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A methodology to explore quantum entanglement phenomena on near-term quantum 

computers is presented. The method combines two prominent Noisy Intermediate- 

Scale Quantum (NISQ) algorithms, the variational quantum eigensolver (VQE) and 

pairwise tomography, to extract pairwise quantum properties from quantum many- 

body systems. VQE prepares a parametrized quantum circuit and optimizes it 

to represent the ground state of the system under study. Pairwise tomography 

provides an exponential decrease in the required measurements to construct two- 

qubit reduced density matrices. 

Two pairwise quantities, mutual information and concurrence, are used to construct 

complex network representations of the system. Then, network properties can be 

used to analyze the entanglement structures. Three quantum spin chains are ex- 

plored: the Ising model, the spin-1/2 XX model and the XXZ model. The method- 

ology is benchmarked with known results and new results for the XXZ model are 

presented. 

Applications for the study of fundamental physics are explored. More specifically, 

emergent space from quantum entanglement is studied. Mutual information be- 

tween parts of a redundancy-constrained system is used to define a metric that is 

then embedded into a smooth manifold embedded in RD. Effects of entanglement 

perturbations on the geometry of the embedding are studied. 

Keywords: quantum computing, quantum computer, variational quantum eigen- 

solver, VQE, pairwise tomography, NISQ, entanglement, emergent space, complex 

networks, quantum simulation
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Tässä Pro Gradussa esitetään metodologia, jonka avulla voidaan tutkia kvant- 

tilomittumisilmiöitä lähitulevaisuuden kvanttitietokoneilla. Tämä metodi yhdistää 

kaksi merkittävää kvanttialgoritmia, jotka ovat Variaationaalinen KvanttiOminais- 

arvoLaskija (VKOL) (eng. Variational Quantum Eigensolver (VQE)) ja parittainen 

kvanttitilatomografia (eng. pairwise quantum state tomography). Nämä algorit- 

mit on suunniteltu lähitulevaisuuden meluisille keskikokoisille kvattitietokoneille 

(MEKEKVA (eng. noisy intermediate-scale quantum (NISQ)) sopiviksi. VKOL 

valmistaa parametrisoidun kvanttipiirin, jonka se optimoi edustamaan tutkitta- 

vana olevan systeemin perustilaa. Parittainen kvanttitilatomografia laskee expo- 

nentiaalisesti tarvittavien mittausten määrää, jotta systeemin perustilasta saadaan 

rakennettua redusoidut tiheysmatriisit kaikille kahden kubitin pareille. Näistä re- 

dusoiduista tiheysmatriiseista voidaan laskea parittaisia ominaisuuksia systeemin 

perustilalle. 

Kahta parittaista ominaisuutta, yhteistä informaatiota (eng. mutual information) ja 

konkurrensia (eng. concurrence), käytetään muodostamaan systeemille kompleksiset 

verkostoesitykset. Näiden verkostojen ominaisuuksilla voidaan sitten analysoida 

kvanttilomittumisrakenteita. Kolmea kvanttispiniketjua tutkitaan: Ising mallia, 

spin-1/2 XX mallia sekä XXZ mallia. Tässä tutkielmassa esitetyn metodin suori- 

tuskykyä testataan vertaamalla saatuja tuloksia jo tunnettuihin tuloksiin. Sen 

lisäksi, myös uusia tuloksia esitetään XXZ mallille. 

Metodin käyttökohteita fundamentaalisen fysiikan tutkimuksessa tutkitaan myös. 

Tutkimuksen kohteena on emergentin avaruuden syntyminen kvanttilomittumisesta. 

Redundanssirajoitettujen (eng. redundancy-constrained) systeemien välistä yhteistä 

informaatiota käytetään luomaan metriikka, joka upotetaan sileään monistoon, joka 

on upotettuna RD:hen. Kvanttilomittumisen häiriöiden vaikutusta upotuksen ge- 

ometriaan tutkitaan. 

Avainsanat: kvanttitietokone, kvanttilaskenta, variaationaalinen kvanttiominais- 

arvolaskija, parittainen kvanttitilatomografia, kvanttilomittuminen, emergentti 

avaruus, kompleksiset verkostot, kvanttisimulaatio
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Introduction 

In the age of developing quantum technology, advances in hardware and algorithms 

are both important. However, hardware is usually the limiting factor and algorithms 

have to be designed while keeping the limitations of hardware in mind. Through 

clever design much can still be achieved and, in this thesis, I will introduce a new 

method that combines existing algorithms in order to study quantum entanglement 

phenomena in many-body systems efficiently. 

A quantum mechanical model of Turing machine was proposed by Paul Benioff 

in 1980 [1] but the idea to simulate systems that classical computers could not by 

using quantum computers came from Yuri Manin and Richard Feynman in 1981 [2], 

[3]. The field did not kick off until Peter Shor developed an algorithm for integer 

factorization, a threat to RSA-encryption, which would beat even the best classical 

computers at the task [4]. 

Unfortunately, we are still far away from utilizing Shor’s algorithm and many 

other similar algorithms that are designed to be used with large amounts of fault- 

tolerant (error free) quantum bits, qubits. The advantages brought by the quantum 

mechanical properties of quantum bits are easily destroyed by noise and environ- 

mental effects. 

In the near term era we are forced to rely on Noisy Intermediate-Scale Quantum 

(NISQ) devices and algorithms designed specifically to bypass the limitations of 

the current state of the art quantum technologies [5]. The development of these 

algorithms has been swift and we are nearing the point when we achieve quantum 

supremacy on a problem with real-life consequences. It is likely that in the next five 

years some NISQ algorithm will be used in drug or chemical development [6, 7]. 

Meanwhile, the same algorithms can be used for fundamental research of physics. 

Development in quantum information and the theory of quantum many-body sys- 

tems is also in acceleration. A recent approach is the study of emergent phenomena
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that cannot be described by laws of reduced parts of the system but instead need 

a holistic view of the whole system. Interesting examples are network entangle- 

ment structures in quantum many-body systems and space emerging from quantum 

entanglement both of which will be studied in this thesis [8, 9]. 

The goal of this thesis is to introduce a method that one can use for research of 

various different quantum entanglement phenomena. The study of these phenom- 

ena quickly becomes classically intractable as the systems size grows beyond trivial 

problems. Also, classical simulations are restricted to problems with low amount of 

entanglement. Here, the method is proven to work with examples of systems with 

small number of qubits. The method is scalable and as the development of quantum 

hardware proceeds, it can be used with systems of arbitrary sizes and amounts of 

entanglement. 

The method consists mainly of two parts: a Variational Quantum Eigensolver 

(VQE), which is used to find the ground state of the system under investigation, and 

pairwise tomography, which can efficiently extract pairwise quantum information 

from this ground state [10, 11]. Both algorithms have been recently developed and 

their efficiency can still be improved. Although many advanced versions exist for 

VQE, only the simplest version of it will be considered here. 

The structure of this thesis is the following. The first chapter will introduce 

the tools that are needed to construct the whole method. Quantum computing will 

be introduced followed by VQE and pairwise tomography. In the second part of 

this thesis, this method is then used, as a proof of concept, first to explore network 

entanglement structures of quantum many-body systems and then to study quantum 

gravity and space emerging from entanglement.
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1 Quantum computing now and in the near future 

We live in the age of information technology where mobile phones, computers and 

other electric devices all work on the principle of a binary computation system, 

bits. Even though technology keeps advancing and faster computers with more 

computing power are built, they all are still just physical representations of the 

same computation model called Turing Machine. Being essentially the same model, 

they all share the same limitations and the classes of problems they can calculate. 

On the other hand, in the world of physics, we are exploring this new frontier of 

quantum information and quantum entanglement. A great question then arises: are 

quantum systems computable with the Turing Machine model? We know that some 

systems are, but generally the answer is not yet known. The general consensus 

though is that all systems are not and the essence of this is captured in the quote 

from Richard Feynman in 1981: "Nature isn’t classical, dammit, and if you want 

to make a simulation of nature, you’d better make it quantum mechanical, and by 

golly it’s a wonderful problem, because it doesn’t look so easy. "[3] And so the idea 

of quantum computing was born. 

Instead of bits, as in classical computers, we now have quantum bits as our fun- 

damental information-carrying components [5]. These quantum bits, which are also 

called qubits, are abstract mathematical objects that can be realised in various phys- 

ical settings. The most common and also promising technology is superconducting 

circuits, which are cooled down to near absolute zero to minimize environment inter- 

action. This technology is used by IBM in their quantum computing platform IBM 

Quantum Experience, which is available as a cloud service and is used through- 

out this thesis. Other possible technologies for quantum computers are based on 

quantum optics and trapped ions.
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1.1 The model of quantum computing 

Quantum computing is based upon manipulation of quantum bits, qubits. A qubit 

lives in 2 dimensional Hilbert space where the basis vectors in Z-base are generally 

denoted | 0 ⟩ and | 1 ⟩ . These can be used analogously to classical bits for computation 

but the quantum advantage of this model lies in states that are in superposition. A 

superposition of these basis states is just a linear combination of them

 

| ψ ⟩ = α | 0 ⟩ + β | 1 ⟩ (1)

 

where α and β are called amplitudes of the corresponding basis states. The state 

can also be presented in vector notation as 

(︁
α 

β 

)︁
. A qubit stays in superposition until 

measurement if not disturbed and then the probability to measure | 0 ⟩ is given by 

the Born rule P( | 0 ⟩ ) = |⟨ 0 | ψ ⟩|2 = | α |2 and similarly P( | 1 ⟩ ) = |⟨ 1 | ψ ⟩|2 = | β |2. A su- 

perposition of states allows for computational advantage with parallel computation. 

However, the measurement process in the end results in only one measurement result 

and the superposition state is destroyed in the process. Therefore, all the informa- 

tion encoded in the superposition of the state is not available at once and clever 

manipulation of the interference is required to obtain computational advantage. 

The other quantum resource, in addition to superposition, is quantum entangle- 

ment. Entanglement means correlation between states on a quantum level which is 

quite different from classical correlation. Imagine a book with 100 pages. If the book 

were classical, you would learn 1% of its contents by reading one page. If the book 

instead were quantum with information spread in the entanglement between all the 

pages, you would learn nothing by reading just one page. To obtain information 

from this quantum book you would need to observe the contents of many pages at 

once [5]. An example of an entangled state is

 

| Ψ ⟩ = 

1

 

√

 

2
( | 00 ⟩ + | 11 ⟩ ) . (2)

 

Notation | 00 ⟩ is a shorthand for the tensor product of two qubits | 0 ⟩ ⊗ | 0 ⟩ = | 0 ⟩| 0 ⟩ =
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| 00 ⟩ , which is a state with Hilbert space of 2N = 22 = 4 dimensions, where N is 

the number of qubits. The state (2) is entangled in such a way that if qubit one is 

measured we know immediately the state of the second qubit to be the same as the 

measurement value of the first, and vice versa. 

The amount of entanglement is usually the key aspect determining whether a 

quantum state can be simulated on a classical computer or not. Simulating a quan- 

tum system requires storing the information of its quantum state into a memory 

and then using it in calculations, e.g., how the state evolves in time. In a highly 

entangled state, the amount of amplitudes that one needs to store increases as 2N , 

so a system of just a few hundred qubits would require more bits than there are 

atoms in the observable universe [5]. Therefore highly entangled systems with non- 

trivial amount of qubits can not be simulated efficiently with classical computers. 

For systems with low entanglement there exist many techniques to approximately 

simulate them such as Tensor Networks using Matrix Product States (MPS)[12]. 

The state of the system does not provide all the interesting information. If one 

wants to know the energy of the system and how it evolves in time then more is 

needed. The Hamiltonian of a given system encodes all this critical information. 

In addition to characterising physical systems, other problems can also be encoded 

into a Hamiltonian form such as optimisation problems. [13] 

There are broadly two ways in which a quantum computer can be used. The first 

one is the simulation of quantum systems which can also be divided into analog and 

digital quantum simulation. In analog quantum simulation the problem Hamiltonian 

is mapped to the Hamiltonian of the system performing the computation. The 

problem is then run on the quantum simulator and the result is mapped back to the 

original problem. This method is limited by the class of system Hamiltonians that 

are possible to be simulated on a given analog simulator. Instead, digital quantum 

simulators can simulate any physical systems regardless of its Hamiltonians. The
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problem is mapped to the discrete building blocks of the quantum simulator such 

as quantum gates in the quantum circuit model. [13] 

The other use of quantum computers is different algorithms. The two well-known 

examples are Shor’s algorithm for integer factorization and Grover’s algorithm for 

database searching. These belong to computation complexity class Bounded-error 

Quantum Polynomial-time (BQP) for which there does not yet exist efficient clas- 

sical algorithms and therefore these algorithms offer speed-ups compared to their 

classical counterparts. The speed-up with Grover’s algorithm is just quadratic, but 

with Shor’s algorithm, one can get exponential speed up, which is why it is often in- 

troduced when discussing possible quantum computing advantages. However, these 

algorithms are not yet actually usable for interesting problem sizes because they 

need large amounts of fault-tolerant qubits. A fault-tolerant qubit is free from all 

noise coming from environment and errors occurring during computation, which is 

not achievable with current state-of-the-art technology. Methods to counter qubit 

errors exist, called quantum error correction codes, but they all rely in huge over- 

heads of physical qubits. For context, factorisation of a 2084 bit integer with Shor’s 

algorithm using a planar quantum error correction code would take 8 hours and use 

20 million noisy qubits [14]. The current state-of-the-art quantum computer is 65 

noisy qubits [15]. 

1.1.1 NISQ era 

Constructing a qubit with desired properties is challenging. The qubits need to be 

sufficiently protected from environment to preserve the quantum information. At 

the same time, the qubits are required to strongly interact with other qubits in order 

for us to perform quantum computation with them. We need to be able to control 

the qubits and, in the end, measure them. Different physical approaches are better 

at dealing with these requirements than others, but it is hard to satisfy all of them.
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In the far future, all these can most likely be achieved, but in the near future, we 

have to make the best of what we have available. [5] 

This near term quantum computing era is described by the term coined by John 

Preskill: NISQ , which stands for Noisy Intermediate-Scale Quantum . In this era, we 

will have access only to quantum computers with numbers of qubits ranging from 

50 to few hundred. 50 qubits itself is a significant milestone because an entangled 

quantum system with 250 amplitudes is more than the most powerful existing su- 

percomputers can store and compute. However, the qubits are noisy, which greatly 

limits the power of these quantum computers. The error rate per two-qubit gates in 

best superconducting circuit hardware is above 0 . 1% [16]. This limits the length of 

computable quantum circuits around 1000 gates, as the noise accumulates in longer 

circuits and overwhelms the signal making the quantum information unreadable. 

The execution time of these gates also matters and long computation times also 

lead to decoherence of results. Finally, the physical layout of the qubits also affect 

how the qubits can interact with each other. Keeping these in mind we can design 

algorithms suitable for current quantum devices. [5] 

1.1.2 Circuit model of quantum computation 

Before discussing NISQ algorithms, I will first explain the general circuit model of 

quantum computation. Other models such as adiabatic quantum computing and 

one-way quantum computing exist, but the circuit model is the most widely used 

and it is the one used by IBM’s quantum computers. The quantum circuit model is 

somewhat analogous to classical electrical circuits, as it consists of wires and logical 

gates. An example circuit is shown in Figure 1. The computation according to the 

circuit diagram advances from left to right. Each line represents a qubit and its 

evolution, and the elements on the line are the logical actions applied on the qubit. 

The line is not a physical wire, but can instead describe the passage of time or the
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Figure 1: An example of a quantum circuit that creates one of the Bell states and 

measures it. First, the qubits are initialized in the | 01 ⟩ state. Then, a sequence of 

quantum gates are applied and the state becomes 

1

 

2
( | 00 ⟩ − | 11 ⟩ ) . The dashed line is 

just a barrier for visualization purposes. In the end, both qubits are measured, and 

the results are stored into classical bits. [18] 

movement of a particle through space. A quantum computation in the circuit model 

begins with the initialization of the qubits, followed by an arbitrary amount of gates 

applied to the qubits, and the qubits are finally measured. [17] 

The quantum circuit is first initialized to some initial state. Generally it is 

initialized in the computational basis state as the state consisting of all | 0 ⟩ s. So, for 

a system of N qubits, the initial state is the product state | 0 ⟩⊗ N = | 0 ⟩ ⊗ . . . ⊗ | 0 ⟩ 

N times 

. 

Other initial states can be prepared by using quantum gates. Another common 

initial state is the state | + ⟩⊗ N , where the state of one qubit | + ⟩ = 

1

 

√

 

2
( | 0 ⟩ + | 1 ⟩ ) is a 

balanced superposition of the computational Z-basis. In the X-basis, states | + ⟩ and 

|−⟩ form the basis set, where |−⟩ = 

1

 

√

 

2
( | 0 ⟩ − | 1 ⟩ ) . [17] 

After the initialization, the state is then modified by different quantum gates. 

The set of gates that are physically available depend on the physical quantum com- 

puter in use and they are commonly one-qubit and two-qubit gates, i.e., they act 

on one qubit and two qubits at a time, respectively. However, we can perform any 

arbitrary unitary quantum operation if the available set of gates is universal [17]. A
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Operator Gate Matrix

 

Pauli-X (X)

 

⎡ ⎣ 

0 1 

1 0 

⎤ ⎦ 

Pauli-Y (Y)

 

⎡ ⎣ 

0 − i 

i 0 

⎤ ⎦ 

Pauli-Z (Z)

 

⎡ ⎣ 

1 0 

0 − 1 

⎤ ⎦ 

Hadamard (H)

 

1

 

√

 

2 

[︃ 

1 1 

1 − 1 

]︃ 

Controlled Not (CNOT, CX)

 

⎡ ⎢⎢⎢⎢⎢⎢⎢⎣ 

1 0 0 0 

0 1 0 0 

0 0 0 1 

0 0 1 0 

⎤ ⎥⎥⎥⎥⎥⎥⎥⎦ 

Controlled Z (CZ)

 

⎡ ⎢⎢⎢⎢⎢⎢⎢⎣ 

1 0 0 0 

0 1 0 0 

0 0 1 0 

0 0 0 − 1 

⎤ ⎥⎥⎥⎥⎥⎥⎥⎦ 

SWAP

 

⎡ ⎢⎢⎢⎢⎢⎢⎢⎣ 

1 0 0 0 

0 0 1 0 

0 1 0 0 

0 0 0 1 

⎤ ⎥⎥⎥⎥⎥⎥⎥⎦ 

Table I: Set of important one-qubit and two-qubit gates with their gate and matrix 

representation. 

qubit gate U is unitary if U 

† U = I , where U 

† is the adjoint of U and a set of gates is 

universal if any quantum operation can be approximated to an arbitrary precision 

by a finite combination of those gates, as implied by the Solovay-Kitaev theorem 

[19]. 

The simplest one-qubit gate is the X-gate, which switches | 0 ⟩ to | 1 ⟩ and vice 

versa. The X-gate is also called the Pauli-X operator, and we can also use Pauli-Y 

and Pauli-Z operations as gates. Another important one-qubit gate is the Hadamard 

gate H which takes the state | 0 ⟩ to 

1

 

√

 

2
( | 0 ⟩ + | 1 ⟩ ) and | 1 ⟩ to 

1

 

√

 

2
( | 0 ⟩ − | 1 ⟩ ) . Some impor- 

tant one-qubit and two-qubit gates are presented in Table I along with their matrix 

presentations. In this thesis, we also need rotation gates that can be parameterised.
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A rotation of the state vector about the z-axis in Bloch sphere representation is 

given by the gate Rz( θ ) = exp( − iZ θ / 2) . The matrix representation for it and other 

rotations are, following [17],

 

Rx( θ ) = exp( − iX θ / 2) = 

⎡ ⎢⎣ 

cos( θ / 2) − i sin( θ / 2) 

− i sin( θ / 2) cos( θ / 2) 

⎤ ⎥⎦ 

, 

Ry( θ ) = exp( − iY θ / 2) = 

⎡ ⎢⎣ 

cos( θ / 2) − sin( θ / 2) 

sin( θ / 2) cos( θ / 2) 

⎤ ⎥⎦ 

, 

Rz( θ ) = exp( − iZ θ / 2) = 

⎡ ⎢⎣ 

exp( − iθ / 2) 0 

0 exp( iθ / 2) 

⎤ ⎥⎦ 

. 

(3)

 

From two-qubit gates the most important one is the controlled-NOT gate (CNOT). 

In the CNOT-gate, one qubit is the control qubit and the other one is the target 

qubit. If the control qubit is in the state | 0 ⟩ , the target qubits stays unchanged and 

if it is in the state | 1 ⟩ , the target qubit flips. In the circuit representation, the control 

qubit is marked as a filled dot and the target as an open circle, as seen in Figure 

I. Other gates can also be controlled , e.g., controlled-Z gate and controlled- Ry( θ ) 

gate. SWAP gate switches the place of two qubits. 

To obtain classical information from the quantum computation, the qubits are 

measured in some chosen basis. Usually, all qubits are measured at the end but, 

technically, they can be measured at any point during the computation. The mea- 

surement process collapses the quantum state and destroys the information stored 

in its superposition. The measurement is usually performed in the Z-basis but, by 

applying suitable gates before the measurement, any other basis can be chosen. The 

results are stored in classical bits and can then be analysed or used in subsequent 

conditional gates. [17] 

The quantum computing platform used in this thesis is Qiskit, developed by IBM 

[18]. Qiskit provides the methods to create and perform simulations with quantum 

circuits either by using simulators on a local computer or real quantum devices
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available in the cloud. Qiskit is provided as an open-source python package and 

includes many libraries that include different algorithms and tools. There are es- 

sentially two different kinds of local simulators. The statevector simulator simulates 

the ideal computation of a quantum circuit without any error or "shot noise", i.e., 

statistical fluctuations from limited number of measurements. The qasm simulator 

mimics more accurately the execution of a real quantum device, as it samples with 

finite amount of shots from the probability distribution of the quantum circuit which 

can lead to errors due to statistical fluctuations. It is also possible to set the qasm 

simulator to simulate the noise model of any real quantum device of IBM to mimic 

it more closely. Ideally, I would use qasm simulator for all analyses in this thesis, 

but due to limited amount of computing power and time, I will have to resort to 

using the statevector simulator , as is the common practice [18]. 

1.2 Exploring quantum systems with near term quantum al- 

gorithms 

The main goal of this thesis is to introduce a method to investigate quantum prop- 

erties of intermediate sized systems. This is done by combining two prominent 

algorithms, designed for near-term quantum computers that will be properly intro- 

duced later in their own chapters. Shortly, the Variational Quantum Eigensolver 

is used to find the ground state of the system under examination and then pair- 

wise tomography is used to efficiently extract information from the ground state of 

the system. We are currently in an era in which our understanding of entangled 

quantum many-body systems is advancing and more advanced tools are required 

to extract and analyze information from them. These methods can also be used 

to study fundamental physics by using simple quantum models. A key property of 

these methods is their scalability. As better and larger quantum computers become 

available, these methods are ready to be used with arbitrarily large systems.
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In the current NISQ era of 50-to-100 qubit devices, quantum supremacy has 

already been achieved [20, 21]. Quantum supremacy is another term coined by John 

Preskill, and it means that a quantum computer outperforms the best classical 

supercomputer at some task [22]. However, these particular tasks that have been 

used to achieve quantum supremacy are non-practical mathematical problems. In 

the near future, quantum supremacy with a practical application will most likely 

come from using a Variational Quantum Algorithm (VQA). VQA is a term for 

many different algorithms, which all have in common that they are designed to be 

used with limited number of noisy qubits in quantum computers with limited qubit 

connectivity and circuit depth. Common aspect of variational algorithms is that 

they are quantum-classical hybrid algorithms utilizing the best of both computation 

models. In a sense, they are analogous to classical machine learning neural networks 

with few key differences. In VQAs, the object to be optimized is a parametrized 

quantum circuit that is run on a quantum computer. The object function is also 

measured on a quantum computer, but the parameter optimization is done on a 

classical optimizer. [23] 

1.2.1 Variational quantum eigensolver 

In this thesis, I will be using a variational algorithm called Variational Quantum 

Eigensolver (VQE), the first of the variational algorithms ever developed [24]. VQE 

is used to calculate the eigenvalues and eigenvectors of a given system. Eigenvalues 

and eigenvectors are important for many systems, as they represent the ground and 

exited states of quantum systems. The ground state, especially, provides valuable 

information of the system’s properties. Also, optimization problems can be mapped 

into Hamiltonians such that their lowest eigenvalue and the corresponding eigen- 

vector represent the solution to the problem. In the future, the quantum phase 

estimation algorithm may be used to calculate minimum eigenvalues but it requires
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more coherent and longer circuits than those implementable in the NISQ era [25]. In 

recent years, VQE has been heavily used in quantum chemistry applications because 

the ground state of an molecule provides valuable information such as the equilib- 

rium bond length, bond angle, and dissociation energy [26–28]. There are potential 

benefits in drug discovery and studying other useful chemical reactions of e.g. new 

fertilizers that could lower the global carbon emissions by 2% [6, 7]. 

The focus here will be on simpler systems. These will be quantum spin chains 

and in particular, the quantum Ising model, the spin-1/2 XX chain and the XXZ 

model. These are chosen for their simple Hamiltonian and the fact that they have 

been extensively studied in the literature. In fact, the transverse Ising model has 

been called the fruit-fly of quantum many-body physics [29]. But before applying 

VQE to specific problems, I will first introduce the general formalism for VQE. 

The first ingredient of the algorithm is the Hamiltonian H of the system. For 

physical applications, it gives the energy and time evolution of the system. Opti- 

mization problems can also be mapped to Hamiltonian form and then used with 

the VQE algorithm to find the lowest energy eigenstate, which then corresponds to 

the optimal solution to the problem. A distinction needs to be made between the 

system Q we are interested in and the physical system S that is doing the actual 

quantum computation. A requirement for the system S is that the number of qubits 

N in it is larger than or equal to what the system Q requires. The Hamiltonian 

of the system Q needs to be mapped to a system’s S operator in order to perform 

the computation. If the systems are similar, this mapping is trivial but, in general, 

it is not. As an example, operators of fermionic systems can be mapped to qubits 

operators with the Jordan-Wigner transformation, which takes care of the fermionic 

commutation relations. Once the mapping is done we can use the system S to study 

the system Q we are interested in. 

Consider an arbitrary state | ψ ⟩ and an arbitrary operator O . The expectation
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value of this operator with respect to this state is

 

⟨ O ⟩| ψ ⟩ 

= 

⟨ ψ | O | ψ ⟩

 

⟨ ψ | ψ ⟩ 

. (4)

 

Let us assume from now on that the wavefunction is normalized, ⟨ ψ | ψ ⟩ = 1. [10] 

In VQE, we want to measure the expectation value of the system’s energy, which 

is done by calculating the expectation value of the system’s Hamiltonian ⟨ ψ | H | ψ ⟩ . 

Calculating this directly would require measuring it in the eigenbasis of the system 

which we actually do not know yet. Measurement in arbitrary basis can be done 

but is often hard and introduces many additional gates which is a problem in NISQ 

devices. Therefore, we solve this problem by decomposing the Hamiltonian into a 

polynomial sum of M operators that are easily measured by the quantum computer

 

H = 

M∑︂ 

k 

ck 

Hk 

(5)

 

with some complex coefficients ck. The operators Hk 

are often chosen to be Pauli 

strings, which are tensor products of Pauli matrices and the identity operator, P = ⨂︁N 

j =1 

σ 

a 

j , where σ 

a 

j 

∈ { I , σ 

x 

j 

, σ 

y 

j 

, σ 

z 

j 

} . Measuring σ 

z is easy as it is just a measurement 

in the standard computational basis and measuring σ 

x , σ 

y requires only an addition 

of a one-qubit gate. Then the Hamiltonian is given by

 

H = 

M∑︂ 

k =1 

ck 

Pk 

. (6)

 

Now, the expectation value of the Hamiltonian decomposes into a weighted sum of 

expectation values of easily measurable Pauli strings [13]

 

⟨ H ⟩| ψ ⟩ 

= 

M∑︂ 

k 

ck 

⟨ Pk 

⟩| ψ ⟩ 

. (7)

 

Next we need a parametrized quantum state that can be transformed into any 

state in some family of states. The state of the solution should be contained in this
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family. The parametrized quantum circuit is formed by constructing a parametrized 

circuit called ansatz. This state is denoted with parameters θθθ as | ψ ( θθθ ) ⟩ and is 

obtained from the initial state | Ψ0 

⟩ with a unitary transformation U ( θθθ ) as

 

| ψ ( θθθ ) ⟩ = U ( θθθ ) | Ψ0 

⟩ . (8)

 

The initial state is often just the computational basis state | 0 ⟩⊗ N , but sometimes 

other initial states are more convenient. For example, in chemistry applications the 

Hartree-Fock approximation is usually a good starting place. To simplify, we can 

fuse the initial state preparation to the unitary evolution of the ansatz to obtain 

[13]

 

| ψ ( θθθ ) ⟩ = U ( θθθ ) | 0 ⟩⊗ N . (9)

 

The eigenvalues of the Hamiltonian can be ordered as λ1 

≤ λ2 

≤ . . . ≤ λN . 

The lowest few eigenvalues are often the most interesting ones and we will focus on 

finding the lowest one, the ground-state energy. The variational theorem of quantum 

mechanics states that

 

⟨ H ⟩| ψ ( θθθ ) ⟩ 

= ⟨ ψ ( θθθ ) | H | ψ ( θθθ ) ⟩ ≥ λ1 

. (10)

 

No matter how we tweak the parameters θθθ , the expectation value of the Hamilto- 

nian will not go below the lowest eigenvalue. Therefore, when trying to find the 

ground state of the system the optimal choice for the parameters θθθ is the one which 

minimizes the expectation value of the Hamiltonian

 

θθθopt 

= argminθθθ 

⟨ ψ ( θθθ ) | H | ψ ( θθθ ) ⟩ . (11)

 

The approximation to the ground state energy will be then Eopt 

= ⟨ ψ ( θθθopt) | H | ψ ( θθθopt) ⟩ 

and approximation to the ground state | ψ ( θθθopt) ⟩ = U ( θθθopt) | 0 ⟩⊗ N . [13] 

We now have the tools to describe the VQE algorithm. First, we prepare the 

ansatz | ψ ( θθθ ) ⟩ on a quantum computer. There are many different choices of ansatz
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Figure 2: An illustration of one VQE cycle. If it is the first iteration, the parameters 

of the ansatz are initialized in some random or predetermined state. Otherwise, pa- 

rameters from previous iteration are used. The objective function is then measured 

respect to the state of the ansatz. The results are sent to a classical optimizer that 

determines how to adjust the parameters such that the measurement value would 

decrease in the next iteration. The new parameters are then updated in the ansatz 

and the algorithm enters the next iteration. The cycle halts when some criteria for 

the convergence has been met. Usually it is when the variance of the measurement 

expectation value decreases below a certain limit. The figure is extracted from [30]. 

depending on the hardware and the system under study. Next, we measure the 

expectation value of the Hamiltonian ⟨ H ⟩| ψ ( θθθ ) ⟩ 

with respect to this state. Then, these 

values are used with classical optimizer algorithm to determine how the parameters 

of the ansatz θθθ need to be changed in order to decrease ⟨ H ⟩| ψ ( θθθ ) ⟩. There are many 

different options for the optimizer. These new parameters are then updated in
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the ansatz and the algorithm continues to a new iteration. This is repeated until 

convergence i.e. when variation of the expectation value ⟨ H ⟩| ψ ( θθθ ) ⟩ 

decreases below a 

desired limit. The VQE cycle is shown in Figure 2. [10] 

Ansätze can be dived into two groups: problem-inspired ansätze and hardware- 

efficient ansätze. In problem-inspired ansätze the parametrized quantum circuit is 

constructed with generators that are derived from properties of the system of in- 

terest. In quantum chemistry, for example, the unitary coupled-cluster approach is 

often used [31]. Problem-inspired ansätze are problem specific and can be efficiently 

trained in those specific problems. However, they often require deep and highly 

connected circuits and thus require hardware we currently do not have. Hardware- 

efficient ansätze accommodate the constraints of current technology. They are con- 

structed with a limited set of quantum gates and limited connectivity. The gate 

set consists usually of few single-qubit gates and one two-qubit entangling gate, e.g. 

a CNOT gate. These are used to construct a layer of circuit that can then be re- 

peated as many times as necessary. Hardware-efficient ansätze are shallower than 

problem-inspired ansätze but they can suffer from trainability issues. [13, 23] 

Important for an ansatz is its entangling power which measures the set of states 

it can represent [32]. If the ansatz can prepare any state in the Hilbert space 

then the solution state is guaranteed to be there, however, finding it might be a 

hard task. Problem-inspired ansätze limit the set of states they can represent, 

which is one of the reasons they converge faster to the solution state. Hardware- 

efficient ansätze can be made to represent an arbitrarily large amount of states, as 

guaranteed by the Solovay-Kitaev theorem. Any state can be generated by some 

unitary transformation applied to the initial state and this theorem states that an 

arbitrary unitary acting on n qubits can be approximated with precision ε by using 

at most order Θ(log 

c(1 /ε )) elementary gates from an universal gate set. Θ is used 

to describe the growth rate of a funtion. The value for c depends on the proof for
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Figure 3: Variational hardware-efficient layered ansatz with six qubits and three 

layers. The red box indicates one layer of the ansatz with parametrized Ry( θ ) 

rotations and entangling CNOTs. 

this theorem but it is known to lie between 1 ≤ c ≤ 4 . [32] 

The ansatz layout that is used in this thesis is a hardware-efficient layered ansatz, 

which can be seen in Figure 3. The ansatz is constructed from subsequent layers 

of single-qubit gates and entangling two qubit-gates. The single-qubit gates are all 

parametrized Ry( θ ) gates, and the two qubit gates are entangling CNOTs. Inside one 

layer, the rotation gates and CNOTs are alternated and, furthermore, the control 

and target qubits of CNOTs change. This circuit can be interpreted as the Trotter 

approximation to the unitary U ( θθθ ) of Equation (9), which takes the state | 0 ⟩⊗ N 

to the parametrized state | ψ ( θθθ ) ⟩ [32]. The parametrized Ry( θ ) gates are chosen 

because the operations are real (no imaginary components) and the Hamiltonians 

(see equations (14), (15) and (16)) of interest are also real. The entangling power of 

this circuit can be adjusted by adding more layers to it. The more layers are added, 

the more accurately it can approximate the ground state of the system under study. 

As every layer adds a CNOT between all pairs of adjacent qubits, adding a layer 

creates one bit of entanglement per pair and per layer. [32] 

Choosing the right optimization method is critical for the success of the VQE
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algorithm. The inspiration for these methods is taken from classical optimizers, and 

many are exactly the same. However, there are new challenges due to the quantum 

nature of the problems, such as the stochastic environment due to limited mea- 

surements, hardware noise, and barren plateaus (regions of non-convergence) [33]. 

Therefore, more quantum-aware optimizers have been developed but no clear winner 

has been found yet. Optimizers can be broadly grouped into two categories, depend- 

ing on whether they use some kind of gradient descent method or not. Gradient 

descent methods optimize by taking iterative steps into the direction of the gradi- 

ent. Sequential Least Squares Programming optimizer (SLSQP) is an example of an 

iterative method that works well for problems where the objective function and the 

constraints are twice continuously differentiable. When working with statevector 

simulator, SLSQP is the optimizer that is used in this work. [23] 

Because of the limited number of measurements, quantum algorithms actually 

use Stochastic Gradient Descent methods (SGD). An example of a SGD method is 

Adam [34]. The other methods do not directly utilize gradients, and an example of 

such is the Simultaneous Perturbation Stochastic Approximation (SPSA) method 

[35]. SPSA approximates the gradient by calculating a single partial derivative along 

randomly chosen direction. The partial derivative is computed as a finite difference, 

and therefore requires only two measurements of the objective function. SPSA is an 

optimal choice to be used with a qasm simulator or a real quantum device, as it can 

be used in the presence of noise and uncertainty in the measurement [18]. Based on 

these considerations and also on experiments, SPSA was chosen as the optimizer to 

be used in this thesis when working with qasm simulator . [23] 

It is important to know when to stop the iteration of the VQE algorithm. Earlier, 

I mentioned that the iteration is continued until the variance of the expectation 

value decreases below certain limit, and this can be made more precise. In density 

matrix formalism, the expectation of an arbitrary operator O for a state ρ is given
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as ⟨ O ⟩ρ 

= Tr[ ρO ] . The variance of an arbitrary operator is then given as Var[ O ]ρ 

= 

⟨ ( O − ⟨ O ⟩ρ)2 ⟩ρ 

= ⟨ O2 ⟩ρ 

− ⟨ O ⟩2 

ρ. Now, for any eigenstate | Ψk 

⟩ the variance of any 

operator O is

 

⟨ Ψk 

| O2 | Ψk 

⟩ − ⟨ Ψk 

| O | Ψk 

⟩2 = ( λ2 

k) − ( λk)
2 = 0 . (12)

 

Therefore, when converging near an eigenstate, we can aim at decreasing the variance 

of the energy as much as possible and for any approximate eigenstate | Ψ̃ ⟩ we have 

that [10]

 

Var[ O ]| Ψ̃ ⟩ 

≥ 0 . (13)

 

1.2.2 Quantum spin chains 

Now we are going to look at specific models and how to apply VQE to simulate 

them. Our three quantum systems are the Ising model in transverse field, the spin- 

1/2 XX chain and the XXZ model. These three systems and their properties will 

be analyzed in the remaining thesis. The Hamiltonian for the Ising model is

 

HIsing 

= − J 

N∑︂ 

i =1 

[︁
σ 

z 

i 

σ 

z 

i +1 

+ B σ 

x 

i 

]︁ 

, (14)

 

where B is the strength of the transverse magnetic field and we set J = 1 without 

loss of generality. The spin chain is set to have open boundaries, so σ 

z 

N +1 

= 0 . 

For small values of B ( B < 1) , the ground state of the system is in a degenerate 

and ferromagnetic phase where all the spins are in a GHZ like superposition of all 

spins aligned in the positive z direction and in the negative z direction. For large 

values ( B > 1) the system is in paramagnetic phase and the spins are in disorder. 

In both phases the Hamiltonian is gapped i.e there is a finite difference between 

the ground state energy and the first exited state energy. Note that for B < 1 the 

ground state is degenerate, so the gap is actually between the second and the third
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smallest eigenvalues. The system has Z2 

symmetry in both phases so that applying 

spin flip to all spins 

∏︁ 

j 

σ 

x 

j 

does not change the energy of the system. At exactly 

B = 1 the system is in critical phase and the Z2 

symmetry breaks spontaneously. 

The physics of the system is very different in the critical phase and in other phases. 

The main aspect that is important in this thesis is that the paramagnetic phase 

is shortly correlated and gapped and so fulfills the area-law of entanglement. The 

ferromagnetic phase is partly gapped but exhibits long range correlations and the 

critical phase is gapless and also exhibits long range correlations. This will be 

elaborated in later sections. [32] 

The spin-1/2 XX model has the following Hamiltonian

 

HX X 

= J 

N∑︂ 

j =1 

[︃
1

 

2
( σ 

x 

i 

σ 

x 

i +1 

+ σ 

y 

i 

σ 

y 

i +1) + B σ 

z 

i 

]︃ 

, (15)

 

where again B is the strength of the magnetic field, J is set to unity, and open 

boundaries are fixed using σ 

x,y 

N +1 

= 0 . For B > 1 , the ground state of the system 

is aligned along the z direction and separable. The system undergoes a quantum 

phase transition at B = 1 to a critical phase in the thermodynamical limit. Between 

0 < B < 1 the system is critical and it undergoes N level crossings at magnetic field 

values Bk 

= cos[ k π / ( N +1)] , with 1 ≤ k < N . Above B > 1 all spins are aligned in 

the z direction. At each crossing, one of the spins, that already has not, gets flipped 

and the result is a highly entangled state, given as a symmetric superposition of all 

possible flips. [9, 36] 

The XXZ model has the following Hamiltonian

 

HX X Z 

= J 

N∑︂ 

j =1 

[︁
σ 

x 

i 

σ 

x 

i +1 

+ σ 

y 

i 

σ 

y 

i +1 

+ ∆ σ 

z 

i 

σ 

z 

i +1 

]︁ 

, (16)

 

where J is again set to unity, open boundaries are set, σ 

x,y ,z 

N +1 

= 0 , and ∆ is now the 

spin anisotropy. This system is gapped for ∆ ≫ 1 and ∆ ≪ − 1 being ferromagnetic 

for ∆ < − 1 and anti-ferromagnetic for ∆ > 1 along the z direction. Between 

− 1 ≤ ∆ ≤ 1 , the system is critical, and describes the physics of a compactified



 

22 

boson. All models, the Ising, the spin-1/2 XX and the XXZ model, in critical phase 

can be described with a conformal field theory (CFT) with different central charges 

[37, 38]. [32] 

1.2.3 Depth scaling of the VQE ansatz 

To benchmark the VQE algorithm I will study the scaling of the accuracy in terms 

of the ansatz depth. I do this by using the Ising model with values of B = 

0 . 5 , 0 . 8 , 1 . 0 , 2 . 0 and 10 . 0 for the magnetic field and the hardware efficient ansatz dis- 

cussed previously. The simulation is done using the statevector simulator . The accu- 

racy is evaluated with two quantifiers and the first one is the accuracy of the ground- 

state energy δE 

evaluated with the formula δE 

= log10(
1

 

ϵ
) , where ϵ = EVQE 

− Eexact, 

with Eexact 

the true ground state energy calculated by diagonalizing the Hamiltonian 

exactly and choosing the lowest eigenvalue, and EVQE 

is the energy achieved with 

VQE. The second quantifier is the fidelity of the exact diagonalized state ρexact 

and 

VQE state ρVQE 

calculated as F ( ρexact 

, ρVQE) = Tr 

[︁√︁

 

√

 

ρexact 

ρVQE 

√

 

ρexact 

]︁2. 

The results for the scaling of the accuracy of the ground-state energy, and fidelity 

as a function of circuit depth can be seen in Figures 4 and 5, respectively. From 

both graphs, it can be seen that for lower values of magnetic field, the convergence 

towards ground state is slower and requires higher ansatz depth. The graph for 

fidelity more clearly shows the limit point for finding a good approximation for the 

ground state. The systems with magnetic value above one immediately approach the 

ground state but for systems with B ≤ 1 it takes a certain amount of layers. With 

the exception of the case of B = 0 . 5 , they all converge to ground state eventually. 

For large amounts of layers, the accuracy is approximately the same in all cases. 

The figure for accuracy matches, in essence, the results of systems with B > 1 

to the results of Bravo-Pierto et al. [32] although the numbers do not exactly match 

because of different system sizes. Moreover, they consider spin chains with periodic
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Figure 4: The scaling of accuracy of the ground state energy, δE, for different mag- 

netic field values, B . The magnetic field is rescaled by J . The x-axis depicts the 

number of layers in the ansatz. The graph illustrates how many layers are needed for 

a given magnetic field value to achieve good convergence. Cases with higher B need 

fewer layers to achieve good accuracy. The case with B = 0 . 5 does not converge 

with the number of layers presented here. 

boundary conditions. One of the results of that paper is that the accuracy of the 

energy for Ising model with B > 1 increases exponentially as a function of the ansatz 

depth. For the critical phase, B = 1 . 0 , the accuracy is first in a finite-depth regime 

and stays constant until the depth of the circuit crosses a limit point, after which 

it enters into a finite-size regime where the accuracy increases exponentially. The 

limit point scales linearly with the number of qubits. However, no analysis was done 

for systems with B < 1 and the behaviour was explained to happen with systems 

in the critical phase. Here I find new results that the same behaviour happens for 

all Ising model systems with B < 1 and more strongly for lower B . As seen later 

in Figure 23, the energy gap in the Hamiltonian might be one of the causes behind
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Figure 5: The scaling of fidelity of the VQE ground state and exactly diagonalized 

ground state for different magnetic field values, B . The magnetic field is rescaled 

by J . The x-axis depicts the number of layers in the ansatz. The graph is similar to 

Figure 4, but illustrates even more clearer how many layers are needed for a given 

magnetic field value to achieve good convergence. Cases with higher B need fewer 

layers to achieve good accuracy. The case with B = 0 . 5 does not converge with the 

number of layers presented here. 

this behaviour. By testing the convergence of the Ising model for different magnetic 

fields, it was noted that finding the ground state for systems with B < 0 . 5 was much 

harder and required much deeper ansätze than for other values. This behaviour will 

be investigated more in depth in future work. 

1.2.4 Pairwise quantum tomography 

Now that we have the means to find the ground state of a given system, how can we 

extract information out of it? The state is stored in a parametrized circuit, which 

we can initialize as many times as we want, but we still do not know much about



 

25 

its properties other than its energy. If we were to have an explicit description of its 

state vector or density matrix, we would be able to calculate any interesting quan- 

tity from it. The process of reconstructing a quantum state from an ensemble of 

measurements in different bases is called quantum state tomography. As measure- 

ment destroys the quantum information, the state needs to be initialized again after 

every measurement process. Luckily, with our parametrized quantum circuit this is 

not hard although errors during initialization may happen. This kind of full state 

tomography presents two problems: it requires exponential amount of measurements 

with increasing system size and the result is a matrix which requires exponential 

amount of storage capacity with increasing system size. [11] 

A more efficient method is to perform pairwise tomography instead of full state 

tomography. By measuring just pairwise correlators with a clever measuring scheme, 

the scaling reduces from exponential number of measurements to just logarithmic 

number of measurements in terms of system size. It does not contain all the informa- 

tion, as full state tomography would, but we do obtain interesting pairwise quantities 

that are enough to study some relevant properties of the system. Examples of quan- 

tities that one can extract are pairwise entanglement, mutual information, classical 

correlations, von Neumann entropy, quantum discord and purity. [11] 

To construct pairwise density matrices we need to calculate correlators of the 

form ⟨ σ 

a 

i 

⊗ σ 

b 

j 

⟩ between all pairs of qubits, ( i, j ) , with a and b taking values x , y and 

z . Hence, calculating all pairwise correlators, for a pair of qubits involves measuring 

9 different correlators and for all pairs this amounts to measuring 9 N ( N − 1) / 2 

observables. With simple parallel measurements this is reduced by a factor ⌊ N / 2 ⌋ , 

so that it can be done in O ( N ) measurements setups, but a better method will be 

shown next to reduce it to O (log N ) . [11] 

The easiest part is measuring correlators ⟨ σ 

a 

i 

⊗ σ 

a 

j 

⟩ , where the measurement 

basis is the same for both qubits. This is done with three measurement setups, first
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measuring all qubits in the x basis, then y and lastly z . For all other correlators, 

we need an efficient scheme that ensures that all non-trivial correlators are covered. 

In this scheme, qubits are repeatedly assigned letters a , b and c which mark the 

different combinations of measurements that will be done, as explained below. [11] 

Each qubit is first indexed from 0 to N − 1 . In base three representation, these 

indexes use ⌈ log3 

N ⌉ digits. We use ⌈ log3 

N ⌉ labellings, l = 1 , . . . , ⌈ log3 

N ⌉ , where 

each labelling is such that it assigns for each qubit i the letter a , b or c based 

on the value of its l -th digit in its base-three representation. An example makes 

this clearer. Consider a system of 15 qubits indexed 0 , . . . , 14 , so the number of 

labellings is L = ⌈ log315 ⌉ = 3 . Then, the index of its 12th qubit, 11, is presented 

in base three as 1023. Then for labelling l = 1 , the 12th qubit would be assigned 

the letter c , for labelling l = 2 , the letter a , and for labelling l = 3 , the letter b . 

After this, the letters a, b, c are substituted by the six different permutations of x, y 

and z , and the corresponding measurements are performed. Generally, as any two 

qubits have different indexes and therefore at least one distinct digit in the base- 

three representation, it is guaranteed that every pair of qubits will have at least 

one labelling where their non-trivial correlators will be measured. Furthermore, this 

scheme is optimal. [11] 

With 3 trivial measurement settings of the same basis and 6 setting per labelling, 

the total number of measurement settings is

 

6 ⌈ log3 

N ⌉ + 3 . (17)

 

In this thesis I will cover systems of sizes between 6 and 12. For N = 12 qubits the 

total number of measurement settings with this scheme is 21. The naïve parallel 

approach would have required (9 × 12 × (12 − 1) / 2) / ( ⌊ 12 / 2 ⌋ ) = 99 measurement 

settings. The difference is huge even for small systems, and even more so with 

increasing system size. [11] 

The algorithm is then the following. First perform the three measurements where
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Figure 6: Groupings of the pairwise tomography algorithm for N = 10 qubits. 

Here there are L = ⌈ log310 ⌉ labellings. The top-most qubit is the first qubit with 

index i=0 and counting continues clockwise. Each qubit is assigned letter a,b and c 

according to the result of ⌊ i/ 3l − 1 ⌋ mod 3. [11] 

all qubits are measured in the same basis x , y , and z . Then, calculate the number of 

labellings needed L = ⌈ log3 

N ⌉ and for each l = 1 , . . . , L do the following substeps: 

a) First divide the qubits into groups of subsequent 3l − 1 qubits and for each group 

assign cyclically a, b, c, a, b, . . . . The last group may have fewer qubits than other 

groups. b) Then assign all permutations of x , y and z to letters a , b and c :

 

1 2 3 4 5 6 

a ←− x x y y z z 

b ←− y z x z x y 

c ←− z y z x y x

 

(18) 

and for all permutations perform measurements as indicated by the assigned letter. 

An example for this algorithm can be seen in figure 6 for N = 10 qubits. [11] 

After all measurements are performed, the results are used for the tomographic 

reconstruction of the reduced density matrices for all pairs of qubits. This can be 

done in various ways such as simple linear inversion or Bayesian methods. The code 

used in this thesis uses Qiskit’s tool, which employs a maximum-likelihood method.
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Figure 7: Pairwise entropies for the Ising model with 10 spins and B = 1 . 5 . The 

magnetic field is rescaled by J . 

[11] 

1.2.5 Quantifiers of pairwise correlations for quantum systems 

We now have the tools to obtain pairwise information from quantum systems, but 

what are the properties that we are interested in? There are many different quanti- 

fiers to characterize a quantum system, and in this thesis we are mainly interested in 

two of them: quantum mutual information, and concurrence. Because the properties 

that are to be investigated here are extracted from the system using the introduced 

pairwise tomography method, the quantifiers are all pairwise, i.e., they are calcu- 

lated from two-qubit reduced density matrices. [11] 

A key concept in quantum information theory is entropy. Shannon entropy is 

familiar from statistical mechanics and has multiple interpretations. It can measure 

the uncertainty of a random variable before we learn about it, or it can quantify the 

amount of information we would get by measuring it. From an information theory 

perspective, the most interesting interpretation is that entropy measures the amount 

of physical resources needed for storing and also transporting information. There is 

a corresponding quantity for quantum states with similar interpretations called Von
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Neumann entropy, defined for state ρ as

 

S ( ρ ) ≡ − tr( ρ log( ρ )) . (19)

 

Here, and later on, the logarithm is taken to be base two. Also, from now on, 

entropy always refers to Von Neumann entropy. If λk 

are the eigenvalues of ρ , then

 

S ( ρ ) = − 

∑︂ 

k 

λklog λk 

. (20)

 

While having similar interpretations as the classical entropy, quantum entropy is 

still fundamentally different. Classical entropy originates from lack of knowledge in 

thermal states, while quantum entropy originates from quantum entanglement, and 

even at zero temperature, states with non-zero entropy are common [39]. 

Pairwise entropy for qubits a and b is calculated from the reduced density matrix 

ρab 

as

 

S ( ρab) = − tr( ρab log( ρab)) , (21)

 

where ρab 

is calculated by tracing out the other qubits of the system S as ρab 

= 

trS/ { a,b }( ρ ) . An example of an pairwise entropy network can be seen in Figure 7 for 

the Ising model with 10 spins and B = 1 . 5 . [17] 

Classical mutual information measures how much common information two ran- 

dom variables X and Y have in common. The quantum analog carries a similar 

meaning but it also includes quantum correlations. For a bipartite quantum system 

ρAB 

(a quantum system with two parts) quantum mutual information is a measure 

of correlation between those two parts and it is defined as

 

S ( A : B ) = S ( A ) + S ( B ) − S ( AB ) , (22)

 

where S ( A ) and S ( B ) are the entropies of the reduced subsystems ρA 

and ρB, and 

S ( AB ) is the entropy of the complete system. For pairwise mutual information,
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Figure 8: Pairwise mutual informations for the Ising model with 10 spins and B = 

1 . 5 . The magnetic field is rescaled by J . 

the complete system AB is the reduced two-qubit system, and A and B are single 

qubits. An example of a pairwise mutual information network can be seen in Figure 

8 for the same system as previously. [17] 

Many relevant physical properties of ground states of quantum spin chains can be 

inferred from pairwise quantities such as mutual information. One interesting topic 

is the study of Quantum Phase Transitions (QPT) which are often characterized 

with two-point correlators of the form g
(2) 

ij 

= ⟨ σ 

z 

i 

σ 

z 

j 

⟩ − ⟨ σ 

z 

i 

⟩⟨ σ 

z 

j 

⟩ . However, it is not 

generally know a priori what the right correlators are. The mutual information 

S ( A : B ) gives upper bound to any two-point correlator as [8]

 

S ( A : B ) = S ( ρAB 

∥ ρA 

⊗ ρB) (23) 

≥ 

1

 

2 

| ρAB 

− ρA 

⊗ ρB 

|2 (24) 

≥ 

{ Tr [( ρAB 

− ρA 

⊗ ρB) ( OA 

OB)] }2

 

2 ∥OA 

∥ ∥OB 

∥2 

(25) 

= 

( ⟨OA 

OB 

⟩ − ⟨OA 

⟩ ⟨OB 

⟩ )2

 

2 ∥OA 

∥2 ∥OB 

∥2 

. (26)

 

As the mutual information is a more general quantifier than any particular physical 

correlator, it is a suitable tool for analysing QPT [29]. 

Concurrence is a measure of entanglement that can be used to calculate the
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Figure 9: Pairwise concurrences for the Ising model with 10 spins and B = 1 . 5 . The 

magnetic field is rescaled by J . 

entanglement of formation. Entanglement of formation is an entanglement measure 

that quantifies the resources needed to create a given entangled state and is an 

important quantity in analyzing entanglement. However, concurrence is in its own 

right a good measure of entanglement and so I will focus only on it. To calculate 

concurrence, we first need to do a spin flip transformation to the state, which for a 

density matrix of two qubits is calculated as

 

ρ ˜ = ( σ 

y ⊗ σ 

y) ρ∗( σ 

y ⊗ σ 

y) , (27)

 

where ρ∗ is the complex conjugate taken in the standard basis. The concurrence is 

then calculated as

 

C ( ρ ) = max { 0 , λ1 

− λ2 

− λ3 

− λ4 

} , (28)

 

where λi 

are the eigenvalues of the Hermitian matrix R ≡ 

√︁

 

√

 

ρρ ˜ 

√

 

ρ , in decreasing 

order. Concurrence is an entanglement monotone. It is a non-negative function, 

zero only for separable states and it does not increase under Local Operations and 

Classical Communications (LOCC). An example of a concurrence network can be 

seen in Figure 9, again for the same system as previously. [40, 41]



 

32 

2 Emergent entanglement phenomena in quantum 

systems 

Emergent quantum entanglement structures in quantum many-body systems is a rich 

and interesting research area that has seen increasing interest in the last decades. 

Advancements in these topics impact relatively new fields such as quantum biology, 

quantum thermodynamics, and more established fields such as quantum chemistry 

and quantum gravity. More obvious impact areas are, of course, quantum technolo- 

gies, quantum computing, quantum internet, and quantum simulations that can be 

used for researching drugs and materials. The key conceptual ingredient binding 

all these topics is emergent phenomena and behaviour. These are properties that 

cannot be reduced to or be derived from laws governing the smaller parts of the 

system. Instead, one has to study complex collective structures that arise from a 

large number of individual interacting systems. [9] 

Entangled quantum many-body states are complex structures that require ad- 

vanced methods in order to study them. In the past, classical statistical physics has 

offered powerful tools for analyzing complex classical systems, including the study 

of complex networks. These have been used in quantum systems, but with the ap- 

proach of explicitly enforcing complex structures on quantum connections [29]. An 

alternative approach is to combine the powerful instrument of quantum information 

with network representations to describe complex many-body quantum states and 

this is the approach taken in this thesis. [9] 

The unique combination of methods introduced in this thesis allows for efficient 

analysis of quantum entanglement structures. Normally one would use a classical 

computation method, such as the MPS approximation, to perform the numerical 

calculations needed to find the ground state of the system of interest and extract 

its properties [42]. The method presented here does not suffer from the limitations
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that MPS have: bad scaling in terms of entanglement and system size. Instead, it 

scales to arbitrary system size and amount of entanglement with the development 

of suitable quantum devices. VQE will find the desired ground state or exited state 

and pairwise tomography will extract the necessary pairwise quantities to construct 

the complex entanglement networks to then be analysed. 

Two different analyses will be done in the remaining of this thesis. In the first 

part, I analyze the topological properties that emerge from entanglement networks 

of quantum many-body systems. In the second part, I study the application of 

the methods for studying quantum gravity and emerging space from entanglement. 

The analysis is done using the three already introduced quantum spin chains with 

equations (14), (15) and (16). The Ising model and the spin-1/2 XX chain have been 

extensively studied in references [9], [29] and [36], and the goal is to match their 

results to benchmark the methodology. These papers have used large amount of 

spins in their analyses, which needs to be taken into consideration when comparing 

the results. For the XXZ spin chain, I will present new results. 

2.1 Topological properties of quantum many-body systems 

It is now clear that we have great motivations to study the entanglement properties 

of quantum many-body systems. If we understand how entanglement works in 

relatively simple systems, then we can apply that knowledge to harder and more 

complex problems. Even in simple and extensively studied systems, we can find 

new and interesting emergent phenomena. With the three spin chain models I will 

study (i) the effects of being in and near the critical phase of the model, (ii) the 

emergent entanglement structures, (iii) scaling of the entanglement in different parts 

of the spin chain and (iv) network properties of the entanglement networks. [9] 

These phenomena are studied with the use of complex networks, where the links 

represent either mutual information or concurrence. Mutual information measures
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all correlations of the system, quantum and classical, which gives a good overall 

picture of the properties of the system. If one wants to study only entanglement 

phenomena, then concurrence is a more suitable quantifier. Pairwise concurrence 

networks show how the entanglement is distributed in the system. 

2.1.1 Complex networks 

To analyze the pairwise networks of quantum information properties that we obtain 

from the introduced methods, we need key concepts of network theory that I will 

now introduce. Complex networks are tools to represent complex systems as graphs, 

where nodes are individual systems and the links represent different relationships 

between them. Classical examples are social networks and internet connections. 

Graphs of complex networks can be visually presented for easy reading, but only 

when the number of subsystems is small enough that they do not clutter the view. 

Complex networks can be described with properties that give a holistic view of the 

whole system. These properties only emerge from the combination of the subsystems 

and cannot be reduced into microscopic rules that govern them. These properties are 

even more useful for describing networks where the number of subsystems is too large 

for visualization. In this thesis, the individual systems will be single spins and the 

links will represent the pairwise quantities that are extracted from the system using 

pairwise tomography. As the system sizes are small, everything can be visualized in 

addition to the quantitative analysis. [43] 

The simplest quantity is the degree of a node. It measures the number of links 

that intersect the node without considering the weights of the links. Let us denote 

an arbitrary quantity of a weight between nodes i and j as ωij 

which can be e.g. 

concurrence or mutual information. Then, the presence of a link is denoted by 

aij 

= Θ( ωij) where Θ is the Heaviside function, so aij 

= 1 if a link exists between i
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and j and aij 

= 0 otherwise. The definition for the degree of a node i is then

 

di 

= 

N∑︂ 

j =1 

aij 

. (29)

 

Node degrees quantify the properties of the unweighted structure of the network, 

also referred to as its topology. A similar quantity, which is called the strength of 

the node i , is

 

si 

= 

N∑︂ 

j =1 

ωij 

. (30)

 

This quantifies the weighted structure of the network. [9, 29] 

The local clustering coefficient counts the ratio of triangles i.e. three nodes with 

all three links present, to triples with at least two links present, in an unweighted 

network

 

ci 

= 

∑︁N 

j,k 

aij 

aik 

aj k

 

di( di 

− 1) 

. (31)

 

For a weighted network, this is instead

 

cω 

i 

= 

∑︁N 

j,k 

( ωij 

ωik 

ωj k)
1 / 3

 

di ( di 

− 1)maxl m 

ωl m 

, (32)

 

where the geometric mean of each triangle is calculated and normalized with the 

largest weight in the whole network. [9] 

The density D of the network is the weighted fraction of all the possible 

(︁
N 

2 

)︁ 

links that actually are present in the network

 

D = 

∑︁N 

i 

si

 

N ( N − 1) 

. (33)

 

A network is said to be sparse if D → 0 as N → ∞ and dense otherwise. [29] 

The disparity Yi 

of a node i quantifies the heterogeneity of the distribution of its 

connections’ weights as

 

Yi 

= 

1

 

s2 

i 

N∑︂ 

j =1 

( ωij)
2 . (34)
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Figure 10: Mutual information networks for the Ising model with three different 

magnetic field values B. The magnetic field is rescaled by J .

 

For a uniform distribution of the weights of node i , the disparity is Yi 

= 1 /di 

and 

it approaches 1 if one of the links dominates. The average disparity over the whole 

network is then Y = 

1

 

N 

∑︁N 

i =1 

Yi. It is a good indicator of how the links are distributed 

across the network. [29] 

2.1.2 The Ising model 

First I will analyze the Ising model, as it is the simplest of the spin chains. The 

Hamiltonian for the Ising model was introduced in Equation (14). Recall that it is 

ferromagnetic for B < 1 , paramagnetic for B > 1 and undergoes a QPT at B = 1 , 

where the system is in a critical phase. As expected, the properties of the system 

are very different in different phases. 

For benchmarking, I will first study the complex network of mutual informa- 

tion, reconstructed with VQE and pairwise tomography, in different phases and 

compare them with ones in the paper of Valdez et al. [29]. Figure 10 shows the 

mutual information network with three different values of the magnetic field. In the 

ferromagnetic phase, the graph is dense, with most links strongly present. When 

approaching the critical value, the longest links start to fade out and, in the para- 

magnetic phase, only nearest-neighbour links are strong. These results match those
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(a) VQE solution
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(b) Exact solution 

Figure 11: Network measures of mutual information for the Ising model. The mag- 

netic field is rescaled by J . 

of Valdez et al. [29] 

We can further analyze the mutual information network using different network 

measures. In Figure 11, the density, the average clustering and the average disparity 

are displayed for the Ising model with 6 qubits. Both exact diagonalization and 

VQE solutions are presented so one can see that aside from slight deviations they 

are same. The results also match those of Figure 10, as one can see that the density 

of the links and the average clustering drop as the magnetic field increases. The 

distribution of links is very homogeneous for low magnetic field values as one can see 

from the low average disparity. It then approaches the value of 1/2 as the magnetic 

field increases and the links to nodes farther away fade out and links to nearest 

neighbors start to dominate. When comparing the results to those of Valdez et al., 

one can see that the density and average clustering have a good match when taking 

into consideration the difference in the system size. However, in their result, the 

average disparity approaches 1 as the magnetic field increases. As discussed before, 

the value of disparity of a node should be 1 only when one of the links connected to
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Figure 12: Concurrence networks of the Ising model for various magnetic field values. 

The magnetic field is rescaled by J . 

the node dominates over the others. In our case, for B = 2 , the mutual information 

graph is close to a nearest-neighbour chain, i.e., every node has similar links to both 

neighbors, left and right, and very low connection to every other node. Considering 

this, we can do a short calculation. If one approximates the links to farther away 

nodes to be zero and the links to nearest neighbors to be ω , we get the following 

value for the disparity of the node i :

 

Yi 

= 

1

 

s2 

i 

N∑︂ 

j =1 

( ωij)
2 = 

2 ω2

 

(2 ω )2 

= 

1

 

2 

. (35)

 

This result is consistent with Figure 11. Following this reasoning, I conclude that 

the results presented here are accurate. 

The concurrence networks of the Ising model have not been studied before in 

the literature, so I will now present some new results. The concurrence networks
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Figure 13: Analysis of the Ising model for 6 spins. A) Concurrence of edge spin pair, 

1 and 2, and bulk spin pair, 3 and 4, as the magnetic field is varied. The spins are 

same as in figure 12, counting counter-clockwise and starting from upper rightmost 

spin. B) Disparity of each node for different values of B . C) Strength of each node 

for different values of B . D) Average network measures for varying magnetic field 

B.
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for various magnetic field values are shown in Figure 12. Concurrence increases as 

the magnetic field grows and caps at the critical value B = 1 after which it starts 

to slightly decrease. In all cases, the concurrence of the edge pairs is higher than of 

the bulk. This can be seen more clearly in Figure 13A. The rate of change for both 

pairs is almost the same aside for low values of B , for which the concurrence of the 

edge pair increases faster. This behaviour is different from spin-1/2 XX chain as for 

it the order switches as the magnetic field is varied [36]. The results for low values 

of B (e.g B = . 01 in Figure 12) are not reliable, because when there is low amount 

of entanglement, the fluctuations due to finite statistics are significant and can even 

lead to non-zero values even for separable states [11]. 

Other properties of the concurrence network of the Ising model are seen in figure 

13. The disparities of each spin are shown in figure 13B. For all values of B the 

bulk of the chain is clearly more homogeneous while the edge spins present high 

disparity since their local connectivity is dominated by a single link. The disparity 

does not exhibit significant changes for different magnetic field values except for 

B = 0 . 1 when the aforementioned statistical fluctuations are large. In figure 13C 

one can see that the total strength is highest at the critical value B = 1 . 0 . Also the 

edge spins have less strength than the bulk spins. In figure 13D it is seen that the 

density peaks just before the critical value but stays generally low as can be also 

been seen in the concurrence graphs of Figure 12. The average clustering fluctuates 

slightly and the average disparity slowly increases with the magnetic field. These 

fluctuations are most likely due to the limited number of shots used in the pairwise 

tomography. This would be reduced by increasing the number of shots, but it would 

also make the tomography more time consuming. The increase of average disparity 

is seen in the concurrence network as for lower values of B the network has few 

next-nearest links which fade out as B increases and the network becomes nearest 

neighbor dominant and heterogeneous.
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2.1.3 The spin-1/2 XX model 

Next the spin-1/2 XX model with the Hamiltonian given in Equation (15) will be 

explored. The system has been studied in papers of Son et al. [36], Sokolov et 

al. [9] and García-Pérez et al. [11] and the goal is to first reproduce these results 

and then present new ones. As explained in an earlier chapter, the ground state is 

characterized by sequence of N energy level crossing which happen at magnetic field 

values of Bk 

= cos[ k π / ( N + 1)] , with 1 ≤ k < N , for 0 < B < 1 . Models with 

exactly the magnetic field value of B = Bk 

for some k have degenerate ground state, 

which leads to some arbitrariness in trying to find the ground state with VQE. To 

counter this, I will consider magnetic field values that lie in middle points of these 

energy level crossing. The considered values are therefore Bk 

= (cos[ k π / ( N + 1)] + 

cos[( k + 1) π / ( N + 1)]) / 2 for k = { 1 , . . . N − 1 } . 

Figure 14 shows the concurrence networks for these values of the magnetic field. 

One can easily see the changes in the network structure. These results match almost 

exactly the ones in the paper of García-Pérez et al.[11]. In that paper, they used the 

exact solution of the ground state of the XX model and then did pairwise tomography 

on it. Here, the ground state is found with VQE and the same pairwise tomography 

method is used. In the paper of Sokolov et al. [9] the structure of entanglement 

communities, i.e., groups of nodes with higher density of connections, were studied 

and they noted that the number of communities matches exactly the value of k in 

the magnetic field for 0 ≤ B < 1 . The same phenomenon can be observed in Figure 

14. One can also notice the change in the entanglement of edge spins versus bulk 

spins as was studied in the paper of Son et al. [36]. When B is near either 1 or -1, 

the bulk spins are stronger than the edge spins and when B approaches 0, the edge 

spins take over and display much higher concurrence. The scaling of concurrence for 

edge spin pair, 1 and 2, and for bulk spin pair, 4 and 5, for varying magnetic field 

is shown in figure 15A.
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Figure 14: Concurrence networks of the spin-1/2 XX model for different Bk 

where 

k = { 1 , . . . , 8 } . The magnetic field is rescaled by J . 

The disparity of each node is shown in figure 15B. When the magnetic field is 

close to values 1 or -1, the distribution of links is very homogeneous. At the same 

time, the bulk of the chain has much higher strength than the edges. Also, figure 

14 shows that the graph is fully connected. Therefore, while the concurrence is 

distributed heterogeneously on the larger scale, as shown in the strength figure, the 

local heterogeneity is constant across the chain, as seen in the disparity figure. The 

same behaviour was noticed in the paper of Sokolov et al. and in it was explained 

that this behaviour indicates high symmetry close to the quantum phase transition 

[9]. Close to B = 0 the distribution changes into a more heterogeneous one. 

The small size of the system restricts the comparison between the paper of 

Sokolov et al. of the peaks in the disparity figure 15B as there was discussed.
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Figure 15: Analysis of the concurrence network of the spin-1/2 XX model for 9 

spins. A) Concurrence of edge spin pair, 1 and 2, and bulk spin pair, 4 and 5, as 

the magnetic field is varied. The spins are same as in figure 14, counting counter- 

clockwise and starting from upper rightmost spin. B) Disparity of each node for 

different values of B . C) Strength of each node for different values of B . D) Average 

network measures for varying magnetic field B. The magnetic field is rescaled by J .
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Still, it can be noted that the disparity of the edges increases compared to the bulk 

for values of B < 0 . 5 . For low values of B , the system changes from long interactions 

to only nearest neighbor interactions, which causes the disparity of edge spins to 

become 1. The strength figure 15C displays similar properties as in the reference. 

The number of peaks matches the number k of the magnetic field which matches 

the number of detected communities in the system. 

Average network properties of the system are shown in figure 15D for 0 < B < 

1 . 2 . The quantum phase transition can be seen at B = 1 . 0 when the average strength 

and density drop close to zero. Some weak non-zero links still exists for B > 1 as 

seen from the average clustering and small average strength. In this region, the state 

is separable, so these fluctuations originate from the finite number of measurements 

for the tomography. 

For completeness and as new results, the same analysis as done previously for 

concurrence is now done for mutual information. In Figure 16 the mutual informa- 

tion networks for different energy levels are shown. Same properties can be seen 

as in concurrence networks 14. In addition, new phenomena can be observed, be- 

cause mutual information quantifies both classical and quantum correlations. Even 

though the system changes into nearest neighbor correlations for low values of B , 

classical correlations still persist as can be seen from the many non-zero links in 

the mutual information graphs. The community structure formations can still be 

observed, although not as strongly as in concurrence networks. However, the in- 

crease of entanglement for edge spins can clearly be seen. In figure 17A the of edge 

and bulk mutual information scaling is shown and the shape is very similar to the 

concurrence one. 

Figure 17B shows the disparities of each spin for different values of the magnetic 

field and displays some of the properties as in concurrence: Disparity is low for B 

near 1 and -1 and it increases with magnetic field. The relative increase of edge
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Figure 16: Mutual information networks of the spin-1/2 XX model for different Bk 

where k = { 1 , . . . , 8 } . The magnetic field is rescaled by J . 

spin disparities is much stronger that in concurrence. For B near value 0, not 

only the spin closest to the edge but also the second most see increase in disparity 

unlike for concurrence where the spin nearest to the edge was much higher than the 

second one. Note that the absolute values for disparities are lower but the relative 

difference between two edge and bulk spins is higher. The increase of pairwise 

mutual information is much stronger than for concurrence which is why the second 

closest spin has heterogeneous distribution of links as the edge link dominates all 

others. Figure 17C also shows similar effects as with concurrence: The number of 

peaks matches the value of k although this is obscured for the values of B closest to 

zero. The difference is that as B decreases the total strength increases as can also 

been seen in figure 17D. The reverse happened for concurrence. Figure 17D also
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Figure 17: Analysis of the mutual information network of the spin-1/2 XX model 

for 9 spins. A) Mutual information of edge spin pair, 1 and 2, and bulk spin pair, 4 

and 5, as the magnetic field is varied. The spins are same as in figure 16, counting 

counter-clockwise and starting from upper rightmost spin. B) Disparity of each 

node for different values of B . C) Strength of each node for different values of B . 

D) Average network measures for varying magnetic field B. The magnetic field is 

rescaled by J .
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Figure 18: Concurrence networks of the XXZ model for 6 spins. The spin anisotropy 

is rescaled by J . 

shows the same effect of the quantum phase transition at B = 1 . 0 . The fluctuations 

originating from the finite amount of shots in the tomography can again be seen for 

B > 1 . 

2.1.4 The XXZ model 

The XXZ model, with the Hamiltonian introduced in Equation (16), is the third ex- 

ample studied in this thesis. No previous studies of the pairwise correlation network
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Figure 19: Analysis of the concurrence network of the XXZ model for 6 spins. A) 

Concurrence of edge spin pair, 1 and 2, and bulk spin pair, 3 and 4, as the spin 

anisotropy is varied. The spins are same as in figure 18, counting counter-clockwise 

and starting from upper rightmost spin. B) Disparity of each node for different values 

of B . C) Strength of each node for different values of B . D) Network measures for 

varying spin anisotropy ∆ . The spin anisotropy is rescaled by J . 

properties of XXZ model have been carried out before to the best of my knowledge, 

so all results presented here are novel. This section is a proof of concept on how
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Figure 20: Mutual information networks of the XXZ model for 6 spins. The spin 

anisotropy is rescaled by J . 

the method presented in this thesis can be used to study any quantum system with 

simulations rather than analytically. 

I remind that the XXZ model is ferromagnetic for ∆ < − 1 and anti-ferromagnetic 

for ∆ > 1 . Both phases are also gapped. Between − 1 < ∆ < 1 , the system is critical. 

The XXZ model does not have the same kind of symmetry for the spin anisotropy 

as the spin-1/2 XX had for magnetic field, as can be seen from the concurrence in 

Figure 18 and mutual information in Figure 20. For positive values of ∆ the system
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Figure 21: Analysis of the mutual information network of the XXZ model for 6 

spins. A) Mutual information of edge spin pair, 1 and 2, and bulk spin pair, 3 and 

4, as the spin anisotropy is varied. The spins are same as in figure 18, counting 

counter-clockwise and starting from upper rightmost spin. B) Disparity of each 

node for different values of B . C) Strength of each node for different values of B . 

D) Network measures for varying spin anisotropy ∆ . The spin anisotropy is rescaled 

by J .
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does not undergo any significant changes. For negative values the entanglement 

structure exhibits notable transformations. Below ∆ < − 1 the system seems to 

be separable, because the small links seen in the Figure 18 are most likely due to 

statistical fluctuations. A change in the network happens at the QPT point at 

∆ = − 1 . 0 . As the spin anisotropy increases to around ∆ = − 0 . 9 , the average 

strength of the concurrence network jumps to its highest point as seen in Figure 

19D and the distribution is very homogeneous. As the spin anisotropy continues 

to increase, the strengths of concurrence links decrease slightly and the distribution 

changes to more heterogeneous one as the entanglement concentrates on three strong 

pairwise links. For B > − 0 . 5 the edge pairs have slightly stronger entanglement 

than the middle pair as seen from the concurrence strengths in Figure 19C. The 

relative entanglement evens out when ∆ increases. The effect is seen much more 

strongly in the mutual information disparities in Figure 21 and instead of fading as 

∆ increases, it becomes stronger. Although there is a QPT point at B = 1 . 0 no 

significant changes are visible in the results presented here. This might be due to 

the finite size of the system but is not explored further as it is beyond the scope of 

this work. 

The phenomena for values ∆ > − 1 are replicated in the mutual information 

networks in Figure 20 but one can also see the classical correlations even when no 

entanglement exists. Classical correlations are the strongest below ∆ < − 1 as seen 

from the strong networks in 20 even though the concurrence graphs in 18 are very 

weak. 

In Figures 19A and 21 the pairwise concurrence and pairwise mutual informations 

of spin 1 and 2 at the edge, and 3 and 4 at the bulk, are shown. They match 

at ∆ ≤ − 1 and above that, the edge pair initially becomes more entangled after 

which they scale similarly. In Figures 21C and 21D, the total strength of mutual 

information deceases as the spin anisotropy increases.
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The ground state of the system was hardest to find for values is ∆ = − 1 . 0 , − 1 . 1 

and − 1 . 2 because the ground state energy was degenerate. This could lead to some 

errors in the data for those values. 

2.2 Emergent space from quantum entanglement 

Quantum gravity has been long thought to be the missing piece in fundamental 

physics [44]. Finding the theory of quantum gravity has been very elusive despite 

the many different attempts, such as string theory and loop quantum gravity [45], 

[46]. The common approach has usually been to take an already existing theory 

and try to quantize it to make it work even in the smallest scales. An alternative 

approach, which has seen lots of research activity in the last decades, is to try find 

gravity in quantum mechanics itself. Gravity could be an emergent phenomenon of 

complex quantum systems. Approaches to study quantum gravity trough complex 

quantum network manifolds and emergent complex network geometry have been 

made [47, 48]. The tools introduced in this thesis can enable research in this area 

beyond purely analytical work. We have already seen how the methods can be used 

to extract information from the network entanglement structures of quantum may- 

body systems. By properly analyzing this information, I will study how geometry 

can emerge from entanglement. 

Entanglement is a fundamental aspect of quantum mechanics and it constructs 

complex structures in quantum systems. It has been suggested that these structures 

could lead to emergent phenomena with relations to gravity and space[8]. Reasons 

to believe that quantum mechanics has connections to the geometry of space have 

emerged from holographic models and, more specifically, from the AdS/CFT corre- 

spondence [49]. A mapping between a d +1 -dimensional gravitational theory and a 

d -dimensional quantum field theory on the boundary was found by Juan Maldacena 

in 1997 [50]. The field has since evolved and it now combines many areas of physics
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,such as quantum information and black hole thermodynamics. The same theory 

can also be used to reason that there is a connection between highly entangled 

particles and wormholes, the so-called EP=EPR conjecture [51], [52]. Commonly 

these phenomena are studied in the context of black holes, which makes it mostly 

theoretical research. However, this line of research is important in the study of 

fundamental physics, which motivates alternative approaches that can benefit from 

using quantum computers. 

Here, we adopt the approach of Cao et al. [8]. First, few specific properties 

are checked that the systems need to fulfill to be applicable in this analysis. These 

will be explained below. Then, pairwise mutual information between parts of the 

system are used to construct a metric which tells how different parts of the Hilbert 

space are connected. This metric is then used to embed the system into a smooth 

manifold. Then the effect of entanglement perturbations on the state’s geometry can 

be studied. Eventually, with the information obtained from theses studies, equations 

linking the energy of the state and its geometry, which are reminiscent of Einstein’s 

equations, can be constructed. This procedure is general and can be done with any 

quantum systems which fulfill the requirements. Here, I will perform the procedure 

with the Ising model. 

2.2.1 Entanglement area laws 

One of the most interesting ideas from the holographic principle is the formula of the 

entropy of a black hole. Instead of scaling with volume, as one would expect, this 

idea suggests that the scaling is proportional to the area of the black hole instead. 

This has lead to advances in the study of quantum information in black holes and 

towards a possible solution to the so called black hole information paradox [53]. 

Any system with GM > R / 2 ( G is the gravitational constant, M is the mass of the 

system and R is the radius of the system) collapses into a black hole, the entropy of
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a black hole has to be the upper bound for the entropy of any system in the space. 

This constraint is known as the holographic bound.[8] 

A related interesting question is whether the Hilbert space describing a region of 

space is finite- or infinite-dimensional. According to quantum field theory, our most 

established and experimentally tested theory, a region of space has infinite degrees 

of freedom. As a consequence, the entropy of such region is also infinite because 

its infinite degrees of freedom are entangled with infinite degrees of freedom outside 

the region. But if the discussion above is considered, a finite part of space cannot 

have infinite entropy and therefore quantum field theory is not the final answer in 

physics. [54] 

A possible solution to this problem is to assume that a physical theory giving 

full description of nature, including gravity, has to be a finite-dimensional factor of 

Hilbert space for any local region. If a region R of space is finite, we should be then 

able to decompose the Hilbert space of the whole space into parts Hsys 

= HR 

⊗ H

 

R, 

where

 

R is the complement of the system. How many times the decomposition 

can be done depends on the system. For example, the Hilbert space of a spin 

chain can be decomposed all the way to the product of single-qubit Hilbert spaces, 

Hspinchain 

= 

⨂︁ 

i 

Hi. [54] 

When studying entanglement phenomena, it is often more interesting to consider 

how the entanglement scales when the system size grows, rather than its detailed 

value. Before, I explained that black holes obey an area law for entanglement entropy 

and, interestingly, the same kind of scaling can be found in all kinds of systems, 

even in quantum spin chains. However, a typical quantum system picked at random 

will most likely obey a volume law as one can deduce by considering the expected 

entanglement entropy of a system divided in two parts, I ⊂ L and O = L/I , each 

composed of d-dimensional constituents. One then finds for the unitarily invariant
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Figure 22: Graph where the nodes represent parts of the Hilbert space and links some 

interactions or correlations between them e.g. mutual information. Highlighted is 

a region of the system where its boundary consists of the links crossing the border. 

[8] 

Haar measure

 

E [ S ( ρI)] > | I | log2( d ) − 

d| I |−| O |

 

2 log2(2) 

. (36)

 

Therefore, the typical entropy of a subsystem is asymptotically almost maximal and 

linear in the number of constituents | I | , which means that it follows a volume law. 

It is therefore intriguing to find that typical ground states usually follow an area 

law, sometimes with a small logarithmic correction. The entropy of a region in those 

systems is then linear in the boundary area of the region. [39] 

In quantum many-body systems, this kind of behaviour arises from interactions 

that are typically local, i.e., subsystems interact mostly in short distance with near- 

est neighbors. Therefore, quantum correlations between a given region and its sur- 

roundings are established mainly trough its boundary. To visualize this, its helpful
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Figure 23: The energy gaps between the first eigenstate, E0 

and the second eigen- 

state, E1, and the second eigenstate and the third eigenstate, E2 

of the Ising model 

for 12 spins. The energies and the magnetic field are rescaled by J . 

to think of the system as a graph G of nodes L and links E , G = ( L, E ) , where the 

nodes represent subsystems of the Hilbert space and links the interactions or corre- 

lations between them, as in Figure 22. 1 D spin chains can still be represented by 

2 D graphs, as correlations can go beyond the nearest neighbors, but for spin chains 

following an area law, the graphs will be approximately 1 D , and the boundary of a 

region is then just the 2 spins at its edges. Chains with periodic conditions will not 

have an edge. The area law then states that the entropy of a block I = { 1 , . . . , n } 

is then

 

S ( ρI) = O (1) , (37)

 

where the big O notation describes the asymptotic growth rate of the function. In 

this case, it means that the entropy stays constant. 

Quantum systems with local interactions and gapped Hamiltonians follow the 

area law [39, 55]. The ground states of quantum spin chains are usually gapped and 

local and therefore obey the area law behaviour [39]. In Figure 23, the energy gap
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between the first and the second eigenvalues, and the second and third eigenvalues 

of the Ising model for 12 spins are shown. As the ground state of the system is 

degenerate for B < 1 , the energy gap between the first two is expected to be almost 

zero and the gap between the ground state and the first excited state corresponds 

to the gap between the second and the third eigenstates. However, the energy 

gap between the first and second eigenstates is very close to zero only for values 

B < 0 . 5 after which the gap starts increasing, which is caused by the finite size of 

the system. When discussing area law, the gap between the ground state and the 

first excited state is considered. In Figure 24, the entropy of a subsystem is plotted 

as a function of its size for various magnetic field values. One can see that the 

area law is approximately followed by all values of B except for the critical phase 

B = 1 . The area law is followed more accurately with values of B farther away 

from the critical value. Systems with B = 1 . 5 and B = 2 follow the area law quite 

accurately except when the size of the subsystem changes from 1 to 2 and from 10 

to 11. The latter change originates from the finite size of the system, as the size of 

the subsystem becomes almost the same as the whole system. 

The Hamiltonians for critical spin chains are gapless and therefore they do not 

strictly follow area laws but instead present a logarithmic scaling. They can be 

described by Conformal Field Theories (CFT), and the entanglement entropy is 

then

 

S ( n ) = 

c

 

3
log( n ) + d, (38)

 

where c is the central charge of the corresponding CFT and d is some non-universal 

constant. [32] 

The following study will be conducted with states that obey area law. The 

discussion will first be general and will then move towards a specific use case, the 

Ising model, which has been noted to follow the area law accurately for magnetic 

field values B > 1 . Consider again the graph representation for a system divided
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Figure 24: The scaling of entropy in 12 qubit Ising model for different magnetic field 

values. The entropy has been calculated for a subsystem taken from the middle of 

the spin chain by tracing others out. Chains with B > 1 approximately obey area 

law. 

into sufficiently large regions Ap. We can calculate the entropy S ( Ap) of any region 

and the mutual information I ( Ap 

: Aq) between any two regions. A consequence of 

the area law is that we can use mutual information to calculate the entropy of any 

region. Consider a region B consisting of non-overlapping subregions Ap 

and the 

complement of this region

 

B . We can then calculate the entropy of B by summing 

together all mutual informations crossing the boundary between B and

 

B as

 

S ( B ) = 

1

 

2 

∑︂ 

p ∈ B ,q ∈

 

B 

I ( Ap 

: Aq) . (39)

 

In Figure 22, one would get the entropy of the shaded area by calculating the mutual 

information of the links crossing the cut line. This formula applies for most area law 

states, but the finite size of a system can affect. Even though the Ising model follows 

area law for B < 1 , Figure 10 shows that it still exhibits long range correlations. 

Despite this, and for other systems which do not follow area law, Equation (39)



 

59

 

Spin 1 2 3 4 5 6 7 8 9 10 11 12

 

Error [%] 3.23 2.13 4.12 4.56 4.67 5.01 4.90 4.87 4.69 4.28 2.42 3.51

 

Table II: The relative differences of the entropy calculated by two different means 

for each qubit. The state is approximately redundancy-constrained. 

can still be a good approximation. The states that obey this expression are called 

redundancy-constrained . [8] 

In the paper of Cao et al. [8] they first considered general systems and then used a 

1-dimensional antiferromagnetic Heisenberg chain as an example. However, instead 

of actually using mutual information in their analysis, they opted for estimating 

the mutual information by calculating the magnitude of the squared correlator in 

Equation (26) with Bessel functions [8]. The setup of this thesis allows for the 

entropy to actually be calculated through mutual information obtained from pairwise 

tomography. The quantum system that will be investigated is the 12-qubit Ising 

model with B = 2 as it was observed to obey the area law with decent accuracy. 

To make sure that the redundancy-constraint is fulfilled, the entropy of each qubit 

is calculated first by simply calculating the average of entropy obtained by tracing 

out the other qubits from every pairwise density matrix obtained from the pairwise 

tomography. Then, the mutual informations that are also obtained from the pairwise 

density matrices are used with Equation (39) to calculate the entropy. The relative 

differences for each qubit are shown in the table II. Small errors in redundancy- 

constrainedness are a consequence of the small size of the spin chain. 

The total strength of a node which is the sum of the mutual informations of the 

links intersecting it, is upper bounded by the maximum entropy of the node as

 

S ( Ap) = 

∑︂ 

q 

I ( Ap 

: Aq) ≤ 2 Smax( Ap) ≤ 2 ln( Dp) , (40)

 

where Dp 

= dim HAp 

[8]. For a spin chain of qubits, the limit is then S ( Ap) ≤ 2 .
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2.2.2 Constructing the metric 

Consider the mutual information graph of our quantum system. The goal is now to 

transform these mutual informations into distances between the nodes to construct 

a metric for the space. For a general graph G ( E , V ) , the transformation from 

information graph to distance graph is

 

G ( V , E ) = G̃( Ṽ  , Ẽ) , (41)

 

which might be a non-trivial transformation. One easy simplifying assumption to 

make is to keep the vertices and edges fixed so that only the weights of the edges 

change. It is reasonable to assume that mutual information is higher between nearby 

parts of space and lower for distant ones. However, this is not always true as 

maximally entangled particles can be at arbitrarily distances from each other. One 

can think of this construction as being a new kind of notion for what is close and 

what is not. Even though entangled particles may not transfer information instantly 

to arbitrary distances, they are still strongly correlated. This kind of idea is known 

as the EP=EPR conjecture that will be discussed later. [8] 

Now the distance graph’s weights are defined as

 

w ( p, q ) = 

⎧ ⎪⎨ ⎪⎩ 

ℓRCΦ ( I ( Ap 

: Aq) /I0) ( p ̸ = q ) 

0 ( p = q ) 

(42)

 

where ℓRC 

is the redundancy-constraint scale, Φ is some function and I0 

is for nor- 

malization. I set ℓRC 

= 1 without loss of generality. Also, if I ( Ap 

: Aq) = 0 no edge 

is drawn. The normalization is chosen such that I ( Ap 

: Aq) /I0 

= 1 for a maximally 

entangled state. This is the same as the limit for the entropy in Equation (40), so 

I0 

= 2 . 

The function Φ is generally determined by the system, but it has to fulfill some 

basic properties. The argument of the function is 1 for maximally entangled states, 

which are assumed to be close, so the first requirement is that Φ(1) = 0 . Unentangled
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states are far apart from each other, so the second requirement is that limx → 0 Φ( x ) = 

∞ . Also, Φ has to be non-negative and monotonically decreasing. For our simple 

system, Φ( x ) = − ln( x ) will be suitable. [8] 

These weights could be readily used to setup the metric. However, for vertices 

that are connected by multiple paths, the shortest one needs to be chosen. Let 

P be any path connecting two nodes p and q , and denote the path of vertices as 

P = ( p = p0 

, p1 

, p2 

, . . . , pk 

= q ) . The metric d̃( p, q ) is then constructed by choosing 

the shortest path between any two pairs as

 

d̃( p, q ) = min 

P 

{︄ 

k − 1∑︂ 

n =0 

w ( pn 

, pn +1) 

}︄ 

. (43)

 

By construction, this metric satisfies the requirements for metric space: 1) d̃( p, q ) = 

d̃( q , p ) , 2) d̃( p, q ) = 0 for p = q and 3) d̃( p, q ) ≤ d̃( p, s ) + d̃( s, q ) , for any s ∈ G . 

2.2.3 Classical multi-dimensional scaling 

To construct the emergent space from quantum entanglement, we need tools to 

embed the metric obtained from mutual information to a smooth manifold. One 

approach is Regge calculus, which was originally crafted to study Einstein’s gen- 

eral relativity in discrete space and it contains tools to construct a manifold from 

distances between vertices [56]. The approach used in this thesis is a method from 

classical data analysis called Multi-Dimensional Scaling (MDS). With it we can 

embed the metric into a symmetric manifold. The embeddings will be done to Eu- 

clidean RD manifolds, and later perturbations to this manifold are considered. The 

embedding is isometric i.e. a distance-preserving transformation for flat geometries 

and a good approximation for spaces with small distortion. The goal is to find an 

embedding with the smallest dimension D which is still approximately isometric. 

Some distortion can arise from the arbitrarily chosen function Φ . [8] 

Next I will describe the procedure to obtain a coordinate matrix X embedded 

in a D -dimensional space. The input will be the metric d̃( p, q ) for N vertices and



 

62 

the output an N × D matrix X , where the n -th row contains the D coordinate 

values of the n -th vertex in RD. First, define a new matrix B which is related 

to the coordinate matrix by B = XXt = ( XO )( XO )t, where O can be some 

arbitrary orthonormal transformation. The metric can be then related to the matrix 

B through the coordinates as follows [8]

 

d̃( p, q )2 = 

d∑︂ 

r =1 

( Xpr 

− Xq r)
2 (44) 

= 

d∑︂ 

r =1 

[ Xpr 

Xpr 

+ Xq r 

Xq r 

− 2 Xpr 

Xq r] (45) 

= Bpp 

+ Bq q 

− 2 Bpq 

. (46)

 

An unique solution is obtained by setting a constrain to center the embedding 

at the origin

 

N∑︂ 

p =1 

Xpr 

= 0 , ∀ r. (47)

 

From this follows that 

∑︁N 

q =1 

Bpq 

= 0 and then we finally get the equation to construct 

the B matrix

 

Bpq 

= −1

 

2 

(︄ 

d̃( p, q )2 − 

1

 

N 

N∑︂ 

l =1 

d̃( p, l )2 − 

1

 

N 

N∑︂ 

l =1 

d̃( l , q )2 + 

1

 

N2 

N∑︂ 

l ,m =1 

d̃( l , m )2 

)︄ 

. (48)

 

To obtain the coordinate matrix X we just need to diagonalize B as B = VΛVt, 

calculate its eigenvalues λ1 

≥ λ2 

≥ . . . ≥ λN , and choose the D non-zero eigenvalues 

and corresponding eigenvectors to construct the solution

 

X = ( 

√︁

 

λ1v1 

, . . . , 

√︁

 

λDvD) . (49)

 

This is an isometric embedding of N points to a D dimensional Euclidean space and, 

if we wish to obtain an embedding into a lower dimensional space, we can choose
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Figure 25: The embedding from multidimensional scaling for the Ising model with 

12 spins and B = 2 . 0 . The magnetic field is rescaled by J . 

the D eigenvectors the highest eigenvalues. The error of the embedding will then be

 

ϵD 

= 1 − 

∑︁D 

i =1 

| λi 

|

 

∑︁N 

i =1 

| λi 

| 

. (50)

 

2.2.4 Embedding the Ising model to a manifold 

The procedure described above will now be applied to the Ising model of 12 spins 

with magnetic field value of B = 2 . VQE is used to find the ground state of the model 

and pairwise tomography is then used to extract the mutual information network 

from it. The redundancy-constrainedness of the state was already explored in the 

table II. Using Equations (42) and (43), the weights and the corresponding distance 

metric were calculated. Then, classical MDS was applied by using Equation (48) 

to calculate the B matrix, and from that the coordinate matrix X . The resulting 

embedding to 2-dimensional Euclidean space can be seen in Figure 25. One can see 

that the spin chain is reconstructed with great accuracy, although the edges bend
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Figure 26: The eigenvalues of the B matrix of the embedding of the Ising model.

 

Dimensions of embedding

 

1

 

2

 

3

 

Error of the embedding, ϵ [%]

 

35.99

 

17.93

 

14.04

 

Table III: The errors in 1,2 and 3 -dimensional embeddings of the Ising model to an 

Euclidean manifold. 

slightly. Slight bending happens due to the finite size effect, but the reason is mostly 

in errors coming from the methods. The errors are due to three things: 1) The state 

is only approximately redundancy-constrained, 2) the VQE result is good but not 

exact and 3) the pairwise tomography results in small errors due to finite statistical 

sampling. The resulting error is not large, but the MDS procedure seems to be 

sensitive to small changes in edge weights. 

The eigenvalues of the B matrix are shown in figure 26. The first eigenvalue is 

much higher than the rest so the embedding is mostly 1-dimensional. However, the 

second eigenvalue is also quite high, so much better embedding is achieved onto a 

2-dimensional manifold. The errors for 1,2 and 3 -dimensional embeddings can be 

seen in the table III.



 

65 

2.2.5 Perturbations 

VQE gives us the ground state of a system and now we will consider perturbations 

away from it and how it affects the MDS embedding and the emerging space. This 

line of research was proposed and shortly explored in the paper of Cao et al. to 

understand the relationship between entanglement and curvature of space[8]. The 

work was purely theoretical and with some assumptions on the quantum state, so 

no direct correspondence were stated. The following discussion is more hypothetical 

in nature, but it illustrates a use case for the method of the thesis. 

For the perturbation, I have chosen the controlled Ry( θ ) -gate between two qubits, 

where qubit 2 is the control and qubit 9 is the target. The gate is added after the 

parametrized circuit that represents the ground state of the Ising model. The param- 

eter of the gate is varied from 0 to 2 π . The idea behind this numerical experiment 

is to study the EP=EPR conjecture, which states that the entanglement between 

two systems is, in some sense, analogous to a quantum wormhole. Two entangled 

particles can affect each others’ quantum state through arbitrary distances, so in the 

language of our theory of emergent space, they can be considered to be close to each 

other. The effects of the perturbation are shown in Figure 27 for various values of θ . 

One can see that the spins 2 and 9 start closing on each other and eventually almost 

overlap. One needs to keep in mind that the embeddings are an approximation and 

there is ambiguousness in the interpretation. 

Figure 28 quantifies the effects of the perturbation. The sum of pairwise mutual 

information of the whole system increases from the perturbation and one can see 

that the maximum of the perturbation happens at about θ = π . The perturbation 

increases the mutual information of spins 2 and 9, the control and the target which 

corresponds to the spins closing on each other as seen in the Figure 27. Interestingly, 

the mutual information of the control spin, 2, and its neighbor, 1, and also of the 

target spin, 9, and its neighbor, 8, decrease as the perturbation grows. In addition,
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Figure 27: The MDS embedding in 2D of the Ising model which has been perturbed 

by a control- Ry( θ ) -gate where qubit 2 is the control and 9 is the target. The figures 

show the effect of the perturbation for different values of θ . 

the mutual information of the control, 2, and the targets neighbor, 9, grows with the 

perturbation and same with the target, 9, and controls neighbor, 1. This behaviour 

was predicted in the paper of Cao et al. for two spins that become increasingly 

entangled with each other. This effect can be interpreted as a quantum proto- 

wormhole. It has no smooth classical geometrical presentation so the embeddings 

shown in figure 27 are not completely accurate, but partly capture the effects on the 

geometry. The embedding error is also plotted in the bottom of the Figure 28, and 

one can see that as soon as the perturbation starts, the 1-dimensional embedding 

error quickly increases. The 2 and 3-dimensional embedding errors also increase 

slightly. It is clear that no smooth Euclidean embedding exists even in 3 dimensions
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Figure 28: Effects of the perturbation on the Ising model. A control- Ry( θ ) -gate was 

applied so that spin 2 was the control and 9 was the target. In each figure the x-axis 

represents the parameter θ which was varied from 0 to 2 π .
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for a highly perturbed system. Finding a connection between the entanglement 

perturbations and Einstein’s equations of general relativity was also considered in 

the paper of Cao et al [8], which will be investigated in future work.
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3 Conclusions 

The main focus of this thesis has been to introduce a methodology to explore quan- 

tum entanglement phenomena on near term quantum computers. This methodology 

combines two existing quantum algorithms, VQE and pairwise tomography, which 

were first introduced, and then used, as a proof of concept, in two different case stud- 

ies. An important aspect of the methodology is that it does not need a fault-tolerant 

quantum computer with millions of qubits, as those are still far in the future. In- 

stead, the methodology can be used right now for small systems, and in the near 

future, for intermediate sized systems, which can already represent problems that 

can benefit from quantum advantage. 

In this thesis, the simplest form of the VQE algorithm was used. Despite this, 

it efficiently worked with the studied examples. For more complex systems some 

advancements might be needed of which many examples already exist. Adapt-VQE 

changes the ansatz such that it is iteratively built from a set of building blocks to 

better suit the problem under study [57]. In the paper of García-Pérez et al., a 

method is introduced to optimize the measurement part of the VQE algorithm on- 

the-fly to increase the rate of convergence [26]. The same method can also be used to 

construct quantum state tomography, which could replace the pairwise tomography 

used in this thesis. 

Pairwise mutual information and concurrence were proven to be good quantifiers 

of entanglement structures. They are complementary: concurrence provides infor- 

mation about the purely entanglement phenomena and mutual information consid- 

ers both classical and quantum correlations. Together they give information about 

entanglement community structures, quantum phase transitions and network prop- 

erties of the system. 

Two study cases were considered as a proof of concept to benchmark the method- 

ology, and also to study the problems themselves. First, the entanglement network
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structures of quantum many-body systems was studied. Many results of the pa- 

pers of Sokolov et al. [9], Valdez et al. [29] and Son et al. [36] were reproduced and 

also new results were presented. The systems under study were simple quantum 

spin chains, because 1) they did not require more advanced versions of the algo- 

rithms given their simplicity, 2) they are extensively studied in the literature, which 

is good for benchmarking, and 3) despite their simplicity, they still presented in- 

teresting properties that are not well understood without studying their emergent 

properties. 

The methodology can also be used in the research of fundamental physics, which 

was proven by studying topics in quantum gravity, and more specifically, emergent 

space from quantum entanglement. The entropy distribution of a state fulfilling 

the area law and redundancy-constraints can be calculated from pairwise mutual 

informations, which was done using the ground state of the Ising model. This 

information was used to construct a metric that was embedded into a RD Euclidean 

space using classical multi-dimensional scaling. Also, the effect of entanglement 

perturbations on the emerging geometry was explored. 

All experiments for this thesis were performed on classical simulators, because 

of computation and time constraints. Also, with the current quantum computers 

provided by IBM that are accessed through the cloud, one would need to submit a 

separate job of quantum circuit simulation for each iteration in the VQE algorithm, 

which would slow down the process. In the future, it may be possible to submit 

the entire process of the algorithm at once, eliminating this limitation. In gen- 

eral, advancements in quantum technologies will enable more efficient usage of the 

methodology presented here, maybe to achieve quantum advantage for real world 

applications in the near future.
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