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                                                           Abstract 

The electrochemical polymerization of 3,4-ethylenedioxythiophene (EDOT) monomer as 

conducting polymer was synthesized on various working electrodes (WE) which includes gold 

(Au), platinum (Pt), glassy carbon (GC) and Fluorinated Tin Oxide (FTO) in different 

electrolytic solvent medium. The solutes used in the aqueous medium (H2O) was Potassium 

Chloride (KCl) salt and Sodium Polystyrene Sulfonate (NaPSS) and the solute used in the 

organic solvent medium which is acetonitrile (ACN) was tetrabutylammonium 

hexafluorophosphate (TBAPF6).  

A thin film of poly(3,4-ethylendioxythiophene) (PEDOT) was electrochemically polymerized 

on the FTO, Au, Pt and GC three different electrolytes. The cyclic voltammograms (CVs) of 

the PEDOT films were studied to elucidate the electrochemical properties of the electrolytes.  

An in situ Raman spectroscopy measurements were carried out for the polymerized PEDOT 

films on the different WE (Au, Pt, GC, FTO) and the spectra and its corresponding images 

were obtained and compared accordingly to explain the doping process of the PEDOT film.  

A UV-Vis spectroscopy measurement was also performed on the films on the FTO to present 

a study on the p and n doping of the PEDOT films which was in tandem with the 

characterization of Raman spectra measurements. 

 

Key words: 3,4-ethylenedioxythiophene (EDOT), tetrabutylammonium hexafluorophosphate 

(TBAPF6), Fluorinated Tin Oxide (FTO), In situ Raman spectroscopy, UV-Vis spectroscopy.  
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1. INTRODUCTION  

1.1 Conducting polymers 

Polymers in time past, could be classified as insulators based on its properties. Nevertheless, 

extensive studies have revealed that there are some polymers which have conducting properties 

as an exception. These polymers that conduct the electrical current are classified as conducting 

polymers or conjugated polymers [35] [2][3].  

The classification of conducting polymers are in two main forms which includes  

Intrinsic Conducting Polymer: Polymers like polypyrrole, polyaniline, polyacetylene and 

polythiophene form the intrinsic conducting polymer group. The π bond electrons which 

conjugates along the polymer chain is the main cause for the conductivity of these type of 

polymers. These conducting polymers with the π conjugated electrons also exhibit an 

alternating single and double bond along their polymer chains. 

                   

 

Figure 1.1 Examples of ICPs: polypyrrole, polyaniline, trans‐polyacetylene and polythiophene [35]. 

 

Extrinsic Conducting Polymer: These type of conducting polymers employs materials like 

metals, graphite, or transfer complex in the polymer matrix. The inclusion of these conductive 

materials determines the conductivity for extrinsic conducting polymers [35][3].    

Areas of application: Some notable areas of application for CPs can be found in the list below, 

 Photovoltaic devices,  

 Electrochromic devices,  

 Light emitting diodes,  

 Sensors,  

 Optical devices,  

 Batteries,  

 Electronic devices,  
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 Mechanical and electromechanical (actuators in rotary convertors) devices,  

 Corrosion protection,  

 Catalysis,  

 Drug and chemical delivery,  

 Membranes.[3][5][35]   

 

Poly(3,4-ethylenedioxythiophene) PEDOT: PSS 

Conducting polymers (CPs), with poly(3,4-ethylenedioxythiophene) that has been doped with 

poly(styrenesulfonate) (PEDOT:PSS) as an example, has been into existence for more than 

twenty years as a stable, solution-processable hole conductor. They are the basis or the 

underlying factor for charge transport studies in conducting polymers [3][9][35]. CPs can be 

grouped as electronic, ionic or mixed type (electronic and ionic) CPs. However mixed type 

(electronic/ionic) transport in CPs is attracting a great deal of attention due to a host of new 

devices and some examples are the organic electrochemical transistor (OECT) which consists 

of a CP layer in which ions injected from an electrolyte modify hole conductivity. Based on 

their high transconductance, CPs extends its application range from neural interfacing to 

biosensing which includes bioelectronics (with the emergence of printed electronics and 

neuroinspired electronics) [3] [9].  

PEDOT:PSS CP is widely used in the field of organic electronics as transparent conductive 

oxides (TCO), and as a hole-conducting layer or electrochromic layer in a wide array of devices 

moving from organic light-emitting diodes (OLEDs) and organic photovoltaic devices (OPVs) 

to electrochromics [3]. 

CPs has been known also to have influence in energy applications which includes batteries/ 

supercapacitors, electrochromic windows and in electromechanical actuators for soft robotics 

[5]. 

PEDOT:PSS which is a composite CPs has found its utilization in many devices because the 

material has high hole conductivity (˃103 S/cm), high stability and commercially available as 

a dispersion for solution processing [1]. 

PEDOT:PSS dispersions are typically described as being composed of gel-like particles 

consisting of a polyanion (PSSˉ)-rich shell or backbone which helps to stabilize the PEDOT-

enriched chain particles in aqueous solvents. PEDOT oligomers are believed to polymerize 

onto the PSS template, see Figure 1.2 [16][3].                                            
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Figure 1.2 Chemical structure of PEDOT:PSS made up of a PSS backbone (top) and a PEDOT chain 

(bottom) ionically bonded [16]. 

 

PEDOT:PSS presents some limitations regardless of how promising it is, and some of the 

challenges or limitations includes PEDOT chain degradation and possible release of acidic PSS 

degradation products and lack of functionality of PEDOT and low biocompatibility of PSS 

[1][9]. 

 

1.2 Synthetic routes of PEDOT:PSS 

The synthetic routes of PEDOT:PSS can be performed in two different lines or pathways for 

the synthesizing of functional 3,4-ethylenedioxothiophene monomers EDOT and ProDOT. 

One synthetic route involves the creation of the thiophene and dioxolane derivatives (pathway 

#1) and for the second synthetic route, the preliminary material was 3,4-substituted thiophene 

ring, for example 3,4-dimethoxythiophene or 3,4-dibromothiophene (pathway #2), see Figure 

1.3.  
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Figure 1.3 The two most used synthetic pathways for the synthesis of EDOT and ProDOT monomers [3]. 

 

The macroscopic difference between these two synthetic routes was the number of steps to get 

to the final product: in the case of pathway #1, more steps are needed, but the price of the 

starting material for pathway #2 is about 10 to 100 times more expensive than for pathway #1. 

Pathway #1 is known to be the oldest synthetic route and it is limited to the synthesis of 2-

hydroxymethyl-EDOT (EDOT-CH2OH) and carboxy-EDOT (EDOT-COOH) [17]. 

In the instance of EDOT-CH2OH following pathway #2, the reaction with glycerol tends to 

yield a mixture of EDOT and ProDOT that is difficult to separate. For the situation of EDOT-

COOH, PCC (pyridinium chlorochromate) was employed through an oxidative step and hence 

the groups in position 2 and 5 on the thiophene ring protect the molecule from further 

polymerization when pathway #1 is used [17][32]. 

For the ProDOT derivatives, pathway #2 is the only route used in the literature, whereby 1,3-

diol derivatives are used to create the dioxepane ring. 

 

ProDOT which is the closest ally EDOT molecule has a propylenedioxy ring rather 

ethylenedioxy ring attached to the thiophene in the 3,4-position. ProDOT was originally 

considered a side product in the synthesis [1]. 

It can be stated clearly that ProDOT can be simply obtained and has a better stability than 

EDOT. It also has useful applications in organic photovoltaic (OPV), organic electrochemical 

transistor (OECT), tissue engineering and more, after doping or coupling with EDOT 

irrespective of its low electrical conductivity compared to EDOT [1]. 
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Currently, EDOT/ProDOT monomers are usually polymerized using different methods like 

electrochemical polymerization, vapor phase polymerization (VPP) or chemical oxidative 

polymerization. Electrochemical and VPP polymerization methods usually give polymer films 

with outstanding properties like surface quality, high conductivity and stable redox chemistry. 

However, it can be noted that for large-scale applications, chemical polymerization is the 

preferred route due to its easy scale-up. For instance, this is the method used to produce 

industrially the PEDOT:PSS dispersions that are commercially available. 

 

2. PROPERTIES OF CPs 

2.1 Conductivity of CPs 

Conductivity of CPs can either have electrical properties which is determined by the electronic 

structure of the molecules or electrochemical properties which is determined by the various 

doping techniques of the polymer. The range of values for the conductivity of CPs are mostly 

between 10-13 and 106 S/cm [18][2][5][19]. 

                                             

 

Figure 2.1 Conductivity of conducting polymers [35]. 

 

2.2 Electrical properties of CPs 

Effective formulations of CP composites that comes with flexibilities, great stabilities, and 

conductivities have demonstrated that CPs can operate as key material components in light 

emitting diodes (LEDs), transistors, electrochromic devices, actuators, electrochemical 

capacitors, photovoltaic cells, and sensors. The critical element of development in these fields 

is achieving control of the electrical or electrochemical properties of CPs. Consequently, this 
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work presents a discussion of the electrical and electrochemical properties of CPs, and the latest 

trends in research on the applications of CPs have been summarized. The flow of electrons in 

CPs results from the movement of π-bonds between the carbon backbone of the CP structure 

which causes the movement of electrons in the conjugated double bonds along the carbon 

chain. Electrical conductivity of CPs can be determined by either the electronic structure of 

molecules or doping.   

 

2.2.1 Molecular Structure 

The electrical conductivity of a material is generally determined by its electronic structure. The 

energy band theory is a useful way to visualize the differences among conductors, insulators, 

and semiconductors [2]. The band gap is the energy difference between the valence and 

conduction bands of a material. When the valence band overlaps the conduction band, the 

valence electrons are free to move and propagate in the conduction band [17]. This is an 

intrinsic characteristic of conductors. Semiconductors possess small energy gaps that electrons 

can cross upon excitation to move to the conduction band, creating a hole in the material. This 

permit both hole and electron charge transport thereby creating the conduction of current. In 

the case of insulators, the band gap is too large to be crossed by electrons, and therefore they 

do not conduct electricity [2][22]. 

However, the energy band theory may not clearly explain why CPs, being organic materials, 

conduct electricity.  

 

2.2.2 Doping of CPs 

CPs have been doped using different methods to achieve high conductivities. The various types 

of doping include electrochemical doping, chemical doping, photodoping, non-redox doping, 

and charge-injection doping [2][17][22].  

Un-doped polymers have been reported as insulators (non-conducting) but changes from 

insulating to metallic when doped and hence becomes conductive. The doping mechanism for 

CPs is completely different to that for their inorganic counterparts since it possesses a distinct 

chemical structure. However, dopants employed in the polymer undergo redox processes in 

which charges are transferred with subsequent formation of charge carriers [2]. 

This doping reaction can be carried out chemically or electrochemically [4]. 

The role of the dopant is not only to withdraw electrons from the CP but also to add electrons 

to the CP backbone and thus representing p-type and n-type doping, respectively. The effect of 
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doping can be elucidated as that electrons are extracted from the highest occupied molecular 

orbital (HOMO) of the valence band (oxidation) or transferred to the lowest unoccupied 

molecular orbital (LUMO) of the conduction band (reduction). This oxidation/reduction 

process creates charge carriers in the form of polarons (radical ions), bipolarons (dications or 

dianions), or solitons in the polymer [2]. Conduction by polarons and bipolarons in particular 

are thought to be the prominent mechanism of charge transport used in conducting polymers 

with nondegenerate ground state such as in PPV for example [4]. 

Solitons are known to be the charge carriers in degenerate systems such as polyacetylene. The 

movement of these charge carriers along polymer chains produces conductivity [2]. 

Moreover, the oxidation and reduction processes are in conformity to p-type and n-type doping, 

respectively. In p-type doping, the electron moves directly from the HOMO of the polymer to 

the dopant species and creates a hole in the polymer backbone unlike in n-type doping, where 

electrons from the dopant species move to the LUMO of the polymer, resulting in increased 

electron density. Hence, the density and mobility of charge carriers can be tuned by doping. 

The p-doping is widely used in academic research as well as for practical applications because 

of its stability as compared to the charge carriers in n-doping, see figure 2.2 [2][22].  

        

                

Figure 2.2 The electronic band and chemical structures of polythiophene (PT) with (a) p-type doping and 

(b) n-type doping [2]. 

 

However, there are factors which affect the electrical conductivity of the CPs and these 

includes:  
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 Tunable conductivity: which talks about how the π conjugated electrons of the polymer 

matrix can be manipulated to increase the electrical conductivity of the CPs by reducing 

the structural and the morphological disorder. 

 Charge carrier transport models: this can be attributed to the disorder nature of the sp2 

defects in the polymer chains and chain ends, chain entanglement, voids and doping 

defects.  

 Temperature dependence: In general, the conductivity of doped CPs decreases with 

decreasing temperature, in contrast to the conductivity of conventional metals which 

increases with decreasing temperature [2]. 

 

2.2.3 Electrochemical properties of doped CPs 

Electrochemical doping of CPs can be performed by using an electrolytic cell made from 

two-electrodes and by using a three-electrode setup whereby there is control on the applied 

potential because of the use of reference electrode connected by a liquid or solid electrolyte 

as shown in figure 2.3 below. 

                    

Figure 2.3 Illustration of two electrode electrolytic cell and its components [32]. 

 

The electrochemical method for the doping of CPs can be achieved through different 

processes and this include reversible oxidation/reduction, electrochemical double layer 

capacitors (EDLCs)/pseudocapacitors, swelling and de-swelling, electrochromism [2]. 

Doping of CPs typically leads to the formation of charge carriers, which is accompanied 

by changes (e.g., from benzenoid to quinoid) in the geometric structure of the CP. 
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The original geometric structure can be recovered by reducing the polymer back to its 

pristine (undoped) state. The reversibility of doping and de-doping of the polymer 

corresponds to charge and discharge, which forms the basis of the principles behind 

polymer-based sensors and capacitors. The p-doping or electro-oxidation of CPs can be 

rationalized as electrons in the π-bond being extracted and moving along the polymer 

skeleton while counter-anions from the electrolyte insert into the polymer chain to balance 

the electronic charge. The mechanism of n-doping or electro-reduction of CPs involves 

electrons being transported to the polymer backbone and counter-cations inserted into the 

polymer backbone from the electrolyte solution to balance the overall charge [2][15]. 

 

The dominant electrochemical method used to analyse redox processes in CPs is cyclic 

voltammetry (CV). CV measures the current resulting from an applied potential with fixed 

scan rate. During redox reactions, reduction makes polymer chains negatively charged 

while oxidation produces positively charged polymer chains. When doping and de-doping 

are performed, ions move in and out of the polymer matrix.     

 

2.3 Graphene  

Graphene is a single layer of carbon atoms packed into a two-dimensional (2D) honeycomb 

lattice. The sp2 hybridized carbon bonds contain in-plane sigma bonds and out-of-plane pi 

bonds. The π bonds contribute to the electron conduction of graphene and provide weak 

interaction between graphene layers or graphene and the substrate [6]. 

 

Graphene is considered a promising material candidate for electrochemical energy-storage 

devices because of its high accessible surface area, good mechanical strength, and high 

electrical conductivity, and it has also been used in composites with ECPs. 

Graphene sheets can be obtained by mechanical exfoliation of small mesas of highly 

oriented pyrolytic graphite [7]. 

Single- and few-layer single crystalline graphene can also be grown epitaxially on single 

crystal metal substrates via thermal decomposition of hydrocarbons, or on single crystalline 

or polycrystalline SiC via segregation of carbon atoms during high temperature annealing 

[8].  
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In addition, because of its extremely high surface-to-volume ratio, the conductivity of 

graphene is highly sensitive to local electrical and chemical perturbations as every atom of 

graphene is exposed to the ambient environment [6]. 

Graphene can be used directly as electrode or to modify the glassy electrode (GC) which 

greatly raises the conductivity of the glassy electrode (GC) in an electrochemical setup. 

This however results in an improvement in the electron transfer between the target analyte 

and the electrode surface that has been modified with graphene [6]. 

Graphene can conduct effectively, however, it has poor solubility and this solubility issue 

can be enhanced using non – covalent molecular functionalization. Non – covalent 

molecular functionalization is a process used to manipulate the electronic and chemical 

properties of graphene. There is less perturbation of the π – conjugated structure of 

graphene and its derivatives which emanates from the relatively weak van der Waals 

interaction or loosely-defined π – π interactions between aromatic molecules and graphene. 

Graphene oxide (GO) has become the most common starting material for graphene-based 

applications because separated GO sheets can be produced in large quantities [5]. For many 

applications, the reduction of GO, using chemical or electrochemical reduction or thermal 

annealing, is desired to restore the graphitic structure [5]. 

 

2.3.1 Composite of PEDOT:PSS/graphene 

PEDOT:PSS/graphene/PEDOT film is synthesized by a process which involves two stages 

and these stages are, PEDOT:PSS/graphene hybrid film was spin coated on the substrate 

as the initial step and then proceeds on to the step of vapor phase polymerization (VPP) of 

PEDOT film on the PEDOT:PSS/graphene film. Each component in the hybrid film 

provides exceptional and crucial function to achieve improved electrochemical properties 

[9]. 

 

Other routes that can be used to synthesize composite of PEDOT:PSS/graphene includes 

electropolymerization of PEDOT and electrical deposition of graphene systematically, 

spin-coating alternating PEDOT and graphene layers and electrochemical polymerization 

of PEDOT with functionalized graphene as counterion [5]. 

A combination of CPs and graphene can effectively reinforce the capacitive performance 

of nanocomposites. 
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(Lehtimäki et al., 2015) [5] demonstrated how PEDOT composite doped with graphene 

oxide (GO) can be electrochemically deposited onto graphite electrode on flexible poly 

(ethylene terephthalate) (PET) substrates to prevent dispersibility in solvent and to increase 

capacitance in the supercapacitor’s application.    

 

2.4 Characterization 

Characterization in materials chemistry refers to the investigation or probing and of the 

structure and properties of materials and their measurements. There are various techniques 

that can be employed in the characterization of these materials to determine for example 

the structure or morphology and chemical species. The physical and chemical properties of 

the materials are accurately measured and not only that but the structural determination 

either at the atomic or microscopic level must also be determined accurately. Properties 

like mechanical, electrical, magnetic, thermal and optical are mostly related to the structure 

of the material.  

 

2.4.1 Characterization techniques 

The different types of characterization used to perform analysis on materials microscopic 

properties are spectroscopic analysis which includes,  

 InfraRed (IR) 

 Near InfraRed (NIR)  

 Auger Electron Spectroscopy (AES)  

 X-ray Photoionization Spectroscopy (XPS)  

 Fourier Transform InfraRed (FTIR)  

 Raman Spectroscopy 

 X-ray Spectroscopy (XRS) [Diffraction, Absorption, Fluorescence, Luminescence, 

Reflectivity, and Scattering]   

 Nuclear Magnetic Resonance (NMR)  

     Other techniques apart from spectroscopy techniques includes, 

 Scanning Electron Microscopy (SEM)  

 Atomic Force Microscopy (AFM)  

 Scanning Tunneling Microscopy (STM)   

 Transmission Electron Microscopy (TEM)  

 Tomography 



12 
 

2.5 Spectroelectrochemistry 

Spectroelectrochemistry is the collaboration of spectroscopy and electrochemistry 

techniques to characterize materials.  

These combined instrumental techniques provide both molecular and kinetic information 

during electron transfer process with respect to the reactants, products and or intermediate 

compounds produced. [35] 

One of such techniques is the in situ Raman spectroelectrochemistry which can be 

explained as coupling of Raman spectroscopy to electrochemistry for the characterization 

of electrochemically active materials [10]. It has the advantage of obtaining single or 

complementary information about a complex system.  Chemical and structural information 

can be obtained by Raman spectroelectrochemistry. The level of doping of the polymers 

can be predicted by using Raman spectroelectrochemistry. Vibrational modes of the 

elements can also be determined by Raman spectroscopy. 

 

2.5.1 Raman Spectroscopy 

Raman spectroscopy has been used in various fields of discipline such as investigating the 

nucleic acid and its biological complexes [11]. UV-Visible-NIR and Raman 

spectroelectrochemistry has been effectively employed as synthesizing and 

characterization tool for conducting polymer studies. The application of these conducting 

polymers has found their purpose in light emitting diodes, sensors and biosensors, solar 

cells or fuel cells in materials science [12].  

Raman spectroscopy is one of the most effective techniques used in carbon-based materials 

and graphene structures. The C=C and C=C – O bond stretching for electropolymerized 

PEDOT as an example, can be well explained by Raman spectroscopic technique on the 

basis of the strongest bands found in the spectra. The shifting of the peaks in Raman spectra 

can also be ascribed to the interactions of π – π* bonds of the conducting polymer and its 

composites. Conducting polymers with PEDOT as an illustration can also show several 

weaker bands which come as a result of Cβ – Cβ bond stretching and Cα – Cα bond inter-

ring stretching in the material [14]. 

Raman spectroscopic techniques can be used to reveal the identification of unknown 

structures and polymorphs (structural information) of materials, monitor changes in 

molecular structure of materials by analyzing the peak position, tracking changes in 

crystallinity by analyzing the width of the spectra peaks of the material, evaluation of the 
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magnitude of residual stress in materials by comparing the direction of shift for the peak 

position of the spectra, to analyze the direction of orientation of the molecules of 

conducting polymers and its composites, chemical composition and its variations in the 

material and lastly photoelectric properties of materials [34].   

 

Raman spectroscopy was used to measure the possibilities of chlorine species diffusing into 

the interstitial spaces of bundled SWNTs and the switching of electrochemical double-layer 

charging regime to intercalative doping of the SWNT buckypaper. The results explains the 

feasibility of the electrochemical functionalization of SWNT bundle in aqueous KCl 

solution [33]. 

 

However, one of main challenges during the early stages of the Raman spectroscopy 

technique was the use of mercury lamp as the standard light source which created improper 

focusing of light beam on small samples and stray light problems. But these restrictions 

were overcome by the introduction of laser beams as light source to replace the mercury 

lamps during the developmental stages of the instrument [35]. Another important challenge 

that deserves mentioning is the small cross section of Raman scattering which culminates 

in low sensitivities in the event of Raman spectroscopic measurements and thus becoming 

very difficult for low concentration samples to be detected [36].    

 

2.5.2 Raman Spectroelectrochemistry Cell Design 

One of the major challenges for Raman spectroelectrochemistry is the design of suitable 

Raman cell that well fit the Raman spectroscopy instrument as well as the electrochemical 

part and how to integrate an optically transparent window at the same time maintaining an 

optimal electrochemical cell performance. The cell design comes in various configuration 

which may include  

 Beaker – cell type  

 Swagelok – cell type 

 Pouch – cell type 

 Coin – cell type 

 Custom – made cell type 

The beaker – cell type is designed in such a way that it can be assembled without any 

difficulties, diverse electrodes can be employed and reused. The pouch – cell type 
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components cannot be reused and need to be disposed at the end of every measurement. 

Alignment difficulties may arise since new components have to be arranged in the cell for 

every measurement. The coin – cell type and the custom – made type have reusable 

components and the cell frame is fabricated with precision. The assembly of the electrodes 

are well fitted thus reducing the problem of misalignment [37].        

        

  

Figure 2.4 Typical cell designs for in situ/operando Raman spectroscopy. (A) Beaker (pyrex) cell design 

used e.g., by Inaba et al. (1995). (B) Pouch cell from Ghanty et al. [reprinted from reference (Ghanty et 

al., 2015) with permission of John Wiley and Sons]. (C) Custom-made coin-cell type design developed in 

our group [37]. 

  

 Some key parameters for achieving optimal performance for an electrochemical cell include  

 Cell sealing: The Raman cell is sealed with an “O” rings made from rubber and/or 

plastic materials. For prevention of contamination of electrolyte solution and 

corrosion of the objective lens quartz window is employed to form a closed 

electrochemical system for the Raman setup. Polytetrafluoroethylene (PTFE) and 

high density polyethylene (HDPE) “O” rings are the commonly used sealant 

materials in Raman cell fabrication because they are physically and chemically 

resistance to electrolyte leaking out of the cell and gas leakage into the cell. To 

prevent poor electrochemical performance and higher risk of side reactions 



15 
 

measurement, constricted cell sealing must be engaged which gives the Raman cell 

a good chemical stability [37]. 

 Electrode pressure: The electrode must be well compressed into the Raman cell 

during assembling without any gap to create a good electrochemical polymerization 

and Raman spectra peaks. Failure to attain a good electrode pressure as an 

illustration, might lead to incongruous electrical connection between the electrodes 

and their current collectors resulting in irregular film formation [37].   

 Electrode Size: The size of the electrode should be of a considerable size to provide 

appropriate surface area for the electrochemical polymerization reaction and Raman 

spectroscopy. It is difficult to use electrodes with smaller size (below 2 mm) since 

it elevates the dangers of electrode misalignment. The issue of low current with low 

sensitivity can be raised when it comes to small size electrodes [37]. 

 Electrolyte Choice: The type of electrolyte employed can greatly influence the 

Raman cell construction and thereby having effect on the Raman spectroscopic 

signals. Organic electrolyte salts for instance are susceptible to the formation 

fluorescence species during Raman spectroscopic studies. The electrolyte must not 

react with the Raman cell components to prevent the production of unwanted 

species during Raman spectro-electrochemical analysis [37].   

 Raman Cell Component Reactivity: For chemical and electrochemical stability, 

the reaction between the electrodes, electrolytes and the cell component (cell body, 

sealing parts and optical window) should be brought to the barest minimum. For an 

illustration, PEEK is used instead of Teflon since the former is more stable with Li 

metal than the latter as presented in literature [37].  

 Laser Excitation Wavelength: The intensity of the Raman spectra can be 

improved when the excitation wavelength becomes equivalent to the energy of an 

electronic transition. When the photon energy of the laser is closer to the band gap 

of the sample being analysed, there is a stronger enhancement of the Raman spectra 

intensity. Moreover, the effect of fluorescence can be reduced by choosing an 

appropriate excitation wavelength.  The extent of fluorescence emission relies on 

the closeness of the laser wavelength to the maximum absorption of the 

fluorescence species. It can be summarised from the above that, there can be a good 

balance between high Raman scattering power and low background signal a proper 

adjustment of the laser excitation wavelength. The controlling and improvement of 
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the spectral acquisition process requires the employment of excitation lasers of 

different (or tuneable) wavelengths [37] [35].  

 Laser specific Power: For a better signal-to-noise ratios, there should be enough 

laser specific power to achieve that. Care must also be taken to prevent the sample 

from being transformed by the high laser specific power. It can be noted that, since 

Raman spectro-electrochemistry focuses on very small cross-sectional area, there is 

high tendency of burning the sample when there is excessive laser specific power. 

It is recommended that stability test must be conducted to prevent laser induced 

sample transformation and/ or burning. It has however been reported that the laser 

specific power ranges from 0.01 to 1.0 mW/μm2 for Raman spectro-

electrochemistry analysis [37].     

 Working Distance: The working distance is an important role in improving the 

signal to noise ratio during Raman measurements and an illustration can be made 

for 50X long working distance objective with numerical aperture (N.A) of 0.55 

could operate with working distance of 10.6 mm. However, other objectives like 

X100, X50 and X10 coupled with N.A 0.9, 0.75 and 0.25 can have 0.21 mm, 0.38 

mm and 10.6 mm as working distance respectively. The working distance of the 

objective used have significant influence on factors like electrochemical response, 

detection sensitivity and spatial resolution. The two most used objectives are air 

objective and water objective with glass cover of different thickness [37].    

 

2.5.3 Surface – Enhanced Raman Spectroscopy (SERS)  

SERS is an improved technique of the traditional Raman spectroscopy with the difference 

arising from the fact that SERS requires the introduction of metal nanostructure or 

nanoparticles as underlying factor for the signal enhancement. Unlike Raman spectroscopy, 

SERS gives greater signal enhancement aiding in submonolayer quantity of adsorbates 

[35][36].  

The signal enhancement with enhancement factor (EF) ranging from 103-1010 for SERS 

can be explained by two mechanisms which are electromagnetic (EM) and chemical (CM) 

enhancement. The EM enhancement which illustrates the enhanced local electromagnetic 

fields in the nanomaterial by means of resonant excitation of plasma oscillations is the 

signal enhancement that can possibly be achieved since it is the most influential of the two 

mechanisms.  
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The EM produces a long-range local electromagnetic field enhancement owing to 

electromagnetic or plasmon resonances from the metal structure. CM produces an 

electronic interaction between the molecules and metal surface giving rise to polarizability 

enhancement of the molecule [36][35].      

    

2.5.4 Characterization of PEDOT:PSS/ Graphene  

The XRD patterns of PEDOT, PEDOT: PSS, PSS/PEDOT (hybrid film of PEDOT:PSS 

that is PSS core embedded in PEDOT matrix), PSS/G/PEDOT, graphene films is shown in 

the figure below with the graphene peak showing a sharp and high intensity at 10.08º as 

compared to the peaks of CPs. The peak around 39.2° is attributed to the introduction of 

oxygen-containing functional groups between the graphene layers [9]. 

The PEDOT spectra in Figure 2.5 (a) showed no significant peak in its pristine form and 

the blue spectra line with the fading peak in Figure 2.5 (a) explains the dispersion or 

distribution of graphene in polymer matrix of PSS/G/PEDOT ternary film [9]. 

The Raman spectroscopy analysis was also shown alongside the XRD pattern for the 

polymers of PEDOT:PSS, PEDOT:PSS/Graphene and graphene.   

In the Raman spectra of PEDOT:PSS and PEDOT:PSS/ graphene, five bands at 1258, 1365, 

1438, 1498 and 1557 cm-1 are assigned to C–C inter-ring stretching, C–C single bond 

stretch, C=C symmetric stretch, C=C asymmetric stretch, and C=C anti-symmetric stretch, 

respectively [13].  

The presence of the strong π–π interactions between graphene and PEDOT:PSS explains 

the small shift of the hybrid polymer PEDOT:PSS/graphene from the PEDOT:PSS 

spectrum [15].  
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Figure 2.5 (a) XRD patterns of graphene, PEDOT, PS/PEDOT and PS/G/PEDOT; Inset represents the 

XRD spectrum of PEDOT:PSS and (b) Raman spectra of a PEDOT, b PS/PEDOT, c PS/G/ PEDOT 

nanocomposites; Inset represents the Raman spectra of graphene, PEDOT:PSS and 

PEDOT:PSS/graphene hybrid films [9]. 

 

Electrosynthesized Pt nanoparticle (PtNP) on PEDOT film used as catalyse for direct 

methanol fuel cell (DMFC) was characterized spectroelectrochemically and the results 

deduced was that UV-Vis and NIR spectroscopies does not give clear indication of the 

modifications or changes of Pt nanoparicle deposition on PEDOT film during 

electrosynthesis in contrast to Raman spectroscopy where modification was seen in 

intensity changes. The Working electrode used for this experiment was glassy carbon 

electrode and the main idea was to reduce Pt in fuel cell to maximize efficiency [12]. 

However, Raman spectroelectrochemistry of Pt nanoparticle (PtNP) on PEDOT film 

showed clearly that the deposition was feasible with a 50% intensity reduction for all 

PEDOT peaks with the greater change occurring between 1400 – 1650 cm-1 which indicates 

Pt was electrochemically deposited on PEDOT film successfully [12].   

     

Scanning Tunneling Microscope (STM) analysis on PEDOT:PSS showed that the 

PEDOT:PSS image gave a mixture of conductive regions or domains of PEDOT-rich and 

non – conductive domains without PEDOT particles but composed of PSS backbone [32]. 
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FTIR in the range 2000–400 cm-1 with a resolution of 2 cm-1 was performed with the sole 

intention of measuring molar ratio of the silane coupling agent in the PSS copolymer to 

enhance the thermal stability and hydrophobicity of the film. NMR at 400-MHz  frequency 

was used to structurally characterize a powder of poly (styrene sulfonate-co-

vinyltrimethoxysilane) P(SS-co-VTMS) copolymers with a mixture of KBr powder [figure 

2.6(a) and 2.6(b)] and it was elucidated that the absorption spectrum was obtained for the 

FTIR analysis when a transmittance mode was used. The outcome of the FTIR experiment 

was that an increase in silane group molar ratio brought about a reduction in peak intensity.   

However, because of the insolubility nature of the PSS copolymers, the analysis performed 

by the NMR setup failed [25]. 

The outcome of the changes in the doping level of PEDOT can be analysed using Raman 

spectroscopy or UV-VIS-NIR with the Raman spectra remaining constant at various 

conditions. 
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Figure 2.6 XPS spectra (a) and Raman shift spectra (b) of PEDOT:P(SS-co-VTMS) [25]. 

 

X–ray photoelectron spectroscopy (XPS) can be used to analyze the elemental composition 

of both PEDOT:PSS and PEDOT:P(SS-co-VTMS) film surfaces with a monochromated 

Al Kα X-ray radiation. 

The phase image of the PEDOT:PSS and PEDOT:P(SS-co-VTMS) films was analyzed 

with atomic force microscope (AFM) [25]. 
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3.  METHODOLOGY   

3.1 Materials and Equipment  

3.1.1 Materials  

3,4-ethylenedioxythiophene (EDOT) monomer used for the experiment was acquired from 

Sigma-Aldrich with no extra purification process. EDOT monomer was stored in the dark in a 

refrigerator to prevent monomer degradation and contamination. All aqueous solutions were 

prepared using deionized water. The electrolytic salts employed for the experiments which 

includes Potassium Chloride (KCl), Sodium Polystyrene Sulfonate (NaPSS) and 

Tetrabutylammonium hexafluorophosphate (TBAPF6) was purchased from Sigma-Aldrich 

with no extra purification  and was tightly sealed to prevent it from reacting with atmospheric 

moisture. Distilled water was used for the preparation of all aqueous solutions during the 

experiment except TBAPF6 electrolyte solution which was prepared by using acetonitrile 

(ACN) solution.  

 

3.1.2 Equipment 

The electrochemical polymerization of EDOT monomer was performed using Fluorinated Tin 

Oxide (FTO), Gold (Au), Glassy Carbon (GC) and Platinum (Pt) as working electrodes (WE). 

Ag/AgCl wire and Pt wire were used as reference electrode (RE) and counter electrode (CE) 

respectively. The electrochemical polymerization EDOT monomer was performed in quartz 

cuvette, 3-neck electrochemical cell and customized design Raman cell at the lab.  

3.1.2.1 Raman Cell Design  

The electrochemical/Raman cell was laboratory fabricated and fabricated at the laboratory 

since there was no readily available cell commercially. The material used for the construction 

was from polytetrafluoroethylene (PTFE) commonly known as Teflon. A cavity of 1.5ml 

volume was created to hold up the electrolytic solution. The electrochemical/ Raman cell setup 

was designed in such a way that the working electrode (WE) was inserted into the cell from 

the bottom of the cell with the counter electrode (CE) and the reference electrode (RE) inserted 

at the side of the cell. The slot for the WE were sealed with an “O” ring to prevent leakage of 

the electrolyte solution.  

A quartz window was employed to function as close circuit system for the electrochemical/ 

Raman cell. Another function of the quartz window was to avoid a direct contact of the 

objective lens and electrolytic solution thereby acting as corrosion and contamination 
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prevention. The avoidance of evaporation of the electrolyte was an additional reason why the 

quartz window was used.   
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Figure 3.1 (a) Picture of Raman cell setup and (b) Schematic diagram of Raman cell showing all parts. 

   

3.1.3 Preparation of electrolyte solutions  

Preparation of saturated KCl solution 

A saturated KCl solution was prepared by measuring 9g of KCl salt in 25mL of water and was 

used for the fabrication of the Ag/AgCl pseudoreference electrode.  

Preparation of 0.1 M KCl solution  

The concentration of 0.1 M KCl solution with molecular weight of 74.55 g/mol was prepared 

by measuring 0.19 g KCl salt using electronic balance and transferred into 25 mL volumetric 

flask and top up to the graduated mark with quartz distilled water.  

The concentration of 0.1 M NaPSS solution with a molecular weight of 70 kDa was prepared 

by measuring 0.175 g of the NaPSS salt into 25 mL volumetric flask and topping it up to the 

graduated mark with distilled water. 
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The concentration for 0.1 M TBAPF6-ACN solution with molecular weight 387.44 g/mol was 

prepared by measuring 0.387 g of the TBAPF6 salt into 10 mL volumetric flask and topping it 

up to the graduated mark with acetonitrile (ACN).   

 

3.1.4 Electrode polishing    

The experiment commenced by mechanically polishing the various working electrodes (Au, Pt 

and GC) in a petri dish using diamond paste and polishing cloth.  The polishing was done with 

diamond paste of coarse size 6µm, 3µm, 1µm and 0.25µm. The electrodes surface to be cleaned 

was rinsed with distilled water and ethanol intermittently during polishing.  

The FTO electrodes were carefully cleaned by successive ultrasonication in acetone, followed 

by ethanol and then deionized water to ensure removal of all traces of acetone and finally dried 

before use. 

 

3.2 Experimental Procedures 

 

3.2.1 Ag/AgCl Fabrication 

The experiment commenced with the preparation of Ag/AgCl reference electrode. The Ag – 

wire (about 6cm) was rinsed with a distilled water. Pt – wire (about 10cm) was coiled at the 

end to increase the surface area and burned under a blue flame of Bunsen burner to remove the 

oxide layers formed on the Pt – wire. A saturated aqueous solution of KCl (9g of KCl in 25ml 

of H2O) was prepared for the fabrication of the Ag/AgCl reference electrode. The Ag – wire 

and the Pt – wire was placed in the electrochemical cell and the saturated KCl solution was 

poured into the cell as well. The electrochemical cell was connected to a potentiostat (EG&G 

Princeton Applied Research Potentiostat/ Galvanostat Model 263A). The Ag – wire acted as 

the working electrode WE and the Pt – wire as the reference electrode/ Auxiliary electrode. A 

current of 1mA and a time (t) of 7200s (2 hours) was employed and a formation of a black 

layer electrochemical deposition on the Ag – wire and the graph of voltage against time was 

obtained. The reference Ag – wire electrode was rinsed with distilled water.  
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3.2.2 Calibration of Ag/AgCl 

The calibration of the Ag/AgCl pseudoreference electrode was performed against a known 

redox couple. An electrochemical cell was setup with the Pt – wire serving as the counter 

electrode (CE), glassy carbon (GC) electrode as the working electrode (WE) and the Ag/AgCl 

– wire acting as the reference electrode was filled with 0.1M aqueous KCl solution as the 

electrolyte. A small amount of ferrocene [K3Fe (CN)6] was added to the KCl electrolyte 

solution to give it a yellow color. Cyclic voltammetry (CV) was used to do the calibration of 

the Ag/AgCl pseudoreference electrode at a potential range of 0.000V to +0.400V at 100mV/s 

scan rate over 3 cycles (6 stop crossings).   

a.                                                                 b.             

              

Figure 3.2 images of Electrochemical setup of (a) 3-neck cell and (b) quartz cuvette. 

  

3.2.3 Electrochemical polymerization of EDOT monomer on Fluorinated Tin Oxide 

(FTO) 

The electrochemical deposition of the 0.01M EDOT monomer was performed on Fluorinated 

Tin Oxide (FTO) glass substrates using KCl, NaPSS, and TBAPF6 as electrolytes with 0.1M 

concentration.  The electrochemical measurements were performed in three-electrode cell 

made from quartz cuvette using Autolab (PGSTAT101) potentiostat as shown in figure 3.2 (b). 

The electrodes employed were platinum wire (Pt) as counter electrode (CE), Fluorinated Tin 

Oxide (FTO) as the working electrode (WE) and Silver wire (Ag) coated with AgCl as the 

reference electrode (RE).  

The applied potential range for the measurements were from 0.5V to 1.0V, at 15 cycles (30 

stop crossings) and 20mV/s scan rate. Oxygen was removed from the solution by purging with 
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dry nitrogen (N2) gas for 10 min for all three electrolytes (KCl, NaPSS, and TBAPF6) at 0.1M 

concentration.  

The electrochemical polymerization was performed for the PEDOT films in the various 

electrolytic solutions. Upon continuous sweeping, nucleation and polymer growth of the film 

were nicely observed on the surface of the FTO substrates.  

The polymer films were rinsed with deionized water to remove any remaining electrolytes and 

EDOT monomer from the film. The polymer films were placed in a monomer free electrolytic 

solutions ( KCl, NaPSS, and TBAPF6) and the redox behavior of the films were studied at a 

potential range of -1.0V to 1.0V for 5 cycles using four different scan rates of 10mV/s, 20mV/s, 

50mV/s and 100mV/s. N2 gas were bubbled through the electrolyte solutions for 10 minutes to 

remove oxygen.          

3.2.4 Electrochemical polymerization of PEDOT films using 3-neck cell 

The 3 – neck cell in figure 3.2 (a) was assembled for the electrochemical polymerization of the 

EDOT monomer on the WE surface. The Pt- wire (CE), Ag – wire (RE) and the Au electrode 

(WE) were inserted into the 3-neck cell accordingly. KCl electrolyte solution of 0.1M 

concentration containing the 0.01M EDOT monomer was poured into the cell for the 

polymerization and N2 gas was bubbled through the cell to remove oxygen. A cyclic potential 

scan setup was run between -0.5V and 1.0V using 15 cycles (30 stop crossings) and 20 mV/s 

as scan rate. The cell and electrode were rinsed with monomer free electrolyte solution (0.1M 

KCl) and doping of the thin film deposited on the Au electrode surface was tested using 

monomer free electrolyte solution (0.1M KCl). N2 gas was bubbled through the cell to remove 

oxygen and the scanning parameters used for the CV staircase were -1.0V to 1.0V potential, 3 

cycles (6 stop crossings), 100mV/s scan rate. 

Characterization of the polymer films in a monomer-free KCl electrolyte of known 

concentration of 0.1M were conducted to obtain the CV for the doping response for the three 

WE electrodes (Au, Pt and GC). The applied potential range for the characterization were 

between -1.0V and 1.0V for 5 cycles using 10mV/s, 20mV/s, 50mVs and 100mV/s as scan 

rates. The process was deaerated by purging the monomer-free KCl electrolyte with N2 gas for 

10 minutes.   
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3.2.5 Electrochemical polymerization of PEDOT film using the laboratory fabricated 

Raman cell 

The Au, Pt and GC WE were polished like previously done for the 3-neck cell. 

The electrochemical measurement for PEDOT film on Au electrode was performed in the 

already laboratory fabricated Raman cell coupled to Autolab (PGSTAT101) potentiostat. Au, 

GC and Pt electrodes were used as the WE and inserted through the bottom of the cell with the 

electrode surface appearing at the electrolytic cavity of the cell. The platinum wire used as 

counter electrode (CE) and Ag wire coated with AgCl was used as the reference electrode (RE) 

were inserted at the sides of the Raman cell as shown in figure 3.1. 

A 0.01M EDOT monomer in 0.1M KCl electrolyte solution was poured into the cell cavity of 

about 1.5ml volume. The cell was closed using the glass quartz window and the oxygen was 

removed by bubbling N2 gas through the solution for 10 min. The PEDOT film was 

polymerized by a potential scan range of -0.5V to 1.0V. A scan rate of 20mVs and the number 

of cycles used for the CV staircase was 15 cycles (30 stop crossings).  

Characterization of the polymer films in a monomer-free KCl electrolyte with known 

concentration of 0.1M were conducted to obtain the CV for the doping response for the three 

WE electrodes (Au, Pt and GC). The applied potential range for the characterization were 

between -1.0V and 1.0V for 5 cycles using 10mV/s, 20mV/s, 50mVs and 100mV/s as scan 

rates. The process was deaerated by purging the monomer-free 0.1M KCl electrolyte with N2 

gas for 10 minutes.      

 

3.3 Spectroelectrochemistry 

The main spectroscopic technique used for the characterization process was Raman 

spectroscopic measurements using a Renishaw inVia Raman Spectroscopy instrument. Cary 

60 UV-VIS Spectroscopic instrument from Agilent technology was employed as auxiliary 

characterization technique during spectroelectrochemistry process.    

During the in situ Raman spectroscopy measurement, the electrochemically polymerized 

PEDOT on the three different electrodes (Au, Pt, and GC) were studied upon application of 

seven different constant potentials (-0.8V, -0.5V, -0.1V, 0.3V, 0.5V, 0.6V, 0.7V) taken from a 

CV conducted during p-doping of a PEDOT film to properly observe all the Raman bands 

during doping. Two lasers of wavelengths 532nm and 785nm with laser power of 1% were 
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separately used to record the Raman spectra of the film after the polymerization process has 

been performed. The waiting time between the potentiostat and the starting of the Raman 

spectroscopy measurement was 20 seconds. A constant potential was maintained before each 

measurement at total time of 120 seconds. The magnification of the objective lens used for the 

measurements at applied potential range was X50.         

 

a.                                                                  b. 

 

Figure 3.3 Image of (a) Raman spectrometer from Renishaw and (b) UV-vis spectrometer from Agilent 

Cary 60. [61]. 

   

For the UV – Vis measurements, the electrochemical polymerization was performed on an 

fluorinated tin oxide (FTO) electrode. The scanning electrode potential was cycled between -

0.9V and 0.6V against Ag/AgCl reference electrode and Pt wire CE. The number of scans were 

31 times at a scan rate of 2mV/s. The absorbance spectra were recorded at the end of each 

potential cycle for 31 times. The absorbance spectra were recorded for constant potentials as 

the current drops to zero.      

 

4.  RESULTS AND DISCUSSIONS 

4.1 Electrochemical Polymerization of PEDOT film on FTO substrate. 

CV shapes observed for all the PEDOT films were different and this can be accredited to the 

various electrolyte solutions used for the electrochemical polymerization performed. An 

increase in oxidation and reduction peaks current was observed for three CVs and a steady rise 

in current density on each potential sweep was noticed signifying polymer film deposition on 

the FTO substrates. 



29 
 

                

-0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

-1.0 -0.5 0.0 0.5 1.0

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

I/
m
A

E/V vs Ag/AgCl

 20mV/s

E/V vs Ag/AgCl

I/
m

A

 0.01M EDOT in 0.1M KCl in H2O

 

Figure 4.1 Cyclic voltammogram for an electrochemical polymerization of PEDOT film in KCl electrolyte 

solution. The insert shows characterization CV of the PEDOT film in monomer free 0.1M KCl solution at 

potential range -1.0V to 1.0V for 5 cycles.   

 

The cyclic voltammogram shown in the figure 4.1 consist of 0.01M EDOT in 0.1M KCl 

electrolyte solution in aqueous medium. The insert is CV showing the first 5 cycles of the 

characterization of the PEDOT film in 0.1M KCL monomer-free solution at 20 mV/s scan rate. 

The CV from the polymerization with monomer in solution showed constant growth of current 

during scanning as the amount of electrochemically active polymer material is increasing onto 

the working electrode surface. The CV also showed very broad and smaller oxidation and 

reduction peaks which indicates movement of charges inside the film and counter ions move 

from electrolyte solution to compensate the charges. It was observed during scanning that the 

PEDOT film at oxidized state gave light blue color whiles dark blue color was noticed at the 

reduced state. A consistent and smooth growth of the polymer film was observed throughout 

the scanning process. The applied potential of oxidation peak occurs at 0.2V and the reduction 

peak potentials occurs at -0.4V and 0.45V.  

The inserted CV for the above polymer film depicted a slight shift in potential for both the 

oxidation and reduction peaks in the 0.1M KCl monomer-free electrolyte solution during 

scanning for the redox response of the polymer film. During doping there is no increase in 

current during continuous scanning [74][32][13]. 
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Figure 4.2 Cyclic voltammogram for an electrochemical polymerization of PEDOT film in NaPSS 

solution. The insert shows characterization CV of the PEDOT film in monomer free 0.1M NaPSS solution 

at potential range -1.0V to 1.0V for 5 cycles.   

 

The CV in figure 4.2 shows the electropolymerization of PEDOT in 0.1M NaPSS electrolyte 

solution in aqueous medium. The figure also shows an insert characterization CV for the first 

5 cycles of the PEDOT film in 0.1M NaPSS monomer-free electrolyte solution at 20mV/s 

showing the redox behavior of the film. The oxidation and reduction peaks of the CV were 

seen at -0.2V and 0.5V respectively even though they are broad and not distinct. The film 

showed color change from light blue to dark blue during continuous sweeping of the 

polymerization process for the oxidation/ reduction state respectively. The CV for the NaPSS 

electrolyte also exhibited consistent and smooth growth polymerized film on the surface of the 

FTO substrate [13][21][24][74].  
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Figure 4.3 Cyclic voltammogram for an electrochemical polymerization of PEDOT film in TBAPF6-ACN 

solution. The insert shows characterization CV of the PEDOT film in monomer free 0.1M TBAPF6-ACN 

solution at potential range -1.0V to 1.0V for 5 cycles.   

  

 

The figure 4.3 above represents the CV for electrochemically polymerized film of 0.1M EDOT 

monomer in 0.1M TBAPF6 in Acetonitrile (ACN) at 20mV/s scan rate and an applied potential 

range of -1.0V to 1.25V for 15 cycles.  

The CV showed broad oxidation peak which occurred at 0.1V and two reduction peaks at -

0.5V and -0.1V potentials respectively. Unlike the CV films in the aqueous medium 

electrolytes discussed earlier, the CV of TBAPF6 in ACN as organic medium electrolytes gave 

fibrous (rough) film on the FTO substrate. The poor stability or adherence of the film on the 

FTO surface might be due to higher potential greater than 0.8V which leads to formation of 

overoxidized film after electropolymerization [74]. It can also be attributed to low solubility 

EDOT monomer in the electrolyte solution [74]. The color change of the film presented light 

blue for the oxidation potential and dark blue for reduction potential on continuous sweeping 

for the polymerization process. The CV insertion presented the redox response of the first 5 

cycles of the film in 0.1M TBAPF6 in ACN monomer-free electrolyte solution [52].     
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4.1.1 Electrochemical Characterization of FTO polymer films. 

Characterization of films deposited on the FTO polymer films were performed in a monomer-

free electrolyte solution of concentration 0.1M for KCl, NaPSS and TBAPF6 accordingly. The 

applied potential range for the characterization was -1.0V to 1.0V for 5 cycles. The different 

scan rates used for the characterization were 10mV/s, 20mV/s, 50mV/s and 100mV/s for 

polymer films. 

Cyclic voltammograms of polymer films in the presence of monomer-free electrolyte exhibited 

an increase in the oxidation and reduction peak potentials. It was observed from the CV that 

increasing the scan rate caused small shift in the peak potentials for the polymer films. The 

CVs of the films show one oxidation peak and two reduction peaks for all the electrolyte 

solutions. The changes observed in the CVs resulting from different scan rates gives an 

indication of the influence of the electrolyte solutions.  The characterization CVs also displayed 

behavior comparable to the CVs of their corresponding electrochemical polymerization on the 

FTO substates. 

The oxidation and the reduction peaks shown in characterization CVs below were broad which 

implies slow redox response and ion movements in the polymer film at the elevated scan rates 

for the electrolyte solutions.  

From the CVs, current densities of the films increase with increasing scan rates suggesting that 

conductivity of the film is high [6][13][25][32][74].            
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Figure 4.4 Cyclic voltammogram of PEDOT film in KCl monomer free solution showing different scan 

rates. 
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Furthermore, in comparing the CVs obtained for the three electrolyte solutions it can be noticed 

that the peaks for the KCl electrolyte film looked more pronounced unlike the NaPSS and 

TBAPF6 electrolyte solutions. The oxidation and reduction peak currents increases linearly 

with increasing scan rates for the polymer film characterized in KCl film fig 4.4. The oxidation 

and reduction peaks for the polymer films of NaPSS and TBAPF6 electrolyte solutions are not 

well defined and seems to disappear. The broader peaks seen in the CVs of the redox cycle is 

an indicative of slow diffusion of ions from the respective electrolytic solutions into the 

polymer films. From the CVs above, it can be predicted that there is linear dependence between 

oxidation/reduction peaks and scan rate. Even though peaks of CVs were not too prominent 

the films showed some form of activeness electrochemically [22][25][31][32][74].   
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Figure 4.5 Cyclic voltammogram of PEDOT film in NaPSS monomer free solution showing different scan 

rates. 
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Figure 4.6 Cyclic voltammogram of PEDOT film in TBAPF6-ACN monomer free solution showing 

different scan rates.  

         

4.2 Electrochemical Polymerization of PEDOT film using 3-neck cell.  

The cyclic voltammograms using the 3-neck cell with the potential range -0.5V to 1.0V, 15 

cycles and scan rate 20mV/s are shown in the figures 4.7 (a), (c) and (e) below. The 

concentrations of PEDOT: PSS EDOT monomer and KCl electrolyte was 0.01M and 0.1M 

respectively for the three different WE (Au, GC and Pt). The comparison of the polymerization 

film shown in figures 4.7 (a), (c) and (e) below indicated similar responses for all the WE (Au, 

GC and Pt) showing small and broader oxidation peak at potential of 0.1V for all three 

electrodes and likewise reduction peak for all three WE at reduction potential of -0.4V. Even 

though similar potential ranges -0.5V to 1.0V can be seen for all the WE (Au, GC and Pt) yet 

they have different intensities. On the other hand, there is sharp peak depicted for the Au 

electrode in CVs for the polymerization and characterization in Fig. 4.7 (a)-(b) which cannot 

be seen for the Pt in fig. 4.7 (c)-(d) and GC in fig. 4.7 (e)-(f) electrodes during the reverse scan. 

This sharp and well-defined peak might be due to impurities from the electrolyte solution and 

or inadequate preparation of the Au WE surface [2][22][74].   
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Figure 4.7 Electrochemical polymerization of PEDOT film and the corresponding CV in monomer free 

KCl electrolyte solution. (a-b) for Au electrode, (c-d) for Pt electrode, (e-f) for GC electrode, at different 

scan rates for 3-neck cell. 

                                             

Moreover, there are no clear distinction between the CVs for the WE (Au, Pt, & GC) for the 3-

neck cell (above) and that of the CVs of the Raman cell. The cathodic and anodic peaks for 

both 3 neck cell and Raman cell shows the same potentials (0.25V, -0.4V for oxidation peaks 

and 0.45V, -0.4V for reduction peaks) at 20mV/s scan rate during polymerization in the 

electrolyte solution. The oxidation/reduction potential peaks produced from the 
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characterization of the film were broad with low current intensities. The reason that can be 

assigned to these broad peaks is slow diffusion of the KCl electrolyte to the film.    

 

4.3 Electrochemical Polymerization for laboratory fabricated Raman cell 

This section brings out the redox response for the PEDOT polymerized film on the WE (Au, 

Pt & GC) during doping (p and n – doping). It can be noticed from the CVs above and below 

that as the scan rate increases from 10mVs to 100mVs there is also an increase in the 

oxidation/reduction peak potential for all the WE (Au, Pt &GC) used. The CVs also shows 

swelling of the film as the scan rate increases from 10mVs to 100mVs [2]. The applied 

potentials are similar for all the WE, but variations are seen in the current intensities. It can 

also be seen that there are slight variations between the CVs above (3 neck cell) and that below 

(Raman cell).   

From the CVs representing the laboratory fabricated Raman cell below, the electrochemical 

polymerization of the WE electrodes and their corresponding redox characterizations 

voltammograms were measured under similar conditions to the 3-neck cell used. The 

characterization CVs were measured using an applied potential range of -1.0V to 1.0V, 5 cycles 

(10 stop crossings) and scan rates 10 mV/s, 20 mV/s, 50 mV/s and 100mV/s in succession. 

From the CVs, slight shift in oxidation/reduction peaks could be observed for all the electrodes 

used akin to the CVs for the 3-neck cell. The oxidation peaks potentials were seen at -0.45V 

and 0.2V whereas the reduction peaks potentials were found at -0.5V and 0.4V. The oxidation 

/reduction peaks increase along with increasing scan rate showing linear dependence in terms 

of relationship [52][74][77].   
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Figure 4.8 Electrochemical polymerization of PEDOT film and the corresponding CV in monomer free 

KCl electrolyte solution. (a-b) for Au electrode, (c-d) for Pt electrode, (e-f) for GC electrode, at different 

scan rates for Raman cell. 

 

4.4 In situ UV-Vis Spectroscopy  

In situ UV-Vis spectroelctrochemistry was used to study the doping (p- and n-doping) 

characteristics and to indicate the various vibrational modes of the PEDOT film. It is a useful 

tool for studying the structural and optical properties of the conducting polymers. The EDOT 

monomer with 0.01M concentration was electrochemically polymerized on glass substrate 

coated with FTO in three different electrolytic medium. The electrolyte used are 0.1M KCl 

solution, 0.1M NaPSS solution and 0.1M TBAPF6 in ACN solution. The in situ UV-Vis was 

used to characterize the changes in the absorption spectra and obtain optical properties 

information of the PEDOT film.   

The in situ UV-Vis measurement of the already electrochemically polymerized film of 0.01M 

EDOT monomer was carried out in  0.1M monomer-free electrolyte where a series of oxidized 
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and reduced form spectra was observed and recorded at different potentials during doping of 

the films.  

 

The parameters used for the UV-Vis measurements includes applied potentials from 0.6V down 

to -0.9V, 2mV/s scan rate per each potential was used given a total scan rate of 100mV/s. The 

total time for the entire measurements was 1500 sec with 50 sec intervals between the applied 

potentials for 31 cycles or spectra. An electrochemically polymerized PEDOT film on FTO 

electrode in quartz cuvette using a monomer-free solution of 0.1M (KCl, NaPSS and TBAPF6-

ACN) was cycled through potential of 0.6 V to -0.9 V for 31 scans during which spectra was 

recoded after each scan.  

 

It was worth mentioning that the above parameters were used to record the UV-Vis spectra of 

the PEDOT film in three different monomer-free electrolytic solutions during doping. The 

0.1M KCl solution and 0.1M NaPSS represents aqueous medium electrolytes whereas organic 

medium electrolyte is 0.1M TBAPF6-ACN solution.   
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Figure 4.9 (a) CV for film growth of electrochemically polymerized PEDOT film on FTO in 0.1M KCl 

solution and UV-VIS absorption spectra measurement of the film (b) spectra of complete cycle for p-

doping (c) forward cycle (d) reverse cycle. The cycling potential employed was between 0.6nV and -0.9 V 

for 31 scans in monomer-free solution of 0.1M KCl.  

 

From figure 4.9 (b) to (d), absorbance increases as the wavelength of the visible range increases 

for p-doping of the PEDOT film in 0.1M KCl electrolyte solution. The highest absorbance for 

the p-doping can be seen at 0.23 and 460 nm wavelength with oxidation potential 0.6V down 

to -0.9V reduction potential for both forward and reverse cycle. 

The highest absorption peak which occurred at 460 nm for p-doping illustrates π – π* transition 

absorption of the conjugated PEDOT main chain.    

Moreover, at applied negative potentials the absorbance peak was realize at 460 nm wavelength 

for the reduced (n-doping) state. Nothing much can be seen at the neutral state since no 

significant absorption peaks corresponding to polarons formation and bipolarons are present.     

It can be noticed that the forward and the reverse cycles have little or no difference in terms of 

absorbance and wavelengths. 

Figure 4.9 (b) shows a complete cycle of the spectra obtained for p-doping when the film was 

cycled through -0.8 V to 0.6 V. The forward and reverse cycles of the p-doping is also shown 

in figures 4.9 (c) and (d) respectively. The n-doping of the film from -0.9 V to -2.0 V could not 

be performed since PEDOT often breaks down during n-doping and again the potential limit 

of water system makes n-doping difficult in aqueous electrolyte medium.       

 

Electrochromic properties of the PEDOT polymer was observed as spectra changes color from 

the oxidation potential of 0.6V to the reduction potential of -0.9V. The change in color of the 
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polymer is the underlying factor for display properties in PEDOT material. It was illustrated in 

both spectra cycles that electrochromic switching properties of the PEDOT film showed 

constant and reversible change in absorbance [74].    
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Figure 4.10 (a) CV for film growth of electrochemically polymerized PEDOT film on FTO in 0.1M NaPSS 

solution and UV-VIS absorption spectra measurement of the film (b) spectra of complete cycle for p-

doping (c) forward cycle (d) reverse cycle. The cycling potential employed was between 0.6nV and -0.9 V 

for 31 scans in monomer-free solution of 0.1M NaPSS. 

 

 

From the figures 4.10 (c) and (d) above, only p-doping can be realize for the PEDOT film in 

0.1M NaPSS monomer free electrolyte solution and broad absorbance peak was 540 nm 

wavelength which explains π – π* transition absorption for the conjugated polymer main chain. 

The applied potential for forward and reverse cycle measurements ranges from -0.9V to 0.6V 

representing 31 cycles in total. It can be observed that n-doping state absorption was very weak 

and thus vanishes as the PEDOT film reduces to intrinsic conjugated state.  
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In like manner to the spectra in figure 4.9, the figure 4.10 (b) also shows complete cycle of the 

spectra obtained for p-doping when the film was cycled through -0.8 V to 0.6 V. The forward 

and reverse cycles of the p-doping is also shown in figures 4.10 (c) and (d) respectively. The 

n-doping of the film from -0.9 V to -2.0 V could not be performed since PEDOT often breaks 

down during n-doping and again the potential limit of water system makes n-doping difficult 

in aqueous electrolyte medium.      

 

From the graphs, the wavelength for the spectra lines of the PEDOT film in 0.1M NaPSS was 

truncated at 750 nm since noisy signal was produced beyond this wavelength. The formation 

of polarons and bipolarons was difficult to detect unlike the 0.1M KCl electrolyte solution. 

Similarly, the spectra of 0.1M KCl electrolyte figure 4.10, the 0.1M NaPSS electrolyte solution 

also showed some electrochromic properties since there was color change over the applied 

potential range [58][59][74].   
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Figure 4.11 (a) CV for film growth of electrochemically polymerized PEDOT film on FTO in 0.1M 

TBAPF6-ACN solution and UV-VIS absorption spectra measurement of the film (b) spectra of complete 

cycle for p-doping (c) forward cycle (d) reverse cycle. . The cycling potential employed was between 0.6nV 

and -0.9 V for 31 scans in monomer-free solution of 0.1M TBAPF6-ACN.  
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Contrary to the 0.1M KCl and 0.1M NaPSS  UV-Vis spectra for the aqueous medium, the UV-

Vis spectra for the 0.1M TBAPF6 in ACN representing organic medium electrolyte was fibrous 

in nature and it is evident from the electropolymerized PEDOT film produced on the FTO glass 

substrate.  

The p-doping spectra for the 0.1M TBAPF6-ACN monomer free electrolyte showed negative 

absorbance present for both forward and reverse cycles. From the figures 4.11 (b) to (d), 

absorption for the spectral peaks were seen at 520nm wavelength which corresponds to the p-

doping state of the polymer main chain. There is the formation of polarons and bipolarons for 

the during doping of the PEDOT film. Electrochromic properties for display applications of 

the PEDOT film in 0.1M TBAPF6-ACN monomer free electrolyte looked promising as spectra 

measurement across -0.9V to 0.6V potential range was applied [58][59][74].     

 

4.5 Raman spectroscopy 

The electrochemically polymerized film on the electrodes were studied by using in situ Raman 

spectroelectrochemistry. Applied potentials of -0.8V to 0.7V was employed for all the Raman 

measurements. Two different lasers were used to record the spectra and these are 532nm and 

785nm with laser power of 1%. The time taken to record each Raman spectra was 20s. It is 

worth noticing that the tables 4.1 and 4.2 below show the various vibrational assignments 

associated with PEDOT main peaks and other bands in the Raman spectra were observed after 

electropolymerization and during electrochemical doping of the PEDOT film.  

   

Wavenumber (cm-1) Assignments 

1563 PSS 

1532 PEDOT Cα = Cβ (intra-chain) 

1425 PEDOT Cα = Cβ (-O) (intra-chain) 

1367 PEDOT Cβ - Cβ’ (inter-chain) 

1256 PEDOT Cα - Cα’ (inter-ring) 

1136 PEDOT C-O-C (intra-ring) 

1093 PSS 
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989 PSS 

701 PSS 

577 PEDOT C-S-C (intra-ring) 

522 PEDOT 

437 PEDOT S-S (inter-ring) 

 

Table 4.1 The main Raman peaks and their vibrational or functional group assignment for the PEDOT-PSS 

films [57]. 

 

 

 

 

 

Wavenumber (cm-1)  Assignments 

1509 Asymmetric ν(Cα = Cβ) 

1432 Symmetric νCα = Cβ (–O) 

1366 ν(Cβ-Cβ) 

1266 Inter-ring ν(Cα-Cα) 

1096 ν(C-O-C) 

990, 573 Oxyethylene ring deformation 

699 Symmetric ν(C-S-C) 

439 δ(SO2) 

 

Table 4.2 Observed frequencies of doped poly(3,4-ethylenedioxythiophene) with assignment of principal bands 

[53]. 
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Figure 4.12 Raman spectra for PEDOT film on Au electrode in KCl solution using 532 nm excitation 

wavelength. 

 

The figure above shows the Raman peaks of Au electrode in KCl electrolyte solution for 0.5V 

applied potential using 532nm laser at 1% laser power for 20s. The recorded spectra showed 

very weak peaks at high intensity. The most prominent peak was recorded at Raman shift 1460 

cm-1 at the disorder induced mode (D mode) region is assigned to Cα = Cβ intra-chain symmetric 

stretching of the PEDOT film with medium intensity. However, very small peaks were found 

to emerge at the RBM (radial breathing mode) region 450 cm-1 and 1000 cm-1 with very weak 

intensity which is ascribed to δSO2 and Oxyethylene ring deformation respectively 

[37][52][53][74]. 
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Figure 4.13 Raman spectra for PEDOT film on Au electrode in TBAPF6-ACN solution using 532 nm 

excitation wavelength. 

   

The figure above shows the Raman peaks of Au electrode in TBAPF6-ACN electrolyte solution 

for 0.5V applied potential using 532nm laser at 1% laser power for 20s. The recorded spectra 

showed very weak peaks at high intensity. The most prominent peak was recorded at Raman 

shift 1460 cm-1 at the disorder induced mode (D mode) region is assigned to Cα = Cβ intra-chain 

symmetric stretching of the PEDOT film with medium intensity. However, very small peaks 

were found to emerge at the RBM (radial breathing mode) region 450 cm-1 and 1000 cm-1 with 

very weak intensity which is ascribed to δSO2 and Oxyethylene ring deformation respectively 

[52][53][74]. 
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Figure 4.14 Raman spectra for PEDOT film on Au electrode in KCl solution using 785 nm excitation 

wavelength. 

 

The above figure shows spectra of Au electrode in KCl electrolyte solution for 785nm 

excitation laser at 0.5V applied potential, 1% laser power and measuring time of 20s were 

employed. The most distinct peak for the spectra was measured at 1460cm-1 indicating the 

highest intensity for the disorder induced mode (D Mode) region was attributed to Cα = Cβ 

intra-chain asymmetric stretching of the backbone PEDOT film. However, an auxiliary peak 

was also realized at 1250 cm-1 representing Cα - Cα inter-ring PEDOT chain film. Several 

peaks were observed at 1100 cm-1 for C-O-C ring deformation, 1000 cm-1 for Oxyethylene ring 

deformation, 850 cm-1 for Oxyethylene ring deformation, 680 cm-1 for C𝛼-S-C𝛼 ring 

deformation, 520 cm-1 for Oxyethylene ring deformation, whereas 470 cm-1 , 356 cm-1 and 236 

cm-1 denotes δSO2 around the Radial Breathing Mode (RBM) and D mode region of the spectra. 

The peaks at this region showed insignificant intensities. It can be seen from the spectra that 

an emerging peak at Raman shift of 1560cm-1 representing the G Mode (high frequency two 

phonon) region where charge transfer related to intermediate doping is observed as well 

[50][52][53][74]. 
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Figure 4.15 Raman spectra for PEDOT film on Au electrode in TBAPF6-ACN solution using 785 nm 

excitation wavelength. 

 

The Raman spectra above was recorded for Au electrode in ACN electrolyte solution for 

excitation wavelength of 785nm at 0.5V applied potential. Similarly, 1% laser power was used 

and the measuring time for recording the spectra was 20s. 

The most prominent peak can be noticed at Raman shift 1460cm-1 was assigned to D Mode 

region for the PEDOT film belonging to Cα = Cβ intra-chain asymmetric stretching functional 

group. The emerging peak closer to the main peak at Raman shift 1250cm-1 can be attributed 

to Cα - Cα inter-ring PEDOT chain film. In like manner, the RBM region of the spectra was 

realised cluster of peaks which was assigned to δ(C-C) aliphatic chains and υ(C-Cl) functional 

groups. The peaks gave similar Raman shift as the Au in KCl in the above with the peak 

positions being found at 1100cm-1 for C-O-C ring deformation, 1000cm-1 for Oxyethylene ring 

deformation, 850cm-1 for Oxyethylene ring deformation, 680cm-1 for C𝛼-S-C𝛼 ring 

deformation, 520cm-1 for Oxyethylene ring deformation, 470cm-1, 356cm-1 and 236cm-1 for 

δSO2. However, there were massive increase in intensities of the peaks (peak height) that is 

about twice as much as the intensities of that of Au in KCl spectra. An evolving peak at 

1560cm-1 for the G Mode (high frequency two phonon) region like previously, explains the 

charge transfer activities related to intermediate doping of the PEDOT film 

[44][52][54][69][74].      
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Figure 4.16 Raman spectra for PEDOT film on GC electrode in KCl solution using 532 nm excitation 

wavelength. 

 

The spectra above was recorded for GC electrode in KCl electrolyte using 532nm excitation 

wavelength, and laser power of 1%, at 0.5V applied potential at 20s recording time.  

The most significant peak occurred at 1460cm-1 at the D mode being assigned to Symmetric 

νCα = Cβ (–O) stretching of the main PEDOT backbone chain with two emerging peaks at the 

shoulder of the main peak at Raman shift of 1520  cm-1 and 1560  cm-1 which are doping 

induced and intermediate doping respectively gives an indication of changes in the polymer 

chain film during doping. Two prominent bands are seen at 2200cm-1 and 2910cm-1 beyond 

the G mode region (2D mode) representing C=C asymmetrical stretching of the PEDOT chain. 

The bands found at 1300 cm-1 is ascribed  C-C vibrational group, 1050 cm-1 represents C-O-C 

stretching of PEDOT film, 980 cm-1 could be assigned to C-S-C deformation, 560 cm-1 are 

assigned to Oxyethylene ring deformation, 420 cm-1, 380 cm-1 extending from the D mode 

region to the RBM region representing δ(S-S) inter-ring PEDOT [52][53][57][74].      
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Figure 4.17 Raman spectra for PEDOT film on GC electrode in TBAPF6-ACN solution using 532 nm 

excitation wavelength. 

 

The figure above shows the spectra recorded for PEDOT film on GC electrode in 0.1M 

TBAPF6 (ACN) electrolyte solutions at 532 nm laser excitation wavelength, 0.5V potential, 

20s measuring time and 1% laser power. The conspicuous peak for the spectra was observed 

at 1460 cm-1 was attributed to asymmetric C-C stretching. The main peak was accompanied by 

two shoulder peaks at 1405 cm-1 and 1520 cm-1 represent C=C symmetrical and asymmetrical 

vibrations respectively. A broader and emerging peak was noticed at 2875 cm-1 which indicated 

υ(C-H) i.e. CH2 stretching vibrations. Several doping induced bands were recognized at 1260 

cm-1 for Inter-ring ν(Cα-Cα), 1140 cm-1 for ethylenedioxy group deformation, 992 cm-1 for 

Oxyethylene ring bending, 792 cm-1, 680 cm-1, 520 cm-1 representing Oxyethylene ring 

deformation and 470 cm-1 assigned to δ(S-S) inter-ring PEDOT vibrations. The Raman 

intensities observed were low for all the peaks in the spectra [52][53][57][74].    
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Figure 4.18 Raman spectra for PEDOT film on GC electrode in KCl solution using 785 nm excitation 

wavelength. 

 

The Raman spectrum above shows electropolymerized PEDOT film on GC electrode in 0.1 M 

KCl solvent using 785 nm excitation laser for 0.5 V applied potential. 

The main peak located at Raman shift 1460 cm-1 gives an indication of C-C stretching of the 

main PEDOT chain. Other peaks observed at 1250 cm-1 for 1260 cm-1 for Inter-ring ν(Cα-Cα), 

1100 cm-1 for C-O-C ring deformation, 1000 cm-1 for C-O-C stretching, 875 cm-1 for 

Oxyethylene ring deformation, 705 cm-1 for C-S-C deformation, 548 cm-1 and 510 cm-1 for 

Oxyethylene ring deformation, 487 cm-1 and 360 cm-1 for PEDOT δ(S-S) inter-ring vibrations. 

An emerging peak was observed at 1520 cm-1 which was attributed to Asymmetric C𝛼=C𝛽 

stretching of the PEDOT accordingly. However, much higher intensities were portrayed by the 

various peaks in the spectrum in comparison to other spectra [53][57][69][74].      
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Figure 4.19 Raman spectra for PEDOT film on GC electrode in TBAPF6-ACN solution using 785 nm 

excitation wavelength. 

 

The above spectra represent PEDOT film on GC electrode in 0.1M TBAPF6 (ACN) for 785 

nm laser excitation wavelength, 1% laser power and 0.5V applied potential for 20s measuring 

time. The most noticeable peaks like the previous spectra was found at 1460 cm-1 assigned to 

asymmetric C-C stretching. A shoulder band at 1515 cm-1 was attributed Asymmetric C𝛼=C𝛽 

stretching vibrations beyond which no peak is found. Numerous bands at 1250 cm-1 for PEDOT 

Cα - Cα inter-ring stretching, 1125 cm-1 for PEDOT C-O-C intra-ring deformation, 997 cm-1, 

820 cm-1, 512 cm-1, 500 cm-1 was ascribed to oxyethylene ring deformation, 685 cm-1 attributed 

to symmetric ν(C-S-C), 486 cm-1 and 310 cm-1 could be connected to PEDOT δ(S-S) inter-ring 

vibrational group [52][53][57][74].            

 

 

 



52 
 

4.5.1 In situ Raman Spectroscopy  
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Figure 4.20 In situ Raman spectra recorded for electrochemically polymerized PEDOT film on Au 

electrode in 0.1M KCl solution using 532 nm excitation wavelength at -0.8 V to 0.7 V scanning potential 

for p- and n-doping. 

 

The figure above shows Raman spectra recorded for PEDOT film on Au electrodes in 0.1 M 

KCl with a scanning potential range of -0.8 V to 0.7 V using excitation laser with wavelength 

of 532 nm. The main peak for the spectra was observed at 1460 cm-1 corresponding to 

Symmetric Cα = Cβ (–O) stretching vibration of the PEDOT main chain for all the scanning 

potentials with shoulder peaks seen at 1410 cm-1 and 1520 cm-1 which can be assigned to 

symmetrical and asymmetrical C𝛼=C𝛽 stretching vibrations respectively. There is slight shift 

of the main peaks together with the shoulder peaks and other peaks for all the scanning 

potentials and spectra upshift could also be observed which might results from higher laser 

power used. Bands found at 2850 cm-1 and 2910 cm-1 were assigned to υ(C−Η) vibrations for 

both n-doping and p-doping and these bands looked more prominent for the negative scanning 

potentials than the positive potentials. Higher and much stronger intensities were observed for 

the n-doping spectrum compared to the p-doping [53][57][68][74].   
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Figure 4.21 In situ Raman spectra recorded for electrochemically polymerized PEDOT film on Au 

electrode in 0.1M TBAPF6-ACN solution using 532 nm excitation wavelength at -0.8 V to 0.7 V scanning 

potential for p- and n-doping. 

 

The above figure represents Raman Spectra recorded for PEDOT film polymerized on Au 

electrode in 0.1 M TBAPF6-ACN electrolyte with scanning potential ranging from -0.8 V to 

0.7 V using 532 nm excitation wavelength laser. The most significant peaks for the spectra 

were observed at 1460 cm-1 and attributed to C𝛼=C𝛽 symmetric stretch of intra-chain vibration 

of the PEDOT film backbone for all scanning potentials. It also showed shoulder peaks at 1410 

cm-1 and 1520 cm-1 was accounted for as C𝛼=C𝛽 symmetrical and asymmetrical vibrational 

groups which also denotes induced and intermediate doping respectively. Bands found at 2250 

cm-1 and 2270 cm-1 were assigned to υ(C≅C) vibrational group for -0.8 V, 0.3 V and 0.7 V 

potentials and other bands could be seen further beyond these bands at 2820 cm-1, 2850 cm-1 

and 2910 cm-1 accredited to strong Raman intensity of υ(C−Η) functional group. Several fading 

bands were seen at the RBM region which are representation of Oxyethylene ring deformation, 

C𝛼-S-C𝛼 ring deformation and C-O-C ring deformation for the polymerized PEDOT film. As 

stated earlier on, stronger and much higher intensities were observed for n-doping as compared 

to the p-doping that is doping increases with negative potentials [52][54][59][71][74].       
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Figure 4.22 In situ Raman spectra recorded for electrochemically polymerized PEDOT film on Au 

electrode in 0.1M KCl solution using 785 nm excitation wavelength at -0.8 V to 0.7 V scanning potential 

for p- and n-doping. 

 

The above figure is recorded Raman spectra for 785 nm excitation laser of PEDOT film on Au 

electrode in KCl solvent for scanning potential range of -0.8 V to 0.7 V.  

The obvious peaks were found at 1460 cm-1 assigned to C𝛼=C𝛽 symmetric stretch of intra-

chain PEDOT chain vibrations for all scanning potentials. A small shift was realized for the 

peaks and particularly more pronounced for the main peaks at 1460 cm-1 for the PEDOT film 

which is an indicating of doping of the PEDOT film. The Raman spectra for the PEDOT film 

also exhibited several weaker bands at 1360 cm-1and 1320 cm-1 for ν(Cβ-Cβ), 1100 cm-1 for C-

O-C ring deformation, 1000 cm-1 for ν(C-O-C), 820 cm-1, 710 cm-1 and 560 cm-1 for 

Oxyethylene ring deformation, 460 cm-1and 320 cm-1 which is representation of δ(SO)2. The 

spectra showed much higher intensity for the spectrum with -0.8 V scanning potential and no 

bands were noticed beyond the G (high frequency two phonon mode) [52][53][74]. The 

shoulder peaks observed at 1360 cm-1 and 1510 cm-1 were accredited to inter-chain PEDOT 

C𝛽-C𝛽 stretching and Asymmetric ν(Cα = Cβ) respectively. Furthermore, these bands are 

representation of induced and intermediate doping respectively [50][52[57][59].  
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Figure 4.23 In situ Raman spectra recorded for electrochemically polymerized PEDOT film on Au 

electrode in 0.1M TBAPF6-ACN solution using 785 nm excitation wavelength at -0.8 V to 0.7 V scanning 

potential for p- and n-doping. 

 

The figure above represents recorded Raman spectra of electrochemically polymerized PEDOT 

on Au electrode in 0.1M TBAPF6-ACN solvent using 785 nm excitation laser for an applied 

scanning potential range of -0.8 V to 0.7 V.  

The principal bands for these spectra was noticed at 1460 cm-1 like the previous spectra was 

ascribed to intra-chain C𝛼=C𝛽 symmetric stretch of PEDOT chain vibrations for all scanning 

potentials. A slight shift in bands for the applied potentials was seen for the main peaks of the 

spectra and it also exhibited more pronounce shoulder peaks besides the principal at 1364 cm-

1 and 1526 cm-1 which were recognized as ν(Cβ-Cβ) and asymmetric ν(Cα = Cβ)  respectively. 

The numerous bands realized at 1250 cm-1 for Inter-ring ν(Cα-Cα), 1115 cm-1 for C-O-C ring 

deformation, 1000 cm-1 for ν(C-O-C), 840 cm-1 for oxyethylene ring deformation, 680 cm-1 for 

symmetric ν(C-S-C), 540 cm-1 are associated to oxyethylene ring deformation, 470 cm-1 and 

324 cm-1 for δ(SO2). However, no bands were observed beyond the G mode region and more 

intense peaks are shown in the spectra. Doping of the spectra is characterized by shift in bands 

and broadening of the peaks [52][53][66][74].    
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Figure 4.24 In situ Raman spectra recorded for electrochemically polymerized PEDOT film on GC 

electrode in 0.1M KCl solution using 532 nm excitation wavelength at -0.8 V to 0.7 V scanning potential 

for p- and n-doping. 

 

The Raman spectra shown in figure above is resulted from electrochemically polymerized 

PEDOT on GC electrode in KCl solvent using 532 nm excitation laser and applied potential 

range -0.8 V to 0.7 V.  

The major bands for the spectra at 1460 cm-1 were assigned to symmetric νCα = Cβ (–O) 

stretching of intra-chain PEDOT chain vibrational mode. Two strong shoulder bands found at 

1360 cm-1 and 1505 cm-1 are ascribed to Cβ - Cβ’ (inter-chain) stretching of PEDOT and 

asymmetric ν (Cα = Cβ) respectively. Raman bands found at 1250 cm-1 for Cα - Cα’ inter-ring 

stretching of PEDOT, 1125 cm-1 for C-O-C intra-ring deformation of PEDOT, 1000 cm-1 for 

ν(C-O-C), 696 cm-1 for symmetric ν(C-S-C) and 480 cm-1 for δ(SO2) [52][53][74]. However, 

the medium and strong intensity Raman bands witnessed at 2850 cm-1 and 2910 cm-1 might 

possibly be aligned to symmetric and asymmetric stretching of CH2 respectively. The spectra 

also showed that the bands in the negative potentials (n-doping) are more explicit as compared 

to its corresponding positive potential (p-doping) [50][54][59].        
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Figure 4.25 In situ Raman spectra recorded for electrochemically polymerized PEDOT film on GC 

electrode in 0.1M TBAPF6-ACN solution using 532 nm excitation wavelength at -0.8 V to 0.7 V scanning 

potential for p- and n-doping. 

 

The Raman spectra shown in figure above represents PEDOT film electrochemically 

polymerized on GC electrode in 0.1 M TBAPF6-ACN in the potential range -0.8 V to 0.7 V 

for 532 nm excitation laser. 

It can be noticed that the main PEDOT peaks found at 1460 cm-1 are assigned to intra-chain 

symmetric νCα = Cβ (–O) stretching vibrational mode of the PEDOT polymer chain. However, 

the shoulder peaks which are observed at 1509 cm-1 asymmetric ν(Cα = Cβ) akin to the main 

peaks are not precise and seems to be disappearing at more negative potentials gives an 

indication that charge transfers related to the doping and intermediate doping of the PEDOT 

film are not effective.  The bands found at 2250 cm-1 and 2910 cm-1 are assigned to υ(C≅C) 

and asymmetric stretching of υ(C−Η) respectively. The bands found noticed at 1250 cm-1, 1000 

cm-1, 950 cm-1 and 420 cm-1 which are ascribed to Cα - Cα inter-ring stretching of PEDOT, 

ν(C-O-C), Oxyethylene ring deformation and δ(SO2) respectively [52][53][74].        
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Figure 4.26 In situ Raman spectra recorded for electrochemically polymerized PEDOT film on GC 

electrode in 0.1M KCl solution using 785 nm excitation wavelength at -0.8 V to 0.7 V scanning potential 

for p- and n-doping. 

 

The above figure is recorded spectra of electropolymerized PEDOT film on GC electrode in 

0.1 M KCl solvent using 785 nm excitation laser for -0.8 V to 0.7 V potential range. The most 

significant Raman bands for these spectra were observed at 1460 cm-1 ascribed to symmetric 

νCα = Cβ (–O) stretching for intra-chain vibration mode of the PEDOT polymer chain film 

with an indication of slight shift in the bands of -0.8 V spectrum from other spectra. The 

shoulder peaks associated with the main peaks were noticed at 1250 cm-1 and 1505 cm-1 

accredited to inter-ring Cα - Cα PEDOT and intra-chain PEDOT Cα = Cβ. The various bands 

found at 1115 cm-1 for C-O-C ring deformation, 995 cm-1 oxyethylene ring deformation, 820 

cm-1 for oxyethylene ring deformation, 700 cm-1 for symmetric ν(C-S-C), 587 cm-1 for 

oxyethylene ring deformation, 460 cm-1 and 320 cm-1 for δSO2 [52][53][74]. 
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Figure 4.27 In situ Raman spectra recorded for electrochemically polymerized PEDOT film on GC 

electrode in 0.1M TBAPF6-ACN solution using 785 nm excitation wavelength at -0.8 V to 0.7 V scanning 

potential for p- and n-doping. 

 

The above Raman spectra denotes electrochemically polymerized PEDOT film on GC 

electrode in 0.1 M TBAPF6-ACN solvent using 785 nm laser for -0.8 V to 0.7 V potential 

range. The most distinct peaks for the spectra are located at 1460 cm-1 symbolizing an intra-

chain symmetric νCα = Cβ (–O) stretching of the PEDOT backbone polymer chain rings. The 

main peaks were seen to be shouldered at either side with other peaks at 1410 cm-1 and 1512 

cm-1 corresponding to symmetric C𝛼=C𝛽 stretching PEDOT film and symmetrical C=C of 

PEDOT respectively. The various bands recognized at 1250 cm-1 for inter-ring Cα - Cα, 1125 

cm-1 for C-O-C intra-ring PEDOT, 1000 cm-1 for Oxyethylene ring deformation, 868 cm-1 for 

oxyethylene ring deformation, 745 cm-1 for C-S-C deformation, 573 cm-1 for oxyethylene ring 

deformation, 520 cm-1 for oxyethylene ring deformation, 478 cm-1 and 340 cm-1 for δSO2. A 

slight shift was realized for -0.8 V and 0.5 V potentials which are very obvious looking at the 

main peaks [52][53][74]. 
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4.5.2 Comparison of various in situ Raman spectra 
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Figure 4.28 Comparison of in situ Raman spectra of PEDOT film polymerized on (a) Au electrode and (b) 

GC electrode both in 0.1 M KCl using 532 nm excitation wavelength (λL=532 nm). 

 

The figure above shows the spectra of electrochemically polymerized PEDOT on Au electrode 

versus GC electrode in KCl solvent using 532 nm excitation wavelength. This shows how 

PEDOT film behaves when polymerized on different electrodes using the same solvent. The 

main peaks at 1460 cm-1 for GC electrode in KCl solvent at -0.8 V and -0.1 V seems to have 

disappeared compared to the Au electrode in KCl. The GC electrode in KCl also showed other 

sharp and strong intense bands beyond the main peaks even though -0.8 V spectrum showed 

no peaks compared to the Au electrode in KCl spectra which showed weak intense broader 

bands at 2910 cm-1 for -0.8 V, -0.1 V and 0.3V spectra. The difference in spectra comes as a 

result of different electrodes used even though the same electrolytic solvent was employed 

[28][51][55][69][76].  
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Figure 4.29 Comparison of PEDOT film on (a) Au electrode in 0.1 M TBAPF6-ACN and (b) GC electrode 

in 0.1 M KCl both in using 532 nm excitation wavelength (λL=532 nm). 

 

The figure above shows the comparison of electrochemically polymerized PEDOT film on Au 

electrode in 0.1 M TBAPF6-ACN and GC electrode in 0.1 M KCl using 532 nm excitation 

wavelength. The latter spectra of GC electrode in 0.1 M KCl showed more intense and sharp 

peaks in comparison to Au electrode in TBAPF6-ACN except for the peaks found at 2850 cm-

1 and 2910 cm-1 which are broad. It is obvious that the n-doping potentials were more intense 

than the corresponding p-doping for both spectra. It is also worth mentioning that the above 

spectra employed different electrode (Au & GC) but same electrolyte solvent [33][42][50][51].         
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Figure 4.30 Comparison of PEDOT film on Au electrode in both (a) 0.1 M KCl and (b) 0.1 M TBAPF6-

ACN solvents using 532 nm excitation wavelength (λL=532 nm). 

 

The above figures are the representation of PEDOT film on Au electrode in both KCl and 

TBAPF6-ACN electrolyte solvents for 532 nm excitation wavelength. The two spectra look 

similar in nature but there are more bands for Au electrode in TBAPF6-ACN spectra. However, 

the bands found in Au electrode TBAPF6-ACN spectra are not distinct compared to Au 

electrode in KCl spectra. It was also noticed that the p-doping potentials showed more weaker 

bands especially Au electrode in TBAPF6-ACN spectra in contrast to corresponding n-doping 

potentials [39][42][50][51].             
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Figure 4.31 Comparison of PEDOT film on GC electrode in both (a) KCl and (b) TBAPF6-ACN solvents 

using 532 nm excitation wavelength (λL=532 nm). 

   

The above spectra are representation of PEDOT film polymerized on GC electrode in KCl 

against GC electrode in TBAPF6-ACN using 532 nm excitation wavelength that is the same 

electrode used but different solvents. The latter portrayed much stronger peaks for the main 

PEDOT chain compared to preceding spectra which has rather weak peaks for the main 

PEDOT chain. Unlike the second spectra where the main peaks for the -0.8 V and -0.1 V 

potentials are more profound, the first spectra showed no peaks for the main PEDOT chain. 

However, the peaks related to doping are more prominent with higher intensities for GC 

electrode in KCl in contrast to GC electrode in TBAPF6-ACN spectra [39][42][50][51].             
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Figure 4.32 Comparison of the Raman spectra of PEDOT films using (a) 532 nm on Au electrode and (b) 

785 nm Au electrode both in 0.1 M KCl solvent. 

 

The figure above denotes two spectra of an electropolymerized PEDOT film on Au electrode 

in KCl for both 532 nm and 785 nm excitation wavelength. The Major peaks for the second 

spectra (λ= 785 nm) have much higher intensity compared to the first spectra (λ= 532 nm) 

which gave much lower intensities. The G mode region of the λ = 785 nm spectra showed no 

peaks in contrast to the λ = 532 nm spectra which showed some peaks for at 2850 cm-1 and 

2910 cm-1 for -0.8 V, -0.1 v and 0.3 v potentials. Another noticeable thing is that the peaks 

found in λ = 785 nm spectra were more profound than the peaks in λ = 532 nm spectra which 

were observed to be disappearing [39][40][51].        
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Figure 4.33 Comparison of the Raman spectra of PEDOT films using (a) 532 nm on Au electrode and (b) 

785 nm Au electrode both in 0.1 M TBAPF6-ACN solvent. 

 

The figures above represent the spectra of electrochemically polymerized PEDOT film on Au 

electrode in TBAPF6-ACN using both 532 nm and 785 nm excitation wavelengths 

respectively. The main PEDOT peaks of the spectra for λ = 785 nm bands were observed to 

have higher intensities than the bands found in λ = 532 nm spectra. The λ = 785 nm spectra 

also showed much well-defined bands in the D mode and RBM regions than the λ = 532 nm 

spectra which showed very feeble bands. However, there were bands noticed beyond the G 

mode regions of the λ = 532 nm spectra unlike the λ = 785 nm spectra where no bands were 

found [39][40][51].           
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Figure 4.34 Comparison of the Raman spectra of PEDOT films using (a) 532 nm on GC electrode and (b) 

785 nm GC electrode both in 0.1 M KCl solvent. 

 

The above figures denote electrochemically polymerized PEDOT of GC electrode in KCl using 

both 532 nm and 785 nm excitation wavelength. It can be observed that there was shift of the 

main peaks both the λ = 532 nm and λ = 785 nm spectra. The λ = 785 nm spectra also showed 

peaks in the D mode and RBM region whereas bands showed in the same region in the λ = 532 

nm spectra are weak. Furthermore, the λ = 532 nm spectra showed number of bands beyond 

the G mode region (2D mode) but no bands were noticed in that region in the case of the λ = 

785 nm spectra. The main PEDOT peaks shown in λ = 785 nm spectra were stronger and highly 

intense than corresponding λ = 532 nm spectra which rather showed very weak intensities 

[39][42][50][51].                
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Figure 4.35 Comparison of the Raman spectra of PEDOT films using (a) 532 nm on GC electrode and (b) 

785 nm GC electrode both in 0.1 M TBAPF6-ACN solvent. 

 

The figures shown above symbolize the electrochemically polymerized PEDOT film on GC 

electrodes in TBAPF6-ACN solvents for the excitation wavelengths of λ = 532 nm and λ = 785 

nm respectively. The major PEDOT peaks observed in both spectra were strong and highly 

intense. Both spectra showed medium and weak intensities bands in the D mode and RBM 

regions. Some few bands at 2850 cm-1 and 2910 cm-1 were detected for the λ = 532 nm spectra 

but no bands were noticed for the λ = 785 nm spectra beyond the G mode region (2D mode) 

[42][44][50][51].                 
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Figure 4.36 Comparison of Raman spectra of the PEDOT films polymerized on (a) Au electrode and (b) 

GC electrode in 0.1 M KCl using 785 nm excitation wavelength (λL= 785 nm). 

 

The above figures show the spectra of an electropolymerized PEDOT of Au and GC electrodes 

in KCl solvent using 785 nm excitation wavelength. There are shift in both cases which 

indicates process of doping in the PEDOT film. The disparities between the two spectra were 

observed in the intensities with the GC electrode spectra been higher in intensity than the Au 

electrode spectra. It can however be emphasized that doping is higher in the GC electrode 

spectra compared the Au electrode spectra since intensities have influence on doping of the 

material. Moreover, the shift in peaks coupled with changes in wavenumber contributes to the 

doping process since greater shift denotes higher doping and thus GC electrode spectra shows 

higher doping level than the Au electrode spectra [39][42][50][51].                      
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Figure 4.37 Comparison of Raman spectra of PEDOT films polymerized on (a) Au electrode and (b) GC 

electrode in 0.1 M TBAPF6-ACN using 785 nm excitation wavelength (λL= 785 nm). 

 

The above figures signify spectra of electrochemically polymerized PEDOT film on Au 

electrode and GC electrode in TBAPF6-ACN solvent using 785 nm excitation wavelength. A 

shift was realized for the peaks and wavenumbers of both spectra even though Au electrode 

spectra showed greater shift than GC electrode spectra. The shifting of bands and changes in 

wavenumbers indicates the extent or degree of doping in the material. The intensities of the 

GC electrode spectra was observed to be higher than Au electrode spectra which explains how 

the magnitude of the intensities could have impact on the doping process [50][51]. 
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Figure 4.38 Comparison of in situ Raman spectra of PEDOT film polymerized on Au electrode in (a) 0.1 

M KCl and (b) 0.1 M TBAPF6-ACN using 785 nm excitation wavelength (λL= 785 nm). 

 

The figures above symbolize spectra of electropolymerized PEDOT films on Au electrode in 

both KCl and TBAPF6-ACN solvents. It can be noticed that KCl spectra exhibited greater shift 

in peaks and changes in wavenumber than TBAPF6-ACN. However, greater peak intensities 

were observed in TBAPF6-ACN as compared to KCl. Furthermore, it can be explained the 

peak shifting, changes in wavenumbers and level of intensities has effect on the doping of the 

polymer film. It can also be deduced from the spectra that different solvents used has influence 

on the doping process of the PEDOT film and the intensities as well [42][44][50][51]. 
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Figure 4.39 Comparison of in situ Raman spectra of PEDOT film polymerized on GC electrode in (a) 0.1 

M TBAPF6-ACN and (b) 0.1 M KCl using 785 nm excitation wavelength (λL= 785 nm). 

  

The above figures are representation of electrochemically polymerized PEDOT film on GC 

electrode using KCl and TBAPF6-ACN electrolyte solvents. Doping of the films were 

observed through shifting of the spectra peaks coupled with changes in wavenumbers as well 

as difference in intensities. It can be realized from the above that the spectra with KCl solvent 

displays much higher intensities for all the peaks than the TBAPF6-ACN spectra. It can be 

reiterated that the significance of the electrolytic solvents in the doping process of the spectra 

are clearly seen from the figures above [42][44][50].  
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4.5.3 Raman Images 

a. 

               

 

 

 

 

 

b. 
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c. 

                 

Figure 4.40. Different Raman images showing the morphologies of electropolymerized PEDOT film in (a) 

0.1M KCl solution (b) 0.1M NaPSS solution (c) 0.1M TBAPF6-ACN solution. 

 

Figure 4.40 shows Raman images for the PEDOT films produced on FTO substrates were taken 

during spectral analysis for the KCl, NaPSS and TBAPF6-ACN electrolyte solvents. The 3 

images showed different morphologies which indicate the influence of the electrolyte solutions 

used for the electrochemical polymerization. The image for the KCl film shows granular flakes 

with pores that permits movements of ions in and out the film. The image for the NaPSS film 

shows more refined grains with smaller pores indicates that movements of ions is slower than 

that of the PEDOT film made from KCl electrolyte since the pores are small. The image for 

PEDOT film made from TBAPF6-ACN can be predicted to have high permeability for the 

movement of ions in and out of the film owning to its coarser grains and highly porous nature. 

The movement of ions in and out of the PEDOT film could suggest the effectiveness of doping 

process of the polymer and hence higher doping could be associated to the TBAPF6-ACN, KCl 

and NaPSS PEDOT films in that order.      
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5. CONCLUSION AND RECOMMENDATION  

 

                                                                 CONCLUSIONS 

The concept behind this work was to investigate the possibility of synthetizing PEDOT films 

in aqueous medium of KCl and NaPSS electrolyte solutions as against PEDOT films 

synthesized in organic medium of TBAPF6-ACN electrolyte solution by electrochemical 

polymerization. The electrochemical polymerization of the PEDOT films were achieved 

successfully by employing different working electrodes. The WE used which included Au, Pt, 

GC and FTO electrodes. The PEDOT film also exhibited good adherence to the surface of the 

electrodes. 

The CVs for the PEDOT films polymerized on the WEs were observed to have smooth and 

consistent growth. The CVs also showed good response in terms of the redox behavior when 

the films were cycled through different scan rates in monomer-free electrolyte solutions. The 

CVs from the experiment showed that the PEDOT film was electrochemically active when 

doping was conducted in the monomer-free electrolyte solutions.  

The PEDOT films were studied using in situ Raman spectroscopy and in situ UV-Vis 

spectroscopy and the outcome gave good behavior for p- and n-doping. During UV-Vis 

spectroscopy, the polymer films studied changed from neutral to doped form and this was 

observed by shift in the absorbance maximum of the spectra. Moreover, the Raman 

spectroscopy measurement of the PEDOT films were successfully studied for both p- and n-

doping. Doping of the PEDOT films using Raman spectroscopy were noticed by peak shifting 

and changes in intensities of the peaks. 

More importantly, there is relationship between the Raman laser wavelength and the UV-Vis 

results obtained during characterization. It can be deduced that the wavelength of the 

absorbance maximum of the UV-Vis can influence the choice of the laser wavelength used in 

the measurement of Raman spectra such that the neutral form of the polymer films are enhanced 

and strong Raman bands observed. The laser excitation wavelengths of 532nm and 785nm 

chosen for the Raman spectra measurement were in close proximity to the absorbance 

maximum wavelengths of 460nm, 750 nm and 520nm of the UV-Vis measurement of the 

polymer film in KCl, NaPSS and TBAPF6-ACN monomer-free electrolyte solutions [4][37].   
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Finally, the morphologies of the various PEDOT films gave clues to how doping of the film 

will be with TBAPF6-ACN PEDOT film predicted to show higher doping than the 

corresponding PEDOT film from KCl solution. The former is more porous than the latter and 

hence can allow easy movement of dopant ions in and out of the structure.  

 

                                                       RECOMMENDATIONS 

During the experiment, the electrochemically polymerized PEDOT film on the Pt electrode 

was not stable enough and got deteriorated in the monomer-free electrolyte when subjected to 

redox response during doping. This might be due to inadequate surface preparation of the Pt 

working electrode.  

In view of this situation, it is recommended that the Pt working electrode and all other WEs 

surfaces should be adequately prepared to prevent dissolution of the PEDOT films in any future 

work.  
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