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Abstract

Practical applications usually have multiobjective nature rather than
having only one objective to optimize. A multiobjective problem cannot
be solved with a single-objective solver as such. On the other hand,
optimization of only one objective may lead to an arbitrary bad so-
lutions with respect to other objectives. Therefore, special techniques
for multiobjective optimization are vital. In addition to multiobjective
nature, many real-life problems have nonsmooth (i.e. not continuously
differentiable) structure. Unfortunately, many smooth (i.e. continuously
differentiable) methods adopt gradient-based information which cannot
be used for nonsmooth problems. Since both of these characteristics are
relevant for applications, we focus here on nonsmooth multiobjective op-
timization. As a research topic, nonsmooth multiobjective optimization
has gained only limited attraction while the fields of nonsmooth single-
objective and smooth multiobjective optimization distinctively have at-
tained greater interest. This dissertation covers parts of nonsmooth
multiobjective optimization in terms of theory, methodology and appli-
cation.

Bundle methods are widely considered as effective and reliable solvers
for single-objective nonsmooth optimization. Therefore, we investigate
the use of the bundle idea in the multiobjective framework with three
different methods. The first one generalizes the single-objective proximal
bundle method for the nonconvex multiobjective constrained problem.
The second method adopts the ideas from the classical steepest descent
method into the convex unconstrained multiobjective case. The third
method is designed for multiobjective problems with constraints where
both the objectives and constraints can be represented as a difference
of convex (DC) functions. Beside the bundle idea, all three methods
are descent, meaning that they produce better values for each objective
at each iteration. Furthermore, all of them utilize the improvement
function either directly or indirectly. A notable fact is that none of these
methods use scalarization in the traditional sense. With the scalarization
we refer to the techniques transforming a multiobjective problem into
the single-objective one.
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ii Abstract

As the scalarization plays an important role in multiobjective opti-
mization, we present one special family of achievement scalarizing func-
tions as a representative of this category. In general, the achievement
scalarizing functions suit well in the interactive framework. Thus, we
propose the interactive method using our special family of achievement
scalarizing functions. In addition, this method utilizes the above men-
tioned descent methods as tools to illustrate the range of optimal solu-
tions. Finally, this interactive method is used to solve the practical case
studies of the scheduling the final disposal of the spent nuclear fuel in
Finland.



Tiivistelmä

Käytännön optimointisovellukset ovat usein luonteeltaan ennemmin
moni- kuin yksitavoitteisia. Erityisesti monitavoitteisille tehtäville suun-
nitellut menetelmät ovat tarpeen, sillä monitavoitteista optimointi-
tehtävää ei sellaisenaan pysty ratkaisemaan yksitavoitteisilla menetel-
millä eikä vain yhden tavoitteen optimointi välttämättä tuota mielekästä
ratkaisua muiden tavoitteiden suhteen. Monitavoitteisuuden lisäksi useat
käytännön tehtävät ovat myös epäsileitä siten, etteivät niissä esiin-
tyvät kohde- ja rajoitefunktiot välttämättä ole kaikkialla jatkuvasti dif-
ferentioituvia. Kuitenkin monet optimointimenetelmät hyödyntävät gra-
dienttiin pohjautuvaa tietoa, jota ei epäsileille funktioille ole saatavissa.
Näiden molempien ominaisuuksien ollessa keskeisiä sovelluksia ajatel-
len, keskitytään tässä työssä epäsileään monitavoiteoptimointiin. Tutki-
musalana epäsileä monitavoiteoptimointi on saanut vain vähän huomiota
osakseen, vaikka sekä sileä monitavoiteoptimointi että yksitavoitteinen
epäsileä optimointi erikseen ovat aktiivisia tutkimusaloja. Tässä työssä
epäsileää monitavoiteoptimointia on käsitelty niin teorian, menetelmien
kuin käytännön sovelluksien kannalta.

Kimppumenetelmiä pidetään yleisesti tehokkaina ja luotettavina me-
netelminä epäsileän optimointitehtävän ratkaisemiseen ja siksi tätä aja-
tusta hyödynnetään myös tässä väitöskirjassa kolmessa eri menetelmäs-
sä. Ensimmäinen näistä yleistää yksitavoitteisen proksimaalisen kimp-
pumenetelmän epäkonveksille monitavoitteiselle rajoitteiselle tehtävälle
sopivaksi. Toinen menetelmä hyödyntää klassisen nopeimman laskeutu-
misen menetelmän ideaa konveksille rajoitteettomalle tehtävälle. Kol-
mas menetelmä on suunniteltu erityisesti monitavoitteisille rajoittei-
sille tehtäville, joiden kohde- ja rajoitefunktiot voidaan ilmaista kah-
den konveksin funktion erotuksena. Kimppuajatuksen lisäksi kaikki kol-
me menetelmää ovat laskevia eli ne tuottavat joka kierroksella parem-
man arvon jokaiselle tavoitteelle. Yhteistä on myös se, että nämä kaikki
hyödyntävät parannusfunktiota joko suoraan sellaisenaan tai epäsuoras-
ti. Huomattavaa on, ettei yksikään näistä menetelmistä hyödynnä ska-
larisointia perinteisessä merkityksessään. Skalarisoinnilla viitataan me-
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iv Tiivistelmä

netelmiin, joissa usean tavoitteen tehtävä on muutettu sopivaksi yksita-
voitteiseksi tehtäväksi.

Monitavoiteoptimointimenetelmien joukossa skalarisoinnilla on
vankka jalansija. Esimerkkinä skalarisoinnista tässä työssä esitellään
yksi saavuttavien skalarisointifunktioiden perhe. Yleisesti saavuttavat
skalarisointifunktiot soveltuvat hyvin interaktiivisten menetelmien
rakennuspalikoiksi. Täten kuvaillaan myös esiteltyä skalarisointifunk-
tioiden perhettä hyödyntävä interaktiivinen menetelmä, joka lisäksi
hyödyntää laskevia menetelmiä optimaalisten ratkaisujen havainnol-
listamisen apuna. Lopuksi tätä interaktiivista menetelmää käytetään
aikatauluttamaan käytetyn ydinpolttoaineen loppusijoitusta Suomessa.
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Chapter 1

Introduction

In this chapter, we lead and motivate the reader to the world of non-
smooth multiobjective optimization. Section 1.1 gives an overview to
the field of multiobjective optimization and the role of nonsmoothness
in optimization is discussed. In Section 1.2, the contribution of this
dissertation for the field is considered and the outline of this dissertation
is given.

1.1 Background

People make decisions every day, and usually, there exist several aspects
affecting the selection between different alternatives. In these daily sit-
uations, the person’s own intuition generally yields an outcome being
good with sufficient accuracy. However, decisions are made also in the
broader perspective, like in industry, and then decisions may have a huge
impact, for example, on costs, schedule, or safety. Therefore, mathe-
matical optimization methods are widely needed to support the decision
making process.

In optimization, we are interested in finding the best, or the most
desirable, outcome among different alternatives. The best outcome de-
pends on what is our goal or objective. However, in many practical
cases, we have more than one aspect to take care of and these multi-
ple goals depend on each other. Thus, by optimizing only one goal,
the yielding outcome might not be the best for every aspect. Indeed,
in order to obtain a relatively good solution for every aspect, we have
to make compromises. When these goals are taken simultaneously into
account, we are talking about the branch of optimization called mul-
tiobjective optimization. Despite multiobjective characteristic, many
real-world applications are modelled as single-objective problems. The
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4 1. Introduction

advantage of this is the availability of efficient single-objective methods.
Unfortunately, by optimizing only one of the several objectives, we may
end up with a solution being an arbitrary bad solution with respect to
the other objectives.

The area of multiobjective optimization is widely studied, especially
in the last five decades [40, 70, 111, 142, 146]. The great interest to-
wards multiobjective optimization is due to its applicability in numer-
ous practical applications. To give some hints about where the mul-
tiobjective problems arise, we mention the fields of economics [123],
engineering [118], management science [43], mechanics [119], chemical
engineering [134], bioinformatics [60], machine learning [38], and envi-
ronmental analysis [98]. Some more specific applications are the cancer
treatment planning [28,69], the space exploration [149], and the human-
itarian aid [57]. Actually, almost any practical application has more
than one conflicting objectives to offer. That is why there is an increas-
ing demand for efficient multiobjective optimization methods.

As it was mentioned, the solutions of the multiobjective problem
are trade-offs and they are not unique. We say that these compromises
are Pareto optimal solutions. A solution is Pareto optimal if we cannot
improve any objective without deteriorating some other at the same
time. A solution is weakly Pareto optimal if there does not exist any
other solution having better values for all the objectives. In practice,
only one solution is usually preferred, and to select this preferred solution
among all the mathematically equally good Pareto optimal solutions, we
need some external help in the form of the decision maker having more
insight into the application field.

The concept of the Pareto optimality dates back to the works of
Edgeworth [39] and Pareto [124] whom are considered as the pioneers
of the multiobjective way of thinking with their works in economics at
the late 19th and the early 20th century, respectively. While the ideas
for multiobjective optimization existed, the first multiobjective methods
saw the light of the day much later. Traditional solution approaches in-
volved only single-objective optimization: either one objective is selected
to be optimized and other objectives are used as constraints with suitable
levels or the objectives are multiplied with some weights and summed
up. One of the earliest works considering the optimization of multiple
objectives in terms of mathematics was introduced in 1951 when Kuhn
and Tucker published their famous optimality conditions [88]. These
conditions where formulated not only for the single-objective but also
for the multiobjective problem. During the same decade, the goal pro-
gramming [24], where the aspiration levels for objectives are stated,
was introduced. Another notable development phase with respect to
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this dissertation is the introduction of achievement scalarizing func-
tions (ASFs) by Wierzbicki [158–162] at the turn of the 1980’s. For
instance, ASFs are widely used as a part of interactive methods that
reared their head in 1980’s. During decades, alongside the traditional
approaches more sophisticated and computationally efficient methods
are presented, and nowadays, multiobjective optimization is a vivid and
active research area.

In addition to multiobjective characteristic, many of the real-world
problems have nonsmooth (i.e. not continuously differentiable) nature
[7, 84, 103]. The nonsmoothness may arise from several different rea-
sons [7,106]. First of all, an objective function itself may be nonsmooth
like the piecewise linear tax models in economics [95], or the nonsmooth
objective may be a result of some method for constrained optimization,
like the exact penalty function method [7]. Furthermore, even if the
objective is smooth some constraints may cause a nonsmooth depen-
dence between variables, for example, in obstacle problems in optimal
shape design [64] or the analytically smooth problem may numerically
behave like a nonsmooth problem [95]. Nonsmooth optimization prob-
lems occur in many areas of practical applications, like computational
chemistry [92], data mining [145] and classification [5], optimal shape
design [64,110], and mechanics [119].

A nonsmooth function is not necessarily continuously differentiable
in the classical sense. This usually causes difficulties, or depending on
the perspective, arises fascinating research topics. The function may
have some kink points where the gradient does not exist. In many cases,
a kink point of this kind coincides with the minimizer of the function.
That is why the gradient-based methods [3,10], like the steepest descent
method, conjugate direction methods, and quasi-Newton methods, are
not applicable to nonsmooth problems. The failure of classical gradient-
based methods in nonsmooth problems is exemplified, for instance, in
[95]. However, we may extend the concept of the gradient as in the works
by Rockafellar [139] and Clarke [26]. This generalized gradient is called
the subdifferential. Compared with the gradient being a vector, the sub-
differential is a set of vectors whose elements are called subgradients. If
a function is smooth, then its subdifferential contains only one element
being the gradient.

Single-objective nonsmooth optimization methods can be roughly di-
vided into two groups: subgradient methods and bundle methods. In
subgradient methods, the idea is to replace the gradient by an arbitrary
subgradient. The simplicity is the reason for the wide usage of subgradi-
ent methods. However, since the arbitrary subgradient does not preserve
all the nice properties of the gradient, subgradient methods suffer seri-
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ous drawbacks: unlike the negative gradient, the negative of an arbitrary
subgradient does not ensure the descent direction, stepsizes have to be
chosen a priori, and since the norm of the subgradient does not necessar-
ily decrease while getting closer to the optimal solution, there does not
exist implementable (sub)gradient-based stopping condition. To learn
more about subgradient methods, we refer to the survey by Shor [144].

The next step in the evolution of nonsmooth methods was the cutting
plane models by Cheney and Goldstein [25] and Kelley [80]. A differ-
ence with subgradient methods is that once an arbitrary subgradient is
calculated, we store it. Therefore, by knowing subgradients from differ-
ent iteration points, we are able to form a cutting plane model for the
objective. This way we obtain more information about the behaviour
of a function than in subgradient methods. As a disadvantage, we still
cannot guarantee the descent search direction and the search direction
finding problem may not have a finite optimum.

By combining the idea of the cutting plane model and the conjugate
gradient method [163], the first bundle method called the ε-steepest de-
scent method presented by Lemaréchal in [93,97], was obtained. In bun-
dle methods, the idea is to approximate the subdifferential with a bundle
including information from the neighbourhood of the iteration point in-
stead of using only one subgradient. To overcome the problems caused
by the selection of the tolerance ε in the ε-steepest descent method,
the generalized cutting plane model was proposed by Lemaréchal [94]
and later improved by Kiwiel [84]. Our story on the evolution of bun-
dle methods accumulates in the introduction of the proximal bundle
method by Kiwiel [85] and the bundle trust region method by Schramm
and Zowe [143]. Actually, these two methods have the same core idea
developed from the different basis. Nowadays, bundle methods are con-
sidered as an efficient way to solve nonsmooth problems and up to now,
there exist lots of variations of bundle methods, like variable metric bun-
dle methods [58, 102], level bundle methods [96], and bundle-Newton
methods [101]. Even if bundle methods have their roots in convex prob-
lems, there exist many state of the art strategies to handle nonconvex
problems (see e.g. [9, 48, 58, 62, 79, 84, 86, 110]). For a more discussion
about different bundle methods, we refer to [106] and about different
nonsmooth methods to [9].

In this dissertation, we bring together the fields of nonsmooth and
multiobjective optimization. Compared with multiobjective optimiza-
tion or single-objective nonsmooth optimization individually, nonsmooth
multiobjective optimization has attracted significantly less attention.
Even if the variety of multiobjective optimization methods is huge and
there exist various nonsmooth methods for the single-objective prob-
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lem, the multiobjective methods designed for nonsmooth perspective
are much less frequent. However, in practical applications, there exists
a great demand to solve nonsmooth problems with several objectives.

1.2 Structure of the Dissertation

This dissertation is composed of eight independent original publications.
Six of them are devoted to methods for multiobjective optimization un-
der the presence of nonsmoothness. The last two original publications
involve the real-life applications where the methods from the other orig-
inal publications are combined and the new method is employed to solve
the nonsmooth multiobjective problem. In the purposes of this disserta-
tion, we divide multiobjective optimization methods in two classes based
on how they treat objectives: scalarizing methods aggregating multiple
objectives into one objective, and descent methods improving multiple
objectives simultaneously preserving the multiobjective nature.

The utilization of some scalarization technique is the traditional ap-
proach to solve multiobjective optimization problems. Via the scalar-
ization, the multiple objectives of the original multiobjective prob-
lem are converted to one objective function and some additional con-
straints or variables may be introduced. With this procedure, we ob-
tain a single-objective optimization problem, and then a suitable single-
objective method can be applied. Examples of classical scalarization
techniques are the STEM method [12], the GUESS method [19], and
the ε-constraint method [59].

One widely used scalarization technique is the utilization of the
achievement scalarizing functions (ASFs) [111,114,158–162] due to their
good mathematical properties. In this approach, the ASF is optimized in
order to find a solution being the closest to the decision maker’s wishes.
The point expressing the decision maker’s wishes is called the reference
point. The reference point is an intuitive way for the decision maker to
indicate preferences, since only the desirable objective function values
are needed. Moreover, the decision maker can be assisted to select the
reference point, like in [104], where an approach to generate the set of
equivalent reference points is proposed.

In the original publication VI, the family of the two-slope parame-
terized ASF is presented. This new family bases on the parameterized
ASF presented in [122] and the two-slope ASF developed in [105]. By
combining the advantages of both ASFs in the two-slope parameterized
ASF, we can systematically produce several Pareto optimal solutions
from the same preference information without implementing any test of
achievability. However, the usage of the two-slope parameterized ASF
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leads to a nonsmooth single-objective problem even if the original ob-
jectives are continuously differentiable.

As a contrast to the scalarization, in the original publications I–V,
three different descent methods are discussed. Compared with the
scalarization, these methods preserve multiobjective nature of the prob-
lem during the solution process. In literature, there exist several dif-
ferent descent methods for smooth multiobjective optimization like the
generalizations of the steepest descent method [11, 36, 46, 55, 61, 154],
the projected gradient methods [49, 56], the Newton methods [45], and
the trust region strategies [20,131]. A comprehensive study of three de-
scent methods for smooth multiobjective optimization is given in [50].
Some descent methods exist also for convex nonsmooth optimization like
the generalization of the steepest descent method for stochastic prob-
lems in [128], the projected subgradient methods in [17,30], the proximal
point method [15,130] and the bundle-based method in [83]. For noncon-
vex problems, methods of this kind are, for example, the bundle-based
methods [113, 157], the quasi-Newton method in [133], and the trust
region strategy in [131].

The first descent method under the scope is the multiobjective prox-
imal bundle method (MPB) discussed in the original publications I
and II. MPB extends the single-objective proximal bundle method for
nonconvex multiobjective framework by applying the technique bas-
ing on the use of the improvement function [83, 157]. In the original
publication I, MPB is analyzed under some generalized convexity as-
sumptions in addition to the general nonconvex case. When these gen-
eralized convexity assumptions hold, MPB produces a globally weakly
Pareto optimal solution instead of a stationary solution guaranteed in
the general nonconvex case. Additionally, the original publication II
develops MPB further by presenting the scaled improvement function
enabling the scaling of the objective functions to improve the numerical
performance of the standard improvement function.

The discussion about descent methods continues with the multiple
subgradient descent bundle method (MSGDB) proposed in the original
publication III. This method is aimed for convex nonsmooth multiob-
jective problems that do not involve constraints. MSGDB is the exten-
sion of the well-known smooth single-objective steepest descent method
to the nonsmooth and multiobjective framework. The method utilizes
the proximal bundle approach which is the connective feature of all the
descent methods described in this dissertation. Compared with the non-
smooth single-objective steepest descent method, in MSGDB, only one
arbitrary subgradient needs to be evaluated, and unlike in subgradient
methods, the descent direction can be ensured. Even if these drawbacks
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are overcome, MSGDB is yet rather simply to implement.

Multiobjective DC (i.e. difference of convex functions) optimization
has drawn only a little attention even if the class of DC functions is
wide and the convex analysis can be applied. Some optimality condi-
tions are studied, for instance, in [51, 132, 148] and the proximal point
methods, exact and inexact, are presented in [73, 74]. The contribution
of the original publications IV and V for the field of multiobjective DC
optimization is threefold. First, a new method for constrained multi-
objective DC optimization producing the theoretically better quality of
solutions than the existing methods given in [73] is presented. Second,
compared with the methods in [73], the new method is of the descent
type. Third, the new method is numerically compared with a method de-
signed for a general nonconvex function and observed that by taking the
DC structure into account, we may benefit from it by obtaining better
solutions. The new method is called the multiobjective double bundle
method for DC functions (MDBDC). Like MPB, MDBDC utilizes the
improvement function and instead of the proximal bundle method, we
utilize the modified double bundle method for DC functions [77] due to
its good ability to find global solutions even if it is only a local method.

Having a suitable optimization method is only the half of the truth.
As we all know, the real-world phenomena are often too complicated to
model accurately as a mathematical problem. Thus, the modelling is
struggling between two goals: how to form a model being simple enough
for the methods available and yet enough true to life. As discussed pre-
viously, the nonsmoothness and the several contradicting goals are com-
mon features in practical applications. Thus, we obtain more freedom
to form mathematical models when we are able to utilize a nonsmooth
multiobjective solver.

The original publications VII and VIII take a challenge to treat the
practical application about scheduling the final disposal of the spent
nuclear fuel as a multiobjective optimization problem. A similar topic
is discussed in [135], where the disposal process is modelled as a single-
objective linear mixed integer optimization problem minimizing the total
costs. In the original publication VII, the process is modelled as a mul-
tiobjective nonsmooth mixed integer optimization problem for one fuel
type and the problem is solved by the interactive method utilizing the
two-slope parameterized ASF discussed in the original publication VI.
The same method is used when the process is modelled in the original
publication VIII involving all three fuel types used in Finland.

The rest of this dissertation is organized as follows. In Chapter 2, we
give a fundamental theoretical background to nonsmooth multiobjective
optimization and discuss some of the different methodologies. Chapters



10 1. Introduction

3, 4, and 5 are devoted to summarize the most crucial results of this
dissertation. In Chapters 3 and 4, ideas of the descent methods and the
scalarization presented in the original publications are sketched, respec-
tively. Chapter 5 consists of application for the method described in
Chapter 4, and in Chapter 6, some final conclusions are given.



Chapter 2

Nonsmooth Multiobjective
Optimization

This chapter introduces some notations and preliminary results used
throughout the rest of the dissertation. First, we focus on nonsmooth
analysis and define the generalized gradient amongst other things. Sec-
ond, a nonsmooth constrained multiobjective optimization problem is
presented. The chapter culminates in Section 2.3 where a Pareto op-
timal solution is defined and the multiobjective optimality condition is
given. Finally, the methodology of multiobjective optimization is dis-
cussed in two sections. In Section 2.4, a brief overview on different types
of methods for multiobjective optimization is given and in Section 2.5
the distinctive features of scalarization approaches and descent meth-
ods are pondered. More extensive introduction to nonsmooth analysis
and optimization can be found, for example, in textbooks by Bagirov
et al. [7], Clarke [26], Hiriart-Urruty and Lemaréchal [66], Mäkelä and
Neittaanmäki [110], and Rockafellar [139] and for multiobjective opti-
mization in textbooks by Ehrgott [40], Miettinen [111], Sawaragi [142],
and Steuer [146].

2.1 Nonsmooth Analysis

This section covers the fundamental concepts and results regarding to
nonsmooth analysis. We begin with some concepts related to sets. First,
we say that a set S ⊆ Rn is compact if it is closed and bounded. A set
S ⊂ Rn is said to be convex if

λx+ (1− λ)y ∈ S for all x,y ∈ S and λ ∈ [0, 1].

11
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The convex combination of points x1, . . . ,xk ∈ Rn is a point of the form∑k
i=1 λixi such that λi ≥ 0 for all i = 1, . . . , k and

∑k
i=1 λi = 1. A set

containing all the convex combinations of the points in a set S ⊆ Rn is
called the convex hull of a set S. That is,

convS =

{
x ∈ Rn

∣∣∣x =
k∑

i=1

λixi,
k∑

i=1

λi = 1, λi ≥ 0, xi ∈ S, k > 0

}
.

The convex hull of a set S is the smallest convex set containing the set
S. The closure of a set S is denoted by cl S.

A set S ⊆ Rn is a cone if λx ∈ S for all λ ≥ 0 and x ∈ S. A cone is
convex if S is a convex set. The smallest cone containing a set S, called
the ray of the set S, is defined by

rayS = {λx |λ ≥ 0,x ∈ S}.

Therefore, the smallest convex cone containing a set S is

coneS = conv rayS.

Furthermore, we define a contingent cone at x ∈ S by

KS(x) = {d ∈ Rn | there exist ti ↓ 0 and di → d with x+ tidi ∈ S},

a tangent cone at x ∈ S by

TS(x) = {d ∈ Rn | for all ti ↓ 0 and xi → x with xi ∈ S,
there exists di → d with xi + tidi ∈ S},

and a polar cone by

S≤ = {d ∈ Rn | sTd ≤ 0, for all s ∈ S}.

Additionally, we define the normal cone of a nonempty set S at x ∈ S
as the polar cone of the tangent cone

NS(x) = TS(x)≤.

Throughout the dissertation, we assume that the functions under
consideration are locally Lipschitz continuous if other is not stated. A
function f : Rn → R is locally Lipschitz continuous at the point x ∈ Rn

if there exist a Lipschitz constant K > 0 and a scalar ε > 0 such that

|f(y)− f(z)| ≤ K‖y − z‖ for all y, z ∈ B(x; ε),
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where B(x; ε) = {y ∈ Rn | ‖x − y‖ < ε} is an open ball with a cen-
ter x and a radius ε. Additionally, a function f : Rn → R is upper
semicontinuous at the point x if

lim sup
h→∞

f(xh) ≤ f(x)

holds for every sequence {xh} converging to the point x and lower semi-
continuous if

f(x) ≤ lim inf
h→∞

f(xh).

If a function is both upper and lower semicontinuous, it is also contin-
uous. Additionally, every locally Lipschitz continuous function is also
continuous.

One nice feature of locally Lipschitz continuous functions is that they
are differentiable almost everywhere by Rademacher’s theorem [110]. A
function f is said to be differentiable at the point x ∈ Rn if

f(x+ d) = f(x) +∇f(x)Td+ ‖d‖α(x,d),

where α(x,d)→ 0, when ‖d‖ → 0 and ∇f(x) is a gradient at the point
x. The gradient is a vector containing partial derivatives of a function
f at the point x as its components, or in other words,

∇f(x) =

(
∂f(x)

∂x1
, . . . ,

∂f(x)

∂xn

)
.

Furthermore, a function f is called smooth or continuously differentiable
if all the partial derivatives are continuous, and a function is nonsmooth
if it is not continuously differentiable.

The directional derivative of a function f : Rn → R at the point
x ∈ Rn in the direction d ∈ Rn is

f ′(x;d) = lim
t↓0

f(x+ td)− f(x)

t
.

If a function f is differentiable at the point x, then f ′(x;d) = ∇f(x)Td
for any direction d.

However, the directional derivative does not necessarily exist for a
general locally Lipschitz continuous function. Thus, we consider a Clarke
generalized directional derivative always existing for locally Lipschitz
continuous functions. The Clarke generalized directional derivative of a
function f : Rn → R at the point x ∈ Rn in the direction d ∈ Rn is
defined by

f◦(x;d) = lim sup
y→x
t↓0

f(y + td)− f(y)

t
,
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where y ∈ Rn and t > 0. A locally Lipschitz continuous function is sub-
differentially regular at the point x if the directional derivative f ′(x;d)
exists for all d and f ′(x;d) = f◦(x;d).

A locally Lipschitz continuous function h : R→ R is sign preserving
if sign(h(z)) = sign(z), or in other words,

h(z)


< 0, when z < 0

= 0, when z = 0

> 0, when z > 0.

Let x and y be points in Rn. We say that a function f : Rn → R
is increasing if f(x) ≤ f(y) when x ≤ y and strictly increasing if
f(x) < f(y) when x < y. Moreover, a function f is strongly increasing
if f(x) < f(y) when x ≤ y, and x and y are distinct.

Convexity plays a remarkable role in the optimization theory. In
particular, convexity is handy when we discuss optimality conditions.
Indeed, under the convexity assumption, we can usually ensure that a
method produces optimal solutions, while in the nonconvex case, we can
only say that a solution is stationary. The stationarity means that some
necessary optimality condition is satisfied but the optimality cannot be
guaranteed. Thus, we say some words about classifying functions by
their convexity. First, a function f : Rn → R is convex if

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y), x,y ∈ Rn, λ ∈ [0, 1].

If this inequality is strict, x 6= y, and λ ∈ (0, 1), then a function f is
called strictly convex and a function f is concave if −f is convex. If a
function f is not convex, it is said to be nonconvex. Furthermore, ev-
ery convex function is locally Lipschitz continuous and subdifferentially
regular at any point x ∈ Rn [26]. It is worth of noticing that some
operations, like the addition or taking maximum, preserve convexity.

However, convexity is a demanding condition in many practical cases.
That is why there have been several attempts to generalize convexity
[126] such that we are able to obtain the same results as in the convex
case but under the milder assumptions. Here we consider two of these
generalizations of convexity. A locally Lipschitz continuous function
f : Rn → R is f◦-pseudoconvex if for all points x and y in Rn

f(y) < f(x) implies f◦(x;y − x) < 0

and f◦-quasiconvex if for all points x and y in Rn

f(y) ≤ f(x) implies f◦(x;y − x) ≤ 0.
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Every convex function is f◦-pseudoconvex and every f◦-pseudoconvex
function is f◦-quasiconvex. Similar to the convex case, the maximum
taken over f◦-pseudoconvex functions is f◦-pseudoconvex. Furthermore,
if we consider a function g : Rn → R such that g = h ◦ f , where
f : Rn → R is f◦-pseudoconvex and h : R→ R is f◦-pseudoconvex and
strictly increasing, then g is also f◦-pseudoconvex. On the other hand,
if f is f◦-quasiconvex and h is f◦-quasiconvex and increasing, then g is
f◦-quasiconvex.

The benefits of convex analysis can also be utilized with nonconvex
functions by using other distinctive structure. One subclass of non-
convex functions is formed by functions that can be represented as the
difference of two convex functions, called DC functions. A function
f : Rn → R is a DC function if it has a DC decomposition f = p − q,
where functions p : Rn → R and q : Rn → R are convex DC compo-
nents. Based on this DC structure, DC functions are locally Lipschitz
continuous.

As mentioned previously, a locally Lipschitz continuous function is
differentiable almost everywhere by Rademacher’s theorem [110], and
thus, it also has the gradient almost everywhere. In those points, where
the gradient does not exist, we can utilize the generalized gradient. In
this dissertation, we utilize the Clarke’s generalized gradient [26]. The
generalized gradient is called a subdifferential ∂f(x) being a nonempty,
convex and compact set and an element of this set is a vector ξ ∈ Rn,
called a subgradient. First, we give two equivalent definitions for the
subdifferential of a convex function f : Rn → R at the point x ∈ Rn

∂cf(x) = {ξ ∈ Rn | f ′(x;d) ≥ ξTd for all d ∈ Rn}
= {ξ ∈ Rn | f(y) ≥ f(x) + ξT (y − x) for all y ∈ Rn}.

To simplify the notations, the subscript c is omitted while only convex
functions are considered.

The subdifferential of a nonconvex locally Lipschitz continuous func-
tion f : Rn → R at the point x is defined by

∂f(x) = {ξ ∈ Rn | f◦(x;d) ≥ ξTd for all d ∈ Rn}
= conv { lim

i→∞
∇f(xi) |xi → x and ∇f(xi) exists}.

Since f◦(x;d) = f ′(x;d) if a function f is convex, the definition of
the subdifferential of a nonconvex locally Lipschitz continuous function
given above is the generalization of the subdifferential of a convex func-
tion. To conclude, if a function f is convex, then ∂f(x) coincides with
∂cf(x) and if a function f is continuously differentiable, then the subd-
ifferential is a singleton containing only the gradient, or in other words,
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∂f(x) = {∇f(x)}. In addition, a function f is weakly semismooth if the
directional derivative f ′(x;d) exists for all x and d, and

f ′(x;d) = lim
t↓0

ξ(x+ td)Td,

where ξ(x+ td) ∈ ∂f(x+ td).
Finally, we define a Goldstein ε-subdifferential for a locally Lipschitz

continuous function f : Rn → R at the point x by

∂Gε f(x) = conv {∂f(y) |y ∈ B(x; ε), ε ≥ 0}

generalizing the subdifferential of a nonconvex function. In some non-
convex cases, the Goldstein ε-subdifferential ∂Gε f(x) has turned out to
be more useful than the subdifferential ∂f(x). As a more general notion,
Goldstein ε-subdifferential can be used to approximate the subdifferen-
tial. Indeed, the smaller the value of the parameter ε is, the more accu-
rate is the approximation. Furthermore, if ε = 0, then ∂Gε f(x) coincides
with ∂f(x).

2.2 Multiobjective Optimization Problem

This dissertation focuses on multiobjective optimization. That is, we
either minimize or maximize several objectives simultaneously. For sim-
plicity, we formulate our optimization problems as minimization prob-
lems. However, this does not restrict our notations, since the maximiza-
tion of a function f can easily be transformed to the minimization by
multiplying the maximized function f by −1. The multiobjective opti-
mization problem, where several goals are optimized simultaneously, is
mathematically denoted as following:

min f(x) = (f1(x), . . . , fk(x)) (MOP)

s. t. x ∈ X,

where s.t. is the abbreviation for subject to. The functions fi : Rn →
R, i ∈ I, where I = {1, . . . , k}, are the objective functions and k is
the number of these objective functions. We denote by Z the feasible
objective region being the image of the feasible solutions in the objective
space Rk, or in other words,

Z = f(X) = {z ∈ Rk | z = f(x),x ∈ X ⊆ Rn} ⊆ Rk.

In the problem (MOP), the set X ⊆ Rn denotes the set of feasible
solutions being a subset of the decision space Rn. An element x of the
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decision space Rn in the problem (MOP) is called the decision vector. If
X = Rn, then the problem is unconstrained. In this dissertation, if we
specify the set of feasible solutions, it is defined by

X =
{
x ∈ Rn | gl(x) ≤ 0, l ∈ L = {1, . . . ,m}

}
⊆ Rn. (2.1)

The functions gl : Rn → R, l ∈ L are called constraint functions, and
m is the number of these constraints. We assume that X 6= ∅ implying
that there exists at least one feasible solution for the problem (MOP).

We make some assumptions regarding to the objective and constraint
functions of the problem (MOP). First, in order to make the multiob-
jective problem sensible, we assume that our objective functions are at
least partially conflicting. This means that there exists no solution yield-
ing the best outcome for all the objectives simultaneously. Even though
the objective functions are conflicting, none of them is more important
than other. Another assumption is that all the objective and constraint
functions are locally Lipschitz continuous. The problem (MOP) is the
nonsmooth multiobjective optimization problem if at least one of the ob-
jective or constraint functions is nonsmooth. Moreover, the problem is
convex if all the objective functions and the set X are convex.

While multiobjective optimization plays a crucial role in this disser-
tation, we need some knowledge of single-objective optimization as well.
The single-objective optimization problem can be denoted (cf. (MOP)):

min f(x) (SOP)

s. t. x ∈ X,

where the function f : Rn → R is an objective function and the set of
feasible solutions X ⊆ Rn. Again, we assume that all the objective and
constraint functions are locally Lipschitz continuous. Like the multiob-
jective case, the problem (SOP) is the nonsmooth single-objective opti-
mization problem if either objective or at least one constraint function
is nonsmooth and the problem (SOP) is convex if the objective function
and X are convex. Later in this dissertation, we are interested in solv-
ing the problem (SOP) with a quadratic objective and linear constraint
functions. A problem of this kind is called the quadratic problem.

2.3 Optimality in Multiobjective Optimization

As suggested previously, in optimization we are eager to find the most
desirable solutions. In single-objective optimization, this is a rather in-
tuitive aim. However, in multiobjective optimization, we usually have
a set of optimal solutions and different optimal solutions yield different
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values for objectives. An optimal solution can be seen as a compromise
between the objectives and the most desirable solution is a subjective
concept. Thus, the comparison between different optimal solutions is
difficult, since the relative importance of objectives is unknown. Now
we define these concepts of optimality for both single-objective and mul-
tiobjective optimization.

A point x∗ ∈ X is a globally optimal solution of the problem (SOP) if

f(x∗) ≤ f(x) for all x ∈ X. (2.2)

Furthermore, if the point x∗ satisfies the condition (2.2) in some small
neighbourhood such that x ∈ B(x∗; ε), then the point x∗ is a locally
optimal solution of the problem (SOP). If the solution is globally opti-
mal, there exists no other feasible solution yielding better value for the
objective, unlike in the case of the locally optimal solution, where this
is true only in the small neighbourhood of x∗ and the better solution
may exist outside this neighbourhood. Therefore, every global optimum
is also a local optimum, but the inverse does not necessarily hold.

Theorem 2.3.1. [7] If x∗ ∈ X is a local minimum of a locally Lipschitz
continuous function f : Rn → R, then

0 ∈ ∂f(x∗) +NX(x∗). (2.3)

Additionally, the point x∗ is the global optimum if the function f is
f◦-pseudoconvex and X is convex.

Since every convex function is also f◦-pseudoconvex function, Theorem
2.3.1 gives the sufficient condition for the global optimum of a convex
function as well. A point x ∈ Rn satisfying the condition (2.3) is later
referred as a Clarke stationary solution. If a stationary solution is ob-
tained for a convex function, then the solution is optimal as well.

The most desirable solution of the multiobjective optimization prob-
lem (MOP) could be such a solution that every objective attains its
individual optimum. However, we assume that our objectives are at least
partially conflicting, and thus, such a solution cannot exist. Even if this
point cannot be the solution for the problem (MOP), we can utilize it
to approximate the lower bound of the solution for the problem (MOP),
and we call this point as an ideal vector f I ∈ Rk. The components
of the ideal vector are obtained by minimizing every objective of the
problem (MOP) separately and the i-th component of the ideal vector
f I is obtained by minimizing the i-th objective globally. Another vector
to approximate the lower bound of the solution is the utopian vector
fU ∈ Rk. This vector contains strictly better solutions for individual
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objectives than the ideal vector. The components of the utopian vector
are defined by fUi = f Ii − εi for all i ∈ I, where εi > 0 is a sufficient
small constant.

While the ideal and the utopian vector give the lower bound for the
set of solutions, the nadir vector fN ∈ Rk, expressing the worst values
of objectives among the optimal solutions, gives the upper bound for a
solution. Components of the nadir vector are obtained by maximizing
objectives over the set of optimal solutions. However, in practice, opti-
mization over the set of optimal solutions is a hard task, and thus, it is
complicated to define the nadir vector accurately, even in linear multiob-
jective optimization with three or more objectives [71, 138]. One rather
simple method for approximating the nadir vector is the payoff table (see
e.g. [40,111]), which is obtained by optimizing all objectives separately.
Then, each objective value is calculated at those optima obtained and
wrote down to the payoff table. The approximation of the nadir vector
is determined by selecting the worst value for each objective from the
payoff table. Since the quality of the approximation obtained from the
payoff table is not necessarily very good, some more sophisticated meth-
ods are described, for instance, in [14, 34, 42, 87]. The knowledge of the
lower and upper bounds for the solution of the multiobjective problem
is useful in many methods. For example, they can be used to scale ob-
jectives on different magnitudes to ease the computation. Second, many
methods utilize the ideal and the nadir vectors as such, or they can help
to understand the range of the optimal solution. Third, these vectors
can be utilized in the illustration of the solution obtained.

We say that an optimal solution of the problem (MOP) is a Pareto
optimal solution being a point such that none of the objectives can be
improved without impairing some other objective simultaneously. Thus,
to change the Pareto optimal solution, the trade-offs are needed. Math-
ematically speaking, a point x∗ ∈ X is the globally Pareto optimal solu-
tion for the problem (MOP) if there exists no solution x ∈ X such that

fi(x) ≤ fi(x∗) for all i ∈ I and fj(x) < fj(x
∗) for at least one j ∈ I.

A solution x∗ ∈ X is a locally Pareto optimal solution if there exists
a radius ε > 0 such that x∗ is a globally Pareto optimal solution on
X ∩ B(x∗; ε). In order to guarantee the existence of a Pareto optimal
solution, we have to assume that the objectives are lower semicontinuous,
which is true for any locally Lipschitz continuous function, and that the
set of feasible solutions X is a nonempty compact set [142].

Many of the existing multiobjective optimization methods find a so-
lution being weakly Pareto optimal. This means that there does not
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exist any other solution such that all the objectives attain better values.
More precisely, a solution x∗ ∈ X is the globally weakly Pareto optimal
solution of the problem (MOP) if there does not exist another solution
x ∈ X such that

fi(x) < fi(x
∗) for all i ∈ I.

Moreover, a solution x∗ ∈ X is a locally weakly Pareto optimal solution if
it is a globally weakly Pareto optimal solution on some neighbourhood
X ∩ B(x∗; ε), where ε > 0. Based on these definitions, every Pareto
optimal solution is also weakly Pareto optimal, but a weakly Pareto
optimal solution is not necessarily Pareto optimal. We emphasize that
the multiobjective problem (MOP) has several mathematically equally
good solutions forming the set of (weakly) Pareto optimal solutions or
the Pareto set.

The concepts described above are illustrated in Figure 2.1, where the
multiobjective problem is depicted in the objective space. The Pareto
front is emphasized with red and the ideal and nadir vectors are illus-
trated with black points. Due to the nature of the multiobjective op-
timization, some consider the multiobjective problem solved when the
whole Pareto set is found. However, in many practical cases obtaining
only one final solution is preferred. In this dissertation we consider the
problem solved when some satisfying (weakly) Pareto optimal solution
is found.

Next we state the necessary optimality condition for the constrained
multiobjective problem of the form (MOP). In order to simplify the
notations, we denote by

F (x) =
⋃
i∈I

∂fi(x) (2.4)

Figure 2.1: Pareto optimal solution in the biobjective case
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and

G(x) =
⋃

l∈L(x)

∂gl(x), where L(x) = {l ∈ L | gl(x) = 0}.

Once constraints are involved, we usually have to make some regular-
ity assumptions for the constraints. In this dissertation, we utilize the
following constraint qualification (see e.g. [99, 108]):

G≤(x) ⊆ KX(x). (2.5)

Theorem 2.3.2. [108] If x∗ ∈ X is a locally weakly Pareto optimal
solution for the problem (MOP), and the constraint qualification (2.5)
holds, then

0 ∈ conv F (x∗) + cl cone G(x∗). (2.6)

Additionally, if in Theorem 2.3.2 the objectives fi for all i ∈ I are
f◦-pseudoconvex and the constraints gl for all l ∈ L are f◦-quasiconvex,
then x∗ is the globally weakly Pareto optimal solution. Since every
Pareto optimal solution is a weakly Pareto optimal solution, this con-
dition is the necessary condition for a Pareto optimal solution as well.
If a point x ∈ Rn satisfies the condition (2.6), then it is called weakly
Pareto stationary.

2.4 Methods for Multiobjective Optimization

A good share of this dissertation considers methods for nonsmooth mul-
tiobjective optimization. The aim of this section is to give the wider
perspective of the field of multiobjective optimization methods, while
in Chapters 3 and 4 we discuss with details a few specific methods.
Obviously, there does not exist any method being the best one for all
problems, and every method has its own advantages and disadvantages.

A natural starting point for the multiobjective method development
is to utilize efficient single-objective methods. However, solving a mul-
tiobjective problem with respect to only one objective may lead to an
arbitrary bad solution regarding to the other objectives. Therefore, the
multiobjective problem has to be somehow transformed into a single-
objective problem. Approaches, where multiple objectives are converted
into one and applied a single-objective optimization method, are called
scalarization. In fact, scalarization is widely used technique for handling
several objectives. One scalarization technique, in its simplicity, is just
to sum up all the objectives.
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We recall that the multiobjective problem has several mathemati-
cally equally good solutions. In order to select only one solution among
the Pareto set, we need more insight into the problem. Therefore,
the solution process of the multiobjective problem usually involves two
parts: one for taking care of the mathematical side of the solution process
and one having expertise to select the most preferred solution among the
Pareto set. The first is referred to an analyst and the latter one is called
a decision maker. The decision maker has the strong influence on the
final solution. Different persons may consider different solutions to be
the best one and even a single person may vary an opinion about the
best solution under different circumstances.

We exemplify the different type of methods for multiobjective op-
timization by using the classification which is based on the role of the
decision maker given in [70] and later in [111]. This classification has
four classes: no-preference, a posteriori, a priori, and interactive meth-
ods. Note that this classification is not unique and a method may belong
to several classes based on the way it is used.

The class of no-preference methods consists of methods which do not
require the expertise of the decision maker. The aim in these methods
is to produce one solution and the decision maker either accept it or
not. These methods are usually fast, since only one solution needs to
be found and the decision maker is not consulted. Additionally, they
suit well for the situations when there are no special requirements for
the solution. However, if the decision maker has any expectations for
the solution, they probably will not be satisfied. These kind of methods
are, for example, compromise programming [164], where the distance
between the ideal point and the feasible objective region is minimized
and the descent methods described in Chapter 3.

The other three classes involve the interaction with the decision
maker. In a posteriori methods, a subset of the Pareto set is gener-
ated, and then, the decision maker chooses a desirable element of that
subset as the solution. The benefit of this approach is that the wider
picture of the Pareto set is obtained, but at the expense of the compu-
tation. Moreover, the visualization of the multiobjective problem with
more than two objectives is difficult, and it is a complicated task for the
decision maker to select one solution among a large set. Classical exam-
ples of this class are different scalarization techniques like the weighted
sum method [52], where the linear combination of the objectives is min-
imized, or the ε-constraint method [59], where one objective is selected
and the others are turned into constraints. Nowadays one widely stud-
ied class of heuristics is evolutionary algorithms [33,166,167] which are
representing this class as well.



2.5. Contrasting Scalarization and Descent Methods 23

Unlike a posteriori methods, a priori methods first collect some pre-
liminary information from the decision maker and then solve the prob-
lem. Thus, the solutions obtained correspond to the preliminary precon-
ception of the decision maker. The disadvantage is that at the beginning
of the solution process the decision maker may not be aware what (s)he
actually wants. Some examples of a priori methods are to order objec-
tives by their importance like in the lexicographic ordering [44] or to
give aspiration levels for objectives and find a solution close to those
as in the goal programming [23]. Additionally, the achievement scalar-
izing functions (ASFs) [158–162], discussed more in Chapter 4, can be
considered as either a posteriori methods or a priori methods.

The last class of methods is interactive methods. In interactive meth-
ods, the decision maker is involved throughout the solution process. The
idea is that first some preliminary solution is found and the decision
maker’s opinion about the solution is asked. Then the solution is modi-
fied based on the decision maker’s preconceptions and again the opinion
of the decision maker is asked. This process is continued until the sat-
isfactory solution for the decision maker is found. Thus, the process
gives the decision maker a chance to learn about the problem and to
change preferences. However, the success of the interactive method is
dependent on the decision maker. The process takes time and the de-
cision maker may forget something from previous iterations or may get
bored. Other notable issue is that if the solution in the early state of
the solution process is close to the decision maker’s premonition, then
the decision maker may be willing to stop without taking advantage of
the possibility to learn about the problem [19]. Some examples of in-
teractive methods are one of the first interactive methods, called the
step method STEM [12], where the decision maker selects an objective
to be impaired to find the satisfactory solution. Other example is the
NIMBUS method [113], where the decision maker classifies objectives
based on which need to be improved and which are allowed to deterio-
rate. Furthermore, the interactive method in Section 4.3 is the member
of this class.

2.5 Contrasting Scalarization and Descent Methods

As an active research area, there exists a countless number of methods
to solve multiobjective problems. In the previous section, methods were
divided by the role of the decision maker. Here we divide the meth-
ods roughly into two groups by how they treat the multiobjectiveness:
the ones that handle the multiobjective problem by transforming them
into a single-objective problem, and the ones that preserve multiobjec-
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tive nature during the solution process. Therefore, the characteristic of
methods from the different groups is completely different. The method-
ologies in Chapter 4 obviously belong to the first group and the descent
methods in Chapter 3 belong to the latter one. As an introduction to
the part of the dissertation focusing on methods, we discuss benefits
and drawbacks related to these two groups of solution approaches in the
general level. The discussion concentrates on scalarization approaches
aggregating several objectives and descent methods considering all the
objectives simultaneously as the representatives of these two groups.

Among all the multiobjective optimization methods, different scalar-
ization techniques are widely used. Indeed, they have an intuitive core
idea and a strong historical background. The unquestionable advantage
of the scalarization is that the efficient single-objective methods can be
applied. Especially with nonsmooth problems, with a suitable scalar-
ization technique, the single-objective solver can be left in the charge
to handle the nonsmoothness. However, in order to be the appropriate
solution approach, the scalarized function needs to capture the multiob-
jective nature of the problem well.

The descent property yields some benefits over the scalarization, al-
though, the descent property has not been seen as essential in multiob-
jective optimization as in the single-objective case. As a consequence,
the number of descent multiobjective methods is significantly smaller
than scalarization techniques. In fact, many descent methods are devel-
oped only quite recently (see e.g. [15,30,36,45,46,49,55,61,128,129,133,
154]). Many of these methods extend some ideas from single-objective
optimization for the multiobjective framework instead of making the
multiobjective problem suitable for a single-objective method.

The scalarization techniques need to take a stand on the importance
of different objectives by specifying parameters. The tuning of suitable
parameters is a hard task and sometimes it may cause difficulties. It is
possible that even if the original multiobjective problem has a Pareto
optimal solution, the scalarized problem becomes unbounded with a bad
selection of parameters. This kind of behaviour is exemplified in [45],
where the weighting method is used and almost all the parameters se-
lected yield an unbounded single-objective problem. After the previous
reasoning, a notable benefit of descent methods is that we do not have
to specify any parameters related to the importance of objectives nor
consider objectives’ order of importance since they are all taken into
account as equally important. That is why the solutions obtained with
descent methods are more neutral.

Besides the information about the order of the importance of ob-
jectives, the scalarization techniques usually involve some preference



2.5. Contrasting Scalarization and Descent Methods 25

information from the decision maker. Contrary to the scalarization,
preference information is not necessarily needed in descent methods.
Examples of the preference information are the reference point and the
classification of objectives based on which objectives will be improved
and which impaired. The benefit of preference information is that the
solutions obtained are more likely to be pleasant for the decision maker.
However, if the scalarization is performed interactively, new preference
information is needed at every iteration. Even if the decision maker’s
wishes can be better fulfilled at each iteration, providing the new pref-
erence information takes time and effort. Moreover, the decision maker
has to consider trade-offs and it might be hard to give up the objective
value already obtained.

The role of the decision maker is less significant in descent meth-
ods. Since preference information is not needed in descent methods, the
decision maker takes the easy way out. As a matter of fact, a descent
method gives a more preferred solution and a more content decision
maker at each iteration. In some cases, it is preferred to obtain just one
Pareto optimal solution without more wishes. Then, a descent method
is a good choice.

It is worth noticing that the scalarized problem may be harder to
solve than the objectives individually. This may happen, for instance,
with ASFs discussed later in Chapter 4. Unfortunately, even with linear
objectives the scalarized problem may be nonsmooth. These kind of
theoretical changes in the degree of difficulty will not happen if the
objectives are considered as they are. Especially in the case of integer
variables, solving the scalarized problem may computationally become
an exhaustive task, as was exemplified in [41].

In their turn, descent methods are sensitive to the selection of the
starting point. Indeed, we obtain only solutions lying on the negative
orthant from the starting point in the objective space. Therefore, it
might be that every Pareto optimal solution cannot be obtained from
every starting point. On the other hand, the starting point can be ad-
justed by the desired properties of the final solution. This property can
be utilized in the cases where an approximated solution is already found
and we wish to find a Pareto optimal solution dominating the approxi-
mated solution. The example can be found in [16], where a procedure of
this kind is used with an evolutionary algorithm whose generally known
drawback is that they cannot guarantee that the solution obtained is
optimal. Some scalarization techniques suffer also from the inability
to find every Pareto optimal solution. The classical example of this is
the weighted sum method in the case of the nonconvex Pareto set (see
e.g. [40]). Nevertheless, many more sophisticated scalarization tech-
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niques, such as ASFs, can be designed such that every Pareto optimal
solution may be obtained.

After all the differences, we collect some connective features between
the methods in Chapters 3 and 4. First of all, they are all designed to
solve the problem (MOP) and they all yield a solution being a weak
Pareto optimal solution, or a weak Pareto stationary solution in the
nonconvex case. In addition, they can all be performed repeatedly to
obtain the approximation of the Pareto set. It is not mandatory to
consider the importance of different objectives directly in any of these
methods

To conclude, every method has its own advantages and disadvantages
and it depends on the case whether the property is a drawback or a
benefit. All in all, none of the methods is superior to others in the
general case. Therefore, it is important to select a suitable method for
every situation separately. By combining several solution approaches
to one, the benefits from several methods can be utilized and possible
overcome some disadvantages of other method. A synergy gain of this
kind is obtained, for example, in the interactive method in Section 4.3
where descent methods are used to aid the decision maker in the method
otherwise applying ASFs.



Chapter 3

Bundle-based
multiobjective optimization

In this chapter, we focus on descent methods for multiobjective opti-
mization. We discuss with details about three descent methods from
the original publications: the multiobjective proximal bundle method
(MPB) in I and II, the multiple subgradient descent bundle method
(MSGDB) in III, and the multiobjective double bundle method for DC
functions (MDBDC) in IV and V. Many of the descent multiobjective
methods are generalizations of some single-objective method. Among
these methods, there exist some descent methods presented for the dif-
ferentiable multiobjective problem, for example, the generalizations of
the single-objective steepest descent method [36,46,55,61,154], the New-
ton type method [45, 129], and the projected gradient method [49]. For
convex nonsmooth problems, descent methods of this kind are: the pro-
jected subgradient type method [30], the proximal type method [15], the
generalization of the steepest descent method for stochastic multiobjec-
tive problems [128], and the bundle-based method [83]. For nonconvex
multiobjective problems, there exist descent methods of the Newton type
method in [133] and the bundle type methods in [113,157].

A distinctive feature of descent methods is that the objective function
values decrease at every iteration. Indeed, descent methods project the
starting point to the Pareto front without any preference information.
Due to their descent property, descent methods obtain solutions from the
negative orthant from the starting point in the objective space. Thus,
a Pareto optimal solution is not a sensible starting point. The lack of
preference information is an advantage to descent methods. A descent
method can be used as it is to solve only one solution or by running it
from several starting points, and thus, giving an approximation of the

27
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Pareto set. Another possibility is to use a descent method together with
some heuristic method by using a heuristic solution as the starting point
to guarantee (weak) Pareto optimality. Moreover, descent methods can
be used as a part of an interactive method as in [111, 113, 120] and in
Section 4.3.

A direction d ∈ Rn is a descent direction for a function f : Rn → R
at the point x ∈ Rn if there exists ε > 0 such that

f(x+ td) < f(x) for all t ∈ (0, ε], (3.1)

and if a direction d satisfies the condition

ξTd < 0 for all ξ ∈ ∂f(x),

then it is the descent direction for a function f . The other option is to
verify that f◦(x;d) < 0. In addition, we say that a direction d is the
common descent direction for all functions fi : Rn → R, i ∈ I if the
condition (3.1) holds for all fi, i ∈ I.

A general framework of descent methods is to select a starting point
x0 ∈ X and then solve some subproblem to obtain a common descent
direction d ∈ Rn for all the objectives. After that, a stepsize t > 0 is
determined and a new iteration point xh+1 = xh + td is calculated. The
descent direction is a local property, and at every nonstationary point,
the descent direction exists [7]. This implies that at every iteration
there either exists a descent direction or the current iteration point is a
stationary solution. Thus, we generate the sequence of solutions {xh}
converting to a solution such that fi(xh) > fi(xh+1) for all i ∈ I.

As mentioned, this chapter discusses about three different descent
methods: MPB, MSGDB, and MDBDC. These three methods have
three things in common:

1. they are all descent;

2. they all utilize the idea of the single-objective proximal bundle
method [85,110,143];

3. in order to guarantee the descent property, they utilize the im-
provement function [83,113,157].

Thus, the first two sections of this chapter are devoted to define some
essential ingredients for the methods such as the use of the improvement
function and the standard single-objective proximal bundle method. Af-
ter that, MPB, MSGDB, and MDBDC are discussed in the following
three sections, respectively.
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3.1 Improvement Function

As a foretaste of the multiobjective methods, we introduce a technique
for handling several objectives and constraints simultaneously, called the
improvement function. This technique has its origin in single-objective
smooth [127] and nonsmooth [78, 84, 96, 110, 117, 141] optimization as
a constraint handling technique. With the aid of the improvement
function, we can control several functions as one, and thus, the single-
objective constrained problem can be formulated as an unconstrained
problem. Besides several constraint functions, the improvement function
can handle several objectives without the scalarization in the classical
sense. Additionally, we obtain a nice connection between the Pareto
optimal solution and the solution of the single-objective problem with
the improvement function as its objective. Thus, by solving the single-
objective problem, we obtain a solution for the multiobjective problem.
As a multiobjective technique, the use of the improvement function is
described, for instance, in [83,113,157] in addition to the original publi-
cations I–V. Next, we collect some properties of the improvement func-
tion.

Given the problem (MOP), we define the standard improvement
function H : Rn × Rn → R by

H(x,y) = max{fi(x)− fi(y), gl(x) | i ∈ I, l ∈ L}. (3.2)

The improvement function works well in theory, but the practice has
revealed that the improvement function is sensitive for scaling, as is no-
ticed in the numerical experiments in the original publication IV. There
the simple linear scaling is utilized in order to reduce the computational
efforts. In the original publication II, this scaling was further generalized
and properly formulated by introducing the generalization of the stan-
dard improvement function known as the scaled improvement function
Hs : Rn × Rn → R

Hs(x,y) = max{µi(fi(x))− µi(fi(y)), δl(gl(x)) | i ∈ I, l ∈ L}, (3.3)

where µi, i ∈ I and δl, l ∈ L are scaling functions such that they are
assumed to be sign preserving, and for all i ∈ I, µi is supposed to
be strictly increasing. Note that Hs( · ,y) reduces back to H( · ,y) if
µi(z) = δl(z) = z for all i ∈ I, l ∈ L, and z ∈ R. Some examples of the
suitable scaling functions are

linear scaling µ(z) = λz,
polynomial scaling µ(z) = λ sign(z)((|z|+ 1)p − 1),
logarithmic scaling µ(z) = λ sign(z) ln(|z|+ 1),

exponential scaling µ(z) = λ sign(z)(e|z| − 1),
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where λ > 0 and p ∈ N+.
Besides the constraint handling, the charm of this technique in mul-

tiobjective framework springs up, on the one hand, from the fact that
if we find a descent direction for the scaled improvement function, then
we have a common descent direction for all the objective functions of
the problem (MOP). On the other hand, an optimal solution for the
scaled improvement function is at least weakly Pareto stationary for the
problem (MOP). These properties are collected in the following theo-
rem. Similar properties for the standard improvement function can be
found in [83,157] and in the original publications I and IV.

Theorem 3.1.1. (Original publication II) Let µi and δl be sign pre-
serving and µi be strictly increasing for all i ∈ I and l ∈ L. The scaled
improvement function Hs( · ,y) (3.3) has the following properties:

(i) If Hs(x,y) < Hs(y,y), x ∈ Rn and y ∈ X, then fi(x) < fi(y) for
all i ∈ I and gl(x) < 0 for all l ∈ L.

(ii) If the solution x∗ ∈ X is a globally weakly Pareto optimal solution
of the problem (MOP), then

x∗ = argmin
x∈Rn

Hs(x,x
∗). (3.4)

(iii) If fi and µi for all i ∈ I are f◦-pseudoconvex, gl and δl for all l ∈ L
are f◦-quasiconvex, δl for all l ∈ L is increasing, and the constrain
qualification (2.5) is valid, then the condition (3.4) is sufficient for
a point x∗ ∈ X to be a globally weakly Pareto optimal solution of
the problem (MOP).

(iv) If 0 ∈ ∂Hs(x
∗,x∗), then the solution x∗ ∈ X of the problem

(MOP) is weakly Pareto stationary.

As mentioned, the standard improvement function is the special case
of the scaled improvement function, and therefore, the properties given
in Theorem 3.1.1 are valid for the standard improvement function as
well. Note that the improvement function is the maximum function,
implying that if all the objective and constraint functions are convex,
f◦-pseudoconvex or DC functions, so is the improvement function. This
property comes handy when the methods of this chapter are discussed.
The scaled improvement function is a core ingredient for MPB described
in Section 3.3 and the standard improvement function for MDBDC dis-
cussed in Section 3.5. Even if MSGDB in Section 3.4 does not utilize
the concept of the improvement function as such, the convergence proof
of MSGDB relies on the properties of MPB utilizing the improvement
function.
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3.2 Single-objective Proximal Bundle Method

In this section, we describe the general idea of the proximal bundle
method for single-objective optimization, and simultaneously, emphasize
the characteristic features of the general proximal bundle method. To
simplify the presentation, the idea of the proximal bundle method is
presented for the convex unconstrained single-objective problem of the
form (SOP) and the modifications needed in order to solve nonconvex
problems are commented at the end. For more details about bundle
methods we refer to [9, 84,85,97,103,106,110,143].

Bundle methods are considered as efficient and reliable solvers for
single-objective nonsmooth problems and they fall into the category of
descent methods. Many descent methods use gradient-based informa-
tion, but since the problem is nonsmooth, the subdifferentials are em-
ployed in bundle methods. Due to the fact that the evaluation of the
whole subdifferential is a hard task, the first distinctive feature of bundle
methods is to approximate the subdifferential with the aid of a bundle
gathering information from the neighbourhood of the current iteration
point. Based on the information in the bundle, we can formulate a model
for the objective function and with this model the search direction can
be determined. If the search direction is descent enough, we take a se-
rious step by generating the new iteration point. On the other hand, if
the direction is not descent enough or is not descent at all, we take a
null step being the second distinctive feature of bundle methods. In the
null step, the model is improved by adding further information from an
auxiliary point into the bundle.

We begin by considering the problem (SOP) with X = Rn. In order
to get the idea of the local behaviour of the objective function f : Rn →
R, in bundle methods, the subdifferential ∂f(xh) is approximated with
the subgradients belonging to the bundle

Bh =
{(
yj , f(yj), ξj ∈ ∂f(yj)

) ∣∣ j ∈ Jh} (3.5)

containing information from the previous iterations. In the h-th itera-
tion, a point xh ∈ Rn is the current iteration point and points yj ∈ Rn

are auxiliary points from the past iterations. Thus, we generate two
sequence of points: a sequence of auxiliary points {yj} and a sequence
of iteration points {xh} ⊆ {yj}. Finally, a nonempty set of indices
Jh ⊆ {1, . . . , h} contains indices selected to the bundle. Therefore, we
assume that we are able to evaluate a function value f(yj) and one
arbitrary subgradient ξ ∈ ∂f(yj) at each point yj .

In the following, we consider the h-th iteration of the proximal bundle
method. First, we linearize the function f with the classical cutting plane
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model defined by

f̂h(x) = max{f(yj) + ξTj (x− yj) | j ∈ Jh} (3.6)

= max{f(xh) + ξTj (x− xh)− αh
j | j ∈ Jh}

being the piecewise linear approximation of the function f . This ap-
proximation improves every time when more information is added to
the bundle Bh. The term αh

j is the linearization error calculated at the
iteration point xh, that is,

αh
j = f(xh)− f(yj)− ξTj (xh − yj) for all j ∈ Jh. (3.7)

This linearization error defines how good the model is by describing the
difference between the actual function value f(xh) and the value of the
linearization calculated at the auxiliary point yj . If the function f is

convex, then αh
j ≥ 0 by the definition of the subdifferential. Therefore,

the cutting plane model f̂h gives the lower approximation for the func-
tion f , in other words, f(x) ≥ f̂h(x) for all x ∈ Rn. The cutting plane
model and the linearization error are illustrated in Figure 3.1.

In order to find the search direction dh ∈ Rn, we solve the problem

min
d∈Rn

f̂h(xh + d) +
1

2
uh‖d‖2. (3.8)

Here uh is the positive weighting parameter keeping the auxiliary point
yh+1 in the region where f̂h is close to f . The weighting parameter is
the special feature of the proximal bundle method enabling the omission
of the line search in the convex case, since the stepsize can be adjusted
by chancing the weighting parameter. The role of the stabilizing term
1
2uh‖d‖

2 is twofold. First, a piecewise linear function f̂h might not have

Figure 3.1: Cutting plane model and linearization error
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a finite minimum, but by adding the stabilizing term, the existence and
the uniqueness of a search direction is guaranteed. Second, the stabiliz-
ing term keeps the approximation local enough. This is important since
the farther away the current iteration point xh we get, the rougher and
more unreliable the approximation of the function f becomes.

Due to piecewise linear nature of the function f̂h in the problem
(3.8), it is possible to rewrite the nonsmooth unconstrained problem
(3.8) as the smooth, quadratic, constrained problem

min v +
1

2
uh ‖d‖2

s. t. − αh
j + ξTj d ≤ v for all j ∈ Jh (3.9)

d ∈ Rn, v ∈ R

involving n+1 variables and |Jh| constraints. However, it is often easier
to solve the quadratic dual problem of the problem (3.9) given in the
form

min
1

2uh

∥∥∥ ∑
j∈Jh

λjξj

∥∥∥2 +
∑
j∈Jh

λjα
h
j

s. t.
∑
j∈Jh

λj = 1 (3.10)

λj ≥ 0 for all j ∈ Jh.

If λj for all j ∈ Jh yields a solution for the problem (3.10), then the
unique solution of the problem (3.9) is of the form

dh =− 1

uh

∑
j∈Jh

λjξj (3.11)

vh =−

 1

uh

∥∥∥ ∑
j∈Jh

λjξj

∥∥∥2 +
∑
j∈Jh

λjα
h
j

 .

A notable advantage of bundle methods from the practical point of
view is that the size of the quadratic problem (3.9) can be controlled
by restricting the size of the bundle. A simple strategy is to update the
set of bundle indices by Jh+1 = Jh ∪ {h+ 1} until the maximum size of
the bundle Jmax is reached. After that, we may update the bundle by
Jh = Jh−1∪{h}\{h−Jmax} or we may remove the index j ∈ Jh with the
largest linearization error αh

j . However, the index related to the current
iteration point must be included in the bundle. One more sophisticated
technique to control the size of the bundle is the subgradient aggrega-
tion strategy proposed in [82] accumulating information by aggregating
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subgradients and linearization errors from previous iterations. All the
methods implemented in this dissertation utilize the quadratic solver by
Lukšan [100] to solve these quadratic direction finding problems.

Once the search direction dh is found, we decide whether we want to
use it to generate a new iteration point or not. For that, a new auxiliary
point yh+1 = xh + dh is calculated and we test whether

f(yh+1) ≤ f(xh) +mvh (3.12)

or not, where the constant m ∈ (0, 12) in (3.12) is the decrease parameter
supplied by the user. We validate the condition by observing that we
can write vh in the form

vh = f̂h(xh + dh)− f(xh),

due to the fact that vh is the solution of the problem (3.9). Since vh < 0,
it is justified to consider vh as the predicted descent of the function f at
the point xh. Therefore, if the condition (3.12) holds, the model is good
and the function value at the new auxiliary point yh+1 is significantly
better than the function value at the current iteration point xh. Hence,
we select the auxiliary point yh+1 as the new iteration point xh+1 =
yh+1. This selection is called the serious step. Therefore, the significant
decrease is obtained at every serious step. Moreover, if −vh < ε, where
ε > 0 is the stopping tolerance, we may stop with x∗ = xh as a solution.

Even if the direction dh is descent to the model f̂h, it is not neces-
sarily descent to the function f . If the condition (3.12) does not hold,
the approximation of the function f given by the cutting plane model
is not good enough, and either dh is not the descent direction to the
function f or we obtain only a slight decrease to the function f . In
order to improve the approximation, we perform the null step. The cur-
rent iteration point xh remains unchanged, in other words xh+1 = xh,
and only the search direction will differ. Furthermore, we update the
bundle Bh by adding more information about the function f around
the current iteration point xh, or in other words, we add the triplet
(yj+1, f(yj+1), ξj+1 ∈ ∂f(yj+1)) into the bundle Bh and the index j+ 1
into the set Jh. The null step yields the significant modification for the
approximation of the function f and the direction dh+1 obtained after
the null step differs from the previous direction dh [84].

In the convex proximal bundle method, a line search strategy to de-
fine the stepsize is not mandatory and is thus omitted here since we
can control the stepsize by adjusting the weighting parameter uh. The
appropriate selection of the weighting parameter is important since with
too large fixed uh we may end up taking too short steps, while with a
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Initialization:

Select x0, m ∈ (0, 12 ), and

ε > 0. Initialize B0. Set h = 0.

Search direction:

Calculate dh and vh by (3.9).

Stopping

condition:

Is −vh < ε?

STOP

Descent test:

Set yh+1 = xh + dh. Is

f(yh+1) ≤ f(xh) +mvh?

Update:

Set h = h+ 1.

Update Bh and uh.

Serious step:

Set xh+1 = yh+1.

Null step:

Set xh+1 = xh.

Yes

No
Yes

No

Figure 3.2: Flowchart of a general proximal bundle method

too small fixed uh we may require unnecessarily many null steps. The
implementations of the methods in this dissertation utilize mainly the
weighting update procedure presented by Kiwiel in [85] or its modifi-
cation. However, there exist several strategies to update the weighting
parameter uh (see e.g. [86, 143]). To conclude the discussion about the
proximal bundle method, the simplified flowchart is given in Figure 3.2.

Finally, we say a few words about difficulties caused by nonconvexity
in the proximal bundle method. First, a nonconvex function may have
several locally optimal solutions and the optimality condition (2.3) is
only necessary. Thus, only a Clarke stationary solution can be guaran-
teed. Second, for a convex function, the cutting plane model (3.6) gives
the lower approximation of the function and the linearization error (3.7)
is nonnegative. Nevertheless, in the nonconvex case, these are not true,
and the linearization error might be very small or negative even if an
auxiliary point is far from the current iteration point. Thus we do not
learn any useful information. To overcome this, we may replace the
linearization errors with the subgradient locality measures

βhj = max{|αh
j | , γ‖xh − yj‖2},

where γ ≥ 0 is the distance measure parameter supplied by the user. In
the convex case, γ = 0 and the subgradient locality measure coincides
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with the linearization error αh
j . Third, in the nonconvex case it might

be that the bundle update with the subgradient from the auxiliary point
of the form yh+1 = xh + dh does not improve the model significantly,
and thus, the line search procedure is mandatory to ensure the global
convergence. The two-point line search strategy [110] is discussed more
in Section 3.3 and some others are presented in [84].

To summarize the discussion about the single-objective proximal
bundle method, we mention that by assuming the objective function
to be weakly semismooth in addition to local Lipschitz continuity,
the proximal bundle method can be proven to be globally convergent
[85, 110, 143]. Furthermore, the number of null steps performed can be
shown to be finite, unless the optimal solution is reached [84].

3.3 Multiobjective Proximal Bundle Method

In the nutshell, the multiobjective proximal bundle method (MPB) is
a version of the single-objective proximal bundle method using the im-
provement function (3.2) as the objective function. This method is able
to solve nonconvex constrained multiobjective problems. The essen-
tial features of MPB are that it improves all the objective functions
simultaneously and treats the objectives as they are without involv-
ing the scalarization in the classical sense. A version of the proximal
bundle method utilizing the improvement function for a single-objective
nonconvex constrained problem was presented by Mäkelä and Neit-
taanmäki [110]. This single-objective version is then extended for the
multiobjective case, and MPB as it is, was used in [113] as a part of the
interactive NIMBUS method. Our discussion in this section bases on
two original publications: in the publication I, the standard MPB was
investigated especially with respect to different generalized convexities
and in the publication II, MPB was further extended by involving the
scaled improvement function.

We begin by describing the idea of the method with the scaled im-
provement function. Notice that with the suitable selection of scaling
functions, this presentation reduces back to the standard MPB. Consider
the problem (MOP) with the set of feasible solutions X ⊆ Rn defined
as in (2.1). As a bundle-based method, we assume that we can evaluate
arbitrary subgradients ξi,j ∈ ∂fi(yj) and ζi,j ∈ ∂µi(fi(yj)) for all i ∈ I
and ξl,j ∈ ∂gl(yj) and ζl,j ∈ ∂δl(gl(yj)) for all l ∈ L at every auxiliary
point yj ∈ Rn and j ∈ Jh in addition to the corresponding function
values.

In the spirit of Theorem 3.1.1, we search the direction dh ∈ Rn as a
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solution of the problem

min Hs(xh + d,xh) (3.13)

s. t. d ∈ Rn

at the h-th iteration of MPB. As in the single-objective proximal bundle
method, we make a convex piecewise linear approximation of an objec-
tive function Hs( · ,xh) by linearizing objective and constraint functions
like in (3.6). Thus, we obtain the approximation for the scaled improve-
ment function of the form

Ĥh(x) = max
{
µ̂f

h

i,j(x)− µi(fi(xh)), δ̂g
h

l,j(x)
∣∣ i ∈ I, l ∈ L, j ∈ Jh},

where the cutting plane models for the scaled objective and constraint
functions are

µ̂f
h

i,j(x) = µi(fi(yj)) + ζi,j(ξi,j)
T (x− yj) for all i ∈ I, j ∈ Jh and

δ̂g
h

l,j(x) = δl(gl(yj)) + ζl,j(ξl,j)
T (x− yj) for all l ∈ L, j ∈ Jh.

Note that in the convex case, we can ensure that ζi,j(ξi,j) ∈ ∂(µi ◦ fi)(yj)
and ζl,j(ξl,j) ∈ ∂(δl ◦ gl)(yj). However, in the nonconvex case, these
are not necessarily valid. Then we can either assume the subdifferential
regularity for fi and gl for all i ∈ I and l ∈ L or to use smooth scaling
functions like exemplified in Section 3.1 (see the original publication II).

Furthermore, we obtain the approximation of the problem (3.13) by

min Ĥh(xh + d) +
1

2
uh‖d‖2

s. t. d ∈ Rn,

and as was seen in Section 3.2, this problem can be rewritten as a smooth
quadratic problem

min v +
1

2
uh‖d‖2 (3.14)

s. t. − βhi,j + ζi,j(ξi,j)
Td ≤ v, i ∈ I, j ∈ Jh

− βhl,j + ζl,j(ξl,j)
Td ≤ v, l ∈ L, j ∈ Jh

d ∈ Rn,

where subgradient locality measures are

βhi,j = max
{
|µi(fi(xh))− µ̂f

h

i,j(xh)|, γi‖xh − yj‖2
}

βhl,j = max
{
| − δ̂g

h

l,j(xh)|, γl‖xh − yj‖2
}
.
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Here the distance measure parameters γi and γl for all i ∈ I and l ∈ L
are nonnegative, and if the objective or constraint function is convex,
then the corresponding distance measure parameter is zero. Similarly
to the proximal bundle method, instead of the problem (3.14), we can
solve its dual problem of the similar form than the problem (3.10).

The last thing to discuss about the algorithm of MPB is the line
search. In MPB, the two-point line search strategy [110] is applied. The
benefit of this line search strategy is its ability to detect the disconti-
nuities in the gradients of objective functions. The aim is to determine
the stepsize 0 < th ≤ 1 such that the value of Hs(xh + thdh,xh) is mini-
mized when xh+thdh ∈ Rn. Let the line search parameters mL ∈ (0, 12),
mR ∈ (mL, 1) and t̄ ∈ (0, 1] be fixed. We begin by searching the largest
thL ∈ [0, 1] such that

max{µi(fi(xh + thLdh))− µi(fi(xh)) | i ∈ I} ≤ mLt
h
Lv

h and

max{δl(gl(xh + thLdh)) | l ∈ L} ≤ 0.

If thL ≥ t̄, then we take the long serious step by setting yh+1 =
xh+thLdh and xh+1 = yh+1. Since we obtain the significant improvement
for the objective function with the long serious step, there is no need to
investigate the discontinuities in the gradients.

If the significant improvement is not obtained, we take either the
short serious step or the null step. If 0 < thL < t̄, then the short serious
step is taken by setting xh+1 = xh + thLdh and yh+1 = xh + thRdh.
Furthermore, if thL = 0, we take the null step by setting xh+1 = xh and
yh+1 = xh + thRdh. For both of these steps we need to define thR > thL
such that

−βh+1
i,h+1 + ζi,h+1(ξi,h+1)

Tdh ≥ mRvh.

Due to this condition, the points xh+1 and yh+1 lie in the different sides
of the discontinuity of the gradient yielding the significant change for
the model [110]. The simplified flowchart of MPB is given in Figure 3.3.

The solution obtained with MPB is weakly Pareto stationary. As
usual, by assuming that all the objective and constraint functions of
the problem (MOP) are convex, the better quality of the solution can
be guaranteed. That is, the solution obtained with MPB is a glob-
ally weakly Pareto optimal solution. In fact, we can widen the class of
functions yielding the globally weakly Pareto optimal solution instead
of the Pareto stationary solution by recalling that Theorem 2.3.1 is the
sufficient optimality condition not only for convex functions but also
for f◦-pseudoconvex functions. Then, by taking the maximum over f◦-
pseudoconvex functions, the resulting function is f◦-pseudoconvex as
well.
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Initialization: Select x0,

ε > 0, and t̄ ∈ (0, 1].

Initialize B0. Set h = 0.

Search direction:

Calculate dh and

vh by (3.14).

Stopping
condition:

Is − 1
2vh < ε?

Line search:

Find thL ∈ [0, 1]

and thR ∈ [thL, 1].

Is thL ≥ t̄?

Update: Set h = h+ 1.

Update Bh and uh.

STOP

Long serious step:

Set yh+1 = xh + thLdh
and xh+1 = yh+1.

Short serious or
null step:

Set yh+1 = xh + thRdh
and xh+1 = xh + thLdh.

Yes

No

Yes

No

Figure 3.3: Flowchart of MPB

The convergence of MPB bases on Theorem 3.1.1 (ii)–(iv) and the
convergence analysis of the proximal bundle method. Indeed, if we solve
the single-objective problem with the improvement function as the ob-
jective by using the proximal bundle method and we find a solution
x∗ ∈ Rn being Clarke stationary for the improvement function, or in
other words, 0 ∈ ∂Hs(x

∗,x∗), then the solution x∗ is at least weakly
Pareto stationary for the original multiobjective problem (MOP).

Let µi for all i ∈ I and δl for all l ∈ L be sign preserving and subdif-
ferentially regular. Additionally, let µi for all i ∈ I be f◦-pseudoconvex
and strictly increasing and δl for all l ∈ L be f◦-quasiconvex and in-
creasing. Then, by assuming that the objective and constraint functions
are weakly semismooth we can prove that

(i) if MPB stops with a finite number of iterations, then the solution
is a weakly Pareto stationary solution for the problem (MOP).

(ii) any accumulation point of an infinite sequence of solutions gener-
ated by MPB is a weakly Pareto stationary solution for the prob-
lem (MOP).
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Furthermore, if fi for all i ∈ I, and gl, δl for all l ∈ L are f◦-
pseudoconvex and δl for all l ∈ L is strictly increasing function, then a
weakly Pareto stationary solution of the problem (MOP) is also a glob-
ally weakly Pareto optimal solution in the case (i). If in addition µi and
δl are continuously differentiable or fi and gl are subdifferentially regu-
lar, a globally weakly Pareto optimal solution is obtained in the case (ii).
Note that, in order to guarantee the weakly Pareto optimal solution, the
improvement function needs to be f◦-pseudoconvex. We emphasize that
in Theorem 3.1.1 (iv), we make the assumption that constraint functions
gl for all l ∈ L of the problem (MOP) are f◦-quasiconvex. However, in
order to ensure that the improvement function is f◦-pseudoconvex, we
have to make a stronger assumption that constraint functions are f◦-
pseudoconvex.

To conclude, MPB treats objectives as they are, and it is a descent
method. The descent property of MPB follows from Theorem 3.1.1
(i). The method is globally convergent and by assuming the f◦-pseudo-
convexity of the objective and constraint functions, the solution obtained
is guaranteed to be a globally weakly Pareto optimal. The numerical
tests for multiobjective problems in [109] and for single-objective prob-
lems in [7] have shown that the implementation of MPB [107] is rather
reliable and efficient. As a matter of fact, MPB is utilized as the refer-
ence method in the following two sections.

3.4 Multiple Subgradient Descent Bundle Method

This section is devoted to describe the idea of the multiple subgradient
descent bundle method (MSGDB) presented in the original publication
III. The idea of MSGDB is simple: find a direction improving all the
objectives. MSGDB is designed for convex, unconstrained multiobjec-
tive optimization and it is a counterpart to the single-objective smooth
steepest descent method in the convex nonsmooth multiobjective frame-
work.

The idea in the well-known single-objective smooth steepest descent
method is to move in the direction improving the objective most. This
idea is rather intuitive and easy to implement, since the direction in
interest is the negative direction of the gradient [10]. This fundamental
idea dates back to the mid of the 19th century to the work of Cauchy [22].
There exists a couple of generalizations of the steepest descent method
for smooth multiobjective optimization like the multiple gradient de-
scent algorithm (MGDA) [35, 36] or the steepest descent method for
multicriteria optimization [46].

The steepest descent method is generalized also for a single-objective
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nonsmooth problem [93]. The drawback of this approach is that the
whole ε-subdifferential needs to be known at every point, and as noted
before, the whole subdifferential is exhaustive to calculate or may not
even be possible to calculate. By using only one subgradient from the
subdifferential, we end up with the single-objective subgradient method
[144] but the lost of the guaranteed descent direction is the price to pay.
Moreover, subgradient methods suffer the lack of the implementable
(sub)gradient-based stopping condition. The idea of subgradient meth-
ods is extended also for the multiobjective framework [13, 29, 31], but
they preserve the lack of a descent direction as their single-objective
counterparts.

MSGDB is our share for the work related to extending the steepest
descent direction idea for a more general framework. MSGDB is rather
easy to implement and it utilizes the proximal bundle approach. Thus,
only one subgradient needs to be evaluated at every point for each ob-
jective and we can ensure the existence of both the descent direction
and the implementable stopping condition.

Some words about the idea of MSGDB are in order. First of all,
MSGDB extends the ideas of MGDA presented by Désidéri in [35,36] and
it is aimed for unconstrained, smooth multiobjective optimization. As a
descent method for the smooth multiobjective problem, MGDA utilizes
gradient-based information. As it was said, the negative direction of
a gradient is a descent direction for a function. Once the individual
descent directions for objectives are known, in MGDA, the common
descent direction is obtained by taking a convex hull of these descent
directions and finding the minimum norm element of that hull.

In order to adopt this idea for nonsmooth optimization, the first
intuition suggests to replace classical gradients with subgradients. How-
ever, there is no guarantee that an opposite direction of an arbitrary
subgradient would be a descent one. For the multiobjective nonsmooth
convex case, we can prove that by taking the minimum norm element of
the convex hull of the union of the subdifferentials F (x) as in (2.4), we
either obtain a common descent direction or the zero vector indicating
that the point under consideration is weakly Pareto optimal. This is
formulated in the following theorem.

Theorem 3.4.1. (Original publication III) Let fi : Rn → R be a convex
function for all i ∈ I and let p∗ = argmin ‖p‖, where p ∈ conv F (x)
and d∗ = −p∗. Either we have

(i) d∗ = 0 and the point x is weakly Pareto optimal, or

(ii) d∗ 6= 0 and the vector d∗ is a common descent direction for every
objective function.
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As noted before, calculating the whole subdifferential even for one
objective is an exhaustive task, not to mention that subdifferentials
would need to be calculated for several objectives. To follow the spirit
of Theorem 3.4.1, in MSGDB we utilize the proximal bundle approach
to approximate the subdifferentials of individual objective functions by
gathering information from the neighbourhood of the current iteration
point. Therefore, the only mild requirements are that values of all the
objectives and one arbitrary subgradient for each objective can be eval-
uated at every iteration point.

In practice, we approximate the convex hull of F (x) with the convex
hull of the individual descent directions defined as the search directions
of the single-objective proximal bundle method. Each of these indi-
vidual directions is obtained by utilizing the proximal bundle method,
described in Section 3.2, for the individual objective. For each objective,
we form the bundle Bhi for all i ∈ I of the form (3.5) to approximate the
subdifferential of the individual objective. Then the direction finding of
the proximal bundle method is performed for individual objective until
the descent condition (3.12) is satisfied. We denote the individual de-
scent direction by di for all i ∈ I. As a result of the proximal bundle
method, the direction di is a solution of the problem (3.9) and it is of
the form (3.11).

Once individual descent directions are found separately, the next
task is to determine a candidate for the common descent direction. We
define the set C by

C = conv {di | i ∈ I},

which is used to approximate the convex hull of F (x). Next, we find the
minimum norm element of this set by solving the problem

min
∥∥∥∑

i∈I
λidi

∥∥∥2
s. t.

∑
i∈I

λi = 1 (3.15)

λi ≥ 0, for all i ∈ I,

having a unique solution λi for all i ∈ I since the objective function of
the problem (3.15) is strictly convex. We denote the solution candidate
by d∗h = −

∑
i∈I λidi obtained from the solution of the problem (3.15).

It is worth emphasizing that Theorem 3.4.1 does not guarantee that we
actually obtain a common descent direction, as in the smooth case, but
at least we obtain a good candidate for that.
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If ‖d∗h‖ = 0, or ‖d∗h‖ < ε, where ε > 0 in practice, then we can stop
and we have found a weakly Pareto optimal solution. Otherwise, we
continue by checking whether our candidate is suitable for the common
descent direction or not. If it is, we calculate the new iteration point
xh+1 = xh + td∗h, where t ≥ τ > 0 such that t is the stepsize and τ is
the stepsize tolerance. The stepsize can be calculated, for example, with
the Armijo [4] like rule.

Again, since we are considering the approximation, the descent di-
rection is not ensured and if any improvement is not achieved, we try
to find another candidate by adding information from the new auxiliary
point into the bundles and solving new individual descent directions.
This cycle is like the null step in the single-objective proximal bundle
method. If this null step does not pay dividends after some fixed number
of times, we have a hint that we might have reached a weakly Pareto
optimal solution even if the stopping condition is not yet satisfied. This
is due to the nonsmooth nature of the problem and the formulation of
the algorithm, and we might have lost some crucial information needed
to obtain the zero vector as the candidate. In this case, we are willing
to put in more computational effort and we improve the approximation
of F (xh) by involving not only the individual descent directions but all
the subgradients stored. Thus, we now solve the problem

min
∥∥∥∑

i∈I

∑
j∈Ji,h

λi,jξi,j

∥∥∥2 +
∑
i∈I

∑
j∈Ji,h

λi,jα
h
i,j

s. t.
∑
i∈I

∑
j∈Ji,h

λi,j = 1 (3.16)

λi,j ≥ 0, for all i ∈ I, j ∈ Ji,h,

where a subgradient ξi,j ∈ ∂fi(yj) and yj is an auxiliary point, αh
i,j

is a linearization error of the form (3.7), and Ji,h is a set of indices
related to the bundle of the objective function i ∈ I. In fact, we have
ended up with the same problem what we would solve, if we found a
search direction in the single-objective proximal bundle method with
the standard improvement function (3.2) as its objective. More about
this is discussed in Section 3.3. The general idea of MSGDB is described
in the simplified flowchart in Figure 3.4.

Under mild assumptions that the level set {x ∈ Rn | fi(x) ≤ fi(x0),
for all i ∈ I} is bounded and the stopping parameter ε is zero we can
prove that if MSGDB stops with a finite number of iterations, then the
solution is weakly Pareto optimal. Furthermore, if there exists an infinite
cycle, the accumulation point generated by MSGDB is weakly Pareto
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Initialization: Select x0

and ε > 0. Initialize B0i
for all i ∈ I. Set h = 0.

Individual directions:

Calculate di for all i ∈ I by (3.9).

Search direction candidate:

Calculate d∗h by (3.15).

Stopping condition:

Is ‖d∗h‖ < ε?

STOP

Is the maximum number

of null steps reached?

Null step: Calculate

z = xh + d∗h and

update Bhi for all i ∈ I.

Serious step: Calculate t and

xh+1 = xh + td∗h. Set h = h+ 1

and update Bhi for all i ∈ I.

Descent test: Is d∗h a

common descent direction?

Search direction candidate:

Form a convex hull of all

subgradients and calcu-

late d∗h by solving (3.16).

Yes

No

Yes

No

Yes

No

Figure 3.4: Flowchart of MSGDB

optimal. The proof of the convergence rely mainly on the convergence
of the single-objective proximal bundle method.

The comparison of two methods is usually problematic and this be-
comes emphasized in the multiobjective case when we really cannot com-
pare how well the known unique optimal solution is achieved as can be
done in the single-objective case. We briefly comment on the numeri-
cal comparisons with MSGDB and MPB in the original publication III,
where 20 unconstrained convex multiobjective problems are solved with
two or three objectives. One important issue is the efficiency of the
method. The computational efforts of MSGDB and MPB in terms of
subgradient evaluations and iterations are quite similar, as we can notice
from the performance profiles [37] given in Figure 3.5. In multiobjective
optimization, it is important not only to produce solutions efficiently
but also to be able to obtain different weakly Pareto optimal solutions
from the same preference information. By the results in the original
publication III, MSGDB and MPB produce mainly different solutions.
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(a) Subgradient evaluations (b) Iterations

Figure 3.5: Performance profiles of MSGDB and MPB

To summarize, MSGDB is a descent method extending the ideas of
the single-objective smooth steepest descent method for the nonsmooth,
unconstrained, convex multiobjective framework. The method is rather
simple to implement, since we need to evaluate only one arbitrary sub-
gradient and function values at every point for each objective. If we
compare MSGDB with MPB described in Section 3.3, we solve several
quadratic subproblems at each iteration in MSGDB, but those can be
solved parallel and the size of problems is smaller than the one quadratic
subproblem solved in MPB at each iteration. Only exception is the prob-
lem (3.16) being actually the same problem as solved in MPB as the dual
problem of the problem (3.14).

3.5 Multiobjective Double Bundle Method

The multiobjective double bundle method (MDBDC), proposed in the
original publication IV and discussed more in the original publication V,
is designed for multiobjective problems having objectives and constraints
of the DC form meaning that they can all be represented as the difference
of two convex functions. These DC functions form a wide subclass of
nonconvex functions, but due to their special structure, we can still
employ the convex analysis. In order to utilize the DC structure, the
DC decomposition needs to be known. However, this DC decomposition
is not unique, and unfortunately, it might be hard to single out even one
DC decomposition for an arbitrary DC function.

Besides the ability to utilize convex analysis, the motivation to study
DC optimization arises from the fact that some practical problems have
objectives in the explicit DC form. The examples of this kind are cluster-
ing [8], spherical separability problems [54], production-transportation
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planning [67], wireless sensor network planning [6], and data visualiza-
tion [21]. All of these examples have multiobjective nature but they are
solved as the single-objective problem. Additionally, in [74] a probabilis-
tic lot sizing model was solved as the multiobjective DC problem.

As an introduction to the topic, we say some words about single-
objective DC optimization. A great amount of studies dedicated to the
theory of DC functions and single-objective DC optimization has been
published in the past few decades (see e.g. [63,65,125,151,152]). Among
the theoretical achievements, there exist many methods designed for
single-objective DC optimization from different bases like DCA utilizing
duality [90, 91, 125], proximal point based methods [147], bundle type
methods [32,47,53,76,77], and branch-and-bound and outer approxima-
tion algorithms [68], to name just a few types of methods.

In Theorem 2.3.2, the necessary optimality condition is given when
the objectives are assumed to be general locally Lipschitz continuous
functions. The similar necessary optimality condition can be derived
also by assuming that the objectives are DC functions as is done, for
example, in [132]. From this point of view, if the objectives of the
problem (MOP) are of the form fi = pi − qi and x′ ∈ Rn is a locally
weakly Pareto optimal solution for the problem (MOP), then

conv {∂qi(x′) | i ∈ I} ⊆ conv {∂pi(x′) | i ∈ I}.

Unfortunately, this condition is hard to verify. However, it is easier to
validated Pareto criticality of the solution x′ ∈ Rn, that is,

0 ∈ conv {∂pi(x′)− ∂qi(x′) | i ∈ I}. (3.17)

This is done in [73], where two proximal point based multiobjective
methods for DC functions are presented. Every weakly Pareto stationary
point x∗ ∈ Rn satisfies the condition (3.17), since

0 ∈ conv {∂fi(x∗) | i ∈ I} ⊆ conv {∂pi(x∗)− ∂qi(x∗) | i ∈ I},

but a Pareto critical point is not necessarily weakly Pareto stationary.
Indeed, if we consider the biobjective problem with DC components
p1(x) = max {−x, 2x}, q1(x) = max {−2x, x}, p2(x) = max {x2, x}, and
q2(x) = max {0.5x2,−x}, where x ∈ R. Let x′ = 0. Now we can deduce
from the intersection

λ∂p1(x
′) + (1− λ)∂p2(x

′) ∩ λ∂q1(x′) + (1− λ)∂q2(x
′)

that, for example, with λ = 1 this intersection equals [−1, 1] and x′

is Pareto critical by the condition (3.17). On the other hand, x′ is
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not weakly Pareto stationary, since 0 /∈ conv {∂f1(x′), ∂f2(x′)} = {1}.
Thus, the weak Pareto stationarity is stronger condition than the Pareto
criticality. This happens also in the single-objective case, and therefore,
the majority of DC methods produce only critical solutions.

The starting point for MDBDC is to combine ideas from the im-
provement function, the single-objective proximal bundle method for
DC functions presented by Joki et al. in [76] and the escaping procedure
described in [77] by Joki et al. In MDBDC, we utilize the improvement
function to solve the problem (MOP), where objective functions are DC
functions fi = pi − qi for all i ∈ I and the set of feasible solutions is as
in (2.1) such that gl = rl − sl for all l ∈ L. The improvement function
H( · ,xh) is now a DC function as the maximum taken over DC func-
tions. The DC decomposition of the improvement function H( · ,xh)
can be obtained by rewriting functions fi and gl by using the technique
presented in [65]. For the objectives, we get

fi(x) = pi(x) +
∑
j∈I
j 6=i

qj(x) +
∑
t∈L

st(x)−
∑
j∈I

qj(x)−
∑
t∈L

st(x)

for all i ∈ I and the same technique can be applied for constraints as
well. In order to simplify the notations, we denote

Ai(x,y) = pi(x) +
∑
j∈I
j 6=i

qj(x) +
∑
t∈L

st(x)− fi(y) and

Bl(x) = rl(x) +
∑
t∈L
t6=l

st(x) +
∑
j∈I

qj(x).

Now the DC decomposition of H( · ,y) can be written as

H(x,y) = H1(x,y)−H2(x),

where

H1(x,y) = max{Ai(x,y), Bl(x) | i ∈ I, l ∈ L} and

H2(x) =
∑
i∈I

qi(x) +
∑
l∈L

sl(x)

and both H1( · ,y) and H2 are convex with respect to x, since the sum
of convex functions is convex as is the maximum taken over convex
functions.

As a bundle method, in MDBDC we store information from previous
iterations into the bundle. However, in this case, we have two bundles,
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Bh1 and Bh2 of the form (3.5) related to the DC components H1( · ,y) and
H2, respectively. Depending on the bundle, the index j is an element
of Jh

1 if the bundle is for H1( · ,y) and j ∈ Jh
2 if the bundle is for

H2. In practice, the bundle Bh1 is the union of separate bundles for
each Ai( · ,xh) and Bl. At every iteration, we assume that besides the
function values we can evaluate arbitrary subgradients of pi, qi, rl, and
sl from which the values of functions Ai( · ,xh), Bl, H1( · ,xh), and H2

and their subgradients ai, bl, h1, and h2 can be composed for all i ∈ I
and l ∈ L.

By Theorem 3.1.1 we know that if x∗ ∈ Rn is weakly Pareto station-
ary, then 0 ∈ ∂H(x∗,x∗), and thus, x∗ is Clarke stationary solution for
the improvement function H( · ,x∗). We can now focus on the single-
objective problem

min H(xh + d,xh) (3.18)

s. t. d ∈ Rn.

To solve the problem (3.18), we utilize the special cutting plane model
which is based on the cutting plane model given in [76]. This cutting
plane model captures both the convex and the concave behaviour of the
function. First, we linearize convex functions Ai( · ,y), Bl, and H2 as in
(3.6) and we denote them Âh

i , B̂h
l , and Ĥh

2 , respectively. Thus we can
define the cutting plane model for H1( · ,y) by

Ĥh
1 (x) = max{Âh

i (x), B̂h
l (x) | i ∈ I, l ∈ L}

and finally we obtain the piecewise linear, nonconvex, DC approximation
for the function H( · ,y) by

Ĥh(x) = Ĥh
1 (x)− Ĥh

2 (x).

By utilizing the DC structure of the improvement function, we ap-
proximate the problem (3.18) with the quadratic problem of the form

min
d∈Rn

P h(d) = Ĥh
1 (xh + d)− Ĥh

2 (xh + d) +
1

2t
‖d‖2, (3.19)

where t > 0 is the proximity parameter. To obtain a global solution for
this problem, we may utilize the solution approach described in [90, 91,
125]. In that purpose, we can reformulate the problem (3.19) and end
up to solve convex, nonsmooth subproblems

min
d∈Rn
{P h

j (d) = Ĥh
1 (xh + d)−H2(xh)− hT

2,jd+ αH
2,j +

1

2t
‖d‖2}
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for all j, where j is an index of the bundle Bh2 and h2,j ∈ ∂H2(yj).
Thus the number of the subproblems can be controlled, since the size
of the bundle can be freely chosen. This subproblem may be solved by
utilizing the same dual approach described in Section 3.2. The overall
global solution is denoted with dht and it is the solution of the subproblem
giving the smallest objective value.

Once we end up the situation, where ‖dht ‖ < δ and δ > 0, we either
generate a new descent direction or Clarke stationarity of the problem
(3.18) is achieved by applying the escaping procedure presented in [77].
We emphasize that ensuring the Clarke stationarity of the solution of a
DC problem in general is not a trivial task. Besides information about
the subdifferentials ∂H1(xh,xh) and ∂H2(xh) we already have, we need
some information about the subdifferential ∂H(xh,xh). This is due to
the fact that by calculating arbitrary subgradients h1 ∈ ∂H1(xh,xh) and
h2 ∈ ∂H2(xh), we cannot say that h1 − h2 ∈ ∂H(xh,xh). The beauty
of the applied escaping procedure lies in its ability to select ξ1 ∈ ∂p(x),
ξ2 ∈ ∂q(x) for any DC function f = p − q and x ∈ Rn such that
ξ1 − ξ2 ∈ ∂f(x) is ensured.

At every iteration of the escaping procedure, we approximate the
Goldstein ε-subdifferential ∂Gε H(xh,xh) with the set Uj consisting of
subgradients calculated as the difference of subgradients of the DC
components. Thus, the new direction can be found by evaluating
dj+1 = −ūj/‖ūj‖, where uj is the solution of the problem

min
u∈Uj

1

2
‖u‖2.

If the resulting direction is not descent or Clarke stationarity is not
achieved, the approximation of ∂Gε H(xh,xh) is improved by adding a
new subgradient. In order to exit from the escaping procedure, we either
find a descent direction or the approximated Clarke stationary condition
‖ξ∗‖ ≤ δ, where δ > 0 and ξ∗ ∈ ∂Gε H(xh,xh) is satisfied. If the latter is
the case, MDBDC is terminated. The progress of MDBDC is illustrated
in the simplified flowchart in Figure 3.6.

Under the mild assumptions that δ ∈ (0, 1), ε > 0, the subdiffer-
entials ∂H1(x,y) and ∂H2(x) are polytopes, and that the level set
{x ∈ X | fi(x) ≤ fi(x0), for all i ∈ I} is compact, MDBDC can be
proven to be finitely convergent to a weakly Pareto stationary point.
This result bases on the properties of the improvement function in The-
orem 3.1.1 and the convergence of the double bundle method for the
single-objective DC problem given in [77].

The numerical experiments in the original publication IV performed
with MDBDC and MPB have shown that MDBDC is a good alternative
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Figure 3.6: Flowchart of MDBDC

for MPB in the case of multiobjective DC optimization. In the computa-
tional point of view, the performance profiles [37] in Figure 3.7 show that
MDBDC is slightly better that comes to the subgradient evaluations and
MPB is better in CPU in the case of small test problems (n ∈ [2, 100]).
However, in the larger test problems (n ∈ [250, 500]), MDBDC beats
MPB. Another advantage of MDBDC is that it can overcome some lo-
cal stationary points that MPB does not. Indeed, in these numerical
tests this happened around 30% of cases.

To summarize, the novelty of MDBDC is to utilize the DC structure
of the nonconvex objectives in multiobjective optimization producing
weakly Pareto stationary solutions. By the numerical experiments, we
can conclude that with the more accurate model capturing the convex
and concave behaviour of the objective, we can learn more about the
objectives, and thus, obtain better solutions.
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(a) Subgradient evaluations, n ∈ [2, 100] (b) CPU, n ∈ [2, 100]

(c) Subgradient evaluations, n ∈ [250, 500] (d) CPU, n ∈ [250, 500]

Figure 3.7: Performance profiles of MDBDC and MPB
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Chapter 4

Methods Using
Achievement Scalarizing
Functions

This chapter focuses on a scalarization technique called the achievement
scalarizing function (ASF). The class of ASFs consists of functions hav-
ing certain properties, discussed more in Section 4.1, making them a
reasonable and reliable way to aggregate several objectives into one ob-
jective. The use of ASFs dates back to the work of Wierzbicki [158–162]
at the turn of the 1980’s and the different types of ASFs are discussed,
for instance, in [114,116].

The idea of ASFs in brief is to find a solution as close as possible to
the reference point by projecting the reference point to the Pareto set.
The reference point involves some preference information supplied by the
decision maker. Every component of the reference point describes which
value the decision maker would like to obtain for each objective. Thus,
it is important to find an optimal solution corresponding the reference
point as well as possible. The general mathematical properties of ASFs
are discussed in Section 4.1 and one specific family of ASFs, namely the
two-slope parameterized ASFs, is described in Section 4.2. In Section
4.3, the interactive method utilizing two-slope parameterized ASFs is
introduced.

4.1 Achievement Scalarizing Functions

When the objective functions of the problem (MOP) are scalarized by
using an achievement scalarizing function, we are solving the following

53
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scalarized problem

min
x∈X

sR(f(x),λ), (4.1)

where sR : Rk×Rk
+ → R is an ASF, and the objective functions fi : Rn →

R are assumed to be lower semicontinuous. The set X is the compact
set of feasible solutions, and Rk

+ =
{
y ∈ Rk | yi ≥ 0 for all i ∈ I

}
. One

widely used ASF is the Chebyshev type ASF

sR(f(x),λ) = max
i∈I

{
λi(fi(x)− fRi )

}
, (4.2)

where λ ∈ Rk, and λi > 0 is a weighting coefficient for the objective
function fi. These coefficients specify the direction of the projection
from the reference point fR ∈ Rk to the Pareto set. Note that, the
Chebyshev type ASF is nonsmooth.

We define a reference point as a vector fR consisting of desirable
values for the objectives fi, i ∈ I. The reference point is considered
as an approachable way for the decision maker to express preference
information. The advantage is that there is no need to order the objec-
tives by their importance. We say that the reference point is achievable
if fR ∈ Z + Rk

+, where Z is an image of the feasible solutions in the
objective space. Otherwise, the reference point is called unachievable.
The unachievable reference point corresponds to the optimistic and in-
feasible hopes of the decision maker while the achievable reference point
represents more secure and realistic wishes.

We illustrate the use of the Chebyshev type ASF in Figure 4.1. Fig-
ures 4.1a and 4.1b represent a set of feasible solutions in the objective
space with two different reference points, an unachievable one in Figure
4.1a and an achievable one in Figure 4.1b. The right-angled contours
of the ASF are expressed with black lines. In Figure 4.1a, the reference
point is unachievable, and the ASF minimizes the distance from the ref-
erence point to the feasible set. Thus, the contours increase towards the
feasible set and the solution obtained is the feasible solution touching
the contour first. In Figure 4.1b, the reference point is achievable, and
therefore, the ASF minimizes the maximum value of the negative dif-
ference between the reference point and the Pareto set in the objective
space. In this case, the solution obtained is a feasible solution touching
the contour last.

Once the multiobjective problem is converted into a single-objective
one, there are two essential issues to consider. First, is the optimal
solution of the scalarized problem (weakly) Pareto optimal solution for
the original multiobjective problem? Second, is it possible to obtain
every Pareto optimal solution with the selected scalarization?
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(a) Unachievable reference point (b) Achievable reference point

Figure 4.1: Graphical illustration of Chebyshev type ASF

The charm of ASFs originates from the fact that under mild as-
sumptions, the above mentioned properties can be guaranteed. Indeed,
if the ASF is strictly increasing, then the optimal solution of the scalar-
ized problem (4.1) is a weakly Pareto optimal solution of the problem
(MOP). If ASF is strongly increasing, then the solution of the scalarized
problem (4.1) is known to be a Pareto optimal solution. Additionally, by
utilizing a strictly increasing ASF, every weakly Pareto optimal solution
may be obtained by moving only the reference point. [161,162]

Based on these definitions, any strongly increasing ASF is strictly in-
creasing as well, but the inverse is not necessarily true. For example, the
Chebyshev type ASF (4.2) is strictly increasing but not strongly increas-
ing. Nevertheless, in order to obtain the good properties of the strongly
increasing ASF, we can add the augmentation term to the strictly in-
creasing ASF. For example, in the situation illustrated in Figure 4.1, the
augmentation term added to the Chebyshev type ASF widens the angle
of contours a bit, and thus, it excludes weakly Pareto optimal solutions.
The scalarized problem (4.1) can be written in the augmented form

min
x∈X

sR(f(x),λ) + ρ
∑
i∈I

λi(fi(x)− fRi ),

where the scalar ρ > 0. By adding the augmentation term to the ASF,
the strictly increasing ASF becomes strongly increasing, and therefore,
the Pareto optimal solution is ensured as a solution.

4.2 Two-slope Parametrized ASFs

In the original publication VI, a family of two-slope parameterized
achievement scalarizing functions is proposed. This family of ASFs ex-
tends both parameterized ASFs introduced in [122] by Nikulin et al.
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and two-slope ASFs described in [105] by Ruiz et al. Here we briefly
describe the basic properties of two-slope parameterized ASFs and ex-
emplify them.

The Chebyshev type ASFs (4.2) are widely used, since they have
good mathematical properties discussed in the previous section. One
example of these properties is that any weakly Pareto optimal solution
can be obtained. The Chebyshev type ASF corresponds to the use of the
L∞ metric. In addition, there exist other types of metrics, for instance,
the linear L1 metric. However, unlike with the L∞ metric, not every
weakly Pareto optimal solution is necessarily obtained in the nonconvex
case. This is due to the fact that there might exist nonsupported so-
lutions. Therefore, in [140] the additive ASF basing on the L1 metric
ensuring that every weakly Pareto optimal solution can be obtained is
presented. This idea of the additive ASF was further generalized in [122],
where the parameterized ASFs are introduced.

Sometimes more than just one Pareto optimal solution is wanted.
This task can be compiled by solving the multiobjective problem by
using several different scalarizing functions. The advantage is that we
might find solutions of different kind. This is exemplified in Figure 4.2
where two different scalarizing functions are used with the same reference
point. However, the selection of scalarizing functions is not an easy task.
Indeed, by fixing the scalarizing function, also the solution is fixed, and
randomly selected scalarizing functions may lead to a badly distributed
set of solutions.

The parameterization used in the parameterized ASFs gives a sys-
tematic way to produce different Pareto optimal solutions from the same
preference information. The parameterization of this kind yields a bet-
ter distributed sample of the Pareto set. However, a limitation of the

Figure 4.2: Solutions with two different ASFs and one reference point
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parameterized ASFs is that the reference point should not be strictly
dominated by some feasible point. To overcome this drawback, we uti-
lize the idea of two different weighting vectors depending on the achiev-
ability of the reference point described in [105]. The use of different
weighting vectors is sensible, since the decision maker usually prefers
different solutions if the reference point is achievable than in the case
of the unachievable reference point, as was suggested in [18]. Therefore,
there is neither need for any assumptions about the reference point nor
to test its achievability.

We consider a scalarized problem of the form

min
x∈X

ŝqR(f(x),λU,λA), (4.3)

where ŝqR : Rk×Rk
+×Rk

+ → R is the two-slope parameterized achievement
scalarizing function defined by

ŝqR(f(x),λU,λA)=max
Iq

{∑
i∈Iq

[
max

{
λUi(fi(x)−fRi ),0

}
+min

{
λAi (fi(x)−fRi ),0

}]}
.

Again, we assume that the objective functions fi : Rn → R are lower
semicontinuous and the set of feasible solutions X is compact. Here
weighting vectors related to the unachievable reference point λU ∈ Rk

and to the achievable reference point λA ∈ Rk are selected such that
λU > 0 and λA > 0, the integer q ∈ I, and Iq ⊆ I such that |Iq| = q.
Indeed, the maximization is taken over all the different sets containing
q integers from the interval [1, k]. Note that this formulation can be
extended to contain also integer variables in addition to the continuous
variables as in the original publication VII.

An interesting point to consider is whether the scalarized problem is
harder to solve than the original multiobjective problem with one of the
original objectives as the objective function or not. Due to the min-max
nature of the problem (4.3), it is nonsmooth even though all the objective
functions of the problem (MOP) are smooth. However, the problem (4.3)
can be written as the nonlinear mixed integer problem, and therefore,
preserve the possible smoothness of the original problem. But then the
integer variables are introduced and special methods handling integer
variables are needed.

By changing the values of the parameter q, different metrics varying
in different combinations between the L1 metric to the L∞ metric are
obtained. Extreme cases with the L1 metric and the L∞ metric are
obtained when q = k and q = 1, respectively, where k is the number of
objective functions in the problem (MOP). Based on the formulation of
the function ŝqR, if q = 1, then ŝqR equals the two-slope ASF proposed in
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[105] and with the unachievable reference point, the function ŝqR reduces
back to the parameterized ASF described in [122].

We illustrate the two-slope parameterized ASFs in the simplest non-
trivial case where the problem (MOP) has three objectives, and thus,
k = 3. In Figure 4.3, 1-level sets of a function ŝqR are presented with
three different values of the parameter q. With the 1-level set we mean
a set of points for which the distance from the reference point equals
1. The objectives are identity mappings fi(x) = x, for all i ∈ I, the
weighting vectors λU = λA = (1, 1, 1) and the reference point is selected
to be fR = (0, 0, 0)T . As we see, the shapes of 1-levels vary from sharp
to flat based on the choice of the parameter q.

If q = 1, an algebraic form of the two-slope parameterized ASF is

ŝ1R(f(x),λU,λA)=max
{

max
{
λU1 (f1(x)− fR1 ), 0

}
+min

{
λA1(f1(x)− fR1 ), 0

}
;

max
{
λU2 (f2(x)− fR2 ), 0

}
+min

{
λA2(f2(x)− fR2 ), 0

}
;

max
{
λU3 (f3(x)− fR3 ), 0

}
+min

{
λA3(f3(x)− fR3 ), 0

}}
.

This is graphically illustrated in Figure 4.3a. This case corresponds
to the case of the Chebyshev type, or the L∞, metric. When q = 2,
we obtain a metric being between the L∞ and L1 metrics and this is
exemplified in Figure 4.3b. In this case, the two-slope parameterized
ASF takes the form

ŝ2R(f(x),λU,λA)=max
{

max
{
λU1 (f1(x)− fR1 ), 0

}
+min

{
λA1(f1(x)− fR1 ), 0

}
+ max

{
λU2 (f2(x)− fR2 ), 0

}
+min

{
λA2(f2(x)− fR2 ), 0

}
;

max
{
λU1 (f1(x)− fR1 ), 0

}
+min

{
λA1(f1(x)− fR1 ), 0

}
+ max

{
λU3 (f3(x)− fR3 ), 0

}
+min

{
λA3(f3(x)− fR3 ), 0

}
;

max
{
λU2 (f2(x)− fR2 ), 0

}
+min

{
λA2(f2(x)− fR2 ), 0

}
+ max

{
λU3 (f3(x)− fR3 ), 0

}
+min

{
λA3(f3(x)− fR3 ), 0

}}
.

(a) 1-level set for q = 1 (b) 1-level set for q = 2 (c) 1-level set for q = 3

Figure 4.3: Two-slope parameterized ASF with different values of q
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Finally, when q = 3, the situation corresponds to the linear L1 metric, as
is seen in Figure 4.3c. The algebraic form of the two-slope parameterized
ASF is now

ŝ3R(f(x),λU,λA)=max
{
λU1 (f1(x)− fR1 ), 0

}
+min

{
λA1(f1(x)− fR1 ), 0

}
+ max

{
λU2 (f2(x)− fR2 ), 0

}
+min

{
λA2(f2(x)− fR2 ), 0

}
+ max

{
λU3 (f3(x)− fR3 ), 0

}
+min

{
λA3(f3(x)− fR3 ), 0

}
.

We move on to discuss the theoretical properties of the two-slope
parameterized ASFs. The essential features of scalarization discussed in
Section 4.1 are claimed for the two-slope parameterized ASF.

Theorem 4.2.1. (Original publication VI)

For the scalarized problem (4.3) it holds that:

(i) Any optimal solution of the scalarized problem is weakly Pareto op-
timal for the problem (MOP), and among these optimal solutions
of the scalarized problem, there exists at least one Pareto optimal
solution.

(ii) If x∗ is a weakly Pareto optimal solution for the problem (MOP),
then it is a solution of the scalarized problem with fR = f(x∗),
and an optimal value is zero.

Based on Theorem 4.2.1, it is obvious that if an optimal solution of
the scalarized problem is unique, then the obtained solution is a Pareto
optimal solution for the original multiobjective problem.

As these theoretical results may give a hint, it can be established that
the function ŝqR is increasing, and as discussed previously, we can add
the augmentation term to the function ŝqR making it strongly increasing
to guarantee a Pareto optimal solution in practice. Then, the resulting
scalarized problem is

min
x∈X

ŝqR(f(x),λU ,λA) + ρ
∑
i∈I

λi(fi(x)− fRi ), (4.4)

where ρ > 0 and λi > 0 for all i ∈ I.

Moreover, it is straightforward to see that the function ŝqR preserves
the convexity and the f◦-pseudoconvexity of the objectives fi, i ∈ I, and
if all the objectives fi, i ∈ I are DC functions, then a function ŝqR is a
DC function as well. In the case of convex or f◦-pseudoconvex objective
functions, a global optimum of the scalarized problem (4.3) is obtained,
but in general, only a local optimum can be ensured.
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To sum it up, the advantages of the two-slope parameterized ASF
are that at least a weakly Pareto optimal solution is always found, and
any weakly Pareto optimal solution may be obtained by changing the
reference point. Moreover, there are no restrictions for the location of the
reference point, since the two-slope parameterized ASF uses a suitable
weighting coefficient in every case, and thus, the achievability tests of
the reference point can be omitted. The parameterization used gives a
systematic way to produce different (weakly) Pareto optimal solutions
from the same preference information with different metrics.

In practice, this kind of systematic way to utilize preference informa-
tion may be useful in some interactive methods. In order to find different
(weakly) Pareto optimal solutions, the scalarized problem (4.3) can be
solved with all or just some values of the parameter q, especially with
the higher number of objectives. Thus, it is interesting to know more
about how the value q affects the shape of the D-levels (i.e. the points
whose distance from the reference point equals D). The numerical tests
performed in the original publication VI have shown that the sparsity of
the solutions produced with different values of the parameter q is good.
In these tests, the computational times do not differ with different values
of the parameter q in the convex case, but in the nonconvex case, the
Chebyshev type metric turns out to be the most time-consuming metric.
An example of the use of the two-slope parameterized ASF in the in-
teractive framework is given in the following section and this interactive
procedure is then applied in practice in Chapter 5.

4.3 Interactive Method with Two-slope Parameterized
ASFs

In Section 2.4, the multiobjective methods were categorized in four dif-
ferent groups based on the role of the decision maker. In Chapter 3,
three different no-preference methods from the first group were dis-
cussed, and in this chapter, the discussion continues with ASFs that
can be seen as members of either the second or the third group, namely
a posteriori or a priori method. Besides these two groups, ASFs fit also
in the fourth group, involving interactive methods, with the suitable
framework. Compared with the methods discussed previously, interac-
tive methods need interaction between two parts: the analyst solving
the mathematical problem and the decision maker solving the decision
making problem during the whole solution process. This interaction is
beneficial since the aim is to produce the most satisfying solution for the
decision maker.

At the best, interactive methods are an active dialogue between the
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decision maker and the analyst. Due to the active role of the decision
maker, (s)he is able to learn about the problem what is possible to
achieve and how the variables and objectives are linked together. Only
after the learning phase the decision maker needs to make the final deci-
sion. Besides the learning, other advantages of the interactive methods
include the realistic expectations of the decision maker and the saving in
the computational time when the calculation of the whole Pareto set is
not needed. Unfortunately, the benefits of interactive methods are also
their weakness. Indeed, interactive methods demand much from the de-
cision maker. At every iteration, new input and decisions are needed.
During the solution process, the decision maker may get bored or forget
things and the interaction takes time.

Many interactive methods have the similar core idea: first begin
with the initialization phase followed by the learning phase and ending
with the decision phase. In the initialization phase, some aid for the
decision maker to select suitable preference information can be given by
illustrating the range of the Pareto set. The learning phase consists of
the following steps:

1. ask some preference information from the decision maker;

2. solve the optimization problem;

3. provide some solutions for the decision maker;

4. ask the decision maker to specify one preferred solution;

5. ask the new preference information from the decision maker.

These steps are repeated until the satisfying solution is found and the
decision maker is ready to move on the decision phase to make the final
selection. The main differences between interactive methods occur in
how the preference information is given and how the different Pareto
optimal solutions are obtained.

The communication between the decision maker and the analyst can
be performed in different ways. In [112], the different types of preference
information are categorised in five. The first category contains methods
needing the aspiration levels for the objectives. One common form of the
aspiration levels is the reference point. The second category is formed
by the methods classifying the objectives such that the decision maker
expresses her/his wishes by selecting the objectives to be improved and
to be allowed to impair. It is noteworthy that the first two categories are
quite similar, since the reference point can be formed by the classification
(see e.g. [114]). The third category requires the decision maker to be
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able to compare the different solutions and guide the solution process in
this way. In the fourth category, the decision maker considers the trade-
off information in the terms of the marginal rates of substitution, and
the last category is the navigation, where the preference information is
given as a direction.

Our focus is on the methods utilizing the reference point (see
e.g. [19, 72, 111, 112, 121, 153, 160]) as the tool of communication. Even
if preference information in these methods is similar, the solutions pre-
sented for the decision maker may differ. One option is to present only
one solution obtained by solving some scalarized problem, as is done,
for instance, in the GUESS method [19]. If we wish to present several
alternatives as a sample of the Pareto set, we can give the decision maker
a solution obtained using the reference point with some additional close
solutions. Examples of this are the use of characteristic neighbours in
the light beam search [72] and the perturbed reference points in the ref-
erence point method [160]. The closer the reference points are to the
Pareto set, the narrower the sparse of solutions is whereas if the reference
point is further from the Pareto set, the wider selection of Pareto optimal
solutions is obtained [160]. In addition, as mentioned, the scalarization
used defines the solution obtained. Thus, it is possible to use some differ-
ent scalarizing functions and produce solutions from the same reference
point, as is done in the synchronous NIMBUS method [115].

Like many other interactive methods, the multiobjective interactive
method utilizing two-slope parameterized ASFs (MITSPA) presented in
the original publication VII, uses reference points as the tool for han-
dling preference information. The special features of our approach relate
to the use of the two-slope parameterized ASF and the way the alter-
native solutions are obtained. The beauty of the two-slope parameter-
ized ASF lies in the fact that instead of using some general ASFs, we
can systematically produce different Pareto optimal solutions from the
same preference information. Therefore, we are able to avoid the badly
distributed set of solutions which may happen with randomly selected
scalarizing functions. Next, we sketch the idea of MITSPA and discuss
its properties.

At first, the ranges of the Pareto optimal solution are illustrated for
the decision maker. The Pareto optimal solution f0 can be calculated
with some no-preference method, like descent methods in Chapter 3,
or for example with the two-slope parameterized ASF with the ideal or
the utopian vector as the reference point. Therefore, somewhat neutral
Pareto optimal solution can be presented as the starting point. After
that, the decision maker selects the first reference point fR

1 and the
scalarized problem (4.4) is solved. As stated in the previous section,
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the solution of this scalarized problem with the augmentation term is
Pareto optimal, and thus, the solutions presented for the decision maker
are Pareto optimal. We recall that we are able to obtain as many dif-
ferent solutions as there are objectives. However, at each iteration only
some of the solutions are presented for the decision maker. We denote
the number of solutions presented with s. It is beneficial to keep s
quite small since the high number of solutions presented simultaneously
unnecessarily complicates the decision maker’s task. Especially, if the
number of objectives is large, some suitable selection of solutions is bet-
ter to be presented instead of all values of the parameter q expressing
how many different metrics there are available. If the decision maker
is still interested to see more solutions from the same reference point,
this is allowed. If the total number of original solutions selected and the
supplementary solutions wanted exceeds the number of the objectives,
or in other words, the number of different solutions obtained with the
parameterization, more solutions can be calculated by varying the coef-
ficients λU and λA in (4.4). The flowchart of MITSPA is given in Figure
4.4, where the abbreviation DM refers to the decision maker.

Amongst the solutions presented, the decision maker is asked to se-
lect the most preferred one to be the current solution fh. In order to
enable the learning, the decision maker can select a new reference point
fR
h and new solutions are presented. Note that solutions from the pre-

vious iterations can be stored such that the decision maker can return
to previous solutions if the newer solutions are less likeable.

Since the solutions and the reference points are in the same form,
it is easier for the decision maker to select new reference points based
on the previous solutions. In principle, a new reference point, and at
the same time, a new iteration can be performed as many times as
the decision maker wishes. The procedure stops when the satisfying
solution for the decision maker is found or some fixed maximum number
of iterations hmax is reached. Even if the maximum number is fixed, it
is still important to confirm that the decision maker is willing to stop.

To conclude, the above framework gives an example of how to utilize
the two-slope parameterized ASF in the interactive method. The pref-
erence information is given with the reference point which is considered
as an approachable way for the decision maker to handle the preference
information. The decision making is aided by giving a few different solu-
tions at the time, and the solutions presented aim to reflect the decision
maker’s wishes. By giving the time for the learning, hopefully more
satisfactory solutions are found. The practical value of this interactive
framework is exemplified in Chapter 5, where MITSPA is applied for
the real-life application of the disposal of the spent nuclear fuel.
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Figure 4.4: Flowchart of MITSPA



Chapter 5

Scheduling the Final
Disposal of the Spent
Nuclear Fuel

The final disposal of the spent nuclear fuel is a current topic, especially
in Finland where the disposal will start in the near future. Indeed,
Finland will be one of the first countries to begin the disposal in 2020’s.
The challenge in the disposal is its long term nature. Due to this, the
decisions made today has long term consequences. Therefore, the careful
planning and optimization of the processes are necessary.

In Finland, the geological disposal, which is widely accepted to be a
safe and ethical solution, will be implemented. In the geological disposal,
the assemblies removed from the reactor are first put into the water pool
in the reactor hall to decrease the decay heat power and the radiation to
the suitable level such that assemblies can be transferred to the interim
storage to be stored in water pools for decades. Once the assemblies are
cool enough, they are transferred into the encapsulation facility, where
they are placed in the copper-iron canisters. After that, the canisters are
placed in the vertical holes in the disposal tunnels. The disposal tunnels
are connected to the central tunnel in the disposal facility situated in the
bedrock. The last thing to do is to fill up and seal the disposal tunnel.

In the original publications VII and VIII, the aim is to model and
solve the schedule for the disposal in Finland in terms of multiobjective
optimization. The first publication considers the case when only one
type of the spent nuclear fuel is disposed of and the latter one extends the
model in the first publication for the case when all three fuel types used
in Finland are involved. A study of the same type is discussed in [135],
where the similar situation is modelled as a single-objective linear cost
minimization problem. Another effort for the disposal schedule is in [137]
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but there the area of the disposal facility is minimized. There exists
also a research related to the placement of the spent nuclear fuel in the
underground repository modelled as a multiobjective problem in [75].

In this chapter, we discuss the suitable models to optimize the dis-
posal of the spent nuclear fuel in Finland. We sketch the models and
consider their numerical challenges. Then two case studies are sum-
marized. In these case studies, the interactive approach utilizing the
two-slope parameterized ASFs (MITSPA) presented in Section 4.3 is
applied.

5.1 Mathematical Model

In the original publications VII and VIII, the final disposal of the spent
nuclear fuel is modelled as the multiobjective nonsmooth MINLP prob-
lems of the following form:

min f1(x,y), . . . , fk(x,y) (5.1)

s. t. gj(x,y) ≤ 0, j = 1, . . . ,m

hl(x,y) = 0, l = 1, . . . , p

x ∈ Rn
+, y ∈ Zr.

The model in the original publication VII involves nine objectives and
in the original publication VIII eight objectives. In the both cases the
number of objectives is quite high. These objectives to be minimized in
the case of one fuel type are:

1. maximum number of assemblies in the storage;

2. maximum storage time;

3. average storage time;

4. total number of canisters;

5. ending date of the encapsulation;

6. operation time of the encapsulation facility;

7. total length of disposal tunnels;

8. total length of the central tunnel;

9. total cost

and in the case of three fuel types they are:

1. number of additional water pools;

2. average storage time;
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3. total number of canisters;

4. ending date of the encapsulation;

5. operation time of the encapsulation facility;

6. total length of disposal tunnels;

7. total length of the central tunnel;

8. total cost.

Note that due to the importance of safety issues, the safety aspects,
like the thermal dimensioning of the spent nuclear fuel repository or the
minimum cooling time of the spent fuel assembly, are considered as con-
straints. In the first case, the objectives 1, 2, 5, and 7–9 are nonlinear
and the rest are linear. Concerning the nonlinear objectives, the objec-
tives 1, 2, 5, and 9 are also nonsmooth. In the latter case, the objectives
4 and 6–8 are nonlinear and 4 and 8 are also nonsmooth. In the first
case, the first three objectives are related to the interim storage, the
next three for the encapsulation facility, the next two for the disposal
facility, and the last objective considers the whole disposal process. Con-
cerning the latter case, instead of the maximum number of assemblies
in the storage the number of additional water pools is considered and
the objective minimizing the maximum storage time is omitted in order
to reduce the size of the model. The rest of the objectives are the same
than in the first case.

The total cost is an obvious objective but also the rest of the objec-
tives are cost factors. In the case where the actual price is not known it
is reasonable to minimize the source of costs. Furthermore, these objec-
tives have also other reasons to be optimized. For example, the faster
the assemblies are disposed of the safer it is. On the other hand, the
size of the bedrock is bounded, so the area needed for the disposal is
minimized.

As an intuition might suggest, these objectives are conflicting. In-
deed, if we try to end the disposal as early as possible, the heat load
of the canisters is higher and the larger area of the underground reposi-
tory is needed. In order to handle the higher heat load, we either have
to increase the storage time or leave empty assembly positions in the
canisters. Naturally, all of these affect the costs.

As the result, the model (5.1) gives a schedule in terms of how many
canisters are disposed of in each period. The assigning of assemblies in
to the canisters is left as its own problem which is studied for example
in [89,135,136,156,165]. We have made some assumptions, for instance,
nothing has been disposed of yet and all the assemblies are identical and
obtainable.
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From the theoretical and the computational point of view the prob-
lem of the form (5.1) is hard to solve. Besides the quite high number of
objectives, the problem involves binary variables. Moreover, the model
includes nonlinear constraints, and in the case of one fuel type, one of
them is also nonsmooth. The nonsmoothness arises from the depen-
dence between the canister and the disposal tunnel spacing, and the
maximum average power of the canister. This relation is approximated
with a piecewise linear function. In the second case, these relations are
defined separately for each fuel type and they are approximated with
nonlinear functions. Furthermore, the sizes of the problems are large.
Indeed, with 19 periods of 5 years and 11 removals from the reactor used
in the first case study, the dimensions of the problem are 9 objectives,
440 continuous and 475 binary variables, 3 box constraints, 1144 linear
constraints, and 20 nonlinear constraints. In the case of three fuel types,
19 periods of 5 years and 13 removals from the reactor, the dimensions
are 8 objectives, 963 continuous, 77 binary, and 41 integer variables, and
887 linear, 61 nonlinear, and 890 box constraints.

In order to solve the problem (5.1) in the both cases, we use MITSPA
described in Section 4.3. In these cases, this method is superior to the
descent methods presented in Chapter 3, since those methods cannot
handle binary variables. Compared with the use of only the two-slope
parameterized ASF as such, the efforts needed for the interactive ap-
proach are profitable, since in the problem of this scale and importance,
everything we can learn is valuable.

In Section 4.1 it was discussed that when ASFs are used it is im-
portant to address the questions whether the optimal solution of the
scalarized problem yield a Pareto optimal solution and whether we are
able to obtain every Pareto optimal solution. As it is pointed out in [41],
in addition to these, it is important to consider the question whether
we can solve the scalarized problem in the discrete case since then the
scalarized problem may easily become very challenging. In Section 4.2,
we noticed that the two-slope parameterized ASF is always nonsmooth.
However, the problem (5.1) already contains nonsmooth functions, and
thus, this does not change the theoretical difficulty of the problem. In
practice, the nonsmoothness can be overcome by rewriting the problem
as a MINLP problem. This, in its turn, yields to the introduction of
some auxiliary binary variables. Nevertheless, the original problem al-
ready has binary variables so neither this does yield a significant increase
for the level of the theoretical difficulty. In the following sections, we
see how this problem is solved in practice and what kind of results are
obtained.
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5.2 Optimization Results with One Fuel Type

In this section, we give an example of how the interactive method in
Section 4.3 is performed to solve the problem (5.1) with nine objec-
tives from the previous section. These results are commented with
more details in the original publication VII. The scalarized problem
(4.4) in Step 2 of MITSPA is solved in GAMS [27] by using the method
called BARON [81, 150] which is a global branch-and-cut type method
for single-objective MINLP problems.

In the initialization phase of MITSPA, some ideas of the range of the
Pareto set are given for the decision maker. Based on these, the decision
maker selects the first reference point. In the learning phase, the decision
maker guides the solution process with four different reference points,
each corresponding to one iteration. For each reference point, we can
calculate 9 different solutions by varying the value of the parameter q in
(4.3) specifying the metric used. However, in each iteration we show only
two different solutions from the nine possible solutions for the decision
maker to ease the decision.

In the learning phase, it is observed that the solutions can be divided
into two groups based on the starting time of the disposal. Interestingly,
the solutions with early starting time are obtained with the small values
of q and the solutions with later starting time with larger values of q.
The solutions obtained in the learning phase are depicted in Figures 5.1
and 5.2. The notable issue is that if, for example, only the Chebyshev
metric was used, no solutions with the late starting time would have
been obtained.

In Figures 5.1a and 5.2a, the objective function values obtained are
illustrated in the scale from 0 to 1 such that 0 is the ideal value for
each objective and 1 represents the value of the component of the nadir
vector for the objective in question. The different solutions are labelled
based on the reference point used and the value of the parameter q. For
example, the solution r1q1 is the result obtained by using the reference
point 1 and q = 1.

For instance, in Figure 5.1a, we can compare the solutions obtained
with the reference point 1 and q = 1 (r1q1) and the solution obtained
with the reference point 3 and q = 2 (r3q2). As is shown in Figure
5.1a, the solution r3q2 has slightly smaller maximum number of stored
assemblies (obj. 1) and empty canister positions than the solution r1q1
(obj. 4). On the contrary, the total cost (obj. 9) and the maximum
storage time (obj. 2) in the solution r3q2 are little higher than in the
solution r1q1. The bigger differences can be seen, for example, in the
average storage time (obj. 3) which is significantly smaller in the solution
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(a) The objective values for solutions

(b) The solution r1q1 (c) The solution r2q1

(d) The solution r3q2 (e) The solution r4q4

Figure 5.1: The 4 solutions where disposal starts early

r1q1 than in the solution r3q2. Similar observation can be made for the
objectives related to the ending time of the encapsulation (obj. 5) and
the operation time of the encapsulation facility (obj. 6). However, the
dimensions of the disposal facility (obj. 7 and 8) are smaller in the
solution r3q2 than in the solution r1q1.

As mentioned, the result of the problem (5.1) is a schedule in terms
of the number of canisters which are encapsulated at each period. This
is illustrated in Figures 5.1b–5.1e and 5.2b–5.2e. We see that the sched-
ules in Figure 5.1 have similar shape between each other as well as the
schedules in Figure 5.2. In Figure 5.1, the starting and the ending times
together with the total number of canisters vary, but all the schedules
suggest to begin with a smaller capacity for the several periods and only
at the last period raise the capacity. The opposite is recommended in
the schedules in Figure 5.2, since here all the assemblies are encapsulated
within two periods such that the second period is encapsulated with full
capacity and in the first period the rest is encapsulated.
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(a) The objective values for solutions

(b) The solution r1q9 (c) The solution r2q9

(d) The solution r3q8 (e) The solution r4q9

Figure 5.2: The 4 solutions where disposal starts late

From the learning phase, we can say that the solutions adopt the
reference points quite well in general. The solutions can be divided
into two groups by the starting time of the disposal. Compared with
the late start, the early start seems to improve the objectives 1–3 and
impair others. As mentioned, the early start suggests to begin with a
small capacity but this deteriorates the values of the objectives 1–3, 5,
6, and 9. Nevertheless, despite the objective 9, these objectives can
be improved by allowing empty canister positions, but this, in its turn,
yields increase in the objectives 4 and 7–9. On the other hand, the late
start implies the high capacity. The objectives 7–9 can be improved by
delaying the starting time, but then the objectives 2, 3, and 5 increase.
The empty canister positions have only minor effect in the case of the
late start. However, the objectives 2, 3, and 5 can be improved by
increasing the number of empty canister positions which again yields
impairing the objectives 4 and 7–9.

In the learning phase, the different trade-offs in the model were in-
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vestigated with different reference points. During the solution process,
the decision maker selects the current solutions fh as following: the so-
lution r1q9 for f1, the solution r2q1 for f2, the solution r3q8 for f3, and
the solution r4q4 for f4. As was noticed, the solutions are distributed
in two groups based on the starting time of the disposal. In the decision
phase, the decision maker is willing to return the solutions obtained with
the reference point 2 and consider these solutions as satisfying compro-
mises regardless the starting time of the disposal. However, as the final
solution f∗ the decision maker selects the solution r2q9 due to its rather
good values for other than the maximum storage capacity. Nevertheless
in the learning phase, it was noticed that this is mandatory, if the cost
and the disposal facility area are small. Furthermore, if we compare the
solution r2q9 with the late start to the solution r2q1 with the early start,
we see that both of these still end at the same disposal period.

5.3 Optimization Results with Three Fuel Types

While the case study given in the previous section has academic back-
ground, the more realistic case study presented in the original publi-
cation VIII and in this section is considered. The study is performed
in association with Posiva Oy being responsible to the final disposal of
the spent fuel assemblies irradiated in the reactors which are currently
operating and under the construction in Finland. In total these five re-
actors use three different type of fuels, namely OL1-2, LO1-2, and OL3
while the case study in the previous section involved only the disposal
of OL3. Since the final disposal of these three fuel types takes place for
a long time interval it is reasonable to consider the possibility to include
a hiatus in the disposal process. Here we include the hiatus in the base
case and fix the order of the fuel types as the following: OL1-2, LO1-2,
OL1-2, hiatus, OL3.

The solutions presented are obtained by using MITSPA but in this
case, the solver used in GAMS [27] is SCIP [1, 2, 155] being a global
branch-and-bound type solver. We have performed three iterations of
MITSPA and in this case, the number of objectives is eight meaning
that eight solutions are obtained at each iteration. From these eight
solutions, three solutions are presented to the decision maker. The so-
lutions selected by the decision maker at these iterations are given in
Figure 5.3 where Figure 5.3a illustrates the objective values of these so-
lutions on the interval from 0 to 1 such that 0 represents the ideal value
of each objective and 1 is the nadir value obtained by the payoff ta-
ble. Figures 5.3b–5.3d give the schedules such that blue refers to OL1-2,
orange to LO1-2, and purple to OL3.
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(a) The objective values for solutions

(b) The solution r1q8 (c) The solution r2q7 (d) The solution r3q4

Figure 5.3: The solutions selected at each iteration

At first, the decision maker selects the ideal vector as the first ref-
erence point. From the solutions obtained, the decision maker selects
the solution r1q8 since it does not involve any additional water pools
(obj. 1) and it is a good compromise with respect to the other objec-
tives. However, for the second iteration, the decision maker wish to
adopt the solution r1q8 by setting the number of canisters (obj. 3) to
the minimum and postponing the ending time (obj. 4) and lengthening
the operation time (obj. 5).

In the second iteration, the selected solution r2q7 needs less canisters
(obj. 3) than the previous one and the schedule in Figure 5.3c is more
feasible from the practical point of view with the calm beginning than
the other solutions. For the third reference point, the solution r2q7
is adopted by selecting the minimum central and the disposal tunnel
(obj. 6 and 7) lengths and increasing the storage, the ending, and the
operation time (obj. 2, 4, and 5). The third and the final solution is r3q4
due to the shorter disposal and central tunnels (obj. 6 and 7) and no
additional water pools (obj. 1) are needed even if the total cost (obj. 8)
is a bit higher. In general, it seems that the length of the central tunnel
(obj. 7) and the total cost (obj. 8) are conflicting objectives.

The model in the original publication VIII allows the use of the two-
shift work increasing the maximum number of canisters encapsulated at
one period but increasing also the cost. From the schedules in Figures
5.3b–5.3d we see that the two-shift work is utilized only when OL3 is
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(a) The objective values for solutions

(b) The solution r4q5 (c) The solution r5q1

Figure 5.4: The solutions with increasing production and without hiatus

encapsulated. Throughout the interactive process, it is also noticed that
when the fuel type is changed, the production tends to begin with the
higher capacity in the first period and after that it decreases. However,
from the practical point of view the behaviour of this kind is not ben-
eficial. Thus, we investigate the effect of the increasing production in
the terms of the objective function values and schedules. This is done
by adding a constraint forcing that at every period at least as many
canisters need to be encapsulated than the previous period and using
the solution r3q4 as the reference point.

The results of the solution r4q5 involving the increasing production
are given in Figure 5.4a and Figure 5.4b. As we see, the average storage
time (obj. 2) decreases as well as the operation time of the encapsula-
tion facility (obj. 5) and the ending date of the encapsulation (obj. 4).
Nevertheless, the number of canisters (obj. 3) increases together with
the length of the disposal tunnel (obj 6) and the cost (obj. 8). The ob-
tained schedule in Figure 5.4b looks much feasible and quite even from
the practical point of view compared with the solution r3q4 in Figure
5.3d. Additionally, the disposal ends one period earlier and the hiatus
is one period longer.

The results presented in the original publication VIII have all the
hiatus from 15 to 25 years even thought only 5 year hiatus is forced
by the model. This indicates that the model gains advantage from the
hiatus. Unfortunately, the hiatus has its own risks. Thus, we have also
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studied how the objective function values and the schedule change if the
hiatus is not allowed. The disposal schedule in Figure 5.4c is similar
to the schedule in Figure 5.3d for the first nine periods. After that,
the disposal continues with the minimum pace until the last period the
two-shift work is employed to complete the disposal. At the end, the
disposal ends one period earlier than in the solution r3q4 with the hiatus.
Besides the changes in the operation time and ending time (obj. 5 and
4), the changes in the objective function values focuses on the decrease
in the storage time (obj. 2) and the increase in the central tunnel length
(obj. 7) and the minor increase in the cost (obj. 8).

In the case of three spent nuclear fuel types the similar division of
solutions depending the value of the parameter q is not observed than
in the case of one fuel type. However, the cases when q is larger, the
CPU time seems to be smaller than in the case of the small values of q.
The similar observation is made also in the test examples of the original
publication VI. The average CPU time in the original publications VII
and VIII are on the same magnitude but the median CPU time in the
latter case is 13-fold compared with the first case.

In conclusion, the solutions obtained for the problem (5.1) with
MITSPA are realistic in the both of the cases of one and three fuel
types. Due to the interaction, the decision maker is able to select more
satisfactory solution than the first reference point suggested. Addition-
ally, the decision maker is not forced to stick with the solutions from the
last reference point but is able to return to some previous solution. It is
worth pointing out that depending on the case, the model (5.1) involves
eight or nine objectives which is a quite large number of objectives not
only from the computational point of view but also from the human
comprehension. Therefore, selecting only some of these objectives may
aid the decision maker’s task.
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Chapter 6

Conclusions

Nonsmooth multiobjective optimization is an intriguing and challenging
research field with the vast range of practical applications. Nevertheless,
smooth multiobjective optimization and nonsmooth single-objective op-
timization have gained much more attention separately. In this disserta-
tion, nonsmooth multiobjective optimization is discussed from different
perspectives. At first, a short introductory to the field is given with the
necessary and relevant theory of nonsmooth and multiobjective opti-
mization. After that, several different methods from different categories
depending on the role of the decision maker are presented. Finally, two
case studies of the practical application are solved with one of these
methods.

The first methods are discussed in Chapter 3, where three different
descent multiobjective methods are described. Besides the descent prop-
erty, all of these methods utilize the proximal bundle approach and ben-
efit from the improvement function either using it directly or indirectly.
Moreover, by treating the objectives as they are, the descent methods
do not need any preference information, and thus, they consider objec-
tives equally important. These methods have potential applications in
methods where some (weak) Pareto optimal solution counterpart to a
nonoptimal solution needs to be found, for example, in interactive meth-
ods or with some heuristic. Another possibility is to solve the problem
with several starting points in order to produce a selection of the solu-
tions from the Pareto set.

The first descent method under the scope is the multiobjective prox-
imal bundle method (MPB) with the scaled improvement function. In
brief, the idea is to use the single-objective proximal bundle method
with the scaled improvement function as its objective. With the scaling,
the aim is to stabilize the numerical behaviour of MPB. The method is
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designed for the general nonconvex nonsmooth multiobjective problems
with constraints. It is proved to be globally convergent to the weak
Pareto stationary solution, and under some generalized convexity as-
sumptions, the global weak Pareto optimal solution can be ensured. In
practice, the implementation of MPB is turned out to be efficient and
reliable both in the multiobjective and the single-objective case. From
the theoretical point of view, it is still an open question whether the
assumptions caused by the scaling are minimal for the convergence or
can they be reduced by studying the relations between the assumptions.
From the computational point of view, the effects of the scaling need
more research.

The second descent method is the multiple subgradient descent bun-
dle method (MSGDB) generalizing the classical steepest descent method
for the multiobjective nonsmooth convex unconstrained case. The core
idea is to calculate individual descent directions for objectives with the
proximal bundle approach and then calculate the candidate for the com-
mon descent direction. As a result, MSGDB gives a global weak Pareto
optimal solution. Even if the fascination of the generalization of the
steepest descent method is rather theoretical, MSGDB have some com-
putational benefits. First, the individual descent directions can be cal-
culated parallel, and second, the size of the subproblems is smaller, or
in some extreme cases equal compared with the MPB. Obviously, the
nonconvex version of MSGDB handling the constraints would be great
to develop. Furthermore, the structure of MSGDB has potential for
adding some interaction and taking advantage of the individual search
directions. For example, if a candidate for the common descent direction
is not descent to all the objectives, it could be possible that the deci-
sion maker selects which objective will be improved and the individual
descent direction would be used instead of performing a null step or to
scale directions based on the decision maker’s preferences.

The third descent method is the multiobjective double bundle
method for DC optimization (MDBDC). As its name suggests, the
method is designed to solve constrained nonsmooth multiobjective prob-
lems whose objective and constraint functions can be represented as DC
functions. Similar to MPB, the idea is to combine the improvement
function with the single-objective bundle method, which in this case is
namely the double bundle method for DC optimization. This method
enjoys the fact that the solutions are weak Pareto stationary as usually
obtained with general nonconvex methods instead of the milder Pareto
critical solutions being more common in the case of DC optimization.
In practice, MDBDC performs well and compared with the solutions
obtained with MPB, MDBDC produces better solutions in terms of
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objective function values in around 30% in the numerical test in the
original publication IV. This confirms that it is beneficial to employ
the convex and concave behaviour of the function. Furthermore, com-
pared with MPB, MDBDC performed better with the larger problems.
In future, some subgradient aggregation strategy could be applied with
MDBDC and see its strength by applying the method for some practical
application.

Chapter 4 is devoted to achievement scalarizing functions (ASFs).
Contrary to the methods in Chapter 3, the core idea in ASFs is to
aggregate multiple objectives into a single-objective problem such that
by solving the resulting scalarized problem, the optimum is (weakly)
Pareto optimal solution for the original multiobjective problem and it is
possible to obtain all the Pareto optimal solutions by selecting a suitable
reference point. Indeed, the solution of the scalarized problem is the
reference point projected to the Pareto set as close as possible with
respect to some metric.

The focus in Chapter 4 is on the family of the two-slope parameter-
ized ASFs. The special features of this family are that first the reference
point can be either unachievable or achievable and always the suitable
weighting coefficient is used omitting the urge for the test of the achiev-
ability of the reference point. Secondly, with the parameterization the
different metrics are used, and thus, we obtain more than one (weakly)
Pareto optimal solution for one reference point. This aims to be able
to systematically produce Pareto optimal solutions giving a rough but
yet reasonably distributed approximation of the Pareto set to be pre-
sented for the decision maker. As ASFs are well-suited for adaptation
to the interactive framework, the interactive method is also described.
This method suits well for the practical problems and more practical
applications would be fascinating to solve in future. Furthermore, these
practical applications give more information about the role of the pa-
rameterization and whether some metric turns out to be more preferred
in some cases than others by the decision maker.

Chapter 5 is dedicated to investigating the case studies of scheduling
the final disposal of the spent nuclear fuel in Finland. Two cases are
considered: one involving only one fuel type and one involving three
fuel types. The problem is modelled as the multiobjective nonsmooth
MINLP problem with nine and eight objectives, respectively. The deli-
ciousness of these problems springs from the complexity of the problems
which is due to several objectives, binary variables, and nonlinear and
nonsmooth constraints. This problem is then solved by using the inter-
active method utilizing the two-slope parameterized ASFs (MITSPA).
Thanks to the interactivity, the decision maker is able to learn about
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the problem during the solution process. Therefore, the decision maker
is capable of making better decisions. The further studies of this ap-
plication in the real life situation include the increase in the scale by
shortening the length of the disposal period and considering different
scenarios, for example, by changing the order of the fuel types.

To conclude, the multiobjective optimization in different forms is dis-
cussed in the presence of the nonsmoothness. The topic is covered from
various angles: theoretically, methodologically and with the practical
application. The individual contributions of this dissertation intertwine
together in Section 4.3. Indeed, the descent methods can be used to pro-
duce a neutral Pareto optimal solution for the decision maker to aid the
selection of the good reference point. Then the two-slope parameterized
ASF is used to obtain a selection of Pareto optimal solutions based on
the decision makers preferences. Furthermore, this method is used to
solve the practical application in Chapter 5. Besides the continuation of
the method development, wider adopting of these methods in practical
applications would be fascinating for the further research.
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filter method for nonsmooth convex constrained optimization.
Mathematical Programming, 116(1):297–320, 2009.

[79] N. Karmitsa, M. Gaudioso, and K. Joki. Diagonal bundle method
with convex and concave updates for large-scale nonconvex and
nonsmooth optimization. Optimizaton Methods and Software,
34(2):363–382, 2019.

[80] J. E. Kelley. The cutting plane method for solving convex pro-
grams. Journal of the Society for Industrial and Applied Mathe-
matics, 8(4):703–712, 1960.

[81] M. R. Kilinc and N. V. Sahinidis. Exploiting integrality in
the global optimization of mixed-integer nonlinear programming
problems with BARON. Optimization Methods and Software,
33(3):540–562, 2018.

[82] K. C. Kiwiel. An aggregate subgradient method for nonsmooth
convex minimization. Mathematical Programming, 27(3):320–341,
1983.

[83] K. C. Kiwiel. A descent method for nonsmooth convex multiob-
jective minimization. Large Scale Systems, 8(2):119–129, 1985.

[84] K. C. Kiwiel. Methods of Descent for Nondifferentiable Optimiza-
tion. Springer, Berlin, 1985.

[85] K. C. Kiwiel. Proximity control in bundle methods for convex non-
differentiable optimization. Mathematical Programming, 46:105–
122, 1990.

[86] K. C. Kiwiel. Restricted step and Levenberg–Marquardt tech-
niques in proximal bundle methods for nonconvex nondifferen-
tiable optimization. SIAM Journal on Optimization, 6(1):227–249,
1996.
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[114] K. Miettinen and M. M. Mäkelä. On scalarizing functions in mul-
tiobjective optimization. OR Spectrum, 24:193–213, 2002.
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