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Abstract 

The rapid development of artificial intelligence technologies has provoked intense political and 

scholarly debate on ethics of artificial intelligence. Due to underdeveloped technological 

framework the debate has stagnated, which causes difficulties for regulation that is essential 

for wider adoption of new technologies.  

The main problem of current ethical discussion on artificial intelligence is its blurriness as 

used terminology is not exact. In information sciences data, information, knowledge, 

intelligence and wisdom are recognized as distinct concepts, but this is disregarded in current 

AI ethics discussion. Another deficit of the ethical discussion is that ethics is seen as the good 

or the right, which turns the focus out from ethics as decision process between conflicting 

interests. 

This study is conceptual analysis, where the ethical discussion on artificial intelligence is 

analyzed in technological framework. In this thesis I propose that discussion artificial 

intelligence could be restructured to technological framework consisting of data, information 

and artificial intelligence. Parsing the discussion through technological framework would be 

useful in understanding of the wider picture, but also it might have practical implications by 

making concepts more transparent and thus help in creating regulation for artificial intelligence. 

 
 

Key words artificial intelligence, AI, ethics, conceptual analysis  

 





   

 

        Turun kauppakorkeakoulu •  Turku School of Economics 

 

 

 TIIVISTELMÄ 

  

 Kandidaatintutkielma 

x Pro gradu -tutkielma 

 Lisensiaatintutkielma 

 Väitöskirja 

 

Oppiaine Kansainvälinen liiketoiminta Päivämäärä 31.1.2021 

Tekijä Matti Linna Sivumäärä 51 

Otsikko Tekoälyn eettiset jännitteet: Käsiteanalyysi 

Ohjaajat 
KTT Eriikka Paavilainen-Mäntymäki 

KTT Milla Wirén 

 

Tiivistelmä 

 
Tekoälyn nopea kehitys on synnyttänyt voimakasta poliittista ja tieteellistä keskustelua 

tekoälyn etiikasta. Teknologisen viitekehyksen puutteellisen kehityksen vuoksi keskustelun 

edistyminen on kuitenkin pysähtynyt, mikä vaikeuttaa tekoälyn sääntelyä, joka puolestaan on 

välttämätöntä tekoälyteknologioiden laajemman käyttöönoton näkökulmasta. 

Tekoälykeskustelun suurin ongelma tällä hetkellä on sekavuus, sillä termejä käytetään 

epätarkasti. Tietojenkäsittelytieteissä data, informaatio, tieto, äly ja viisaus on tunnistettu 

omiksi käsitteikseen, mutta nykyisessä tekoälyn etiikkaa koskevassa keskustelussa tätä seikkaa 

ei huomioida. Lisäksi tekoälyn etiikkaa koskeva keskustelu on puutteellista, koska etiikka 

nähdään vain hyvänä tai oikeana, mikä kääntää huomion pois siitä, että etiikka pohjimmiltaan 

on ristiriitaisten intressien välillä tehtäviä valintoja. 

Tässä käsiteanalyyttisessa tutkimuksessa eettistä keskustelua ja siinä käytettäviä termejä 

tarkastellaan teknologisessa viitekehyksessä. Tutkielmassani esitän, että tekoälyn etiikkaa 

koskeva keskustelu voidaan jäsentää teknologiseen viitekehykseen, joka koostuu datasta, 

informaatiosta ja tekoälystä. Eettisen keskustelun jäsentäminen teknologisen viitekehyksen 

mukaisesti olisi hyödyllistä suuren kuvan hahmottamisessa. Käsitteiden läpinäkyvyyden 

lisäämisellä voi olla myös käytännön vaikutuksia, sillä ymmärrettävyys edistää tekoälyn 

sääntelyn syntyä. 
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1 INTRODUCTION 

1.1 Background 

The famous quotation of data being the oil of the 21st century is commonly interpreted in 

economical context where data is seen as a resource or an asset. The importance of oil 

during 1900s development including the enormous increase in welfare of the humankind 

cannot be underestimated, but on the other hand, extensive use of fossil fuels has also 

brought us serious environmental challenges including global warming, pollution and a 

loss of biodiversity which can be called an environmental disaster. Due to disputes and 

lacking understanding of the severity of what is going on in the environment, we have 

lost decades in developing and using more environmentally friendly technologies. 

Likewise, the “oil of the 21st century” has its potential and challenges that need to be 

analyzed thoroughly to foresee what is going to happen, and if the humankind is on 

sustainable path to the future.  

Oil, nor data are useful without capability to utilize them. If data is the oil, artificial 

intelligence (AI) is an intriguing combination of pumpjack and internal combustion 

engine with capabilities of both extracting and refining data. Megatrends 2020 report 

published by Finnish Innovation Fund Sitra identifies the development of artificial 

intelligence as one of the megatrends on our way to the future. Sitra futurologists foresee 

that self-driving cars, voice user interfaces, customized recommendations and artificial 

intelligence applications will become widely spread. In their view, artificial intelligence 

will one day become as common as mobile technologies today. Artificial intelligence 

becomes present in every field of life, ranging from voice and gesture recognition to 

wearable health technologies and IoT, just to mention a few technologies that are 

expected to be reality within just a few decades. (Dufva 2020.) Predicting future 

technologies is extremely challenging, but already at this stage we can see tensions 

between technological opportunities and the will of the society. In this study these 

tensions are understood as trade-offs between two incomparable perspectives, which will 

have their impact to the way artificial intelligence and big data are developed, used, and 

regulated in the future.  

Ethical concerns on AI have been subject to intense debate on 2010s. During the last 

decade, Dufva (2020) amongst other scholars calls for discussion on who owns data 

masses, what is the role of privacy, and if there should be limits for artificial intelligence 
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use. At the moment of this writing, different organizations have published close to 100 

ethical guidelines on AI (Hagendorff 2020; Jobin et al. 2019). One key motivation to this 

study was the observation that most of published guidelines list privacy as a key principle 

for AI, even though privacy concerns are related to data, not the technology itself (Jobin 

et al. 2019). This observation has also real-life implications. If society is ignorant or 

concerns on ethical issues of AI are misplaced, fear of technology might result in underuse 

of technology potential. If technology is not understood properly, ethical concerns are 

misplaced, which may lead to unintentional compromises in AI development. (Floridi et 

al. 2018.)  

Ethical decision-making is a process where different alternatives are evaluated, and 

the best option is chosen based on ethical consideration (University of California 2016). 

If data really becomes “the oil of 21st century” and the economic importance of high-

quality consistent data grows significantly, the decision to protect privacy may turn out 

to be much less obvious than thought in summer 2020. It is important to understand, that 

any decision has its pros and cons, some of which might not be intuitive. 

A real-life example of a technical compromise – though in data context – that was 

not publicly debated is a Finnish mobile application called Koronavilkku used for 

tracking COVID-19. Big data related ethical issues such as privacy concerns were tackled 

by minimizing collected data and decentralizing data storage to user devices. (THL 2020.) 

The decision that the application does not collect any sensitive data is in Finnish context 

intuitive and natural, but in fact there is an undebated ethical decision made: by protecting 

privacy we lose accuracy in the data. In the future, high quality data will become an asset. 

Some countries that have made different decision between the two extremities will have 

much richer data, which makes them able to make much more deep analytics on the 

studied issue.  

In order to tackle ethical concerns on artificial intelligence while still avoiding 

unintentional compromises in developing and utilizing technologies, it is essential to 

properly understand what we are talking about when we debate on artificial intelligence 

ethics. In this study I propose a framework for structuring the debate in their accurate 

context, which could help in tackling challenges in AI ethics debate. 

1.2 Objectives of the study and initial setting 

Hagendorff (2020) calls for ethicists to grasp a technological view to their theoretical 

framework in ethical discussion. The objective of this study is to create a framework 



7 

 

combining technological and ethical perspectives to manage the flood of ethical concerns 

that artificial intelligence rises in both political and scientific literature. With the term 

literature I refer to both scholarly literature and ethical guidelines unless otherwise 

specifically mentioned. In this study using conceptual analysis I parse recognized ethical 

principles into three overlapping categories: those related with artificial intelligence, 

those related with big data and those related with information. I discuss conflicting 

interests in AI ethics and identify two categories for conflicting positions. Using the 

created framework, I point out some key trade-offs in AI. 

Any research process starts with defining research questions. Generating research 

question begins with understanding, what types of underlying assumptions are relevant 

to consider (Alvesson & Sandberg 2011). Research question can be developed from 

existing literature by structuring intertextual coherence between different sources. Main 

sources for this study, namely Jobin et al. (2019) and Hagendorff (2020) follow this 

tradition by mapping and summarizing existing literature on artificial intelligence ethical 

guidelines. Another popular way to formulate research question is to claim that existing 

literature is incomplete or inadequate in some significant way. Third, much less popular, 

but much more interesting than the previously mentioned ways to formulate the research 

question is to question existing theory and claim it is incommensurate. (Sandberg & 

Alvesson 2011.) 

Hagendorff (2020) provides us with noting explicitly the need for technological 

framework in artificial intelligence ethics. Hagendorff’s (2020) call for new approaches 

to AI ethics serves to prove existing gap in research. He sees the solution for the identified 

research gap to be found in “microethics” approach focusing on niches, where technology 

ethics, machine ethics, computer ethics, information ethics and data ethics should be 

analyzed separately. Still, in my point of view, the proposition to restructure current 

debate is not mere gap spotting, but clearly challenges current approaches to artificial 

intelligence ethics. 

In line with Hagendorff’s (2020) ideas on dividing ethical debate to technological 

entities, also I argue that ethical debate on artificial intelligence should be divided into 

niches. This study challenges theoretical frameworks in existing research claiming that 

inaccurate use of terminology and concepts has blurred discussion on AI ethics, and some 

concepts frequently used in artificial intelligence context have in fact little to do with AI. 

Therefore, depending on the perspective, the research question of this study is formulated 

by filling the gap in existing literature but also pointing out inconsistencies in existing 
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literature. This study combines two of the last approaches claiming that existing literature 

is both incomplete because of lacking understanding of different technological aspects 

and incommensurate, due to blurry use of terminology and misidentified ethical principles 

for artificial intelligence. 

The research questions in this study are: 

1. How could AI ethics discussion be parsed into a technological framework? 

2. What are the conflicting interests or parties in AI ethics? 

3. What ethical trade-offs are caused by artificial intelligence? 

 

The first research question is a straight-forward approach to research gap pointed out by 

Hagendorff (2020). Answering the first research question lets us deepen the view further 

to analyzing ethical tensions and principles that are noted in scholarly literature and 

different ethical guidelines. The second question in turn highlights the role of conflicting 

interests as a source of ethical debate. Understanding different conflicting interests is 

necessary for further studying on what concepts in fact are conflicting each other. The 

third research question narrows down focus of this study to the topic, ethics of artificial 

intelligence. The purpose of this research question is to analyze, what concerns in fact are 

caused by artificial intelligence and what concerns in artificial intelligence ethical debate 

are misplaced. 

1.3 Methodology 

The objective of this thesis is not to support or confirm existing studies on artificial 

intelligence ethics, but to challenge them and disrupt the way we think about them. As 

the focus of this study is on building a new outline for artificial ethics discussion, we need 

to pay attention not only on what terms are used, but also to scrutinize what is the 

background and underlying ideas of each concept.  

In the problematizing process, after first considering what types of different 

underlying assumptions current theories and approaches may have, the second thing is to 

understand how can underlying assumptions be identified, articulated and challenged. 

(Alvesson & Sandberg 2011). Reframing current ethical discussion on artificial 

intelligence into a technological framework turns the focus of this study to analyzing and 

understanding, what are the underlying technological structures and concepts in the 

debate. The process of understanding underlying concepts is defined by Macinnis (2011) 

as conceptual thinking.  
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Conceptual thinking and evaluating terminological coherency in the use of concepts 

has always been central to science (Machado & Silva 2007; Macinnis 2011). Conceptual 

analysis should be used in the very beginning of every scientific process to confirm that 

the research question is clear, logically coherent and allows further inspection. Logical 

consistence, which can be observed using conceptual analysis is essential for all scientific 

studies. (Petocz & Newbery 2010.) 

Methodological literature on conceptual analysis is very scarce, as it has been widely 

seen as integral part of every research process and overlooked as primary research method 

(Machado & Silva 2007; Petocz & Newbery 2010). As a research method, conceptual 

analysis belongs to qualitative methods. Conceptual analysis is a method for evaluating 

the language of science, for instance assessing the clarity or obscurity of scientific 

concepts and evaluating consistencies and inconsistencies in used language. By origin, 

conceptual analysis is closely related to critical thinking. Conceptual analysis does not 

only study language or expressions, but content and ideas we talk about. (Machado & 

Silva 2007; Petocz & Newbery 2010.) 

Concepts are not theories but serve for organizing ideas and observations. Concepts 

store meanings and observations on phenomena, and therefore are necessary bridges 

between data and theory. The value of a theory depends on the extent it is connected with 

the empirical world, and the connection is made by using concepts precisely. Ambiguous 

and vague use of concepts is the basic deficiency in social theories. (Bulmer 1979.) 

Conceptual analysis can be used to tackle problems that rise from inappropriate or 

illogical classification of concepts. Nominal fallacies, which refer to naming new 

concepts with familiar terms, may cause an illusion of understanding the unfamiliar 

concept, but may also incorrectly designate it characteristics it does not have. Conceptual 

analysis can be also applied to detecting semantic ambiguities, or polysemy as linguists 

call it, which means using same or alike words to describe related or even absolutely 

different concepts. (Machado & Silva 2007.) In artificial intelligence ethics domain, the 

use of concepts is vague and little attention is paid on technological details (Hagendorff 

2020). Therefore, it is essential to scrutinize used terminology to develop concepts in the 

discussion.  

Categories and concepts can be scientifically developed by analyzing data 

inductively. The data-based approach serves in describing its contents, but for developing 

ethical debate on artificial intelligence, this approach is not sufficient. When it comes to 

the ethical discussion on artificial intelligence, it is justified to assume that terminology 



10 

 

and concepts used in the discussion have not been developed using a holistic approach, 

but rather intuitively as the use of concepts in artificial ethics discussion substantially 

diverge (Jobin et al. 2019). If the data is not consistent, descriptive studies does not help 

in developing the discussion. 

As summarizing studies on artificial ethics guidelines such as Jobin et al. (2019) and 

Hagendorff (2020) have been made, descriptive study on guidelines would not necessarily 

be fruitful. Instead, using conceptual analysis as a method opens new approaches to the 

debate. As the studies by Jobin et al. (2019) and Hagendorff (2020) describe very well 

the existing debate and ethical guidelines, in the scope of this study it is not essential to 

turn to primary sources and start mapping existing guidelines and analyzing their use of 

concepts. Still, views to primary guidelines and different scholarly publications debating 

artificial intelligence ethics enriches the view on the theme and provide new insight to the 

ongoing conversation.  

In this study, concepts and terms used in artificial intelligence ethics guidelines are 

critically reviewed in technological framework. The DIKIW (Data, Information, 

Knowledge, Intelligence, Wisdom) hierarchy, which is modification of a widely applied 

DIKW hierarchy is presented in chapter 2. It is worth mentioning that Hagendorff’s 

(2020) seemingly intuitive list of different ethical niches to be studied fits quite well to 

this framework with only minor adaptations. Critical approach and technological focus 

enable parsing ethical principles and tensions mentioned in summarizing studies and 

different ethical guidelines under the technological framework.  

1.4 Thesis structure and research process 

Due to scarcity of conceptual analysis process descriptions, it might be useful for the 

reader to have a brief description on the process of writing this study. Here I introduce 

the process how this study was made and enlighten my reasoning in the analysis. 

Conceptual analysis as used in this study is a qualitative research method with all 

conventional steps from defining the research question to theoretical framework and data 

collection. Writing of this thesis was an iterative process that did not stick to the original 

research plan. Therefore, the research process flow was not optimal, which caused 

iterative loops.  

Originally, I collected literature on artificial intelligence ethics for different kind of 

study on ethical trade-offs, but inconsistencies in collected data provoked me to analyze 

used concepts, which lead to this thesis. The first intuitive observation leading to this 
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research was that privacy as a term was frequently discussed in artificial intelligence 

ethics even though in my point of view it has little to do with the technology itself. In the 

research process perspective, problematization of the topic and research questions 

definition was made after collecting some parts of literature, but most of the data 

collection was conducted later. 

At early stages in familiarizing myself with AI ethics literature, I sketched two 

concepts, data and artificial intelligence into separate categories. Later, I recognized the 

need for third category that initially was “ethical using of AI”, even though I noticed that 

its abstraction level differs from other terms. At this point the need for technological 

framework became evident. Having defined data and intelligence as key concepts of the 

study, I came across DIKIW-literature and recognized that the third category can be 

understood as information. As some concepts in AI ethics literature could be categorized 

in two of the three categories and excluded from only one, I visualized the technological 

framework as a Venn-diagram (Figure 2). In chapter 2 of this thesis, I introduce the reader 

with the DIKIW hierarchy. 

The terminology and general overview on ethical debate on artificial intelligence 

presented in chapter 3 was collected mostly after having structured the technological 

DIKIW-framework. It is worth mentioning that having predefined theory undeniably 

steers the data collection and focus to certain direction, for which reason this approach is 

prone to confirmation bias. Still, as the aim of this thesis is not to objectively describe 

existing debate and theories but to construct a new outline for future discussion on 

artificial intelligence ethics, cherry-picking the most suitable concepts for future use is 

justified. 

Having studied and collected literature on AI ethics, in chapter 4 I return to 

developing the categorization on the basis of theoretical framework. Theoretical 

framework is crucial for conceptual analysis, as it provides baseline for the analysis and 

guides it to certain direction. With visual presentation of the theoretical framework, I 

categorized the most important concepts by asking myself if these concepts exist 

independently from some of the three identified categories. For instance, privacy 

concerns do exist also without existence of artificial intelligence, and thus are independent 

from artificial intelligence. Therefore, privacy concerns derive from either data or 

information. As information is derived from data (see chapter 2), also possible privacy 

infringements rise originally from data. Another straight-forward example is 

personalization: even though artificial intelligence has brought it to a massive scale and 
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data are a necessity for it, personalization exists independently from artificial intelligence 

and data represent only observations without practical use. For this reason, the question 

on personalization is what you can do with the information you possess. Following this 

logic, I classified the main ethical questions and principles that I encountered in literature 

into categories and their intersections. 

In chapter 5 I point out that ethics is by definition evaluating alternatives. (University 

of California 2016). Logically, if there are alternatives to be evaluated, there must be 

conflicting interests. Deriving from ideas of Newell & Marabelli (2015), in artificial 

intelligence context ethical tension is caused by two or more conflicting preferences, but 

not necessarily between multiple actors, as one actor only can have conflicting 

preferences. Therefore, for understanding conflicting interests and trade-offs which were 

originally my study subject, it is useful first to identify who are the actors with conflicting 

interests and then deepen the view to individual trade-offs. The identified trade-offs were 

both collected from literature and developed by analyzing if following ethical principles 

might in some perspective cause conflict of interests. 

In chapter 6 I conclude that DIKIW hierarchy is a useful tool for developing artificial 

intelligence ethical debate to take into account the technological reality. The framework 

has also potential to help policymakers in understanding and regulating artificial 

intelligence and other data-intensive technologies. 
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2 DATA-INFORMATION-KNOWLEDGE-WISDOM 

HIERARCHY 

Artificial intelligence and big data are terms that in public debate and everyday contexts 

get easily mixed and are considered to mean roughly the same. Artificial intelligence 

being more popular term, it is widely misused to cover all algorithmic decision-making 

and data intensive technologies, including big data. In daily conversations accurate 

terminology might not be that crucial, but what comes to research or other high stakes 

uses, precise understanding of terms and concepts is extremely important. In order to 

properly understand the ongoing ethical discussion on these topics, it is necessary to 

define terms used in this study.  

To start up with the beginning we need to define the key concepts, but it is also worth 

understanding their interrelationships. Data and artificial intelligence being key terms in 

this thesis, a suitable technological framework to combine these concepts is the Data, 

Information, Knowledge and Wisdom (DIKW) hierarchy. The DIKW hierarchy is one of 

the most fundamental and widely acknowledged models in information and knowledge 

literatures. Due to diversity of DIKW hierarchy representations, there is dissonance 

between different models. Even though there are a range of modifications, the basic idea 

follows the same logic: data can be used to create information, information to produce 

knowledge and knowledge can be refined to wisdom. (Ackoff 1989; Rowley 2007.) 

Rowley (2007) has made a thorough analysis on DIKW literature. At least three of 

the terms are very widely defined by each other: data are symbols that represent 

properties of object, information is processed data and knowledge is human interpretation 

on information. Defining the DIKW framework through interrelationships might be 

practical, but scientifically thinking it not valid: describing interrelationships between 

concepts constitutes a circular definition, which is a logical fallacy (Liew 2007; 2013.) 

Still, describing interrelationships of the DIKW model serves well as introduction to 

terminology and helps the reader to understand the concepts more intuitively. 

The DIKW model is commonly visualized as a pyramid in the Figure 1, with its basis 

in data and the tip in wisdom (Ackoff 1989; Rowley 2007). Liew (2013) proposes adding 

intelligence, a term that is noted also by Ackoff (1989), as a separate dimension to the 

model. This addition to the influential theory serves in connecting data and artificial 

intelligence into one theoretical framework. In this thesis the model for analyzing the 
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ethical literature on AI will be called as DIKIW hierarchy. In the following I will discuss 

the elements of the DIKIW hierarchy in information sciences. 

 

 

Figure 1. DIKIW hierarchy. 

The foundation of information science lays in data that are products of observation. Data 

are raw recorded symbols and signal readings that represent properties of objects. (Liew 

2013; Rowley 2007). Liew (2007, 1) defines data as “storage of intrinsic meaning, a mere 

representation … to capture the true picture or real event.” Data do not have any practical 

value until they are processed into a usable form, as they lack context and interpretation 

(Ackoff 1989; Rowley 2007). 

When data is converted to usable form, it becomes information. The interpretation of 

data to information means considering the data in context where it is received and used. 

In other words, interpretation is the process of understanding the data. Typically, data are 

quantitatively reduced in the transformation process. The structure of data and 

information are alike, but the difference is functional as information has practical use. 

Information can answer to questions such as who, what, when and how many. (Rowley 

2007.) Information, in the definition by Liew (2013, 50) is “a message that contains 

relevant meaning, implication, or input for decision or action… the purpose of 

information is to aid in making decisions or solving problems or realizing an 

opportunity”. In this definition I want to highlight the dualistic character of information 

to which we will revert later in this study: information can be used for making decisions 

or actions. 



15 

 

Knowledge is internalized information and know-how, which is learned though 

interpretation of information or directly from a person, potentially in future also from 

computers (Ackoff 1989; Liew 2013). Liew (2013) defines knowledge as a clear and 

certain perception of a subject or object, understanding of certain fact. Knowledge can 

also be seen as product of accumulated learning of information, expertise and skills 

gathered during time, and new insights that information contain are linked with existing 

knowledge. In short, knowledge can be defined as actionable information. Another 

perspective to knowledge is to define it as capability to make decisions. (Rowley 2007.) 

The capability view connects knowledge with intelligence. Intelligence is 

understanding and choosing wisely, but it can be also related to ability to recognize 

objects and events (Liew 2013). Intelligence has a range of definitions and descriptions, 

but in technological context, Albus (1991) framework created to cover both human and 

computer intelligence works well. Albus (1991, 476) proposes that there are “four 

elements of intelligence: sensory processing, world modeling, behavior generation and 

value judgement”. Sensory processing covers acquiring data, transforming it into 

information, creating understanding about it, but also comparing it with expectations 

learned earlier. World model is both database of knowledge about the world, and 

capability to create expectations and predictions. Behavior generation refers to making 

intelligent plans and choices based on the world model. With the last characteristic, value 

judgement, Albus (1991) refers to determining if something is good or bad, but also 

evaluating its triviality or importance. In this study, I prefer to call this operation as 

evaluation, and leave the term value judgement to describe decision-making process when 

judging which of possible options should be chosen. 

In contrast with Albus (1991), Ackoff (1989, 5) proposes that intelligence is “the 

ability of acquire knowledge on one’s own”. In his view, intelligence is the ability to 

increase efficiency in terms of attainment, wisdom is ability to increase effectiveness in 

terms of developing potential, which requires judging, whereas Albus categorizes judging 

as key element of a lower level, intelligence. In this study value judgement is seen as 

action of choosing wisely, which requires intelligence. What both categorizations have in 

common, is describing data, information and knowledge as intangible objects, as 

intelligence and wisdom are seen as capabilities. In many theories on human intelligence, 

wisdom as capability view is highlighted. (Liew 2013.) 

In information science literature, wisdom as the tip of the DIKIW-hierarchy pyramid 

is rarely analyzed in detail, which causes ill-definition and overlapping characteristics 
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with knowledge. For example, contextualization of information is in some sources 

categorized to belong to wisdom, whereas some sources designate contextualization to 

knowledge. In DIKIW hierarchy, wisdom can be defined as highest level of abstraction 

or capability to anticipate future and based on intuition, to see beyond the horizon. 

(Rowley 2007.) 

One could speculate that intuition and anticipation might be something caused by 

lacking aware understanding on interrelationships of different concepts, even when 

sufficient information is provided. This approach could potentially provide new ideas for 

further progress with DIKIW debate. As currently the tools – for example artificial 

intelligence – for “seeing behind the horizon” are currently developed, there is a need to 

revise the hierarchy to reflect the technological reality. Still, within the range of this study, 

it is enough to distinguish data, information and capabilities from each other, for which 

the depth of framework discussed above is sufficient. 

Ackoff (1989) defines artificial intelligence as a technological system, which is 

capable of learning on its own. In 2020’s literature AI is frequently referred to as machine 

learning, which is a common form of AI, but also concept of neural networks has come 

to the frame. (Brynjolfsson & Mitchell 2017; Elton 2020; Zhang et al. 2020.) In this study, 

terms AI and machine are used to cover all technologies related with artificial intelligence. 

Ackoff (1989) definition does not exclude the elements of intelligence in Albus (1991) 

framework, which also should be used in describing artificial intelligence. 

In line with the of the dualistic definition of information, also different definitions of 

artificial intelligence can be divided to those focusing on thought processes and to those 

addressing behavior. Russell & Norvig (2014) categorized different definitions of 

artificial intelligence to a matrix in Table 1, where the first dimension is between thinking 

and acting and the second dimension is between rationality and humanly features. The 

categorization indicates that people are prone to irrational behavior and decisions, so 

intelligence as such is challenging to clearly attribute.  
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Table 1. Some definitions of artificial intelligence, organized into four categories. 

Table 1 is original as by Russell & Norvig (2014, 2) and all formulations, italics and references in the table 

are made by its original authors. 

Thinking Humanly 

“The exciting new effort to make 

computers think … machines with minds, 

in the full and literal sense.” (Haugeland 

1985) 

“[The automation of] activities that we 

associate with human thinking, activities 

such as decision-making, problem 

solving, learning…” (Bellman 1978) 

Thinking Rationally 

“The study of mental faculties through the 

use of computational models” (Charniak 

and McDermott 1985) 

 

“The study of the computations that make 

it possible to perceive, reason, and act” 

(Winston 1992) 

Acting Humanly 

“The art of creating machines that perform 

functions that require intelligence when 

performed by people.” (Kurzweil 1990) 

 

“The study of how to make computers do 

things at which, at the moment, people are 

better” (Rich and Knight 1991) 

Acting Rationally 

“Computational Intelligence is the study 

of the design of intelligent agents.” (Poole 

et al. 1998 

 

“AI …is concerned with intelligent 

behavior in artifacts.” (Nilsson 1998) 

 

The most frequently referred approach for determining if an information system is 

artificial intelligence or conventional system is the Turing test. The Turing test is based 

on evaluating how capable of acting humanly the computer is. In the Turing test, a 

computer answers to questions made by human interrogator, and if the human fails to 

identify whether the answerer is a human or a computer, the computer passes the test and 

is recognized to be AI. (Russell & Norvig 2014.) 

The thinking humanly approach concentrates on cognitive structures of the system. 

In the cognitive approach, an information system is acknowledged as artificial 

intelligence, if it structurally imitates human way of thinking. The challenge of this 

approach is to understand, how in fact people think, and what are the steps of human 

cognitive processes. (Russell & Norvig 2014.) As will be discussed later in this study, 

imitating results or producing similar results as expected does not mean the processing of 

information has been completed in similar manner. 
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Rationality discourse challenges human as reference for intelligence. Rational 

thinking and rational actions lay their bases on formal logic. Logical thinking and rational 

actions are conducted by analyzing the causal connection between different concepts, and 

if the connection is not certain, the best expected outcome is selected. This view 

emphasizes that people do not necessarily make justified actions, as due to limited 

rationality, achieving perfect rationality in complex environments is challenging. 

(Russell & Norvig 2014.) 

AI is not a single technology, but a variety of different technologies and applications. 

Characteristic to all of them is the capability to analyze large amounts of data. AI relation 

with data is bidirectional, since AI uses datasets for both learning and at operational phase 

as raw material for processing data to information. Brynjolfsson et al. (2017) do not 

precisely define AI, but point out that AI has broad application potential, and refers to AI 

as general-purpose technology. In scope of this study, AI is considered as an autonomous 

tool for processing data to information containing messages for decision-making, which 

in DIKIW hierarchy perspective cover capabilities: knowledge, intelligence and 

potentially also wisdom. 

Big data, despite being a widely known concept which future importance was hyped 

already in 2015, has not yet been explicitly defined and there exists confusion on what 

the term means. According to (Richterich 2018, 5–8), it is commonly quoted that big data 

differs from traditional datasets characterized by ‘three V’s’, which are volume, velocity 

and variety. Boyd & Crawford (2012) define big data as interplay of technology, analysis 

and mythology. They highlight that big data role for the society is not only within 

technological scope, but also in our beliefs. Zuboff (2015) argues that big data is not 

necessarily even a technological object but an autonomous process. Still, for this study, 

the differentiation of data and big data is not necessary, and they are used synonymously 

to refer to electronically manipulable unprocessed raw material for decision-making.  

When combined, big data and artificial intelligence form algorithmic decision-

making systems. Algorithm is a mathematical construct with a control structure, but in 

popular usage it can be understood as a representation of solving a particular problem 

(Ministry of Finance 2018; Mittelstadt et al. 2016). Following Mittelstadt et al. (2016), 

algorithms mentioned in this study are complex rules making generally reliable decisions, 

but whose decision-making processes are difficult to explain. In this study, term 

algorithmic decision-making system is used as an umbrella term for AI and big data. As 

will be pointed out in the next chapter, many AI ethics guidelines and studies do not 
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recognize the DIKIW framework, and use all three terms – AI, big data and algorithmic 

decision-making – more or less interchangeably.  
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3 ETHICAL PRINCIPLES IN AI 

Jones (1991) defines moral issue as an action that involves choice and has consequences, 

which can be either positive or negative. The person evaluating different options – that is 

value judgement – and making the decision on moral issue is called a moral agent. The 

decision made, depending on their outcome, may be societally acceptable or 

unacceptable, in other words the decision might be ethical or unethical. (Jones 1991.) As 

this study focuses on understanding what ethical questions have been discussed in AI 

ethics and how these notions could be parsed in technological framework, definitions 

provided here, despite being undetailed and indefinite, are adequate to proceed with 

analyzing the debate. 

In technological perspective, the distinction between artificial intelligence and big 

data is clear, but in ethical discussion the borderline between technologies, their internal 

processes and potential effects on the society is blurry. Amongst others, Jobin et al. (2019) 

and Hagendorff (2020) made scoping studies on AI ethics and recognized for example 

privacy, transparency and different aspects of societal change as key terms of AI ethics 

discussion. I argue that even though their descriptions on different ethical guidelines are 

valid and true, AI ethics guidelines do not manage to parse the socio-technological reality 

clearly enough to provide a solid basis for future AI ethics discussion. As ethical 

discussion overlaps different technologies and their applications, making clear 

understanding on ethical trade-offs that we face remains extremely challenging. 

Therefore, ethical judgements that have great potential to effect on the future development 

might be made inadvertently.  

Ethical principles in algorithmic decision-making have been widely discussed in 

various forums ranging from political debates to scholarly publications. Discussion on 

new interdisciplinary field of science, machine ethics, started in 2000s. Anderson & 

Anderson (2011) made significant contribution to the field by editing an over 500-page 

book on machine ethics. Essays in the book concentrated mainly on AI role as moral 

agent, the basis of ethical decisions made and machine capability of making ethical 

decisions. Also, Bostrom & Yudkowsky (2014) studied futuristic ideas of General 

Artificial Intelligence being applicable in a wide range of different domains and 

surpassing human capabilities, and discussed complexity of defining a being with moral 

status – can you kill an AI? Even though the question of a machine working autonomously 

as moral agent is intriguing, in scope of this study, we need to stick in anthropocentric 
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view and conclude that currently only human being is capable of making moral decisions 

and AI should be understood as a tool for data processing. Therefore, I will exclude from 

the observation the complexity of General Artificial Intelligence or superintelligence and 

the threat of the moment when AI will surpass the human intelligence, known as the 

singularity. (Anderson & Anderson 2011.) 

Another field of research of AI that can be attributed as AI ethics, yet rarely done so, 

is the AI implications in the society. The societal change and implications on workforce 

have been studied by Brynjolfsson et al. (2018) amongst others, the societal and 

environmental effects have been recognized by European Commission (2019). 

Undeniably algorithmic decision-making will have variety of implications on society in 

terms of loss of opportunity, economic loss, social detriment and loss of liberty identified 

by Castelluccia & le Métayer (2019). Societal changes are in my point of view secondary 

consequences of using artificial intelligence. In order to narrow down the scope of this 

study, we need to focus solely on those ethical principles which have been identified to 

be related with artificial intelligence as technology and acknowledge that using AI in 

various domains will have both positive and negative impacts on societal structure and 

employment. In this study, following the instrumentalist tradition of technology ethics, 

technologies of algorithmic decision-making are considered as ethically neutral tools. 

(Heikkerö 2009.) 

Publishers of artificial intelligence guidelines range from private companies to 

research alliances and governmental agencies to political parties, and approximately half 

of documents analyzed by Jobin et al. (2019) were issued by public organizations and 

another half by private sector. Still according to Benkler (2019), the AI industry plays 

active role in shaping the rules and ethics for the technology and guidelines are biased in 

favor of AI industry. Even the Ethics Guidelines for Trustworthy AI (European 

Commission 2019) is criticized by Benkler (2019) as being industry-dominated ethics 

washing. Hagendorff (2020) proposes that the reason why AI industry creates ethical 

guidelines is that they discourage imposing binding regulation to the field. In Hagendorff 

(2020) point of view, industry steers ethical discussion to direction that is beneficial for 

industry itself, highlighting technologically easy topics and disregarding ethical questions 

that are not easily computerized. As the AI industry is funding a great deal of ethics 

research in the field and AI is designed for profit-making rather than for the public 

interest, it necessarily creates tension between society and the business, which I in chapter 

3.2 argue to be one of the two contrasting extremes in terms of ethics. 
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Literature on AI ethics frequently uses terms moral issue and ethical issue when 

listing different topics to be discussed further. In my point of view, term issue in this 

context is not exact, since many of concepts listed as issues are not subjected to value 

judgements of any kind, but rather form attributes for ethical AI. To name a few, I hesitate 

to list human rights, transparency or justice as issues, since they are key elements or 

prerequisites for AI that is societally acceptable. Good term to describe this approach is 

ethical principle, used for example by Jobin et al. (2019) and Zeng et al. (2019). 

Inaccurate and interchangeable usage of terms AI and Big data in public domains 

causes misunderstandings when it comes to discussing ethical principles and trade-offs. 

Some questions that are commonly listed as ethical principles or trade-offs in artificial 

intelligence are in fact more related with big data. For example, Binns & Gallo (2019) 

note privacy as question related with AI, even though it is data what can be refined to 

sensitive information (Jobin et al. 2019). Also, the Finnish Ministry of Finance (2018) in 

report discussing AI ethics mainly concentrates on data-related principles.  

The Finnish Ministry of Finance (2018) notes that “the capacity of artificial 

intelligence to compile data will create completely new kinds of ethical questions.” If the 

syntaxis of the statement is analyzed, the subject of the statement is in fact capacity, not 

artificial intelligence. Deductively reasoning, if the capacity is identified to create ethical 

questions and the role of data is subordinate, the problem arises as a product of high-

volume analysis of data, not the process itself. This implies that the fundamental ethical 

questions are related to processed data i.e., information and are only raised to focus by 

AI.  

Another remark on public misunderstanding of AI ethics lies in mixing general 

ethical questions with AI and big data related questions. Reformulating general ethical 

questions in AI context as “How would a machine solve this issue?” does not change the 

fundament of the ethical discussion being beyond boundaries of AI. Popular example of 

this kind of ethical issues are trolley problems.  

“Think of an autonomous vehicle (AV) that is about to crash, and cannot find a 

trajectory that would save everyone. Should it swerve onto one jaywalking teenager 

to spare its three elderly passengers?” (Awad et al. 2018, 1.) 

In AI ethics context much more intriguing question is whether the car should be able 

to explain why it decided to do what it did, and who in fact is responsible for the decision 

made. In fact, the idea of Awad et al. (2018) study is to map what kind of preferences and 

solutions to trolley problems people from different cultural backgrounds have, which 
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unintentionally moves the moral judgement away from the machine, highlighting the 

human role as moral agent.  

Taking into account listed inaccuracies and undetailed definition of artificial 

intelligence in ethical debate, I argue that even though the topic of debate ostensibly is AI 

ethics, frequently the discussion ranges further. The umbrella of AI ethics discussion 

currently covers the whole scope of algorithmic decision-making ethics, but also general 

ethics that are loosely re-contextualized to artificial intelligence.  

Jobin et al. (2019) summarized the AI ethics discussion by factoring ethical principles 

identified in AI ethical guidelines published by different organizations. In study of 84 

different documents, they analyzed terminology used and identified in total 11 keyword 

clusters as ethical principles for artificial intelligence. It is worth noting that none of the 

identified factors was mentioned in all documents. Alike studies have been conducted by 

Hagendorff (2020) who identified 22 keywords and by Zeng et al. (2019) who identified 

ten keywords. The difference in identified term quantities is mainly caused by different 

factoring of the same key words. All three studies share most of the identified principles 

with only minor differences in emphases, as terms used by Hagendorff (2020) are more 

detailed and narrower than the rest. Identified principles of the three studies are listed and 

interpretatively compared in Table 2.  
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Table 2. AI ethical principles compared. 

Hagendorff (2020) Jobin et al. (2019) Zeng et al. (2019) 

transparency, openness  

transparency  
transparency 

explainability, interpretability  

protection of whistleblowers  - 

certification for AI products trust  

safety human autonomy  freedom and autonomy  

human oversight, control, 

auditing  responsibility  

accountability  accountability 

privacy protection privacy  privacy 

fairness, non-discrimination, 

justice 

justice and fairness  

fairness 

diversity in the field of AI  

public awareness, education 

about AI and its risks  

humanity 
common good, sustainability, 

well-being  

sustainability  

beneficence  

 
future of employment, worker 

rights  
dignity   

solidarity, inclusion, social 

cohesion  
solidarity  share  

legislative framework, legal 

status of AI systems  

non-maleficence  

- 
 

 
safety, cybersecurity  security  

dual-use problem, military, AI 

arms race  
-  

science-policy link  

- 

collaboration  

responsible/intensified research 

funding  

- 

 

field-specific deliberations 

(health, military, mobility etc.)  
 

hidden costs (labeling, 

clickwork, content moderation, 

energy, resources)  

 

cultural differences in the 

ethically aligned design of AI 

systems  

 

- - Artificial General 

Intelligence (AGI) 

 

 

Studies’ above foci vary, but they share main ethical principles. Therefore, I argue that 

these three studies constitute a sufficient overview of AI ethical principles noted in 

scholarly literature and guidelines. Deriving from these studies, I agree with Jobin et al. 
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(2019) formulation that shared principles of artificial intelligence ethics are transparency, 

accountability, privacy, justice and fairness and non-maleficence, but I also add to the list 

beneficence, as related topics are frequently discussed in AI ethics. To keep consistency 

with sources, I discuss all main topics that are attributed to AI ethics discussion keeping 

in mind, that all the topics are not explicitly limited to AI as technology but range beyond 

its limits. 

Ethical principles and topics listed in Table 2 intuitively seem to be widely applicable 

in AI, but closer look to the terms, their usage and justification makes evident that despite 

using same or similar terms, referents of these terms are somewhat different indicating 

the existence of semantic ambiguities and polysemy noted in the methodology chapter of 

this study. To name a few, social cohesion, common good and dignity are depending on 

how technology products – information and actions – are used, not the technology as 

such. Jobin et al. (2019) study revealed significant differences in ways ethical principles 

are interpreted, why they are deemed important, what issue, domain or actors they pertain 

to and how they should be implemented, which indicates semantic ambiguity. 

Transparency is according to Jobin et al. (2019) the most widely recognized principle 

in AI ethics guidelines. Artificial intelligence processes are considered to be opaque, 

frequently referred to as black boxes, which raises concerns on trustworthiness of the 

reasoning made and the safety of outcomes. Algorithms that are not predictable and 

explainable are difficult to control and possible errors that the algorithm has made are 

difficult to notice. Amongst others, promoting auditability and open-source codes have 

been proposed to tackle the opacity. Other terms that ethical guidelines use to describe 

transparency are explainability, explicability, understandability, interpretability, 

communication and disclosure of information. (Jobin et al. 2019; Mittelstadt et al. 2016.) 

If considered critically, transparency is a principle having only instrumental value that is 

used to reach further targets, such as minimizing harm or fostering trust (Jobin et al. 

2019). 

Responsibility and accountability are terms that overlap in AI ethics. Responsible AI 

is a term that is frequently used but rarely defined. On one hand, responsibility can refer 

to promoting values such as diversity and acting with integrity. On the other hand, integral 

for both responsibility and accountability is pointing out the legal liability for decisions 

made and focusing on the questions on moral agency. In this sense, also human control 

belongs to the same spectrum highlighting view that people should control decisions 

made by artificial intelligence, which implicitly limits development of General Artificial 
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Intelligence. Perspectives on who in fact should be considered responsible still vary 

greatly ranging from users to developers and from designers to the AI industry. (Jobin et 

al. 2019; Mittelstadt et al. 2016.) Responsibility and accountability are in my 

interpretation widely seen not as values but as tools to control and steer AI development 

to a certain direction. In this view, responsibility discourse in AI ethics aims at preventing 

undesired actions and consequences through regulation and sanctions. 

Privacy is in AI ethics a value to uphold and a human right to be protected. Privacy 

is also linked to freedom, which is also referred to as human autonomy. As artificial 

intelligence and data are closely linked, the role of privacy in AI ethics guidelines is 

significant. Many notions of privacy include data protection and consumer trust that well 

managed privacy creates. Freedom from surveillance can also be attributed to privacy. 

(Jobin et al. 2019.) As privacy discussion concentrates explicitly on data, it is worth 

noting that privacy as topic has been studied widely in scholarly big data literature, and 

the distinction between data and artificial intelligence should be emphasized in this 

context. In ethical point of view privacy obviously has intrinsic value, but in my 

perspective, discussion is somewhat misplaced. Discussing privacy in AI context distracts 

the debate and blurs concepts as privacy is question of data and its use (Jobin et al. 2019). 

Justice and fairness together with previously mentioned accountability and privacy 

provide the minimal requirements for ethical AI that have been noted in 80% of ethical 

guidelines (Hagendorff 2020). Justice and fairness as categorized by Jobin et al. (2019) 

refer to mitigating unwanted bias, preventing discrimination, promoting inclusion and 

equality. In short, debate on justice and fairness consists of promoting liberal values and 

ensuring that artificial intelligence makes its decisions automatically evaluating 

requirements of societally acceptable outcomes. 

Non-maleficence refers to systemic safety of AI infrastructure, but also to its safe and 

ethical usage. Jobin et al. (2019) included in this category all general calls for security of 

AI and statements on possible harm that using of AI may cause. The main risks of AI 

usage that were identified in their study are discrimination, violation of privacy and bodily 

harm. Hostile cyberattacks and war machines are discussed under this topic. Using 

artificial intelligence may also lead to negative impacts on social well-being, 

infrastructure, but also psychological, emotional and economic aspects are discussed. In 

another perspective, artificial intelligence impact on society can be also positive, which 

is highlighted in beneficence discourse. Integral for beneficence discourse are calls for 
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promoting human well-being, dignity, peace and happiness together with aligning AI with 

human values to foster human rights and environment. (Jobin et al. 2019.)  

As stated in the beginning of this thesis, artificial intelligence is a general-purpose 

technology. Even though discussion on ethical use of AI is of key importance, in my point 

of view ethics of using AI should be clearly separated from ethics that concern AI as 

technology. If compared for example with nuclear technology, process of inducing 

uranium fission chain is morally relatively neutral, whereas converting uranium into 

energy and radioactive waste can already be debated in ethical perspective, not to talk 

about nuclear weapons. Same logic should be applied to artificial intelligence: technology 

ethics and discussion on ethical usage of technology should be clearly distinguished from 

each other.  



28 

 

4 NEW OUTLINE FOR ETHICAL DISCUSSION ON AI 

To discuss ethical concerns with exact terminology and in their valid context, it is 

necessary to create a framework to understand what kind of topics ethical discussion 

covers, and how should the discussion be construed. This chapter is an attempt to answer 

to Hagendorff’s (2020) call on grasping technological details in intellectual framework 

of ethical discussion on artificial intelligence.  

The technological framework for this study is a modification of a widely 

acknowledged DIKW-hierarchy as discussed in chapter 2. Deriving from the 

technological framework it is justified to argue that data as input, information as output 

and artificial intelligence as capability are different from each other. Still, as these 

concepts are closely linked in the data refining process, all terms of the ethical literature 

cannot be explicitly classified to only one of the categories, which causes partial overlap 

in the categorization. On the basis of DIKIW-hierarchy, I argue that current ethical 

discussion on algorithmic decision-making – misnamed as AI ethics discussion – is 

possible to divide to three overlapping themes: (big) data, information and artificial 

intelligence. As earlier noted, Liew (2013) defined information as input for decision or 

action. Both, decisions and actions, should be taken into consideration when discussing 

information in AI context. The proposed categorization is demonstrated in Figure 2.  

 

Figure 2. Categorization for ethical discussion on AI systems. 

1. (Big) Data 2. Information 

3. Artificial intelligence 

4 

5 6 

7 
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It is worth noting that despite the quite distinct relation between data and information, 

categorizing ethical principles is challenging, as terms data and information are widely 

used interchangeably. Even in scholarly representations ethical questions of input and 

output overlap as the discussion is not parsed according to DIKW hierarchy. Polysemic 

use of terms in ethical guidelines and scholarly literature is one critical source of 

inaccuracies for this categorization, and interpretations of terms should not be considered 

as the only way of classifying the terms in technological framework. Still, I argue that the 

classification is widely applicable in spite of terms such as non-maleficence, which cover 

a range of topics from general security to resilience of cyberattacks, and in this sense 

stretch to all parts of AI process. 

Being aware of terminological contradictions and overlaps, in the following I 

reconstruct the shared principles and ethical questions raised in AI ethics literature and 

some real-life examples under the DIKW-based categorization. This categorization does 

not aim at being a complete outlook to all details of the complex socio-technological 

phenomenon, but to serve as framework for future AI ethics discussion and to provide 

basis to trade-offs discussed later in this study. 

4.1 Data and privacy 

The first identified category is ethics of data. Referring to the scoping studies above, most 

AI ethics guidelines note privacy as one of key principles of ethical AI (Hagendorff 2020; 

Jobin et al. 2019). Even though privacy is commonly referred to in AI ethics literature, it 

is still widely affiliated with data protection (Jobin et al. 2019). Critical data studies 

(CDS) are a field of science studying data ethics, its societal and economic impact and 

biases and inequalities that big data may contain. The main ethical questions in big data 

discussion are privacy, security, transparency and openness. (Richterich 2018, 34.)  

In data-economies people give their consent to collecting data automatically. It is 

widely argued that people accept to disclose their private information to data collectors 

due to convenience of using their services. According to Richterich (2018, 39) this 

argument is misleading, as becoming object to datafication is a decision between using 

and not using the service, as people cannot control what data on them is collected.  

Technological solutions to data privacy consist of differential privacy, which means 

separating identifiable data from other data, privacy by design, data minimization and 

access control (Jobin et al. 2019). Wirén et al. (2019) studied big data value chain, and 

argued that individual data parcels are relatively useless, but when connectivity is added, 
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the value increases. Based on the big data value chain, it is logical that interconnections 

between data creates added value, and any existing relation being left out data set reduces 

value and undermines potential findings in further data processing. Therefore, I argue that 

trade-off between proposed solutions for privacy issues and data value exists, and the 

proposed solutions should be critically analyzed in future big data studies.  

What is remarkable, there is a trade-off between civic right of privacy and common 

good especially concerning public health. If privacy as value is strictly protected using 

for instance data minimization mentioned above, some patterns that might become 

observable with full data available, might remain unnoticed. If we assume that genetics 

and hereditary diseases (obviously) have correlation, concealing identifiable data on the 

person will complicate identifying both genome causing the disease but also identifying 

the people that might benefit from right medication. If identifiable data could be collected, 

it would serve in studying and improving public health. (see Richterich 2018, 36.) 

4.2 Ethical utilization of information 

The second category developed on basis of the DIKIW-hierarchy is ethics of information. 

Data can be processed to information using either AI or traditional methods. Taking into 

account the earlier mentioned dualistic character of information, ethical question of 

information concerns the ethical utilization of messages containing input for decision or 

action.  

What AI changes in data processing is volume. High volumes and capability to 

recognize previously unrecognized patterns creates information that was not previously 

available. I argue that using AI for processing data to information does not create new 

ethical trade-offs, but the volume makes them visible. The ethical concern of AI data 

processing capacity causing new challenges noted by Ministry of Finance (2018) in the 

beginning of chapter belongs to this category.  

Personalization referred by Wirén et al. (2019) is a product of combining individual 

information with information acquired by analyzing patterns. In the article, 

personalization is seen both as a process and as a service. Hence, the identified trade-off 

between privacy and personalization can in DIKW-context be seen as trade-off between 

providing and not providing services with necessary information. Contradicting 

perspective to personalization is mentioned by Mittelstadt et al. (2016) who state that 

personalization is a de-individualizing process that creates meaningful groups without 

need to precise records on individual.  
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Richterich (2018, 37) formalized a data trade-off between privacy and public security 

in case of governmental surveillance. If put to DIKW-framework, the trade-off can be 

seen as a question concerning ethical usage of personalized information. Evaluating pros 

and cons of amounts of exact information available to public authorities, insurance 

companies and health care, but also questions of discrimination and equality are all 

different perspectives to the same subject of ethical usage of information. Due to new 

technological capabilities, vast amount of information is available, which challenges 

scholars to discuss, what are the limits of its ethical utilization. 

Clearly the most numerous ethical concerns that AI raises, concern the misuse of AI, 

which put to DIKW-framework relate to information utilization. Hagendorff (2020) 

discussed ways of using artificial intelligence that run counter to principle of non-

maleficence mentioned in the chapter 3. Artificial intelligence makes possible to do 

effective automated misinformation and propaganda campaigns, strengthen social control 

and surveillance, create systems for face recognition, sentiment analysis, social sorting 

and to build new tools for interrogation. (Hagendorff 2020.) 

Misuse of information created by AI systems may cause massive damage to societies. 

(Hagendorff 2020). Still, most of these ways to suppress people exist independently from 

AI, but due to capabilities of AI have now been brought to the frame. For instance, in 

2016 Cambridge Analytica extracted 87 million records from Facebook, and using 

algorithms managed to profile Facebook users successfully to target them with 

personalized reclamation that had impact on US presidential election results. (The 

Guardian 6.5.2018). Using AI to make personalization still doesn’t mean the ethical 

concern is initially caused by AI: if someone buys today diapers, without using any 

algorithms you can easily predict them to buy food for the baby later.  

4.3 Ethics of using AI as a tool 

AI data-crunching capacity creates opportunities to use it in various domains. For its 

potential it can be used to automate functions performed today by human beings, but in 

the future, it may also serve as basis to completely new functions that are at present too 

early to predict. The difference of this category in comparison with the previous is in 

perspective: as the previous category discussed what information can be used for, now 

the focus shifts to what purposes artificial intelligence as technology can be applied to, 

what decisions can be automatized, and what consequences the technological change 

might have.  
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Using artificial intelligence and developing its applications is balancing the trade-off 

between underuse and overuse of technology, which cause either opportunity costs of not 

fulfilling ambitious opportunities that AI brings, or risks of losing control of sustainable 

AI development accordingly (Floridi et al. 2018). Societal ethical principles that refer 

societal change due to using AI, such as beneficence, common good and solidarity, 

impacts on workforce and societal structures can be seen as a society choice between the 

benefits and costs of using AI.  

Disruptive nature of artificial intelligence may result in situation where old skills are 

devalued at fast pace, which might cause massive job losses, effect of which is not only 

economic: job is frequently part of identity that cannot be easily replaced. As artificial 

intelligence replaces human work force, it also causes deskilling in some fields. Relying 

extensively on artificial intelligence on critical domains might create vulnerabilities to 

society in case of AI malfunction. (Floridi et al. 2018.) 

Automatizing tasks, in which the basis of decision-making can be explicitly stated, 

can in ethical perspective be straight-forward, but decisions that require justification have 

waged intense discussion on the right to get informed the justification of decisions as they 

are concerned. Using black box technologies compromises this right. (Koulu et al. 2019.) 

Whereas the problematics of transparency and justification of decisions will be discussed 

later, the example serves to prove that all decisions cannot be easily delegated to a 

machine. 

One of the most popular examples of contradictory domain for replacing human 

power is war machines. Artificial intelligence system that could be designed for hostile 

purposes are cyberattacks or weaponized unmanned vehicles and autonomous drones. 

(Hagendorff 2020.) When ethics of LAWS is discussed, it is necessary to distinguish three 

different layers of the debate. The first question is whether using weapons against other 

people is justified. The second layer of the discussion is whether using destructive 

unmanned weapons such as LAWS against people is ethical. The third question is what 

kind of autonomous decisions LAWS are entitled to take. In this discussion the first 

question belongs to general ethics and the second belongs to ethical questions of using 

artificial intelligence. The third question on the autonomy of artificial intelligence 

systems will be discussed in chapter 4.6. For recent discussion on LAWS see United 

Nations (2020). 
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4.4 Information refining process 

The fourth category is the intersection of data and information, which can be understood 

as ethics of data refining. European Commission (2019) calls for ethical-by-design 

approach in AI development and demands that the system prevents any discriminatory 

outcomes. Justice and fairness are the key ethical principles of this category. If AI is 

required to follow widely recognized principles such as appreciate dignity and prevent 

discrimination for example on basis of race, age, sex, sexual orientation etc., the system 

should be programmed to disregard these factors, which reduces output information 

accuracy (Binns & Gallo 2019). Wirén et al. (2019) note that patterning and cross analysis 

of big data may reveal significant correlations between any pair of variables. On practical 

level the ethical-by-design requires precise defining what correlations can be applied and 

what cannot. 

Whereas distinction of people noted in Universal declaration of Human rights 

(United Nations General Assembly 1948) can be used as basis to prevent discrimination, 

in AI context preventing usage of any personal information will be extremely complex. 

Newell & Marabelli (2015) note that businesses have interest to discriminate customers 

and target to certain audiences. It is worth noting that practically any information can be 

used for discrimination. For example, age, sex and aggressive driving style correlates with 

collision risk, and it might be in some perspectives justifiable to discriminate them with 

higher insurance prices. At present, the EU considers using this kind of statistical 

information as discriminatory. (Newell & Marabelli 2015.)  

The ethical question in refining data is not what data can be used, rather the question 

is what kind of outcomes are societally acceptable, “What can be seen?”. Even if data 

would reveal meaningful correlations between different variables, some outcomes will be 

rejected if they result in decisions that are considered to be unfair or discriminatory. Thus, 

I argue that even though ethical concerns in processing data to information exist, this 

problematic is independent from artificial intelligence. 

4.5 Generating and teaching AI 

The fifth category is the intersection of data and AI. Data is used to train AI, and data 

quality effects the final result. Poor or biased datasets may result in biased AI. Boyd & 

Crawford (2012) note that big data creates polarization in research, since largest datasets 

on human behavior are owned by private companies. Companies do not have 
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responsibility to disclose data, and available data for AI development purposes vary in 

quality. Those, who possess the best datasets, have the best opportunity to train their AI. 

Data ownership is a topic where public and private organizations have conflict of interest. 

The Finnish Ministry of Finance (2018) calls for openness of possessed data, but in 

private company perspective disclosing the data could potentially mean losing advantage 

in AI development. 

Characteristically for the AI ethics discussion, even the same actor may have 

conflicting interests. A good example of this is that the Finnish Ministry of Finance (2018) 

requires openness of data and simultaneously highlights the importance of privacy. 

Privacy being one of key principles in the Western society, all data cannot be shared, 

which compromises equal access to data. Logically, disclosing data and protecting it is 

necessarily conflicting. 

4.6 AI generating decisions and actions 

The sixth category of AI principles is the intersection of AI and information. Information 

being defined as a message containing input for decision or action, the question is what 

kind of actions and what decisions AI can make independently. Ethical principles of this 

category are human control and responsibility. Floridi et al. (2018) state that when 

adopting AI, people willingly delegate some of their decision-making power to a 

machine. The question here is, to what extent can AI make decisions independently, and 

when human intervention is required? In a purely technological perspective, AI could be 

programmed to implement any information or decision it has processed.  

From a societal point of view, AI is not a moral agent with which is responsible for 

its decisions. For this reason, algorithms are necessarily value laden. (Mittelstadt et al. 

2016.) At present, a person should always be responsible for the decisions and actions 

made by an AI (Ministry of Finance 2018). But how to appoint who is the person 

responsible? Let’s look at an example: In future, AI-driven cars may become more safe 

drivers than people, and manual driving gets forbidden. One day the brakes of a self-

driving car piloted by AI suddenly break. There are two options: the car can continue on 

its path and knock a pedestrian over, or it can drive off the road killing the passengers. 

Whatever being the decision, the person responsible for losing human lives is accused. Is 

the responsible person for the accident the driver who has delegated decisions to the car, 

or perhaps the creator of AI? What about the modular structure of AI, where the person 

writing the code did not even know what application their code is used for? Perhaps, one 
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day AIs create next generation AIs with new capabilities. Who will be responsible for 

their decisions?  

For further deployment of AI, determining responsibilities is of high importance. If 

using AI drivers as in the example helps in reducing casualties in traffic, implementing 

AI is high interest for the society. If AI developers or AI companies get accused of 

accident they could not prevent, the development of new technologies is discouraged. 

Mittelstadt et al. (2016) note that in some cases, even the AI should be considered as a 

responsible moral agent, as human intervention during running process may be 

impossible. If our driver of the example above is sleeping in the backseat, they are not 

likely to do any justified decisions to avoid the worst-case scenario. Awad et al. (2018) 

proposed in their famous Moral Machine experiment a new approach to the theme in 

trolley problems context by collecting data for predefining values of the user. Another 

perspective to predefined preferences has been proposed by Zhang et al. (2020) who urge 

policy makers to designate the preferences for AI. 

4.7 The Black Box 

The seventh – and one may say even the core – theme combining ethical concerns of data, 

information and AI is so called black box. The black box thematic covers at least topics 

of explicability, transparency, accountability and trust. Solving the black box is “naïvely 

treated as panacea for ethical issues rising from new technologies” (Mittelstadt et al. 2016, 

6). 

When data and processes are extremely complex, in explicability perspective even 

absolutely transparent technologies with open-source code may seem opaque due to 

human limitations of understanding the rationale of a machine. Multidimensionality of 

data, complex codes and developing logic can cause situation, where it is completely 

impossible for a human being within the limits of their cognitive capabilities to 

understand the operation of algorithm. Even if provided with transparent data and 

processes, human actors might not be able to analyze the validity of process or decisions, 

i.e., the process or results might not fulfil the requirement of understandability despite the 

results being accurate and right. As large entity of artificial intelligence usually cannot be 

controlled by a single person, accountability gap between designer’s control and 

algorithm’s behavior might cause situations where potential blame should be assigned to 

multiple moral agents. Generally, existing blocks of code are used to develop new 

programs. Cumulative nature of information systems development will also cause 
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challenges, as in program development distribution of responsibilities is inevitable. 

(Mittelstadt et al. 2016.)  

In commercial perspective, public concern about trusting AI threatens adoption of 

further applications and solutions in high stake uses. The example by Bostrom & 

Yudkowsky (2014) describes well the role of trust in AI business: 

“Imagine an engineer having to say, “Well, I have no idea how this 

airplane I built will fly safely — indeed I have no idea how it will fly 

at all, whether it will flap its wings or inflate itself with helium or 

something else I haven’t even imagined — but I assure you, the design 

is very, very safe.” (Bostrom & Yudkowsky 2014, 320) 

To gain popularity and acceptance amongst human users, AI processes need to be 

accountable and trustworthy. Understanding and tackling beforehand potential ethical 

issues arising from opacity of processes is crucial in order to build customer trust towards 

the AI-based product. (Arnold et al. 2019.) On the other hand, AI algorithms are also 

intentionally poorly accessible. Organizations fostering their competitive advantage are 

not willing to disclose their processes. With absolute openness of code, commercial 

viability of solutions would be compromised for example in fields of credit reporting or 

high-frequency trading, but still the benefit for the society might remain uncertain, as 

openness does not necessarily mean processes are understandable for a human. 

(Mittelstadt et al. 2016.)  

To tackle the power-struggle between business viability and validity of processes, 

European Commission (2019) calls for auditability of processes by external auditor. 

Rudin (2019) argues that if AI is used as auditor for black box models, their explanations 

can be misleading and unreliable as secondary model cannot follow the original model 

logical structure. As even AI with absolute openness may remain opaque for an auditor, 

the auditing may concentrate not on process but the output. Bellamy et al. (2019) 

proposed a tool for detecting and mitigating bias using ready data sets, idea of which is 

based on reproducibility of results. As Elton (2020) notes, observing results of the process 

provides little information on its validity.  

Rudin (2019) pioneered in critic of explainability debate and stated that widely 

spread trade-off between accuracy and interpretability is a myth. She notes that all recent 

literature implies that the trade-off occurs. She states that in contrast with literature, if it 

is possible to create a reasonably accurate predictive model for a phenomenon, it is 

possible to build an inherently interpretable system that is capable of creating reliable 
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outputs and justify its reasoning. Building such systems may be costly, but important 

especially in high stakes uses. 

 Rudin (2019) sees that black box learning models are taking over, since developers 

are not trained in interpretable learning models. She stipulates that black box models used 

for high stakes decisions should not be explained at all, as explanation will not be 

sufficient for secure decision-making. Deriving from Rudin’s work, Elton (2020) argues 

that AI does not necessarily need to be explainable by external actors, but self-explanatory 

to create similar trust as what is between human beings.  

Rudin (2019) proposition of non-existence of trade-off between accuracy and 

interpretability strongly contrasts with dominant debate. Reflected with Benkler (2019) 

and Hagendorff (2020) notions that AI industry being very important player in the ethical 

debate, Rudin’s finding creates very intriguing initial setting for further studies. 
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5 TRADE-OFFS IN AI PROCESSES 

Having distinguished above overlapping categories of data, information and AI, I shall 

narrow down the focus of the study to trade-offs and ethical issues of AI processes. I leave 

aside the discussion on overuse and underuse of artificial intelligence that have been 

studied in other publications together with ethical issues that clearly belong to ethics of 

data or to ethical usage of information. For further discussion on ethical issues of big data 

and ethical usage of information see Richterich (2018) and for machines as ethical actors 

Anderson & Anderson (2011). 

Ethical issue, if understood as moral dilemma, rises in decision-making between two 

or more contrasting interests. Moral dilemma is a decision situation, where two or more 

ethical principles become incompatible with each other causing a trade-off. I want to 

stress the dualistic character of ethical issues: ethical issue should be defined as conflict 

between different ethical principles. In AI context, these trade-offs frequently arise 

between different stakeholder interests and in the most vicious occasions even between 

values and benefits of the same actor. Newell & Marabelli (2015) identify two main 

tensions in AI: individuals giving up their privacy, freedom or independence in change 

for new opportunities, and businesses exploiting technology opportunities with costs to 

individuals. To deepen the topic and to highlight that any tension or contrast needs to 

have at least two contradicting positions I propose there are two kinds of tensions: first 

between technological feasibility and society values and the second between business 

interest and society interest.  

Newell & Marabelli (2015) identify a number of trade-offs associated with big data. 

Exact categorization of concepts being out of their focus, their trade-offs overlap the 

above proposed categories of data and information. Still, their identified trade-offs that 

are privacy vs security, freedom vs control and independence vs dependence serve well 

to highlight that these trade-offs are not in the DIKW framework associated with AI. The 

AI process being the focus of this study, we shall exclude problematic of ethical use and 

applications of AI together with its potential impacts on society and concentrate solely on 

processes located in the intersections of Figure 2. Binns & Gallo (2019) identified also a 

trade-off between privacy and accuracy. Data refining process being elementary for AI, 

I conclude that even though this trade-off lays in DIKW-framework between data and 

information, in process perspective it is justified to be discussed further with other trade-
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offs. Hence, in the following I will discuss trade-offs in Figure 2 intersections 4, 5, 6 and 

7. 

5.1 Technological feasibility vs Society values  

I define technological feasibility as a term that refers to what is possible in technological 

perspective. It is possible that in some situations, implementation of new technologies 

might bring advantages compared with current technologies but using them would be in 

dissonance with fundamental values. This kind of trade-off that I call Technological 

feasibility vs Society values, can be found between interests and values of the same moral 

agent. 

The intersection four trade-off is a good example about society values conflicting 

with technological opportunities. This intersection lays between data and information, 

indicating that use of AI is not necessarily needed for this process. The trade-off in this 

intersection can be found between privacy and accuracy. The trade-off identified by 

Binns & Gallo (2019) stresses the fact society values might conflict with its own interests. 

If society strictly follows its values on protecting privacy and identifiable data is removed 

from used datasets, poorer quality of data might complicate for example discovery of 

hereditary diseases or identifying risk-groups both manually and with help of AI.  

If applied to AI context in DIKW framework, another trade-off that can be identified 

for this category is Ease of Outcomes vs Validity of Process identified by Wirén et al. 

(2019). The trade-off underlines that using AI for data processing may produce high-

quality output but cause uncertainty on its validity. For example, financial accounting has 

traditionally been industry, where value is created in transparent and valid processes. 

Accounting as industry prefers validity to ease, prove of which is double entry 

bookkeeping: single-entry bookkeeping may produce just as accurate and right outcomes, 

but double-entry method validates the process. Using artificial intelligence in producing 

financial statements may be easier than more conventional approaches, but due to process 

opacity process validity cannot be reviewed, which challenges foundations of accounting 

processes. (Quattrone 2016; Wirén et al. 2019.) 

For intersection five, Wirén et al. (2019) identified trade-off between data security 

and machine learning optimization. As “decisions made by artificial intelligence are only 

as good as its learning material and training algorithms allow”, data quality and 

multifacetedness is of key importance in AI training (Ministry of Finance 2018). As 

Hagendorff (2020) notes, the progress of AI development has recently been fast because 
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of availability of masses of personal data. Wirén et al. (2019) point out that diluting data 

quality used for machine learning by removing identifiable data, but also decision of not 

collecting all data that could potentially be available, undermines competitiveness of AI 

development in comparison with those societies, who do not have similar ethical barriers.  

In intersection six the trade-off lays between responsibility and autonomy. Both 

concepts have been widely debated, but to my knowledge the trade-off is now formalized 

the first time in AI context. Responsibility, in this context, should be understood as 

responsibility for actions and decisions and autonomy as capability of a machine to make 

decisions. Machine not being capable of value-judgements, the responsibility in front of 

law lays on a person. On the other hand, the reason to use algorithmic decision-making 

technologies is to automate tasks, and if a machine is not autonomic, but a human operator 

is required to make value-judgements, system efficiency is compromised. In the case of 

trolley problem mentioned earlier, it is easy to note that making value-judgements 

simultaneously with AI processes is not always possible, and an ongoing process should 

have autonomy to make decisions. As Mittelstadt et al. (2016) state, meaningful oversight 

and human intervention in algorithmic decision-making is impossible. Deriving from this 

example, in some applications value-judgements need to be predefined prior to launching 

the AI process. Having predefined value-judgements can be even more complex, as in 

this case the collection of data, formulation of research questions, analyzing the data, 

conclusions and even inputting the collected data to the AI system can be subjected to 

ethical evaluation.  

The seventh intersection combining all aspects of algorithmic decision-making is the 

black box. Acknowledging that Rudin (2019) ideas on interpretable AI are not – at least 

at present – main-stream, we stick to idea of black boxes being elementary for a complex 

AI and explainability as being the preferred solution to its ethical problems. 

Technological trade-off in this category is Transparency vs. Performance. As Rudin 

(2019) points out, using secondary AI to explain AI models does not create flawless 

understanding of black box processes, as explanatory AI cannot have perfect fidelity with 

original, since if it would, the initial AI would not be a black box but an interpretable 

model. Alike results do not prove validity of the process (Elton 2020). If AI system should 

be transparent and understandable for a human being as European Commission (2019) 

urges, AI process structure and complexity will be limited by human capabilities therefore 

causing opportunity costs mentioned by Floridi et al. (2018). 
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5.2 Business interest vs Society interest 

New technologies create opportunities for actions that might not be societally acceptable. 

Leaning on ideas of Newell & Marabelli (2015), businesses will exploit technological 

opportunities available, so it is individuals or more generally said the society – the 

collective formed from individuals – whose perceived interests are conflicted with 

business opportunities. Artificial intelligence is mainly developed in companies working 

with business logic. Their aim is to implement AI wherever possible, and the development 

of applications are rarely seen in ethical framework. (Hagendorff 2020.) 

Conflicts between business and society interests on data have been topic of intense 

discussion, and a number of conflicts of interest have been identified. Potential negative 

impact that using of big data may bring are problems such as invasions of privacy, 

decreased civil freedoms and increased state and corporate control. (Boyd & Crawford 

2012.) Social control systems, and surveillance by governments are risks that may 

threaten individuals. Zuboff (2015) pointed out that also private companies create alike 

controlling structures, which she calls surveillance capitalism, which produces revenue 

from predicting and controlling human behavior. Still, data ethics being out of scope of 

this study I conclude that in strictly AI context, trade-offs between Business interest and 

Society interest are limited but at least some trade-offs can be identified. 

As mentioned earlier, training AI requires a lot of high-quality data. A conflict of 

interest between private businesses and public organizations becomes evident in Ministry 

of Finance (2018) report, where the ministry calls for providing open access to both 

private and governmental datasets in order to enhance AI development opportunities. 

Private companies, for example social media companies and search engines, possessing 

large datasets have apparent advantage in developing AI with use of their data-monopoly, 

whereas public interest would be to have equal opportunities to develop AI. This conflict 

of interests can be shortly described as trade-off between data ownership and openness. 

(Richterich 2018, 40-51.) 

Business interest in explicability discussion is two-sided, and trade-offs between 

explicability and business opportunities rise in at least the following positions. The first 

trade-off is between explicability and price. Regulators tend to demand explicability of 

AI processes, but even “if data processors and controllers disclose operational 

information, the net benefit for society is uncertain” (Mittelstadt et al. 2016, 7). As Rudin 

(2019) noted, explaining black boxes with external auditing algorithms cannot be precise. 
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If external auditing is implemented to AI, creating control algorithms has necessarily 

price that will be borne by final customers.  

Another trade-off where business and society interests are contradicted is between 

transparency and commercial viability. Absolute transparency of AI may compromise 

ideal organizational autonomy but also their business opportunities. As previously noted, 

disclosing information that are in company perspective confidential, undermines viability 

of business. On the other hand, transparency may become a key factor of maintaining 

trust-relationship with customers and might help in adopting AI in high stakes uses 

creating new business opportunities. (Arnold et al. 2019; Mittelstadt et al. 2016.) 
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6 CONCLUSIONS 

6.1 Theoretical contribution 

Artificial intelligence ethics are intensively debated, at least partially because of lacking 

a common ground in form of a theoretical framework. In this thesis I provided my answer 

to Hagendorff’s (2020) call for a theoretical framework for artificial intelligence ethics 

discussion that would take into account also technological details. 

In the thesis I proposed that the current ethical discussion on artificial intelligence in 

fact does not concern only AI, but also algorithmic decision making. Blurry concepts in 

current AI ethics literature support Whetten’s (1989) statement that conceptual 

development is a critical yet overlooked field of science. I problematized the discussion 

pointing out that some of the concepts mentioned as ethical issues or principles of 

artificial intelligence are in fact directly related to AI as technology. As Sandberg and 

Alvesson (2011) propose, problematization is a key element in producing new points of 

departures for further theory development. Problematizing important assumptions, such 

as pointing out technological incoherence in this study, creates opportunities for future 

critical insights and more radical ideas. (Sandberg & Alvesson 2011.)  

Referring to Whetten (1989), understanding what the concepts are to be discussed 

and how are they related, constitutes a framework for interpreting patterns and 

discrepancies. He points out that the most difficult but fruitful way to develop theories is 

borrowing perspectives from other fields and challenging underlying rationales. 

Conceptualizing helps developing scholarly discussion, as without conceptualization we 

would study and debate the same constructs from slightly different perspectives without 

significant progress (Macinnis 2011). The problem of stagnation is in my point of view 

evident in artificial intelligence ethics discussion, and new approaches and openings are 

very much needed. 

In this thesis, I proposed that discussion on algorithmic decision-making ethics 

should be construed around three themes borrowed from information sciences, namely 

data, information and artificial intelligence. In artificial intelligence ethics debate, these 

concepts partially overlap, which creates intersections between concepts. I noted that in 

the current ethical discussion the distinction between these concepts is blurry, which leads 

the debate on wrong tracks causing difficulties in understanding the whole picture. Even 

though the concepts overlap with each other, they should not be used interchangeably, 
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rather their differences should be understood and recognized to steer ethical debates to a 

more productive direction. 

An ethical issue is necessarily a conflict of interests: without tension, there are only 

principles. In artificial intelligence context, conflict of interests may be found between 

technological feasibility and society values, where possible technological solutions are 

not applied due to conflict with values. Another tension can be found between society 

interest and business interest, where business opportunities are conflicting with society 

interests. As the main focus of this study is in construing the ethical debate in 

technological framework, not in identifying new tensions, it is possible that also other 

tensions can be identified. I also proposed that most of the ethical concerns appointed to 

artificial intelligence do not originate from artificial intelligence, but new capabilities of 

using massive amounts of information brings these concerns to the frame. 

When ethical tensions are brought to the practical level, trade-offs are taken to focus.  

Trade-off is a decision between two contrasting extremities, where making compromises 

is difficult if not impossible. A number of different trade-offs are pointed out in literature, 

but due to different understanding on the concept artificial intelligence and its boundaries, 

few of them can be applied in this study. This study is not a complete overview of possible 

trade-offs in artificial intelligence, but an attempt to point out some of key debates 

covering different areas of the technological framework is made. Rejecting and 

disregarding some of the identified topics in AI ethics literature and relying on an 

overview on the debate is justifiable, as “during the theory-development process, logic 

replaces data as the basis for evaluation” (Whetten 1989, 491). As the framework 

developed in this thesis has not yet been tested, it is useful for future research. (Whetten 

1989.) 

6.2 Practical implications 

Concerns that the increasing use of AI has caused are numerous, ranging from intruding 

to personal privacy to totalitarian control mechanisms and to automatized killer robots. 

Parsing ethical concerns and principles to a technological framework is not just another 

perspective to theoretical discussion, but it may have practical implications: misplaced 

concerns may slow down adoption of new technologies that have the potential to provide 

solutions to different global challenges, such as cancer research, terrorism and climate 

change. (Boyd & Crawford 2012; Floridi et al. 2018.) 
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Theoretical conceptualizing can help practitioners to understand the world around us. 

Understanding enables creating processes for measures if we are on the right course, and 

whether corrective actions are needed. (Macinnis 2011.) In artificial intelligence ethics 

context, this means above all building control structures to secure the development of safe 

AI in the future. As Benkler (2019) urges, ethical guidelines should not be formalized by 

industry but by society. Constructing concepts to categories helps deciding what to do, 

and the better we understand what something is, the more efficiently we can deal with it. 

(Macinnis 2011). Therefore, parsing the debate into technological framework helps 

technologically possibly unaware politicians in focusing regulative measures to the right 

target, which may help them in creating governance for artificial intelligence. 

6.3 Limitations and suggestions for further research 

Ethical discussion on artificial intelligence has not originally been constructed in a 

technological framework, and therefore the use of terminology and arguments vary 

between different sources. Reframing ideas presented by other scholars and politicians 

might compromise their original meaning, which potentially causes deficiencies in the 

accuracy of categorization of different ethical principles and trade-offs. Categorizations 

presented in this study should be considered as a suggestion for reframing the current 

debate. Even though when parsing the debate, I had to exclude a number of principles and 

concerns on artificial intelligence ethics, disregarding them should not be interpreted as 

denying their existence. Particularly enormous disruptive potential and risks of hostile 

use of artificial intelligence were in this study bypassed with only brief notions. 

DIKIW as technological framework for parsing artificial intelligence ethics is rough, 

and data, information and artificial intelligence were in this study simplified to the 

uttermost, without paying attention to the fine details that each of these concepts consists 

of. Further, in this study especially artificial intelligence, data and big data were discussed 

solely as technological objects and capabilities, even though Zuboff (2015) argues that 

these concepts should be seen as phenomena, and their technological definitions are 

therefore inadequate. 

Conceptual analysis as research method is based on plain logical thinking. As the 

applicability of the DIKIW-framework to work as a guideline for future AI ethics 

discussion has not been verified, further studies may deem this approach sufficient or 

insufficient. Besides testing the DIKIW-framework, future research should also critically 
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analyze trade-offs mentioned in this and other studies, but also identify new ones keeping 

in mind that when it comes to conflict of interests, it takes two to tango. 
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