

IMF than during southward IMF. The corresponding BIMF
Z,GSM distribution does not

exhibit similar behaviour (medians: southward IMF −1.81 nT and northward IMF

1.83 nT), which indicates that the magnetosheath is most likely affected by the mag-

netic pile up layer that forms in front of the magnetopause during northward IMF.

The jet interval distributions are not symmetric either (null hypothesis rejected with

p < 0.001).

BZ

BIMF
Z,GSM > 0 BIMF

Z,GSM < 0

jet interval

mean 5.00 nT −6.41 nT
median 4.95 nT −6.25 nT

std 12.0 nT 12.1 nT
skewness −0.101 0.101

non-jet

mean 15.4 nT −11.7 nT
median 13.7 nT −11.3 nT

std 17.7 nT 16.2 nT
skewness 0.099 0.427

Table 2. The means, medians, standard deviations, and skewnesses of BZ,GSM distributions

of jet interval and non-jet observations during northward and southward IMF.

With the aim to study whether jets could affect magnetic reconnection at the

magnetopause, next we will consider how the BZ distribution changes as we move

from the bow shock toward the magnetopause. Before that, however, it is important
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Figure 16. (a) The medians of non-jet magnetosheath field magnitude normalized by the

IMF magnitude as functions of the relative radial position between the MP and BS during

northward and southward IMF. (b) The relative radial positions of jet t0 observations

from the Earth during southward and northward IMF normalized by the distribution

of all MSH observations. The error bars were calculated as 95 % binomial proportion

confidence intervals with the Clopper-Pearson method.

to investigate whether jets can make it to the magnetopause across the magnetic

pile-up layer. In Figure 16a, we have plotted the medians of non-jet magnetosheath

magnetic field magnitude normalized by the upstream field magnitude during north-

ward and southward IMF as functions of relative position between the magnetopause

and the bow shock. It can be seen that the magnetic flux does pile up in front of

the magnetopause more strongly during northward IMF. To test whether this af-

fects the occurrence of jets, in Figure 16 we present the relative positions of the

spacecraft between the magnetopause and the bow shock at times t0, normalized by

all MSH observations, separately for northward and southward IMF. It seems that

jets are observed just as frequently close to the magnetopause during these two IMF

conditions, suggesting that jets can penetrate through the magnetic pile-up layer.

In Figure 17, we present the distributions of BZ within jet intervals and non-jet

magnetosheath samples as functions of relative position, again separately for north-

ward and southward IMF. The non-jet magnetosheath samples have been generated

by creating samples of the same size as the jet samples and following jets’ distribu-

tions of relative positions and IMF cone angles, as explained in Section 2.5.5. The

distributions are displayed using their 10th, 50th (medians), and 90th percentiles. To
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evaluate the effect of finite sample size, we created several non-jet samples, averaged

their percentiles, and calculated their standard deviations (σ). We investigate the

distributions of all jet interval data points in Figures 17a & 17b compared to the

average percentiles of three same sized non-jet magnetosheath samples (individually

sampled observations, not intervals). Jet interval minima in Figures 17c & 17d and

jet interval maxima in Figures 17e & 17f are compared to minima and maxima,

respectively, averaged from 100 samples consisting of non-jet magnetosheath inter-

vals similar to the jet intervals. We do this to get a good picture of the variations

of BZ within the jet intervals and how these variations compare to the inherent

background variations.

The effect of field lines becoming tangential to the magnetopause is visible in

Figures 17a & 17b, as the BZ distribution of non-jet observations broadens toward to

the magnetopause. The direction of this broadening follows the direction of the IMF,

so that during northward IMF (Figure 17a) the tangential field lines tend to point

northward and vice versa (Figure 17b). We can see that in the leftmost bin (F ∈

[−0.1, 0.1)) next to the magnetopause, during northward IMF the BZ distribution

exhibits larger absolute values (median: 17 nT, σ = 0.084 nT) than during southward

IMF (median: −12 nT, σ = 0.20 nT) due to the formation of the magnetic pile-up

layer caused by the lack of reconnection. The jet interval distributions also broaden

but not as much suggesting that jets seem to be able to maintain their magnetic

properties better than the background while propagating in the magnetosheath. The

medians of jet interval observations next to the magnetopause are also different in

magnitude: 6 nT for northward and −11 nT for southward IMF.

Let us look at the leftmost bin in more detail because the magnetic field right

next to the magnetopause is important from the perspective of reconnection. In

Figure 17a, we can see that during northward IMF, jets exhibit lower values of BZ

(median: 6 nT) than the non-jet magnetosheath (median: 17 nT, σ = 0.084 nT).

Jet intervals also have negative, or southward, values of BZ more often: 36 % and

21 % (σ = 0.021 %) of the time, respectively. Thus, southward fields are relatively
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Figure 17. The 10th, 50th (medians), and 90th percentiles of the magnetic field component

BZ,GSM as a function of relative radial position between the magnetopause and the bow

shock. All jet interval observations compared to averages of three non-jet cone angle

samples during (a) northward and (b) southward IMF. Minima ((c) northward and (d)

southward IMF) and maxima ((e) northward and (f) southward IMF) of the jet intervals

and averages of 100 non-jet cone angle samples of similar intervals. The error bars represent

the standard deviations (σ) of the averaged percentiles.

more common within jets and jets tend to have larger absolute values of negative

BZ . During southward IMF (Figure 17b), the jet interval and the sampled non-jet

magnetosheath distributions have practically equal medians but the non-jet mag-

netosheath has a larger spread in both the positive and the negative ends of the
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distribution, meaning that large absolute values of positive and negative BZ are

more common than within jets. 27 % (σ = 0.15 %) of non-jet observations and 18 %

of jet interval observations had BZ > 0. Therefore, southward BZ is more common

within jets than within the non-jet magnetosheath also during southward IMF, but

the latter tends to exhibit stronger northward and southward fields.

In the distributions of the minima during northward IMF in Figure 17c, we

have a much larger fraction of jet intervals exhibiting southward fields than similar

magnetosheath intervals: 73 % and 30 % (σ = 4.3 %) of the intervals had southward

magnetic field values within them, respectively. The medians of the interval minima

were −7 nT for jets and 10 nT (σ = 2.1 nT) for non-jet intervals. During southward

IMF (Figure 17d), the non-jet interval minima have a median of −21 nT (σ =

1.7 nT), almost equal to the median of jet interval minima. The variations at the

tails of the distributions are very similar considering the error bars. The distributions

of interval maxima during northward IMF (Figure 17e) show us that jets tend to

have smaller values of maximum BZ than the non-jet intervals, with medians 16 nT

and 26 nT (σ = 4.3 nT), respectively. During southward IMF (Figure 17f), the

distributions of jet and non-jet intervals maxima have medians 1 nT and −4 nT

(σ = 1.6 nT), respectively. The medians and the variations at the tails are of a

similar size when taking the error bars into account.

Overall, close to the magnetopause during northward IMF, southward fields are

more common within jet intervals than in the non-jet magnetosheath. Furthermore,

throughout the magnetosheath, it is significantly more likely for a jet to exhibit

southward BZ compared to similar non-jet intervals. This means that the changes

introduced by jets are not simply comparable to the background variations but

there is a systematic effect that is most pronounced next to the magnetopause.

However, during southward IMF, the medians of the jet and non-jet distributions

are very similar but non-jet magnetosheath has larger variations, indicating that the

inherent variations of the magnetosheath are larger than the effects of jets.
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4 Discussion

This chapter presents the caveats of the study and discussion on the results. We

give our interpretations of the results and relate them to previous studies.

4.1 Caveats

The solar wind and IMF data used in this study are obtained from the OMNI data,

which has been compiled of measurements made by multiple different satellites at

L1 and time-shifted to the front of the Earth’s bow shock (King and Papitashvili,

2005). The estimated time-shift contains some uncertainty, and the solar wind and

IMF conditions can vary between the different spacecraft which may cause local

bias. Furthermore, the solar wind structures may evolve while propagating toward

the Earth. However, since OMNI data is gathered from multiple spacecraft and we

have averaged the conditions over five preceding minutes, we can trust the data to

give us a good picture of the general solar wind conditions.

The caveat of the GIPM frame is that when the IMF line is close to being parallel

with the XGIPM-axis, i.e., during very low cone angle IMF, the direction of ŶGIPM is

not well-defined. Within our low cone angle range αGIPM ∈ [0◦, 30◦), only 20 % of jets

occurred when αGIPM < 15◦. Therefore, we do not expect this to be a significant

caveat. One must also note that the shock has curvature in the ZGIPM-direction

as well. This means that the local shock normals are not exactly in the XGIPM–

YGIPM-plane and θBn is not determined by YGIPM only. However, this curvature is

small in the subsolar region which we study, and therefore, this additional angular

component to θBn is small. Furthermore, Figure 11b suggests that there is no strong

dependence on ZGIPM confirming that this component is not important.

Regarding the jet impact rate estimations, the model created by Plaschke et al.

(2016) makes an assumption that the distribution of jet perpendicular diameters is

the same during all IMF orientations, which does not have to be true. As most

of the jets used to derive the distribution were observed during IMF cone angles
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20◦–50◦, the distribution is likely biased toward the size of such jets.

When looking at the distributions of magnetic field components and the field

magnitude, we used all jet interval data points. This skews the distribution so that

short-duration jets are under-represented. However, we see this as the best way to

make comparisons between the magnetic field within jets and non-jet magnetosheath

observations as no particular point within the jet should be special and the magnetic

field within the jets is very variable. How the magnetic field changes within a jet

interval has to be studied in the future.

The relative positions between the magnetopause and the bow shock determined

from the models of Shue et al. (1998) and Merka et al. (2005), respectively, contain

uncertainty. As noted earlier, 3 % of jets and 5 % of all magnetosheath observations

did not fit the range we studied. Nevertheless, the BZ distribution of the non-jet

magnetosheath as a function of relative position between the magnetopause and the

bow shock exhibits the expected signatures: draping and the magnetic pile-up layer.

This gives us good confidence on the models.

Even though the BZ,GSM within the magnetosheath is a good proxy for the

magnetic shear angle at the magnetopause, the actual angle is also dependent on

the XGSM and YGSM components of the magnetic field. As reviewed by Cassak

and Fuselier (2016), many studies have investigated whether magnetic reconnection

requires strictly anti-parallel fields or whether so-called component reconnection

exists, where only a component of the field reconnects. Observations at the dayside

magnetopause have revealed that both component and anti-parallel reconnection

do occur. However, most observations have been very close to anti-parallel, within

the limits of measurement accuracy. According to a popular maximum shear model

(Trattner et al., 2007), reconnection happens at the point where the magnetic shear

is maximized. Moreover, magnetic reconnection is a very complex process and,

although the magnetic shear angle is a very important parameter, it is not the only

parameter affecting the process. Others include plasma beta shear between the two

regions and the current sheet thickness, which we have not considered here.
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4.2 Occurrence and magnetopause impacts of jets

Similarly to the results of Plaschke et al. (2013) and Archer and Horbury (2013),

we find that jets in the subsolar magnetosheath mainly occur when this region is

downstream of the quasi-parallel shock. As reported by Plaschke et al. (2013), the

jets of this data set are more prevalent closer to the bow shock than to the magneto-

pause. According to our new results, the occurrence rate of jets downstream of the

quasi-parallel shock is around 9 (6–14) times the corresponding rate downstream of

the quasi-perpendicular shock. The rate seems to monotonically increase from the

quasi-perpendicular shock toward the quasi-parallel shock. The analysis was done

using one data point at the time of highest anti-sunward dynamic pressure (t0) to

represent each jet. For testing, we performed the same analysis using all jet interval

data points, to ensure that short jets do not dominate the distribution. The results

were not sensitive to this. As discussed in many previous studies (see Plaschke et al.,

2018, and the references therein), jet formation seems to be linked to the nature of

the quasi-parallel shock and the foreshock processes. Suggested formation processes

that fit this picture include, e.g., bow shock ripples (Hietala et al., 2009; Hietala and

Plaschke, 2013) and SLAMS (Karlsson et al., 2015; Palmroth et al., 2018).

We estimated how often jets hit the subsolar magnetopause during the three

different IMF orientations using the model described by Plaschke et al. (2016). This

model does not describe how jets are spatially distributed but only gives estimations

of the total impact rates during given IMF conditions. One can make an assumption

that the spatial distribution would follow the distribution of jets shown in Figure

11, but we do not know how the propagation of these jets changes when travelling

toward the magnetopause. However, in Figure 12, we can see that the general trends

of spatial occurrence are preserved close to the magnetopause in the YGIPM-direction.

In addition, the results of Hietala and Plaschke (2013) indicated that jets are able

to maintain their propagation direction quite well. As shown in Figure 16, jets are

also able to penetrate through the magnetic pile-up layer during northward IMF.
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Our results provide quantitative results on how often and where jets are expected

to occur during different IMF orientations. Furthermore, estimations of the mag-

netopause impact rates, building on the previous results of Plaschke et al. (2016),

tell us that jets are constantly hitting the magnetopause. This means that we can

expect jet-induced effects on the magnetosphere to also be very common.

4.3 Possible effects of jets on magnetic reconnection

Magnetosheath jets exhibit magnetic fields that differ from the general fields of

the subsolar magnetosheath plasma. The northward–southward orientation of the

IMF controls the magnetic field BZ strongly in the non-jet magnetosheath and

moderately in jets. The BZ distribution of jets does not broaden as much as the non-

jet magnetosheath distribution when approaching the magnetopause. Therefore,

while the non-jet magnetosheath is draped around the magnetopause, the jets seem

to be able to hold their original magnetic field properties during their propagation.

When the IMF is southward, or more precisely when it has a southward com-

ponent, the medians of the jet intervals and the non-jet magnetosheath are almost

equal next to the magnetopause. However, the non-jet magnetosheath BZ distribu-

tion has a larger spread than the jets. This means that the non-jet magnetosheath

is more likely to have larger absolute values. From the perspective of increasing or

decreasing magnetic shear at the magnetopause, the larger the absolute value of BZ

the better. When studying the minima and maxima of jet and non-jet intervals, we

see that the variation in BZ within jets is within the same scale or slightly smaller

than the typical variation within the magnetosheath. Thus, during southward IMF,

jets are not expected to statistically affect magnetopause reconnection, neither by

suppressing or enhancing it. Reconnection is efficiently driven during southward

IMF so any effects of jets are probably not very important.

During northward IMF, or when the IMF has a northward component, south-

ward fields (BZ < 0) next to the magnetopause are more common within jets than

within the non-jet magnetosheath during similar IMF conditions. Here, 36 % of
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jet interval measurements were southward as in comparison to 21 % (σ = 0.021 %)

within the non-jet magnetosheath. Furthermore, when comparing jet intervals to

similar duration non-jet intervals, only within 30 % (σ = 4.3 %) of the non-jet inter-

vals the field was southward at any point. Remarkably, 73 % of the jet intervals had

southward fields within them. Thus, it is clear that the variations within jets are not

comparable to the typical variation within the magnetosheath. Therefore, we can

conclude that during northward IMF, the magnetic field within jets is favorable for

enhancing magnetopause reconnection due to jets exhibiting southward fields more

often than the non-jet magnetosheath. Jets provide a way to bring southward fields

to the vicinity of the magnetopause during northward IMF.

Nykyri et al. (2019) associated jets with southward BZ observed during north-

ward IMF to have triggered magnetopause reconnection. According to our results,

jets with southward fields during northward IMF are not rare. In the future, we have

to study the physical mechanisms resulting in these characteristics. We can start

by studying how the results change with IMF obliquity (cone angle). Furthermore,

we need to look at how the magnetic field changes within the jet interval and what

is the duration of these southward minima: whether they are only brief changes

in the field orientation or if they last longer. Jets may also affect magnetic shear

at the magnetopause by indenting it, and therefore changing the magnetospheric

field geometry, as proposed by (Hietala et al., 2018). On top of the effects of jets

on the magnetic shear angle at this boundary, the high dynamic pressure of jets

makes them also able to compress the magnetopause and make it thin enough for

reconnection to occur. Observational evidence of such an event has already been

provided by Hietala et al. (2018), although this was a special case since typically

the magnetopause is notably thinner (e.g., Phan and Paschmann, 1996).

All in all, there are many ways how jets may possibly affect magnetopause re-

connection. Their relative importance is yet to be studied, but as jets are not rare

and, during northward IMF, jets often have magnetic fields favorable for enhancing

reconnection, more research on this relationship should definitely be conducted.
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5 Summary and conclusions

In this thesis, we studied how the orientation of the interplanetary magnetic field

controls the occurrence of magnetosheath jets and their estimated magnetopause

impact rates. The results of this aforementioned study have been published by

Vuorinen et al. (2019). We studied the magnetic field within the jets themselves,

specifically for the first time focusing on their BZ,GSM distribution close to the sub-

solar magnetopause to understand whether jets could affect magnetic reconnection.

We find that the occurrence of jets downstream of the quasi-parallel shock is 9

times the occurrence downstream of the quasi-perpendicular shock. In the subsolar

magnetosheath, during oblique IMF, the occurrence of jets grows monotonically

from the quasi-perpendicular side toward the quasi-parallel side. Jets, especially

smaller ones, are constantly hitting the subsolar magnetopause but the impact rates

are the highest during low cone angle IMF when this region is downstream of the

quasi-parallel shock. During these conditions, almost 60 jets per hour with sizes of

> 1RE perpendicular to their propagation direction hit the subsolar magnetopause.

During unfavorable conditions, i.e., downstream of the quasi-perpendicular shock,

such jets hit the subsolar magnetopause around 5 times per hour.

We found that the magnetic field within jets is statistically different compared

to the non-jet magnetosheath magnetic field. We studied the magnetic field GSM

BZ component in detail as a function of relative position between the magnetopause

and the bow shock. We found that jets seem to be able to preserve their magnetic

field direction better than the non-jet magnetosheath. During southward IMF, the

magnetic field in the non-jet magnetosheath itself has larger variations than the jets

close to the magnetopause and jets are not expected to have a statistical impact on

magnetopause reconnection. However, during northward IMF, when reconnection is

generally suppressed at the subsolar magnetopause, the magnetic field within jets is

statistically favorable for enhancing magnetopause reconnection as jets have south-

ward fields more often than similar non-jet intervals. Remarkably, around 70 % of
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jets close to the magnetopause exhibit southward fields when the IMF has a north-

ward component, compared to around 30 % for similar magnetosheath intervals.

6 Outlook

In the future, we want to study the BZ distribution of jets separately for the two

hemispheres in order to see how the draping of the background magnetic field around

the jets affects the results. We also need to investigate how the results change with

different IMF cone angles as the draping patterns change with IMF obliquity. From

the perspective of magnetopause reconnection, it is also important to study how

long these intervals of southward BZ within the jets are during northward IMF.

There is still plenty to be studied within the topic of magnetic properties and

characteristics of magnetosheath jets. It would also be interesting to study how

the turbulence of the IMF, i.e., variations in its direction and magnitude, affect the

occurrence of magnetosheath jets. As jets are mainly observed downstream of the

quasi-parallel shock with the extended foreshock region, we would assume that large

variations in the IMF orientation may prevent a foreshock region from forming and

thus affect the rippling of the bow shock and the possibly also the formation of jets.

Magnetosheath jets have become an active research topic in magnetospheric

physics. They have been observed to be an important phenomenon for the dynamics

of the bow shock-magnetosphere system. Jets will most likely continue to be linked

to many observed processes and effects within the magnetosphere. Future studies

will reveal whether these structures are inherent to all collisionless shocks in space.
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Verigin, M. I., Tátrallyay, M., Erdős, G., and Kotova, G. A.: Magnetosheath – Interplanetary
medium reference frame: Application for a statistical study of mirror type waves in the terrestrial
plasma environment, Advances in Space Research, 37, 515–521, https://doi.org/10.1016/j.asr.
2005.03.042, 2006.

Vuorinen, L., Hietala, H., and Plaschke, F.: Jets in the magnetosheath: IMF control of where they
occur, Annales Geophysicae, 37, 689–697, https://doi.org/10.5194/angeo-37-689-2019, 2019.

Wang, B., Nishimura, Y., Hietala, H., Lyons, L., Angelopoulos, V., Plaschke, F., Ebihara, Y.,
and Weatherwax, A.: Impacts of Magnetosheath High-Speed Jets on the Magnetosphere and
Ionosphere Measured by Optical Imaging and Satellite Observations, Journal of Geophysical
Research: Space Physics, 123, 4879–4894, https://doi.org/10.1029/2017JA024954, 2018.

Yamada, M., Kulsrud, R., and Ji, H.: Magnetic reconnection, Reviews of Modern Physics, 82,
603–664, https://doi.org/10.1103/RevModPhys.82.603, 2010.

https://sohowww.nascom.nasa.gov/gallery/images/magfield.html
https://sohowww.nascom.nasa.gov/gallery/images/magfield.html

	Acronyms and abbreviations
	Introduction
	Background
	The solar wind and the interplanetary magnetic field
	Structure and dynamics of the Earth's magnetosphere
	Magnetic reconnection at the subsolar magnetopause
	Magnetospheric coordinate systems
	Magnetosheath jets
	History
	Definitions
	Occurrence
	Properties
	Possible formation mechanisms
	Observed effects


	Data and methods
	Observational data sets
	GIPM coordinate system
	Normalization methods
	Normalization of spacecraft positions by the solar wind dynamic pressure
	Renormalization by all magnetosheath observations

	Bow shock and magnetopause models
	Merka et al. (2005) bow shock model
	Shue et al. (1998) magnetopause model

	Statistical methods
	Confidence intervals
	Estimating the magnetopause impact rates
	Kolmogorov-Smirnov test
	Spearman rank-order correlation coefficient
	Generating magnetosheath samples following similar solar wind distributions as the jets


	Results
	IMF control of jet occurrence and magnetopause impact rates
	Magnetic field within jets

	Discussion
	Caveats
	Occurrence and magnetopause impacts of jets
	Possible effects of jets on magnetic reconnection

	Summary and conclusions
	Outlook
	Acknowledgements
	References

