
Secrets Management in a Multi-Cloud
Kubernetes Environment

Master of Science in Technology
Thesis
University of Turku
Department of Computing
Software Engineering
2021
Markus Blomqvist

Supervisors:
Lauri Koivunen
Tuomas Mäkilä

The originality of this thesis has been checked in accordance with the University of Turku quality assurance system
using the Turnitin OriginalityCheck service.

UNIVERSITY OF TURKU
Department of Computing

Markus Blomqvist: Secrets Management in a Multi-Cloud Kubernetes Environ-
ment

Master of Science in Technology Thesis, 51 p.
Software Engineering
May 2021

Secrets are anything that can be used to authorize or authenticate to e.g. cloud
services, databases, APIs etc. They are something that an organization must protect
from being ended up in the wrong hands. As the size of the organization grows,
the importance of protecting the business-critical secrets becomes more and more
relevant and that is why the organizations also must pay an increasing amount of
attention to their secrets management as the organization grows.
The secrets being compromised is a threat that can be prevented with a variety
of methods. Configuring all of these prevention methods manually is non-trivial.
Secrets management platforms implement these methods by both improving security
and automating tasks. The use cases of a secrets management platform might have
great variety between organizations based on their requirements. Some organizations
might want to fully automate the entire lifecycle of their secrets management and
use extensive features of a secrets management platform, whereas many others would
only need to store their existing credentials to a centralized and secure location.
A case study is performed on the secrets management of a company called Anders
Innovations. Their adoption of a secrets management platform required some
further investigation as their end goal was to get a full cloud-agnostic service that
can automate their secrets management. The research questions are made with
a mindset that they would act as a reference for other organization in plans of
adopting a secrets management platform. The first research question is about
generalizing the cloud-agnosticism of secrets management. The second research
question aims to clarify the automation of secrets management in automated build
environments, which are being used in an increasing amount as organizations adopt
new DevOps practices. The third research question is about combining the access
rights management with an existing system of an organization.

Keywords: secrets management, Hashicorp Vault, DevSecOps

Contents

1 Introduction 1

2 Secrets Management 5

2.1 What Are Secrets? . 5

2.2 Use Cases of a Secrets Management Platform 7

2.3 Features of a Secrets Management Platform 8

2.3.1 Storage & Encryption . 9

2.3.2 Identity & Access Management 10

2.3.3 APIs . 11

2.3.4 Shared Secrets . 12

2.3.5 Administration . 13

2.3.6 Provisioning Machine Identities 13

2.3.7 Lifecycle of the secrets . 14

2.3.8 Ephemeral Secrets . 15

2.3.9 Encryption as a Service . 16

2.3.10 Logging . 16

2.3.11 Proxy Access . 17

2.3.12 Deployment . 17

3 Case Description 19

3.1 Company Description . 19

i

3.2 The Problem Description . 20

3.3 Research Methods . 20

3.3.1 Interviews . 20

3.4 Infrastructure Description . 22

3.4.1 Vault . 25

4 Case Study 28

4.1 Interviews . 28

4.2 Technical Examples . 34

5 Solution 40

5.1 DevSecOps Practices . 40

5.2 Requirements & Deployment . 41

5.3 Answering the Research Questions . 43

5.3.1 How secrets management is handled in multi-cloud environ-

ments? . 44

5.3.2 How secrets can be used in automated build environments? . . 44

5.3.3 How can access rights management of a secrets management

platform be combined with third party services? 44

6 Conclusion 46

6.1 Concluding Secrets Management . 46

6.2 Concluding the Case . 48

6.3 Future Considerations . 50

References 52

ii

List of Figures

2.1 Google trends showing the interest towards "Kubernetes" keyword.

Source: Google Trends (https://www.google.com/trends). 6

2.2 A high-level visualization of public, private and hybrid clouds in a

shared infrastructure. [10] . 9

2.3 Hashicorp Vault’s model for Identity-based Security. 11

2.4 An example of a dynamic secret for a database password. 16

3.1 Provisioning Vault using Terraform. [22] 23

3.2 Fetching secrets in the CI/CD pipeline with Kólga. [22] 24

3.3 Kubernetes sidecar secret injection. [22] 25

3.4 Kubernetes-managed cluster for Vault deployment. [22] 27

4.1 Configurable environment variables for Kólga’s Vault module. [20] . . 34

4.2 Authenticating to Vault using GitLab.

Source: GitLab (https://docs.gitlab.com/ee/ci/secrets/). 35

iii

List of acronyms

AD Active Directory

API Application Programming Interface

CA Certificate Authority

CI/CD Continuous Delivery/Continuous Integration

CLI Command Line Interface

CPU Central Processing Unit

EaaS Encryption as a Service

GCP Google Cloud Platform

HA High Availability

HCL Hashicorp Configuration Language

IaC Infrastucture as Code

IAM Identity & Access Management

JSON JavaScript Object Notation

JWT JSON Web token

LDAP Lightweight Directory Access Protocol

OS Operating System

PAM Privileged Access Management

PKI Public Key Infrastructure

RBAC Role-based Access Control

SSL Secure Sockets Layer

TLS Transport Layer Security

URI Uniform Resource Identifier

VPC Virtual Private Cloud

2

1 Introduction

As the adoption of distributed cloud infrastructure by companies has become more

and more popular and the complexity of the cloud computing technologies is in-

creasing constantly, up-to-date solutions for handing the security aspects of these

environments must keep up. The containerized microservice architecture requires

the security measures to adapt to the distributed systems and allow networking

with these separate entities securely. Secrets are key-value pairs that allow access

to certain entities in the company’s architecture or external APIs. To protect the

business-critical functions and to enable Agile development at the same time, it is

crucial to have these secrets stored safely, while maintaining a decent workflow for

managing access for users to these secrets.

The case study performed in this thesis is done for Anders Innovations, which

is a borderline mid-sized software consultancy company. The company takes care

of hosting dozens of customer projects and maintaining the cloud infrastructure to

run them. The projects are mostly web applications that are run on multi-cloud

environments, focusing on Google Cloud Platform and Microsoft Azure services [1]

[2]. This thesis focuses on researching methods for improving the current secrets

management methods of the company.

The aim is to improve both the security aspects and to make the workflow for

administrators and developers easier and most importantly, automated. Taking the

leaps into automating the security operations is a natural step for the company as

CHAPTER 1. INTRODUCTION 2

it is already leveraging DevOps practices reducing the lead times and to automate

mundane tasks. In technical terms, integrating DevOps practices into security op-

erations is often referred as DevSecOps, which is another key area of this thesis.

[3]

Secrets are at their simplest form, key-value pairs that contain secret information

to access certain resources. It goes without saying that they must be stored in a

secure location. Ideally they are wanted to be accessible from various environments

such as a local development environment, CI/CD(Continuous Integration/Contin-

uous Delivery) pipeline, a staging or a production environment. Implementing a

centralized management for the secrets is capable for automating many of the la-

borious but important tasks such as creating, rotating and revoking secrets. A cen-

tralized solution can not only improve the security level in general, but also enforce

the automation of such tasks. Systems like these are referred a secrets management

systems. They are part of modern DevSecOps practices and a shift from manual

security opration to more automated culture. For this thesis, the tool that we will

be focusing on regarding the management of the secrets, will be Hashicorp Vault.

[4] [5]

Containers are isolated environments running on their own software require-

ments. Containers build up the microservice architecture by running different pieces

of the distributed system. Kubernetes is a modern solution built and maintained by

Google, that allows scalable orchestration of the containerized architecture. With

Kubernetes, the individual secrets must be injected to the containers as environment

variables. Doing this with an architecture built on multi-cloud, multi-tenant envi-

ronments is a non-trivial task that requires some further investigation and custom

software. [6]

CHAPTER 1. INTRODUCTION 3

The research questions of the thesis will be the following:

• RQ1: How secrets management is handled in multi-cloud environments?

• RQ2: How secrets can be used in automated build environments?

• RQ3: How can access rights management of a secrets management platform

be combined with third party services?

In the 2 chapter, existing literature in the area of secrets management is reviewed

to provide a solid background on the motives and use cases on implementation of a

secrets management platform like Vault. The literature is used to understand the

key areas of secrets management, such as defining secrets and the use cases and

features for a secrets management platform.

In the 3 chapter, a deeper dive is taken into the case and to review the methods

used to perform the case study. The background for the company, the infrastructure

and the problem are also detailed in this chapter to provide a base for the case study.

The interview questions will be introduced and the role of the different technologies

within the infrastructure will be reviewed.

The 4 chapter is focused on conducting the user interviews as well as demonstrat-

ing the concepts via technical examples. The chapter acts as a source of information

for the following 5 chapter, that contains the solutions for the case study. The final

chapter 6 concludes the thesis by generalizing the observations and the results of

the case study.

The 5 chapter aims to provide a general level solution for the research questions as

well as to generalize the case study results in a way that they can be used regardless

of the infrastructure. The aim is also to prove the benefits of an automated secrets

management platform and how it fits in to the DevSecOps paractices in the modern

IT world.

CHAPTER 1. INTRODUCTION 4

Chapter 6, as the last chapter, concludes the thesis by pointing out the key points

in the literature review and the key results in the case study and combining them

into conclusions that concretely answer to the research questions. The 6 chapter also

summarizes the message of modern literature in the area of secrets management and

DevSecOps principles related to that.

2 Secrets Management

This chapter is a literature review of the key concepts on secrets management and

the process of automating it. Secrets management platforms are systems capable

of operating with multi-cloud environments due to their APIs that enable a secure

communication regardless of the physical or virtual location of the client applications

or users. Extensive features such as EaaS (Encryption as a Service), automatic

rotation of secrets or a variety of different secrets engines can make such platform

a powerful component of governing the security of the production systems of an

organization. [7]

2.1 What Are Secrets?

Secrets in a cloud environment are key-value pairs that grant a specific user or a

set of users, either authorization or authentication to APIs and services. Secrets are

used in source code and configuration files, that are version controlled. The version

controlled code should not reveal the secrets from the source code itself and that is

the reason why secrets management solutions exist. [7] Secrets include credentials

such as:

• Passwords, e.g. user or database

• API keys

• SSH keys

CHAPTER 2. SECRETS MANAGEMENT 6

• Certificates (TLS, SSL)

Secrets are often both generated and encrypted with various cryptographic func-

tions. These kinds of functions are often built into complete secrets management

platforms like Vault, and they can be used mostly by EaaS APIs that are described

in detail later in this section.

When running applications in containerized environments, the secrets must be

injected into the isolated environments as environment variables. This is done at

build time, allowing the secrets to be accessible at runtime. Picking a secrets man-

agement platform that places no restrictions on injecting the secrets into containers

is often a requirement, as the containerized microservice architecture has gained

popularity over the recent years. To illustrate this, the trends for Google searches

for the "Kubernetes" keyword is shown in figure 2.1. [8]

Figure 2.1: Google trends showing the interest towards "Kubernetes" keyword.

Source: Google Trends (https://www.google.com/trends).

Secrets management aims to centralize the administration of multiple secrets,

possibly spread over multiple projects. Secrets management aims to keep the se-

crets secure both at rest and while in transit. In addition, secrets management brings

the secrets available in all phases of the development lifecycle, including local devel-

opment, automated builds, staging and production environments. The automation

combined to the improved security is a sign of DevSecOps principles being enforced

CHAPTER 2. SECRETS MANAGEMENT 7

by such platforms. [7]

2.2 Use Cases of a Secrets Management Platform

The use cases for fully-blown secrets management platform are broad and allow a

great amount of extensibility from just storing plain key-value pairs. Generally, the

use cases include security improvements, advanced automation in handling secrets,

generating and rotating secrets and integrating with third-party services for proxy

access.

Security-wise, the most notable improvements, an advanced secrets management

provides, are encryption, revocation, rotation and IAM (Identity and Access Man-

agement) of the secrets. The rotation and revocation are also a key part of the

automation, which is being used in an increasing amount in modern software devel-

opment processes. Integrating the secrets management with third-party services for

proxy access other platforms and sharing secrets across multiple clients adds a use

case that can boost the productivity of a development team. [7]

A typical use case of a secrets management platform is to use the platform as

a single store for all the secrets needed in the application, e.g. database passwords

and API keys. Build automation is another use case of a secrets management plat-

form. Not storing credentials in plaintext to a version control system is a must,

thus the credentials must be accessed from the temporary environments caused by

automated builds. In a containerized architecture, the build automation phase also

includes authentication to the secrets management platform, fetching the secrets

and injecting them in the containers. [7]

A secrets management platform can also be used to provision the machine iden-

tities. In practice, this means allowing only certain clients to have access to certain

secrets and keeping a log of the clients’ requests. Due to the logging output, in case

of a failure or a breach, the log outputs help to pinpoint the reason why the inci-

CHAPTER 2. SECRETS MANAGEMENT 8

dent took place. Secret sharing is yet another upside of using a secrets management

platform as it allows a more secure way for multiple users and environment to access

the same credentials when compared to manual method of sharing the credentials.

[7]

Storing secrets in an encrypted form requires management of the keys to access

the keys. In a secrets management platform, external servers can be used to handle

this management of the encryption keys. Sharing secrets is a method for securely

handling the secrets in a team environment or different physical locations. Having

certain secrets shared by a team may expose some vulnerabilities, but combining

the secrets with an effective secret rotation system is a method for mitigating these

threats. The same applies for sharing secrets with multiple data centers. [7]

2.3 Features of a Secrets Management Platform

The features provided by a secrets management platform can provide significant

improvements to the security and automation of a company’s operations. A full-

featured platform like Vault is capable of providing all functions from secrets back-

ends to EaaS (Encryption as a Service) APIs explained in this chapter. Not only

can one use a platform to manually keep the secrets in a secure location but have

a complete, managed solution to handle the entire lifecycle of the secrets and their

assignments to the requisite parties. [7]

A core feature of such system is obviously the centralized storage for the secrets

and their administration. All the features of a secrets management platform aim to

improve either security or to make the operations of mundane tasks of administering

secrets automated. This is why secrets management platforms suit well for DevSec-

Ops culture. DevSecOps, like regular DevOps, is a method for reducing the lead

times by automation. DevSecOps however, is focused on the security operations

unlike more general DevOps [3].

CHAPTER 2. SECRETS MANAGEMENT 9

2.3.1 Storage & Encryption

All modern and secure secret management platforms use encryption for their storage.

The storages are often referred as "vaults". The storage can be a simple key-value

storage, or it can be a more scalable relational or non-relational database. The

supported formats of the secrets in these kinds of storages are flexible as any text-

based secret can be encrypted and stored in them. [9] [7]

Public key infrastructure (PKI), that is explained in subsection 2.3.4, is the most

common method for encryption used by secrets management platforms. PKI is an

optimal way as it makes dealing with multiple clients easy. Leveraging PKI also

adds another layer of security on top of encrypted network communications, adding

up on the overall security. [7]

PKI is also a solution for managing security in multi-cloud environments con-

sisting of public, private and hybrid clouds. These three types of clouds are the

primary categories for all clouds. Figure 2.3.1 shows a high-level visualization of the

coexistence of the different cloud types in a shared infrastructure. [10]

Figure 2.2: A high-level visualization of public, private and hybrid clouds in a shared

infrastructure. [10]

CHAPTER 2. SECRETS MANAGEMENT 10

2.3.2 Identity & Access Management

All the large cloud providers have their own identity and access management (IAM)

solutions. This means, that in order for a secrets management platform to be able

to integrate with the identities and access management of a third-party service, the

secrets management platform must be able to read external permission from IAM,

Active Directory (AD) and Lightweight Directory Access Protocol (LDAP) services.

Privileged Access Management (PAM) are high level access management services of

cloud platforms, that manages the access for users with elevated permissions in an

organization. Some secrets management platforms also integrate with these kinds

of systems. For instance in Vault, this takes place via the different plugins for the

cloud providers. [11] [12] [7] [4]

Zero-trust network is a term for internal networks, e.g. virtual private clouds that

are designed in a way that even the communications that are completely isolated

to that network, still require some authentication of different clients. This leads to

identity-based security model, that splits up the authentication, clients and secrets

to their own entities, even though they’re all part of a single secrets management

system. Figure 2.3.2 shows how the identity-based security model takes place in

Vault infrastructure; the clients communicate with separate authentication backends

that deliver the secrets via tokens. In this model, each client must perform the

authentication by themselves. [7] [4]

CHAPTER 2. SECRETS MANAGEMENT 11

Figure 2.3: Hashicorp Vault’s model for Identity-based Security.

2.3.3 APIs

All the secrets management platforms need and interface that they can be consumed

through. Interactions with the APIs handle the management of the entire lifecycle

of the secrets from creation to revocation. The APIs also need a strong method for

authenticating the callers. For instance, authentication tokens can be used to au-

thenticate and consume the APIs from any environment such as a local development

environment or an automated build environment. [7]

The authentication parts of the APIs are often referred as API gateways since

they lead the authorized client to access the actual API via proxying or otherwise

relaying access. Most enterprise platforms, like Vault, use an HTTP API to imple-

ment the client-facing endpoints. The APIs are often bundled with client libraries

for various programming languages. All secure APIs only allow TLS communication

and a secure authentication method, such as authentication tokens. [4]

CHAPTER 2. SECRETS MANAGEMENT 12

2.3.4 Shared Secrets

A very essential topic for this thesis if to find out a feasible way to share the secrets

using existing roles and permissions. A shared method for authentication is required

in such cases, meaning that each member of an authorized group may authenticate

to a centralized secrets management server, gaining access to the shared credentials.

A strong encryption over the communication must be used, especially when the

secrets are sent over the network in cleartext, i.e. in a ready, human-readable form.

While some older secrets management systems use secure sockets layer (SSL), which

is not recommended by modern security standards, the more secure and modern

systems take advantage of transport layer security (TLS). [7] [13]

Public Key Infrastructure is a common method for handling the common au-

thentication for users of a group with shared permissions. A public key can be used

to encrypt the secrets sent to the different clients, which then are able to decrypt

those using their dedicated private keys. PKI seems overall a really useful solu-

tion, because it solves two problems; it does not necessarily need another layer of

encryption (such as provided by TLS) and it is a secure way of making sure that

no secrets are accessed by unauthorized clients, unless the client’s private keys are

compromised. [14] [7] [13]

Wrapping is a method for creating on-demand keys for clients and removed

when the clients no longer exist. The concept of wrapping is generally used for

more short-lived, ephemeral secrets. When sharing the secrets between systems

located in containers that share a common host machine, the secrets can be stored

in the memory of the host machine. This way the access to the secrets is faster

than through network. The secrets are stored in memory in clear text. This means,

limiting access to only authorized clients, in this case containers, is mandatory.

Having the secrets stored in memory also makes the process of disposing them

extremely easy. Injection is a method for providing container with the required

CHAPTER 2. SECRETS MANAGEMENT 13

secrets upon launching them. Identity certificates are used for container to identify

themselves, thus granting access for containers to access shared secrets. When using

Kubernetes, these identity certificates can be issued directly to a pod to have all the

containers in the given pod have the access to the secrets. [14] [7]

2.3.5 Administration

Authorization model is a concept that defines, which clients are allowed perform

operations on the secrets managed by a platform. The administration of a secrets

management platform is often accessed by a dashboard that contains functions not

available for regular users of the platform. The administration varies to some degree

between different vendors. Enterprise grade tools often have different features for

administration, such as being able to delegate the needed roles for administration

to other users. [7]

A common method for governing the access of different clients is role-based access

control (RBAC). It aims to waive access for all other parties except authorized

ones, meaning each client that needs access to certain resources governed by RBAC

policies, needs to have a specific role. The clients in this context can be either

machines or humans, like developers. [11] [15]

2.3.6 Provisioning Machine Identities

Provisioning the machine identities is a key piece of the security side of secrets

management. Having a detailed log of the machines that are given authorization

to any given secrets allows issuing e.g. unique access tokens for each machine,

improving the overall security of the system and giving more detailed information

in case of a breach. Doing this is the recommended way and all secure and modern

secrets managements systems do provision the machine identities one way or the

other. [7]

CHAPTER 2. SECRETS MANAGEMENT 14

Certificate Authorities are needed to issue the certificates for machines in a PKI.

The most common certificate used in PKI is X.509, used by e.g. Vault and other

systems that have a PKI built-in to them. Managing the secrets in a microservice

architecture ran by containerized applications, places extra requirements on provi-

sioning the machine identities due to the dynamic nature of the environment. Also

being able to scale up quickly these kinds of containerized architectures means that

the provisioning of the machine identities must keep up with the scaling.

According to Hashicorps white paper Protecting Machine Identities: Blueprint

for the Cloud Operating Model, "Smart policy enforcement must be automated and

embedded into the tools used by application development teams. By shifting ma-

chine identity processes left into the pre-production phase and hooking directly into

automated DevOps workflows, security teams can regain control over X.509 certifi-

cates in fully automated environments." This proves how the secrets management

plaforms fit into the DevOps/DevSecOps culture and that automation is the way to

go even for provisioning machince identities. [16]

2.3.7 Lifecycle of the secrets

The complete lifecycle of the secrets consists of creating, rotating and revoking them.

Nearly all kinds of secrets can be created by a full-featured secrets management

platform, including SSL and TLS certificates, passwords, tokens and encryption

keys. To automate the lifecycle, the secrets can be created with expiration dates to

have them automatically go out of use after a certain period of time. Some secrets

management platforms also act as a certificate authority (CA) by issuing digital

certificates. [7]

The key players in creating the secrets are the secrets engines. They are re-

sponsible for creating, encrypting and storing the secrets. The various clients that

interact with the APIs, are requesting the secrets from the secrets engines, with the

CHAPTER 2. SECRETS MANAGEMENT 15

APIs acting as middle men in between the client and the secrets engine. [4]

Revocation means the ability of a secrets management platform to invalidate or

retire access for a client to a specific secret or a set of secrets. Automatic revocation

of the secrets to specific applications or users is a key feature of secrets management

platforms, making the process of removing unnecessary access both easier and more

secure. [7]

2.3.8 Ephemeral Secrets

Ephemeral secrets are a security-improving feature and a way to create secrets.

Short-lived secrets are a way to mitigate the damage caused by compromised secrets.

In the container orchestration context, ephemeral secrets can be utilized efficiently,

since often containers run in parallel, allowing multiple instances of certain secrets

to coexist. Ephemeral secrets require the secrets management system to handle the

creation and revocation automatically. The system also needs to keep track of the

dynamic, short-lived instances of the secrets that have been issued for instance, a

Kubernetes pod. [7]

Ephemeral secrets are often also referred as dynamic secrets. The key features

of dynamic secrets are their on-demand availability and their uniqueness to each

client. The dynamic secrets make the logging results more significant, because the

failure points of the systems can be traced exactly by auditing the logs, which is

explained in more detail in subsection 2.3.10. Figure 2.3.8 shows an example of

using a dynamic secret containing a database password.

CHAPTER 2. SECRETS MANAGEMENT 16

Figure 2.4: An example of a dynamic secret for a database password.

2.3.9 Encryption as a Service

Encryption as a Service is a method to create on-demand secrets for multiple clients.

EaaS is also a solution for managing encryption on behalf of encryption libraries.

This way, developers can omit the usage of these kinds of libraries completely and

rely solely on the encryption of encryption engine provided by the secrets manage-

ment system. An EaaS model requires an API to respond to the requests of clients

for secrets. It is imperative that the request payload and responses use a strong

encryption. Let’s Encrypt is a popular example of an EaaS service. It has an API

that is responsible for issuing free TLS certificates. [7] [17]

2.3.10 Logging

Being able to audit logs when a security breach occurs is a feature that most cus-

tomers of security software expect to have. Keeping logs of the secrets management

platforms actions help locate the point in which the breach happened and the logs

keep important information such as which client requested the compromised secrets,

the time of the breach or the identifier of an IAM role responsible for the incident.

[7]

Configuring operational and performance alerts is another task to be done hand-

in-hand when configuring logging for a secrets management system. Operational

alerts are more related to security, whereas performance alerts can give real-time

heads ups for e.g. throttled CPU or memory usage of the secrets management

CHAPTER 2. SECRETS MANAGEMENT 17

server. Operational alerts can be used to prevent various threats. Take for instance

an attacker performing a denial-of-service attack on the secrets management server.

Operational alerts can be used to recognize these kinds of events. Other use cases

for operation alerts would be to e.g. notify the administrators about a suspicious

login. The exact operational alert cases vary case-by-case by the basics should be

covered for all systems. [18]

2.3.11 Proxy Access

Proxy access of a secrets management system means that the system is able to deliver

access to certain secrets by a method such as an access token or a permission autho-

rized by a third-party IAM system, e.g. Cloud Identity and Access Management by

Google Cloud Platform. Proxy access is used for authorization, not authentication.

Concretely, this means that the secrets management system can give permission for

a client to request the secrets while still keeping the encryption layer on to protect

those secrets. [7]

2.3.12 Deployment

The deployment of a secrets management system depends on the architecture of

the system. Some systems have a monolithic architecture in which a single server

handles all the functions such as APIs, storage and key management. A decoupled

architecture usually keeps the storage separate from a single or multiple nodes run-

ning in parallel that handle other functions of the system. This kind of architecture

is more scalable as the containerized nodes can be orchestrated in a more scalable

way. However, as noted in chapter 4, most organizations can get away with a single-

node deployment for starters and high availability (HA) is something that might

become relevant only sometime in the future. [7]

To achieve a high availability for a secrets management platform, the deployment

CHAPTER 2. SECRETS MANAGEMENT 18

has to include multiple instances, ideally running in parallel in a cluster. Usually,

high availability is achieved gradually, making the instances available on-demand

based on automatic scaling rules of the cluster. This kind of pattern is very typical

for all cloud-native web applications and thus the deployment of a secrets manage-

ment platform can also be considered as one.

3 Case Description

This chapter focuses on describing the background for the case. Infrastructure-

wise, the case is very typical as an increasing amount of IT organizations run their

production systems in multi-cloud environments. Combining secrets management

platforms to the CI/CD pipelines is a key area that is not self-explanatory for any

infrastructure or organization. For this case however, the research focuses on using

the ready-made solutions in case of GitLab, Vault and the other pieces of the given

infrastructure. Even though the technology stack enables a relatively low amount of

work to implement the automation of the injection of secrets into the containers and

the other steps required in order to achieve it, the amount of configuration options

for the given environments is an area that needs further investigation. [19] [4]

3.1 Company Description

Anders Innovations client pool consists of Finnish private and public sector cus-

tomers. The company has over 50 employees, including 30+ developers. Within

the company, there are several teams that are responsible for the development of

the customer projects. In addition, there is a DevOps/support team that focuses

on the support, administration and automation tasks, including the adoption of

Vault. Most of the customer projects are hosted by the company in their cloud

environments, while some of them are hosted by the customers.

CHAPTER 3. CASE DESCRIPTION 20

3.2 The Problem Description

The underlying problem in the current setting of the secrets management in the

company is that there is no centralized solution for the management of secrets. A

role-based access integrated to GitLab permissions is currently not possible as the

roles must be configured manually. Revoking access and rotating secrets are not

automated currently, which becomes more and more required feature as the amount

of employees goes up with time. To solve the issue of secrets sprawl, a centralized,

automated system for administration is welcome.

3.3 Research Methods

The research methods of this thesis consists of reviewing existing literature, conduct-

ing interviews within the company and demonstrating technical examples. Based

on the observations gained by these methods, outcome of the thesis will be a clear

definition on the adoption of a secrets management platform like Vault. The lit-

erature part will be used as a background to state certain choices made along the

way. The literature also works as a reference for providing details on why certain

decisions are not made in some other way and justifying the decisions via counter

examples. Features that will be demonstrated via technical examples include:

• Configuring Vault into a project by a developer.

• Adding and managing Vault-managed secrets in specific projects.

3.3.1 Interviews

The interviews that will be conducted in chapter 4, will be used as a reference

for answering the research questions. The interviewees will be experts who work

at the company and are part of the project of implementing Vault to the current

CHAPTER 3. CASE DESCRIPTION 21

infrastructure. The interviews are aimed to gain a perspective of administrators,

whereas the technical examples are more aimed towards developers. The interview

questions are the following:

• What are the main problems in the current method of managing secrets in the

company projects?

• What kind of custom code has to be written to make Vault work with other

pieces of infrastructure?

• How users and applications will authenticate to Vault?

• After authentication, what access is needed within Vault?

• What it takes for developers to adopt Vault into their projects and develop-

ment?

• How in practice will new developers gain/lose access to using secrets managed

by Vault?

• In terms of security, which are the most important features introduced by

Vault and will there be any drawbacks?

• Which portion of the company’s secrets that are currently managed manually,

can be automated with Vault.

• How will Vault affect the administration?

• Which Vault version will be used?

• Where will Vault be deployed?

• How Vault will be provisioned?

• Will Vault be deployed in a cluster?

CHAPTER 3. CASE DESCRIPTION 22

• Does Vault need to be available in multiple data centers or cloud regions?

• Which storage backend will be used with Vault

• Which secrets engines will be used?

• What performance and operational alerts should be configured?

• On what basis will the Vault audit logs be checked?

• Who will have access to recovery keys?

• How long will the TTL of the secrets be?

3.4 Infrastructure Description

The company’s infrastructure has been built mostly on GCP and Azure cloud plat-

forms. The customer projects are run in the Kubernetes cluster that is configured

using Helm Charts. GitLab CI is leveraged together with the in-house tool, Kólga,

to automate the CI/CD pipeline. The entire infrastucture, including Vault is provi-

sioned using Terraform, which is shown in figure 3.4. [6] [1] [2] [19] [20] [21]

CHAPTER 3. CASE DESCRIPTION 23

Figure 3.1: Provisioning Vault using Terraform. [22]

Kólga is the in-house DevOps tool, that handles building and deploying the

environments in the VPC (Virtual Private Cloud) of the company. For the man-

agement of secrets, Kólga is also responsible for fetching the Vault-managed secrets

and injecting them to containers as environment variables via its Vault module. The

visualization for fetching Vault-managed secrets using Kólga is shown in figure 3.4.

CHAPTER 3. CASE DESCRIPTION 24

The RBAC is based on GitLab, which will be integrated with Vault, meaning

that GitLab users with the sufficient permissions will be able to create, edit or delete

Vault-managed secrets. [20] [15]

Figure 3.2: Fetching secrets in the CI/CD pipeline with Kólga. [22]

After Kólga has fetched the secrets managed by Vault, it takes care of injecting

the secrets to the containers as environment variables using Kubernetes sidecar

injection shown in figure 3.4. The "sidecar" in this context refers to a container

that is dedicated to injecting the secrets as environment variables. In the example

scenario the Kubernetes pod contains one container for running the application

and the sidecar container, even though the application could consist of multiple

containers.

CHAPTER 3. CASE DESCRIPTION 25

Figure 3.3: Kubernetes sidecar secret injection. [22]

3.4.1 Vault

Vault fits for the use case of this thesis due to its support for multi-cloud purposes,

meaning it is capable of integrating with multiple cloud providers and environments.

Hashicorp refers to the underlying problem that Vault is trying to solve as "secrets

sprawl". It is a state in which all the secrets of a given infrastructure are located in

arbitrary pieces of the environment, be it inside the source code or the configuration

files. The solution for this is to centralize the management of the secrets [4].

Vault is a secure secret storage as it encrypts the secrets rather than storing

them as plaintext. This means that even if an attacker were to have access to the

secrets, they would still be of no use without knowing the encryption key. Another

key feature of Vault is its dynamic secrets. Dynamic secrets are secrets that can be

dynamically created, rotated and revoked for multiple clients [4].

CHAPTER 3. CASE DESCRIPTION 26

Vault supports creating on-demand secrets for certain services and automate the

revocation of those secrets after they are no longer needed. Vault’s data encryption

feature allows Vault to act as an Encryption as a Service (EaaS) API to create secure

credentials. These credentials are not stored anywhere by Vault. Vault’s leasing and

renewal feature allows clients to subscribe to fixed-term secrets provided by Vault.

After the leasing period, the secrets are revoked by Vault. The revocation feature

of Vault extends to revocation of secrets by category, e.g. secrets belonging to a

specific user or application [4].

For authentication and integration with different services, Vault uses different

authentication backends for getting the identity of the caller. In the infrastruc-

ture detailed in this thesis, the used authentication backends are OIDC, JWT and

Kubernetes shown in figure 3.4.1. This means that Vault-managed secrets can be

accessed using e.g. GitLab permissions, JWT tokens and Kubernetes. For auditing

and logging the data about the request-response cycle, Vault has its audit logging

service. This can be connected to a third-party storage for later use. For storing

Vault’s internal data, it uses a storage backend. This can also be connected to a

third-party storage, such as a relational database. The actual secrets management

of vault is handled by its secret backend. In its simplest form it is only a key-value

storage. However, Vaults secret backend integrates with plugins that extends its use

case to the dynamic secrets management. [4]

CHAPTER 3. CASE DESCRIPTION 27

Figure 3.4: Kubernetes-managed cluster for Vault deployment. [22]

To summarize the case, the organizational structure as well as the infrastructure

are very typical for an IT provider house, making this case potential for a lot of or-

ganizations that are motivated to automate their secrets management. Even though

the interview questions are mostly related to the adoption of Vault, the case con-

tains a lot of similarities to organizations that might not have a perfectly matching

infrastructure and technology stack.

4 Case Study

This chapter puts the research methods into practice by documenting the interviews

as well as by providing the technical examples for the key parts of implementing

Vault in an infrastructure similar to one of the case company. The results described

in this chapter are not particularly generalized but only for justifying the decisions

and solutions made for the given case. More generalized and higher level solutions

are presented in chapters 5 and 6. [4]

4.1 Interviews

The interviewees are the following people, who have given consent to use of their

names in the results:

• Frank Wicktröm, CTO

• Joonas Venäläinen, DevOps Engineer

• Paul Nylund, CIO

4.1.1 What are the main problems in the current method of

managing secrets in the company projects?

According to the whole team behind the implementation of Vault, the lack of a

centralized secrets management system is an issue causing the secrets sprawl. The

CHAPTER 4. CASE STUDY 29

secrets are managed on a project level and kept close to the applications. Configuring

the secrets manually, by accessing servers to modify individual environment variables

etc. is too cumbersome and unscalable. Another issue lies within the transparency

of the access to secrets - the governance is harder when the people with access to

secrets are not explicitly defined, says Wickström. Venäläinen adds that the exact

method that is currently used for secretes is GitLab variables, so there is no other

way than to set them per project.

4.1.2 What kind of custom code has to be written to make

Vault work with other pieces of infrastructure?

The only custom part for full adoption of Vault is the injection of the secrets to dif-

ferent environments. "There’s pretty easy ways to pull out the secrets from Vault,

but injecting them to the running application has proven to be non-trivial", Wick-

ström states. Custom code has been written to the CI/CD pipeline, that pulls the

secrets from Vault and injects them to the applications as environment variables.

The functionalities within Vault, however, require no custom implementations. "In

our projects we haven’t found any use cases that Vault wouldn’t cover.", Venäläinen

says.

4.1.3 How users and applications will authenticate to Vault?

Currently, GitLab access rights are leveraged for authentication - the groups are

automatically used for Vault access. According to Wickström, this is an area that

might still experience some changes in the sense that whereas currently, one massive

group is used to give access to all people, in the future, projects must be grouped

to form structures in a way that the right people gain Vault access.

According to Venäläinen, the authentication happens via GitLab’s OIDC provider:

"Vault will check in what groups the user belongs in GitLab and grants access to

CHAPTER 4. CASE STUDY 30

secrets based on that. Applications can use the CI_JWT_TOKEN that is available on

every CI (Continuous Integration) run. Token based authentication is also used

with Terraform. In Kubernetes when using sidecar to inject secrets service account

of running pod will be used to authenticate against Vault."

4.1.4 After authentication, what access is needed within Vault?

The exact rights within Vault are tied to GitLab permissions, so the user can only

access things within Vault that the GitLab group of that user has access to. "There

are a subset of secrets that are behind a permission wall where it (Vault) checks the

group they are in GitLab.", Wickström clarifies.

The answer to this question depends on the use case, according to Venäläi-

nen: "Applications generally only read secrets so read access will be enough. Some

users could have ["read", "list", "create", "write", "delete"] access to al-

low making necessary changes to secrets. Normally read access should be enough

for most users."

4.1.5 What it takes for developers to adopt Vault into their

projects?

According to Wickström, two things are needed by developers. Firstly, they need

to add their secrets to Vault. They can do it with their GitLab permissions that

allows them to access e.g. Vault UI for adding the secrets. Secondly, they need

to enable Vault to be used in the CI/CD pipeline. They can do it conveniently by

setting the Vault address as an environment variable for the project and after that

it will be picked up by Vault. Venäläinen adds that the Kólga integration picks up

an environment variable called VAULT_ADDR. Kólga will log in to Vault using the

CI_JWT_TOKEN and fetch all the project secrets.

A Vault project is also needed for each project using Vault secrets. Wickström

CHAPTER 4. CASE STUDY 31

states however, that the Vault projects are not for the developers to create, but

they will be created by Terraform. So ideally, the Vault project already exists in

the point where the developer wants to add Vault secrets into a project.

4.1.6 How in practice will new developers gain/lose access to

using secrets managed by Vault?

The rotation of access is fully automated via integration of GitLab permissions.

Adding or removing members from GitLab groups automatically reflects to Vault

access of the given users, so no loose ends are left after the people come and go. The

answer to this is equivalent from all interviewees.

4.1.7 In terms of security, which are the most important fea-

tures introduced by Vault and will there be any draw-

backs?

According to Wickström, the centralized control is the number one security improve-

ment introduced by Vault. Another crucial improvement is the access control for

groups. A drawback that Wickström states however, is the fact that currently Vault

won’t take into account the level of access within GitLab, so a wanted feature would

be to include the level of the user’s GitLab permissions in the Vault security checks,

to allow giving Vault access for e.g. only people with Maintainer-level GitLab access.

4.1.8 How will Vault affect the administration?

According to Venäläinen, the overhead introduced by Vault is minimal at least in

the beginning. Al of the interviewees had a similar answer, since only the minimal

features of Vault are used in the beginning.

CHAPTER 4. CASE STUDY 32

4.1.9 Which Vault version will be used?

The open source version 1.5.4. The requirements set for implementing Vault allow

the usage of the open source version, since no features included only in the enterprise

version are needed at least in the beginning.

4.1.10 How will Vault be provisioned?

According to Venäläinen, Vault will be provisioned with Helm. All secrets provi-

sioning will be handled through Vault, including Vault itself as well as all the Vault

projects, Wickström adds.

4.1.11 Will Vault be deployed in a cluster?

Wickström says that the high availability of Vault is currently not needed. The

situation might change in the future however. Venäläinen adds that Vault is deployed

in a cluster however, without high availability.

4.1.12 Do we need Vault to be available in multiple data

centers or cloud regions?

"Not at this point. When the high availability will be needed, it will be implemented

incrementally in the future.", Wickström stated.

4.1.13 Which storage backend will be used with Vault?

Google Cloud Storage was a unanimous answer from all of the interviewees. The

decision had been made within the DevOps team.

CHAPTER 4. CASE STUDY 33

4.1.14 Which secrets engines will be used with Vault?

KV Secrets Engine - Version 1. Another decision made by the team behind imple-

menting Vault.

4.1.15 What performance and operational alerts should be

configured for Vault?

Venäläinen describes the flow as the following: "Vault writes audit log file. This log

file should be monitored for anomalies. Vault offers /metrics endpoint which allows

us to integrate these metrics easily for our monitoring solution which contains set of

predefined alerting rules that works for Vault too.". Prometheus will be configured

to monitor Vault. Prometheus monitoring will be graphed in Grafana. Logs will be

also graphed in Grafana through Grafana Loki in the future, Wickström says. [23]

4.1.16 On what basis will the Vault audit logs be checked?

Venäläinen says that at the time of writing this, it has not yet been decided: "Prob-

ably Loki will be configured to automatically check the logs with predefined rules

and alert if needed."

4.1.17 Who will have access to recovery keys?

"Not yet decided. Most likely someone from the DevOps team will have the keys.

Suggested method would be to share the keys to multiple persons instead one person

having them." - Venäläinen

4.1.18 How will the TTL be configured for the secrets?

"As we are only using K/V currently as secret engine TTL is not enabled" - Venäläi-

nen

CHAPTER 4. CASE STUDY 34

4.2 Technical Examples

The following technical examples aim to demonstrate, how the secrets management

practices handled in the preceding chapters can be implemented in the given infras-

tructure. The examples focus on working with Vault, Terraform, Kólga, GitLab and

Kubernetes. Both developer-facing implementations and administration tasks are

covered, showing how the secrets management is done with the given tools. [4] [20]

[19] [6]

4.2.1 Configuring Vault to a Project

Kólga contains a Vault-module, that adds support for Vault-managed secrets. The

secrets can be injected to all environments automatically, including local, review,

staging and production environments. Activating the module is as easy as adding

an environment variable specifying the address for the Vault server. With Kólga,

the environment variable needed is called VAULT_ADDR. Since in this case, a single

Vault server takes care of managing multiple projects and their environments and

the address will be the same for all projects. Kólga also supports other configurable

variables shown in 4.2.1. [20]

Figure 4.1: Configurable environment variables for Kólga’s Vault module. [20]

With the help of the VAULT_ADDR variable, Kólga will do the authentication via

JWT authentication which is at the time of writing this thesis, the only supported

method to authenticate to Vault by Kólga. This is due to the built-in support for

CHAPTER 4. CASE STUDY 35

GitLab to authenticate to Vault using the JWT method. Each CI job on GitLab

CI has a unique job-specific environment variable called CI_JOB_JWT that is used

to authenticate to Vault. The complete flow of GitLab authentication to Vault is

shown in figure 4.2.1.

Figure 4.2: Authenticating to Vault using GitLab.

Source: GitLab (https://docs.gitlab.com/ee/ci/secrets/).

4.2.2 Managing Vault Secrets

The Vault secrets can be added by people with the required permissions. OIDC

is an authentication protocol that stands for "OpenID Connect". It enables veri-

fying a user’s identity before granting access to certain endpoints. It is a further

developed version from OAuth and OpenID authentication methods. With OIDC

authentication, the Vault permissions will be linked to GitLab. This means that

employees with the required GitLab permissions can add the project specific secrets

to Vault using either Vault UI or the CLI. They can then add the project specific

secrets. [20] [24] [4]

CHAPTER 4. CASE STUDY 36

The secrets are stored in Vault under a mount called secrets/${project_name}-${track},

where the project_name and track are dynamic values. The Vault module of Kólga

supports secrets for review, staging and production environments (or tracks). The

mount paths for those environments go like the following:

• secrets/$project_name-$review

• secrets/$project_name-$staging

• secrets/$project_name-$stable

4.2.3 Vault Administration

Provisioning Vault can be done via Terraform, a popular IaC tool. Terraform con-

tains a provider for Vault, which makes the process of deploying and provisioning

Vault convenient. An important consideration when provisioning Vault with Ter-

raform is to note that secrets read or written by Terraform will also be persisted

in the Terraform state. This means that the Terraform state that is stored in a

tfstate-file, must be held behind strong encryption. The snippet below shows and

example how Vault can be configured using Terraform in a very minimal form. The

language used in the example is called Hashicorp Configuration Language (HCL).

[25] [26] [4]

p rov ide r " vau l t " {

address = " https : // vau l t . example . net :8200"

}

CHAPTER 4. CASE STUDY 37

To enable the OIDC authentication method with GitLab and Vault, the first

step is to create an application from the GitLab dashboard. The application ID and

secret will be used to authenticate to Vault. After that, the OIDC method must be

enabled with Vault like shown below [19]:

$ vau l t auth enable o idc

After the OIDC method has been enabled in Vault, the generated application

ID and secret must be added to Vault. The OIDC configuration can be written

to Vault in the following way, where your_application_id and your_secrets are

placeholders for the credentials of the GitLab application [19]:

$ vau l t wr i t e auth/ o idc / c on f i g \

o idc_discovery_url="https : // g i t l a b . com" \

o idc_c l i ent_id="your_appl icat ion_id " \

o idc_c l i en t_sec r e t="your_secret " \

de f au l t_ro l e="demo" \

bound_issuer=" l o c a l h o s t "

CHAPTER 4. CASE STUDY 38

When the GitLab application credentials have been written to Vault, the same

must be done for the OIDC role configuration. It is done in order to provide Vault

with the redirect URIs and scopes that were created with the GitLab application.

The paths must also match the location of Vault deployment. An example of the

OIDC role configuration is shown below, where the your_vault_instance_redirect_uris

and your_application_id are placeholders for the GitLab application credentials

and the yourGroup and yourSubgroup are placeholders for the GitLab groups [19]:

vau l t wr i t e auth/ o idc / r o l e /demo −<<EOF

{

"user_claim " : "sub " ,

" a l l owed_red i r ec t_ur i s " : " your_vault_instance_redirect_ur i s " ,

"bound_audiences " : " your_appl icat ion_id " ,

" oidc_scopes " : " openid " ,

" role_type " : " o idc " ,

" p o l i c i e s " : "demo" ,

" t t l " : "1h" ,

"bound_claims " : { " groups " : [" yourGroup/yourSubgroup "] }

}

EOF

CHAPTER 4. CASE STUDY 39

Completing the previous steps are enough to enable the OIDC authentication

method. After that, a user with the required permissions may log in to Vault using

either the Vault UI or the CLI. Provided the previous configuration for the OIDC

method has been set, a login using the CLI can be done with the following command

[19]:

$ vau l t l o g i n −method=oidc port=8250 r o l e=demo

The "port" command line argument must match with which ever value has been

set for the redirect URIs of the GitLab application. The "role" command line

argument refers to the configuration that was previously created.

5 Solution

The technical examples shown in 4 prove that any organization can set up a se-

crets management platform suitable for multi-cloud environments with a fairly low

amount of work. The transformation towards the more automated security oper-

ations is not only technical but also cultural. Like introducing DevOps into the

software delivery process by starting the process from the culture, same same goes

for DevSecOps and a subset of it such as secrets management. [5]

5.1 DevSecOps Practices

The fact that the applications are run in containers often times these days, makes the

basic principle of injecting the secrets as environment variables a very generalized

solution regardless of the platforms in use. Container orchestration tools, such as

Kubernetes, places little overhead on the process of injecting the secrets, thanks to

a good level of support in integrating DevOps platforms, such as GitLab, to secrets

management platforms like Vault. [19] [4]

In large organizations, the use of RBAC is imperative, placing support for one as

a technical requirement for a secrets management platform. Without the advantages

of RBAC that can be attached to existing IAM, the administration of the secrets

management platform ends up being laborious and manual. Having a centralized

access management however, is a perfect example of leveraging DevOps practices

and in security terms, DevSecOps practices. [15]

CHAPTER 5. SOLUTION 41

Depending on the infrastructure and the amount of secrets sprawl, the adoption

of automated secrets management can be implemented with ease or it may require

a lot of configuration. Cloud-agnostic container orchestration tools like Kubernetes

makes the process easier in the sense that the cloud environments can take place in

any of the known providers’ platforms, but on the other hand, increase the overhead

due to their complexity by a great amount. [27]

The benefits of cloud-agnostic secrets management platforms are imminent for or-

ganizations running multi-cloud environments. One of the biggest advantage comes

when such platform integrates with the RBAC systems used already in the organi-

zation. GitLab is a good choice due to its roles and group permissions. Another

commonly used developer platform Github, similarly allows authentication to Vault

based on existing roles of an organization. With the integration support of just

the two mentioned platforms, most organizations are already covered, setting the

requirements on the shared access control schemes between the secrets management

platform and the repository manager as accomplished for most organizations. [19]

[4] [28]

5.2 Requirements & Deployment

When organizations get started with a secrets management platform like Vault,

requirements must be gathered for security and the end-user. The security require-

ments include e.g. restricting access to Vault nodes, securing the underlying operat-

ing system (OS), encryption key protection, checking audit logs, securing Vault with

TLS and configuring the TTL. The end-user requirements may include e.g. methods

for users and applications to authenticate to the secrets management platform, the

required access within the platform, the secrets engines used and the availability.

[18] [4]

CHAPTER 5. SOLUTION 42

Configuring operational, security and performance monitoring is another impor-

tant task to do when taking a secrets management platform into use. Operational

monitoring means real-time monitoring on events. An example of an operational

monitoring event would be a system failure needing instant response to fix it. In

theses kind of cases, the operational monitoring comes into play by notifying the

administrators in real time. [18]

Security monitoring is a proactive method to get a heads-up from a possible

threat or to minimize the time to take action in an incident response. Security

monitoring events might include events such as the use of a root token, security

policy modifications, configuring auth methods or even permission denied responses.

Performance monitoring is also important when an organization wants to ensure

the availability of a secrets management platform. Example metrics tracked by

performance monitoring include e.g. CPU, disk and memory usage, response time

and the storage backend transactions. [18]

A dedicated support team is recommended to exist when a secrets management

platform like Vault is adopted into the infrastructure of an organization. Such team

must be equipped with the required experience. An ideal line-up for such team

is to have personnel with automation and application integration experience. An

example for the team would consist of:

• Site Reliability Engineer

• DevOps Engineer

• Senior DevOps Engineer

The requirements and the experience level for each position complement each

other so that they complement each other and thus form a suitable support team.

[18]

CHAPTER 5. SOLUTION 43

Chapter 2 shows that a full-featured secrets management platform like Vault has

anything that an organization that currently manages its secrets manually, could

use to either improve the security or reduce the lead times via automation. Chapter

4 shows that an organization using a common developer platform like GitLab or

GitHub, can get away with a relatively low level of configuration for such platform.

[19] [28]

The benefits of secrets management platforms compound with the organization

size. A future consideration for the research conducted in this thesis would be to

find out the optimal company size in which the benefits of a secretes management

platform would outweigh the time lost in configuring one. However, as shown in

chapter 4, the amount of work needed from both developers and administrators of

such platform remain so small that the benefits could be significant event for small

companies.

5.3 Answering the Research Questions

The research questions were aimed for general audience that could leverage the

answers regardless of the infrastructure of their organization. However, containerized

architecture is a requirement for someone who can benefit from the information

as the main research took place around the idea of injecting the secrets into the

containers.

CHAPTER 5. SOLUTION 44

5.3.1 How secrets management is handled in multi-cloud en-

vironments?

Containers offer a way for an organization to operate scalably in multi-cloud en-

vironments. With Kubernetes and many other container orchestration platforms,

the principles for secrets are the same; the secrets are injected into the containers

as environment variables. A required component however, is a service that handles

fetching the secrets from the secrets management platform in use and handling the

injection. Luckily for many organizations, the mainstream platforms are capable of

this, as noted in previous section 5.2.

5.3.2 How secrets can be used in automated build environ-

ments?

The automated build environments might have a great variance among organiza-

tions. However, containers provide a unified solution that can be applied for most

infrastructures. Using secrets managed by a secrets management platform requires

an additional software component for multi-cloud environments as none of the de-

veloper platforms covered in this thesis is capable of spinning up such environments

out of the box. An organization might have to bring in another DevOps tool at this

point, like Kólga that was covered in chapter 4.

5.3.3 How can access rights management of a secrets manage-

ment platform be combined with third party services?

The answer to this research question is very similar than on the RQ1. There’s a

good likelyhood that an organization using a mainstream developer platform can

combine the access rights with the developer platform. In case of Vault, both Git-

Lab and GitHub are optimal choices in this sense. By combining the access rights

CHAPTER 5. SOLUTION 45

management, an organization can easily restrict access to e.g. employess leaving

a specific project or the entire company only in the developer platform that then

syncs the permissions with the secrets management platform. Authenticating and

authorizing to the secrets management platform can also be done with the same

access rights. An example of this is the LDAP protocol used by GitLab and which

can also be used when authenticating to Vault, described in 4.

6 Conclusion

This chapter concludes the thesis by reviewing the observations and findings made

along the way of completing the literature review and the case study. The goal of

this chapter is also the make the outcome more holistic in the sense that the solution

could be applied to more organizations.

6.1 Concluding Secrets Management

In chapter 2, literature review was done on secrets management, focusing on the

features and use cases of secrets management platforms. The chapter presented the

use cases that an organization can benefit from such platform. By not only speeding

up the software delivery process, the chapter also showed what kind of improvements

a secrets management platform can bring to an incident response process and help

to locate the origin of the breach. [7]

To begin with secrets management, one must understand the definition of se-

crets. To summarize the definition of them in brief, the quote by Armon Dadgar,

the Co-Founder and CTO of Hashicorp explains it well: "When we talk about secret

management what we’re really talking about is managing a set of different creden-

tials. What we mean when we talk about these credentials is anything that might

grant you authentication to a system or authorization to a system. Some examples

of this might be usernames and passwords, it might be things like database creden-

tials, it might be things like API tokens, or it might be things like TLS Certificates"

CHAPTER 6. CONCLUSION 47

[4]

In chapter 2 a good amount of methods that a secrets management platform can

help an organization to mitigate security incidents were introduced. The features

that a platform can provide regarding sharing secrets and dividing them into multiple

instances for different users and applications, provisioning machine identities as well

as using ephemeral secrets and aggregating logs into a form that auditing them can

be automated, are the most important ones that a platform can provide. [7]

Taking a secrets management platform into use differs for each organization

depending on their infrastructure, team structure, expertise and even culture. The

role of chapter 3 was to justify the choices made for the case and how they fit for the

organization. The underlying problems might also have variety between companies.

Their secrets management is done based on what they have been accustomed to.

Some organizations may experience a greater problem with secrets sprawl, whereas

some others might think that the automation of their mundane tasks are the first

priority. [18]

Public-key infrastructure is a key part of a secrets management that allows ef-

ficient sharing of the secrets by multiple users or applications. Especially in multi-

tenant systems, the separation between the access of the different entities is impor-

tant for being able to restrict access as well as to improve the security by provisioning

the identities of the tenants. Regarding Vault, the method called identity-based se-

curity is a good example of a security-improving model that separates the clients,

authentication and secrets within a single system, forming a zero-trust network [7]

[4].

CHAPTER 6. CONCLUSION 48

Depending on the needs of an organization, picking a secrets management so-

lution that supports the sufficient API access must be taken into account. While

programmatic access might be enough for some organizations, also a GUI support is

useful for organizations that want to make the administration possible for employees

with no deep knowledge about the system. For instance, with Vault UI, a developer

with the required permissions can manage project-specific secrets relatively easily.

[4]

When organizations adopt a new secrets management platform, they want put

effort not only in automating the practical workflows around managing the secrets

but also making sure that they configure sufficient methods to act accordingly in case

of security incidents. This kind of work includes e.g. configuring operational alerts

or deciding on the employees that have a access to recovery keys of such platforms.

With the right configuration, a secrets management platform can provide a great

deal of improvements into the incident response of an organization. [7]

6.2 Concluding the Case

In chapter 4 there were two key sections; the interviews and the technical examples.

The interviews were aimed to get an understanding on the technical considerations

that and organization has to make when adopting a secrets management platform

like Vault. While the questions were all made around Vault, many of them can also

be applied on alternative platforms. Likewise, the technical examples were focused

around Vault, GitLab and Kólga in the case, but the same basic principles can be

applied when injecting secrets into containers using alternative solutions. [4] [19]

[20]

As the case description in chapter 3 showed, Kubernetes suits well for injecting

secrets managed by a platform like Vault. The sidecar injection allows the separation

of the interaction between Kubernetes and the secrets management platform in an

CHAPTER 6. CONCLUSION 49

isolated environment from the application containers, while both of them still being

located in the same pod. [6]

The case study showed as well that an organization can start with very minimal

configuration in the sense that the different steps for adopting a secrets management

platform can be done gradually. For instance high availability is a feature that most

organizations do not need immediately but it can be considered as something that

can be upgraded to when the need appears.

A good practice when provisioning a secrets management platform like Vault

is to do it using a tool like Terraform. Along with other benefits of IaC, an in-

creased transparency for the configuration of Vault makes the administration more

straight forward especially when multiple people are included in the process. OIDC

authentication method allows easier administration as well, waiving the need for

additional IAM. As protocols like LDAP are widely used, a lot of organizations are

set for configuring these kinds of shared authentication schemes. [29] [12]

The case study covered the key component of the continuous integration, Kólga

and the Vault-module of it in not too detail, making the observations not too tied

to the given infrastructure. The whole process of fetching the secrets managed by

a platform like Vault and injecting them into the containers, is the part of the

pipeline that might require the most input from an organization that is in plans of

automating their secrets management. [20] [4]

The technical examples of the case study showed that the improvements in the

speed of the whole secrets management process are undeniable for the case and

all organizations that are running a similar kind of infrastructure. The fact that

the company included in the case study, Anders Innovations, has been running

their multi-cloud environment including the production environments proves that

the migration to a secrets management platform can be done relatively rapidly even

for a mid-sized company.

CHAPTER 6. CONCLUSION 50

6.3 Future Considerations

This thesis has a high focus on specific technologies such as Vault or GitLab. A suit-

able continuation for the research done in this thesis would be to compare the other

available platforms and to investigate, what kinds of requirements they might have

for an organization that could adopt them. For instance, the configuration of Vault

covered in 4 chapter might not apply to many of the alternative secrets management

platforms. That is also why this thesis does not provide a perfect one-off solution for

organizations but it rather covers the theoretical part of secrets management that

in general, is very similar in all containerized multi-cloud infrastructures. [4] [19]

In addition to the general theory of secrets management covered in this thesis,

the usage of the secrets was limited to injecting them into containers. Although

the containerized infrastructure is widely used in this cloud computing era, this

research could be extended to non-containerized architectures such as serverless,

which means that the applications are not running in containers but are running

directly in virtualized runtime environments that execute them in functions. [30]

This thesis assumes that an organization in plans to migrate its manual secrets

management to an automated platform has the required expertise to implement it.

However, it is imminent that a lot of organizations lack this kind of expertise. This

problem could lead to researching methods for these kinds of organizations on what

kind of hiress they would have to make. Alternatively, these kinds of organizations

could use fully managed solutions that require no expertise in the area of technical

implementation and DevSecOps in general. So a similar research to this, could be

conducted on the managed solutions to make it clear for such organizations on how

they could exactly benefit from a managed secrets management platform and how

would they take one into use. A managed secrets management platform would mean

that the organization would not have to deploy or provision the platform but they

would get a turnkey solution that they could administer without extensive technical

CHAPTER 6. CONCLUSION 51

knowhow. [3]

The security impacts of a secrets management platform can be noted effectively

in the long term and it would most likely require data from more than just one case

study. The amount of security indicents that take place with manual vs. automated

secrets management is an area that could also be further investigated.

Another area that would be interesting to further investigate in long term, is the

impacts that the automation has in the workflow of both developers and adminis-

trators in terms of saved time. For this case, making sure measurements would’ve

been hard as the implementation of Vault took place in the same time of writing

this this thesis and gathering such data was not possible. [4]

References

[1] Google, “Google cloud platform”, 2021. [Online]. Available: https://cloud.

google.com.

[2] Microsoft, “Microsoft azure”, 2021. [Online]. Available: https : / / azure .

microsoft.com.

[3] J. A. Morales, T. P. Scanlon, A. Volkmann, J. Yankel, and H. Yasar, “Security

impacts of sub-optimal devsecops implementations in a highly regulated envi-

ronment”, in Proceedings of the 15th International Conference on Availability,

Reliability and Security, ser. ARES ’20, Virtual Event, Ireland: Association for

Computing Machinery, 2020, isbn: 9781450388337. doi: 10.1145/3407023.

3409186. [Online]. Available: https://doi.org/10.1145/3407023.3409186.

[4] Hashicorp, “Vault docs”, 2020. [Online]. Available: https://www.vaultproject.

io/docs.

[5] S. Jones, J. Noppen, and F. Lettice, “Management challenges for devops adop-

tion within uk smes”, in Proceedings of the 2nd International Workshop on

Quality-Aware DevOps, ser. QUDOS 2016, Saarbrücken, Germany: Associa-

tion for Computing Machinery, 2016, pp. 7–11, isbn: 9781450344111. doi:

10.1145/2945408.2945410. [Online]. Available: https://doi.org/10.1145/

2945408.2945410.

[6] T. L. Foundation, “Kubernetes docs”, 2020. [Online]. Available: https://

kubernetes.io/docs.

https://cloud.google.com
https://cloud.google.com
https://azure.microsoft.com
https://azure.microsoft.com
https://doi.org/10.1145/3407023.3409186
https://doi.org/10.1145/3407023.3409186
https://doi.org/10.1145/3407023.3409186
https://www.vaultproject.io/docs
https://www.vaultproject.io/docs
https://doi.org/10.1145/2945408.2945410
https://doi.org/10.1145/2945408.2945410
https://doi.org/10.1145/2945408.2945410
https://kubernetes.io/docs
https://kubernetes.io/docs

REFERENCES 53

[7] Securosis, “Understanding and selecting a secrets management platform”, 2018.

[Online]. Available: https://cdn.securosis.com/assets/library/reports/

Securosis_Secrets_Management_JAN2018_FINAL.pdf.

[8] P. Ghosh, Q. Nguyen, and B. Krishnamachari, “Container orchestration for

dispersed computing”, in Proceedings of the 5th International Workshop on

Container Technologies and Container Clouds, ser. WOC ’19, Davis, CA, USA:

Association for Computing Machinery, 2019, pp. 19–24, isbn: 9781450370332.

doi: 10.1145/3366615.3368354. [Online]. Available: https://doi.org/10.

1145/3366615.3368354.

[9] S. Idreos and M. Callaghan, “Key-value storage engines”, in Proceedings of

the 2020 ACM SIGMOD International Conference on Management of Data,

ser. SIGMOD ’20, Portland, OR, USA: Association for Computing Machinery,

2020, pp. 2667–2672, isbn: 9781450367356. doi: 10.1145/3318464.3383133.

[Online]. Available: https://doi.org/10.1145/3318464.3383133.

[10] L. Y. R. Zhao, “Strengthen cloud computing security with federal identity

management using hierarchical identity-based cryptography”, 2009. [Online].

Available: https://link.springer.com/chapter/10.1007/978-3-642-

10665-1_15.

[11] M. Gaedke, J. Meinecke, and M. Nussbaumer, “A modeling approach to feder-

ated identity and access management”, in Special Interest Tracks and Posters

of the 14th International Conference on World Wide Web, ser. WWW ’05,

Chiba, Japan: Association for Computing Machinery, 2005, pp. 1156–1157,

isbn: 1595930515. doi: 10 . 1145 / 1062745 . 1062916. [Online]. Available:

https://doi.org/10.1145/1062745.1062916.

[12] X. Wang, H. Schulzrinne, D. Kandlur, and D. Verma, “Measurement and anal-

ysis of ldap performance”, IEEE/ACM Trans. Netw., vol. 16, no. 1, pp. 232–

https://cdn.securosis.com/assets/library/reports/Securosis_Secrets_Management_JAN2018_FINAL.pdf
https://cdn.securosis.com/assets/library/reports/Securosis_Secrets_Management_JAN2018_FINAL.pdf
https://doi.org/10.1145/3366615.3368354
https://doi.org/10.1145/3366615.3368354
https://doi.org/10.1145/3366615.3368354
https://doi.org/10.1145/3318464.3383133
https://doi.org/10.1145/3318464.3383133
https://link.springer.com/chapter/10.1007/978-3-642-10665-1_15
https://link.springer.com/chapter/10.1007/978-3-642-10665-1_15
https://doi.org/10.1145/1062745.1062916
https://doi.org/10.1145/1062745.1062916

REFERENCES 54

243, Feb. 2008, issn: 1063-6692. doi: 10.1109/TNET.2007.911335. [Online].

Available: https://doi.org/10.1109/TNET.2007.911335.

[13] M. Morbitzer, M. Huber, and J. Horsch, “Extracting secrets from encrypted

virtual machines”, in Proceedings of the Ninth ACM Conference on Data and

Application Security and Privacy, ser. CODASPY ’19, Richardson, Texas,

USA: Association for Computing Machinery, 2019, pp. 221–230, isbn: 9781450360999.

doi: 10.1145/3292006.3300022. [Online]. Available: https://doi.org/10.

1145/3292006.3300022.

[14] S. Halevi and H. Krawczyk, “Public-key cryptography and password proto-

cols”, ACM Trans. Inf. Syst. Secur., vol. 2, no. 3, pp. 230–268, Aug. 1999,

issn: 1094-9224. doi: 10.1145/322510.322514. [Online]. Available: https:

//doi.org/10.1145/322510.322514.

[15] L. Giuri, “Role-based access control: A natural approach”, in Proceedings of the

First ACM Workshop on Role-Based Access Control, ser. RBAC ’95, Gaithers-

burg, Maryland, USA: Association for Computing Machinery, 1996, 13–es,

isbn: 0897917596. doi: 10.1145/270152.270176. [Online]. Available: https:

//doi.org/10.1145/270152.270176.

[16] V. HashiCorp, “Protecting machine identities: Blueprint for the cloud op-

erating model”, 2019. doi: https : / / www . hashicorp . com / resources /

protecting-machine-identities-blueprint-for-the-cloud-operating-

model.

[17] L. Encrypt, “Let’s encrypt docs”, 2020. [Online]. Available: https://letsencrypt.

org/docs/.

[18] B. K. Dan McTeer, “Running hashicorp vault in producion”, 2020. [Online].

Available: https://www.amazon.com/Running-HashiCorp-Vault-Production-

McTeer-ebook/dp/B08JJLGMZ3.

https://doi.org/10.1109/TNET.2007.911335
https://doi.org/10.1109/TNET.2007.911335
https://doi.org/10.1145/3292006.3300022
https://doi.org/10.1145/3292006.3300022
https://doi.org/10.1145/3292006.3300022
https://doi.org/10.1145/322510.322514
https://doi.org/10.1145/322510.322514
https://doi.org/10.1145/322510.322514
https://doi.org/10.1145/270152.270176
https://doi.org/10.1145/270152.270176
https://doi.org/10.1145/270152.270176
https://doi.org/https://www.hashicorp.com/resources/protecting-machine-identities-blueprint-for-the-cloud-operating-model
https://doi.org/https://www.hashicorp.com/resources/protecting-machine-identities-blueprint-for-the-cloud-operating-model
https://doi.org/https://www.hashicorp.com/resources/protecting-machine-identities-blueprint-for-the-cloud-operating-model
https://letsencrypt.org/docs/
https://letsencrypt.org/docs/
https://www.amazon.com/Running-HashiCorp-Vault-Production-McTeer-ebook/dp/B08JJLGMZ3
https://www.amazon.com/Running-HashiCorp-Vault-Production-McTeer-ebook/dp/B08JJLGMZ3

REFERENCES 55

[19] Gitlab, “Gitlab docs”, 2020. [Online]. Available: https://docs.gitlab.com.

[20] A. Innovations, “Kolga docs”, 2021. [Online]. Available: https://github.

com/andersinno/kolga.

[21] C. N. C. Foundation, “Helm docs”, 2021. [Online]. Available: https://helm.

sh.

[22] Anders Innovations, Guides and internal documentation.

[23] G. Labs, “Grafana docs”, 2021. [Online]. Available: https://grafana.com/

docs.

[24] S. Hammann, R. Sasse, and D. Basin, “Privacy-preserving openid connect”, in

Proceedings of the 15th ACM Asia Conference on Computer and Communica-

tions Security, ser. ASIA CCS ’20, Taipei, Taiwan: Association for Computing

Machinery, 2020, pp. 277–289, isbn: 9781450367509. doi: 10.1145/3320269.

3384724. [Online]. Available: https://doi.org/10.1145/3320269.3384724.

[25] Hashicorp, “Terraform registry”, 2021. [Online]. Available: https://registry.

terraform.io.

[26] ——, “Terraform docs”, 2021. [Online]. Available: https://www.terraform.

io/docs.

[27] E. M. Maximilien, A. Ranabahu, R. Engehausen, and L. C. Anderson, “Toward

cloud-agnostic middlewares”, in Proceedings of the 24th ACM SIGPLAN Con-

ference Companion on Object Oriented Programming Systems Languages and

Applications, ser. OOPSLA ’09, Orlando, Florida, USA: Association for Com-

puting Machinery, 2009, pp. 619–626, isbn: 9781605587684. doi: 10.1145/

1639950.1639957. [Online]. Available: https://doi.org/10.1145/1639950.

1639957.

[28] Github, “Github docs”, 2021. [Online]. Available: https://docs.github.com/

en.

https://docs.gitlab.com
https://github.com/andersinno/kolga
https://github.com/andersinno/kolga
https://helm.sh
https://helm.sh
https://grafana.com/docs
https://grafana.com/docs
https://doi.org/10.1145/3320269.3384724
https://doi.org/10.1145/3320269.3384724
https://doi.org/10.1145/3320269.3384724
https://registry.terraform.io
https://registry.terraform.io
https://www.terraform.io/docs
https://www.terraform.io/docs
https://doi.org/10.1145/1639950.1639957
https://doi.org/10.1145/1639950.1639957
https://doi.org/10.1145/1639950.1639957
https://doi.org/10.1145/1639950.1639957
https://docs.github.com/en
https://docs.github.com/en

REFERENCES 56

[29] M. Artač, T. Borovšak, E. Di Nitto, M. Guerriero, and D. A. Tamburri,

“Devops: Introducing infrastructure-as-code”, in Proceedings of the 39th In-

ternational Conference on Software Engineering Companion, ser. ICSE-C ’17,

Buenos Aires, Argentina: IEEE Press, 2017, pp. 497–498, isbn: 9781538615898.

doi: 10.1109/ICSE-C.2017.162. [Online]. Available: https://doi.org/10.

1109/ICSE-C.2017.162.

[30] N. Kaviani, D. Kalinin, and M. Maximilien, “Towards serverless as commodity:

A case of knative”, in Proceedings of the 5th International Workshop on Server-

less Computing, ser. WOSC ’19, Davis, CA, USA: Association for Computing

Machinery, 2019, pp. 13–18, isbn: 9781450370387. doi: 10.1145/3366623.

3368135. [Online]. Available: https://doi.org/10.1145/3366623.3368135.

https://doi.org/10.1109/ICSE-C.2017.162
https://doi.org/10.1109/ICSE-C.2017.162
https://doi.org/10.1109/ICSE-C.2017.162
https://doi.org/10.1145/3366623.3368135
https://doi.org/10.1145/3366623.3368135
https://doi.org/10.1145/3366623.3368135

	Introduction
	Secrets Management
	What Are Secrets?
	Use Cases of a Secrets Management Platform
	Features of a Secrets Management Platform
	Storage & Encryption
	Identity & Access Management
	APIs
	Shared Secrets
	Administration
	Provisioning Machine Identities
	Lifecycle of the secrets
	Ephemeral Secrets
	Encryption as a Service
	Logging
	Proxy Access
	Deployment

	Case Description
	Company Description
	The Problem Description
	Research Methods
	Interviews

	Infrastructure Description
	Vault

	Case Study
	Interviews
	What are the main problems in the current method of managing secrets in the company projects?
	What kind of custom code has to be written to make Vault work with other pieces of infrastructure?
	How users and applications will authenticate to Vault?
	After authentication, what access is needed within Vault?
	What it takes for developers to adopt Vault into their projects?
	How in practice will new developers gain/lose access to using secrets managed by Vault?
	In terms of security, which are the most important features introduced by Vault and will there be any drawbacks?
	How will Vault affect the administration?
	Which Vault version will be used?
	How will Vault be provisioned?
	Will Vault be deployed in a cluster?
	Do we need Vault to be available in multiple data centers or cloud regions?
	Which storage backend will be used with Vault?
	Which secrets engines will be used with Vault?
	What performance and operational alerts should be configured for Vault?
	On what basis will the Vault audit logs be checked?
	Who will have access to recovery keys?
	How will the TTL be configured for the secrets?

	Technical Examples
	Configuring Vault to a Project
	Managing Vault Secrets
	Vault Administration

	Solution
	DevSecOps Practices
	Requirements & Deployment
	Answering the Research Questions
	How secrets management is handled in multi-cloud environments?
	How secrets can be used in automated build environments?
	How can access rights management of a secrets management platform be combined with third party services?

	Conclusion
	Concluding Secrets Management
	Concluding the Case
	Future Considerations

	References

