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Tekstipohjaista tietoa tuotetaan vuosi vuodelta enemmän mikä puolestaan on lisännyt
tarvetta automaattiselle tekstinkäsittelylle. Täten myös automaattisia tekniikoita luon-
nollisen kielen käsittelyyn on enenevissä määrin tutkittu ja kehitetty, erityisesti viimeisen
vuosikymmenen aikana. Tämä on johtanut huomattaviin parannuksiin erilaisissa luonnol-
lisen kielen käsittelytehtävissä. Suuri läpimurto on ollut valtavilla tietomäärillä koulutet-
tujen syvien neuroverkkojen käyttäminen. Tällaisten menetelmien käyttö alueilla joilla
aika on arvokasta, kuten lääketiede, voisi tarjota huomattavaa lisäarvoa.
Tämä tutkielma antaa yleiskuvan luonnollisen kielen käsittelystä keskittyen syväop-
pimiseen ja tekstinluokitteluun. Lisäksi erilaisten syväoppivien menetelmien käytet-
tävyyttä arvioitiin kouluttamalla tekstiluokittelijoita ennustamaan suomenkielisten
lääketieteellisten dokumenttien diagnoosikoodeja. Valittuihin menetelmiin kuuluvat
syväoppimiseen perustuvat FinBERT, ULMFiT ja ELECTRA, sekä yksinkertaisempi lin-
eaarinen luokittelija fastText.
Tulokset osoittavat, että rajallisella aineistolla lineaariset menetelmät, kuten fastText,
toimivat yllättävän hyvin. Syväoppimiselle perustuvat menetelmät taasen vaikuttavat
toimivan kohtuullisen hyvin, vaikkakin niiden aito potentiaali pitäisi todentaa käyttäen
suurempia datajoukkoja. Täten jatkotutkimusta syväoppiviin menetelmiin liittyen
tarvitaan.

Keywords: syväoppiminen, tekstinluokittelu, lääketieteellinen data
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Text-based data is produced at an ever growing rate each year which has in turn increased
the need for automatic text processing. Thus, to keep up with the amount of data, auto-
matic natural language processing techniques have also been increasingly researched and
developed, especially in the last decade or so. This has lead to substantial improvements
in various natural language processing tasks such as classification, translation and infor-
mation retrieval. A major breakthrough has been the utilization of deep neural networks
and massive amounts of data to train them. Using such methods in areas where time is
valuable, such as the medical field, could provide considerable value.
In this thesis, an overview is given of natural language processing w.r.t deep learning and
text classification. Additionally, a dataset of medical reports in Finnish was preprocessed
and used to train and evaluate a number of text classifiers for diagnosis code prediction in
order to define the feasibility of such methods for medical text classification. The chosen
methods include deep learning -based FinBERT, ULMFiT and ELECTRA, and a simpler
linear baseline classifier, fastText.
The results show that with a limited dataset, linear methods like fastText work surpris-
ingly well. Deep learning -based methods, on the other hand, seem work reasonably
well, and show a lot of potential especially in utilizing larger amounts of training data. In
order to define the full potential of such methods, further investigation is required with
different datasets and classification tasks.

Keywords: deep learning, text classification, medical data
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Chapter 1

Introduction

Manually processing and producing text-based data is a common task in everyday life.

Given that an ever increasing amount of text is produced each year, the need for automatic

computational processing of natural language is increasing as well. Due to major strides

in machine learning — especially deep learning — during the last decade, the state-of-

the-art performance and the complexity of achievable tasks in natural language processing

have considerably increased.

In hospitals, writing is a major time sink for doctors every day. As all of this is done

in a hurry, it increases the probability for human error when entering critical patient data

to a system. Thus, using computers to help in the process of data entering and validation

provides meaningful value. For example, a model for classifying medical reports could

be used to automatically define a proper diagnosis code for a new piece of text or to find

older, mislabelled texts in an effort to reduce human-based errors.

The motivation for this thesis was to, firstly, define the feasibility and current state

of deep learning for automatic text classification of medical text and secondly, to build a

set of tools for quick and easy classifier training of a number of different models that the

hospital can use.

This thesis gives an introduction to text classification, describes some of the most in-

fluential classifiers from the past and the present day, outlines the current state of machine
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learning -based text classification, and presents the most influential model architectures

and training methods for them. The medical report classification problem, available data,

compute resources, chosen methods and results for the trained classifiers are presented

and discussed at the latter part of the thesis, after which the final chapter concludes the

thesis.



Chapter 2

Text classification

Natural language processing (NLP) is the field of designing methods and algorithms that

take as input or produce as output unstructured, natural language data [1]. Text classi-

fication is a category of tasks in NLP which has many real-world applications such as

document classification, spam, bot and fraud detection and web search [2], [3]. A text

classification task requires a training set D = (d1, . . . , dn) of labelled documents with

class L ∈ L (e.g. news, politics, sports). Then the task is to determine a classification

model

f : D → L f(d) = L (2.1)

which assigns the correct class to in domain document d [4].

The labels are assumed to be purely symbolic so that no additional knowledge of

their meaning is available, and the data consists of only knowledge extracted from the

documents. Thus metadata such as document type, publication date, etc. is not considered

available to use. This ensures that all the methods that will be presented in the coming

section are completely general and do not depend on some special-purpose resources.

Given that classification is based on the semantics of documents, which is a subjective

notion, the class of a document cannot be deterministically decided. This lead to the

phenomenon called inter-indexer inconsistency which manifests itself when two human
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experts decide if a document dj should be classified as ci and disagree on the matter,

which happens surprisingly often [5].

The automated text classification task dates back to the early ’60s but became a major

subfield of information systems only in the early ’90s due to increased applicative interest

and availability of more powerful hardware. Until the late ’80s the most common ap-

proach to text classification in real-world applications was a knowledge engineering one,

which consisted of manually defining a set of rules on how to best classify documents

to given categories. In the ’90s this approach was passed in popularity by the machine

learning paradigm, according to which an automatic text classifier is built by a general in-

ductive process automatically, by learning the characteristics of categories from labelled

data [5].

This chapter gives an overview on text classifiers and other tasks related to training a

classifier. Section 2.1 describes common steps, such as feature extraction and tokeniza-

tion, that are done before training a classifier, section 2.2 presents various text classifi-

cation algorithms and models, and finally section 2.3 presents metrics for evaluating the

performance of a classifier.

2.1 Preprocessing

Before a machine learning model such as a text classifier can be trained, the data for it has

to be preprocessed and mapped to real valued vectors. Mapping textual data to vectors

is called feature extraction or feature representation. For a machine learning project it is

crucial that the right features for the problem are chosen. Even though feature engineering

is not as important in deep learning, a good set of core features still needs to be defined

which is especially true for language data where the data consists of a sequence of discrete

symbols. Somehow this sequence has to be converted into a numerical vector, and in a

non-obvious way [1].
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Tokens are considered to be the atomic units of NLP. More often than not, words and

tokens are used interchangeably in literature, but a token may consist of multiple words

or multiple tokens can represent a single word. In the next sections, words and tokens are

used quite interchangeably.

The following sections describe the features that can be extracted from words and text,

and current methods for tokenization.

2.1.1 Features of words

The most obvious choice for tokens in NLP are individual words and it is common to do

lemmatization or stemming on the words before they are turned into numerical form.

Lemmas are the “dictionary entries” of words, for example the lemma of looking,

looked, looks is look. Determining the lemma of a word is usually done by using lemma

lexicons or morphological analyzers. Adding context into a lemmatizer usually improves

the accuracy of lemmatizing given that a lemma can be quite ambiguous without it.

Lemmatization may not work well if words are misspelled or for forms that are not in

the lemmatization lexicon. Stemming is a cruder way of determining common forms for

words. It maps sequences of words into shorter sequences so that different inflections

map to the same sequence. The results of stemming do not have to be valid words, e.g.

picture, pictures and pictured could be stemmed to pictur [1].

Distributional information of words can also be used, e.g. what words behave simi-

larly in text. This distributional information is used in defining vectors for words so that

words that behave similarly in text have vectors that are close to each other. Methods for

deriving these vectors are discussed in more detail in chapter 3.1.2.

N-grams are consecutive word or letter sequences of a given length. For example,

a word-bigram representation of “the dog is sleeping” would be [“the dog”, “dog is”,

“is sleeping”]. Word-bigrams and trigrams - sequences of two and three items - are the

most common of the n-grams. N-grams beyond trigrams are rarely used for words due to
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sparsity issues although 4-grams and 5-grams are sometimes used for letters [1].

2.1.2 Features of text

Sequences of text, such as sentences, can be represented by a number of ways.

Bag of words (BOW) is a common feature extraction procedure used for sentences

and documents. It looks at the histogram of words in a text and considers each word count

as a feature. BOW can be generalized from words to any other word related feature, such

as counting word bigrams instead of individual words.

Weighting is used to focus for example on words that appear frequently in a given

document, but relatively few times in the whole corpus. Weighting can be used with

the BOW approach, and a common way is to use TF-IDF (Term Frequency - Inverse

Document Frequency) weighting which highlights words that are distinctive of the current

text. N-grams can also be used for weighting instead of single words.

Windows focus on the immediate context of a word by considering the k surrounding

words, and define features as identities of the words within the window. It is a version of

BOW, but restricted only to the words within the defined window.

Position is an important part of textual data. A sentence that’s words are shuffled will

not be equivalent in meaning to the original sentence. Thus using the positional qualities

of words — such as what the absolute position of a word is in a sentence or does it appear

in the first 10 or so words — as features is also relevant [1].

2.1.3 Tokenization

The process of tokenization is in charge of splitting text into tokens. Tokenization is

usually done based on white-space and punctuation in languages, such as English, that

aren’t as morphologically rich. This approach is called whole-word tokenization as each

individual token represents a single word. In languages such as Hebrew and Arabic, some

words attach to the next one without white-space, and in Chinese there is no white-space
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at all. Thus, tokenization seems dependent on the language used [1].

In order to circumvent the problems of whole-word tokenization, one can use sub-

word tokenization to divide words into multiple tokens. One such system to extract these

tokens is called SentencePiece, which is a widely used tokenizer nowadays. Sentence-

Piece will be explained in more detail in the next section.

SentencePiece

SentencePiece is a sub-word tokenizer and detokenizer that is language independent and

designed for machine learning -based processing. It is comprised of four different compo-

nents: Normalizer, Trainer, Encoder and Decoder. The Normalizer is used to transform

semantically equivalent characters to a canonical form. The Trainer trains a sub-word seg-

mentation model from the normalized corpus. The Encoder first normalizes the text with

the Normalizer and encodes raw text into a sub-word sequence using the model generated

by the Trainer. The Decoder can be used to transform the tokens into normalized text. [6]

SentencePiece builds a vocabulary of a predefined size of sub-word tokens. Depend-

ing on the given maximum size, the sub-words’ length change. If, for example, the given

maximum size is just 30 or so, the vocabulary could consist of all the letters of the English

alphabet and not much else. On the other hand, if the vocabulary is excessively large, it

would essentially work like a whole word tokenizer. Thus, maximum vocabulary size

becomes a tunable hyperparameter for a model, which can have a considerable impact on

it’s performance.

SentencePiece’s language-independent quality is quite important especially for tasks

like Neural Machine Translation (NMT), which can perform automatic translation with

a simple end-to-end system. Numerous NMT-systems rely on language dependent pre-

and post-processors thus adding sentencepiece to those systems simplifies the processing

pipeline and removes the need for custom processors for different languages.

Compared to whole-word tokenization, SentencePiece’s sub-word tokenization achieves
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a lossless representation of data. For example, a whole word tokenizer might tokenize

“Hello world.” as [Hello][World][.], thus losing the information of where there is white-

space in the sentence. SentencePiece treats white-space as a normal symbol and replaces

all occurrences of white-space with an underscore (U+2581) before tokenization. Sen-

tencePiece might tokenize the aforementioned example as [Hello][_wor][ld][.], thus pre-

serving the white-space [6].

Compared to other sub-word segmentation systems, SentencePiece does not require

that the input is pre-tokenized into word sequences. It works natively with raw sentences

which makes a purely language independent and end-to-end system possible [6].

SentencePiece seems like a good choice for tokenization for morphologically rich

languages such as Finnish. A version of sub-word tokenization similar to SentencePiece

called WordPiece is used in modern models such as BERT (section 4.4) and ELECTRA

(section 4.4).

2.2 Text classifiers

2.2.1 Naive Bayes

The Naive Bayes Classifier is a probabilistic classifier that assumes that a probabilistic

mechanism has generated the words of a document. It is a simple classifier that estimates

the joint probability of a class given a feature vector. It naively assumes that features are

independent given class:

P (X|C) =
n∏︂

i=1

P (Xi|C) (2.2)

Where X = (X1, · · · , Xn) is a feature vector and C is a class. Although the as-

sumption is unrealistic, the Naive Bayes classifier is surprisingly successful in practice

[7].

Naive Bayes models are very efficient as they require minimal computational re-

sources even for huge amounts of text and large vocabularies. However, there exists a
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significant problem in this approach named the never-seen-words problem which mani-

fests itself when a document containing a word that is not present in the training set is

analyzed. The classifier estimates the statistics of a class by counting the occurrences of

words in the training set, and a single out-of-vocabulary word will turn the probability of

a document belonging to it’s according class to 0. This could turn an otherwise clear-cut

classed document into something else only due to a random word [8].

Naive Bayes models have shown good results in various classification tasks and have

been used extensively due to their efficiency in training and classification. A huge setback

for the method is its brittleness; to train a robust Naive Bayes Classifier one needs a dataset

that covers the problem domain sufficiently, otherwise the model has a high variance.

Thus a small dataset performs significantly worse when using a Naive Bayes Classifier

than other document classification methods [8] [9].

2.2.2 Nearest Neighbor Classifier

Nearest neighbor classifiers select documents that are close to the target document instead

of building an explicit model. The class of the document can then be inferred from the

classes of the neighbouring documents. A classifier that selects the k closest documents

is called a k-nearest neighbor classifier (kNN). There are a lot of usable measures for

similarity such as term frequencies or distributional information.

When deciding if a document belongs to a class, the document has to be compared to

all the document in the training set. Then the k most similar documents are selected and

their classes define the probability of whether the document belongs to a certain class or

not. The class that has the largest proportion is then assigned to the document. Cross-

validation can be used to estimate the optimal number for k from additional training data

[4].

Nearest neighbor classifiers are computationally efficient in practice although they

require some computation during classification since to determine the nearest neighbors
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Hyperplane

Margin
Margin

Figure 2.1: A hyperplane defined by a SVM that separates samples of negative and posi-

tive classes with maximal margin

the distance to all samples has to be calculated [4]. kNNs are more frequently used for

unsupervised tasks, such as clustering, rather than supervised tasks [8].

2.2.3 Support Vector Machine

Support vector machines (SVM) are supervised machine learning algorithms that are used

for classification and regression analysis. A single SVM algorithm separates data to two

classes by defining a hyperplane that has a maximal distance (margin) to examples of

opposing classes (Figure 2.1). The hyperplane is defined with labeled training data and

prediction happens by defining the side in which the example is placed in. If a hyperplane

which cuts the data perfectly so that each example is on it’s own side is not possible,

the algorithm tries to find a division so that as few an example are on the wrong side as

possible [4].

In the case that the given classes can not be separated linearly, SVM transforms

(“maps”) the input space into a higher dimensional space in which regions can be linearly
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Figure 2.2: Example of a simple decision tree which predicts the sentiment of a person

regarding esports

separated [8]. Support vector machines can also be used for unsupervised learning, when

there is no labeled data, to find a natural grouping by using Support Vector Clustering

(SVC) [10].

SVMs have shown good results in text categorization in the past, are quite computa-

tionally efficient and generalize well. Another strength of SVM is that it rarely requires

feature selection given that it inherently picks support vectors (individual datapoints)

needed for good classification [4].

2.2.4 Decision Trees

Decision trees are classifiers that apply a set of rules sequentially to reach a decision.

They can be used for both regression and classification problems and have been among

the most popular approaches used for text classification in the past [4] [11].

Figure 2.2 depicts a simple decision tree with three round internal nodes and four
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triangular leaves. Nodes are labeled with the testable attribute and branches with the

attribute’s values.

The training process of a text classification decision tree is as follows: Given a train-

ing set M with labelled documents, find the word ti that best predicts the class of the

documents. Partition the training set into two subsets, M+
i and M−

i , with M+
i containing

examples with ti and M−
i containing examples without ti. Apply this procedure recur-

sively to M+
i and M−

i until all the documents in a subset belong to the same class Lc. The

generated tree of rules has an assignment to a class as its leaves [4].

As can be seen from figure 2.2, individual decision trees are quite simple to under-

stand and to interpret, but are usually not competitive with other supervised learning ap-

proaches. They can, however, be dramatically improved by combining multiple trees

together to get a consensus prediction with approaches such as bagging, boosting and

random forests with the cost of losing some interpretability [12].

2.2.5 Artificial neural network

A neural network consists of layers of simple processing elements called neurons that are

connected to each other. Each connection has an associated weight that is applied to input.

The first layer is called the input layer after which comes any number of intermediate, or

hidden, layers followed by a final output layer. Neurons are not interconnected within a

layer but are only connected to the neurons in adjacent layers. In a text classifier neural

network the prediction of the network can be determined from the values of the final

layer’s neurons. For example, a classifier with three different possible classes would have

three neurons in the output layer, each corresponding to the probability of a single class

[13].

Neural networks are usually trained using backpropagation which finetunes the pa-

rameters — the weights and biases — of the network by first feeding the network training

data, checking the output and if it is misclassified, and then backtracking and updating
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Input
layer

Hidden
layer

Output
layer

Figure 2.3: Example of a feedforward neural network

the weights of the network to eliminate or minimize the error [5].

The simplest neural network is the single-layer perceptron, introduced by Rosenblatt

in 1958 [14], which consists of a single hidden layer between an input layer and an output

layer.

Since neural networks consist of simple building blocks, layers of neurons or other

functions, stacked on top of each other, it allows designing of deep, complex architectures

with practically infinite ways of combination. The depth of a neural network is defined by

the number of it’s hidden layers. The latest state-of-the-art neural network models consist

of very deep networks with millions of parameters.

2.3 Evaluation

Evaluating the performance of a classifier is an important step in order to define if the

trained classifier actually learned something.

True positive, true negative, false positive and false negative (TP, TN, FP, FN,
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Figure 2.4: A confusion matrix.

respectively), are labels used to define the classification result of a single example in a

classification task. If the classifier correctly predicts that the example is positive (e.g. a

piece of text belongs to class 1), the example is considered a true positive. In the case

when a negative example is correctly predicted, it is a true negative. If the classifier

wrongly predicts that the example is positive when it is actually negative, or vice versa,

the result is a false positive of a false negative. Depending on the case, a classifier can

have requirements such as to minimize the false negative or false positive rate.

Figure 2.4 depicts a confusion matrix which is a common way to visualize classifi-

cation results.

The simplest metric to use is accuracy (equation 2.3), which defines the fraction of

correctly classified documents (true positives and true negatives) in relation to the total

number of documents. It is a raw metric that doesn’t give a whole lot of insight into the

performance of the classifier in such cases where the training data is not evenly distributed.

TP + TN

TP + TN + FP + FN
(2.3)

Precision (equation 2.4) defines the accuracy for positive example predictions, e.g.

how many of the texts that we classified as 1 were actually 1. It only takes into account
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positive predictions that were either true or false.

TP

TP + FP
(2.4)

Recall (equation 2.5) defines the proportion of positive examples actually predicted

as positive, e.g. how many of the positive examples did the classifier get right.

TP

TP + FN
(2.5)

Specificity (equation 2.6) defines the proportion of negative examples that were cor-

rectly predicted as negative, e.g. how many of the negative examples did the classifier get

right. Specificity is the opposite of recall.

TN

TN + FP
(2.6)

F-score or F1 score (equation 2.7) combines recall and precision in an effort to capture

their properties in a single value. It is the harmonic mean of precision and recall.

F =
2

1/recall + 1/precision
(2.7)

F-score is a commonly used metric to describe system performance in machine learn-

ing but it is criticized for lacking detail [15]. Two different models that have the same

F-score on the same task are not necessarily successful in the same way.

Complementarity [16] is a measure of the difference in decisions made by two classi-

fiers which attempts to capture the properties that F-score misses. It represents the amount

of times when the other classifier was correct and the other wasn’t [15].

Clearly, choosing and reporting only a single metric — such as accuracy — as the

final performance score of a classifier doesn’t truly represent the goodness of a model.

A more full understanding of the shortcomings and strengths of a model is achieved by

calculating a number of metrics, such as precision and recall.



Chapter 3

Deep learning in natural language

processing

Deep learning is a branch of machine learning and a re-branded name for neural networks.

All of machine learning can be defined as learning to predict the future based on past

observations. In addition to learning to predict, deep learning also tries to represent the

data in such a form that it is suitable for prediction. Given a large amount of desired input-

output mappings, deep learning feeds the data into a network that successively transforms

the data until a final transformation predicts the output. The transformations are learned

from the mappings such that each successive transformation makes it easier to relate the

data to the given label. After a human designer defines the architecture and training

regime of the network, gathers and preprocesses a proper set of input-output examples and

encodes the data, the network can automatically learn how to best produce this mapping

[1].

This chapter gives an overview of transfer learning in section 3.1, delves deeper into

how a deep learning model is trained in section 3.2, provides an overview of different

relevant architectures in section 3.3 and finally describes the methodology of three modern

machine learning models: ULMFit, BERT and ELECTRA, in section 3.4.
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3.1 Transfer learning

Transfer learning refers to the ability of a system to reuse knowledge learned in a previous

task in a task of new or novel domain that shares some commonality with the previous

task [17]. Often the motivation for using transfer learning comes from a lack of labelled

training data for a specific task. In natural language processing it is widely used to first

train a model on a general domain corpus of fully or partly unlabelled data, so that it

learns the generalities of the given language (a language model), and then fine-tuning the

model on some downstream task, such as classification.

All of the introduced NLP-models later in this chapter use transfer learning as each

has a clear distinction between the pre-training and fine-tuning phases in model training

where another model’s pre-trained state can be transferred to another task and fine-tuned

further for that task.

3.1.1 Language modeling

Language modeling is the task of assigning a probability to sentences in a language. In

addition to assigning a probability to sequences of words, language models also define

the probability that a word follows a sequence of words. Language modeling is an im-

portant part in several real-world applications such as speech recognition and machine-

translation, where language models are used to score the transcriptions and translations

that the systems output.

The formal definition of language modeling is to assign a probability to any sequence

of words P (w1:n), which can be rewritten as:

P (w1:n) = P (w1)P (w2|w1)P (w3|w1:2)P (w4|w1:3) . . . P (wn|w1:n−1). (3.1)

using the chain-rule of probability. What this means is that the probability of a se-

quence of words is defined by the probabilities of each word n following the previous
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n− 1 words. In the past, language models made use of the markov-assumption that states

that the future is independent of the past given the present. Nowadays, with modern archi-

tectures such as recursive neural networks, this assumption can be abandoned and models

can condition on entire sentences while taking word order into account, which has lead to

impressive gains in language modeling [1].

Modern NLP networks are often pre-trained as language models before they are fine-

tuned for a specific task. Pre-trained language models can thus be used as a starting point

for a model, transferring knowledge from a previous task.

3.1.2 Embeddings

A common use case of transfer learning in NLP has been to use word embeddings that

encode some information about a word in relation to other words in the feature space.

Using embeddings is a general way of transferring knowledge as it doesn’t depend on any

specific model architecture but only on the language used. The most popular methods for

generating vector representations for words have been Word2Vec [18], GLoVe [19], and

fastText [20]. The following subsections give an overview on these methods.

Word2Vec

Word2Vec is an open-source project based on the work by Mikolov et al. that can be used

to train distributed representations of words and phrases [18].

It uses a skip-gram model (figure 3.1), proposed by Mikolov et al. in an earlier work

[21], which is a prediction-based method. The training objective of the skip-gram model

is to find useful word representations for predicting the surrounding words in a sentence

or a document. It learns these representation by predicting the surrounding words for each

word in a sentence within a defined max distance from the word. Mikolov et al. show,

that the produced representations exhibit linear structure that makes precise analogical

reasoning possible [18].
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Figure 3.1: Skip-gram model architecture.

Given the computationally efficient model architecture of the skip-gram, the training

times of Word2Vec are manageable even with huge amounts of data.

GLoVe

Global Vectors for Word Representation (GLoVe) is a model to construct word representa-

tions. It is a global log-bilinear regression model that combines the advantages from both

Word2Vec-style local context window methods and global matrix factorization. Training

of GLoVe is done on aggregated global word-word co-occurrence statistics [19].

Given the same corpus and equal compute, Pennington et al. show that it outperforms

Word2Vec and achieves better results faster [19], although Levy et al. [22] came to the

opposite conclusion after careful testing.

fastText

fastText is an open-source library for learning word embeddings and text classification. It

builds on the work of Word2Vec and improves on the skip-gram model by incorporating
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character n-grams in it. Words are now represented as a sum of n-gram vectors instead

of a single vector. This is especially important for morphologically rich languages, such

as Finnish, that contain many word forms that occur rarely in the training corpus, which

makes learning good word representations difficult [20].

Mikolov et al. show that fastText significantly outperforms GLoVe on a number of

tasks [23].

3.2 Training

The goal of a neural network is to return a function f() that accurately maps input ex-

amples to their labels. To make it more precise, a loss function is introduced to quantify

the loss suffered when predicting examples in the training set. A loss function assigns

a numerical score to predicted outputs given the expected, true outputs. The function is

bounded from below such that the minimum value is only attainable in cases where the

prediction is correct. The goal of the training algorithm is then to minimize the average

loss over all training examples [1].

Attempting to minimize the loss at all costs may result in overfitting the training data,

thus a soft restriction on the loss function is applied in the form of a regularization term,

which tracks the “complexity” of parameters. Thus the objective of the optimization

problem becomes keeping a balance between low loss and low complexity [1].

3.2.1 Loss functions

Binary cross entropy loss

Binary cross entropy loss, also referred to as logistic loss is a loss function used in binary

classification with conditional probability outputs. A set of two target classes labeled

0 and 1 is assumed, with a correct label y ∈ {0, 1}. The output of the classifier, ỹ,

is transformed to the range [0, 1] using the sigmoid function σ(x) = 1/(1 + e−x), and is



CHAPTER 3. DEEP LEARNING IN NATURAL LANGUAGE PROCESSING 21

interpreted as the conditional probability ŷ = σ(ỹ) = P (y = 1|x). The rule for prediction

is:

prediction =

⎧⎪⎪⎨⎪⎪⎩
0, ŷ < 0.5

1, ŷ ≥ 0.5

(3.2)

The network maximizes the log conditional probability log P (y = 1|x) for each

training example (x, y). Logistic loss is defined as:

Llogistic (ŷ, y) = −y log ŷ − (1− y) log (1− ŷ). (3.3)

The logistic loss is useful when we want the network to produce class conditional

probability for a binary classification problem. It is assumed that the output layer is

transformed using the sigmoid function when using the logistic loss [1].

Categorical cross-entropy loss

The categorical cross-entropy loss is a loss function that is used when a probabilistic

interpretation of the scores is desired. Let y = y[1], . . . , y[n] be a vector representing

the true multinomial distribution over the labels 1, . . . , n, and let ŷ = ŷ[1], . . . , ŷ[n] be

the linear classifier’s output transformed by the softmax function, and represent the class

membership conditional distribution ŷ[i] = P (y = i|x). The softmax function forces the

values of the output to be positive and sum to 1, thus making the output interpretable as a

probability distribution.

The categorical cross entropy loss measures the dissimilarity between the true label

distribution y and the predicted label distribution ŷ, and is defined as cross entropy:

Lcross−entropy (ŷ, y) = −
∑︂
i

y[i] log(ŷ[i]). (3.4)

The case when each training example has only a single correct class assignment is

called hard classification. In such cases y is a one-hot vector representing the true class,

and the cross entropy can be simplified to:

Lcross−entropy(hardclassification) (ŷ, y) = − log(ŷ[t]), (3.5)
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where t is the correct class assignment. This equation attempts to set the probability mass

assigned to the correct class t to 1. Increasing the mass assigned to the correct class

means decreasing the mass assigned to all the other classes given that the scores ŷ have

been transformed using the softmax function to be non-negative and sum to one.

The cross-entropy loss is widely used in log-linear models and neural networks. It

produces a multi-class classifier which predicts a distribution over all possible labels in

addition to predicting the best class label. When using the cross-entropy loss, it is assumed

that the classifier’s output is transformed using the softmax function [1].

Ranking losses

Margin-based ranking loss can be used in cases where supervision is not given as labels

but as pairs of correct and incorrect samples x and x′, and where the goal is to give a

higher score to correct items. Such a situations may occur when the training set consists

of only positive examples and the generation of negative examples is done by corrupting

positive ones. Margin-based ranking loss is defined as follows for a pair of correct and

incorrect samples:

Lranking(margin)(x, x
′) = max(0, 1− (f(x)− f(x′))), (3.6)

where f(x) is the score assigned by the classifier for input vector x. The objective of the

function is to rank correct inputs above incorrect ones with a margin of at least 1.

Ranking loss is used in language tasks such as deriving pre-trained word embeddings

(section 3.1.2) given a correct and corrupted word sequence, and the goal being to rank

the correct sentence over the corrupt one [1].

3.2.2 Stochastic Gradient Descent

Stochastic gradient descent (SGD) is a general optimization algorithm which powers

nearly everything in deep learning. The goal of the algorithm is to minimize the total
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loss over the training set by repeatedly sampling a training example and computing the

gradient of the error on the example [1].

Sampling each individual example and calculating a gradient for them quickly be-

comes infeasible when training set sizes are large, thus SGD uses minibatching to draw

a uniform set of examples at a time from the training set to compute a gradient for. The

gradient is then propagated though the network and a new gradient is calculated from the

next minibatch [24].

Learning rate is a parameter that defines the amount that the weights of the network

are updated with each gradient. It is a small positive value, usually in the range [0, 1].

Gradient descent has been regarded as slow or unreliable in the past. Nowadays we

know that it works great with neural networks even though it is not guaranteed that the

algorithm will arrive even at a local minimum in a reasonable amount of time. It however

finds a very low value for the cost function quickly enough [24].

In addition to SGD, there exists other optimization algorithms which are used nowa-

days such as Adam [25], which is designed to define the learning rate on a minibatch

basis. Algorithms such as SGD+momentum [26] are variants of SGD where the accumu-

lated previous gradients affect the current update.

3.3 Architectures

3.3.1 Recurrent Neural Network

Recurrent Neural Networks (RNN) are networks that process an input sequence one token

at a time and maintain a state in its hidden units that contains information about the past

elements in the sequence. This approach has been proven to work well with tasks that

contain sequential input such as speech, language and music [27]. Figure 3.2 shows the

basic methodology behind an RNN: a chunk of neural network, A, looks at the input xt

and outputs a value ht. The output value is looped back as a second input value which
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Figure 3.2: An RNN-module which illustrates the recurrent nature of the model

allows for information to be passed from one step to the other.

Figure 3.3 shows a visualization of the insides of an RNN module which is quite

simple in practice. xt represents an input at timestep t, tanh is a function that returns the

hyperbolic tangent of the input and ht is the hidden state of the network at timestep t. First

the hidden state from the previous timestep and the current input value are added to each

other after which the sum is fed into the tanh function. tanh essentially squishes the input

value between -1 and 1 to keep the values from exploding due to repeated multiplication.

The output of tanh is the new hidden state, the memory of the network, which is then fed

to the next timestep.

The training of an RNN happens by using a variant of backpropagation called back-

propagation through time (bptt) which is a generalization of backpropagation for net-

works which store the activations of units while going forward in time [28]. The back-

ward gradient update pass is thus also backward in time and recursively computes the

required gradients with the saved activations. It is easy to see how this works when the

different timesteps of an RNN are unrolled and displayed as if they combine to make a

single neural network with multiple layers (fig 3.3).

RNNs have difficulties maintaining long-term dependencies when processing lengthy
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Figure 3.3: The insides of an RNN

input sequences that originates from the vanishing gradients problem [29]: During back-

propagation gradients, with which the weights of the network are updated, change as they

are applied backwards through time. A small change to a layer before means an even

smaller change in the current layer. On the contrary, gradients with big changes tend to

“blow up”. This means that the earlier layers in the network either stop learning since they

only receive small gradient updates or their weights oscillate due to big changes [30]. In

an RNN this problem is magnified due to backpropagation being applied to each time

step.

3.3.2 LSTM

Long short-term memory (LSTM) is a recurrent network architecture proposed by Hochre-

iter and Schmidhuber in 1997 [30]. LSTM was designed to combat the vanishing gradi-

ents problem that is especially prevalent in RNNs. LSTMs work exceptionally well on a

large variety of problems and are widely used nowadays.

Figure 3.4 illustrates an lstm module. Each line carries a vector, merging lines de-
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Figure 3.4: Long short-term memory network

note concatenation, forking lines denote copying of the vector and each copy going to

different directions, orange boxes are learned neural network layers and purple circles

represent pointwise operations such as multiplication, addition and hyperbolic tangent.

In addition to keeping track of the hidden state of the network, LSTM adds another state

called cell state that is denoted by the horizontal line running through the top of the figure.

Information is added and removed to the cell state by gates that are made up of sigmoid

(σ) neural net layers and pointwise multiplication operations. A sigmoid neural net layer

takes as input the concatenation of the previous hidden state ht−1 and the current input xt

and output a vector of values between 0 and 1 to describe how much of each value is to

be let through. A value of 1 lets everything through while a 0 lets nothing through. An

LSTM has three of these gates. From left to right, the first gate forms the forget gate layer

which decides what data to keep and what to discard from the previous cell state. Next,

the data to add to the cell state is decided with a combination of a sigmoid layer and a

tanh layer. The tanh layer outputs new candidate values and the sigmoid layer decides

which of them to add to the cell state. Finally, the last layer determines the output (hidden
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state) of the cell by taking the current cell state’s values and applying a tanh function to

push the values between -1 and 1 and multiplying them with the output of the sigmoid

gate. The new cell state and hidden state are then passed on to the next time step.

The LSTM architecture described above is considered a standard version of LSTM,

but other variants exist too. One popular variant of LSTM introduced by Gers & Schmid-

huber [31] adds peephole-connections that allow the gate layers to look at the cell state.

Another variant called the Gated Recurrent Unit (GRU, figure 3.5), introduced by Cho,

et al. [32], simplifies the model by combining the forget and input gates into a single

update gate.

3.3.3 Transformer

RNNs, as presented before, are inherently sequential in nature. They take an input at

timestep t and compute a hidden state ht with knowledge from the previous hidden state

ht−1. This sequentiality prohibits efficient parallelization within training examples since

one has to come before the other in training. Parallelization across examples is also criti-
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cally constrained by memory at longer sequence lengths. In addition to this, RNNs suffer

from the so-called vanishing gradient problem which is exacerbated at longer sequence

lengths [33].

Attention is a mechanism that allows the modeling of dependencies without regard

for distance in input or output sequences. It has been used in conjunction with recurrent

neural networks to achieve good results, but using it with RNNs somewhat limits the

power of attention since the model is still constrained by the aforementioned problems of

RNNs. Thus Vaswani et al. proposed a novel architecture in 2017, the Transformer, to

combat these limitations. The Transformer has been the foundation of neural networks

that have achieved state-of-the-art results in various language-related tasks in the last

couple of years [33].

The Transformer consists of an encoder, which maps an input sequence of tokens

to a sequence of continuous representations, and a decoder, which takes a continuous

representation and generates an output sequence. The output sequence is generated one

token at a time while taking the previous generated tokens as additional input.

The overall architecture of the Transformer is shown in Figure 3.6, with the left side

of the figure representing the encoder and the right side the decoder. The encoder is

composed of six identical layers stacked on top of each other. Each layer consists of two

sub-layers; a multi-head self-attention mechanism and a fully connected feed-forward

network. Residual connections [34] are used around each sub-layer to shortcut the sub-

layers while training. This leads to faster training times and a more robust model as the

connections are gradually restored during training. Finally, layer normalization is applied

to the output of the sub-layer as LayerNorm(x + Sublayer(x)), where Sublayer(x)

refers to the function implemented by the sub-layer. Due to the residual connections,

all sub-layers and embedding layers have to produce outputs of the same dimensionality.

Thus in the Transformer the dimensionality is defined as dmodel = 512.

The decoder is also composed of six identical layers but additionally includes a third
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Figure 3.6: The Transformer, from Vaswani et al. 2017 [33]

sub-layer, which applies multi-head attention over the output of the encoder stack. The

self-attention sub-layer in the decoder stack is also modified to prevent positions from

attending to subsequent positions. Thus predictions for position i can only depend on the

outputs before i.

Attention can be described as a function of mapping a query and a set of key-value

pairs to an output. The query, keys, values and output are all vectors. The output is a

weighted sum of the values, where the weight of each value is defined by a compatibility

function of the query with the corresponding key. The particular version of attention in the

Transformer is called Scaled Dot-Product Attention in which the input consists of queries
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and keys of dimension dk and values of dimension dv. The dot products of queries with

all keys are computed first, denoted by QKT in equation 3.7. The results are divided by
√
dk and then a softmax function is applied to obtain the weights on the values [33].

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (3.7)

Instead of using a single attention function over all the keys, values and queries with

dimension dmodel, the Transformer uses so-called Multi-Head Attention to linearly project

the keys, values and queries h times to dk, dk and dv dimensions. The attention function

is then applied in parallel to all these projected versions, yielding dv-dimensional outputs.

These outputs are then concatenated and projected to achieve the final result. This al-

lows the model to jointly attend to information from different representation subspaces at

different positions. In the Transformer, 8 parallel attention heads are used [33].

Attention is used in three different ways in the Transformer. In encoder-decoder at-

tention, where the output of the encoder is used in the decoder, the queries come from

the previous decoder layer and the keys and values come from the output of the encoder,

and in encoder and decoder self-attention. In encoder self-attention all the queries, keys

and values come from the output of the previous encoder layer, thus each position in the

encoder can attend to all positions in the previous encoder layer. Decoder self-attention

similarly receives its input from the previous decoder layer’s output, but doesn’t allow

attention over all the positions but only up to and including the current position. This

is achieved by masking out all the input values of the softmax corresponding to illegal

connections.

The decision to use self-attention was made based on three requirements: to minimize

the total computational complexity of each layer, to maximize the amount of paralleliz-

able computation and to minimize the path length between long-range dependencies. A

side benefit of self-attention is more interpretable models as attention distributions can be

inspected and tested with different examples to gain insight into the behaviour of individ-
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ual attention heads [33].

3.3.4 Other architectures

Autoencoder

Autoencoders are neural networks that are trained to attempt to copy its input to its output.

They compress the input into a lower-dimensional representation after which they attempt

to reconstruct the original input from this representation. An autoencoder that succeeds

at a perfect copy is not very useful, thus they are designed to be unable to learn to copy

perfectly. Because the model has to prioritize which aspects of the input should be copied,

it often learns useful properties of the data [24].

An autoencoder consists of three components: an encoder, code and a decoder. The

encoder compresses the input and produces the code, the decoder reconstructs the input

from the code. Figure 3.7 illustrates the simple architecture of the autoencoder. Both
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the encoder and the decoder are fully connected feedforward networks and are essentially

mirror images of each other. The only requirement of the autoencoder is that the input

and output dimensions are the same.

Autoencoders have traditionally been used for dimensionality reduction or feature

learning [24]. For natural language processing, Variational Autoencoders [35] have been

used for generative document modelling and supervised question answering [36].

Convolutional Neural Network

Convolutional Neural Networks (CNN) are networks that incorporate convolutional and

pooling layers into a neural network. CNN’s have four key ideas that take advantage

of the properties of signals: shared weights, pooling, local connections and the use of

many layers. A typical CNN (Figure 3.8) is structured as a series of stages. The first

stages are composed of convolutional layers and pooling layers. Convolutional layers try

to detect local conjunctions of features from the previous layer. A convolutional layer’s

units are organized in feature maps, within which each unit is connected to local patches

in feature maps of the previous layer. These connections are weighted and the weights are
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contained in a filter bank, that is shared within all the units of a feature map. Every feature

map thus has it’s own filter bank. The role of the pooling layers is to merge semantically

similar features into one. They reduce the dimension of the representation in an effort to

make the network more robust against small shifts and distortions in the data. Stacks of

convolutions and pooling are finally followed by fully-connected layers that are trained to

output the result [27].

Convolutional neural networks have been used for a multitude of tasks in natural lan-

guage processing in the past such as sentiment classification and sentence modeling [37].

3.4 Modern models

3.4.1 ULMFiT

Universal Language Model fine-tuning (ULMFiT) is a transfer learning based methodol-

ogy for text classification which posted state-of-the-art results when it was published in

2018. It consists of firstly pre-training a language model on a general-domain corpus and

then fine-tuning it on a classification task. This idea of first pre-training on a large general

corpus and then fine-tuning it has been tried before, but has proven to be a challenging

task due to it requiring millions of in-domain documents to achieve good performance

[38]. With ULMFiT Howard et al. proposed novel training techniques to make the train-

ing feasible even with a small corpus [2].

ULMFiT is a universal method in that it uses a single architecture and training process,

requires no custom feature engineering, works across tasks with variable document sizes

and label types, and doesn’t require additional in-domain documents or labels [2].

ULMFiT uses a 3-layer weight-dropped long shot-term memory (AWD-LSTM) net-

work, proposed by Merity et al. [39], which is a recurrent neural network (RNN). AWD-

LSTM is a vanilla LSTM with various regularization and optimization strategies such

as DropConnect [40], which prevents over-fitting by randomly dropping connections be-
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tween the recurrent hidden to hidden weight matrices, and averaged gradient descent as

its optimization algorithm.

The training begins with pre-training a general-domain language model with unla-

beled text data to capture the general properties of language. This initial training step is

the most expensive in the whole method but only needs to be done once.

After the general language model is trained, it is fine-tuned with the target task data.

This fine-tuning converges faster than the initial pre-training since the model needs to

only adapt to the idiosyncrasies of the fine-tuning data. This allows the training of robust

language models even with small datasets. ULMFiT uses discriminative fine-tuning and

slanted triangular learning rates for the fine-tuning step of the language model. With

discriminative fine-tuning, instead of using a single learning rate for all the layers in the

model, each layer is fine-tuned with a learning rate of its own. The motivation for this

comes from the fact that different layers capture different types of information, thus each

layer should be fine-tuned for different amounts. With slanted triangular learning rates,

the learning rate is first linearly increased in order to get the model to quickly converge to

a suitable region, and then linearly decreased to refine its parameters.

For the final step, two additional linear blocks are added to the end of the network,

and the final classifier is fine-tuned with gradual unfreezing. Gradual unfreezing is used to

prevent catastrophic forgetting by unfreezing the layers of the model one by one, starting

from the last. Unfrozen layers are fine-tuned for one epoch after which the next layer is

unfrozen until all the layers of the model have been unfrozen. The whole model is then

fine-tuned until convergence [2].

Although outshined by BERT and other huge transformer-based models, ULMFiT is

much fast to train and typically does not require a lot of data to get good results.
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3.4.2 BERT

Bidirectional Encoder Representations from Transformers (BERT) is a language represen-

tation model based on the Transformer [33] architecture (subsection 3.3.3). It uses a fine-

tuning based approach, in which all the pre-trained parameters are fine-tuned when apply-

ing pre-trained language representations to down-stream tasks, as opposed to a feature-

based approach, where the pre-trained representations are only used as additional features

in a task-specific architecture.

Both the fine-tuning and feature-based approach share the same objective function

during pre-training of learning general language representations by using unidirectional

language models. BERT uses a masked language model (MLM) pre-training objective to

achieve bi-directionality in context, thus allowing the model to see both left and right of

the input token when training. MLM randomly masks tokens in the input, and the objec-

tive is to predict the vocabulary id of the masked token based on its context. BERT also

uses a next sentence prediction (NSP) task that jointly pre-trains text-pair representations

[41].

As with ULMFiT, BERT also has a unified architecture across different tasks with a

minimal difference between the pre-trained architecture and the final downstream one.

BERT’s architecture is almost identical with the Transformer described in section 3.3.3,

the difference comes mainly in the number of layers (Transformer blocks), denoted as L,

hidden size, denoted as H and the number of attention heads, denoted as A. Results for

BERT performance was primarily reported for two sizes: BERTBASE (L=12, H=768,

A=12, total parameters=110M) and BERTLARGE (L=24, H=1024, A=16, total parame-

ters=340M).

BERT uses WordPiece embeddings [42], essentially similar to SentencePiece embed-

dings (section 2.1.3). Pre-training happens by the two aforementioned unsupervised tasks:

Masked language modeling and next sentence prediction.

In MLM, 15% of all WordPiece tokens are randomly chosen and each chosen token
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has an 80% chance to actually be masked, a 10% chance to be replaced with a random

token, and a 10% chance to stay unchanged. The reason for not always masking the

chosen tokens is because the [MASK] token does not appear during fine-tuning, causing

a mismatch between the two steps otherwise.

In NSP, training examples consist of two sentences A and B. 50% of the time B

is actually the next sentence that follows A (label IsNext) and 50% of the time it is a

random sentence from the corpus (label NotNext).

With the use of the Transformer-architecture, WordPiece embeddings and two pre-

training objectives that allow bidirectional context, BERT was able to exceed the state-of-

the-art on multiple downstream tasks [41].

3.4.3 ELECTRA

Efficiently Learning an Encoder that Classifies Token Replacements Accurately (ELEC-

TRA) is a further elaboration on the BERT model by Clark, et al. [43] The primary moti-

vation for ELECTRA is making pre-training more efficient given that training a full-sized

BERT or any derivation of it (ALBERT, RoBERTa etc.) requires a considerable amount

of compute and training data. As described in the BERT chapter (chapter 4.4), BERT uses

masked language modeling as a pre-training objective. This MLM is inherently quite in-

efficient in its usage of the training data; only the masked tokens, approximately 15% of

the data, needs to be predicted. As an alternative, ELECTRA proposes replaces token

detection, a pre-training task in which the model has to predict whether or not a token

is the original token in the corpus or if it has been swapped for a token generated by a

small masked language model. This also solves the mismatch in BERT where the model

sees [MASK] tokens during pre-training but not during fine-tuning. ELECTRA trains the

network as a discriminator rather than a generator, since it is predicting whether an input

is corrupted or not. This way ELECTRA learns from all the input tokens, rather than a

small subset of them.
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ELECTRA substantially outperforms MLM-based methods given the same amount of

data and compute and works well even with relatively small amounts of compute [43].



Chapter 4

Medical report document classification

4.1 Problem definition

Doctors diagnose multiple patients each day from which a medical report is written and

stored in a database. The report usually consists of a written statement regarding the

patient and the visit, and an according diagnosis code. As doctors are overworked and

short on time, this step is usually done in a hurry which increases the chance of human

error in both the written text and assigned diagnosis code. Thus, automatically defining

a proper diagnosis code based on the written text would reduce the chance of making an

error and save some time on the doctors part. Additionally, such methods could be used

to analyze past data in order to validate the correctness of already given diagnosis labels.

To find out if it would be possible to automatically define the diagnosis of texts to a

high enough certainty, a couple of deep learning -based models were trained on a binary

classification task where the model was to predict whether a given text should have a cer-

tain knee-related diagnosis code or not. Since compute resources were a major constraint,

only approaches with a reasonable single-gpu training time were considered. Thus, a pre-

trained and finetuned ULMFiT and ELECTRA, and a finetuned FinBERT (pretrained by

Virtanen et al. [44]), were chosen for comparison. In addition to comparing the different

models with each other, each model — excluding FinBERT, which provided a vocabu-
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lary of it’s own from pretraining — was trained multiple times with different sizes of a

vocabulary which was extracted from the medical texts to see if vocabulary size meaning-

fully impacted the results. Given the success of BERT and it’s WordPiece tokenization in

various NLP tasks, SentencePiece was chosen as a tokenizer for ULMFiT as well.

4.2 Data

4.2.1 Medical reports

The medical data for the work was provided by Auria services at the Turku university

hospital. It consists of doctor’s statements with corresponding diagnosis codes and other

metadata, such as date of visit and hospital ward, of patients in the Turku-region. No

metadata was utilized in the training data, only the written text and the corresponding

diagnosis code. Since the actual diagnosis code for the text appeared often in it, all di-

agnosis codes in text were masked with a [CODE] token in the training data to prevent

the model from learning from them. HTML-tags such as <br> were removed in prepro-

cessing and texts that were deemed too short (less than 80 characters) were also removed

from the training set.

After extracting the documents that had one of two knee-related diagnosis codes as

positive samples, the class balance for the dataset was 85% negative and 15% positive

samples. The dataset was eventually balanced by upsampling the positive samples. Over-

all, the data consisted of 175000 documents with varying lengths. Token amounts were

dependent on the size of the vocabulary used.

4.2.2 General Finnish

Since receiving access to the actual medical data took some time and due to the fact that

it was not allowed to be taken out of the hospital, the chosen models and code were ad-

ditionally trained and tested on a general Finnish corpus that Virtanen et al. compiled for
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FinBERT [44]. It is composed from three different sources: news articles, online discus-

sions, and documents crawled from the Finnish internet, and consists of 3.3 billion tokens

from 234 million sentences. The total size of the corpus is roughly 30 times the size of the

Finnish Wikipedia. The corpus was extensively preprocessed by filtering out documents

that had too high a ratio of digits, uppercase or non-Finnish alphabetic characters, or low

average sentence length. Additionally, documents that featured 25% or more duplication

were removed as well as heuristically defined undesirables [44].

4.3 Compute resources

Compute resources for the project were provided by Auria services for the medical mod-

els, and CSC for the general Finnish models.

4.3.1 CSC

CSC (IT Center for Science Ltd.) is a non-profit state enterprise owned by the Finnish

state and higher education institutions in Finland. It offers compute resources for scientific

purposes to universities and upkeeps the FUNET network, which is the Finnish national

research and education network. CSC operates two supercomputers, namely Taito and

Puhti, and is working on a new supercomputer, Mahti, that is scheduled to open for use

some time in 2020. For this project, Puhti was chosen since it provides an “artificial

intelligence partition” with access to GPU nodes with multiple Nvidia V100 graphics

cards.

Puhti

Puhti was launched on September 2, 2019. It is an Atos cluster system and has a variety

of different node types.

Puhti has 682 CPU nodes, with a theoretical peak performance of 1,8 petaflops, and
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an AI partition of 80 GPU nodes with a peak performance of 2,7 petaflops. Each node is

equipped with two Intel Xeon processors, code name Cascade Lake, with 20 cores each

running at 2,1 GHz. Each GPU node also has four Nvidia Volta V100 GPUs with 32 GB

of memory each. The nodes are equipped with 384 GB of main memory and 3,6 TB of

fast local storage. The AI partition is engineered to allow GPU-intensive workloads to

scale well across multiple nodes [45].

When working with Puhti on this project, the workflow consisted of coding and testing

the neural networks locally first, and then using Slurm to run batch jobs on Puhti. This

lead to some additional overhead in time for the project since working simultaneously on

two environments proved quite arduous. Additionally, keeping tabs on the versions of

code was very important since it could be altered in both locations, thus git [46] was used

for this version control.

Slurm

Puhti uses the Slurm workload manager [47] to handle scheduling jobs for compute clus-

ters. It is an open-source, fault-tolerant, and highly scalable cluster management and job

scheduling system for Linux clusters. First, it manages the allocation of exclusive and/or

non-exclusive access to compute nodes to users for some duration of time during which

they can perform work. Second, it provides a framework for starting, executing, and mon-

itoring work on the set of allocated nodes. Finally, it manages a queue of pending work

to arbitrate the contention for resources [48].

4.3.2 Turku University Hospital

For training models on the clinical data, access was granted to Blackbird, a computer

for artificial intelligence owned by Auria services, with four Nvidia V100 graphics cards

allowing simultaneous training of multiple models. All training and handling of clinical

data happened on this computer which is located in the hospital and behind the hospital
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firewall in order to ensure that the sensitive data and resulting models did not accidentally

or otherwise leak into the outer world.

Although the architecture could have managed training a medium-sized BERT, it was

considered too long of a task to reserve the compute resources for. Additionally, there

wasn’t enough domain-specific data for such a task.

The workflow on Blackbird consisted of connecting to the linux-based computer using

secure shell (SSH), using screen [49] to multiplex the connection to multiple shells, and

running a training process on each shell. Jupyter notebooks [50] were also used on the

machine for data visualization and prototyping, and were accessed locally by using ssh

tunneling [51].

4.4 Methods

ULMFiT

The fastai v1 -library was used for implementing ULMFiT1. As the library’s support for

SentencePiece2 was at the time quite limited, a considerable amount of custom code had

to be written to incorporate the sub-word tokenizer in the training process. The scripts

used for training ULMFiT with SentencePiece are open-sourced and can be found from3.

ELECTRA

For training ELECTRA, the pretraining and finetuning scripts were used from the official

github repository4. The code was forked in order to make some changes to it regarding

finetuning and evaluation parameters5.

1https://github.com/fastai/fastai
2https://github.com/google/sentencepiece
3https://github.com/invisiblesheep/ulmfit-sentencepiece
4https://github.com/google-research/electra
5https://github.com/invisiblesheep/electra
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BERT

For finetuning FinBERT, HuggingFace’s transformers library was ultimately used [52]. It

provides pretraining and finetuning scripts for a multitude of transformer-based models,

such as BERT, XLNet and RoBERTa.

Baseline models

fastText6 was trained as a baseline model. In addition to providing word embeddings,

fastText can be used as a classifier as well. fastText obtains document vectors by averaging

word embeddings after which it uses multinomial logistic regression for classification. As

with most neural network classifiers, a probability distribution over classes is gained as

a result after applying the softmax function to the results. It uses a bunch of tricks, such

as hierarchical softmax, to up the speed of training the model. Thus it’s an order of

magnitude faster to train than a deep learning model but it still is somewhat competitive

with one.

In addition to fastText, the results of a random classifier averaged over four runs and

a majority predictor, which always predicts negative in this case, are also reported as a

baseline.

4.5 Results

A binary classifier was built to identify texts that had one of two knee-related diagno-

sis codes from the training data. The data was divided into training, validation and test

sets with a 80–10–10 split, and stratified so that each set had an equal percentage wise

representation of the classes.

fastText’s results were achieved by first running it’s hyperparameter optimization com-

mand to find well-performing parameters after which the final parameters were forked

6https://github.com/facebookresearch/fastText
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Accuracy Precision Recall F1

FinBERT 91.68 68.02 74.16 70.96

ELECTRA-30K 90.40 66.06 73.72 69.68

ELECTRA-50K 91.23 69.29 76.19 72.58

ELECTRA-100K 91.46 69.64 76.14 72.74

ULMFiT-30K 93.85 84.28 72.54 77.97

ULMFiT-50K 93.98 82.91 75.41 78.98

ULMFiT-100K 94.11 83.95 75.17 79.32

fastText 93.49 84.34 70.07 76.54

Random 50.02 15.01 50.19 23.11

Most common 85.03 N/A 0 N/A

Table 4.1: Classification results of models with different vocabulary sizes on evaluation

set.

manually. The final hyperparameters were a learning rate of 0.05, 25 epochs of training

and the usage of word bigrams.

Mainly default hyperparameters were used while training ULMFiT, except the learn-

ing rate was found with fast.ai’s learning rate finder. The underlying AWD-LSTM -

architecture was not changed in any way. ULMFiT was pretrained and finetuned for 5

and 12 epochs, respectively. The finetuning results stopped improving after 8 finetuning

epochs.

For finetuning ELECTRA, the best and final results were obtained with a maximum

sequence length of 256, a learning rate of 10−4 and 12 epochs of training. For FinBERT,

final hyperparameters were a maximum sequence length of 256, learning rate of 2e−5 and

10 epochs.

This sequence length parameter is particular to the transformer-model. It defines the
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maximum amount of tokens that can be input into the network at one time. Given that

the input documents for classification were oftentimes quite a bit longer than this imposed

restriction, documents were chopped to multiple chunks with this maximum token amount

to get around it.

4.5.1 Tools

For training these models, a number of scripts were written and documented for the hos-

pital to use. The scripts comprise of a combination of shell and python scripts. A general

preprocessing script processes and splits the data of a specific given format of medical

text data into a training and evaluation set. Separate scripts are provided for pretraining

and finetuning the various models.

4.6 Discussion

As seen from the results, the transformer-based models — ELECTRA and FinBERT —

performed the worst of all the models. These results should be taken with a grain of salt

since the dataset wasn’t quite large enough to fully utilize the power of these models.

It is suspected that a major factor for this lack of performance is due to the lack of a

proper general medical text dataset that could be utilized in the pretraining of such models.

Additionally, since these transformers have a maximum sequence length for input tokens

which prohibits the utilization of all the tokens in longer texts, the lengthier documents

— which there were a lot of — in the training set could not be fully utilized. Thus

for FinBERT and ELECTRA, a major improvement came from increasing the maximum

sequence length.

An additional factor for FinBERT’s poor performance could be that the vocabulary it

uses is not specific to the finetuning task as it was trained on general Finnish. As such

it does not include any of the medical text -related terms suspected to be important for



CHAPTER 4. MEDICAL REPORT DOCUMENT CLASSIFICATION 46

classification, as opposed to the vocabularies of the other methods which were extracted

from the training data.

Given that the relevant text regarding the diagnosis of the document seemed to usually

reside at the end of a document, encapsulating this information in the training samples for

ELECTRA and BERT perhaps needs a different approach than chunking to maximum

size in which the relevant information only appears in the later chunks of a document.

This means that the previous chunks in a document can possibly negatively impact the

performance of the classifier as well by making it focus on unimportant details.

The superior results of ULMFiT can also be due to the compatibility of LSTM-

networks with long texts. Contrary to the transformers which get as input the whole

document, LSTM’s are recurrently fed tokens one after the other until the whole docu-

ment has gone through the network. Thus, LSTM’s have no limit in how long of a text

it can process which proved to be an important feature with this dataset. Additionally, as

the important features of text were usually at the end of a document, the LSTM saw these

features last and thus they had a relatively bigger impact on the network’s parameters.

Class imbalance in the training data was suspected to be a factor for model perfor-

mance, thus positive examples were upsampled by random duplication to balance the

classes which overall somewhat improved the performance of all the models. Compar-

ing the different vocabulary sizes, the results clearly show that a bigger vocabulary size

worked better than a smaller one on this dataset, which could be due to the fact that the

data — being medical text — included a lot of medical terms rarely found in everyday

language.

For future work, pretraining ELECTRA or BERT on a larger, general medical text

corpus before finetuning on domain data could yield overall improvements to diagnosis

code classifiers. Pretraining on a larger dataset would give the models a good starting

point for finetuning due to the fact that the models would then have a proper represen-

tation of the medical textual data domain, thus increasing the likelihood that the models
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generalize better. Additionally, comparing the performance of the models with different

amounts of training data would give insight into the limits of ULMFiT and ELECTRA.



Chapter 5

Conclusion

In this thesis, an overview is given of natural language processing w.r.t deep learning and

text classification. Additionally, a dataset of medical reports was preprocessed and used

to train a number of machine learning models on a binary classification task in order to

define the feasibility of deep learning methods for medical text classification.

It was found that the LSTM-based ULMFiT performed the best out of the chosen

models, others being ELECTRA, FinBERT and fastText. The performance of a simpler

method proved to be surprisingly good when compared to the more complex and training

intensive deep neural networks. This is a promising finding due to the fact that smaller

hospitals don’t have the resources to train and use the weightier deep neural networks in

analyzing their documents. Utilizing simpler and lighter models such as fastText levels

the playing field and brings the benefits of AI to more people.

The lacklustre results of the transformer-based models are advised to be taken with

a grain of salt as these approaches are deemed to require further investigation in this

domain.

As a results of this thesis, the scripts for training the aforementioned models were

compiled and provided to the hospital as tools for preprocessing medical data and pre-

training and finetuning various classifiers for different diagnosis codes.

For future work, it is suggested that a larger general corpus of medical text is gathered
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and used to pre-train a deep neural network first in order to improve performance of the

various introduced methods such as transformer-based BERT and ELECTRA.
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