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Kvantti-informaatioteoriaa kiytetéifin kuvaamaan informaatiota kvanttimekaanisissa
gysteemeissi ja sen laskentaan keskittyvii osaa sanotaan kvanttilaskennaksi. Kvant-
tilaskennassa ongelmanratkaisu mallinnetaan piirilld, jolla kuvataan koko lasken-
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Téssd tyossd verrataan IBM:n kvanttitietokoneilla tehtyjen piirien mittauksia
ideaalisten tietokonesimulaatioiden tuloksiin. Ensimméisessé kokeessa niytetéin,
kuinka kvanttiteleportaatio tapahtuu ja kuinka hyvin se onnistuu IBM:n kvanttiti-
etokoneella virheettoméin simulaatioon verrattuna. Seuraavissa kokeissa kisitelldin
gsamaan malliin Deutsch-Jozsa-, Bernstein—Vazirani- ja Simonin algoritmeji seki
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kiyttdvin usean perdkkiisen sumean mittauksen vailkutusta bindérisen mittauksen
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(Quantum computation iz a part of quantum information theory. By using quantum
mechanical phenomena it is poszible to speed up the =solving of some problems with
quantum algorithms over claszical probabilistic algorithms. In some cases quantum
algorithms can utilise quantum parallelism in order to speed up problem solving.

In this thesis experiments on IBM quantum computers are compared with ideal
error free simulations. In the first part quantum teleportation is shown in practice,
gimilarly the performance of Deutsch—Jozsa, Bernstein—Vazirani, Simon's and
Grover’s search algorithms are shown in action on IBM quantum computers and
each is compared against an ideal simulation. The last experiment shows how the
binary success probability of an unsharp measurement using Liiders instrument can
be improved by adding sequential measurements by using an ideal simulation and
a simulation using simple noize model.

Keywords: quantum information theory, quantum computation, quantum telepor-
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Preface

As the invention of transistor and the progress of computation theory hawve lead to
the modern age of computing, the recent advances on creating and maintaining phys-
ical quantum systems have shown that it is possible to utilise quantum phenomena
guch as superposition and entanglement in computation. (Quantum computation is
a part of quantum information theory which focuses in manipulating and processing
information and has its roots in the early 1980s. Quantum information theory differs
from the classical information theory by integrating quantum mechanics in its core.

Quantum bits or qubits, the elementary bits of information in quantum informa-
tion theory, can be entangled with other qubits, or they can exist in a superposition.
In this thesis there are a number of experiments that utilise entanglement, super-
position and quantum parallelism in order to perform computations faster than it
would be possible with traditional computers.

The IBM has quantum systems to which it provides open access. The IBM quan-
tum computers have from 1 to 15 qubits with different layouts connecting the qubits
to each other. Quantum states are fragile and their manipulation is technically chal-
lenging, as a result quantum computers are prone to errors. Each algorithm used
in this thesizs was designed to be scalable and each experiment was performed as
large as feasible within the limitations of the quantum systems available. The most
gignificant constraints can be identified as the physical layout of the gqubits in a
given system and the error rate that grows with the number of operations carried
out in a quantum circuit performing the algorithm in question. Other limitations
guch as the decoherence of quantum states in physical qubits have limited effect in
comparison when using simple circuits.

In this thesis, in most experiments the results from a real quantum computer
are compared with the results from an ideal simulation using the largest number

of qubits in a circuit while maintaining an acceptable error rate that confirms the



functionality of the algorithm in question. Out of the two different experiments
that do not test common quantum algorithms, one shows an example of a quantum
phenomenon and the other is a practical simulation that compares measurement
using an error free simulation and a simulation using a simple noise model.

The experiments begin with quantum teleportation, a technique that is used to
transfer the state of one qubit onto another. In this technique an entangled qubit
pair is used to perform nearly instantaneous transmission of information once over
distance in one direction.

The next experiments benchmark the performance of quantum algorithms. The
first algorithm, the Deutsch—Jozsa algorithm, is one of the earliest developed to
gshow how quantum parallelism speeds up finding the solution to a specific problem.
The Deutsch-Jozsa algorithm is a generalisation of the Deutsch algorithm. The
algorithm finds a solution for a guessing game between two recipients, Alice and Bob,
in which Alice tries to find if the function Bob has is either balanced or constant.
The quantum algorithm allows Alice to query all possible inputs in a single query,
not one input at a time like the classical algorithm would have to.

The Bernstein—Vazirani algorithm on the other hand has an unknown function
that has two possible outputs that is used to find out a hidden bitstring b. As
with Deutsch—Jozsa problem, the quantum parallelism allows to test all the possible
inputs to the function with one query.

Simon’s algorithm uses quantum parallelism to try multiple inputs with one
query to see if an unknown function is one-to-one or two-to-one mapping. If it is
two-to-one mapping it solves the unknown bitstring b that represents the mapping.

The preceding algorithms are artificial in a sense that they have been developed
as examples to show the power of quantum computing. The Grover’'s search algo-
rithm, however, takes on solving a practical problem in computing. Grover’s search

algorithm shows that searching specific items from an unstructured dataset is a



faster process when using qubits instead of classical bits and a classical probabilistic
gearch algorithm testing one query at a time.

The last experiment was limited to simulations due to the physical limitations
of the open access IBM quantum systems. No available computer has the required
layout that would have natively supported the desired circuit. The initial testing
with the largest available computer resulted in too many operations in order to
overcome the physical limitations of its layout. As quantum systems are prone to
errors in every operation performed on qubits the results were unusable. The last
part is a study with simulations in which it is shown that the probability of attaining
a correct measurement of a binary observable is increased with sequential unsharp
measurements on a qubit, when using an observable whose state transformations

are of a Liiders type.



1 Quantum information theory

Classical information theory is a well-established theory that forms the basis for
other theories, and it is a fundamental part of computer sciences, where bits are
stored, transferred and manipulated according to well-defined rules and logic. How-
ever, it was found out that classical information theory fails to describe the un-
expected behaviour of quantum systems, as a bit iz not enough to fully describe a
quantum state and there are limitations on how the information can be manipulated.
In his 1995 paper, Benjamin Schumacher [1] coined the term quantum bit, or gubit,
for the smallest measure of information within the developing quantum information
theory. Quantum systems behave in a manner described by quantum mechanics,
the most experimentally successful theory for describing the natural world. In the
heart of quantum information theory lies fundamental restrictions such as the no-
teleportation theorem, no-cloning theorem, no-deleting theorem and no-broadcast
theorem. None of these theorems exist in the classical information theory and have
led to further incompatibility between the two theories. However, quantum informa-
tion theory does provide tools and tricks that allow solving some classically difficult
tasks more efficiently and provides advantages in other aspects, for example breaking
classical encryption can be an easy task for a quantum computer yet quantum in-
formation theory allows to create unbreakable encryption for classical and quantum
COMPUters.

The fundamental difference between a classical bit and a quantum bit is that a
qubit can exist in a superposition of ‘on’ and ‘off’ states. Quantum states are hard to
gustain and difficult to manipulate. The quantum systems and the delicate quantum
states are prone to noise from environment that leads to constant coherence loss of
states over time, a phenomenon known as decoherence. Outside ideal quantum
simulations there are no perfectly izsolated systems, therefore all quantum systems

are open. Even if there are no ideal physical systems they can still be mathematically



treated as such. As will be seen in Chapter 2, for an experiment with a quantum
algorithm the differences between the result of the calculation and the result of an
experiment on a real quantum computer diverge enough for the difference to be
shown easily, but the plausibility of the quantum algorithm in question remains
undiminished.

Two or more qubits can also exist in an intertwined state, phenomenon what
Einstein famously called spooky action at a distance, the intertwined qubits are
said to be entangled Finally, the measurement of a quantum system consisting of
qubits breaks all superposition and entanglement of qubits and forces them in one
definite state, converting the system to a form that can be represented with classical

bits.

1.1 Quantum mechanics

In this section the basice of quantum mechanics, related to finite discrete quantum
computation, are covered. Proofs of results are omitted here and can be found in

the literature [2-4)].

1.1.1 Hilbert space

A qubit is a quantum mechanical object, meaning it can be described mathematically
as an element in a complete (two-dimensional) inner product space known as a
Hilbert space H. Specifically, a Hilbert space is a complex vector space with an
inner product, denoted by {(-|-) in so-called Dirac notation. The inner product is a

mapping H x H — C that fulfils the following conditions

(i) {play + Be) = a{pl) + B (plé),

(i)  {plv) = (¥lp),

(iti)  {elp) =20, VepeH,



(iv)  {plp) =0 < |p) =0,

where o, € C and i, ¢,7 € H. Any space with an inner product satisfying
conditions (i-iv) is referred to as an inner product space. Moreover, a Hilbert space
iz a complete inner product space, where completeness ensures that techniques from
calculus can be used.

Also every inner product space H is a normed space and for every ¢ € H its

norm is a real-valued function

]| = v/ {le)-

A common definition from linear algebra, arising as a consequence of the inner

product, is that two vectors @, 1 € ‘H are orthogonal if their inner product satisfies

(¥} = 0.

Orthogonal vectors may be denoted by ¢ Lli). A pair of orthogonal vectors 11 Li/n
are orthonormal if they are norm-one, ||i4]| = +/(¥;|1;) = 1. It is known that there
exists sets of orthonormal vectors for which linear combinations of their elements

span the whole of ‘H, and such sets are maximal sets. These sets lead to the concept

of a {orthonormal) basis:

Definition 1. A basis is a mazimal (non-extendible) set {e;} of mutually orthonor-
mal vectors in ‘H such that any vector 1 € H can be expressed as a linear combination
of its elements: )

Y= Z ie;.
The order d of the basis, i.e. the Iurg;.:tl possible number of mutually orthogonal
vectors in ‘H, is the dimension of H. If d mutually orthogonal vectors can be found

for any d € N, then the Hilbert state is infinite-dimensional, otherwise it is finite.

A finite-dimensional Hilbert space is called separable since it has a countable

orthonormal basis. Infinite-dimensional Hilbert spaces will not be used here and =so



all further Hilbert spaces are finite. There are multiple elementary and important
results for inner product spaces such as the Cauchy-Schwarz inequality, triangle
inequality, Pythagorean formula, Bessel's inequality and the parallelogram law, all
of which are covered in the literature [3, 4].

The interactions between quantum systems are described with the use of a tensor
product. The tensor product creates a new Hilbert space out of two or more Hilbert
spaces. For two finite-dimensional Hilbert spaces ‘H and K a new product space
can be defined, referred to as the tensor product of H and X that iz denoted by
H @K, as follows: consider the bases {1;}; and {¢;}; for H and K, respectively. Let
B = {1i ® ; };; denote the set of all pairs of basis vectors for H and X, where @ is
assumed to be bilinear!, and let H @ K = {Zm Giti @i | vi®@p; €Bycij € [C}
by linear extension. In addition, an inner product can be defined on H @ K via
(E@nvee) = (¢ ¥){n| ¢) for any £, € H and 1, € K making H @ K an
inner product space with a basis B (as its elements are orthonormal). Since B is also

finite, with dim(#) dim(K) elements, H ® K is also finite Hilbert space.

1.1.2 Operators

Operations on quantum states are achieved with linear transformations, operators,
where a bounded linear operator is a linear mapping T : ‘H +— H, such that there is
a constant ¢ € [0, 00) satisfying ||Tw|| = ¢||y|| for all ¢ € H. The collection of all
bounded linear operators forms a normed vector space £(H), with the norm || - ||
given by
1Tl = sup |[T¥]].
|[T||=1

A bounded linear operator transforms a quantum state in one direction, the opposite
transformation is called its adjoint, every finite dimensional T' € £(?) operator has
an adjoint.

1® is bilinear if, Vi), 1,92 € H, @, pr,2 €K and c€C, (Y1 + 1) @ (P2 +2) =1 @1 +
Y1 @2 +Y2@p1+Ya @2 and c( @ ¢) = (cf) ® p = ® (op).




Definition 2. For bounded linear operator T € L(H)3 T*€ L(H*) such that

(T*Tp) = (T|Ty),

where T* is called an adjoint of T.

The adjoint has the following properties for S,T € £L(H) and a € C

(i)
(i)
(i)
(i)
(v)
()

T+ =T,

(S+T)*=5*+T+,

(@T)* =aT*,
(ST)* = T*S*,
| = 1|7l
T = |T||?

There are special cases of bounded linear operators such as normal operators,

self-adjoint operators, unitary operators, and positive operators.

Definition 3. A collection of definitions for bounded linear operators.

(i)

(i)

(iii)

(i)

A bounded linear operator T € L(H) is a normal operator if it satisfies
T*T =TT*.

A bounded linear operator T € L(H) is self-adjoint if T* = T, the set of

bounded self-adjoint operators on H is denoted as L.(H)

A bounded linear operator U € L(H) is unitary when U*U = UU* = I,
where I is the identity map of H. The set of unitary operators on H is
denoted by U(H).

A bounded operator T € L(H) is positive if (Y|TY) = 0 for every ¥ € H.

A positive operator is denoted by T = 0.



(v) A vector € H is an eigenvector of a bounded operator T if there erists a
number A € C such that T = A, where A is referred to as the eigenvalue

associated with 1.

In the case of finite-dimensional Hilbert spaces the eigenvalues of 7" are found
by solving the characterised equation det(T — AI) = 0, and every finite-dimensional
operator has a complete set of eigenvalues. The solutions to det(T'—AI') = 0 form the
gpectrum of T', which in the finite-dimensional case coincide with the eigenvalues of
T'. If each eigenvalue of T' has a single corresponding eigenvector, then its spectrum
is said to be nondegenarate, otherwise it is degenerate [3, p. 16].

The notion of positivity induces a partial ordering on £,(H), whereby T > S if
and only if T — S > 0 for any T,S € £,(H). The product of every T € £L(H) with

its adjoint T™* is positive, as for any 1 € H

(WIT*Ty) = (TY|Ty) = ||TY|* > 0. (1)

It is also true that any positive operator can be given in the form 5 = T*T. This is

a result of the square root lemma.

Lemma 1. (Square root lemma)
Let T € L£,(H) be a positive operator. There is a unique positive operator S € L,(H)
satisfying (S)2 = T. The operator S is called the square root of T, or § = T2 =

VT. The square root operator has the following properties.
(i) If M e L(H) and MT =TM, then MT*? = T2 M.
(i)  if T is invertible then TY? is also invertible and (TV/?)~1 = (T-1)¥/2,
In addition, the absolute value of an operator is defined as follows.
Definition 4. Let T € L(H), its absolute value is |T| := (T*T)Y2.

A self-adjoint operator P can be further classified as a projection if P? = P,

from this it is clear that projections are positive operators (see Eq. (1)). The set
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of projections is denoted by P(H), and they are used to represent pure states in
quantum mechanics.
A projection O # P # I has norm ||P|| = 1, its eigenvalues are 1 and 0 and for

every vector 1 € ‘H there are orthogonal vectors 1; € H such that for some fixed i
Py =1, then Py; =0,

where i # j and ¥ = 1,J'Ji+zj1,bj.
Along with the complement of a projection PL := (I — P), the set of projections
P(H) forms an orthocomplemented lattice, but P(H) is not a vector space [3, p. 23].

As a subset of self-adjoint operators, projections inherit the partial order structure.

Proposition 1. For projections P,Q € P(H) P — Q is a projection if and only if
P>qQ.

A similar results to Proposition 1 can be found if the projection () is replaced
with a positive operator T' € £(H), namely if T < P then TP = PT =T [3, p. 25].
In addition to the subtraction of projections, their sum i= also a projection if the

following condition is fulfilled:

Proposition 2. For projections P,Q € P(H) P+ Q is a projection if and only if
they are orthogonal, i.e. PQ) = QP = 0.

A projection F; is one dimensional if it is of the form
B¥ = (),

where 17 € H is a unit vector. In Dirac notation it is common to use the form F, =
|7} {n]. Multi-dimensional projections can be written as a finite sum of orthogonal
one-dimensional projections (3, p. 33].

The group of unitary operators, (iii) in Definition 3, represent quantum logical
gates in quantum computing. A unitary operator is also a mapping from one or-

thonormal basis to another [3, p. 27]. To see this, consider a basis B = {i;}¢, for
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a d-dimensional H and so {;|p;) = 6;;. Let B' = {1y = Uyp;|p; € B} and notice
that for any pair of vectors ¥s,¥; € B, (Yilily) = (UpilUip;) = (@l (U*V)g;) =
{wilw;) = d;;. In other words, the orthogonality of the basis is preserved under the
action of I/ and so B’ is itself a new orthonormal set of vectors in ‘H with the same
gize as B, i.e. B’ is a new basis for H.

From the definition of unitary operators a number of cbservations can be made:
Firstly, the identity operator is itself a unitary operator as I* = I and I° = T,
Secondly, U* = U~! and so the inverse operator /! of U is also unitary; Thirdly,

for a pair of unitary operators, and from (iv) of Definition 2,

(UVI(UV =UVV*U* =T =V*UUV = (UV)*UV,
and so any pair of unitary operators is also unitary. These three properties show
that L{(H) has a group structure under the operation of operator multiplication.

A connection between unitary and self-adjoint operators can be made by noting

that for any T € £,(H), eT is unitary, where the exponential map is given by
G

el = Z - (2)

n=0
The trace of an operator T € L(H) is given by
d

alT] =3 (T,

i=1
for any orthonormal basis {i;}2 ; of H. The trace of an operator is the sum of its

eigenvalues, counting multiplicity [3, p. 30].
Normal operators ((i) in Definition 3) can be deconstructed with a spectral de-
composition into a sequence of its eigenvalues and an orthonormal basis according

to the following lemma.

Lemma 2. (Spectral decomposition) For a normal operator T with an eigenbasis

{w;} and corresponding eigenvalues {\;} it can be rewritten as

T=Z)ﬁ|‘f3‘i} (il -
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1.1.3 States and effects

A state in quantum mechanics is a description of an ensemble of similarly prepared
systems [3, p. 48], when measured it produces an effect on the measuring apparatus.
An effect is a property of the measurement device, and depending on the properties
of the device the outcome might be simply ‘yes’ or ‘no’. With the knowledge of the
state of the system and the measurement effects, the probability distribution for an
experiment can be known.

All quantum states p belong to a state space S(H) which is defined as

S(H) ={p € L[H)| p 2 0,tr[p] = 1}.

Pure states are one-dimensional projections with tr[p?] = 1. Any state p can be

given as a spectral decomposition of pure states P; and its eigenvalues \;

p=) NP,
where for all ¢ the eigenvalues A; sum to one E Ai = 1. Furthermore, if a state p is

a pure state, there exists ¢ such that A; =1 and A; = 0 for all ¢ # j leading to the
purity P(p) of a state defined as

= tr[p?] = Z A2,
If a state is pure P(p) = 1, otherwise P(p) < 1; any p € S(H) that is not pure is
mixed.
Definition 5. An effect E is an operator satisfying O < E < I. The set of effects
15
EMH)={Ee L (H))O<E<I}

The set of effects is a convex subspace of £,(H) and the set of projections are a

subset of effects leading to the inclusion relation [3, p. 70]

PcCE(H) C L(H).



13

1.1.4 Measurement

For states p € S(H) and effects E € £(H) the value tr[pE] is a number between zero
and one corresponding to the probability that the measurement event represented
by E' occurs when the system is prepared in the state p, showing that an effect is a
mapping from S(H) — [0,1] ie. E(p) == tr[pE] € [0,1].

For a composite system H4 @ Hg = H4p with independent measurements and

preparations for each, the joint probability of £E4 and Ep i=s

tr[¥(pa, pe)V(Ea, Eg)] = tr[psEsltr[op Eg],

where v : £(Ha) @ E(Ha) = E(Hap) and 7 : S(Ha) @ S(Ha) = S(Har). An
operator T (state p) on Ha ® Hp is a product state if T =Ts ® T (p = pa @ pr),
separable if a linear combination of product operators (states) and intertwined if
neither. Compound operators (states) are called entangled [3, p. 99]. To understand

the subsystems of a compound state we can use the partial trace.

Definition 6. Consider the tensor product Ha ® Hp of systems A and B. The

partial trace over system A is the linear mapping
try: E('HA be] 'Hg) —> E(HBJ
satisfying
tr[try [T)E] = tr[T{I @ E)]

forallT € L(Ha ® Hie) and E € L(Hg). The partial trace trp over the subsystem
Hp is defined similarily.

As a result of the following Proposition, the partial trace of a state remains a

state [3, p. 101].

Proposition 3. Let T € L(H, @ Hp). Then:

(i)  tr[T] = tr[try [T]] = trltrp[T]];
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(ii) T = O implies that try[T] = O and trg[T] = O.

For a state p € S(H 4 ® Hp) of a composite system A + B the reduced states
pa = trelp| and pp = tre[p] describe the states of the subsystems and the state
pap = p is their joint state. If the reduced states are pure, then the joint state is
of the form pyp = p4 ® pg, this would mean that the states are uncorrelated [3, p.
102].

When performing a measurement one of a number of possible outcomes will oc-
cur, each of which must be desrcibed mathematically; these descriptions are referred
to as effects, and the mathematical construct describing the measurement overall is
called an observable. In particular, an observable is given as a positive operator-
valued measure. Consider a set (2 and its power set 2%, A subset F C 2% is a

g-algebra if
(i) B,QeF;
(i) if X € F then Xc=Q\ X € F;
(iii)  if X; € F for a sequence {X;}, then U; X; € F.

The pair (€2, F) is called a measurable space, a set X € (F) is called an event
and a g-algebra is a collection of all events. A map F — £(H) is a positive operator-
valued measure (POVM) if and only if the mapping X — tr[pA(X)] is a probability

measure for every state p € S(H) [3, p. 110].

Definition 7. An observable is a positive operator-valued measure (POVM) and

thus it is a mapping A : F — £(H) such that
(i) A@) =0;
(i)  AQ) =1

(i)  A(U;X;) =3, A(X;) for any sequence {X; } of disjoint sets in JF.
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As projections are subset of effects, a POVM can be a projection-valued, which

leads to the next definition.

Definition 8. A POVM is a projection-valued or sharp measure (PVM) if A(X) is

a projection for every X € JF.

A POVM is a generalisation of PVMs and by using POVM we allow for the
use of unsharp observables. The measurement process uses observables that are
either positive operator-valued or projection-valued measures in order to get the

probability of a given effect.

1.1.5 Liiders instrument

Up until now, only the probability distributions resulting from measuring an observ-
able have been considered, but the post-measurement state must also be taken into
account. Depending on the implementation of the observable, there are countless
number of different ways the state may be transformed, but we restrict ourselves to
a form introduced by Liiders, further reading on instruments can be found in the

literature [3, 4].

Definition 9. The Liiders instrument T associated with a discrete observable A

with outcome space (Q, F) is a map X — T%(.), where
Ix(p) = A(X)"pA(X)"2,
forall X € F and p € S(H).

For a sharp observable A with effects A(i) = |y:){i:|, where {i;} is an orthonor-

mal basis for the considered Hilbert space, the above definition can be written as

TE(p) = A(i)pA),

since A(i)7 = A(4) for one-dimensional projections.
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The object T%(p), which satisfies

tr[Zx (p)] = tr[A(X)p],

is the (non-normalised) state of the system after obtaining measurement outcome
X for A when the system is in state p. We refer to a measurement of A whosze state
transformations are of a Liiders type as a Liiders measurement.

A measurement causes unavoidable disturbance in the system, with the post-
measurement state of the system differing from the input. This disturbance can be
expressed with the concept of a conditional output state. By first measuring the
observable A and obtaining outcome X, followed by a measurement of observable
B, on a system in initial state p, the conditional measurement p,(B € Y|A € X) of
obtaining outcome Y is given by

p(BEY&AEX) _ tr[TE(p)B(Y)]
po(A € X) tr[Z% (p)]

= tr[pxB(Y)].

p(BeEY[Ae X) =

The state
Px =
iz called the conditional output state.
Consider a sequential measurement of two discrete observables A and B, with A
being measured by its Liiders measurement. If the measurement outcome probabili-
ties of B do not depend on whether A has been measured first, then the measurement
of observable B iz not disturbed by the measurement of A. For the Liiders instrument

T the nondisturbance condition is

tr[Z5 (p)B(y)] = tr[pB(y)],

which is required to hold for all outcomes y and states p and I5(p) is the post-
measurement state of the system after measuring A but by not recording the specific

measurement outcome. This leads into the following theorem.
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Theorem 1. (Liiders theorem)
Let A and B be discrete observables and further suppose that A is sharp. A Liiders
measurement of A does not disturb B if A and B commute, A(z)B(y) = B(y)A(z)

for all z, .

Take a Liiders instrument 7 describing the measurement of a discrete observ-
able A on a system in state p, the conditional output state corresponding to the

measurement of a nonzero outcome x is

B 1

.f::":‘l: trEI'I[p]]II(P)!

which is the exact same form as in Equation (3). This means that one use of a

measurement is in a preparation of the system.

1.2 Quantum computing

A qubit is a representation of two state object [0) = (1,0)7,[1) =2 (0,1)" € H =
C%. A qubit is similar to a classical bit: when measured on the basis |0}, |1), it
falls in either basis state |0) or |1}, however before it is measured it can exist in a

guperposition of the states which can be given using Dirac notation as

W) =al0)+51), (4)

where @, 5 € C and |a]? + |32 = 1. The Equation (4) defines fully a pure qubit
state. A qubit has a probability |a|? of being found in state |0) and |3|* of being
in state |1). Because of these superpositions it takes 2" — 1 complex numbers to
completely describe a quantum system containing n qubits, instead of just n as in
classical systems. Because the square of the amplitudes @ and 5 sum to one the

Equation (4) can be written as

) = e (cos 5 10) +e#sin T 1), ©)



Figure 1: The Bloch sphere representation of a qubit with two orthogonal states

|+) = :}EHD} + 1)), |-) = E‘liﬂﬂ} — |1}) and an arbitrary state |T).

where 6, o and «y are real numbers. The global phase, the first exponent e*7, does

not have any observable effect and so it can be ignored [2, p. 93] leaving us with

the state

|y = EOSE |0) + €' sin — |1}

The numbers # and  define a point on a three-dimensional unit sphere, thereby
allowing for a useful means of visualising the state of a single qubit, known as the
Bloch sphere (Figure 1). In contrast to the global phase €7, the relative phase e*¥
does have an observable effect. For example, setting # = /2 and ¢ = 0 or 7 leads

to the orthogonal states

+) =

) =

(ID}+|1}]
(10) — [1}).

SI

E
A third set of states on the Bloch spehere can be found by setting # = 7/2 and

p = /2 or —m /2, resulting in the orthogonal states

|R) = (Iﬂ} +i[1)),

|Il'ii'} —i[1}).

SI

IL) =

SI
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These three pairs of states |0/1) and |[+/—) and |R/L) form the three computa-
tional Z, X and Y bases respectively. The tensor product |} = |¢) @ |¢) (denoted
also as |@) |0} or |6, ¢)), for two states |¢) = ao |0) + e |1) and |p) = fo [0) + 51 [1)

is written as

) = (a0]0)+a1]1)) (Bol0) + B [1))

= oo |00) + o1 [01) + 10 |10) + 744 [11),

where the amplitudes -y;, are the products of amplitudes a; and 3,. The state
|1} exists in a superposition of four states, and the states |00), |01),|10) and |11)
form a new computational basis. One particular collection of superpositions of the

previously mentioned states are the so-called Bell states

+y _ 00) + [11)
|(I' }_ \E 1
_y _ |00) —|11)
g+ — 100+ 110)
V2

_, _ |01) —[10)
==

It iz known that the Bell states form a maximally entangled basis for four-dimensional

Hilbert space for two qubits.

1.2.1 Qubit operations

Qubits can be operated on in the defined Z-, X- and Y-bases with quantum log-
ical gates. There are two types of quantum logical gates: single qubit gates and
multi-qubit gates. Unlike classical logic gates all quantum gates are reversible and
described mathematically with self-adjoint unitary operators. There are many single
qubit logical gates, but for the experiments in this thesis the most important ones

are defined as follows. The first set of gates generate rotations about their respective
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axes
01 0 —i 1 0
X= Y = A .
10 i 0 0 -1
which are commonly referred to as the Pauli operators. They operate on states |0)

and |1} as follows
X0y = 1), X[1)=1]0),
Yio) = if1), Y1) =-il0),

Zlo)y = |0y, Z[1)=-]1).

In addition to these three operators, the Hadamard operation

creates a superposition for a single qubit in the Z-basis by rotating it to the X-basis
H|z >= Ziﬁl(—l)”ﬂy > [v/2 or
H10) = —=(0) + 1)),
75100 = 1)
Phase gates change the phase of a qubit in state |1) while the probability of

H1) =

measuring |0) or |1) remains unchanged. The square root of Pauli Z operator v/Z =

S, is called the phase gate and the square root of phase gate iz T

10 1 0
VZ=58= , VZ=T=

0 i 0 e/t
All of the single qubit gates defined above are special cases of a general unitary

operation

U(ﬂ: 9, )"] =

where #, A are real numbers.
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Multi-qubit gates work similarly to classical gates by forming a truth table out of
the control qubits. The basic multi qubit gates are the SWAP- and controlled NOT
(CNOT) gates

(1 0 0 0) (1 0

0
0010 0100
SWAP = . CNOT =

0

0100 00

\0 0 0 1) \0 0 1 0/

The SWAP gate swaps two input qubits and the controlled-NOT gate uses one qubit

as control and switches the state of the other if the input (control) is |1). They are

denoted here as CNOT(control qubit | target qubit) |}
CNOT(0]2) |10, 01, 02) = |1o,01, 12).

All further notation will use a operation X (target) for single qubit operations and
(control|target) for multi qubit gates. There are other controlled gates such as the
controlled Pauli operations (CX,CY,CZ) that rotate the target qubit, with CX
gate being the CNOT gate. Additionally the CNOT gate can be used to extend a
superposition to other qubits in order to form, for example, Bell states.

The last type of gates covered here are the multi-control gates such as the Toffoli
gate that takes two control qubits and operate on one qubit. The Toffoli gate has
a similar structure to the CNOT gate with the target qubit switching from |0) to
|1}, and vice versa, and with no effect on the control qubits; this can be scaled up

to n target qubits. Explicitily the Toffoli gate operates as follows:
TOFF(0,1,|2) |i,5,2) = i, 4, 2)

where 2z = z@1j (mod 2). In general if all the control qubits in a multi-control gate

are in state |1} the operation in question is performed on the target.
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1.2.2 Quantum circuit

(Quantum circuits are a means of visualising a quantum computation, that have one
or multiple registers consisting of qubits that are transformed with operations in
order to perform calculations of other tasks. These tasks are often referred to as
algorithms. As described earlier, operations on states are unitary (in closed sys-
tems), which leads to the broad definition of a quantum algorithm being a unitary
transformation that can be decomposed into a product of simpler unitary transfor-
mations [5]. On a physical quantum computer not all qubit operations are natively
supported. The smallest set of gates from which all possible operations can be de-
rived from are informally called the universal gates. For example, the IBM quantum
gystems support three unitary single gate operations and a controlled-NO'T between
two qubits, from which all other supported gates are constructed.

Some of the key elements in quantum algorithms are the oracle and quantum
parallelism. Without quantum parallelisation an algorithm in quantum logic cir-
cuits would not perform faster than a classical algorithm, for example searching an
unstructured database using Grover's algorithm provides an edge over a classical
algorithm as will be seen in Chapter 2.

Cuantum parallelism rises from the fact that qubits can exist in a superposition
of two states, this enables running both states at the same time, in parallel For
example operating with a Hadamard gate on each qubit in a registry of three qubits

in the state |15} = |000) transforms into

Hlto) =10)y = H+4) = = (10)+ 1)) U

1
ﬁ( |000) + [001) + - -+ + [111}).

The three qubit register in Equation (7) has eight distinct states. This register
(input) can be operated on by an oracle function, which transforms the register

according to the algorithm in question (output). The term oracle comes from com-
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puter science, and simply refers to a procedure or a function that takes an input
and provides an output. An oracle iz built specifically for each algorithm, and vari-
ous different yet similar oracles are realised in the experiments in Chapter 2. This

output is then usunally measured in the last part of the circuit.

1.2.3 Measurement

For a qubit system in a state W, the probability of getting an outcome X when

measuring observable A is given by
p(z) = (V[ Alz) [¥) , (8)

where A(z) are the measure outcomes. In the case of a two qubit system in the
state |10) = a|00) + £|01) + +|10) + §|11) the process of finding the probability
of measuring the first qubit in state |0) or |1) can be reduced to just collecting the

terms of the state

W) =10} («[0) + 5 [1}) + [1) (7]0) +4]1)),

in other words finding the effects E; = |0) (0| and E; = |1) (1| for the first qubit

results in probabilities

p(0) = (¢| Eo [¥) = |of* + | 512,

p(1) = (Y| Ex ) = |y + |9

The corresponding post-measurement states on the second qubit are

_ alo)+B[1) _ 710) +4]1)

V0P +15P VP + T

Since there are two other computational bases beside the Z-base, the partial mea-

[o) |11)

surement of the qubit system in state |t} = a'|eg0) + ' |eol) + 7' |e10) + &' |e11)

of finding the first qubit in either state |eg) or |e1) is done in the same manner. A
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qubit can be measured in another basis by representing the qubits in question in

this other basis, for example Z-basis states in the X-basis are

A gy =)
== W=7

In general terms the measurement of qubits in state |iy) of an effect E; can be

expressed as
p(2) = (vo| E: [io)
and the subsequent post measurement state is given by

), = Eilo)
Y VWl E: o)

The order and number of the qubits does not matter in the measurement process.
Scaling up quantum systems by introducing increasing number of qubits can
permit quantum algorithms to gain an edge over their classical counterparts. Outside
of ideal cases increasing the number of qubits in a system results in the system
becoming more prone to errors, though there exists error correcting methods that

will not be used or covered in theoretical detail in this thesis.
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2 Experiments on IBM quantum systems

In order to utilise the effects present within quantum mechanics, a quantum com-
puter is necessary. The core principles of a quantum computer were laid out in
DiVicenzo’s criteria [6], which give general requirements for quantum information
procesging, qubit manipulation, quantum gates and other necessary aspects that
define a quantum computer.

Physical qubits can manifest as any systems which have two distinct quantum
states, hence the number of different physical implementations that are being pur-
sued [7-11]. The current front runner is the superconducting qubit for creating
quantum computers that are more powerful than current classical supercomputers
[12], with first commercial implementations by D-wave [13] and IBM [14].

As the technical problems behind quantum computing are solved we near the
point of quantum supremacy, a milestone idealised by John Preskill, where a quan-
tum computer exceeds supercomputers in solving problems that would classically
require time frames of millions of years, if not more. The limit where quantum
supremacy is achieved depends on the algorithm and the problem at hand. Quan-
tum supremacy is easy to understand but hard to define. There are several front
runners in becoming the first task approaching the point of quantum supremacy,
one such candidate is solving factoring problems [15, 16]. In October 2019 Google
announced that it achieved quantum supremacy with their 53 qubit computer, the
machine having checked outputs from a quantum random number generator [17].
Google’s competitor IBM was quick to criticise and question the claim [17, 18].

The editor-in-chief of MIT Technology review Gideon Lichfield interviewed both
companies over the disagreement on Google achieving quantum supremacy and ex-
plains the views on the matter in an interview [19]. Lichfield starts by explaining
that IBM sees that solving the problem used to show supremacy wouldn't take the

10,000 years to calculate on a claszical supercomputer like Google claimed, but only
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a couple of days instead. Engineers at Google implore IBM to prove this claim by
performing this calculation in a couple of days, instead IBM criticises the idea that
quantum supremacy can be achieved by just showing that quantum computers out-
perform classical computers in one specific problem and challenge the idea and the
importance of quantum supremacy in general. Lichfield shares his cautious opinion
in the interview that he believes that Google has achieved quantum supremacy in
accordance to Preskill's challenge. No consensus on the matter has been achieved
by the scientific community as of the time of writing of this thesis.

At the heart of a superconducting quantum computer is the macroscopic electric
circuit, which when cooled enough starts to present quantum properties: quantised
energy levels, superposition of states and entanglement. In superconductors elec-
trons form Cooper pairs, thereby becoming new charge carriers; these pairs are
condensed into a single macroscopic state described by a wave function allowing
macroscopic circuits to exhibit atomic-scale phenomena [20]. Quantum states in su-
perconducting machines are manipulated by using electromagnetic pulses to control
the magnetic flux, the electric charge or the phase difference across a Jospehson junc-
tion [21]. IBM uses a so-called transmon variant [22] which is a capacitive variant
of the Cooper pair-box that is also known as a charge qubit [12].

Classical computers are able to simulate quantum information processes and
test quantum algorithms, in other words simulate how a quantum computer works
at a cost. IBM provides access to a such cloud-based simulator, and has further
developed an open source software development kit called Qiskit for working with
their freely available IBM @ Experience cloud platform [23, 24]. The cloud platform
provides tools and access to their quantum computers and a quantum simulator. The
OpenQQASM simulator can be set up to simulate noise that happens in operations
in real quantum computers, which makes it really useful in testing algorithms with

up to 32 qubits with arbitrary internal structures, before running them on real



27

machines. Qiskit also allows local simulations. By simulating the circuits locally it
is possible to quickly prototype algorithms and find the idealised solutions before
running the tests on a computer. The computers are occasionally heavily utilised,
which might result in impractical waiting times when running experiments.

In this thesis multiple experiments were performed as a local simulation, on IBM
5 qubit quantum computers Ourense and Yorktown and on 15 qubit Melbourne. The
algorithms were chosen to show quantum parallelism, quantum phenomena and the
scalability of selected experiments.

IBM provides access to multiple computers with various qubit layouts, number
of qubits and error rates. The machines are regularly calibrated and maintained,
which results in varying error rates over time for single qubit operations and CNOT
gates between qubits on same circuits performed at different times. This leads to
increased variance between experimental measurements.

The layouts of the machines can be seen in Figure 2. Controlling IBM quantum
gystems and OpenQASM is possible with an open source software development kit
(SDK) called Qiskit and its built-in application programming interfaces (APIs), with
further information on Qjiskit available on their online handbook [25]. Collectively
Qiskit and its APIs provide tools for manipulating, optimising, measuring and visu-
alising experiments and measurement data. For example by utilising the transpiler
it is possible to map qubits defined in software to specified physical qubits in such
a way to minimise error rates.

Noige in experiments can be managed in multiple ways: Minimising the amount
of operations done, avoiding CNOT operations between non-directly connected qubits
and choosing optimal qubits for operations. This can either be done manually or
by using the transpiler component of Qiskit's Terra APL The transpiler provides
multiple automated optimisation levels from no optimisation at level 0 to maximum

optimisation at level 3 {more on transpiler can be found on online resources [25]).
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(a) Yorktown (b) Ourense

(c) Melbourne

Figure 2: Layouts of IBM quantum computers used in the experiments done on this

thesis.

A transpiler with optimisation level 3 was chosen for experiments in this thesis, as
by doing so the code could be focused on generating more modular and general
algorithms instead of highly optimised algorithms with case by case optimisation.
The supported operations on qubits are generated by combining three single
qubit unitary operations with CNOT gates between qubits. The three unitary single

qubit operations are
U3(8, ¢, A) =U(8, ¢, A),

U2(8,¢,A) =U3(w/2, ¢, A),

U1(8, 6, \) = U3(0,0, )
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(a) Toffoli gate (b) Full decomposition of a Toffoli gate.

Figure 3: Example on how circuits can be decomposed into elementary operations.

and they are defined by a general unitary operation

—g—iA

)
)

The only native multi-qubit operation is the two qubit CNOT gate. In Figure 3 a

sin(

U, 6,2 = (‘5{ (9)

blm kA

)
in(§) e*+% cos(

simple example circuit shows how a Toffoli gate is decomposed into the basic single
qubit and CNOT operations. Taking the Toffoli gate from Figure 3 and transpiling
it on the quantum computer Yorktown shows with optimisation levels 0 and 3 shows
how the optimisation works. In Figure 4 it can be seen that with no optimisation the
number of single qubit operations is greatly increased on the physical computer, but
the number of CNOT operations remains the same. The optimised circuit shows
a greatly reduced number of qubit operations, same number of CNOT gates and
qubits g3 and g, are used instead of gy and ¢,.

In detail information on the operations performed by of the transpiler with op-
timisation level 3 can be found on online resources [25]. But two effects can be
identified: first it tries to identify and choose the optimal qubits for a given circuit,
in practice this could mean taking the qubits with smallest error rates and identi-
fying qubits that take part in the largest number of CNOT gates and finding the
golution that produces least cumulative error. Secondly single qubit operations not
separated with barriers or CNOT gates are grouped and changed to operations that

achieve the same state transformation for the qubit with least single qubit gates.
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I
|

(2) No optimisation

I

au

o -0 oI -
a1 - = .

(b) Optimisation level 3.

Figure 4: Example on how optimisation level affects the decomposition of the Toffoli

gate after transpiling on the Yorkotown quantum computer.

The testing performed with different optimisation levels before the final experiments
provided in this thesis lead to the choice of optimisation level 3 as the best choice
here.

Finally the IBM quantum systems are limited on when the measurement can
occur, the measurement process can happen only once and always at the very end
of the circuit, which limits the design options for circuits and the ability to use
measurements in the middle of circuit for any controlled actions later on.

Qiskit also provides tools for visualising measurement data via the open source
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Python library Matplotlib. The Aer API in Qiskit provides tools for a local quantum
simulator and an option for either ideal simulation or a simulation with a noise

model.

2.1 Quantum teleportation

In 1993 Bennet et al [26] proposed a method, known as guantum teleportation, for
transferring a quantum state via a combination of classical and Einstein-Podolsky-
Rosen channels. Quantum teleportation is a technique for moving quantum states
from one particle onto another without a direct quantum communications channel
between the source and the destination after the initialisation [2]. However, even if
the state is moved instantaneously, actual information is not transferred faster than
light.

Following Nielsen'’s book [2], a quantum teleportation protocol transferring a
single qubit state needs three qubits, as well as two clasgical bits to be transferred
between Alice and Bob. Alice begins with two qubits, with one being the (arbitrary)
transferred state

|6} = a[0) + B 1) (10)

and a second qubit that forms an entangled Bell pair with Bob’s qubit. The pair

can be in any of the Bell states

4y _ |00) £11)
|‘L":I:} _ |D1} + |10}
V2

Suppose Alice has the state |¢) and shares the Bell state |®*) with Bob leading to

the combined system being prepared in the state

o) = %((ﬂlﬂﬂﬁllﬂ(lm}ﬂll})) (12)

_ %[&|D}(|Dﬂ}+|11})+ﬁ|1}(|ﬂﬂ}+|11})]
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The teleportation protocol starts with Alice performing a CNOT operation between

her qubits

1) = CNOT(0]1) [o) = %[u 0) (100) +11)) +511) (110} +Jo1))|  (13)

followed by a Hadamard gate on the qubit she wants to teleport to Bob

[¥n) = H(0)|iy) (14)
= 2[atio) +113)(100) + [11)) + A(10) — [1))(120) +Jo1))]
= 2[100) (o) +811)) + o) (2 1)+ 510) )

+110) (aj0) = 811} ) +111) (a|1) - 5 o) ) .

Alice next performs a measurement on her qubits and sends the measurement results
to Bob; by learning this information Bob can transform his qubit with a combination
of X and Z-rotations in order to retrieve the state |¢). This protocol requires that
Alice and Bob have a classical form of information transfer and thus there is no faster
than light transfer of information. Furthermore, this protocol does not contradict
the no cloning principle [27] as instead of cloning, the state of the original qubit is
altered and then destroyed in the measurement process. From state |i)3) it can be
seen that Bob has four different possible outcomes and can therefore deduce their

corresponding rotations to gain Alice’s initial state based on her measurement result

00 :«l|0)+ B 1) = No rotations,
01 :all)+ B|0) - X-rotation,
10 :@|0)— 1) —» Z-rotation,
11 :a|l)—F|0) - ZX-rotation.
On IBM quantum systems this protocol does not work as is because the mea-

surement of any qubits is only allowed at the end of a circuit. This means that

Alice can’t measure her qubits and send the information necessary for Bob to know
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:_ el an T

meas

Figure 5: Quantum teleportation circuit drawn with Qiskit. Qubit gy is prepared
before the first barrier, whilst qubits q; and g; form the Bell basis. The teleporta-
tion protocol is shown between second and third barrier and reversal of qubit gp's

preparation will return gy to state |0), followed by measurements after the last gate.

which actions are required to perform on his qubit in order for the protocol to work.
This can be circumvented by controlled rotations which mimic the actions Bob takes
based on Alice’s measurement, after which the initialisation of the teleported state
is reversed to |0) showing that the protocol worked in the final measurement.

The IBM quantum system Ourense was chosen for this test due to acceptable
error rates with single qubit gates and qubit to qubit CNOT gates. Lower utilisation
by other users also was a factor that resulted in significantly less queueing time for
the circuits at the time the experiments were ran.

The circuit seen in Figure 5 starts with every qubit in state |0), with Alice in
possession of qubits gy and g; and Bob the remaining qubit g;. Here a secret state
|#) = 1/+/2(|0) — [1)), now o = 8 = 1/+/2, is prepared with a single X-rotation
followed by a Hadamard gate on qubit g;. The Bell state |¥+) is chosen for qubits
¢ and g9 and iz achieved by Hadamard transformation on qubit ¢, a CNOT between
qubits g; and ¢z and a X-rotation gate on qubit gz. The system is prepared in the

state



o) = I8, T%) = é((ﬂlﬂﬂﬁll}](lm}ﬂll})) (15)

= 5 [a10 (v +110)) + B (Jo0) + 1)

where o = —f =1/ v/2. The teleportation of state go begins as before with Alice
performing a CNOT on g; and ¢; with gy as control, and performing a Hadamard

gate on qubit gg, resulting in the state

1) = H(ao)(CNOT(aolas) o) (16)
= 5[a0) + 1) (J01) + 10)) + (10} ~ 1) (111) + Joo) )]
= 2[100 (@l +810) ) + fon) (alo) + 811 )
+110) (1) = 810) ) +[12) (alo) = 5 [1) ) |-

A CNOT and a Z- rotation is applied on qubit g2, depending on the qubits ¢

and g respectively

|¥1s) = CNOT(q1|q2) |¥1a) (17)
= 2[00y (@1 +810)) + fo) (al) +510) )
+110) (@) —510) ) + 12) (1) ~ £10) )]

And a controlled Z-rotation will change the sign of state |1) if the control gp is |1)

V1) = CZ(qolgz) |v1s) (18)
= [100) (i) +510)) +1ov) (1) +510))
+110) (—al1) = 810} ) +111) (—al) - 810) ).

Finally the preparation done on g, is reversed. First a Hadamard gate is applied to
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qubit gy

Woa) = H(a) W) (19)
= %l 100 (el -] +8l10)+1)])

+ o) (aflo) - |1}] BlIo)+11)])

+ 110 (—af[lo) = [1)] = B[I0) + 1)]
+ 11) ( al[0) —[1)] = B[ |0} + |1}]

i i
|

Now in order to clean up, the values of & and 8 can be inserted

ae) = 5[~ 100) — fo) + [10) + 11 ) [ . (20)

The final X-rotation on qubit gy turns it to state |0}

) = X(@2) Wona) = 5[ (=100} = o) + 10y + 1) ) |0}~ (21)

The state above is the one measured with the measurement results given in Figure
6. Note that the measurements show the qubits in the opposite order with qubit
@2 being first and gp last. The measured states show qubit gz being in the zero
state in all instances in the simulator and the real quantum computer to differ
8.9% at most, specifically on the state |110) in Figure 6. The results from the
real quantum system also show a notably higher probability for first two qubits
being in state |00) compared to them either being in state |01} or |10), and the
case of state |11} being the least likely measurement outcome. Other quantum
teleportation experiments on superconducting qubits have similar fidelity values
[28], as do experiments with photons over a distance [29)].

The calibration data of Ourense at the time the experiment was performed and
the measurement counts can be found in Appendices A and B. The code for this

experiment can be found on GitHub [30].
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Figure 6: The results of the quantum teleportation simulation compared to the

results from the real computer, with 8192 shots on each.

2.2 Deutsch—Jozsa algorithm

The Deutsch—Jozsa algorithm provides an answer to Deutsch's problem, which was
constructed as an example to show how quantum algorithms can utilise quantum
parallelism for better performance over classical algorithms in solving probability-
based problems [31]. In Deutsch’s problem Alice guesses whether the function f,
which Bob has, is either a constant or balanced function by using as few messages
ag possible. Each message Alice sends Bob has n bits of information. The function
f:{0,1} — {0,1} is constant if f is a fixed value for all possible choices of x and
balanced when f(z) is equal to one for half of all values of values of 2. There is no
known application for the Deutsch—Jozsa algorithm except to provide an (artificial)
example of a situation in which quantum parallelism proves superior to classical
information processing [2].

In the classical case, Alice can send only one query of r in each message leading

to Alice having to send at least 2" /2 + 1 queries, since she could receive up to 2" /2
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identical results before receiving a different one (in case that f is balanced). This is
in fact the best possible rate Alice can classically obtain [2].

By utilising quantum parallelism the Deutsch—Jozsa algorithm can deduce whether
f(z) is constant or balanced with a single query from Alice to Bob. The function
f(z) is calculated with a unitary transformation Uy, Alice has a query qubit register
of n qubits and an answer register of one qubit is shared between Alice and Bob.

The system is initially in the state
[o) = 10)°7]1), (22)

where state |1) is the answer register and all preceding states represent the query
register of n qubits. Alice then prepares the query and answer qubit registers with
Hadamard transformations leaving them in the equal superposition

) IR ()
1) = HE™ i) = @E{;J}J >[—ﬁ } (23)

Now the query register is in a superposition of all possible input values, and the
answer register is in an evenly weighed superposition of 0 and 1. At this point
it is Bob’s turn to evaluate f(z) using the unitary transformation Uy : |z,y) —

|z,y & f(z)}, where the operator & denotes addition modulo 2, giving

1)@ | _
1) = Uy |w1>=2( ILE—J }[Iﬂ}\ﬁll}} (24)

Bob’s evaluated function is now stored in the amplitudes of Alice’s superposition

i

state. Alice now applies a Hadamard transformation upon her query register. By
checking the effect of the Hadarmard transformation on the state |z} where x = 0 and
= = 1 separately, it can be seen that for a single qubit the transform can be expressed
as H|z) =3 (—1)*|2) /v/2, which leads to the following expression for multiple

qubits
S () )

V2

H® |zy,...,2,) = (25)
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This can be written more concisely [2, page 36] as

H®n| } Ez(v.r;—:z|z}: (26)

where z - 2 is the bitwise inner product of # and z modulo 2. By using equations

(24) and (26) it is possible to evaluate the Hadamard transformation Alice performs

on the query register
zz+f(z] |2} P{}} — (27)

[a) = H" [¢n) 22 \ﬁ'”}.

By now observing the query register Alice can determine if f(x) is constant or
balanced. The amplitude for the state [0)*" is 3~ _(—1)f(®) /2", and if f() is constant
the amplitude for |0)®" is either +1 or —1. Because |1/s) is normalised, all other
components of the superposition must be equal to zero in this case. This results in
observation yielding zeros for all qubits in the query register. By contrast, if the
function f(z) is balanced, the positive and negative contributions to the amplitude
for |0)®" cancel, leading to an amplitude of zero, thereby requiring at least one of
the query qubits to be other than zero. In conclusion, if Alice measures all query
qubits as |0) the function is constant, otherwise it is balanced.

The constant oracle unitary transform Uy Bob performs on the query register has
no limitations since there are no CNOT gates between qubits and poses no scaling
limitations. The balanced oracle on the other hand limits the scalability on IBM
quantum systems, as the answer register qubit has to be connected to every qubit on
query register. By choosing the IBM Yorktown the algorithm works up to a 4-qubit
query register, with the center qubit being physically connected to all other qubits.
The oracles used in the experiment can be seen in Figure 7. Qubits gg, g1, g, and
gy are chosen as the query register and qubit gy as the answer register. The first
experiment, seen in Figure 8, is done on circuit with a balanced oracle.

Qubits in the query register are prepared with a Hadamard gate on each, whilst

the answer register is subject to an X-rotation gate before a Hadamard. The system
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do ¢ Jo ——
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az T q: —
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da qs ——

(a) Balanced oracle. (b) Constant oracle.

Figure 7: Example of circuits to represent balanced and constant oracles with qubits
@p — g3 belonging to the query register and last qubit in the answer register. Note

that no operations are performed in the constant oracle.

iz therefore prepared in the state
o) = [++++—), (28)

In the |+) basis the target and control are switched via a CNOT operation, thus

the oracle will transform the state

|J‘11|El"1}I = GNOT(QJ'QG:QI:Q?:QQ} |wﬂ} = | _____ } . [29]

The transformation that the balanced oracle performs on the query register adds
negative phase to exactly half of the states in the query register, with the state of the
register after query orthogonal to the quantum state of the register before querying
the oracle. The final Hadamard transformation the qubits in the query register will

transform the state into

[¥2) = H(qo, 41, 42, @) [¥1) = [1111-). (30)
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Figure 8: Deutsch—Jozsa experiment circuit.

The query register can now be measured and is in the state |1111) which is orthogonal
to the initial state |0000).

By contrast, an experiment with a constant oracle using the same circuit as in
Figure 8 and is prepared in exactly the same way as the first experiment, differing

only in the chosen oracle (see Figure 7). The prepared state of the system

o) = [+ +++-) (31)

experiences no transformation on the query register and the Hadamard transforma-

tion the query register changes the state into

[¥1) = H(qo, 41, 92, ga) |tbo) = |0000—}, (32)

which should result in measuring state |0000).

The results of the Deutsch—Jozsa experiment, shown in Figure 9, show that the
constant oracle has a smaller absolute error rate when measuring the desired state
compared to the balanced oracle. The constant-oracle measurement gives the correct
result with 83.3% probability, with one notable error for the state |0100) (reversed
in Figure 9), appearing with 7.4% probability. This spike might be due to a physical
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(b) Constant oracle.

Figure 9: The results of Deutsch—Jozsa experiment comparing the simulation to the

results from the real quantum computer, with 8192 shots on each.
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qubit having a high error rate for single qubit operations. The balanced oracle
experiment gives the expected result of [1111) as the most likely, but with more net
noise and much smaller absolute probability. However, as mentioned earlier, since
Alice needs to measure |0) for each qubit in order to conclude a constant oracle, and
this is found for 1.2% of instances, in conclusion the experiments with a balanced
oracle we correctly guess the right oracle with probability nearly 99% probability.
Other measurements done with the scalable algorithm here show that with a
smaller query register the probability of the correct measurement rises. Further error
mitigation with a query register of 4 qubits on Yorktown might not be possible, due
to the already simple structure of the circuit and minimal operations. An experiment
by Gulde et al in 2003 done on ion-trap quantum computers with two qubits showed
experimental success of over 90% [32], which is considerably higher compared to the
constant oracle experiments with 4 superconducting qubits here. The calibration
data of Yorktown at the time the experiment was performed and the measurement
counts can be found in Appendices A and B. The code for this experiment can be

found on GitHub [30].

2.3 DBernstein—Vazirani algorithm

Another algorithm to show the superiority of quantum parallelism is the Bernstein—
Vazirani algorithm. Bernstein and Vazirani studied quantum computation from a
complexity theory standpoint in their 1997 article [5] and found a problem a quantum
machine iz capable of solving exponentially faster than a classical computer. The
Bernstein—Vazirani problem has an unknown function f(z) which takes as a input

a string of bits (z) and returns either zero or one as output

7:{0,1)" = {0,1}. (33)
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The Bernstein—Vazirani problem has similarities with the Deutsch—Jozsa problem
and can be thought as an extension of it. Instead of having a balanced or constant
function f(z), the function is now guaranteed to return the bitwise product of the
input with an unknown string b € {0,1}". Given an input = € {0,1}" the function
outputs f(z) = b-z (modulo 2). The aim of the problem is to find what the unknown
bitstring b is.

The classical solution can have only one input x;

g = 10...0
z; = 01...0
z, = 00...1,

with each query revealing a different bit b; of b. As a result of this is that the classical
queries need to be ran n times.

The quantum solution can solve the problem with confidence after only one call
of the function f(z). The input register consists of n qubits and one output qubit

initialised in state |—), with the whole system being in state
[} = |0)*" |-). (34)

A Hadamard transformation iz applied on the input register

) = HE™ [y5o) =\,i2_ﬂ 3 o)) (35)

ze{0,1}m

Next the oracle is applied to the input register

1

[} = f(z) [y) = /o

Y. (D)) (36)

r={0,1}"
Finally, b can be obtained by running the Hadamard transformation on the qubits

in the input register and transforming the output register back to state |0) with a
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Figure 10: Bernstein—Vazirani algorithm circuit with bitstring b = 10101.

X rotation after applying a Hadamard on it

3} = X (gns1) (HZ™H [2)) = b} |0). (37)

Now by measuring the input register Alice has the unknown bitstring b with just
a single query to Bob.

When applying this algorithm as a circuit on the IBM quantum computer it is
possible to create a big scalable circuit with low error rates if the unknown bitstring
has some limitations. By utilising the 15 qubit Melbourne system it is possible to
create circuits with query registers up to 14 qubits by limiting the bitstring to have
up to 3 ones in order to limit the total error rate. In Figure 10 a bitstring b = 10101
is selected as a result on a register of n = 5 qubits gp,...,qs and the target register
a8 ¢s. Inmitialisation starts by X-rotation gate on qubit g5 followed by Hadamard

transformation all qubits

o) = [+ ++++H) =), (38)

where the target register is kept separate for clarity. The oracle does nothing on
qubits ¢; and g3 and applies multiple CNOT gates using qubits gp,g2 and g4 as

controls and g5 as targets

[¥1) = CNOT(qo, 42, dulgs) [tho} = |— + —+ =} ). (39)
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Figure 11: The results of Bernstein—Vazirani experiment comparing the simulated
results to those from the real quantum computer, with 8192 shots on each. The
results of query register and events with over 1% probability are visible, whereas

events below the 1% threshold are collected under ‘other bitstrings’.

The initial preparation is done in inverse on all qubits followed by a final mea-

surement on all qubits

|12} = X(gs)(H (g0, @1, G2, g3, Ga, g5) |¥1}) = |10101} |0) = [b) |0} . (40)

Now the query register is in the state |b), which is reflected by the results in Figure
11, where there is a spike corresponding to the measurement outcome |10101). IBM
Melbourne has a relatively large error rate on single qubit gates and CNOT gates
between qubits resulting in noticeable noise in the results, with the rare (those with
less than 1% probability) events collected in ‘other bitstrings’ summed up to a total
probability of 5%. The results show higher probabilities for events that partially
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correspond to the bitstring, with the second most likely event being |11101) with
10.6% and third being |10001) with 9.5%. The calibration data of Melbourne at the
time the experiment was performed and the measurement counts can be found in

Appendices A and B. The code for this experiment can be found on GitHub [30].

2.4 Simon’s algorithm

Simon in his 1997 article [33] presented a problem and an algorithm to show how a
function supplied as an oracle can outperform a classical computer solving the same
problem. Simon's algorithm solves Simon's problem, in which an unknown function
f(z) is guaranteed to be either a one-to-one mapping or two-to-one mapping. The
function f: {0,1}™ — {0,1}" maps one bitstring x € {0, 1}* to another y € {0,1}"

according to a hidden bitstring b € {0,1}"

flz)=f(y) <= y=z®b, (41)

where @ is binary addition modulo 2.

In case of a one-to-one mapping a function maps one unique input bitstring z; to
one unique output bitstring f(z;) = ¥ and the hidden bitstring is all zeros, b = 0.
Two-to-one mapping on the other hand maps two unique inputs z;, r; to a single

unique output f(z;) = f(r;) = Y, where i # j, and the unknown bitstring
b - .':l.-“i'_ $ :Bj'. (42)

The goal of Simon’s problem is to answer how quickly it is possible to determine the
unknown bitstring b.

In the classical solution in order to fully determine b for a given f(z) it is nec-
essary to check up to 2*~! + 1 inputs, the number n is the number of bits in the
input. There exists deterministic classical algorithms that can find the answer with
a lower bound of £2(2"/?) queries [34], yet in general it can be agreed upon that the

complexity grows exponentially with n.
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In the quantum solution to Simon’s problem there are two n qubit registers.
Both registers are initialised in the zero state so the whole system is initially in
state

%) = [0)=" 0)°" . (43)
During the second preparation step a Hadamard transformation is applied on the

first register

1) = H™ [tn) =¢% 3 Jz) e (44)
ze{0,1}"

Now it is time to query the oracle U, which transforms the second register using
the first register as input

[Ua) = Uy [abn) Z\% 3 o) If@). (45)

{01}

After querying the oracle the second register is measured. A certain value of f(z)
will be observed, resulting in value of f(z) corresponding to two possible inputs: z

and y = x @ b, therefore the first register becomes

[¥s) = M(F(2)) W) = —=(12) + 1) (46)
A Hadamard is applied on the first register
) = Ho" o) = ——— 3 (<1 + ()] 2), (47)

ze{0,1}"

followed by a measurement of the first register. The first register will give an output
only if the sum iz nonzero

(=1)= = (=1)¥=, (48)

which means for the exponents that

= (z@b)-2
= r-2Eb-z

=b-2 = 0(mod 2). (49)
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The measurements lead to obtaining string 2. Because the inner product modulo 2
between 2 and the unknown bitstring b will produce zero, it can be used to calculate
the unknown bitstring. By repeating Simon’s algorithm n times, the algorithm will

produce n different values of 2 resulting in a system of equations

{ , (50)

from which the unknown bitstring b can be determined. This shows that the clas-
gical algorithm requires exponentially more steps compared to Simon's quantum
algorithm.

In the Qiskit implementation used here, the oracle Uy in equation (45) depends
on the properties of f(x), and starts identically in all possible cases by copying the
first register to the second register and then the oracle performs a CNOT operation
using bitstring b

|2)[0) = |2} [z & b) . (51)
The index ¢ of the first non-zero bit in bitstring b is used to choose a corresponding
qubit z; in the first register to be used as the control for all the non-zero indices j
in b for operating on the corresponding qubits second register. If the bitstring b is
all zeros no actions are performed after the copying.

The demand for two n qubit registers, coupled with the easy scalability of the
circuit design, leads to the opportunity to use larger quantum computers, such as
the 16-qubit Melbourne. Since Bob's ‘unknown’ bitstring must be predetermined
and only the first nonzero bitstring in the Oracle is used as the control for the
nonzero targets in the target register, the only error reducing factor becomes the
physical layout of the CNOT gates between physical qubits. This allows us to create
a random bitstring with up to three nonzero bits. Two cases considered here have

two-to-one bitstring b = 1010 and one-to-one bitstring b = 0000, thus two quantum
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Figure 12: Circuits for Simon's algorithm.

registers of n = 4 qubits, with qubits gp,...,gs in the first and qubits g4,...,g7 in

the second. The circuits are shown in Figure 12. Starting with the two-to-one

experiment, the qubits in the first register are prepared with Hadamard gates

o) = |++ ++)|0000)
1

_ _( 10000} + [0001) + - - - |1111}) 10000)

V&

(52)
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The oracle performs a CNOT operation using the first register as control and

the second register as the target

|%1a) = CNOT(g;lg;) o) = |0000) |0000) (53)

1
7=

+ |0oo01) |0001)

+ |1111}|1111}),

where i = 0,1,2,3 and j = 4,5,6,7. The oracle uses the qubit g, representing the

first nonzero bit b = 1010 as control and operates on the second register

Y1) = Ugltha) (54)
1
I

+('|0010) + 1000} ) [0010) + ( |0011) + |1001) ) |0011)

(( |0000) + |1010) ) |0000) + ( |0001) + 1011} ) |0OO1L)

+('10100) + 1110} ) [0100) + (|0101) + |1111) ) |0101)

+(|0110) + 1100} ) |0110) + (|0111) + |1101) ) |0111) )

where the possible outcomes for the first registers are grouped with the corresponded
outcomes on the second register. Finally the last Hadamard transformation each
qubit in the first register is performed, and the resulting state has 8 different mea-
gurement outcomes for the first register for each possible outcome on the second

register that only differ in the phase

1
5 (10000 £ |0001) & [0100) + [0101) (55)
+ [1010) 4 [1011) + [1110) = 1111} ) |z)

where |z} are the possible outcomes for the second register (the second register is
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Figure 13: The results of two-to-one experiment comparing the simulation to the

results from the real quantum computer, with 8192 shots on each.

omitted from the results seen in Figure 13). The possible measurement outcomes

form a group of equations similarly to (50)

F

b@O000 =by-0+by-0+by-0+bg-0=0 (mod 2)
b@O001 =by-0+by-0+by-0+bg-1=0 (mod 2)
b@0100 =by-0+by-1+by-0+bg-0=0 (mod 2)
b@O0101 =by-0+by-1+by-0+bg-1=0 (mod 2)
b@1010 =by-1+by-0+by-1+bg-0=0 (mod 2)
b@1011 =by-1+by-0+by-1+bg-1=0 (mod 2)

b 1110 =by-1+by-1+by-1+by-0=0 (mod 2)

b®1111 =by-1+bi-1+by-14bg-1=0 (mod 2)
Solving this collection of simultaneous equations above gives the bitstring b =
bgbibgbs = 1010 as the only possibility, thereby showing that the algorithm works.

The second experiment with the one-to-one oracle is made by using bitstring
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Figure 14: Results of one-to-one experiment comparing the simulation to the results

from the real quantum computer, with 8192 shots on each.

b = 0000, but preparations are otherwise the same, leading to state |11} identical to
state |1fy,} in equation (53).
Since all bits in the hidden bitstring are zero, no CNOT operations are performed

on [¢). The final Hadamard on the qubits in first register leads to the final state

% ( |0000) + |0001) + |0010) + [0011) (56)
+ |0100) = |0101) + |0110) + [0111)
+ |1000) =+ |1001) + |1010) + [1011)

+ [1100) + [1101) =+ |1110) + [1111)) |z)

where |z) is any of the possible outcomes for the second register. The measurement
outcomes for the one-to-one experiment can be seen in Figure 14.

The results of the experiment seen in Figure 14 show a universal bias towards any
qubit being found in state |0), this is phenomenon is found in both experiments. In

the two-to-one this leads to event |0000} being close to twice as likely as [1111), with
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the simulator providing nearly uniform probabilities between events. As expected
the simulator provided no false results, unlike the real experiment which provided
false results with 12.6% probability. The one-to-one experiment has reducing prob-
ability from |0000) to |1111) with the most likely being more than twice as likely as
the rarest event. The calibration data of Melbourne at the time the experiment was
performed and the measurement counts can be found in Appendices A and B. The

code for this experiment can be found on GitHub [30].

2.5 Grover’s search algorithm

Searching is a fundamental problem in data processing, and for classical search
algorithms the efficiency of searching depends on the order of elements and size of
the search database. Searching unstructured datasets is a probabilistic process, the
search process can be made faster by utilising quantum parallelism. In an imaginary
case with a large list of V items, there is one item of interest. By using classical
computation and checking items at random, there is a 1/N possibility to hit the right
item but it could take checking all N items to find the right one, and on average it
takes N/2 tries to find the right item [35]. Grover created in his 1996 article [35] an
algorithm to show that with quantum parallelism the average number of attempts
can be reduced to +/N. Furthermore, Grover's search algorithm is generic: the speed
of the quantum algorithm does not depend on the internal structure of the search
database.

Grover's algorithm utilises a unitary transform, oracle, to distingnish the desired
outcome state. Let a three qubit database be comprised of all the possible compu-
tational basis states qubits can be in, |000}, |001),...,|111). The oracle in Grover’s
algorithm adds a negative phase to the solution states. The oracle tests if for a given

input state x; f(x;) = 1 then #; = w, otherwise f(z;) = 0. In other words when w
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i the desired state and r a random state then a unitary transform to find w is

|z} if 2 3% w
Uy lz) = : (57)

— |z} ifzr=w
The unitary transform U, representing oracle is a diagonal matrix, where the
entry that corresponds to the desired item will have a negative phase. If w = 110,

the oracle matrix will be

(1 0000 0 IZI\
010000 0 0
001000 0 0
000100 0 0
U, = (58)
00010 0 0
000001 0 0
000000 -1 0
0 0

kﬂ

The aim of Grover’s algorithm is to convert all problems to this diagonal form.

000 O 1)

Again, all the possible solutions x are used as input and tested with a function f(z),
that returns f(z) = 0 if £ # w and f(r) = 1 when # = w. With this function the

oracle can be used as a unitary operation on an arbitrary input state |z)
Uslz) = (1)1 |z) (59)

and the oracle itself has a diagonal form

(_1)fliﬂ] 0 . 0
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Without knowing where the desired item is, a guess can be represented with a
uniform superposition

9 = =3 ). (61)

In a standard basis {|z)} this superposition would collapse to any one of the basis

states with the same probability of 1/N = 1/2", therefore chances of guessing w is

1/2". Amplitude amplification can increase the amplitude of the desired outcome

and thus increase its likelihood.

|ewd & Amplitude 5

T > 1)

Figure 15: The system is initialised in a uniform probability state between all pos-

gible states. Average amplitude is shown with the dashed line.

The algorithm can be visualised with two reflections, which generate a rotation

in a two-dimensional plane. Initially the system is in a uniform probability state
|s) = ko) = H®"[0)". (62)

as seen in Figure 15. Using a two-dimensional plane spanned by perpendicular
vectors |w) and |¢') allows the initial state to be expressed as |s) = |w) sin #+|'} cos 8,
where the angle # = arcsin (8| w) = arcsinﬁ.lr—f. The amplitude of each element in
the database can be represented with a bar graph as seen in Figure 15.

There are two interesting states: the correct solution |w) and the uniform super-
position |s). These vectors span the aforementioned two-dimensional plane in the
CV vector space. The states are not exactly perpendicular, for |w) occurs in the
superposition with amplitude N—1/? as well. This can be fixed by introducing an
additional state |¢') that is in the span of these two vectors, which is perpendicular

to |w) and is obtained from |8) by removing |w) and rescaling.
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The oracle that performs a reflection U, is applied to the state |s), as shown
in Figure 16. Geometrically this corresponds to a reflection of the state |s) about

|s), transforming the amplitude of state |w) to negative and reducing the average

amplitude.
lewr) Amplitude ,
s} = ltbo) 1
- VIV
]
=17 ;' > |s')
----E___ ]
e ) = Uy labo)

|e)

Figure 16: The system resulting after the reflection Uy , over the vector |¢') and
changing the phase of event w. The transformed state |11) is shown by the red

arrow.

Next the oracle performs an additional reflection U, = 2|s) (s| — I about the
state |s), resulting in the state U,U} |s) which can be seen in Figure 17 to show the
amplitude w is greatly increased and other amplitudes decreased. The action of the
reflection U/, can be thought of as a reflection about the average amplitude. Since
the first reflection lowered the average amplitude, the second transform boosts the
negative amplitude |w) to roughly three times its original value while decreasing the
other amplitudes. The reflections can be repeated multiple times to increase the

probability amplitude even further. After ¢ steps the system will be in state
|ve) = (UUy)|s) - (63)

The relevant question is how many times the rotation has to be applied, and

in the literature the answer has been found out to be roughly +/N times. The

amplitude of |w) should grow linearly with the number of applications ~ tN—1/2

[35]. In the case of multiple solutions M the amount of rotations is 1/ (N/M) [2].
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Figure 17: The system after the second reflection U,. The amplitude of |w) is

increased as other items have their amplitudes reduced in response.

Due to the fact that multi-control Z-gates are not implemented as native oper-
ations but instead as a series of CNOT operations in physical quantum computers,
the real experiments deteriorate aggressively with the number of qubits taking part
in multi-control Z-gates. The physical implementation of Grover’s algorithm on
IBM'’s Quantum systems are limited to at most 3 qubit states due to growing error
rate in circuits with more qubits. However, the algorithm can be scaled up to 32
qubits on the QASM-simulator with little error. The implementation of a phase
oracle for single and two solution cases can be found in an article by C. Figgatt et
al [36], where an alternative style of oracle is also covered.

In the experiment with 3 qubits gp,q1 and ¢z, a random state |w) = |110) is
chosen as the secret state to be found. The oracle in the circuit shown in Figure 18
iz split into two parts between the first and third barriers.

The qubits are initialised in an uniform superposition state by applying a Hadamard

transformation to each qubit

) = |[+++) (64)
1

V23

The oracle starts with the first rotation Uy in order to switch the phase of state

(J000) + [001) + - - - + |111)).

|w) = |110) to negative, which is done via a combination of X-rotation gates and a
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Figure 18: Grover’s algorithm circuit. The rotation Uy for state |w) is between the

first two barriers. The second rotation U, is between the second and third gate.
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Figure 19: The results of Grover's algorithm comparing the simulation to the results

from the real quantum computer, with 8192 shots on each.

multi-controlled Z-rotation on qubit g gate using qubits g; and ¢, as controls for

the MCZ

1) = X(g2)(MCZ(qo, ¢1]g2)(X(g2) [t0})) (65)
1
— \f—guuuu} +1(001) + - - - — [110) + |111)).

The second rotation consists of identical multi-controlled Z-operation sandwiched
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between Hadamard and X-rotation gates on each qubit

[Ya) = H(g:)X(q:)(MCZ(go, ¢1/g2)(X () H(g:)(l11))) (66)
%\,@(_4 |000) — 4]001) + - - — 20|110) — 4|111)),

where all states except state |w) = |110) have amplitude of —4/(164/2) and i =
0,1,2. This agrees with the measurements seen in Figure 19, where the amplified
state has a theoretical probability of [—20/(16v/2)]? = 78.125% and the rest occur
with probability [—4/(164/2)]> = 3%. The real experiment fails to achieve state
|w) on nearly on half the measurement outcomes. Further testing with more ampli-
tude amplifications failed to increase the probability of the result, instead the circuit
was more prone to noize. Noise was most likely due to how the multi-control Z-gate
iz implemented as a series of qubit gates.

The measurements show a bias towards the last qubit ga being in state |0). This
phenomenon has occurred in previous experiments, showing nonuniformity between
results. The calibration data of the IBM quantum computer Qurense and detailed
measurement counts can be seen in the Appendices A and B. The code for this

experiment can be found on GitHub [30].

2.6 Repeatable measurements with Liiders instrument

In their paper [37] Bullock and Heinosaari studied the use of repeating of an unsharp
measurement on a quantum system and were able to increase the probability of
successfully distinguishing states, whilst showing that this improvement does not
occur with every increase in the number of measurements. The reason for this type
of setup is that projective measurements, which distinguish orthogonal states, are
physically impossible to implement on quantum systems, but this can be overcome
with repeated non-invasive measurements [38]. However, unsharp measurements can

allow sequential measurements without complete loss of the initial state.
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This repeated unsharp measurement scheme can be achieved using a measure-
ment model with its associated instrument being a Liiders instrument. Consider a
binary observable A : + — A(+) with corresponding Liiders instruments T%(p) =
A(X)12pA(X)1/2. Suppose that after measuring A on p and obtaining outcome z, a
second measurement of A is performed on the same system and an outcome z; is reg-

istered. The probability of obtaining outcomes x; and x; over the two measurements
is given by
P{'Tls .'I-‘g] = tl‘[AI{.‘I.‘g]Ifi [ﬂj]
= tr[A(z)A(z1) 2 p A(zy)"?]
= tr[A(z1) YV Al22)A(z1)'? p]

= H[Atzj (:“:1: 332] P]:

where A?) is the effective two-step observable measured. By using induction an

n-step observable A(n) : {£}™ — £(H) can be constructed as

APz, . ) = VAl . AV A(Ta_1) Alz,) VA(T._y) .../ Alzy). (67)

Since A(—) = I — A(+) it follows that these effects commute, as do their square root

operators 1/A(+) and /A(—), and so (67) can be rewritten as
AR (L xy) = Alzy) ... Alz,). (68)
The success probability PY), of distinguishing states with observable A is given by
L
(1) — — Al
Pl = 5 3o pAW). (69)

In their paper Bullock and Heinosaari provided a general formula for the success

probability of distinguishing between two states p, and p_ satisfying

A(L)pe = Apx, Alx)pr = (1-A)ps, (70)
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for a binary observable A in the case of an odd number n of repetitions of sequential
Liiders measurements the success probability is given by

]

P — % 1+ Z G’) (AL =A™ = A" (1= X)) |, (71)

s

and in the case of an even number of repetitions the sum index would start from
i =mn/2+1. This result is generalised as a “rule of three”, where every odd measure-
ment after the third measurement provides an increase in the success probability
in distinguishing between two orthogonal states with a binary observable whilst the
probability does not change for even numbers of measurements.

By using the general solution for the success probability a practical progression of
the probability can be predicted with a theoretical baseline which can be calculated
for the range of the experiments, in this case from 1 to 21 measurements or a set of
circuits ranging in size from 2 to 22 qubits in a simulation. The upper limit of the
range of simulations is determined only by the allowed calculation time provided by
IBM on their QASM system, and in this case it is 22-qubit circuits for simulations
using a simple bit flip noise model.

The simulation was chosen over a real quantum computer in order to overcome
the physical limitations present in the free access machines. The experiment scheme
used requires one qubit to be connected to another via a CNOT-gate for every
Liiders measurement performed, with Melbourne being the only machine providing
access to more than 4 measurements but not having the ideal layout. In trial runs
with Melbourne the SWAP actions between qubits needed to overcome the physical
layout were, even for 4 sequential measurements, too error prone to be usable.

The measurement can be implemented by coupling the system to an additional
one via a unitary measurement. Out of the possible computational bases, the op-
AX @Y

erator e was chosen. The operator is calculated by using equation (2) which
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leads to the form

( cos A 0 1] Siﬂ)&\

. 0] cos A —sin A 0
AXeY _ . (72)

0 EinA  cosA 0

k— sinA 0 0 cos )h)

Qiskit provides a function for creating arbitrary unitary operations. The amount
of universal operations on the circuit needed in order to realise the operator varies
depending on the variable A: for example with A = /4 the two-qubit operator

transforms a state |[++) as follows

XY 141y = (cosAI +isinAX @ Y) [++) (73)
= cosA|++) +isinAX |[+) @Y |+)
= cosA|++) +isinA |[+) @ (—i|-))
= cosA|++) +sin A |+—)
= |+) ®(cosA[+) +sinA[-))

— |+}®( ! (cos A +sin A) |D}+L(msk—51nkj| })

= (ﬂ' (14 sin2A) |0} + «”' 1 +sin2X) |1)

= |-|-:lI Cm|D +Cr1|1

whereas letting A = /4 results in

X L — 1@ (J; (1 + sin — ) |0) + % (1 — sin ) |1}) (74)

in other words e'TX®Y |+4) = |+) @ |0).

In the circuit there are two qubit registers; the first register has one qubit that
iz prepared with a Hadamard gate, and a second register consisting of n qubits

prepared with Hadamard gates. The operator goes through pairing the first register
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one at a time with every qubit in the second register performing n measurements, and
the resulting success probability is calculated from the final measurement performed
on the second register in the circuit. The two other operations ¢**®% and ¢*X®Z
were discarded for this experiment due to the need for single gate rotations after the
operation and before measuring the second register.

As an example, a four-qubit circuit with one qubit gg in the first register and
the other three g1, g2, gs in second register will perform three Liiders measurements.
The system in state [p) = |go, G1,72,¢a) = |0000) is initialised with Hadamard gates
on each qubit

1) = H®0000) = |+ + ++). (75)

Next the Liiders instrument ¢**®Y is applied on the qubits in the second register

using the first register as control

|,¢2} — X083 A Xo®Ys i\ XoBY; |+ + ++} (Tﬂ)
= |[+) @ (|0) +01]1)) ® (a0 [0) + a1 |1)) @ (0 [0} + 01 |1))

= |[+)® |af |000) + odas(|001) + |010) + |100))

+apai (|011) + |101) + [110)) + o 111) |,

where the notation from the last line in (73) is used for probability amplitudes
ap and «;. By adding more qubits to the second register there will be more unique
coefficients representing the states, but they will behave in the exact same manner
with one coefficient ag for a |0) in the state and a coefficient a4 for each |1). The
guccess probability of measuring 0 with the post-processed binary observable is the
gsum of the squares of probability amplitudes of states with more zeros, with the
cases containing an equal number of ones and zeros being divided equally between
both binary cases.

As shown previously there exist special cases such as A = m/4 in which the

operator used will always produce the result zero, which allows us to limit A €



(a) Two sequential measurements.
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(b) Five sequential measurements.

Figure 20: Two example circuits used in the repeated measurements experiment.

[0, w/4] for the range of values to be tested.

The circuits produced have a simple scalable structure as can be seen in Figure
20, and our interest lies in how the success probability acts for different values of
A in circuits with a different number of Liiders measurements performed. Two sets
of simulations will be performed for each variable: an ideal simulation without noise
modelisation and a simulation with a simple bit flip noise model. The graphs pro-
duced by these two simulations are compared with a graph calculated with equation
(71).

The bit flip error model used here flips the state of a qubit from |0) to |1) and
vice versa. This flip is applied with a 5% error to all single qubit operations, and on
two-qubit operations it applies the single qubit error on both qubits. In addition,
on the final measurement performed on qubits there is a 10 % possibility of a bit

flip on each qubit measured.
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Figure 21: The results from Liiders instrument simulations compared with a graph

produced with the prediction (Equation (71)) for different values of A. For each

sequential measurement, the corresponding circuit was ran twice resulting in total

of 16384 shots from which the success probability was calculated in post processing.
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Experimental data from 1 to 21 repeated measurements for different A can be
seen in Figure 21, each circuit representing a number of sequential measurements
was ran twice resulting in 16384 shots per circuit, from which the success probability
for each number of sequential measurements was counted in post processing. The
guccess probability does increase with repeated measurements in both simulated
cases as was predicted by Bullock and Heinosaari in their paper.

The simulations show similar behaviour with the theoretical prediction: every
odd-numbered sequential measurement increases the success probability. As the
value of A decreases from 7 /4 to 0 the ideal simulation and the theoretical model
start to deviate from each other, this can best be seen with A = 7/32. At A =0 both
simulations maintain the success probability of 50% within 7% accuracy. Simulation
with a simple bit flip noise model produces exactly the same behaviour as the model
with lower values for success probability when A > 0, with the highest deviation
being 10% but mostly staying within 5%. Note that for the fluctuations from 50%
guccess probability when A = 0 in the ideal case could be evened out with more
ghots.

The resulting counts from the simulations are not included as an appendix. The
number of possible events in a circuit with 21 qubits measured is 22!, and the

collection of all possible events for all the circuits in the range of 2 to 22 qubits is

21

i=1

this chapter or by using the code found on GitHub [30].

2t = 222 _ 2. But the simulations can be reproduced with the information in

Even if no available quantum computer had the necessary layout for this exper-
iment, these simulated results give an encouraging view of how sequential unsharp
measurements can be used to increase the probability of making a successful mea-
surement when the measurement process is prone to errors, even if it does impose the
need for more qubits as a consequence. The function for calculating the prediction

of the success probability for sequential measurements can be found in Appendix C.
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3 Conclusions

In this thesis a number of quantum algorithms were investigated using IBM’s quan-
tum systems. There are several quantum and classical-quantum hybrid algorithms
that were not included, such as Shor’s factoring algorithm, the quantum phase esti-
mation algorithm and triangle finding algorithm. The algorithms here were chosen
for various reasons, with significant factors being the ease of implementation and
historical relevance. The investigation into repeatable measurements was guided by
Bullock and was a learning experience and an opportunity for the author to imple-
ment something new and that provided a proof of concept for Bullock on his work
with Heinosaari [37].

In the first experiment a technique, impossible for non-quantum systems, gave
insight into how quantum computation gives access to one new method, although
not without its drawbacks. The state teleported via quantum teleportation is altered
in accordance with the no cloning principle. Quantum parallelisation, used in other
experiments, allows multiple inputs to be run in parallel, but the rate of getting the
correct outcome remained statistically low in experiments. In order to overcome this
the circuits are run numerous times (here each circuit was ran 8192 times) in order
to get statistics that show how successful an algorithm really is on a IBM quantum
computer. And finally in the repeatable measurements with Liiders instrument
experiment the available quantum computers were inadequate for showing progress
in how sequential Liiders measurements with a binary observable can improve the
guccess probability over a single iteration.

In Deutsch—Jozsa, Bernstein—Vazirani and Grover’s search algorithms, where a
singular state is the desired outcome, only the constant oracle in Deutsch-Jozsa
experiment occurred with over 50% probability, while the probability for the cor-
rect answer in Grover's experiment was 49% and Bernstein-Vazirani was 44%. In

quantum teleportation and Simon's algorithm experiments with multiple projected



68

outcomes a general bias towards a qubit being in state |0) and a decreasing proba-
bility towards the measured qubits all being in state |1) was shown. This could be
the result of uneven probabilities within the Hadamard transformation or a quirk in
the final measurement.

The repeated measurements with Liiders operator show that every odd number
of unsharp measurement increases the probability of measuring successfully a binary
observable. This is a promising result if it can be applied in circuits in a practical
manner, in order to decrease the error that occurs in measurement.

As seen in the experiments, quantum computing provides an advantage over
classical methods in certain situations. In situations where quantum phenomena
cannot be utilised, quantum computers provide no advantage. This gives room
for two different approaches in the future of computation: first in some cases it
might be possible to create hybrid computing machines that utilise classical and
quantum computation methods; secondly it might be possible to find other ways
to solve some classical problems in a way that quantum phenomena can be used to
accelerate problem solving.

An interesting further study would be to research error mitigation techniques
that could help to reduce the error produced by every operation present on the
circuit. This could work in conjunction with engineering advances in reducing the

noise affecting the systems.
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Appendices

A Optimisation mappings

(a) Quantum teleportation (b) Grover’s search algorithm

Figure 22: Optimization layouts for experiments on Ourense.

(a) Deutsch-Jozsa algorithm with balanced (b) Deutsch-Jozsa algorithm with constant

oracle, oracle.

Figure 23: Optimization layouts for experiments on Yorktown.
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000080

(a) Bernstein—Vazirani algorithm.

000800

(b) Simon’s algorithm for b=1010.

000000

(c) Simon’s algorithm for b=0000.

Figure 24: Optimization layouts for experiments on Melbourne.
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B Tables for measurement counts and calibration

data

Table I: Measurement counts of events in quantum teleportation experiment.

‘000 2DT4“DDI’: 1806 ‘ ‘010’ 1838‘ ‘011°: 1745

‘100: 195 “lﬂl’: 229 “11[!’: 142 “111’: 163

Table II: Measurement counts of events in Grover's search algorithm experiment.

‘000’ 924“{}[)1’: EET“DID’: T38‘ ‘011": 4000

‘100’ 355“1(}1’: 43?“11[!’: 530‘ ‘111" 581
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Table I1I: Measurement counts of events in Deutsch—Jozsa experiment with balanced

oracle.

‘0000" : 103 |'0001" : 68 ‘0010’ : 74 | ‘0011 :193

‘0100": 71 |'0101': 159 | ‘0110": 169 | “0111":702

‘1000": 69 | ‘1001: 172 (‘1010 171 | ‘1011 :691

1100": 209 |‘1101°: 751 (‘1110 879 | ‘1111": 3711

Table IV: Measurement counts of events in Deutsch—Jozsa experiment with constant

oracle.

‘0000 : 6827 ‘0001’ : 84 | ‘0010 : 604 | ‘0011’ :16

‘0100": 124 (‘0101 4 |'0110%: 30 ‘01111

‘1000": 396 |‘1001": 8 |‘1010%: 42 |[‘1011':1

‘1100°: 48 ‘1101: 0 |‘1110: 6 1111 : 1

Table V: Measurement counts of events in Bernstein—Vazirani experiment.

‘00000°: 116 | ‘00001°: 175 |‘00010": 26 | ‘00011 51

‘00100": 107 | ‘00101": 646 |‘00110°: 28 |‘00111": 158

‘01000°: 6 |‘01001": 13 |‘01010': 2 |‘01011": 6

‘01100°: 8 |‘01101": 54 |‘01110": 5 |‘01111%: 14

‘10000: 133 |°10001°: 775 |‘10010°: 38 |‘10011: 216

10100: 535|°10101": 3560 | ‘10110": 132 |‘10111": 866

‘11000%: 12 |‘11001": 59 |‘11010": 6 |‘11011%: 31

11100%: 40 |‘11101: 265 |‘11110°: 7 |‘11111%: 102
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Table VI: Measurement counts of events in Simon's algorithm experiment for two-

to-one circuit.

‘00000000203 | “00000001%:18 | ‘00000010':161 | “00000011%1% | ‘0000010022 | ‘00000101166
‘00000110731 | “00000111%:127 | “00001000":110 | ‘00001001%13 | 00001010103 | *00001011"%7
‘0000110025 | “00001101%:81 | ‘00001110%:31 | ‘00001111%%4 | “00010000:15 | *00010010%:9
‘000100112 ‘000101001 ‘00010101%:11 | *00010111%9 ‘000110004 ‘000110011
‘0001101074 ‘00011011%2 ‘000111003 ‘00011101%:3 ‘00011111%:5 ‘00100000141
‘0010000120 | “00100010%:118 | ‘00100011":36 | ‘00100100%22 | “00100101%:8% | ‘00100110%17
‘00100111107 | “00101000%:99 | ‘00101001':14 | *00101010%¥& | “00101011%:6 ‘00101100717
‘0010110174 | “00101110%:13 | “00101111%:61 | ‘001100005 ‘001100012 ‘001100103
‘001100111 ‘00110101":4 ‘0011011174 ‘001110007 ‘001110102 ‘00111101%6
‘00111111":3 ‘01000000180 | ‘0100000120 | *01000010%140 ( *01000011%17 | *01000100%:26
‘01000101131 | *01000110%22 | ‘010001117125 | *01001000%119 | “01001001":14 | *01001010%101
‘01001011%:11 | “01001100%:24 | ‘01001101%:97 | “01001110%12 | “01001111%¥8 | ‘010100008
‘010100012 ‘010100109 ‘010101002 ‘01010101%7 ‘01010110%1 ‘010101119
‘010110008 ‘010110103 ‘010111012 ‘01011111%2 ‘01100000%:143 | *01100001%11
‘01100010%:111 | “01100011%:13 | ‘01100100':10 | “01100101%108 | “01100110%16 | *01100111":90
‘0110100076 | “01101001%:15 | ‘01101010':68 |‘01101011%F ‘01101100%:15 | *01101101":68
‘011011107 ‘01101111%43 | *01110000°:6 ‘011100103 ‘01110011%1 ‘011101001
011101014 ‘011101111 01111000:3 ‘011110011 ‘01111010%3 ‘01111101%3
011111111 ‘10000000199 | *10000001":26 | ‘10000010%:163 | ‘10000011%:13 | *10000100%:29
‘10000101":164 | “10000110%26 | ‘10000111%:116 | “10001000%:136 | “10001001%14 | *10001010%123
‘10001011%:14 | “10001100%:1& | ‘10001101':98 | “10001110%20 | “10001111%82 | ‘100100008
‘100100106 ‘100100111 ‘100101002 ‘1001010111 | “10010110%2 ‘1001011111
100110005 ‘10011001*:2 ‘10011010:3 ‘10011011%1 ‘100111003 ‘10011101%:4
‘100111101 ‘100111112 ‘10100000135 | *10100001%11 | “10100010°:129 | ‘1010001116
‘10100100":18 | “10100101%:81 | ‘10100110':15 |“10100111%89 | “10101000:96 | ‘101010018
10101010771 | “10101011%7 ‘10101100%:13 | *10101101%62 | “10101110°:1%7 | ‘10101111%61
10110000 :6 ‘101100102 10110101":9 ‘101101102 ‘101101114 ‘101110009
‘101110011 ‘101110104 ‘101111001 ‘10111101%2 10111110%1 ‘10111111%4
‘11000000145 | 1100000121 | “11000010":128 | “11000011%12 | ‘1100010027 |*11000101':123
‘11000110°:30 | “11000111%:111 | “11001000":123 | “11001001":6 11001010%84 | *11001011%9
11001100 :9 11001101%87 | “11001110°:13 |°11001111%81 | ‘110100007 ‘11010001%2
11010010:6 110101003 11010101%:13 | *11010111%7 110110004 ‘110110102
11011101%:10 | *11011111%:4 11100000":118 | *11100001%9 11100010%:106 | *11100011%10
‘11100100":16 | ‘1110010199 | ‘11100110':16 |“11100111%79 | ‘11101000%7&6 |*11101001%:12
1110101048 | “11101011%:13 | “11101100":8 ‘1110110179 | 11101110%8 11101111%67
11110000 :3 11110010%6 111100111 ‘11110101%4 11110111%7 ‘111110002
11111101":6 11111111%6




T8

Table VII: Measurement counts of events in Simon's algorithm experiment for one-

to-one circuit.

‘0000000054

‘00000001":56

‘00000010 TE

‘0000001153

‘0000010040

‘0000010138

‘00000110%67

‘0000011153

‘0000100041

‘0000100129

‘0000101042

‘0000101136

‘00001100%31

‘00001101%:30

‘0000111052

‘0000111133

‘0001000043

‘00010001":40

‘0001001069

‘0001001150

‘0001010042

‘0001010139

‘0001011049

‘0001011145

‘0001100030

‘0001100132

‘0001101038

‘00011011%:45

‘0001110028

‘0001110129

‘0001111031

‘0001111136

‘0010000057

‘0010000147

‘0010001065

‘0010001154

‘0010010050

‘0010010131

‘0010011041

‘0010011146

‘0010100040

‘0010100134

‘0010101036

‘0010101136

‘0010110044

‘00101101%21

‘0010111036

‘00101111%33

‘0011000049

‘0011000141

‘0011001042

‘00110011":61

‘0011010036

‘0011010134

‘00110110%:35

‘00110111%:42

‘0011100034

‘0011100137

‘0011101040

‘00111011%37

‘0011110036

‘0011110134

‘0011111031

‘00111111%32

‘0100000041

‘01000001 :38

‘0100001067

‘0100001133

‘01000100%27

‘0100010119

‘01000110%38

‘01000111%34

‘0100100027

‘0100100122

‘0100101038

‘01001011%:28

‘01001100427

‘01001101%17

‘01001110%21

‘0100111112

‘0101000035

‘0101000137

‘0101001038

‘0101001130

‘0101010034

‘0101010118

‘0101011032

‘0101011134

‘0101100027

‘01011001%:18

‘0101101040

‘01011011%33

‘0101110019

‘0101110115

‘01011110%21

0101111137

‘01100000%:31

‘0110000129

‘0110001035

‘01100011":324

‘0110010030

‘01100101%23

‘0110011037

‘0110011132

‘0110100035

‘01101001%:13

‘0110101035

‘0110101123

‘01101100%35

‘0110110116

‘01101110%21

‘0110111113

‘0111000029

‘01110001":34

‘0111001028

‘0111001121

0111010036

‘01110101%33

‘0111011028

‘01110111%:16

‘0111100014

0111100118

‘01111010%36

0111101116

‘01111100%13

0111110112

‘01111110%21

‘0111111132

‘1000000052

‘10000001":34

1000001070

‘10000011":48

‘10000100°:46

‘1000010127

‘10000110%57

‘10000111 ":34

‘1000100038

‘1000100121

‘10001010%:51

‘10001011%:42

‘1000110036

‘10001101326

‘1000111032

‘1000111119

‘1001000040

‘1001000140

‘1001001068

‘1001001142

‘1001010034

‘1001010132

‘1001011044

‘10010111":40

‘1001100038

‘10011001%:28

‘1001101038

‘1001101143

‘1001110027

‘10011101":34

‘1001111034

‘10011111%:36

‘10100000°:45

‘1010000142

‘1010001056

‘1010001136

‘1010010047

‘1010010129

‘1010011042

‘10100111%:36

‘1010100041

‘1010100133

‘1010101048

‘1010101131

‘1010110037

‘1010110139

‘1010111030

‘10101111%36

‘1011000040

1011000143

‘1011001045

‘1011001134

‘10110100%31

‘10110101%:28

‘1011011038

‘10110111":38

‘1011100029

‘10111001":32

‘10111010%:42

‘1011101138

‘1011110026

‘10111101%:18

‘10111110%36

10111111%:17

1100000037

‘11000001":22

11000010":48

‘11000011":50

11000100356

1100010123

1100011038

1100011129

‘1100100029

11001001%:15

‘1100101030

1100101139

1100110021

110011019

11001110%33

‘11001111%:32

1101000029

‘1101000119

1101001048

11010011%27

1101010014

1101010115

‘1101011036

11010111%30

‘1101100021

1101100132

1101101029

1101101137

1101110016

‘1101110112

11011110%36

‘11011111%16

1110000030

11100001":34

1110001039

1110001128

‘1110010036

11100101%17

‘1110011031

11100111%33

11101000324

1110100130

1110101030

‘1110101123

11101100%21

‘1110110111

11101110%21

11101111%17

1111000026

11110001":36

‘1111001043

11110011%30

‘1111010016

11110101%33

11110110%23

1111011136

1111100032

‘1111100122

11111010%33

‘1111101119

11111101%:8

1111111010

11111111%:18
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C Function for calculating the success probability

# Heturns the success probability of n sequential measurements for a given

Lambda
def successProbabilityPrediction(n,L):

i = int{({n+1)/2)
Lambda = (1 + np.sin(2+L))/2
gumma = 0

while(i <= mn):

binl = comb(n,i,exact=True)
powerl = Lambda##i%(1-Lambda)#+*(n-i)
power2 = Lambda## (n-i)+(1-Lambda)+#i

tmp = (binl*(powerl-power2))

summa = summa + tmp

i+=1
P = 1/2+(1+summa)

return p
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