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The amount of software to maintain increases continuously. New systems are being
built and old systems are not phased out at the same pace. The arrival of mi-
croservices, SaaS and platform businesses have increased the complexity of software
and the requirements for availability of service. Software maintenance has become
troublesome. In this thesis, monitoring is used to mitigate the problem.
Objective of this thesis is to build a monitoring system for a SaaS company that is
suffering from the increased complexity. The research questions of this thesis ask:
1) How to build an effective monitoring system with OSS tools? 2) What are the
important parts of the company’s IT infrastructure that should be monitored? 3)
How to detect anomalies from monitoring data to set threshold values for alerting in
a scalable way? 4) Is it possible to predict the moment of time in the future, when
the system is next going to face an anomaly, from the monitoring data gathered in
the past?
Research consists of a literature review on the preferred monitoring methods, an
interview on the employees of the company to figure out the parts of company’s
IT infrastructure that monitoring will benefit the most and implementation of a
monitoring system for the company with OSS tools (Prometheus and Grafana).
In addition, automated anomaly detection methods are introduced and predictive
monitoring is discussed.
As a result of this thesis, three key areas were found in the company’s IT infrastruc-
ture where the built monitoring system focused on. First area was sign-ins which
use now centralized logs for easier problem tracking. Second area was sluggishness
of certain services that was solved with server, application and database metrics.
Third area was MyHealth questionnaires that were supposed to use Prometheus
MongoDB query exporter to expose the changes in the database, but current ver-
sion of the database didn’t allow the plan to succeed. For automated anomaly
detection several solutions were provided in the thesis and the most suitable for the
company was OSS tool called Prometheus anomaly detector. Theory for predictive
monitoring was found on AI playing chess.

Keywords: software monitoring, software maintenance, automated anomaly detec-
tion, predictive monitoring, monitoring process, Prometheus, Grafana
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Ylläpidettävien ohjelmistojen määrä lisääntyy jatkuvasti. Uusia ohjelmistoja jul-
kaistaan eikä vanhoja poisteta käytöstä samaan tahtiin. Mikropalveluarkkitehtuu-
rin, SaaSin ja alustaliiketoiminnan yleistymisen myötä ohjelmistojen monimutkai-
suus ja saatavuuden vaatimukset ovat kasvaneet. Ohjelmistojen ylläpidosta on tullut
hankalaa. Tässä lopputyössä monitorointia hyödynnetään ongelman lievittämiseksi.
Tämän lopputyön tavoitteena on rakentaa monitorointijärjestelmä SaaS-yritykselle,
joka kärsii monimutkaisuuden lisääntymisestä. Tämän työn tutkimuskysymykset ky-
syvät: 1) Miten rakentaa monitorointijärjestelmä avoimen lähdekoodin työkaluilla?
2) Mitkä ovat yrityksen ohjelmistojärjestelmän kohdat, joihin monitorointi kannat-
taa keskittää? 3) Miten havaita monitorointidatasta poikkeavuuksia, joita käyttää
hälytysten raja-arvojen asettamiseen skaalautuvasti? 4) Onko kerätystä monito-
rointidatasta mahdollista ennustaa ajanhetki, jolloin järjestelmä tulee seuraavaksi
kohtaamaan virheen?
Tutkimus sisältää kirjallisuuskatsauksen monitorointitekniikoista. Haastatteluosuu-
den, jossa yrityksen työntekijöitä haastateltiin monitoroitavien kohteiden selvittämi-
seksi. Toteutusosuuden, jossa yritykselle toteutettiin monitorointijärjestelmä avoi-
men lähdekoodin työkaluilla (Prometheus ja Grafana). Lisäksi työssä esitellään
automaattisen virheiden havainnoinnin tekniikoita ja pohditaan keinoja toteuttaa
ennakoivaa monitorointia.
Työn tuloksena määritettiin kolme avainaluetta, johon rakennettu monitorointijär-
jestelmä keskittyy. Ensimmäinen alue on kirjautumiset, joissa hyödynnettiin keski-
tettyä lokitusta helpottamaan virheiden selvitystä. Toinen alue on tiettyjen palve-
lujen hitaus, joiden selvittämiseen käytettiin palvelimen, applikaation ja tietokan-
tojen metriikkaa. Kolmas alue oli Omavointi-kyselyt, joihin oli tarkoitus käyttää
MongoDB query exporter nimistä ohjelmistoa, mutta tietokannan versio vesitti tä-
män suunnitelman. Automaattiseen virheiden havainnointiin työssä esiteltiin useita
vaihtoehtoja, joista yrityksen näkökulmasta sopivin on avoimen lähdekoodin työka-
lu nimeltä Prometheus anomaly detector. Teoria ennakoivalle monitoroinnille löytyi
tekoälyllä toimivasta shakki-robotista.

Asiasanat: ohjelmistojen monitorointi, ohjelmistojen ylläpito, automaattinen vir-
heiden havainnointi, ennakoiva monitorointi, monitorointiprosessi, Prometheus,
Grafana
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1 Introduction

Since the beginning of the software industry, in 1960s, the amount of software to

maintain has increased, when new systems are being built and old systems can’t be

shutdown at the same pace. In top of that, both the complexity of software systems,

and the requirements for availability of service have raised, when microservices, SaaS

(Software as a Service) and platform businesses have gained popularity in the past

decade.

Monitoring is without a doubt one of the most effective tools for software mainte-

nance. It is helping the maintenance of a large number of services with automation

in problem detection. It is giving the solution for increased complexity by adding

transparency. It is increasing the availability of service by forecasting the future

behaviour of a system.

1.1 Monitoring in General

Monitoring means different things to different people. Some people think that mon-

itoring is following server CPU status, others say it is reading application logs.

Neither of these assumptions are wrong. Actually, both of the before mentioned

things are part of the monitoring. The term monitoring contains a wide spectrum

of things. Monitoring is profiling, finding all the tiniest details of software run-time

information and analysing that information for the sake of finding a solution for

a problem at hand. Monitoring is collecting metrics data and storing the metrics
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data into a database to learn new things about software behaviour. Monitoring is

collecting logging data for the assistance in problem detection and problem solv-

ing. Monitoring is distributed tracing where problems in distributed systems can be

solved with centralized logs.

Like it was mentioned before, monitoring is a broad concept and it contains

many sub-fields. Monitoring process is no exception, it also contains several phases,

which are:

• Data collection,

• data storage,

• visualization,

• analysis,

• alerting and recovering. [1]

These phases can be carried out by single service (monolithic monitoring system)

or by multiple services (distributed monitoring system) [1]. Current trend is going

towards distributed systems, but there is still many monolithic monitoring systems

in production.

1.2 Why to Monitor?

Software will always work against it was supposed to and software will always have

bugs. With monitoring, those bugs can be discovered earlier and solved in less time.

Monitoring also helps to solve complex problems that are usual in complex sys-

tems. For example, the performance issues are almost impossible to solve without

monitoring. Monitoring can also be used in automated capacity planning, where

resources will automatically be added to some part of the system if it is under heavy

load.
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Monitoring and well tuned alerting releases operation engineers time from check-

ing and fixing problems that could be automatically fixed. Operation engineers can

focus on doing something productive when they can rely on the monitoring system

that will alert if there is a problem that requires human interaction.

At the end of the day, monitoring makes the software more transparent and

predictable which shows in reduced problem solution times and it also reflects on

the customer satisfaction, when customers use software that is working correctly.

1.3 Research Problem

Maturity of monitoring in a company can be divided into three phases: SaaS mon-

itoring, OSS (Open Source Software) monitoring and Custom built monitoring [1].

In the SaaS monitoring phase, the company is using ready made SaaS tools for

monitoring. Those tools are easy to operate and integrate as a part of existing sys-

tem. In the OSS monitoring phase, the company is taking advantage of OSS tools

to implement monitoring for their software environment. OSS tools provide more

room for customisation than SaaS tools, but also require more configuration and

time to get the monitoring working. In the last phase, in a custom built monitoring

phase, the company builds monitoring service for their special purposes. Companies

that are on the last phase of monitoring and use a custom-built system, are usually

huge worldwide technology companies for which the available monitoring solutions

are not fitting because of scalability or customization issues. It is common that the

monitoring solutions that these huge companies build for their own use, are later

open sourced and published for wider use. Reasons for open sourcing can be cost

reduction and greater innovation capability [2]. One example of the monitoring tool

that was initially built for the purpose of a single company and was later gained

popularity as OSS tool, is Prometheus. Prometheus was originally built in Sound-

Cloud to serve their expanded needs in monitoring. Prometheus is introduced in
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more detail in Section 2.4.

This thesis is made for the company named BCB Medical. BCB Medical is

moving their monitoring solutions from SaaS tools to OSS tools. The main goal

for this thesis, is to build the first version of a working monitoring system with

OSS tools for BCB Medical. The first version is delimited to solve certain set of

problems that are defined as a part of this thesis. The problem area is going to be

from the perspective of the customer support team and focus on solving the problems

that employ the customer support team the most. With monitoring solutions the

customer support team of BCB Medical can success better in their job of maintaining

the high customer satisfaction with quick problem solution times. To reach the goal,

the following research questions have been defined to be solved in this thesis:

• RQ1: How to build an effective monitoring system with OSS tools?

• RQ2: What are the important parts of BCB Medical’s IT infrastructure that

should be monitored?

• RQ3: How to detect anomalies from monitoring data to set threshold values

for alerting in a scalable way?

• RQ4: Is it possible to predict the moment of time in the future, when the

system is next going to face an anomaly, from the monitoring data gathered

in the past (a.k.a. predictive monitoring)?

1.4 Research Methods

For the first research question (RQ1) there is going to be used a literature review,

where different kind of monitoring methods and monitoring data analyzing methods

are introduced. Monitoring is really practical topic and there are not many scientific

publications available in the field, so the literature review chapters will mainly be
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based on the monitoring books. However, for some smaller subjects in monitoring,

like anomaly detection, there are scientific articles available and in those parts the

articles will be used.

For the second research question (RQ2) there is going to be used a qualitative

research method. In the research, all five members of the customer support team will

be interviewed. The goal of the interviews is to find out the parts of BCB Medical’s

IT infrastructure that employ the customer support team or are problematic in other

way. These parts are the definition of problem areas that monitoring will benefit

the most.

In order to solve the third research question (RQ3) the information gathered in

the literature review (RQ1) needs to be combined with the defined problem areas

from the RQ2. This information will then be used to plan and build a monitoring

system for BCB Medical that solves the defined problem areas. The data gathered

by the monitoring system will be analysed and it will be proved that the anomalies

on the monitoring data could be detected with machine learning, which can also be

used for a scalable way to set threshold values for alerts.

The final research question, number four (RQ4), will be discovered with literature

review and the theories will be discussed in conclusion. RQ4 also gives a good basis

for further research on predictive monitoring.

1.5 Structure of This Document

The structure of this Thesis is divided into three phases. First phase is based on

a literature and it contains Chapters 2, 3 and 4. The goal of the first phase is to

gain a theoretical background to the research work and answer to the first research

question (RQ1). The first phase follows the structure of monitoring process, that

was mentioned earlier in Section 1.1. Second phase is about the research work,

where the interviews and their results are documented (RQ2). The theories gained
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in the first phase are put into a real world test, when planning and implementing the

monitoring system in BCB Medical’s IT infrastructure. RQ3 will also be answered

by telling how to set the threshold values for alerts in a scalable way, in the context of

BCB Medical’s environment. The second phase contains Chapters 5 and 6. Third

phase is for the conclusion. Summary of the solutions for the research questions

are presented and a few interesting topics related to the monitoring are discussed,

including predictive monitoring (RQ4). Third phase contains Chapter 7.

In Chapter 2 monitoring data collection and storage methods are introduced.

The Chapter gives brief introduction of different parts of IT infrastructure and of

the items to monitor in those parts. In addition, in the final Section of the Chapter,

significant monitoring tools are introduced. Significant in this context means that

the monitoring tool is either going to be used in the business case of this Thesis

or it was mentioned multiple times in the literature as a good or bad example of

monitoring.

Chapter 3 is about visualization, anomaly perception and anomaly anticipation.

In the beginning of the chapter data visualisation methods are introduced, what

is the definition of a good dashboard. Next, the anomaly perception methods are

compared to build a theoretical base for anomaly detection that is needed in scalable

threshold setting. Last, proofs of anomaly anticipation, or predictive monitoring,

are researched.

Chapter 4 describes alerting and recovery practices. What type of anomalies

exist and which one of those should be alerted. In the end of the Chapter, ITIL’s

(Information Technology Infrastructure Library) process for incident management

is went through to describe a good example of recovery from anomaly.

In Chapter 5 the business case is explained and the plan for the research work is

documented. Research work will contain interview part and implementation part.

Chapter 6 contains the documentation of the interviews, the analysis of the in-
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terview results, plan for the implementation, the implementation and the scalable

way to set threshold values for alerts. In addition, at the end of the Chapter fur-

ther development of monitoring will be discussed in the form of cyber security and

scalability issues in Prometheus. Also, Kubernetes-based monitoring is compared

to server-based monitoring.

In Chapter 7 summary of the answers for research questions will be presented

and predictive monitoring will be discussed by providing one theoretical approach

to build a predictive monitoring system.



2 Data Collection and Storage

This Chapter covers the first two phases of the monitoring process that was men-

tioned in Chapter 1, data collection and data storage. Firstly, the different parts of

IT infrastructure that monitoring data can be collected from are introduced in Sec-

tion 2.1. Secondly, different monitoring methods and techniques are being compared

in Section 2.2. Thirdly, storing of monitoring data is handled in Section 2.3 includ-

ing introduction and comparison of different database types. In the last Section of

this Chapter, Section 2.4, three monitoring tools that use techniques mentioned in

earlier Sections, are introduced.

2.1 Monitoring Subjects

This Section introduces the common parts of IT infrastructure and the metrics that

can be monitored in those parts. The IT infrastructure is divided by its concrete

building blocks: server, application, network and database. Monitoring subjects

introduced in following subsections can be found in compact form in Table 2.1.

2.1.1 Server

To get a better visibility on a server important metrics to monitor are introduced in

this Subsection. The example destinations for introduced metrics are from devices

that have Linux based operating system. Same metrics are available on devices

that are using other operating systems as well, but the destination of a metric may
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Part Subject

Server

CPU

Memory

Network

Storage

Load

Application
Application instrumentation

Framework support for monitoring

Database

Connections

Queries per second (qps)

Slow queries

Server metrics

Network
Incoming and outgoing messages

Agent-based/agentless monitoring

Table 2.1: Parts of IT infrastructure and monitored subjects in those parts.

vary. Most of the introduced metrics in this Subsection are fetched by default in

monitoring tools. For example, Prometheus uses Node exporter [3] to reveal all

needed server metrics. However, when getting to know in monitoring it is important

to understand what happens under the hood and why certain metrics are monitored.

CPU (Central Processing Unit) status is usually described with CPU utilization

metric. CPU utilization is a common metric to see at monitoring dashboards and

usually one of the first metrics that comes to mind when considering server moni-

toring. It is also the most misinterpreted metric. Against common misconception,

CPU utilization metric doesn’t really tell the used capacity of CPU. Instead, it tells

also the time that CPU waits for I/O devices, like memory. [4] For example, if server

memory is exhausted, the CPU utilization is constantly at 100%, while really only
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10% of the CPU capacity is used. For that reason, monitoring of CPU utilization

metric alone doesn’t really give any insight on the CPU status. Therefore, CPU

status needs to be monitored together with I/O metrics or through other metrics.

One option to monitor on is instructions per cycle (IPC) metric. It tells how many

instructions CPU has completed in a clock cycle. From that metric it can be clearly

seen, on what level the CPU is performing, when maximum IPC value is known.

Memory is monitored through memory metrics that describe total, used and free

memory. On Linux based devices those values can be found in /proc/meminfo file.

When memory runs out, the server will automatically release memory by killing

resource exhaustive processes, which can lead to unexpected results. OOMKiller

(Out Of Memory Killer) chooses the process to be killed by maximizing the released

memory and minimizing the amount of processes to be killed and the importance of

a process [5]. However, sometimes the process that is unimportant for a server might

be important for a user, so memory issues should be handled before the OOMKiller

steps into the picture. The easiest way to notice that server has ran out of memory

is to search for the existence of OOMKiller in server logs [6].

Server network is monitored through sent and received packages. On Linux based

devices the information is available in /proc/net/dev file. If the count of sent and

received packages remains unchanged for a long time, it can be deduced that there

is some problem in the network connection. [1]

Storage space is monitored through read and write activity on a disk. On Linux

based devices the information is available in /proc/diskstats file. Sudden rise or

drop of disk activity is usually a sign of an anomaly in a system.

Server load is a measurement that tells how many processes are waiting to be

served by the CPU. The load is presented with three values: 1 minute average, 5

minutes average and 15 minutes average. It is advised to not make any interpreta-

tions on single load value [1], because load is effected by not only the CPU delay
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but also the delay in I/O devices [7]. Instead, the load values should be interpreted

together. If all three load values are zero, the system is on idle. If 1 minute load

value is higher than 5 and 15 minute values, the load is increasing. If 1 minute load

value is lower than 5 and 15 minute values, the load is decreasing. [8] The load

information is available at /proc/loadavg file on Linux based devices.

2.1.2 Application

Application monitoring is a field with a lot of freedom in implementation of moni-

toring, yet it is the part that is usually put aside or not implemented at all [1]. One

reason for this might be that application monitoring is not a component that you

can glue on the side of the system. It needs to be implemented in the source code

of a system. However, when the gained benefits and the made sacrifice are being

compared it is clear that application monitoring is a highly productive thing to do

and a thing that is gaining popularity in the modern software [1].

One method of application monitoring, is to add to the source code of a soft-

ware parts that save information about success rate and running time of methods.

For example, a simple method that handles sign ins, could increment a counter

value always when someone tries to sign in and information about the sign in being

successful or not. This data can then be exported in a structured log file or in a

time-series database from where it can be forwarded to the monitoring system. [1]

Application monitoring can be implemented from zero by just simply building

everything from ground up or by using a ready-made framework. One good open

source option for the framework to use is StatsD. It is based on a client-server archi-

tecture and implemented with the Node.js programming framework. StatsD can be

used with multiple programming languages. Basically, StatsD client plugin needs to

be imported to the source code of the software and then metrics can be gathered

with plugin methods. The client will send the data with UDP (User Datagram
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Protocol) to the back-end server as constructed log input. The back-end will then

calculate different values from data and send them forward to the visualization tool

like Graphite. [9] [10]

It is said in the book Practical monitoring [1] that application monitoring should

be delivered with the application, so it would be in the same server or part of the

application. This is because the application monitoring system should be kept up

to date with the application to make sure that it is functioning properly.

2.1.3 Database

First thing to monitor in a database is usually connections [1]. Connections describe

the amount of clients connected to the database. From the connections number the

rough estimate of usage level of a database can be seen.

However, every client can put different load on the database. The more exact

load value of the database is presented with QPS (Queries Per Second) value. QPS

shows how many queries were run in one second.

Sometimes the poor performance of a database is not about the huge amount

of queries. Queries may also be slow. First step, when enhancing the database

containing slow queries, is finding them. Slow queries can be found in the database

log file where each query is logged with execution time. [1]

One thing worth to remember when doing database monitoring is that databases

also run on servers, so it is good to monitor the metrics of a database server to catch

malfunctioning disks for example. [1]

2.1.4 Network

In network monitoring there are basically two approaches that one can take, agent-

based or agentless monitoring. The agent-based approach means that on every

device of the network there needs to be installed a piece of software that monitors
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incoming and outgoing packets, the downside of the solution is that it is not a

scalable one. Upside of the agent-based approach is that there are no limits in the

scope of what can be monitored. On the other hand, in the agentless approach

the APIs (Application Programming Interface) of a device are used for the network

monitoring. This approach limits the possibilities of monitoring to the options that

device manufacturer has provided. However, the agentless approach is much more

scalable solution. [11]

The agentless network monitoring is based on an SNMP (Simple Network Man-

agement Protocol). The SNMP is an old protocol and it was widely introduced for

the first time in RFC 1067 [12] (Request For Comments) in August 1988. The SNMP

is based on the UDP protocol and it uses two ports (161 and 162) in data transfer.

One of the ports is used for outgoing data and the other is used for incoming data.

All servers and computers have support for the SNMP, which means they can work

as an agent or a manager. The agent is a device where network monitoring data can

be pulled from, and the manager is a device that is fetching the data. [1]

2.2 Monitoring Methods

In this section, a different kind of monitoring techniques are introduced. The differ-

ences and similarities of those techniques are also being compared.

2.2.1 Monolith or Distributed Monitoring System

Monitoring has five phases, data collection, data storage, visualization, analytics

and alerting, like was mentioned in Chapter 1. In a monolith monitoring system,

all these phases are handled by one application or a service. In the past, most

monitoring systems were following monolith architecture. Recently, the trend has

been going towards distributed monitoring systems, where each or some of the phases
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of monitoring are done in different services. [1]

In general, a distributed monitoring system has the same advantages as the mi-

croservices. Smaller units are easier to scale, easier to build and maintain. Different

technologies can be used in different units. The system as a whole is more resilient

to errors, if some part of the system fails the other parts can still function. It is also

easier to change parts of the system when they follow distributed architecture. [13]

2.2.2 Pull or Push Based Monitoring

In monitoring there are two ways to get the information from a client system. Either

the client system can send the monitoring information to a monitoring system or

the monitoring system can ask this information from the client system. To put it

in a nutshell it is about which one makes the initiative. If the client system makes

the initiative, it is called push based monitoring and if the monitoring system is the

one who makes the first move, it is called pull based monitoring.

Both of these monitoring methods have their own advantages and disadvantages.

In the book Art of monitoring from James Turnbull, a push based monitoring system

is built from a scratch with a monitoring tool named Riemann. In the book, many

advantages of the push based monitoring system are listed. It is said that the push

based monitoring system will scale better than pull based because there is no need

to configure each of the new client systems to the monitoring system. Instead, the

location of the monitoring system needs to be configured to the client system and

the monitoring information will start to flow from the client to the monitor. [14]

Another point of view to the matter is provided by a widely known open source

monitoring tool, named Prometheus. Prometheus is counting on the pull based

method in monitoring. One of the founders of Prometheus, Julius Volz, wrote

an article to the Prometheus website where he denies all the scaling issues of the

pull based monitoring system. In the article, it is said that the part where the
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monitoring system is asking information from a client system, won’t waste more

resources compared to push based monitoring system. It is also said that time is

not saved in the configuration phase because if the monitoring system is built to be

reliable, it is required to configure the clients to the monitoring system as well. [15]

In both of the texts, writers mention pull based monitoring system named Nagios

and agree on the fact that Nagios doesn’t scale well. It may be that in the Art of

monitoring book the scalability problems of Nagios are generalized to the problems

of all pull based monitoring systems. However, in the article on the Prometheus

website, it is said that Prometheus is not working like Nagios, and they have even

defined the problems that hinder the scalability of Nagios and these problems doesn’t

exist in Prometheus.

2.2.3 Black Box or White Box Monitoring

A black box monitoring refers to the monitoring technique where the system is ob-

served only from outside, without knowing how the monitored system really works.

With black box monitoring the symptoms of an anomaly are easy to notice in some

cases, but it won’t provide any help on finding the reasons for the problem. [16] Usu-

ally with black box monitoring it is reasonable to monitor if the service is available

and how quickly it is responding. These type of monitoring solutions are available

as a service. The upside of those services is the ease of use and security. Since,

it requires only the configuration of a system that needs to be monitored, and the

monitoring system itself doesn’t need any access to the internal structure of a system

under monitoring, it is easy to mobilize and there is no need to worry about security

issues.

Downside of the black box monitoring is the lack of useful information on how

to solve the problem at hand. The lack of insight on the system prevents alerts from

being as good as they could be. Alerts in general and what kind of information they
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should contain, are discussed in more detail in the chapter 4.

White box monitoring is the preferred way of monitoring nowadays [16]. Mostly

because it enables better transparency of a monitored system. White box monitoring

requires more work to mobilize but it will pay back as shorter problem solution times

and faster or even predictive anomaly detection.

2.2.4 Metrics or Event Logs

Metric is a quantitative data type that is used to measure the performance of an

object. Metrics can be a counter type or a gauge type. The counter type data means

a value that continuously increases. For example, the value that tells the amount

of visitors in a website is a counter type value. The problem with the counter type

data is the maximum value. At some point, every counter will reach its maximum

value and need to be reset. The gauge type data is a data that describes point in

time value. For example, a processor utilization rate is a gauge type value which

tells how much load a processor is facing at the given time. The problem with a

gauge type data is that, it doesn’t tell anything about a previous state of an object

that the data was fetched from. Most of the data from monitoring is usually gauge

type [1].

Log data is specified information about system run-time variable values and er-

rors in text format. Log data usually contains a timestamp that tells when the

logged incident has happened. It is also reasonable to include in the logged text the

location where the logging was made. Log data can be structured or unstructured.

Structured in this context means that the log data is easy to read by machine. How-

ever, unstructured log data can later be transformed as a structured one. Usually

structured log data is in JSON (JavaScript Object Notation) format, which is easy

to parse by machine. [1]

If we compare metrics with log data, the later mentioned is more specific and
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it gives more precise information about system behaviour [17]. On the other hand,

it is also more resource exhausting. Writing the log files demands CPU power and

then keeping old log data demands data storage space [16]. It is true that older

log files can be compressed, but the logs are still spending a lot more space than

metrics. Especially, when the older metrics can be resampled. The resampling

of metrics means that if certain gauge type metric was originally recorded with 1

minute interval, the average of five 1 minute metric values can be calculated and

the metric data will compress into the space that is 1/5 of the original space [1].

The smallest changes in data will be lost, but the trend is still there and it is all

that is needed from older monitoring data. Storage and compression methods of

monitoring data will be introduced in the Section 2.3.

2.2.5 Distributed Tracing

Distributed tracing is a way to track requests throughout request life span. It is

especially useful when figuring out problems in distributed systems, like systems

built with microservice architecture. From the trace, operation engineer can see in a

single screen what services the request has reached and how long it has took for each

service to handle the request. Distributed tracing provides the missing information

that centralized logging systems and metrics fail to provide. [18]

Like it was mentioned earlier, distributed tracing is useful when debugging sys-

tems with distributed architecture. However, that is not the whole truth, distributed

tracing is handy also in systems that use monolithic architecture. In monolith sys-

tems the calls inside the system can be traced in a same way than in distributed

systems. Tracing system will present all the calls and call returning times in user

interface. [19]
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2.3 Storing of Monitoring Data

In this section, the efficient storing methods for monitoring data are introduced.

Why and how the storing should be done and what can be done with the old moni-

toring data to squeeze it to take less space.

In the first Subsection 2.3.1, charasteristics of TSDB (Time Series DataBase)

will be introduced and different type of TSDBs will be compared. Second Subsec-

tion 2.3.2, describes the search engines, what are they for and how they are used.

The last Subsection 2.3.3, introduces the compression methods for different kind of

monitoring data and how the compression will change the data.

2.3.1 Time Series Database

Most of the monitoring data is time series data which means it has two factors, the

moment of time when the data was gathered and the information itself, that can be

in a text format (log data) or in a number format (metrics) [20].

To take full advantage of the monitoring data it needs to be stored in a database

that can handle time series data efficiently. The database model made solely for this

purpose is called a time series database (TSDB). TSDBs overall have gathered a lot

of attention in the area of databases recently and the TSDB has been the fastest

growing database model in popularity for the last two years [21]. Reasons for the

popularity are monitoring of large scale systems that produce a lot of time series

data and IOT devices that also create time series data [22].

The significant difference between TSDB and normal SQL (Structured Query

Language) or no-SQL database is that TSDB will save the new information always

as INSERTs, not UPDATEs. This fundamental difference allows TSDB to track the

history of saved item [23].

In the field of TSDBs there are a lot of different options to choose for. One thing

in common between them is that they are efficient in storing and restoring time
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series data. Time series data can be stored in a traditional database also, it may

even work efficiently in a small scale if the indexing is correctly implemented in the

database. However, when the amount of services and the complexity of database

queries increases, like in monitoring, traditional databases will face performance

issues like mentioned in blog posts [24], [25] and [26].

Most of the TSDBs store the data to the hard drive. However, in the article

"Gorilla: a fast, scalable, in-memory time series database" there is described a

TSDB, named Gorilla, that uses memory to temporarily store the time series data,

which allows 73x faster query times. Temporary memory storage for time series data

was made possible with XOR (Exclusive Or ) compression algorithm, that allowed

to reduce the size of a data point from 16 bytes to 1.37 bytes. At the beginning,

when they launched Gorilla, they were able to fit last 26 hours of time series data

into 1.3TB of RAM (Random Access Memory) space. [27]

2.3.2 Search Engines

Search engine in general is a system that retrieves information from a larger set of

information. The most popular search engines are web search engines, like Google

search. In this subsection, however, the interest is focused on the log search engines.

One well known search engine and a solution for log management is the ELK stack.

It is mentioned in both of the monitoring books that I read [1] and [14]. The ELK

stack contains the Elasticsearch search engine, the Logstash log aggregation engine

and Kibana visualization engine [28].

The reason why the ELK stack is introduced in this Subsection is its unique way

to store and retrieve the log data. To simplify the functionality of the ELK stack, it

makes an index of incoming text, for example log event, and when that log event is

later searched, the ELK will run the search on indexes rather than the data, which

makes the retrieving of log data much more efficient [14]. The data itself is stored
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as an JSON object in to the storage space. In the ELK stack one index can contain

one or multiple JSON documents. [29] The indexes are depending on the use of the

stored data, and queries that are frequently ran should be indexed to make the work

more efficient.

Another log management tool is Grafana Loki. The solution of ELK stack com-

pared to the solution that Grafana Loki provides for log management, in Loki Logs

are stored in plaintext form instead JSON objects, set of label names and values are

assigned to the text and the label pairs are indexed. The tradeoff makes operation

of Loki more efficient and allows more aggressive logging from applications. The

way how Loki presents logs with a set of label pairs is similar to Prometheus’s way

to present metrics, which makes it easy to context switch between logs and metrics

when Prometheus is installed alongside Loki. [30]

2.3.3 Compression Methods of Monitoring Data

"Data is compressed by reducing its redundancy, but this also makes the

data less reliable, more prone to errors... Data compression and data

reliability are therefore opposites..." [31]

Considering the monitoring data, there is a lot of redundancy both in metric

and log data. Monitoring data has a lot higher value on recent data points than on

older ones [27]. Recent data points are used for solving the problem at hand and

therefore they need to be reliable. In older data points, however, the redundancy

can be decreased because they don’t have the same use case than the more recent

ones. For that reason, as mentioned in Subsection 2.2.4, it is common that in time

series databases the older data points are combined.

The merge of data points is made: for gauge type metric data by calculating

the average of two or more data points and merging them as one, for counter type

metric data by just simply removing, for example every other data point. There
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is also other type of monitoring data compression methods for time series data,

as was described earlier in the Subsection 2.3.1, where TSDB named Gorilla used

compression algorithm that reduced the size of a datapoint, instead the amount of

datapoints [27]. The approach took by Gorilla has the advantage of maintaining the

resolution of monitoring data.

How does the compression algorithm of Gorilla work? Each data point is a pair

of 64 bit values representing the timestamp and value at given time. Both of these

values will be compressed with different algorithm. For timestamps they use delta

of deltas compression and for floating point values they use XOR compression.

It was noticed that timestamps in monitoring have usually constant, or almost

constant, interval. It is a consequence of the constant scrape interval. If the moni-

toring data is scraped from a service, for example, with 60 second interval, usually

the change (or delta in Figure 2.1) of a saved timestamp is something between [59,61]

seconds. This knowledge was then used to save timestamps in less space with com-

bining them to the previous timestamps and saving only the change of change (or

delta of deltas in Figure 2.1). The required space for saving the timestamp depends

on the value of delta of deltas. If the change between data points is constant, the

saving requires only one bit (in Figure 2.1 compressed value "’0’") instead the orig-

inal 64 bits. If the change is between [-63, 64] seconds, the saving requires 9 bits

(in Figure 2.1 compressed value "’10’:-2"). In to the tests made on Gorilla, it was

discovered that 96% of timestamps can be compressed to one bit. [27]

With floating point values XOR compression algorithm was used to reduce the

size of saved data point. The key finding in creating the XOR compression algorithm

was that most timeseries data points don’t change significantly compared to their

neighbouring data points. If two values are close together, their sign, exponent and

first bits of mantissa are identical. In the algorithm, two data points are XOR’d and

encoded with following scheme:
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1. If XOR with the previous is zero, store bit ’0’.

2. If XOR is non-zero, calculate leading and trailing zeros, store bit ’1’

(a) If the block of meaningful bits falls within the block of previous mean-

ingful bits, use that information for the block position and store the

meaningful XOR’d value and control bit ’0’.

(b) Else store the length of the number of leading zeros in the next 5 bits, then

store the length of meaningful XOR’d value in the next 6 bits. Finally

store the meaningful bits of the XORed value. [27]

Figure 2.1: Visualisation of compression algorithm of Gorilla that uses delta of

deltas compression and XOR compression (from article "Gorilla: A Fast, Scalable,

in-Memory Time Series Database" [27]).

Log data can also be compressed. Like it was mentioned earlier, the recent data

has greater value than the old data, so for logs it can be for example decided that

log data older than a week will be compressed. As a compression method simple
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solution, such as bzip2 and gzip are common. In the article "Improving Compression

of Massive Log Data" by Robert Christensen [32], a novel method for log compression

is introduced. The method divides log data into homogeneous buckets which makes

the traditional compression methods more effective.

2.4 Monitoring Tools

In this chapter, remarkable monitoring tools (for this thesis) are introduced. The

focus of the introduced tools are on the data collection and storage, and the tools

are Prometheus, Riemann and Nagios. These tools were chosen to be introduced

in this chapter because: Prometheus is going to be used to take care of monitoring

in the company that this thesis is made for, Riemann is alternative solution for

Prometheus using push based monitoring and Nagios was mentioned by multiple

monitoring books as a bad example of pull based monitoring.

2.4.1 Prometheus

Prometheus was built at SoundCloud in 2012 to replace their existing monitoring

tools, Graphite and StatsD, which didn’t serve their needs any more. At the be-

ginning, there were four requirements that they wanted Prometheus to fulfil: A

multi-dimensional data model, operational simplicity, scalable data collection and a

powerful query language. [33]

Prometheus takes care of data collection, (temporary) data storage and alerting

phases in BCB Medical. As it was told in the Subsection 2.2.2, Prometheus is based

on the pull based method of collecting monitoring data. In order to pull metrics from

a service, the Prometheus exporter (down left on Figure 2.2) needs to be installed

on a server. Prometheus exporter is basically a service that provides interface for

Prometheus server to fetch all available metrics of a service from a single destina-
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tion. There are many ready-made exporters available, for example, for Linux server,

MySQL database, Mongo database and JVM (Java Virtual Machine). Exporters

can also be made for custom need if there is no official or a community made ex-

porter available. The Prometheus website provides instructions and guidelines for

exporter creation [34].

Despite the fact that Prometheus is a pull based monitoring system, the metrics

can also be pushed to the Prometheus server, but it needs to be done through

special part called push gateway (middle left in Figure 2.2). Push based method

in Prometheus can be used in jobs that live only shortly and configuring them to

Prometheus server would cause too much trouble. [35]

Figure 2.2: Architecture diagram of Prometheus (from Prometheus documentation

[35]).
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2.4.2 Riemann

Riemann is an open source monitoring system authored by Kyle Kingsbury. Rie-

mann is written in Clojure, which is dialect of Lisp, and it runs on top of JVM.

The idea of Riemann is to make monitoring easy by default. Riemann is called

as an event processing engine because it aggregates events from applications and

feeds them into a stream processing language. There are three main concepts in

Riemann: events, streams and index. Events contain several fields of information

like: host, service, state, time, description, tags, metric and ttl (time in seconds how

long the event is valid). Each event is added to one or more streams. Streams are

transporting events from one point to another. The index contains all information

about all of the services that Riemann is tracking. [14]

The Figure 2.3 describes one possible monitoring stack that uses Riemann as

monitoring system, InfluxDB as data storage and Grafana as visualisation tool.

Figure 2.3: Monitoring stack with Riemann [36].
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2.4.3 Nagios

Nagios is open source computer software that monitors systems, networks and in-

frastructure. However, the open source community of Nagios is not as active as in

Prometheus for example, and it is mainly maintained by Nagios team. Nagios was

originally designed by Ethan Galdstad in 1996. [37]

Nagios offers different products for different purposes. Nagios core is the mon-

itoring backend. Nagios XI is offering enterprise version of Nagios with GUI, that

uses Nagios core as backend. Nagios Log Server for logs. Nagios Network Analyzer

for networks. [38] From technical point of view, Nagios core is written in C language

and Nagios XI is written mostly with PHP. [37]

Nagios uses pull based method in its monitoring architecture as described in

Figure 2.4. Pulling of the monitoring data is handled by the Scheduler component

in Nagios server. Scheduler sends message to plugins, that are installed in the

monitored hosts, and plugins return the monitoring data from host to the monitoring

server. Nagios was accused on the monitoring books, that it is not a scalable pull

based solution. One of the reasons why Nagios is introduced in this monitoring

tools section was that it would be investigated, if Nagios still suffers from scalability

issues or are they put in the past. [39]

When searched on the web, there is no recent articles or posts issuing that Nagios

would still have scalability issues. On the other hand, the community of Nagios is

not as large as for example, in Prometheus, so it can be that these issues haven’t

been investigated lately.
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Figure 2.4: Architecture diagram of Nagios [40].



3 Visualization and Analysis

This chapter covers the visualization and analysis phases from the monitoring pro-

cess mentioned in Chapter 1. In Section 3.1, the basics of visualization are intro-

duced in order to build better dashboards for monitoring. In Section 3.2, different

software anomaly detection methods are compared. In the last Section 3.3, literature

proof for predictive monitoring is searched for.

3.1 Visualization

This section will clarify the problem of data visualization. Why data should be

visualized; what elements good dashboard design contains; and what tools there

are available on monitoring data visualization. The book "Information Dashboard

Design: The Effective Visual Communication of Data" [41] is used as a main source

of information in this section. The book is rather old, published in 2006, so the

discoveries from the book will be complemented with more recent articles on the

topics.

3.1.1 History of Data Visualization and Dashboards

It is commonly thought that graphics and data visualization are rather new inven-

tion. However, that is not the case, the earliest proofs of data visualization come

from 200 B.C., when ancient Egyptian surveyors made laying-outs of the positions

of towns and used an idea similar to the modern coordinate system. [42]



CHAPTER 3. VISUALIZATION AND ANALYSIS 29

The beginning of modern graphics was in the first half of the 19th century. In

that time, all the modern forms of data display were invented: bar charts, pie charts,

histograms, time-series plots, line graphs, scatter plots and so on. [42] Nowadays,

many of those data display techniques are used in modern dashboards.

EIS (Executive Information System) is a computer system introduced in the

1980s that was made to provide information from the company to the senior man-

agers in an easily understandable format [43]. EISs took advantage of the data

display techniques like line graphs and pie charts. It is said that EISs were the early

stage of dashboards. However, at the time, before data collection and data analytics

were popular, the quality of the data was so lousy that there were really no use for

the dashboards. They were ahead of their time. [41]

3.1.2 Why to Visualize?

In the study made in 2003 in the University of Berkeley the researchers estimated

that the amount of information in the world increases two exa bytes every year [44].

The excessive amount of information thrives to find out efficient ways to present the

information. Visualization is needed to deliver messages quicker and in a format

that is easier to understand.

3.1.3 Dashboard Design Principles

In monitoring main visualization media is a dashboard. The goal of the dashboard

is to show for a certain user group the needed information about the system with

one glance. In the book Information Dashboard Design [41], common properties for

good dashboards are introduced. Those properties are gathered as dashboard design

principles to this Subsection and introduced below.

A dashboard should have clear objective. Meaning that the design process of a

dashboard should start from a problem that can be solved with a dashboard. Many
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times dashboards are built from the wrong end to present all the available data with

fancy graphics and after that it is thought where the data could be used.

A dashboard should fit on a single computer screen. The efficiency of dashboards

is based on the idea that a single glance at the dashboard would give the information

that the user is looking for. If using the dashboard requires scrolling or clicking,

the dashboard is already working inefficiently and part of the information is always

hidden on the dashboard.

A dashboard doesn’t need to look good. Many dashboards designs use effects

that are there just for the sake of appearance. For example, some data can be

presented in less suitable format, e.g. in a pie chart, because there were already

three line graphs. Graphical representation format should always be chosen based

on the objective, not on the appearance.

3.1.4 Visualisation Tools

In this Subsection a few popular OSS tools for monitoring data visualization are pro-

posed. The basic functionalities and operating methods of the tools are introduced

and some comparison between tools will be conducted.

Graphite

Graphite is introduced in their website to do two things: store numeric time series

data and render graphs of the data. Graphite was designed and written by Chris

Davis at the company named Orbitz in 2006. In 2008 Graphite was released under

the open source Apache 2.0 license. [45]

Architecture of Graphite consists three components: Carbon, which is in charge

of listening the stream of incoming time series data, Whisper that will store the time

series data and Graphite-Web that handles user interface and API for data visual-

ization as described in Figure 3.1. Graphite is mainly developed with JavaScript
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and Python languages. [45]

Figure 3.1: Architecture diagram of Graphite [45].

Grafana

The Grafana project was started in 2014. The initiator was Torkel Ödegaard, who

developed on his spare time a custom dashboard and frontend for Graphite moni-

toring tool and named it as Grafana. Ödegaard was working for Ebay Sweden as a

developer at the time [46].

On Grafana website it is told that nowadays Grafana ables to query, visualize

and alert on metrics and logs. Grafana is usually used as a visualization tool for

Prometheus, because Prometheus visualization methods are too primitive for today’s

demands. [47]
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Grafana has an active community that developes grafana and its components.

The dashboard creation in Grafana is made really simple. The user can download

ready-made dashboards for Prometheus exporters from Grafana site. For example,

for the metrics that Node exporter provides the dashboard presented in Figure 3.2

can be downloaded. These ready-made dashboards can then be customized to serve

user’s needs.

Figure 3.2: Grafana dashboard for Prometheus Node exporter [48].

3.2 Detection of Software Anomalies

Detecting a software anomaly from a visualized data described in the previous sec-

tion may be effortless for a human that has prior knowledge about the behaviour of a

monitored system. However, when the system is scaled up and it contains hundreds

of subsystems, no human can monitor them, another way to discover anomalies

needs to be invented. In this section, the focus is on the automated detection of

software anomalies. Methods to detect anomalies without prior knowledge about

the system or the type of anomaly, are introduced in this Section. In addition, the
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detection system works automatically without human interaction to make it easier

to scale.

One approach to the problem at hand has been given in the article "Black Box

Anomaly Detection: Is it Utopian?" published in 2006 by S. Venkatamaran, J.

Caballero, D. Song, A. Blum, and J. Yates [49]. In the article, the anomaly detection

tool uses certain threshold values to filter monitoring data into two groups, one that

doesn’t have anomalies and one that might have anomalies. Then the machine

learning model is trained and tested with the data that doesn’t have anomalies.

At the end the created data profiles are used in the anomaly detector to detect

anomalies from the real monitoring data. Whole process is described in Figure 3.3.

Figure 3.3: Operation principle of anomaly detection tool from article "Black Box

Anomaly Detection: Is it Utopian?" [49].

The anomaly detection framework described in the article "Black Box Anomaly

Detection: Is it Utopian?" fulfils the goal of a monitoring system not needing to

know about the type of anomaly beforehand and it is also generic [50]. However,

some level of domain knowledge of the monitored system is needed when setting

threshold values at the beginning for the algorithm that divides the data into a

group that doesn’t contain anomalies and a group that might contain anomalies.
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There is also human interaction needed in setting threshold values and evaluating

machine learning model results, which limits the scalability of the presented solution.

Another approach to the matter is described in the article "Toward Automated

Anomaly Identification in Large-Scale Systems" by Z. Lan, Z. Zheng, and Y. Li [51]

published in 2010. The article is written for a large scale computer system but the

used anomaly detection methods can be generalized to the anomaly detection of any

system. In the article, automated anomaly identification system is described to use

PCA (Principal Component Analysis) and ICA (Independent Component Analysis)

as feature selection methods in order to select what monitoring data to use, as

described in Figure 3.4. These two methods also work as a dimensionality reduction

tool when multi-dimensional monitoring data is turned into three-dimensional data.

After dimensionality reduction, the outliers of the data are interpreted as anomalies.

The data that they are using in their research is production monitoring data where

they have injected five different type of anomalies. It is proved in the article that

ICA outperforms PCA as a feature selection method when multiple anomalies exist

in the system. However, the result of PCA was better than in a control group where

no dimensionality reduction was done. The reason for ICA performing better than

PCA, is that ICA is naturally better at finding independent groups of data, which

is useful in anomaly detection.

The article "Toward Automated Anomaly Identification in Large-Scale Systems"

fulfils the goals of anomaly detection without prior knowledge of the monitored sys-

tem and the anomalies. Especially good in the approach is that it can discover

totally new kind of anomalies, because there is no ready trained machine learning

model that is trying to find certain patterns in the data (supervised learning), in-

stead it uses unsupervised learning and tries to find similarities and outliers from

data. However, the approach is not perfect fit because anomaly identification sys-

tem still needs manual validation of those outliers so it doesn’t work without human
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Figure 3.4: Operation principle of automated anomaly identification tool (from ar-

ticle "Toward Automated Anomaly Identification in Large-Scale Systems" [51]).

interaction.

Laptev, Amizadeh and Flint suggest in their article "Generic and scalable frame-

work for automated time-series anomaly detection" [50] that machine learning can

be used to solve the problem of setting threshold value. This research is the most

recent one of the three researches introduced in this Section and it is published in

2015. Laptev, Amizadeh and Flint are building the automated anomaly detection

system for Yahoo that is described in Figure 3.5. Yahoo has working monitoring in

their systems and they get constantly time-series data from different parts of the

systems. Setting reliable threshold value for each of these systems by hand would

be impossible, and that’s the reason why they are using machine learning for the

task. The essential element of automated anomaly detection system is that the

system is trying to predict the future value of a given monitoring data point (in

prediction there can be used different algorithms, depending on the object of moni-
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toring). If the predicted value of monitoring data is far enough from the real value

of monitoring data, it is construed as an anomaly in a system.

Figure 3.5: Anomaly detection tool that Yahoo monitoring services use, described

in article "Generic and scalable framework for automated time-series anomaly de-

tection" [50].

Yahoo monitoring service described in the article "Generic and scalable frame-

work for automated time-series anomaly detection" fulfils the goals of anomaly de-

tection. It works automatically so no human interaction is needed, it can handle

any type of anomaly and it doesn’t need domain knowledge about the monitored

system. In addition, the solution is scalable and it even provides functionality to

point out the interesting anomalies from the set of all anomalies, so the user gets

notified only from the anomalies that he is interested in.
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3.3 Anticipation of Software Anomalies

Anticipation of software anomalies rests on the idea that it is possible to foretell from

the trend of past monitoring data when a given system is facing an error. There is no

publications on the predictive monitoring solely, but in the articles that have studied

automated anomaly detection [51], [50] it is said en passant that these methods

used in anomaly detection could also be used in anomaly prediction. However, in

the Conclusion of this document (Section 7), the anomaly detection is being taken

one step further and a theory for implementation of predictive monitoring will be

introduced.



4 Alerts and Recovery

This chapter is handling the last two parts of monitoring process: alerting and

recovering. In this chapter the main source of information are the books Effective

Monitoring and Alerting [52], and Prometheus Up and Running [53]. The reason

for the use of book sources is that there is not many, if any, published articles on

alerting.

4.1 Alert on Anomalies

Alerts exist because in some cases the system may face a problem that it is not able

to recover from without human interaction. In these cases the monitoring system

sends an alert to the person who is being on-call. To be on-call means that you are

responsible to keep the software running in case of a failure. [1] On the other hand,

alerting releases operation engineers from staring at the metrics and graphs that

monitoring software produces. Especially, when the amount of monitored services

increases the problem detection from monitoring data by hand becomes impossible.

[52]

Good rule of thumb in alerting is to alert on symptoms rather than metrics.

Symptoms are something that user of the monitored application can see or feel. For

example, slowness or sluggishness is a symptom that user can feel when using the

application. With this rule, the false alarms and unnecessary monitoring is avoided.

When the symptom is discovered, the root cause of a problem can be searched for



CHAPTER 4. ALERTS AND RECOVERY 39

with other metrics that are fetched from the application. If connection between a

metric and the symptom is found, the symptoms could be prevented in the future

with correct threshold setting on the metric. [53]

Automate recovery of anomalies that don’t require human intelligence. If anoma-

lies or symptoms don’t really require human investigation on the problem they

should be recovered automatically. This way the amount of alerts can be mini-

mized. The Prometheus Up and Running book suggests that one or two alerts

should fire at maximum in a day [53]. When the amount of alerts increases from

that, they just get ignored.

Playbooks (or runbooks) should be used in alerting. The use of playbooks is

suggested in several monitoring books [1], [52] and [53]. Playbook is a guide that is

delivered with the alert, and it tells general information about the system that the

alert was triggered on, why the alert was triggered and how to start recovering from

the problematic state that the alert is alerting. An example playbook is described

in Appendix B.

Sometimes alerting system first alerts from a problem and after certain period

of time the alert magically disappears. These kind of issues are usually the cause

of too sensitive alerting system. The issue is easily fixable by tuning the alerting

system and the threshold values. [53]

4.2 Alert Types

In the book "Effective Monitoring and Alerting" [52] anomalies are classified by

the severity of two features: recoverability and impact. Recoverability is a measure

that describes the likelihood of a system to recover from anomaly without operation

engineer intervention. Impact is a measure that tells how severe are the effects of an

anomaly to the system. Both of the features are divided into three levels of severity

which outputs a total of 9 anomaly types as described in Figure 4.1.
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Figure 4.1: Anomalies classified by the severity of recoverability and impact.

Anomalies on the red background demand immediate action. [52]

On the bottom right corner in the Figure 4.1 there is the most severe anomaly

type, both in impact and in recoverability. These kind of anomalies are classified as

critical and they require immediate action. On the opposite corner, in top left, there

are anomalies that doesn’t have impact on the system and are quickly recovered.

Thorough explanation of the different anomaly types in the Figure can be found on

the Table 4.1.
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Anomaly type Explanation

Non-issues Anomalies with no impact on the system.

Software optimiza-

tion tasks

Events that cause inefficient resource utilization, could

be eliminated with architectural restructuring.

Possible early indica-

tors

Small bugs that affect a tiny group of users. Can be

result of temporary resource saturation and indicates

the inability of a system to handle stress.

Low priority au-

tomation tasks

Faults that doesn’t have immediate impact on the sys-

tem, but can cause other failures in future.

Non-actionable mon-

itorable events

Events that cause a small fraction of users to face se-

rious failures, which immediately disappear by them-

selves. Quick disappearance of the failures, makes

them pointless to alert on, but the frequency of these

failures should be regularly verified to ensure that they

remain isolated.

Undesired recover-

able events

Events that have noncritical effect on the system in

present time, but can potentially develop into bigger

issues in the future, if not recovered. No alarm is nec-

essary if subsequent jobs succeed.

Intervention nec-

essary to prevent

degradation

Events that are not immediately catastrophic, but the

system is at a high risk collapsing without human inter-

vention. For example, the system may build a backlog

that increases the system delay.

continues in the next page
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Table 4.1 – continues from the previous page

Anomaly type Explanation

Fast intervention Events that cause loss of availability for a fraction of

users or some portion of the system becomes unrespon-

sive. These events require fast intervention to minimize

impact and prevent escalation.

Immediate response Events that block user access or impair the system op-

eration. Critical events increase system downtime and

cause losses in productivity and revenue.

Table 4.1: Explanations for different anomaly types that

were introduced in Figure 4.1.

According to the Effective monitoring and alerting book [52] the last four anomaly

types are the ones that should be alerted (marked with red background in Figure

4.1). The remaining six anomaly types have either low impact on the system or

quick automatic recovery, so it is reasonable to not alert on those cases.

For the alerted anomaly types the trade off is made between speed and accuracy

of detection. The anomalies that have high impact on the system and low recov-

erability value, need to be alerted as soon as possible, when the first signs of the

anomaly appears. The before made decision will decrease the anomaly detection

accuracy, which will possibly lead to some false alarms, but it is the price that has

to be paid in order to avoid or minimize the high impact on the system that the

anomalies in this group have.

On the other hand, when the impact of the anomaly type decreases, early de-

tection doesn’t play as huge role and the trade off between speed and accuracy can
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be moved towards the accuracy, to avoid jamming up the operation engineers that

resolve the alerts. [52]

In this Section, any predefined alert groups was not established, instead all of

the alerts have same priority and they should be reacted as soon as possible when an

alert is notified. The severity of the anomaly is defined in to the monitoring system

in a continuous way with the decision, whether to emphasize on speed or accuracy

in detection.

4.3 Default Alerts

Effective monitoring book [52] suggests some default alerts that can be made on any

system. Those alerts will be introduced and discussed in this section. However, it

is also mentioned in the book that the domain of a system that is being monitored

is always an important aspect to consider, since different software systems demand

different features from monitoring, so the default alerts introduced below are not

set in stone.

From resource level it is said that common metrics that are alerted are network

latency, packet loss, CPU utilization, available disk space and available memory.

Network latency and packet loss can easily be measured by pinging an internal and

external location and saving the response time and counting the times when packet

loss occurred. [52] It is also reasonable to alert on network problems, since they

usually appear for the user as a sluggishness of the system or a system that doesn’t

deliver its purpose. CPU utilization is controversial thing to alert, as was described

in the Section 2, high CPU utilization rate doesn’t always show any signs for the

end user and often it is not the root cause for problems. Available disk space and

memory are reasonable things to alert, since when they reach certain limit it is

certain that it will affect on the system performance in various ways.

From platform level the book says that alerts can be fired based on the turnaround
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times and HTTP (HyperText Transfer Protocol) response codes [52]. Turnaround

time describes the time between submission of the process and completion of the

process [54]. Turnaround time is one of the factors that has a great effect on cus-

tomer satisfaction. If service is working slowly, customers won’t waste their time on

using it and they will look for alternative options that work better. So turnaround

time is a good item to add on the list of alerted items. HTTP response codes tell

if the request made by user has returned an error or the wanted result. The rise of

HTTP response codes tells immediately if some part of the site is unreachable, or

if some link on the site is routing to an item that doesn’t exist. Again, this kind of

alert is good because it tells about the symptoms that user has faced.

In application level the alerts are suggested to be made on availability, error rate

and content freshness. The availability should be checked from multiple external

location to get reliable results. The threshold values should correspond to the SLAs.

Error rate is monitored through the parameters that constitute the user errors, for

example the word error could be searched from the logs and made as a metric. If

application contains evolving content, the freshness of that content can be evaluated

with age metric. Age metric tells the difference in seconds between current time and

the time of last content update. [52] Availability alert is one of the first alerts that is

usually implemented when monitoring is being built. Availability is a good metric to

alert and monitor because it helps first to minimize the downtime of an application

when problems are noticed quicker and secondly it also gives concrete numbers about

the downtime, which can then be compared to SLAs. When alerting on error rate, it

would be good to line out the minor errors that don’t cause any problem for the end

user to avoid jamming up the alerting system and operation engineers behind the

alert system that take care of those problems. Content freshness is an alert which

depends a lot on the domain that the application is on. If the freshness of a content

is important for the application it should be alerted but there are also many cases
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where the content freshness doesn’t have an effect on the user experience.

4.4 Alerting Tool: Alertmanager

Alertmanager is a tool that handles the alerts sent from monitoring system. It

deduplicates, groups, silences and finally routes the alerts to the correct receiver

integration like e-mail [55]. Alertmanager is part of the Prometheus project and

is supposed to be used with Prometheus, however it probably works with other

monitoring tools also. The main components of Alertmanager are described in the

architecture diagram in Figure 4.2. Alertmanager contains API, where monitoring

systems, or alert generators as described in the diagram, can send the alerts. The

same API is used also to send silences in the Alertmanager. You might want to

silence your alerting system for example, for the maintenance or for a problem that

is already noticed. [53]

Alertmanager provides also other functionalities besides notifications and silenc-

ing. Alert inhibition is a functionality that prevents notifications for minor alerts, if

more severe alert in the same group is fired. For example, alert won’t be triggered

from a single service being down, if the whole datacenter has gone down. Routing is

a functionality that allows the notifications to be sent to different places for different

problems. For example, alerts from test environment can be routed to different loca-

tion than the product environment alerts. Also if some team owns certain product,

the alerts from that specific product can be routed directly to the team. The idea

of routing is that organisation would only need one Alertmanager that routes the

notifications from alerts to different locations. Grouping is a feature that allows to

group alerts based on the environment that is monitored. Alerts from certain set of

products can be grouped as one which decreases the amount of alerts in cases where

problem in one product cascades to other products. Throttling and repetition is

something that is done for the grouped alerts if another alert fires from same group.
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Figure 4.2: Architecture diagram of Alertmanager (from Alertmanager documenta-

tion [55]).

Throttling will be made to avoid the alerts getting lost for too long and also to avoid

sending multiple alerts from the same issue. [53]

All of the before mentioned Alertmanager features are managed with configu-

ration file in YAML-format. Configuration can be easily updated by editing the

YAML-file and sending a HTTP request to reload endpoint. [53]
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4.5 Recovery: ITIL’s Process for Incident Manage-

ment

When the alert fires, usually it is a good idea to have a process for recovering. A

guideline to the recovering process of an incident is provided by the ITIL (Informa-

tion technology infrastructure library). ITIL is a library of guidelines and practices

about IT service management. ITIL processes are described in Figure 4.3. ITIL’s

process for incident management is part of the service operation process and it was

published in ITIL documentation version 3. The process for incident management

contains following steps:

1. Incident identification,

2. incident logging,

3. incident categorization,

4. incident prioritization,

5. initial diagnosis,

6. escalation (if needed),

7. incident resolution.

∗ Communication with the user community throughout the incident.

The first step, incident identification starts when incident is received from mon-

itoring system or from other route, like customer announcement. In this step it is

decided, if informed incident is really an incident or a request. Usually incidents

coming from monitoring system are real incidents, but those coming from customers

may be requests also. After identification, incident is logged in a service desk soft-

ware. Monitoring system can skip the incident identification part by automatically
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Figure 4.3: ITIL’s service strategy and processes for operation, design and transition

(from bmc blog [56]).

making a ticket, if all of the incidents coming from monitoring system are presumed

to be real incidents. [56]

Usually, parallel with incident logging the incident categorization and incident

prioritization are also being done. If announcement comes from a customer, first

level support person needs to decide the category and priority of an incident, but

if the incident is logged to a ticket system automatically by monitoring system,

it is usual that the category and priority is also known beforehand based on the

location where alert was triggered. ITIL provides three priority levels for incidents.

Level 1 incident is low priority incident that doesn’t interrupt the use of a service

and incident can be worked around. Level 2 incident is a medium priority incident

that has some affect on the use of a service, but the service is still usable. Level
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3 incident is a high priority incident that interrupts the use of a service and needs

quick reaction. [56]

When the incident has been prioritized the resolution can start by identifying

the parts that are affected and the plan for recovery can be done. If the recover plan

involves other parties the incident needs to be escalated to those parties in this step.

Finally, when the incident is fixed the resolution can be logged to the system. As

the last part there is also mentioned communication with the users throughout the

incident. This is especially important if the resolution time is longer than expected.

If the incident is resolved immediately, it is enough to inform the customer that the

incident is now resolved. [56]



5 Research Work

In this chapter, the business motivation of this thesis is going to be introduced in

Section 5.1, the plan for interviews and implementation work is described in Section

5.2. The practical work itself will be documented in Chapter 6.

5.1 Definition of the Business Case

BCB Medical is a SaaS company that provides software solutions for hospitals to help

healthcare professionals to make better treatment decisions (more thorrow instruc-

tion about the software solutions that BCB Medical provides is in the Subsection

6.1.2). Because the software is provided as a service, the company has made SLAs

(Service Level Agreement) with customers that require a certain level of availability.

With monitoring the availability of service and customer satisfaction can be ensured.

Up to the present, BCB Medical has handled their monitoring with SaaS moni-

toring tools. Now they are moving their monitoring towards the next level of mon-

itoring, which is taking advantage of OSS monitoring tools. OSS monitoring tools

offer more freedom and prospect of modification in what comes to the monitoring.

At the heart of the monitoring infrastructure there is going to be Prometheus server

which gathers the metrics from different parts of the system and saves the data in

the time-series database as described in Subsection 2.4.1.

My position at the firm was in the second level customer service and support,

at the time when this thesis was started. My teammates and I were responsible
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for solving software bugs and deficiencies needing more technical knowledge. This

position gave me a great general view of all the products that BCB Medical offers

and the bugs that the products may face.

The main task for me to complete with this thesis was to enhance customer

satisfaction with the tools of monitoring. Customer satisfaction is enhanced by

doing the work of the customer service team more efficient with first defining the

problem areas that employ the customer service team the most and then planning

and implementing monitoring solutions that help to solve those problems in less

time. The goal is that anomalies are going to be found more easily and recovering

from the erroneous state is faster.

5.2 Definition of the Research Tasks

In this section, the plan for the practical work of this thesis is introduced. The

practical work is divided into two phases: interview and implementation.

5.2.1 Plan for the Interviews

For the research method, a qualitative research method was chosen instead of a

quantitative one because the subject group (customer support team) is small so the

qualitative method will give more reliable results.

Interviews are conducted separately (each team member will be interviewed one

by one) and they follow a semi structured guideline. The semi structured guideline

in interview means that the questions are more open, and defining questions can be

asked when more knowledge is gained from the subject. After interviews, a wrap

up and discussion session will be held about the interview results with customer

support team, where team members can complement their answers.

In interview, there are seven interview questions, which can be found in the
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Appendix A. Interviews are conducted remotely because of the COVID-19 situation,

but it shouldn’t have an effect on the end result. Each interview will last 30 to

60 minutes. Interviews are recorded and the notes will be made afterwards, since

making notes during an interview interferes with concentration and some points may

even be forgotten to note down.

The goal of the interviews is to answer on the second research question (RQ2):

"What are the important parts of the IT infrastructure that should be monitored?"

In addition, some preferred features of the monitoring system will be researched.

For example, the stuff that is wanted on the dashboard and the preferred alerting

methods.

5.2.2 Plan for the Implementation Work

BCB Medical’s IT infrastructure is harnessed with monitoring by using the meth-

ods described in Chapter 2. Monitoring is planned and implemented based on the

results of the interviews. After implementation, the gathered monitoring data will

be analysed with a proper anomaly detection method and it will be used to set

threshold values for alerts.

In addition, predictive monitoring will be studied. There is no strong literature

background on the predictive monitoring, but in this thesis it will be studied, if it

is possible to predict future anomalies from monitoring data. Speculation about

predictive monitoring is in Chapter 7.



6 Research Results

In this Chapter, the research results and the realized workflow of implementing the

monitoring system, are presented. The Section 6.1 contains research results and the

Section 6.2 contains the implementation work that was done to build the monitoring

system for BCB Medical. In addition, in Section 6.3 relevant topics on the future

of monitoring in BCB Medical are discussed.

6.1 Interview Results

In this Section, the interview results are presented. At the beginning, in the first

Subsection, the practicalities of interviews will be introduced. Next, in the second

Subsection, BCB Medical’s IT infrastructure is declared to make it easier for a

reader to understand the interview results. In the last part, in Subsection 6.1.3,

the important parts of BCB Medical’s IT infrastructure are defined, based on the

interview results.

6.1.1 Practicalities

Interviews were held as was planned in the Section 5.2.1. Interviews lasted approxi-

mately 40 minutes on average, like was planned. Notes on the interviews were made

afterwards from the recording, which turned out to be a successful way to work.

Remote meetings didn’t cause any problems, instead they were easier to organize
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because the interviewee and the interviewer didn’t need to be at the office at the

same time.

Interviews were completed in two weeks and all the customer support team mem-

bers (4 interviewees) participated in the interview. All interviewees were roughly

in step with their answers. For some questions there were a few different points of

view but none of the answers denied other answer, so there was no strong contrast

in that way.

6.1.2 Introduction to BCB Medical’s IT Infrastructure

In this Subsection, BCB Medical’s IT infrastructure is introduced on a high level

to make it easier for a reader of this thesis to understand the interview results

that are introduced in the following Subsection. In the next Subsections of this

Subsection three main components of BCB Medicals infrastructure are introduced.

The components are also presented in the architecture diagram in Figure 6.1.

Figure 6.1: High level architecture diagram of BCB Medical’s IT infrastructure.
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Disease-specific registries

Disease-specific registries (DSR) cover 108 different disease groups, which include

orthopaedics, oncology, neurology and cardiology, to name a few. The goal of the

DSR is to monitor the effectiveness and quality of treatment, analyse clinical data

and improve treatment chains. DSRs also help to reinforce the patient care by

automating and harmonizing routine activities of medical treatment staff.

Integration Platform

The integration platform (IPla) takes care of integrating DSRs with hospitals’ pa-

tient data systems. The IPla also transfers the treatment, surgery and examination

reports generated in DSR to the medical record systems. Other things that the IPla

is transferring are: Context management and user data, patient details, appoint-

ment information, laboratory information, operating room information, intensive

care information, medication information and much more. IPla has transferred over

300 million integration messages this far.

MyHealth

The MyHealth service provides a forum for patients, where they can tell about their

state of health by answering online questionnaires. Patients can also receive self-care

instructions from MyHealth service. The MyHealth service also serves the needs of

medical care professionals in gaining the general picture of the patient’s health state

prior to the arrival for treatment and from post-treatment recovery.

6.1.3 Important Parts of BCB Medical’s IT Infrastructure

In this Subsection the important parts of BCB Medical’s IT infrastructure are de-

fined based on the interview results. Each subsection of this Subsection is an in-

terview question, where the responses for a question are summarized into a unified
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answer or answers to the problem that the question states.

Problems that Are Difficult to Solve

Three of the four interviewees were on the opinion that the sign-in problems are

difficult to solve. In interviews, a wide scale of sign-in related problems raised. The

sign-in with a password, the single sign-on, the amount of signed in users in a system

and the first sign-in of a day, were problems that were mentioned in the interviews.

The reasons, why the sign-in problems are difficult to solve, were also discussed

in the interviews. One feasible explanation was that the distributed structure of

the service, that handles sign-ins, is causing the problem. Especially, when there is

no centralized logs available. Instead, logs are separated in different servers, which

makes following a single sign-in transaction difficult. In some cases, the situation is

even worse if the correct logger is not turned on, there is no logging data available

from the sign-in transaction, which makes it impossible to solve problems related to

it.

Three of the four interviewees mentioned also that MyHealth related problems

are difficult to settle. MyHealth is sending notifications via text message and e-

mail and the questionnaires can be answered on the web. The problems that were

mentioned in the interviews were: questionnaire activation problems, a patient can’t

answer the questionnaire or the questionnaire answer was not received to the system,

problems with using MyHealth through the hospital’s own platform, problems with

MyHealth notifications and configuration problems in a system that uses MyHealth,

which prevents MyHealth to work as it should.

Possible explanations for the difficulty of solving MyHealth related issues are,

again distributed structure and the fact that BCB Medical’s customer support team

can’t be in contact directly with the patients, which makes the formation of problem

description difficult.
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Frequently Occurring Problems

Half of the interviewees said that the sign-in problems belong to the frequently

occurring problems. Other frequently occurring problems that were mentioned,

but not by multiple interviewees, were: missing components(for example, certain

knee prosthesis) or equipment (used in surgeries), MyHealth problems, Integration

problems and problems where user has entered faulty information to the system and

is not able to remove it.

Problems that Prevent Customer from Using Product

All the interviewees thought that sign-in problems belong to the group of problems

that prevent a customer from using the product. All the interviewees also said that

DSR service being down prevents a customer from using the product. Three of

the four interviewees mentioned that sluggishness of the DSR will also prevent the

customer from using the product. Half of the interviewees said that DSR’s erroneous

state (OOPS-error) is an error that prevents the use of the service.

Parts of the System that Need More Transparency

Answers that came up for the question, about the parts that need more transparency,

were not as unified as the answers for the previous questions, but the following things

were mentioned. DSRs that are working slow or going down regularly would need

more transparency. MyHealth service overall needs more transparency, including

MyHealth questionnaire activations, sent SMS (Short Message Service) messages,

sent emails and received questionnaire answers from patients. Status of the virtu-

alization platform that DSRs run on. OOPS-errors (Errors that show the "Oops

something went wrong" page for the user), including faster notification and easier

root cause exploration for erroneous states that DSRs face.



CHAPTER 6. RESEARCH RESULTS 58

Worst Case Scenario

All the interviewees stated that data corruption would be one of the worst cases

that could happen. In addition, there were other answers that came up for this

question as well. One of the topics discussed was data security, which has gained

a lot of popularity recently, when 32 000 patient records were stolen in Vastaamo

security breach [57]. Data loss, because of a server or service malfunction. Wide

scale simultaneous sign-in problems, for example if a single sign-on platform gets

into a faulty state. Problems in a virtualization platform that is virtualizing the

environment for DSRs, if the virtualization platform fails, all DSRs would go offline.

Conclusion

To conclude this subsection the second research question (RQ2) will be answered.

The prioritized list of the parts that the monitoring will focus on is:

1. Single sign-on problems,

2. sluggishness of DSRs,

3. MyHealth questionnaires.

6.1.4 Preferred Monitoring Features

In this Subsection the preferred monitoring features of customer support team mem-

bers, according to the interviews, are introduced. The interview contained two

questions on this topic and those questions are the topics of the subsections of this

Subsection.

All the interviewees were unanimous on the fact that the monitoring shouldn’t

require staring or checking some dashboard on a regular basis. Instead, a working

alert system should be in place and only when the alert is triggered support engineer
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can go to check the dashboard to figure out what is wrong and how to correct the

faulty state of a service.

What Actions Needs to Be Alerted on?

Things that the members of customer support team would like to have alarms are

introduced next. First of all, the critical things that need immediate human action

should be alerted. Those include, service being down, service being slow, OOPS-

error and sign-in problems. Basically, all the problems that prevent customer from

using the product or significantly lower customer satisfaction should be alerted. On

server level memory and CPU exhaustion are usually signs of service working slowly

or about to go down, so those metrics could be used in alerting.

How the Alarm Is Made?

Common preference was that personal e-mail for the person on call would be better

than e-mail to the whole support team. Usually, e-mails sent to the team can easily

remain unnoticed by anyone, when everyone things that someone else will take care

of the problem. One option that came up from interviews was a text message to

the support phone, because someone is always responsible for the support phone.

Another option was a Slack-message on a channel that has notifications switched

on.

All in all, the conclusion was that the alert notification channel is not the greatest

problem in the beginning, instead, setting the correct alert thresholds values in a

way that the alerts are not spammed all the time, but still catch the important

problems, is the way to build a successful alerting system. The alert notification

channel can even be changed later on if team notices that some other way to make

alerts would be more suitable for them.
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6.2 Implementation Work

In this Section, the implementation work for this thesis is described. In the Sub-

section 6.2.1, the plan for a monitoring system is revealed. On a high level, the

monitoring system is going to use Prometheus as a data collection and (temporary)

data storage tool. Alertmanager as an alerting tool. Grafana as a visualization tool.

Loki for a log management and discovery. In the Subsection 6.2.2, the building of

a monitoring system is documented. In the Subsection 6.2.3, the alert threshold

values will be set based on the monitoring data gathered from a system. Subsection

6.3.1, introduces and compares automated methods of setting threshold values for

alerts on a conceptual level.

6.2.1 Planning the Implementation

The monitoring system is implemented based on the interview results that were

introduced in the Section 6.1.3 and in the Section 6.1.4. The monitoring system is

implemented on the dedicated monitoring server, first in the QA (Quality Assurance)

environment, from there the working concept is going to be copied to the production

when it is tested and proved to be secure.

All the installations that are going to be made more often than twice, are made

with Ansible. Ansible is a tool that can be used for IT automation. The idea is that

the installation scripts are made once, they are documented on the version control

system and then anyone with access to the Ansible project can make installations

with the tool. However, the real benefit comes from the automated installation for

multiple hosts. For example, on all the DSR servers, the node-exporter, or any other

exporter can be installed with single command.

A big part of the implementation is documentation of what is done. The docu-

mentation is made with Asciidoc and Antora. Antora is a site generator and Asciidoc

is the markup language that Antora uses. Antora is made for technical documen-
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tation and the benefits that their site lists are: "contents are stored in a version

control system; content, configuration and presentation are separated; automation

is used in compilation, validation and in publishing; reuse of shared materials" [58].

The problems to be solved with monitoring, in prioritized order, were:

1. Single sign-on problems,

2. sluggishness of DSRs,

3. MyHealth questionnaires.

Architecture diagram of the monitoring system to be implemented that solves

the defined problems is described in the Figure 6.2.

For single sign-on problems, the plan is to use centralized logs with Grafana Loki

and Promtail. Promtail is an agent that forwards the system log files and catalina

logs from the monitored server to the Grafana Loki as described in Figure 6.3. With

Grafana Loki logs can be filtered, which aids to find the important information from

logs that are fetched from several services. The difficult part in solving single sign-

on problems is that it is time-consuming to recognize at which point of the sign-in

process the failure happens. With Promtail and Grafana Loki, log files can be easily

studied and the metrics of successful and failed sign-ins can even be exported as

metrics based on the logged events.

For sluggishness and crashing of DSRs, the plan is to use node-exporter to ex-

pose the server metrics, blackbox-exporter to poll the user interface response times,

Mysql-exporter and Mongo-exporter to monitor the databases and response times

of the database queries. In addition, the application can be monitored with JMX-

exporter, which allows to expose the metrics of the Java virtual machine.

MyHealth related problems are tackled with blackbox-exporter, which can be

used to check that all pages are available and responding quickly. Activations,

messages and answers can be monitored with custom-made Mongo-exporter that
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allows to show the metrics based on the database queries. In addition, the frontend

application can be monitored with an exporter that reveals Grails metrics since it is

implemented with the Grails 3 framework. The frontend monitoring provides needed

help on solving the problems that patients are facing when answering the MyHealth

questionnaires.

Figure 6.2: Architecture diagram of the monitoring environment to be implemented

for BCB Medical.

6.2.2 Implementing the Monitoring System

The implementation work started with installing the required software in the Mon-

itoring server ("Monitoring environment" in Figure 6.2) and documentating the

installations. Default configurations and methods to update the configurations to

Monitoring server were also made. After the Monitoring environment was up, I
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Figure 6.3: Log monitoring with Promtail and Loki in BCB Medical.

started to work on the Ansible scripts to install exporters on the monitored environ-

ments. Great help in building of Ansible scripts was offered by the Ansible Galaxy

website [59], which provides open source Ansible installation Roles for different soft-

ware, including Prometheus exporters. Of course, those Ansible Roles didn’t fit out

of the box to BCB Medical’s infrastructure, but they could be used as a template

when building the Roles.

The created roles were first tested in one general test environment and then used

to install the exporters in the actual test environments of the environments that

were defined by the interviews to be the environments that need to be monitored.

The exporters were configured to Prometheus and Prometheus was configured as a

data source to the Grafana. In addition, Loki was also configured to Grafana to

import logs from monitored environment.
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In the last step the Grafana dashboard for customer support team use was cre-

ated and it can be seen in Appendix C. Firstly, the dashboard contains centralized

logs to solve the single sign-on problems. The logs include a filter functionality

with keyword and time range. Secondly, the dashboard contains server, JVM and

database metrics to debug the reasons for the sluggishness of DSR. Thirdly, the

dashboard will contain in the future metrics of activated, deactivated, sent and

answered MyHealth questionnaires in real time. At this moment, it was not pos-

sible to implement MyHealth monitoring, because exporter’s Mongo-plugin didn’t

have support for the Mongo version that BCB Medical is using in MyHealt Mongo

database. However, this problem will be resolved in the future when MyHealth’s

Mongo database is updated.

In addition to the problems solved in the scope of this thesis, the implemented

monitoring system allows solving a wide scope of problems that are not yet defined.

Grafana dashboard can be easily modified to serve new needs. New metrics can

be fetched from new instances easily with the installation scripts made in Ansible.

Correct configurations can be set from the documentation made with Antora.

Something that needs to be further developed is the service discovery mech-

anisms. When the amount of monitored services increase, there needs to be an

automatic way to generate a Prometheus configuration file that defines the new

monitored services. Prometheus provides many methods for service discovery and

one simple solution is to use Ansible to fetch all the services that have exporters

installed and form a configuration file of the services. The Ansible data fetch can be

done regularly or with every new exporter installation, to make sure that everything

is monitored.
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6.2.3 Setting Threshold Values for Alerts

Threshold values were set based on the monitoring data that was gathered. For

single sign-on problems, since the problem can only be discovered from the log files,

Loki’s functionality was used to create metrics from log files. The functionality

works in a way that certain string can be searched from logs and the occurrences

of that string will be sent to Prometheus. That way the failed and succeeded single

sign-ons could be tracked and the threshold value for alerts were set that if over 5%

of the single sign-ons in an hour are failed, the alert will trigger.

Sluggishness of DSR’s was analysed and the threshold was set on JVM heap

memory. It was discovered that when the heap memory exceeds 90% the DSR

couldn’t recover from that so the alarm was set to trigger on the 90% use of heap

memory.

As stated earlier, MyHealth questionnaire activations, deactivations, sent and

answered questionnaires were not monitored at this time, but will be monitored

in the future, when the database version gets updated. The plan to set threshold

values for MyHealth is first to monitor the activity and then set a correct buffer for

alerts to avoid false alarms. Overall, MyHealth questionnaire activations depend on

the DSR that is monitored, so the generic threshold value setting is difficult. To

this kind of threshold values automated anomaly detection could be used, which is

introduced in the Subsection 6.3.1.

6.3 Further development

This section discusses on topics that are relevant to the future of the company. The

future will hold growth in the amount of monitored services and increased involve-

ment of Kubernetes as the environment to run different services. To the increased

amount of services automated anomaly detection is utilized and the scalability of
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Prometheus will be inspected. How Kubernetes changes the monitoring and how

monitoring can aid in more efficient resource utilization in Kubernetes. In addi-

tion, the information security challenges in Prometheus will be inspected, which is

necessary in order to fulfil the near future goals of production ready monitoring.

6.3.1 Automated Anomaly Detection

Automated anomaly detection can be used to set alert threshold value for metrics

that the threshold value is complicated to set on. This kind of metrics are changing

over time or have strong seasonality. For example, MyHealth questionnaire activa-

tions and deactivations mentioned in previous Subsection, have strong seasonality

depending on the time of the day and on the day of the week. In addition, MyHealth

activations differ based on the customer hospital that is using the product.

If the automated anomaly detection is wanted to take in use for BCB Medical,

the easiest solution would be to use a ready-made open source tool for the purpose.

The Yahoo EGADS system is available on Github [60]. It can be used to analyse

time series data and spot anomalies of any kind. Yahoo EGADS system works

out of the box only for an exported data batch, in order to integrate it as part of

the Prometheus monitoring system, would require some additional work. Another

approach to the anomaly detection is provided by Prometheus Anomaly Detection

project in Github [61]. It provides simpler solution for Prometheus monitoring sys-

tems to use anomaly detection in threshold setting. Prometheus Anomaly Detection

is based on the same principle of predicting the value of a given metric and then

comparing it with the real value of the metric and if the difference is big enough,

the alert will be triggered.

Difference between these two anomaly detection frameworks is that the Prometheus

Anomaly Detection uses simpler machine learning algorithms (Prophet and Fourier)

to train the models, which may lead inferior results when compared in wide variety
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of metrics. However, Prometheus Anomaly Detection is a lot easier to use, it re-

quires just metrics as input and it provides predictions as output, which can then

be fetched by Prometheus and compared in Prometheus or in Grafana.

6.3.2 Cyber Security Challenges in Prometheus

This Section focuses on the security of monitoring data transfers and endpoints.

Therefore, two important subjects discussed in this Section are TLS and authenti-

cation. TLS is a cryptographic protocol that provides communication security for a

computer network in the transport layer [62]. Authentication is a method of check-

ing that the user is who he is claiming to be. One method of authentication is the

basic authentication, which means that on the header of a web request a username

and password is sent to the server, to authenticate the sender.

Without TLS, all monitoring data is sent in plain text from exporter to a moni-

toring system and anyone who has access to the network can monitor the data sent.

Without authentication, anyone in the network can fetch metrics from the endpoint.

The lack of TLS opens up also many vulnerabilities to cyber attackers to take ad-

vantage on. For example, Man in the middle (MITM) attack is possible where the

state of monitored service can be manipulated to look different from the real state.

In order to make Prometheus production ready, before mentioned cyber security

challenges need to be resolved. As it is stated by Brian Brazil, one of the Prometheus

developers, in 2016 "Prometheus is a monitoring system, not a security framework.

Accordingly given the massive work that’d be involved in creating and maintaining a

security framework, we’ve decided to instead leave the task up to 3rd party systems

such as Nginx and Apache" [63].

Time has past since the post of Brian Brazil and it is not completely true any

more. Prometheus is starting to provide TLS encryption and basic authentication

for its official exporters and tools, like Node exporter and Promtail. However, the
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Prometheus API and UI won’t provide TLS or authentication, so a proxy server, like

Nginx or Stunnel, needs to be used in that part. In addition, there are a large group

of exporters that don’t provide TLS or basic authentication yet, one of those is the

JMX exporter. The reason for JMX exporter not to provide TLS encryption is based

on the fact that it needs to support different Java versions, since it is working as a

Java agent, and different Java versions support different TLS versions, which makes

it complicated to make a general solution. [64] Options for this problem is to build

a custom support for TLS and basic authentication for the exporter or use a proxy

server. If considered maintainability wise, the more durable solution would be to

use a proxy server, to avoid checking the compatibility of self-build TLS encryption

and authentication with every version update.

One example of providing security for Prometheus with Stunnel is described

in a blog post "Authentication and encryption for Prometheus and its exporters"

[65]. Stunnel is a proxy server that provides authentication with private client

certificate and public CA certificate. Authentication with certificate is more secure

than the basic authentication that requires sending the username and password in

every request.

For cyber security it is also important to make sure that the monitoring tools

can be updated regularly. Many monitoring tools are distributed as binary pack-

ages. The management of installed monitoring tools is difficult when tools are

installed from binary packages. For example, if a security exploit is found in cer-

tain Prometheus exporter. Then it would be important to know what versions of

exporters are installed on the different instances, in order to update them. One

solution for the problem is provided by the package managers of OS. For example,

in Ubuntu exporters could be packed in Debian packages for easier maintenance.
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6.3.3 Scalability of Prometheus

The biggest scalability issue in Prometheus is the data storage. The data storage

shipped with Prometheus is established as a local database on the same machine

where Prometheus instance is running. Meaning that the data store is not replicated

or clustered, which makes it unreliable and not able to scale infinitely. Reliability

and scalability are two features that one would hope for long term data storage to

have. For those reasons it is stated, also on the Prometheus documentation, that

the database that Prometheus offers is meant for temporary storage only [66].

To define the needed data storage space, Prometheus documentation provides a

formula:

NDS = RTS ∗ ISPS ∗BPS,

where NDS = Needed Disk Space, RTS = Retention Time Seconds,

ISPS = Ingested Samples Per Second, BPS = Bytes Per Sample

The formula can be used when defining if the local data store is enough for the

infrastructure that is monitored. [66]

When it turns out that local data store is not enough for the infrastructure,

Prometheus provides API for remote data storage. One of the most popular sys-

tems to provide scalability and long term data storage for Prometheus is a system

called Thanos. Thanos contains external data storage that is replicated and clus-

tered, which provides the needed scalability and reliability that Prometheus alone

was missing. In addition, Thanos provides a way to manage multiple Prometheus

instances, which helps to scale the metric collection as well.

Thanos can be used in two ways with Prometheus, either with a sidecar or with

a receiver. In sidecar use, Thanos sidecar needs to be installed on the Prometheus

server that reads the local database of Prometheus and exports the data to external
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storage space as described in Figure 6.4. Thanos receiver is an external component

and it uses Prometheus API to fetch the monitoring data from Prometheus instance.

Figure 6.4: Architecture diagram of Thanos in Sidecar use [67].

6.3.4 Monitoring in Kubernetes with Prometheus

The popularity of Prometheus is partly based on the fact that it works well with

Kubernetes (K8s). Kubernetes is an open-source container orchestration service

developed originally by Google. Kubernetes helps deployment, management and

scaling of containerized applications. The advantages of monitoring in Kubernetes

environment versus server environment are in service discovery and in automated

problem solving.

In server environment there is no overall system that manages everything, so

usually service discovery needs to be made by hand or by a management tool,
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like Ansible, that fetches the information from servers and creates a Prometheus

configuration file based on the information. In Kubernetes all running pods can be

automatically discovered, which helps the configuration of Prometheus.

Another advantage of Prometheus in Kubernetes is possibility to auto-scale the

resources based on the load. Auto-scale will make the resource utilization more

efficient when resources won’t be wasted in parts where they are not needed. For the

deployment of auto-scaling, there are ready-made tools available, like Prometheus

Adapter [68]. Prometheus Adapter pulls metrics form Prometheus and uses them to

control Pod Autoscaler of Kubernetes to increase or decrease the amount of resources

based on the load.



7 Conclusion

In this Chapter the conclusion to the research will be given in the form of solutions

to the research questions stated in Chapter 1. This Chapter also discusses the topic

that is relevant to the future research in the field of monitoring. It can be assumed

that future research in monitoring will contain ML (Machine Learning), because ML

and AI (Artificial Intelligence) methods are evolving and becoming more common

in a wide range of applications. In monitoring ML could be used in predictive

monitoring as described in Section 7.2.

7.1 Solution to Research Problem

Research question one (RQ1) stated the question "How to build an effective mon-

itoring system with OSS tools?". The plan to answer for RQ1 was to conduct a

literature review in the monitoring books and in the scientific articles published re-

lated to monitoring. In addition, lighter materials were used, like blog posts from

the professionals of the field. Altogether, literature review Chapters 2, 3 and 4

provide good general background information for building an effective monitoring

system. Those Chapters also provide many options to choose for, in different parts

of monitoring, and present reasoning for each option.

Second research question (RQ2) asked "What are the important parts of the

company’s IT infrastructure that should be monitored?". The important parts of

the company’s IT infrastructure were defined with a qualitative research method,
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which in this particular case turned out to be interviews. The interview results are

presented in Chapter 6 and they were used to forming a prioritized list of problems

that the monitoring system being built will first to focus on. The list contained

following subjects: Single sign-on problems, the sluggishness of DSRs and MyHealth

questionnaire activations.

The third research question (RQ3) introduced the problem of setting threshold

values in a large group of services with question "How to detect anomalies from

monitoring data to set threshold values for alerting in a scalable way?". This problem

was little more complex and in order to answer for the problem, firstly, the theory

behind the topic needed to be looked into in the form of literature review and

secondly, it needed to be proved that the theory could be used in the domain of

the company. Scientific publications on the topic were found and the monitoring

system was being built for the company in order to find out if the theory could

be used in the company to set threshold values for alerting in a scalable way. The

implementation of automated anomaly detection and then the analysis of the system

turned out to be too laborious for the scope of this thesis, so the use of automated

anomaly detection was left on the level of concept and the best fitting tool for the

company would be the Prometheus Anomaly Detector as described in the Section

6.3.1.

The final research question (RQ4) was defined to add the research value of this

thesis and it asked "Is it possible to predict the moment of time in the future, when

the system is next going to face an anomaly from a monitoring data gathered in

the past (a.k.a. predictive monitoring)?" This problem was only shortly discussed

in the literature review part, because there were very little written on the topic in

the scientific literature. However, in this Chapter, in the last Section of this Thesis,

Section 7.2, the topic of predictive monitoring will be discussed and analysed.
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7.2 Predictive Monitoring

Predictive monitoring is based on the idea that from the change of monitored metrics

it is possible to predict a failure in software. Prediction in general is usually based

on the prior knowledge of monitored subject. Therefore, the prediction can only be

made on the cases that the system has faced before. Making predictions in software

is easier than in a real world because software has a limited set of variables that

has effect on the system and a limited set of states that the system can end up.

However, the system to face all possible ways to fail naturally, would take a really

long time, and whenever the system is updated, the field of ways to fail changes.

One solution to the problem can be found in the game of chess. The possible

states of software are the plays that one can make from the initial setup of chess

game and the failure of the software is comparable to winning the chess game. The

first successful AI to play chess was IBM’s chess robot named Deep Blue [69]. Deep

Blue beat the reigning chess world champion Garry Kasparov in 1997. The oper-

ation principle of Deep Blue was based on the raw processing power of calculating

different options for the moves and then use predefined plays that were made by

chess grandmasters. In a same way, the possible states of software could be com-

puted with raw processing power and then evaluated with predefined principles if

the program state is faulty. However, this would be the waste of computing power

and resources when there might be a better option available.

In 2017 a computer program called AlphaZero was developed to beat the former

chess machine champion. The former chess machine champion was based on the

same operation principle as Deep Blue [70], so it will be called as Deep Blue 2.0

in this text. AlphaZero had only 1/100th of the computing power that Deep Blue

2.0 had. However, AlphaZero used a different operation principle. AlphaZero used

machine learning to learn the best play strategy, by playing against itself. The only

predefined thing in AlphaZero was the rules of the game of chess. When AlphaZero
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and Deep Blue 2.0 were set head-to-head in the match of 100 chess games, AlphaZero

lost none of the games. AlphaZero won 28 games and the rest of the games were

drawn.

My theory is that similar method of machine learning could be used in predictive

monitoring that was used in AlphaZero. The monitored software could be used by

AlphaZero in a test environment and AlphaZero would find different methods of

breaking the software. Then the monitoring metrics that preceded the breaking

point would be learned by another machine learning model that would then spot

similar signs in production environment and interpret them as the signs of software

to fail in the future. The machine learning model could also predict the time of

failure in future if no corrective measures is taken.
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Appendix A Interview Questions

Translated interview questions in English:

1. What kind of problems are difficult to solve?

2. What kind of problems customer reports in most cases?

3. What kind of problems prevent a customer from using the product, in other

words, what kind of problems require immediate action?

4. What part of the system needs more transparency?

(a) What would the customer support team’s dashboard contain?

(b) What other ways are there to present/transmit monitoring information

besides the dashboard? Slack, e-mail?

5. What would be the worst case scenario?

6. On what actions do we want alert to be triggered?

7. How do we alert? Via Slack, via e-mail, with a text message?



APPENDIX A. INTERVIEW QUESTIONS A-2

Original interview questions in Finnish:

1. Minkä tyyppiset ongelmat ovat vaikeita selvittää?

2. Minkä tyyppisistä ongelmista asiakas useimmiten ilmoittaa?

3. Mitkä ongelmat estävät asiakasta käyttämästä tuotetta eli mitkä ongelmat

vaativat välitöntä reagointia?

4. Minkä järjestelmän osan toiminnan läpinäkyvyyttä olisi syytä parantaa?

(a) Mitä haluttaisiin nähdä supportin dashboardilla?

(b) Mitä muita tapoja voisi olla esittää/välittää monitorointi tietoa kuin

dashboard? Slack, s-posti?

5. Mikä on pahinta mitä voi tapahtua? (Worst case scenario)

6. Mistä asioista halutaan hälytys?

7. Miten hälyttäminen tehdään? Slack, s-posti, txt-viesti?



Appendix B Example Playbook:

Demo Application

This is an example playbook of a Demo Application. The idea of the playbook is to

describe the system that the alert was made on, in order to decrease the resolution

time of a problem. The template for this playbook, or runbook as it is called in

the book, is from Practical Monitoring book [1]. This playbook will contain, first,

general information about the application, then some metadata, including service

owner and codebase location, escalation procedure, external dependencies, internal

dependencies, tech stack, available metrics and logs, and alerts.

B.1 Demo App

The Grails Demo App is an application that gathers demo persons to the system.

Application contains own user management and it is also coupled with external user

management system and Demo App 2 which, works with the Demo App.

B.2 Metadata

The codebase of Demo App can be found in http://www.demogit.com/demoapp.

The service owner is Demo Owner.
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B.3 Escalation Procedure

In the case of assistance needed, the service owner has requested to be in contact

with the team that he is in: Demo Team 1 (link to the Slack channel).

B.4 External Dependencies

Application has two external dependencies. Centralized user management and

Demo Application 2.

B.5 Internal Dependencies

MongoDB running in mongo-123.com

MySQL database running in mysql-123.com

B.6 Tech Stack

Backend is made with Grails 3.

Frontend is made with React

B.7 Metrics and Logs

The app emits the following metrics:

• User login (counter type),

• User logout (counter type),

• Logins successfull (counter type),

• Logins failed (counter type),
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• User login time (timer type),

• User logout time (timer type),

The app emits following logs:

• Stacktrace.log

• Accesslog.log

B.8 Alerts

B.8.1 User Sign-in Failure Rate

Alert fires when the failure rate is above 10%.

Tip: Potential cause is brute force attack.

B.8.2 User Login Time Too High

Alert fires when login takes more than 2 seconds.

Tip: Check database performance.



Appendix C Grafana Dashboard for

Support Team

1. Application status
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2. Server status

3. JVM memory

4. Centralized logs
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