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ABSTRACT 

Gestational diabetes is a common pregnancy complication that increases the risk of 
adverse pregnancy outcomes and predicts long-term metabolic morbidity for the 
mother and the offspring. Gestational diabetes is treated with lifestyle modifications 
and metformin or insulin if needed. Besides hyperglycemia, gestational diabetes is 
associated with broad disturbances in lipid and amino acid metabolism and low-
grade inflammation. The effects of metformin on these changes compared to insulin 
are not fully known. 

In this secondary analysis of a previous randomized trial in gestational diabetes, 
the effects of metformin (n = 110) and insulin (n = 107) treatments were studied on 
the maternal metabolome, inflammatory marker profile and insulin-like growth 
factor-binding protein-1 phosphoisoforms. Patients (n = 126) not requiring 
antihyperglycemic medication were included as a reference group at the time of 
randomization to medical treatment groups. Umbilical cord blood samples were 
drawn after delivery in all three groups to study the effects of metformin on the fetal 
metabolome. 

Metformin treatment led to a greater increase in maternal serum alanine, total 
triglycerides, very low-density lipoprotein triglycerides and total fatty acids than 
insulin. In the cord serum metabolome, only alanine was significantly higher in the 
metformin group. Maternal lipids, very low-density lipoprotein cholesterol and the 
apolipoprotein B to A-1 ratio in particular, were related to an increased birth weight 
and these associations were stronger in the metformin group than the insulin group. 
In cord blood, omega-6 fatty acids were positively and omega-3 fatty acids inversely 
associated with birth weight. Metformin had no effects on fetal ketones or fetal lipid 
metabolism 

In conclusion, insulin treatment of gestational diabetes may be more effective 
than metformin in ameliorating maternal dyslipidemia, although birth weight and 
other pregnancy outcomes were similar among the study groups. Our results suggest 
that the maternal metabolome could be helpful in identifying patients who benefit 
the most from metformin or insulin treatment. The long-term implications of 
elevated cord serum alanine merits further study. 

KEYWORDS: Gestational diabetes, metformin, insulin, metabolism, metabolome, 
metabolomics, low-grade inflammation, birth weight   
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TURUN YLIOPISTO 
Lääketieteellinen tiedekunta 
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raskausdiabeteksessa 
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TIIVISTELMÄ 

Raskausdiabetes on yleinen ongelma, joka lisää raskauden riskejä sekä ennustaa 
äidin ja lapsen myöhempää sairastavuutta. Raskausdiabetesta hoidetaan 
elintapamuutoksin sekä tarvittaessa lääkehoidolla. Korkean verensokerin lisäksi 
raskausdiabetekseen liittyy rasva- ja aminohappoaineenvaihdunnan sekä matala-
asteisen tulehduksen häiriöitä. Toistaiseksi metformiinin vaikutuksia näihin 
muutoksiin insuliinihoitoon verrattuna ei kunnolla tunneta. 

Tässä aiemman satunnaistetun tutkimuksen jatkoanalyysissa verrattiin 
raskausdiabeteksen metformiini- (n = 110) ja insuliinihoitojen (n = 107) vaikutuksia 
äidin aineenvaihdunnan molekyyleihin (metabolomiin), tulehdusmerkkiaineisiin ja 
insuliinin kaltaista kasvutekijää sitovaan proteiini 1:een. Lääkehoidon 
aloitusvaiheen vertailuun otetiin myös potilaita (n = 126), jotka eivät tarvinneet 
verenglukoosia alentavaa lääkitystä. Napanuoraverinäytteet otettiin synnytyksen 
jälkeen kaikissa kolmessa ryhmässä metformiinin vaikutusten tutkimiseksi. 

Metformiinihoidetuilla äideillä seerumin alaniinin, triglyseridien 
kokonaismäärän, erittäin matalatiheyksisten lipoproteiinien triglyseridien sekä 
rasvahappojen kokonaismäärän pitoisuudet nousivat enemmän kuin 
insuliinihoidetuilla. Napaveren metabolomissa ainoastaan alaniini oli merkitsevästi 
korkeampi metformiiniryhmässä. Äidin verenkierrossa erityisesti erittäin 
matalatiheyksisen lipoproteiinin kolesteroli sekä apolipoproteiini B:n ja A-1:n suhde 
olivat yhteydessä korkeampaan syntymäpainoon ja nämä yhteydet olivat vahvempia 
metformiiniryhmässä. Napaveressä omega-6-rasvahapot liittyivät korkeampaan ja 
omega-3-rasvahapot matalampaan syntymäpainoon. Metformiinilla ei ollut 
vaikutuksia sikiön ketoneihin tai rasva-aineenvaihduntaan. 

Raskausdiabeteksen insuliinihoito metformiiniin verrattuna saattaa olla 
tehokkaampi äidin rasva-aineenvaihdunnan muutosten lieventämisessä, vaikka 
syntymäpainoissa tai raskauskomplikaatioissa ei ollut eroja ryhmien välillä. 
Tulokset viittaavat siihen, että tulevaisuudessa äidin metabolomista voisi olla apua 
niiden potilaiden tunnistamisessa, jotka hyötyvät ensisijaisesti joko metformiini- tai 
insuliinihoidosta. Kohonneen napaveren alaniinin mahdolliset vaikutukset lasten 
myöhempään terveyteen vaativat lisätutkimuksia. 

AVAINSANAT: Raskausdiabetes, metformiini, insuliini, aineenvaihdunta, 
metabolomi, metabolomiikka, aminohapot, matala-asteinen tulehdus, syntymäpaino 
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1 Introduction 

Gestational diabetes mellitus (GDM), defined as hyperglycemia with onset during 
pregnancy (American Diabetes Association, 2016; Committee on Practice 
Bulletins—Obstetrics, 2018), affects every fifth pregnancy in Finland (Finnish 
Institute of Health and Welfare, 2020). GDM poses both the mother and the fetus an 
increased risk of adverse pregnancy outcomes (Langer et al., 2005a; HAPO Study 
Cooperative Research Group et al., 2008). Besides an increased risk of short-term 
adverse outcomes, such as macrosomia, preeclampsia, cesarean delivery, neonatal 
hypoglycemia, hyperbilirubinemia and a need for neonatal intensive care (Langer et 
al., 2005a; HAPO Study Cooperative Research Group et al., 2008), GDM is 
associated with an increased risk of type 2 diabetes (T2DM) for the mother 
(Vounzoulaki et al., 2020) and with obesity and metabolic syndrome for the 
offspring later in life (Clausen et al., 2009; Lowe et al., 2019). 

With adequate treatment, short-term adverse events associated with GDM can 
be mitigated (Crowther et al., 2005; Langer et al., 2005a; Landon et al., 2009). 
Treatment of GDM starts with medical nutritional therapy and lifestyle changes and 
if they alone prove insufficient for achieving the glycemic goals, insulin treatment is 
initiated (Working group established by the Finnish Medical Society Duodecim, 
2013; Committee on Practice Bulletins—Obstetrics, 2018). Metformin has also been 
studied as an alternative for insulin in GDM (Rowan et al., 2008; Ijäs et al., 2011; 
Spaulonci et al., 2013; Tertti et al., 2013) and based on meta-analyses metformin 
may be even superior to insulin in terms of lesser gestational weight gain (GWG) 
and of a lower risk of large for gestational age (LGA) babies, neonatal hypoglycemia 
and hypertensive disorders (Butalia et al., 2017; Farrar et al., 2017b). In the long 
term, metformin exposure has however been related to increased offspring weight 
and body mass index (BMI) (van Weelden et al., 2018; Hanem et al., 2019), which 
has caused some concerns over the safety of metformin use in pregnancy. 

Although maternal hyperglycemia is known to affect pregnancy outcomes 
(HAPO Study Cooperative Research Group et al., 2008) and long-term offspring 
health (Clausen et al., 2009; Lowe et al., 2019), the underlying mechanisms are not 
well characterized. Recent data however suggests that maternal metabolome could 
be involved (Lowe et al., 2014). 
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Metabolomics refers to the study of metabolites and it comprises identification 
and quantification of small molecules, like amino acids, lipids and intermediary 
metabolites of glucose, lipid and amino acid metabolism, i.e., the metabolome (Lowe 
et al., 2014). GDM is associated with alterations in the maternal metabolome (Huynh 
et al., 2014a; White et al., 2017; Mokkala et al., 2020b) and low-grade inflammation 
(Bao et al., 2015; White et al., 2017). 

Maternal hyperglycemia is a significant contributor to fetal growth in GDM 
(HAPO Study Cooperative Research Group et al., 2008), but there is also an evident, 
yet complex, interaction between the maternal metabolome and birth weight (BW) 
(Catalano et al., 2011; Hellmuth et al., 2019; Kadakia et al., 2019a). Both the 
maternal metabolome (Chorell et al., 2017) and the metabolome of the neonate 
(Standl et al., 2014; Patel et al., 2018) may predict future metabolic health of the 
offspring. 

Metformin administration has been shown to alter the metabolome outside 
pregnancy (Cai et al., 2009; Huo et al., 2009; Zhang et al., 2014; Irving et al., 2015; 
Preiss et al., 2016; Rotroff et al., 2016; Eppinga et al., 2017; Safai et al., 2018). In 
GDM, metformin treatment, compared to insulin, increases the concentration of total 
plasma triglycerides (TG), but not of high-density lipoprotein (HDL) nor low-
density lipoprotein (LDL) cholesterol (Barrett et al., 2013a). However, the detailed 
effects of metformin on the metabolome in pregnancy have not been studied. 
Metformin has also been shown to ameliorate low-grade inflammation (Desai et al., 
2013; Goldberg et al., 2014), but study results on this topic in pregnant subjects are 
inconclusive (Barrett et al., 2013a; Wang et al., 2017a). 

The aim of this study was to characterize the effects of metformin in the 
treatment of GDM on the maternal serum metabolome and inflammatory markers 
and to compare these effects with the ones caused by insulin treatment. Another aim 
was to compare the maternal metabolome and inflammatory markers at the time of 
the diagnosis of GDM between patients who required pharmacological treatment and 
patients who achieved the glycemic targets with diet and lifestyle modifications 
alone. The specific aim was to identify metabolic markers associated with fetal 
growth and other perinatal outcomes and to assess whether these associations 
differed among treatment groups. In the last part of the study, the effects on the 
neonatal cord serum metabolome of metformin, compared to insulin and diet and 
lifestyle treatment of GDM alone were examined. Here, serum obtained from the 
neonatal cord was considered as a proxy of fetal metabolism. 
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2 Review of the Literature 

2.1 Gestational diabetes 
Gestational diabetes (GDM) has traditionally been defined as a hyperglycemia with 
onset or recognition during pregnancy (Alberti et al., 1998; Committee on Practice 
Bulletins—Obstetrics, 2013). Newer narrower definitions only include 
hyperglycemia that has developed during pregnancy (American Diabetes 
Association, 2016; Committee on Practice Bulletins—Obstetrics, 2018), although 
the diagnosis is often not unambiguous. In Finland the national guidelines from 2013 
(Working group established by the Finnish Medical Society Duodecim, 2013) define 
GDM as a state of abnormal glucose metabolism first diagnosed during pregnancy. 

The incidence of GDM has risen steadily in Europe during the last 40 years 
(Eades et al., 2017) and the global prevalence is expected to rise (Yuen et al., 2019). 
The causes for this increasing prevalence are not completely understood, although 
the underlying factors probably include increased maternal age and obesity as well 
as changes in diagnostic criteria and screening penetration (Ferrara, 2007). Currently 
every fifth pregnancy in Finland is being complicated by GDM (Finnish Institute of 
Health and Welfare, 2020), but the prevalence varies across countries, depending on 
ethnicity, maternal age, screening and diagnostic criteria (Eades et al., 2017). 

2.1.1 Pathogenesis 
Normal pregnancy is characterized by increased insulin resistance (Catalano et al., 
1991) and basal hepatic glucose production (Catalano et al., 1992), coupled to an 
increase in the number of pancreatic β-cells (Butler et al., 2010). Hyperglycemia 
ensues when the insulin secretion is insufficient to meet the requirements set by 
increased insulin resistance (Buchanan et al., 2005). 

Insulin resistance increases and β-cell function becomes impaired in GDM 
(Xiang et al., 1999) and it has been proposed that the two abnormalities are 
interconnected and do not generally appear alone (Buchanan, 2001). 

The causes for impaired glucose metabolism in pregnancy are not fully known. 
The following circumstances have been associated with GDM, but their relative 
importance is unclear: increased leptin (Kautzky-Willer et al., 2001), tumor necrosis 
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factor α (TNF-α) (Kirwan et al., 2002), C-reactive protein (CRP) (Wolf et al., 2003) 
and interleukin 6 (IL-6) (Kuzmicki et al., 2009), decreased adiponectin (Retnakaran 
et al., 2004) and metabolic aberrations, e.g., increased fatty acids (FA) and branched-
chain amino acids (BCAA) (Huynh et al., 2014b; Scholtens et al., 2014). 

Along with impaired insulin resistance (Catalano et al., 1993, 1999), metabolic 
aberrations are observed in women already before the development of GDM 
(Bentley-Lewis et al., 2015; White et al., 2017; Mokkala et al., 2020c). Whether 
these changes are causally related to GDM is not known. 

Monogenic diabetes (MODY) (Gjesing et al., 2017; Zubkova et al., 2019), or β-
cell antibodies predicting autoimmune diabetes (type 1 diabetes, T1DM) (Nilsson et 
al., 2007) may be found in a small fraction of patients in whom hyperglycemia is 
diagnosed in pregnancy. Still, for most patients the origin of GDM is apparently 
multifactorial and heterogeneous. 

2.1.2 Diagnosis and risk factors 
GDM is diagnosed using either the two-hour or three-hour oral glucose tolerance test 
(OGTT), but thus far there is no global consensus regarding the ultimate diagnostic 
criteria or screening algorithm. The first OGTT criteria by O’Sullivan et al. 
published in 1964, were defined as two standard deviations (SD) above the mean 
glucose values for each of the measurements in the three-hour OGTT (O’Sullivan et 
al., 1964). These criteria were later translated into plasma glucose values (rather than 
whole blood glucose, as in the original publication) and adopted into the National 
Diabetes Data Group (NDDG) guidelines (National Diabetes Data Group, 1979). In 
1982, the criteria of Carpenter and Coustan were published and they presented lower 
thresholds than the O’Sullivan criteria (Carpenter et al., 1982). The aim of all of 
these criteria was to identify the mothers who were at risk of developing diabetes 
after pregnancy rather than to identify those at risk of adverse perinatal outcomes 
(Metzger et al., 2007). 

To address this limitation, a large prospective multicenter study, the 
Hyperglycemia and Adverse Pregnancy Outcomes (HAPO) study, was conducted 
(HAPO Study Cooperative Research Group et al., 2008). This study showed that 
there are no discrete threshold values but rather a linear association between maternal 
glucose levels and four predefined pregnancy outcomes: BW above the 90th 
percentile for gestational age, primary cesarean delivery, clinically diagnosed 
neonatal hypoglycemia and cord-blood serum C-peptide level above the 90th 
percentile. 

Based on the HAPO results, International Association of the Diabetes and 
Pregnancy Study Groups (IADPSG) published the first diagnostic cut-off values that 
took short-term pregnancy outcomes into account (International Association of 
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Diabetes and Pregnancy Study Groups Consensus Panel et al., 2010). These criteria 
are nonetheless based on observational data and, while randomized trials are awaited, 
current evidence is insufficient to support superiority of one screening method over 
another (Farrar et al., 2017a). 

The NDDG, Carpenter & Coustan, IADPSG and Finnish national OGTT criteria 
are summarized in Table 1. 

Table 1.  Oral glucose tolerance test threshold values according to different criteria. 

 NDDG Carpenter & 
Coustan 

IADPSG Finnish national 
criteria 

Year 1979 1982 2010 2008, 2013 

Screening test 50 g GCT 50 g GCT - - 
Diagnostic test 100 g 3-hour 

OGTT 
100 g 3-hour 

OGTT 
75 g 2-hour 

OGTT 
75 g 2-hour 

OGTT 
OGTT thresholds 
Plasma glucose 
(mmol/l) 

    

Fasting 5.8 5.3 5.1 5.3 
One hour 10.6 10.0 10.0 10.0 
Two hours 9.2 8.6 8.5 8.6 
Three hours 8.0 7.8 - - 

No. of increased 
values required for 
diagnosis 

2 2 1 1 

NDDG: National Diabetes Data Group, IADPSG: International Association of Diabetes and 
Pregnancy Study Groups, GCT: glucose challenge test, OGTT: oral glucose tolerance test. Adapted 
from (National Diabetes Data Group, 1979; Carpenter et al., 1982; International Association of 
Diabetes and Pregnancy Study Groups Consensus Panel et al., 2010; Working group established 
by the Finnish Medical Society Duodecim, 2013). 

Several known risk factors for GDM have been established. In a recent umbrella 
review of meta-analyses, obesity and hypothyroidism were the risk factors with the 
most convincing evidence (Giannakou et al., 2019). Overweight, snoring, sleep-
disordered breathing, polycystic ovary syndrome and a family history of diabetes 
were also “highly suggestive” of being associated with an increased GDM risk 
(Giannakou et al., 2019). An alternative for universal screening of GDM is risk 
factor based screening, but whether any screening strategy ultimately leads to 
improved perinatal outcomes cannot be judged by the available evidence (Tieu et al., 
2017). 

The Finnish national guidelines published 2008 and revised 2013 endorse 
universal screening for GDM (Working group established by the Finnish Medical 
Society Duodecim, 2013). A two-hour 75 g OGTT is recommended for every 
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pregnant woman at 24–28 gestational weeks (gw), except for nulliparous women 
aged < 25 years and BMI < 25 kg/m2 and parous women aged < 40 years, BMI < 25 
kg/m2 and no previous GDM or macrosomia. An additional early OGTT at 12–16 
gw is recommended for subjects at high risk. 

2.1.3 Treatment 
The treatment of GDM leads to an unequivocal reduction in adverse perinatal 
outcomes (Crowther et al., 2005; Langer et al., 2005a; Landon et al., 2009). A 
systematic review and meta-analysis of GDM treatment by the U.S. Preventive 
Services Task Force showed reduced risks of preeclampsia (risk ratio, RR: 0.62; 
confidence intervals, CI: 0.43, 0.89), shoulder dystocia (RR: 0.42; CI: 0.23, 0.77) 
and macrosomia (RR: 0.50; CI: 0.35, 0.71) (Hartling et al., 2013). The treatment did 
not affect maternal GWG, the risk of birth injury, neonatal hypoglycemia, cesarean 
delivery, induction of labor, small for gestational age (SGA), nor neonatal intensive 
care unit (NICU) admission (Hartling et al., 2013). 

Generally, patients diagnosed with GDM are provided diet and lifestyle 
counselling and advised to self-monitor fasting and postprandial glucose values, 
although the optimal glucose targets in GDM are not known (Prutsky et al., 2013; 
Crowther et al., 2018; Popova et al., 2020). The Finnish guidelines recommend 
initiation of pharmacological treatment if the glucose targets for fasting glucose < 
5.5 mmol/l or 1 h postprandial glucose < 7.8 mmol are not met despite diet and 
lifestyle modifications (Working group established by the Finnish Medical Society 
Duodecim, 2013). 

Insulin therapy is usually begun with neutral protamine Hagedorn (NPH) insulin 
(Working group established by the Finnish Medical Society Duodecim, 2013; 
Committee on Practice Bulletins—Obstetrics, 2018). Rapid-acting insulin lispro and 
insulin aspart may be used either alone or in combination with NPH insulin if the 
postprandial glucose values tend to remain elevated. 

Although insulin has been the standard pharmacological treatment, also 
metformin and glyburide have been studied and may be used to treat GDM (Langer 
et al., 2000; Rowan et al., 2008; Farrar et al., 2017b). Compared to injectable insulin 
oral antidiabetic drugs are tempting due to lower price and ease of administration. 
Metformin treatment of GDM is currently accepted as an alternative for insulin by 
Finnish guidelines and will be reviewed later in detail. Glyburide crosses the placenta 
(Hebert et al., 2009) and is associated with an increased risk of neonatal 
hypoglycemia (Farrar et al., 2017b; Song et al., 2017) and is possibly less efficient 
in reducing the risk of macrosomia (Farrar et al., 2017b; Song et al., 2017). The use 
of glyburide is not supported by the Finnish guidelines (Working group established 
by the Finnish Medical Society Duodecim, 2013). 
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2.1.4 Consequences of gestational diabetes 

Perinatal and neonatal outcomes 

Adverse pregnancy outcomes are more common in pregnancies complicated by 
GDM than in normal pregnancies (Langer et al., 2005a). There is a linear association 
between, on one hand, maternal glycemia and high BW (HAPO Study Cooperative 
Research Group et al., 2008) and, on the other hand, the risk of LGA infants and 
macrosomia in GDM (Langer et al., 2005a; O’Sullivan et al., 2011). The risk of 
shoulder dystocia is increased not only by the higher BW of the neonate, but the 
maternal diabetes acts also as an independent risk factor (Nesbitt et al., 1998), 
probably through altered anthropometrics of the infants exposed to hyperglycemia 
in utero. Hence, cesarean delivery should be considered if the estimated fetal weight 
exceeds 4500 g in mothers with GDM (Working group established by the Finnish 
Medical Society Duodecim, 2013; Committee on Practice Bulletins—Obstetrics, 
2018). 

The overall risk of cesarean delivery is also higher in GDM compared to normal 
pregnancies (Langer et al., 2005a; HAPO Study Cooperative Research Group et al., 
2008; O’Sullivan et al., 2011). Retrospective data indicate that the induction of labor 
near term at 38+0 – 39+6 gw may be associated with reduced need for cesarean 
deliveries (Melamed et al., 2016). 

GDM and preeclampsia share common risk factors and GDM is, not surprisingly, 
associated with an increased risk of preeclampsia. When adjusted for C-peptide, the 
association between maternal glycemia and incidence of preeclampsia was 
attenuated in the HAPO study population, suggesting that insulin resistance may play 
a significant role in the development of preeclampsia (Hyperglycemia and Adverse 
Pregnancy Outcome (HAPO) Study Cooperative Research Group, 2010). Adequate 
treatment of GDM may lower the risk of preeclampsia (Hartling et al., 2013). 

The neonatal complications of GDM include neonatal hypoglycemia, respiratory 
complications, hyperbilirubinemia and an increased overall risk of NICU admission 
(Langer et al., 2005a; O’Sullivan et al., 2011). The increased rates of neonatal 
hypoglycemia in the presence of maternal diabetes is thought to be due to neonatal 
hyperinsulinism (Pedersen et al., 1954) and, correspondingly, maternal glycemia 
during the late 2nd and early 3rd trimester is related to risk on neonatal hypoglycemia 
(HAPO Study Cooperative Research Group et al., 2008). In T1DM modest 
improvements in glycemic control may decrease the risk of neonatal hypoglycemia 
(Yamamoto et al., 2019), but these results might not be applicable in GDM (Hartling 
et al., 2013; Popova et al., 2020). Furthermore, glyburide treatment of GDM may 
even increase the risk of neonatal hypoglycemia (Farrar et al., 2017b; Song et al., 
2017). 
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Fetal hyperinsulinemia has opposing effects to cortisol on lung maturation and 
explains the delayed lung maturation of fetuses in GDM (Gluck et al., 1973). In a 
large retrospective cohort GDM that required insulin treatment was (adjusted 
OR: 1.7; CI: 1.4, 2.1), while diet controlled GDM was not (adjusted OR: 1.1; CI: 
0.9, 1.3) associated with respiratory distress (Billionnet et al., 2017). There is no 
evidence that treatment of GDM would reduce the risk of neonatal respiratory 
complications (Hartling et al., 2013). 

Neonates born to mothers with diabetes have an increased risk of 
hyperbilirubinemia due to a larger red cell mass, ineffective erythropoiesis and 
immature bilirubin conjugation (Nold et al., 2004). Thus, the glycated hemoglobin 
(HbA1c) values in T1DM measured near delivery are associated with the neonatal 
hematocrit (Green et al., 1992) and with the level of amniotic fluid erythropoietin 
(Teramo et al., 2004). Treatment of GDM may lower the rates of neonatal 
hyperbilirubinemia (Hartling et al., 2013). 

Long-term outcomes 

Women who have had GDM in a previous pregnancy are at increased risk of GDM 
in subsequent pregnancies (Getahun et al., 2010), as well as of T2DM later in life 
compared to women with normoglycemic pregnancies (RR: 9.51; CI: 7.14, 12.67) 
(Vounzoulaki et al., 2020). Whether this risk can be reduced was studied as a part of 
a larger Diabetes Prevention Program study. Women with prior GDM were 
randomized to intensive lifestyle intervention, metformin or placebo treatment with 
the main outcome to prevent T2DM (Ratner et al., 2008). Treatment lasted for 3 
years and both lifestyle and metformin treatment roughly halved the risk of T2DM 
compared to placebo. In the 10-year follow-up study the difference was sustained 
(Aroda et al., 2015). Based on this data the numbers needed to treat to prevent one 
case of T2DM in 10 years was 7.2 for metformin and 11.3 for lifestyle interventions 
(Aroda et al., 2015). Similar results were reported for lifestyle intervention in the 
Finnish Diabetes Prevention Study which targeted subjects with impaired glucose 
tolerance (Tuomilehto et al., 2001). Not only the risk of T2DM but also the risk of 
hypertension and cardiovascular disease is increased in women with a history of 
GDM, independent of confounding factors (Pirkola et al., 2010; Tobias et al., 2011; 
Kramer et al., 2019). 

Unfortunately, the long-term consequences of GDM are of concern not only to 
the mother but also to the neonate exposed to hyperglycemia in utero. In the early 
1980’s there were discussions that metabolic perturbations during pregnancy could 
affect fetal development also after the phase of organogenesis (Freinkel, 1980). 
Initial studies in Pima Indians found that fetal exposure to maternal hyperglycemia 
had long lasting consequences on the weight centiles and plasma glucose values of 
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the offspring (Petitt et al., 1985). This effect was not fully explained by genetic 
susceptibility, as demonstrated in a study comparing siblings born either before or 
after the mother was diagnosed with T2DM (Dabelea et al., 2000). Similar 
associations between maternal diabetes and adverse metabolic traits in the offspring 
were later confirmed in Danish and Finnish cohort studies (Clausen et al., 2009; 
Kaseva et al., 2019) and the HAPO follow-up study (Lowe et al., 2019). Maternal 
GDM is associated with obesity, the metabolic syndrome and impaired glucose 
tolerance and insulin sensitivity in the offspring at 10–20 years of age (Clausen et 
al., 2009; Lowe et al., 2018, 2019). 

When the neonates who have been exposed to a hyperglycemic environment in 
utero grow older, they are more likely to be overweight and have unfavorable 
metabolic traits than those not exposed. And when these subjects become pregnant 
they have an elevated risk of GDM, which creates an intergenerational vicious cycle 
of diabetes (Dabelea, 2007). 

To facilitate lifestyle interventions and early recognition of pre-diabetes, follow-
up of patients with GDM is recommended postpartum (Working group established 
by the Finnish Medical Society Duodecim, 2013; Committee on Practice Bulletins—
Obstetrics, 2018). 

2.1.5 Metabolic changes in gestational diabetes 

Glucose metabolism 

Maternal hyperglycemia is the hallmark of GDM. It is due to inadequate insulin 
secretion in the face of increased insulin resistance. In GDM, the inhibition of 
endogenous glucose production by insulin is reduced in both normal weight 
(Catalano et al., 1993) and obese (Catalano et al., 1999) subjects. Glucose clearance 
is also decreased in GDM (Xiang et al., 1999). 

Insulin sensitivity decreases as the pregnancy progresses (Catalano et al., 1991). 
Longitudinal studies by Catalano et al. show that insulin sensitivity is impaired  
already before pregnancy in subjects who will subsequently be diagnosed with GDM 
(Catalano et al., 1993, 1999). To compensate for the impaired insulin sensitivity, the 
first-phase and second-phase insulin responses increase from the pre-gravid state to 
early and late pregnancy (Catalano et al., 1993, 1999). In lean subjects, the first-
phase response during early and late pregnancy is attenuated in GDM (Catalano et 
al., 1993), while in obese subjects there is no differences between GDM and non-
GDM subjects regarding first-phase insulin secretion but the second-phase response 
is amplified already before pregnancy (Catalano et al., 1999). GDM patients are 
heterogeneous with respect to insulin secretion and insulin effects. When GDM 
patients in a prospective cohort were divided into three subclasses; predominantly 
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defective insulin secretion, predominantly impaired insulin sensitivity and a mixed 
phenotype, the risk of pregnancy complications was highest in the impaired insulin 
sensitivity group (Powe et al., 2016). 

In the physiological, non-pregnant state, insulin regulates non-esterified FA 
(NEFA) concentrations by promoting their uptake and by inhibiting their release by 
lipolysis in the adipose tissue. In GDM, however, the regulation NEFA metabolism 
is also defective. NEFA concentrations correlate strongly with glucose production 
(Xiang et al., 1999) and may promote insulin resistance (Sivan et al., 1998). 

In GDM, utilization of ketogenic amino acids, BCAA and NEFA as an energy 
source seems to raise the concentrations of maternal ketones (Pappa et al., 2007; 
Dudzik et al., 2014), and increased ketones (including 3-hydroxybutyrate) are a 
common finding in GDM in contrast to pregnancies with normal glucose tolerance 
(Montelongo et al., 1992; Pappa et al., 2007; Scholtens et al., 2014; Dudzik et al., 
2017; Mokkala et al., 2020b). Ketones cross the placenta but whether they affect 
fetal development and growth is not known. 

Amino acids 

Table 2.  List of twenty amino acids common in human metabolism. 

Other amino acids Branched-chain amino acids Aromatic amino acids 

Alanine # Isoleucine * Phenylalanine * 

Arginine Leucine * Tyrosine 

Asparagine Valine * Histidine * 

Aspartic acid  Tryptophan * 

Cysteine   

Glutamic acid   

Glutamine #   

Glycine   

Lysine *   

Methionine *   

Proline   

Serine   

Threonine *   
* Essential amino acids, # Most important glucogenic amino acids 
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Besides glucose, the metabolism of most other metabolites, including amino acids 
(Table 2), is altered in GDM. In normal pregnancy, the serum concentration of 
alanine, phenylalanine and histidine increase while the concentrations of glutamine, 
glycine, valine and tyrosine decrease (Wang et al., 2016). Compared to the first 
trimester, glutamic acid and threonine are higher in the third trimester (Lindsay et 
al., 2015). The BCAA leucine and valine, like arginine, glycine, phenylalanine, 
tryptophan, serine and tyrosine, decrease as pregnancy proceeds (Lindsay et al., 
2015). Early studies on GDM demonstrated altered amino acid concentrations. 
Particularly plasma BCAA were increased in GDM (Metzger et al., 1980), although 
most of the studies were small and the results heterogeneous (Metzger et al., 1980; 
Butte et al., 1999; Cetin et al., 2005; Pappa et al., 2007). 

In two large contemporary prospective studies on overweight and obese pregnant 
women, the concentration of the BCAA isoleucine and leucine, and of phenylalanine 
were higher in pregnancies complicated by GDM, both before and after the diagnosis 
of GDM (White et al., 2017; Mokkala et al., 2020b, 2020c). Of note, all subjects in 
these studies were overweight or obese and the women with GDM were usually 
managed without pharmacological treatment (Poston et al., 2015; Mokkala et al., 
2020b). Maternal alanine may be higher prior to the GDM diagnosis (Bentley-Lewis 
et al., 2015; Mokkala et al., 2020c). The metabolome at mean 28 gw was compared 
between low fasting-plasma glucose (< 10th centile) and high fasting-plasma glucose 
(> 90th centile) groups of mothers of Northern European ancestry in the HAPO study 
(Scholtens et al., 2014). In this cohort, high fasting plasma glucose was associated 
with higher levels of isoleucine, proline, valine, alanine, leucine, serine, ornithine, 
glutamic acid and threonine. The association between increased levels of arginine 
during the first (Nevalainen et al., 2016) and third (Rahimi et al., 2017) trimester 
and GDM have been confirmed in later studies. 

In pregnancy, the serum levels of several maternal amino acids, including 
alanine, leucine/isoleucine1, phenylalanine and proline, are positively associated 
with OGTT 1 h glucose levels (Scholtens et al., 2016) and inversely related to insulin 
sensitivity (Sandler et al., 2017). The BCAA degradation pathway in particular, was 
related to insulin sensitivity (Sandler et al., 2017). 

In conclusion, GDM seems to be associated with increased maternal serum levels 
of alanine and BCAA. In T2DM, BCAA have been related to increased insulin 
resistance (Guasch-Ferré et al., 2016) and, based on data from large genetic studies, 
BCAA lie on a causal pathway from insulin resistance to frank T2DM (Lotta et al., 
2016; Wang et al., 2017b). In GDM, compared to normal pregnancies, BCAA stay 

 
 
1  The analysis method used does not differentiate between leucine and isoleucine. 
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elevated postpartum (Chorell et al., 2017) and are associated with an increased risk 
of T2DM (Andersson-Hall et al., 2018). 

Lipids 

Increased insulin resistance and increased estrogen concentrations cause apparent 
alterations in lipid metabolism in pregnancy (Figure 1) (reviewed in (Herrera et al., 
2016)). Hepatic production of very low-density lipoprotein (VLDL) is increased 
during pregnancy, due to increased estrogen effects, maternal energy intake and 
insulin resistance (Alvarez et al., 1996; Herrera et al., 2016). Simultaneously, 
increased estrogen effects and insulin resistance downregulate lipoprotein lipase 
(LPL) (Herrera et al., 1988; Mead et al., 2002) and hepatic lipase (Alvarez et al., 
1996), which results in accumulation of VLDL (Jimenez et al., 1988; Wang et al., 
2016). TG are further transferred from VLDL to LDL and HDL by cholesterol ester 
transfer protein (CETP), the activity of which is increased by enhanced estrogen 
activity during pregnancy (Silliman et al., 1993; Iglesias et al., 1994). This increases  
TG also in LDL and HDL particles (Wang et al., 2016). 

Figure 1.  Major changes in lipid metabolism in pregnancy. VLDL: very low-density lipoprotein, 
LDL: low-density lipoprotein, HDL: high-density lipoprotein, TG: triglycerides, CE: 
cholesterol esters, NEFA: non-esterified fatty acids, CETP: cholesterol ester transfer 
protein, LPL: lipoprotein lipase. Modified from a review by Herrera et al. (2016). 

There is ample evidence regarding pronounced dyslipidemia in GDM compared to 
normal pregnancy. Although increased in normal pregnancy, VLDL particle 
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concentrations are even higher in patients with GDM already before the diagnosis 
(White et al., 2017; Mokkala et al., 2020c, 2020b). Interestingly, also small HDL 
particle concentrations are higher in GDM than normal pregnancies (White et al., 
2017; Mokkala et al., 2020c). Based on a meta-analysis, serum TG in all trimesters 
is higher in patients with GDM (Ryckman et al., 2015) and, according to data from 
two prospective studies, this difference is evident in most lipoprotein subclasses 
(White et al., 2017; Mokkala et al., 2020c, 2020b). GDM is not associated with 
alterations in serum total cholesterol (Ryckman et al., 2015; White et al., 2017; 
Mokkala et al., 2020b), but when divided into lipoprotein subclasses HDL 
cholesterol is lower in GDM throughout pregnancy (Ryckman et al., 2015). The 
results from more detailed lipoprotein subclass analyses have been contradictory: 
Mokkala et al. found cholesterol in large HDL to be decreased and cholesterol in 
medium and small HDL to be increased before GDM was diagnosed (Mokkala et 
al., 2020c), while White et al. reported non-significant reductions in all subclasses 
(White et al., 2017). On the other hand, White et al. reported that, in the third 
trimester, HDL in most of the subclasses is decreased, while Mokkala et al. reported 
no differences (White et al., 2017; Mokkala et al., 2020b). First-trimester LDL 
cholesterol may be higher in patients with GDM (Ryckman et al., 2015), although 
this finding was not confirmed in first trimester samples of overweight and obese 
subjects taken prior to the diagnosis of GDM (White et al., 2017; Mokkala et al., 
2020c). Pregnancy alone leads to TG enrichment of LDL and HDL particles 
(Montelongo et al., 1992) and this phenomenon is further amplified by GDM 
(Mokkala et al., 2020b). 

Table 3.  Selected omega-3 and omega-6 fatty acids important for human metabolism. 

Omega-3 fatty acids Omega-6 fatty acids 

ALA 18:3n-3 α-linolenic acid* LA 18:2n-6 linoleic acid* 

EPA 20:5n-3 eicosapentaenoic acid GLA 18:3n-6 γ-linolenic acid 

DHA 22:6n-3 docosahexaenoic acid DGLA 20:3n-6 dihomo-γ-linolenic acid 

  ARA 20:4n-6 arachidonic acid 
* Essential fatty acids 

There are two essential fatty acids, α-linolenic acid (ALA) and linoleic acid (LA) 
that need to be acquired from the diet, since they cannot be synthesized in human 
cells. There are also several omega-3 and omega-6 FA that are important for human 
metabolism (Table 3). 
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Figure 2.  GDM is related to increased insulin resistance in the liver, adipose tissue and muscle 
and impaired insulin production in the pancreas (Catalano et al., 1993, 1999; Friedman 
et al., 1999; Xiang et al., 1999). Consequently, impaired insulin mediated suppression 
of endogenous glucose production in the liver and reduced glucose uptake in the muscle 
leads to elevated plasma glucose values. In the liver insulin resistance leads to 
increased very low-density lipoprotein production and in the adipose tissue decreased 
fatty acid (FA) uptake and increased lipolysis (Alvarez et al., 1996; Herrera et al., 2016). 
Therefore circulating TG and FA are elevated in gestational diabetes (Montelongo et al., 
1992; Ryckman et al., 2015). Reduced glucose utilization due to insulin resistance and 
increased lipolysis leads to increased ketogenesis (Pappa et al., 2007; Dudzik et al., 
2014). The placental metabolism and transfer of metabolites may be altered in GDM 
(Desoye, 2018). Furthermore, these metabolites serve as fuel for the fetal growth, but 
may also promote fetal insulin secretion and consequently accelerated fetal growth 
(Freinkel, 1980; Catalano et al., 2011). BCAA: branched-chain amino acids. 

Serum total FA increase during pregnancy (Wang et al., 2016). The changes are 
more pronounced in the third trimester and are similar for SFA, monounsaturated 
FA (MUFA) and PUFA (Wang et al., 2016). Furthermore, the proportion of PUFA 
of all FA decreases and the proportions of MUFA and SFA of all FA increase in 
pregnancy (Wang et al., 2016). The ratios of omega-6 FA and LA to total FA are 
lowered in pregnancy, while the effect on the corresponding omega-3 FA and 
docosahexaenoic acid (DHA) ratios is not as clear (Wang et al., 2016). The decrease 
in the PUFA to total FA ratio and the increase in the MUFA to total FA ratio were 
augmented in GDM (White et al., 2017; Mokkala et al., 2020b). The ratio of LA and 
omega-6 FA to total FA is decreased in GDM (White et al., 2017; Mokkala et al., 
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2020b). However, several maternal SFA, MUFA and PUFA at term were slightly 
lower in GDM than normal pregnancies (Ortega-Senovilla et al., 2020). 

NEFA do not increase during pregnancy (Montelongo et al., 1992; Lindsay et 
al., 2015). But in GDM NEFA are higher already during the first trimester 
(Montelongo et al., 1992) and may promote insulin resistance (Sivan et al., 1998). 

To summarize, GDM is associated with lower HDL cholesterol and higher 
VLDL lipoprotein concentrations and TG enrichment of maternal lipoproteins. 
Serum total TG and total FA are higher in GDM and the relative amounts of SFA, 
and MUFA are increased, while PUFA are decreased. 

The metabolic alterations in GDM are summarized in Figure 2. 

2.1.6 Low-grade inflammation in gestational diabetes 
During pregnancy the maternal immune system undergoes changes that are 
considered essential for continued pregnancy (reviewed in (Trowsdale et al., 2006)). 
Several inflammatory markers, including high-sensitivity CRP (hsCRP), 
glycoprotein acetylation (GlycA), IL-6 and TNF-α, increase during pregnancy 
(Christian et al., 2014; Wang et al., 2016). Maternal obesity has also a profound 
effect on inflammatory markers (Christian et al., 2014), and dysregulation of the 
immune system has been associated with morbidities, such as GDM. 

CRP is an acute-phase protein produced by the liver and widely used as a clinical 
marker of inflammation. High CRP in early pregnancy has been claimed to predict 
GDM (Wolf et al., 2003), but this association is moderated when adjusted for BMI. 
In later studies, CRP has not been associated with a risk of GDM in overweight and 
obese women (White et al., 2017), or in women with other GDM risk factors 
(Corcoran et al., 2018). In the large HAPO cohort, CRP was associated with fasting, 
1-h and 2-h values of maternal glucose at OGTT, also after adjustment for maternal 
BMI and C-peptide (Lowe et al., 2010), but in another large cohort of overweight 
and obese women, CRP was not significantly elevated in GDM at the time of 
diagnosis (White et al., 2017). One study reported an association between maternal 
CRP and GDM after adjustment for BMI at the end of the third trimester, but not at 
the second trimester (Leipold et al., 2005). The CRP value after GDM has been 
diagnosed does predict persistence of impaired glucose tolerance post-partum 
(Durnwald et al., 2018). In a study combining data from normal pregnancies and 
pregnancies complicated by impaired glucose tolerance, GDM or maternal 
overweight, CRP was associated with maternal BMI but an independent association 
with GDM was not confirmed (Retnakaran et al., 2003). 

IL-6 is a pro-inflammatory cytokine that is secreted by macrophages and 
adipocytes; secretion of acute phase proteins, such as CRP, in the liver is promoted 
by IL-6. However, IL-6 has also important anti-inflammatory properties, as 
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demonstrated in IL-6-deficient mice (Matthews et al., 2010). During pregnancy, 
serum IL-6 increases in normal-weight subjects, but this rise is more subtle and the 
overall concentrations remain higher throughout pregnancy and postpartum in 
overweight and obese women (Stewart et al., 2007; Friis et al., 2013; Christian et 
al., 2014). IL-6 in early pregnancy does not seem to be predictive for GDM (Bao et 
al., 2015; White et al., 2017) and studies after GDM has been diagnosed have 
provided diverse results (Georgiou et al., 2008; Kuzmicki et al., 2008; Morisset et 
al., 2011; Özyer et al., 2014; Ramirez et al., 2014). Some studies have reported 
increased IL-6 levels in GDM, but they have been rather small and maternal BMI 
was higher in the women with GDM (Kuzmicki et al., 2008; Morisset et al., 2011). 
When groups similar regarding maternal BMI were compared or adjustment for BMI 
was done, there was no difference in IL-6 between women with and without GDM 
(Georgiou et al., 2008; Özyer et al., 2014; Ramirez et al., 2014; White et al., 2017). 
IL-6 polymorphism (rs1800795) is not associated with the occurrence of GDM (Feng 
et al., 2018). 

TNF-α is another proinflammatory cytokine secreted by adipose tissue and the 
placenta (Kirwan et al., 2002). During pregnancy its concentration increases and is 
higher in overweight and obese subjects than non-obese subjects (Winkler et al., 
2002; Christian et al., 2014). Two early studies reported increased TNF-α in GDM 
(Winkler et al., 2002; Kinalski et al., 2005), but this finding was not confirmed in a 
matched case-control study (Georgiou et al., 2008) nor in a study on obese women 
(Ramirez et al., 2014). In a systematic review TNF-α did not predict GDM, although 
the number of studies was small (Bao et al., 2015). 

GlycA is a more recent composite marker of inflammation, consisting mainly of 
α-1-acid glycoprotein, haptoglobin, α-1-antitrypsin, α-1-antichymotrypsin and 
transferrin (Bell et al., 1987). It is assessed by nuclear magnetic resonance 
spectroscopy (NMR). Based on a large data set of over 26,000 initially healthy 
women in the Women’s Health Study, GlycA predicted T2DM (Akinkuolie et al., 
2015) and cardiovascular events (Akinkuolie et al., 2014). GlycA is also related to 
insulin resistance (Wang et al., 2017b). During pregnancy GlycA increases (Wang 
et al., 2016), although the concentration of the individual components of GlycA 
(including α-1 acid glycoprotein, α-1-antitrypsin and haptoglobin) have their own 
concentration-versus-time trajectories in pregnancy (Larsson et al., 2008). In two 
large studies GlycA was increased in GDM after diagnosis as well as in early 
pregnancy prior to GDM diagnosis (White et al., 2017; Mokkala et al., 2020c, 
2020b). 

Matrix metalloproteinase 8 (MMP-8) is a collagenase involved in the breakdown 
of the extracellular matrix, but it is also associated with low-grade inflammation. In 
the non-pregnant population MMP-8 was increased in obese individuals and among 
smokers (Lauhio et al., 2016) and it has been associated with cardiovascular 
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morbidity (Kormi et al., 2017). In pregnancy MMP-8 in the cervix is related to 
cervical ripening (Kruit et al., 2018) and in amniotic fluid with chorioamnionitis 
(Kim et al., 2015). In one rather small study serum MMP-8 was positively associated 
with GDM (Akcalı et al., 2017). 

In conclusion, these inflammatory markers have a role in GDM and obesity-
related insulin resistance, although there seems to be considerable overlap in serum 
concentrations of various markers between the GDM and non-GDM subjects. 

2.2 Metformin 
Metformin is an antidiabetic drug of the class of biguanides and was first synthesized 
from guanidine in 1922 (Werner et al., 1922). Guanidine is derived from the Galega 
officinalis plant, also known as Goat’s rue, or French lilac used in herbal remedies 
during the Middle Ages (Bailey, 2017). 

In the 1950’s, metformin therapy was first suggested for treating diabetes 
(Bailey, 2017). Other biguanides similar to metformin (phenformin and buformin) 
were associated with a significant risk of lactic acidosis (Luft et al., 1978) and were 
withdrawn from the market. This led to drawbacks also in metformin use, although 
less so in Europe than elsewhere. 

The research on metformin continued, nevertheless, and after landmark studies 
demonstrated the efficacy (DeFronzo et al., 1995) and cardiovascular benefits of 
metformin (UK Prospective Diabetes Study (UKPDS) Group, 1998) metformin has 
become the mainstay therapy in T2DM. 

Although metformin has been used for decades and almost one hundred years 
has passed since it was first synthesized, we still do not know exactly how metformin 
works (reviewed in (Rena et al., 2017)). 

On the molecular basis, metformin inhibits Complex I of the respiratory chain in 
the mitochondria, which reduces adenosine triphosphate production (Rena et al., 
2017). Metformin affects also the central cell signaling pathways including 
adenosine monophosphate-activated protein kinase (AMPK) and mammalian target 
of rapamycin (mTOR) (Rena et al., 2017). 

Metformin is mostly absorbed in the small intestine where it accumulates in the 
mucosa resulting in concentrations magnitudes higher than in plasma (Bailey et al., 
2008). A positron emission tomography study with [11C]metformin tracer showed 
that metformin accumulates fast in the liver and a more gradual increase was seen 
into muscle (Gormsen et al., 2016). Metformin is eliminated unmetabolized via the 
kidneys. 

Metformin is thought to ameliorate hyperglycemia by affecting the liver (Rena 
et al., 2017). Metformin has been shown to reduce gluconeogenesis (Hundal et al., 
2000) and to inhibit the effects of glucagon (Miller et al., 2013) in the liver. The 
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uptake of metformin in liver is dependent on organic cation transporter 1, and the 
glucose lowering effects seem to be affected by polymorphisms in the organic cation 
transporter 1 in some studies (Chen et al., 2009). 

Metformin also improves the insulin sensitivity of muscle tissue (Borst et al., 
2001), although the intestine has been considered to be a more important target of 
metformin action (Bailey et al., 2008). Putative evidence speaks against the liver as 
the main target organ of metformin, which has raised some controversy. Metformin 
increases the concentrations of intestinal hormone glucagon-like peptide 1 
(Mannucci et al., 2001) and using a delayed-release formulation of metformin leads 
only to minimal plasma concentrations without curtailing the effect on fasting 
plasma glucose or HbA1c (Buse et al., 2016). Also in contrast to previous studies, a 
large meta-analysis found that metformin transporter polymorphisms do not 
significantly affect metformin action (Dujic et al., 2017). In a recent randomized 
trial, metformin increased the rate of glucose disposal and endogenous glucose 
production similarly in subjects with newly diagnosed T2DM and non-diabetic 
controls (Gormsen et al., 2019). This effect might be due to non-oxidative glucose 
disposal following increased glucose uptake in the intestine. In the light of recent 
findings also gut microbiota may be involved in metformin action (reviewed in 
(Vallianou et al., 2019)). 

Clearly, there is controversy regarding the effects of metformin and to make 
matters even more complicated, the effects may differ depending on study subjects 
and duration of metformin treatment. 

2.2.1 Metformin treatment in pregnancy 
At first, metformin treatment during pregnancy was quite minimal and only a few 
studies were made, mostly in South Africa (Coetzee et al., 1979, 1985). Still at the 
beginning of the 21st century conducting a controlled trial involving metformin in 
GDM was stated to be brave and even foolhardy (Dornan et al., 2001). Nevertheless, 
after encouraging results from studies with patients with the polycystic ovary 
syndrome (PCOS) and T2DM were reported (Simmons et al., 2004), a substantial 
controlled trial was made. A large multicenter randomized trial, the MiG trial, 
reported comparable perinatal outcomes in metformin and insulin-treated GDM 
(Rowan et al., 2008). Similar results have since been obtained in other trials (Ijäs et 
al., 2011; Spaulonci et al., 2013; Tertti et al., 2013; Zawiejska et al., 2016). 

Meta-analyses show that metformin treatment compared to insulin is not 
associated with short-term adverse outcomes and may even be beneficial in terms of 
lesser GWG and a lower risk of neonatal hypoglycemia, LGA babies and 
hypertensive disorders (Butalia et al., 2017; Farrar et al., 2017b). Although these 
results are reassuring, considerable differences between individual trials make it 



Review of the Literature 

 31 

difficult to draw firm conclusions. Respectively, besides different ethnic 
backgrounds of enrolled patients in the different trials, diagnostic and screening 
criteria, and treatment protocols of GDM have been heterogeneous. To resolve these 
uncertainties an individual patient data meta-analysis is planned (Mousa et al., 
2020). 

The use of metformin has also been studied to prevent excessive fetal growth in 
obese women without GDM in the EMPOWaR and MOP trials (Chiswick et al., 
2015; Syngelaki et al., 2016). Neither of the two trials demonstrated an effect on 
fetal growth, but GWG and the incidence of preeclampsia were lower in the 
metformin group compared to the group on placebo in the MOP trial (Syngelaki et 
al., 2016). Why this effect was not seen in the EMPOWaR trial might be explained 
by a higher BMI threshold for trial entry (≥ 35 vs. 30 kg/m2) and by better adherence 
to treatment in the MOP trial. 

Metformin has been studied in pregnancies complicated by T2DM, T1DM and 
PCOS. In patients with PCOS metformin may be used to treat infertility (Heard et 
al., 2002) and retrospective data implies that continuation of metformin in these 
pregnancies after the first trimester may have some benefits (De Leo et al., 2011). 
Metformin has, however, been deemed ineffective in preventing GDM in high risk 
subjects (Doi et al., 2020). As in GDM, metformin may be used in T2DM (Butalia 
et al., 2017; Feig et al., 2020) and continuation of ongoing metformin treatment after 
conception in T2DM is endorsed by the Finnish diabetes association (Diabetesliitto) 
in their recommendation ”Diabeetikon hoito raskauden aikana” (Treatment of a 
diabetic during pregnancy) (Vääräsmäki et al., 2012). Metformin is also studied in 
pregnancies with T1DM to examine if metformin ameliorates insulin resistance, but 
thus far data is very limited (Ping et al., 2019). 

Metformin crosses the placenta, and the drug concentrations are similar in the 
maternal and fetal circulation (Vanky et al., 2005; Tertti et al., 2010). Based on a 
large database and prospective data, metformin exposure during the first trimester 
does not seem to cause spontaneous abortions, or birth defects (Given et al., 2018; 
Scherneck et al., 2018). 

In follow-up studies, metformin exposure has been related to increased offspring 
weight and BMI (van Weelden et al., 2018; Hanem et al., 2019), which has caused 
some concerns over the safety of metformin during pregnancy. Although the results 
between different follow-up studies have been similar, loss of offspring during 
follow-up may have introduced selection bias. Contrary to these findings, there were 
no differences in offspring weight at 4 years between metformin and insulin-treated 
pregnancies in a population cohort study from New Zealand (Landi et al., 2019). 
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2.2.2 Effects of metformin on the serum metabolome 
Early studies indicated that metformin may increase blood lactate, pyruvate, alanine 
and 3-hydroxybutyrate (Nattrass et al., 1977, 1979), i.e., precursors of 
gluconeogenesis. The results were, however, inconsistent and the studies small 
(Nattrass et al., 1977, 1979; Campbell et al., 1987). 

More recent studies have since shown that metformin treatment affects serum 
amino acids. Decreased concentrations of phenylalanine, tyrosine and valine (Huo 
et al., 2009; Irving et al., 2015; Preiss et al., 2016; Rotroff et al., 2016; Safai et al., 
2018) and increased alanine, isoleucine and leucine (Preiss et al., 2016; Eppinga et 
al., 2017; Safai et al., 2018) have been reported. Walford et al. demonstrated that the 
effect of metformin on circulating amino acid concentrations is modified by the 
degree of insulin resistance of the study subjects (Walford et al., 2013), which may 
explain some of the heterogeneity in the results. 

Metformin decreases LDL cholesterol (Wulffelé et al., 2004) and this effect may 
be caused by a decrease in acyl-alkyl phosphatidylcholines (36:4, 38:5 and 38:6) (Xu 
et al., 2015; Breier et al., 2017). Also, a more detailed lipid profile analysis showed 
that metformin treatment is associated with a decrease in the concentrations of 
several lysophosphatidylcholines (Cai et al., 2009; Huo et al., 2009) and 
sphingomyelins (Zhang et al., 2014) and an increase in 
lysophosphatidylethanolamines (Safai et al., 2018) and phosphatidylcholines (Zhang 
et al., 2014). 

The effects of metformin treatment on metabolism during pregnancy has been 
studied far less and metabolomic analyses have not been previously published. In the 
EMPOWaR study, obese pregnant women without diabetes were randomized to 
receive metformin or placebo at 12–16 gw. There were no differences in maternal 
NEFA, TG, HDL cholesterol and LDL cholesterol at 36 gw or in BW between the 
groups (Chiswick et al., 2015). Additionally, maternal lipids have been evaluated in 
at least two randomized trials where metformin and insulin treatments in GDM are 
compared. In the MiG trial, maternal total, HDL and LDL cholesterols were not 
different between the treatment groups, but TG was considerably more elevated 
among the patients on metformin than on insulin (Barrett et al., 2013a). Another 
analysis of the MiG population showed that maternal TG concentrations at 36 gw 
were related to HbA1c in the insulin group and to maternal ethnicity in the metformin 
group (Barrett et al., 2013b). 

In a smaller randomized trial from Poland, maternal TG was marginally higher 
in the metformin group than the insulin group, but this difference, as the differences 
in total cholesterol and HDL cholesterol, were not statistically significant between 
the groups (Zawiejska et al., 2016). 

Treatment of GDM with metformin does not seem to affect TG, HDL cholesterol 
or LDL cholesterol in cord blood (Barrett et al., 2013a). 
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To summarize, metformin causes alterations in serum gluconeogenic substrates, 
amino acids, including alanine, isoleucine, leucine, phenylalanine, tyrosine and 
valine, LDL cholesterol and certain phospholipids. The data regarding effects of 
metformin on metabolome in pregnancy is currently mostly lacking. 

2.2.3 Anti-inflammatory effects of metformin 
Besides lowering blood glucose and altering amino acid and lipid metabolism, 
metformin seems also to suppress low-grade inflammation (Saisho, 2015). 
Metformin reduces the synthesis of proinflammatory cytokines, such as IL-6 and 
TNF-α, via NFκB inhibition (Saisho, 2015). These effects may be mediated both by 
AMPK-dependent and by AMPK-independent mechanisms (Saisho, 2015). GDM, 
as several other pathological conditions, is associated with low-grade inflammation. 
In clinical studies, metformin has been variably effective in ameliorating this 
inflammation. 

In the Diabetes Prevention Program study, long-term treatment with metformin 
in patients at high risk of T2DM decreased CRP more than placebo (Goldberg et al., 
2014). Similarly, metformin treatment in PCOS was associated with a decrease in 
CRP (Wang et al., 2017a). In GDM, however, metformin did not significantly affect 
maternal CRP as demonstrated in the MiG trial (Barrett et al., 2013a). 

Metformin suppresses IL-6 in vitro (Desai et al., 2013; Han et al., 2015), but not 
in vivo (in patients with PCOS) (Wang et al., 2017a). In addition, metformin 
treatment reduced GlycA in a small group of patients with T2DM, but this was not 
the case in a larger study where the patients did not have diabetes (Eppinga et al., 
2017). 

2.3 Metabolomics 

2.3.1 Concept of metabolomics 
Metabolomics refers to the study of metabolites. It comprises identification and 
quantification of small molecules (usually < 1.5 kDa) in a tissue, biological fluid, 
organ or a specific cell (reviewed in (Bain et al., 2009) and (Lowe et al., 2014)). 

The metabolome, a metabolite profile of a given sample, can be either targeted 
or untargeted, depending on whether the intention is to analyze concentrations of a 
defined set of metabolites or the differences in an unknown number of analytes (Bain 
et al., 2009). Either way, metabolomic analysis yields significant amounts of data to 
be analyzed. The benefits of the metabolomic approach are the possibility to discover 
novel biomarkers and to study changes in the metabolomic regulatory network, i.e., 
metabolic pathways (Bain et al., 2009; Lowe et al., 2014). 
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2.3.2 Common methods in metabolomic studies 
The analysis techniques in metabolomics include NMR and mass spectrometry 
(MS), both of which have their own benefits (reviewed in (Zhang et al., 2012) and 
(Dunn et al., 2011). MS is often coupled with separation techniques, e.g., gas-
chromatography and liquid chromatography (Zhang et al., 2012). 

NMR is a high-throughput quantitative method that can be largely automated 
and has good reproducibility (Soininen et al., 2009). In addition, NMR can provide 
information regarding molecular structures (Zhang et al., 2012). A drawback of 
NMR is its inability to detect very small quantities of a given metabolite. 

MS, on the other hand, is more sensitive for low-concentration metabolites, but 
the analytical procedure is more complicated and prone to sources of error, and hence 
quality assurance throughout the analysis is important (Dunn et al., 2011). MS 
requires control samples for qualitative analyses, which restricts the number of 
metabolites to be analyzed (Dunn et al., 2011). 

Metabolomic analysis yields significant amounts of data and with multiple single 
comparisons the risk of false positives, i.e., type I error increases. The goal is to 
identify the relevant information amid numerous associations. To overcome these 
hurdles, multivariate analysis methods, such as principal component analysis (PCA), 
partial least squares (PLS) regression or random forest analysis, may be applied 
(Dunn et al., 2011). Another strategy is to adjust the p-values for multiple testing 
using, for example, the Bonferroni or Benjamini & Hochberg method. Importantly, 
the results should be validated, preferably in a separate dataset (Dunn et al., 2011). 

2.4 Maternal metabolome and fetal growth 

2.4.1 Glucose metabolism 
The hyperglycemia-hyperinsulinemia hypothesis, also known as the Pedersen 
hypothesis, is the most popular theory to explain the well-proven association 
between maternal hyperglycemia and BW (Catalano et al., 2011). According to the 
hypothesis maternal hyperglycemia leads to fetal hyperglycemia via increased 
placental transfer of glucose. This causes increased insulin secretion by the fetal 
pancreas and the resulting fetal hyperinsulinemia, together with a high glucose level, 
promotes excess fetal growth. Because maternal hyperglycemia stimulates fetal 
hyperinsulinemia and hence lower fetal serum glucose and presumably greater 
glucose concentration gradient over the placenta, the fetus “steals” glucose from the 
mother (Figure 3) (Desoye et al., 2016). Therefore, maternal glucose early in 
pregnancy has relatively greater impact on fetal growth compared to later maternal 
hyperglycemia. In the HAPO study, higher maternal glucose was associated with an 
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elevated risk of LGA and higher cord serum C-peptide with similar associations in 
OGTT glucose values at fasting, 1 h and 2 h (HAPO Study Cooperative Research 
Group et al., 2008). Accordingly, treatment of maternal hyperglycemia does reduce 
the incidence of macrosomia (Hartling et al., 2013), but despite good glycemic 
control the rate of macrosomia remains higher in the diabetic pregnancies (Evers et 
al., 2002). 

 
Figure 3.  Elevated maternal glucose and fetal hyperinsulinemia both steepen the concentration 

gradient across the placenta thus facilitating increased glucose transfer. Modified from 
Desoye et al. (2016). 

Obesity explains a proportion of LGA neonates in well-controlled GDM (Langer et 
al., 2005b). Some of these differences between obese and normal weight subjects 
may, however, be related to glucose control. More novel glucose monitoring 
techniques, such as continuous glucose monitoring (CGM), enable more accurate 
detection of maternal hyperglycemia. In women without GDM, CGM showed that 
almost all glucose measures, except fasting glucose, are higher in obese subjects 
compared to normal weight subjects in late pregnancy (Harmon et al., 2011). 

To facilitate a meaningful interpretation of the CGM data, Law et al. applied 
functional data analysis to the glucose monitoring values and compared the 
differences in temporal glucose variation between normal pregnancies and 
pregnancies leading to delivery of a LGA infant (Law et al., 2015). They found that 
in pregestational diabetes the glycemic features associated with LGA were different 
in each trimester. Using a similar approach in the third trimester in GDM they found 
that nocturnal hyperglycemia is associated with LGA (Law et al., 2019). Use of 
CGM improves perinatal outcomes, reduces the incidence of LGA and leads to 
overall lower BW in GDM (Yu et al., 2014). 



Mikael Huhtala 

 36 

Increasing insulin resistance in pregnancy decreases glucose utilization, 
increases lipolysis and leads to increased ketone concentrations. 3-hydroxybutyrate 
is the most abundant ketone body in the human blood circulation and during 
pregnancy it is further elevated by GDM (Montelongo et al., 1992) and high maternal 
BMI (Hellmuth et al., 2017a). 3-hyxroybutyrate crosses the placenta and has been 
suggested to promote fetal growth, but there is insufficient evidence to back-up this 
claim. Increased 3-hydroxybutyrate has, nevertheless, been positively associated 
with BW (Kadakia et al., 2019a). In the large HAPO cohort, 3-hydroxybutyrate 
measured at 1 h after an OGTT glucose load, was positively related to BW and the 
sum of skinfolds of the neonate. These associations were attenuated when adjusted 
for maternal BMI or OGTT 1 h glucose (Kadakia et al., 2019a). 

In summary, maternal glucose, particularly in early pregnancy, is an important 
driver of fetal growth, and with novel methods such as CGM milder forms of 
hyperglycemia may be detected more accurately. 

2.4.2 Amino acids 
Amino acids are transferred across the placenta and, as glucose, are thought to 
promote fetal growth. In a study from the 1980’s on a mixed population of healthy 
controls and subjects with T1DM plasma serine, threonine, lysine, proline, ornithine, 
arginine and total amino acids in late pregnancy correlated positively with BW 
(Kalkhoff et al., 1988). Also, arginine was shown in vitro to stimulate fetal insulin 
secretion (Milner et al., 1972). 

More recently, two longitudinal cohorts of non-diabetic women showed that 
amino acid concentrations in the maternal circulation were not related to BW 
(Hellmuth et al., 2017a, 2019). In the HAPO cohort, again, maternal serum amino 
acids in mid-pregnancy were predictive of BW (Kadakia et al., 2019a). Thus, 
alanine, threonine, leucine/isoleucine, methionine, ornithine and proline measured 1 
h after a glucose load in OGTT, but not at fasting, were positively related to BW 
(Kadakia et al., 2019a). Proline was also related to the sum of skinfolds of the 
neonate. The association between leucine/isoleucine and BW was attenuated when 
adjusted for maternal BMI or OGTT at 1 h glucose (Kadakia et al., 2019a). 

Short-chain acylcarnitine metabolites of BCAA degradation are positively 
related to BW and cord blood C-peptide (Kadakia et al., 2019a), although it is not 
known if these metabolites promote fetal growth directly or merely signal increased 
maternal insulin resistance. 

In summary, increased concentration of maternal serum amino acids is 
associated with maternal insulin resistance, but their ability to directly stimulate fetal 
growth is uncertain. 
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2.4.3 Lipids 
The importance of maternal lipids as fuel for fetal growth has been acknowledged 
for long (Freinkel, 1980), although the exact pathophysiology explaining the role of 
maternal lipids in excessive fetal growth is still not well understood (Herrera et al., 
2018). 

Maternal NEFA (Sheath et al., 1972) and TG are positively related to BW 
(Knopp et al., 1992; Di Cianni et al., 2005), but these associations may differ by 
patient characteristics. Schaefer-Graf et al. demonstrated a positive association 
between maternal late pregnancy NEFA and TG and neonate size in patients with 
GDM, but not in healthy controls (Schaefer-Graf et al., 2008, 2011). Similarly, TG 
in late pregnancy was positively related to BW among overweight and obese 
subjects, but not among normal weight subjects (Misra et al., 2011; Geraghty et al., 
2016). In the HAPO cohort, TG was associated with BW and the sum of neonate 
skinfolds (Kadakia et al., 2019a). The association with BW was attenuated after 
adjustments for maternal BMI or glucose (Kadakia et al., 2019a), as higher maternal 
BMI is associated with elevated TG (Sandler et al., 2017). A Mendelian 
randomization analysis did not support a causal relationship between maternal TG 
and the BW of the neonates (Tyrrell et al., 2016). 

Two large cohorts show that maternal omega-3 and omega-6 FA in early and 
mid-pregnancy are related to fetal growth: the total phospholipid omega-3 to omega-
6 FA ratio associated positively with fetal growth velocity and BW (Grootendorst-
van Mil et al., 2018), while maternal total omega-3 FA and dihomo-γ-linolenic acid 
(DGLA) were positively and arachidonic acid (ARA) inversely related to BW (Van 
Eijsden et al., 2008; Grootendorst-van Mil et al., 2018). 

The association between the maternal lipidome and BW or neonate adiposity has 
been evaluated in three longitudinal studies (Hellmuth et al., 2017b, 2019; LaBarre 
et al., 2020). The number of lipid metabolites associated with BW increased as 
pregnancy proceeded in all studies. In the first trimester, NEFA were associated 
positively with BW and in late pregnancy phosphatidylcholines were inversely 
related to BW and neonatal adiposity (Hellmuth et al., 2017b, 2019). 
Phosphatidylcholines, particularly those with an ether-bond or ARA, were 
associated with decreased neonatal adiposity (Hellmuth et al., 2019). First-trimester 
NEFA were related to the phosphatidylcholine species that had a significant 
association with BW – this suggests that preconception dietary intake of fat by the 
mother may contribute significantly to fetal growth (Hellmuth et al., 2019). 

Maternal plasma HDL cholesterol correlated inversely with the BW in insulin-
treated GDM patients (Barrett et al., 2013a) and in overweight and obese subjects 
(Misra et al., 2011). The detailed effects of maternal lipoprotein subfractions on fetal 
weight are poorly known. 
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In short, maternal serum lipids, TG and FA in particular, are related to fetal 
growth but this association seems to be affected by maternal obesity, GDM and 
gestational age at sampling. 

2.4.4 Insulin-like growth factor-binding protein 1 
Insulin-like growth factor-binding protein 1 (IGFBP-1) is one of the six binding 
proteins regulating the bioavailability of insulin-like growth factor 1 (IGF-1) – a 
potent growth promoting hormone  (Baxter, 1995) and it is expressed in liver and 
placenta (The Human Protein Atlas; Uhlén et al., 2015). While most of the 
circulating IGF-1 binds to IGFBP-3, the concentration of IGFBP-1 changes in 
response to glucose and insulin (Baxter, 1995). Thus, IGFBP-1 is thought to 
participate in the regulation of glucose metabolism. In the non-pregnant population 
a low concentration of IGFBP-1 is related to the metabolic syndrome (Heald et al., 
2003), risk of T2DM (Lewitt et al., 2010), hepatic fat content and hepatic insulin 
resistance (Kotronen et al., 2008). 

Phosphorylation of IGFBP-1 increases its affinity to IGF-1 and the highly 
phosphorylated IGFBP-1 isoform (high-pIGFBP-1) prevails normally. During 
pregnancy, however, also less phosphorylated IGFBP-1 (low-pIGFBP-1) is detected 
(Westwood et al., 1994). The fasting plasma IGFBP-1 concentrations are elevated 
in early pregnancy and remain elevated until postpartum (Clapp et al., 2004; Larsson 
et al., 2013). 

Based on studies in pregnancy, IGFBP-1 is inversely related to the subject’s body 
fat percentage, body weight (Olausson et al., 2010) and insulin resistance (Ramirez 
et al., 2014) and is lower in subjects with incipient GDM (Qiu et al., 2005) and GDM 
(Ramirez et al., 2014; Lappas, 2015). IGFBP-1 has also been inversely related to 
BW in some (Jansson et al., 2008; Åsvold et al., 2011; Lappas, 2015), but not in all 
studies (Clapp et al., 2004). 

2.5 Maternal metabolome and adverse pregnancy 
outcomes 

There is evidence to support a causal relationship between certain features in the 
maternal metabolome and fetal growth (Freinkel, 1980; Catalano et al., 2011) and, 
as reviewed above, maternal GDM is associated with distinct alterations in the 
metabolome, which are likely to be due to underlying obesity and insulin resistance. 
Besides fetal growth, maternal metabolomics can be applied to study the origins of 
and predict adverse outcomes, such as fetal growth restriction (FGR) and 
preeclampsia (Fanos et al., 2013; Dessì et al., 2015; Leite et al., 2019). The 
associations between the maternal metabolome and fetal anomalies (Diaz et al., 
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2011) and preterm birth (Carter et al., 2019) have also been studied. The 
methodology between different studies varies considerably, thus precluding the 
identification of universally adverse metabolic features. 

2.5.1 Fetal growth restriction 
FGR is a disorder of fetal growth and notwithstanding the heterogenous etiologies 
(American College of Obstetricians and Gynecologists, 2013), metabolic traits 
associated with FGR are related to lipid and energy metabolism (Leite et al., 2019), 
similarly as the associations between maternal obesity, GDM and fetal growth. 
However, the heterogeneity of study populations and study methods precluded the 
possibility to conduct a meta-analysis in a recent systematic review (Leite et al., 
2019). In a large longitudinal study, four metabolites (1-(1-enyl-stearoyl)-2-oleoyl-
GPC (P-18:0/18:1); 1,5-anhydroglucitol; 5α-androstan-3α,17α-diol disulfate and 
N1,N12-diacetylspermine) improved the detection rate of FGR (Sovio et al., 2020a). 
The authors suggested that these unconventional biomarkers could reflect placental 
growth or trophoblast function. 

2.5.2 Preeclampsia 
In preeclampsia, increased concentrations of amino acids (arginine, methionine, 
alanine, phenylalanine and glutamate) have been reported in maternal serum or 
plasma (Benny et al., 2020). Alterations of lipid metabolism have also been reported 
in small studies involving elevated lysophosphatidylcholines and phytosphingosine 
and decreased concentrations of the D-vitamin metabolite 1,25-dihydroxyvitamin 
D3-26,23-lactone and of omega-3 FA derived eicosanoids (Liu et al., 2019; Tan et 
al., 2020). Sander et al. used less common metabolites detected by untargeted 
metabolomics approach and demonstrated a good separation of third trimester 
plasma samples between patients with preeclampsia and controls (Sander et al., 
2019). 

Most of the studies were rather small and a separate validation dataset was not 
used. In a large study, Kenny et al. found that in early pregnancy maternal plasma 
the concentrations of several carnitines, FA and phospholipids were elevated in the 
preeclampsia group and, using a separate validation cohort, they found that a 
combination of 14 metabolites was able to predict preeclampsia (area under receiver 
operator characteristic curve = 0.92) (Kenny et al., 2010). In another study, a 
validation cohort also resulted in the observation that mid-pregnancy phospholipids 
predict preeclampsia (Lee et al., 2020). Based on a large longitudinal dataset and 
external validation, 4-hydroxyglutamate improved the prediction of preeclampsia at 
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term over the more commonly used ratio between soluble FMS-like tyrosine kinase 
1 and placental growth factor (Sovio et al., 2020b). 

To conclude, preeclampsia is associated with changes in the maternal 
metabolome, but the heterogeneity of preeclampsia (Benton et al., 2018) confounds 
the identification of robust biomarkers. However, given the potency of low-dose 
aspirin to prevent early preeclampsia and the novel screening algorithms for 
identification of patients sensitive to this treatment (Rolnik et al., 2020), 
incorporating metabolomics data could further improve the efficacy and 
individualization of the treatment of preeclampsia. 

2.5.3 Preterm birth 
In a recent systematic review, preterm birth was inversely associated with 
myoinositol, creatinine, histidine and 5-oxoproline (Carter et al., 2019). However, 
the studies were heterogeneous and amniotic fluid was used for sampling more often 
than maternal blood. In a study focusing on metabolomic markers of preterm birth 
in women with GDM or T2DM, several metabolites were significantly associated 
with gestational age at delivery after adjustment for false discovery rate (FDR) 
(Diboun et al., 2020). TG and diacylglycerols containing oleic acid and LA were the 
metabolites that were most strongly inversely related to the length of gestation at 
delivery. In this analysis the authors did not find significant associations between 
maternal metabolites and other perinatal outcomes, including preeclampsia, 
intrauterine fetal demise, and macrosomia (Diboun et al., 2020). 

2.6 Cord blood metabolome 

2.6.1 Placental function and transfer of nutrients 
The fully developed placenta consists of a chorionic plate on the fetal and a basal 
plate on the maternal side. In between are the placental villi that contain the fetal 
capillary circulation. The placental villi are surrounded by an intervillous space, 
which is filled with maternal blood supplied by maternal spiral arteries. The 
exchange between respiratory gases and nutrients occurs in these placental villi and, 
to facilitate effective transport, there are only two layers of cells dividing maternal 
and fetal circulations: fetal capillary endothelial cells and syncytiotrophoplasts. On 
the fetal side, two umbilical arteries bring blood to the placenta and the oxygenated 
blood leaves the placenta through a single umbilical vein to the fetus. 

While respiratory gases O2 and CO2 are transported via diffusion, there are 
several transportation mechanisms for nutrients and macromolecules in the placental 
villi (Burton et al., 2016). Sampling of umbilical blood is achieved by collecting 
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either venous, arterial, or mixed blood. Arterial blood is representative of fetal 
metabolism, while placental transportation of nutrients is reflected in venous blood. 
In a mixed blood sample, the proportions of arterial and venous blood may vary to 
some degree, but the differences in amino acid, fatty acid and cholesterol 
concentrations between umbilical arterial and venous samples are usually minimal 
(Cetin et al., 2005; Ortega-Senovilla et al., 2009; Horne et al., 2019). 

GLUT1 is the main glucose transporter in the human placenta (Jansson et al., 
1993). Its expression in the syncytiotrophoplast basal membrane is increased in pre-
gestational diabetes (Gaither et al., 1999; Jansson et al., 1999), but probably not in 
GDM (Jansson et al., 2001; Stanirowski et al., 2017). Increased expression of 
GLUT4 and GLUT9 transporters has been established in patients with GDM and 
pre-gestational diabetes alike (Stanirowski et al., 2017), but the significance of 
glucose transporters other than GLUT1 is unclear. 

Amino acids are transported across the placenta by a variety of transporter 
proteins (Jansson, 2001). Systems A and L are the most studied in the placenta, 
although it is not clear whether system A or L is altered in GDM or pre-gestational 
diabetes (Kuruvilla et al., 1994; Jansson et al., 2002; Nandakumaran et al., 2004). 
Nevertheless, amino acid transport seems to be altered in GDM (Cetin et al., 2005) 
and modulated by insulin and leptin (Jansson et al., 2003; Ericsson et al., 2005) and 
inflammatory cytokines IL-6 and TNF-α (Jones et al., 2009). 

Most of the lipids in the maternal circulation are bound to lipoprotein particles 
and, in order to cross the placenta, placental trophoblasts need first to bind the 
lipoproteins. Thereafter TG and phospholipids are hydrolyzed by placental lipases 
to release NEFA. Correspondingly, receptors for HDL, LDL (Cummings et al., 
1982) and VLDL (Wittmaack et al., 1995) are expressed in the placenta. Several 
lipases, including endothelial lipase, LPL, hormone sensitive lipase and adipose 
triglyceride lipase, have been detected in the placenta (Gauster et al., 2007; Barrett 
et al., 2014). In the term placenta, LPL activity is increased in pregnancies 
complicated by GDM and maternal obesity (Dubé et al., 2012, 2013). Endothelial 
lipase expression may be increased in GDM (Radaelli et al., 2009; Gauster et al., 
2011), although not according to all studies (Barrett et al., 2014; Ruiz-Palacios et 
al., 2017). Inside the trophoblasts, NEFA are carried by fatty acid binding proteins, 
the regulation of which is also altered in GDM (Magnusson et al., 2004; Radaelli et 
al., 2009). 

2.6.2 Effects of gestational diabetes on the cord blood 
metabolome 

A few trials have compared amino acids in the cord blood in GDM and normal 
pregnancies (Cetin et al., 2005; Dani et al., 2014; Shokry et al., 2019b) and the 
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concentrations of alanine, arginine, asparagine, glutamic acid, histidine, lysine, 
methionine, ornithine, phenylalanine and valine were higher in the infants of mothers 
with GDM (Cetin et al., 2005; Dani et al., 2014). Cetin et al. found also that 
isoleucine and leucine were higher in the cord plasma of the GDM group (Cetin et 
al., 2005). In accordance, HAPO data showed that cord plasma leucine/isoleucine is 
inversely related to maternal insulin sensitivity (Lowe et al., 2017). However, in a 
recent study only isoleucine and leucine in cord plasma were lower in the GDM 
group (Shokry et al., 2019b), although these associations were adjusted for 
confounding factors such as GWG (Shokry et al., 2019b), unlike previous 
comparisons (Cetin et al., 2005; Dani et al., 2014). Still, it seems unlikely that this 
could have such a drastic effect on the results. 

In umbilical venous plasma, the percentages of individual FA out of total FA did 
not differ between GDM and non-GDM, but ARA, total omega-6 PUFA, DHA, total 
omega-3 PUFA and total PUFA were lower in the umbilical arterial plasma in the 
GDM group (Ortega-Senovilla et al., 2009). In a larger cohort, umbilical cord arterial 
serum FA concentrations were lower in the GDM group, with the exception of ALA 
which was higher in the GDM than in the non-GDM group (Ortega-Senovilla et al., 
2020). The feto-maternal ratio of γ-linolenic acid (GLA) and ALA were higher and 
DGLA, ARA and DHA lower in the GDM group (Ortega-Senovilla et al., 2020). 
Whether these differences result from changes in placental transfer and metabolism 
or from fetal handling of FA is speculative. 

Cord blood total NEFA are increased in maternal GDM, but TG, total 
cholesterol, HDL and LDL cholesterol are not affected (Schaefer-Graf et al., 2011; 
Houde et al., 2014). 

Using NMR analysis, Dani et al. found umbilical cord arterial serum glucose to 
be lower and pyruvate, α-ketoisovaleric acid, hypoxanthine and overall lipid and 
lipoprotein content to be higher in the neonates of the GDM group (Dani et al., 2014). 
In another prospective cohort study, NEFA C26:1, acyl-alkyl-phosphatidylcholine 
C38:0 and carnitine were lower in cord venous plasma in the GDM compared to non-
GDM group (Shokry et al., 2019b). The authors suggested that FA oxidation was 
reduced in the neonates exposed to GDM. However, in a large HAPO cohort, the  
levels of acylcarnitines in the cord plasma were inversely associated with maternal 
insulin sensitivity and positively associated with maternal OGTT 1 h glucose (Lowe 
et al., 2017). These findings suggest increased rather than decreased BCAA and FA 
metabolism in neonates exposed to GDM. 

2.6.3 Associations with birth weight 
Schaefer-Graf et al. demonstrated that cord blood TG and NEFA are inversely 
related to BW in GDM, but in healthy controls the relation is positive (Schaefer-Graf 
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et al., 2008, 2011). An inverse association between cord blood TG and BW has also 
been found in studies of obese subjects (Patel et al., 2018) and women who have 
given birth to a macrosomic infant (BW ≥ 4000g) (Geraghty et al., 2016). Also 
analyses of the HAPO cohort found an inverse association between cord blood TG, 
but not NEFA (Kadakia et al., 2019b). When using IADPSG criteria retrospectively, 
most of the included patients (1277 of 1600) in this subset of the HAPO cohort did 
not have GDM and the study was deemed underpowered to study these associations 
in the GDM group alone (Kadakia et al., 2019b). The inverse association between 
TG and BW has been thought to be due to increased adipose tissue uptake of TG in 
large fetuses. Lower FA concentrations in the umbilical cord arterial serum in GDM 
compared to controls also fits with the hypothesis of enhanced fetal uptake of lipids 
(Ortega-Senovilla et al., 2020). Cord blood TG is higher in SGA neonates compared 
to neonates with BW appropriate for gestational age (Wang et al., 2007). 

Of individual FA, omega-3 FA, DHA, omega-6 FA and total PUFA have been 
inversely and MUFA positively related to BW (Rump et al., 2001; Hellmuth et al., 
2017c; Robinson et al., 2018). Cord plasma ARA in TG and in cholesterol esters has 
been positively related to BW (Elias et al., 2001), while the association between BW 
and cord plasma phospholipid ARA was either negative (Rump et al., 2001) or 
absent (Elias et al., 2001). 

In three large metabolomic analyses, cord blood lysophosphatidylcholines have 
been associated positively and NEFA inversely with BW (Hellmuth et al., 2017c; 
Lu et al., 2018; Patel et al., 2018; Robinson et al., 2018). In a detailed analysis of 
cord vein lipidome lysophosphatidylcholines and lysophosphatidylethanolamines 
were positively related to BW, independent of FA chain length or the number of 
double bonds (LaBarre et al., 2020). The mechanism for the association between 
lysophosphatidylcholines and BW remains unknown. In a cohort focusing on these 
associations separately in small groups of normal weight, overweight/obese and 
GDM mothers, lysophosphatidylcholines were positively related to BW in normal 
weight mothers and phosphatidylcholines were associated positively with BW in 
normal weight and inversely in overweight/obese and GDM mothers (Shokry et al., 
2019a). 

An early study comparing SGA neonates and normally grown neonates at term 
reported decreased amino acid concentrations in umbilical venous and arterial 
plasma in the SGA group (Cetin et al., 1988). These findings were not confirmed in 
a more recent study on SGA neonates (Miranda et al., 2018). 

In a prospective study of obese pregnant women, PCA projection of cord blood 
amino acids and related metabolites was not associated with BW (Patel et al., 2018). 
Similarly, amino acids in two large cohorts were not associated with BW after 
neither Bonferroni nor FDR adjustment (Hellmuth et al., 2017c; Lu et al., 2018). 
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Prior to these statistical corrections histidine was positively and alanine inversely 
related to BW (Hellmuth et al., 2017c). 

In the HAPO cohort several amino acids, including arginine, glutamic acid, 
glycine, histidine, leucine/isoleucine, ornithine, proline, serine and threonine in cord 
blood were positively related to BW (Kadakia et al., 2019b). These associations 
were, however, not significant when subjects retrospectively diagnosed with GDM 
were excluded. In a smaller cohort of normal uncomplicated pregnancies, cord blood 
amino acids were not related to cord blood leptin nor C-peptide nor neonatal 
adiposity (Kadakia et al., 2018). In both studies medium and long-chain 
acylcarnitines were inversely related to the concentration of C-peptide in the 
umbilical cord (Kadakia et al., 2018, 2019b). 

Cord blood acylcarnitines, physiologically involved in FA 𝛽-oxidation and 
BCAA metabolism, have been positively associated with BW in some (Kadakia et 
al., 2018, 2019b; Lu et al., 2018) but not all studies (Patel et al., 2018; Robinson et 
al., 2018; Shokry et al., 2019a). Perng et al. used an innovative approach to study 
the association between BW and BCAA metabolism (Perng et al., 2017). They 
created a projection of the relevant metabolites, based on a PCA model of their 
previous study, in which BCAA metabolism was associated with childhood obesity. 
This PCA projection of BCAA metabolites associated with childhood obesity was 
associated with BW adjusted for gestational age (Perng et al., 2017). 

Cord blood 3-hydroxybutyrate and its metabolite, acylcarnitine C4-OH, were 
related to BW (Kadakia et al., 2019b). Although fetal ketogenesis is minimal, the 
ketones in the fetal blood circulation could be used for fetal lipogenesis (Herrera et 
al., 2006). 

Also the intermediates of the tricarboxylic acid (TCA) cycle (Perng et al., 2017), 
of purine/pyrimidine metabolism (Perng et al., 2017; Kadakia et al., 2019b) and of 
tryptophan metabolism (Perng et al., 2017; Robinson et al., 2018; Kadakia et al., 
2019b) in umbilical cord blood have been associated with BW. 

In conclusion, fetal BW is reflected in the cord blood metabolome, and lipid as 
well as amino acid metabolism seems to be involved. These associations might not 
be the same in uncomplicated pregnancies, in SGA neonates and in pregnancies 
complicated by GDM. 

2.6.4 Association with long-term outcomes 
In the 1990’s Hales and Barker presented the “thrifty phenotype” hypothesis (Hales 
et al., 1992), according to which fetal undernutrition leads to adverse outcomes later 
in life (Barker et al., 1993). It was proposed that the fetal adaptation to undernutrition 
could be disadvantageous later in postnatal life when nutrition is more likely to be 
abundant than restricted (Hales et al., 2001). A few years later the concept of 
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developmental origins of health and disease or “DOHAD” was proposed (Gillman, 
2005), focusing not only on exposure during the fetal stages of development, but also 
on perinatal and early life development. Besides growth restriction, fetal 
overnutrition, or LGA, is associated with adverse outcomes such as an increased risk 
of T2DM (Harder et al., 2007). The mechanism by which prenatal and early life 
exposures affect future health are at least partly related to epigenetic programming 
(Słupecka-Ziemilska et al., 2020). 

The neonatal metabolome reflects fetal metabolism and could serve as an early 
marker of future morbidity. Indeed, several studies have found associations between 
cord blood metabolites, childhood obesity and diabetes risk. 

Cord blood HDL, but not LDL or total cholesterol, was inversely related to infant 
weight at 6 months after adjustment for confounding factors (Geraghty et al., 2016). 

A Dutch birth cohort follow-up study examined the association between cord 
plasma phospholipid PUFA and insulin resistance when the children were 7 years 
old (Rump et al., 2002). Low GLA and DGLA were associated with higher insulin 
concentration and insulin resistance and GLA with proinsulin and fat mass but not 
with BMI nor weight. The inverse association with GLA and fasting insulin was 
strongest in subjects with BW in the lowest tertile (Rump et al., 2002). LA, ARA, 
eicosapentaenoic acid (EPA), DHA, total omega-6 FA or total omega-3 FA were not 
related to the outcome measures. Similarly, a pooled analysis of two cohorts failed 
to prove any consistent association between cord blood phospholipid PUFA and 
childhood obesity (Stratakis et al., 2019). 

Two follow-up studies of a German cohort have evaluated the association 
between cord serum long-chain PUFA in glycerophospholipids (Standl et al., 2014),  
a targeted cord serum metabolome (Hellmuth et al., 2017c) and childhood BMI. 
Based on this data the ratio of cord serum glycerophospholipid omega-6 to omega-3 
was inversely associated with BMI when the children were 2 years and positively 
when they were 10 years of age (Standl et al., 2014). In the other study, follow-up 
was continued for until 15 years. Alanine, histidine, several NEFA and omega-3 
glycerophospholipid FA were predictive for postnatal weight gain (between 0 and 6 
months) and alanine and NEFA were positively associated with BMI at age of 15 
years. Yet, none of the associations between cord serum metabolites and postnatal 
weight measures in this study were statistically significant after Bonferroni 
correction (Hellmuth et al., 2017c). On the contrary, Shokry et al. found various 
long-chain NEFA and phosphatidylcholines to be inversely related to post-natal 
growth, although this study lacked statistical power after it had divided the 
population into subgroups and multiple outcomes were examined (Shokry et al., 
2019a). 

In a small case-control study, the associations between the umbilical cord plasma 
metabolome, accelerated postnatal weight gain and mid-childhood obesity were 
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evaluated (Isganaitis et al., 2015). Although some differences were identified, they 
were not significant after FDR adjustment, and partial least squares discriminant 
analysis (PLS-DA) failed to provide sufficient separation between the groups. There 
were also considerable differences in maternal age, pre-pregnancy BMI (pBMI), 
paternal BMI and breastfeeding duration between the groups (Isganaitis et al., 2015). 

Another prospective cohort included infants of obese women. 
Phosphatidylcholines, lysophosphatidylcholines 16:1 and 18:1 in particular, were 
associated with infant weight at 6 months and increased postnatal weight gain (Patel 
et al., 2018). 

In addition to early obesity and insulin resistance, several cord blood 
phosphatidylcholines have been found to predict T1DM (La Torre et al., 2013; 
Orešič et al., 2013). 

In summary, cord blood metabolomics holds a promise of predicting metabolic 
morbidity later in life. NEFA, phosphatidylcholines, omega-3 and omega-6 FA and 
certain amino acids may be suitable markers. These associations are, however, 
complicated by confounding factors, e.g., BW, maternal GDM and obesity and thus 
far the studies have lacked statistical power. 

2.7 Knowledge gaps in the current literature 
More accurate classification and risk assessment between heterogeneous population 
of GDM patients could yield in more personalized approach and more efficient use 
of limited health care resources. Clinical algorithms to predict the need of 
antihyperglycemic medication have been developed (Barnes et al., 2016), but as 
metabolome reflects maternal insulin resistance (Sandler et al., 2017) and is directly 
related to fetal growth (Freinkel, 1980; Scholtens et al., 2016), the use of 
metabolomics might be advantageous in identifying patients at risk of requiring 
pharmacological treatment and/or adverse perinatal outcomes. 

The current evidence claims metformin to be comparable, if not superior, to 
insulin regarding perinatal outcomes (Butalia et al., 2017; Farrar et al., 2017b). 
However, despite the decades of research, the effects of metformin are not fully 
elucidated. And in pregnancy there is paucity of data regarding the effects of 
metformin on maternal metabolome. In the MiG trial, metformin treatment 
compared to insulin treatment was shown to cause increased maternal plasma TG 
(Barrett et al., 2013a). However, there is currently no data regarding the effects of 
metformin on maternal lactate, amino acids or lipids in more detailed lipoprotein 
subclasses. Moreover, while metformin did not affect serum CRP compared to 
insulin in GDM (Barrett et al., 2013a), the number of patients was only 60–70 per 
group and data on other circulating markers of low-grade inflammation is completely 
lacking. 
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It is already known that maternal lipids are related to fetal growth (Freinkel, 
1980; Herrera et al., 2018) and this relationship seems to be dependent of maternal 
factors such as obesity (Misra et al., 2011; Geraghty et al., 2016) and GDM 
(Schaefer-Graf et al., 2008, 2011). However, the studies of women with GDM have 
only or mostly included patients without pharmacological treatment (Knopp et al., 
1992; Schaefer-Graf et al., 2008, 2011). And aside from the data derived from the 
MiG trial (Barrett et al., 2013a), we do not know whether these associations between 
maternal lipids and BW are similar between the metformin and the insulin-treated 
patients. In theory, the beneficial effects of metformin in lowering the risk of 
macrosomia (Butalia et al., 2017; Farrar et al., 2017b; Feig et al., 2020) could be 
mediated by changes in maternal metabolome. 

Lastly, to date there is only one study that has compared neonate cord plasma 
TG, LDL cholesterol and HDL cholesterol between the metformin and the insulin-
treated GDM patients (Barrett et al., 2013a). Given that metformin has effects on 
metabolome (Cai et al., 2009; Huo et al., 2009; Zhang et al., 2014; Irving et al., 
2015; Xu et al., 2015; Preiss et al., 2016; Rotroff et al., 2016; Breier et al., 2017; 
Eppinga et al., 2017; Safai et al., 2018) and it crosses the placenta (Vanky et al., 
2005; Tertti et al., 2010), it would be important to characterize the potential 
metabolic alterations caused by the in utero exposure to metformin. 
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3 Aims 

The principal aims of the study were to: 

1. compare maternal metabolome, inflammatory markers and IGFBP-1 
phosphoisoforms at the time of GDM diagnosis between patients who do 
or do not require pharmacological antihyperglycemic treatment, (Studies 
I–III) 

2. examine the effects of metformin treatment, compared to insulin 
treatment, on the maternal serum metabolome and inflammatory markers 
in patients with GDM, (Studies I–III) 

3. study the associations between the maternal serum metabolome, 
inflammatory markers and perinatal outcomes, especially birth weight, 
(Studies I–III) and 

4. examine the effect of metformin exposure in utero on the umbilical cord 
serum metabolome and to evaluate the associations between the cord 
serum metabolome and birth weight. (Study IV) 
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4 Materials and Methods 

4.1 Study population 
Two hundred and seventeen women diagnosed with gestational diabetes were 
randomized to receive metformin (n = 110) or insulin (n = 107) in an open-label 
randomized trial (Tertti et al., 2013). Additionally, women meeting the same 
inclusion and exclusion criteria but who did not require antihyperglycemic 
medication (n = 126) were included as a reference diet-only group. The study design 
and perinatal outcomes have been characterized previously in more detail in the 
studies by Tertti et al. (2013) and Pellonperä et al. (2016). 

The study participants were recruited at Turku University Hospital (Finland) 
between June 2006 and December 2010. The diagnosis of GDM followed Finnish 
national criteria, and was based on a 2-hour 75 g oral glucose tolerance test 
(OGTT). The diagnostic cut-off values were ≥ 4.8 (fasting), ≥ 10.0 (1 h) and ≥ 8.7 
mmol/l (2 h) until the release of new guidelines in December 2008, and thereafter ≥ 
5.3, ≥ 10.0 and ≥ 8.6 mmol/l, respectively. At least two values above the cut-off 
values were required for diagnosis before and after the change in the cut-off values. 
The exclusion criteria included cardiac or renal insufficiency, liver disease, 
metformin use within 3 months preceding pregnancy or during pregnancy before the 
OGTT. The patients were diagnosed at mean 27 gw (SD = 2.6 weeks, range = 12–
33 gw). 

The trial was approved by the Ethics Committee of the Southwest Hospital 
District of Finland, the Finnish National Agency of Medicines and the European 
Union Drug Regulatory Agency (EUDRA). All study participants provided their 
informed consent and the trial was registered at ClinicalTrials.gov (NCT01240785, 
http://clinicaltrials.gov/ct2/show/NCT01240785). The original trial was powered to 
prove non-inferiority between the treatment groups in terms of BW, which was the 
primary outcome (Tertti et al., 2013). The present study is a secondary analysis of 
the study population and an additional power-analysis was not deemed necessary. 

The antihyperglycemic treatment was initiated if glycemic control was 
unsatisfactory despite diet and lifestyle modifications (two or more fasting plasma 
glucose values ≥ 5.5 mmol/l and/or postprandial values ≥ 7.8 mmol/l). Patients 
fulfilling these criteria were randomized by the physician using sealed envelopes. 
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Metformin was started with 500 mg once a day and increased up to 2000 mg per 
day if needed (median dose 1500 mg). Additional insulin was required by 23 patients 
in the metformin group to meet the glucose targets (fasting < 5.5 and 1 h 
postprandially < 7.8 mmol/l). In the analyses these patients are included in the 
metformin group unless otherwise specified. Insulin therapy was carried out with 
NPH insulin and/or rapid-acting insulin lispro or insulin aspart. 

GWG was defined as the difference between the last measured maternal weight 
in the maternity welfare clinic and the self-reported weight before pregnancy. Late 
GWG was defined as weight gain from the initiation of antihyperglycemic treatment 
to the last measured weight. BW was measured in grams and converted into SD-
units and percentiles (deviation from the mean value of the Finnish general 
population adjusted for gestational weeks (Pihkala et al., 1989)). SGA and LGA 
were defined as BW below 10th or above 90th centile, respectively. Macrosomia was 
defined as BW ≥ 2.0 SD and/or ≥ 4500 g. Perinatal outcome data was collected from 
the medical records. 

4.2 Analysis of serum samples 
Baseline fasting venous serum samples were collected at study recruitment between 
22 and 34 gw, at mean 30 gw, approximately two weeks after GDM had been 
diagnosed. An additional fasting serum sample was collected at 36 gw in the 
metformin and insulin groups, but not in the diet group. Umbilical cord serum 
samples were collected after delivery in all groups. C-peptide was determined only 
at baseline and HbA1c at baseline and at 36 gw (Table 4). Serum samples collected 
at baseline and at 36 gw and cord serum samples were stored at -70°C for further 
analyses of the metabolome, inflammatory markers and IGFBP-1 phosphoisoforms. 

C-peptide and HbA1c values were determined from maternal serum samples 
using routine hospital laboratory methods 

A targeted metabolome was measured using a high-throughput (1H) NMR 
spectroscopy protocol (Soininen et al., 2009). The NMR spectra of the cord serum 
samples were analyzed using a revised method validated also for cord serum samples 
(Würtz et al., 2017). The targeted metabolome included amino acids, TG and 
cholesterol in lipoprotein subfractions, mean VLDL, LDL and LDL diameters, 
phosphoglycerides, cholines, sphingomyelins, apolipoproteins A-1 (apoA-1) and B 
(apoB), fatty acids and lactate. The cord serum metabolome was extended to include 
also ketones, detailed lipoprotein particle concentrations, total lipids and 
phospholipids in lipoproteins. These metabolites were selected based on the known 
association between these metabolites and the risk of T2DM and cardiovascular 
morbidity, as demonstrated earlier (Soininen et al., 2015). 
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Analysis of GlycA was included in the targeted NMR metabolome. hsCRP and 
IL-6 were measured using enzyme-linked immunosorbent assay (ELISA) [human C-
reactive protein (CRP) ELISA kit, R&D Systems, Minneapolis, USA; interleukin-6 
(IL-6) ELISA kit, R&D Systems, Minneapolis, USA]. MMP-8, non-phosphorylated 
IGFBP-1 (non-pIGFBP-1), low-pIGFBP-1 and high-pIGFBP-1 were determined 
using ELISA and an immunoenzymometric assay, as described previously (Nuutila 
et al., 1999; Kruit et al., 2018). 

Table 4.  Serum sample analyses stratified by time point and treatment group. 

 Baseline 36 gestational 
weeks 

Delivery 

Maternal serum Maternal serum Cord serum 

 Metf Ins Diet Metf Ins Diet Metf Ins Diet 
C-peptide X X X       
HbA1c X X X X X     
NMR metabolome X X X X X  X X X 
Inflammatory 
markers 

X X X X X     

IGFBP-1 
phosphoisoforms 

X X X X X     

Metf: metformin group, Ins: insulin group, Diet: diet group. NMR: nuclear magnetic resonance, 
IGFBP-1: insulin-like growth factor-binding protein 1 

4.3 Statistical analyses 
The R statistical software (versions 3.3.2 and 3.6.1, http://cran.r-project.org) was 
used for all statistical analyses and all figures were drawn using the ggplot2 package 
in R. Comparisons of continuous clinical baseline and outcome data was carried out 
using either the t-test or the Mann-Whitney U test. For the comparison of categorical 
data the χ2-test or Fisher’s exact test was used. In the study comparing cord serum 
metabolomes (Study IV), all three (metformin, insulin and diet) groups were 
considered parallel and the continuous clinical data was thus compared by analysis 
of variance (ANOVA) and the Tukey’s HSD test, or the Kruskall-Wallis test and the 
Dwass-Steele test. Otherwise the between group analyses were performed between 
the metformin and the insulin groups, or between the diet and the pharmacological 
treatment group (the pharmacological treatment group included pooled data from the 
metformin and insulin groups). 
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4.3.1 Study I 
The metabolic variables, amino acids, glucose and lactate were compared between 
groups with the t-test or the Mann-Whitney U test and within group with the paired 
t-test or the paired Wilcoxon signed-rank test. The associations between amino acids, 
glucose, lactate and C-peptide, HbA1c and clinical outcome variables were studied 
using linear or logistic regression. Before regression analyses the continuous 
variables (except for BW which was already in SD-units) were centered and scaled. 
The regression models were adjusted for pBMI and smoking. The following 
outcomes were studied: GWG, hypertensive disorders (gestational hypertension or 
preeclampsia), gestational age at delivery, cesarean delivery, BW (adjusted for 
population mean for gestational age), SGA, LGA, NICU admission and need for 
intravenous (I.V.) glucose by the neonate. To control for type I error, FDR-
adjustment (the Benjamini–Hochberg procedure) was applied to the regression 
analyses. A p-value below 0.05 was considered statistically significant. 

4.3.2 Study II 
The comparisons of IGFBP-1 phosphoisoforms and inflammatory markers between 
and within groups were performed as above. Correlations between IGFBP-1s, 
inflammatory markers, maternal age, pBMI and measures of glucose metabolism 
were examined using Spearman’s correlation. The associations between IGFBP-1s, 
inflammatory markers and clinical outcome variables (total GWG, late GWG, 
hypertensive disorders, length of gestation at delivery, induction of labor, cesarean 
delivery, adjusted BW, SGA, LGA, NICU admission and neonatal I.V. glucose 
administration) were studied using linear or logistic regression. Before regression 
analyses the continuous variables (except for BW) were centered and scaled. The 
regression models were run unadjusted and adjusted for pBMI. Group-specific 
regression coefficients were provided, if pharmacological treatment interacted 
significantly (p < 0.05) with the association between the independent and the 
outcome variable in the regression model. The Bonferroni correction was applied on 
the regression analyses. A p-value below 0.05 was considered statistically 
significant. 

4.3.3 Study III 
Comparisons of maternal serum lipids between and within groups were made with 
the Mann-Whitney U and the Wilcoxon paired tests. The association between the 
maternal lipidome and BW was studied with both multivariate and univariate 
methods. Before these analyses the lipid values were centered and scaled and the 
missing values were imputed using the k-nearest neighbor method. A PLS regression 
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or PLS-DA was applied to study the association between the maternal lipidome and 
BW. PLS and PLS-DA analyses were completed using the ropls package for R 
(Thévenot et al., 2015). The Q2 value of the PLS / PLS-DA model was used to 
describe the amount of variation in the outcome variable that the model explains in 
internal cross-validation. In the univariate analyses the association between each 
lipid and BW was studied using linear or logistic regression. These regression 
analyses were also adjusted for pBMI, GWG and either baseline or 36 gw HbA1c. 
Separate regression coefficients for metformin and insulin groups were calculated, 
if there was significant (p < 0.01) interaction between the independent variable and 
the treatment. Due to the large number of comparisons in this set of intercorrelated 
data, p < 0.01 was considered statistically significant. 

In a more detailed analysis birth weight centiles were compared between the 
treatment groups (metformin vs. insulin) in data stratified by maternal lipid quartiles 
using the Mann-Whitney U test. A comparison adjusted for confounding factors 
(pBMI, GWG and HbA1c) was performed using analysis of covariance (ANCOVA). 

The associations between the maternal lipidome and other clinical outcome 
variables, GWG, length of gestation at delivery, hypertensive disorders (gestational 
hypertension or preeclampsia), cesarean delivery, NICU admission and neonatal I.V. 
glucose administration, respectively, were examined as described above using PLS 
and PLS-DA analysis and univariate regression analyses when appropriate. 

4.3.4 Study IV 
The metabolite concentrations in cord serum were compared between the metformin, 
insulin and diet groups using the Kruskall-Wallis and the Dwass-Steele test. 
Associations between metabolites and BW were studied with linear regression. The 
regression models were adjusted for mode of delivery, pBMI, GWG and maternal 
HbA1c at the time of GDM diagnosis. Regression coefficients were calculated 
separately for each treatment group, if there was a significant interaction term (p < 
0.05) between the treatment group and the independent variable. Otherwise, due to 
the intercorrelated nature of the data and the amount of comparisons, a p < 0.01 was 
considered significant to decrease the risk of type I error. 
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5 Results 

5.1 Population characteristics 
There is slight variation in the number of individual metabolite assessments and 
between Studies I–IV due to logistics (insufficient amount of patient sample) and 
matters related to quality control. The missing measurements were similarly 
distributed across treatment groups and thus unlikely to cause bias in the results. 

The descriptive statistics of the whole study population are provided in Table 5. 
The rate of induction of labor was higher in the insulin compared to the metformin 
(p < 0.05, Studies I–IV) or the diet group (p < 0.001, Study IV). In the diet group, 
the mean maternal age (p < 0.05, Study IV) and OGTT 1 h glucose (p < 0.01, Study 
IV) were lower compared to the metformin group and maternal HbA1c at baseline 
(p < 0.05, Study IV) and OGTT fasting glucose (p < 0.05, Study IV) values were 
lower in the diet group compared to the insulin group. When the diet group was 
compared to the combined pharmacological treatment group (Study I), maternal age 
(p < 0.05), HbA1c at baseline (p < 0.01), OGTT fasting glucose (p < 0.01), OGTT 1 
h glucose (p < 0.01) and incidence of labor induction (p < 0.01) were lower in the 
diet group. 

Table 5.  Clinical characteristics of the study population. Modified from original publication I, Table 
1, original publication II, Table 1 and original publication III, Table 1. 

 
Diet Insulin Metformin Drug groups   

combined 
n 102–120 95–107 101–109 196–216 

Maternal characteristics    
Age (years) 30.3 ± 5.2 32.0 ± 5.5 31.9 ± 5.0 31.9 ± 5.2 
Smoking 11 (9.3) 17 (16.0) 9 (8.6) 26 (12.3) 
Primiparous 54 (45.0) 49 (45.8) 42 (38.5) 91 (42.1) 
Pre-pregnancy BMI 
(kg/m2) 

29.0 ± 5.5 28.9 ± 4.7 29.5 ± 5.9 29.2 ± 5.3 

(continued) 
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Table 5.  Continued. 

 
Diet Insulin Metformin Drug groups 

combined 
Glucose metabolism    
HbA1c% at baseline 5.37 ± 0.32 5.51 ± 0.34 5.48 ± 0.34 5.49 ± 0.34 
HbA1c at baseline 
(mmol/mol) 

35.2 ± 3.5 36.7 ± 3.7 36.3 ± 3.7 36.5 ± 3.7 

HbA1c% at 36 gw  5.69 ± 0.36 5.68 ± 0.33 5.68 ± 0.34 
HbA1c at 36 gw 
(mmol/mol) 

 38.6 ± 3.9 38.5 ± 3.6 38.6 ± 3.7 

OGTT fasting 
glucose (mmol/l) 

5.38 ± 0.42 5.57 ± 0.42 5.52 ± 0.55 5.54 ± 0.49 

OGTT 1 h glucose 
(mmol/l) 

10.9 ± 1.0 11.2 ± 1.2 11.2 ± 1.5 11.2 ± 1.4 

OGTT 2 h glucose 
(mmol/l) 

7.86 ± 1.85 7.91 ± 1.75 8.33 ± 1.76 8.12 ± 1.77 

Fasting C-peptide 
(nmol/l) 

1.01 ± 0.31 1.05 ± 0.29 1.07 ± 0.33 1.06 ± 0.31 

Pregnancy outcomes    
Gestational 
hypertension 

4 (3.3) 4 (3.7) 2 (1.8) 6 (2.8) 

Preeclampsia 4 (3.3) 10 (9.3) 5 (4.6) 15 (6.9) 
Operative vaginal 
delivery 

7 (5.8) 8 (7.5) 9 (8.3) 17 (7.9) 

Cesarean delivery 19 (15.8) 18 (16.8) 15 (13.8) 33 (15.3) 
Induction of labor 37 (30.8) 58 (54.2) 41 (37.6) 99 (45.8) 
Total gestational 
weight gain (kg) 

8.7 ± 5.2 7.8 ± 5.3 8.0 ± 5.2 7.9 ± 5.2 

Late gestational 
weight gain (kg) 

 2.2 ± 3.0 1.8 ± 2.6 2.0 ± 2.8 

Gestational age at 
delivery (weeks) 

39.3 ± 2.2 39.4 ± 1.6 39.2 ± 1.4 39.3 ± 1.5 

Neonatal outcomes    
Birth weight (g) 3550 ± 540 3590 ± 450 3610 ± 490 3600 ± 470 
Birth weight (SD) -0.045 ± 1.07 0.15 ± 0.96 0.17 ± 1.05 0.16 ± 1.00 
Birth weight 
(centiles) 

0.49 ± 0.29 0.54 ± 0.29 0.55 ± 0.29 0.55 ± 0.29 

SGA 15 (12.5) 9 (8.4) 12 (11.4) 21 (9.9) 
LGA 13 (10.8) 17 (15.9) 15 (14.3) 32 (15.1) 
Macrosomia 5 (4.2) 1 (0.9) 5 (4.6) 6 (2.8) 
Admission to NICU 34 (28.3) 39 (36.4) 33 (30.6) 72 (33.5) 
Neonate I.V. 
glucose 

27 (22.9) 25 (23.6) 25 (23.1) 50 (23.4) 

Data is given as mean ± SD or n (%). SD: standard deviation, OGTT: oral glucose tolerance test, 
SGA: small for gestational age (birth weight < 10th centile), LGA: large for gestational age (birth 
weight > 90th centile), NICU: neonatal intensive care unit, I.V.: intravenous 
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5.2 Comparison of the maternal serum 
metabolome, inflammatory markers and 
IGFBP-1 phosphoisoforms between patients 
who required or did not require 
antihyperglycemic medication (Studies I–III) 

Amino acids, glucose and lactate 

At the time of GDM diagnosis, maternal serum glutamine was higher (390 vs. 370 
µmol/l, p = 0.009) and glucose lower (3.9 vs. 4.1 mmol/l, p < 0.0001) in the diet 
group compared to the combined pharmacological treatment group. There were no 
differences in alanine, glycine, isoleucine, leucine, valine, phenylalanine, tyrosine, 
histidine or lactate. 

Lipids 

The median TG in small VLDL was marginally lower in the diet compared to the 
pharmacological treatment group (0.40 vs. 0.43 mmol/l, p = 0.046). Otherwise, 
maternal serum lipids at baseline did not differ between the patients in the diet and 
pharmacological treatment groups. 

Inflammatory markers and IGFBP-1 phosphoisoforms 

There were no differences in inflammatory markers or in IGFBP-1 phosphoisoforms 
at baseline between the patients who required pharmacological intervention and the 
patients who managed their glycemia with diet and lifestyle modifications only. 

5.3 Maternal serum amino acid profile (Study I) 

5.3.1 Associations between maternal serum amino acids, C-
peptide and HbA1c 

The associations were studied at the baseline for the whole study population (diet, 
metformin and insulin groups combined; n = 290–295 for C-peptide and 298–303 
for HbA1c) and at 36 gw only in the pharmacological treatment group (n = 184–185 
for HbA1c, C-peptide was not available at 36 gw). 

At baseline, fasting C-peptide was significantly related to several amino acids: 
alanine (57; CI: 22, 92 pM C-peptide/SD alanine), isoleucine (72; CI: 41, 104 pM 
C-peptide/SD isoleucine), leucine (59; CI: 27, 93 pM C-peptide/SD leucine) and 
phenylalanine (76; CI: 44, 109 pM C-peptide/SD phenylalanine). 
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HbA1c was positively associated with phenylalanine (0.066; CI: 0.028, 0.10 
HbA1c(%)/SD phenylalanine) at baseline. At 36 gw HbA1c was associated with 
alanine in metformin-treated (0.12; CI: 0.046, 0.21 HbA1c(%)/SD alanine) but not 
in insulin-treated patients (-0.020; CI: -0.097, 0.049 HbA1c(%)/SD alanine). 

5.3.2 Effects of metformin versus insulin on maternal serum 
amino acids, glucose and lactate 

At baseline, the metformin and insulin groups did not differ regarding their amino 
acid profiles. When the metformin and insulin groups were analyzed together, 
tyrosine did not change, glucose and valine decreased and lactate and the other amino 
acids increased from baseline to 36 gw (Table 6). 

When the metformin and the insulin groups were analyzed separately, the 
decrease in valine was no longer significant (Table 6). The increases in alanine, 
glutamine, glycine, isoleucine, leucine and phenylalanine were significant in both 
groups, except for histidine which increased significantly only in the metformin 
group. Glucose declined and lactate rose similarly regardless of treatment group. 

 
Figure 4.  Comparison of changes in metabolic profiles from baseline to 36 gestational weeks 

between metformin and insulin treatment groups circles = metformin group, squares = 
insulin group, black square or circle denote significant p-value ( < 0.05). p-value is given 
for the Mann-Whitney U (†) or the t-test where appropriate. Metformin n = 96–99, insulin 
n = 90–91. AA: amino acids, IQR: interquartile range, SE: standard error. Reproduced 
from original publication I, Figure 1. 
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58 Table 6.  Maternal serum amino acid, glucose and lactate concentrations at baseline and at 36 gestational weeks by medication groups. Modified from 

original publication I, Table 3. 

 Metformin and insulin combined  Metformin  Insulin 

 Baseline 36 gw p-value  Baseline 36 gw p-value  Baseline 36 gw p-value 

Amino acids            

Alanine 392 ± 44 438 ± 56 <0.0001  395 ± 45 454 ± 51 <0.0001  389 ± 44 421 ± 57 <0.0001 

Glutamine 371 ± 56 384 ± 65 0.009  370 ± 55 381 ± 61 0.044  372 ± 58 387 ± 69 0.028 

Glycine 207 ± 36 222 ± 40 <0.0001  201 ± 36 215 ± 36 <0.001  212 ± 36 229 ± 43 <0.0001 

BCAA            

Isoleucine 53 [47–63] 59 [50–68] <0.0001†  53 [47–61] 60 [48–70] <0.0001†  56 ± 12 58 ± 13 0.041 

Leucine 70 [64–79] 75 [68–84] <0.0001†  72 ± 11 78 ± 14 0.0001  73 ± 12 76 ± 14 0.025 

Valine 110 [97–124] 106 [96–120] 0.002†  112 ± 18 110 ± 19 0.19  109 ± 21 105 ± 21 0.056 

Aromatic AA            

Phenylalanine 86 [78–94] 92 [85–97] <0.0001†  86 ± 9.9 92 ± 9.6 <0.0001  87 [80–95] 92 [83–102] 0.002† 

Tyrosine 37 [34–42] 39 [34–42] 0.48†  38 ± 6.6 38 ± 6.5 0.98  37 [34–42] 39 [35–44] 0.15† 

Histidine 69 ± 9.6 71 ± 10 0.004  68 ± 8.8 71 ± 8.9 0.009  69 ± 10 71 ± 11 0.15 

Glucose 
metabolism 

           

Glucose 4.1 ± 0.38 3.9 ± 0.43 <0.0001  4.1 ± 0.40 3.8 ± 0.43 <0.0001  4.1 ± 0.38 3.9 ± 0.43 0.003 

Lactate 1.2 ± 0.31 1.4 ± 0.40 <0.0001  1.2 ± 0.34 1.5 ± 0.39 <0.0001  1.2 ± 0.28 1.4 ± 0.40 0.011 
Metabolite concentrations are shown as mean ± SD or median [IQR] (µmol/l), glucose and lactate are mmol/l, p-value is given for Wilcoxon signed-rank (†) 
or t-test where appropriate, combined n = 186–190, metformin (including those who received metformin + insulin) n = 96–99, insulin only n = 90–91, AA: 
amino acids, BCAA: branched-chain amino acids, gw: gestational weeks, IQR: interquartile range. At baseline there were no significant differences between 
the two treatment groups (p > 0.05). 
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Comparing the changes between the metformin and the insulin groups showed that 
the alanine concentration rose considerably more in the metformin group (59 vs. 
32 µmol/l, p<0.0001) (Figure 4). Isoleucine and lactate also rose more in the 
metformin group. 

5.3.3 Associations between maternal serum amino acids, 
glucose and lactate at baseline and clinical outcome 
variables 

Baseline analyses were performed for the whole study population. At baseline, 
besides glucose, isoleucine was positively related to BW (0.19; CI: 0.06, 0.31 
SD/SD) (Table 7). Only glucose was associated with LGA (1.6; 1.2, 2.2 OR/SD) 
although this association was not significant after FDR-adjustment. Most of the 
amino acids were inversely related to the length of gestation at delivery (Table 7). 
After controlling for FDR, the associations were significant between alanine (-0.39; 
CI: -0.81, -0.18 weeks/SD), tyrosine (-0.39; CI: -0.82, -0.16 weeks/SD), glucose (-
0.36; CI: -0.62; -0.15 weeks/SD) and length of gestation. Glycine and all three 
BCAA (isoleucine, leucine and valine) were inversely related to the length of 
gestation but none of these associations was significant after FDR-adjustment. 
Glutamine (-1.3; CI: -1.9, -0.64 kg/SD) was inversely and valine (0.58; CI: 0.049, 
1.1 kg/SD) positively related to GWG, although the association between valine and 
GWG was not significant after the FDR-adjustment. Glucose was positively related 
to an increased risk of caesarean delivery. In the metformin group histidine was 
inversely related to GWG (-1.4; CI: -2.4, -0.38 kg/SD). 

5.3.4 Associations between maternal serum amino acids, 
glucose and lactate at 36 gestational weeks and 
clinical outcome variables in patients requiring 
pharmacological treatment 

At 36 gw, only alanine was associated with BW (0.15; CI: 0.029, 0.3 SD/SD) (Table 
7) and this association was stronger in the metformin (0.31; CI: 0.11, 0.52 SD/SD) 
than the insulin (0.051; CI: -0.12, 0.28 SD/SD) group. Higher glucose was 
significantly associated with a lower incidence of SGA only before FDR-adjustment. 
Although not significant after adjusting for FDR, glutamine was positively 
associated with hypertensive disorders of pregnancy (2.3; CI: 1.3, 4.4 OR/SD). 
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Table 7.  Summary of significant associations between amino acids, glucose, lactate and clinical 
outcomes 1. Modified from original publication I, Table 4. 

Independent 
variable 

Outcome β-estimate [95% CI] p-value n 

Baseline     
Glutamine GWG (kg/SD) -1.3 [-1.9; -0.64] <0.0001 ** 297 

Valine GWG (kg/SD) 0.58 [0.049; 1.1] 0.049 302 
Alanine Length of gestation (weeks/SD) -0.39 [-0.81; -0.18] <0.0001 ** 303 

Glycine Length of gestation (weeks/SD) -0.2 [-0.37; -0.049] 0.047 303 

Isoleucine Length of gestation (weeks/SD) -0.23 [-0.44; -0.054] 0.023 303 

Leucine Length of gestation (weeks/SD) -0.28 [-0.51; -0.086] 0.0054 303 

Valine Length of gestation (weeks/SD) -0.22 [-0.42; -0.017] 0.027 303 

Tyrosine Length of gestation (weeks/SD) -0.39 [-0.82; -0.16] <0.0001 ** 302 

Glucose Length of gestation (weeks/SD) -0.36 [-0.62; -0.15] 0.00016 ** 302 
Glucose Cesarean delivery (OR/SD)a 1.9 [1.3; 2.8] 0.00050 ** 302 (43) 
Isoleucine Birth weight (SD/SD) 0.19 [0.06; 0.31] 0.0013 * 300 

Glucose Birth weight (SD/SD) 0.25 [0.12; 0.37] <0.0001 ** 299 
Glucose LGA (OR/SD)b 1.6 [1.2; 2.2] 0.0043 299 (44) 
Glucose NICU admission (OR/SD)c 1.4 [1.1; 1.8] 0.010 301 (95) 
36 gestational weeks 

Glutamine Hypertensive disorders (OR/SD)d 2.3 [1.3; 4.4] 0.0014 192 (20) 

Alanine Birth weight (SD/SD) 0.15 [0.029; 0.3] 0.047 190 

Glucose SGA (OR/SD)e 0.47 [0.25; 0.89] 0.026 190 (20) 
Measures are expressed as odds ratios (OR) or regression β-estimates with 95% confidence 
intervals. At baseline, associations were estimated for the whole study population (diet and 
pharmacological treatment groups) and at 36 gw for the pharmacological treatment group. 
Adjustments were done for pre-pregnancy BMI and smoking. The reference groups for the binary 
outcomes were: a) vaginal delivery, b) birth weight < 90th centile, c) no NICU admission, d) no 
hypertensive disorders (gestational hypertension or preeclampsia), e) birth weight > 10th centile. * 
FDR adjusted p < 0.05, ** FDR adjusted p < 0.01. Number of subjects in each analysis (n) is 
expressed as total n, and n with a positive outcome in parentheses in case of binary outcome 
variables. GWG: gestational weight gain, SD: standard deviation, LGA: large for gestational age 
(adjusted birth weight > 90th centile), SGA: small for gestational age (adjusted birth weight < 10th 
centile), NICU: neonatal intensive care unit, OR: odds ratio, SD: standard deviation.  
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5.4 Maternal IGFBP-1 and inflammatory markers 
(Study II) 

5.4.1 Correlations between inflammatory markers, age, BMI 
and measures of glucose metabolism in patients 
requiring pharmacological treatment 

At baseline, pBMI correlated significantly and positively with hsCRP, IL-6 and 
MMP-8 as shown in Figure 5. Also C-peptide correlated significantly and positively 
with the inflammatory markers, hsCRP, IL-6 and GlycA. HbA1c correlated only 
with GlycA, and the OGTT glucose values or maternal age did not correlate with the 
inflammatory markers. 

Figure 5.  Heatmap representation of Spearman’s correlations between age, pre-pregnancy BMI 
and glucose metabolism with inflammatory markers and IGFBP-1 phosphoisoforms at 
baseline (n = 196–208) and at 36 gestational weeks (n = 181–198). pBMI: pre-
pregnancy body mass index, OGTT: oral glucose tolerance test, gw: gestational weeks, 
hsCRP: high sensitivity CRP, IL-6: interleukin 6, MMP-8: matrix metalloproteinase 8, 
GlycA: glycoprotein acetylation, non/low/high-pIGFBP-1: non/low/high-phosphorylated 
insulin-like growth factor-binding protein 1. * p < 0.05, ** p < 0.01, *** p < 0.001. 
Reproduced from original publication II, Figure 1. 
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Both pBMI and C-peptide correlated strongly (p<0.001) and inversely with the 
IGFBP-1 phosphoisoforms (Figure 5). OGTT fasting glucose correlated inversely 
with non-pIGFBP-1. 

At 36 gw the correlation between pBMI and hsCRP was attenuated but still 
significant (p < 0.05), and the inverse correlations between pBMI and non-pIGFBP-
1 phosphoisoforms remained essentially unchanged compared to baseline (Figure 5). 
At 36 gw, but not at baseline, non-pIGFBP-1 correlated positively with maternal age. 
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5.4.2 Effect of metformin versus insulin on maternal serum 
inflammatory markers and IGFBP-1 phosphoisoforms 

The concentration of low-pIGFBP-1 was lower at baseline in the metformin group 
than the insulin group (21.0 vs. 24.0 µg/l, p = 0.04). In the combined 
pharmacological treatment group, hsCRP decreased whereas IL-6 and GlycA 
increased from baseline to 36 gw (Table 8). When analyzed separately the decrease 
of hsCRP was significant only in the metformin group. Serum GlycA increased in 
both groups but significantly more in the metformin than the insulin group (0.15 vs. 
0.091 mmol/l, p = 0.020). All three IGFBP-1 phosphoisoforms increased from 
baseline to 36 gw and this change was statistically significant in both groups. The 
increase of non-pIGFBP-1 was greater in the metformin group (21.0 vs. 13.4 µg/l, p 
= 0.008). 

5.4.3 Associations between maternal serum inflammatory 
markers, IGFBP-1 and clinical outcome variables in 
patients requiring pharmacological treatment 

The associations between inflammatory markers, IGFBP-1 phosphoisoforms, 
maternal outcomes (total GWG, late GWG, hypertensive disorders, induction of 
labor, caesarean delivery) and neonatal outcomes (BW, SGA, LGA, NICU 
admission, neonatal I.V. glucose treatment) were studied using regression analyses. 
A summary of the significant associations is given in Table 9. Notably, there were 
inverse associations between non-pIGFBP-1 and low-pIGFBP-1 and GWG. At 
baseline, non-pIGFBP-1 was inversely associated with total GWG both before (-1.2; 
CI: -2.0, -0.64 kg/SD) and after (-1.5; CI: -3.0, -1.2 kg/SD) adjustment for pBMI 
(Table 9) and low-pIGFBP-1 with total GWG only after adjustment for pBMI (-1.0; 
CI: -2.1, -0.64 kg/SD). At 36 gw, non-pIGFBP-1 was inversely related to total GWG 
in the unadjusted (-1.1; CI: -1.8, -0.52 kg/SD) and the adjusted regression model (-
1.5; CI: -2.9, -1.3 kg/SD). Although the association was not significant after 
application of the Bonferroni-corrected threshold, baseline non-pIGFBP-1 was 
associated with BW in both unadjusted (-0.15; CI: -0.32, -0.052 SD/SD) and adjusted 
(-0.14; CI: -0.26, -0.0071 SD/SD) analyses. MMP-8 at baseline was associated 
positively with late GWG and at 36 gw inversely with BW. These association were 
not markedly affected by the adjustment, but were not significant after the 
Bonferroni correction.  

Regression coefficients were calculated for the metformin and insulin groups 
separately if there was a significant interaction between the group and the 
independent variable (p < 0.05). None of these associations reached a Bonferroni-
corrected p-value below 0.0045 (Table 10).  
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Table 9.  Regression models with significant (p < 0.05) associations between inflammatory 
markers and IGFBP-1 concentrations, and maternal and neonatal outcomes. Modified 
from original publication II, Table 3 & Supplementary table 3. 

Independent 
variable 

Outcome β-estimate [95% CI] p-value n 

Unadjusted models 
   

   Baseline     

   non-pIGFBP-1 total GWG (kg/SD) -1.2 [-2.0; -0.64] <0.001* 201 

   MMP-8 late GWG (kg/SD) 0.41 [0.022; 0.77] 0.035 202 

   non-pIGFBP-1 late GWG (kg/SD) 0.45 [-0.87; -0.13] 0.021 202 

   hsCRP length of gestation (weeks/SD) 0.2 [0.028; 0.36] 0.044 202 

   high-pIGFBP-1 induction of labor (OR/SD)a 0.67 [0.48; 0.92] 0.0094 202 (92) 

   non-pIGFBP-1 birth weight (SD/SD) -0.15 [-0.32; -0.052] 0.027 198 

   36 gestational weeks    

   Non-pIGFBP-1 total GWG (kg/SD) -1.1 [-1.8; -0.52] 0.0027* 188 

   non-pIGFBP-1 late GWG (kg/SD) -0.55 [-0.96; -0.21] 0.0069 189 

   non-pIGFBP-1 cesarean delivery (OR/SD)b 0.49 [0.24; 0.84] 0.043 189 (26) 

   MMP-8 birth weight (SD/SD) -0.17 [-0.34; -0.037]  0.022 185 

     

Models adjusted for pre-pregnancy BMI    

   Baseline        

   hsCRP total GWG (kg/SD) 0.72 [0.55; 1.5] 0.0498 201 

   non-pIGFBP-1 total GWG (kg/SD) -1.5 [-3.0; -1.2] <0.0001* 201 

   low-pIGFBP-1 total GWG (kg/SD) -1.0 [-2.1; -0.64] 0.0037* 201 

   MMP-8 late GWG (kg/SD) 0.43 [0.054; 0.80] 0.031 202 

   non-pIGFBP-1 late GWG (kg/SD) -0.47 [-0.91; -0.17] 0.019 202 

   hsCRP length of gestation (weeks/SD) 0.2 [0.035; 0.37] 0.048 202 

   non-pIGFBP-1 birth weight (SD/SD) -0.14 [-0.26; -0.0071] 0.049 198 

   36 gestational weeks    

   non-pIGFBP-1 total GWG (kg/SD) -1.5 [-2.9; -1.3] <0.0001* 188 

   low-pIGFBP-1 total GWG (kg/SD) -0.99 [-2.1; -0.45] 0.0073 188 

   non-pIGFBP-1 late GWG (kg/SD) -0.56 [-0.97; -0.22] 0.0075 189 

   MMP-8 birth weight (SD/SD) -0.18 [-0.38; -0.063] 0.014 185 
Both metformin and insulin-treated patients were included. Data is given as regression β-estimates 
or odds ratios (OR) in respect to one SD change of the predictor [95% confidence interval, CI]. The 
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reference groups in the binary outcomes were: a) no induction of labor, b) vaginal delivery. * p < 
0.0045 (Bonferroni). The number of subjects in each analysis (n) is expressed as total n, and n with 
positive outcome in parentheses in case of a binary outcome variable. SD: standard deviation, gw: 
gestational weeks, GWG: gestational weight gain, pIGFBP-1: phosphorylated insulin-like growth 
factor-binding protein 1, MMP-8: matrix metalloproteinase 8, hsCRP: high sensitivity CRP. 

 

Ta
bl

e 
10

.  
R

eg
re

ss
io

n 
m

od
el

s 
w

ith
 s

ig
ni

fic
an

t (
p 

< 
0.

05
) i

nt
er

ac
tio

n 
be

tw
ee

n 
tre

at
m

en
t g

ro
up

 (m
et

fo
rm

in
 o

r i
ns

ul
in

) 
an

d 
th

e 
as

so
ci

at
io

n 
be

tw
ee

n 
ou

tc
om

e 
an

d 
th

e 
in

de
pe

nd
en

t v
ar

ia
bl

e.
 M

od
ifi

ed
 fr

om
 o

rig
in

al
 p

ub
lic

at
io

n 
II,

 S
up

pl
em

en
ta

ry
 ta

bl
e 

4.
 

In
de

pe
nd

en
t 

va
ria

bl
e 

O
ut

co
m

e 
M

od
el

 
In

su
lin

 
M

et
fo

rm
in

 

B
as

el
in

e 
 

 
 

 

lo
w

-p
IG

FB
P-

1 
hy

pe
rte

ns
iv

e 
di

so
rd

er
s 

O
R

/S
D

 
m

od
el

 0
 

1.
2 

[0
.5

8;
 2

.1
] (

0.
56

) 
0.

11
 [0

.0
1;

 0
.7

7]
 (0

.0
53

) 

hi
gh

-p
IG

FB
P-

1 
hy

pe
rte

ns
iv

e 
di

so
rd

er
s 

O
R

/S
D

 
m

od
el

 0
 

1.
2 

[0
.6

7;
 2

.2
] (

0.
53

) 
0.

28
 [0

.0
6;

 0
.5

6]
 (0

.0
45

) 

lo
w

-p
IG

FB
P-

1 
in

du
ct

io
n 

of
 la

bo
r O

R
/S

D
 

m
od

el
 0

 
0.

97
 [0

.6
5;

 1
.4

] (
0.

86
) 

0.
38

 [0
.1

7;
 0

.7
4]

 (0
.0

06
6)

 

hs
C

R
P 

N
IC

U
 a

dm
is

si
on

 O
R

/S
D

 
m

od
el

 0
 

0.
59

 [0
.3

4;
 1

] (
0.

05
3)

 
1.

3 
[0

.8
; 1

.9
] (

0.
20

) 

hs
C

R
P 

N
IC

U
 a

dm
is

si
on

 O
R

/S
D

 
m

od
el

 1
 

0.
59

 [0
.3

3;
 0

.9
9]

 (0
.0

52
) 

1.
3 

[0
.7

6;
 1

.9
] (

0.
24

) 

M
M

P-
8 

la
te

 G
W

G
 (k

g/
SD

) 
m

od
el

 0
 

-0
.2

4 
[-0

.8
2;

 0
.5

6]
 (0

.3
5)

 
0.

74
 [0

.1
8;

 1
.4

] (
0.

03
5)

 

M
M

P-
8 

la
te

 G
W

G
 (k

g/
SD

) 
m

od
el

 1
 

-0
.2

4 
[-0

.8
4;

 0
.5

4]
 (0

.3
5)

 
0.

73
 [0

.1
6;

 1
.3

] (
0.

03
9)

 

36
 g

es
ta

tio
na

l w
ee

ks
 

 
 

 

hi
gh

-p
IG

FB
P-

1 
hy

pe
rte

ns
iv

e 
di

so
rd

er
s 

O
R

/S
D

 
m

od
el

 0
 

1.
5 

[0
.6

5;
 3

.3
] (

0.
21

) 
0.

41
 [0

.1
3;

 1
.2

] (
0.

09
2)

 

hs
C

R
P 

le
ng

th
 o

f g
es

ta
tio

n 
(w

ee
ks

/S
D

) 
m

od
el

 0
 

-0
.1

6 
[-0

.5
9;

 0
.0

24
] (

0.
18

) 
0.

4 
[0

.0
49

; 0
.6

8]
 (0

.0
46

) 

hs
C

R
P 

le
ng

th
 o

f g
es

ta
tio

n 
(w

ee
ks

/S
D

) 
m

od
el

 1
 

-0
.1

6 
[-0

.5
8;

 0
.0

27
] (

0.
19

) 
0.

41
 [0

.0
6;

 0
.6

9]
 (0

.0
48

) 

no
n-

pI
G

FB
P-

1 
in

du
ct

io
n 

of
 la

bo
r O

R
/S

D
 

m
od

el
 1

 
1.

1 
[0

.5
8;

 1
.7

] (
0.

63
) 

0.
49

 [0
.2

2;
 0

.8
8]

 (0
.0

30
) 

hi
gh

-p
IG

FB
P-

1 
hy

pe
rte

ns
iv

e 
di

so
rd

er
s 

O
R

/S
D

 
m

od
el

 0
 

1.
5 

[0
.6

5;
 3

.3
] (

0.
21

) 
0.

41
 [0

.1
3;

 1
.2

] (
0.

09
2)

 
D

at
a 

is
 g

iv
en

 a
s 

re
gr

es
si

on
 β

-e
st

im
at

es
 o

r 
od

ds
 r

at
io

s 
(O

R
) 

[9
5%

 c
on

fid
en

ce
 i

nt
er

va
l] 

(p
-v

al
ue

). 
M

od
el

 0
: 

un
ad

ju
st

ed
, m

od
el

 1
: a

dj
us

te
d 

fo
r p

re
-p

re
gn

an
cy

 B
M

I. 
SD

: s
ta

nd
ar

d 
de

vi
at

io
n,

 N
IC

U
: n

eo
na

ta
l i

nt
en

si
ve

 c
ar

e 
un

it,
 

G
W

G
: (

m
at

er
na

l) 
ge

st
at

io
na

l w
ei

gh
t g

ai
n,

 p
IG

FB
P-

1:
 p

ho
sp

ho
ry

la
te

d 
in

su
lin

-li
ke

 g
ro

w
th

 fa
ct

or
-b

in
di

ng
 p

ro
te

in
 1

, 
M

M
P-

8:
 m

at
rix

 m
et

al
lo

pr
ot

ei
na

se
 8

, h
sC

R
P:

 h
ig

h 
se

ns
iti

vi
ty

 C
R

P.
 N

on
e 

of
 th

e 
p-

va
lu

es
 w

er
e 

be
lo

w
 a

 B
on

fe
rro

ni
-

co
rre

ct
ed

 th
re

sh
ol

d 
of

 0
.0

04
5.

 



Mikael Huhtala 

 66 

5.5 Maternal lipids (Study III) 

5.5.1 Effect of metformin versus insulin on the maternal 
serum lipidome 

Serum total TG and TG in VLDL, LDL and HDL particles increased from baseline 
to 36 gw in both treatment groups (Figure 6 and Figure 7). Except for the TG in HDL 
particles, the increases of TG were greater in the metformin group. Analysis of the 
detailed classification of the lipoprotein particles showed that TG rose significantly 
in all subclasses and in both treatment groups, with the exception of TG in large 
HDL particles in the insulin group. The increase was, again, greater in the metformin 
group and statistically significant in all HDL subclasses, small LDL and small to 
very large VLDL particles. 

Serum total cholesterol rose in both treatment groups from baseline to 36 gw, but 
while the increase in TG was fairly uniform across lipoprotein subclasses, the change 
in cholesterol varied more by lipoprotein particle size. As TG, cholesterol increased 
in VLDL subclasses and this increase was significant in both treatment groups, with 
the exception of very small VLDL particles in the metformin group. The increase 
was greater in the metformin group than in the insulin group regarding medium to 
extremely large VLDL particles. Cholesterol concentrations in intermediate-density 
lipoprotein (IDL) and LDL particles remained relatively unchanged. While total 
HDL cholesterol in both groups decreased, this was mostly apparent in large and 
very large HDL particles. Medium HDL in the metformin group and small HDL in 
either treatment group did not change. When stratified into free and esterified 
cholesterols, both lipid classes increased similarly and independently of treatment, 
but the change was significant in both groups only for free cholesterol. 

The mean VLDL particle diameter increased in both groups, but significantly 
more in the metformin-treated group. The average LDL particle diameter decreased 
only in the insulin group and the difference between the groups was significant. The 
mean HDL particle diameter decreased similarly in both groups. 

All phospholipid species except sphingomyelins increased in both treatment 
groups. The increases in phosphoglycerides and the TG to phosphoglycerides ratio 
were greater in the metformin group. 

The apoB concentration and apoB to apoA-1 ratio increased in both groups, 
while apoA-1 concentrations did not change from baseline to 36 gw. 

Total FA increased in both treatment groups but more in the insulin group. PUFA 
increased significantly only in the metformin group whereas MUFA and SFA 
increased in both groups. The increases of MUFA and SFA were significantly greater 
in the metformin group. The proportion of PUFA (in relation to total FA) decreased 
and the proportions of MUFA and SFA increased in both groups. The decrease in 



Results 

 67 

the proportion of PUFA and the increase in the proportions of MUFA and SFA were 
augmented in the metformin group. The estimated degree of unsaturation decreased 
in both groups. 

The concentration of LA increased while the proportion of LA and DHA from 
total FA decreased in both groups. The concentrations of omega-6 FA increased but 
the proportion of both omega-3 and omega-6 FA decreased. There were no 
differences between the treatment groups in omega-3, LA and DHA. The proportion 
of omega-6 FA of total FA decreased more in the metformin group. 

Figure 6.  Median concentrations (± 95% confidence intervals) of maternal serum cholesterol (C) 
and triglycerides (TG) in total and in lipoproteins at baseline (t1) and at 36 gestational 
weeks (t2) are depicted in line graph. Statistical significance (p-value < 0.01) is denoted 
for changes within group (# metformin, § insulin) and for differences in median changes 
between groups (*). Metformin n = 99, insulin n = 91. Reproduced from original 
publication III, Figure 1. 
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Figure 7.  Impact of metformin and insulin on maternal serum lipidome. Median change scaled by 

baseline SD ± 95% CI. Closed squares / circles denote significant (p < 0.01) and open 
squares / circles non-significant change from baseline within group, * p < 0.01 
for difference in change between groups, ** p < 0.001 for difference in change between 
groups. Metformin n = 95–99 (circles), insulin n = 89–91 (squares). CI: confidence 
intervals, FA: fatty acids, MUFA: monounsaturated FA, PUFA: polyunsaturated FA, SD: 
standard deviation, SFA: saturated FA. Reproduced from original publication III, Figure 2. 
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5.5.2 Association between the maternal serum lipidome and 
birth weight in patients requiring pharmacological 
treatment 

At baseline, the maternal lipidome was associated with BW adjusted for gestational 
age (Q2 = 4.66%), among the patients requiring pharmacological treatment. Total 
TG, TG in VLDL subclasses, IDL, LDL subclasses and in small HDL were 
positively related to BW in both treatment groups combined (Figure 8). VLDL 
cholesterol, cholesterol in all VLDL except in very small VLDL and remnant 
cholesterol were positively associated with BW, whereas cholesterol in medium 
HDL was inversely related to BW. Both apoB and the apoB to apoA-1 ratio were 
positively related to BW. The TG to phosphoglycerides ratio, total FA, MUFA and 
SFA were significantly associated with higher BW. Adjustment for pBMI, GWG or 
HbA1c had no drastic effects on these associations (Figure 8). Separate regression 
coefficients for metformin and insulin groups were calculated in case there was a 
significant (p < 0.01) interaction between the independent variable and the treatment. 
The positive associations between cholesterol in VLDL, cholesterol in medium and 
small VLDL, apoB and the apoB to apoA-1 ratio with BW were significant in the 
metformin but not in the insulin group (Figure 8). In addition, there was a significant 
positive association between LA, omega-6 FA and PUFA and BW only in the 
metformin group. 
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Figure 8.  Associations between maternal serum baseline lipids and birth weight in unadjusted 

regression model and regression models adjusted for maternal pre-pregnancy BMI 
(pBMI), gestational weight gain (GWG) and glycated hemoglobin (HbA1c). Regression 
β-estimates (SD/SD) with 95% confidence intervals (CI) for significant (p < 0.01) 
associations between serum lipids at baseline and birth weight for both treatment groups 
combined (metformin and insulin). β-estimates for the groups are given individually, if 
there was a significant interaction between treatment groups and the association 
between independent and outcome variables. Closed circles denote significant (p < 
0.01) associations. Birth weight was calculated as the deviation from the Finnish general 
population mean adjusted for gestation length. n = 204 (metformin: 104, insulin: 100) for 
the unadjusted analyses and analyses adjusted for pBMI and HbA1c, n = 203 
(metformin: 103, insulin: 100) for the analyses adjusted for GWG. SD: standard 
deviation, MUFA: monounsaturated FA, PUFA: polyunsaturated FA, SFA: saturated FA. 

Among the patients who required pharmacological treatment, the maternal lipidome 
was weakly associated with a risk of SGA (Q2 = 1.36%), but not LGA (Q2 < 0). 
Logistic regression analyses showed that only higher levels of cholesterol in medium 
HDL were significantly associated with a higher SGA risk and this association 
remained relatively unchanged after adjustment for pBMI, GWG or HbA1c (Table 
11). There were no significant interactions between the treatment groups and the 
associations between maternal lipids and SGA risk. 
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Table 11.  Significant associations between maternal serum lipids and SGA risk. 

 Unadjusted Adjusted for  
pBMI 

Adjusted for 
GWG 

Adjusted for 
HbA1c 

Baseline 
n 204 (19/185) 204 (19/185) 203 (19/184) 204 (19/185) 

M-HDL cholesterol 2.0 [1.3; 3.3] * 2.0 [1.3; 3.3] * 2.0 [1.3; 3.3] * 2.1 [1.4; 3.4] * 

36 gestational 
weeks 
n 194 (20/174) 194 (20/174) 193 (20/174) 186 (19/167) 

Total cholesterol 0.52 [0.3; 0.78] 0.52 [0.30; 0.80] 0.51 [0.29; 0.78] 0.44 [0.25; 0.68] * 

LDL cholesterol 0.46 [0.27; 0.71] 0.47 [0.27; 0.76] 0.46 [0.27; 0.75] 0.39 [0.23; 0.62] * 

Esterified cholesterol 0.53 [0.31; 0.78] 0.53 [0.31; 0.8] 0.52 [0.3; 0.79] 0.45 [0.26; 0.69] * 

Free cholesterol 0.5 [0.28; 0.77] 0.5 [0.28; 0.79] 0.49 [0.26; 0.78] 0.43 [0.23; 0.69] * 

XS-VLDL cholesterol 0.46 [0.26; 0.71] 0.46 [0.26; 0.75] 0.46 [0.25; 0.74] 0.41 [0.24; 0.67] * 

IDL cholesterol 0.47 [0.27; 0.71] 0.47 [0.28; 0.73] 0.46 [0.26; 0.74] 0.39 [0.23; 0.63] * 

L-LDL cholesterol 0.46 [0.27; 0.72] 0.47 [0.27; 0.75] 0.46 [0.26; 0.74] 0.39 [0.23; 0.63] * 

M-LDL cholesterol 0.46 [0.26; 0.72] 0.46 [0.27; 0.74] 0.46 [0.26; 0.74] 0.39 [0.22; 0.61] * 

S-LDL cholesterol 0.47 [0.27; 0.72] 0.47 [0.27; 0.76] 0.47 [0.26; 0.74] 0.4 [0.23; 0.63] * 

Sphingomyelins 0.56 [0.33; 0.85] 0.57 [0.33; 0.87] 0.55 [0.33; 0.86] 0.48 [0.29; 0.73] * 
Logistic regression β-estimates (odds ratio / standard deviation) [95% confidence intervals] are 
given for unadjusted model and models adjusted for maternal pre-pregnancy BMI (pBMI), 
gestational weight gain (GWG) and glycated hemoglobin (HbA1c). Small for gestational age (SGA) 
was defined as birth weight < 10th centile. The number of patients in each analysis (n) are given as 
total (SGA / non-SGA). Non-SGA was used as a reference. * p < 0.01. 

The difference between metformin and insulin treatments regarding the association 
between selected maternal lipid concentrations at baseline and BW was further 
studied by stratifying the data into quartiles by maternal lipid concentrations and by 
comparing BW between the treatment groups within each lipid quartile (Table 12). 
The mothers who had the highest baseline VLDL cholesterol or apoB to apoA-1 ratio 
delivered heavier babies in the metformin group. In no other quartiles were there any 
significant differences between the groups. 
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Table 12.  Birth weight centiles of neonates to metformin and insulin-treated GDM patients 
stratified by baseline maternal serum lipid quartiles. Modified from original publication 
III, Table 2. 

 Q1 Q2 Q3 Q4 
Total triglycerides    
Range (mmol/l) 0.91–2.05 2.06–2.52 2.53–3.02 3.03–5.13 
Metformin 0.38 [0.31; 0.58] 

(29) 
0.46 [0.31; 0.66] 
(29) 

0.69 [0.54; 0.79] 
(26) 

0.74 [0.58; 0.84] 
(20) 

Insulin 0.42 [0.31; 0.62] 
(24) 

0.60 [0.34; 0.76] 
(22) 

0.67 [0.58; 0.88] 
(24) 

0.54 [0.34; 0.69] 
(30) 

p-value 0.50 0.31 0.96 0.061 
VLDL cholesterol    
Range (mmol/l) 0.55–1.06 1.07–1.32 1.33–1.58 1.59–2.63 
Metformin 0.38 [0.24; 0.56] 

(29) 
0.48 [0.34; 0.58] 
(26) 

0.6 [0.46; 0.79] 
(32) 

0.79 [0.66; 0.86] 
(17) 

Insulin 0.42 [0.29; 0.65] 
(23) 

0.54 [0.34; 0.71] 
(26) 

0.71 [0.58; 0.9] 
(18) 

0.54 [0.34; 0.71] 
(33) 

p-value 0.36 0.52 0.37 0.014# 
VLDL triglycerides    
Range (mmol/l) 0.41–1.17 1.18–1.52 1.53–1.93 1.94–3.86 
Metformin 0.42 [0.31; 0.66] 

(29) 
0.48 [0.34; 0.62] 
(26) 

0.66 [0.46; 0.76] 
(27) 

0.76 [0.58; 0.84] 
(22) 

Insulin 0.42 [0.29; 0.54] 
(23) 

0.62 [0.44; 0.76] 
(26) 

0.67 [0.46; 0.88] 
(22) 

0.54 [0.42; 0.73] 
(29) 

p-value 0.80 0.30 0.64 0.085 
ApoB to apoA-1 ratio    
Range (ratio) 0.36–0.67 0.68–0.79 0.80–0.90 0.91–1.34 
Metformin 0.34 [0.18; 0.42] 

(31) 
0.54 [0.46; 0.71] 
(26) 

0.62 [0.42; 0.76] 
(29) 

0.76 [0.60; 0.96] 
(18) 

Insulin 0.42 [0.27; 0.66] 
(22) 

0.58 [0.48; 0.76] 
(23) 

0.64 [0.46; 0.76] 
(22) 

0.66 [0.38; 0.76] 
(33) 

p-value 0.32 0.76 0.92 0.026# 
Data is reported as median birth weight percentile [95% confidence interval] (n) in quartiles (Q1–
Q4) of each lipid (total triglycerides, VLDL cholesterol, VLDL triglycerides, apolipoprotein B to A-1 
ratio). Birth weight was calculated as the deviation from the Finnish general population mean 
adjusted for gestation length. p-value is given for the Mann-Whitney U test for comparisons of birth 
weights between treatment groups in each lipid quartile. # The differences between metformin and 
insulin groups in Q4 were significant (0.01 < p < 0.05), also after adjustment (ANCOVA) separately 
for pre-pregnancy BMI, maternal gestational weight gain and baseline HbA1c. 

The association between the maternal lipidome and BW was not as strong as at 
baseline at 36 gw (Q2 = 1.48%) in the combined metformin and insulin groups. 
Analyzed individually, only TG in total LDL, TG in medium and large LDL and 
cholesterol in small and very small VLDL were positively related to BW (Figure 9). 
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Adjustment for pBMI, GWG or HbA1c had only a modest effect on these 
associations (Figure 9). When separate regression coefficients for the metformin and 
the insulin group were taken into consideration, the associations between TG IDL, 
cholesterol in small VLDL and BW were significant in the metformin but not in the 
insulin group. There was a significant association between TG in small and very 
small VLDL, cholesterol in VLDL, remnant cholesterol, apoB, apoB to apoA-1 ratio, 
LA, omega-6 FA and total FA only in the metformin group (Figure 9). 

In the pharmacological treatment group, the serum lipidome at 36 gw was weakly 
associated with SGA (Q2 = 0.60%) but not with LGA (Q2 < 0) risk. None of the lipids 
was individually significantly associated with the risk of SGA. After adjusting for 
maternal HbA1c at 36 gw there were significant inverse associations between total 
cholesterol, cholesterol in very small VLDL, IDL cholesterol, cholesterol in all LDL 
subclasses, esterified cholesterol, free cholesterol and sphingomyelins and the risk 
of SGA (Table 11). 

 
Figure 9.  Associations between maternal serum lipids at 36 gestational weeks and birth weight in 

unadjusted regression model and regression models adjusted for maternal pre-
pregnancy BMI (pBMI), gestational weight gain (GWG) and glycated hemoglobin 
(HbA1c). Regression β-estimates (SD/SD) with 95% confidence intervals (CI) for 
significant (p < 0.01) associations between serum lipids at baseline and birth weight for 
both treatment groups combined (metformin and insulin). β-estimates for the groups are 
given individually, if there was a significant interaction between treatment groups and 
the association between independent and outcome variables. Closed circles denote 
significant (p < 0.01) associations. Birth weight was calculated as the deviation from the 
Finnish general population mean adjusted for gestation length. n = 194 (metformin: 96, 
insulin: 98) for the unadjusted analyses and analyses adjusted for pBMI, the 
corresponding n-values for the analyses adjusted for GWG and HbA1c are combined: 
193, metformin: 95, insulin 98 and combined: 186, metformin: 93, insulin: 93. 
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5.5.3 Association between maternal serum lipidome and 
other clinical outcome variables than birth weight  

At baseline, the maternal serum lipidome was associated with total GWG (Q2 = 
3.33%) and length of gestation at delivery (Q2 = 1.14%) by multivariate PLS 
regression. Similarly, at 36 gw the maternal serum lipidome was associated with total 
GWG (Q2 = 3.20%), but not with length of gestation at delivery. The maternal serum 
lipidome was neither at baseline nor at 36 gw associated with hypertensive disorders, 
risk of cesarean delivery, NICU admission or neonatal I.V. glucose administration 
(Q2 < 0). Of note, in the PLS models on maternal serum lipidome and GWG at 
baseline and at 36 gw, the first three components of the PLS decomposition were 
predictive for the outcome, whereas only the association between the first PLS 
component and the outcome was significant regarding the other outcome variables. 

The significant (p < 0.01) associations between maternal serum metabolites and 
GWG are presented in Table 13. At baseline, only the ratio of MUFA to total FA 
was inversely related to GWG. This association was attenuated when the model was 
adjusted for pBMI but not when adjusted for HbA1c. At 36 gw, TG in large HDL 
and mean diameter of HDL were positively related to GWG. The association 
between TG in large HDL and GWG was not affected by adjustment for HbA1c. The 
ratio of SFA to total FA was significantly and positively related to GWG only after 
adjustment for pBMI. Treatment (metformin or insulin) did not interact significantly 
with the associations between maternal lipids and GWG. 

Regression analyses revealed no significant associations between individual 
lipids at baseline and length of gestation at delivery. 

Table 13.  Significant associations between maternal serum lipids and gestational weight gain. 

 Unadjusted Adjusted for  
pBMI 

Adjusted for 
HbA1c 

Baseline    
Ratio of MUFA to total FA -0.2 [-0.33; -0.074] * -0.15 [-0.27; -0.023] -0.2 [-0.33; -0.074] * 

36 gestational weeks    

Triglycerides in large HDL 0.21 [0.08; 0.35] * 0.17 [0.049; 0.3] 0.19 [0.058; 0.32] * 

Mean diameter of HDL particles 0.19 [0.044; 0.34] * 0.17 [0.04; 0.3] 0.17 [0.033; 0.32] 

Ratio of SFA to total FA 0.18 [0.04; 0.32] 0.2 [0.078; 0.33] * 0.12 [-0.033; 0.27] 
Data is reported as β-estimates (SD/SD) with 95% confidence intervals for unadjusted regression 
models and models adjusted for pre-pregnancy BMI (pBMI) and maternal glycated hemoglobin 
(HbA1c). * p < 0.01. SD: standard deviation, MUFA: monounsaturated fatty acids, FA: fatty acids, 
SFA: saturated fatty acids. 
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5.6 Cord serum metabolome (Study IV) 

5.6.1 Effect of maternal metformin and insulin treatments on 
the cord serum metabolome 

The cord serum metabolites were compared between all three groups (diet, insulin 
and metformin). The only statistically significant difference at a level of p < 0.01 
was higher alanine in the metformin group (0.53 mmol/l) than in the insulin (0.45 
mmol/l, p < 0.001) or the diet group (0.46 mmol/l, p < 0.0001) (Figure 10). 

 
Figure 10. Boxplot representation of the distributions of cord serum alanine concentration in groups 

treated with diet, insulin and metformin. Interquartile ranges with medians are marked 
with boxes and whiskers denote range. Outliers, defined as being further away than 1.5 
times the interquartile range from the median, are marked with circles. P-values are 
given for differences in the Dwass-Steele test and only significant values are shown, 
Submitted manuscript IV, Figure 1. 

5.6.2 Associations between cord serum metabolites and 
birth weight 

The associations between cord serum metabolites and BW were first calculated in 
the whole study population (diet, metformin and insulin groups). Unadjusted 
regression models showed that the ratio of TG to phosphoglycerides and the average 
VLDL diameter were inversely related to BW (Figure 11). The proportion of omega-
6 FA of total FA, the ratio of omega-6 to omega-3 FA and the ratio of PUFA to 
MUFA were positively associated with BW. Accordingly, the proportions on MUFA 
and omega-3 FA, DHA and omega-3 FA were inversely related to BW. Of the amino 
acids, only histidine was significantly related to BW. In addition, two ketones, 3-
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hydroxybutyrate and acetone, were positively associated with BW. When adjusted 
for pBMI, GWG or maternal baseline HbA1c, also cholesterol in very large HDL 
and the average HDL diameter were significantly associated with BW. The positive 
association between total lipids in very large HDL and BW was significant only after 
adjustment for HbA1c and the positive association between the proportion of PUFA 
and BW when adjusted for pBMI. The degree of unsaturation was significantly 
associated with higher BW after adjustment for pBMI or GWG. 

The treatment group interacted significantly (p < 0.05) only with the association 
between the omega-6 to omega-3 FA ratio and BW. The association was significant 
in the insulin group (0.34; CI: 0.12, 0.56 SD/SD), but not in the metformin (0.22; CI: 
-0.010, 0.45 SD/SD) or the diet group (0.045; CI: -0.12, 0.21 SD/SD). Adjustment 
for mode of delivery did not notably affect the results. 

 
Figure 11. Significant associations between cord serum metabolites and birth weight. β-estimates 

(SD/SD) with 95% confidence intervals (CI) are shown for unadjusted linear regression 
and regression models adjusted for maternal pre-pregnancy BMI (pBMI), gestational 
weight gain (GWG) and maternal glycated hemoglobin (HbA1c). Birth weight was 
expressed in SD units, i.e., deviation from the Finnish population mean BW adjusted for 
gestation duration. White bars denote p < 0.05 and gray bars p < 0.01. Only associations 
with p < 0.05 are shown. SD: standard deviation, FA: fatty acids, DHA: docosahexaenoic 
acid, MUFA: monounsaturated FA, PUFA: polyunsaturated FA, SGA: saturated FA. 
Submitted manuscript IV, Figure 2. 
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6 Discussion 

Treatment of GDM is beneficial (Crowther et al., 2005; Langer et al., 2005a; Landon 
et al., 2009). Still, the outcomes of GDM pregnancies are inferior to non-GDM 
pregnancies (Reinders et al., 2020), and more work is required to optimize GDM 
treatment and to reduce maternal and neonatal risks. 

Metformin treatment of GDM is more affordable and comfortable for the patient 
than injectable insulin. Metformin is also comparable, if not superior, to insulin 
regarding short-term perinatal outcomes (Butalia et al., 2017; Farrar et al., 2017b). 
In this study the effects of metformin treatment on maternal and neonatal 
metabolome were assessed with the aim of identifying metabolic and inflammatory 
risk factors that indicate antihyperglycemic pharmacological treatment. The 
associations between these factors and adverse perinatal outcomes in GDM were 
studied to evaluate the metabolic safety of metformin. 

The main novel findings were: First, the concentration of serum alanine, total 
TG, VLDL TG and total FA increased more in the metformin-treated patients than 
the insulin-treated patients. Second, the associations between maternal VLDL 
cholesterol and the apoB to apoA-1 ratio and BW differed between the metformin 
and insulin groups. Third, compared to insulin, the metformin treatment of GDM 
had no effects on neonatal metabolome except the higher cord serum alanine. 

6.1 Methodological and ethical considerations and 
strengths and limitations of the study 

The study population was derived from a previous randomized controlled trial (Tertti 
et al., 2013). A placebo group was not possible for ethical reasons. Hence, as a 
reference group, patients who met the same inclusion and exclusion criteria, but who 
achieved appropriate glycemic goals without pharmacological interventions, were 
included. The original trial was approved by the local ethics committee with 
appropriate drug regulatory agencies as described in section 4.1. In this secondary 
analysis no new samples were collected in addition to those that had already been 
collected and the subjects were aware that blood samples could be studied later. 

The strengths of the study are the prospective longitudinal design, treatment 
allocation to either metformin or insulin by randomization, the large sample size and 
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the use of validated metabolome analysis method. There are no previous studies 
comparing the effects of metformin versus insulin on the maternal serum or neonatal 
cord blood serum metabolome in pregnancies complicated by GDM. 

The use of data from a randomized trial reduces the risk of selection bias for each 
treatment and the groups were comparable at baseline. This makes the evaluation of 
drug effects between the groups reliable. However, because there was no placebo 
group, evaluation of metformin and insulin effects individually was challenging. 
Having had serum samples also from the diet group at 36 gw would have helped 
interpretation of the results. 

The study population is ethnically homogenous, rather large and the overall 
glycemic control was good. Although this benefits the interpretation of the data, the 
results may not be generalized to populations of other ethnic background or with 
poor glycemic control. For a more detailed picture of the glycemic control of the 
study subjects, CGM data would be needed. 

NMR was applied to analyze the targeted maternal serum metabolome. This 
method is fast and has good reproducibility (Soininen et al., 2009). All serum 
samples were stored at -70°C prior to analyses and analyzed concurrently. High 
throughput and reliable data may make NMR usable for biochemical analyses also 
in the clinical settings in the future. A drawback of NMR is, however, its limited 
capacity to measure metabolites present in very low concentrations. 

To analyze the large metabolome datasets, both univariate and multivariate 
methods were used. PLS and PLS-DA are suitable methods for intercorrelated data 
(Worley et al., 2015), such as metabolome datasets, and were used in our study to 
estimate the associations between the maternal serum lipidome and measures of BW. 
Stricter thresholds for p-values were applied and cross-validation was used in the 
multivariate models to decrease the risk of type I error, i.e., false positive. 

Since this was a secondary analysis, we could not affect the number of patients 
in the study. The original randomized trial was powered to prove non-inferiority of 
metformin compared to insulin, regarding the BW variable. Hence, the present study 
was underpowered to study associations in detail between single maternal 
metabolites and some of the infrequent perinatal outcomes. Moreover, the 
indications for inductions of labor and for cesarean deliveries were not recorded, 
which complicates the interpretation of the data. 

6.2 Antihyperglycemic treatment need is poorly 
reflected by maternal serum metabolome or 
inflammatory markers 

At the time of the GDM diagnosis, there were only few differences between the 
patients requiring and not requiring pharmacological treatment. Maternal serum 
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glutamine was higher (p = 0.009) and glucose lower (p < 0.0001) in the diet group 
and, at a p-value threshold of 0.05, also TG in small VLDL was marginally lower in 
the diet group (p = 0.046). 

The lower glutamine in the diet groups fits the notion that outside pregnancy 
glutamine is inversely associated with an increased risk of T2DM (Cheng et al., 
2012; Guasch-Ferré et al., 2016). It is however unclear whether glutamine is altered 
in GDM (Butte et al., 1999; Cetin et al., 2005; Pappa et al., 2007; Rahimi et al., 
2017; Mokkala et al., 2020b). 

Comparing the maternal metabolome between the highest and lowest fasting 
glucose deciles of the HAPO cohort, several amino acids (including alanine, proline, 
glutamine/glutamate, arginine and leucine/isoleucine), TG and 3-hydroxybutyrate 
were higher in the high glucose group (Scholtens et al., 2014). These results are 
similar to ours, although the mean fasting plasma glucose values were quite different 
from our study population: in the HAPO the OGTT fasting plasma glucose values 
were 5.3 mmol/l (94.9 mg/dl) and 3.8 mmol/l (68.5 mg/dl), in the high and low 
glucose groups, respectively. (In our study the fasting glucose values were 5.38 
mmol/l in the diet and 5.54 mmol/l in the combined pharmacological treatment 
group.) 

Perhaps less stringent inclusion criteria to include also milder forms of GDM 
would have yielded different results, but our data show that at the time of diagnosis 
the maternal metabolome is unlikely to distinguish patients who will require 
pharmacological treatment from those who will not. An explanation might be that 
there are behavioral factors, e.g., adherence to medical nutrition therapy, that 
contribute to the need of pharmacological therapy, but are unrelated to the maternal 
metabolome. In a large metabolomic analysis it was found that maternal 
acylcarnitines, in particular, measured at 1 h after glucose load but not at fasting, 
were, mostly positively, related to glucose values (Scholtens et al., 2016). Thus, 
analysis of the maternal metabolome also after an oral glucose load might improve 
identification of patients who will need pharmacological treatment.  

6.3 Metformin treatment compared to insulin 
causes distinct alterations in the maternal 
metabolome 

6.3.1 Increased alanine concentration 
In previous population studies most amino acids increased from the second to the 
third trimester, except valine which decreased clearly (Lindsay et al., 2015; Wang et 
al., 2016). These changes were more pronounced in our study among women with 
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GDM, who also had an increase in glycine, in contrast to a decrease observed in 
healthy pregnancies (Lindsay et al., 2015). 

The changes in the concentrations of individual amino acids were similar in the 
metformin and insulin groups with few exceptions. Most noticeably, metformin led 
to a greater increase in maternal serum alanine than insulin. An increase in alanine 
in response to metformin has been demonstrated earlier in non-pregnant subjects 
both with and without diabetes (Nattrass et al., 1977; Preiss et al., 2016; Eppinga et 
al., 2017). 

The metformin-related increase in alanine may be due to suppression of 
gluconeogenesis in the liver (Hundal et al., 2000), which causes accumulation of 
gluconeogenic substrates, such as alanine and lactate. Metformin has also been 
shown to suppress glucagon signaling in the liver (Miller et al., 2013). The paradigm 
that metformin actually affects gluconeogenesis has, nevertheless, been challenged 
and instead metformin might increase non-oxidative glucose disposal with a 
simultaneous rise in serum glucagon (Gormsen et al., 2019). The relationship 
between glucagon and alanine is inverse rather than positive (Wewer Albrechtsen et 
al., 2018), and hence it is unlikely that the effect of metformin on alanine could be 
explained by increased glucagon. Nonetheless, increases in non-oxidative glucose 
disposal could lead to increases in alanine and lactate, as well. 

The observed increase in isoleucine in the metformin group compared to the 
insulin group seems paradoxical. Previously it has been reported that isoleucine and 
leucine are raised in T2DM patients on metformin (Safai et al., 2018) and increased 
in response to metformin in insulin resistant, but not insulin sensitive patients 
without T2DM (Walford et al., 2013). According to earlier studies insulin reduces 
leucine concentrations (Castellino et al., 1987), while metformin has no effects on 
amino acid metabolism (Tessari et al., 1994). The greater increase of isoleucine in 
the metformin group observed in our data could thus be due to insulin attenuating 
the increase of leucine and isoleucine. 

6.3.2 Increased triglyceride and very low-density 
lipoproteins 

The changes in maternal lipids during the last trimester of pregnancy were generally 
parallel in the insulin and metformin groups. Increased insulin resistance and 
estrogen cause increased VLDL production and decreased clearance (Herrera et al., 
2016). Consequently, several studies have reported a progressive increase in 
circulating VLDL in pregnancy (Jimenez et al., 1988; Montelongo et al., 1992; 
Wang et al., 2016; Mills et al., 2019). 

In our study LDL TG increased also, but LDL cholesterol did not. The LDL TG 
increase is probably due to increased CETP activity (Silliman et al., 1993; Iglesias 
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et al., 1994) as has been reported previously (Alvarez et al., 1996; Wang et al., 2016; 
Mills et al., 2019). In previous studies, LDL cholesterol increased from the second 
to the third trimester (Jimenez et al., 1988; Alvarez et al., 1996; Wang et al., 2016), 
although not in GDM (Montelongo et al., 1992; Barrett et al., 2013a). 

Similarly as TG in VLDL and LDL, also HDL TG increased, in agreement with 
previous findings (Montelongo et al., 1992; Alvarez et al., 1996; Wang et al., 2016). 
The changes in HDL cholesterol are, however, more complex: HDL2 cholesterol 
decreases and HDL3 cholesterol increases during the last half of pregnancy (Alvarez 
et al., 1996; Wang et al., 2016; Mills et al., 2019). This is in accordance with our 
data, where cholesterol in the larger HDL particles tended to decrease and cholesterol 
in small HDL did not change in either treatment group. Total HDL cholesterol did, 
however, decrease. We also observed a small decrease in mean HDL particle size 
which may reflect a change in the lipid content or in HDL subclass distribution. 

In accordance with other studies, the mean VLDL size increased (Wang et al., 
2016; Mills et al., 2019), probably due to increased TG content. 

In a large randomized trial comparing metformin and insulin in GDM (the MiG 
trial), maternal TG increased significantly more in the metformin than the insulin 
group (Barrett et al., 2013a). A smaller trial showed a marginally and non-
significantly higher TG concentration among women treated with metformin 
compared to insulin (Zawiejska et al., 2016). We extend these findings by showing 
that the increase in TG is evident in virtually all VLDL and HDL lipoprotein particle 
subclasses. Of the LDL fractions, this difference was significant only in small LDL 
particles. 

There was also a higher increase in VLDL cholesterol in the metformin than the 
insulin group, probably due to an overall greater increase in VLDL particle 
concentrations. 

Our study did not include a placebo group and it is thus not reasonable to expect 
robust discrimination of whether the observed differences between the two 
treatments are attributable to metformin or insulin. As suggested by Barrett et al., 
women randomized to metformin treatment might have substituted more 
carbohydrates with dietary fat in order to stay normoglycemic and avoid additional 
insulin (Barrett et al., 2013a). 

There are several reasons, however, to assume that the difference in our study 
regarding TG, especially in VLDL subfractions, is attributable to insulin treatment. 
First, in a meta-analysis of T2DM patients metformin did not affect plasma TG 
(Wulffelé et al., 2004). Second, a placebo-controlled study showed that metformin 
did not affect maternal TG during pregnancy (Chiswick et al., 2015). And third, 
metformin does not affect hepatic VLDL TG secretion in T2DM (Gormsen et al., 
2018), while insulin suppresses VLDL TG secretion (Sørensen et al., 2011). 
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Total FA increased in both treatment groups and this increase was mostly driven 
by SFA and MUFA. The proportion of MUFA, omega-3 FA and omega-6 FA of 
total FA decreased. These findings are in agreement with a previous large cohort 
study (Wang et al., 2016). 

The increase in total FA, SFA and MUFA was greater and the proportions of 
omega-6 FA, PUFA and MUFA of total FA decreased more in the metformin group. 
In contrast, a previous small randomized trial of non-pregnant subjects showed that 
metformin did not affect the serum FA profile (Rodríguez et al., 2004). The 
difference may be explained by pregnancy and GDM. In addition, in our study 
metformin treatment was compared to insulin, not placebo. Metformin may cause 
gastrointestinal side effects and, as discussed above, the patients on metformin may 
have additional incentive to remain normoglycemic and switch dietary 
carbohydrates to fat. The differences in circulating FA could reflect differences in 
dietary patterns, or altered FA metabolism during GDM pregnancy. 

Compared to insulin, metformin treatment led to more atherogenic lipid profile 
in pregnant women with GDM. As the dyslipidemia resolves rather quickly 
postpartum (Barrett et al., 2013a), it seems unlikely that metformin would increase 
the risk of major long-term adverse cardiovascular outcomes for the mothers. On the 
other hand, insulin is associated with higher GWG and weight retention postpartum 
(Rowan et al., 2008). The effects of metformin or insulin treatment on maternal long-
term outcomes and the importance of maternal serum lipidome in this regard warrant 
further follow-up studies. 

6.3.3 Effect of metformin on inflammatory markers 
Of the four measured inflammatory markers, hsCRP decreased, IL-6 and GlycA 
increased and MMP-8 remained unchanged during the last third of pregnancy in the 
patients treated with either metformin or insulin. The decrease in CRP and increase 
in IL-6 and GlycA are in line with previous data on non-diabetic women (Christian 
et al., 2014; Wang et al., 2016). The changes in serum MMP-8 have not been 
previously studied in pregnancy. In general, the concentrations of CRP and IL-6 
correlate positively, since IL-6 promotes CRP secretion in the liver, but the direction 
of change was opposite between hsCRP and IL-6. Compared to insulin, metformin 
affected neither hsCRP, IL-6 nor MMP-8. Maternal CRP was studied in a subsample 
of the MiG trial and the authors reported, in agreement with our data, that metformin 
compared to insulin did not affect CRP (Barrett et al., 2013a). They also found that 
CRP remained unchanged from baseline to 36 gw, whereas we observed a decrease. 
This discrepancy may be related to higher BMI in the MiG trial compared to our 
study, since hsCRP is related to maternal BMI (Kuzmicki et al., 2008; Christian et 
al., 2014), or to a higher baseline CRP in the MiG trial. 
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GlycA increased significantly in both groups, but more in the metformin group. 
It is elevated in pregnancies complicated by GDM (White et al., 2017; Mokkala et 
al., 2020b), and in early pregnancy GlycA is positively related to insulin resistance, 
TG and LDL cholesterol (Mokkala et al., 2017). According to one study, four months 
treatment with metformin outside pregnancy did not affect serum GlycA (Eppinga 
et al., 2017), but in another smaller study GlycA was lower among metformin-treated 
patients with T2DM compared to untreated patients (Huo et al., 2009). GlycA is a 
composite marker of several serum proteins, such as α-1-acid glycoprotein, 
haptoglobin, α-1-antitrypsin, α-1-antichymotrypsin and transferrin (Bell et al., 
1987), which have their own trajectories during pregnancy (Honda et al., 1990; 
Larsson et al., 2008). We found that GlycA correlated positively with HbA1c and 
fasting C-peptide at baseline, but not with HbA1c at 36 gw. Hence, the composition 
of GlycA may be different in different stages of pregnancy, but also GDM treatment 
may affect single components of GlycA. We did not find significant associations 
between late pregnancy GlycA and perinatal outcomes; the significance of elevated 
GlycA in the third trimester of pregnancy needs further evaluation. 

6.4 Changes in IGFBP-1 phosphoisoforms and 
association with birth weight 

According to previous studies IGFBP-1 concentrations increase in early pregnancy 
and remain relatively unchanged thereafter (Clapp et al., 2004; Larsson et al., 2013). 
In contrast, in late pregnancy complicated by GDM we observed a clear increase in 
all IGFBP-1 phosphoisoform serum concentrations. In the metformin group, the 
increase in non-pIGFBP-1 was significantly higher than in the insulin group and a 
similar trend was also seen for low-pIGFBP-1. In PCOS, metformin increases 
IGFBP-1 (De Leo et al., 2000; Jakubowicz et al., 2001; Pawelczyk et al., 2004). 
Insulin inhibits IGFBP-1 production, and the increase in IGFBP-1 concentration in 
the metformin group could be due to improved insulin sensitivity and, consequently, 
to lower plasma insulin levels. However, also a direct effect of metformin on IGFBP-
1 production has been demonstrated in vitro in malignant endometrial cells (Xie et 
al., 2014). Moreover, as shown in patients with breast cancer, the effects of 
metformin treatment on IGFBP-1 are dependent on the patient’s BMI with greater 
increases in overweight patients (DeCensi et al., 2014). 

While non-pIGFBP-1 increased more in the metformin group than the insulin 
group, there were no differences in high-pIGFBP-1, which was the most abundant 
phosphoisoform. Previously both high and low phosphorylated isoforms of IGFBP-
1 have been reported to be higher in pregnant women with T1DM than in nondiabetic 
controls (Gibson et al., 1999). IGFBP-1 is inversely related to maternal insulin 
resistance in pregnancy (Ramirez et al., 2014) and the association seems to be related 
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to non-pIGFBP-1 rather than the phosphorylated form (Mokkala et al., 2020a). In a 
small study, high-pIGFBP-1 in T1DM was inversely related to BW, but low-
pIGFBP-1 was not (Gibson et al., 1999). Similarly, in a population cohort IGFBP-1 
was inversely related to BW (Åsvold et al., 2011). Hence, it seems that maternal 
IGFBP-1 is inversely related to BW, although there may be differences between 
uncomplicated pregnancies and pregnancies complicated by diabetes. 

In our data only the non-pIGFBP-1 isoform at baseline was inversely related to 
BW. The reason for the lack of an association between IGFBP-1 at h36 and BW may 
be initiation of GDM treatment, which may have affected IGFBP-1 concentrations 
as well as the risk of fetal overgrowth. 

6.5 Association of metformin exposure with cord 
serum alanine and lipids 

Changes in maternal serum lipid profiles in late pregnancy were different between 
metformin and insulin-treated patients. Thus, it was unexpected to see essentially 
similar cord serum lipidome in the metformin, insulin and diet-treated patients. 
Previously the MiG trial showed that cord plasma TG, HDL cholesterol and LDL 
cholesterol are unaffected by metformin treatment compared to insulin (Barrett et 
al., 2013a). We confirm these findings and demonstrate in a larger dataset that 
neither metformin nor insulin treatment of GDM affects the cord serum lipidome. It 
was also reassuring to find similar concentrations of cord serum lactate and ketone 
bodies in both treatment groups. Although the clinical characteristics of the diet 
group were not identical to those on pharmacological treatment, there were very few 
differences in maternal baseline or outcome variables. Thus, it is justified to use this 
diet group as a reference when comparing the cord serum metabolome of neonates 
to mothers treated with metformin and insulin. 

While the lipidome was not affected, cord serum alanine was significantly higher 
in the offspring of women who were treated with metformin for GDM than women 
treated with insulin or diet only. A similar increase was also observed in the maternal 
serum alanine in the metformin group. Increased cord alanine has been previously 
reported in GDM (Cetin et al., 2005; Dani et al., 2014), but the effects of metformin 
treatment on cord alanine have not been studied previously. 

The neonatal alanine could increase through three different mechanisms. First, 
high maternal serum alanine could result in increased placental transfer because of 
an increased concentration gradient. Accordingly, maternal and neonatal alanine 
concentrations correlate strongly, although less so in patients with GDM (Cetin et 
al., 2005). Second, metformin could, in theory, augment the placental transfer of 
alanine. Contrariwise, it has been shown that inhibition of mTOR signaling 
downregulates system A and system L amino acid transporters (Rosario et al., 2013) 
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and metformin inhibits mTOR (Kalender et al., 2010). Third, metformin – which 
crosses the placenta (Vanky et al., 2005; Tertti et al., 2010) – could directly alter 
fetal metabolism, leading to accumulation of alanine. 

As reviewed above, the exact mechanism of action of metformin is uncertain and 
consequently the effects of metformin in the fetus are not fully known. Nor are the 
regulation and role of endogenous glucose production in the human fetus fully 
understood (Girard, 1986). It has been proposed that metformin could act via the 
intestinal microbiota (Vallianou et al., 2019), that is absent in the fetus. Hence, the 
effects of metformin on glucose metabolism in the fetus, if any, could differ from 
the effects in adults. Despite the higher alanine concentrations, we did not observe 
changes in other substrates of gluconeogenesis, lactate, pyruvate, glycerol and 
glutamine. It seems therefore unlikely that metformin causes major alterations in the 
fetal metabolism in late pregnancy. 

Thus, we demonstrated a clear increase in neonatal alanine in response to 
maternal metformin treatment. The possible long-term implications of this finding 
need to be evaluated in further studies. 

6.6 Associations between maternal and neonatal 
metabolomes and birth weight 

Maternal glucose, lipids and amino acids are important determinants of fetal growth 
(Freinkel, 1980; HAPO Study Cooperative Research Group et al., 2008). In the 
present study, we examined the associations between maternal metabolites and BW 
at different stages of pregnancy. Our population consists only of patients with GDM 
and the associations may differ from those in healthy pregnancy (Schaefer-Graf et 
al., 2008, 2011). 

6.6.1 Maternal serum metabolome 

Glucose 

Strong associations between maternal fasting glucose and BW and LGA risk at 
baseline were found, but these associations were attenuated at 36 gw. This may 
suggest that glycemic control is not as an important factor for fetal growth in late 
pregnancy as in earlier pregnancy, or that once hyperglycemia was under better 
control the reduced variation in glucose values led to loss of any evident association. 
Early pregnancy hyperglycemia may be more important than currently assumed for 
accelerating fetal growth through induced fetal hyperinsulinemia (Desoye et al., 
2016). The diurnal glucose patterns related to LGA are also different in each 
trimester, and they might not be reflected in overnight fasting glucose values, which 
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may hinder the ability of this measure to predict fetal growth (Law et al., 2015, 
2019). 

Amino acids 

Of the amino acids, only baseline leucine was related positively to BW. In the HAPO 
population, leucine/isoleucine was positively related to BW 1 h after glucose load, 
but not at fasting (Kadakia et al., 2019a). The association was attenuated after 
adjustment for maternal BMI or OGTT 1 h glucose. Accordingly, in a smaller sample 
of diet treated GDM patients fasting leucine and isoleucine were positively 
correlated to BW, but this association was not significant after adjustment for fasting 
plasma glucose and pre-pregnancy body weight (Metzger, 1991). Leucine/isoleucine 
is shown to be inversely related to maternal insulin sensitivity but not BMI (Sandler 
et al., 2017). Hence, it seems that BCAA leucine and isoleucine may not be 
independently strong promoters of fetal growth but are rather indicators of maternal 
insulin resistance. 

Later, at 36 gw, alanine was associated positively with BW, although this 
association was not significant with a more conservative threshold of p < 0.01 or 
after FDR-adjustment. Separately, this association was significant for the patients on 
metformin but not on insulin treatment. There was also a significant association 
between alanine and HbA1c at 36 gw only in the metformin group. In the HAPO 
studies, similar to leucine/isoleucine, alanine at 1 h but not at fasting was positively 
related to BW (Kadakia et al., 2019a). Alanine was also inversely associated with 
maternal insulin sensitivity, and this association persisted after adjustments for 
maternal BMI or glucose (Sandler et al., 2017). Alanine is a major gluconeogenic 
precursor and could, in theory, promote fetal growth also via gluconeogenesis. 
However, based on previous studies (Hellmuth et al., 2017c; Kadakia et al., 2018, 
2019b; Lu et al., 2018; Patel et al., 2018) and our data, alanine in cord blood is not 
associated with BW. Thus, metformin probably promotes alanine accumulation in 
the more insulin resistant GDM patients, but might not independently cause 
accelerated fetal growth. 

Lipids 

There is an association between maternal TG and BW, although it is modified by 
maternal obesity and GDM status (Schaefer-Graf et al., 2008, 2011; Misra et al., 
2011; Geraghty et al., 2016; Kadakia et al., 2019a). We studied this association in 
several lipoprotein subclasses and found significant associations between BW and 
TG at baseline in VLDL, IDL and LDL, but only in small HDL particles. At 36 gw 
only IDL TG and large and medium LDL TG were significantly related to BW. 
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VLDL and LDL transfer lipids to tissues and organs, such as the placenta, while 
HDL transfers lipids in the opposite direction. Our data fits this pattern and provides 
a mechanistic explanation for the ability of TG to foster fetal growth, at least in a 
subset of patients. A Mendelian randomization analysis did not, however, support 
causal association between TG and BW (Tyrrell et al., 2016). Rather, increased TG 
could be a bystander of maternal obesity (Sandler et al., 2017), which could 
accelerate fetal growth via other mechanisms. 

At 36 gestational weeks the associations between TG and BW were less robust, 
possibly due to intervention or to a decreased impact of serum TG on BW in late 
pregnancy. 

Among different lipoprotein subclasses, the positive associations between 
cholesterol and BW were strongest regarding the VLDL lipoproteins. Of the HDL 
subclasses, cholesterol in medium HDL was inversely related to BW. An inverse 
association between HDL cholesterol and BW has been previously described in 
obese subjects (Misra et al., 2011) and in insulin-treated GDM patients (Barrett et 
al., 2013a). In our data, there was no significant interaction between metformin or 
insulin treatment in the association between medium HDL cholesterol and BW. 

Total FA, SFA and MUFA were associated positively with BW, but these 
associations were attenuated at 36 gw. LA, total omega-6 FA and PUFA were related 
to higher BW, but this association was significant only in the metformin group and 
not in the combined analysis or the insulin group alone. Previously, maternal omega-
3 FA have been positively and ARA but not total omega-6 FA inversely related to 
BW in population cohorts (Van Eijsden et al., 2008; Grootendorst-van Mil et al., 
2018). Our results seem to be in contrast to these findings, although the regulation 
of fetal growth may be different in pregnancies complicated by GDM compared to 
general pregnant population. 

There are only few studies focusing on how different GDM treatments affect the 
associations between maternal lipids and fetal growth. Most of the previous studies 
have included only or mostly women with GDM not on pharmacological treatment 
(Knopp et al., 1992; Schaefer-Graf et al., 2008, 2011). In a secondary analysis of the 
MiG trial, maternal HDL cholesterol at 36 gw correlated inversely with BW only 
among insulin-treated patients (Barrett et al., 2013a). In our data, such an association 
was not found, which may be explained by higher pBMI and higher GWG in the 
MiG trial (Barrett et al., 2013a), as the inverse relation between HDL cholesterol and 
BW is modified by maternal obesity (Misra et al., 2011).  Barrett et al. did not study 
the lipids that had  different associations to BW depending on treatment in our study, 
i.e., cholesterol in VLDL subfractions, remnant cholesterol, TG in large lipoprotein 
particles apoB to apoA-1 ratio, apoB, LA, omega-6 FA, PUFA and total FA (Barrett 
et al., 2013a). 
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We hypothesize that insulin could affect lipid metabolism and transfer in the 
placenta. This could explain the different associations between maternal lipids and 
BW between the insulin and metformin groups. Accordingly, we showed that the 
women whose VLDL cholesterol or apoB to apoA-1 ratio was in the highest quartile 
at the time of GDM diagnosis delivered heavier babies if assigned to metformin 
rather than insulin. The difference was not very marked and these findings need to 
be confirmed in a larger study. There were no differences between the whole 
treatment groups in terms of absolute or adjusted BW or incidences of LGA or SGA. 
Thus, while insulin may be more beneficial for mothers with hyperlipidemia, insulin 
therapy may have some drawbacks in terms of greater variability in glucose values. 
Indeed, the variation in glycemic control, as well as temporary hyperglycemias are 
associated with fetal growth (Law et al., 2015). 

Due to the large amount of intercorrelated lipid variables, we also ran PLS and 
PLS-DA analyses to study the associations between the maternal lipidome and BW. 
At baseline, the lipidome explained only 4.66% of the variation in BW (Q2-value), 
based on a linear multivariate PLS model. At 36 gw, the predictive capability was 
even lower: 1.48%. This was less than anticipated and underlines the importance of 
other factors than the maternal fasting lipidome as determinants of fetal growth in 
well controlled GDM patients. 

6.6.2 Cord serum metabolome 

Amino acids, glucose, lactate and ketones 

Transfer of several amino acids is altered in GDM pregnancies (Cetin et al., 2005), 
but based on our data only histidine in cord serum seems to be related to BW. 
Previous studies have reported that histidine, glycine and taurine are decreased in 
SGA fetuses (Cetin et al., 1990) and a population cohort study that histidine is 
positively related to BW (Hellmuth et al., 2017c), albeit this association did not reach 
the Bonferroni-corrected p-value threshold. In our data, the relationship between 
cord serum histidine and BW was independent of treatment group and robust against 
adjustment for pBMI, GWG and maternal HbA1c. The reason why only histidine, of 
all amino acids, was associated with BW may be related to the close relationship 
between histidine and nucleotide metabolic pathways. 

Two ketones, 3-hydroxybutyrate and acetone, were positively related to BW. 
Fetal production of ketones is minimal and 3-hydroxybutyrate in the cord serum is 
mostly of maternal origin, as 3-hydroxybutyrate crosses the placenta (Herrera et al., 
2006). Maternal ketones, including 3-hydroxybutyrate are increased in GDM 
(Montelongo et al., 1992; Pappa et al., 2007; Scholtens et al., 2014; Dudzik et al., 
2017; Mokkala et al., 2020b) and previous studies have shown that 3-
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hydroxybutyrate and its metabolite acylcarnitine C4-OH are positively related to BW 
(Kadakia et al., 2019b). The degree to which the fetus can utilize ketones for 
lipogenesis is not known (Herrera et al., 2006). 

Lipids 

Inverse relationships between cord serum total TG, VLDL TG and BW were 
observed. These associations were stronger when adjusted for maternal pBMI, but 
did not reach statistical significance. Instead, there were significant inverse 
associations between the ratio of TG to phosphoglycerides, mean VLDL diameter 
and BW. Previously, cord blood TG has been inversely related to BW in pregnancies 
complicated by GDM (Schaefer-Graf et al., 2008) or obesity (Patel et al., 2018). It 
has been proposed that since larger fetuses have greater amounts of adipose tissue, 
TG uptake increases. Fetal hyperinsulinemia associated with GDM could also 
promote TG uptake in fetal peripheral tissues. In our study this association was most 
evident in TG-rich VLDL lipoproteins which transfer lipids into peripheral tissues. 
In FGR (Sanz-Cortés et al., 2013; Miranda et al., 2018) and SGA neonates (Nagano 
et al., 2013) VLDL particle concentrations and VLDL TG are increased, possibly 
due to compromised uptake and utilization. 

Cholesterol in very large and large HDL particles and the average diameter of 
HDL particles were positively related to BW, but total cholesterol was not. While 
the concentrations of LDL and VLDL cholesterol in cord serum are low, the HDL 
cholesterol is closer to the concentration in adult serum. The apolipoprotein 
composition of fetal HDL with a relative abundance of apolipoprotein E is, however, 
different from the composition in adults (Nagasaka et al., 2002). HDL could thus be 
an important lipoprotein for facilitating fetal lipid transfer, since apolipoprotein E 
acts as a ligand for a variety of receptors, including LDL receptors. In our data, the 
associations between HDL diameter, HDL cholesterol and BW were significant after 
adjustment for pBMI, GWG or HbA1c. This suggests that fetal HDL transport may 
be an important regulator of fetal growth, partly independently of maternal glycemia. 
However, since all pregnancies in our study population were complicated by GDM 
the data is not representative of normoglycemic pregnancies. Cord serum HDL 
cholesterol has previously been positively related to IGF-1 (Nagano et al., 2013) and 
negatively to SGA (Pecks et al., 2012; Nagano et al., 2013), further supporting the 
role of HDL cholesterol in fetal growth. 

The long-chain PUFA are essential for fetal development and their accumulation 
in the fetus is enhanced in late pregnancy (Kuipers et al., 2012). It has been proposed 
that the third trimester placenta has selectivity towards long-chain PUFA (Crawford 
et al., 1976; Ortega-Senovilla et al., 2009; Gil-Sánchez et al., 2010), although recent 
findings do not support this mechanism (Ortega-Senovilla et al., 2020). 
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In our study, a clear pattern of positive association between omega-6 FA and an 
inverse association between omega-3 FA and BW was observed. The PUFA to 
MUFA, or to total FA ratio was positively related to BW, while DHA and total 
omega-3 FA had inverse associations. This is partly in disagreement with previous 
studies, where most omega-3 FA, omega-6 FA and PUFA have been inversely and 
MUFA positively related to BW (Rump et al., 2001; Hellmuth et al., 2017c; 
Robinson et al., 2018). These differences could be due to differences in study 
population or methodology, as none of these studies included exclusively 
pregnancies complicated by GDM, as was the case in our study. Moreover, the 
association may vary depending on which lipid component (TG, phospholipids or 
cholesterol esters) was studied (Elias et al., 2001). 

ARA may increase adiposity by promoting differentiation from preadipocytes 
into adipocytes (Gaillard et al., 1989), while DHA has opposing effects (Kim et al., 
2006). This might explain the associations we found in pregnancies complicated by 
GDM. Also, a high omega-6 to omega-3 ratio in maternal and cord plasma is 
associated with infant obesity (Donahue et al., 2011). Maternal serum LA and 
omega-6 FA were positively predictive for BW in the metformin, but not in the 
insulin group. In the associations between cord serum lipids and BW there were, 
however, no clear differences between the treatment groups. Only the association 
between the cord serum omega-6 to omega-3 ratio and BW was marginally stronger 
in the insulin (0.34; CI: 0.12, 0.56 SD/SD) compared to the metformin (0.22; CI: -
0.010, 0.45 SD/SD) and the diet groups (0.045; CI: -0.12, 0.21 SD/SD). 

In summary, cord serum FA are related to BW independent of maternal traits 
such as pBMI, GWG or HbA1c. Moreover, there was a positive association between 
omega-6 FA and BW in cord serum similar to maternal serum, suggesting that 
reducing maternal dietary omega-6 to omega-3 FA ratio could result in a decreased 
risk of LGA. 

6.7 Associations between the maternal 
metabolome, inflammatory markers, IGFBP-1 
and clinical outcomes 

Overall, the associations between, on the one hand, maternal serum metabolites, 
inflammatory markers and IGFBP-1 phosphoisoforms and, on the other hand, 
perinatal outcome variables were weak. The incidence of many perinatal outcomes 
was low and the original randomized trial was powered to prove non-inferiority of 
the metformin compared to insulin treatment for BW alone (Tertti et al., 2013). In 
that sense, this section should be considered more of an exploratory analysis. 
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6.7.1 Amino acids and glucose 
The associations between baseline maternal serum amino acids, glucose, lactate and 
perinatal outcome variables were examined in the whole study population (diet, 
metformin and insulin-treated patients combined) and at 36 gw in the patients 
requiring pharmacological treatment (metformin and insulin groups). At baseline, 
several amino acids and glucose were inversely related to gestation length at 
delivery. The association was strongest for alanine and tyrosine, but also all BCAA 
had an inverse association with gestation length, although not statistically significant 
after FDR-correction.  

This association between amino acids and gestation length could be explained 
by maternal insulin resistance, since maternal amino acids are inversely related to 
insulin sensitivity in pregnancy (Sandler et al., 2017; Liu et al., 2020). Another 
ominous sign of insulin resistance, elevated fasting glucose, has been linked to a risk 
of preterm birth and to overall decreased length of gestation (Magnussen et al., 
2011). Furthermore, mothers with GDM and high insulin resistance, compared to 
mothers with GDM characterized predominantly by impaired insulin secretion rather 
than insulin resistance, are at increased risk of several adverse pregnancy outcomes 
in addition to reduced duration of gestation (Powe et al., 2016; Benhalima et al., 
2019; Immanuel et al., 2020). Although the rate of induction of labor was recorded 
in our study, the indications were not. Hence, it is not possible to assess how maternal 
factors, such as suboptimal glycemic control or hypertensive complications, or fetal 
factors such as impaired or excessive growth or a nonreassuring fetal status, may 
have contributed to this association. 

Glutamine was marginally higher at baseline in the patients who did not require 
pharmacological treatment compared to the metformin and insulin groups combined. 
Also, baseline glutamine was related inversely to GWG in the whole population, and 
glutamine at 36 gw was associated positively with hypertensive disorders of 
pregnancy in the combined pharmacological treatment group. The differences in 
associations between baseline and 36 gw measures may be partly due to a lack of 
metabolomic data from the diet group at 36 gw but also to development of maternal 
hypertension and initiation of antihypertensive medication by 36 gw. 

Reduced, rather than increased, glutamine concentrations have been previously 
reported in preeclampsia (Hsu et al., 2005; Dunn et al., 2009). These results are in 
conflict to ours and may be related to heterogeneous condition of preeclampsia 
(Benton et al., 2018). Of course, our population of GDM may differ from the 
previous studies, which have been small. 

Not surprisingly, glucose at baseline was a significant predictor of several 
adverse outcomes. The association was, however, attenuated at 36 gw, possibly due 
to successful antihyperglycemic treatment. 
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6.7.2 Lipids 
Maternal lipids have previously shown to be related to a risk of preeclampsia (Kenny 
et al., 2010). We did not, however, find a significant association between the 
maternal lipidome and hypertensive disorders. This finding may be explained by the 
low rate of hypertensive complications in our study population, which reduces the 
statistical power of our study in this respect. 

Instead, maternal lipids were related to total GWG, although most of these 
associations were attenuated when adjusted for pBMI. The association between 
maternal serum lipids and pBMI is well known (Hellmuth et al., 2017b; Sandler et 
al., 2017). The MUFA to total FA ratio at baseline was inversely related to GWG. 
At 36 gw TG in large HDL and mean diameter of HDL particles, which probably 
also reflects the increase in HDL TG content, were positively related to GWG. The 
only significant association after adjustment for pBMI was between the SFA to total 
FA ratio and GWG. The associations between maternal lipids and GWG are 
reportedly minimal also in non-GDM pregnancies (Hellmuth et al., 2017b; Lindsay 
et al., 2018). Maternal lipid profile does thus not seem to be an important predictor 
of GWG. 

6.7.3 Inflammatory markers and IGFBP-1 phosphoisoforms 
The predictive value of maternal inflammatory markers and IGFBP-1 
phosphoisoforms with regard to adverse pregnancy outcomes was evaluated at 
baseline and at 36 gw among the patients who needed pharmacological treatment. 
At both time points non-pIGFBP-1 was inversely related to GWG. Besides the 
association between IGFBP-1 and GWG, IGFBP-1 was also inversely related to a 
more favorable metabolic profile at baseline: lower pBMI and lower C-peptide, 
respectively. Thus, we would have expected a higher IGFBP-1 concentration to 
predict a lower BW in line with previous studies (Jansson et al., 2008; Åsvold et al., 
2011; Lappas, 2015), but none of the studies were focused in GDM and in one study 
(Lappas, 2015) the women with GDM were excluded. Moreover, the previous 
studies did not assess different phosphoisoforms nor did we find a significant 
association between the most abundant highly phosphorylated isoform and BW. 

Although not statistically significant after the Bonferroni correction, low-
pIGFBP-1 at baseline was inversely related to the risk of induction of labor, and 
high-pIGFBP-1 at 36 was inversely related to the risk of cesarean delivery. These 
associations were insignificant when adjusted for pBMI, suggesting that IGFBP-1 
phosphoisoforms reflect the overall metabolic health of the subjects. The inverse 
association between low-pIGFBP-1 and induction of labor was stronger in the 
metformin group than in the insulin group and, taking into account that the rate of 
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induction was higher in the insulin group, this may reflect different indications for 
induction of delivery between the groups, although these data were not recorded. 

Baseline MMP-8 correlated positively with pBMI and its concentration did not 
change during pregnancy. At 36 gw it was weakly associated with lower BW, 
independent of pBMI. Previously MMP-8 has been associated with chorioamnionitis 
(Kim et al., 2015) and preterm delivery (Ashford et al., 2018) and this weak inverse 
association with BW in our study could reflect chronic placental inflammation, 
although more studies on the subject are needed. 

6.8 Clinical implications and future prospects 
In GDM, insulin treatment is more effective in ameliorating dyslipidemia, including 
high total TG, VLDL TG, VLDL cholesterol and HDL TG, than metformin 
treatment. Furthermore, the associations between maternal lipids and BW were 
stronger in the metformin group. These findings have several possible implications. 
First, the short duration of a worse lipid profile in the third trimester normalizes fast 
postpartum (Barrett et al., 2013a) and is therefore unlikely to cause adverse 
consequences on maternal cardiovascular health. Follow-up studies on the 
cardiovascular health are still warranted. Second, the relative increase in maternal 
lipids in the metformin group did not result in higher BW. The associations between 
maternal lipids and BW were, however, stronger in the metformin group and, as 
demonstrated, the fraction of patients who had highest VLDL cholesterol or apoB to 
apoA-1 ratio delivered heavier babies if treated with metformin instead of insulin. 
Future studies should focus on characterizing the patients for whom metformin 
treatment is more beneficial than insulin and vice versa. Modifying the diet regimen 
of patients on metformin by increasing low glycemic index carbohydrates and 
reducing dietary fat (Hernandez et al., 2018) might lead to improved pregnancy 
outcomes, and this assumption merits further study. 

Metabolomics and maternal serum inflammatory markers might be useful to 
predict the need for pharmacological therapy or adverse neonatal outcomes in GDM. 
In this study, we did not succeed in identifying suitable biomarkers, in single or 
combination, for this end. However, with a different approach to the maternal 
metabolome, e.g., measuring the metabolome after a glucose load or using MS based 
techniques, could yield different results. Nevertheless, our results demonstrate that 
the associations between biomarkers and perinatal outcomes may vary by maternal 
treatment. Classifying GDM patients by defects predominantly in insulin secretion 
or insulin resistance reveals different risk profiles (Powe et al., 2016; Benhalima et 
al., 2019; Immanuel et al., 2020). An analogous stratification by the maternal 
metabolome might help to individualize the treatment of GDM. 
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Metformin exposure in utero has been shown to relate to increased offspring 
weight in childhood (van Weelden et al., 2018; Hanem et al., 2019). This association 
could be reflected in the cord serum metabolome. We showed, however, that 
maternal treatment of GDM has no impact on neonatal cord serum lipids, ketones or 
lactate. Cord serum alanine was increased in the metformin group when compared 
to insulin and diet groups. Neonatal alanine was not associated with BW, but the 
mechanism by which alanine increases under the influence of metformin and the 
possible long-term implications of this finding require further studies. 
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7 Summary/Conclusions 

This thesis presents a comprehensive metabolic profiling of GDM patients treated 
with metformin, insulin or diet and lifestyle modifications only. The total study 
population was rather large (n > 300) and, in addition to maternal sera, neonatal cord 
serum samples were analyzed. The effects of metformin on the maternal metabolome 
and inflammatory markers were characterized and the associations between these 
biomarkers, BW and clinical outcome variables were studied. The following 
conclusions can be made: 

1. There were no major differences between maternal serum metabolites, 
inflammatory markers or IGFBP-1 phosphoisoforms between patients 
requiring and not requiring pharmacological treatment, and therefore 
maternal metabolome is scarcely useful for identifying patients who will 
require pharmacological treatment. (Studies I–III) 

2. In comparison to insulin, metformin treatment of GDM has distinct effects 
on maternal metabolism and, to some extent, also on inflammatory 
markers and IGFBP-1 phosphoisoforms. The concentration of serum 
alanine, total TG, VLDL TG, total FA, GlycA and non-pIGFBP-1 
increased more in the metformin-treated patients than the insulin-treated 
patients. (Studies I–III) 

3. Maternal isoleucine, total and the VLDL TG, VLDL cholesterol and apoB 
to apoA-1 ratio at the time of GDM diagnosis were positively related to 
BW. The association between lipids and BW was stronger in the 
metformin group than the insulin group. Mothers with high VLDL 
cholesterol or a high apoB to apoA-1 ratio at the time of GDM diagnosis 
may benefit from insulin rather than metformin treatment with regard to a 
lower BW. There were no significant associations between maternal 
inflammatory markers, IGFBP-1 phosphoisoforms and BW. (Studies I–
III) 

4. It was reassuring to find that treatment of GDM has only minimal effects 
on the cord serum metabolome. The only exception was a clear increase 
in alanine in the metformin group. The study design did not allow 
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differentiation between a direct effect of metformin on the fetal 
metabolism and an indirect effect on maternal or placental metabolism. 
Cord serum lipids, including VLDL TG, cholesterol in very large HDL, 
PUFA, omega-3 and omega-6 FA, are related to BW. The fetal supply and 
metabolism of these metabolites could be important determinants of fetal 
growth in utero. (Study IV) 
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