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Astronomical polarization has become one useful tool to study a number of astronomi-
cal objects and related astrophysical mechanisms. The polarization of electromagnetic
waves is caused by various astronomical phenomena. One such phenomenon is when
the light emitting from a planet(s) hosting star is reflected by the orbiting planet(s).
However, the degree of polarization due to such events is tiny and their observations
require highly sensitive polarimeters. DiPol-2 is a one such high sensitivity polarime-
ter that can measure polarization degree of more than 10−5. The polarimeter is
presently installed with T60 telescope at Haleakalā observatory in Hawaii and is
operated remotely by Physics and Astronomy department at University of Turku.

We used DiPol-2 to observe a hot Jupiter exoplanet named υ And b in B, V and
R passbands. These observations were made using the combination of T60 and
DiPol-2. It was the first time that these instruments were used together to record
polarimetric observations of an exoplanet. Stokes parameters describe the state of
polarization and variations in these parameters can help to deduce orbital parameters
and/or stellar, planetary characteristics. This process however requires that data
visualization to be compared with numerous models that have been developed to
interpret polarimetric observations. The polarimetric observations started in the
second half of 2016 and continued till early 2019. We observed the target whenever
observing time allocation and observation conditions allowed it. The observational
data then went through a lengthy process of data transfer and data reduction.

For data analysis, Lomb-Scargle algorithm was used to deduce orbital periods present
in the data. Lomb-Scargle periodogram showed a number of peaks with different
orbital periods. It was deduced that the presence of multiple orbital periods was due
to magnetic activity on the stellar surface that contaminated polarimetric signals
of the exoplanet. To further visualize the data, curve fitting was performed using
Fourier series in order to deduce orbital peaks and estimate planetary albedo. We
were able to estimate values for a few parameters but at this point it has not been
possible to separate planetary signal from the stellar signal. This task would require
a sophisticated model and that was beyond the scope of this study.

Keywords: Polarization, astronomical polarimetry, Stokes parameters, DiPol-2,
exoplanets, polarimetric observations, starspots, stellar polarization, υ And, planetary
albedo, Lomb-Scargle periodogram, Fourier Series, Curve Fitting.
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1 Introduction
Light can be described as a combination of transverse electromagnetic waves that
consist of an electric and a magnetic component. The most common sources of
light such as Sun, electric lamps, fire flames, etc., emit unpolarized light. An
electromagnetic wave emitted by these sources is generated by electric charges that
vibrate randomly in all possible directions. Therefore, the resultant electromagnetic
waves also vibrate in all possible directions and referred as unpolarized light waves.

A polarized wave has certain types and one of these types is linearly polarized light
wave. In this type of polarized wave, the vibrations are confined in a single plane.
The transformation of an unpolarized light wave into fully or partially polarized light
wave is known as polarization. The process of measurement and interpretation of the
polarization of electromagnetic radiation is called polarimetry and the instrument
used for this purpose is known as polarimeter. The first systematic observations
of polarization of starlight have been started by William Hiltner and John Hall in
1949. But it took a couple of decades for optical polarimetry to become one of the
mainstream methods in observational astrophysics. This was made possible due to
the introduction of highly sensitive detectors in optical photometry and spectroscopy.

Astropolarimetry has now become an important method of studying of large variety
of astrophysical objects. A number of physical mechanisms can produce different
types of polarization by various degrees. Thus, by detecting and measuring the
polarization of astronomical light, we can draw important conclusions on the nature
of physical phenomena, ranging from structure of galactic magnetic fields to the
atmospheric composition of exoplanets.

1.1 Polarization: Basics

The electric and magnetic components of any given electromagnetic wave are always
perpendicular to each other they are also perpendicular to the direction of wave
propagation (see Figure 1). At optical wavelengths, the direction of polarization
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Figure 1. An illustration of electromagnetic wave emitted by single charged particle
oscillating in fixed direction. Electric field, magnetic field and direction of propagation
are shown in red, blue and black colors respectively.

refers to the direction in which electric field oscillates. In Euclidean coordinates
(x, y, z), the electric field E traveling in direction z can be described as:

E(t, z) = E(0, 0) cos(ωt− kz − φ), (1)

where t is time, ω is the angular frequency, k = ω/c is absolute value of the wave
vector and φ represents an arbitrary phase. For the simplicity purposes, location of
E(t) is considered in only xy plane, i.e. z = 0. Then, the decomposition of E(t, z)

into x and y components can be written as following:

Ex(t) = Ex(0) cos(ωt− φ1),

Ey(t) = Ey(0) cos(ωt− φ2),
(2)

where φ1 and φ2 denote two a priori arbitrary phases. The angle between E(t) and
positive x-axis is denoted by χ (Figure 2, left) and counted in counterclockwise
direction is known as polarization angle. The polarization of an electromagnetic wave
is given by the relative values of Ex(0), Ey(0) (Figure 2, right), φ1 and φ2.

1.1.1 Types of Polarization

Elliptical polarization is the most common type of polarization of an electromag-
netic wave in which the projected path of electric field vector looks like an ellipse
(Figure 3, right). In an elliptically polarized electromagnetic wave, the electric field
has two perpendicular linear components that can have any amplitude and/or any
phase difference. The ellipse keeps constant orientation in time with respect to xy
plane. For elliptical polarization, the polarization angle χ is defined as the angle
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Figure 2. An illustration of position angle χ and electric field components. Left:
linear polarization at position angle χ measured counter clockwise from x-axis. Right:
electric field components at 0◦, 45◦ and 90◦.

between semi-major axis of the ellipse and positive x-axis. The direction in which
electric field rotates describes the polarization as either right or left hand elliptical
polarization.

Linear polarization happens if the ellipse of polarization is degenerated into a line.
In Figure 3 (left), the oscillation of electric field is confined in a single plane that
does not change as the electromagnetic wave propagates. An electromagnetic wave
that is linearly polarized has no phase difference, i.e., φ1 = φ2. For φ1 = φ2 = 0:

Ex(t) = Ex(0) cos(ωt),

Ey(t) = Ey(0) cos(ωt).
(3)

The orientation of electric field E depends only on the magnitudes of Ex(0) and
Ey(0) and has no direction. The plane of polarization is given by the angle χ, which
remains constant between 0 and π.

Circular polarization is one special case in which ellipse of polarization degenerates
into a circle (Figure 3, middle). In this type of polarization, the electric field has two
perpendicular linear components, which are equal in amplitude and have a phase
difference of π/2. In other words φ2 = φ1 ± π/2 and for φ1 = 0, Ex(0) = Ey(0):

Ex(t) = Ex(0) cos(ωt),

Ey(t) = ±Ey(0) sin(ωt),
(4)

where positive and negative signs of Ey(t) represent counterclockwise and clockwise
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Figure 3. Left: Linear polarization is when the oscillation of electric field is confined
in a plane. Middle: Circular polarization in which electric field components with a
phase difference of 90◦ appear to rotate counter clockwise to an observer for right
hand polarization. Right: Elliptical polarization in which electric field components
with any amplitude and/or any phase difference appear to rotate counter clockwise
to an observer for right hand polarization.

motions respectively. The movement of electric field vector in the xy plane is in a
circular motion with angular frequency ω. The direction of electric field rotation
describes the polarization as either right or left hand circular polarization.

1.1.2 Stokes Parameters

In the previous section, it is mentioned that the polarization state of an electromag-
netic wave depends on amplitude of electric field components (Ex(0), Ey(0)) and
phase difference (δ = φ2 − φ1). By using Stokes parameters, these quantities are
quantified into characteristic intensities. This is done due to the fact that astronomi-
cal observations measure light intensities and not field amplitudes. The normalized
Stokes parameters q, u and v are defined as follows:

q = Q/I,

u = U/I,

v = V/I,

(5)

where Q, U , V are absolute Stokes parameters and I is intensity of the wave. In
terms of electric field components, these parameters are described as:
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I = E2
x + E2

y = E2
0◦ + E2

90◦ ,

Q = E2
x − E2

y = E2
0◦ − E2

90◦ ,

U = 2(ExEy cos δ) = E2
45◦ − E2

−45◦ ,

V = 2(ExEy sin δ) = E2
LCP − E2

RCP .

(6)

Stokes I simply represents the total power of incoming radiation. This is done
by sampling two orthogonal polarizations at any two orthogonal angles of either
elliptical or linear or circular polarization and their summed powers give the total
intensity. Stokes Q is the difference of intensities in x and y that partly describes
linear polarization. Suppose, incoming electric field is vertically polarized then using
Equation (6): Q = I and when the polarization is horizontal: Q = −I. But for
χ = 45◦: Q = 0, this parameter does not show any polarization. Stokes U quantifies
the difference between two orthogonal angles of 45◦ and 135◦(−45◦). Therefore, to
completely describe linear polarization both Stokes Q and Stokes U are needed.
The relationship between Stokes parameters and linear polarization is as follows:

PL =
√
Q2 + U2/I,

χ =
1

2
atan

(
U

Q

)
,

(7)

where PL is degree of linear polarization and χ is polarization angle, which give
length and the orientation of a vector that is centered at the origin of plane spanned
by Stokes Q and U , while atan is quadrant-preserving arctangent.

Finally, Stokes V corresponds to the circularly polarized intensity. As briefly
mentioned earlier, there are two types of circular polarizations opposite to each other,
named as left hand circular polarization (LCP) and right hand circular polarization
(RCP). To the observer, LCP appears to be rotating clockwise and RCP appears as
rotating counterclockwise. The difference between squared values of these two is V.
The relationship between degree of circular polarization PC and Stokes V is given
as:

PC = V/I. (8)

For individual waves, Stokes parameters are related as:
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I2 = Q2 + U2 + V 2. (9)

In some texts, Stokes I , Q, U , V are also referred as S0, S1, S2, S3 or S1, S2, S3, S4.
The degree of polarization in optical astronomy is written in units of per cent (%) or
in decimal fractions of the total intensity.

1.2 Polarization: Instrumentation

Just like any other optical astronomy observations, first and foremost instrument
needed to conduct polarimetric observations is a telescope. However, the design
and geometry of any given telescope is going to have an influence on the state
of polarization for the collected light. There may be some exceptions in the case
of highly symmetric situations. It is crucial to take into account the conditions
and configurations that can modify polarization state and make such arrangements
that these modifications can be minimized. Other than a telescope, polarimetric
observations require the use of a polarimeter.

Polarimeter is an instrument that can either measure or determine the normalized
Stokes parameters. It generally consists of two main parts: a polarization modulator
and polarization analyzer. A modulator performs modulation of the polarization
state of an incident light beam by any given frequency and an analyzer separates two
orthogonally polarized components of electromagnetic wave. The third component
of the polarimeter that is also common to other instruments, such as photometer or
spectrograph, is a detector. The detector measures the intensities of these polarized
components synchronously with the modulation frequency.

1.2.1 Modulators: Constant and Variable Phase-Shift Retarders

In the optical spectral region, modulation is quite essential for the accurate polari-
metric observations. Most modulators employ a technique that is based on the phase
retardation or phase shift between the two orthogonal components of polarization
for the incoming light beam. This modulator, called retarder can either introduce a
constant or variable phase shift.

The constant phase shift retarders, also known as wave plates are made of a uni-axial
birefringent crystal, which is cut so that the optical axis (minimum refraction index
direction) is parallel to the plate surface. There are two types of wave plates widely
used in astropolarimetry: quarter wave plates (QWP) with the phase shift π/2 and
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half wave plates (HWP) with the phase shift π. QWP is used to change circularly
polarized light wave into linearly polarized light wave and HWP is used to rotate
the polarization plane of a linearly polarized light wave.

Two types of variable phase shift retarders are used in astropolarimetry: photo-elastic
(piezoelectric) modulators (PEMs) and ferro-electric liquid crystals (FLCs). PEM
is made with a material that is non-birefringent slab stressed at the natural slab
frequency of f0 with the piezoelectric transducer. At the base frequency of f0, PEM
acts like a variable QWP that has time variable phase shift from 0 to π/2 and thus
allows the circular polarization to measured directly. In a case, when PEM is driven
to the frequency of 2f0, it acts like HWP and thus allows direct measurement of
linear polarization. A thin layer of a material made of liquid crystal is used to
manufacture FLC modulator and this layer is placed between the two glass plates.
For astropolarimetry, FLCs are used that are capable to switch orientation of the
optical axis but they have a fixed retardation π. The optical axis can be controlled
with applied drive voltage in order to measure linear polarization just as PEMs. FLC
can be operated at the frequencies up to few KHz and is more efficient in comparison
with PEM due to capability to provide a nearly square-wave modulation.

1.2.2 Analyzers: Single and Double-Beam Units

The simplest form of a single-beam analyzer is well-known polaroid made by hematite
crystals and either aligned in the direction of a thin film of polymeric transparent
or layered on a surface of glass. Optical dichroism is a property of polaroid that
means strong absorption for linearly polarized light in the direction that is parallel to
the orientation of crystal axis. When a polaroid is rotated, it acts as a single-beam
analyzer for the light that is linearly polarized. The more advanced single-beam
analyzers are Nicol and Glan-Thompson prisms made of calcite. In these prisms,
one of the orthogonally polarized beam is either completely absorbed or deflected.

Major disadvantage of the single-beam analyzer is the loss of half of the intensity
from incoming light beam. To overcome this issue, the double-beam analyzers or
polarization beam-splitters are frequently employed in optical astropolarimetry. They
are made of birefringent crystals such as calcite, quartz or magnesium fluoride.
Double-beam analyzer splits the incident light beam into two orthogonal polarized
beams so that both of them can be measured simultaneously. The most frequently
used double-beam analyzers are plane-parallel calcite plate, Savart plate andWollaston
prism. Plane-parallel and Savart plate split the incident light beam into two different
beams in parallel direction and Wollaston prism diverts the two beams symmetrically.



8

1.2.3 Detectors

Optical polarimetry uses mostly three types of detectors: CCD cameras, photomulti-
pliers (PMTs) and avalanche photodiodes (APDs). These detectors have their own
advantages and disadvantages.

In optical polarimetry, the most common detectors are charge-coupled device CCD
cameras. The main advantages of CCD camera are their high quantum efficiency
(QE), wide variety and convenient data acquisition. Furthermore, they consists of
panoramic (multi-cell) registration devices. This allows the recording of either two
orthogonal polarized stellar images or spectra on a single detector simultaneously. For
low-budget polarimetric instrumentation, the small-sized CCD cameras with thermo-
electronic cooling are used. These cameras are portable and connected to control
computer by universal serial bus (USB) port. For broadband polarimetry using
CCDs, the data reduction is performed by applying standard aperture photometry
method. This means that CCD images are calibrated by subtraction of dark, bias and
flat-fielding, then the sky contribution is subtracted and the intensity of orthogonally
polarized stellar images are measured. CCD cameras do have their shortcomings such
as early pixel saturation for bright celestial objects due to relatively small full-well
capacity and long time required for the image readout.

PMTs can register high fluxes, instant readout and have dynamical range. Polarimetry
requires high amount of photons and pixel saturation issue for bright objects in CCD
polarimeters can sometimes make the PMT a preferred choice. PMTs can be also
easily used in combination with the high-frequency modulators such as FLCs and
PEMs. The disadvantages of PMT detectors are relatively low. In comparison with
CCD camera, the quantum efficiency and a single-cell detector type limits their use
to polarimetry of only point-like objects, i.e., single targets. The use of diaphragm
in the focal plane of telescope where the object is placed results in the polarization
and intensity of sky background to be measured separately. Even though PMT
detectors may be more useful in certain situations but they can not compete with
CCD detectors in case of low-flux domain.

Avalanche photo-diode (APD) can be referred as semiconductor analog to the PMT.
In APDs incoming photons generate electron-hole pairs and large reverse bias voltage
accelerates photoelectrons. When these electrons have a collision with the atomic
lattice, secondary electrons are released by secondary ionization and an avalanche
of charge carriers occurs when these electrons accelerate. APDs can tolerate even
higher fluxes than PMTs. As compared to PMTs, they have higher QE in near IR
but lower in blue wavelengths. APD detectors are better suited for polarimetry
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of the brightest objects that require high precision in near infra-red wavelengths.
But their efficiency in blue and visual spectra when compared to PMTs is about
similar. The dark current is higher in APDs, which often makes them noisier than
other detectors. Their small effective photosensitive area requires a extreme precision
when positioning the telescope exit pupil on the surface of detector. Due to these
shortcomings, APDs are the least popular type of detectors in optical polarimetry.

1.3 Polarization: Astrophysical Mechanisms

A number of astrophysical mechanisms such as emission, reflection, absorption,
scattering or influence of magnetic fields may affect or alter the polarization state of
a photon. Thus, polarimetry can help deduce information on physical properties of
any astronomical object that emits the light. Moreover, the polarimetry can also
provide information on properties of the circumstellar and interstellar medium with
which the passing light interacts.

There are two fundamental types of emission known in astrophysics: thermal and
non-thermal ones. The radiation emitted by thermal emissions is purely due to the
temperature of source. Any object that has a temperature above absolute zero emits
thermal radiations. In this phenomenon, atoms move with respect to each other
in different directions and at varying speeds. As a result, their collisions produce
isotropically emitted radiation when electrons change energy states within an atom.
The continuous spectrum of thermal emission is described by Planck’s law. According
to Planck’s law, a spontaneous and continuous emission of electromagnetic radiation
occurs in every physical body and the spectral radiance of a given body B is the
amount of energy that it emits at various frequencies of the radiation (Planck 1901):

B(ν, T ) =
2hν3

c2

1

ehν/kBT − 1
, (10)

where ν is frequency, T is absolute temperature, kB is Boltzmann constant, h is Planck
constant and c is speed of light. For heated gases or solid bodies, the thermal emission
is incoherent, isotropic, and unpolarized. The non-thermal emission includes any
emitted radiation that does not depend on temperature of the source. Synchrotron
radiation is an example of non-thermal emissions that is generated by free electrons
that spiral at relativistic speeds around magnetic field lines. Synchrotron radiation
is naturally linearly polarized in the plane of the electron orbit.

Light-to-matter interaction is perhaps the most important mechanism that produces
astrophysical related polarization. By studying the polarization of light reflected by
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a surface or atmosphere of celestial body can help to deduce the size, shape, chemical
composition, atmospheric structure and stratification of that body. Scattering of light
by particles such as electrons, atoms, molecules and dust grains is quite a common
phenomenon that can alter the polarization state of an electromagnetic wave. All
types of scattering such as Thomson, Compton, Inverse Compton, Rayleigh, Raman
etc., cause linear polarization.

Figure 4 illustrates the geometry of scattering polarization, which is true for any
scattering regime regardless of their distinct physical mechanisms. Let us assume
incident unpolarized light with electric field components Ex, Ey in x and y directions
respectively and propagating in z direction. After the interaction, the direction of
propagation changes in the yz plane with an angle θ to the z-axis. For observer of
this scattered light, the light intensities remian same in x direction before and after
the scattering, i.e., E ′2x = E2

x, where prime represents the scattered light. The y
component, however, transforms as E ′2y = E2

y cos2 θ, which means the reduction in
by a factor of cos2 θ, i.e. the scattering has caused linear polarization and the degree
of polarization (PL) is:

PL =
I ′x − I ′y
I ′x + I ′y

=
1− cos2 θ

1 + cos2 θ
, (11)

where, I ′x and I ′y are observed intensities. (Trippe 2014)

The understanding of astrophysical objects such as stars or galaxies is incomplete
without the consideration of magnetic fields. Sufficiently strong magnetic field results
into Zeeman effect in which a spectral line may split into several polarized components
with different splitting and strength as a consequence of magnetic field being present.
The intensity profile is usually split into two or more components and this separation
is linearly increases with the magnetic strength. In this situation, the component
of magnetic field along the line of sight (longitudinal field Bz) produces a non-zero
circular polarization signal. In the weak field regime, Stokes v is given by Bagnulo
and Landstreet (2015):

v = −geffCzλ
2 1

I

dI

dλ
Bz, (12)

where geff is the effective Landé factor, I is intensity at wavelength λ and Cz =

4.67× 10−13Å−1G−1.

The transverse component of magnetic field is related to linear polarization in such a
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Figure 4. A light ray that is unpolarized has linear polarization components Ex, Ey
propagating in z direction. It gets scattered by an angle θ and becomes linearly
polarized. The propagation direction changes to yz plane (shaded). For observer,
the polarization components of the scattered light are perpendicular to the direction
of propagation, i.e., E ′x = Ex and E ′y = Ey cos θ. Image from S. Trippe (2014).

way that with the strength of magnetic field linear polarization increases quadratically.
It is given (Bagnulo and Landstreet 2015):

q = −1

4
g2

effC
2
zλ

4 1

I

d2I

dλ2
B2
⊥ cos 2χ,

u = −1

4
g2

effC
2
zλ

4 1

I

d2I

dλ2
B2
⊥ sin 2χ,

(13)

where χ is azimuthal angle of the magnetic field and B⊥ is transverse component of
the magnetic field.

When the magnetic field is not weak, Faraday rotation is responsible for a non-
negligible rotation of the polarization plane. In this case, it is not possible to describe
certain properties of the Stokes profiles with simple analytical considerations. For
example, circular and linear polarizations do not increase linearly and quadratically
with the field strength. However, Stokes profiles may still be calculated numerically
(Wade et al 2001) or using the hypothesis of Milne–Eddington approximation.
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1.4 Polarization: Astrophysical Sources

All types of stars given by Hertzsprung-Russell (HR) diagram are known to possess
magnetic fields and they can be studied with spectropolarimetry. Active stars have
been observed to posses multiple stellar spots, which can be studied by spectroscopic
and photometric observations (Yakobchuk and Berdyugina 2018). These starspots
also contribute to polarization. The binary stars are another topic of interest to be
studied by optical polarimetry. Their gravitational interaction may involve matter
transfer from one component to the other. This often results in linear polarization
that varies due to the light scattering on the circumstellar material (Zellner and
Serkowski 1972). In case of black hole being one of the component in a binary system,
synchrotron radiation may result in linear polarization emitted in the jet. This means
that polarimetry can reveal useful details of the phenomenon and physical properties
of material forming gaseous streams, discs, jets and non-spherical envelopes.

Planetary bodies reflect the light emitted by their host stars. The scattering of light
either by a solid surface or by an atmosphere makes it partially linearly polarized.
Umov effect is a due to the interplay of absorption and scattering of light, which is anti-
correlation between linear polarization (p̄L) and geometric albedo p (measurement of
light that gets reflected by the surface of a celestial object) of a solid surface is given
as (Bowell & Zellner 1974):

log(p) = −c1 log(p̄L) + c2, (14)

where c1 and c2 are two constant parameters and their values depend on the structure
of surface material. For very low albedos, c1 ≈ 1, c2 ≈ −2, Equation (14) gives
the degree of polarization close to 100% and thus any observed deviation from
this relationship represent structural change of the surface material (Trippe 2014).
Oceans, even though having a low albedo, may produces highly polarized glint light
due to their specular reflection. Theoretically, it is even possible to detect extra
terrestrial life using (spectro)polarimetry by looking for circularly polarized light
reflected from certain biological substances.

Interstellar and circumstellar space is filled with diffuse matter which is presented in
a various states ranging from cold molecules and dust grains to hot ionized atoms
and free electrons. The interaction of light with this matter may cause polarization
of scattered light by varying degree. The well-known result of such interaction is an
interstellar polarization of distant stars which is produced by dust grains that are
non-spherical and they are aligned by interstellar galactic magnetic field. Because the
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direction of interstellar polarization coincides with the direction of galactic magnetic
field lines, polarimetry is used for studying the structure of the interstellar magnetic
fields on the large and small scales.

The other prominent astrophysical sources that show polarization are space masers,
pulsars, active galactic nuclei (AGN), gamma ray bursts (GRB) and cosmic microwave
background (CMB). Space masers emit stimulated linearly polarized radiation at
radio frequencies. Pulsars emit both thermal and non-thermal radiations, but
predominantly the later one. Synchrotron-dominated radiation shows both linear
and circular polarization. AGNs are the most luminous objects in the universe and
they emit in multiple wavelengths. They show a linear polarization mostly due to
synchrotron sources together with a small presence of circular polarization. In GRBs,
substantial linear polarization is produced due to synchrotron mechanism. CMB
shows two types of polarization. The electric-field like polarization is perpendicular
to the gradient of a local perturbation, shows no handedness and is caused by local
energy density fluctuations. The magnetic-field like polarization shows a local curl
pattern with distinct handedness. They are caused by tensor perturbations as a
result of gravitational waves propagating through CMB plasma.
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2 Exoplanets
Extra solar planets (or exoplanets) are planets that exist beyond our solar system.
In the last couple of decades, exoplanets have been discovered in all sizes ranging
from bigger than Jupiter to smaller than the Earth. Some of these exoplanets orbit
so close to their host starts that their surface temperatures can melt iron but others
are as far as 2000 astronomical units (AU) from their parents stars. There are just
a few cases in which the exoplanets have been imaged directly. An overwhelming
majority of exoplanets discovered to date have been discovered by indirect detection
methods such as Doppler spectroscopy (radial velocity or RV) method, transit method,
astrometric measurements and gravitational micro-lensing.

In general, the amount of light reflected by an exoplanet is a very small fraction
of the radiation coming out of the host star. This makes exoplanets very difficult
for direct detection as they are completely out shined by their parent stars. The
starlight is in most cases is unpolarized but it becomes partially polarized when
reflected by a planet. Thus, polarimetry can be used to detect and reveal certain
physical characteristics of exoplanets. However, even if the light that is reflected
by an exoplanet becomes 100% polarized, it is still going to be a tiny fraction of
resulting polarization in the total light coming out of that solar system. Therefore,
the polarimetric detection is presently only possible for planets that are big in size
and orbit close to their host stars.

Since polarimetry is comparatively a newer tool to investigate exoplanets, theoretical
models that interpret polarimetric observations are still developing. These models
are computed by using a number of assumptions in order to provide certain charac-
teristics of an exoplanet, such as orbital parameters and chemical composition of the
atmosphere. Theoretical models are quite essential to deduce useful information from
values of measured Stokes parameters of the polarization. This chapter will discuss
several such models that help interpret polarimetric observations of exoplanets.
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2.1 Hot Jupiters (CEGPs)

Hot Jupiters or close-in extrasolar giant planets (CEGPs) are the gaseous giants
similar to Jupiter, but unlike it, they orbit their host stars at very close distance.
The typical radius of CEGP’s orbit is ≤ 0.1 AU and typical orbital period is ≤ 10
days. CEGPs have dominated earlier discoveries of exoplanets as they are the easiest
to be detected by Doppler spectroscopy and transit methods. They make up to ∼340
of more than 4000 exoplanets discovered till to date (Starr 2019).

According to present models of planetary formation, CEGPs cannot be formed at
such short distance from the host star. These models predict that due to gravity,
radiation, and intense stellar winds gas should not clump together to form gaseous
giant in the nearest vicinity of the star. One possible explanation is that these
planets are formed further away, and then migrated towards the host stars. Although
formation of CEGPs may still be a mystery, their proximity to harboring stars make
them very interesting objects for studying star and planet interactions.

The amount of starlight reflected by an exoplanet gets reduced by 1/d2, where d
is the distance between the planet and host star. Thus, it becomes really difficult
to detect the light scattered by an exoplanet that has an orbit far from its parent
star. Furthermore, the observations of polarization from distant exoplanets would
require an enormous amount of time to get repeated measurements due to the long
orbital period. This is why CEGPs with small orbits and short orbital periods
have become the primary choice for polarimetric observations. Their location in a
planetary system, their sizes and atmospheric compositions may lead to reflection of
significant portion of starlight and thus, allow detection of polarization.

Many CEGPs are so close to the host stars that stellar magnetic field is able to
drive atmospheric escape through reconnection of magnetic field lines. Due to the
closeness, magnetic field of CEGPs can also affect activity on the host star if it
perturbs stellar open field lines. The upper atmospheres of CEGPs are expected
to produce strong Rayleigh scattering and their closeness to parent stars enables
them to receive a large amount of starlight flux. The short orbital period of such
planets also help to gather repeated observations within a reasonable time period.
All these facts make CEGPs the prime targets for polarization studies, which can
help us better understand the various phenomena related to exoplanets.
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2.2 Polarimetry of Exoplanets

In 2008, the earlier discovered by RV method exoplanet HD 189733b was successfully
detected by polarimetry (Berdyugina et al 2008). However, no new exoplanet has
ever been discovered with this technique till now. Polarization is prone to detect
CEGPs with higher albedos, as in such situations the amount of reflected starlight is
higher. Seager et al (2000) modeled that the degree of polarization for CEGPs is
expected to be at the tens of parts-per-million level in the combined light of solar
system that hosts planet(s). This implies the necessity of a polarimeter with very
high sensitivity to observe such tiny levels of polarization.

The degree of polarization varies as a planet orbits the parent star due to a number
of factors that are explained in the following sections. This variability can help reveal
the orbital time period, orientation in space, eccentricity, inclination and composition
of atmospheric particles if ant present on any given planet. (Berdyugina et al 2008;
Fluri & Berdyugina 2010; Berdyugina et al 2011)

2.2.1 Orbital Period

Let us consider a basic example of a star system where the value of semi major
axis of planetary orbit is higher than the radius of host star. As a result, all the
starlight received by the planet is parallel and star acts like a point-source. Two
different reference frames are usually employed when describing Stokes Q and U
parameters. The first one is with regard to the celestial north for the observer present
on Earth is called observer’s frame in which positive Stokes Q denotes the light
that is linearly polarized parallel to the local meridian of an observer. In the second
frame of reference, the contributions from various elements of stellar surface are
accounted for. Stokes parameters are defined with regard to the scattering plane in
which the positive Stokes Q represents linearly polarized light perpendicular to the
plane of scattering. For Stokes U ′ = 0, Stokes Q′ in the scattering plane (Fluri and
Berdyugina 2010):

Q
′
=

pr2

d2D2
φ(α) sin2 ψ, (15)

where prime(′) indicates scattering plane as reference frame, p is geometric albedo, r
is planetary radius, d is the distance between an observer and star, D is the distance
between planet and host star, φ(α) is the phase function, ψ is scattering angle that
relates to the phase angle: α = π − ψ. Another angle that is present between a
stellar surface element towards the orbiting planet and Earth is referred as phase
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Figure 5. Orbit of a planet: where phase angle α, polarization angle θ, orbital
inclination i, orbital phase φ and longitude of the ascending node Ω are shown. The
direction of +Q̂′ is perpendicular to the orbital plane and −Q̂′ direction lies in the
orbital plane. +Q̂ and −Q̂ lie in plane of the sky. Image from Wiktorowicz and
Stam (2015).

angle (see Figure 5). Assuming the planet as a Lambert sphere where every incoming
photons is scattered singly and isotropically, the analytical form of phase function φ
(Russell 1916):

φ(α) =
sinα + (π − α) cosα

π
. (16)

Figure 5 shows that the direction +Q̂′ is perpendicular to the orbital plane but
points toward the observer only when the inclination (an angle between the orbital
plane and plane perpendicular to the observer’s line of sight) i = 0◦, i.e., where the
orbit is seen face-on (non transiting). For inclination i = 90◦, the planet will transit
the host star, i.e., the orbit is seen edge-on at orbital phase φ = 0 for the observer.
If any given CEGP system is at i < 90◦, then the full range of phases is not visible
and thus phase angle α can not be fully probed. It is estimated that only about
10% of CEGPs should have the orbital inclinations near 90◦ (Seager et al 2000).
The −Q̂′ direction lies in the orbital plane, +Q̂ and −Q̂ lie in the plane of sky and
indicate celestial north and east respectively. The orbital phase is: φ = 2π(t− t0)/T .
For circular orbits (t − t0) is the time since inferior conjunction of the planet (or
mid-transit for transiting exoplanets) and T is the orbital time period.

The degree and direction of polarization depends on ψ as indicated in Equation (15).
It changes along the orbital phase angle α as planet orbits the host star. Variations
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in the degree of polarization from light scattered by an exoplanet can be observed
even when the inclination is not close to 90◦. But when the inclination is close to
being 0◦, the intensity of scattered light and the polarimetric values remain the
same throughout the orbit due to the fact that α does not change for the observer.
However, linear polarization still shows a rotation with sine-like variation of Stokes
Q and U , which has same amplitudes but a phase shift of 90◦ (Fluri & Berdyugina
2010). Due to the geometry of orbital mechanics, under usual circumstances the
degree of polarization reaches maximum when phase angle α is near 90◦ or 270◦

and touches minimum when it is near 0◦ or 180◦. By plotting observed polarimetric
variations in Stokes Q and U over a period of time, the orbital period of an exoplanet
can be deduced but a plot of single orbital period should demonstrate two peaks.

A theoretical model predicted by Fluri and Berdyugina (2010) concluded: 1. The
degree of polarization varies along with scattering angle ψ. Due to the geometry,
it is maximum at 90◦ and minimum for backward and forward scattering angles.
2. At higher phase function φ, the polarization is larger as φ gives the fraction of
incident light seen by the observer. At maximum phase function, the phase angle is
the smallest. It means that when an orbiting planet is the farthest away from an
observer then the phase function reaches its maximum with the smallest phase angle
but when this planet is at its closest point to an observer then the phase function is
at minimum with the largest phase angle. 3. In accordance with the incoming flux,
the degree of polarization is inversely proportional to the square of distance D (the
distance between host star and orbiting planet). For elliptical orbits, this distance D
varies with the changing orbital phase. 4. A planets with larger radius has larger
scattering surface and thus larger degree of polarization. 5. Linear polarization
rotates as the planet orbits with a direction perpendicular to scattering’s plane.
Therefore, it results in exchange and change of signs for both Stokes Q and U .

2.2.2 Characterization

The characteristics of an exoplanet such as chemical compositions of the atmosphere,
spatial distributions of atmospheric constituents and presence of oceans on the surface
require direct observations. Due to the fact that faint signal of an exoplanet gets
easily diluted in the bright stellar glare, the direction observations of exoplanets
are extremely challenging. The use of polarimetry to a certain extent can help to
overcome this challenge. Starlight is scattered by gas molecules, aerosol and/or cloud
particles in the planetary atmosphere (if present) and reflected by the planetary
surface (if the atmosphere is not optically thick). The outgoing radiation gets
imprinted by each scattering particle present in the planetary atmosphere and it
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affects the degree and position angle of polarization. Therefore, polarimetry of
exoplanets is a very useful tool to facilitate the exoplanetary characterization.

The degree of polarization in reflected starlight depends on: (i) the phase angle
α, (ii) the atmospheric structure and composition of exoplanet, (iii) the reflection
properties of the surface (if any) of exoplanet, (iv) The light wavelength λ and it does
not depend on size of the exoplanet neither on its distance to the host star or to the
observer. (Stam 2013)

As scattering particles such as atomic or molecular gases are usually significantly
smaller than the wavelength of incident light, Rayleigh scattering imparts a high
degree of linear polarization. The polarization of light in the Rayleigh limit is:

P (λ, ψ) ∝ sin2ψ/(1 + cos2 ψ). (17)

The degree of polarization for scattered light is constant with λ but since Rayleigh-
scattered light scales with λ−4, polarization of the star–planet system has dependence
on λ−4. Therefore, linear polarization caused by scattering on molecules increases
strongly towards blue and near ultra-violet (UV) wavelengths. Due to this fact,
polarimetry in the blue and near UV passbands is required for possible detection of
polarization in the case of exoplanets. Depending on the size of atmospheric particles,
a simple geometric scattering or Mie scattering can also take place.

The equilibrium temperature of a planet is defined as the temperature of a black
body whose emitted flux equals the incident flux from the host star at location of
the planet. It has a huge impact on the composition of condensate particles present
in its atmosphere. This influences the planet’s geometric albedo and morphology of
its phase function (Sudarsky et al. 2005). Equilibrium temperature is given as:

Tp = T∗(1− AB)1/4
√
R∗/2D, (18)

where Tp is planet’s equilibrium temperature, T∗ is the host star’s effective temper-
ature (temperature of a black body required to produce the known luminosity of
the star with stellar radius R∗) and D is the planet to star distance. AB is Bond
Albedo that always ranges from 0 to 1. It can be described as the comparison of
total radiation reflected by an object into space at all angles to the total incoming
radiation the object received from the source. Bond Albedo is given by:

AB = pq, (19)
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where p is geometric albedo, related to polarization as shown in Equation (15) and q
is the phase integral given as:

q =

∫ π

0

φ(α) sinαdα. (20)

The planetary flux divided by the reflected flux for a perfectly diffusing disk with
the same radius is known as geometric albedo. In case of a Lambert sphere where all
incoming photons are scattered singly and isotropically: p = 2/3.

However, Lambert sphere approximation is not realistic for the actual observations.
It is due to the fact that real situations are far more complicated and a number of
factors can cause tiny variations of light. Firstly, the single scattering albedo ω̃ is
usually not the same due to the absorption of optical photons by gas or condensates
in a given CEGP atmosphere. They either get re-emitted in the infrared wavelengths
or cause a contribution to the thermal pool. Secondly, the chances of absorption
in various types of scattering is higher than single scattering for the same single
scattering albedo. Depending on mean free path of a photon, every scattering photon
has a next encounter of a scattering probability of ω̃. In case of absorption its
contribution to scattering light does not occur. Thirdly, for smaller wavelength of
light with respect to particles, these particles are more likely to forward scatter
and enter the atmosphere. They are then often scattered further down into the
atmosphere and are gradually absorbed instead of getting backscattered and escaping
the planetary atmosphere. (Seager et al 2000)

Seager et al (2000) further derived certain geometric albedo values for particles of
different sizes present in a planetary atmosphere as shown in Table 1. For very small
particles with respect to the wavelength with mean radius r̄ = 0.01µm at i = 90◦,
the quantity of light that gets scattered is very small because of high absorptivity in
Fe and Al2O3. When the particles of MgSiO3 are the only condensate available in the
atmosphere without highly absorbing Fe and Al2O3, the fractional polarization should
peak at 5.5× 10−6. It is almost 2 orders of higher magnitude than MgSiO3-Fe-Al2O3

mix. In case of pure MgSiO3 clouds for r̄ = 0.1µm at i = 90◦, equates to a geometric
albedo p = 0.69 and peak value of fractional polarization is 8.6× 10−5. For particles
r̄ = 1µm and r̄ = 10µm, i.e., larger than the visual wavelengths, at i = 90◦, the
fractional polarization peaks at 3.7× 10−6 and 7.5× 10−6 respectively. A number of
polarization peaks for various CEGP systems are shown in Figure 6.

Kedziora-Chudczer and Bailey (2010 ) concluded that polarimetry can help to detect
oceans on the exoplanet. Even though oceans have very low albedo, they can
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Table 1. Geometric Albedos.
Mean Particle

Size
λ = 5500Å λ = 5500Å

(MgSiO3)
λ = 4800Å

0.01µm 0.0013 0.18 0.0013
0.1µm 0.18 0.69 0.14
1µm 0.41 0.50 0.36
10µm 0.44 0.55 0.4

Geometric albedos for the models discussed in Seager et al (2000), λ = 4800Å(third column),
corresponds to Cameron et al (1999) and Charbonneau et al (1999) observations.

Figure 6. The degree of polarization curves for CEGP systems with different D and
Rp = 1.2Rj , where Rp and Rj are radius of planet and radius of Jupiter respectively.
In descending order the curves are for D = 0.042AU (HD 187123 b), D = 0.0462AU
(τ Boo b), D = 0.051AU (51 Peg b), D = 0.059AU (υ And b) and D = 0.11AU (55
Cnc b). Image from Seager et al (2000).
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reflect the incident light like a mirror. This phenomenon can be referred as specular
reflection or glint and such light is highly polarized. If an exoplanet has a natural
satellite (exomoon), it can affect glint polarization that should peak at crescent
phases. The degree of polarization can be very high for an exoplanet totally covered
by ocean. Clouds in an exoplanet atmosphere can polarize the starlight too, and
the degree of such polarization depends on their chemical composition. By using
polarimetry, it has been figured out that clouds in the atmosphere of Venus are 75%
H2SO4 and 25% H2O (Hansen and Hovenier 1974).

2.3 Stellar Polarization

The most common factors that can contribute to the degree of polarization of
any astronomical object are instrumental polarization and interstellar polarization.
However, these factors are always considered and accounted for whenever polarimetric
observations are interpreted. But when interpreting polarimetric observations of
exoplanets, polarization arising from stellar activity of host stars should also be
considered.

A few decades ago when the accuracy of polarimeters was not as high, astronomers
thought that simply building polarimeters with high precision capabilities would be
enough to detect and interpret polarimetric signals from exoplanets. However, once
such polarimeters were built and utilized, it turned out that stellar activity in the
host stars can contaminate the polarization signal from exoplanets (e.g. Berdyugina
et al 2011). Therefore, whenever observing polarization of an exoplanet that is hosted
by a star with magnetic activity or starspots, the stellar polarization should be taken
into account.

Two main causes of intrinsic stellar polarization are: (i) Zeeman effect due to magnetic
fields of moderate strengths cause spectral lines split into polarized components of
equal strength but with opposite polarization. When observed with the broadband
filter, this type of polarization is canceled out. Therefore, the usual polarimetric
measurements of exoplanets do not get affected. (ii) If there are spots on the stellar
surface, which is a quite common occurrence, the polarization from scattering is not
equally canceled out over the visible stellar disk. It results in a residual polarization
due to Rayleigh scattering in the atmosphere of host star and thus contributes to
broadband polarimetric measurements of exoplanets. (Kostogryz & Berdyugina 2015;
Kostogryz et al 2016; Yakobchuk & Berdyugina 2018)

The polarization caused by starspots results in vertical offsets in the polarization
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curves. It can change the degree of variations even for non transiting exoplanets.
These starspots are barely detectable in the light curves of relative flux. The
parameters of polarization depend on spot sizes, location and therefore are able to
reveal stellar rotation period. The integral polarized light is sensitive to various
locations of starspots. It is quite evident that near-limb starspot can contribute higher
to the degree of polarization than starspot at any other location. When superimpose,
the degree of polarization arising from both starspots and the planets can compensate
each other. The maximum compensation for Stokes q and u parameters can be
observed when the angle between aplanet and the starspot is ±90◦ as seen from the
center of stellar disk. It becomes particularly significant when many starspots are
present on a stellar surface. (Kostogryz at al 2015)

In principle, polarimetry of exoplanets not just help deduce orbital and physical
properties of planets but also reveals stellar characteristics of the host stars. For
a star that exhibits polarization due to starspots, the degree of polarization only
depends on the rotation axis inclination angle. It varies according to aspect and
location of the spot and thus lined with stellar rotation. In this scenario, the degree
of stellar polarization is given as:

p(ψ) =
Ip(ψ)

Itot(ψ)
=

sin2 ψ

1 + cos2 ψ
, (21)

where Ip is polarized flux, Itot is total flux and ψ is scattering angle. Clarke
(2003) deduced that any cyclic phenomenon including non-radial pulsations that
causes non-sinusoidal type of variations with forms dependent on the parameter
to be measured. It will result in periodograms containing fundamental period and
harmonics. Therefore, it is highly possible to have integer sub-multiples of the stellar
rotational period when visualizing such polarimetric data.

Yakobchuk and Berdyugina (2018) concluded that linear polarization due to starspots
has typical values between 10−6 and 10−4. This can produce a signal that is a mixture
of polarizations caused by the exoplanet and starspots. It can be challenging to
separate these two polarizations due to the fact that at the time of writing this text,
no theoretical model has been developed that can help distinguish between stellar
and planetary polarization of distant stars. Another problem is the separation of
these two polarizations due to closeness of the orbital period of exoplanet and the
rotational period or sub-multiples of the rotational period of the host star.
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Table 2. Orbital and physical parameters of υ And b.
Parameter Butler et al

(2006)
McArthur et al

(2010)
Curiel et al

(2011)
Berdyugina et al

(2011)

P [days] 4.61711(8) 4.61711(1) 4.61703(3) 4.61711
T 1
p 1802.6(7) ... ... 32.451(1)2

T 1
t 1802.97(3) 34.1(3) 5.37(5) 34.668(1)2

P [AU] 0.060(3) 0.0594(3) 0.0592217(2) 0.0594
e 0.02(2) 0.012(5) 0.0215(7) 0.012
i [deg] ... ... ... 111(11)
ω [deg] 63(?) 44(26) 325(4) 279(14)
Ω [deg] ... ... ... 236(12)
M/MJ sin i 0.69(6) 0.69(2) 0.688(4) ...
M/MJ ... ... ... 0.74(7)
RRL/RJ ... ... ... 1.36(20)
ρ [gcm−3] ... ... ... 0.36(8)
g [103cms−2] ... ... ... 0.99(46)

1JD 2,45,000+, 2Tp = 1800.805 and 4.749, Tt = 1803.021 and 6.965 to compare with Butler et al
(2006), Curiel et al (2011) respectively and Ω can also be 56◦ due to the 180◦ ambiguity.

2.4 Upsilon Andromedae b

Upsilon Andromedae b (υ And b) is an innermost exoplanet in the planetary system of
the bright star (mV = 4.10) Upsilon Andromedae. This exoplanet can be categorized
as CEGP, as it orbits its host star with an orbital period of just about 4.6 days and
has a lower mass limit of about 0.74MJ (Berdyugina et al 2011), where MJ is the
mass of Jupiter. It is one of the earliest discovered exoplanets detected using Doppler
spectroscopy. The host star is an F8 dwarf and hosts another three exoplanets
(McArthur et al 2010). The υ And b is one of the exceptional exoplanets that has
been directly detected in the infrared wavelengths. It is a non-transiting exoplanet
and thus polarimetry can potentially reveal details which are not possible to study
with other observational techniques. Thus, υ And b has been considered as one of the
most promising targets, expected to show significantly strong degree of polarization
due to Rayleigh scattering. The geometric albedo of υ And b is estimated to be
0.53±0.27 for 345–388nm, 0.67±0.24 for 390–490nm and 0.29±0.23 for 500–490nm
(Berdyugina et al 2011). The analysis of Hipparcos photometry data collected for υ
And b has revealed that the host star has a rotational period of 7.88 days (Berdyugina
et al 2011), which is visible possibly due to the starspots caused by magnetic activity.

In 2016 - 2019, υ And b has been observed for more than one hundred nights with the
Dipol-2 polarimeter on the 60cm remotely controlled Tohoku telescope at Haleakalā
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Observatory (Hawaii). The following chapter gives description of the instrument, as
well as the data collection and calibration procedures. In final chapter, this study
presents the results of polarization data analysis and compare them with already
available information on υ And b that is shown in Table 2.
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3 Polarimetric Observations
The polarimetric observations analyzed in this study were observed on Tohoku 60cm
telescope (T60) with DiPol-2 polarimeter. T60 is owned by University of Tohoku,
Japan and it is presently installed at Haleakalā Observatory on Maui Island, Hawaii.
DiPol-2 is a double-image high precision polarimeter, jointly developed by Finnish
Center for Astronomy with the ESO (FINCA), University of Turku and Leibniz
Institute for Solar Physics, Freiburg, Germany. The DiPol-2 polarimeter on the T60
is mainly used for observations of interstellar polarization, interacting early-type
binaries and stars with exoplanets. Both T60 and DiPol-2 can be operated remotely
(via Internet) from any place, including Finland.

3.1 The Telescope

Figure 7. An illustration of the light path
in Cassegrain telescope such as T60. Image
from Szőcs Tamás, tamasflex, (2009).

T60, as the name suggests, uses a 60cm
primary mirror. It has the Cassegrain
two-mirrors design, where the incoming
light is first reflected by a large con-
cave paraboloid mirror and then onto
a smaller convex hyperboloid mirror,
which is then reflected again through
a hole within the large mirror in order
to form an image (see Figure 7). The ad-
vantages of this design is that it puts the
focal point behind the primary mirror
at a convenient location. This helps sec-
ondary mirror to add a telephoto effect
that creates a much longer focal length
within this compact system. This makes
it an excellent option for astronomical purposes such as deep sky viewing, planetary
and lunar observations. Telescope of Cassegrain type is also the best option for
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the high-precision polarimetry, because perfectly symmetric reflections minimize
instrumental polarization.

The telescope has been in operation since 1999. It was first installed at Iitate
Observatory in Fukushima, Japan. After the earthquake in 2011, a decision to
relocate the telescope to Hawaii has been made. It resumed its operation on Haleakala
Observatory in September 2014. The Haleakalā summit (3050 m) located on Maui
Island, is one of the finest sites for astronomical observations on the planet. This
site benefits from clear skies, good seeing conditions and low humidity. T60 is also
used for observations of atmospheres of Solar system planets in the infrared by
using Infrared Heterodyne Spectrometer (MIRAHI). There is also a high-dispersion
spectrometer with coronagraph which is used for observations of Jupiter and Jovian
moons. The optical polarimeter DiPol-2 has been installed at T60 in December 2014.

3.2 The Polarimeter

Figure 8. Layout of DiPol-2, showing com-
ponents of the polarimeter. Image from
Piirola et al (2014).

The layout of the DiPol-2 polarimeter is
shown on Figure 8. It uses two dichroic
beam-splitters which split incident light
beam into the B, V and R passbands
which are simultaneously recorded by
three CCD cameras. The polarization
modulator is a discretely rotatable su-
perachromatic λ/2 (or λ/4) plate and
polarization analyzer is a plane parallel
calcite plate. The use of a superachro-
matic wave plate enables measurements
of polarization in a wide spectral range
from 400nm to 800nm. A typical cy-
cle of polarimetric measurement consists
of 16 exposures at the orientation inter-
vals of 22.5◦ for linear polarization or
4 × 90◦ for circular polarization. The
calcite plate produces two orthogonally
polarized stellar images that are recorded
simultaneously in order to eliminate er-
rors which may arise due to changing in
atmospheric transparency. Because of the parallel image splitting in the calcite plate,
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two orthogonally polarized images of the background sky are overlaid, and thus the
contribution from the sky polarization is automatically canceled out. DiPol-2 is
capable to measure polarization at the precision better than 10−5. Polarimeter control
and data acquisition is done with the single industrial-grade compact computer that
contains three USB and one COM ports. The polarimeter has been designed for the
remote observations. In total, three copies of DiPol-2 have been manufactured till to
date, including the one that is installed at the T60 right now.

3.3 Observations

Most observing nights used for polarimetry at T60 telescope are shared with the
coronograph which is used by astronomers from Planetary Plasma and Atmospheric
Research Center at Tohoku University. Both instruments are mounted on the
motorized slide installed in the Cassegrain focus. Instrument change can be done
remotely at any time and takes less than 5 minutes. This allows to share telescope
time between different observing programs very efficiently and helps to collect large
amount of polarization data. Because the time difference between Hawaii and Finland
is 12 hours, all remote polarimetric observations with the DiPol-2 are done in daytime.
The observer opens connection to the two host computers located in the T60 control
room via remote control software (VNC Viewer). One of these computers is used for
operation of the telescope, and another one - for polarimeter control.

3.3.1 Telescope Control

Figure 9 shows the control panel of T60 Server program, which is open on the
control computer running on Windows 7. This program provides full control over
the telescope operation, such as: dome opening and closure; instrument exchange;
telescope pointing, focusing and parking after the end of observing night. Automated
weather station doesn’t allow telescope opening at bad weather condition and closes it
automatically, if the conditions become bad during observing session. The telescope
is using DiPol-2 V-band CCD camera images for simultaneous auto-guiding.

3.3.2 DiPol-2 Control

The desktop of DiPol-2 control computer is shown on Figure 10. For observations,
two pieces of software: MaxIM DL Pro and CCDSoft are used. MaxIM DL Pro is
responsible for control and data acquisition in the B and R passbands, and CCDSoft
in the V passband. Data are collected by the three CCD cameras simultaneously.
The field of view for the B-band image (Apogee Alta U47, thinned, back-illuminated,
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Figure 9. A screen shot of the control panel of T60Server. It shows a number of
panels that are used to perform observations.

Figure 10. A screen shot of DiPol-2 computer during an observation. MaxIM DL
Pro is used to take observations in B and R passbands while CCDSoft is used for V
passband. Notepad is used to keep observation log and edit Visual Basic scripts.
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1024 x 1024, pixel size = 15 x 15 µm) has the size of ∼7 arcsec, while for the V and
R-bands (SBIG ST-402ME, 765 x 510, pixel size = 9 x 9 µm) it is ∼3.0 x 2.5 arcsec.
The exposure time for the each CCD camera can be set individually. The camera
exposures are synchronized with the rotation of the wave plate which is done by the
stepper motor. The total image download time is ≤ 2 sec.

3.3.3 Observations of Upsilon Andromedae

The υ And was observed with the DiPol-2 and T60 in the period from 24 October,
2016 to 15 January, 2019. At the Haleakalā summit, υ And is well visible from
September through March. The observational data for a total of 114 nights were
eventually good enough to be used for follow up data analysis. The observational
data for the few nights were discarded due to the bad quality that was either caused
by poor visibility (clouds) or bad seeing. Skyflat images that are used for calibration
purposes have been regularly taken at the time of twilight hours that is either in the
beginning of observing night or at the dawn. Once per night, the series of dark and
bias images have been always taken.

The star system of υ And is a bright target with an apparent magnitude of 4.60
and thus visible to human eye. In order to avoid pixel saturation and yet collect
sufficient amount of ADUs, DiPol-2 employs the "intentional defocusing" technique.
By defocusing, the stellar image is spread over the large number of pixels. Normally,
around of 768 – 832 images have been taken every night with the exposure time of
2 – 3 s. This corresponds to 256 – 260 measurements of Stokes q and u per night.
Then, the weighted average value of Stokes parameters has been computed. The
resulting accuracy is at the level of 1 − 2 × 10−5 in the B-band and even better
(0.7− 1.5× 10−5) in the V and R-bands (see Figure 11).

To subtract instrumental polarization and determine a zero-point of polarization
angle, zero polarization and high polarization standard stars are regularly observed.

3.4 Data Reduction

The observational data obtained for υ And were initially stored at the DiPol-2
computer. They have been then transferred to the office computer in the Department
of Physics and Astronomy at University of Turku. The data set for 114 nights
consists of about 300,000 image files.
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Figure 11. Defocused CCD images of images of υ And in the B = 4400Å(left), V =
5500Å(center) and R = 7000Å(right) passbands. The faint "stars" visible on the V
and R images are the reflections produced by dichroic beam splitters. They appear
bright due to exaggerated contrast. In fact, the total intensity of reflection is < 0.1%
of that produced by stellar image.

3.4.1 Calibration of Raw CCD Images

In astronomical images, raw observational frames contain some imperfections that
must be removed before using these frames for scientific studies. The observational
images can include bias signal, hot pixels, thermal noise, vignetting and dust. By
subtracting bias and dark frames and applying flat fielding, the spurious effects
arising from these imperfections can be eliminated. This is done via automated
Visual Basic scripts that are capable to process several hundreds of polarimetry CCD
images simultaneously. A special algorithm has been developed to remove possible
effect of the image drift to pre-align images taken in long series of polarimetric
sequences. The scripts, executed with the MaxIM DL Pro, perform the calibration
and create 2 x 2 binned sub-frames for every taken raw image.

3.4.2 Flux Extraction and Computation of Polarization Parameters

Normalized Stokes parameters q and u are computed from the flux intensity ratios
of the orthogonally polarized stellar images Qi = Ie(i)/Io(i) obtained for the each
orientation of wave plate i = 0.0◦, 22.5◦, 45.0◦, 67.5◦ as:

Qm = Q0.0 +Q22.5 +Q45.0 +Q67.5,

q = (Q0.0 −Q45.0)/Qm,

u = (Q22.5 −Q67.5)/Qm.

(22)

The intensities Ie(i) and Io(i) have been determined from the series of calibrated
polarimetry images with the aperture photometry method implemented as the standard
feature in the MaxIM DL Pro software. Simple Fortran code is used to compute the
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Figure 12. A printout of Fortran code. Here the designations ”Px” and ”Py” are
used for Stokes q and u. The value of Julian date is also computed. The errors of
the weighted average values of polarization (P) and polarization angle (P.A.) are
designated as "m.e".

Stokes parameters q and u from each set of four images. This code can also compute
the weighted average values of polarization. It gives lower weight to individual
measurements of Stokes q and u that deviate from the mean value by more than
expected from Gaussian noise distribution. All measurement points which deviate less
than 2σ are given equal weight. Any points with deviation more than 2σ are weighted
according to G = (σ/s)2, where σ is the standard deviation of the distribution and s
increases linearly from 1σ to 3σ. Any points deviating more than 3σ are rejected.
Using Stokes parameters q and u, code computes the values of polarization P and
polarization angle θ. It also outputs the value of Nw (see Figure 12), which is the
percentage of data points to which the weighting is applied. In normal conditions
Nw = 6− 8%, but it can be higher in case of a cloudy night or any other situation
affecting the image quality.
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3.4.3 Instrumental Polarization

The instrumental polarization has been derived from observations of 20 – 25 zero-
polarized standard stars. It was found to be in the range of 4 − 6 × 10−5. The
accuracy of determination of instrumental polarization for the DiPol-2 is 2−3×10−6.

Polarization values for υ And have been corrected for instrumental polariziton. This
is done with another Fortran program which also corrects the polarization angle
taking into account the angle zero-point, determined from observations of two highly
polarized standard stars. The resultant values could then be used for data analysis.

In principle, for determination of the intrinsic polarization of the distant object, the
Interstellar polarization should be somehow measured and subtracted. It is normally
done by observing a few objects in vicinity of the target. However, because υ And
is located at the distance of only 13.5 pc from the Sun, the contribution from the
interstellar polarization component must be absolutely negligible.
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4 Data Analysis
To interpret measurements taken from the observations, data analysis is performed.
Due to huge volumes of astronomical data, the analysis requires highly efficient
computers. Python has become one of the most popular computer programming
languages for astronomical data analysis. In the field of observational astronomy, an
efficient algorithm to detect and characterize periodic signals in unevenly sampled
data is of immense importance for the data analysis. Lomb–Scargle periodogram
algorithm is often used with astronomical data for the purpose of period detection.
In this algorithm, noise is chi-square distributed at each individual frequency to
produce a periodogram that is equivalent to a periodogram derived from the least
squares analysis.

Curve fitting is a useful technique to visualize astronomical data, which helps to
deduct values of a function where no data is available. The process of constructing
a curve requires the best fit to a series of data points that either exactly fits the
data or a function is constructed to approximately fit the data. In curve fitting, a
certain degree of uncertainty is always present as it is performed beyond the range
of available data or in the intervals with no data. Fourier series curve fitting is
often used for asymmetric periodic curves as often present in polarimetric data.
For the analysis of υ And data, several scripts were written in Python to generate
Lomb-Scargle periodograms and MatLab was used to compute Fourier coefficients in
order to perform curve fitting to the observational data.

4.1 Lomb-Scargle Periodogram

Lomb-Scargle periodogram uses the algorithm of least squares to fit sinusoids on data
samples. The algorithm is closely related to Fourier analysis but it has the advantage
to fit unevenly spaced data such as polarimetric data. In 1969, Petr Vaníček proposed
successive spectral analysis with a result of least-squares periodogram for both evenly
and unevenly spaced data. Initially, the algorithm only considered simple mean but
later on the method was refined to include systematic components such as linear,
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quadratic or exponential. Nicholas Lomb further simplified the method and figured
out the closeness to periodogram analysis. Jeffrey Scargle showed that by slightly
modifying the algorithm, this method becomes quite similar to Lomb’s least-squares
formula to fit individual sinusoid frequencies.

In non-linear least-squares fit, a set of m observations is fitted with a non-linear
model that consists of n unknown parameters (m ≥ n). The main task for this
method is to define an objective function. Input values of fitting variables are given
to this objective function that determine either a scalar value or array of values to be
minimized. For astronomical data, later approach is mostly used in which objective
function returns an array that is often scaled by using a weighting factor such as
inverse of the uncertainty in data set. To do this, chi-square (χ2) statistic is used
and it is often defined as:

χ2 =
N∑
i

[yobs
i − ymodel

i (v)]2

ε2i
, (23)

where yobs
i is the set of observed data, ymodel

i (v) is the model calculation, v is the set
of input variables for the model to be optimized in the fit and εi are uncertainties in
the data set. In a typical non-linear fit, an objective function is written in such a
way that it takes input variables to either calculate the residual array yobs

i − ymodel
i (v)

or the residual array is scaled by the data uncertainties [yobs
i − ymodel

i (v)]/εi or by
any other given weighting factor.

4.1.1 Lomb-Scargle Power

For data [yk] pre-centered such that Σkyk = 0, the power P (ω) of Lomb-Scargle
periodogram at frequency ω is estimated as:

P (ω) =
1

2

(
[ΣkXk cosω(tk − τ)]2

Σk cos2 ω(tk − τ)
+

[ΣkXk sinω(tk − τ)]2

Σk sin2 ω(tk − τ)

)
, (24)

where τ is time-offset, it orthogonalizes the model in order to make P (ω) independent
of a translation in t that can be computed as:

tan(2ωτ) =
Σk sin(2ωtk)

Σk cos(2ωtk)
. (25)

For any given single frequency ω, the power given by the method is same as power
given by the least-squares fitting to sinusoids of that particular frequency:
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φ(t) = A sin(ωt) + B cos(ωt). (26)

Lomb–Scargle periodogram is valid for a model with zero mean. This is usually
achieved by subtracting mean of the given data before the calculation of periodogram.
In case of a model with non-zero mean, a constant off set is included:

φ(t) = A sin(ωt) + B cos(ωt) + C. (27)

In Lomb-Scargle periodogram, for any given frequency ω, the power is an O(N)

computation. This computation involves simple trigonometric sums over the data in
which N denotes number of data points and notation O means proportional to.

4.1.2 Lomb-Scargle Frequencies

An important computational consideration to compute Lomb-Scargle periodogram is
to choose number of frequencies. If one chooses a fine grid, it will result in excess
computations that are otherwise not required. In case of a coarse grid, the peak of
periodogram may fall down between the grid points.

Let us consider a candidate frequency f , data with range T = tmax − tmin contains
T ·f complete cycles. The error in frequency δf , makes T ·δf the error in number of
cycles between the endpoints of data. However, the error should not be significant
fraction of a cycle. As in such a case, it may significantly affect the fit and this
can result in a grid-spacing criterion of T ·δf � 1. Frequency grid spacing can be
described is: T ·δf = (5T )−1, where 5 is chosen as an oversampling factor.

The frequency grid is also given lower and upper frequency limits. Due to numerical
problems of choosing f = 0, minimum frequency is chosen to be δf . For irregularly
sampled time-series data, the maximum frequency is determined based on the type
of signal that is being searched for. It should base on prior knowledge of data or an
intuition than any statistical rule. However, in many situations a commonly used
maximum frequency is referred as average Nyquist frequency:

f̂Ny =
N

2T
. (28)

This will result in "typical" number of frequencies, i.e., the number of frequencies to
investigate is scaled with number of data points:
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Nfreq ∼ O

(
f̂Ny

δf

)
∼ N/(2T )

1/T
∼ O(N). (29)

Equation (29) shows that to get optimal value of Lomb-Scargle period within N data
points, the computation of O(N) expressions is required for power across O(N) grid
points. This makes Lomb-Scargle an O(N2) algorithm. In 1989, Press and Rybicki
proposed an intelligent fast Fourier transform (FFT) for equally spaced data that
is used on a grid extrapolated from the input data so that O(N2) problem can be
computed in the same time that is required for O(N logN). This means that the
resultant sum of cosines and sines of a single frequency also gives some details on the
sum of another frequency. This information is used over a frequency grid to minimize
the number of operations required. In Python, the Lomb-Scargle periodogram can
be computed by either using O(N2) algorithm or O(N logN) algorithm.

4.2 Curve Fitting

Curve fitting is based on the assumption that a certain mathematical relationship
is present between the quantities being related by the curve. Astronomical data
points are never complete on a plot due to limited time slots available to observe
any astronomical object. Thus curve fitting is often essential to visualize the missing
data points in order to deduce any related characteristics to a particular data set. A
curve can be drawn between different quantities by predicting a certain relationship,
which can range from basic constant, linear, quadratic to advanced nth order of
polynomials. The most common curves that appear in astronomical data are periodic,
i.e., the interval of two matching points in the plot. It basically means the measure
of distance that the function travels along x-axis before repeating this very pattern.
The basic sine and cosine functions contain a period of 2π and tangent contains a
period of π. A simple sine function is given as:

y = A sin(Bx+ C), (30)

where A is amplitude, B is number of cycles that the graph completes in an interval
from 0 to 2π and C is phase shift.

However, in most cases that involve polarimetric data, the curves are not basic
sinusoidal but instead asymmetric sine curves due to spherical harmonics. More
complex periodic functions can be analyzed into their constituent components both
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fundamentals and harmonics by Fourier analysis, the origin of Fourier transform.
The Fourier series processes a periodic signal x(t) as a sum of sine and cosine waves.
Since sine and cosine are periodic functions, the resultant x(t) will also be a periodic
function:

x(t) = x(t+ nT ), n ∈ Z. (31)

Fourier series of x(t) can be written as:

x(t) =
a0

2
+
∞∑
n=1

[
an cos

(
2πnt

T

)
+ bn sin

(
2πnt

T

)]
, (32)

where T is period, a0, an and bn are Fourier coefficients and defined by the following
integrals:

a0 =
1

T

∫ T

0

x(t)dt,

an =
2

T

∫ T

0

x(t) cos

(
2πnt

T

)
dt,

bn =
2

T

∫ T

0

x(t) sin

(
2πnt

T

)
dt,

(33)

where 1
T
, 2
T
, 3
T
, ...., are frequencies of the sines and cosines, i.e., multiples of the

fundamental frequency 1
T
. They are inverse period duration of the function in which

frequency n
T
is called the nth harmonic.

4.3 Period Analysis of Upsilon Andromedae b

A number of scripts based on Lomb-Scargle periodogram algorithm were written
to analyze polarimetric measurements of υ And. In Python, gatspy.periodic imple-
mentation of Lomb-Scargle was used that is based on O(N logN) algorithm. The
data was arranged in six different files based on Stokes q and u in B, V and R

passbands. The oversampling factor was set at 5000 as it turned out to be the best
compromised value between optimal results and computational time. Since the main
purpose was to look for orbital period of exoplanet, a reasonable limit of between
1.5 to 7.5 days was set as the range of grid. The period range was given in days
instead of frequencies by using optimizer.period_range in periodic.LombScargle

implementation of Python.
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The main script was coded to find out the values of five highest peaks and print them
on the periodogram. It was expected that power of Lomb-Scargle peaks would be
quite low and it becme evident by periodograms in Figures 13-18, where Lomb-Scargle
power on y-axis was chosen from 0 to 0.15 instead of standard 0 to 1. This is due to
the nature of data where the variability in Stokes q and u parameters is very small
as compared to the measuring errors, i.e., ∆(q, u) ≈ σ(q, u).

To visualize Lomb-Scargle periodograms, curve fitting was performed on data points
by selecting the highest peak between the orbital period of 2.0 to 3.0 days. This
range is chosen due to the fact that degree of polarization varies along the phase
angle and shows two peaks in a single orbit. Therefore, the known orbital period of
υ And b that is ∼4.6 days should show a Lomb-Scargle peak at ∼2.3 days. The data
is phase folded for the highest Lomb-Scargle peak related to the planetary orbital
peak at ∼2.3 days.

The polarimetric curves depend on a number of factors such as the scattering particle
size or type, scattering albedo and the atmospheric density. Second harmonics may
appear if there is asymmetry in distribution of light scattering material about the
orbital plane. Brown et al (1978) and Rudy & Kemp (1978) studied the polarization
caused by Thomson scattering in circumstellar envelopes of binary systems. Their
conclusion was that for the observed phase-resolved curves of Stokes parameters q
and u are best fitted with a truncated first and second order Fourier series:

q = q0 + q1 cos(λ) + q2 sin(λ) + q3 cos(2λ) + q4 sin(2λ),

u = u0 + u1 cos(λ) + u2 sin(λ) + u3 cos(2λ) + u4 sin(2λ),
(34)

where λ = 2πφ is orbital longitude and φ is the orbital phase (0 < φ < 1), while
q0, q1, q2, q3, q4, and u0, u1, u2, u3, u4 are coefficients. These coefficients of the fit can
also be used to deduce the value of orbital inclination. It is expected that usually
the second order variations should dominate:[

1− cos i

1 + cos i

]4

=
(u3 + q4)2 + (u4 − q3)2

(u4 + q3)2 + (u3 − q4)2
. (35)

In curve fitting plots of Figures 13-18, x-axis is the phase of each observation instead
of the observation time. Equation (34) was used to do the curve fitting plots as
Fourier coefficients were computed using MatLab.
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Figure 13. Stokes q in B passband. Lomb-Scargle periodogram in the upper graph
and the lower graph is phase folded with orbital period P = 2.342d curve fitting plot.

Lomb-Scargle periodogram of Stokes q for B passband in Figure 13 shows that there
is no single clear peak but instead a few peaks with similar heights. A couple of
peaks can be seen at ∼2.3 days and then another couple of peaks at ∼1.7 days. Five
highest peaks detected by Lomb Scargle algorithm are also printed out in the top
right section of the periodogram. In curve fitting plot of Figure 13, inputs were
normalized in order for the curve to better represent variations. Since this data is
very noisy due to the presence of multiple orbital periods, any statistical method to
verify goodness of the fit would not produce a meaningful result.

To check if similar peaks are present in the data of Stokes u for B passband, it
is also plotted and shown in Figure 14. It can be seen that there are three higher
peaks at ∼2.2, ∼1.8 and ∼3.9 days. The periodograms of both Stokes q and u in
B passband seem to have repeated a pattern of higher peaks at around the known
orbital period of the planet. In the curve fitting plot of Figure 14, Stokes u clearly
shows variations along the orbital phase.

In Figures 15, the periodogram of Stokes q in V passband shows that the highest
peak is at ∼7.2 days with other higher peaks at ∼1.7 days and ∼2.4 days. Figure 16
shows the periodogram for Stokes u in V passband. It shows some unique peaks at
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Figure 14. Same as Figure 13 but for Stokes u in B passband and curve fitting plot
for P = 2.210d.

Figure 15. Same as Figure 13 but for Stokes q in V passband and curve fitting plot
for P = 2.455d.
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Figure 16. Same as Figure 13 but for Stokes u in V passband and curve fitting plot
for P = 2.331d.

Figure 17. Same as Figure 13 but for Stokes q in R passband and curve fitting plot
for P = 2.715d.
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Figure 18. Same as Figure 13 but for Stokes u in R passband and curve fitting plot
for P = 2.507d.

∼5 days that are not as clear or higher in other periodograms but they are present in
some of them. The other higher peaks are present at ∼2.3 days and ∼1.7 days. The
curve fitting plots in Figures 15-16 show clear variations for both Stokes q and u.

Figures 17-18 show Stokes q and u in R passband respectively. The highest peak
for Stokes q in R passband is at ∼2.7 days. A couple of other higher peaks are at
∼2.7 days and at ∼1.5 days. The periodogram of Stokes u in R passband has the
highest peak at ∼3.85 days and a couple of other higher peaks at ∼1.65 days. The
peaks are also present at ∼2.5 days but not as clear. The curve fitting plots for both
Stokes q and u for R passband also show variations along the orbital phase.

4.4 Planetary Characterization of Upsilon Andromedae b

In order to obtain any information for the planetary atmosphere of υ And b, degree
of linear polarization (pL) in terms of normalized Stokes parameters was deduced by
using the following equation:

pL =
√
q2 + u2. (36)
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Figure 19. Degree of linear polarization is plotted against phase folded orbital period
of υ And b for B, V and R passband in descending order respectively.

The data for all three B, V and R passbands was stored in new files and plotted by
slightly modifying the Python script used for the previous section. In order to see the
highest peak values, which are needed to estimate geometrical albedo, curve fitting
was performed using Equation (34). Figure 19 shows that degree of polarization
peaks just above 0.002%, i.e., 2×10−5 for all three passbands. Since the data is noisy
and peak values are not as accurate, it is not possible to estimate precise geometrical
albedo values. However, roughly estimated values are given in Chapter 5.
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5 Conclusions
In the last couple of decades with the development of more accurate polarimeters
such as DiPol-2, it has now become possible to conduct astronomical polarimetry
of numerous objects. By analyzing these polarimetric observations, one can test
theories and models that have been written and developed in the past years. The
study of exoplanets being one of the most popular topics of astrophysics can now
benefit from the use of polarimetry. A number of theoretical models related to the
polarimetry of exoplanets are now being tested and new models are being developed.

This study took the advantage of DiPol-2 and T60 to observe a well known star
system of Upsilon Andromedae that hosts a CEGP (υ And b). After the lengthy
process of observations and data reduction, the analysis of data was performed using
a number of mathematical algorithms with the help of Python. The results of data
analysis in Chapter 4 when compared to different theoretical models described in
Chapter 2, the following conclusions can be drawn:

• There is a possible polarimetric signature of the planetary reflected light and
it can be seen in the data of every passbands for both Stokes q and u. Lomb-
Scargle periodograms repeatedly showed a peak between 2.21 to 2.71 days. As
mentioned earlier, the polarimetry of exoplanets shows two peaks during a
single orbit and therefore the actual orbital period is twice the values found by
Lomb-Scargle peaks, i.e., 4.42 to 5.42 days. This range agrees with the orbital
period value of 4.62 days given in a number of papers mentioned in Table 2.

• Another possible polarimetric signature of stellar scattered light due to unevenly
distributed starspots on the stellar disk that also vary with time was detected
at 1.66 days to 1.82 days. This is an integer sub-multiple of the stellar rotation
period of about 7.88 days (Berdyugina et al 2011), which is due to the magnetic
activity of the star (possible starspots). A repetition of peaks at 3.7 days
to 3.9 days in a number of Lomb-Scargle periodograms correspond to half of
the stellar rotational period. Another repetition of peaks at ∼5 days is also
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observed in several periodograms which may be due to some odd sub-multiple
of the stellar rotation period. This conclusion basically confirms a number of
points that are mentioned in section 2.3.

• The polarimetric data of υ And b is contaminated by the quarter of stellar
rotational period as both values are quite close to each other. In order to
precisely fit these entangled polarimetric signals, the development of a more
sophisticated model is required. One possible approach can be to map the spot
distribution on the surface of υ And, e.g. by Doppler Tomography method
and then model their polarization effect. This method, however, would require
high-resolution and high signal to noise (S/N) ratio spectroscopic observations.

• The stellar polarization, depending on configuration and location of starspots
may have direction nearly orthogonal to the direction of polarization due to
exoplanet. This may have resulted in the amplitude reduction of planetary
polarization for υ And b. However, polarization peaks given in Figure 19
do not differ much from peaks given by Seager et al (2000) and shown in
Figure 6. By using values of these peaks, referring to section 2.2.2 and going
through a number of plots given in Seager et al (2000), the roughly estimated
value of geometric albedo for υ And b is p ≈ 0.55. This is deduced by
assumjng atmospheric particles with mean radius r̄ = 0.1µm, for which fraction
polarization value peaks at ∼10−5 for i = 90◦.

• Equation (35) was used to deduce orbital inclination but values were slightly
different for each passband. Even though, the deduced values did not seem
quite inaccurate but due to the noisy nature of data, it was decided not to
publish them. This is due to the fact that noisy data tends to give a higher
value than the actual value.

In order to further refine the findings of this study and extract more information
from the observed data, a numerical procedure to separate or clear the orbital periods
from a Lomb-Scargle periodogram is required. A newly released R programming
language routine named spectral has an option to reconstruct a signal from any given
Lomb-Scargle peak. It was tried but this routine assumes the signal to be a regular
sinusoidal curve and therefore it did not produce the right result. Furthermore, it is
possible to do inverse fft (ifft) in order to reconstruct a signal. Non-equispaced fft
(nfft) is used for unevenly spaced data and it was tried but it too did not work due to
very low amplitude variability and very high uncertainty measurements in this data.
Lomb-Scargle algorithm as expected turns out to be more powerful than fft methods
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for uneven sampling and it was the only tried algorithm to plot a periodogram that
showed right orbital periods of υ And data. In future, a model that can separate
asymmetric periods given by a Lomb-Scargle periodogram should be able to further
advance this research work.
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