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ABSTRACT 

T-helper cells are an important part of the immune system and adaptive immunity. 
Over the course of the immune response, under the influence of various cytokines, 
T-helper cells differentiate into various subsets each of which have a specific 
function. Despite the generation of large amounts of data by recent high-throughput 
studies, the picture of human T-helper cell differentiation is far from complete. The 
goal of this thesis is to identify and characterize molecular elements potentially 
involved in T-helper cell differentiation and immune response through generating 
valuable datasets on immune cells using microarrays and high-throughput 
sequencing and using a range of bioinformatics methods to analyse the data. To 
achieve this goal, in the first study, human Th1 and Th2 cell subsets were profiled 
using transcriptomics and the resulting mRNA and long non-coding (lnc) RNA data 
was integrated with epigenomics data to understand the relationship between the two 
during early T-helper cell differentiation. The results revealed several new 
transcripts differentially regulated by Th1 and Th2 cells during their early 
specification providing candidates for further studies. In the second study, lncRNAs 
in autoimmune disease loci were characterized in granulocytes, monocytes, natural 
killer cells, B cells, memory T cells, naïve CD4+ T cells, and naïve CD8+ T cells. 
Differentially expressing lncRNAs were found to be enriched in those loci compared 
to the reference genome. The third study combined proteomics and transcriptomics 
data and revealed insights into T cell activation and signaling. Finally, the fourth 
study demonstrated the role of STAT3 in regulating other factors in Th17 
differentiation. Moreover, STAT3 was found to bind to genomic loci with genetic 
variation previously associated with autoimmune diseases. The results of this thesis 
identify several factors important for immune cell subsets and characterize their role 
particularly in T-helper cell differentiation. The datasets generated as part of this 
thesis provide a valuable resource for the community.  

KEYWORDS: T-helper cell, transcriptomics, bioinformatics, data analytics, 
lncRNA  
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TIIVISTELMÄ 

T-auttajasolut ovat keskeisiä immuunijärjestelmän ja hankitun immuniteetin 
toiminnalle. Immuunivasteen aikana T-auttajasolut erilaistuvat eri sytokiinien 
vaikutuksesta erilaisiksi alatyypeksi, joista kullakin on erityinen tehtävä ja toiminta. 
Vaikka tuoreet tutkimukset ovat tuottaneet “high-throughput”-menetelmin suuria 
datamääriä, kokonaiskuva T-auttajasolujen erilaistumisesta on vielä muotoutumatta. 
Tämän väitöskirjan tavoitteena on identifioida ja karakterisoida T-solujen 
erilaistumiselle ja immuunivasteelle tärkeitä uusia molekyläärisiä tekijöitä 
tuottamalla immuunijärjestelmän soluista arvokasta dataa ja analysoimalla aineistoja 
bioinformatiikan menetelmin. Tavoitteen saavuttamiseksi ihmisen Th1- ja Th2-
solujen epigenomiikkatulokset integroitiin transkriptomiikkatuloksiin (mRNA ja ei-
koodaava RNA, lncRNA), joka valaisi näiden välisiä suhteita solujen varhaisen 
erilaistumisen aikana. Tutkimuksessa löydettiin jatkotutkimuksiin runsaasti uusia 
kandidaatteja, joita säädellään Th1- ja Th2-solujen aikaisen erilaistumisen aikana eri 
tavoin. Toisessa työssä ei-koodaavien RNA:iden ilmeneminen immuunijärjestelmän 
eri solutyypeissä mitattiin. Näiden immuunisolujen lncRNA:iden osoitettiin 
rikastuneen autoimmuunisairauksiin yhdistettyihin genomin osiin enemmän kuin 
muihin genomin osiin. Kolmas työ yhdisti proteomiikka- ja transkriptomiikka-
tuloksia avaten uusia näköaloja T-solujen aktivaatioon ja signalointiin. Neljännessä 
työssä osoitimme STAT3:n merkityksen muiden Th17-solujen erilaistumiselle 
tärkeiden tekijöiden säätelijänä. Lisäksi STAT3:n osoitettiin sitoutuvan genomissa 
sellaisiin paikkoihin, joissa on aikaisemmin osoitettu autoimmuunitauteihin 
assosioituvaa geneettistä vaihtelua. Tämän väitöskirjan tulokset identifioivat uusia 
immuunisoluille tärkeitä tekijöitä ja valottavat niiden merkitystä erityisesti T-solujen 
erilaistumiselle. Tuotetut ainestot tarjoavat arvokkaan resurssin tiedeyhteisölle.  

AVAINSANAT: T-auttajasolu, transcriptomiikka, bioinformatiiikka, data-analyysi, 
lncRNA  
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1 Introduction 

The immune system plays a critical role in the survival of human beings. We are 
constantly exposed to and attacked by pathogens and the immune system mounts the 
defense of the body against such pathogens. The immune response is a complex 
process involving many cell types. Innate immunity, which we get by birth mounts 
a generic response to invading pathogens. While adaptive immune system retains a 
memory of previous pathogens by producing memory T cells and mounts an efficient 
defense when we are exposed to the same pathogen more than once. CD4+ T helper 
cells, which we study in the works presented here, are part of the adaptive immune 
system. Upon recognizing an antigen presented by a cell, a naïve T cell is activated 
and differentiate into various cytokine producing T helper subsets or memory T cells. 
CD4+ T helper cells enlist other cells of the immune system for antibody production 
and cleaning up pathogenic antigens. Any anomaly in this response by T-helper cells 
can lead to allergy or autoimmune disease states. There is evidence of involvement 
of Th1 and Th9 subsets in allergy, Th1 subsets in type 1 diabetes, Th1 and Th17 
subsets in rheumatoid arthritis and inflammatory bowel disease. Over the course of 
the immune response, CD4+ T cells differentiate into various subsets. Understanding 
CD4+ T cell differentiation process is key to understanding the immune response 
and in turn useful in improving treatment regimen for allergy or autoimmune 
diseases.  

Aided in part by the Human Genome Project, there have been huge developments 
over the last two decades in genome-wide high-throughput approaches. These 
methods enable us to measure the molecular basis of biological processes in a cell. 
DNA microarrays and more recently high-throughput sequencing have been the key 
drivers of novel information generation at an unprecedented rate. The thesis 
presented here summarizes the utilization of computational and statistical principles 
in the field of Immuno-genomics. Several methodologies for retrieval, pre-
processing, and analysis of genomic data to better understand and gain new insights 
into CD4+ T helper cell differentiation are demonstrated.  
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2 Review of the Literature 

2.1 High-throughput methods and data analysis  
Most of the living cells organize genetic information in the form of DNA. DNA is 
transcribed into RNA, which in turn is used for translation into proteins (Crick 1970). 
System-wide study of DNA is called genomics whereas system-wide study of RNA 
is referred to as transcriptomics (Nielsen and Oliver 2005). Transcriptomics usually 
involves measuring and analyzing the expression of various transcripts in the cell. In 
the earlier days, gene expression microarrays were a popular choice but more 
recently high-throughput sequencing has become a favorite among investigators.  

Release of the first draft of the human genome (Lander et al. 2001; Venter et al. 
2001) eased the development of high-throughput discovery methods and increased 
our ability to examine and understand the human cell on a genome-wide scale. 
Advances in the high-throughput genomic discovery methods also led to the 
production of unprecedented amounts of data (Marx 2013). Efforts to make sense of 
this large quantities of data has in a way transformed hypothesis-driven paradigm of 
genome biology into a data-driven one (Mattmann 2013). But there are many 
challenges in piecing together all the new information produced from these data-
driven inquiries such as the ability to handle data from various sources and norms to 
be adopted to reduce complexity of information created. Data-driven approaches, 
which are an important part of this thesis, are increasingly organized under the 
umbrella term bioinformatics (Hogeweg 2011), while integration of data from 
various parts of a system to get a holistic view are better explained by the principles 
of systems biology (Kitano 2002). 

2.1.1 DNA microarrays 
DNA microarrays became an essential tool to obtain novel information in molecular 
biology during early 2000s. Although the principle of complementary sequences 
binding to each other is same, there are mainly three types of microarrays based on 
differences in the technology. They are in-situ synthesized arrays, bead arrays and 
spotted arrays (Bumgarner 2013).  
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In-situ arrays involved the synthesis of DNA sequences on a solid substrate 
(Fodor et al. 1991; Pease, Solas, and Sullivan 1994; Lockhart et al. 1996; Wodicka 
et al. 1997). Arrays based on this technology were developed and popularized by 
Affymetrix Inc. In bead arrays, different DNA sequences were synthesized on small 
beads which in turn are deposited on arrays (Ferguson, Steemers, and Walt 2000; 
Steemers, Ferguson, and Walt 2000; Epstein et al. 2003). Microarrays sold by 
Illumina Inc. are based on this technology. Spotted arrays have glass substrates 
spotted with pins dipped in a DNA solution (DeRisi et al. 1996). Spotted arrays are 
used by researches to produce custom in-house arrays specific to the research 
question.  

There are also many kinds of microarrays including gene expression 
microarrays, arrays for comparative genomic hybridization, chromatin 
immunoprecipitation on chip arrays, SNP arrays, exon arrays, fusion gene arrays and 
tiling arrays (Pollack et al. 1999; Hacia et al. 1999; Hoheisel 2006; Trevino, Falciani, 
and Barrera-Saldaña 2007). Gene expression microarrays, SNP arrays are reviewed 
in the following sections. 

2.1.1.1 Gene expression microarrays 

Gene expression microarrays are the most popular of DNA microarrays to the extent 
that they have become synonymous with microarrays. Gene expression microarrays 
are used for the quantification of RNA levels in the cell. The generic workflow of a 
gene expression microarray can be seen in Figure 1. Gene expression microarrays 
have probes or probesets that target the entire gene or at least the 3’ end of the gene. 
Therefore, having prior information about the sequence of the genes is necessary. In 
majority of the cases, there are multiple probes or probesets for the same gene. Exon 
arrays are a variation of gene expression arrays in the sense that there are probes for 
exons of various transcripts. This helps in the discovery and quantification of 
alternatively spliced transcripts. 

 
Figure 1.  Workflow of a gene expression microarray experiment. RNA is isolated from our 

cells of interest. It is then purified, amplified, and converted to cDNA (reverse 
transcription) or cRNA and then loaded onto the array. Probes on the array are then 
hybridized and signal intensities of the features are obtained after scanning. 
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2.1.1.2 SNP arrays 

Detection of single nucleotide polymorphisms (SNPs) and measuring the generic 
variability in the sample set can be carried out by SNP arrays. SNPs are variations 
in the genome at a single nucleotide position (Feuk, Carson, and Scherer 2006). SNP 
arrays developed by Affymetrix (D. G. Wang et al. 1998) and Illumina (Fan et al. 
2003; Gunderson et al. 2006) can reproducibly detect around 10000 to two million 
SNPs in a single chip. Affymetrix arrays use allele discrimination, where 
oligonucleotides of various alleles act as probes for genomic DNA while Illumina 
arrays involve hybridization of barcoded-oligonucleotides that are extended to 
specific allele.  

2.1.1.3 ChIP- chip 

In ChIP-chip technology microarrays in conjunction with chromatin 
immunoprecipitation (Solomon, Larsen, and Varshavsky 1988; Horak and Snyder 
2002)  are used to discover the binding sites of transcription factors of interest 
involved in regulation of gene expression (Iyer et al. 2001). Transcription factors 
bound to the DNA are pulled down together using an antibody and the DNA is 
purified from the protein complexes and quantified using microarrays. Probes on 
microarrays used for this technique usually target regions that are evenly spread out 
across the genome to get an optimal coverage of the entire genome.  

2.1.2 High-throughput sequencing 
Sequencing of DNA was first developed by Sanger and Nicklen (Sanger and Nicklen 
1977) and hence often referred to as the Sanger sequencing. It was a very slow and 
costly process even after automation and operation of several sequencers in parallel. 
Hence many improvements were proposed to develop next-generation sequencing 
techniques (Schloss 2008). Latest second and third generation high-throughput 
sequencing techniques were often though incorrectly referred to as next-generation 
sequencing even after almost a decade after they became available for use. Some of 
the popular platforms of high-throughput sequencing are pyrosequencing by Roche-
454 (Margulies et al. 2005), SOLiD sequencing by Applied Biosystems (Valouev, 
Ichikawa, et al. 2008), single molecule sequencing by Helicos Biosciences 
(Pushkarev, Neff, and Quake 2009), PacBio by Pacific Biosciences (Eid et al. 2009; 
Schadt, Turner, and Kasarskis 2010), semiconductor sequencing by Ion torrent / Life 
technologies (Metzker 2009; L. Liu et al. 2012), reversible terminator sequencing by 
Illumina/Solexa (Bentley et al. 2008) and nanopore sequencing by Oxford Nanopore 
(Clarke et al. 2009).  
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High-throughput sequencing also has many use cases like that of microarrays. 
Whole genome sequencing (WGS) involves sequencing the whole genome. It can be 
used in studying genetic variation (1000 Genomes Project Consortium et al. 2010) 
and understanding its relationship to underlying cause of complex diseases 
(Saunders et al. 2012; Kilpinen and Barrett 2013). A common modification of WGS 
is exome sequencing (WES), where only the exonic regions are selectively 
sequenced under the assumption that these regions are thought to contain major 
disease causing genetic variation (Hodges et al. 2007). RNA-Seq involves 
sequencing of mRNA or total RNA. It can be used for quantification of both coding 
and non-coding transcripts, discovery alternate isoforms and study of splicing 
patterns (Z. Wang, Gerstein, and Snyder 2009). ChIP-Seq involves sequencing of 
DNA fragments pulled down with an antibody that targets a protein. It can be used 
to study e.g. protein-DNA interactions and mapping of epigenetic marks (P. J. Park 
2009; Farnham 2009). 

2.1.3 Data analysis for high-throughput studies 
Since the advent of high-throughput studies, the amount of data produced from 
genomic experiments has skyrocketed at an unprecedented rate. Obtaining useful 
and actionable knowledge from such vast amounts of data is a challenging task and 
an active area of research. Many software packages, both open and proprietary 
source have been developed to facilitate these analysis tasks. Some of the examples 
are Bioconductor (Huber et al. 2015) in R statistical language (R Core Team 2016), 
MatArray (Venet 2003) and Gene ARMADA (Chatziioannou, Moulos, and Kolisis 
2009) in MATLAB (MATLAB 2017) and Chipster (Kallio et al. 2011). 
Bioconductor / R has become the preferred choice of many researchers as it is free 
to use, open-source and has a vibrant community that engages with everyone. In 
order to help researchers who do not know how to write code, many other GUI tools 
like Chipster and Microarray Я US (Dai et al. 2012) have been built over 
Bioconductor.    

Data analysis of high-throughput data can be divided into three major steps: pre-
processing, statistical modeling, and downstream analysis. Pre-processing mainly 
involves quality control checks and normalization of data. Statistical modelling 
involves fitting the data to a model to assess the distribution and testing hypothesis. 
Downstream analysis involves mining of the significant results to obtain actionable 
insights. 
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2.1.3.1 Data analysis for microarrays 

A common workflow for microarray data analysis is shown in Figure 2. Signal 
intensity values are obtained by scanning the microarrays. Most of the microarrays 
have control probesets to aid in estimation of the background and successive 
correction from any technical errors introduced due to the calibration of scanning 
instruments. Based on the microarray platform, this background correction step is 
either done by the scanning software or up to the user to do it together with 
normalization. File formats also differ between the platforms. Most platforms use 
tab-delimited text file but Affymetrix prefers the binary CEL files. CEL files or tab-
delimited text files can be loaded into most software environments like R or 
MATLAB using inbuilt functions or a variety of packages available on the platform. 

In the context of this thesis, wide variety of packages available in R statistical 
environment are discussed here. For example, Affy (Gautier et al. 2004), Oligo 
(Carvalho and Irizarry 2010) and aroma.Affymetrix (Bengtsson et al. 2008; Bengtsson, 
Wirapati, and Speed 2009) packages provide functions to read binary CEL files of 
Affymetrix microarrays whereas Lumi (Du, Kibbe, and Lin 2008) and beadarray 
(Dunning et al. 2007) packages provide functions to read Illumina microarray data. 
Agilp (Chain et al. 2010) can be used for Agilent microarray data and oligo package 
for data from other platforms like Nimblegen. For the samples to be comparable, we 
must remove the non-biological variation from microarray data. This can be achieved 
by performing normalization on the samples. Affymetrix arrays have an additional step 
of summarizing the data due to presence of multiple probes in a probeset per gene. 
Some of the popular methods of normalization for Affymetrix arrays are MAS5 
(Hubbell, Liu, and Mei 2002), RMA (Irizarry, Hobbs, et al. 2003; Irizarry, Bolstad, et 
al. 2003) and GCRMA (Wu et al. 2004). As the name suggests, Robust multi-array 
average (RMA) and GeneChip robust multi-array average (GCRMA) use information 
from multiple arrays while Microarray suite 5 (MAS5) uses information from single 
array only. MAS5 calculates an average of perfect match (PM) probe intensities after 
subtracting mismatch probe (MM) signal, while RMA and GCRMA do not use MM 
probe signal as they are observed to perform worse at lower signal intensities. For 
Illumina and Agilent arrays, variance stabilization normalization (Huber et al. 2002; 
B. P. Durbin et al. 2002) is popular. In variance stabilization normalization, a 
transformation parameter is estimated by modeling the dependence between variance 
and mean across all probes. The popular R packages mentioned above support most of 
these normalization methods. Visualizing data distributions before and after 
normalization using boxplots and density plots is a good idea to spot outliers. Sample 
relationships should also be looked at using either correlation analysis or hierarchical 
clustering or by dimensionality reductions techniques such a principal component 
analysis. Outliers, detected if any, should be excluded from analysis.  
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Figure 2.  Workflow of data analysis from a microarray experiment. 

Limma (Ritchie, Phipson, Wu, et al. 2015), RankProd (Hong et al. 2006), samr 
(Tusher, Tibshirani, and Chu 2001; Tibshirani et al. 2011), siggenes (Schwender 
2012) are some of the popular packages for statistical modeling in R environment. 
Limma involves fitting a linear model for each gene in the array while using 
empirical Bayes approach to try and shrink sample variance which allows it to work 
even when there is data only from a few arrays. RankProd works by identifying genes 
that are consistently found at the top or bottom in several fold-change ranked gene 
lists.  

After obtaining significant features, some of the popular downstream analysis 
steps are Gene set enrichment analysis (GSEA) (Subramanian et al. 2005), GO 
enrichment analysis, Pathway enrichment analysis and SNP enrichment analysis. Gene 
set enrichment analysis algorithm involves testing if a specific set of genes (such as a 
from a pathway) are either concentrated at the top and bottom of a ranked gene list or 
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randomly distributed. The other enrichment analysis techniques mentioned above 
usually look if traits of a category like a specific pathway or SNPs belonging to a 
specific disease are either over or under represented in the gene list of interest. These 
can be performed using popular tools like DAVID (Huang, Sherman, and Lempicki 
2009) and Genetrail (Backes et al. 2007). In R environment, these can be done using 
packages like GSEABase (Morgan, Falcon, and Gentleman 2017), topGO (Alexa, 
Rahnenführer, and Lengauer 2006) and fgsea (Sergushichev 2016). 

2.1.3.2 Data analysis for high-throughput sequencing 

A common workflow for high-throughput sequencing data is shown in Figure 3. 
Preprocessing of HTS data start with examining FASTQ files. FASTQ files contain 
the reads and the corresponding base call quality value. Popular quality control 
software tools are FastQC (Simon Andrews 2016), PRINSEQ (Schmieder and 
Edwards 2011) or RSeQC (L. Wang, Wang, and Li 2012). FastQC helps in 
generating a quality control HTML report to evaluate issues with either the 
sequencer or the library. In addition to providing basic sequencing depth statistics, 
FastQC has several modules that asses the quality per base, quality per sequence, 
GC content per sequence, duplication rate and presence of adapters. PRINSEQ and 
RSeQC also have equivalent functionality. In addition, PRINSEQ can filter and 
trim reads besides evaluating the quality of the sequencing library while RSeQC 
specifically deals with RNA-Seq libraries by providing information about read 
distributions. Depending on the quality of the data it might be necessary to trim 
adapters or bad quality sequence reads using tools like Cutadapt (Martin 2011) and 
Trimmomatic (Bolger, Lohse, and Usadel 2014). In case of ChIP-Seq data, library 
complexity indicating the number of unique reads and strand cross-correlation 
indicating degree of clustering of immunoprecipitated fragments should be 
determined to gauge the quality of enrichment (Landt et al. 2012; Bailey et al. 
2013). Duplicate reads, if present in a ChIP-Seq dataset should also be removed.  

The reads are then aligned to a reference genome. Some of the popular aligners 
for genomics reads are bowtie (Langmead and Salzberg 2012) and bwa (H. Li and 
Durbin 2009). Tophat (Trapnell, Pachter, and Salzberg 2009; Kim et al. 2013) and 
STAR (Dobin, Davis, Schlesinger, Drenkow, Zaleski, Jha, Batut, Chaisson, and 
Gingeras 2013b) are splicing junction aware aligners that can be used for aligning 
transcriptomic reads. Many of these aligners are based on Burrows-Wheeler 
technique. Kallisto (Bray et al. 2016) and Sailfish (Patro, Mount, and Kingsford 
2014) are among the new generation of quantifiers of transcriptomic data based on 
the principles of pseudo-alignment. Pseudo-alignment involves listing of all k-mers 
from the reads and later matching them to the reads thereby reducing the time 
required to get quantified data from sequence reads. Alignment of transcriptomic 
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Figure 3. Workflow of data analysis of a high-throughput sequencing experiment. 

data with traditional aligners still require the use of programs HTSeq (Anders, Pyl, 
and Huber 2015) or easyRNASeq (Delhomme et al. 2012) that enable quantification 
of mapped reads. Instead of mapping to a reference, performing a de-novo assembly 
using programs like Trinity (Grabherr et al. 2011) can also lead to discovery of novel 
transcripts (Gibbons et al. 2009).  

Quantified gene counts are then normalized to remove any non-biological 
variation. Some of the common approaches are RPKM (Mortazavi et al. 2008), TPM 
(Pachter 2011) and TMM (M. D. Robinson and Oshlack 2010) although recent 
studies (Dillies et al. 2012) have shown that reads per kilo base per million (RPKM) 
is a bad measure when comparing expression between two different sample sets. As 
the name stands, reads per kilo base per million (RPKM) involves normalizing reads 
first based on the gene length and then by a per million scaling factor. While 
calculating TPM, gene counts are first normalized using the per million scaling factor 
and later by the gene length. In TMM method, a trimmed mean of expression values 
is calculated after discarding a proportion of lower and higher values. Statistical 
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testing on these normalized read counts can be performed using packages such as 
edgeR (M. D. Robinson, McCarthy, and Smyth 2010), DESeq (Anders and Huber 
2010), baySeq (Hardcastle and Kelly 2010), DEXSeq (Anders, Reyes, and Huber 
2012), and DSGSeq (W. Wang et al. 2013). All the methods mentioned above use a 
negative binomial distribution to model the count data. edgeR and DESeq uses an 
exact test like that of Fisher’s exact test for differential expression.  

Analysis of ChIP-Seq reads involves peak calling using tools like PeakFinder 
(Johnson et al. 2007), FindPeaks (Fejes et al. 2008), QuEST (Valouev, Johnson, et 
al. 2008), MACS (Y. Zhang et al. 2008), CisGenome (Ji et al. 2008) or PeakSeq 
(Rozowsky et al. 2009). Most of the methods mentioned here use the bimodal 
enrichment of tags on the Watson and Crick strand to identify potential peaks. 
QuEST identifies the local maxima regions after combining the tag densities from 
forward and reverse strands and then compares these with the input sample to get an 
FDR value for each peak call. FindPeaks outputs a Monte Carlo simulation-based 
FDR value of observing a peak of certain height. MACS empirically models the shift 
size of ChIP-seq tags. It then uses the shift size to move tags and like many of the 
first proposed tools, finds enriched sites by using a Poisson distribution model while 
more recent methods including CisGenome use a negative binomial model to find 
enriched sites. Motif discovery from identified peaks can be done using ChIPMunk 
(Kulakovskiy et al. 2010), MEME-ChIP (Machanick and Bailey 2011), RSAT 
(Thomas-Chollier et al. 2012), homer (Heinz et al. 2010) or deepbind (Alipanahi et 
al. 2015). Motif discovery algorithms use a position weight matrix to scan a given 
set of sequences for specific binding sites. Motif enrichment analysis often included 
in the motif discovery suits like MEME-ChIP and homer involves calculating 
statistical enrichment of motifs discovered in a prior step or from a public database. 

2.2 Genomics of T-helper cell differentiation 

2.2.1 Immune system and T-helper subsets 
Immune system plays an important role in human body by defending it from external 
pathogens. Innate immunity, which we get by default at birth protects us by 
responding in a generic manner to all pathogens. Adaptive immunity, which we 
acquire over the course of our life protects us against specific pathogens by 
remembering the antigens. T-helper subsets are the essential part of the adaptive 
immune system. Over the course of the immune response, they secrete cytokines and 
differentiate into various subsets. Each of these subsets has specific functions and 
they are classified based on the cytokines that they secrete which in turn are regulated 
by master transcription factors.  
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For close to two and half decades, it was thought that there are only two subsets of 
T-helper cells, Th1 and Th2 (Tada et al. 1978). Th1 cells are known to be involved in 
immune response against intracellular pathogens while producing IFN-γ and IL12 
(Hsieh et al. 1993; Szabo et al. 2000). Th2 cells are involved in immune response against 
extracellular pathogens while producing IL4 (Swain et al. 1990). Several studies have, 
however, shown that there are many additional subsets. Th17 cells (H. Park et al. 2005; 
Harrington et al. 2005) that secrete IL17 are known to be responsive against both 
intracellular and extracellular pathogens. Th9 cells (Dardalhon et al. 2008; Veldhoen et 
al. 2008) that secrete IL9 and Th22 (Duhen et al. 2009; Trifari et al. 2009) cells that 
produce IL22 are inadequately characterized. Regulatory T (Treg) cells (Cobbold et al. 
2004; Curotto de Lafaille et al. 2004) that produce IL10 and TGF-β are known to regulate 
the immune response by suppressing effector cell functions. Tfh (Breitfeld et al. 2000; 
Nurieva et al. 2008) cells, which promote B cell proliferation secrete IL21. Various Th 
cell subsets and the cytokines they produce can be seen in Figure 4.  

Balance of immune reaction involving these T-helper subsets is paramount to the 
health of the individual. A muted level of response may lead to not mounting 
appropriate defense to a pathogen which can be seen in disease state like AIDS 
(Shaw et al. 1984; Banda et al. 1992; Alimonti, Ball, and Fowke 2003; Gallo 2006) 
when T-helper subsets are depleted. An over-reactive immune system may lead to 
allergy or auto-immune disease states like type-1 diabetes or coeliac disease (Sollid 
2002; Kagnoff 2007; Redondo, Fain, and Eisenbarth 2001; Devendra, Liu, and 
Eisenbarth 2004). 

T-helper subsets are also found to be associated with many disease states. 
Examples of the diseases where T-helper subsets are known to be involved are: in type-
1 diabetes Th1 cells are known to be involved in the destruction of insulin producing 
β-cells (B. O. Wang, André, and Gonzalez 1997; Pakala et al. 1999), in rheumatoid 
arthritis and  inflammatory bowel disease both Th1 and Th17 cells are involved in the 
inflammation of joints (Leung et al. 2000; Bush et al. 2002; Nakae et al. 2003; Yamada 
et al. 2008; Nistala et al. 2010; van Hamburg et al. 2011; L. Zhang et al. 2012) and 
intestine (Davidson et al. 1996; Parronchi et al. 1997; Yen et al. 2006) respectively. 
Th17 cells have been reported to be involved in the destruction of myelin producing 
cells in experimental autoimmune encephalomyelitis (Hofstetter et al. 2005; Langrish 
et al. 2005; Komiyama et al. 2006). TfH cells have been implicated in the inflammation 
of various organs in systemic lupus erythematosus (Simpson et al. 2010) and in the 
anti-thyroid immune response  in autoimmune thyroid disease (Zhu et al. 2012). Th1 
and Th9 subsets play a role in chronic allergy (Durham et al. 1992; Yssel et al. 1992; 
Ebner et al. 1993; Shimbara et al. 2000; Erpenbeck et al. 2003; Soroosh and Doherty 
2009) whereas Th2 cells predominate in asthma (D. S. Robinson et al. 1992). Th22 
cells instead have been associated with psoriasis (Lo et al. 2010) and ankylosing 
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spondylitis (L. Zhang et al. 2012). Therefore, understanding the molecular 
mechanisms of T-helper differentiation provides the basis for developing therapeutic 
approaches for a number of different diseases. 

Transcription factors play an important role in the differentiation of T helper 
cells by regulation several downstream elements and often referred to as master 
regulators due to the muting of differentiation signals of specific subsets in their 
absence. TBX21 is a master regulator of Th1 cells (Szabo et al. 2000), while GATA3 
is a master regulator of Th2 cells (Zheng and Flavell 1997). RORƔT is a master 
regulator of Th17 cells (Ivanov et al. 2006) and FOXP3 is a master regulator of Treg 
cells (Hori, Nomura, and Sakaguchi 2003). Transcription factors bind to DNA and 
thereby change the state of chromatin to facilitate transcription (van Bakel 2011). 
Chromatin has also been found to be regulated by factors in the non-coding region 
of genome (Mondal et al. 2010).  

 
Figure 3.  T helper subsets along with the cytokines they produce and the cytokines that aid in 

their speciation. 
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2.2.2 High-throughput studies of T-helper subsets 
Majority of studies that describe T-helper cell differentiation have been performed 
using mouse models, which were extremely helpful in understanding T-helper cell 
differentiation. But due to evolutionary changes, there might be mechanisms that 
cannot be easily translated to human. So, there is need for studying T-helper cell 
differentiation in humans. A list of selected human T-helper cell high-throughput 
studies can be seen in Table 1. Many early high-throughput studies focused on 
identifying markers unique to Th1/ Th2 subsets (Rogge et al. 2000; Hamalainen et 
al. 2001; Lund, Aittokallio, Nevalainen, and Lahesmaa 2003a; Nikula et al. 2005; 
Chtanova et al. 2005; Lund et al. 2007; Hawkins et al. 2013). More recent studies 
also aimed at elucidating markers of Th17 and iTreg cells (Birzele et al. 2011; 
Tuomela et al. 2016; Ubaid Ullah et al. 2018). While it was possible to study a few 
lncRNA transcripts on microarrays, with the advent of high-throughput sequencing, 
some studies also aimed at identifying long non-coding RNAs involved in T-helper 
cell differentiation (Spurlock et al. 2015; Kanduri et al. 2015; Tuomela et al. 2016).  

Table 1.  Selected high-throughput studies that help in understanding human T-helper cell 
differentiation. 

SUBSETS GEO/SRA ID STUDY PLATFORM 

TH1, TH2  Rogge et al. 2000 Microarray 

TH1, TH2  Hamalainen et al. 2001 Microarray 

TH1, TH2  Lund, Aittokallio,  
Nevalainen, and Lahesmaa 2003b 

Microarray 

TH1, TH2  Chtanova et al. 2005 Microarray 

ACTIVATED AND 
NON-ACTIVATED 
CD4+ T CELLS 

 Stentz and Kitabchi 2004 Microarray 

TH1, TH2  Nikula et al. 2005 Microarray 

TH1, TH2 GSE2770  Lund et al. 2007 Microarray 

CD4+ T CELLS GSE7571  M. Wang, Windgassen,  
and Papoutsakis 2008b 

Microarray 

CD4+ T CELLS GSE7571 M. Wang, Windgassen,  
and Papoutsakis 2008a 

Microarray 

TH2 GSE18017  Elo et al. 2010 Microarray 

CD4+ T CELLS SRP006674  Birzele et al. 2011 High- 
Throughput 
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SUBSETS GEO/SRA ID STUDY PLATFORM 
sequencing 

TH17 GSE35103  Tuomela et al. 2012 Microarray 

TH1, TH2 GSE32959 Äijö et al. 2012 Microarray 

TH1, TH2, TH17 GSE33946 Rusca et al. 2012 Microarray 

TH1, TH2 SRA082670  Hawkins et al. 2013 High- 
throughput  
sequencing 

TH1, TH2, TH17 GSE43005  H. Zhang et al. 2013 Microarray 

TFH,  
CD4+ T CELLS 

GSE58597 Weinstein et al. 2014 High- 
throughput  
sequencing 

TH2 GSE53646 Seumois et al. 2014 Microarray 

TH1, TH2, TH17 GSE54627 Touzot et al. 2014 High- 
throughput  
sequencing 

TH1, TH2, TH17, 
TREG 

GSE60680  Gustafsson et al. 2015 High- 
throughput  
sequencing 

TH1, TH2 GSE71646 Kanduri et al. 2015 Microarray 
and High- 
throughput  
sequencing 

TH1, TH2, TH17 GSE66261 Spurlock et al. 2015 High- 
throughput  
sequencing 

TH1, TH2 GSE62486 Hertweck et al. 2016 High- 
throughput  
sequencing 

TH1, TH17 GSE77299 
GSE78897 

Koues et al. 2016 High- 
throughput  
sequencing 

Th17 GSE52260  Tuomela et al. 2016 High- 
throughput  
sequencing 

TREG GSE90570 
GSE99889  

Hawkins et al. 2013;  
Ubaid Ullah et al. 2018 

High- 
throughput  
sequencing 
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3 Aims 

The overall objective of this Ph.D. study was to use computational and statistical 
methods to better understand the T-helper cell differentiation processes and the role 
in the human immune response under various auto-immune disease states. The 
projects in the study utilized data from different genomic platforms to obtain insights 
and better understand T-helper cell differentiation.  

 
The specific aims of this study were: 

I. Study the mRNA and lncRNA transcript expression changes during early 
human T-helper cell differentiation. 

II. Characterize mRNA and lncRNA transcripts in nine auto-immune disease 
(AID) loci. 

III. Study the transcriptome-wide changes of Lat- deficiency between resting 
and activated CD4+ T cells. 

IV. Study the STAT3-regulated transcriptome during early Th17-cell 
differentiation. 
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4 Materials and Methods 

4.1 Ethics statement 
Collection of umbilical cord blood from healthy neonates (I, II, IV) was approved 
by the Ethics Committee of the Hospital district of Southwest Finland in line with 
the 1975 Declaration of Helsinki. Collection of blood sample from a healthy donor 
(II) was approved by the Medical Ethical Board of University Medical Center 
Groningen. Informed consent was obtained from each donor.  

4.2 CD4+ T-cell isolation and culturing (Study I, II, 
IV) 

CD4+ T cells were isolated from human umbilical cord blood of healthy neonates 
and were purified using positive selection (Dynal CD4 positive Isolation Kit, 
Invitrogen, Carlsbad, CA, USA). Purified CD4+ T cells were pooled from several 
individuals and were cultured in Yssel’s medium (Iscove’s modified Dulbecco’s 
medium supplemented with Yssel medium concentrate plus penicillin/streptomycin) 
supplemented with 1 % human AB serum (Red Cross Finland Blood Service). Cells 
were activated with plate- bound anti-CD3 (2.5 μg/ml) and soluble anti-CD28 (500 
ng/ml; both were from Immunotech, Marseille, France). At the same time, Th1 
polarization was initiated with 2.5 ng/ml IL12 and Th2 neutralizing antibody anti- 
IL4 (1 μg/ml); Th2 polarization was initiated using 10 ng/ml IL4 plus Th1 
neutralizing antibody anti- interferon γ (1 μg/ml) (all antibodies from R&D Systems, 
Minneapolis, MN, USA); or Th0 state was promoted when cells were cultured with 
only neutralizing antibodies (anti-interferon γ and anti-IL4) and without polarizing 
cytokines (Th0 cells). IL2 (40 U/ml, R&D Systems) was added on the second day of 
culture. The polarization was verified by checking the expression of polarization 
marker genes for Th1 and Th2 subsets.  
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4.3 PBMC isolation and immune cell subset sorting 
(Study II) 

Peripheral blood mononuclear cells were isolated from venous peripheral blood 
collected from healthy donors, using Ficoll Paque Plus (GE Healthcare Life 
Sciences, Uppsala, Sweden) gradient centrifugation and stained for fluorescence 
activated cell sorting (FACS). Granulocyte fraction was obtained by lysing the red 
blood cells in the pellet with monochloride solution. PBMCs were sorted into six 
different populations on MoFlo XDP flow cytometer (Beckman Coulter, Brea, CA, 
USA), after they were incubated with antibodies for 45 minutes at 4°C. Lymphocytes 
were separated from monocytes and further sorted into natural killer (NK) cells 
(CD4- CD8- CD56/CD16+ CD19-), B-cells (CD4- CD8- CD56/CD16- CD19+), 
naïve CD4+ (CD4+ CD8- CD45RO-), naïve CD8+ (CD4- CD8+ CD45RO-) and 
memory T cells (CD4+ CD8- CD45RO+ and CD4- CD8+ CD45RO+). 

4.4 RNA isolation and transcriptional profiling 
(Study I, II, III, IV) 

In study I, using Trizol reagent (Invitrogen), total RNA was extracted from naïve 
precursor human cord blood CD4+ T cells, activated Th0 cells and differentiated 
Th1 and Th2 cells at 72h. 250ng of total RNA processed with an Affymetrix 
GeneChip 3´IVT Express kit (according to sample preparation guide) was used for 
hybridization on Affymetrix Human Genome U133 Plus 2.0 array. 300ng of total 
RNA processed with an Illumina TotalPrep RNA amplification kit (according to 
sample preparation guide) was used for hybridization on Illumina HumanHT – 12 
v4 Expression BeadChip. Libraries (polyA based) for high-throughput sequencing 
were prepared with 400ng of total RNA using Illumina TrueSeq RNA Sample Prep 
kit v2 (according to sample preparation guide) and sequenced using Illumina HiSeq-
2000 instrument. In study II,  for granulocytes, monocytes, NK cells, B cells, 
memory T cells (CD4+ and CD8+), naïve CD4+ and naïve CD8+ T cells, MirVana 
RNA isolation kit (Ambion Life Technologies, Carlsbad, CA, USA) was used to 
extract RNA. 1 µg of total RNA was used to prepare libraries using Illumina TruSeq 
RNA kit and sequenced on Illumina HiSeq-2000 instrument. 

4.5 Analysis of microarray data (Study I, II, III, IV) 
All the analyses were performed in R statistical environment (R Core Team 2016). 
Affymetrix probe-level microarray data were normalized using robust multi-array 
average algorithm (Irizarry, Hobbs, et al. 2003) as implemented in affy package 
(Gautier et al. 2004). Preprocessing of Illumina microarray data, which includes 
background adjustment, variance stabilization transformation and quantile 
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normalization was performed using methods implemented in lumi package (Du, 
Kibbe, and Lin 2008). Duplicated and un-annotated probes were removed using 
genefilter package (Gentleman et al. 2016). Probeset with the highest inter-quartile 
range was retained in case of duplicates. Present and absent calls for Affymetrix 
microarray probesets were generated by fitting the chip-wide log2-transformed 
expression to a two-component Gaussian mixture distribution, using the standard 
expectation-maximization algorithm in mixtools package (Benaglia et al. 2009). A 
probeset was defined to be present (study I) if the data point had a higher likelihood 
for the Gaussian component with the higher mean value in all replicates of the sample 
subtype (Lee et al. 2010). Present and absent calls for Illumina microarray probesets 
were obtained using detection p-value. A probeset was defined to be present if the 
detection p value was < 0.01 in all replicates of the sample subtype. Differential 
expression analysis was done using moderated, unpaired t-test as implemented in 
limma (Smyth 2004; Ritchie, Phipson, Di Wu, et al. 2015). Genes were considered to 
be differentially expressed if Benjamini-Hochberg (Benjamini and Hochberg 1995) 
adjusted p-value < 0.05 and log2 fold-change < -1 or > 1. 

4.6 Analysis of high-throughput sequencing data 
(Study I) 

Quality metrics of the sequencing reads were checked using FastQC (Simon 
Andrews 2016) and then mapped to hg19 reference transcriptome and genome build 
using TopHat v2 (Kim et al. 2013). mRNA gene counts were obtained using htseq-
count script included in htseq framework (Anders, Pyl, and Huber 2015). For 
lncRNA counts, GENCODE v16 catalog of lncRNAs (Harrow et al. 2012) and 
transcriptome features were utilized. Raw counts were normalized and variance 
stabilized expression values were obtained using methods implemented in DESeq 
package (Anders and Huber 2010). Present and absent calls for mRNA genes were 
obtained by following the procedure as described in the analysis of Affymetrix 
microarray data on normalized and variance stabilized expression values. 
Differential expression analysis was done on raw counts using the default settings in 
the DESeq package. The genes/lncRNAs were considered to be differentially 
expressed if the Benjamini-Hochberg (Benjamini and Hochberg 1995) adjusted p-
value < 0.05 and modified log2 fold-change < -1 or > 1. The data is deposited in the 
publicly available Gene expression omnibus under the accession GSE71646. 
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4.7 Analysis of high-throughput sequencing data 
(Study II) 

Reads were mapped to NCBI v37 reference genome using STAR (Dobin, Davis, 
Schlesinger, Drenkow, Zaleski, Jha, Batut, Chaisson, and Gingeras 2013a) and 
feature counts were obtained against GENCODE v14 (Harrow et al. 2012) using 
IntersectBed tool from BEDTools suite (Quinlan and Hall 2010) and normalized 
using RPKM measure (Mortazavi et al. 2008). Based on the publicly available 
Immunochip data, we chose eight auto-immune diseases and defined the loci 
associated with each of the manifested phenotypes. The selected AIDs are 
autoimmune thyroid disease, celiac disease (CeD), inflammatory bowel disease 
(IBD), juvenile idiopathic arthritis (JIA), primary biliary cirrhosis (PBC), psoriasis 
(PS), primary sclerosing cholangitis (PsCh) and rheumatoid arthritis (RA).  Fisher’s 
exact test was used to determine the differential expression between disease-specific 
loci and reference genome while multiple testing correction of the resulting p-values 
was performed  using Bonferroni method (Dunn 1959; Dunn 1961). The data is 
deposited in the publicly available Gene Expression Omnibus under the accession 
number GSE62408. 

4.8 Lineage-specific genes/lncRNAs and their 
neighboring enhancer and promoter marks 

A confident list of differentially expressed mRNA genes was prepared by selecting 
all the genes that were differentially expressed in Thp versus Th0, Th1 and Th2 
subsets from the three platforms and checking that they are differentially expressed 
with the same directionality of fold-change in at least two platforms. Above 
comparisons from only high-throughput sequencing were used for novel genes or 
lncRNAs. We defined a feature to be Th1- or Th2- specific if it was uniquely 
differentially expressed in only Thp versus Th1 or Thp versus Th2 comparisons 
respectively, but not differentially expressed in Thp versus Th0. H3K4me1 
(enhancer) and H3K4me3 (promoter) marks found in Th1 and Th2 cells from a 
previously published study (Hawkins et al. 2013) were overlaid on lineage-specific 
genes and lncRNAs obtained in this study. An enhancer was defined to be in the 
vicinity of a lineage-specific feature if it is within 125kb on either side of the 
transcription start site of the feature. A promoter was defined to be in the vicinity of 
a lineage-specific feature if it is within 2.5kb on either side of the transcription start 
site of the feature. P-values were computed using a randomly generated null 
distribution, where we randomly picked the same number of features as that of a 
lineage-specific set from anywhere else in the genome and quantified the number of 
enhancer and promoter marks around them. 
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4.9 Functional characterization of lncRNAs 
A co-expression network of lncRNAs and protein coding genes was constructed to 
predict GO terms for lncRNAs. A lncRNA was defined to be co-expressed with a 
protein coding gene when the absolute Pearson’s correlation coefficient between 
their expression was greater than 0.9. A topology based GO enrichment test as 
implemented in topGO (Alexa, Rahnenführer, and Lengauer 2006) package was 
performed on each group of protein-coding genes that were co-expressed with a 
lncRNA. Specifically, we used Fisher’s exact test and then attributed the enriched 
GO terms with p-value < 0.01 to that specific lncRNA. Disease associated SNPs with 
p-value < 1e-05 obtained from NCBI’s SGAP Plus database were used for SNP 
association analysis. A feature was defined to be in the vicinity when it was within 
±100kb of a SNP. Enrichment analysis of traits was performed using hypergeometric 
distribution.
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5 Results and discussion 

5.1 Identification and characterization of Th1- and 
Th2- specific mRNA and lncRNAs 

To identify Th1 and Th2 specific genes (study I), we employed transcriptional 
profiling of Thp, Th0, Th1 and Th2 subsets at 72h using three profiling platforms, 
namely, Affymetrix arrays, Illumina arrays and Illumina Sequencing. A mRNA was 
defined to be Th1-specific if it was uniquely differentially expressed only in Th1 vs. 
Thp comparison and not in Th2 vs. Thp or Th1 vs. Th0 comparisons. Equivalent 
approach was used to determine Th2-specific genes. Two lists of lineage-specific 
mRNA, one a confident list using data from multiple profiling platforms and another 
a novel list using data only from next-generation sequencing platform were 
generated. Confident list of genes had 249 Th1-specifying and 491 Th2-specifying 
genes. Novel list of genes had 189 Th1-specifying and 272 Th2-specifying genes. 
We validated the lineage-specificity of these genes using lineage-specific enhancers 
and promoters. We hypothesized that the density of lineage-specific enhancers and 
promoters would be more around lineage-specific mRNAs than anywhere else in the 
genome. Five hundred and eight Th1 enhancers and 183 Th1 active promoters were 
found around Th1-specific genes and 731 Th2 enhancers and 328 Th2 active 
promoters were found around Th2-specific genes. Randomization tests to compare 
the density of enhancers and promoters around lineage-specific mRNAs to random 
genomic loci showed that enhancers and promoters are indeed more preferentially 
located around lineage-specific mRNAs than anywhere else in the genome 
(Enhancers: Th1 p value = 0.0038, Th2 p value = 0.0196; Promoters: Th1 p value = 
0.0003, Th2 p value < 10-4). Immune-mediated disease SNPs of asthma (p value = 
0.0259) and Hodgkin disease (p value = 0.0119) were enriched in Th2-specific genes 
(distance cutoff ±100kb) while SNPs of endometriosis (p value = 0.0016), ovarian 
neoplasms (p value = 0.0087), narcolepsy (p value = 0.0311), Moyamoya disease (p 
value = 0.0256), Osteoarthritis (p value = 0.0256), type 2 diabetes mellitus (p value 
= 0.0481) were enriched in Th1- and Th2- specific genes among all available disease 
SNPs in NCBI’s SGAP plus database.  

Lineage-specific lncRNA identification involved employment of transcriptomic 
data of Thp, Th0, Th1 and Th2 subsets at 72h using High-throughput sequencing. A 
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lncRNA was defined to be Th1-specific if it was uniquely differentially expressed 
only in Th1 vs. Thp comparison and not in Th2 vs. Thp or Th1 vs. Th0 comparisons. 
Equivalent strategy was used in the identification of Th2-specific lncRNA. We 
identified 136 Th1-specific lncRNAs and 181 Th2-specific lncRNAs. The 
expression of lncRNAs was found to be lower than protein coding genes but 
specifically the expression of lineage-specific lncRNAs was found to be higher than 
other non-lineage-specific lncRNAs. We determined that there were 24 Th1-specific 
lncRNAs around Th1- specific mRNAs and 47 Th2-specific lncRNAs around Th2- 
specific mRNAs. There is a broad positive trend in the expression pattern between 
lineage-specific lncRNAs and the nearby lineage-specific mRNA. We followed the 
same strategy of using the density of enhancers and promoters around lineage-
specific mRNAs to validate the lineage-specificity of these lncRNAs. There were 
392 Th1 enhancers and 53 Th1 promoters around Th1-specific lncRNAs and 372 
Th2 enhancers and 61 Th2 promoters around Th2-specific lncRNAs. Randomization 
tests revealed again that lineage-specific enhancers and promoters were 
preferentially located around lineage-specific lncRNAs (Enhancers: Th1 p value < 
10-4, Th2 p value = 0.0018; Promoters: Th1 p value < 10-4, Th2 p value < 10-4). Many 
immune as well as non-immune mediated disease associated SNPs were found to be 
enriched in the vicinity of lineage-specific lncRNAs. We also tried to functionally 
characterize the lineage-specific lncRNAs by predicting their Gene Ontology terms 
using a co-expression network of protein coding mRNA and lncRNAs. A lncRNA 
was attributed with GO terms that were found to be enriched among the lncRNA’s 
co-expressed mRNAs. This catalog of GO terms (study I) is a valuable resource for 
understanding the role of lncRNAs, as many of their functions are still unknown. 

Although many previous studies aimed at elucidating genes involved in T-helper 
differentiation process, several of them employed microarray technology. 
Microarrays were limited by pre-selection bias and probe-design (t Hoen et al. 2008). 
This study aims at overcoming those limitations by employing high-throughput 
sequencing techniques while also generating data to benchmark the employed 
platforms. This also helped in generating a dataset corroborated by multiple 
platforms. Our platform comparison results were also in concordance with previous 
studies (Konopka et al. 2012; Beyer et al. 2012). While some previous studies 
(Ranzani et al. 2015; Hu et al. 2013) aimed at identifying lncRNAs in completely 
differentiated T-helper subsets, to our knowledge this study was among the first that 
generated global profiles of lncRNAs in early stages of Th1 and Th2 differentiation.  
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5.2 Characterization of lncRNAs located in auto-
immune disease loci 

Based on the publicly available Immunochip data, we chose eight auto-immune 
diseases and defined the loci associated with each of the manifested phenotypes. The 
selected AIDs are autoimmune thyroid disease, celiac disease (CeD), inflammatory 
bowel disease (IBD), juvenile idiopathic arthritis (JIA), primary biliary cirrhosis 
(PBC), psoriasis (PS), primary sclerosing cholangitis (PsCh) and rheumatoid 
arthritis (RA). Due to availability of only two SNPs after cut-off (p ≤ 5 x 10-8), 
autoimmune thyroid disease was eliminated from further analysis. For inflammatory 
bowel disease loci were subdivided into Crohn’s disease (CD) and ulcerative colitis 
(UC) and IBD shared based on the phenotype. This resulted in a total of nine 
phenotypes and 284 loci, of which 119 were shared among more than two AID and 
henceforth called as AID shared loci. These 284 loci were found to contain 240 
lncRNAs and 626 protein coding genes. The lncRNA to protein coding genes ratio 
in AID loci is around 1:3 (1:2 in case of UC) and the profile of protein coding genes 
shared among different AID is similar to that of lncRNAs shared. To characterize 
the lncRNAs in the AID loci, we chose RNA-sequencing data from seven circulating 
cell subsets and four cell types during CD4+ T-cell differentiation. We observed that 
around 15% of all lncRNAs were expressed in the 11 cell types but when considering 
only lncRNAs in AID loci that number increases to 32%. We also found out that, on 
average the number of lncRNA expressed in circulating fully differentiated cell types 
was lower than in CD4+ T cells undergoing differentiation. Differentially expressed 
lncRNAs were found to be enriched in disease loci compared to all Gencode 
lncRNAs in three circulating cell types for four diseases. NK cells for IBD, JIA, PBC 
and PS; memory and CD8+ T cells for JIA, PBC, PS and RA. In T-helper cell 
subsets, differentially expressed lncRNA were found to be enriched in IBD Shared, 
JIA, PBC, PS and RA. Previous studies have suggested that highly expressed 
lncRNAs can be functionally active in cell types (Derrien et al. 2012). The results 
presented in this study suggest the cell type specific nature of lncRNAs for AID loci. 

5.3 Transcriptome-wide changes of Lat-deficiency 
during CD4+ T cell activation 

Lat stands for Linker for Activation of T cells and is a transmembrane adaptor that 
plays a key role in TCR signaling pathway by acting as a docking site for many 
effectors of the pathway. A transgene mouse model was used to generate Lat 
deficient CD4+ T cells. Total RNA from Lat-producing and Lat-deficient CD4+ T 
cells before and after activation with anti-CD3 and anti-CD28 was used for 
transcriptional profiling. Differential expression analysis revealed that upon 
activation in Lat-producing cells, 2926 genes were found to be differentially 
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expressed. But in case of Lat-deficient CD4+ T cells, only 35 genes were found to 
be differentially expressed. This results show that Lat is an important element in the 
TCR signaling pathway by way of inducing transcription of various genes. 

5.4 STAT3-regulated transcriptome during early 
Th17 cell differentiation 

During Th17 differentiation, STAT3 is an upstream regulator of Th17 master 
regulator RORƔt and several Th17 signature cytokines such as Il17A and IL17F 
(Chen and O'Shea 2008). In order to study the role of STAT3 during early human 
Th17 cell differentiation, we employed transcriptional profiling to identify 
differentially expressed genes by comparing scramble non-targeting siRNA Th17 
cells to Th0 cells at 2h, 12h, 24h and 72h. The number of differentially expressed 
genes are 2194 (2h), 1524 (12h), 1169 (24h) and 1446 (72h). We also identified 
STAT3-regulated genes by comparing siSTAT3 Th17 cells with scramble treated 
Th17 cells. We found 246 (2h), 179 (12h), 223 (24h), 774 (72h) genes that are 
regulated downstream by STAT3. To find the STAT3 regulated genes that are 
potentially participating in Th17 cell differentiation, STAT3-regulated genes were 
overlaid with genes regulated in response to Th17 differentiation. We found out that 
at two hours only 6.1% of STAT3-regualted genes were also differentially expressed 
in Th17 cells but that number increased with time and at 72h almost 32% of STAT3-
regulated genes were also differentially expressed in Th17 cells. Using STAT3 
ChIP-Seq data, we identified genes which have STAT3 binding site at their TSS. By 
integrating this information with STAT3 regulated Th17 genes, we found out that 
even though the number of STAT3 regulated Th17 genes at 72h is greater, only few 
of them were found to have a direct STAT3 binding sites at their TSS (±10kb), 
suggesting the role STAT3 in employing other regulatory elements. This mechanism 
increases the ability of STAT3 to influence the expression of many more genes as 
differentiation progresses. STAT3’s role as a key regulator of Th17 differentiaion 
has only been previously reported in murine T cells (Ciofani et al. 2012) (Durant et 
al. 2010). Results presented here improve the understanding of STAT3 during human 
Th17 cell differentiation. Results presented here show that more than half of STAT3 
binding sites are in intergenic and intron regions and it would be interesting to find 
out the interplay between STAT3 and epigenetic elements during Th17 cell 
differentiation since proteins like STATs are suggested to favor lineage specific 
enhancer elements in previous studies (Hawkins et al. 2013, Vahedi et al. 2012) 
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6 Summary 

This thesis leveraged high-throughput measurement data on a genome level and 
state-of-the-art analytical methods to gain insights into T-helper differentiation 
process. By using data generated from humans this work complements the previous 
knowledge obtained from various mouse model studies as well as previous human 
studies.  

We identified mRNAs and lncRNAs potentially involved in Th1 and Th2 subset 
differentiation. Integration and analysis of datasets from RNA-Seq and ChIP-Seq 
showed that lineage-specific epigenetic marks are preferentially located around 
lineage-specific mRNA or lncRNA. The datasets produced are also a valuable 
resource to the community for future undertakings.  

We characterized lncRNAs in AID loci by integrating genomic variation and 
gene expression data. We found out that lncRNA in AID loci are enriched in immune 
cell types more than expected by random sampling of genomic locations. We also 
predicted pathways that AID-loci lncRNAs might be associated with, using co-
expression analysis.  

We show the importance of Lat for transcriptional programming during CD4+ T 
helper cell activation. We also present the possibility of STAT3 in employing various 
other regulatory elements to bring gene expression changes during early Th17 cell 
differentiation.  

With the increasing availability of automation in many aspects of life, the amount 
of data generated from biological experiments will increase manifold. Development 
and utilization of methods for analysis and storage of such data is going to be a 
challenge that is worth considering. 
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