
 

1  

 
 

Network Intrusion Detection System  
using Deep Learning Technique 

 
 
 
 
 

Cyber Security 
Master’s Degree Programme in Information and Communication Technology 

Department of Computing, Faculty of Technology 
Master of Science in Technology Thesis  

 
Author: 

Donatus Ifeanyichukwu Edeh 
 

Supervisors: 
 Ethiopia Nigussie  

 Antti Hakkala  
 
 

June 2021 
 

 
 
 
 
 
 

The originality of this thesis has been checked in accordance with the University of Turku quality 
assurance system using the Turnitin Originality Check service.



 

i  

Master of Science in Technology Thesis   Department of Computing, Faculty of Technology University of Turku  Subject: Cyber Security  Programme: Master’s Degree Programme in Information and Communication Technology Author: Donatus Ifeanyichukwu Edeh Title: Network Intrusion Detection System using Deep Learning Technique Number of pages: 75 pages, 2 appendix pages Date: June 2021  The rise in the usage of the internet in this recent time had led to tremendous development in computer networks with large volumes of information transported daily. This development has generated lots of security threats and privacy concerns on networks and data. To tackle these issues, several protective measures have been developed including the Intrusion Detection Systems (IDSs). IDS plays a major backbone in network security and provides an extra layer of security to other security defence mechanisms in a network. However, existing IDS built on a signature base such as snort and the likes are unable to detect unknown and novel threats. Anomaly detection-based IDSs that use Machine Learning (ML) approaches are not scalable when enormous data are presented, and during modelling, the runtime increases as the dataset size increases which needs high computational resources to fulfil the runtime requirements.  
This thesis proposes a Feedforward Deep Neural Network (FFDNN) for an intrusion detection system that performs a binary classification on the popular NSL-Knowledge discovery and data mining (NSL-KDD) dataset. The model was developed from Keras API integrated into TensorFlow in Google's colaboratory software environment. Three variants of FFDNNs were trained using the NSL-KDD dataset and the network architecture consisted of two hidden layers with 64 and 32; 32 and 16; 512 and 256 neurons respectively, and each with the ReLu activation function. The sigmoid activation function for binary classification was used in the output layer and the prediction loss function used was the binary cross-entropy. Regularization was set to a dropout rate of 0.2 and the Adam optimizer was used. The deep neural networks were trained for 16, 20, 20 epochs respectively for batch sizes of 256, 64, and 128. After evaluating the performances of the FFDNNs on the training data, the prediction was made on test data, and accuracies of 89%, 84%, and 87% were achieved. The experiment was also conducted on the same training dataset (NSL-KDD) using the conventional machine learning algorithms (Random Forest; K-nearest neighbor; Logistic regression; Decision tree; and Naïve Bayes) and predictions of each algorithm on the test data gave different performance accuracies of 81%, 76%, 77%, 77%, 77%, respectively.  
The performance results of the FFDNNs were calculated based on some important metrics (FPR, FAR, F1 Measure, Precision), and these were compared to the conventional ML algorithms and the outcome shows that the deep neural networks performed best due to their dense architecture that made it scalable with the large size of the dataset and also offered a faster run time during training in contrast to the slow run time of the Conventional ML. This implies that when the dataset is large and a faster computation is required, then FFDNN is a better choice for best performance accuracy. 
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1 Introduction 
 
1.1 Motivation 
Computer networks have increased tremendously over the years due to the advent of a digital 
revolution, and the development has relatively led to a high number of attack vectors on the 
networks. It is envisaged that by 2023, that there will be an increase in the number of IP-
connected devices that would produce an enormous amount of IP traffic up to 4.8ZB [1]. This 
would pose security challenges to the conventional IDS and traditional machine-learning 
mechanism already in existence.  Internet security threats have continued to rise with an 
increase in the internet network, and that has made cybersecurity an essential field of research. 
The major Cybersecurity techniques in use include antivirus software, firewall, and intrusion 
detection systems (IDSs) [2], which are still playing useful roles today in cybersecurity defence 
to ensure that networks are protected from internal and external malicious attacks.  
 
In the security of networks, the IDS makes the firewall more progressive by serving as an 
additional layer to disallow rules based on traffic activities. Business operation depends more 
on Information technology (IT) and networks. Therefore, the need to provide adequate 
protection to data is essential. We now live in a digital world, where many critical 
infrastructures are linked to the internet, and money and information have become digital assets. 
No doubt, this transition has transformed IT, making it a complex technology with many IoT 
devices and systems connected to the internet [3].  
Spam, Denial of service (DoS) attacks, worms, phishing attacks in one way or the other depends 
on some form of harmful software called malware. Malware is a programming software 
designed by cybercriminals to exploit vulnerabilities found in a network of computer systems. 
Examples include viruses, ransomware, worms, Trojans, spyware, etc. 
Over the years, this malicious software has spread and become more complex, most especially 
from the first decade of the 21st century [4], causing havoc on the computer systems and 
networks, theft, and other illegal activities, and in this present-day generation has become a 
serious security issue and have continued to grow. So, there is a need for a stronger network 
security defence using machine learning techniques that is capable of addressing these security 
challenges, even up to the future.  
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Nowadays, the use of machine learning in cybersecurity is becoming popular, and cybersecurity 
researchers are not relenting in ensuring that a state-of-the-art cybersecurity defence would be 
achieved, because data has become an essential asset to so many organizations, and because 
many of these data have been digitalized, they must be given adequate protection in this digital 
age to preserve integrity, availability and confidentiality of services. The Naïve Bayes (NB), 
K-Nearest Neighbor (KNN), Random Forest (RF), Logistic Regression (LR), Decision tree 
(DT), Support Vector Machine (SVM), and Multi-layer perceptron (MLP) are some of the 
commonly used conventional machine learning methods that have already been applied to 
anomaly detection and classification, and other areas of cybersecurity such as malware 
detection. Compared to the signature-based IDS, the machine learning techniques can detect 
unknown and novel attacks. The challenge faced by these conventional machine learning 
methods is that they are not scalable to a large dataset because of their shallow architecture, and 
again their feature extraction phase is done manually. 
 
Machine learning algorithms such as the deep learning approach, have started delivering 
outstanding results in some major fields of study like medical in area of medicine, diagnosing, 
treatment, and prevention [5] [6], other areas of applications include self-driving cars, voice 
search, automatic handwritten generation and automatic machine translation [6]. 
The deep learning approach would be more sophisticated and with the capabilities to overcome 
the limitations as found in the traditional machine learning techniques. It is also used in other 
various areas of cybersecurity applications such as malware detection and classifications, drive-
by download attacks, file type identification, spam identification, insider threat detection, 
network traffic identification, botnet detection, user authentication, false data injection attack 
detection, verifying human typed keystrokes and border gateway protocol anomaly detection 
[7]. 
 
1.2 Problem 
As already discussed in section 1.1, the rapid increase in the number of disruptive technologies 
such as blockchain, big data, Internet of Things (IoT) has given rise to complex cybersecurity 
problems due to the amount of new and unknown threats that is been discover daily.  
[2] there is usually a high occurrence of high false alarm rate in the conventional IDS which 
has made it prone to many low non-threatening attacks, and this situation occasionally has led 
to the ignoring of harmful attacks by a security analyst. Another major issue is that the 
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traditional IDS cannot detect unknown and novel malware variants such as zero-day attacks as 
they continue to emerge. This has generated lots of concern to cybersecurity researchers, who 
have taken the advantage of data-driven engineering to build machine learning algorithms to 
eliminate these limitations. This is a generation of big data technology and the machine learning 
approach performance depends on the availability of data it has; however, lack of enough data 
harms their performances. The use of a Deep Neural Network (DNN) in cybersecurity is a new 
research interest for many cybersecurity professionals [21], and a deep neural network for IDS 
is one such research area. This is because the DNNs have the capabilities to manage enormous 
data that helps them to have a better performance in classification than the traditional machine 
learning techniques, which previously have shown to be a stronger and better defence 
mechanism over the signature-based intrusion detection systems. 
1.3 Objective 
Intrusion detection systems aim to identify intrusion activities and attacks on internet network 
that is in progress or already occurred, so it is an active security mechanism that is very 
important, powerful, and a core technology of network security. The goal of this thesis work is 
to create and analyse a deeper machine learning technique using a deep neural network that can 
be implemented on a signature or anomalous behaviour of network traffics. 
1.4 Research questions 
Cybersecurity has become an essential field of research and this thesis work is done to 
contribute and provide an alternative way that intrusion detection systems (IDSs) can be 
designed using deep machine learning methods. The focus is based on the discussion in section 
1.3 above. 
a. What is the importance of using Machine Learning (ML) for cybersecurity? 
b. Which ML algorithm is better suited for IDS implementation? 
c. How to design intrusion detection systems using the Deep Learning (DL) method? 
d. How more desirable is the performance of the designed deep neural network to the existing 
methods?  
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1.5 Thesis Organization 
The organization of this thesis is as follows: 
 
Chapter one discusses the motivation behind this thesis topic and research interest, problems, 
objectives, and the research questions to guide towards the completion of this thesis work. 
 
Chapter two is about Machine learning techniques for intrusion detection. It discussed 
cybersecurity, network security, and network attack types. The different types of intrusion 
detection methods and intrusion detection systems were also discussed extensively.  Another 
area of interest was machine learning in cybersecurity, how ML has impacted cybersecurity, 
and the major steps of implementation. It also focused on some commonly used conventional 
machine learning algorithms (e.g., Support vector machine, Naïve Bayes, Random Forest, 
Artificial neural network) already applied to building IDS. Deep learning fundamentals, 
concepts, and the different deep neural network architectures that have been used for 
cybersecurity were discussed, and finally, a few related works based on deep learning for 
intrusion detection systems. 
 
Chapter three discuss the design and methods that were employed in this research work. Firstly, 
the software environments where all experiments were performed, and the tools that supported 
the success of the experiments were discussed. Also discussed was the description of the NSL-
KDD dataset, and the data pre-processing techniques such as feature encoding, feature scaling, 
and feature selection used for processing the training data and test data. The FFDNN binary and 
multi-class classifications of the network intrusions, and also the statistical metrics used to 
evaluate the performance of the models were discussed., Finally, this chapter also focused on 
the FFDNN model architecture and implementation, and the ML model implementations. 
 
Chapter 4 focused on the experimental process and analysis. discusses the dataset, data pre-
processing, model implementation, and analysis. Experimental setup for the FFDNN and 
Machine learning models, discussion, and analysis based on the simulation result was detailed. 
 
Chapter 5 focused on the conclusion and Future works 
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2 Machine Learning Methods for Intrusion Detection  
2.1 Cybersecurity  
We now live in a world of cyberspace where many devices such as the internet of things (IoT), 
critical infrastructure, network infrastructures, and computer systems are connected to the 
internet, this has shown that we are now in an era of a digital revolution. A large and sensitive 
amount of data flow through these networks by the day and need to be protected and treated 
with so much care and concern to protect them from malicious attackers. Cybersecurity has 
become the backbone for many businesses, organizations, governments, and individuals to 
survive in terms of business growth, resources allocation, policy making, data protection, and 
privacy preservation. It is a major area of interest for security professionals, because of sensitive 
data that need to be protected.  
 
[8] define cybersecurity as the protection of computers, programs, servers, network 
infrastructures, and data from unauthorized access or change, by ensuring that the right 
procedures, policies, and cyber protective measures are applied. Cybersecurity can be 
categorized into six different areas [3]: 
1. Network security: This keeps the network and communication of data safe from intrusion 
with the use of IDS, firewall, and other cyber security defence mechanisms. 
2. Application security: This security ensures that the applications and software are free of 
malware infections that can cause data loss and leakage. It can also be seen as the security of 
web pages. 
3. Information security: Data is key to many organizations, so the protection of vital 
information in a database from unauthorized access is of great importance. Data bridge could 
cause the organization a fortune to deal with. 
4. Operational security: This security is needed to protect the business daily activities of the 
organization to ensure smooth running since a large amount of data is handled and transported 
during this process.  
5. End-user security: Creating security awareness among the workers is very essential, since 
they need to understand the fundamentals of cybersecurity and some common cyber threats 
such as phishing, ransomware, so they don’t fall victim to cyber-attacks which will directly 
affect the security of the organization. 
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6. Disaster recovery and business continuity: This ensures that business operation is returned 
to normal as soon as possible after a cybersecurity incident had occurred. Inventory of all the 
organization assets, IT infrastructure, all relevant information, and steps of recovery from a 
disaster are documented. 
 
The objective of cybersecurity is to ensure the integrity, availability, confidentiality, and 
nonrepudiation of information and information management systems through various cyber 
defence techniques [9] [10]. This ensures that information such as medical records, financial 
records, and personal identity are protected from malicious attacks. 

• Confidentiality: Ensuring that sensitive information is not exposed to an unauthorized 
individual and systems. 

• Integrity: Ensuring that the original information is not tampered with or modified. 
• Availability: Ensuring that the information is available to the individual or system when 

it is needed. 
• Nonrepudiation: Ensuring that information cannot be denied by the sender or system 

when it is already transmitted. 
 

Today’s cybersecurity defence incorporates several defence mechanisms such as firewall, 
antivirus, network intrusion and spam filter that works in silos to ensure the protection of 
computer systems and networks.  
Cybersecurity defence fights threats at two levels [10], the host-based defence system which 
protects a host system using antivirus, a firewall, and intrusion detection system, and then the 
network-based defence system that controls the flow of network traffic also through firewall, 
spam filter, antivirus, and network intrusion detection system. However, due to the constant 
increase in the number of threats evolving daily, building defence systems that discover known 
threats is not enough to protect users, systems, and networks. Cybersecurity professionals, 
researchers from institutions, private sectors, and government agencies are collaborating, 
exploiting, and designing different cyber defence systems to address these needs. They have 
started to involve the use of machine learning (ML) and deep learning (DL) techniques to design 
and implement safe and secure systems. 
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2.2 Network security 
The major concern of network security is to give individuals the freedom to enjoy computer 
networks without the doubt and fear that their rights and privacy are in any form of the danger 
of attack. Therefore, it is necessary to guard the networked computer systems and protect data 
that are transmitted in the networks or stored in a disk in a networked computer. Again, the 
internet has become a centre of attraction to many people all over the world and has become a 
dominant technology. It is built on the IP communication protocol which allows people to 
communicate and transmit data via a network infrastructure such as a router which can be 
controlled by other people and is subject to attack. This attraction to the internet has also 
contributed to the growth in big data technology, thus increasing the amount and complexity of 
data transmitted from network activities. These activities have grown over the years causing 
the design of effective IDS to consume high computational cost and overhead, and so many 
computational resources that can hinder intrusion identification.  
Network security is concerned with the protection of computer systems connected to a network 
from malicious intruders. The goal of network security as already mentioned in section 2.1 
which is to provide confidentiality, integrity, availability, and nonrepudiation of data that are 
transmitted or stored in networked computers. So, a major area of focus by cybersecurity 
researchers is to design network anomaly detection that can detect novel and unknown threats 
with a minimum false alarm rate [11]. 
 
2.2.1 Network Protocols 
Networks are organized in a layered manner, where the designer of the upper layer depends on 
the layer below it. Each layer works based on a predefined services to the layer above it using 
a predefined Service Access Point (SAPs) utilising the Protocol-Specific Logical Service 
Primitives to achieve the operation. They are designed to offer a network service that is either 
connection-oriented, where there is the establishment of connection based on mutual 
negotiation between entities (sender, receiver, subnet), or a connectionless service that have no 
logical connection for that data to be regulated as it passes through the network. Networks need 
protocols to work, these protocols allow efficient and effective communication between a client 
(web browser) and a server (web server). Network protocols are rules governing the exchange 
of data between computers connected to the network and can be found in a stack of layers with 
the layer below communicating with the layer above and verse Versa. 
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Figure 1: Comparison between the OSI and the TCP/IP models [12] 

 
The International Organization for Standardization (ISO) initiated the Open Systems 
Interconnection (OSI) reference model and designed the computer protocol stack reference 
model with seven layers (data link, physical, network, transport, session, presentation, and 
application layers), and also to be used as a framework for the development of protocol 
standard. Another important reference model called the TCP/IP reference model was also 
established. Both reference models were combined to form the hybrid reference model to 
standardize the protocol in Computer networking. To compensate for the limitations on both 
models, layers 5 and 6 in the OSI reference model were dropped and layers 1and 2 in the TCP/IP 
reference model were replaced with layers 1, 2 & 3 of the OSI model. This change was 
necessary because the TCP/IP reference model cannot describe modern networks and does not 
correctly define the task to be performed in the lowest layer of the model even though it was 
widely used. On the other hand, the OSI reference model is not widely used even though it can 
properly describe the network. The majority of the functions provided in the OSI model are also 
available in the TCP/IP model. 
  
 
 
 
 
 
 
 
 
 
The layers stacked together in the model in section 2.2.1 can achieve their functions through 
service and protocols. The service creates the interface between two adjacent layers,  the upper 
layer is the service provider and the layer beneath is the service user. Again, the service as a set 
of operations provided by the upper layer is achievable with the help of protocols. The protocols 
are defined based on the layers, for instance, physical protocol, data link protocol, network 
protocol, etc. There are different layers with different functions, but to mention are four 
important layers of the model [13]: 
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• The application layer supports network applications, which are also controlled by other 
protocols depending on the function of the application. These other protocols are Hyper 
Text Transport Protocol (HTTP) for web services, Simple Mail Transfer Protocol 
(SMTP) for electronic mail services, File Transfer Protocol (FTP) that support file 
transfer. 

• The transport layer controls the messages from the application layer between a client 
and a server. Its functions are well coordinated with the help of two important protocols, 
the Transmission Control Protocol (TCP), which offers a connection-oriented network 
service, and the User Datagram Protocol (UDP) whose service is connectionless. 

• The network layer is concerned with the forwarding of packets in a network through a 
gateway or router. It depends on the services of the link layer, and it supports both the 
IP protocol and routing protocol which are important for forwarding packets between a 
source and a destination. 

• The Physical layer is responsible for the sending of bits of a frame from one node to the 
other. It is concerned with data encoding, bits representation, and other physical 
components such as connectors and cables. 

2.2.2 Network Attacks  
An attack is a chronological succession of illegal events that compromises the security of a 
network or computer system. [11] classify attacks into seven categories based on 
implementation. 

(i) Infection attack: This attack occurs when the target system is infected with 
malicious files. 

(ii) Exploding: This occurs when the target system is overflown with malicious code 
(iii) Probe: The use of software tools to steal or gather information about the target 

system. 
(iv) Cheat: Logging into a system with a false identification 
(v) Traverse attack: This involves trying many different passwords/keys to gain access 

to a system. 
(vi) Concurrency: This attack occurs when the service of the system is over-flooded 

with lots of identical requests that the service is unable to supply. 
(vii) Others: Attacks in this category take advantage of a vulnerability found on a system. 
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Table 1: Attack categories with examples [11] 
Main Category Subcategory 
Infection Worms,Viruses, Trojans 
Exploding Buffer Overflow 
Probe Port Mapping Security Scanning, Sniffing  
Cheat 
 
 

MAC Spoofing, Ip Spoofing, DNS Spoofing, Session Hijacking, XSS (Cross-Site Script) Attacks, Hidden Area Operation, and Input Parameter Cheating. 
Traverse Dictionary Attacks, Doorknob Attacks, Brute Force. 
Concurrency DDoS (Distributed Denial of Service), Flooding.  

 
Attacks can also be passive in which an intruder monitors the traffic to collect vital information 
to start an attack, examples are packet sniffing, traffic monitoring, and analysis. Again, it could 
be active, an attack that could cause a devastating effect on a network. 
The active attack has been classified into four different categories, namely denial of service 
(DoS), R2L, probe, and U2R [46] [47]. 
 
1. Denial of service (DoS): This is a blocking attack whereby an attacker blocks access to 

the system from legitimate users. In other words, it is an explicit attempt by attackers to 
prevent the right user access to the service e.g., syn flood, smurf attack, ping of Death. 

2. Probe: This kind of attack involves gaining information about a remote user from the 
network. It is deliberately crafted by an attacker on a targeted victim e.g. port scanning 
using portsweep, IPsweep, Nmap. 

3. Root to Local (R2L): Unlawful access from a remote machine, cybercriminal invades 
into a user remote machine and gains access to vital information e.g. password guessing. 

4. User to Root (U2R): Unlawful access to local super user privileges. cybercriminal logs 
into user account using normal account login and tries to gain administrative privileges 
by taking advantage of the vulnerability found in the system e.g. buffer overflow attacks. 

 
 
 
 



  

11  

2.3 Intrusion Detections 
 It is useful and important to detect abnormal activities by monitoring network traffics that has 
escaped through the firewalls and steal user and system information, so that system 
administrators can stop and prevent further damage by the malicious intrusion by taking 
appropriate actions. This intrusion detection monitoring can be achieved by the use of an 
automated system called the intrusion detection system (IDS). This idea of intrusion detection 
was first initiated in the mid-’80s by Dorothy Denning and Peter Neumann [2] [14]. IDSs are 
essential security mechanisms that play a significant role in network security. It complements 
other security technology such as firewall, antivirus and access control to offer effective 
protection to security in today’s technology. An intrusion detection system can be a hardware 
device or software application that monitors a network or a system for suspicious and illicit 
activities. Over the years many IDS products have emerged as of the writing of this thesis.  
 
 The IDS monitors and analyses ingress packets that have bypass the firewall and send alarm 
signals if any malicious intrusion or attack is detected. There are two major intrusion detection 
mechanisms according to deployment [11] [17] [18], a Host-Based Intrusion Detection System 
(HIDS) and a Network-Based Intrusion Detection System (NIDS). A host-based intrusion 
detection system is deployed to monitor and analyse system events (application logs, file 
systems) in the operating system of a host computer. Network-based intrusion detection is 
deployed through a network device to monitor and analyse network traffics (packets) in real-
time. A hybrid detection system will combine both approaches for efficient and effective 
intrusion detection. The intrusion detection system can further be divided into two types 
according to the method of detection. 
2.3.1 Misuse-Detection Method  
This is a signature-based method that relies on detecting the signature of known attacks. It 
monitors network activities to detect any known attacks that correspond to attacks that are 
already stored in the IDS. Such monitoring involves searching for known malicious threats by 
scanning through the network activities, and then it would make a decision based on several 
important prior knowledge of the attack signature.  A generic misuse/ signature detection 
system comprises five general steps [10], namely data collection, pre-processing the data 
collected, perform pattern matching and intrusion detection, rule generations, and then defence 
response. Most times attacks whose signatures are not stored in the system would bypass the 
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IDS, and this has been the problem of the signature-based IDS.  This implies that the technique 
has the limitation of detecting unknown attacks, but the good is that it has a high rate of 
detection and the alarm rate is low, and can easily be implemented. Another important aspect 
of this method is that it can be used to detect and recognize unique patterns (patterns from 
network packets and log files identified as threats) of suspicious and unauthorized behaviour 
which can be used against any further attacks of such similar behaviour.  
 
Another drawback of this method is that it is designed based on domain expert's knowledge 
which varies in terms of experience, and as such so much anomalous behaviour might not be 
covered which can lead to inadequate detections.  
2.3.2 Anomaly Detection Method 
This method combines machine learning and statistical approach to recognize normal network 
traffic differently from abnormal traffic. Its goal is to monitor the network activities to find 
behaviour that is unusual (anomaly behaviour) or that does not conform to the normal behaviour 
of network activities. It has the advantage of detecting new attacks based on its approach and 
can be classified based on three different styles of anomaly detection [11]: 

• Supervised anomaly detection: A model is designed by training a dataset that has 
instances for normal class and anomaly class. The designed model then predicts unseen 
data to determine which class it belongs to. 

• Semi-supervised anomaly detection: The model design is similar to that of supervised 
anomaly detection, but the training data has labelled instances for only the normal class, 
and no labels for the anomaly class. 

• Unsupervised anomaly detection: The designed model does not require training data, 
instead it assumes that normal instances occur much frequently than anomaly instances 
in the test data. This technique suffers from a high false alarm rate once the assumption 
fails. 
 

For the network anomaly, anomalies occur due to [11] (i) anomalies from network operations; 
(ii) When servers are unable to respond to many requests within a given time, this is called flash 
crowd; (iii) Anomalous from malicious activities in a network, this can be described from three 
points of view. It is a point anomaly when there is a deviation of event from previous normal 
activities. It can be a contextual anomaly that describes an instance that is exceptional within a 
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given context, and finally, it could be a collective anomaly where a group of instances deviates 
abnormally with reference to a given normal behaviour of activities in a network. 
 
Table 2: Differences between Misuse detection and Anomaly detection [2] 

 
 
 
 
 
 
 
 
 
 
 
 

2.3.3 Hybrid Detection Method 
This combines the capabilities of misuse detection and anomaly detection systems to improve 
the techniques of the IDSs. This implies that the hybrid detection system can detect known 
threats and also unknown threats. Researchers believe that this development will solve the 
issues of the drawbacks found in the misuse system of being unable to detect unknown 
intrusions, and the anomaly detection producing a high percentage of false alarms. The outputs 
gathered from the anomaly and signature-based methods by the HDM are used to make a final 
decision on the probability of an attack. Ozgur et al [15] proposed a hybrid detection system 
that combined both anomaly and misuse detection approaches, also included a decision support 
system that will manage the outcomes of both detection approaches. They used the Self-
Organizing Map (SOM) structure to model normal behaviour in the anomaly detection method 
and then used the J.48 decision tree technique to classify different attacks in the misuse method. 
Any deviation from normal behaviour is considered an attack. 
 

 Misuse Detection Anomaly Detection 
Detection performance Low false alarm rate; High missed alarm rate Low missed alarm rate; High false alarm rate 
Detection efficiency High, decrease with scale of signature database Dependent on model complexity 
Dependence on domain knowledge Almost all detections depend on domain knowledge 

Low, only the feature design depends on domain knowledge 
Interpretation Design based on domain knowledge, strong interpretative ability 

Outputs only detection results, weak interpretative ability 
Unknown attack detection Only detects known attacks Detects known and unknown attacks 
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2.3.4 Stateful Protocol Analysis Method 
This performs the same manner as the anomaly-based method, but it identifies deviations of 
protocol state in a state table. It gathers information about connections between the host and 
remote computer and compares it to entries in the state table. The information includes source 
IP port and Address, destination IP port and address, and the protocols in use. Other functions 
perform by this IDS are, protocol state tracking, traffic rate monitoring, IP packet reassembly 
and dynamic application layer protocol analysis [16]. 
 
Table 3 Types of Intrusion Detection Approaches [17] 
Method Pros Cons 
Signature-based IDS Simplest and effective method to detect known attacks Ineffective to detect unknown attacks 
Anomaly-based IDS Effective to detect unforeseen vulnerabilities Anomaly is not always an indicator of intrusions and may increase false-positive rate 
Hybrid Approach Reduce the false positive rate of unknown attacks Model might be complex 
Stateful Protocol Analysis Know and trace the protocol; state Unable to inspect attacks looking like benign protocol behaviours. 

 
2.4 Machine Learning in Cybersecurity 
Due to the advent of big data technology in this 21st century, there has been an enormous amount 
of data distribution in the network which could be vulnerable to attack. Therefore, machine 
learning and statistics, coupled with some other relevant inter disciplines are needed to solve 
the challenges of cybercrimes.  
 
Machine learning is a subset of artificial intelligence that makes the computer learn from data 
[17] combining different disciplines as statistics, data mining, and data science. Models can be 
built from machine learning algorithms and such models can be used to predict newly input 
data. Machine learning can be divided into two categories shallow learning and deep learning 
[9]. Shallow learning was the traditionally used method, also called conventional machine 
learning methods that are based on the learning of data without using networking, they are fast 
and mostly perform very well on a small amount of data. They are still in use in today’s 
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cybersecurity because they have been used and found to be very useful and effective in different 
areas of cyber defence [3]. On the other hand, deep learning methods are advanced and capable 
of handling a large amount of data. It automatically extracts relevant information from the data 
which are necessary for building a system. 
 
 
 
 
 
 
 
 
 
 
 
 
ML technique can be automated to analyse threats, attacks, and other security incidents quickly 
and efficiently. It can be deployed for a variety of cybersecurity problems such as DDoS attack 
detection, malware detection, spam mail, phishing detection, user identification, social media 
analytics, detection of software vulnerabilities, detection of advanced persistent threats, 
detection of information leakage, detection of identity theft and anomaly detection [19]. 
Machine learning algorithms are very useful for improving the detection performance of a 
system [3], the algorithm study and learn the patterns in the data fed into it and then use the 
trained data to prevent data breaches that could harm the system in the future. Generally, 
machine learning algorithms are designed to deal with three kinds of problems, classification, 
regression, and clustering and the learning involve three general phases, pre-processing, 
training, and detection [9]. 

• Pre-processing: This involves the collection of data from the network environment. 
Feature engineering and feature selection are performed on the data before they are fed 
into the machine learning algorithm. 

• Training: The algorithm trains the pre-processed data and learns the unique 
characteristics present in the different types of data, and then builds a model based on 
these characteristics. 

Figure 2: Relationship between AI, ML, and DL 

AI 
ML 

DL 
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• Detection: The system model built from training is used to compare to the network 
traffic to be monitored. If there is a deviation or anomaly in the observed pattern, pattern 
been observed matched an existing threat, the model triggers an alarm. 

2.5 Machine Learning in Network Intrusion Detection 
Machine learning methods are vital to the building of IDS, these methods could be identified 
in three different paradigms, supervised unsupervised and hybrid methods. Network intrusion 
detection is considered a classification problem, that requires a labelled training dataset for 
modelling. In most cases the labelled data that correspond to normal behaviour is available, but 
label data for anomaly detection are not [10]. To build a machine learning algorithm that is 
efficient, attack-free training data is required, but it is difficult to obtain such data in a real-
world network [10], as such causes an imbalance of data distribution in the design of IDSs. 
Machine learning approaches that have been used for IDS include supervised learning methods 
such as the Artificial Neural Network (ANN), Decision tree (DT), K-nearest Neighbour (KNN), 
Logistic Regression (LR), Support Vector Machine (SVM), Random Forest (RF), Naïve Bayes 
(NB) [9], unsupervised learning methods such as the K-means clustering, Self-Organized Map 
(SOM), and the hybrid methods [2] [9].  They have produced good results, though their 
performances are limited due to the shallow architecture that has made them not scalable to 
large datasets, and their feature extraction is not automatic. 
 
2.5.1 Decision Tree (DT) 
Ethem Alpaydin [20] defines a decision tree as a “hierarchical data structure implementing the 
divide-and-conquer strategy”. It is a nonparametric technique that is suitable for both 
classification and regression problems. The model is tree-like in architecture which can easily 
be interpreted. It learns by performing feature selection, generating, and pruning trees. During 
training, the algorithm can select the most suitable features and build child nodes from the root 
node. Decision tree classifiers that have been used are ID4, C4.5, and CART, they have better 
accuracy for known intrusions but are not good at detecting unknown intrusions [21]. 
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Figure 3: Example of a Decision tree with attack classification [21] 

 
 
 
 
 
 
 
 
 
 
Ingre et al [22] proposed a decision tree-based IDS for the NSL-KDD dataset. 14 features were 
selected from the dataset using the correlated feature selection (CSF) method. The overall 
accuracy was 83.7% and 90.3%. Azad et al [23] also proposed an intrusion detection system 
based on a C4.5 decision tree on a KDD Cup 99 dataset and a high accuracy of 99.89% was 
achieved. 
2.5.2 Logistic Regression (LR) 
This is a logarithm linear model mostly used to model dichotomous outcome variables (binary). It is 
used to describe data and to explain the correlation between one dependant binary variable and one or 
more nominal or ordinal variables. It is efficient for training a model and easy to construct, and Its 
probability can be calculated through a parametric logistic distribution [2]. 
 
                                               𝑃(𝑌 = 𝑘/𝑥) =

𝑒𝑤𝑘∗𝑥

1+∑ 𝑒𝑤𝑘∗𝑥𝑘−1
𝑘

                                                                (1) 
Where k = 1, 2, … k-1, and 𝑥 is classified into the maximum probability class 
Kamarudin et al [24] proposed an anomaly-based detection model using a binary logistic regression 
technique combined with a statistical method. The model was designed to detect R2L and U2R attacks 
at different instances by examining the degree of normal field values within the data link layer, network 
layer, and transport layer of the OSI Seven Layer Model. The result obtained outperformed other 
existing methods (DARPA best system, PbPHAD) at 78.95% for R2L and 84.61% for U2R. 
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2.5.3 Support Vector Machine (SVM) 
This is a maximum margin method that allows a model to be written as the sum of influences of some 
of the features of the data (or of some of the training data points). These influences can be calculated 
through sophisticated kernel functions, that allow the building of complex models using only linear 
formalities. The SVM aims to find the best hyperplane that divides classes by maximizing the distance 
between the hyperplane and the nearest samples of each class (support vector). 
Gao et al [25] In 2009 has proposed an intrusion detection approach based on classifying SVM. They 
used the method of genetic algorithm to optimize the SVM parameters to help improve the detection 
accuracy and rate of convergence. The model performed well with the mean squared errors of train 
sample and test sample of 0.0047 and 0.0596 respectively. Recently, this year 2021, Jiang et al [26] had 
proposed a new intrusion detection method based on an improved SVM named Class and Sample 
weighted C-support Vector Machine (CSWC-SVM). SVM in the recent past has been successful as a 
classification algorithm in many classification problems because of its high generalizing performance 
and global optimal convergence [26]. 
2.5.4 K-Nearest Neighbor (KNN) 
K-Nearest Neighbor classification algorithms make predictions depending on the k nearest samples in 
the feature space after memorizing the training data. It is a non-parametric, lazy learning algorithm that 
performs classification based on a distance function that measures the difference or similarity between 
two instances in the dataset. Considering x and y as the two instances, the standard Euclidean distance 
𝑑(𝑥, 𝑦) between them can be calculated as 
 
                                      𝑑(𝑥, 𝑦) = √∑ (𝑥𝑘 − 𝑦𝑘)2𝑛

𝑘=1                                                                           (2) 
 
Where 𝑥𝑘 and 𝑦𝑘 are the 𝑘𝑡ℎ featured elements of instance x and y respectively, and n is the number 
of features present in the dataset [3]. 
Atefi et al [27] used the CICIDS-2017 dataset to perform anomaly analysis of the intrusion detection 
system for classification using the K-Nearest Neighbors and Deep Neural Network (DNN). The idea 
was basically to improve on the detection accuracy of IDS using the newest dataset as against the old 
dataset of Kddcup'99. The KNN model performed 88% and the DNN performed 92% detection 
accuracies. 
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2.5.5 Naïve Bayes (NB) 
This is a classifier based on the theory of probability. It applies Bayes theorem with independent attribute 
guess to computes the conditional probabilities of the data of a given class and the prior probabilities of 
each class during training. This implies it takes to rely on the conditional probability and the hypothesis 
of attribute independence [2]. Let’s assume the features are  independent statistically, then the 
probability of sample S represented with a set of features ‘a’ associated with a class C can be computed 

[28] 
 
                              𝑃𝑟(𝑐 𝑆) = 𝑃(𝑐) × 𝜋𝑖−1

𝑑 𝑃𝑟(𝑎𝑖 𝑐)⁄⁄                                                                              (3) 
 
B. S Sharmila et al [29] performed an experimental comparison of Naïve Bayes algorithm and Principal 
Component Analysis (PCA) on IDS-based implementation using Scikit learn python library. According 
to their experimental result, the PCA-based NSL-KDD IDS had better accuracy than the Naïve Bayes 
IDS. 
 
2.5.6 Random Forest (RF) 
Random Forests are a group of decision trees constructed at training time for classification or regression 
tasks, and each tree has been trained on different subsets of the training data. During training, a 
bootstrapped dataset for a set of decision trees is created and prediction is made based on the highest 
number of votes. They have the advantage of less overfitting and generalizing better. 
J. Zhang et al [30] proposed a new systematic framework using Random forests in misuse, anomaly, 
and hybrid network-based IDS. The misuse random forest classifier was built based on pattern intrusion 
and was able to detect intrusions when matched with the network activities. The anomaly-based random 
forests were able to detect novel intrusions, and the hybrid combined the advantages of both the misuse 
and anomaly to improve the performance of the IDS. Another recent discovery using random forest 
classify was presented by Guowei ZHU et al [31], they proposed a power system network intrusion 
detection method based on a random forest algorithm. The random forest decision tree was constructed 
from the power system network intrusion sub-sample, and the Gaussian mixture clustering was used to 
process the training dataset into different clusters, and an RF classifier was trained on each cluster. The 
accuracy was obtained by calculating the measurement residual of the power system network attack, 
and the experimental result shows that their proposed system has high network intrusion detection 
performance. 
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2.5.7 Artificial neural network 
The idea of an artificial neural network was inspired by the biological neuron of the human nervous 
system and brain. Biologists, however, have shown that the human body system comprises thousands to 
millions of nerve cells called neurons. These neurons are interconnected together in a very complex 
manner to perform their various functions in the human body system. The idea was adopted to create 
the first neuron called the McCulloch-Pitts model in the 1940s [32]. Over the years, several models of 
the artificial neural network have been developed based on different topologies, learning algorithms, 
and functionalities. 
Yusuf Sani et al [33] in 2009 have published their paper in IEEE. They discussed the use of neural 
networks in anomaly intrusion detection systems. The feedforward network and recurrent neural 
network were used as a case study. The paper explains how the neural network IDs should be 
implemented to overcome limitations (building so many signatures relative to different attacks, cannot 
detect zero-day attack) found in existing IDS. They believe that neural network-based IDS have better 
advantages such as better performance, less development cost, highly scalable, and can reduce false 
positive and false negative error rates. This paper is one of the several papers published as regards the 
importance of artificial neural networks for IDS in the previous years. 
2.5.7.1 The Architecture of Artificial Neural Network 
There are several nodes interconnected together according to specific network architecture in the neural 
network, and each node receives an input with a signal strength called the weight. Every Artificial neural 
network is made up of the input layer, hidden layer, and output layer. 
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Figure 4: A Simple Structure of an Artificial Neural Network 
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The Components of the artificial neural network consist of three major components: 
• Weights: This determines the strength of the inputs, for a network with several neurons, 

the weights 𝑤𝑖 are represented in a vector space, which multiplies an input vector 𝑥𝑖 of the 
same dimension. 

            Considering the weight vector as 𝑤𝑖 = [𝑤1 𝑤2 𝑤3 𝑤4 𝑤5]𝑇 and   
            Input vector, 𝑥𝑖= [𝑥1 𝑥2 𝑥3 𝑥4 𝑥5] 
            Therefore, the strength of the input signal becomes: 
                                     𝑤𝑖𝑥𝑖= [𝑤1 𝑤2 𝑤3 𝑤4 𝑤5]𝑇 [𝑥1 𝑥2 𝑥3 𝑥4 𝑥5]                                                  (4) 
• Thresholds: This is a value that is uniquely assigned to a neuron, it marks the position of 

the maximum gradient value of the activation function. Neurons get activated when the 
input signal exceeds a threshold value. 

• Activation functions: This function is also called the transfer function, threshold function, 
or squashing function. It determines the activation of a neuron depending on the network 
input and threshold value, it takes the combined inputs, applies a function on it, and passes 
out the output values. It depends on the previous activation state of the neuron and the 
external input. There are different activation functions depending on the kind of problem 
to be solved, but the three common choices are Sigmoid, ReLU, and Softmax. 
 
Other components include the input layer which contains a certain number of neurons that 
should be equal to the dimensionality of the data. It takes inputs and distributes them to the 
hidden layer. The number of units in the output layer is a function of the type of problem 
to be solved, whether it is a binary classification problem or multiclass. The inner layers 
in the network are the hidden layers that define the depth of the neural network, and within 
the hidden layers, complex computations occur. 

2.6 Deep Learning Methods and Concepts 
Deep learning has become an increasing area of demand to many researchers in different fields 
most especially in science and technology. Models created from deep learning can be applied 
to many different tasks in cybersecurity, finances and stock market, medicine, image 
processing, search engine, and pattern recognition [34]. This sudden growth of DL could be 
attributed to a few factors such as the increase in the amount of data (especially unstructured 
data) as a result of the digital age that has made the number of devices connected to the web 
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increase. Improvement in computing infrastructure is another contributing factor. Deep learning 
programming can be implemented much faster with the advent of computing layers such as 
Graphical Processing Units (GPUs) and Tensor Processing Units (TPUs) at affordable cost. The 
sudden rise in the growth of DL was also initiated by the availability of different open-source 
frameworks (TensorFlow, Keras, PyTorch, MXNet, and Caffe) that could be used to build and 
implement the DL models. The DL models were able to offer extreme versatility and 
performance in the different areas they were applied to [2].  
 
Deep learning is a branch of machine learning that deals with different types of artificial neural 
networks with more than one hidden layer. A conventional artificial neural network already 
discussed in section 2.5 consists of only one hidden layer. This is a shallow neural network that 
does not possess the power to perform feature extraction [17] and is not dense enough. The 
more hidden layers in the architecture of an artificial neural network, the deeper the neural 
network becomes, thus acquiring the name Deep Neural Network (DNN). Deep learning models 
can learn features from input data, that is, learning different levels of features across several 
layers of its network. More so, they can scale well on a large dataset to gain better results in 
terms of performance [35], meaning the model's performance gets better with more data. 
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Figure 5: A Deep Neural Network Architecture 
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There are different deep learning methods based on diverse different architecture [2][17] and 
can be classified into three groups, namely, generative, discriminative, and hybrid DL models:  
 
 
 
 
 
 
 
 
 
 
 
 
 

• Feedforward Deep Neural Networks (FFDNN) 
The feedforward neural network is a multilayer neural network that has only one 
direction, from the input to the output, and can be trained through backpropagation. The 
FFDNN architecture is obtained by increasing the number of hidden layers in the 
architecture, thus making it a deep neural network. 
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Figure 8: Overall Architecture of CNN for a Classification task [17] 

• Convolutional Neural Networks (CNN) 
This process is input stored in arrays [17], like colour or grayscale images that are 2D 
of pixels, three-dimensional (3D) arrays (e.g videos), and one-dimensional(1D) arrays 
(e.g signals). It is best fitted for data that are spatial (unstructured). In 2012, CNN 
recorded success at the ImageNet competition, with an outstanding performance over 
other methods [36]. It has been helpful in several other areas such as language modelling 
(speech recognition), computer vision, image detection, facial recognition, medicine, 
and cybersecurity. 

 
 
 
 
 
 
 
 
 

CNN is made up of three important layers, the convolution layer, pooling, and 
classification layer. The convolution layer is the core part of the CNN where the data 
processing begins. it is used to extract important features from the image by performing 
two distinct steps, feature detecting (making matrix or pattern on the data to transform 
it into a feature map) and feature mapping (Obtaining small images from feature 
detecting), this process is called convolution operation. The work of the pooling layer 
is to reduce the dimensions of the feature maps so that only the relevant features are 
kept. This will also help to reduce the computational time of the pooling operation.  This 
process can also be called downsampling or subsampling, it has three different types, 
max-pooling, average pooling, and sum pooling [37]. The fully connected layer is a 
feedforward neural network that performs classification on the extracted features. 

• Recurrent Neural Network (RNN) 
RNN is a special type of feedforward neural network that processes data in a sequence 
of times. The design of its network is based on the concept of sequential memory [38]. 
The hidden layers, after receiving information and giving output, still feedback the 
information of the output into itself, that is, data and information flow in a cycle. This 
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makes it a robust technique for processing sequential data, which is not possible in 
another deep neural network (CNN, FFDNN). RNN can retain information in its 
memory, but it cannot store this information for too long when the input sequence 
becomes too long, at this point, it begins to have the problem of vanishing gradient. This 
issue of vanishing gradient was resolve by the design of another type of RNN called the 
Long short-term memory (LSTM). This variant is made up of a special structure called 
the ‘gate’, this will keep the information in the memory for a longer period as required, 
and can also discard information when it is no longer needed. The deep neural network 
has been successfully used for speech recognition, language translation & other time 
series prediction task [17]. 
 

• Deep Belief Network (DBN) 
This is a class of unsupervised deep neural networks adapted to different functions. It is 
made up of multiple layers of hidden neurons. The layers are connected, but there is no 
connection between the hidden neurons.  It comes in three different variants [17], Deep 
Autoencoders, Restricted Boltzmann Machines (RBM), and in combined form (DBNs 
or RBM, or Deep Autoencoder coupled with classification layers). Each variant is 
designed to solve specific kinds of problems, and they have been used in the area of 
cybersecurity for intrusion detection systems. 
 

• Generative Adversarial Networks (GAN) 
This deep learning algorithm was introduced by Ian Goodfellow et al in 2014 [39]. It is 
an unsupervised deep neural network that combines the architecture of two neural 
networks. The two neural networks compete against each other to optimize weights and 
biases with the purpose to minimize their errors. One neural network act as a generator 
that takes input data and produces output data (fake data) which have the same attributes 
as the real data, the second neural network acts as a discriminator and takes the fake 
data and real data, and tries to distinguish between the two. After the training, the 
generator must have learned and is capable of generating new data that is not 
distinguishable from the real data. 
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GAN has been used for Image creation such as image enhancement, caption generator, 
and optical flow estimation [17]. 

2.6.1 Terms Associated with Deep Neural Networks 
(a) Loss function  
Training the samples and calculating the output on the training inputs, and then comparing the 
result with the real label defines the error function or loss function. So, there is a need to define 
a function that measures error when training a model. Defining the loss function for a deep 
neural network depends on the problem and objectives to be achieved because different 
networks have different predictions based on the inputs. For classification, the loss is obtained 
by computing the probability of the model error which is also the proportion of misclassified 
inputs in the dataset. Two common loss functions used for classification are: 
1. Binary cross-entropy: This is used when dealing with two-class/binary classification  
problems. The output is a probability between 0 and 1. 
2. Categorical cross-entropy:  This is defined for a multi-class (more than two classes) 
classification problem. 
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Input 
Figure 9: Generative adversarial network [7] 
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(b) Activation function 
Section 2.5.7 already discussed the activation function. When designing a deep neural network, 
aside from choosing the size of the layers and number of neurons, the activation function is also 
an important parameter that needs to be chosen for the hidden layers and output layer. The 
activation function is chosen depending on the nature of the problem to be solved and how well 
the performance of the model is evaluated. Some of the ones mentioned below were used in 
this research work. 

• Sigmoid 
This activation function is used at the output layer for a binary classification. Its output 
is the probability of a given input belonging to a class. The out of a sigmoid function is 
between 0 and 1. Mathematically, it can be expressed [18] as: 
 

                                                             𝑆𝑖𝑔𝑚𝑜𝑖𝑑 =  
1

1+𝑒−𝑥                                                       (5) 
• Tangent (Tanh) 

The output of the tanh function falls in the range -1 and 1. It is mostly used in the hidden 
layers and the average of the outputs in each layer is close to zero. The mathematical 
expression [18]: 

                                                        𝑡𝑎𝑛𝑔𝑒𝑛𝑡 =
𝑒2𝑥−1

𝑒2𝑥+1
                                                              (6) 

• Rectified Linear Unit (ReLu) 
It is a nonlinear function that can improve performance and reduces the number of 
computations during training by reducing the state of vanishing and error gradient 
problems. When large numbers of layers are used in the hidden, the ReLu can enhance 
training because of its speed [18]. It returns 0 if it receives any negative input, and 
returns the same value if it receives any positive value.  

                                                       𝑅𝑒𝐿𝑢 = max (0, 𝑥)                                                                 (7) 
• Softmax 

The Softmax function is also called the normalized exponential function. It normalizes 
the input into a probability distribution that sums to 1. It can be computed [18] as: 

 
                                                      𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑥𝑖) =

𝑒𝑥𝑖

∑ 𝑒
𝑥𝑗𝑛

𝑗=1

                                                     (8) 
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(c) Optimization function 
Training the deep neural network requires changing the model parameters (weights, learning 
rate) until the minimal loss (difference between predicted output and the real output) is obtained 
and the most accurate result is achieved. This process of tuning is called the optimization 
process. The optimization functions are the algorithms or methods used during the optimization 
process. The commonly used optimizers are: 

• Stochastic Gradient Descent (SGD): This is a gradient-based optimizer extended from 
Gradient Descent. The optimizer takes randomly a small set of the training samples 
instead of the whole samples per iteration. SGD uses only the learning rate for 
parameter updating. 

• Root Mean Square Propagation (RMSProp) Optimisation: This functions in a 
similar manner as the gradient descent with momentum but the gradient calculation 
is different. The momentum will allow the accumulations of the gradient of the past 
steps to determine the direction to move. 

•  Adaptive Moment Estimation (Adam): This optimizer is used to minimizes loss in 
binary classification and multi classification. It has the fastest convergence when 
compared to other optimizer functions. This is because Adam uses three parameters 
namely a weighted average of gradient, a weighted average of squared gradient and a 
learning rate to update the parameters during training at every iteration.  
 

Building the neural network requires choosing two important hyperparameters (batch size and 
number of epochs) for the optimization process. The two parameters contribute to the 
improvement of the model performance during training if properly fine-tuned. 
 
(d)  Regularization: Regularization is a method used to modify the deep learning algorithms. 

This involves tuning the hyper-parameters of a deep neural network that are used to control 
the learning process of a neural network. They are set before the start of the  learning process 
e.g number of epochs, number of branches, dropout rate, etc. In deep learning, a commonly 
used regularization is the inclusion of a dropout layer to the layers of the network with a 
dropout rate of between zero to one. A dropout layer is a form of regularization that helps 
to reduce overfitting so that the model can generalize well on unseen data.  
When it is applied, it means the training is performed on a small network compared to the 
original network, and since a smaller network can be less flexible, the possibility of 
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overfitting is reduced. The idea is that it randomly drops out a few neurons or sets the 
neurons to zero thereby reducing computation in the training process. Also, during the 
process of dropout, the number of weights updated during the training is reduced to allow 
other weights to participate in the learning process. This helps the weight values to spread 
out better at the final stage thereby reducing overfitting in the network. 

 
(e)  Iteration: This is the number of batches needed to complete one epoch. The number of 

iterations depends on the size of the batch, for a large batch the number of iterations will be 
small and does not need to change much before the neural network learns well. 

 
(f) Batch size: This accounts for the training dataset present in a single batch. Since one epoch 

is too big to be fed into the computer at once, and because of system limitations, the dataset 
can be divided into several batches which determines the number of iterations. 

 
(g) Epoch: One epoch is attained when an entire data is passed in and out of  the neural network 

at once. Continuous feeding of the training data to the neural network can help to improve 
the weights. Updating of the parameter is done after each iteration. An increase in the number 
of epochs can generally increase accuracy and lower the loss. 

 
(h) Learning rate: This parameter is important in the configuration of the deep neural network, 

and takes smaller values in the range between 0 and 1. It controls how fast the model adapts 
to the problem. A smaller learning rate would require more training epochs in relation to the 
smaller changes made to the weight on each update, and on the other hand, larger learning 
rates would require fewer training epochs. 

 
2.7 Related works 
There have been many analytics research works in intrusion detection systems using deep 
learning in the previous years. This area of research has started to gain popularity because of 
its ability to learning and development, which makes them very effective and efficient in 
tackling the alarming increase in the number of unpredictable attacks. Using deep learning 
techniques in the design of IDS gives it extra performance with high accuracy. There have been 
different approaches to intrusion detection using deep learning algorithms. 
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Salama et al [40] proposed a hybrid approach of IDS. Their works entail the use of Restricted 
Boltzmann Machine (RBM) as the feature reduction method, followed by a Support Vector 
Machine (SVM) as the classifier. The NSL-KDD dataset was used which has 22 training attack 
types and 17 types in the test data. The hybrid approach shows a higher percentage of 
classification better than Support Vector Machine as a stand-alone algorithm. Alom et al [41] 
in 2015 proposed the design of an effective intrusion detection system that is intelligent and can 
interpret intrusion from incoming network traffic. They trained a deep belief neural network 
(DBN) using the NSL-KDD dataset, the model was able to identify any kind of unknown attacks 
in a dataset that was fed into it, and had a detection accuracy of about 97.5%. 
 
Alazab et al [42] conducted a malicious network traffic classification experiment using the 
UNSW-NB15 dataset in a convolutional neural network architecture. They first analysed+ the 
experiment with a fully connected neural network (3 layers of 256, 1024, and 7 nodes) as a 
benchmark for comparison to the CNN techniques. Though the fully connected neural network 
achieved the highest accuracy on the test data, the CNN performance accuracy was close as 
well with five to ten times fewer trainable parameters. 
 
Kim et al [43] proposed an intrusion detection system model using Long Short-Term Memory 
(LSTM) architecture to a recurrent Neural Network (RNN). They trained the model using a 
KDD Cup 99 dataset (with 41 features) and trained the network with a time step size of 100, 
batch size 50, and epoch 500 and obtained 98.93% accuracy on the test data as the best 
performance. IDS on a wireless network based on deep learning using Feed forward deep neural 
network (FFDNN) was proposed by Kasongo et al [44]. This DNN was trained using the NSL-
KDD dataset and its performance was compared to conventional machine learning algorithms 
(support vector machine, decision tree, k-nearest neighbor, and naïve Bayes). The FFDNN 
performance was best with an accuracy of 86.62% on test data. Naseer et al [45] developed an 
intrusion detection system model using three different DNNs (CNN, autoencoder, RNN) on the 
NSL-KDD dataset. As a baseline for comparison, the same experiment was conducted using 
three conventional machine learning algorithms (decision tree, support vector machine, and k-
nearest neighbor). Their training performances were evaluated on two different test datasets 
(NSLKDDTest+ and NSLKDDTest21), and the overall result showed that LSTM had the best 
performance at 89% and DCNN was 85%. The decision tree, support vector machine, and k-
nearest neighbor had a tie at 82%. 
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3 Design and Methods 
3.1 Methods and Material 
The research is based on an empirical approach that deals with the detection of intrusions in 
network activities using machine learning techniques. 
3.1.1 Tools and Environment 
The implementations of the Machine learning algorithms and the Feedforward Deep Neural 
network were performed using the Google Colaboratory software platform. It was selected 
because it is an open-source cloud-based jupyter notebook that is free and offers some awesome 
advantages that made it possible to train machine learning and deep learning models on CPUs, 
GPUs, and TPUs. These advantages include: 
1. Provides free GPU/TPU 
2. Zero configuration is required 
3. Can access drive directly 
4. Uploading files locally is easy 
5. It comes with the following pre-installed libraries, NumPy; Pandas; Python; Matplotlib; 

Keras; Tensor flow, and Scikit learn which were necessary for the experiment. 
But its limitation is that session restarts after 12 hours. 
3.1.2 Dataset Description 
The training and test data used for this research work was extracted from the NSL-KDD dataset. 
It was downloaded from the web page of the University of New Brunswick (Canadian Institute 
for Cybersecurity) [46]. The NSL-KDD dataset was proposed by Tavallae et al [47]. It is an 
updated version of the KDD Cup99 dataset and is recommended to solve some of the essential 
problems found in the KDD’99 dataset [47]. It is an effective standard that researchers can use 
to compare different types of intrusion detection systems methods [46] and also to design 
intrusion detection systems whether host-based or network-based.  
Compared to the KDD’99 dataset, the NSL-KDD dataset have the following advantages: 
1. Redundant records present in the train set has been removed to avoid the classifier from 

been biased 
2. Duplicate records removed from the test set 
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3. The quantity of selected records from each difficulty level domain is inversely proportional 
to the level of records in the original KDD dataset. 

4. There is a sufficient number of records available in the train and test dataset. 
 

Table 4: List of NSL-KDD dataset files and their descriptions [48] 
S/n Name of the file Description 
1 KDDTrain+.ARFF The full NSL-KDD train set with binary labels in ARFF format 
2 KDDTrain+.TXT The full NSL-KDD train set including attack-type labels and difficulty level in CSV format 
3 KDDTrain+_20Percent.ARFF A 20% subset of the KDDTrain+.arff file 
4 KDDTrain+_20Percent.TXT A 20% subset of the KDDTrain+.txt file 
5 KDDTest+.ARFF The full NSL-KDD test set with binary labels in ARFF format 
6 KDDTest+.TXT The full NSL-KDD test set including attack-type labels and difficulty level in CSV format 
7 KDDTest-21. ARFF A subset of the KDDTest+.arff file which does not include records with difficulty level of 21 out of 21 
8 KDDTest-21.TXT A subset of the KDDTest+.txt file which does not include records with difficulty level of 21 out of 21 

 
Each record contains 41 types of features that are assigned to attack or normal type. The features 
are subdivided into three (3) types of attribute value types (Nominal, binary and numeric). 
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Table 5: Basic Features of each Network Connection Vector [48][49] 
No Feature Name Description 
1 Duration Duration of the connection 
2 Protocol type Connection protocol (e.g. TCP, UDP, ICMP) 
3 Service Destination service 
4 Flag Status flag of the connection 
5 Src_bytes Bytes sent from source to destination 
6 Dst_bytes Bytes sent from destination to source 
7 Land 1 if a connection is from/to the same host/port; 0 otherwise 
8 Wrong_fragment Number of wrong fragments 
9 Urgent Number of urgent packets 
10 Hot Number of “hot” indicators 
11 Num_failed_logins Number of failed logins 
12 Logged_in 1 if successfully logged in; 0 otherwise 
13 Num_compromised Number of “compromised” conditions 
14 Root_shell 1 if root shell is obtained; 0 otherwise 
15 Su_attempted 1 if “su root” command attempted; 0 otherwise 
16 Num_root Number of “root” accesses 
17 Num_file_creations Number of file creation operations 
18 Num_shells Number of shell prompts 
19 Num_access_files Number of operations on access control files 
20 Num_outbound_cmds Number of outbound commands in an FTP session 
21 Is_host_login 1 if login belongs to the “hot” list; 0 otherwise 
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Table 6: Basic Features of each Network Connection Vector [48][49] 
No Feature Name Description 
22 Is_guest_login 1 if the login is the “guest” login; 0 otherwise 
23 count Number of connections to the same host as the current connection in the past 2 seconds 
24 Srv_count Number of connections to the same service as the current connection in the past two seconds 
25 serror_rate % of connections that have “SYN” errors 
26 Srv_serror_rate % of connections that have “SYN” errors 
27 Rerror_rate % of connections that have REJ errors 
28 Srv_rerror_rate % of connections that have REJ errors 
29 Same_srv_rate % of connections to the same service 
30 Diff_srv_rate % of connections to different services 
31 Srv_diff_host_rate % of connections to different hosts 
32 Dst_host_count Count of connections having the same destination host 
33 Dst_host_srv_count Count of connections having the same destination host and using the same service 
34 Dst_host_same_srv_rate % of connections having the same destination host and using the same service 
35 Dst_host_diff_srv_rate % of different services on the current host 
36 Dst_host_same_src_port_rate % of connections to the current host having the same src port 
37 Dst_host_srv_diff_host_rate % of connections to the same service coming from different hosts 
38 Dst_host_serror_rate % of connections to the current host that have an S0 error 
39 Dst_host_srv_serror_rate % of connections to the current host and specified service that have an S0 error 
40 Dst_host_rerror_rate % of connections to the current host that have an RST error 
41 Dst_host_srv_rerror_rate % of connections to the current host and specified service that have an RST error 
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The features are grouped into four categories [49]: 
• Basic features: Features obtained from the packet header (TCP/IP connection) without 

the payload inspection. Features 1 to 9 is the basic features. 
• Content features: They are generated from the payload of TCP segments and 

comprises features 10 to 22. The number of failed logs in an attempt is an example.  
• Time-based traffic features: These features capture properties that mature within a 

window interval such as features 23 t0 31. 
It is divided into two sub-group 
a) “same host” features: this checks connections in the past 2 seconds that have the same 
destination host as the current connection, and then evaluates the statistics associated 
with the protocol behavior, service, etc.  
b) “same service” features: it checks only the connections in the past 2 seconds that have 
the same service as the current connection. 

• Host-based traffic features: Contain features (32 to 41) that are designed to measure 
attack within intervals longer than 2 seconds. 

 
The 42nd feature contains data which are part of the 5 different classes of network connection 
vectors. They divided into one normal class and four attacks class. The four attack classes are 
sub-grouped into DoS, R2L, Probe, and U2R [47] [48]. 
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Table 7: Attribute value Type [48] 
Type 

Features 
Nominal Binary Numeric 
Protocol_type (2) Service (3)  
Flag (4) 

Land (7), logged_in (12), 
root_shell (14) su_attempted (15) 
is_host_login (21) is_guest_login (22) 

Duration (1)  
src_bytes (5)  
dst_bytes (6)  
wrong_fragment (8) 
urgent (9), hot (10) 
num_failed_logins (11) 
num_compromised (13) 
num_root (16) 
num_file_creations (17) 
num_shells (18) 
num_access_files (19) 
num_outbound_cmds (20)  
count (23) 
srv_count (24)  
serror_rate (25) 
srv_serror_rate (26)  
rerror_rate (27) 
srv_rerror_rate (28)  
same_srv_rate (29) 
diff_srv_rate (30) 
srv_diff_host_rate (31) 
dst_host_count (32) 
dst_host_srv_count (33) 
dst_host_same_srv_rate (34) 
dst_host_diff_srv_rate (35) 
dst_host_same_src_port_rate (36) 
dst_host_srv_diff_host_rate (37) 
dst_host_serror_rate (38) 
dst_host_srv_serror_rate (39) 
dst_host_rerror_rate (40) 
dst_host_srv_rerror_rate (41) 
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Table 8: Attack types of the different attack classes in NSL-KDD dataset [48] 
Attack class Attack types 
DoS Back, Land, Smurf, Neptune, Pod, Udpstorm,Teardrop, Apache2, worm. 
Probe Satan, Mscan, Ipsweep, Nmap, Saint, Portsweep. 
R2L Ftp_write, Snmpguess, Imap, Sendmail, Pht, Multihop, Warezmaster, Guess_password, warezclient, Spy, Xlock, Xsnoop, Httptunnel, Snmpget attack. 
U2R Rootkit, Loadmodule, Buffer_overflow, Perl, Xterm, sql attack. 

 
Table 9: Details of Normal and Attack data in different types of NSL-KDD dataset [48] 
Dataset type Number of Records 

Total Normal DoS Probe U2R R2L 
KDDTrain+20% 25192 13449 (53%) 9234 (37%) 2289 (9.16%) 11(0.04%) 209 (0.8%) 
KDDTrain+ 125973 67343 (53%) 45927 (37%) 11656 (9.11%) 52 (0.04%) 995 (0.85%) 
KDDTest+ 22544 9711 (43%) 7458 (33%) 2421 (11%) 200 (0.9%) 2654 (12.1%) 

 
3.1.2.1 Data Pre-processing 
Data pre-processing is an essential step that is needed before training the model. It helps to 
remove the outliers, missing values, duplicates, and converts categorical variables into 
numerical values, and normalizes the data. For this research, the KDDTrain+ dataset was used 
as the training set and KDDTest+ as the test dataset. 
3.1.3 Feature Encoding 
The features were encoded in three different methods. Label encoding and One Hot encoding 
techniques were used to convert the categorical features into numerical values in two different 
situations, that is building two similar models with different encoding technology. The 
Binarization technique was used to convert the attack class (target variable) into 0’s and 1’s to 

make the classifier algorithm more efficient. 
 
(a)  Binarization: The Normal situations were assigned values 1’s and other attack types were 

assigned 0’s irrespective of whether it is from DoS, Probe, U2R, or R2L. 
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(b) LabelEncoder: Label-Encoder is used to convert the three categorical features 
protocol_type, flag, and service, into numerical values. After label encoding, there was no 
increase in the number of features as the feature dimensions remain 41. The output of the 
LabelEncoder is still in the form of a data frame. 
 
(c)  One-Hot-Encoding is used to convert the three categorical features protocol_type, flag and 
service into numerical values in the form of binary. The protocol_type feature has three 
attributes: TCP, UDP, and ICMP. One-hot-encoding converts them into binary vectors of 
[1,0,0], [0,1,0], [0,0,1], respectively. In the same manner service and flag features. After One-
hot-encoding, the KDDTrain+ datasets are mapped from 41-dimensional features to 122-
dimensional features (38 continuous, and 84 binary values related to the categorical features). 
The output of the One-Hot-Encoding is a NumPy array. 
3.1.4 Feature Scaling 
The input was normalized so that they will be centred around zero and have the same scale. 
This is because the value of the input influences the update rule. [50] The min-max 
normalization method is used to scale the value 𝑋𝑖,𝑗 between the range [0,1]. 
Let value after normalization = 𝑋′ 
Value before normalization = 𝑋 
 
                                                         𝑋′−0

1−0
=  

𝑋−𝑚𝑖𝑛

𝑚𝑎𝑥−𝑚𝑖𝑛
                                                                       (9) 

 
                                                         𝑋′ =  

𝑋−𝑚𝑖𝑛

𝑚𝑎𝑥−𝑚𝑖𝑛
                                                                        (10) 

3.1.5 Feature Selection 
Feature selection selects the most important features and discards features that are not relevant 
so that the model would be easier to understand, and as well run faster and perform well. Two 
different selection techniques were used, Random Forest and Boruta.  
• Random Forest: RF is an embedded method that combines the qualities of the filter and 

wrapper methods. It has many (4 - 12) hundred decision trees, each tree is built over a 
random extraction of the observations from the dataset and the features. It divides the dataset 
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into two buckets, each bucket having observations that are closely related among themselves, 
but different from the ones in the other bucket. The measure of impurity is the Gini Impurity, 
and how pure each bucket determines the importance of each feature. This method was easy 
to interpret and can generalize well. 
 

• Boruta is built around Random Forest and can be used on Random Forest model, XGBoost, 
and Regression models. Its working principle involves creating shadow features (random 
features and shuffle values in columns), A Random Forest model is trained on the data and 
feature importance is calculated via Mean decreasing Gini impurity. It checks if real features 
have higher importance compared to shadow features, if the original feature performs better, 
then it is marked as important. This is repeated for every iteration. This is a good method of 
feature selection because features do not compete among themselves but instead compete 
with a randomized version of themselves (shadow features), where the importance of each 
original feature is compared with a threshold (highest feature importance recorded among 
the shadow features). In Boruta, a feature is important if it does better than the best-
randomized feature.  

3.2 Classification methods 
3.2.1 Binary Classification 
The conventional machine learning algorithms and deep neural network algorithms are 
presented for binary classification of the KDDTrain+ dataset. Specifically, K-Nearest 
Neighbors (KNN), Decision Tree (DT), Support Vector Machine (SVM), Random Forest (RF), 
Naïve Bayes (NB), Logistic Regression (LR), and a Feedforward Deep Neural Network 
(FFDNN) are implemented. The classification was done for two different cases:  

(i) Using all 41 features of the KDDTrain+ dataset to carry out a binary (Normal and 
Attack) classification and evaluating the performance of the models (ML and DL 
algorithms) on the KDDTest+ dataset.  

(ii) Using reduced features obtained through feature selection to carry out a binary (Normal 
and Attack) classification and evaluating the performance of the FFDNNs models on 
the KDDTest+ dataset.  
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3.2.2 Multi-class classification 
FFDNN multi-class classification of the intrusion detection on KDDTain+ was considered for 
future work, already mentioned that the attacks were divided into four categories, DoS, Probe, 
R2L, and U2R. The FFDNN model will be trained to classify the various anomalies into their 
different classes, and the prediction on the test data will confirm how well the model has 
achieved the desired accuracy. and the model was trained on them. However, based on the result 
of the binary classification, there is no doubt that the Feedforward deep learning model will 
perform well. 
3.3 Statistical measures 
The ground truth value is needed in the evaluation to estimate the different statistical measures. 
It is composed of a set of connection records labelled either Normal or Attack in the case of 
binary classification. The evaluation of the metrics is based on the four output values of the 
confusion matrix in Table 10 obtained by considering the calculated predicted class versus the 
actual class (ground truth). 
Table 10: Confusion matrix 
                 Predicted class 

Normal  Attack 
Normal True Negative (TN) False Positive (FP) 
Attack  False Negative (FN) True Positive (TP)  

 
Considering the number of Normal and Attack connection records in the test dataset, the 
following terms are used for determining the quality of the classification models [7] [18]: 
 
• True Positive (TP) - the number of connection records correctly classified to the Attack class. 
• True Negative (TN) - the number of connection records correctly classified to the Normal 
class. 
• False Positive (FP) - the number of Normal connection records wrongly classified to the 
Attack connection record. 
• False Negative (FN) - the number of Attack connection records wrongly classified to the 
Normal connection record. 
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The following evaluation metrics as listed below are evaluated based on TP, TN, FP, and FN. 
1) Accuracy (acc): It estimates the ratio of the correctly recognized connection records to the 
entire dataset. The higher the accuracy, the better the machine learning model prediction is 
(Accuracy ∈ [0, 1]). It is a good measure for the test dataset that contains balanced classes and 
is defined as follows: 
                                            𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  

𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                                                        (11) 

 
2) Precision (P): Also called the positive predictive value (PPV). It calculates the ratio of the 
correctly identified attack connection records to the number of all identified attack connection 
records. Higher precision indicates that the machine learning model performed better (Precision 
∈ [0, 1]). Precision is defined as follows: 
                                          𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  

𝑇𝑃

𝑇𝑃+𝐹𝑃
                                                                     (12)            

 
3) F1-Score (F1): It is also the F1-Measure, it is defined as the harmonic mean of Precision (P) 
and the true positive rate (Recall). If the F1-Score is higher, the model is better (F1−Score ∈ [0, 
1]). F1-Score is defined as follows: 
 
                                   𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 × (

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
)                                                (13) 

 
4) True Positive Rate (TPR): It is also called Recall or Sensitivity, or Probability of Detection 
(PD). It calculates the ratio of the correctly classified Attack connection records to the total 
number of Attack connection records. If the TPR is higher, the machine learning model is better 
(TPR ∈ [0, 1]). TPR is defined as follows: 
 
                                     𝑇𝑃𝑅 =

𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                                                         (14) 

 
5) False Positive Rate (FPR): It is also called False Alarm Rate (FAR or Fall-Out), It calculates 
the ratio of the Normal connection records flagged as Attacks to the total number of Normal 
connection records. Lower FPR indicates that the machine learning model is better (FPR ∈ [0, 
1]). FPR is defined as follows:  
 
                                  𝐹𝑃𝑅 =

𝐹𝑃

𝐹𝑃+𝑇𝑁
                                                                                        (15) 
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6) Area under the Curve: This is the size of the area under the Receiver Operating 
Characteristics (ROC) curve.  ROC is a graph plotted between the TPR on the y axis to FPR on 
the x-axis across different thresholds. AUC is a good measure for evaluating the performance 
of the machine learning models. If the AUC is higher, the machine learning model is better. 
 
                                     𝐴𝑈𝐶 = ∫

𝑇𝑃

𝑇𝑃+𝐹𝑁
𝑑

𝐹𝑃

𝑇𝑁+𝐹𝑃

1

0
                                                                  (16) 

3.4 Model Implementation 
The model implementation takes into consideration the results obtained on the evaluation of the 
test data (KDDTest+) set using statistical measures as mentioned in Section 3.4. The 
KDDTrain+ dataset was divided into two parts, namely a training dataset and a validation 
dataset. The test dataset has a different folder. The training dataset is used for training the model, 
and its prediction accuracy is measured on the validation set. Once I am satisfied with my 
selected model type and hyperparameters, my next step was to predict the test dataset using the 
new model 
 
Table 11: Distribution of training and testing records 
Dataset type  Number of Records 

 Total Normal DoS Probe U2R R2L 
KDDTrain+  125973 67343 (53%) 45927 (37%) 11656 (9.11%) 52 (0.04%) 995 (0.85%) 
KDDTest+  22544 9711 (43%) 7458 (33%) 2421 (11%) 200 (0.9%) 2654 (12.1%) 

 
3.4.1 Implementation of Conventional ML models 
KDDTrain+ dataset was trained using conventional machine learning algorithms, namely 
Support Vector Machine (SVM), K-Nearest Neighbors (KNN), Naïve Bayes (NB), Decision 
Tree (DT), Random Forest (RF), and Logistic Regression (LR), their performances were 
evaluated on the KDDTest+ dataset and the classification reports and various performance 
accuracies are shown in Table 13 & Table 14 were obtained from their confusion matrices 
respectively. After training the models using the training dataset, they were evaluated on the 
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validation datasets, after which predictions are made on the test dataset for final performance 
results from the different ML models. 
3.4.2 Implementation of DNN models using Feed Forward Deep Neural Network 

(FFDNN) 
The performance of the FFDNN was studied using the complete features (41 features) and the 
reduced features of the KDDTrain+ dataset. The KDDTest+ was used to predict training and 
validation accuracy. The validation loss and accuracy curves were used to monitor the 
behaviour of the model to avoid overfitting, with this principal criterion the trained model can 
either be accepted or rejected. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The architecture of the FFDNNs was designed for binary classifications. They are made up of 
three layers of two hidden layers consisting of several neurons as listed in Table 12, and an 
output layer with one neuron in each model. Dropout layers were included to regularize the 
model during training to reduce overfitting. ReLu activation function was used in each hidden 
layer and the sigmoid activation function for binary classification was used in the output layer. 
The prediction loss function for sigmoid is defined using binary cross-entropy, estimated in 
[18] as 
  
𝑙𝑜𝑠𝑠(𝑝𝑑, 𝑒𝑑) =  −

1

𝑁
∑ [𝑒𝑑𝑖𝑙𝑜𝑔𝑝𝑑𝑖 + (1 − 𝑒𝑑𝑖) log(1 − 𝑝𝑑𝑖)]𝑁

𝑖=1                                         (17)                                 
 

Feature 
selection 

Dataset FFDNN 

Feature engineering 

Classifier Input     Pre-processing 
Feature 

encoding 
Feature scaling 

Figure 10: System flow of the FFDNN Classification model 
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Where pd is a vector of predicted probability for all samples in the testing dataset, ed is a 
vector of an expected class label, values are either 0 or 1. 
The FFDNN model is compiled with the Adam optimizer and “accuracy” as the metric for 

validation. 
 
For the multi-class classification, the prediction loss was estimated using categorical cross-
entropy given by in [18] as  
 
𝑙𝑜𝑠𝑠(𝑝𝑑, 𝑒𝑑) =  − ∑ 𝑝𝑑(𝑥)log (𝑒𝑑(𝑥))𝑥                                                                              (18) 
 
Where ed is a true probability distribution and pd is the predicted probability distribution. 
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Dense (units= n) 
 

Output (probability) 

Dense (units= 2n) 
 Sequential 

Input (Normalized data) 
Figure 11: The General Architecture of FFDNNs as implemented in Keras 
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Table 12:  Summary of Parameters in the different FFDNNs 
Parameters FFDNN-1 FFDNN-2 FFDNN-3 
Number of features 41 13 122 
Feature selection No Yes No 
Features Encoding LabelEncode LabelEncode OneHot 
Number of layers 3 3 3 
Activation function in hidden layers ReLU ReLU ReLU 
Number of neurons in first hidden layers 64 32 512 
Number of neurons in second hidden layers 32 16 256 
Activation function in the output layer Sigmoid Sigmoid Sigmoid 
Dropout rate 0.2 0.2 0.2 
Optimizer Adam Adam Adam 
Batch size 256 64 128 
Number of epochs 16 20 20 
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4 Simulation and Results  
4.1 Simulation Environment for Conventional Machine Learning algorithms  
The simulation was carried out in the google colaboratory platform. All the necessary libraries 
(NumPy, Pandas, Scikit learn, Matplots, Seaborn) that are required to build the ML algorithms 
were imported. The first phase was data (train and test data) importation and pre-processing. 
There are no missing values and duplicates in the training and test data. The data preparation 
involves the binarization of the target labels into normal or attack (normal = 0 and attack = 1), 
encoding categorical data, passing data as NumPy array, and then normalizing the data and was 
passed into the ML algorithms.  
 
Training data was divided into train and validation set to verify accuracy after fitting the model. 
Each ML model was trained with a 10 folds cross-validation, and the results were evaluated, 
after which prediction was made on the validation set to obtain accuracy, confusion matrix, and 
classification report. Obtaining satisfactory results, the test data was now passed into the models 
to obtain acceptable accuracies. 
4.1.1 Performance Analysis of the Conventional ML algorithms on Test dataset 
Table 13: Results obtained from Confusion Matrices for Conventional ML Algorithms 
 DT 

(%) 
LR 
(%) 

RF 
(%) 

NB 
(%) 

KN 
(%) 

Accuracy 81 76 77 77 77 
True Negative (TN) 41 32 42 42 13 
False Positive (FP) 2 11 1 1 30 
False Negative (FN) 15 15 23 22 14 
True Positive (TP) 42 42 34 35 43 
True Positive Rate (TPR) 74 73 59 61 75 
False Positive Rate (FPR) 5 26 3 2 70 
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Figure 12: Precision, Recall, and F1 measure for binary classification on KDDTest+ 

Table 14: Precision, Recall, and F1 measure for binary classification on KDDTest+ 
Classifier Precision (%) Recall (%) F1 Measure (%) Accuracy 

(%) 
Decision tree (DT) 95 74 83 81 
Logistic regression (LR) 79 73 76 76 
Random forest (RF) 96 59 73 77 
Naïve Bayes (NB) 98 61 75 77 
K-Nearest Neighbor (KN) 58 75 65 77 

 
 
 
 
 
 
 
 
 
 
 
 
 
4.2 Simulation Environment for FFDNN   
Preparing the programming environment in the google colaboratory involves importing all the 
necessary libraries (NumPy, Pandas, Scikit learn, Keras, Tensor flow, Matplot, Seaborn) that 
are required to build the Deep Neural Network model. The first phase of the experiment was to 
import, clean, and prepare the training and test data. Based on the information about the data 
previously discussed in section 3.1.2, there are no missing values and duplicates. The data 
preparation involves the binarization of the target labels into normal or attack, encoding 
categorical data, passing data as NumPy array, and then normalizing the data to be ready to be 
fed into the deep neural network.  
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The Deep Neural Network was created using a sequential model from Keras API integrated 
into TensorFlow. The model architecture of three layers, the activation functions, number of 
neurons, and dropout layers of FFDNNs is shown in Appendix 1. Also available in appendix 2 
is the model summary that shows the number of trainable parameters (weights and biases). 
Having defined the model architecture, the next step was to create the model compiler, and 
finally, the deep neural network was trained and its performance was evaluated both on the 
training dataset and validation dataset.  
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Figure 14: Loss curves for FFDNN-1, FFDNN-2 & FFDNN-3   
 

Figure 15: The training loss and validation loss rates during FFDNN-1, FFDNN-2 & FFDNN-3 training  

 
 
 
 
 
 
 
 
 
4.2.1 Performance Analysis of the FFDNNs on the training set 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 13: Summary of the FFDNN-1, FFDNN-2 & FFDNN-3 results after each epoch 
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Figure 16: The training accuracy and validation accuracy curves for FFDNN-1, FFDNN-2 & FFDNN-3 models 

 
 
 
 
 
 
 
 
 
 
 
4.2.2 Performance Analysis of the FFDNNs on the Test set 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 17: Confusion matrices yielded by FFDNN-1, FFDNN-2 & FFDNN-3  

Figure 18: ROC curves show area under curve for FFDNN-1, FFDNN-2, FFDNN-3 
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Table 15: Results obtained from Confusion Matrices for the three FFDNNs 
Metrics FFDNN-1 FFDNN-2 FFDNN-3 
True Negative (TN) 8639 8166 8467 
False Positive (FP) 1072 1545 1244 
False Negative (FN) 1425 2044 1699 
True Positive (TP) 11408 10789 11134 
Total 22544 22544 22544 

 
Table 16: Metrics based on Confusion Matrix for FFDNNs in percentage 
 FFDNN-1 

(%) 
FFDNN-2 
(%) 

FFDNN-3 
(%) 

Accuracy (Acc) 89 84 87 
True Negative (TN) 38,3 36 37 
False Positive (FP) 5 7 6 
False Negative (FN) 6 9 8 
True Positive (TP) 51 48 49 
Misclassification (MC) 11 16 13 
Area under Curve (AUC) 95 86 92 
True Positive Rate (TPR) 89 84 87 
False Positive Rate (FPR) 11 16 13 

 
Table 17: Precision, recall, F1 measure and accuracy for FFDNN-1, FDNN-2, & FFDNN-3 

DNN Classifier Precision (%) Recall (%) F1 Measure (%) Accuracy 
(%) 

FFDNN-1 91 89 90 89 
FFDNN-2 87 84 85 84 
FFDNN-3 90 87 88 87 
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Figure 19: Graph on Precision, recall, F1 measure and accuracy for FFDNN-1, FFDNN-2, & FFDNN-3 

Figure 20: Graph on Detection Accuracy for Different ML Models 

 
 
 
 
 
 
 
 
 
 
 
Table 18: Performance Comparison of FFDNNs with five ML methods on KDDTest+ 
Classifier Methods Detection Accuracy 

(%) 
Decision tree 81 
Logistic regression 76 
Random forest 77 
Naïve Bayes 77 
K-Nearest Neighbor 77 
FFDNN-1 89 
FFDNN-2 84 
FFDNN-3 87 
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4.3 Results Analysis and Discussion  
In this thesis, the researcher has conducted a comparative study of the machine learning 
approaches for intrusion detection using conventional machine learning algorithms and 
feedforward deep neural networks (FFDNN). My main idea was to develop an FFDNN as a 
classifier to classify network traffic intrusions in the NSL-KDD dataset as normal or attack 
while using the conventional machine learning approaches as my controlled experiment. The 
analysis was performed on five different ML algorithms (DT, LR, RF, NB, KNN) and their 
performances on the test data gave 81%, 76%, 77%, 77%, 77% respectively. 
 
I also analysed three different FFDNNs, namely FFDNN-1, FFDNN-2, FFDNN-3 based on 
different hyperparameter values, feature reduction, and data encoding techniques. Their 
performances on the test data are 89%, 84%, and 87% respectively. Some important 
performance indicators, namely, accuracy, true positive rate (TPR = recall), false-positive rate 
(FPR), precision, F1 measure, and ROC area under the curve (AUC) are used as the bases to 
judge the model's performance. 
 
Considering overall performances of all models, the FFDNN-1 performed best with the highest 
detection accuracy of 89% and precision of 91%, however, the precisions of the DT, RF, and 
NB were quite high even though their detection accuracy were not above 80% except DT that 
gave 81%. High precision indicates that the models are reliable compared to low precision that 
can result in a lot of false positives as in the case of the KNN classifier. Another point to note 
is that high recall does not necessarily mean the best performance, but rather higher F1-measure 
shows that the model had performed very well. This is because the F1 measure takes into 
account the harmonic mean of precision and recall, so it tells how accurate a model is. From 
the results shown in Table 17 FFDNN-1 had an F1-measure of 90% which makes it the best 
model, other FFDNN variants also had a high F1-measure when compared to the F1-measure 
of the conventional machine learning algorithms.  
 
Another important metric that shows that the FFDNNs performed well is their high ROC area 
under the curve (AUC), FFDNN-1, FFDDN-2, and FFDNN-3 in Table 16 all had values of 
95%, 86%, and 92% in that order. The higher the AUC value, the more optimal the model 
becomes (note that 100% indicates a perfect model). Also, it is good to know that the primary 
aim is to develop machine learning models that would maintain acceptable true positive rate 
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(TPR) or detection rate (DR) with low false alarm rate (FAR) or false positive rate (FPR), 
looking at Table 13 and Table 16, you could see that DT, RF, and NB had very low FAR of 
5%, 3% and 2% respective compared to FFDNNs 11%, 16%, and 13%. This is good even 
though their detection rates were not as high as the FFDNNs, however, there could still be an 
improvement in ensuring that the FFDNNs produce low FAR since they are scalable in terms 
of architecture, but this would involve more computational cost.  
 
I would like to point out that any variant of the feedforward deep neural network (FFDNN-1, 
FFDNN-2, and FFDNN-3) has the capability as a classifier to classify network traffic intrusions 
with a high detection rate while offering a reduced FAR, it only depends on the model design, 
hyperparameters, and architecture. 
Limitations in the ML approach for intrusion detection are high FAR and how to strike a balance 
between false positive and false negative in terms of intrusion detection policies or profiling. I 
believe this limitation can be solved by the development of a deeper neural network or the use 
of another variant of a deep neural network like the convolutional deep neural network (CNN). 
 
4.4 Recommendations 
The recommendations are based on my observations while performing my experiments. 

(1) The hyperparameters (batch size, number of epochs, etc) are very important factors to 
consider with care when fine-tuning to avoid the deep neural network from overfitting 
or underfitting during training.  

(2) Acceptable parameters can be achieved by carefully observing the shape of a plot of 
the training loss and validation loss rates, a plot of the training accuracy and validation 
accuracy rates, and also the plot of the loss curve function during training of the model. 

(3)  During prediction on the test dataset, the ROC curve can be used to visualize the binary 
classification of the DNN and to identify an ideal threshold that will yield optimal 
performance. 

(4) The lower the batch size, the higher the training time and slower the training model, 
and vice versa. 

(5) Improvement in the performance accuracy reduces the false positive (FP) & false 
negative (FN). 
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(6) Increasing the width of the neural network, i.e the higher the neurons in the hidden 
layers, the more parameter to be trained will increase, and this also improves the 
accuracy, TP, TN, and reduces FP, FN.  

(7) Increasing the depth of the neural network, i.e increasing the number of hidden layers 
improves the statistical metrics. 
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5 Conclusion and Future work 
In this thesis, Machine learning algorithms of binary classifiers applied to network intrusion 
detection have been discussed. As I mentioned earlier in section 1.3 as part of the thesis 
objectives, a deeper machine learning technique using the feedforward deep neural network 
(FFDNN) was developed. I first review the IDS concepts and the different IDS methods. They 
are followed by a discussion of some ML algorithms and their applications in network intrusion 
detection. Based on some important statistical metrics namely accuracy, true positive rate 
(TPR), false-positive rate (FPR), precision, F1 measure, and ROC area under the curve (AUC) 
the machine learning algorithms were evaluated on the test dataset and the FFDNN performed 
best with a performance accuracy of 89%. The conventional machine learning algorithms such 
as DT, RF, and NB also performed well but slightly lesser with performance accuracy of 
between 76% to 80%, however, had a low number of false alarms compared to FFDNN. The 
FFDNN is scalable in terms of its architecture (depth and width of the neural network) and size 
of the dataset which gives it an edge over the conventional machine learning, and therefore 
there is a possibility that false alarms can further be reduced, though this would lead to 
complexity in the model and high computational cost. During training, the training time in the 
FFDNN is reduced as compared to conventional machine learning.  
 
The FFDNN can be deployed in real life to tackle the menace of malicious attacks on network 
activities. The experiments have demonstrated the effectiveness of the proposed technique in 
terms of correct classification and true positive rates of network records, so this confirms that 
the deep learning model would work efficiently to reduce the problem of false alarms. In the 
cybersecurity world, threats are constantly increasing as attackers have continued to devise new 
methods of attack daily. The deployment of the FFDNN in IDS will greatly help to tackle these 
attacks as it can detect unknown and novel threats. Finally, this proposed deep learning model 
is scalable which makes room for improvement to enhance its performance, so that as the 
change (emergent of new threats) keeps occurring the model will keep adapting to those 
changes. 
 
In this thesis, the researcher conducted a binary classification using FFDNN on the NSL-KDD 
dataset, the same procedure can be applied for multi-class classification. The researcher hopes 
to continue his work in the future for the classification of the five different classes (Normal, 
DoS, Probe, U2R, R2L) by the FFDNN model. 
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The NSL-KDD dataset has been used for this thesis work; however, it is relatively outdated and 
may not cover many of today’s network threats. So, I intend to experiment using alternative 
datasets in the future. Again, in today’s digital world, the increase in the usage of IoT devices 

is constantly expanding the amount of data being generated on the network, it would not be 
worthwhile developing intrusion detection system using the conventional ML methods, and the 
increase in the complexity of the FFDNN to meet up this demand would consume 
computational resources. So, it is necessary to continue the research by using the convolutional 
deep neural network (CNN) and recurrent deep neural network (RNN) to build a deep learning 
model for an intrusion detection system that would be more efficient than using a feedforward 
deep neural network in terms of memory utilization, speed, and accuracy. The CNN deep neural 
network has the capability of automatic feature selection to select the best features from the 
dataset that would enhance the deep neural network performance, in like manner, the RNN is a 
time-variant deep neural network that will be very useful in automating an IDS to detect 
network intrusions in real-time. 
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Appendices 
Appendix 1: FFDNNs Model in Keras Sequential API  
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Appendix 2: Summary of FFDNNs Trainable Parameters 
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The higher the trainable parameters 
(weights and biases), the more 
complex the deep neural network 
becomes  
 


