Soluja tappavan pneumolysiini-toksiinin tuhovaikutuksen estäminen polyfenoleilla
Turun yliopiston laatujärjestelmän mukaisesti tämän julkaisun alkuperäisyys on tarkastettu Turnitin Originality Check -järjestelmällä.

Asiasanat: *Streptococcus pneumoniae*, pneumokokki, pneumolysiini, polyfenolit, sytotoksinen proteiini, solukalvon huokoset
4.1 Polyfenoliyhdisteiden vertailu ...33
4.2 Kalvolle kokoontuvan rakenteen havaitseminen..............................33
4.3 Sytotoksisuus ..34
4.4 Johtopäätökset ..34
Lähdeluettelo ..35
<table>
<thead>
<tr>
<th>Sana</th>
<th>Kuvaan</th>
</tr>
</thead>
<tbody>
<tr>
<td>asn</td>
<td>asparaginioni</td>
</tr>
<tr>
<td>asp</td>
<td>asparaginihappo</td>
</tr>
<tr>
<td>CDC</td>
<td>kolesterolista riippuva sytolysiini, engl. cholesterol-dependent cytolysin</td>
</tr>
<tr>
<td>CHOL</td>
<td>kolesteroli</td>
</tr>
<tr>
<td>DHHDP-ryhmä</td>
<td>dehydroheksahydroksidifenooyliryhmä, engl. dehydrohexahydroxydiphenoyl group</td>
</tr>
<tr>
<td>DMEM</td>
<td>kasvatusliuos, engl. Dulbecco’s modified Eagle’s medium</td>
</tr>
<tr>
<td>EDTA</td>
<td>etylenidiamininitetraetikkahappo, engl. ethylenediaminetetraacetic acid</td>
</tr>
<tr>
<td>EM-kuva</td>
<td>elektronimikroskooppikuva</td>
</tr>
<tr>
<td>HB</td>
<td>heliksi–beetalaskos, engl. helix-beta sheet</td>
</tr>
<tr>
<td>HHDP-ryhmä</td>
<td>heksahydroksidifenoyliryhmä engl. hexahydroxydiphenoyl group</td>
</tr>
<tr>
<td>HP</td>
<td>hiuspinni, engl. hairpin</td>
</tr>
<tr>
<td>HTH</td>
<td>heliksi–kääntö–heliksi, engl. helix–turn–helix</td>
</tr>
<tr>
<td>IC₅₀</td>
<td>inhiboiva pitoisuus, engl. inhibitory concentration</td>
</tr>
<tr>
<td>IPTG</td>
<td>isopropyyli-β-p-1-tiogalaktopyranosidi</td>
</tr>
<tr>
<td>KO</td>
<td>poistogeeninen kanta, engl. knock-out</td>
</tr>
<tr>
<td>LB</td>
<td>kasvatusliuos, engl. lysogeny broth</td>
</tr>
<tr>
<td>LDH</td>
<td>laktaattidehydrogenaasi</td>
</tr>
<tr>
<td>MTS</td>
<td>3-(4,5-dimetyyllitiatsoli-2-yyli)-5-(3-karboksimetoksifenyyli)-2-(4-sulfofenylli)-2H-tetrahtsolisuola</td>
</tr>
<tr>
<td>NAD⁺/NADH</td>
<td>nikotiiniamidiadieniinidinukleotidi (hapettunut/pelkistynyt)</td>
</tr>
<tr>
<td>PBS</td>
<td>fosfaattipuskuroitu suolaliuos, engl. phosphate buffered saline</td>
</tr>
<tr>
<td>PGG</td>
<td>pentagalloyylglukoosi</td>
</tr>
<tr>
<td>phe</td>
<td>fenyyllalaniini</td>
</tr>
<tr>
<td>Ply</td>
<td>pneumolysiiniv</td>
</tr>
<tr>
<td>PVDF-kalvo</td>
<td>polyvinylideenifluoridikalvo</td>
</tr>
<tr>
<td>SDS-PAGE</td>
<td>natriumdodekyylisulfaatti-polyakryyliamidigeelielektroforeesi, engl. sodium dodecylsulphate polyacrylamide gel electrophoresis</td>
</tr>
<tr>
<td>trp</td>
<td>tryptofaani</td>
</tr>
</tbody>
</table>
1 KIRJALLISUUSKATSAUS

1.1 Pneumolysiini on bakteeriperäinen toksiini

Ply:n tutkimuksen sovelluksia voisivat olla kehittyneet hoidot *S. pneumoniae* aiheuttamissa sairauksissa. Toksiinin vaikutusten estäminen toimisi osana hoitoa, ja nopeuttaisi paranemista. Virulenssitekijää kohdistuva

1.2 Pneumolysiinin rakenne ja synteesi

Ply on liuoksessa monomeerisena, ja sen muoto on pitkänomainen (kuva 2). Domeenit 1, 2 ja 3 ovat lähemmin yhteydessä toisiinsa, mutta domeeni 4 on hieman erillään muista. Liukoiset Ply-molekyylit etsiivät tämän domeenin välityksellä kohdesolukalvolle, ja sitoutuvat kolesteroliin. Ply-toksiinia ja samankaltaisia muiden eliöiden tuottamia proteiineja kutsutaan kolesterolista riippuviksi sytolsiineiksi (engl. *cholesterol-dependent cytolysin*, CDC).

1.3 Solukalvolla Ply-monomeerit kokoontuvat isoksi renkaaksi
Ply ja muut CDC:t kuuluvat β-ryhmän huokosia (engl. *pore*) muodostaviin toksineihin. Ne siis vaurioittavat kohdesolukalvon toimintaa muodostamalla suuren nanorakenteen ja aukon, josta aineet vuotavat läpi (kuva 3). α-ryhmän

Ply-huokosen molekyylimassa on paljon suurempi kuin liukoisen Ply-monomeerin. 42 alayksikköä (van Pee et al., 2017) sisältävän renkaan koko on 2,2 MDa, ulkolämpimita 400 Å, korkeus 110 Å ja muodostuvan aukon halkaisija 250 Å. Tällaiset vauriot vahingoittavat solukalvon perustoimintaa, eli solu vuotaa tärkeitä yhdisteitä ulos ja päästää vääриä aineita sisään. Kalsium- ja kaliumionien säätäminen kulkevia nekroptoseen solu kuolee (González-Juarbe et al., 2015, 2017).
1.4 Pneumolysiiä inhiboivat yhdisteet

Kolmas, melko heterogeennin ryhmä Ply:ä inhiboivista yhdisteistä on kasviperäiset fenolit. Joukko kiinalaisia tutkijoita on yhteistyössä selvittänyt useita tällaisia inhibiittoreita ja julkaisut samankaltaiset artikkelit esimerkiksi verbaskosidista, apigeniinista, epigallokatekiinigallaatista ja juglonista (Song et al., 2016; Song, Lu, et al., 2017; Song, Teng, et al., 2017; Zhao et al., 2016). Nämä tutkimukset pyrkivät tuomaan esiin eri ehdokasmolekyylejä, joiden pohjalta on mahdollista suunnitella varsinaisia lääkkeitä. Kappaleessa luetellut yhdisteet on koottu taulukkoon 1.

<table>
<thead>
<tr>
<th>Sterolit</th>
<th>PLY:n组委会</th>
<th>Ply:in workforce</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kolesteroli</td>
<td>Sitoutuvat</td>
<td>Vaikuttavat</td>
</tr>
<tr>
<td>β-sitosteroli</td>
<td>domeeni 4:n</td>
<td>Ply:in</td>
</tr>
<tr>
<td>Stigmasteroli</td>
<td>kolesterolia</td>
<td>kilpailevanka</td>
</tr>
<tr>
<td>Kampesteroli</td>
<td>tunnistavaan</td>
<td>inhibiittorina</td>
</tr>
<tr>
<td>Brassikasteroli</td>
<td>kohtaan</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hiilihydraatit</th>
<th>Sitoutuvat</th>
<th>Voivat osallistua</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mannoosi</td>
<td>domeeni 4:n</td>
<td>kohteen tunnistukseen</td>
</tr>
<tr>
<td>Sialyyli-LewisX</td>
<td>muuhun osaan</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kasviperäiset fenolit</th>
<th>Vaihtelevia</th>
<th>Estävät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verbaskosidi</td>
<td>sitoutumismalleja</td>
<td>toiminnan mm.</td>
</tr>
<tr>
<td>Apigeniini</td>
<td>hääritsemällä</td>
<td></td>
</tr>
<tr>
<td>Epigallokatekiinigallaatti</td>
<td>oligomerisaatiota</td>
<td></td>
</tr>
<tr>
<td>Jugloni</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1.5 Kasvien polyfenolit

Koska yhdisteitä on niin monia erilaisia, niitä on luokiteltu ja nimetty eri perustein. Quideau et al. (2011) ehdottavat, että polyfenolien määritelmä olisi seuraava: polyfenolit ovat kasvien sekundäärimetabolitiitteja, jotka ovat shikimaatti- ja/ta polyketidireaktioiden johdoksia ja jotka sisältävät useamman kuin yhden fenolirenkaan, mutta joissa ei ole yhtään typpeä sisältävää funktionaalista ryhmää rakenteen perusesityksessä. Tässä työssä keskityttiin polyfenolien alaluokkaan, hydrolysoituviin tanniineihin (kuva 4). Näiden
yhdisteiden voidaan katsoa olevan pentagalloyliglukoosin (PGG) johdannaisia; galloyyliryhmien linkittyessä toisiinsa puhumme ellagitanniineista ja uusien galloyylien liittyessä PGG:n galloyyleihin, puhumme gallotanniineista. PGG on siis näiden molempien hydrolysoituvien tanninien alaryhmän biosynteettinen prekursori kuuluen itse alaluokkaan yksinkertaiset galloyyljohdannaiset.
Galloyyliryhmä (G) → HHDP-ryhmä → DHDP-ryhmä → Tsebuloyyliryhmä

Pentagalloyylglukoosi

Gallagyliryhmä

Punikalaglini R₁,R₂=(S)-HHDP

Kasuirkštini R₁,R₂=(S)-HHDP

Geraninlini R₁,R₂= DHDP-ryhmä
Tsebulaglinhappo R₁≠R₂=Tsebuloyyliryhmä
Tsebulinlinhappo R₁,R₂=Tsebuloyyliryhmä,
ei hilli-hilli-sidosta kohdassa (R)

Valoneoyyliryhmä

Veskavalonlinihappo R₁=β-OH
Kastavalonlinihappo R₁=α-OH

Veskaglini R₁=β-OH
Kastalaglini R₁=α-OH

Stakhurinlini R₁=β-OH
Kasuurinlini R₁=α-OH
1.6 Työn tavoitteet

Työn tavoitteena oli osoittaa polyfenolien estävän Ply:n sytotoksisen vaikutuksen.

1) Tutkittiin, mitkä polyfenolit inhiboivat Ply:ää, ja selvitettiin, kuinka yhdisteet reagoivat toksiinin kanssa.

2) Polyfenolihdisteitä verrattiin toisiinsa ja tuotiin esiin ominaisuuksia, jotka olivat tärkeitä inhibitiovaikutuksen saamiseksi. Esitettiin rakenteellisia tekijöitä inhibitiotehon taustalla.

3) Ply visualisoitiin käyttämällä sekä punasoluihin perustuvia että solutomia (liposomit) määryksiä. Tutkittiin oligomerisaation inhibitiota.

2 MATERIAALIT JA MENETELMÄT

2.1 Polyfenoliyhdisteet

Jauhetusta kasvimateriaalista uutetut, preparatiivisella kromatografialla puhdistetut ja kylmäkuivatut polyfenolit liuotettiin 10 % etanolin vesiliuokseen. Tutkittujen polyfenolien rakenteet ovat kuvassa 4.

2.2 Ply:n tuottaminen

Rekombinantti-Ply tuotettiin ply2-pET46-EkLIC-plasmidilla transformoidussa *E. coli* BL21 (DE3) -kannassa. Yli yön kasvanutta viljelmää lisättiin 1:50 tuoreeseen LB-kasvatusliuokseen (ampisilliiniselektio, 100 µg/ml), ja soluja kasvatettiin 30 °C:ssa ravinutelussa 250 rpm, kunnes A₆₀₀ = 0,6. Ply:n tuotto indusoitiin 1 mM IPTG:lla, ja solut kerättiin 4 h jatkokasvatuksen jälkeen sentrifugoimalla 3000 x g, 20 min ja pakastettiin -84 °C:seen.

Pelletti sulatettiin jällä, suspensoitiin lyysispuskuriin (50 mM natriumfosfaattipuskuri pH 8,0; 500 mM NaCl; 20 mM imidatsoli pH 8,0) ja materiaali hajotettiin entsymaattisesti lysotsyymillä (0,2 mg/ml) ja DNAasilla (0,02 mg/ml) 30 min huoneenlämmössä sekä mekaanisesti sonikoimalla 10 s pulsseilla. Lysaatti sentrifugoitiin 16 000 x g, 20 min ja supernatantti suodattiin

Keskeiset proteiinia sisältävät fraktiot (UV-absorptiodetektori) yhdistettiin, konsentroitiin Amicon Ultra 10K -suodattimella (Millipore) 3000 x g, kunnes tilavuus oli alle 400 µl, laimennettiin ajopuskurilla (20 mM Tris-HCl pH 7,4; 150 mM NaCl) nelinkertaiseen tilavuuteen ja ajettiin geelisuodatoksessa HiLoad 16/600 Superdex 200 -pylväänä. Näytetilavuuden suhde pylvään tilavuuteen oli noin 1:100.

Eniten proteiinia sisältäneet fraktiot yhdistettiin, konsentroitiin kuten edellä ja proteiinipitoisuus mitattiin fotometrisesti (NanoDrop One, Thermo Scientific)
A$_{280}$:n avulla käytävän laskennallista molekyylipainoa 54590 Da ja molaarista ekstinktiokerrointa 72310 M$^{-1}$ cm$^{-1}$. Puhdistusta tarkkailtiin ja lopullisen preparaatin laatua arvioitiin SDS-PAGE:illa.

2.3 Punasolujen valmistus

Ihmisen EDTA-verta sentrifugoitiin (2000 x g, 10 min, 4 °C) ja huolellisesti pipetoiden erotettiin plasma ja muut solut erytrosyyteistä. Punasolut pestiin kolmesti moninkertaisessa tilavuudessa fosfaattipuskuroidussa suolaliuoksessa (engl. *phosphate buffered saline*, PBS; 0,15 M NaCl; 2,7 mM KCl; 8,1 mM Na$_2$HPO$_4$; 1,5 mM KH$_2$PO$_4$), sentrifugoiden väliä 1400 x g, 5 min, 4 °C, ja käytettiin tuoreena tai viikon kuluessa.

2.4 Hemolyysikoe

Ply:n hemolyysiaktiivisuus titrattiin PBS-laimennoksissa pitoisuuteen, jossa lisättyjen 1 % (v/v) punasolujen lyysis oli 25–50 % täydellisestä 30 min 37 °C -inkubaatiossa. Polyfenolien inhibitoivaikutusta Ply:n hemolyysiaktiivisuuteen mitattiin pyöreäpohjaisissa 96-kuoppalevissä, joissa ensin yhdistettiin PBS:ssa 1 nM Ply ja polyfenoli (pitoisuusväli 4 nM – 25 µM), jonka jälkeen lisättiin 1 % (v/v) punasolut. Seosta inkuboitiin 30 min 37 °C:ssa ja sentrifugoitiin 10 min 3000 x g supernatantin selkeyttämiseksi. Supernatantin A$_{570}$ mitattiin VICTOR X4 -kuoppalevylukijalla (PerkinElmer). Kontroleissa Ply korvattiin 0,1 % Triton X-100:lla ja PBS:lla.

Samankaltaisesti tutkittiin S. pneumoniae (TIGR4) kasvatusliuokseen erittämän Ply:n aiheuttamaa hemolyysiä. Villityypin ja "knock out" -bakteerikannan (S. pneumoniae TIGR4Δply) (Lau et al., 2001) yli yön kasvanut (5 % CO$_2$, 35°C) viljelmä sentrifugoitiin 20 min 3000 x g, ja käytettyä kasvatusluosta (Todd-Hewitt) sekoitettiin PBS:ssa 20 µM PGG:n kanssa ennen punasolujen lisäämistä. Mittaus tehtiin kuten edellä on kuvailtu.

2.5 Turbidometria

Toksiinin ja polyfenolien vuorovaikutusta tutkittiin kokeessa, jossa muodostui fotometrisesti havaittavia liukenemattomia Ply–polyfenoli -komplekkeja. 10 µM Ply (75 µl) ja polyfenoli (pitoisuusväli 5–1000 µM, 75 µl) yhdistettiin natriumasettaattipuskuroidussa (200 mM NaCl, 50 mM CH$_3$COONa pH 5,0)
huoneenlämmössä. 30 min inkubaation aikana ravistelussa Multiskan Ascent -kuoppalevylukijassa (Labsystems) mitattiin absortiomaksimi aallonpituudella 414 nm.

2.6 Oligomerisoituneen Ply:n elektrofooreesi ja Western blottaus

100 nM Ply (3 µg), 1 % (v/v) punasolut ja 100 µM PGG yhdistettiin PBS:ssa, inkuboitiin 2 min huoneenlämmössä ja sentrifugoitiin (30 min 16 000 x g). Punasolupelletti otettiin talteen ja resuspensoitiin puhtaaseen veteen ehjien punasolujen tuhoamiseksi. Uuden sentrifugoinnin jälkeen punasolujen kalvoista koostuva pelletti liuiotettiin näytepuskuriin (60 mM Tris-HCl pH 6,8; 2 % SDS; 0,001 % Bromofenolisininen; 0,5 % β-merkaptoetanoli) ja eroteltiin 6 % polyakryyliamidigeellillä. Geeli värjättiin Coomassie-värjäysellelä (40 % metanoli; 10 % etikkahappo; 0,25 % Briljanttisininen R-250) 30 min ja ylimääräinen väri huuhdottiin pois (20 % metanoli, 5 % etikkahappo) yli yön.

Värjäytyn geelin kanssa rinnakkain ajetun geelin proteiinit siirrostettiin 30 min, 25 V PVDF-kalvolle (Trans-Blot Turbo Transfer System, Bio-Rad), inkuboitiin maitojauhepuskurissa (10 mM Tris pH 7,5; 150 mM NaCl; 0,05 % Tween-20; 5 % (w/v) maitojauhe) 30 min epäspesifisen sitoutumisen vähentämiseksi, hiiren anti-His –vasta-aineella (1:5000 -laimennos, Sigma-Aldrich) 2 h ja piparjuuriperoksidaasileimatulla kanin anti-hiiri –vasta-aineella (1:10 000 -laimennos, DakoCytomation) 30 min. Kaikki inkubaatiot tehtiin huoneenlämmössä kevyessä ravistelussa ja vasta-aineiden hyllyssä jälkeen kalvo pestiin neljästi maitojauheen sisältämättömällä puskuriliuosella. Kalvolle lisättiin leimareagenssi (WesternBright Quantum, Labtech) kahdeksi minuutiksi ja kuvattiin ImageQuant LAS 4000 –laitteistolla (GE Healthcare).

2.7 Liposomien valmistus ja käyttö Ply:n oligomerisoimiseksi

1000 nmol lipidejä (palmitoojli–oleyylfosfadiityylikoliini ja moolisuhteessa 0–50 % kolesteroli) sekoitettiin koeputkessa ja haidutettiin liuotin typpivirtauksessa, kunnes lipidit muodostivat ohuen kalvon astian pohjalle. Lipidit hydratoitiin 30 min 60 °C:ssa Tris-puskurissa (10 mM Tris, 140 mM NaCl) 1 ml:n tilavuudessa, jolloin liposomien kokonaislipidikonsentraatio oli 1000 µM. Lyhyen vorteksoinnin jälkeen seokset ekstrusoitiin 100 nm suodattimen läpi 37 °C:ssa 20 kertaa.

500 µM liposomeja ja 3,2 µM Ply yhdistettiin Tris-puskurissa, inkuboitiin 5
min 37°C:ssa ja lisättiin 1:1 suhteessa näytepuskuria. Geelielektroforeesi ja Western blottaus tehtiin kuten edellä.

2.8 Toksiinin vaikutukset videomikroskopisesti

Ihmisen A549-keuhkoepiteelisoluja ylläpidettiin kasvatusliuosksessa (DMEM (Lonza), 2 mM L-glutamiini, 10 % naudan sikiön seerumi ja antibioottina streptomysiini/penisilliini), ja yksittäisten solujen mikroskopointia varten jaettiin kuoppalevylle 1 x 10^4 solua per kuoppa. 16 h kasvatuksen (5 % CO₂, 37 °C) jälkeen solut huuhdeltiin PBS:lla, ja lisättiin 100 nM Ply PBS:ssa. Soluja videoitiin AE2000 mikroskoopissa Moticam 5+ kameralla (Motic) huoneenlämmössä 30 min. Video käsiteltiin ja still-kuvat tehtiin OpenShot-ohjelmalla (OpenShot Studios).

2.9 Ply:n sytotoksisuusmittaus

A549 -soluille tehtävään sytotoksisuusmittaukseen käytettiin Cytotoxicity Detection KitPLUS:a (Roche), joka perustuu solujen hajotessa vapautuvan laktaattidehydrogenaasin (LDH) mittaamiseen. 96-kuoppalevylä kasvatettiin 48 h soluja (5000/kuoppa) ja huuhdeltiin PBS:lla. Lisättiin 2 nM Ply ja PGG (0, 125, 250, 500, 1000 ja 2000 nM) PBS:ssa 2 tunniksi 37 °C:ssa 5 % CO₂. Sytotoksisuus havaittiin valmistajan ohjeen mukaan lisäämällä värireagenssi 30 minuutiksi huoneenlämmössä, jonka jälkeen reaktio pysäytettiin pysäytysliuosksella, ja mitattiin A_{490}. Kontrolleina käytettiin detergentillä (0,02 % Triton X-100) hajotettuja soluja ja käsittelemättömiä soluja.
3 TULOKSET

3.1 Polyfenolit inhiboivat hemolyysiä

Yhdisteiden seulonnan perusteella voitiin vertailta suuntaa-antavasti niiden IC₅₀-arvoja ja valita teholtaan vaihtelevia inhibiittoreita seuraaviin kokeisiin. IC₅₀ on se konsentraatio, jossa puolet hemolyysistä estyy. Seulonnan tulokset on esitetty taulukossa 2. Jatkotutkimuksiin valittiin PGG, gemiini A, oenotheiini B ja
veskalagiini, koska ne edustivat voimakasta, keskivahvaa ja heikkoa inhibiittoria; toisin sanoen, PGG:n ja gemiini A:n IC$_{50}$ oli verrattain matala, oenotheiini B:n keskivertoinen ja veskalagiinin korkea.

<table>
<thead>
<tr>
<th>Polyfenoli</th>
<th>IC$_{50}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>PGG</td>
<td>10 nM</td>
</tr>
<tr>
<td>tellimagrandiini II</td>
<td>10 nM</td>
</tr>
<tr>
<td>gemiini A</td>
<td>20 nM</td>
</tr>
<tr>
<td>lambertianii C</td>
<td>20 nM</td>
</tr>
<tr>
<td>sanguii H-6</td>
<td>20 nM</td>
</tr>
<tr>
<td>agrimoniini</td>
<td>30 nM</td>
</tr>
<tr>
<td>gallotanniiniseos</td>
<td>40 nM</td>
</tr>
<tr>
<td>kasuarikiini</td>
<td>40 nM</td>
</tr>
<tr>
<td>oenotheiini A</td>
<td>40 nM</td>
</tr>
<tr>
<td>salikariniini B</td>
<td>50 nM</td>
</tr>
<tr>
<td>oenotheiini B</td>
<td>60 nM</td>
</tr>
<tr>
<td>tellimagrandiini I</td>
<td>60 nM</td>
</tr>
<tr>
<td>punikalagiini</td>
<td>60 nM</td>
</tr>
<tr>
<td>tellimagrandiini I isomeeri</td>
<td>70 nM</td>
</tr>
<tr>
<td>salikariniini A</td>
<td>80 nM</td>
</tr>
<tr>
<td>kastalagiini</td>
<td>80 nM</td>
</tr>
<tr>
<td>kasuariniini</td>
<td>90 nM</td>
</tr>
<tr>
<td>geraniini</td>
<td>100 nM</td>
</tr>
<tr>
<td>salikariniini C</td>
<td>100 nM</td>
</tr>
<tr>
<td>stakhyuriini</td>
<td>>100 nM</td>
</tr>
<tr>
<td>pedunkulagiini</td>
<td>>100 nM</td>
</tr>
<tr>
<td>veskalagiini</td>
<td>>100 nM</td>
</tr>
<tr>
<td>kastavaloniinhappo</td>
<td>>100 nM</td>
</tr>
<tr>
<td>tsebulagiinhappo</td>
<td>>100 nM</td>
</tr>
<tr>
<td>veskavaloniinhappo</td>
<td>ei ole tai hyvin suuri</td>
</tr>
<tr>
<td>tsebuliinhappo</td>
<td>ei ole tai hyvin suuri</td>
</tr>
<tr>
<td>monogalloyylglukoosi</td>
<td>ei ole tai hyvin suuri</td>
</tr>
</tbody>
</table>

3.2 Rekombinantti-Ply:n tuotto, puhdistus ja saanto
Rekombinantti-Ply:ää tarvittiin huomattavasti enemmän (useita milligrammoja) muissa kokeissa, joten toksiinia tuotettiin E. coliassa ja eristettiin solulysaatista affinteettikromatografisesti sekä koon perusteella geelisuodatuksella. Geelisuodatuksen kromatogrammin ja SDS-PAGE:n perusteella kohdeproteiini oli selkeästi preparaatin pääkomponentti ja muita proteiineja oli suhteessa vähän (Kuva 7). Ply tuottui myös hyvin suhteessa muihin lysaatin proteiineihin. 100 mg:sta bakteeriviljelmää (märkäpunnitus) saatiin 3 mg puhdistettua proteiinia.
Kuva 7. Rekombinantti-Ply:n puhdistuksen seuranta. Geelisuodatuksen kromatogrammin (A) UV-absorptiokäyrän perusteella valtaosa proteiinista eluoitui pylväästä kerralla. Puhdistuksesta kerätty fraktiot (B) sisälsivät pääasiallisen komponentin hieman 50 kDa kokomarkerin yläpuolella, joka sopii yhteen rekombinantti-Ply:n laskennallisen koon (54,6 kDa) kanssa. 1–3: Ni-affinitettikromatografian eniten proteiinia sisältäneet fraktiot. 4: Geelisuodatuksen huippua edeltänyt fraktio 10. 5–8: Geelisuodatuksen keskeiset fraktiot 40, 43,46 ja 50. 9: Lysaatti.
3.3 Ply muodostaa polyfenolien kanssa liukenemattoman kompleksin

<table>
<thead>
<tr>
<th>Polyfenoli</th>
<th>IC<sub>50</sub> (nM)</th>
<th>Teho</th>
<th>Liukenematon kompleksi, kynnysarvo (µM)</th>
<th>Teho</th>
</tr>
</thead>
<tbody>
<tr>
<td>PGG</td>
<td>18 ±0,7</td>
<td>13</td>
<td>14</td>
<td>58</td>
</tr>
<tr>
<td>Gemiiini A</td>
<td>41 ±1,0</td>
<td>5,9</td>
<td>6,2</td>
<td>130</td>
</tr>
<tr>
<td>Oenotheiini B</td>
<td>55 ±2,1</td>
<td>4,4</td>
<td>510</td>
<td>1,6</td>
</tr>
<tr>
<td>Veskalagiini</td>
<td>240 ±5,3</td>
<td>1</td>
<td>820</td>
<td>1</td>
</tr>
</tbody>
</table>

3.4 Polyfenoli häiritsee Ply:n oligomerisaatiota

Rekombinantti-Ply:n puhdistuksessa hyödynnettyä histidiinihäntää voitiin käyttää oligomerisaation todentamiseen; proteiinit siirrostettiin geeliltä polyvinylideenfluoridikalvolle (PVDF) ja tunnistettiin anti-His -vasta-aineella (Kuva 12). Samalla tutkittiin oligomerisaation riippuvuutta PGG:n konsentraatiosta.

3.5 Ply oligomerisoituu kolesterolia sisältävien liposomien vaikutuksesta

3.6 Polyfenoli estää Ply:n sytotoksisen vaikutuksen A549-soluissa

epäsuotuisia fyysisiä olosuhteita (osmoottinen paine) hieman paremmin. Ne säilyttävät pitkälti muontonsa ja kuolevat todennäköisesti pikemminkin aineenvaihdunnan häiriintymiseen kuin osiensa hajoamiseen.

Väljästi yli yön kasvaneita A549-soluja mikroskopoitiin 30 min ajan Ply/PBS-käsittelyssä, jotta nähtäisiin helposti yksittäisen solun vaste toksiiniin (Kuva 14). Kuten edellä mainittiin, solut pysyivät aloillaan, mutta niiden ulkomuodossa tapahtui nähtäviä muutoksia, esimerkiksi niiden tumat tiivistyivät.

Syötäksisuutta pyrittiin kvantitoimaan useilla menetelmillä. Polyfenolin suojavaraavaa vaikutusta ei voitu havaita väriillisen tetratsoliyhdisteen (MTS) absorbanssin muutokseen perustuvalla kokeella. Samoin trypan blue -värähtäen eksklusioon perustuva määritys ei tuottanut toivottua tulosta. Kolmanneksi yritettiin vielä määrittää solujen irtomaa – vaurioituneet solut oletettiin kristalliviolettilla, joten suurempi määrä vääriä viittaisi suurempana määrään kiinnipysyneitä soluja. Ply-käsittelyyn muokatut solut eivät kuitenkaan todennäköisesti irrota, ja syötäksisuuden kvantitoimista tuli kokeilla toista lähestymistapaa. Hajonneista soluista vapautuva lakaatidehydrogenaasin (LDH) toimintaan perustuva syötäksisääräysmääritys puolestaan näytti PGG:n ja solujen selviytymisen välillä yhteyden. Tämä määritys muistuttaa siis edellä mainittua MTS-proliferaatiokoetta, mutta syötäksisuus mitataan hajoavien solujen kautta, eikä elossa olevien solujen perusteella. LDH kytkeytyy tetratsolisuolan \([2\text{-}(4\text{-}jodofenyyli)}\text{-}3\text{-}(4\text{-}nitrofenyyli}\text{-}5\text{-}fenyylitetratsolikloridi\] pelkistymisreaktioon (Kuva 15), jonka seurauksena yhdisteeseen absorbanssi muuttuu.

![LDH ja väriyhdisteen reaktio](image)

A549-soluja altistettiin PBS:ssa Ply:lle, jota oli esi-inkuboitu eri PGG-pitoisuksissa, ja mitattiin LDH-aktiivisuutta soluvaurioiden kvantitoimiseksi
(Kuva 16). Korkeahkoissa pitoisuksissa (>500 nM) PGG inhiboi Ply:n aiheuttamia vaurioita, jolloin LDH:a vapautui vähemmän.

4 TULOSTEN TARKASTELU

4.1 Polyfenoliyhdisteiden vertailu

Liukemattoman kompleksin muodostumisen tulokset ja IC$_{50}$-arvot olivat samansuuntaisia keskenään PGG:lla, gemiini A:lla ja oenotheiini B:llä sekä veskalagiinilla. Polyfenoleilla on yleistä ja spesifistä proteiiniaffiniteettia, eli tietty yhdiste voi sitoutua proteiineissa toistuvii rakenteisiin tai vain hyvin tarkkaan yhteen kohtaan, jossa aminohappotähteet ovat juuri sopivat ja juuri sopivassa asennossa. Epigallokatekinigallaatti voi sitoutua Ply:n 3- ja 4-domeenien väliin (Song, Teng, et al., 2017), joten tässä työssä tarkastelemme yhdisteillä voisi olla samanlainen spesifinen sitoutumiskohta.

4.2 Kalvolle kokoontuvan rakenteen havaitseminen

4.3 Sytotoksisuus

4.4 Johtopäätökset

WHO. (2017). *Global priority list of antibiotic-resistant bacteria to guide research,*
