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Several numerical methods, notably upwind schemes, Lax–Wendroff schemes, and a 

semi-Lagrangian scheme, are investigated in order to find suitable models to simulate 

Alfvén wave transport and evolution. The tools are assessed by comparing the 

simulation results of open magnetic field line settings to analytical solutions of the 

simulation problems. 

The most promising model found is a semi-Lagrangian scheme, due to its accuracy 

and computational efficiency, but it is currently limited to time invariant wave veloc- 

ities. As an option to the semi-Lagrangian scheme the conservative Lax–Wendroff 

scheme was found to reproduce analytically solved results with a good accuracy. 

The semi-Lagrangian scheme is used to investigate wave–wave interactions in a 

closed magnetic field line setting, a coronal loop. The coronal loop setting is heavily 

simplified in order to observe the effects of wave–wave interactions on the spec- 

tra. The wave–wave interactions discussed are of the smallest order approximation 

level: three-wave interactions comprising of Alfvén waves and a sound wave. The 

three-wave interactions can clearly be seen altering the wave energy density spectra 

injected. The results may have implications in particle transport, and as such are 

interesting results to be investigated more. 

The simulation methods used are deemed sufficient, albeit improvements can be 

made, and as such are capable of simulating Alfvén wave spectra that are an impor- 

tant part of simulating particle acceleration in the solar corona. 

Keywords: Alfvén waves, wave propagation, wave–wave interactions, numerical 

methods, simulations, Solar corona, Solar wind
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Tutkielmassa etsitään tarkkaa ja tehokasta numeerista menetelmää Alfvénin aal- 

tojen etenemisen ja vuorovaikutusten mallintamiseen. Etenemisen mallinukseen 

kehitettiin ylätuulimenetelmiä, Lax–Wendroff-menetelmiä ja puolilagrangelainen 

menetelmä. Menetelmien soveltuvuutta arvioidaan vertailemalla simulaatiotuloksia 

analyyttisiin tuloksiin koronan ja aurinkotuulen avoimella magneettikenttäviivalla. 

Lupaavimmaksi simulaatiomalliksi osoittautuu puolilagrangelainen menetelmä, 

jota kuitenkin rajoittaa vaatimus aaltojen nopeuksien aikariippumattomuudesta. 

Vaihtoehtoinen lupaava menetelmä on konservatiivinen Lax–Wendroff-menetelmä, 

joka toistaa kohtuullisen tarkasti analyyttisia tuloksia ja sallii ajasta riippuvat 

aaltonopeudet. 

Aalto–aalto-vuorovaikutuksia tutkitaan koronan suljetulla magneetikenttäviivalla 

käyttäen puolilagrangelaista menetelmää. Plasman ominaisuuksia kenttäviivaa ym- 

päröivässä koronan silmukassa yksinkertaistetaan, jotta aaltospektrien muutosten 

tiedetään johtuvan aalto–aalto-vuorovaikutuksista. Aalto–aalto-vuorovaikutukset 

käsitellään matalimman kertaluokan approksimaatioina, kolmiaaltovuorovaiku- 

tuksina, joissa kaksi Alfvénin aaltoa ja ääniaalto vuorovaikuttavat keskenään. 

Kolmiaaltovuorovaikutusten huomataan selvästi muuttavan aaltojen energiati- 

heysspektrejä. Tuloksilla on vaikutusta ainakin varattujen hiukkasten kuljetukseen 

koronan silmukoissa. Tämän osalta jatkotutkimukset ovat tarpeen. 

Tutkitut simulaatiomenetelmät ovat riittäviä simuloimaan Alfvénin aaltojen spek- 

trejä. Aaltojen spektrit ovat olennaisen tärkeitä mm. koronan hiukkaskiihdytyksen 

mallinnuksessa, johon tulevissa tutkimuksissa myös keskitytään. 

Asiasanat: Alfvénin aallot, aaltojen eteneminen, aalto–aalto-vuorovaikutukset, nu- 

meeriset menetelmät, simulaatiot, Auringon korona, aurinkotuuli
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1 Introduction 

Alfvén waves are incompressible transverse hydromagnetic waves, that propagate 

parallel to the magnetic field lines. Alfvén wave transport and evolution are im- 

portant processes in the solar wind and the solar corona. Particle transport and 

coronal heating are both dependent on the wave populations of the coronal and 

interplanetary plasma, leading to the importance of understanding wave transport 

and evolution. 

The aim of this thesis is to create tools to investigate Alfvén wave transport and 

wave–wave interactions to better understand the underlying physics of these systems. 

The results of this investigation can be used, for example, in shock wave simulations, 

where the Alfvén wave spectra hold a role in particle acceleration. Examples of these 

kinds of simulations can be found in [1–4]. 

We expect through this investigation to find sufficient simulation models to sim- 

ulate Alfvén wave transport, without significant numerical errors. In addition to 

the simulation models, tools to optimize and improve corresponding simulations are 

investigated. 

We will first dive into the underlying theory to give the reader a brief look into 

the history and background of the research of Alfvén waves and their interactions 

with other constituents of plasma, after which we will be going through the models 

investigated and results attained from them. 

Understanding the wave propagation and wave–wave interactions requires knowl- 

edge of the environment around. The Sun is in a key part in producing the features 

of the interplanetary space environment. The solar wind and its plasma wave modes 

are also a key factor in shaping solar energetic particle events. Understanding the 

mechanisms of these components is essential to understanding wave-particle and 

wave-wave interactions. 

Plasma is a quasi-neutral gas whose behavior is governed by electromagnetic
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fields. A gas with an ionization degree as small as 0.1 % can already look like 

plasma and an ionization degree of 1 % leads to an almost perfect conductivity [5]. 

Sufficient heat and ionizing radiation are the mechanisms that create and uphold 

the plasma state of matter. 

The interplanetary space is a complex system of charged particles, radiation, 

electromagnetic fields, plasma streams and waves, all fueled by the Sun. Under- 

standing the processes powering the Sun and the effects the Sun has on our sur- 

rounding has taken giant leaps during the last century. One of the first major 

advancements were the measurements of intense magnetic fields in sunspots by Hale 

in 1908, showing that varying magnetic fields on the surface of the Sun might be 

key to solar activity. [5, 6] 

The Sun has a complex structure, with many layers with different roles and 

processes. The visible parts of the surface of the Sun are called the photosphere 

and chromosphere. Right above the photosphere and the chromosphere lies the 

corona , which we will be focusing on more in this text. The corona is significantly 

hotter at about 106 K, compared to the Sun’s surface at about 5800 K, and hosts 

many dynamic phenomena that result in particle acceleration and the solar wind. 

The corona has an intricate and ever-moving structure that is governed by solar 

magnetism. In a coordinate system that has no electric field pointing perpendicular 

to the magnetic field, plasma and energetic particles flow mainly along the magnetic 

field lines. Generally, such coordinate systems can exist only locally. In the case 

of the solar corona, however, the perpendicular electric field is minimized in the 

coordinate system rotating with the Sun, and that allows one to trace the global 

evolution of coronal plasma as a one-dimensional expansion inside flux tubes defined 

by the magnetic field lines. [5, 7] 

In the 1950s a theory of a continuous outflow of particles from the Sun began to 

emerge, notably pioneered by Biermann [8, 9] and Alfvén [10]. Alfvén noted that the



 

3 

outflow must be magnetized plasma. In 1958, Parker [11] derived an approximate 

solution to the geometry of the flow. In an inertial frame the plasma flow is close to 

radial, but in the frame rotating with the Sun the flow is in a form of a spiral, dubbed 

the Parker spiral . The Parker spiral is a simplified, yet still important concept in 

current view of the solar wind and the magnetic field frozen into it. According to 

Koskinen [5], there are two main types of solar wind, a fast solar wind and a slow 

solar wind. Fast wind is generally accepted to be originated from large coronal holes 

at high solar latitudes and the slow solar wind from smaller structures at lower 

latitudes. 

The transportation of the effects of solar activity on the surface of the Sun to 

the interplanetary space is in part done by the magnetic field of the solar wind, the 

interplanetary magnetic field (IMF) [5]. The magnetic field is frozen into the plasma 

as it propagates outwards from the Sun and expands, forming the Parker spiral. 

Plasma can support several different wave modes, ranging from oscillations of 

particles to fluctuations of the electromagnetic field. We will be reviewing only 

the sound waves and Alfvén waves of the plasma, since we are investigating the 

propagation and interactions of these waves. 

As in other media, sound waves are pressure fluctuations inside the system. 

Sound waves are primarily measured by pressure or particle density fluctuations, 

∆ P or ∆ n . The plasma in these waves fluctuates along the magnetic field lines, but 

do not cause magnetic disturbances in the system. The sound speed is defined as

c_S &= \sqrt {\frac {\gamma k_B T}{m}} = \sqrt {\frac {\gamma P}{\rho }}=\frac {\omega }{k},







































 

where γ is the adiabatic index, kB 

is the Boltzmann constant, T the temperature of 

the all of the constituents of the system (electrons and ions), m the average mass 

of a molecule ( m ≈ mi 

/ 2 , where mi 

is the mass of an ion, due to the relatively 

small mass of the electron), P the pressure of the medium, ρ the mass density of
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the medium, ω the wave angular frequency, and k the wavenumber. [5, 12] 

In 1942, Hannes Alfvén [13] drew attention to electromagnetic-hydrodynamic 

waves in conducting liquids. Disturbing the liquid caused the charge carriers to 

induce a magnetic field, causing mechanical forces on the carriers themselves. This 

result was extrapolated to the Sun’s magnetic field, where solar matter was a good 

conductor, and later dubbed Alfvén waves . 

Alfvén waves are transverse magnetic field fluctuations that propagate parallel to 

the magnetic field lines. Differing from sound waves, these waves are incompressible. 

Intuitively Alfvén waves can be derived from considering the magnetic field lines as 

strings with tension. Perturbing the string causes a propagating perturbation along 

the string, the Alfvén wave. The Alfvén speed in the direction of the magnetic field 

is defined as

v_A &= \sqrt {\frac {B^2}{\mu _0 \rho _m}} = \frac {\omega }{k},



























 

where B is the magnetic field magnitude, µ0 

the vacuum permeability, and ρm 

the 

mass density of the plasma. The plasma’s movement and the magnetic disturbances 

caused by the waves are perpendicular to the magnetic field, and related to each 

other as

\Delta \pmb {B} &= - \frac {\Delta \pmb {V}}{\pm v_A}B_0,

 









 

where ∆ BBB is the magnetic field vector of the fluctuation, ∆ VVV the velocity vector of 

the fluctuating medium, and B0 

the background magnetic field. The signs in the 

denominator correspond to the propagation direction of the wave either parallel (+) 

or anti-parallel (–) to the field. [5, 12] 

Another key process in the evolution of the waves are wave–wave interactions. 

In this thesis we will be using three-wave interactions between two Alfvén waves 

and a sound wave to describe the wave–wave interactions at the smallest order 

approximation level. This weak turbulence approximation will be discussed more in 

section 3.1.
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2 Alfvén Wave Propagation in the Solar Wind 

2.1 Theoretical Background 

There are many models for wave propagation, and the simplest one of them is 

Wentzel–Kramers–Brillouin (WKB) transport. WKB is a method to find approx- 

imate solutions to differential equations, originally used in quantum mechanics to 

solve the Schrödinger equation. It has been found to be a useful tool in calculating 

wave propagation in inhomogeneous media [5]. The condition for the WKB method 

to be applicable in wave transport calculation is that the wavelength of the wave 

packets being investigated is significantly shorter than the gradient scale lengths of 

the background media. WKB transport is a sufficient model to describe Alfvén wave 

transport in simple settings, as in [14–19], and can be found to imitate observed data 

of the solar corona and wave spectra (discussed in [20–23]). WKB theory is equiva- 

lent to a semi-classical description of wave packets propagating as quasi-particles in 

the coronal medium, obeying a Hamiltonian of form

 H(\pmb {r},\pmb {p}) = \hbar \omega (\pmb {r},\pmb {p}/\hbar ),

 

 

where ppp = ℏ kkk and

 \omega = \omega (\pmb {r},\pmb {k})

 

 

is the dispersion relation of the wave. 

Ng et al. [14] derive an equation for the evolution of properties of radially 

outwards propagating Alfvén waves, which is the basis for our simulation arithmetic. 

The equation derivation will be also discussed here to connect the underlying theory 

to the simulation. 

Ng et al. start from the wave kinetic equation described by Dewar [24], Barnes 

[25], and Stix [26]

\frac {\partial \mathcal {N}_\sigma }{\partial t}+\frac {\partial \omega }{\partial \pmb {k}}\cdot \frac {\partial \mathcal {N}_\sigma }{\partial \pmb {r}}-\frac {\partial \omega }{\partial \pmb {r}}\cdot \frac {\partial \mathcal {N}_\sigma }{\partial \pmb {k}} &= \gamma _\sigma \mathcal {N}_\sigma



















































 

where Nσ 

is the wave action density, defined as ℏ times the number density of 

plasmons in the six-dimensional phase space ( rrr , kkk ) , ω is the angular frequency, kkk is 

the wave vector, rrr is the position vector, and γσ 

Nσ 

the source term, where γσ 

is the 

net wave growth rate. If we consider radially outward propagating waves, we can 

write the wave action density in spherical coordinates ( r, θ , ϕ ) as

\mathcal {N}_\sigma (\pmb {k},\pmb {r},t) &= \frac {N_\sigma (k,r,t)}{k^2\sin \theta _k}\frac {\delta (\theta _k)}{2 \pi }

 

 



 









 

where Nσ 

is the plasmon density distribution per unit wavenumber, k the wave 

number, and ( k , θk 

, ϕk) are the spherical coordinates in kkk -space with the polar axis 

aligned along rrr . The wave dispersion relation in the fixed frame,

\omega &= kV_{\sigma f} = k(V_{sw}+V_\sigma ) = k(V_{sw}+v_A),

 



  

 

 

where ω is the wave angular frequency, Vσ f 

the wave velocity in the fixed frame and 

Vσ 

the wave velocity in the plasma frame, Vsw 

the solar wind speed, and vA 

the 

Alfvén velocity, is time-independent, leading us to

 \frac {{\rm d}\omega }{{\rm d}t} &= \frac {\partial \omega }{\partial t} = 0.

















 

The fixed frame and plasma-frame wave speeds, Vσ f 

and Vσ, are defined as

V_{\sigma f} &= V_{sw} + v_A \label {Vsigmaf}\\ V_\sigma &= v_A \label {Vsigma}















 

for Alfvén waves propagating outwards from the Sun. Choosing an analytically 

solvable case to compare simulation data with theory, we choose a constant solar 

wind speed, which gives a r 

− 2 dependence for the density, and a radially diverging 

magnetic field, where the magnetic field magnitude is also proportional to the inverse 

square of the distance. Using this information we get

v_A &= \frac {B}{\sqrt {\mu _0 \rho }} = \frac {a}{r} \label {VA} \\ V_{sw} &= v, \label {Vsw}





























 







 

where a and v are constant simulation parameters. This approximation is valid in 

the inner part of the solar wind. 

To observe the evolution of the wave quanta we use a spectral magnetic intensity, 

I 

σ, defined as

\langle (\delta \pmb {B})^2\rangle &= A\int I^\sigma (k) {\rm d} k,

 







 

where A is a normalization factor set to unity in this work. To draw a relation 

between the wave action density, Nσ, and the spectral magnetic intensity I 

σ, we 

start from the definition of Nσ:

 N_\sigma (k) &= \frac {E(k)}{\omega '},













 

where E ( k ) is the spectral energy density and ω 

′ the wave frequency in the plasma 

rest frame. The spectral energy density, E ( k ) is defined as

 E(k) &= \frac {I^\sigma (k)}{\mu _0},













 

where µ0 

is the vacuum permeability. Combining the previous two equations we get

 \omega ' N_\sigma (k) &= \frac {I^\sigma (k)}{\mu _0}.















 

Adding the definitions for the fixed frame Alfvén wave frequency, ω , and plasma rest 

frame Alfvén wave frequency, ω 

′,

 \omega ' &= k v_A \quad \text {and} \\ \omega &= k(V_{sw}+v_A) ,



 



 



 

solving for ω 

′,

 \omega ' &= \omega \frac {v_A}{V_{sw}+v_A},



 

















 

and then combining these

\begin {split} \omega N_\sigma &\propto I^\sigma \frac {v_A}{V_{sw}+v_A} \\ \Rightarrow \omega N_\sigma &\propto I^\sigma \frac {V_{\sigma f} }{V_\sigma } \end {split} \label {eq:NIrelation}





























 

we get the relation between the wave action density and the spectral magnetic 

intensity. 

Solving for spectral magnetic intensity I 

σ from the relation (12) and the time 

independence of the wave dispersion relation, Ng et al. derive the evolution equation 

for the spectral magnetic intensity of the radially outward propagating Alfvén waves 

(note that unlike in [14] we use the partial derivative 

∂ Vσ f

 

∂ r 

instead of the total 

derivative 

d Vσ f

 

d r 

inside the partial derivative of k since the partial and total derivatives 

are equivalent in this case as the Alfvén waves are not dispersive):

\frac {\partial }{\partial t}\bigg ( \frac {V_{\sigma f}}{V_{\sigma }}I^\sigma \bigg ) + \frac {1}{r^2} \frac {\partial }{\partial r} \bigg ( r^2 \frac {V_{\sigma f}^2}{V_{\sigma }}I^\sigma \bigg ) -\frac {\partial }{\partial k} \bigg ( k \frac {\partial V_{\sigma f}}{\partial r}\frac {V_{\sigma f}}{V_\sigma }I^\sigma \bigg ) &= \gamma _\sigma \frac {V_{\sigma f}}{V_\sigma }I^\sigma , \label {Ng17}

































































































 

where r is the distance from the surface of the Sun. 

Equation (13) can held as the basic equation derived from the theory. The 

equation can be derived to an ordinary advective form or to a conservative form, 

where the time derivative of the density, spatial derivative of the flux quantity, and 

the γσ-term are in balance. 

Equation (13) can be solved analytically when choosing a suitable simulation 

setting and adjusting the observed quantities a bit. The analytical solutions for this 

equation are solved using the method of characteristics and are explored more in 

section 2.2. 

2.2 Numerical Methods 

Several different methods of simulating wave propagation were studied in this thesis 

to find an accurate and flexible numerical model to simulate wave propagation in the 

solar corona and solar wind. The studies were conducted in systems of open magnetic
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Figure 1. A depiction of the simplification of the open field lines of the magnetic 

field of the Sun. The magnetic field of the Sun is simplified to be radially diverging 

between 5 and 50 solar radii from the Sun. 

field lines and closed magnetic field lines, of which the latter will be discussed more 

in section 3. A figure of the setting for this part of the project is shown in figure 

1, where the Sun and an open magnetic field line can be seen emanating from it. 

The magnetic field is assumed to be radially diverging, leading to a simplified model 

of the Sun’s magnetic field. This assumption is made to simplify the calculations 

substantially, without causing major issues in the interpretation of the results of 

these simulations. 

The wave propagation equations can be studied non-conservatively (advection 

form) or conservatively. As the first scheme to be investigated we’ve chosen a 

non-conservative upwind scheme due to its simplicity in implementation and light 

computational load. Non-conservative methods studied were an upwind scheme 

with explicit wave growth implemented, an upwind scheme with a semi-implicit Lo- 

cally One-Dimensional (LOD, Appendix) scheme implemented, a non-conservative 

Lax–Wendroff scheme (Appendix), a conservative upwind scheme, a conservative 

Lax-Wendroff scheme, and a semi-Lagrangian scheme. The numerical schemes and 

results for the non-conservative LOD upwind scheme and non-conservative Lax– 

Wendroff scheme have been pushed to the appendix as they are not so important 

for the discussion.
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2.2.1 Non-conservative Flux Equations 

Simplifying the wave transport equation, we denote

\mathcal {I}^\sigma &= r^2\frac {V^2_{\sigma f} I^\sigma }{V_\sigma }



 

















 

as a scaled magnetic intensity, which will be used to describe the magnetic inten- 

sity in our simulation setting to ease the calculations substantially. We choose to 

change the k -domain to a logarithmic domain of κ , where κ = ln( k /k0) . Multiplying 

equation (13) by r2 Vσ f 

leads to a form of

 \frac {\partial }{\partial t}\bigg ( r^2\frac {V_{\sigma f}^2}{V_{\sigma }}I^\sigma \bigg ) + V_{\sigma f} \frac {\partial }{\partial r} \bigg ( r^2 \frac {V_{\sigma f}^2}{V_{\sigma }}I^\sigma \bigg ) - \frac {\partial }{\partial k} \bigg ( k \frac {\partial V_{\sigma f}}{\partial r}r^2\frac {V_{\sigma f}^2}{V_\sigma }I^\sigma \bigg ) &= \gamma _\sigma r^2\frac {V_{\sigma f}^2}{V_\sigma }I^\sigma ,













































































































 

and then changing to the scaled magnetic intensity I 

σ results in

 \Rightarrow \frac {\partial }{\partial t}( \mathcal {I}^\sigma ) + V_{\sigma f} \frac {\partial }{\partial r} ( \mathcal {I}^\sigma ) - \frac {\partial }{\partial k} \bigg ( k \frac {\partial V_{\sigma f}}{\partial r}\mathcal {I}^\sigma \bigg ) &= \gamma _\sigma \mathcal {I}^\sigma .










 






































 

The partial derivative of k is opened and the logarithmic term κ is plugged in to 

result in

 \Rightarrow \frac {\partial \mathcal {I}^\sigma }{\partial t} + V_{\sigma f} \frac {\partial \mathcal {I}^\sigma }{\partial r} - \frac {\partial V_{\sigma f}}{\partial r}\mathcal {I}^\sigma -\frac {\partial V_{\sigma f}}{\partial r} \frac {\partial \mathcal {I}^\sigma }{\partial \kappa } &= \gamma _\sigma \mathcal {I}^\sigma ,





















































 

which can be derived to an advective form of

\Rightarrow \frac {\partial \mathcal {I}^\sigma }{\partial t} + V_{\sigma f} \frac {\partial \mathcal {I}^\sigma }{\partial r} -\frac {\partial V_{\sigma f}}{\partial r} \frac {\partial \mathcal {I}^\sigma }{\partial \kappa } &= \bigg (\gamma _\sigma + \frac {\partial V_{\sigma f}}{\partial r}\bigg )\mathcal {I}^\sigma \label {eq:nc_evolution} .

























































 

Plugging the fixed and plasma-frame speeds, Eqs. (9) and (10), into equation 

(15) results in

\Rightarrow \frac {\partial \mathcal {I}^\sigma }{\partial t} + \bigg ( v+\frac {a}{r}\bigg ) \frac {\partial \mathcal {I}^\sigma }{\partial r} + \frac {a}{r^2} \frac {\partial \mathcal {I}^\sigma }{\partial \kappa } &= \bigg (\gamma _\sigma -\frac {a}{r^2}\bigg )\mathcal {I}^\sigma \label {eq:nc_simulation},





































































 

which is desired form of the non-conservative evolution equation for the simulation.
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Parameters used in the simulations are chosen as

\begin {split} r \in [5,50]\ R_{\odot } \\ a = 10\ R_{\odot }^2 \mathrm {h}^{-1} \\ v = 2.5\ R_{\odot }\mathrm {h}^{-1} \\ \kappa \in [0,10]. \end {split} \label {eq:params}

   

  




  


  



 

We consider an exponential injection spectrum for the first simulation case. The 

boundary conditions at the inflow boundaries of r = 5 R⊙ 

and κ = 0 are set as

\mathcal {I}^\sigma (5\ R_{\odot },\kappa ,t) = \mathcal {I}_0^\sigma (\kappa ,t) = \mathcal {H}(t)\mathcal {H}(\kappa ) e^{-q\kappa } \label {bck}\\ \mathcal {I}^\sigma (r,0,t) = 0, \label {bcr}





   



    



    

 

where H is the Heaviside function and q the power-spectral index of the waves, 

which is set to q = 5 / 3 . 

We derive the analytical solution of the simulation using the method of charac- 

teristics. The characteristic curves are obtained from

 \frac {{\rm d}t}{1} &= \frac {{\rm d}r}{v+a/r}=\frac {{\rm d}\kappa }{a/r^2}=\frac {{\rm d}\mathcal {I}^\sigma }{(\gamma _\sigma - a/r^2)\mathcal {I}^\sigma }.













 

























 

The analytical solution for κ as a function of r for a wave packet that originated 

from ( r0 

, κ0) can be found by separating and integrating,

 {\rm d}\kappa &= \frac {a/r^2}{v+a/r}{\rm d}r \\ \Rightarrow \kappa &= \kappa _0 + {\rm ln}\frac {v+a/r_0}{v+a/r}.







 


  



 



 



 

The analytical solution for the time it takes a for a wave packet that originated from 

( r0 

, κ0) at the time t0 

to reach ( r, κ ) can also be found by separating and integrating,

 {\rm d} t &= \frac {r}{vr+a}{\rm d}r \\ \Rightarrow t &= t_0 + \frac {r-r_0}{v}-\frac {a}{v^2}{\rm ln}\frac {a+vr}{a+vr_0}.







 


  



 














 



 









 

Using these results we can solve for the theoretical scaled intensity as a function of 

r , κ , and t from the second and fourth characteristic curves by integrating,

 \frac {{\rm d} r}{v + a/r} &= \frac {{\rm d} \mathcal {I}^\sigma }{(\gamma _\sigma - a/r^2)\mathcal {I}^\sigma } \\ \Rightarrow \frac {{\rm d} \mathcal {I}^\sigma }{\mathcal {I}^\sigma } &= \frac {\gamma _\sigma r^2-a}{vr^2 + ar}{\rm d}r \\ \Rightarrow {\rm ln}\ \mathcal {I}^\sigma (r,\kappa ,t)-{\rm ln}\ \mathcal {I}^\sigma (r_0,\kappa _0,t_0) &= \int _{r_0}^r\frac {\gamma _\sigma r^2-a}{vr^2 + ar}{\rm d}r \\ &= \frac {\gamma _\sigma (r-r_0)}{v}+\bigg (1-\frac {a\gamma _\sigma }{v^2}\bigg ){\rm ln}\ \frac {a+vr}{a+vr_0}-{\rm ln}\ \frac {r}{r_0} \\ &= \frac {\gamma _\sigma (r-r_0)}{v} + {\rm ln}\ \bigg (\frac {a+vr}{a+vr_0}\bigg )^{1-\frac {a\gamma _\sigma }{v^2}} +{\rm ln}\ \frac {r_0}{r} \\ \Rightarrow \mathcal {I}^\sigma (r,\kappa ,t) &= \mathcal {I}^\sigma (r_0,\kappa _0,t_0)\frac {r_0}{r}\bigg ( \frac {a+vr}{a+vr_0} \bigg )^{1-\frac {a\gamma _\sigma }{v^2}} {\rm exp}\bigg [ \frac {\gamma _\sigma (r-r_0)}{v}\bigg ]





 































 



 


 

    





 







 



 




 





















 



 











 









 



 



















   















 



 













 







 

Plugging in the boundary condition gives us

 \mathcal {I}^\sigma (r,\kappa ,t) &= \mathcal {H}(t_0) \mathcal {H}(\kappa _0)e^{-q\kappa _0} \frac {r_0}{r}\bigg ( \frac {a+vr}{a+vr_0} \bigg )^{1-\frac {a\gamma _\sigma }{v^2}} {\rm exp}\bigg [ \frac {\gamma _\sigma (r-r_0)}{v}\bigg ],



   









 



 













 









 

which can be opened to the final form of

\begin {split} \mathcal {I}^\sigma (r,\kappa ,t) &= \mathcal {H}\bigg (t-\frac {r-r_0}{v}+\frac {a}{v^2}{\rm ln}\frac {a+vr}{a+vr_0}\bigg ) \\ &\quad \cdot \mathcal {H}\bigg (\kappa -{\rm ln}\frac {v+a/r_0}{v+a/r}\bigg ) \\ &\quad \cdot \frac {r_0}{r}\bigg ( \frac {a+vr}{a+vr_0} \bigg )^{1-\frac {a\gamma _\sigma }{v^2}}\bigg ( \frac {v+a/r_0}{v+a/r} \bigg )^q\\ &\quad \cdot {\rm exp}\bigg [ \frac {\gamma _\sigma (r-r_0)}{v}-q\kappa \bigg ] \end {split}



   





 














 



 







 

 



 













 



 











 



 







 











 

for the analytical solution of the scaled intensity. 

As mentioned before, the non-conservative LOD upwind implementation and the 

non-consersvative Lax–Wendroff scheme have been pushed to the appendix, leaving 

only the explicit non-conservative upwind scheme to be discussed here. 

Upwind methods are schemes, where the local derivatives are solved with a lin- 

ear approximation, taken as a difference of the current value and the value of an 

upwind simulation cell. Upwind schemes are a very common way to handle wave
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evolution equations, because of their simplicity, though linear approximation of the 

local derivatives can cause high amounts of diffusion with insufficient resolutions 

and without implementations, such as anti-diffusion operators . 

Our first iteration of an upwind scheme is explicit in time, meaning that the 

value of the time derivative between tn 

and tn +1 

is evaluated using information at 

the previous time step, tn, only. (An implicit implementation would use information 

on the next time step, tn +1, as well.) The calculations do not apply to the injection 

cells of the system, which are instead pre-scribed. The non-conservative advection 

equation (15) can be derived to the following form that is fit for simulation:

\begin {split} \mathcal {I}^\sigma _{r,\kappa ,t+\Delta t} &= \bigg [ \mathcal {I}^\sigma _{r,\kappa ,t} - \Delta t\bigg ( v + \frac {a}{r}\bigg )\frac {\partial \mathcal {I}^\sigma _{r,\kappa ,t}}{\partial r} - \Delta t \frac {a}{r^2} \frac {\partial \mathcal {I}^\sigma _{r,k,t}}{\partial \kappa }\bigg ] {\rm exp} \bigg ( \Delta t \bigg (\gamma _\sigma -\frac {a}{r^2}\bigg )\bigg ), \label {eq:UW_sim} \end {split}





















































































 

where the derivatives are defined as

\frac {\partial \mathcal {I}^\sigma _{r_i,\kappa ,t}}{\partial r} &= \begin {dcases} \frac {\mathcal {I}^\sigma _{r_i,\kappa ,t}-\mathcal {I}^\sigma _{r_{i-1},\kappa ,t}}{r_i-r_{i-1}},\quad \dot {r}(r,\kappa ,t) \geq 0 \\ \frac {\mathcal {I}^\sigma _{r_{i+1},\kappa ,t}-\mathcal {I}^\sigma _{r_{i},\kappa ,t}}{r_{i+1}-r_{i}},\quad \dot {r}(r,\kappa ,t) < 0 \end {dcases} \label {eq:uw_derivr}\\ \frac {\partial \mathcal {I}^\sigma _{r,\kappa _i,t}}{\partial \kappa } &= \begin {dcases} \frac {\mathcal {I}^\sigma _{r,\kappa _i,t}-\mathcal {I}^\sigma _{r,\kappa _{i-1},t}}{\kappa _i-\kappa _{i-1}},\quad \dot {\kappa }(r,\kappa ,t) \geq 0 \\ \frac {\mathcal {I}^\sigma _{r,\kappa _{i+1},t}-\mathcal {I}^\sigma _{r,\kappa _{i},t}}{\kappa _{i+1}-\kappa _{i}},\quad \dot {\kappa }(r,\kappa ,t) < 0 \end {dcases}\label {eq:uw_derivk}







































     























     









































     























     



 

The upwind schemes need to fulfill the Courant–Friedrichs–Lewy (CFL) con- 

dition. The condition requires for a one-dimensional case for the time step to be 

smaller than the time taken for the wave packet to propagate the distance ∆ x ,

\frac {c\Delta t}{\Delta x} \leq 1, \label {eq:CFL}







 

 

where c is the the (positive) velocity of the wave packet, ∆ x the size of the simulation 

cell, and ∆ t the size of the time step. [27] 

For our simulation and the two-dimensional case the CFL-condition reads as

\frac {1}{\Delta t} &= \frac {\dot {r}}{\Delta r} + \frac {\dot {\kappa }}{\Delta \kappa }, \label {eq:dt}































 

where ∆ r and ∆ κ are grid parameters chosen to satisfy accuracy and computation 

time. ∆ t will be calculated in each simulation cell on the grid and the smallest ∆ t 

is chosen so that the clause is satisfied at each cell on the grid. 

2.2.2 Conservative Flux Equations 

Conservative flux equations paired with conservative numerical schemes are a phys- 

ically more accurate way to describe the evolution of the fluxes, due to the conser- 

vation of the flux terms. Finite difference methods, such as the upwind scheme, are 

not necessarily conservative in all cases but can in simple advection cases correspond 

to the Godunov method, which is a conservative finite volume method [28, 29]. Our 

simulation case is not simple enough to regard the upwind scheme as a conservative 

numerical scheme, but instead explores the suitability of the upwind method in the 

case of variable velocity and conservative equations. 

Starting again from equation (13) we can derive a conservative form for the 

magnetic intensity advection equation. This time we’ll denote a different scaled 

magnetic intensity as follows:

\mathfrak {I}^\sigma &= \frac {V_{\sigma f}}{V_\sigma }r^2kI^\sigma .













 

Multiplying equation (13) by r2 k results in

 \Rightarrow \frac {\partial }{\partial t}\bigg ( r^2 k\frac {V_{\sigma f}}{V_{\sigma }}I^\sigma \bigg ) + \frac {\partial }{\partial r} \bigg ( r^2 k\frac {V_{\sigma f}^2}{V_{\sigma }}I^\sigma \bigg ) - k\frac {\partial }{\partial k} \bigg ( k \frac {\partial V_{\sigma f}}{\partial r}r^2\frac {V_{\sigma f}}{V_\sigma }I^\sigma \bigg ) &= \gamma _\sigma r^2k\frac {V_{\sigma f}}{V_\sigma }I^\sigma .



































































































 

Changing to the scaled magnetic intensity Iσ results in

 \Rightarrow \frac {\partial }{\partial t}( \mathfrak {I}^\sigma ) + \frac {\partial }{\partial r} (V_{\sigma f} \mathfrak {I}^\sigma ) - k\frac {\partial }{\partial k} \bigg ( \frac {\partial V_{\sigma f}}{\partial r}\mathfrak {I}^\sigma \bigg ) &= \gamma _\sigma \mathfrak {I}^\sigma .

















 






















 

Plugging in the logarithmic term κ = ln 

k

 

k0 

results in

\Rightarrow \frac {\partial }{\partial t}( \mathfrak {I}^\sigma ) + \frac {\partial }{\partial r} (V_{\sigma f} \mathfrak {I}^\sigma ) + \frac {\partial }{\partial \kappa } \bigg ( - \frac {\partial V_{\sigma f}}{\partial r}\mathfrak {I}^\sigma \bigg ) &= \gamma _\sigma \mathfrak {I}^\sigma . \label {eq:c_evolution}
















































 

the fixed and plasma-frame speeds are again defined as in equations (7), (8), (9), 

and (10). Plugging these into equation (27) results in

\Rightarrow \frac {\partial \mathfrak {I}^\sigma }{\partial t} + \frac {\partial }{\partial r} \underbrace {\bigg [ \bigg ( v+\frac {a}{r}\bigg ) \mathfrak {I}^\sigma \bigg ]}_{F_r} + \frac {\partial }{\partial \kappa } \underbrace {\bigg [ \frac {a}{r^2}\mathfrak {I}^\sigma \bigg ]}_{F_\kappa } &= \gamma _\sigma \mathfrak {I}^\sigma \label {eq:c_simulation},















































































 

where the wave intensity fluxes in r - and κ -direction are denoted as Fr 

and Fκ. This 

is the desired form of the conservative evolution equation used for the simulation. 

Parameters used in the simulations are the same as before, which are denoted in 

equations (17). The boundary conditions at the inflow boundaries of r = 5 R⊙ 

and 

κ = 0 are again set as

 \mathfrak {I}^\sigma (5\ R_{\odot },\kappa ,t) = \mathfrak {I}_0^\sigma (\kappa ,t) = \mathcal {H}(t)\mathcal {H}(\kappa ) e^{-q\kappa } \tag {\ref {bck}}\\ \mathfrak {I}^\sigma (r,0,t) = 0, \tag {\ref {bcr}}



   

    

    

 

where q is now set to a value of unity lower, q = 2 / 3 , due to the scaled magnetic 

intensity’s definition containing and additional k -term. 

We derive the analytical solution of the simulation using the method of charac- 

teristics. The characteristic curves are obtained from

 \frac {{\rm d}t}{1} &= \frac {{\rm d}r}{v+a/r}=\frac {{\rm d}\kappa }{a/r^2}=\frac {{\rm d}\mathfrak {I}^\sigma }{(\gamma _\sigma + a/r^2)\mathfrak {I}^\sigma }.













 





















 

The analytical solution for κ as a function of r for a wave packet that originated 

from ( r0 

, κ0) can be found by separating and integrating,

 {\rm d}\kappa &= \frac {a/r^2}{v+a/r}{\rm d}r \\ \Rightarrow \kappa &= \kappa _0 + {\rm ln}\frac {v+a/r_0}{v+a/r}.







 


  



 



 



 

The analytical solution for the time it takes a for a wave packet that originated from 

( r0 

, κ0) at the time t0 

to reach ( r, κ ) can also be found by separating and integrating,

 {\rm d} t &= \frac {r}{vr+a}{\rm d}r \\ \Rightarrow t &= t_0 + \frac {r-r_0}{v}-\frac {a}{v^2}{\rm ln}\frac {a+vr}{a+vr_0}.







 


  



 














 



 









 

Using these results we can solve for the theoretical scaled intensity as a function of 

r , κ , and t from the second and fourth characteristic curves by integrating,

 \frac {{\rm d} r}{v + a/r} &= \frac {{\rm d} \mathfrak {I}^\sigma }{(\gamma _\sigma + a/r^2)\mathfrak {I}^\sigma } \\ \Rightarrow \frac {{\rm d} \mathfrak {I}^\sigma }{\mathfrak {I}^\sigma } &= \frac {\gamma _\sigma r^2+a}{vr^2 + ar}{\rm d}r \\ \Rightarrow {\rm ln}\ \mathfrak {I}^\sigma (r,\kappa ,t)-{\rm ln}\ \mathfrak {I}^\sigma (r_0,\kappa _0,t_0) &= \int _{r_0}^r\frac {\gamma _\sigma r^2+a}{vr^2 + ar}{\rm d}r \\ &= \frac {\gamma _\sigma (r-r_0)}{v}-\bigg (1+\frac {a\gamma _\sigma }{v^2}\bigg ){\rm ln}\ \frac {a+vr}{a+vr_0}-{\rm ln}\ \frac {r}{r_0} \\ &= \frac {\gamma _\sigma (r-r_0)}{v} + {\rm ln}\ \bigg (\frac {a+vr}{a+vr_0}\bigg )^{-1-\frac {a\gamma _\sigma }{v^2}} +{\rm ln}\ \frac {r_0}{r} \\ \Rightarrow \mathfrak {I}^\sigma (r,\kappa ,t) &= \mathfrak {I}^\sigma (r_0,\kappa _0,t_0)\frac {r_0}{r}\bigg ( \frac {a+vr}{a+vr_0} \bigg )^{-1-\frac {a\gamma _\sigma }{v^2}} {\rm exp}\bigg [ \frac {\gamma _\sigma (r-r_0)}{v}\bigg ]





 























 



 


      



 







 



 




 





















 



 











 









 



 

















    













 



 













 







 

Plugging in the boundary condition gives us

 \mathfrak {I}^\sigma (r,\kappa ,t) &= \mathcal {H}(t_0) \mathcal {H}(\kappa _0)e^{-q\kappa _0} \frac {r_0}{r}\bigg ( \frac {a+vr}{a+vr_0} \bigg )^{-1-\frac {a\gamma _\sigma }{v^2}} {\rm exp}\bigg [ \frac {\gamma _\sigma (r-r_0)}{v}\bigg ],

   









 



 













 









 

which can be opened to the final form of

\begin {split} \mathfrak {I}^\sigma (r,\kappa ,t) &= \mathcal {H}\bigg (t-\frac {r-r_0}{v}+\frac {a}{v^2}{\rm ln}\frac {a+vr}{a+vr_0}\bigg ) \\ &\quad \cdot \mathcal {H}\bigg (\kappa -{\rm ln}\frac {v+a/r_0}{v+a/r}\bigg ) \\ &\quad \cdot \frac {r_0}{r}\bigg ( \frac {a+vr}{a+vr_0} \bigg )^{-1-\frac {a\gamma _\sigma }{v^2}}\bigg ( \frac {v+a/r_0}{v+a/r} \bigg )^q\\ &\quad \cdot {\rm exp}\bigg [ \frac {\gamma _\sigma (r-r_0)}{v}-q\kappa \bigg ] \end {split}

   





 














 



 







 

 



 













 



 











 



 







 











 

for the analytical solution of the scaled intensity. 

2.2.2.1 Conservative Upwind Scheme For the conservative upwind scheme 

equation (28) is derived to a similar explicit form of equation (21) presented in 

section 2.2.2.1:

\begin {split} \mathfrak {I}^\sigma _{r,\kappa ,t+\Delta t} &= \bigg [ \mathfrak {I}^\sigma _{r,\kappa ,t} - \Delta t\frac {\partial }{\partial r}\underbrace {\bigg (\bigg ( v + \frac {a}{r}\bigg )\mathfrak {I}^\sigma _{r,\kappa ,t}\bigg )}_{F_r} - \Delta t \frac {\partial }{\partial \kappa }\underbrace {\bigg (\frac {a}{r^2}\mathfrak {I}^\sigma _{r,k,t}\bigg )}_{F_\kappa }\bigg ] \\ &\quad \cdot {\rm exp} \bigg ( \Delta t \bigg (\gamma _\sigma + \frac {a}{(r-(v+a/r)\Delta t/2)^2}\bigg )\bigg ), \label {eq:CUW_sim} \end {split}






































































































   













 

where the derivatives are defined as

\frac {\partial F_{r_i}}{\partial r} &= \begin {dcases} \frac {( v + \frac {a}{r_i})\mathfrak {I}^\sigma _{r_i,\kappa ,t+\frac {1}{3}\Delta t}-( v + \frac {a}{r_{i-1}})\mathfrak {I}^\sigma _{r_{i-1},\kappa ,t}}{r_i-r_{i-1}},\quad \dot {r}(r,\kappa ,t) \geq 0 \\ \frac {( v + \frac {a}{r_{i+1}})\mathfrak {I}^\sigma _{r_{i+1},\kappa ,t+\frac {1}{3}\Delta t}-( v + \frac {a}{r_{i}})\mathfrak {I}^\sigma _{r_{i},\kappa ,t}}{r_{i+1}-r_{i}},\quad \dot {r}(r,\kappa ,t) < 0 \end {dcases}\\ \frac {\partial F_{\kappa _i}}{\partial \kappa } &= \begin {dcases} \frac {\frac {a}{r^2}(\mathfrak {I}^\sigma _{r,\kappa _i,t+\frac {2}{3}\Delta t}-\mathfrak {I}^\sigma _{r,\kappa _{i-1},t})}{\kappa _i-\kappa _{i-1}},\quad \dot {\kappa }(r,\kappa ,t) \geq 0 \\ \frac {\frac {a}{r^2}(\mathfrak {I}^\sigma _{r,\kappa _{i+1},t+\frac {2}{3}\Delta t}-\mathfrak {I}^\sigma _{r,\kappa _{i},t})}{\kappa _{i+1}-\kappa _{i}},\quad \dot {\kappa }(r,\kappa ,t) < 0, \end {dcases}





























 


















     



















 


















     









































     





























     



 

and the growth term is evaluated at the wave front’s location at halfway of the time 

step. 

Again, the same stability conditions apply as in the non-conservative upwind 

scheme (equations (24) and (25)) [27]. 

2.2.2.2 Conservative Lax-Wendroff Scheme The Lax-Wendroff scheme uses 

the same evolution equation (30) as the conservative upwind scheme, but the growth 

is instead calculated at the wave front’s location at the start of the time step:

\begin {split} \mathfrak {I}^\sigma _{r,\kappa ,t+\Delta t} &= \bigg [ \mathfrak {I}^\sigma _{r,\kappa ,t} - \Delta t\frac {\partial }{\partial r}\underbrace {\bigg (\bigg ( v + \frac {a}{r}\bigg )\mathfrak {I}^\sigma _{r,\kappa ,t}\bigg )}_{F_r} - \Delta t \frac {\partial }{\partial \kappa }\underbrace {\bigg (\frac {a}{r^2}\mathfrak {I}^\sigma _{r,k,t}\bigg )}_{F_\kappa }\bigg ] \\ &\quad \cdot {\rm exp} \bigg ( \Delta t \bigg (\gamma _\sigma + \frac {a}{r^2}\bigg )\bigg ), \end {split}




















































































































 

where the derivatives are defined as

\begin {split} \frac {\partial F_{r_i}}{\partial r} &= \frac {1}{\Delta r}(\mathfrak {I}^\sigma _{r_{i+\frac {1}{2}},\kappa ,t+\frac {1}{2}\Delta t} - \mathfrak {I}^\sigma _{r_{i-\frac {1}{2}},\kappa ,t+\frac {1}{2}\Delta t}) \\ \mathfrak {I}^\sigma _{r_{i+\frac {1}{2}},\kappa ,t+\frac {1}{2}\Delta t} &= \frac {1}{2}(\mathfrak {I}^\sigma _{r_{i+1},\kappa ,t}+\mathfrak {I}^\sigma _{r_{i},\kappa ,t}) \\ &\quad \quad \quad -\frac {\Delta t}{2\Delta r} \bigg (\bigg ( v + \frac {a}{r_{i+1}}\bigg )\mathfrak {I}^\sigma _{r_{i+1},\kappa ,t}-\bigg ( v + \frac {a}{r_i}\bigg )\mathfrak {I}^\sigma _{r_{i},\kappa ,t}\bigg ) \\ \mathfrak {I}^\sigma _{r_{i-\frac {1}{2}},\kappa ,t+\frac {1}{2}\Delta t} &= \frac {1}{2}(\mathfrak {I}^\sigma _{r_{i},\kappa ,t}+\mathfrak {I}^\sigma _{r_{i-1},\kappa ,t}) \\ &\quad \quad \quad -\frac {\Delta t}{2\Delta r} \bigg (\bigg ( v + \frac {a}{r_i}\bigg )\mathfrak {I}^\sigma _{r_{i},\kappa ,t}-\bigg ( v + \frac {a}{r_{i-1}}\bigg )\mathfrak {I}^\sigma _{r_{i-1},\kappa ,t}\bigg ) \end {split}\\ \begin {split} \frac {\partial F_{\kappa _i}}{\partial \kappa } &= \frac {1}{\Delta \kappa }(\mathfrak {I}^\sigma _{r,\kappa _{i+\frac {1}{2}},t+\frac {1}{2}\Delta t} - \mathfrak {I}^\sigma _{r,\kappa _{i-\frac {1}{2}},t+\frac {1}{2}\Delta t}) \\ \mathfrak {I}^\sigma _{r,\kappa _{i+\frac {1}{2}},t+\frac {1}{2}\Delta t} &= \frac {1}{2}(\mathfrak {I}^\sigma _{r,\kappa _{i+1},t}+\mathfrak {I}^\sigma _{r,\kappa _{i},t}) -\frac {\Delta t}{2\Delta \kappa }\bigg ( \frac {a}{r^2}\bigg ) (\mathfrak {I}^\sigma _{r,\kappa _{i+1},t}-\mathfrak {I}^\sigma _{r,\kappa _{i},t}) \\ \mathfrak {I}^\sigma _{r,\kappa _{i-\frac {1}{2}},t+\frac {1}{2}\Delta t} &= \frac {1}{2}(\mathfrak {I}^\sigma _{r,\kappa _{i},t}+\mathfrak {I}^\sigma _{r,\kappa _{i-1},t}) -\frac {\Delta t}{2\Delta \kappa }\bigg ( \frac {a}{r^2}\bigg ) (\mathfrak {I}^\sigma _{r,\kappa _{i},t}-\mathfrak {I}^\sigma _{r,\kappa _{i-1},t}) \end {split}





































































































































































































































































































































































































 

Again, the same stability conditions apply as in the non-conservative Lax– 

Wendroff scheme (equations (24) and (25)) [27]. 

2.2.3 Semi-Lagrangian Scheme 

As an effort to remove diffusion entirely, semi-Lagrangian methods are considered. 

Instead of observing spatial cells, as one does in an Eulerian method, Lagrangian 

methods observe the wave packets themselves. In a semi-Lagrangian scheme the 

base of the simulation is Eulerian, but the governing equations are Lagrangian. In 

our case, a specialized grid is constructed for the wave propagation. The r -grid 

is defined so that the size of the cell is exactly the distance a wave packet would 

travel in a single time step. This removes the need to calculate derivatives for the 

propagation, removing also the diffusion problem entirely. This model simulates 

wave evolution accurately, but has its own nuisances. The derivation of the grid 

defining equations is case specific, which can be cumbersome. 

Starting again from equation (13) we can derive a form for the scaled magnetic



 

19 

intensity evolution equation. This time we’ll denote the scaled spectral magnetic 

intensity as follows:

\mathbb {I}^\sigma &= \frac {V_{\sigma f}^2}{V_\sigma }r^2kI^\sigma .

















 

Multiplying equation (13) by Vσ f 

r2 k results in

 \frac {\partial }{\partial t}\bigg ( r^2 k\frac {V_{\sigma f}^2}{V_{\sigma }}I^\sigma \bigg ) + V_{\sigma f}\frac {\partial }{\partial r} \bigg ( r^2 k\frac {V_{\sigma f}^3}{V_{\sigma }}I^\sigma \bigg ) - k\frac {\partial }{\partial k} \bigg ( k \frac {\partial V_{\sigma f}}{\partial r}r^2\frac {V_{\sigma f}^2}{V_\sigma }I^\sigma \bigg ) &= \gamma _\sigma r^2k\frac {V_{\sigma f}^2}{V_\sigma }I^\sigma .













































































































 

Changing to the scaled magnetic intensity Iσ results in

\Rightarrow \frac {\partial }{\partial t}( \mathbb {I}^\sigma ) + V_{\sigma f}\frac {\partial }{\partial r} ( \mathbb {I}^\sigma ) - k\frac {\partial V_{\sigma f}}{\partial r}\frac {\partial }{\partial k} ( \mathbb {I}^\sigma ) &= \gamma _\sigma \mathbb {I}^\sigma . \label {eq:sl_evolution}








 






 












  

 

Next we change from k -space to ω -space. The decision of using ω instead of k 

becomes apparent when we write

 \omega &= V_{\sigma f} k,

 



 

where ω is the angular wave frequency, and observe one of the characteristic equa- 

tions from equation (37):

 -\bigg (\frac {\partial V_{\sigma _f}}{\partial r}\bigg )^{-1}\frac {{\rm d} k}{k} &= \frac {{\rm d}r}{V_{\sigma f}}\\ \Rightarrow \frac {{\rm d} k}{k} &= -\frac {1}{V_{\sigma f}} \frac {\partial V_{\sigma _f}}{\partial r}{\rm d}r = -\frac {{\rm d}V_{\sigma f}}{V_{\sigma f}},
















































 







 

and comparing this to

 {\rm d} \omega &= {\rm d} (V_{\sigma f} k) = {\rm d}V_{\sigma f} k + {\rm d} k V_{\sigma f} = V_{\sigma f} k \bigg ( \frac {{\rm d} k}{k}+ \frac {{\rm d} V_{\sigma f}}{V_{\sigma f}}\bigg ) = 0

 

 

 
























 

we see that ω is constant along characteristic lines, meaning that no wave transport 

occurs in the ω -direction. Considering the partial derivatives after the coordinate 

transform from ( r, k ) to ( r, ω )

 \frac {\partial }{\partial t} &\rightarrow \frac {\partial }{\partial t} \\ \frac {\partial }{\partial r} &\rightarrow \frac {\partial }{\partial r} + \frac {\partial \omega }{\partial r}\frac {\partial }{\partial \omega } = \frac {\partial }{\partial r} + k\frac {\partial V_{\sigma f}}{\partial r}\frac {\partial }{\partial \omega }\\ \frac {\partial }{\partial k} &\rightarrow \frac {\partial \omega }{\partial k}\frac {\partial }{\partial \omega } = V_{\sigma f} \frac {\partial }{\partial \omega }



































































































 

and using ω as the second coordinate in equation (37), we can write

 \frac {\partial \mathbb {I}_\omega ^\sigma }{\partial t} + V_{\sigma f}\frac {\partial \mathbb {I}_\omega ^\sigma }{\partial r} + V_{\sigma f}k\frac {\partial V_{\sigma f}}{\partial r}\frac {\partial \mathbb {I}_\omega ^\sigma }{\partial \omega } - k\frac {\partial V_{\sigma f}}{\partial r}V_{\sigma f} \frac {\partial \mathbb {I}_\omega ^\sigma }{\partial \omega } &= \gamma _\sigma \mathbb {I}_\omega ^\sigma , \\





























































 

which simplifies to

\frac {\partial \mathbb {I}_\omega ^\sigma }{\partial t} + V_{\sigma f} \frac {\partial \mathbb {I}_\omega ^\sigma }{\partial r} &= \gamma _\sigma \mathbb {I}_\omega ^\sigma . \label {eq:sl_evolution_w}

























 

In semi-Lagrangian formalism, we can propagate the solution from a grid point 

to the next by defining the distances between spatial points as the exact length a 

wave packet travels in a time step,

\Delta t &= \int _{r_i}^{r_{i+1}}\frac {{\rm d}r}{V_{\sigma f}}. \label {dtrgrid}















 

The distance from r0 

to r1 

is manually chosen as a parameter, the time step then 

computed, and the rest of the grid is then calculated from this value. 

The fixed frame and plasma-frame speeds, Vσ f 

and Vσ, are again chosen to be 

the same as in equations (7), (8), (9), and (10). 

Taking

 a &= 10\ R_{\odot }^2\mathrm {h^{-1}} \\ v &= 2.5\ R_{\odot }\mathrm {h^{-1}},

  




  


 

we can now solve the r -grid levels from equation (39):

 \Delta t &= \int _{r_i}^{r_{i+1}}\frac {{\rm d}r}{v+a/r} = \frac {r_{i+1}-r_i}{v}+\frac {a}{v^2}{\rm ln}\frac {a+vr_i}{a+vr_{i+1}}.











 




















 



 



 

Denoting ri +1 

= ri 

+ ∆ ri 

results in

 \Delta t &= \frac {\Delta r_i}{v}-\frac {a}{v^2}{\rm ln}\bigg (1+ \frac {v\Delta r_i}{a+vr_{i}}\bigg ),


























 











 

which can be solved iteratively as

\Delta r_i^{(n+1)} &= v \Delta t +\frac {a}{v}{\rm ln}\bigg (1+ \frac {v\Delta r_i^{(n)}}{a+vr_{i}}\bigg ),






 



















 





 

where we use the initial choice of r0 

and r1 

as

 \Delta r_i^{(0)} &= \Delta r_{i-1}.










 

Choosing r0 

= 5 R⊙ 

and r1 

= r0 

+ ∆ r0 

= r0 

+ R⊙ 

should make ∆ ri 

converge to a 

good value since ∆ ri 

< ri 

is fulfilled. Smaller values for ∆ r0 

can be chosen increasing 

the computation cost of the simulation. 

The analytical solution can be obtained again from the characteristic curves of 

equation (38):

 \frac {{\rm d}t}{1} &= \frac {{\rm d}r}{v+a/r} = \frac {{\rm d} \mathbb {I}_\omega ^\sigma }{\gamma _\sigma \mathbb {I}_\omega ^\sigma }.













 













 

Solving for the analytical time from the first and second characteristic curves:

 {\rm d}t &= \frac {r}{vr+a}{\rm d}r \\ \Rightarrow t &= t_0 + \frac {r-r_0}{v}-\frac {a}{v^2}{\rm ln}\frac {a+vr}{a+vr_0}.







 


  



 














 



 



 

The scaled spectral magnetic intensity is then solved from the first and last charac- 

teristic curves:

\frac {{\rm d}\mathbb {I}_\omega ^\sigma }{\gamma _\sigma \mathbb {I}_\omega ^\sigma } &= {\rm d} t \nonumber \\ \Rightarrow {\rm ln}\frac {\mathbb {I}_\omega ^\sigma (r,t)}{\mathbb {I}_\omega ^\sigma (r_0,t_0)}&= \gamma _\sigma (t-t_0)\nonumber \\ &= \gamma _\sigma \bigg ( \frac {r-r_0}{v}-\frac {a}{v^2}{\rm ln}\frac {a+vr}{a+vr_0}\bigg ) \nonumber \\ \Rightarrow \mathbb {I}_\omega ^\sigma (r,t) &= \mathbb {I}_{\omega , 0}^\sigma (t_0) {\rm exp}\bigg [\gamma _\sigma \bigg ( \frac {r-r_0}{v}-\frac {a}{v^2}{\rm ln}\frac {a+vr}{a+vr_0}\bigg )\bigg ],























  





 














 



 





  









 














 



 





 

where Iσ 

ω , 0( t0) is the boundary condition set for the system. 

As the equations have no dependency on the wave angular frequency, ω , we 

choose to use a logarithmic variable w = ln 

ω

 

ω0 

to reduce the computational load
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and to cover a wide range of angular frequencies. The boundaries of the simulation 

box are chosen as

 r &\in [5, 50]\ R_\odot \\ w &\in [0,10]

   

  

 

to have enough coverage of the system. The boundary condition is defined similar 

to the earlier cases, now only in w -space:

\mathbb {I}_\omega ^\sigma (5\ R_\odot , w, t)&= \mathcal {H}(t)e^{-qw},





    

 

where q = 2 / 3 due to the definition of the scaled spectral magnetic intensity. 

Next we derive the evolution equation (38) to a form used in the simulations, 

where the wave growth rate of the waves is implemented as a semi-implicit operator,

\mathbb {I}_\omega ^\sigma (r_i,w,t+\Delta t) &= \mathbb {I}_\omega ^\sigma (r_{i-1} ,w,t) \frac {1+\frac {1}{2}\gamma _\sigma \Delta t}{1 - \frac {1}{2} \gamma _\sigma \Delta t}.





     



 
























 

As is clear, the implemented equations are very simple, with no derivative calcu- 

lations as the grid definition already takes care of the correct propagation of the 

waves. 

2.2.4 Resolution Refiner 

In addition to the semi-Lagrangian simulation implementation, a tool to dynami- 

cally increase and decrease the simulation’s resolution was developed. As the waves 

propagate "cleanly" through the simulation, a time size can be determined for each 

cell describing how long the intensity spends in a cell. As a cell is split or merged the 

physical size and the temporal size of the cell are altered, so in physically smaller 

cells the wave moves to the next cell faster. The tool was developed so that each 

simulation grid r -column can be split into two as many times as needed by any kind 

of boolean clause, making the model quite flexible regarding conditions for resolution 

changes.
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Figure 2. A non-conservative upwind simulation at the state where the analytical 

solution has reached approximately the halfway of the simulation box. The plot on 

the left contains a slice parallel to the r -axis denoted by the red dashed line in the 

plot on the right. The streamlines of the analytical solution are plotted as the blue 

lines on the plot on the right. The scaled intensity I 

σ is denoted as a color gradient 

on the plot on the right. The simulation parameters used are ∆ r = 2 R⊙, ∆ κ = 0 . 1 , 

and γ = 0 . 

2.3 Results 

The figures of the simulation will contain the two-dimensional wave space with color 

indicating intensity (right) and a slice of the data in r -direction to analyze the profile 

and compare it to the theoretical solutions (left). The plots on the right will also 

have the analytical streamlines plotted for comparing the propagation of the wave 

front to the analytical case. 

2.3.1 Non-conservative Upwind Scheme 

A non-conservative upwind simulation can be seen in figures 2 and 3, where Fig. 2 

shows the point where the wave front has propagated half of the simulation box and 

Fig. 3 shows the end of the simulation where the wave spectrum is stable. 

Looking at Fig. 2 one can immediately detect a large amount of diffusion, which 

is an effect of the resolution and derivative calculation. Upwind schemes would 

require very fine resolutions to increase accuracy at the cost of computation time
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Figure 3. The steady state of the non-conservative upwind simulation presented in 

figure 2. The plot on the left contains a slice parallel to the r -axis denoted by the 

red dashed line in the plot on the right. The streamlines of the analytical solution 

are plotted as the blue lines on the plot on the right. The scaled intensity I 

σ is 

denoted as a color gradient on the plot on the right. The simulation parameters 

used are ∆ r = 2 R⊙, ∆ κ = 0 . 1 , and γ = 0 . 

or implementations of anti-diffusion operators . These operators were deemed useful 

and possible numerical implementations to explore, albeit their tendency to increase 

the computational load, but were ultimately out of the scope of this thesis. More 

on combating diffusion through numerical means and models can be read in e.g. 

[30–33]. 

As a steady state solver the upwind scheme works fine, as we can see in figure 3. 

The final values of the scaled intensity correspond with the analytical solution and 

as such can be used for steady state solutions. 

2.3.2 Conservative Upwind Scheme 

The results of the conservative upwind scheme can seen in figures 4–7 for the cases 

of γσ 

= 0 and γσ 

= 1 . For the γσ 

= 0 simulation, where the resolution is coarser, 

the diffusion is still about the same magnitude as in the non-conservative upwind 

scheme (figure 2), but now a small deviation from the analytical value can be de- 

tected. Increasing the resolution, as was done in the γσ 

= 1 case, significantly
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Figure 4. A conservative upwind simulation at the state where the analytical solution 

has reached approximately the halfway of the simulation box. The plot on the left 

contains a slice parallel to the r -axis denoted by the red dashed line in the plot on 

the right. The streamlines of the analytical solution are plotted as the blue lines on 

the plot on the right. The scaled intensity I 

σ is denoted as a color gradient on the 

plot on the right. The simulation parameters used are ∆ r = 1 R⊙, ∆ κ = 0 . 1 , and 

γ = 0 

reduces the diffusion. Comparing figures 5 and 7 we can see that the discrepancy 

grows in areas with more intense intensity growth, but is also reduced by finer res- 

olution. The conservative upwind scheme works as a steady state solver, but is 

computationally much heavier than its non-conservative counterpart. The conserva- 

tive upwind scheme alone then doesn’t bring anything more to the table compared 

to the non-conservative upwind scheme. 

2.3.3 Conservative Lax–Wendroff Scheme 

The results of the conservative Lax–Wendroff simulations can be seen in figures 8– 

11 for the cases of γσ 

= 0 and γσ 

= 1 . The conservative Lax–Wendroff scheme 

offers a bit smaller diffusion and a match to the analytical solutions in the steady 

state in both cases of γσ. The oscillation mentioned in the non-conservative Lax– 

Wendroff scheme is still present but, as discussed before, it can be reduced with 

a finer resolution. Refining the resolution also lessens the diffusion as can be seen 

when comparing figures 8 and 10. As a side effect the Lax–Wendroff has stability



 

26

 

Figure 5. The steady state of the conservative upwind simulation presented in 

figure 4. The plot on the left contains a slice parallel to the r -axis denoted by the 

red dashed line in the plot on the right. The streamlines of the analytical solution 

are plotted as the blue lines on the plot on the right. The scaled intensity I 

σ is 

denoted as a color gradient on the plot on the right. The simulation parameters 

used are ∆ r = 1 R⊙, ∆ κ = 0 . 1 , and γ = 0

 

Figure 6. A conservative upwind simulation at the state where the analytical solution 

has reached approximately the halfway of the simulation box. The plot on the left 

contains a slice parallel to the r -axis denoted by the red dashed line in the plot on 

the right. The streamlines of the analytical solution are plotted as the blue lines on 

the plot on the right. The scaled intensity I 

σ is denoted as a color gradient on the 

plot on the right. The simulation parameters used are ∆ r = 0 . 1 R⊙, ∆ κ = 0 . 1 , and 

γ = 1
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Figure 7. The steady state of the conservative upwind simulation presented in 

figure 6. The plot on the left contains a slice parallel to the r -axis denoted by the 

red dashed line in the plot on the right. The streamlines of the analytical solution 

are plotted as the blue lines on the plot on the right. The scaled intensity I 

σ is 

denoted as a color gradient on the plot on the right. The simulation parameters 

used are ∆ r = 0 . 1 R⊙, ∆ κ = 0 . 1 , and γ = 1 

issues at the low wave number boundary, causing negative values to arise due to the 

oscillating nature of the solution. Investigation of the boundary effects should be 

commenced to see if they could be removed, but were not done for this model. 

2.3.4 Semi-Lagrangian Scheme 

The results for the semi-Lagrangian scheme with γσ 

= 0 and γσ 

= 1 can be seen in 

figures 12–15. As we can see in figures 12 and 14 no diffusion is present in either case 

and the simulation matches the analytical solution very well. This is to be expected 

from a semi-Lagrangian scheme as the grid itself takes care of the propagation of 

the waves. Looking at the steady states 13 and 15 we can see that the simulation 

is perfectly good also for steady state solving and is not too dependent on a fine 

resolution of the r -axis as the simulation times were relatively low. The simulation 

grid can be solved from non-analytical settings, making the scheme in this regard 

good for wave transport solving, since it is not then limited by the setting of the 

problem, though one must be careful with accuracy and stability if solving non-
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Figure 8. A conservative Lax–Wendroff simulation at the state where the analytical 

solution has reached approximately the halfway of the simulation box. The plot on 

the left contains a slice parallel to the r -axis denoted by the red dashed line in the 

plot on the right. The streamlines of the analytical solution are plotted as the blue 

lines on the plot on the right. The scaled intensity I 

σ is denoted as a color gradient 

on the plot on the right. The simulation parameters used are ∆ r = 1 R⊙, ∆ κ = 0 . 1 , 

and γ = 0

 

Figure 9. The steady state of the conservative Lax–Wendroff simulation presented 

in figure 8. The plot on the left contains a slice parallel to the r -axis denoted by the 

red dashed line in the plot on the right. The streamlines of the analytical solution 

are plotted as the blue lines on the plot on the right. The scaled intensity I 

σ is 

denoted as a color gradient on the plot on the right. The simulation parameters 

used are ∆ r = 1 R⊙, ∆ κ = 0 . 1 , and γ = 0
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Figure 10. A conservative Lax–Wendroff simulation at the state where the analytical 

solution has reached approximately the halfway of the simulation box. The plot on 

the left contains a slice parallel to the r -axis denoted by the red dashed line in 

the plot on the right. The streamlines of the analytical solution are plotted as the 

blue lines on the plot on the right. The scaled intensity I 

σ is denoted as a color 

gradient on the plot on the right. The simulation parameters used are ∆ r = 0 . 1 R⊙, 

∆ κ = 0 . 1 , and γ = 1

 

Figure 11. The steady state of the conservative Lax–Wendroff simulation presented 

in figure 10. The plot on the left contains a slice parallel to the r -axis denoted by the 

red dashed line in the plot on the right. The streamlines of the analytical solution 

are plotted as the blue lines on the plot on the right. The scaled intensity I 

σ is 

denoted as a color gradient on the plot on the right. The simulation parameters 

used are ∆ r = 0 . 1 R⊙, ∆ κ = 0 . 1 , and γ = 1
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Figure 12. A semi-Lagrangian simulation at the state where the analytical solution 

has reached approximately the halfway of the simulation box. The plot on the left 

contains a slice parallel to the r -axis from the level w = 5 . The streamlines of the 

analytical solution are plotted as the blue lines on the plot on the right. The scaled 

intensity I 

σ is denoted as a color gradient on the plot on the right. The simulation 

parameters used are ∆ r0 

= 0 . 5 R⊙, ∆ ω = 0 . 1 , and γ = 0 

analytical simulation settings. 

2.3.5 Resolution Refiner 

The variable resolution allowed by the Resolution Refiner can be used when dealing 

with variable conditions in simulations with areas requiring extra precision, e.g. big 

gradients, and can be used to significantly cut the simulation time when needed and 

optimized well. 

The simulation results of a split and merge test are presented in figures 16, 17, 

and 18, where, in order to highlight the resolution changes, the scaled intensity do- 

main is more limited. The simulation starts as a normal semi-Lagrangian simulation 

(figure 16). For demonstration purposes the cells in a small area are first merged to 

from bigger cells (figure 17), which can be detected as a granulation in the plot on 

the right, and then split again back to the original sizes (figure 18). The simulation’s 

solution stays identical in a dynamic and steady state as the splitting and merging 

shouldn’t affect the results at all.
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Figure 13. The steady state of the semi-Lagrangian simulation presented in figure 

12. The plot on the left contains a slice parallel to the r -axis from the level w = 5 . 

The streamlines of the analytical solution are plotted as the blue lines on the plot 

on the right. The scaled intensity I 

σ is denoted as a color gradient on the plot on 

the right. The simulation parameters used are ∆ r0 

= 0 . 5 R⊙, ∆ ω = 0 . 1 , and γ = 0

 

Figure 14. A semi-Lagrangian simulation at the state where the analytical solution 

has reached approximately the halfway of the simulation box. The plot on the left 

contains a slice parallel to the r -axis from the level w = 5 . The streamlines of the 

analytical solution are plotted as the blue lines on the plot on the right. The scaled 

intensity I 

σ is denoted as a color gradient on the plot on the right. The simulation 

parameters used are ∆ r0 

= 0 . 5 R⊙, ∆ ω = 0 . 1 , and γ = 1
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Figure 15. The steady state of the semi-Lagrangian simulation presented in figure 

14. The plot on the left contains a slice parallel to the r -axis from the level w = 5 . 

The streamlines of the analytical solution are plotted as the blue lines on the plot 

on the right. The scaled intensity I 

σ is denoted as a color gradient on the plot on 

the right. The simulation parameters used are ∆ r0 

= 0 . 5 R⊙, ∆ ω = 0 . 1 , and γ = 1

 

Figure 16. A semi-Lagrangian simulation with resolution refinement implemented 

at the state right before cell merging. The plot on the left contains a slice parallel 

to the r -axis from the level w = 5 . The streamlines of the analytical solution are 

plotted as the blue lines on the plot on the right. The scaled intensity I 

σ is denoted 

as a color gradient on the plot on the right. The simulation parameters used are 

∆ r0 

= 0 . 5 R⊙, ∆ ω = 0 . 1 , and γ = 1
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Figure 17. A semi-Lagrangian simulation with resolution refinement implemented 

at a state after cell merging, right before cell splitting. Comparing the plot on the 

right to the plot in figure 16 some granulation can be detected as vertical lines. The 

plot on the left contains a slice parallel to the r -axis from the level w = 5 . The 

streamlines of the analytical solution are plotted as the blue lines on the plot on 

the right. The scaled intensity I 

σ is denoted as a color gradient on the plot on the 

right. The simulation parameters used are ∆ r0 

= 0 . 5 R⊙, ∆ ω = 0 . 1 , and γ = 1

 

Figure 18. A semi-Lagrangian simulation with resolution refinement implemented 

at a state after cell splitting. Comparing the plot on the right to the plot in figure 

17 the granulation has smoothed out, as expected. The plot on the left contains a 

slice parallel to the r -axis from the level w = 5 . The streamlines of the analytical 

solution are plotted as the blue lines on the plot on the right. The scaled intensity 

I 

σ is denoted as a color gradient on the plot on the right. The simulation parameters 

used are ∆ r0 

= 0 . 5 R⊙, ∆ ω = 0 . 1 , and γ = 1
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2.4 Discussion 

The semi-Lagrangian scheme is the most promising of the methods described to sim- 

ulate wave evolution in an interplanetary space environment. The non-conservative 

and conservative upwind schemes, and the conservative Lax–Wendroff scheme were 

also found to be successful in solving the steady state of the system, albeit their 

usual requirement of fine resolutions leading to higher computation times. The 

conservative Lax–Wendroff scheme can be considered as a great alternative to the 

semi-Lagrangian scheme if the simulation setting requires a time dependent veloc- 

ity field, as this would require additional implementations to the grid solver in the 

semi-Lagrangian scheme. 

The scaled spectral magnetic intensity Iσ that was presented in section 2.2.3 could 

be used in the non-conservative schemes to simplify the growth term. However, the 

scaling implemented in the non-conservative equations usefully demonstrates the 

non-conservative methods’ performance with an r -dependent growth factor. 

Discrepancies between exact and simulated results may be caused by numeri- 

cal inaccuracies leading to inaccurate wave growth evaluation and diffusion. These 

problems could be tackled with finer resolutions or wave transport and growth im- 

plementations that would conserve the wave energy of the system better. 

As we now have a working base to simulate WKB transport we could use it to 

simulate situations, where there is no analytical solution. While the development of 

such methodology was one of the main objectives of this thesis, the exploration of 

such cases is out of its scope. 

3 Three-wave Interactions in Coronal Loops 

Coronal loops are magnetic field structures on the surface of the Sun, where the 

magnetic field lines start and end in different locations on the surface. Coronal loops
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vary immensely in lengths ranging from tens to tens of thousands of kilometers, with 

bigger magnetic loops extending even further beyond. Both ends of the loop inject 

waves to the field line, which leads us to a situation where counter-propagating waves 

are present in the plasma. Thus, in addition to wave growth, wave-wave interactions 

need to be simulated. [7] 

3.1 Theoretical Background 

The model used in this thesis is based on three-wave interaction models described 

originally by Chin & Wentzel [34] and Wentzel [35] and used in Vainio & Spanier 

[36]. The three-wave interaction model consists of two Alfvén waves and a sound 

wave interacting. Low plasma β and high plasma β have different physics for this 

interaction, but in this thesis only the low plasma β physics is covered, where the 

sound speed is significantly smaller than the Alfvén speed. This applies in most of 

the corona and inner solar wind. 

In low β plasma it is possible for an Alfvén wave to decay to an Alfvén wave 

moving in the opposite direction and a sound wave moving in the same direction. 

The reaction can happen both ways, so a sound wave can interact with an oncom- 

ing Alfvén wave to generate a new Alfvén wave. These reactions require that the 

resonance conditions

\begin {split} \omega _A^{\pm } &= \omega _A^\mp + \omega _S^\pm \\ k_A^{\pm } &= k_A^\mp + k_S^\pm , \end {split}









































 

where A denotes Alfvén waves and S denotes sound waves, and ω 

± 

A 

= ± k 

± 

A 

vA 

and 

ω 

± 

S 

= ± k 

± 

S 

cS, are fulfilled. 

In addition to wave-wave interactions between Alfvén waves and sound waves, 

Alfvén waves propagating (nearly) perpendicular to the magnetic field in oppo- 

site directions can interact with each other, causing cascades of energy to higher 

wavenumbers. These resulting cascades can be thought of as Alfvén waves propa-
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gating through the wave number space while interacting with zero-frequency Alfvén 

waves; thus, the wave-number transport is in the direction perpendicular to the 

magnetic field. Alfvén-wave cascades were originally described by Iroshnikov [37] 

and Kraichnan [38] and later redescribed notably by Verma [39]. These interactions 

between Alfvén waves are usually replaced in modeling by ad hoc equations that in 

wave-wave interactions allow the waves to move in k -space, e.g. by diffusion [40]. 

Three-wave interactions of dispersive plasma waves have been studied in [41]. 

As particles propagate through the magnetized plasma, they are susceptible to 

interactions with waves, due to their gyro motion [5]. A wave-particle interaction 

between Alfvén waves and ions is considered to be a constituent in high coronal 

ion temperature and high solar wind speeds [15]. For the pitch angle scattering to 

be a relevant process of particle from the thermal pool, the wave power spectrum 

needs to be intense enough at the ion cyclotron frequency range [16]. Pitch angle 

scattering off lower frequency Alfvén waves is critical for diffusive shock acceleration , 

which is currently the preferred particle acceleration mechanism [36, 42–44]. 

The resonance condition of a particle and an Alfvén wave requires that the 

particle’s gyro frequency ωc 

and the waves frequency ω are equal in the particle’s 

guiding center frame of reference, which is the frame that moves along the magnetic 

field line with the longitudinal velocity of the particle v∥:

 \omega ' &= \omega _c'.



 







 

The Doppler shifted wave frequency ω 

′ can be denoted with the frequency measured 

in the laboratory frame ω as

 \omega ' &= \gamma _\parallel (\omega -v_\parallel k),



   



 

where

 \gamma _\parallel &= \frac {1}{\sqrt {1-v_\parallel ^2/c^2}}.













 













 

The Doppler shifted gyro frequency is defined as

 \omega _c' &= \gamma _\parallel \omega _c,













 

where ωc 

is the gyro frequency in the laboratory frame of reference. The resonance 

condition is then

\omega - kv_\parallel &= \omega _c,

 





 

and if the laboratory frame happens to be the plasma rest frame, the wave frequency 

ω can be defined as ω = vA 

k and

k &= -\frac {\omega _c}{v_\parallel -v_A}.

 











 

The resonance condition will be important in our simulation studies, as the upper 

limit of the frequency spectrum is defined by the dispersion relation’s limits. The 

dispersion relation ω = vA 

k∥ 

is valid only when ω < ωc. 

3.2 Numerical Methods 

To simulate the effects of the wave–wave interaction we aim to simplify the simula- 

tion setting so that other effects, such as geometry, do not affect the wave distribu- 

tion. The simplification of the geometrical factors can be seen in figure 19, where 

the curved field line is straightened out. In addition to this, we keep the Alfvén 

velocity constant along the field line. The employed model allows for more complex 

structures with easy implementation, but were not implemented due to the focus on 

wave–wave interactions. 

The simulation still has a problem with high wave energy densities, which are 

partially solved by the ramp implementation described later in the boundary con- 

dition description. Other ways to combat this instability at high energy densities 

involve the grid resolution being altered dynamically to combat the high gradients
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Figure 19. A depiction of the simplification of the closed field lines of the magnetic 

field of the Sun. The curved magnetic field line is straightened, so that geometrical 

factors can be ignored in the simulation. The size of the Sun and the loop are not 

to scale. 

and growth factors present in the high energy density simulation. These were not 

explored in this thesis, but are noteworthy and should be investigated in the future. 

The solutions presented here are explicit in time, which in itself could pose a 

problem for the stability of the simulation. Implicit methods, such as the Crank– 

Nicolson method, could help with simulating higher energy densities to really draw 

out the effects of wave–wave interactions. 

We use a semi-Lagrangian setup, but in this setup we are observing the mag- 

netic energy density, E , of the system. The wave–wave interactions of this system 

are described as Vainio and Spanier describe their system in [36] as what can be 

understood as a ladder scheme. Waves at each frequency level gain energy from 

oppositely propagating waves at a higher frequency level and lose energy to the 

oppositely propagating waves at a lower frequency level. This gives rise to the 

ladder-like structure that is depicted in [36], figure 1. 

Instead of looking at the intensity of the waves we choose to model the wave
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energy density relative to the background magnetic field energy density, since that 

allows for a very compact form of the governing equations. For describing energy 

density as a unitless quantity we further multiply it with the wavenumber as was 

done in [36]:

\mathfrak {E}^\pm &= k |\omega ^\pm | N_A^\pm / U_B,

 











 

where k is the wave number, | ω 

± | the wave frequency of the respective direction, N 

± 

A 

the wave action density of the respective direction, and UB 

the background magnetic 

field energy density. 

Including spatial transport along the magnetic field for the wave energy density 

as the basis for the calculations the evolution equations we want to solve read

\frac {\partial \mathfrak {E}^\pm (x,\omega _j,t)}{\partial t} \pm v_A \frac {\partial \mathfrak {E}^\pm (x,\omega _j,t)}{\partial x} &= \Gamma ^\pm (x,\omega _j,t) \mathfrak {E}^\pm (x,\omega _j,t), \label {eq:ml_evolution}



















 

 

 

 

where

 \Gamma ^\pm (x,\omega _j,t) &= \frac {\pi \omega _jv_A^3}{c_s(v_A^2-c_s^2)}[\mathfrak {E}^\mp (x,\omega _{j+1},t)-\mathfrak {E}^\mp (x,\omega _{j-1},t)].



 
















   



 

The growth rate is dependent only on the oppositely propagating wave intensity, so 

the waves in this setup grow only in wave-wave interactions. This evolution equation 

describes Alfvén waves at frequency level j +1 decaying into a counter-propagating 

Alfvén wave at frequency level j and to a sound wave propagating in the same 

direction as the initial Alfvén wave. It also assumes that the sound wave will be 

quickly damped by the thermal plasma, and therefore the wave frequency evolution 

occurs in one direction, i.e., from higher to lower frequencies, only. 

The resolution of the ω -axis is defined by

\omega _j &= \omega _{j-1}\frac {v_A+c_s}{v_A-c_s}, \\ \omega _0 &= 10\cdot \frac {2\pi v_A}{\Delta x}, \label {eq:omega0}



















 









 

where ∆ x is the length of the spatial cell, so that each spatial cell fits at least 10 

waves at the lowest frequency.
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The time resolution of the system is defined simply as

\Delta t &= \frac {\Delta x}{v_A}











 

due to our choice of a constant Alfvén velocity, leaving the semi-Lagrangian grid 

equispaced. 

The parameters chosen for the system are

 v_A &= 1932.5\ \mathrm {km/s} = 10\ R_\odot \mathrm {/h} \\ c_S &= 386.5\ \mathrm {km/s} = 2\ R_\odot \mathrm {/h} \\ x &\in [0,L],\quad L=10000\ \mathrm {km} \\ \omega &\in [\omega _0, 3\cdot 10^6\ \mathrm {1/s}],



    





    



      

 

   

 

where the values of the Alfvén velocity and sound speed are chosen as usual coronal 

parameters, L as the size of a small magnetic loop, the lower limit of ω as ω0 

defined 

earlier in equation (50), and the upper limit of ω as the proton cyclotron frequency 

corresponding to a magnetic field of about 0.03 T. 

If we assume that the magnetic field B of the loop depends inversely on the 

loop’s length L ,

 B \propto \frac {1}{L},











 

and then assume that the product B L is constant, we come to the conclusion that, 

although this is a relatively small magnetic loop, the simulation scales so that results 

for bigger loops would be qualitatively similar. 

The limiting of the angular frequency domain to the ion cyclotron frequency 

also considerably lessens the numerical instabilities in the simulation, as the high 

frequency end is unstable at high energy densities. The simulation still has a problem 

with high energy densities, as high energy densities result in huge values of the 

growth factor, leading to instabilities.
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The evolution equation (48) is then cast to the LOD-equivalent scheme used in 

the simulation:

\begin {split} &\mathfrak {E}^\pm (x_i, \omega _j, t+\Delta t) \\&= \mathfrak {E}^\pm (x_{i\mp 1}, \omega _j, t) \cdot {\rm exp} \bigg [ \frac {\Delta t \pi \omega _j v_A^3}{c_S (v_A^2-c_s^2)}[\mathfrak {E}^\mp (x_{i\pm 1}, \omega _{j+1}, t)-\mathfrak {E}^\mp (x_{i\pm 1}, \omega _{j-1}, t)]\bigg ]. \end {split} \label {eq:ml_simulation}





  





  




















  











 

The boundaries of the angular frequency domain are treated differently due to the 

missing cells beyond the borders. Here we have chosen to extrapolate the energy 

density values from the neighboring cell by choosing a constant spectral index δ for 

the border. For the lower limit the value is calculated as

\mathfrak {E}^\pm (x,\omega _0,t) = \mathfrak {E}^\pm (x,\omega _1,t) \bigg (\frac {\omega _0}{\omega _1}\bigg )^{\delta },\quad \delta = -1.5 \label {eq:lowerlimit}



   













   

 

and the upper limit as

\mathfrak {E}^\pm (x,\omega _N,t) = \mathfrak {E}^\pm (x,\omega _{N-1},t) \bigg (\frac {\omega _N}{\omega _{N-1}}\bigg )^{\delta },\quad \delta = -1. \label {eq:upperlimit}



   













   

 

This might cause unconventional behavior close to the borders, which should be 

taken into account when analyzing the spectra. 

3.3 Results 

3.3.1 Power-law Injection 

The original idea was to inject wave intensity as a power law as was done in [36], but 

was altered to combat the numerical instabilities due to enormous growth factors 

caused by huge gradients at the wave–wave interaction interface. This power law 

form is as follows:

 \mathfrak {E}^\pm (x_0,\omega _{j},t) &= B\bigg ( \frac {\omega _{j}}{\omega _0}\bigg )^{1-q},





  













 

where q = 5 / 3 and B is a normalization parameter. This was modified so that 

the intensity spectrum would be injected gradually, as a linear ramp in time, to 

decrease numerical instabilities in the simulation and let wave–wave interactions
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set in gradually in the simulation volume. The implementation of the linear ramp 

changes the injection formula to

\mathfrak {E}^\pm (x_0,\omega _{j},t) &= B\bigg ( \frac {\omega _{j}}{\omega _0}\bigg )^{1-q}\bigg [1 - \frac {t_{ramp}-t}{t_{ramp}}\mathcal {H}(t_{ramp}-t)\bigg ], \label {eq:PLramp}





  































 

where H is the Heaviside step function, and

t_{ramp} &= \frac {4L}{v_A},













 

where L is the simulation box size in the x -direction and the multiplier of 4 is to 

define the ramp length to be four times the crossing time of the simulation box. 

The results of the power law injection can be seen in figures 20, 21, and 22. At 

the halfway point in figure 20 we can see the state of the wave fronts right before 

bigger wave–wave interactions start happening. The subtle profile of the ramp can 

be distinguished in the color gradients on the right, as the intensity grows towards 

the injection edges. In figure 21 we can already see wave–wave interactions altering 

the high frequency spectrum at the far edges, where the spectrum has had time to be 

altered by the wave–wave interactions. The profile keeps evolving until the steady 

state in figure 22 where the energy of the high frequency waves has been eaten up 

by the interactions with the oncoming waves. 

To check for the simulation’s dependence on starting values, it was decided to 

simulate the exact same situation, but with a different size ramp. The ramp of the 

length tr amp 

= 0 . 5 L/vA 

was chosen to be the comparison case. The total simulation 

time is 45 seconds, which corresponds to about 8.7 L/vA 

(depicting how many 

simulation box lengths the waves propagate in this time). The shorter ramp steady 

state is presented in figure 23. No difference is seen in the steady state solutions, 

leading us to believe that the simulation really solves for the steady state of the 

system.
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Figure 20. A semi-Lagrangian simulation of a coronal loop using a power law in- 

jection profile at the state where the wave fronts have reached approximately the 

halfway of the simulation box. The plots on the top row contain the forward prop- 

agating waves and the plots on the bottom row contain the backward propagating 

waves. The plot on the left contains color coded slices parallel to the ω -axis denoted 

by the colored dashed lines in the plot on the right. The normalized wave-energy 

density E is denoted as a color gradient on the plot on the right. The simulation 

parameters used are ∆ x = 100 km and B = 1 · 10− 5.
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Figure 21. The semi-Lagrangian simulation of a coronal loop using a power law 

injection profile presented in figure 20 at the state where the wave fronts have reached 

the opposing end of the simulation box. The plots on the top row contain the 

forward propagating waves and the plots on the bottom row contain the backward 

propagating waves. The plot on the left contains color coded slices parallel to the 

ω -axis denoted by the colored dashed lines in the plot on the right. The normalized 

wave-energy density E is denoted as a color gradient on the plot on the right. The 

simulation parameters used are ∆ x = 100 km and B = 1 · 10− 5.
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Figure 22. The steady state of the semi-Lagrangian simulation of a coronal loop 

using a power law injection profile presented in figures 20 and 21. The plots on 

the top row contain the forward propagating waves and the plots on the bottom 

row contain the backward propagating waves. The plot on the left contains color 

coded slices parallel to the ω -axis denoted by the colored dashed lines in the plot 

on the right. The normalized wave-energy density E is denoted as a color gradient 

on the plot on the right. The simulation parameters used are ∆ x = 100 km and 

B = 1 · 10− 5.
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Figure 23. The steady state of a semi-Lagrangian simulation of a coronal loop using 

a power law injection profile with an injection ramp size of 0 . 5 L . The plots on 

the top row contain the forward propagating waves and the plots on the bottom 

row contain the backward propagating waves. The plot on the left contains color 

coded slices parallel to the ω -axis denoted by the colored dashed lines in the plot 

on the right. The normalized wave-energy density E is denoted as a color gradient 

on the plot on the right. The simulation parameters used are ∆ x = 100 km and 

B = 1 · 10− 5.
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3.3.2 Lorentzian Peak Injection 

The next profile under investigation was chosen to be a Lorentzian peak. The 

formulation of the peak with the injection ramp implemented as in equation (55) 

looks as follows:

\mathfrak {E}^\pm (x_0,\omega , t) &= A\frac {2\gamma }{(\omega -\Bar {\omega })^2-\gamma ^2}\bigg [1 - \frac {t_{ramp}-t}{t_{ramp}}\mathcal {H}(t_{ramp}-t)\bigg ],



   





   





















 

where A is a normalization parameter, γ is a chosen parameter, and ω ¯ is the peak 

location. In addition, we took ω ¯ = γ = 0 . 1 ωmax 

to fix the parameters of the 

simulation. 

The results of the simulation can be seen in figures 24–26. The ramp development 

can be seen from figure 24, as the energy density of the system is lower in firstly 

propagated parts. As the waves start interacting with each other instabilities start 

to develop which can be detected in figure 25. Using a longer ramp reduces this 

problem as the gradients are smaller within the wave–wave interactions. The wave 

spectrum already starts to develop a profile in the high frequency range. At the 

steady state seen in figure 26 no instabilities are detected anymore. We can see that 

the peak that was injected is subdued very quickly after the boundary to a profile 

without a peak. 

To check for the lost energy of the system we compared the 10 % line of figure 26 

to a wave spectrum without wave-wave interactions. The comparison is presented 

in figure 27. 

3.3.3 Lorentzian Peak Multiplied by the Angular Frequency 

In addition to the earlier Lorentzian peak a second formulation was tested with the 

simulation, where the peak is defined as

\mathfrak {E}^\pm (x_0,\omega , t) &= C\frac {2\gamma \omega }{(\omega -\Bar {\omega })^2-\gamma ^2}\bigg [1 - \frac {t_{ramp}-t}{t_{ramp}}\mathcal {H}(t_{ramp}-t)\bigg ],



   





   





























           

           

             

           

             

            

              

          









          

             

              

           

            

             

              

           









           

            

             

           

              

            

                











           

         

             

    

 

where C is a normalization parameter, with the only differences being the factor ω 

in the peak and ω ¯ = γ = 0 . 01 ωmax. 

The results can be seen in figures 28–31. The ramp can be again seen in figure 

28, where the firstly injected waves are at a lower energy density than waves injected 

at a later time. We can again see wave–wave interactions already shaping the profile 

of the spectrum in figure 29, where the wave fronts first touch the end of the box. 

After allowing the wave spectra to evolve for a while, we can see instabilities develop 

in figure 30. These instabilities are more intense with higher energy density starting 

values, but can be contained by using a longer ramp to reduce the size of the 

gradients in the system. In figure 31 we can see the steady state of the system. 

Analyzing the spectrum at different parts of the simulation we can estimate the 

spectral index δ = d ln E / d ln ω . The data is read from the forward propagation 

plot (top) of figure 31. Starting from the lower end of the angular frequency domain, 

we can see diverging of the energy densities at about 7 · 103 1/s. Evaluating the 

spectral indices between 7 · 103 1/s and 2 · 104 1/s results in 1.2 for the red line, 1.5
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Figure 28. A semi-Lagrangian simulation of a coronal loop using a Lorentzian mul- 

tiplied by ω injection profile at the state where the wave fronts have reached approx- 

imately the halfway of the simulation box. The plots on the top row contain the 

forward propagating waves and the plots on the bottom row contain the backward 

propagating waves. The plot on the left contains color coded slices parallel to the 

ω -axis denoted by the colored dashed lines in the plot on the right. The normalized 

wave-energy density E is denoted as a color gradient on the plot on the right. The 

simulation parameters used are ∆ x = 100 km and C = 1 · 10− 7.
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Figure 29. The semi-Lagrangian simulation of a coronal loop using a Lorentzian 

multiplied by ω injection profile presented in figure 28 at the state where the wave 

fronts have reached the opposing end of the simulation box. The plots on the top 

row contain the forward propagating waves and the plots on the bottom row contain 

the backward propagating waves. The plot on the left contains color coded slices 

parallel to the ω -axis denoted by the colored dashed lines in the plot on the right. 

The normalized wave-energy density E is denoted as a color gradient on the plot on 

the right. The simulation parameters used are ∆ x = 100 km and C = 1 · 10− 7.
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Figure 30. The semi-Lagrangian simulation of a coronal loop using a Lorentzian mul- 

tiplied by ω injection profile presented in figures 28 and 29 at a state where numerical 

instabilities are present. The plots on the top row contain the forward propagating 

waves and the plots on the bottom row contain the backward propagating waves. 

The plot on the left contains color coded slices parallel to the ω -axis denoted by the 

colored dashed lines in the plot on the right. The normalized wave-energy density E 

is denoted as a color gradient on the plot on the right. The simulation parameters 

used are ∆ x = 100 km and C = 1 · 10− 7.
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Figure 31. The steady state of the semi-Lagrangian simulation of a coronal loop 

using a Lorentzian multiplied by ω injection profile presented in figures 28, 29, and 

30. The plots on the top row contain the forward propagating waves and the plots 

on the bottom row contain the backward propagating waves. The plot on the left 

contains color coded slices parallel to the ω -axis denoted by the colored dashed lines 

in the plot on the right. The normalized wave-energy density E is denoted as a color 

gradient on the plot on the right. The simulation parameters used are ∆ x = 100 

km and C = 1 · 10− 7.
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for the blue line, and 1.9 for the magenta line. At this point we can also detect the 

shift in the peak location, from 1 · 105 1/s to 2 · 104 1/s. Evaluating the spectral 

indices after this point was conducted for the straight parts of the spectra, choosing 

as long of a section as possible. For the red line, δ was evaluated to be -1.1 from 

3 . 5 · 105 1/s to 3 · 106 1/s, for the blue line δ was evaluated to be -0.7 from 1 · 105 1/s 

to 5 · 105 1/s, and for the magenta line δ was evaluated to be -3.3 from 1 · 105 1/s to 

5 · 105 1/s. After their respective sections the blue and magenta line’s δ converges 

to the δ of the red line in this area. 

3.4 Discussion 

The coronal loop simulations presented show effects of wave–wave interactions quite 

effectively. Some interesting points can already be seen in the data, with figure 

23 hinting at implications towards particle transport and figure 31 showing definite 

spectral evolution of Alfvén waves. As such, the methods used seem to be sufficient 

for simulating wave transport and wave–wave interactions. 

There is clearly a a single dominant wave mode at edges of the simulation box 

(+ at x ≈ 0 and - at x ≈ L ). This means that close to the foot points of the coronal 

loop the bulk velocities of the particles that interact with the waves are pointing 

away from the surface of the Sun.Because the waves at the opposite sides of the loop 

are propagating towards each other, the gradient of the particles’ advection velocity 

leads to particle acceleration. 

The simulations have definite problems with the instabilities caused by large gra- 

dients of wave energy density in the system. These large gradients cause huge wave 

growth terms, leading to instabilities. These could be combated by finer resolutions 

or dynamic resolution changing discussed in section 2.3.5. 

Additional wave injection spectra should be investigated to see the different 

effects the three-wave interactions have on the wave energy spectra. As could already



 

57 

be seen in the results presented, the effects vary quite substantially depending on 

the injection spectra. Additionally, to drag the simulations closer to real physical 

situations, variable Alfvén velocities should be investigated to better simulate the 

environment of a coronal loop. 

4 Conclusions and Outlook 

A good set of simulation tools was developed to model wave transport and inter- 

actions. Upwind schemes work well as steady state solvers given their simplicity, 

but do not do so as dynamical solvers, due to the diffusion issue and computation 

time. Only the conservative Lax–Wendroff method bears the same positives as the 

upwind schemes, since the non-conservative scheme doesn’t come close to matching 

the analytical solutions of the spectral intensity. The semi-Lagrangian scheme is an 

accurate and computationally light simulation scheme, albeit being a bit less general 

in its implementation compared to the other methods described. 

Additionally, a tool to dynamically change the resolution of the simulation in 

areas needed was developed to really cut down on otherwise large simulation times. 

This tool can prove to be useful in many kinds of grid simulation settings, and should 

be taken into account when developing large simulations. 

The coronal loop simulations give insight into the spectra created by wave–wave 

interactions, and even hints of implications for particle transport. These simulations 

are not as stable in their current form as desired, but can be significantly improved 

with the resolution refiner developed and the ramp implementation used. 

The simulation methods and results of this thesis can be used to have more 

accurate representations of Alfvén wave spectra in other kinds of interplanetary 

constituent simulations, e.g. particle acceleration and shock wave simulations. The 

wave solvers created also work on other kinds of wave quanta entirely, with the 

implementation of the respective physical equations of the systems investigated.
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Appendix 

Non-conservative Lax-Wendroff Scheme 

Lax-Wendroff is a second order method, giving more accurate approximations of the 

local derivatives. The idea is to calculate the derivatives as local averages of the two 

neighboring cells, and comparing these to the current value of the cell. The setup for 

the non-conservative Lax-Wendroff scheme is the same as for the non-conservative 

upwind scheme, except for the calculations of the derivatives. [27] 

The Lax-Wendroff scheme’s evolution equation is derived again to the following 

form for the simulation:

\begin {split} \mathcal {I}^\sigma _{r,\kappa ,t+\Delta t} &= \bigg [ \mathcal {I}^\sigma _{r,\kappa ,t} - \Delta t\bigg ( v + \frac {a}{r}\bigg )\frac {\partial \mathcal {I}^\sigma _{r,\kappa ,t}}{\partial r} - \Delta t \frac {a}{r^2} \frac {\partial \mathcal {I}^\sigma _{r,k,t}}{\partial \kappa }\bigg ] {\rm exp} \bigg ( \Delta t \bigg (\gamma _\sigma -\frac {a}{r^2}\bigg )\bigg ), \end {split}





















































































 

where the derivatives are defined as

\begin {split} \frac {\partial \mathcal {I}^\sigma _{r_i,\kappa ,t}}{\partial r} &= \frac {1}{\Delta r}(\mathcal {I}^\sigma _{r_{i+\frac {1}{2}},\kappa ,t+\frac {1}{2}\Delta t} - \mathcal {I}^\sigma _{r_{i-\frac {1}{2}},\kappa ,t+\frac {1}{2}\Delta t}) \\ \mathcal {I}^\sigma _{r_{i+\frac {1}{2}},\kappa ,t+\frac {1}{2}\Delta t} &= \frac {1}{2}(\mathcal {I}^\sigma _{r_{i+1},\kappa ,t}+\mathcal {I}^\sigma _{r_{i},\kappa ,t}) -\frac {\Delta t}{2\Delta r}\bigg ( v + \frac {a}{r_i}\bigg ) (\mathcal {I}^\sigma _{r_{i+1},\kappa ,t}-\mathcal {I}^\sigma _{r_{i},\kappa ,t}) \\ \mathcal {I}^\sigma _{r_{i-\frac {1}{2}},\kappa ,t+\frac {1}{2}\Delta t} &= \frac {1}{2}(\mathcal {I}^\sigma _{r_{i},\kappa ,t}+\mathcal {I}^\sigma _{r_{i-1},\kappa ,t}) -\frac {\Delta t}{2\Delta r}\bigg ( v + \frac {a}{r_i}\bigg ) (\mathcal {I}^\sigma _{r_{i},\kappa ,t}-\mathcal {I}^\sigma _{r_{i-1},\kappa ,t}) \end {split}\\ \begin {split} \frac {\partial \mathcal {I}^\sigma _{r,\kappa _i,t}}{\partial \kappa } &= \frac {1}{\Delta \kappa }(\mathcal {I}^\sigma _{r,\kappa _{i+\frac {1}{2}},t+\frac {1}{2}\Delta t} - \mathcal {I}^\sigma _{r,\kappa _{i-\frac {1}{2}},t+\frac {1}{2}\Delta t}) \\ \mathcal {I}^\sigma _{r,\kappa _{i+\frac {1}{2}},t+\frac {1}{2}\Delta t} &= \frac {1}{2}(\mathcal {I}^\sigma _{r,\kappa _{i+1},t}+\mathcal {I}^\sigma _{r,\kappa _{i},t}) -\frac {\Delta t}{2\Delta \kappa }\bigg ( \frac {a}{r^2}\bigg ) (\mathcal {I}^\sigma _{r,\kappa _{i+1},t}-\mathcal {I}^\sigma _{r,\kappa _{i},t}) \\ \mathcal {I}^\sigma _{r,\kappa _{i-\frac {1}{2}},t+\frac {1}{2}\Delta t} &= \frac {1}{2}(\mathcal {I}^\sigma _{r,\kappa _{i},t}+\mathcal {I}^\sigma _{r,\kappa _{i-1},t}) -\frac {\Delta t}{2\Delta \kappa }\bigg ( \frac {a}{r^2}\bigg ) (\mathcal {I}^\sigma _{r,\kappa _{i},t}-\mathcal {I}^\sigma _{r,\kappa _{i-1},t}). \end {split}

































































































































































































































































































































































































































 

The same stability conditions apply for the Lax–Wendroff schemes as presented 

in section 2.2.1 (equations (25) and (24)) [27]. 

The results of the non-conservative Lax–Wendroff scheme can be seen in figures 

32 and 33. The Lax–Wendroff method causes a sine-wave oscillation in the wave 

front, which can be decreased by improving the resolution of the r -axis (as can be 

seen if we compare this simulation with ∆ r of 1 R⊙ 

to figure 10 with a ∆ r of 0.1 

R⊙). The oscillations dampen out during the simulation as can be seen in figure 33. 

This scheme in particular has a problem with achieving the analytical solution, so it 

is not capable of simulating steady-state or dynamic solutions as such, though, no 

investigation was conducted on the resolution’s effect on the accuracy of the simu- 

lation. 

LOD Upwind Scheme 

Another way of implementing the evolution equation for the upwind scheme is to use 

a Locally One-Dimensional (LOD) finite-difference scheme as was done by Ng et al.
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Figure 32. A non-conservative Lax–Wendroff simulation at the state where the 

analytical solution has reached approximately the halfway of the simulation box. 

The plot on the left contains a slice parallel to the r -axis denoted by the red dashed 

line in the plot on the right. The streamlines of the analytical solution are plotted as 

the blue lines on the plot on the right. The scaled intensity I 

σ is denoted as a color 

gradient on the plot on the right. The simulation parameters used are ∆ r = 0 . 5 R⊙, 

∆ κ = 0 . 1 , and γ = 0

 

Figure 33. The steady state of the non-conservative Lax–Wendroff simulation pre- 

sented in figure 32. The plot on the left contains a slice parallel to the r -axis denoted 

by the red dashed line in the plot on the right. The streamlines of the analytical 

solution are plotted as the blue lines on the plot on the right. The scaled intensity 

I 

σ is denoted as a color gradient on the plot on the right. The simulation parameters 

used are ∆ r = 0 . 5 R⊙, ∆ κ = 0 . 1 , and γ = 0
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Figure 34. A non-conservative upwind simulation using the LOD implementation 

at the state where the analytical solution has reached approximately the halfway 

of the simulation box. The plot on the left contains a slice parallel to the r -axis 

denoted by the red dashed line in the plot on the right. The streamlines of the 

analytical solution are plotted as the blue lines on the plot on the right. The scaled 

intensity I 

σ is denoted as a color gradient on the plot on the right. The simulation 

parameters used are ∆ r = 0 . 1 R⊙, ∆ κ = 0 . 1 , and γ = 0 . 

[14]. The point of the LOD scheme is to break the calculation in to several simpler 

calculations to ease the calculation of the evolution of the waves. The wave growth 

is calculated implicitly and wave transport is calculated explicitly. The operations 

in a single time step begin from calculating the wave growth locally, followed then 

by the derivatives in r - and κ -directions. The equations look as follows:

\begin {split} \mathcal {I}^\sigma _{r,\kappa , t + \frac {1}{3}\Delta t} &= \mathcal {I}^\sigma _{r,\kappa , t}\frac {1 + \frac {1}{2}\Delta t \gamma _\sigma }{1 - \frac {1}{2}\Delta t \gamma _\sigma } \\ \mathcal {I}^\sigma _{r,\kappa , t + \frac {2}{3}\Delta t} &= \mathcal {I}^\sigma _{r,\kappa , t + \frac {1}{3}\Delta t} - \frac {\Delta t}{\Delta r} \frac {\partial \mathcal {I}^\sigma _{r,\kappa , t + \frac {1}{3}\Delta t}}{\partial r} \\ \mathcal {I}^\sigma _{r,\kappa , t + \Delta t} &= \mathcal {I}^\sigma _{r,\kappa , t + \frac {2}{3}\Delta t} - \frac {\Delta t}{\Delta \kappa } \frac {\partial \mathcal {I}^\sigma _{r,\kappa , t + \frac {2}{3}\Delta t}}{\partial \kappa }. \end {split} \label {eq:LOD}































































































































 

where the derivatives are defined as equations (22) and (23). 

The results of the LOD scheme are presented in figures 34 and 35. Looking at 

figure 34 we can see that the diffusion is more significant compared to the explicit 

upwind scheme (figure 2). LOD schemes are often paired with anti-diffusion op- 

erators to control the diffusion of the scheme. Without these operators the LOD 

scheme is highly inaccurate in a dynamic simulation. A slight deviation can also be 

detected from the analytical value in figure 35, which could be decreased by using 

a finer resolution, but also making the explicit upwind scheme better as a steady 

state solver due to the computation load.
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Figure 35. The steady state of the non-conservative upwind simulation presented in 

figure 34. The plot on the left contains a slice parallel to the r -axis denoted by the 

red dashed line in the plot on the right. The streamlines of the analytical solution 

are plotted as the blue lines on the plot on the right. The scaled intensity I 

σ is 

denoted as a color gradient on the plot on the right. The simulation parameters 

used are ∆ r = 2 R⊙, ∆ κ = 0 . 1 , and γ = 0


	Introduction
	Alfvén Wave Propagation in the Solar Wind
	Theoretical Background
	Numerical Methods
	Non-conservative Flux Equations
	Conservative Flux Equations
	Conservative Upwind Scheme
	Conservative Lax-Wendroff Scheme

	Semi-Lagrangian Scheme
	Resolution Refiner

	Results
	Non-conservative Upwind Scheme
	Conservative Upwind Scheme
	Conservative Lax–Wendroff Scheme
	Semi-Lagrangian Scheme
	Resolution Refiner

	Discussion

	Three-wave Interactions in Coronal Loops
	Theoretical Background
	Numerical Methods
	Results
	Power-law Injection
	Lorentzian Peak Injection
	Lorentzian Peak Multiplied by the Angular Frequency

	Discussion

	Conclusions and Outlook
	References
	Appendix

