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Konenäkö ja visuaalista dataa käsittelevät koneoppimismenetelmät ovat kehittyneet
merkittävästi kuluneen vuosikymmenen aikana. Tämä edistys on myös näkynyt
myös niin kutsuttujen autonomisten ajoneuvojen tuotekehityksessä, eli kehitettäessä
liikennevälineitä, jotka kykenevät toimimaan liikenteessä itsenäisesti.
Eräs merkittävä hidaste mille tahansa koneoppimisen sovellutukselle on saatavil-
la olevan laadukkaan datan määrä. Datalla tarkoitetaan sitä tietoaineistoa, jonka
avulla koneoppimisen mallit oppivat uusia taitoja. Laadukkaan aineiston puute on
usein merkittävin este, jonka moni koneoppimiseen liittyvä projekti kohtaa.
Autonomisista ajoneuvoista sekä yleisesti liikenteestä puhuttaessa edellä mainittu
koskee erityisesti onnettomuuksia, joista ei juurikaan ole tarjolla yhdenmukaista ja
hyvälaatuista dataa julkista käyttöä ja tutkimusta varten. Tämä opinnäytetyö esit-
telee ratkaisun, jossa todellinen onnettomuusdata korvataan videopeliympäristössä
luodulla datalla.
Tutkielmassa esiteltävä ratkaisu kykenee oppimaan törmäyksen tunnistuksen keino-
tekoisesta datasta ja sen jälkeen soveltamaan opittua tietoa todellisiin törmäyksiin.
Tutkielman ratkaisu koostuu kolmesta erillisestä osa-alueesta. Kaksi ensimmäistä
osa-aluetta ovat kohteiden tunnistaminen ja seuranta, joiden avulla jäljitetään vi-
deoaineistossa liikkuvia ajoneuvoja. Tiedot liikkuvista ajoneuvoista siirretään tör-
mäyksiä tunnistavalle mallille, joka pyrkii päättelemään, liikkuuko seurattava ajo-
neuvo normaalisti vai onko se osallisena törmäyksessä.
Mallinnukset tuottavat lupaavia tuloksia, mutta yhteys keinotekoisen ja todellisen
datan välillä jää osin vaillinaiseksi. Esitetty törmäyksiä tunnistava malli onnistuu
hienoisesti parantamaan tuloksia verrattuna triviaaliin vertailukohtamalliin. Kei-
notekoinen data ei kuitenkaan täysin vastaa todellisia törmäyksiä, mistä johtuen
mallin on erittäin vaikea tunnistaa joitakin törmäystilanteita täsmällisesti.

Asiasanat: koneoppiminen, konenäkö, kohteiden tunnistus, törmäysten tunnistus,
kohteiden seuranta, konvolutionaaliset neuroverkot
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Computer vision and deep learning methods that process visual data have consider-
ably improved during the last decade. This progress has also affected the develop-
ment of so-called autonomous vehicles, which are able to act independently in the
traffic.
One notable hindrance facing any deep learning application is the amount of quality
data that is available. Data means the corpus of information from which the models
learn new skills. Lack of good data is often the most significant hurdle a deep
learning project faces.
When considering autonomous vehicles and traffic generally, this problem is partic-
ularly evident in a collision context, as there is very little accident data available
for public use and research, particularly when the data should be both consistent
and of good quality. This thesis presents a solution in which real data is substituted
with data that is generated in a video game environment.
The solution proposed in this thesis can learn collision detection by looking at the
synthetic data and then apply the learned information in detecting real collisions.
The presented solution consists of three phases. The first two phases are object
detection and object tracking which are used to identify and follow vehicles moving
the video footage using deep learning. Information obtained in these phases is then
transferred to the third phase, a collision detector, which attempts to infer if the
tracked vehicle is moving normally or if it is participating in a collision.
Initial results indicate a promising although limited connection between synthetic
and real-world data, and the proposed model is able to slightly surpass the perfor-
mance of a trivial baseline. However, the generated synthetic training data is not
entirely representative of its real-world counterpart, which results in some of the
collision events being very difficult to detect properly.

Keywords: deep learning, computer vision, object detection, collision detection, ob-
ject tracking, convolutional neural network
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1 Introduction

A textbook example of a deep learning problem is one that has a decent amount of

good quality data with which to train whatever model is suitable for tackling the

problem. Real-life problems, on the other hand, are often very different from the

ones in the examples and tutorials, and this is particularly true for traffic accidents.

Accidents, unlike many other events in a machine learning context, are hopefully

observed as rarely as possible. This means that we have less opportunity to obtain

well-rounded accident data and therefore less opportunity to train better models

that would have a better understanding of accidents. Intentionally creating more or

better accident footage could be an expensive undertaking in any controlled envi-

ronment, or a very questionable one in a non-controlled environment, and possibly

one not well-received by the public.

The purpose of this thesis is to investigate the idea of substituting real data

with synthetic data in order to overcome the hurdle. More specifically, this means

that a virtual environment is used to generate proper synthetic data for training

a deep learning model for vehicle collision detection. A virtual environment, if it

is an adequately accurate representation of the real world, could offer a suitable

alternative to any approach that requires real-world data.

The idea of using a virtual environment in a traffic-related context is not unheard

of. One such environment, known commercially by the name AILiveSim, is a virtual

environment for training autonomous vehicles, developed on top of a video game
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engine known as Unreal Engine [1]. It can be considered as a heavyweight tool that

incorporates many features essential to autonomous traffic, for example, simulation

of multiple sensor types.

However, occasionally one can make do with less. The approach presented in

this thesis is to generate synthetic data in an environment that is inexpensive and

readily available, namely a video game known as Grand Theft Auto V (GTA V). The

attempted approach relies solely on visual data and therefore many of the features

offered in specially tailored products are not needed.

For years video games have been pushing the envelope for better and more real-

istic visuals. Apart from possible artistic choices, many games of the last decade can

be said to have very believable graphics. GTA V, even though originally published

in 2013 and thus already several years old, continues to look reasonably modern on

contemporary systems with capable hardware. A screenshot of the game is shown

in Figure 1.1.

Figure 1.1: A screenshot of Grand Theft Auto V.

In addition to suitable visuals, the game has other perks such as reasonable price

and easy availability, rich traffic system with concurrently moving vehicles, and an

active modding community. The term modding refers to the act of enthusiasts

modifying or expanding a game beyond its original confines. In the case of GTA
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V modding has resulted in a programming library Script Hook V [2] which makes

it possible to script events in the game, thus allowing for traffic accidents to be

programmatically caused and recorded.

1.1 Research questions and objectives

This research is centered around two connected research questions:

1. Are modern superficially lifelike virtual environments visually and physically

accurate enough to be utilized in developing machine learning models that can

detect vehicle collisions happening in reality?

2. Are there specific techniques that translate well between real and virtual en-

vironments in a vehicle collision context and how do these techniques perform

when evaluated using real collision data?

To further elaborate on the first research question, it should be mentioned that

focusing solely on the visual similarity of a video game and the real world is most

probably not enough for accurate real-life collision detection results. In addition, the

collision model of the game should also be a sufficiently accurate representation of

its physical counterpart. Typical modern video games focused on driving generally

incorporate believable collision models, as aspects like vehicle handling and driving

physics are constant topics in video game reviews and unusual or awkward physics

could easily drive players off the game. It remains to be seen if this superficial

resemblance is enough to result in good real-world performance of the developed

model.

The objectives of this research can be stated as follows:

1. Identify techniques of contemporary computer vision, initially designed for

and trained on real-life scenarios, which perform well when applied to data

obtained from traffic scenarios in a computer game.
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2. By utilizing these techniques to devise a model which, when trained on syn-

thetic data, can successfully predict real-life vehicle collisions happening in

video footage.

Thus, the research hypothesis for this thesis is: when trained on synthetic col-

lision footage and tested on real-life footage, the performance of a suitable model

surpasses that of a trivial baseline. (The baseline is presented in section 3.1.3.)

1.2 Research background and methodology

The training footage will be subjected to various computer vision techniques in-

cluding but not limited to object detection and object tracking. Even though these

methods as such have very little to do with collisions, it is nevertheless vital to

identify all vehicle instances participating in the crash. Therefore, all other applied

techniques will be constrained by the detected vehicles, as it is only useful to consider

collision detection in such areas of a video frame.

The framework will consist of three separate and consecutive phases:

1. Object detector detects vehicles in the video frames.

2. Object tracker tracks the cars across the video.

3. Collision detector attempts to detect collisions based on data received from

the previous phases.

The first two phases utilize established methods that have been proven to work.

The collision detector model will be developed during this research. As the video

clips are annotated the approach falls into the category of supervised learning.

A collision is neither a one-frame event in a video clip nor an infinitesimally short

instant of time in the real world. Therefore, the model in the third phase should be
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one with a capability to understand sequential data (i.e., how the collision progresses

through time). For this reason, visual processing of the data will be coupled with

techniques that can understand the temporal aspect of the phenomenon.

The research methodology can be summarized as follows:

1. Using a virtual environment to collect synthetic collision data.

2. Using deep learning methods for computer vision tasks such as object detection

and tracking and creating a framework that can understand the visual aspect

of the data.

3. Using temporal methods to allow the framework to handle sequential data.

4. Using common performance metrics to evaluate the proposed framework for

collision detection on real-life data.

1.3 Research motivation

This research assumes the point of view of an observer moving in the traffic flow.

That is, collisions are detected much like a driver of a car would detect them. The

observer, however, is not assumed to be a participant of the collision. In other words,

the vehicle that detects the collision is not one of the colliding vehicles.

This is the first motivating element. There is much research on collision detec-

tion, but due to lack of suitable data many papers focus on the point of view of a

stationary observer, for example a surveillance camera. This is further discussed in

section 1.4.

An example situation illustrates the idea behind the viewpoint of this thesis:

Assume an autonomous vehicle is approaching a busy intersection. It detects a green

traffic light and knows it is permitted to proceed through the intersection. Another

car in front it is traveling in the same direction and has already reached the center
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of the intersection. However, almost instantaneously another vehicle approaching

from the right disobeys the red light and speeds through the intersection, crashing

into the car in front of the autonomous vehicle. If the autonomous vehicle does not

understand a collision when it sees one it could easily end up as a participant in the

crash.

This is the second motivating element. The better an autonomous vehicle is in

detecting collisions, the better it is at avoiding the. A vehicle that detects collisions

sooner than later makes traffic safer for all users of the road. It can take needed

measures to avoid the collision and it can alert the officials about what has happened.

1.4 Related literature

Over the past years, several different methods have been applied to the problem of

collision detection. For example, in [3] the authors gathered a small set of surveil-

lance videos off the internet. These videos, recorded by stationary observers, were

then processed by a pipeline that first detected and extracted vehicles and their

bounding boxes from the frames, after which the authors applied a method con-

sisting of Violent Flow descriptors and Support Vector Machines to detect crashes

in the videos. A similar data set was used in [4] as the authors obtained a set of

closed-circuit television (CCTV) surveillance videos recorded in the city of Hyder-

abad in India, after which deep representations of the events were extracted by using

denoising autoencoders which were trained with non-collision traffic videos.

In [5] a set of traffic accident videos collected from the police officials in China

were used in training a crash detection method that is similar to the detector pre-

sented in thesis in the sense that both of the methods utilize an image classifier

network to extract crash-related appearance features, which in turn are processed

by a spatiotemporal model capable of handling both types of data.

A different approach was taken in [6], which is an attempt to provide a novel
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dataset suitable for analysing traffic accidents. The videos were downloaded from

the YouTube online video service and the resulting set consists of CCTV-recorded

accident 230 videos along with annotations.

One publication this thesis is particularly indebted to is [7] in which accident

footage was used, not for collision detection but for collision prediction purposes by

utilizing what the author call dynamic-spatial-attention Recurrent Neural Network.

As a by-product, the team published an accident data set [8] consisting of footage

recorded in six major cities in Taiwan, and it is this data this paper also relies on

when attempting to establish a connection between virtual and real collisions.

All of the aforementioned research highlights one or more of the problems related

particularly to data involving traffic accidents:

• The availability of large, consistent and good-quality datasets is extremely

weak. The videos are downloaded one-by-one from various places all over the

internet or they are obtained from a non-public source (e.g., local officials) not

available to the research community in general.

• Many of used videos are recorded by stationary surveillance cameras, which

means the visual information in the videos is very different from what an

autonomous car moving on a road observes. Some research uses onboard videos

such as dashcam recordings, but the quality of such footage varies considerably

as a result of there being many different kinds of dashboard cameras.

• Many of the datasets are heavily characteristic of a specific geographical region

and may contain types of traffic or behavior rarely encountered elsewhere.

All these observations underline the difficulty of evaluating the methods pub-

lished in the studies: when the data is not shared, it can be impossible to accurately

compare new research with what has been published before. This problem is more
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pronounced because any phenomenon involving the possibility for a loss of life should

be measured as unambiguously as possible.

Resorting to synthetic data is definitely not a silver bullet solution capable of

fixing all the mentioned problems, but it can help alleviate some of the issues. In a

sufficiently complex virtual environment, it is possible to create virtual data that is

consistent and versatile. A virtual environment can also be suited to represent any

traffic culture anywhere in the world.

The use of synthetic data generally in traffic-related models is not unheard of. In

[9] the authors generated a virtual collision data set consisting of crashes involving

the observer and another vehicle in order to train a model to identify vehicles that

can be considered to move dangerously with respect to the observer. The virtual

environment is in fact the same one as used in this thesis, Grand Theft Auto V.

This is a promising indication of the possible suitability of GTA V data for collision

detection purposes. In scripting the accidents, the authors relied on the same library

that was used in this thesis, Script Hook V [2]. This is, in fact a more credible

approach than one might initially think: a Google search with the string GTA

V autonomous cars shows that this is not the first time this possibility has been

considered.

The research of [9] is particularly interesting in its approach as it extends models

trained using synthetic data with other methods. Specifically, the authors noticed

that synthetic data alone is noisy and does not offer an adequately accurate repre-

sentation of the way a real driver would behave in a situation in which a collision is

imminent. This is very much in line with the observations made during the imple-

mentation phase of this thesis: the artificial intelligence drivers of GTA V do not

(and most likely are not intended to) behave exactly the way real human drivers

do; they are different in many subtle and sometimes strikingly different ways, and

naturally lack the complexity of their human counterparts. The authors state that
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the behavior was due to their implementation of the driving algorithm, but the ob-

servations during the implementation of this thesis indicated that it is very difficult

to fully script away all the AI functionalities. However, some difference should also

be accounted to what was scripted: in the mentioned study the observer was a par-

ticipant in the crash, whereas in the context of this thesis the observer is merely

an observer. This most likely explains some of the difference in the behavior of the

drivers.

This is not a problem in the context of this thesis, as collisions can be modeled

even if the preceding behavior could not be considered believable. However, for [9]

this posed a more serious issue as the path of the dangerous vehicle simulated by the

synthetically trained model was not a very accurate representation of the paths real

drivers would take. The authors came up with an insightful method that couples the

synthetically created labels of dangerous and non-dangerous moving vehicels with

a real-world path prediction model in order to reduce the bias of skewed driving

behavior present in the synthetic data.

This is indeed an interesting avenue of future research, where synthetically cre-

ated data is acknowledged as flawed, but can be corrected with approriate real-world

data. It should be considered how a similar approach could be integrated into any

framework that attempts to detect, predict or avoid an imminent traffic accident.

After all, any solution that is able to offer even the slightest improvement in traffic

security is worth exploring.

1.5 Thesis organization

This thesis is divided into five chapters as follows:

• Chapter 1 gives an overview of the idea and the motivation behind this thesis,

along with a brief glance at related literature and research
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• Chapter 2 presents the related background information for two of the main

tasks proposed in the thesis: object detection and object tracking.

• Chapter 3 is dedicated to the structure of the implemented collision detection

framework.

• Chapter 4 presents the obtained collision detection results.

• Chapter 5 gives a summary of the topic and offers the essential conclusions

that have been reached during the thesis.



2 Background

This chapter introduces the methods and concepts on which the proposed framework

is built during chapter 3. The discussion starts with an overview of concepts related

to some of the standard methods in deep learning: convolutional and recurrent

neural networks. The two later sections focus on object detection and object tracking

methods.

2.1 Convolutional Neural Networks

The last decade has marked unforeseen progress in tackling many of the problems

related to computer vision. If there is one method this success can be attributed

to, it is without a doubt a form of neural network known as Convolutional Neural

Network (CNN). It lies in the heart of many ground-breaking techniques which have

pushed the boundaries of what is possible in tasks including but not limited to image

classification and object detection.

CNNs are neural networks that have evolved from earlier concepts inspired by

the structure of the visual cortex [10]. CNNs consist of several layers of different

functionality which can be stacked in a consecutive fashion. When the the number

of consecutive layers is very high the network is typically called a deep CNN. The

following section provides a brief summary of these layers.
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2.1.1 Layers of a CNN

This section presents the typical layers used in CNNs. The first two layer types, a

convolutional layer and a pooling layer, are the core building blocks of a CNN. The

last subsection discusses some of the methods used for regularizing CNNs.

Convolutional layer

The core building block of a CNN is a layer known as the convolutional layer.

The basic principle of the layer is to perform filtering operations on the areas of

the received input. (Even though the name of the layer suggests a mathematical

operation of convolution, the actual operation is in fact cross-correlation [10].) The

purpose of a filter is to capture some feature it has learned during training and

to produce a feature map of this feature as an output. In other words, the filter

traverses the input and outputs a map of all the places where a feature detected by

the filter is present. Each element in a feature map is only connected to a small

segment of the input known as the receptive field.

The shift from one receptive field to the following one is a configurable parameter

of the layer. This parameter is called the stride. A stride larger than 1 would

mean the size of the feature map would be reduced along with the computational

complexity of the model. It is also possible for the feature map to be smaller in size

than the original input even if the stride equals 1. This depends on the dimensions

of the image and the size of the filter. The reduction in size is prevented by using

zero-padding to expand the edge regions of the image so that the size of the feature

map equals the size of the image after the filtering process has been completed.

A rough visualization of this process can be seen in figure 2.1.
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padding (optional)

image feature map

pixel in the feature map receiving
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�lter moving
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�lter detecting horizontal lines

results of �ltering

(horizontal lines)

Figure 2.1: A convolutional layer producing a feature map of an input.

The behavior of a convolutional layer means that it utilizes what is known as

parameter sharing to reduce the complexity of the model. In a traditional fully

connected layer, each neuron of a preceding layer is connected to every neuron on

the successive layer, but in a convolutional layer each neuron shares the same weights

of the filter. This also plays a part in what is known as translational invariance:

a filter detecting a feature in the upper-left corner of an image is also capable of

detecting the same feature in the lower-right corner of an image.

The most typical activation used with a convolutional layer is the Rectified Linear

Unit Function (ReLU)

ReLU(z) = max(0, z) (2.1)

where z is the weighted sum of the inputs, that is the value of the node before

the activation function has been applied. ReLU it is typically able to produce good

results and is faster to compute than many of the alternatives [10].
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Pooling layer

The size (in terms of width · height · depth) of the output produced by the final

convolutional layer rarely matches the size of the original input. A convolutional

layer (or a series of convolutional layers) is typically followed by a pooling layer

which shrinks the input to reduce the computational load and memory usage of

the model [10]. This also has a regularizing effect and adds to the translational

invariance of a CNN. The two different pooling operations typically available for a

CNN are max pooling and average pooling. Max pooling keeps the largest number

in the examined region and discard the rest. Average pooling computes the mean

of the numbers in the examined region. Of these max pooling is the most common

one used as it helps to select the regions where a feature is most clearly present.

Regularization

CNNs like any other neural networks, are also prone to overfitting. Two typical

techniques used to alleviate this problem, are dropout and batch normalization.

Dropout is the act of setting a random set of neurons in a layer to output zero

during each training iteration [10]. Effectively, this means that these neurons are

dropped out from the computation and cannot participate in making the prediction.

As a result, the model has to learn alternative network paths for the sample it has

just seen, reducing the intensity of overfitting. It should be noted that dropout

is only active during the training phase and all neurons work normally after the

training has been concluded.

Batch normalization is primarily an optimization technique, but it also has a

regularizing effect. It works by zero-centering and scaling the input, then by shifting

the result based on specific learned parameters [10]. This happens on a per-batch

basis.
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2.1.2 Image classification with CNNs

The typical usage of a CNN network is image classification, the act of assigning

a label to an image. When assigning a label the essential content of an image is

associated with some noun describing the content. Image classification networks

typically utilize very deep CNNs with multiple layers.

However, a CNN need not produce a prediction of an image class as an outcome.

A common use case is one in which a CNN is stripped from its fully connected layers,

only leaving the trained convolutional blocks (convolutional and pooling layers) in

place. This retained part is then connected to other networks and functions for

further processing. In fact, this is the way CNNs are used throughout this thesis in

various places: a CNN extracts feature maps from an image containing a vehicle, and

instead of passing these feature maps to a set of fully connected layer for prediction,

the feature maps are further processed by whatever layers are suitable in the given

situation.

The collision detection framework presented in this thesis relies on a network

named VGG16 [11] for image classification tasks. It is a deep CNN that was origi-

nally developed in 2014 but remains useful to this day. The structure of VGG16 is

shown in Figure 2.2.

VGG16 receives as input an image of size 224 by 224 pixels with three channels.

The input is sequentially processed by both convolutional and pooling layers. Con-

volutional layers extract increasingly high-level feature maps from the image while

pooling layers are used to downsample the information that is being feeded deeper

into the network. The result produced by the final pooling layer can be processed by

a fully connected network that can translate the feature maps into a classification.

The result can also be manipulated in other ways, for example by processing it with

a recurrent layer as is done in this thesis.

VGG16 is not the most recent or advanced competitor on the market, and there
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224 x 224 x 64

112 x 112 x 128

56 x 56 x 256
28 x 28 x 512 14 x 14 x 512

Input image 224 x 224 x 3

Convolution (ReLU)

Max pooling

Fully connected layers (several)

Figure 2.2: The convolutional layers of VGG16. The annotated dimensions are the same for each

convolutional layer of the same size.

have been newer and more effective networks, but initial tests suggested VGG16 is

both effective and adequate for purposes of this thesis and easy to fine-tune. It is

also the network which the selected object detector, Faster R-CNN in section 2.3.1

originally relied on and therefore a natural choice as a classifier.

2.2 Recurrent Neural Networks

Due to the reasons discussed in section 1.2, the framework should not rely explicitly

on processing static images individually. The framework should also be able to

understand the temporal aspects of a collision and the way the event progresses

from one frame to another. This requires tooling that is suitable for handling data

that is sequential in nature.

A recurrent neural network (RNN) is a form of network specifically designed for

sequential data. A basic building block of RNN is a layer that consists of recurrent

cells. A recurrent cell is much like any typical neuron in a fully connected network,

except for the fact that in addition to the normal input a recurrent cell also receives
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a second input. This second input provides the cell information about the previous

state of the layer. A simplified illustration is shown in Figure 2.3.

input

output

Figure 2.3: A very simple RNN layer with recurrent cells.

The following equation is used in computing the output of an RNN layer for a

single sample [10].

y(t) = ϕ
(︁
WT

xx(t) +WT
y y(t−1) + b

)︁
(2.2)

where ϕ is the activation function, t is the time step, b is the bias vector, x and

y are the sample and the output at the given time step t, respectively. W indicates

the weights associated with the given vector.

A recurrent network can generate two kinds of output:

1. An output for each time step: the layer outputs an entire sequence with all

the time steps included.

2. Single output after the final time step: only the final result is returned after

all the time steps have been completed. This is the desired choice for collision

detection purposes. The purpose of a collision detector is not to output an

entire sequence but only the binary result (collision or no collision) that has

been deduced from the sequence.

The basic RNN cell suffers from several issues, particularly when dealing with

long sequences [10]. Admittedly a collision sequence consisting of a couple of frames
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is not long when measuring the length in the number of frames, but more recent

alternatives generally provide better performance in nearly all situations and there

is rarely any reason to resort to the old-fashioned basic RNN cells.

The Long Short-Term Memory (LSTM) is a type of RNN cell that attempts to

mitigate some of the problems experienced with basic cells. The detailed internal

structure and theory of an LSTM cell is beyond the scope of this introduction, but

on a superficial level it can be described as a cell that has two input vectors that

depend on the previous state of the cell: short-term state h and long-term state c

[10]. These can be observed in Figure 2.4.

x y

c (t-1)

h (t-1)

c (t)

h (t)

LSTM

CELL

Figure 2.4: The inputs and outputs of an LSTM cell.

The high-level principle is that with LSTM as the cell structure, the network

learns what information should be stored in the long-term state and what informa-

tion should be discarded. This is a very useful property, and there is typically very

little reason to subject a model to the limitations of a basic RNN cell.

As a last note, it should be mentioned that a very typical activation function for

a recurrent cell is the hyperbolic tangent function

tanh(z) =
ez − e−z

ez + e−z
=

e2z − 1

e2z + 1
(2.3)

where z is the weighted sum of the inputs. The hyperbolic tangent function is

the preferred activation used in many publications dealing with RNNs, although

ReLU is also possible [10].
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2.3 Object detection

Object detection is the process of identifying an object in a sub-region of an image

and associating a label to the object from a set of known classes. As shown in Figure

2.5, the location of object is determined with a bounding box (a colored rectangle)

which fits around the object as tightly as possible.

CAR: 98 %
CAR: 95 %

TRAFFIC LIGHT: 83 %

Figure 2.5: An image image detection example with bounding boxes around objects. The percent-

ages indicate how confident the detector is about the content of a given bounding box. Very small

or occluded objects often remain undetected, such as the vehicles in the background.

This section presents a class of networks known as region-based convolutional

neural networks, one of the most widely used group networks for image classification

purposes.

2.3.1 Region-based Convolutional Neural Networks

Several solutions exist for detecting objects in an image. They can be classified into

two major categories, one-stage and two-stage, depending on the number of steps

they take when performing the detection process [10]. A rough characterization is

that a one-stage detector is faster but less accurate than a two-stage detector. This
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ambivalence is a problem inherently tied to collision detection: the detection should

be fast, but it should also be accurate. Performance speed is definitely an issue to

be addressed, but as the focus of this thesis is primarily in investigating if it is even

possible to model collisions with synthetic data, more emphasis was put on accuracy

and less on performance.

Region-based Convolutional Neural Networks (R-CNN) are a family of two-stage

object detectors that rely on so-called region proposals (regions in the image) on

which the network attempts to do object classification. That is, a prior component

of the network suggests a region that possibly contains an object, and a latter com-

ponent then decides if there is an object in this region and what is the class of that

object.

The family of network receives its name from the pioneering network of the same

name, R-CNN, that uses a method known as selective search for generating the

region proposals [12]. The selective search algorithm assigns regions of an image

into groups based on specific features of similarity (e.g., color and shape). From

every processed image the algorithm extracts approximately 2000 different regions.

After this the network executes a deep CNN on each of these regions. The CNN

acts as a feature extractor and the extracted features are reshaped into the form of

a dense vector. Finally, a support vector machine makes a classification based on

the contents of the vector and, in case the region contains an object, linear regressor

adjusts the bounding box (originally created by selective search) to tightly fit around

the detected object.

The one considerable drawback of the original R-CNN is the speed: there are

approximately 2000 region proposals, and the latter components of the network

have to process every one of the proposals before the ultimate decision can be made.

Selective search is also a fixed algorithm: it cannot be trained, and it does not learn

to generate better proposals.
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The next version of the network, Fast R-CNN, made considerable improvement

by executing a CNN on the whole image and generating region proposals from the

final set of feature maps that the CNN outputs [13]. Selective search is still used for

generating the region proposals, but it is only used on the generated feature maps

instead of the whole image, resulting as a considerably improved execution time. A

pooling layer then resizes the proposed regions and softmax layer is responsible for

making the classifications.

Fast R-CNN was again later superseded by another improved version known as

Faster R-CNN [14], which is the network used in the implementation phase of this

thesis. Like its predecessors Faster R-CNN is also a two-stage detector. It has two

central components: Region Proposal Network (RPN), and a convolutional detector

that uses the output of the RPN. The network structure is shown in Figure 2.6.

Figure 2.6: The Faster R-CNN network (Ren, He, Girshick, et al. [14], 2017).
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The basic principle by which the network functions is as follows:

1. RPN receives a set of feature maps from the convolutional layers. RPN uses

these feature maps to predict Regions of Interest (RoI) and then determines

which of the regions actually contain an object. If a region is detected to

contain an object the RPN generates a bounding box proposal.

2. RoI pooling layer classifies the object in the proposed bounding box and fine-

tunes the location of the object.

Faster R-CNN differs from the earliear implementations in that it does not use

selective search at all. Instead, the RPN creates the proposed regions by using

sliding a window that moves over the feature maps and generates so-called anchor

boxes of different sizes as it goes. A binary classifier learns which of the anchor

boxes contain foreground and which contain background. All anchor boxes detected

to contain background are discarded. The remaining anchor boxes receive a score

that represents the probability of there being an object in the box.

This effectively means that the RPN learns the regions that should be proposed

(as opposed to untrainable selective search). As a two-stage detector Faster R-CNN

among the faster ones, but its predecessors have little hope of achieving performance

that would be acceptable in any real-time scenario involving collision detection.

More effective solutions undeniably exist, but for the current research questions

Faster R-CNN provides a suitable balance between speed and accuracy, as the two-

stage structure makes sure as few vehicles as possible go undetected.

2.4 Object tracking

Object tracking is the process of following a visual object moving in sequential data.

When the object is being followed, awareness of the identity of the object should
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be maintained. Sequential data in which the object moves is typically a stream

of video frames and the identity is any peace of information that distinguishes the

object from other objects. Figure 2.7 is a simple illustration of this idea. The

moving vehicle is tracked through a series of frames and the vehicle is associated

with a constant identity number.

Figure 2.7: An example of tracking a vehicle from frame to frame while maintaining awareness of

the identity (the number displayed above the vehicle).

Each detected and tracked object receives a unique identify if the tracking pro-

cess is successful. Figure 2.8 highlights this idea: three different vehicles have been

identified in the frame and each of the vehicles has received a unique identity. With-

out this requirement it would be impossible for the system to track specific objects

reliably.

Figure 2.8: Each tracked object gets a unique identity number (shown above the object).

To a human observer, the process of identifying a moving object is intuitive and

happens subconsciously, but to a computer an object detected in a frame is an object

detected in that frame only. Without identity it is not associated to any preceding
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or subsequent detection. An identity is needed to group information from different

frames as a cohesive whole.

In the simplest case a successive tracking method can be implemented with a

very naive approach [15]. For example, it is possible to associate the centroid of

an object in a later frame with an object centroid that was closest to the same

position in the preceding frame. Another approach is to associate objects with most

overlapping bounding boxes in different frames.

A different approach to tracking comes from a family of object trackers known

colloquially as model-free trackers [16]. These trackers rely only on motion cues and

do not rely on object detection techniques. That is, a car can be tracked without

any car detection being made by an object detector. The strength of these trackers

is also their drawback, as the object has to be moving instantaneously or it cannot

be tracked. Additionally, as object detection is already a pre-requisite of collision

detection, model-free trackers are not particularly useful for the framework that is

presented in this thesis.

Many naive attempts are susceptible to be hampered by commonplace visual

phenomena, particularly when the tracked object gets partially or completely oc-

cluded by another object [17]. In many cases a situation such as this will result in

an identity switch: The tracker loses track of the object and, upon next observa-

tion, considers it to be a different object, meaning that the tracked identify of the

factually same object is incorrectly switched to another, different identity. That is,

the object remains the same, but the system thinks it is not.

2.4.1 SORT

Simple Online and Realtime Tracking (SORT) [18] is an effective tracking method

that is built on two central components, Kalman filtering and data association using

the Hungarian algorithm. It also has some low-level functionality that alleviates the
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identity switching problem in some short-lived occlusion events. On a superficial

level the operation of SORT can be described as follows:

1. Given a frame in a video stream, every detected and tracked object (target)

in the frame has some state including location, velocity, bounding box and a

predicted state in the next frame.

2. When a known target is redetected in the current frame, its state is updated

based on the state it had in the previous frame and the detection box of

the target in the current frame. Kalman filtering [19] is used to update the

velocity of the target, based on the motion of the target from the previous to

the current frame.

3. If a known target was not redetected, an estimation model computes an esti-

mated location of the target in the current frame. The target is assumed to

move at a constant velocity that it is supposed to have, based on the latest

detection update.

4. Before targets and detection boxes are associated, each target has a predicted

state (including a predicted detection box) in the current frame. The predicted

boxes and the detection boxes are compared to each other by computing the

intersection-over-union (IOU) [20] of every prediction with every detection.

From these values an assignment cost matrix is computed, which in turn is

used allocate every detection with a prediction (and hence, a target) with the

help of the Hungarian algorith [21].

5. A minimum IOU threshold is used to discard any allocations for which the

computed IOU is below the threshold. That is, a detection and a prediction

must have overlap larger than the threshold, or the allocation is rejected.
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6. A detection is considered to be a new and unseen target, if the detection box

cannot be allocated to any prediction.

7. If a target goes undetected for a specified number of frames, it is terminated.

This means that the target has lost its identity even if it reappears in a later

frame.

The problem with SORT is that it too suffers from frequent identity switches,

regardless of the attempted measures to improve accuracy. This would be partic-

ularly evident in a scene with much traffic where occlusions could last for several

frames, resulting in an unavoidable identity switch. Because of this, an even more

advanced solution was considered for the role of the object tracker.

2.4.2 Deep SORT

Deep SORT, or SORT with a deep association metric [22], is an extension to the

original SORT approach. It incorporates SORT techniques with deep learning mea-

sures, resulting in improved tolerance to occlusions and hence a reduced number of

identity switches.

The deep learning component of Deep SORT is a CNN model trained on samples

of the tracked object class. This CNN model, stripped from its final layer, does not

produce a prediction. Instead, the last remaining layer is a fully connected layer

that outputs a vector representation of the tracked object. This is what the authors

call a deep appearance descriptor. A high-level overview of this network is shown in

Figure 2.9.

The appearance descriptor obtained in this fashion is then used in comparing

feature similarity with seen targets. It is used in conjunction with a matching

cascade algorithm that relies on Mahalanobis distance [23] and attempts to associate

targets over multiple frames, favoring more frequently seen objects. The result is an
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Figure 2.9: The Deep SORT CNN generating an appearance descriptor.

algorithm that can withstand longer periods of occlusion while still managing to be

effective in real-time.

Such characteristics are virtually mandatory when tracking objects in traffic,

where occlusions happen all the time, all over the place. In a collision detection

context, the duration of the event and hence the time needed to track a vehicle is

short, but an ill-timed occlusion can still be crucially detrimental to the detection

process. This is the main reason of selecting Deep SORT in this thesis.



3 Implementation and evaluation

This chapter discusses the proposed collision detection framework. The first three

sections describe the separate phases of the process. Then, a description of the used

datasets and evaluation metrics is provided. Finally, some of the technical aspects

related to the implementation are highlighted.

3.1 Proposed framework

At the abstract level, the proposed framework can be described as a pipeline that

receives a video as input and produces collision detections as output. As shown in

Figure 3.1, the framework uses three main phases as follows:

1. Object detector: detects the vehicles in a video frame and associates each

detected vehicle with a bounding box.

2. Object tracker: tracks the detected vehicles and maintains identities of the

vehicles from a current frame to the next frame. It also extracts the track

images for the collision detector (see Figures 3.3 and 3.4).

3. Collision detector: detects if a sequence of track images from tracked vehicle

is a collision event or not.

In this context frame refers to a complete, full-sized image that represents a one

time step in a video (Figure 3.1, phase 1). Track image represents a small sub-region

of a frame in an area where a tracked vehicle is located (Figure 3.1, phase 2).
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Phase 1: Object detection with  Faster R-CNN

Phase 2: Vehicle tracking with Deep SORT

and expanded track image extraction

Concatenation

Consecutive images

branch
Image-skipping branch

Final layers

Phase 3: Collision detection

with alternative detector

con gurations

Vehicle 2Vehicle 1

One image / frame

Figure 3.1: A high-level overview of the framework. Every vehicle is processed in the same way as

Vehicle 2 in this illustration.

The proposed framework is modular: the implementation of one phase can be

changed while leaving other phases untouched. A latter phase does not depend on

the exact implementation of the previous phase, nor does it depend on the libraries

the previous phase depends on. Only the output produced by the preceding phase

is significant. For example, when improved real-time performance is needed, Faster

R-CNN can be substituted with a faster one-pass detector architecture.
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3.1.1 Object detection

The task of identifying and locating an object in an image or a video frame is known

as object detection. The result is a bounding box, a rectangular sub-region in the

image containing an object of interest (a vehicle).

In this phase the detector receives a video frame or an image as input. The task

of the detector is to locate the bounding boxes of all the vehicles in each frame.

The detector returns the detections as an array of bounding box coordinates in a

top-left/bottom-right format. An overview of the detection phase is shown in Figure

3.2. The library responsible for frame extraction is OpenCV [24] and each frame is

presented as a Numpy array [25].

Video
Frame extraction

(OpenCV)
Object detection
(Faster R-CNN)

 Frame
(Numpy array)

Filtering
 Detections Bounding

boxes

Figure 3.2: An overview of the object detection process

Most available object detectors, including Faster R-CNN, are general detectors.

Therefore, in addition to vehicles, they can detect other objects such as humans

and animals. The specific model used in this thesis was pre-trained Faster R-CNN

with backbone ResNet 101 [26] from the Detectron2 model zoo. The model was not

fine-tuned in any way for this task.

In this project only detections involving vehicles are retained while other detec-

tions are dropped as irrelevant for the task at hand. An alternative way would be

to replace the current detector with another one that is capable of detecting only

vehicles. This could improve real-time performance but has no effect on accuracy.

It should also be emphasized that any other detector capable of extracting vehicle

bounding box information would be just as suitable a candidate. This is possible

due to the modularity of the framework.
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3.1.2 Object tracking

Sometimes a vehicle crash is evident in a single static image. Other times one

crashing vehicle at least partially occludes the other one and it is impossible to tell

if the vehicles are in contact or not. That is why some notion of movement should be

included in the detection process, which means that the vehicles must be assigned

some kind of identity. With this identity, the detector can follow a vehicle from

one frame to another. To a human observer, this is a nearly effortless and intuitive

process. To a computer vision system, it is a fundamentally challenging problem

known as object tracking.

Vehicles are tracked frame by frame: During each frame detections made by the

object detector and the actual frame are passed on to the tracker. The tracker uses

the received parameters along with its own internal state (see chapter 2.4) to decide

if the observed vehicle is a new and previously unseen vehicle or if it is a vehicle

that has been seen earlier and is now continuing on its track. Each vehicle (and its

track) is associated with an abstraction named VehicleTrack, briefly characterized

in Listing 1.

Listing 1 A simplified version of the VehicleTrack class.
class VehicleTrack:

# a vehicle ID matching the ID given by the tracker

vehicle_id: int

# track images of a tracked vehicle

images: Dict[int, np.ndarray] # key := frame number

# fill-in algorithm for fixing missing detections

def fill_in(self, frame_id: int, frame: np.ndarray,

detection_box: List[int]) -> None:

# see Listing 2 for details
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The purpose of this class is to be a container for whatever images are associated

with a particular vehicle during its observed lifetime in the video. The track of

a vehicle is the full sequence of images in which a vehicle has been detected. For

example, if a video is 100 frames long and a specific vehicle has been detected

in frames 20-80, then the track of this vehicle consists of 61 track images. This

extraction process is illustrated in Figure 3.3.

17 18 19 20 21 22 23 77 78 79 80 81 82 83VIDEO AS

FRAMES

Track extraction

20 21 22 23 77 78 79 80
FULL TRACK OF

A VEHICLE

Vehicle not in frame Vehicle in frame

Figure 3.3: Extraction of the full track of a vehicle that is detected in video frames 20-80.

Every track image is an image of the tracked vehicle expanded to include not

only the vehicle itself but also its immediate surroundings in the current frame,

as shown in Figure 3.4. The purpose of this expansion is to include information

about any object that is close to the tracked vehicle and, possibly, also coming into

contact with it. The track images are also scaled to the size of 224 x 224 pixels,

while maintaining aspect ratio of the vehicle region, to keep the image dimensions

constant.

Original track image

     Size: varies

Expanded and scaled track image

       Size: 224 x 224 pixels

Figure 3.4: An example of expanded track image which consists of the contents of the bounding

box along with the nearby pixels outside the box. The aspect ratio of the box is preserved.
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Faster R-CNN and Deep SORT are not infallible and a vehicle that is detected in

an earlier frame often goes undetected for a couple of frames before being detected

again. When an image is added to an existing track the VehicleTrack object always

checks to see if there has been a gap in the detection process. In case a gap exists,

the algorithm in Listing 2 is used to fill in the missing images.

Listing 2 Fill-in algorithm for fixing tracks with missing images
change(Ba, Bb) := the change in the sides between boxes a and b

distance(Fa, Fb) := the number of frames between frames a and b

displacement(Ba, Bb) := centroid displacement between boxes a and b

F0, B0 ← last detected frame and bounding box

F1, B1 ← currently detected frame and bounding box

s← displacement(B0, B1) / distance(F1, F0)

r ← change(B0, B1) / distance(F1, F0)

for each missing frame Fi and bounding box Bi do

i← distance(Fi, F0)

Bi,x1 ← B0,x1 + (i · sx)− (i · rx)/2

Bi,y1 ← B0,y1 + (i · sy)− (i · ry)/2

Bi,x2 ← B0,x2 + (i · sx) + (i · rx)/2

Bi,y2 ← B0,y2 + (i · sy) + (i · ry)/2

end for

In short, the algorithm computes the displacement and resize values which are

then used to transform an actual detection into an artificial detection so that the

track is complete without any missing images.

The overall view of the tracking phase can be observed in Figure 3.5. The

detection processing involves the use of the fill-in algorithm in Listing 2 (if needed),

in addition to extracting the track image from the original frame.

As an implementation detail it should be noted that the original Deep SORT
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model was trained with data consisting of pedestrians walking on a street [22]. It was

therefore not usable for vehicle detection purposes. Instead, this thesis relied on an

alternative implementation trained on vehicles [27]. However, the original weights

of this model are for an old version of PyTorch (1.0.1) and therefore unusable as

such in any up-to-date environment. Because of this the weights were retrained for

a more recent version of PyTorch (1.7.0) using the process outlined in the repository

of [27].

Detectron2 detections
(bounding boxes)

Deep SORT

Frame (Numpy array)

Unprocessed
tracks

remaining?

 Detected vehicle tracks

New track,
unseen vehicle

?

 YES:
  next track   

   Quit   

 NO 

New VehicleTrack

 New track  

Matching existing VehicleTrack

 Seen track  

Process detection:
extract images,

fill in missing images

Figure 3.5: An overview of track processing.
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3.1.3 Collision detection

When a vehicle has been tracked for a sufficient number of frames, the observed

track images can be processed by the collision detector. The task of the detector is

to evaluate whether the observed sequence of images is a normal (non-collision) or

a collision sequence. The high-level principle is shown in Figure 3.1 (phase 2 and

phase 3).

For this project, several alternative models were built using the TensorFlow deep

learning framework [28] and all the alternatives employ VGG16 [11] as a backbone.

The models can be grouped as follows:

• Sequence-of-5 models: models based on sequences of 5 track images.

• Sequence-of-10 models: models based on sequences of 10 track images.

Therefore, a sequence-of-n model bases its prediction on n − 1 previous track

images and the current track image. All the models (excluding the baseline model)

utilize the same basic component, referred to as the Temporal Base Model (TBM).

It is a simple neural network with both convolutional and recurrent properties, in-

tended to capture some meaningful visual and temporal interactions in the sequence

it processes.

The TensorFlow framework offers a special layer named TimeDistributed [29],

which allows for a layer to be applied to a temporally sliced input. When using

TimeDistributed the operation that is being performed shares same set of weights

for each of the temporal slices. TimeDistributed offers an easy way to handle a

sequence of images as temporal data and is an integral part of the TBM. The high-

level principle of operation of the TBM is shown in Figure 3.6.
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Figure 3.6: The structure of the TBM.

The collision detection process can be summarized as follows:

1. An image sequence is sliced by a TimeDistributed layer.

2. VGG16 extracts features from each slice (track image).

3. The features are flattened into a single long vector per track image.

4. The vectors are grouped as a temporal sequence, maintaining image order.

5. The LSTM layer processes the sequence.

6. Dropout is used on the LSTM output for regularization.

7. Fully connected layers are used in making the final prediction.

On an abstract level, the LSTM layer attempts to generate the next suitable

vector in the sequence. It predicts what kind of a vector of feature maps would be

extracted from an image that is a suitable addition to the sequence the model has

just seen. The LSTM layer outputs only the final sequence, as discussed in section

2.2. In the TensorFlow framework, this kind of output is achieved by using the

argument return_sequences=False. This resulting vector is then processed by the

final layers, after which the model can decide if the sequence is a collision or not.



3.1 PROPOSED FRAMEWORK 37

The configuration of the VGG16 backbone is the following:

• The fully connected layers are dropped (include_top = False).

• Four last CNN layers are set as trainable.

• All input values are preprocessed using vgg16.preprocess_input [30].

• (Optional) All input values are rescaled.

It is noteworthy that neither vgg16.preprocess_input performs any rescaling nor

was any external rescaling utility used. Therefore, a separate rescaling layer was

added to the TBM. The configuration is shown in Listing 3.

Listing 3 The layers of the TBM.
import tensorflow as tf

from tensorflow.keras import layers

from tensorflow.keras.applications import vgg16

backbone = vgg16.VGG16(include_top=True, weights='imagenet',

input_shape=(224, 224, 3))

for layer in backbone.layers[:-4]:

layer.trainable = False

SEQUENCE_LENGTH = 5 # or 10

i = layers.Input((SEQUENCE_LENGTH, (224, 224, 3))

x = vgg16.preprocess_input(tf.cast(i, tf.float32))

x = layers.experimental.preprocessing.Rescaling(

1. / 255, 0.0, name='Rescaling')(x)

x = layers.TimeDistributed(backbone)(x)

x = layers.TimeDistributed(tf.keras.layers.Flatten())(x)

x = layers.LSTM(256, activation='tanh')(x)
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The models were compiled as shown in Listing 4. Stochastic Gradient Descent

(SGD) [31] with the learning rate of 0.0025 was used as an optimizer, as it provided

the most consistent results during initial tests.

Listing 4 Model compilation.
from tensorflow.keras import optimizers

optimizer = optimizers.SGD(learning_rate=0.0025)

model.compile(optimizer,

loss='binary_crossentropy',

metrics=['binary_accuracy'])

Proposed collision models

This section proposes four different models and a baseline model for the collision

detection phase. The proposed Collision Models (CM) are named as CM:m-n, where

m is the length of the image sequence and n is the number of branches in the model.

The structures of the sequence-of-5 models and the baseline model are shown in

Figure 3.7. The sequence-of-10 models are virtually the same except for the sequence

length which is ten images instead of five.

1

TBM:
Consecutive branch

2 3 4 5

Fully connected

Prediction

(a) CM:5-1.

1 2 3 4 5

TBM:
Consecutive branch

TBM:
Image-skipping branch

Concatenate

Fully connected

Prediction

(b) CM:5-2.

1 2 3 4

Fine-tuned VGG16

5

Fully connected

Prediction

(c) Baseline.

Figure 3.7: Overview of the sequence-of-5 models and the baseline model.
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All models utilize the same configuration for the fully connected layers (see List-

ing 5). It was tested with both tanh and ReLU activations (section 3.2.2).

Listing 5 The fully connected layers.
from tensorflow.keras import layers

# x is the output of the previous layer

x = layers.Flatten()(x) # if the form of x requires

x = layers.Dense(512, activation='tanh')(x) # or 'relu'

x = layers.Dropout(0.5)(x)

x = layers.Dense(256, activation='tanh')(x) # or 'relu'

o = layers.Dense(1, activation='sigmoid')(x)

The details of the models are as follows:

CM:5-1

The model CM:5-1 uses one branch for processing a sequence of five consecutive

track images, where each image is one temporal slice processed by the TBM.

The last image in the sequence is the most recent image that was extracted

during the tracking phase. It has originated from the frame the tracker has just

seen. In addition to this track image, four previous images are used for detection.

CM:5-2

The model CM:5-2 has two different branches: one branch for processing five con-

secutive track images, and one branch with image-skipping behavior.

The image-skipping branch ignores all detections and track images between the

first and the last image. The purpose of this branch is to capture the drastic changes

between the beginning and the ending of the sequence, whereas the consecutive

branch focuses on the more distinguished image-to-image changes.
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CM:10-1

The model CM:10-1 is very similar to the model CM:5-1 except that sequences of

ten consecutive images are used for detection. The models uses only a single branch

when processing the track images.

CM:10-2

The model CM:10-2 is very similar to the model CM:5-2. The first branch processes

a sequence of ten consecutive images. The second branch is an image-skipping

branch and only considers the first (1) and the last (10) image in the ten images

long sequence while the other images are ignored.

The baseline model

A baseline model is needed to evaluate the performance of the collision models. A

fine-tuned VGG16 network is used for this purpose, and as VGG16 is an image

classifier, the detection of the sequence type (normal or collision) is based on only a

single image while the other images in the sequence are ignored.

The baseline model uses the fourth image in the sequence. If any single image

represents a collision properly, it is typically neither one from the beginning nor one

from the end but one in the middle of a sequence. Additionally, the fourth image is

observed by both the sequence-of-5 and the sequence-of-10 models and is a feature

every model sees exactly once, as the fourth image is in the middle of the sequence

and not processed by the image-skipping branch.

As with the other models, the VGG16 backbone is stripped from the fully con-

nected top layers after which the final convolutional layers are set as trainable. The

configuration of the baseline model is shown in Listing 6.
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Listing 6 The baseline model.
import tensorflow as tf

from tensorflow.keras import layers

from tensorflow.keras.applications import vgg16

backbone = vgg16.VGG16(include_top=True, weights='imagenet',

input_shape=(224, 224, 3))

for layer in backbone.layers[:-4]:

layer.trainable = False

i = Input((224, 224, 3))

x = vgg16.preprocess_input(tf.cast(i, tf.float32))

x = layers.experimental.preprocessing.Rescaling(

1. / 255, 0.0, name='Rescaling')(x)

x = backbone(x)

# x is then processed by the layers in Listing 5.

Like the CM models that rely on temporal features, the baseline model also

requires a network of convolutional layers that are used to extract the feature maps.

However, unlike the temporal models, the baseline model does not use an LSTM

layer. Instead, the output from the final VGG16 layer is passed on to a series of

fully connected layers (Listing 5), which ultimately produce a classification result.

3.2 Dataset

This section describes the dataset that is used for the experiments in this thesis. It

is important to note that the training dataset was only used to train the collision

detector. The object detector or the object tracker were not trained with this data.

Only collisions involving passenger cars were generated in GTA V. Therefore,

the framework was only trained and tested with passenger car data. Larger vehicles
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such as trucks or buses were not included in the datasets. This was done to limit

number of different collision scenarios that had to be created in GTA V.

3.2.1 Training dataset

Obtaining diverse quality data of vehicle collisions is difficult, particularly if the

point of view has to be that of an observer moving in the traffic flow. This excludes

data from any stationary source such as a surveillance camera. For this reason,

synthetic data is first used for training the proposed collision detection models (CM

models and the baseline model). The models are then evaluated on a real data.

The training dataset was obtained from the video game GTA V with the help

of an unofficial scripting library named ScriptHookV [2]. Several different accident

scenarios were created in the game environment. The collision types varied from

subtle bumps to violent crashes. Several different types of lighting was used, ranging

from daylight to dusk. The weather type was limited to dry weather.

This resulted in a collection of 300 collision videos, approximately 150 frames

long each. However, not all of these frames were used for training the collision

detector, as most of the frames do not contain any information that can help the

detector to learn what a collision looks like.

None of the videos consists entirely of collisions. A typical video is one that

first contains some 100 frames of non-collision frames, followed by some number of

collision frames. Therefore, the collection was annotated with two details for every

video:

• the frame number when the collision begins, and

• the approximate X/Y coordinates of the collision in the frame in which the

collision begins.

The videos were then processed by the first two phases of the framework, the
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object detector and the vehicle tracker. When coupled with the annotation data, this

resulted in 580 extracted tracks where a vehicle is in collision with another vehicle.

However, some of the tracks were too short to be used for training: only tracks

having at least 15 normal and 15 collision images were used due to the sampling

method (see Figure 3.9).

The process of extracting track images was as follows:

1. Object detector processes a frame in a training video.

2. Object tracker tracks vehicles across the frames.

3. Track images are extracted for every vehicle observed in the video.

4. If a vehicle is located in the annotated X/Y coordinates at the right time it is

a participant in the collision and the track is a collision track.

5. Sufficiently long collision tracks are retained, other tracks are discarded.

The fourth step in the process means that the entire track is considered to be

a collision track if a collision happens in any of the images. However, even if a

track is a collision track it does not mean that all the images in the track contain a

collision. In fact, most of the images are collision-free. For example, a vehicle might

be moving completely normally for the first 80 track images, after which another

vehicles suddenly crashes into it. The collision that happens from the image 81

onwards means that the complete track is considered as a collision track.

The reason for keeping only collision tracks is to feed the collision detector as

challenging samples as possible. Many of the non-collision tracks involve a single

vehicle traveling the road without any interaction with other vehicles, but the real

challenge is in telling the difference between a collision and non-collision while two

vehicles are very close to each other. Figure 3.8 is an example of a particularly

challenging track, where the collision is nearly unnoticeable.
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No collision No collision Collision Collision

Track progression

Figure 3.8: A very challenging track changing from non-collision to collision. The collision is nearly

undetectable in any of the static images.

In order to train the model with as challenging samples as possible, the training

sequences were sampled as shown in Figure 3.9 (for sequence-of-5 models). For the

sequence-of-10 models the approach was similar but each sample consisted of ten

images instead of five.

Not sampled

Track progression

Normal Collision

Normal training sequences Collision training sequences

Not sampled
Start of a collision

5 5 5 5 5 5 5 55 5

Track images:

Figure 3.9: An overview of how the train sequences were sampled for the sequence-of-5 models.

Each sequence of five images represents one sample. Each collision track contributes five normal

and five collision samples to the training set.

The sampling method can be described as one the selects sequences close to

the annotated beginning of the collision and marks them appropriately. Sequences

selected prior to the collision frame are marked as normal sequences. Sequences

selected from the collision frame onward are marked as collision sequences. In all

the cases the sampling was cut so that normal images would not leak into collision

sequences or vice-versa. Furthermore, only track images close to the moment of
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collision were used. Images far away in the beginning or in the end of the track were

not used.

The collision detector should also be able to understand normal traffic scenery,

that is, sequences that at least to a human observer are very obviously non-collision

sequences. This is not in conflict with the sampling method. In addition to chal-

lenging tracks (such as Figure 3.8), the tracks also contain less challenging examples

where the moment of collision is easily identifiable. In these cases the images prior to

the collision represent typical non-collision scenarios, such as the sequence in Figure

3.10, where the observed vehicle is not seen to be close to any other vehicle.

Track progression

Figure 3.10: Example of a normal (non-collision) training sequence without challenging images.

The last image in the sequence represents the time step right before a collision.

In addition to the sampling method, horizontal flip augmentation was used to

increase the size of the training set. That is, that the size of the training set was

doubled by creating a copy of each track and then horizontally mirroring each im-

age in the copied track. Other forms of augmentation (rotation, shifting, contrast

changes) were tested but they proved to be either ineffective or even harmful to the

training process.

Lastly, the dataset was balanced so that the collision detector would see an

equal number of normal and collision sequences during training. The final result is

a balanced training set consisting of 1890 normal and 1890 collision sequences.
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3.2.2 Test dataset

In [7] research was conducted by using accident footage in predicting (instead of

detecting) collisions by utilizing what the authors call dynamic-spatial-attention

Recurrent Neural Network. As a by-product the team published a dashcam-recorded

accident dataset consisting of footage recorded in six major cities in Taiwan [8]. This

thesis uses the dashcam dataset when attempting to establish a connection between

virtual and real collisions.

However, due to the nature of the dataset only a small subset of it is relevant for

the purposes of this thesis. The majority of the videos in the set consists of events

that are not represented in the generated synthetic training data (e.g., collisions

involving only two-wheeled scooters, which are very numerous in Taiwanese traffic

but absent in the training data). Therefore, most of the videos were not used in

testing the accuracy of the collision detector. Instead, only 30 most suitable videos

involving passenger car collisions were selected and the efficacy of the models was

then evaluated on these videos.

The video clips were processed by the object detector and the object tracker in

a similar fashion as with the training set. However, all non-collision tracks were also

retained and only a small number of low-quality tracks (e.g., very blurry or dark

images) were discarded. The result is a test set of the following characteristics: 38

normal tracks, 52 collision tracks, 90 tracks in total.

Most of the collision tracks include both normal and collision images. Each of

the tracks has been annotated image-by-image, marking each image as being either

a normal image or a collision image. However, the test set is not balanced: there are

more normal tracks than collision tracks. The motivation for this is the fact that

collisions are rare events when compared to the number of normal traffic events.

The suitability of a collision detection method cannot be accurately evaluated on

an articially balanced set and the test setup should at least partially reflect the real
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world where most of the traffic is collision-free.

The obvious danger here is that a model can have fairly decent performance by

predicting normal sequences all the time. Missing an occasional collision event would

degrade the score of the model only marginally. For this reason, several metrics were

used to help capture the overall performance of the model with both normal and

collision events. The details of this approach are discussed next.

3.3 Performance evaluation and metrics

Measuring the performance of a collision detector is a problem in itself. For example,

it is often not unambiguous when a collision can be said to have ended. Does a

collision end when the participating vehicles are no longer in contact with each

other? Or does a collision end when the participating vehicles have ceased to move?

From a traffic security point of view detecting the end of a collision is much

less important than detecting the beginning. The sooner the observer can identify

an event as a collision, the sooner it can take the needed measures such as quick

maneuvering to avoid ending up as a participant in the crash.

Therefore, the test tracks were segmented to a maximum of two halves:

1. First segment containing normal images, and

2. second segment containing collision images (or no collision segment at all).

The performance of the collision detector was not evaluated past the annotated

collision images. As an example, let us consider a track that is 15 images long and

where a collision happens at the end.

Table 3.1: An example track with normal (0) and collision (1) images.

Track image 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1
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Here, each number represents a single image in the track and is either a collision

image or a normal image. Suppose a track like this is processed with the model

CM:5-1. In that case, five images are needed before the model can make its first

prediction. Additionally, an area identified as Gray Zone (G) should be considered,

which is a sequence in the track where normal and collision images mix. It is also

an area where the detection could go either way. In this kind of a scenario the track

and the predictions are similar to what is presented in Table 3.2.

Table 3.2: A prediction example with Gray Zones (G) using a sequence-of-5 model. Colors indicate

the starting images of sequences and where the corresponding prediction happens.

Track image 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1

Moment of prediction

Correct predictions 0 0 0 0 0 0 0G 0G 1G 1G 1

Model’s predictions 0 0 0 1 0 0 0 0 0 1 1

Model’s score 1 1 1 0 1 1 1 1 0 1 1

The way in which a Gray Zone is scored depends on the number of normal and

collision images. For the final metrics the following approach was selected:

• If a sequence starting at a gray zone G has more normal images it is correct to

predict the sequence as a normal sequence. A collision detection is an incorrect

detection.

• If a sequence starting at a gray zone G has more collision images it is correct

to predict the sequence as a collision sequence. Not detecting a collision means

a real collision is missed.

• In the case of sequence-of-10 models the prediction is omitted and not scored

if a sequence starting at a gray zone G has an equal number of normal and
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collision images. The sequence is ambiguous, and no correct prediction can be

made.

The list of metrics with which the models are evaluated is the following:

• Total, normal (non-collision) and collision accuracy.

• The number of true positives (TP): collision event detected as collision.

• The number of false positives (FP): normal event detected as collision.

• The number of true negatives (TN): normal event detected normal.

• The number of false negatives (FN): collision event detected as normal.

• F1 score.

In accordance with the above metrics F1 score is defined as:

F1 =
TP

TP + FN+FP
2

. (3.1)

3.4 Technical remarks

The models were trained on a Linux desktop with Intel Xeon 1230v3 (CPU), 20

GB of RAM and Nvidia 1080Ti 11 (GPU). At the time of writing this thesis it

was not possible to run an end-to-end test of the entire framework due to multiple

library incompatibilities. Particularly, the PyTorch-dependend and the TensorFlow-

dependend methods refused to execute in the same environment. This was partly

due to the unfortunate early decision to experiment with different frameworks, the

repercussion of which was noticed too late.

As a result, the framework was split into two docker containers, each of them

encompassing suitable library versions required by the tools contained. In order to
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pass information from the tracker to the collision detector an intermediate phase was

needed, during which extracted track images were transferred from one container to

another. The library configuration of the Docker containers was the following:

• Detectron2 / Deep SORT container: Cuda 10.2, cuDNN 7.6

• TensorFlow container: Cuda 11.2, cuDNN 8.1



4 Results

This chapter presents the results obtained by the framework. First, object detection

and object tracking performance is briefly evaluated. This is followed by the results

of the collision detector on the training set. The primary focus is on the last section,

which presents the results on the test set obtained by the collision detector.

4.1 Preliminary checks

The performance of the first two phases of the framework, object detection and

object tracking, was briefly evaluated in order to better understand their effect on

the performance of the collision detector. This procedure was performed by manually

checking how many of the collision events these methods managed to detect in the

test set. The results are as follows:

1. Faster R-CNN successfully detected every colliding vehicle in the test set.

2. Deep SORT successfully tracked every colliding test set vehicle detected by

Faster R-CNN.

The results do not mean that the models correctly detected and tracked every

vehicle in every single collision frame correctly. Instead, they managed to a capture

a a suitably long section of each collision track and no track was lost due to these

methods. Therefore, the performance of the framework depends entirely on the

collision detector.
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The functionality of the fill-in algorithm in Listing 2 was assessed by inspecting

some of the cases where a track of a vehicle was temporarily lost. Subjective obser-

vation confirmed that, when needed, the algorithm worked in an expected fashion

and produced consistent results. Figure 4.1 demonstrates a fixed track produced by

the algorithm.

Tracking  vehicle 30

Track temporarily lost

Fill-in algorithm

Fixed track of vehicle 30

Track progression

Figure 4.1: Real result by the fill-in algorithm in Listing 2.

The track extraction process was assessed by manually checking a selection of

extracted tracks. Generally speaking, the process is able produce consistent results

if the processes it relies on (the object detector and the object tracker) produce

consistent results. The extraction process is not flawless, however. It is susceptible

to sudden and drastic changes in the object detection process, which results in the

extracted images exhibiting the same behavior.

Figure 4.2 is an example of this phenomenon. Here, the object detector incor-

rectly expands the bounding box of the tracked vehicle to include both the tracked

vehicle and the other vehicle coming into contact. This error is reflected in the image



4.1 PRELIMINARY CHECKS 53

extraction process in two ways:

• The enlargened bounding box causes the track image to be zoomed out.

• The tracked vehicle is no longer located in the center of the track image.

Invalid bounding boxTracking vehicle 22

Track progression

Track images

Resulting track image is unexpectedly zoomed 

out and has an exaggerated shift to the right

Vehicle 22

not centered

Figure 4.2: When tracking vehicle 22, a dramatic change in the bounding box (generated by Faster

R-CNN) results as a dramatic change (dashed area) in the extracted track image.

As of now this behavior is an innate property of the framework and its effects

cannot be evaluated separately. This means that the behavior of the track extraction

process in irrevocably tied to the accuracy of the collision detector, as the detector

receives whatever track images was extracted by the extraction process. Effectively,

the results in sections 4.2 and 4.3 include this behavior.
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4.2 Training set results

The models were first trained and validated with splitted training data in order to

get a cursory impression of the performance. The purpose was not to provide an

accurate benchmark but to get a feel as to what could be expected when evaluating

the models with the test set. Additionally, the intention was to gain useful insights

as to how the models should be trained with full training data, when no validation

set would be available for monitoring the metrics during the training process.

For this section the training set was split by using 70 % of the data for training

and 30 % for validation. The size of the acquired training set was increased with

flipping augmentation. No augmentation was performed on the validation set. Pre-

liminary tests suggested that input rescaling would not necessarily have the expected

effect on performance, and therefore the training process was conducted both with

and without input scaling. The results obtained with input scaling are shown in

Figure 4.3.

Curiously enough all the models have very similar performance in terms of both

accuracy and loss, albeit that the baseline model has considerably slower progression

than the rest of the models. Accuracy on the training set comes very close to 100 %

while validation accuracy is capped at approximately 70 %. A critical observation

is that validation loss takes a turn for the worse soon after a model surpasses 90 %

accuracy on the training set, indicating that some overfitting begins to take place.

This is not unexpected, as collisions are a very complex group of events and the

number and the variety of training samples is most probably lower than ideal.

The results were also computed without input scaling (Figure 4.4). The situation

is strikingly similar between the rescaled and the non-rescaled variants, apart from

slightly altered training progression. This suggests that the test set should also be

evaluated both with and without rescaling.
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Figure 4.3: Training with tanh activation and rescaled inputs (70 % / 30 % split).

Figure 4.4: Training with tanh activation, no input rescaling (70 % / 30 % split).



4.3 TEST SET RESULTS 56

4.3 Test set results

To achieve best possible performance on the test set the 70 % / 30 % split of the

training set was revoked and the models were trained with the complete training

dataset (100 % of the set used for training). In order to avoid overfitting, the number

of epochs was limited by what was observed in section 4.2 with the consideration

that the size of the training set was increased after dropping the validation split. In

reality all the models were able to achieve a training accuracy of roughly 98 - 99 %

after approximately 6 epochs, after which the training was stopped.

Earlier observations on the test set indicated some degree of variance related to

model performance. That is, a specific model configuration could receive different

test scores after two separate training iterations. Therefore, each model was fully

trained and evaluated for ten repetitions, after which means and standard deviations

(SD) of the scores were computed. To elaborate, the process was as follows:

1. Create a new model instance with a specific configuration.

2. Load pre-trained weights for the VGG16 backbone.

3. Train the model for a specified number of epochs.

4. Evaluate the performance of the model on the test set.

5. Store metrics.

6. Repeat phases 1 - 5 for 10 times in total.

7. Compute the mean and SD of every metric.

F1 and accuracy results of the models are shown in Table 4.1.
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Table 4.1: F1 score and accuracy (acc.) over 10 full train/test cycles. Total accuracy is the accuracy

on all the sequences that could be extracted from the data. Normal accuracy is accuracy on the

normal sequences only. Collision accuracy is accuracy on the collision sequences only. All models

utilize the tanh activation except where noted. Most consistent model in green.

F1 Total acc. Normal acc. Collision acc.

Model Mean SD Mean SD Mean SD Mean SD

Without rescaling

baseline (ReLU) 0.34 0.03 0.57 0.04 0.53 0.04 0.7 0.04

baseline 0.39 0.02 0.64 0.06 0.6 0.09 0.74 0.07

CM:5-1 0.43 0.01 0.65 0.03 0.63 0.04 0.77 0.04

CM:5-2 0.43 0.02 0.66 0.04 0.64 0.06 0.75 0.04

CM:10-1 0.39 0.03 0.71 0.03 0.74 0.07 0.59 0.11

CM:10-2 0.41 0.01 0.71 0.02 0.73 0.04 0.63 0.07

With rescaling

baseline (ReLU) 0.37 0.02 0.65 0.05 0.66 0.08 0.64 0.06

baseline 0.38 0.01 0.64 0.03 0.65 0.04 0.67 0.04

CM:5-1 0.4 0.01 0.65 0.02 0.65 0.04 0.67 0.04

CM:5-2 0.39 0.01 0.64 0.02 0.64 0.03 0.68 0.03

CM:10-1 0.41 0.02 0.68 0.03 0.69 0.04 0.67 0.06

CM:10-2 0.41 0.01 0.69 0.03 0.69 0.05 0.67 0.08

CM:10-2 (ReLU) 0.4 0.02 0.63 0.04 0.6 0.06 0.77 0.04

A slightly unexpected result is that the CM:10-2 model without input rescaling

seems to produce the most consistent results. Particularly, this model demonstrates

good accuracy with least variance while sacrificing only a fraction of its F1 score.

The temporal CM models outperform the baseline model at least in terms of

accuracy. F1 score is not notably better, though. Table 4.2 gives further insight
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into the matter. It describes how well the models do in terms true/false and posi-

tive/negative. Particularly interesting in the column FP/N which shows the ratio

of collision detections on normal sequences; in other words, how eager a model is to

interpret a normal sequence as a collision sequence.

Table 4.2: True (TP) / False (FP) Positives and True (TN) / False (FN) Negatives divided by

the total number of positive (collision) sequences (P) or the total number of negative (normal)

sequences (N). Mean values computed over 10 full train/test cycles. All models utilize the tanh

activation except where noted.

Model TP/P TN/N FP/N FN/P

Higher is better Lower is better

Without rescaling

baseline (ReLU) 0.70 0.53 0.47 0.30

baseline 0.74 0.60 0.40 0.26

CM:5-1 0.77 0.64 0.37 0.23

CM:5-2 0.77 0.64 0.36 0.25

CM:10-1 0.59 0.74 0.26 0.41

CM:10-2 0.63 0.73 0.27 0.37

With rescaling

baseline (ReLU) 0.64 0.66 0.34 0.36

baseline 0.67 0.65 0.35 0.33

CM:5-1 0.67 0.65 0.35 0.33

CM:5-2 0.68 0.64 0.35 0.32

CM:10-1 0.67 0.69 0.31 0.33

CM:10-2 0.67 0.69 0.31 0.33

CM:10-2 (ReLU) 0.77 0.60 0.40 0.23
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It seems that the baseline model is able to reach a relatively good F1 score by

tilting very heavily towards collision sequences: the baseline model alternatives have

a high number of false positives, that is, they often see collisions where there are

none. Admittedly similar behavior is present in the temporal CM models also, but

the model CM:10-2 gives the least number of false positives while not sacrificing

much of the other metrics.

The overall observation is that all the model CM:10-2 seems to be best in toler-

ating the noise in the dataset and produces consistent results across training itera-

tions. Also, rescaling has surprisingly little effect, which goes against the common

convention of the trade. However, the ReLU activated baseline suffers massively

from non-scaled inputs, which seems to indicate that the effectiveness of rescaling

depends highly on the model configuration.

In general, all the temporal CM models outperform the baseline model but have

very similar performance when compare with each other. This is consistent with

what was observed during the validation phase in the previous chapter. It is also

noteworthy that the baseline model is not without its merit and has a performance

fairly close to the other models. In other words, the baseline model does not perform

considerably worse than the other models.

The above observations are an indication of the fact that the single most impor-

tant feature is a good static image, regardless of all the temporal aspects discussed in

this thesis. Temporal aspects do increase the performance of the model and partic-

ularly work to reduce the number of incorrect collision detections, but they cannot

surpass the significance of a single image that is a good representation of a collision.

Examples of two processed real-life test tracks are seen in Figure 4.5. Each

track is approximately 100 frames long and split into sequences of suitable length.

The framework processes the sequences, classifying every sequence it sees as either

a normal (0) or a collision (1) sequence. The shown images are selected evenly
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throughout the track and the numbers above the images indicate both the truths

and the detections in the vicinity (before and after) of the displayed image.

For example, the string True 000...111 above the image 067 in the upper row

indicates that there are no collision sequences prior to the image, but a collision

happens soon after that image is passed. The more similar the Pred string is to the

True string, the better the score of the model in the neighborhood of that image.

Figure 4.5: Example tracks with truths (True) and corresponding predictions (Pred) by CM:10-2

(without input scaling). Normal (0) and collision (1) sequences in the vicinity of the shown image.

Example images are selected evenly throughout the track (original videos from [8]).

In the case of the upper track the model performs fairly well. The detection

happens a few frames too late, but other than that the model seems to have a

reasonably consistent understanding of the track. On the other hand, the lower

track highlights a situation in which the model is very wrong and detects numerous

collision sequences when there is in fact no collision happening in the track. The poor

performance is a combination of many things, but the numerous occluded vehicles

is one of the contributing factors.



4.3 TEST SET RESULTS 61

Finally, a subjective evaluation of track characteristics affecting detection per-

formance was conducted. A rough summary is displayed in Table 4.3. If the track

demonstrates a quality listed in the Better performance column, then it is more

likely the detector receives a better score. On the other hand, characteristics better

fitted in the Worse performance column usually lead to degraded performance.

Table 4.3: Subjective observation on track characteristics and performance.

Better performance Worse performance

Nature of collision Obvious Subtle

Point of contact Visible Occluded

Number of visible vehicles Less More

Occluded vehicles Less More

The results in Table 4.3 have the same characteristics that should make a collision

more difficult to detect for a human observer also: a violent high-speed crash is more

easily identifiable as a collision than a minor nearly undetectable bump.



5 Discussion and conclusions

This chapter focuses on providing a conclusion for the thesis. The chapter is opened

by a short discussion about what was attempted and what was achieved. Next, some

initial thoughts about possible future avenues for continued research are suggested.

Finally, a conclusive summary is provided in the ending section.

5.1 Discussion

Discussion of the achieved results is best approached by considering the initial re-

search questions and the research hypothesis.

Research question 1.

Are modern superficially lifelike virtual environments visually and physically accu-

rate enough to be utilized in developing deep learning models that can detect vehicle

collisions happening in reality?

It seems plausible that modern computer vision techniques, initially designed for

and trained on real-life data, are indeed able to process synthetic data also. This

deduction stems from the observartions by which:

1. Object detection techniques can detect virtual counterparts of real objects in

synthetic data.

2. Object tracking techniques can track virtual counterparts of real objects.
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3. Collision detector, when trained on synthetic data, using a backbone initially

trained on real data, is able to detect at least some of the collisions happening

in real-life footage.

All these facts show that the feature sets and characteristics of real and virtual

events are not entirely disjoint. Had any of the mentioned bullet points failed, the

synthetically trained framework would have also failed to make any sense at all

about the accidents in the dashcam dataset.

Research question 2.

Are there specific techniques that translate well between real and virtual environments

in a vehicle collision context and how do these techniques perform when evaluated

using real collision data?

All the phases on the presented framework rely on some form of transfer learning,

and all underlying utilities were initially trained with real data. This is true for

Faster R-CNN as the object detector, Deep SORT as the object tracker and VGG16

as the backbone of a collision detector.

There were no actual earlier results with which to compare a framework such

as the one proposed in this thesis, and it is therefore difficult to make a definite

judgment if the framework has reasonable performance or not. The consistent total

accuracy was around the 70 % mark when evaluated with real-world data.

Research hypothesis

When trained on synthetic collision footage and tested on real-life footage, the per-

formance of a suitable model surpasses that of a trivial baseline.

In this case the trivial baseline was an image classifier fine-tuned with collision

images and similar non-collision images. The baseline acted by selecting a specific

image from a sequence of images, relying only on that single image when trying to
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decide if the observed vehicle was experiencing a collision or not. This means that

the baseline discarded all notion of movement and temporality.

All of the presented collision models were able to surpass the performance of

the baseline. That is, a model utilizing visual information arranged in a temporal

fashion was able to outperform a baseline that relied only on one static image. On

the other hand, the performance of the baseline was not strikingly worse than any

of the other models: in terms of accuracy the gap was less than 10 %. This suggests

that a single static image was the most contributing factor in the detection and the

temporal aspects were secondary.

The models suffered from a level of variance meaning that a model with the same

configuration produced different results after two different training iterations. The

models also suffered from a high number of false positives (i.e., they incorrectly iden-

tified normal sequences as collision sequences). The detailed structure of the model

affected the efficacy of the model, and typically a more complex model provided

more consistent results than a simple model. A more complex model also performed

better in terms of false positives.

5.2 Future works

Future work on this topic can be broadly divided into two categories: speed im-

provements and accuracy improvements.

Speed improvements

The presented framework is surely not the fastest possible and many implementation

decisions are based more on convenience than on efficiency. Particularly, utilizing

a one-stage object detector in place of a two-stage detector would surely result in

a framework with more reasonable inference times. The essential measure of speed

for any framework is the time from observation to detection. In the current context
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this means the time it takes for the model to detect a vehicle in a video, track it

for a required time and then notice a collision if the vehicle is experiencing one.

Unfortunately, due to issues mentioned in section 3.4 it was not possible to compute

such statistics, at least without considerable investment in getting the models in

different containers to communicate in real-time. This was outside of the scope of

this thesis, however.

Accuracy improvements

It is obvious that the collision detection framework is not ready for any real-world

environment in its current state. An accuracy of 70 % is not an approvable score for

a model from which near 100 % level of performance is required. There are surely

many available avenues with which the accuracy could possibly be improved. These

include, but are not limited to:

1. Better training data that is a better representation of real-world situations.

2. More expressive models that are better able to detect subtle movement hinting

at a collision.

3. Utilization of untrainable features such as optical flow.

5.3 Conclusion

This thesis has presented an approach with which synthetic data can be used to gen-

erate models that have better understanding of collision happening in the real world.

The suggested framework consists of three phases. The first phase is responsible for

object detection, that is, detecting vehicles in a video footage. The second phase

is responsible for tracking the objects long enough so that their track of movement

can be established. The final phase performs the actual collision detection based on

the results provided by the preceding phases.



5.3 CONCLUSION 66

The results indicate that the approach has at least some merit. The accuracy of

the proposed collision detection models surpasses that of a trivial baseline. However,

a maximum accuracy of roughly 70 % on real-life data means that the model as such

is not suitable for a production environment, and more development would be needed

in order to use a framework such as this for actually detecting collisions in any real

environment.
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