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Abstract 1

ABSTRACT

Malolactic fermentation is used by wine industry to decrease acidity and
introduce odor compounds through the metabolic activity of ethanol-tolerant
lactic acid bacteria. In this work, this oenological approach was used to modify
flavor chemistry of berry materials with low consumer value. The aim was to
determine fermentation conditions that lead to effective deacidification and
possibly to other chemical changes that would improve sensory and functional
properties, and thus consumer value, of various berry materials.

For the practical work of the thesis, juices from sea buckthorn (Hippophaé
rhamnoides L.), chokeberry (x Sorbaronia mitschurinii, old name Aronia
mitchurinii) and lingonberry (Vaccinium vitis-idaea L.) were fermentated with
multiple strains of Lactiplantibacillus plantarum and Oenococcus oeni, pre-
cultivated either in a typical basal medium or in an acclimation medium. Multiple
methodologies combining chromatography, mass spectrometry, and nuclear
magnetic resonance spectroscopy were applied for targeted, semi-targeted, and
non-targeted analysis of metabolites in the juices before and after fermentation.

While chokeberry juice was fermentable as such, fermentation of natural sea
buckthorn juice was ineffective in most cases. However, increasing juice pH
from natural 2.7 to 3.5 or acclimating cells prior to inoculation allowed
fermentation of sea buckthorn with all studied strains. At the natural pH of sea
buckthorn juice, no sugars were fermented or flavonol glycosides metabolized.
At the natural pH of chokeberry juice, sugars were fermented along with malic
acid, and quercetin glycosides, chlorogenic acid, and other phenolic acids present
in the juice were metabolized by L. plantarum. All fermentations that used
lingonberry as raw material failed due to the high content of benzoic acid.

During fermentation of sea buckthorn and chokeberry, the metabolism of
malic acid yielded mainly lactic acid, while the metabolism of quinic acid led to
the formation of protocatechuic acid, catechol, shikimic acid, and 3,4,5-
trihydroxy- 1-cyclohexanoic acid. Other microbe-related metabolites detected in
the fermented sea buckthorn juice were acetic acid, ethanol, isovaleric acid,
phenyllactic acid, succinic acid, 1,3-dihydroxyacetone, trehalose, maltose,
GABA, and oxaloacetic acid. It was concluded that depending on the strain of L.
plantarum, acetate production during the fermentation of sea buckthorn juice
was supported by the production of ethanol or succinic acid, or quinic acid
metabolism, to consume excess NADH.

Nearly all the identified volatile compounds from sea buckthorn juice were
esters with a fruity descriptor. Fermentation with L. plantarum increased the
content of volatile acids, i.e. acetic acid, 3-methylbutanoic acid, and free fatty
acids as well as the content of buttery ketones (acetoin) and various alcohols.
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While the concentration of fruity esters was decreased during fermentation, the
content of benzyl alcohol (floral) and 2-undecanone (fruity) were increased. The
content of fatty-acid derived aldehydes was decreased in all fermented samples.

In summary, fermenting sea buckthorn juice for a shorter period (36 h) and at
a lower pH (2.7) led to an effective deacidification via malolactic fermentation
without the consumption of sugars. Reducing fermentation time resulted to a
decrease in formation of volatile acids and less loss of ester compounds present
in the juices. On the other hand, fermentation for longer time (72 h) and at an
elevated pH (3.5) led to stronger protection of ascorbic acid from oxidation,
greater formation of antimicrobial compounds (3-phenyllactic acid, acetic acid,
lactic acid), and greater metabolism of secondary metabolites (phenolic
compound and quinic acid metabolism). These results can be applied to the
product development of novel fermented beverages utilizing acidic berry or fruit
material rich in malic acid as raw material.
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SUOMENKIELINEN ABSTRAKTI

Viiniteollisuus hyodyntda laajasti viinien happamuuden védhentdmiseksi ja
aromin muokkaamiseksi malolaktista fermentaatiota, jonka taustalla ovat
etanolia sietdvdt maitohappobakteerit. Téssd tyOssd tdtd viiniteollisuuden
lahestysmistapaa hyodynnettiin haastavanmakuisten marjojen maku- ja
aromikemian muokkaamiseen. TyOn tavoitteena oli selvittdd ne fermentaatio-
olosuhteet, joissa marjojen happamuuden vdhentdiminen ja muut aistittavan
laadun kannalta positiiviset muutokset kemiallisessa koostumuksessa saadaan
aikaan mahdollisimman tehokkaasti.

Viitoskirjan kokeellisessa osassa tutkittiin - soveltuvatko tyrnimarjasta
(Hippophaé rhamnoides L.), marja-aroniasta (x Sorbaronia mitschurinii, vanha
nimi Aronia mitchurinii), ja puolukasta (Vaccinium vitis-idae L.) valmistetut
mehut raaka-aineeksi malolaktiseen fermentaatioon. Mikrobeina kéytettiin
useita eri kantoja lajeista Lactiplantibacillus plantarum ja Oenococcus oeni.
Mehut valmistettiin  joko ilman tai entsyymikésittelyn avustamana.
Solukasvatukset tuotettiin tyypillisessd elatusaineessa tai sopeutusliuoksessa.
Tyo6ssd hyddynnettiin laajasti erilaisia analyyttisid tydkaluja, joihin lukeutuvat
erilaiset kromatografiset menetelmét, massaspektrometria, ja ydinmagneettinen
resonanssispektroskopia. ~ Kohdennettuilla, = osin  kohdennettuilla  ja
kohdentamattomilla analyyseilld mééritettiin muutokset fermentaation kannalta
olennaisten aineenvaihduntatuotteiden koostumuksessa.

Mikrobit pystyivdt fermentoimaan aroniamehua sellaisenaan, mutta
muokkamattoman tyrnimehun fermentaatio onnistui vain vaihtelevasti.
Tyrnimehun pH:n nosto 2.7:std 3.5:een ja solujen sopeutus happamiin
olosuhteisiin ennen fermentaatiota mahdollisivat onnistuneen fermentaation
kaikilla testikannoilla. Kun tyrnimehua fermentoitiin ilman pH:n séatoa,
mikrobit eivdt metaboloineet sokereita tai tyrnimehun flavonoliglykosideja. Sen
sijaan L. plantarum metaboloi aroniamehun sokereita, kversetiini glykosideja,
klorogeniinihappoa ja fenolisia happoja my6s mehun luontaisessa pH:ssa.
Puolukan fermentaatio epdonnistui Kkaikissa testiolosuhteissa, mikd johtui
puolukkamehun korkeasta bentsoehappopitoisuudesta.

Omenahapon aineenvaihdunta tuotti pddasiassa maitohappoa seké aronia- ettd
tyrnimehussa, kun taas kviinihapon metabolia tuotti protokatekiinihappoa,
sikimihihappoa ja 3.4,5-trihydroksi-1-sykloheksaanihappoa. Muita
mikrobiperdisid metaboliitteja, joita fermentoidusta tyrnimehusta tunnistettiin,
olivat  etikkahappo, etanoli, isovaleriaanahappo, fenyylimaitohappo,
meripihkahappo, dihydroksiasetoni, trehaloosi, maltoosi, y-aminovoihappo, ja
oksaloetikkahappo. Tuloksista selvisi, ettd kannasta riippuen tyrnimehun
fermentaation aikana L. plantarum tuotti etanolia tai meripihkahappoa, tai
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metaboloi kviinihappoa, kuluttamaan ylimdirdisen NADH-kofaktorin, jota
muodostui asetaatin tuottamisesta.

Valtaosa sekd maédrdllisesti ettd koostumuksellisesti  tyrnimehusta
tunnistetuista haihtuvista yhdisteistd olivat estereitd, joilla on hedelméinen
ominaishaju. Fermentaatio lisési haihtuvien happojen mairaa, joita olivat tissa
tapauksessa etikkahappo ja erilaiset vapaat rasvahapot. Téamidn liséksi
fermentaatiossa vapautui asetoiinia, jolla on voimainen ominaishaju. Vaikka
hedelmdisten estereiden méairé laski fermentaation aikana, bentsyylialkoholin
(kukkainen ominaishaju) ja 2-undekanonin (hedelmiinen ominaishaju)
konsentraatiot kasvoivat. Rasvahappoperdisten aldehydien méaariat laskivat
kaikissa fermentoiduissa mehuissa.

Tuloksista voitiin paitelld, ettd tyrnimehun fermentointi lyhyemmén ajan (36
t) ja pH:ta muokkaamatta (aloitus-pH 2.7) happamuutta voitiin véhentda
tehokkaasti ilman sokerien fermentointia. Lyhyelld fermentaatioajalla oli myds
se etu, ettd tyrnin hedelmadisten esterien miéré tippui vihemman, ja mehuun ei
muodustunut  yhtd paljon  haihtuvia  happoja  verrattuna  pitkddn
fermentaatioaikaan (72 t). Kun mehun pH oli korkeampi fermentaation
aloitusvaiheessa (3.5) askorbiinihappo hapettui vihemméin fermentaation aikana
ja mehuun muodostui enemmén antimikrobisia yhdisteita (3-fenyylimaitohappo,
etikkahappo, maitohappo). Tédmidn lisdksi korkeammassa pH:ssa mikrobit
metaboloivat enemmin sekundddrimetaboliitteja  (fenoliset  yhdisteet,
kviinihappo). Téaméin vaitoskirjan tuloksia voidaan hyodyntdd uudenlaisten
fermentoitujen juomien kehittdmiseen, joiden raaka-aineena kéytetddn paljon
omenahappoa sisiltdvid marja- tai hedelmédmateriaaleja.
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1 INTRODUCTION

Fermentation does not require invention by humans. It is a process that occurs
naturally in organic material due to the metabolic activity of bacteria and fungi.
Early humans had no access to our modern understanding of hygiene,
biochemistry, and microbiology, but presumably by trial and error, they learned
how to preserve milk and vegetables in a manner that would generate fermented
foods palatable and safe to consume. Their approach was probably a spontaneous
fermentation by controlling the temperature or salinity and using a “starter
culture” from a previous successful batch. Nevertheless, fermentation was used
in a systematic manner and on a large scale as early as 4000 BCE by the
Egyptians to produce bread and by the Babylonians to produce beer .

In addition to allowing storage of perishable materials for extended periods,
fermentation, as a low temperature method, allowed preservation of compounds
sensitive to heat or oxidation. Thus, foods such as sauerkraut provided a source
of vitamin C during seasons when fresh fruits and vegetables were not available.
For the same reason, fermented foods were also significant in the long seafaring
expeditions during 18" century as they helped to avoid the development of
scurvy within the crew. Nevertheless, it was not until 1857 that Lois Pasteur
discovered that micro-organisms were the cause of fermentation and the spoilage
of foods !.

Many traditional fermented foods such as kimchi, soy sauce, and kombucha
are still produced today either with classical spontaneous fermentation or with
the help of modern science and research in a highly controlled, hygienic
environment using micro-organisms developed specifically for a selected
purpose. The reason why fermentation is still a relevant processing method today
is primarly because that for the production of many products there is no
alternative. Wines, cheeses, sourdough bread, and traditional salami can only be
produced with fermentation 2.

However, studies related to fermenting fruit materials for other purposes than
to alcoholic beverages is a rather recent approach. Most of the research on this
topic have only been published within the last five to ten years. One possible
explanation is the current global consumer trend related to products that promote
health and well-being, and fermented foods are often associated with health-
promoting properties .

While the aim of traditional fermentation was to preserve milk or vegetables,
the fermentation of fruits and berries can be used to improve not only
microbiological but also oxidative stability, as the fermentation of plant materials
often leads to increased antioxidant capacity *. Another approach is to modify
the flavor of fruit materials. Lactic acid bacteria can deliver beneficial impact on
odor though the biosynthesis of compounds that complement fruity or floral
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characteristics of the raw material >. Malolactic fermentation (MLF) can be
utilized for deacidication of materials with intense sourness ¢ while phenolic and
flavonoid modification is of interest from both a health and flavor point-of-view
7. This approach has been adopted from the wine industry, as wines can undergo
spontaneous secondary fermentation where ethanol-resistant lactic acid bacteria
present in the wine ferment residual L-malic acid to D/L-lactic acid, modify
phenolic compounds, and generate aromatic ketones, alcohols, and esters to
further develop the flavor of the wine . If probiotic strains are used for
fermentation, then the microbe itself can deliver a further health benefit to the
consumer as an addition to the fermented food °.

This doctoral thesis work focused on berry materials that have been described
as sour, bitter, and/or astringent, including lingonberry, sea buckthorn, and
chokeberry. All of these berry species have well-established health benefits 1912,
but low consumer value due to their unpleasant sensory properties >, The
approach selected was to focus primarly on the MLF for deacidification purposes,
and secondarily to the modification of phenolic and other odor compounds. The
goal was to investigate whether L. plantarum can ferment the berry materials,
and to measure strain-dependent differences in the modification of the berry
flavor chemistry. The impact of initial pH, the contents of the basal medium, and
fermentation time, were also studied to determine the optimal fermentation
conditions. Both volatile and non-volatile flavor compounds were studied to
capture the complete picture of changes in chemical composition during
fermentation. Connections between fermentation factors and chemical
composition was established using various uni- and multivariate statistical
methods. Moreover, whenever possible, connections between the observed
changes were related to the known metabolic pathways of L. plantarum. The
goal was to provide a systematic approach to flavor modification by binding
together the substrate-product connection, and to discuss why the specific gene
expressed in that setting. Therefore, the intention of the literature review of this
dissertation was not only to report qualitative and quantative changes observed
in fermented food models but also to establish the metabolic systems of L.
plantarum relevant to the fermentation of plant-based food materials.
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2 REVIEW OF THE LITERATURE

2.1  General features and taxonomy of Lactiplantibacillus
plantarum

Lactiplantibacillus plantarum (former name Lactobacillus plantarum) is a
versatile species of lactic acid bacteria that is encountered in a variety of
environmental niches. It is especially common in spontaneously fermented plant
foods, where it is important for finishing the fermentation. Such foods include
sauerkraut, kimchi, table olives, and sourdough bread. Due to its high alcohol
tolerance, the species is also common in the MLF of wines. Furthermore, L.
plantarum isolates have been detected in dairy and meat fermentations and are
also among the species able to colonize the human GI tract, with some strains
possessing probiotic properties *!%!7. In addition, some L. plantarum strains are
able to improve the bioavailability of micronutrients such as iron '8, or are able
to degrade organophosphorus insecticides °.

In 2003, the complete genome of L. plantarum WCEFS1 isolated from human
saliva was sequenced 2°. Although Lactobacilli, in general, have a small genome
% L. plantarum has one of the largest genomes in lactic acid bacteria, about 3.3
Mbp ?°. The G+C content of the chromosome is 44.5%. Based on the metabolism
of carbohydrates, the species has been defined as facultative heterofermentive 2°.
By accumulating large intracellular pool of Mn?*, the species is able to tolerate
oxidative stress, and is thus defined as facultative anaerobe 2°.

The large genome of L. plantarum leads to the ability to utilize a large
collection of carbon sources and to tolerate stress from acidity, alcohol, salinity,
and phenolic compounds, among other things. These two characteristics together
explain why L. plantarum can adapt to a large variety of environments.
Fermentation with L. plantarum has the potential to improve sensory, nutritional
and functional properties of the food matrix 2!, while the ability to acidify the
raw material and to produce antifungal acids and antimicrobial plantaricins
improve shelf-life %2223,

Lactobacillus plantarum was initially named by Orle-Jensen (1919).
Currently, two subspecies of L. plantarum have been identified and a number of
closely taxonomical species (Fig. 1). In 1987, Lactobacillus pentosus (type strain
124-2 (=DSM 20314)) was identified as a separate species from L. plantarum *.
The key difference was the ability of L. pentosus to ferment D-xylose and
glycerol. However, this difference is not unequivocal, as there are strains of L.
plantarum that can metabolize glycerol 2°. In 1996, a separate species
Lactobacillus paraplantarum (type strain CST 10961 (=DSM 10667)) was
identified 2°. The main difference was the ability of L. paraplantarum to ferment
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methyl a-D-glucose, while the majority of L. plantarum strains have no gene for
the metabolosis of the compound 2°.

Later, a separate subspecies, L. plantarum subsp. argentoratensis was
identified using phylogenetic analysis; the type strain assigned was DKO 22T (=
DSM 16365). Other strains not belonging to this subspecies were renamed L.

plantarum subsp. plantarum *’.

—* Lactiplantibacillus modestisalitolerans (AB907192)

—* Lactiplantibacillus modestisalitolerans (AB907193)

————— Lactiplantibacillus plajomi (AB07190)

—__* Lactiplantibacillus xiangfangensis (AB907194)

—* Lactiplantibacillus pentosus (AB626060)

—* Lactiplantibacillus plantarum subsp. plantarum (AB626055)

Lactiplantibacillus argentoratensis (AB626061)

Lactiplantibacillus paraplantarum (AB626065)

Lactiplantibacillus fabifermentans (AB626075)

Lactiplantibacillus herbarum (KR706503)

Lactiplantibacillus mudanjiangensis (HF679037)

Fig. 1. Phylogenic tree of L. plantarum and the so-called L. plantarum family of
related species. Accession number in parentheses. Generated with Phylogeny
Server (https://ggdc.dsmz.de/).

Later, two additional novel Lactobacillus species with an over 98 % 16S
rRNA sequence similarity to L. plantarum were detected, Lactobacillus LMG
24284 which was isolated from cocoa bean fermentations in Ghana %, and
another novel strain which was isolated from traditional Chinese pickles 2°.
However, more detailed genomic analyses indicated that they were novel species,
which were then named Lactobacillus fabifermentans ** and Lactobacillus
xiangfangensis ¥, respectively. Other species that have so far been identified and
suggested to belong to the L. plantarum group are L. herbarum, L. plajomi, L.
modestisalitolerans, and L. mudanjiangensis *°.

In 2020, a proposal for reclassification of the genus Lactobacillus into 25
distinct genera based on a polyphasic approach was published 3!, in which
Lactobacillus plantarum subsp. plantarum and Lactobacillus plantarum subsp.
argentoratensis were renamed as Lactiplantibacillus plantarum and
Lactiplantibacillus argentoratensis, respectively. For the sake of clarity, the
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abbreviation L. plantarum according to the previous nomenclature is used
throughout the thesis for both before-mentioned species.

2.2 Carbohydrate metabolism of L. plantarum

Glycolysis is the main form of energy production under anaerobic conditions in
many lactic acid bacteria, including L. plantarum. The importance of glycolysis
is emphasized by the fact the presence of glucose downregulates both amino acid
metabolism 32 and B-glucosidase activity *3.

2.2.1 Carbohydrates transport systems

L. plantarum cells uptake carbohydrates either through carbohydrate specific
transporters or through multiple sugar ABC transporters 2°. Genomic analyses of
L. plantarum WCFS1 has revealed 25 complete PTS enzyme complexes 2°. In
the strain L. plantarum NCU116, a strain-specific fructose/mannose-inducible
PTS complex has been identified 3. The PTSs are a class of bacterial sugar
uptake systems that utilize energy from phosphoenolpyruvate (PEP) to
phosphorylate sugars upon transfer inside the cell. PEP, in turn, is derived from
the glycolysis pathway. Once inside the cell, sugars are metabolized to produce
ATP and to maintain NAD*/NADH homeostasis. Additionally, compounds
derived from sugar catabolism are precursors for many important components
required for growth, including pyridine, purine and histidine biosynthesis from
ribulose-5-phopshate, and aromatic amino acid biosynthesis from PEP via
shikimate pathway *+33.

2.2.2 Homo- and heterolactic fermentation

Typical classification of lactic acid bacteria is based on their glucose/sugar
metabolism. The two major pathways are homolactic and heterolactic
fermentation, which produce lactic acid alone, or lactic acid, acetate and ethanol,
respectively *°. Genomic studies have revealed that L. plantarum possess the
genes for both homo- and heterolactic fermentation 2%**37. Therefore, L.
plantarum is effectively a facultative heterofermentative species.

In a homofermentative pathway (Fig. 2), glucose is metabolized to pyruvate.
One mole of glucoses produces two moles of pyruvate. Pyruvate is then reduced
with NADH to either L-lactate or D-lactate by L-lactate dehydrogenase or D-
lactate dehydrogenase, respectively. The two isomers are produced in equimolar
amounts 2. Taking into account the sugar transport, the EMP pathway consumes
two ATP, while producing 4 ATP, leading to a net production of 2 ATP.
Regarding redox potentia, NADH regenerated in the oxidation of
glyceraldehyde-3-phosphate is converted to NAD* when pyruvate is reduced to
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lactate, and thus NAD*/NADH homeostasis is maintained in the
homofermentative pathway. The presence of multiple copies of lactate
dehydrogenase genes suggests the preference for pyruvate reduction into lactate
in L. plantarum. However, pyruvate can also be converted into acetyl-CoA by
pyruvate dehydrogenase and dihydrolipoamide dehydrogenase. Acetolactate
synthase on the other hand can catalyze the formation of a-acetolactate from
pyruvate 34,

In the heterofermentative pathway, hexoses are first fermented into xylulose-
5-phosphate and ultimately into lactate, acetate, or ethanol through pentose
phosphate pathway. Acetyl-phosphate is formed through phosphoketolase
pathway, with either ethanol (from acetyl-CoA) or acetate as the final product.
Acetyl-CoA is also used for fatty acid synthesis 3%,

Fructose  Glucose

PEP| Pyr  PEP¥ Pyr

Glucose-6- =——— Gluconate-6-P

Mannitol
Sorbitol

Mannitol-1-P

Sorbitol-6-P ATP
NAD+ NADH K

P
Fructose-6-P

ADP
Fructose-1,6-P2

NAD+

NADH ic aci
Nucleic acids
Ribulose-5-P —— |4itidine

Xylulose-5-P

ADP  ATP
Glycerone-P <— Glyceraldehyde-3-P ACGtV"PM Acetate

NAD, ATP CoA
NADH ADP P,

Pyruvate <+— Acetyl-CoA

NADH NADH
NAD, NAD,

Lactate Acetaldehyde

NADH
NAD,

Ethanol

Fig. 2. The homofermentative Embden—Meyerhof—Parnas (EMP) pathway (red
arrows) and the heterofermentative pentose phosphate pathway (purple arrows)
in addition to sugar alcohol utilization identified from L. plantarum. Adapted

from 3942

2.2.3 Sugar alcohol fermentation

The sugar alcohols sorbitol and mannitol are transported to cell through D-ribose
and sorbitol PTS, and this is present in most L. plantarum strains and closely
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related species (L. pentosus and L. paraplantarum). After transfer into the cell,
these sugar alcohols are fermented to pyruvate 3°. When sugar alcohol
fermentation was studied in strain L. plantarum NF92, in the early growth stages
lactic acid was the main end-product. However, in the late growth stages, ethanol
production was more pronounced as mannitol and sorbitol induced expression of
aldehyde-alcohol dehydrogenase-encoding gene (adhE). Furthermore, it was
observed that the expression was mediated through two DNA-binding regulators,
AcrR (activator) and Rex (repressor).

Excess NADH accumulation in the early growth stages from mannitol and
sorbitol utilization removes Rex from its binding site, allowing expression of
adhE, suggesting that ethanol production is activated to maintain NAD*/NADH
homeostasis *°. Interestingly, AcrR was also a key expression factor for the
ethanol tolerance of L. plantarum . Therefore, it is seems that in L. plantarum
AcrR activates pathways related to ethanol production as well as mechanisms to
protect the cell from the toxic effects of the ethanol.

2.2.4 Di-, tri-, oligo- and polysaccharide metabolism

L. plantarum can thrive in a variety of plant materials due to its ability to
catabolize various more complex carbohydrates into monosaccharides (Table 1).
L. plantarum is able to degrade lactose via B-glucosidase while maltose and
trehalose are fermented by a-glucosidase **. Sucrose, on the other hand, is
metabolized by B-fructosidase, encoded by gene sacB +. Glucosidases are also
important enzymes in the modification of phenolic compounds (Section 2.5.3.1)
and volatile precursors (Section 2.9).

Genomic analysis of strain L. plantarum NCU116 revealed genes for a-
amylase, neopullanase, and a-glucan branching enzyme. As this strain was
extracted from an environment rich in fermentable poly- and oligosaccharides
(Chinese sauerkraut), it is plausible that the ability to ferment complex
carbohydrates is beneficial for adaptation to this environmental niche 3%,
Degradation of complex carbohydrates improves digestibility of foods by
removing fermentable di-, tri- and oligosaccharides that could otherwise cause
gastrointestinal discomfort 6.

2.3  Organic acid metabolism of L. plantarum

2.3.1 Citrate and tartarate metabolism

The first step of citrate metabolism is transport into the cell by an L. plantarum
citrate transporter (CitP, [p_1022). The transporter protein has been registered as
a divalent anion:Na" symporter *!, meaning that the CitP uptakes deprotonated
citrate with the concomitant uptake of a sodium ion #’.
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Next, citrate is converted into oxaloacetate and acetate. The reaction is
catalyzed by citrate lyase, which consists of y, f and a subunits encoded by citD,
citE, and citF, respectively . In L. plantarum WCFS]1, citrate lyase regulator
(citR) and citrate lyase genes form a gene cluster citR-mae-citCDEF showing
associated expression with malate dehydrogenase (mae) .

Oxaloacetate is a substrate for various enzymes. One pathway is a
decarboxylation of oxaloacetate to pyruvate via the Mae enzyme. Citrate
fermentation can therefore in theory be utilized for energy production, as
pyruvate can be converted to acetyl-CoA through pyruvate dehydrogenase
complex, and subsequently to acetate, yielding 1 mole ATP per 1 mol of citrate.
An oad gene, encoding an oxaloacetate decarboxylase was also identified in L.
plantarum NCU116 **; this enzyme produces a Na* gradient which could be used
for cellular functions related to cytoplasmic membrane .

In lactic acid bacteria, a significant portion of the metabolic flux of pyruvate
is its reduction into lactate. However, in materials with an initially low pH or
acidified by fermentation (due to release of lactate from glycolysis), pyruvate
can be converted to neutral compounds acetoin, diacetyl and 2,3-butanediol %!
in order to maintain internal pH homeostasis (Fig. 3). All three previously
mentioned compounds contribute to the buttery and caramel notes 2. While
pyruvate can be generated from various pathways and substrates, in wine MLF,
accumulation of diacetyl and acetoin is associated with citrate metabolism.
Therefore, the presence of citrate lyase genes is often screened from strains
intended for wine MLF 3%, In L. plantarum, the optimal pH range for citrate
degradation and subsequent acetoin formation in synthetic wine medium was
between pH 4-5. In addition, the presence of glucose inhibited acetoin formation
from citrate while the presence of fructose induced it *%.

In wines fermented with O. oeni diacetyl is the main component produced in
the fermentation that contributes to the buttery notes 3°. However, since L.
plantarum lacks genes for the diacetyl reductase (but4) and the 2,3-butanediol
dehydrogenase (butC) to produce diacetyl and 2,3-butanediol, respectively, the
main end-product is acetoin (Fig. 3) *37. In food fermentations with L.
plantarum, small amounts of diacetyl have been detected, most likely due non-
enzymatic oxidation of a-acetolactate. Diacetyl has a sensory threshold value of
0.2-2.8 mg/L, while acetoin and 2,3-butanediol have a sensory threshold of 150
mg/L and 600 mg/L, respectively >. Therefore, it can be speculated that L.
plantarum is a poor contributor to buttery notes compared to O. oeni in MLF.

L. plantarum contains genes for a partial tricarboxylic acid cycle ¢, which is
relevant for citrate and malate metabolism (Fig. 3). Through this pathway,
oxaloacetate can be reduced to malate, and further dehydrated and reduced to
fumarate and succinate, respectively. L. plantarum have been reported to utilize
this reductive pathway (citrate-to-succinate) to regenerate NAD™ in carrot juice
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fermentation %> while the pathway was down-regulated under salt stress >7. In
addition, citrate metabolism was activated under ethanol toxicity 3. The missing
pathways in the TCA cycle explains several amino acid auxotrophies of L.
plantarum (see Section 2.8).

Hexose Hexose-P

Pentose
phosphate %
pathway

CoA P NADH NAD* NADH NAD*

Diacetyl

ADP )
Non-enzymatic .
ATP oxidation . *

Pyruvate —— 2-Acetolactate —— Acetoin —x—' 2,3-Butanediol

D-Lactate

L-Lactate Als Ald
CO;, ATP | »CO,
Mae
co, NAD* \KADP’/
H,0
= Mle Oxaloacetate % Tartarate
Acetaﬁ
L-Malate Citrate
Fum/kH2c> *
Fumarate TCA cyc[e Isocitrate
NADH Frd
NAD*
Succinate a-Ketoglutarate
Succinyl-CoA

Fig. 3. Citrate, malate and tartarate metabolism pathways in L. plantarum, in
addition to pathways that lead to acetate and acetoin formation. Genes associated
with the pathways are marked in green color. Pathways missing in L. plantarum
are marked with a red cross, and thus the metabolites L. plantarum is unable to
produce have gray font. Adapted from 3437404256 For details of the enzymes and
genes, see Supplementary Table S1.

While citrate metabolism by wine bacteria and L. plantarum has been
extensively studied, there is very little research on tartarate metabolism in L.
plantarum. Nevertheless, genes for tartarate utilization have been identified from
L. plantarum WCSF1 %0, Tartarate shares the same entry point to citrate in
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metabolism, as L(+)-tartaric acid is converted to oxaloacetate by tartarate
dehydrases (#tdAB) (UniProt accession numbers FOUMQ6 and FOUMQS5,
respectively). Tartarate is transported into the cytoplasm via tartarate transport
protein (¢tdP) (accession number: FOUMQ?3).

2.3.2 Quinic acid metabolism

Quinic acid metabolism in L. plantarum was first established in the 1970s by
Whiting and Coggings >°¢! (Fig. 4). It was discovered that quinic acid can be
metabolized through two separate pathways, in both of which 3-dehydroshikimic
acid is the intermediate. Dehydration of 3-dehydroshikimic acid ultimately
yields catechol, referred to as the oxidative pathway as the NADH generated
upstream is not consumed. The second pathway yields 3,4-dihydroxy-
cyclohexane-1-carboxylic acid as the end-product. As the pathway generates a
surplus of NAD(P)", it has been referred to as the reductive pathway. Enzymes
and genes related to this pathway are yet to be characterized.

OH OH q " o

OH H Shikimate
—_—

5\ 5\ 5\ 95 %\ pathway

OH NAD* NADHO NADPH NADP* HO"

Qumlc acid 3- Dehydroqumlc acid 3 Dehydroshlklmlc acid Shikimic acid l

2 NADH
L-Phenylalanine
2 NAD* L-Tyrosine
O« _OH O~__OH L-Tryptophan
HO” Z “OH HO" % “OH

OH OH
Enol form Dihydroshikimic acid

Dsd [\mo j\~ H,0
Oy OH Oy, OH
HO Z 1 “OH

OH o
Protocatechuic acid 3-OH-4-0x0-CHCA
NADH
Pad co, j

NAD*

Oy OH

ot (E

OH . OH
Catechol OH
3,4-OH-CHCA

Fig. 4. Quinic acid metabolism in L. plantarum. Adapted from 3>, For details
of the enzymes (green font) and genes, see Supplementary Table S1.

While quinic acid metabolism yields no energy, alternating metabolic flux
between the two pathways allows L. plantarum to regenerate redox cofactors. In
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heterofermentive bacteria the ability to utilize alternative electron acceptors,
such as hydroxycinnamic acids, allows increased ATP production from the
conversion of acetyl phosphate to acetate 2. Additionally, shikimic acid
produced in the metabolism of quinic acid can also serve as precursor for the
biosynthesis of aromatic amino acids *°.

2.3.3 Malolactic fermentation (MLF)

L-Malic acid is transported into cell through C4-dicarboxylate permease
(mleP123), which is induced by L-malate. In L. plantarum, unlike in many other
malolactic bacteria, mleP is not downregulated by glucose %. MLF is regulated
by the MleR .

In L. plantarum, MLF can occur through three separate pathways. First
pathway is reduction and decarboxylation of malate to pyruvate via malate
oxaloacetate-decarboxylating malate dehydrogenase (mae, MAE pathway),
often referred as the ‘malic enzyme’. Pyruvate can in turn be converted to D- or
L-lactate. However, similar to citrate metabolism, pyruvate can be utilized for
ATP production through mixed acid fermentation 37. As the name suggests, the
same enzyme also converts oxaloacetate to pyruvate, and is therefore also
relevant in citrate metabolism.

The second pathway, same as previously mentioned, is the conversion of
malate to pyruvate, but through a different mechanism. Here malate is first
reduced to oxaloacetate by malolactic dehydrogenase (encoded by mdh),
followed by decarboxylation to pyruvate. While this activity is typically
associated with the heterofermentative Lactobacillus species, such as L.
fermentum, some but not all L. plantarum strains also possess a gene for this
pathway 3*37. The third pathway is a direct decarboxylation of L-malate to L-
lactate in a Mn?*'- and NAD"-dependent reaction by so-called ‘malolactic
enzyme’, encoded by mleS in L. plantarum (referred here-on-out as the MLE
pathway) (Fig. 3 and Fig. 5). The exact catalytic mechanism of this single-step
decarboxylation of the malolactic enzyme remains to be elucidated.

Earlier it was thought that MLE produces no ATP as there is a lack of substrate
level phosphorylation but is rather utilized for de-acidification of the growth
medium %. However, in O. oeni the MLE system was downregulated in H-
ATPase deficient mutants, suggesting that in O. oeni MLF is primarily associated
with metabolic energy production 6.

In L. plantarum an electrochemical system for ATP production via the MLE
system has been suggested earlier (Fig. 5) ©. At an optimal pH range for MLF
(pH 3.5-4.5) % the majority of L-malic acid is in monoanionic form (pKai = 3.40,
pKa2 = 5.20). At high malate concentrations, malate(—1) (MAL") enters the cell
through diffusion by a malate transporter (MleP). Next, MleS decarboxylates the
non-o-hydroxy acid group of the malate. Being the carboxylic group that is
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predominately disassociated at the cytoplasmic pH of L. plantarum, a proton is
consumed in the process. As lactic acid has pKa of 3.86, at cytoplasmic pH the
end-product is predominately lactate(—1). Efflux of negatively charged
lactate(—1) forms the basis of an electrochemical gradient (i.e., proton motive
force), which in turn enables ATP production by H'-ATPase. In this way
metabolic energy is produced while maintaining intracellular pH 3.

Typically, the MLE system is presented with MAL™ as the main substrate.
However, due to higher pH in the cytosol compared to the extracellular space,
MAL is, to a large extent, further disassociated to a malate(—2) (MAL?") and a
proton. Recently, it was observed that for the O. oeni malolactic enzyme, MAL?>"
is the preferred substate, followed by MAL™ and L-malic acid, respectively ¢
However, no such investigations exist regarding the MleS of L. plantarum. The
end-product of MleS is lactate(—1) when the substrate is MAL?*™ and lactic acid
when the substrate is MAL™ or malic acid. If energy production from MLE is as
Olsen et al. ® suggested, then it makes no difference whether the substrate is
MAL"™ or MAL?", since the proton released from disassociation of lactic acid or
MAL, respectively, is consumed by MleS during decarboxylation. Therefore, a
more significant role is played by the transportation of L-malic acid (MleP), and
only the intake of deprotonated forms of L-malic acid would allow energy
production. In this context, at a very low pH (<3.0), where protonated L-malic
acid is the predominant form, in theory, the system would become electroneutral
and would no longer produce ATP. On the other hand, at a higher pH the MLE
system becomes less effective as well, potentially due to reduced ability to intake

L-malate.
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Fig. 5. Putative electrochemical mechanism of metabolic energy generation from
the MLE pathway in L. plantarum at a high L-malic acid concentration (> 5 mM)
63, MleP, L-malate transporter; MleS, malolactic enzyme of L. plantarum.
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The ATP generating mechanism varies between different bacterial species. In
L. lactis, MLE utilizes an anion exchange symport, i.e. the intake of malate with
a simultaneous efflux of lactate %. In some species MLE pathways exists but
contributes little to ATP production. For example, in Lactobacillus casei
inactivation of the MLE pathway increased growth rate by increasing the
metabolic flux to the MAE pathway. This suggests that in L. casei the MLE
pathway is utilized for de-acidification .

2.4 Volatile and phenolic ester metabolism in L.
plantarum

2.4.1 Classification of esterases and lipases

This section focuses on a discussion of the relevant genes and enzymes present
in L. plantarum responsible for hydrolysis and the formation of esters. Small
volatile esters are important class of odor compounds in wines, fruits, and berries
70 and thus enzymes that affect these compounds are relevant for flavor
modification during fermentation. Non-volatile phenolic compounds, such as
phenolic acids, flavonols and tannins, are responsible not only for the bitter and
astringent characteristics of wines and plant materials but also for the health
properties, which are often connected through ester bonds to sugars, alkyl chains
and other acyl groups. Such compounds include chlorogenic acid, an ester of
caffeic acid and quinic acid. Therefore, esterases able to hydrolyze phenolic
compounds, such as tannases, are important in fermentation of plant materials
for the modification of functional and flavor properties.

Esterases can be divided to several classes based on the substrate specificity.
Carboxylesterases hydrolyze water-soluble and short-to-medium-length
aliphatic esters, while arylesterases hydrolyze aromatic esters. Lipases, on the
other hand, tend to show high activity with long-chain, fat-soluble esters. Both
esterases and lipases belong to the o/p hydrolase enzyme superfamily with
shared catalytic mechanisms for both ester hydrolysis and formation 7'

2.4.2 Acyl transferases and reverse esterases

Various reverse esterases and acyl transferases of fermenting yeasts are
important drivers for wine and beer flavor . Chemical analyses have shown that
malolactic bacteria O. oeni and L. plantarum can facilitate the formation of esters,
including the formation of ethyl lactate or diethyl succinate 774, However, no
specific enzymes have been characterized from L. plantarum with acyl
transferase or reverse esterase activities. Cell-free extracts of O. oeni showed
reverse esterase activity by forming ethyl esters of octanoic, butanoic, and
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hexanoic acids. In the same study, cell-free extracts of L. plantarum produced
moderate amounts of ethyl hexanoate. 7°

2.4.3 Carboxylesterases, arylesterases, and lipases

Genomic studies have revealed various esterases from L. plantarum (Table 2).
These include carboxylesterases (Cest-2923, Lp 2631), arylesterases (Lp_1002),
lipases (Lp 3562, Lp 1760), and feryol esterases/tannases (Est 1092, TanA,
TanB). In general, esterases and lipases of L. plantarum prefer acetates and
butyrates as substrates (Fig. 6). Arylesterases and carboxylesterases prefer
shorter alkyl chains, while lipases retain higher activity with more lipophilic
esters, especially Lp 1760. Indeed, Lp 1760 is among the few lipases of L.
plantarum with high activity on tributyrin. While this is typically relevant in
dairy and especially in cheese fermentation, in plant materials with high lipid
content, such as sea buckthorn or avocado, this lipase might become significant.

Esterases with the potential to hydrolyze small water-soluble aliphatic esters
identified in L. plantarum include Lp 0796, LpEstl and Lp 1002. Apart from
isobutyl acetate, Lp 1002 had activity with all aliphatic esters within the test
library, showing wide substrate specificity (Fig. 6). In addition, Lp 1002 retains
its activity better compared to other esterases at acidic conditions (Fig. 6).
Therefore, arylesterase Lp 1002 has characteristics that emphasize its relevance
in the MLF of wine or fruit materials with high acidity. However, it is not clear
if [p_1002 is a common gene within species and strains belonging to the genus
Lactiplantibacillus.

2.4.4 Feryol esterases and tannases

Relevant to the hydrolysis of hydroxycinnamic acid esters is the fact that gene
Ip 0796 encodes a feruloyl esterase commonly present in L. plantarum °.
Furthermore, an uncommon feruloyl esterase/tannase gene est 1092 was
detected in seven strains of L. plantarum out of the 28 tested. Esterase Est 1092
was capable not only of hydrolyzing all the tested HCA esters, but also all the
tested hydroxybenzoic esters and gallotannins, showing a very broad range of
hydrolytic activity with various phenolic esters (Fig. 7). While the Ip 0796
expression level was not affected by methyl ferulate or methyl gallate,
expression of est 1092 was induced by the former and inhibited by the latter 7.
Est_1092 also maintains a relatively high activity in acidic conditions, meaning
that it retains activity even at low pH fermentations (Fig. 6). While L. plantarum
have shown the ability to hydrolyze caffeyolquinic acids (i.e., chlorogenic acids),
no enzyme that is able to hydrolyze the compound effectively has been detected.
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Besides Est 1092, two tannase genes tanBLp (also known as tanlpl or
Ip_2956) and tanALp have been identified in L. plantarum. tanBLp hydrolysed
only substrates with at least two phenolic groups.

Moreover, the esterified COOH group must be on oxidized benzene ring, and
must not be in an ortho position to one of the OH rings (Fig. 7). In accordance
with this, chlorogenic acid, ellagic acid, quercetin, catechin, epicatechin,
epigallocatechin were resistant to tanLp1 . While tanBLp is commonly present
in L. plantarum and in related species (such as L. paraplantarum and L. pentosus)
85, tanALp was detected only in certain strains of L. plantarum 3. Additionally,
tanBLp was inducible by methyl gallate, while expression of fanALp was not
affected by the presence of a substrate. Moreover, tandLp was detected to be an
extracellular enzyme while tanBLp was considered to be an intracellular enzyme
83-85

While both Est 1092 and tanBy, possess ability to hydrolyze gallic acid and
protocatechuic acid esters, due to differences in the expression pattern in the
presence of methyl gallate, and the gene being common in L. plantarum, it is
likely that fanBLp is among the relevant genes of L. plantarum responsible for
metabolism of hydroxybenzoic acid esters.

2.5 Phenolic acid metabolism in L. plantarum
2.5.1 Hydroxybenzoic acid metabolism

The main enzyme in L. plantarum that detoxifies hydroxybenzoic acids has been
identified as thr gallate decarboxylase encoded by lpdBCD (Fig. 8). LpcC was
identified as the catalytic unit, while the role of LpdB is to generate prenylated
flavin mononucleotide cofactor for LpcC. The role of LpdD has not been
established. Expression of [pdBCD was inducible by its substrate, gallic acid *.
The gallate decarboxylase of L. plantarum had activity with only gallic acid and
protocatechuic acid, yielding pyrogallol and catechol, respectively %, This
suggests that that OH-group in both para- and meta-positions are required for
the LpdC. For example, p-hydroxybenzoic acid was not metabolized by L.
plantarum CECT 748T %. This is in accordance with L. plantarum esterase and
tannase activities, which have shown preference with gallates and
protocatechuates (Fig. 7).

Interestingly, gene for the catalytic unit [pdC and gene encoding inducible
tannase tanBLp, which catalyzes hydrolysis of gallotannins, are only 6.5 kB
distant from each other, which suggested concomitant activity °°. This was
confirmed when a more in-depth understanding of the transcriptomic response
of L. plantarum to gallate exposure was determined by °°. It was observed that if
gallic acid content is substantial enough, gallic acid that enters the L. plantarum
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cell is bound to the TanR protein. This complex in turn binds to the DNA and
works as a transcriptional factor to induce expression of I[pdBCD, tanR, gacP
(gene for gallate and pyrogallol transport protein), and tanBLp to effectively
convert gallate to pyrogallol and subsequently remove the latter from the

intracellular space *°.

Oo==0 TanR
O0——0
O==0
Methyl gallate O=>=0 Methyl gallate E ,
—%—» 2o
Gallic acid -anian-4 Gallic acid .

Pyrogallol Pyrogallol
LpdBCD gadP 1
. . tanBLp 1
Gallic acid Gallic acid > TanB — IpdBCD 1
Methyl gallate Methyl gallate tanR 1

Fig. 8. Genomic response to the gallate exposure in L. plantarum to counter
hydroxybenzoic acid toxicity. Adapted from . For details of the enzymes and
genes, see Supplementary Table S1.

2.5.2 Hydroxycinnamic acid metabolism

Hydroxycinnamic acids (HCA) are a class of phenolic acids with 3-phenylprop-
2-enoic acid backbone combined with at least one hydroxyl group in the aromatic
ring, commonly found in fruits, vegetables, coffee, and tea °!. L. plantarum can
metabolize several HCA either by decarboxylation or by reduction of the side-
chain double bond (Fig. 9).

The most defined decarboxylase of HCAs in L. plantarum is the p-coumaric
acid decarboxylase (pdc, Ip_3665 or LpPDC) 2. As the name suggests, the main
substrate is p-coumaric acid (p-CA). The pdc gene is inducible by p-CA 3%,
Many HCAs, including p-CA, are toxic to L. plantarum due to the disturbance
to the lipid bilayer *°. Therefore, it can be speculated that the high toxicity of p-
CA to L. plantarum has created evolutionary pressure to generate effective
detoxification pathways. Besides p-CA, LpPDC has showed activity equal to p-
CA with caffeic acid. However, depending on the conditions, LpPDC has little
or no activity with ferulic acid °>**. Additionally, m- and o-coumaric acids are
not substrates for this enzyme °2. Therefore, it has been concluded that the
hydroxyl group in the para-position is necessary for LpPDC. On the other hand,
reduced hydroxycinnamic acids (e.g. phloretic acid) are not substrates of LpPDC,

indicating that the double bond in the side chain is also relevant for the activity
89
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Since the knockout mutant of the pdc gene still weakly decarboxylated p-CA
and ferulic acid, it was reported that another HCA decarboxylase system besides
LpPDC exists in L. plantarum. Additionally, this system was induced better by
ferulic acid than p-CA.%®

Besides decarboxylation, the double bond in the side chain of HCA and vinyl
phenols can be reduced by the enzymes HerAB and VprA, respectively. HcrAB,
compared to LpPDC, has a wider number of identified substrates °°. HCA
reductase activity is not commonly present in lactic acid bacteria; however, it
seems to be a common trait among L. plantarum. While phenolic acid
decarboxylases are important to detoxify phenolic acids, the suggested main
function of phenolic reductases is to regenerate NAD™ °®%7. In optimal growth
conditions (i.e., in MRS medium), the main metabolites of p-CA and caffeic acid
by strain L. plantarum TMW 1.460 were vinyl phenol and vinyl catechol,
respectively, while the main metabolite of ferulic acid was dihydroferulic acid *°.

Vinyl and ethyl phenols are volatile compounds, and in addition, 4-vinyl
guaiacol, 4-ethyl guaiacol, 4-vinyl phenol, and 4-ethyl phenol are also aroma-
active 32, While volatile phenols are often considered off-odors and a sign of
Brettanomyces spoilage in wines °7, 4-vinyl guaiacol is an important compound
in certain wheat beers to generate “clove”-like aroma *°.

2.5.3 Other metabolic routes of phenolic modification

2.5.3.1 Glycosidases

In berries and fruit, the majority of phenolic compounds such as flavonols and
flavan-3-ols are naturally present as glycosides '%°. Therefore, these compounds
are potential targets for enzymes related to carbohydrate metabolism, especially
glycosidases (Fig. 10).

When glycosidic activity was compared among 20 strains of L. plantarum, all
the tested strains were able to release B-D-glucose, o-D-glucose, and B-D-
galactose from p-nitrophenol, while lacking activity on glycosides with B-D-
fucose, B-d-xylose and B-D-rhamnose as the sugar moiety. The activity was
associated with aryl glycosidase /p 3629. Besides p-nitrophenols, B-D-
glycosidic bond of esculin, phloridzin, and quercetin-glycoside were hydrolysed
191 "While no activity on B-D-rhamnoside was detected in the previous study,
genes encoding two o-rhamnosidases (rhaBl and rhaB2) have been identified
from L. plantarum 2. Both enzymes showed preference to the o-1,6-linkage of
L-rhamnose to B-D-glucose. Therefore, phenolics with rutinose as sugar moiety
are potential targets. It was found that rutin (quercetin-rutinoside) and hesperidin
(hespertin-rutinoside) were most affected '°2. Rutin is among the most common
flavonol glycosides in fruits and berries !%°, and therefore, depending on substrate
availability, this enzyme potentially has great significance in flavonol
transformation of plant material when fermented with L. plantarum.
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In theory, the activity of RhaB1B2 could be complemented by Lp 3629, as
the removal of a-rhamnose transforms the compound from rutinoside to B-D-
glucoside, and thus becomes a potential substrate for glycosidase Lp 3629,
leading to the formation of a phenolic aglycone.

However, in the fermentation of fruit materials, flavonol glycosides and other
potential substrates of microbial glycosidases often remain largely unaffected .
For example, B-glucosidase-catalyzed bioconversion of anthocyanins was
reduced by 65 % in the presence of residual sugar '*. Recently, it was observed
that the B-glucosidase activity of L. plantarum UNQLp 11 was reduced by low
pH (3.2 vs. 3.8), but induced by high ethanol content !%. In addition, L.
plantarum B-glucosidases were inhibited by low pH, ethanol, and sugars *.
These factors together (i.e., low ethanol content, high sugar content, and low pH)
could explain why phenolic glycosides are poorly metabolized by L. plantarum
in non-alcoholic fruit material.

2.5.3.2 Benzyl alcohol dehydrogenase

While uncommon in lactic acid bacteria, the gene for benzyl alcohol
dehydrogenase enzyme (lp_3054) was identified from L. plantarum WCFS1 by
Kleerebezem et al. 2. Later, the Ip 3054 protein was genetically and
biochemically characterized by Landete et al. % As aromatic alcohols are
important odor compounds, Lp 3054 is a potential enzyme for flavor
modification to reversibly oxidize benzyl alcohols to aldehydes with almond,
green and grain odors. The enzyme can also reduce cis- and trans-geraniol (floral
aromas) to citral A and citral B with a citrus aroma, respectively (Fig. 11).

o o o (7O

Benzyl alcohol Phenylethylalcohol Clnnamyl alcohol cis- Geramol trans- Geranlol Comferyl alcohol
T/v NAD* T/v NAD* T/' NAD* T/' NAD* T/' NAD* T/’ NAD*
Lp_3054
1\> NADH l\> NADH l\» NADH l\> NADH l\> NADH l\> NADH
N o
o] o o X
o. N
o HO
Benzaldehyde Phenylethylaldehyde Cinnamaldehyde Citral A Citral B Coniferyl aldehyde
o V) &

Odor descriptor
@} Floral @ Grain @ Almond @ Green [/ Cinnamon Citrus

Fig. 11. Substrates and products of the benzyl alcohol dehydrogenase (Lp 3054)

196 and the typical odor descriptor of each compound *2.
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2.6 Protein and amino acid metabolism in L. plantarum
2.6.1 Metabolism of poly- and oligopeptides

Protein catabolism is important for growth and function of micro-organisms,
providing cells nitrogen and energy source as well as the essential amino acids
the organisms are unable to produce themselves. Amino acids, whether derived
from proteins and peptides or de novo synthesized by L. plantarum, however, are
not only relevant as building blocks for enzymes and proteins, but also
metabolized through various pathways into biogenic amines (Section 2.6.3),
various odor compounds (Section 2.6.2) or antifungal compounds (Section
2.6.5). In addition, peptides, and amino acids, derived from proteolytic activity
of lactic acid bacteria, have various flavor properties of their own. Therefore,
understanding proteolytic systems and nitrogen metabolism of the fermentation
organism is relevant not only for optimizing the biomass production or
fermentation efficiency, but also for understanding or even predicting changes
in the chemical composition and flavor properties of the raw material.

The first step in protein metabolism is to break down the polypeptide chain to
smaller oligo-, tri and dipeptides with extracellular proteases. However, within
the genus Lactobacillus, the gene for protease (such as PrtP or PrtM) is absent in
most species, including L. plantarum **37'%7. While generally lacking the gene
for catabolizing large polypeptides, Lactobacillus plantarum has an effective
peptide transport systems '°1% Genomic analysis revealed that oligopeptide
ABC transporters (OppABCDF) common in Lactobacillus were detected in L.
plantarum 80, a strain isolated from spontaneous cocoa bean fermentation 37. On
the other hand, the OppABCDF system was missing from the strain L. plantarum
strain WSCF 1. However, copies of multiple di/tripeptide ABC transport systems
(DppABCDF) were detected in this strain '%7. In addition to the before mentioned
peptide transporters, a di/tripeptide ion-linked transporter (DipT) was present in
66 of 71 tested L. plantarum strains '8,

Once inside the cell, peptides are hydrolyzed with an array of different
peptidases. Several classes of peptidases, including aminopeptidases (pepC,
pepM), endopeptidases (pepO), tripeptidase (pepT), and several proline
peptidases (pepl, pepX) were found commonly present in L. plantarum 37'%%,
From all tested peptidase genes, strain L. plantarum WSCF1 was only missing
genes for PepA and Pcp, which hydrolyze Glu-Asp and dipeptides containing
pyroglutamic acid, respectively '°7.

While lactic acid bacteria and L. plantarum thrive in nutrient rich materials,
L. plantarum WCFS1 has pathways for the biosynthesis of most of the amino
acids. However, pathways for the branched chain amino acids (BcAA) valine,
leucine and isoleucine were absent (Table 3) 2°. While L. plantarum contains
pathway to produce the precursors required for BcAA biosynthesis, pyruvate and
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acetolactate, the fact that it is missing the genes (i/vC and ilvD) required for
conversion of acetolactate to the necessary a-ketoacids seems to be the cause of
the auxotrophy '*. In accordance with this, several genes for BcAA transporters
were detected in genome of L. plantarum WCFS1 2,

Glutamate auxotrophy is a common, even universal, trait among lactic acid
bacteria. While L. plantarum possess a partial TCA cycle (Fig. 3), it is unable to
produce the necessary precursor o-ketoglutarate ''°. L. plantarum WCFSI
contains four complete glutamine transport systems, which suggests that

glutamine transport is important for regulating nitrogen metabolism 2°.

Table 3. Growth rate of L. plantarum in a minimal medium when amino acids
are omitted, in addition to the potential precursors in biosynthesis.

Growth when omitted

Morishita et = Teusink et Putative precursors in

Amino acid 198111 4L, 200510 biosynthesis®1011
Alanine +* 95** Pyruvate (glycolysis), asparate
Asparagine + Asparate
Glycine + 68
Asparatic acid + 110 Oxaloacetic acid (TCA)
Proline + 104 Arginine, ornithine
Serine . 05 3-Phosphoserine, 3-
phosphohydroxypyruvate
. Chorismate (shikimate pathway),
Phenylalanine - 44
phenylpurvate
Lysine + 105
. Chorismate (shikimate pathway),
Tyrosine +/- 70
hydroxyphenylpuryvate
Threonine + 98 Asparate, homoserine
Isoleucine - 23
Tryptophan - 20 Chorismate (shikimate pathway), indole
Arginine 2
Glutamatic acid - 1 a-Ketoglutarate
Glutamine +
Leucine - 3
Valine - 4
Histidine + 93 Ribose-5-phosphate, histinidol
Cysteine + 92 Sulfite, sulfide, serine
Methionine - 41 Aspartate, cystathionine, homocysteine

* Plus-symbol means improved growth and minus-symbol means reduced
growth.

** Growth rate in percentage compared to optimal conditions (100% at optimal).
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2.6.2 Metabolism of amino acids to flavor compounds

Amino acid metabolism provides an energy and nitrogen source for the cell.
These metabolic pathways produce aroma-active compounds that are relevant to
the flavor of fermented foods, especially of protein rich foods such as cheeses.
Many amino acids, dipeptides, and tripeptides have inherent taste properties
ranging from sweet to bitter and to umami and kokumi ''2, However, due to the
lack of enzymatic activity to breakdown polypeptides, in fermentations using L.
plantarum, catabolism of oligopeptides to amino acids and to further
downstream compounds are the most relevant pathways in terms of modifying
the flavor of the raw material.

One pathway for amino acid metabolism is transamination, where the amino
group is transferred from an amino acid to a-ketoacid, yielding a new amino acid.
In L. plantarum enzymes for transamination of BcAAs (BcAT, AsAT) and
aromatic amino acids (ArAT) have been identified, where the amino acid yielded
is glutamate from a-ketoglutarate. Ketoacids from BcAAs are precursors of
various flavor-active alcohols, aldehydes, and carboxylic acids (Fig. 12, Table
4). In addition, non-enzymatic, Mn*"-dependent formation of benzaldehyde
(almond-like aroma) from phenylpyruvate, a-ketoacid of phenylalanine, was
observed in L. plantarum LcL1. As large intracellular Mn?* pool is required for
the reaction, this pathway is specific to L. plantarum ''3.

As pyruvate and oxaloacetate also possess the a-ketoacid structure, it has been
proposed that a-ketoacids from BcAA are potential substrates for lactate, malate,
and pyruvate dehydrogenases. In addition, in Lactococcus lactis, a D-2-
hydroxyacid dehydrogenase with specific activity on BcAA a-ketoacids (PanE)
has been identified !'*. While substrate specificity is yet to be determined, it has
been speculated that L. plantarum could transform BcAA a-ketoacids into
methyl propanoic and methyl butanoic acids through a pyruvate oxidation
pathway; the typical activity of this pathway is to convert pyruvate into acetyl-
CoA. An alternative pathway is through keto-acid decarboxylase (KDC) yielding
aldehyde which is in turn oxidized to carboxylic acid by aldehyde dehydrogenase
(Fig. 12). While ''° reported no copies of the KDC gene in L. plantarum WCFS1,
activation of KDC pathway on BcAA ketoacid metabolism was suggested by 3
in fermented plant material. Alternatively, aldehyde produced via KDC enzyme
can be reduced to the corresponding alcohol with NADH by alcohol
dehydrogenase. Moreover, if the fermenting organism produces esterase with
alcohol or acyl transferase activity (such as EstA), the carboxylic acids and
alcohols formed through BcAA metabolism will provide potential substrates to
ester biosynthesis (ester hydrolysis and formation is discussed in Section 2.6).
Aldehydes from BcAA typically have an aldehydic aroma with chocolate notes,
while alcohols in turn have a fermented or whiskey descriptor (Table 4).
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Table 4. Typical odor descriptors of odor compounds derived from the free

amino acid catabolism of L. plantarum >°.

52

Precursor Product Odor descriptor

Cysteine Dihydrogensulfide Rotten egg

Isoleucine 2-methyl butanal Chocolate, cocoa, coffee
Isoleucine 2-methyl butanoic acid Cheesy, dairy, fatty, fruity
Isoleucine 2-methyl-1-butanol Roasted, onion, fruity, whiskey
Leucine 3-methyl butanal Aldehydic, chocolate, peach
Leucine 3-methyl butanoic acid Acidic, fruity, dirty, cheesy
Leucine 3-methyl-1-butanol Fermented, whiskey, fruity, banana
Methionine Methional Vegetable, potato, earthy
Methionine, cysteine | Dimethyldisulfide Sulfurous, cabbage, onion
Methionine, cysteine | Dimethyltrisulfide Alliaceous, sulfurous
Methionine, cysteine | Methanethiol Sulfurous, cabbage, garlic
Phenylalanine Benzaldehyde Fruity, bitter, almond, cherry
Phenylalanine Phenylacetic acid Honey, sweet, floral

Valine 2-methyl propanal Aldehydic, fresh, herbal
Valine 2-methyl propanoic acid | Acidic, sour, cheese, dairy
Valine 2-methyl-1-propanol Ethereal, whiskey

BcAA-derived carboxylic acids have acidic and cheese aromas and are
relevant flavor compounds in cheeses 2.

In addition to transamination of BCAA, other metabolic pathways of amino
acid metabolism can be considered relevant for flavor formation in fermentation
with L. plantarum. Serine (through dehydration and deamination), and asparate
and alanine (through transamination) are potential precursors for pyruvate. In
addition, threonine, a potential precursor for pyruvate and acetaldehyde, was
proposed to be metabolized by L. plantarum through the same metabolic
pathways as serine *’. However, while serine was metabolized by L. plantarum
B3089 to ammonia, acetate and formate, no threonine catabolism was detected
121

Metabolism of sulfur-containing amino acids (methionine, cysteine) produce
compounds with cabbage, onion, and sulfurous notes. To form these compounds,
methionine is converted first to MeSH which in turn works as precursor for
various volatile sulfides. However, no copies for the gene of the enzyme
particularly catalyzing this reaction, methionine y-lyase, exist in L. plantarum.
Instead, cystathione B/y-lyase can also catalyze this reaction, but less effectively
1519 Tt was observed that the main pathway for methionine modification in L.
plantarum was transamination to 4-methylthio-2-ketobutanoate (KMBA) and
further reduction to 4-methylthio-2-hydroxybutanoate (HMBA) '"°. Even
lacking methionine y-lyase activity, L. plantarum was reported to produce sulfur
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volatiles 7. Therefore, it is possible that the sulfur compounds are formed due
to the non-enzymatic reactions of HMBA and KMBA in the presence PLP.

Volatile sulfides were also produced also in the presence of cysteine,
suggesting conversion of cysteine to methionine via cysthathionine '!7.
Interestingly, while O-succinyl-homoserine is typically presented as co-substrate
along with cysteine for cystathionine y-synthase !, this compound requires
succinyl-CoA in its biosynthesis; the current assumption is that L. plantarum is
unable to produce this compound *°. Instead, in L. plantarum, an alternative
substrate for cysteine to methionine conversion could be O-acetyl-homoserine.

Formation of N-heterocycles with a mouse-like odor by L. plantarum from L-
lysine and L-arginine is discussed in Section 2.8.4.

2.6.3 Metabolism of amino acids to biogenic amines and ethyl
carbamate

As discussed in the previous section, amino acid metabolism is important for
flavor formation in certain lactic acid fermented foods. However, food-grade
lactic acid acid bacteria are known to produce unwanted, even toxic compounds,
i.e., ethyl carbamate and biogenic amines. The former is especially related to
arginine metabolism and is formed in a reaction between ethanol and N-carbamyl
compounds such as carbamyl phosphate and citrulline '?2. Biogenic amines on
the other hand are a product of decarboxylation of amino acids arginine, tyrosine,
histidine, lysine, and ornithine (Fig. 13). While ethyl carbamate is a known
carcinogen due to covalently binding to DNA, biogenic amines have an array of
undesirable biological activities '**

While L. plantarum strains often possess genes for amino acid
decarboxylation, an accumulation of toxic levels of biogenic amines is usually
due to contamination of for example FEnterobacteriaceae or food-borne
pathogens '?*. Biogenic amine formation by spoilage micro-organism can be
either induced or inhibited by the starter culture L. plantarum depending on the
125 In general, availability of the substrate amino acid, spontaneous
fermentation, and acid stress or glucose depletion (i.e. conditions that promote
amino acid utilization) induce biogenic amine formation, while salting seems to
inhibit formation of biogenic amines by either preventing growth of biogenic
amine-forming bacteria or directly inhibiting amino acid decarboxylase enzymes
126,127 However, more frequently toxic levels of biogenic amines are related to
poor manufacturing practices rather than suboptimal fermentation conditions '3,

Lack of biogenic amine formation is an important characteristic for wine
malolactic starter, and thus this characteristic is often determined when new wine
MLEF starters are screened .

strain
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While for wine MLF formation biogenic amines and ethyl carbamate
precursors are undesirable, in sourdough fermentation, accumulation of ornithine
is desirable as it is a precursor of 2-acetyl-1-pyrroline, which is an important
flavor compound in bread '3,

Depending on the strain, L. plantarum can be a source of biogenic amines,
especially tyramine and histamine '*°. However, some strains L. plantarum have
the ability to degrade biogenic amines. When 26 L. plantarum wine isolates were
screened, two isolates, NDT(09 and NDT16, showed substantial degradation of
tyramine and putrescine, respectively '3°. An enzyme with the ability to degrade
biogenic amines via oxidation was isolated from strain J16 CECT 8944 and
identified as a laccase (multicopper oxidase) by Callejon et al. (Fig. 13) '%7.
Potential biogenic amine degrading candidates, namely 10 amine oxidase
enzymes were identified from L. plantarum CAU 3823. These were identified as
different amine and monoamine oxidases 3%, In addition, a putative histamine
degrading glyceraldehyde-3-phosphate dehydrogenase was isolated from L.
plantarum PP02 ¥

In relation to fermentation of acidic materials, such as berries or sour fruits,
the increased acidity tolerance in L. plantarum has been associated with
enhanced amino acid utilization as an alternative energy source and to maintain
pH homeostasis '°. However, utilization of such strains for fermentation has
potentially increased the risk of biogenic amine accumulation. A potential
solution could be to co-inoculate the raw material with biogenic amine degrading
strain to avoid accumulation of these toxic compounds during fermentation.

2.6.4 Metabolism of amino acids to N-heterocycles

N-heterocycle contamination is not a common issue in the MLF of wines, but
when it occurs, it renders the wine unpalatable by producing a mouse-like off-
odor in the wine. The most common ones detected in wines are 2-
ethyltetrahydropyridine (ETPY), 2-acetyltetrahydropyridine (ACTPY) and 2-
acetyl-1-pyrroline (ACPY) (Fig. 13). Comparison of various lactic acid bacteria
revealed that heterofermentive Lactobacillus produce higher amounts of these
compounds compared to Oenococcus spp. and Pediococcus spp. Among
Lactobacillus, facultative homofermentive L. plantarum Llla produced
detectable yet low amounts of all previously mentioned N-heterocycles, linking
formation of these compounds to sugar catabolism '?°. A later study presented a
putative synthesis pathway to N-heterocycles (Fig. 13), where L-lysine was
suggested as precursor for ETPY and ACTPY and L-ornithine for ACPY.
Acylation group was proposed to be ethanol and acetaldehyde, produced from
glucose or fructose via phosphoketolase pathway, explaining why N-
heterocycles were produced in higher amounts in heterofermentive Lactobacillus
compared to homofermentive species within the same genus '*°. Furthermore,
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presence of ferrous ions was recognized as important for the reaction to initiate.
Other risk factors were residual sugar or stuck fermentation, high pH, minimal
sulfite content and moderate temperature (2030 °C) '3,

While food fermentations with L. plantarum seem to have a low risk for N-
heterocycle contamination, there are clear risk factors that should be considered.
Firstly, the presence genes of arc4 and arcB in the L. plantarum strain that allow
conversion of arginine to L-ornithine '3?; Secondly, an environment that
increases the metabolic flux to heterolactic pathways of L. plantarum (for
example, high content of sugar alcohols 3°); Thirdly, the risks mentioned above,
as identified by %,

2.6.5 Metabolism of amino acids to antifungal compounds

Multiple antifungal compounds produced by L. plantarum have been identified,
such as phenyllactic acid (PLA), hydroxyphenyllactic acid (OH-PLA), indole
lactic acid (ILA), cyclic dipeptides and 3-hydroxy fatty acids (Table 5) 41142,
Except for the 3-hydroxy fatty acids, the previously mentioned compounds are
produced through pathways related to protein metabolism. For PLA, OH-PLA
and ILA, the precursors are the aromatic amino acids phenylalanine, tyrosine, or
tryptophan, respectively. The amino acids are first converted to keto-acids
through transamination, and further reduced to corresponding compounds.
Alternatively, the necessary precursors can also be produced through a shikimate
pathway '#3. Cyclic depeptides are formed through the condensation of two
amino acids. No putative biosynthesis route for methylhydantoin or
mevalonolactone have been suggested. The structure of methylhydantoin,
however, suggests similar mechanism to cyclic dipeptide formation where the
substrates for condensation would be alanine and carbamoyl-phosphate or
alanine and citrulline '*,

Antifungal compounds produced by L. plantarum have shown to inhibit
growth of Aspergillus and Penicillium as well as inhibit aflatoxin production of
Aspergillus %
Fusarium as well (Table 5). When antifungal activity was compared between
PLA, OH-PLA and ILA, only PLA inhibited growth of 4. flavus (I1C90 11.9
mg/mL) at tested concentration '*°. Additionally, the antimicrobial activity of
PLA was augmented by both lactic and acetic acid 4. Cell-free supernatants of
L. plantarum lost antifungal 2> and antimicrobial *? activity after pH
neutralization, suggesting that the previously mentioned organic acids are
relevant for the antifungal activity of L. plantarum **.

Regarding the antimicrobial potential of L. plantarum derived antifungals,
pure compounds could be used as novel antimicrobials; alternatively, antifungal
producing strain can be used as natural preservatives. In fact, sourdough
produced with L. plantarum FST 1.7 was able to retard growth of Fusarium 1.

. In addition, a few studies have shown effectiveness with
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2.6.6 Bacteriocin biosynthesis in L. plantarum

Lactic acid bacteria have numerous mechanisms to outcompete other micro-
organisms. One such mechanism is the biosynthesis of antimicrobial peptides,
known as bacteriocins. Depending on the chemical composition, size and
mechanism of action, bacteriocins are divided into classes I, II and III, with class
II further divided into four different subclasses IIa-11d (Table 6) '+’

Table 5. Antifungal compounds produced by various L. plantarum strains and
the antifungal activity of the compounds.

Strain Origin Antifungal compound | Effective against Ref.

Phenyllactic acid,
L. plantarum

hydroxylphenyllactic Aspergillus 145
UMS5 y. . ylpheny. : : perg
acid, indole lactic acid
Phenyllactic acid,
L. plantarum | Malted Aspergillus niger,
cyclo(Leu-Pro), i 141
FST 1.7 barley Fusarium sp.
cyclo(Phe-Pro)
L. plantarum Aspergillus, Penicillium,
P Kimchi | cyclo(Leu-Leu) pers 148
AF1 Epicoccum, Cladosporium
L. plantarum | Lilac . ) .
Hydroxy fatty acids Aspergillus, Penicillium 142

MiLAB 14 flowers
Benzoic acid,
L. plantarum methylhydantoin,
Beer Fusarium avenaceum
VTTE 78076 mevalonolactone,

cyclo(Gly-Leu)

144

Bacteriocins detected from L. plantarum are known as plantaricins.
Plantaricins are typically most effective against Gram-positive bacteria, and
moderately effective against selected Gram-negative bacteria (such as E. coli).
Their antifungal properties are poorly reported. While the list is not exhaustive,
plantaricins often seem to be small peptides, ranging between 1-3 kDa in size
(Table 6).

Analysis of sixteen L. plantarum strains isolated from table olives and brine
showed that among the genes belonging to the pin locus, plnG and plnC were the
most prevalent genes, followed by p/nD and p/nB. The genes plnE/F and pinl
were detected in half of the studied strains '¥. The plantaricin production
regulators identified so far are the operons p/nABCD and pINCS-pINCSHK
which are controlled by the autoinducer peptides, PInAl or PLNCSIF,
respectively %151 PInA1l activates histidine kinase PInBI1, leading to
phosphorylation of PInC or PInD, which in turn either activate or repress the
expression of the pln locus, respectively %2,
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Recently, acetate was discovered to be an additional activator of histidine
kinase PInB1 '3’ PLNCSIF, on the other hand, activates histidine kinase
PLNC8HK, leading to phosphorylation of PInD.

However, unlike the plnABCD operon, PInD works as an activator rather than
repressor for the pINC8-pINCSHK system '!. The third system related to the
histidine kinase AgrC, activated by autoinducer-2 (Al-2), was not directly
associated with bacterocin biosynthesis. However, it was speculated that this
pathway activates metabolic systems that allow bacteriocin biosynthesis i.e.,
amino acid, carbohydrate, and fatty acid metabolism '*8.

Regardless of the plantaricin biosynthesis system present in the L. plantarum
strain, plantaricin production is regulated by quorum sensing. It has been
observed that the cell density of both L. plantarum and competing micro-
organism(s) need to be high enough for the threshold for the quorum sensing
system to be activated which in turn activates plantaricin production '>°.

Plantaricins are potential novel food antimicrobials. However, the ability to
maintain tertiary structure during food processing is important for peptide-based
antimicrobials. Several plantaricins have showed high thermal, pH, and
enzymatic stability !>*15°, Besides using the pure compound as a food additive,
another possibility is to increase shelf-life by using the strain to ferment raw
material that is known to produce an effective plantaricin. However, the strain
would need to synthesize the plantaricin at adequate levels to have any practical
significance for preservative purposes. As plantaricin biosynthesis is regulated
by quorum sensing, bacteriocin production can be induced by co-culturing L.
plantarum with another microbial species. For example, more than a 10-fold
increase in bacteriocin production was observed in L. plantarum CECT4185
after co-culturing with Lactococcus lactis 11403 5!, The food matrix is also
relevant as plantaricin production was induced in solid food material even at low
inoculation levels, while inoculation of 9 log CFU/mL of L. plantarum C2 was
required to produce detectable plantaricin activity in carrot juice '®°. Therefore,
when using a monoculture of L. plantarum to ferment pasteurized vegetable or
fruit juices only limited plantaricin production can be expected. In these
circumstances, one option would be to add exogenous autoinducer peptide (e.g.,
PLNCSIF) if plantaricin activity is desired '3°. However, it should be taken into
account that plantaricin production takes away resources from other cellular
functions, and therefore may have a negative effect on fermentation especially if
the medium or the raw material has poor nutrient quality '*°.
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2.7  Stress responses of L. plantarum relevant to plant
fermentations

For L. plantarum to adapt to a variety of plant niches, genes for sensing the
environment and adapting to biotic and abiotic stress are necessary (Fig. 14). In
the MLF of wines, abilities to tolerate low pH, high ethanol content, phenolic
acids, and sulfites are necessary. As vegetables and mushrooms are typically
fermented in brine, protection from osmotic stress becomes relevant, while
protective metabolic responses to shocks from cold temperature (during food
storage), stomach acids, and bile acids are important characteristics for probiotic
L. plantarum strains °.

Transcriptional regulators CtsR and HrcA play a key role in the universal
stress response of L. plantarum, and are relevant for stress adaptation to e.g. heat
161 “cold %2, and ethanol 3®. CtsR and HrcA regulate expression of heat-shock
proteins (hsp 1, grpE, dnak), intracellular proteases (c/pC, clpP), and chaperonin
(dnaJ, groEL, groES) '63. The role of a intracellular protease is to degrade
nonfunctional proteins while chaperonin aid the folding of proteins during
cellular stress 2°.

In wine MLF, it was observed that stress-related gene (hspl, hsp2, ctsR)
expression in L. plantarum correlated with the ability to tolerate low pH %4, In
addition, overproduction of Hsp 18.55 and Hsp 19.3 in L. plantarum WCFS1 led
to an enhanced survival in the presence of butanol (1%, v/v) or ethanol (12%,
v/v) 162, Heat-shock proteins also seem to play a role in probiosis of L. plantarum
as hsp knockout mutants showed reduced resistance to oro-gastro-intestinal
stress, adhesion to enterocytes, and immuno-modulation of macrophages '.

The antimicrobial properties of ethanol and phenolic acids are due interaction
with the lipid bilayer, which increases membrane fluidity and proton
permeability, disrupting cell functions and ultimately leading to a loss of
intracellular compounds and cell death !5, Phenolic compounds, especially
certain phenolic acids, are effectively metabolized by L. plantarum as a
detoxification mechanism. Under p-coumaric stress especially, the pdc gene
(Ip_3665) was upregulated 112-fold along with increased methionine production
%3 Phenolic compound metabolism is discussed in Section 2.7.

Despite the high toxicity of ethanol on micro-organisms due to detrimental
membrane interaction, certain wine lactic acid bacteria including L. plantarum
and Oenococcus oeni have an ethanol tolerance of up to 14% (v/v) '¢7. Exposure
to ethanol induces a variety of changes in the metabolism of ethanol-resistant
microbes, and 172 genes were found to be differently expressed in L. plantarum
NF92 after ethanol treatment. Transcription factor AcrR was found to be
important for ethanol tolerance, as overexpression of AcrR promoted growth of
L. plantarum NF92 in 9% EtOH.
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The key genes that were upregulated by AcrR were fabZ1 (unsaturated fatty
acid biosynthesis), murD (peptidoglycan biosynthesis) and #rmFO (protein O-
glycosylation). At the same time, the genes cfal, cfa2 and tagE6 were
downregulated by AcrR. Genes cfal2 encode cyclopropane synthases, and the
enzymes are associated with lactobacillic acid biosynthesis (Fig. 15) **, which is
produced from cis-vaccenic acid (18:1, n7, cis) '°.

O

H3C\/\/\A/\/\/\/\/“\OH

Fig. 15. Structure of the lactobacillic acid !,

Both an increase in unsaturated fatty acid biosynthesis and a reduction in
formation of lactobacillic acid increased membrane fluidity, which was
concluded to be a mechanism to counter ethanol toxicity; a more fluid membrane
is less susceptible to the disruptive effects of ethanol to membrane integrity .
Conversely, van Bokhorst-van de Veen et al. 3 reported that the ratio of
unsaturated and saturated membrane fatty acids was reduced in L. plantarum
WCEFS1 when exposed to 8% EtOH.

Acid adaptation and tolerance are not only relevant to the fermentation of
acidic plant or berry materials, but also for the storage stability and probiotic
potential of the strain (i.e., ability to tolerate stomach acids), and thus acid
tolerance is an important characteristic when screening functional strains for the
food industry. In general, L. plantarum has a good acid tolerance and an ability
to maintain moderate growth rates at pH 3.5 '4* while the optimal growth pH is
around 6. The ability to tolerate low pH is related to the ability to maintain
intracellular proton homeostasis. Efflux of excess H" can be mediated by FoF;-
ATPase and sodium-proton antiporters 2°. While under ethanol stress membrane
fluidity was increased **, L. plantarum have been reported to decrease membrane
fluidity as a response to acid stress; rigid membrane reduces proton flow into the
cell. During storage in acidic fruit juice, the membrane rigidity of L. plantarum
NCMIB 8826 was enhanced by increasing the biosynthesis of saturated and
lactobacillic acid, along with a significant upregulation of cyclopropane synthase
( cfa) 171‘

In L. plantarum, amino acid accumulation and metabolism was increased
during acid stress '*° while it was decreased under ethanol stress °%. Increased
transport of proline was detected as a response to osmotic stress '%%. As a results
of metabolism of e.g. serine, arginine and methionine, intracellular pH is
increased due to decarboxylation and release of ammonia '*°. Additionally,
decarboxylation of glutamate yields y-aminobyturic acid (GABA), and thus,
GABA is often detected in fermented foods '°. When acid tolerance of L.
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plantarum strains ZDY 2013 (acid tolerant) and ATCC 8014 were compared,
higher intracellular amino acid concentrations were observed in the former
compared to the latter 40,

Metabolic pathways related to citrate metabolism were activated under stress
from ethanol 3® and a low pH *'. In addition, conversion of citrate-to-succinate
was increased by high salinity 3. The ability of citrate metabolism to generate
membrane potential (e.g. citrate-sodium symport activity of CitP) and pH
gradient were suggested as explanations of the pathway activation under ethanol
stress *%. In addition, some L. plantarum strains, such as NCU116, also express
a membrane-bound oxaloacetate decarboxylase (oad), which allows conversion
of citrate-derived oxaloacetate into pyruvate and CO; while using energy derived
from the decarboxylation to transport Na* out of the cell 3.

One additional mechanism that enhances adaption to low pH is MLF; the pH
of the raw material is increased due to the decarboxylation of L-malate 72, In
addition, efflux of lactate generates an electrochemical gradient (i.e., proton
motive force) across the cell membrane . Similar to amino acid metabolism,
low pH seems to increase the metabolism of organic acids over carbohydrates in
L. plantarum ',

Lyophilized cells are the most practical way for the food and alcohol industry
to store, transport, and use microorganisms in fermentation. However, freeze-
drying damages bacterial cell walls and thus lyophilized cells are more sensitive
to environmental stress compared to metabolically active cells. This in turn may
lead to problems initiating healthy fermentation in challenging materials such as
wines or berry juices with lyophilized cultures. However, it has been shown that
acclimation of L. plantarum UNQLp155 cells at 6 % EtOH prior to freeze-drying
improved adaptation to the freeze-drying process as well as leading to better

growth in synthetic wine !73.

2.8 Fermentation of plant and fungi material with L.
plantarum

2.8.1 Vegetables and mushrooms

Table olives, cabbage, cauliflower, and mushroom can be preserved via
spontaneous lactic acid fermentation. Typically, the material is washed, followed
by submerging in brine with an additional carbon source (such as sucrose). The
fermentation of vegetable materials is started at ambient temperature but
finalized at sub-ambient conditions (~16 °C) 717>, However, fermentation of
materials such as table olives maintain ambient temperature throughout the
fermentation 7%, Compared to the fermentation of fruit and berry materials
(Section 2.8.3), fermentation times of vegetable materials tend to be
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considerably longer, ranging from a month up to a year, as is the case with table
olives 17175177

As vegetables and mushrooms usually have a low initial acidity, the
conditions at the start of fermentation benefit the mesophilic, halotolerant micro-
organisms, but after acidification, the raw material becomes a hostile
environment and only micro-organisms able to tolerate both high acidity and
salinity can thrive. While each spontaneous fermentation has its own unique
microflora, studies related to bacterial community development in vegetable
fermentation have revealed several key genus and key species. The main
contributor to initial acidification in spontaneous vegetable fermentation is
Leuconostoc spp., especially Leuconostoc mesenteroides. When the pH falls
below 3.5-4, Lactobacillus spp., especially L. plantarum, L. brevis or both, take
over and finalize the fermentation 75178180,

When vegetable material was inoculated with L. plantarum, the species
controlled the LAB fermentation throughout the process '®!%, leading to a more
predictable fermentation process. This also reduces the risk of unwanted
contaminations. However, when L. lactis was used as starter culture, the main
species at the end of fermentation was still L. plantarum '7®. Additionally, using
a starter culture instead of spontaneous fermentation generally leads to lower
biogenic amine formation !’8. Strain-dependent properties can also provide
further benefits: fermentation of shiitake mushrooms with L. plantarum
GDM1.191 increased levels of the umami compounds '¥! while fermentation of
pea-protein isolate with L. plantarum was an effective method for off-aroma
removal 182,

2.8.2 Wine malolactic fermentation

For the L. plantarum strain to be utilized as wine MLF starter, it should possess
very specific traits. Wine being a hostile environment for micro-organisms, the
fermentation organism is required to tolerate stress from a high ethanol content,
a low pH, SO2 and lysozyme. Besides ability to survive in wine conditions, the
micro-organism should be able to metabolize L-malic acid and citric acid.
Regarding the metabolism of wine phenolics, tannase and phenolic acid
decarboxylase activity are often screened. While the former allows removal of
gallotannin, which reduces astringency and haziness in wine, the latter enzyme
produces volatile phenols. Whether phenolic acid decarboxylase activity has
positive or negative impact on the sensory value of wine, depends on the
substrate (Section 2.5.2).

While amino acid decarboxylation enhances the pH tolerance of L. plantarum
140 accumulation of biogenic amines is considered a negative trait in an MLF
starter. Therefore, especially histidine and tyramine decarboxylase activities are
often screened. To further develop the wine bouquet, B-glucosidase and proline
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aminopeptidase activity are desired to release bound volatiles from glycosides or
amino acids, respectively ', Finally, esterases, especially when accompanied
with alcoholtransferase activity, are sought after in wine malolactic starters to
increase the number of fruity esters in the wine 7.

When 53 wine isolates from Patagonian red wine were analyzed, two strains,
L. plantarum UNQLp 97 and UNQLp 155 showed promise as wine MLF starters
167 The former strain exhibited good acid tolerance, while the latter maintained
almost a full relative growth rate (95%) even at 14% (v/v) EtOH. Both strains
consumed L-malic acid and degraded gallotannin effectively, and in addition, L.
plantarum UNQLp 97 showed high B-glucosidase activity as well. In another
instance, L. plantarum isolates from Patagonian pinot noir wine in general
showed the presence of beneficial genes for wine MLF (PAD, B-glucosidase,
citrate lyase, PAP), while O. oeni isolates were especially lacking the PAD and
PAP activities .

In the MLF of Patagonian Malbec wines, the content of the majority of
endogenous alcohols and esters decreased with both L. plantarum and O. oeni 7.
However, increased formation of diethyl succinate (melon aroma) was detected
in wine fermented with O. oeni or L. plantarum UNQLp155, but not in samples
fermented with L. plantarum UNQLpll. Succinate was likely derived from
partial TCA cycle of L. plantarum, subsequently esterified with ethanol at both
COOH-groups by EstA or similar enzyme. Additionally, mixed culture
fermentation (L. plantarum + O. oeni) led to increased formation of diethyl
succinate compared to single strain fermentation. Release of B-citronellol in
MLF by UNQLpll and UNQOe73.2 was suggested be derived from [-
glucosidase activity. A similar study setting was applied to Patagonian Pinot noir
wines !4, Most esters decreased in the Patagonian Pinot noir wine fermented
with L. plantarum UNQLp11. However, O. oeni UNQOe 73.2 increased the
content of various odorant ethyl esters, contributing to a notable change in the
wine’s volatile profile.

In the MLF of synthetic wine media, it was observed that m/e expression in L.
plantarum was induced at a lower pH (3.2 vs. 3.8) but reduced by increasing
ethanol content !, In addition, the ability to tolerate combined stress during
MLF (ethanol, low pH, malic acid) was higher in L. plantarum than in O. oeni
when ethanol content was lower than 6 % (v/v). Co-inoculation of S. cerevisiae
and L. plantarum also reduced the total fermentation time 4, MLF with L.
plantarum could therefore be more effective with co-inoculation of yeast rather
than as a sequential fermentation after the primary fermentation.
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2.8.3 Fruits and berries

2.8.3.1 Strain selection

While preservation of vegetables with spontaneous lactic acid fermentation has
been utilized for several millennia, and is still in common practice today, berries
and fruits have been traditionally preserved by jamming. In fact, bioprocessing
of fruits and berries with lactic acid or MLF is a rather recent approach. In more
recent studies, starter cultures were preferred over spontaneous fermentation,
either as monocultures or as a mix of several strains or species, monocultures
being the more common approach. A few strains that have been used extensively
in a variety of materials include the type strain L. plantarum DSM 20174, the
strain C2 isolated from carrots, and the strain POMI1 isolated from tomatoes
(Table 7). While the whole genome has been characterized for the strain WCFS1
20 it has not been applied to food models.

Table 7. List of strains used in fermentations of various fruit materials, origin of
strain, and materials it has been utilized in.

Strain code  Strain origin Used in material

IMR20 Pincapple Cherry juice 3*'% pineapple juice >, cactus
cladodes pulp '’

CCMS Cheese Cherry juice '8 pineapple juice >

CIL6 Cherry Cherry juice 3%, pineapple juice *°, cactus
cladodes pulp ¥

DC400 Sourdough Cherry juice '8 pineapple juice 3
Sea buckthorn 19188139 chokeberry 1%,

DSM 20174 Pickled cabbage lingonberry ', sea buckthorn / apple mix %,
pomegranate juice *°, noni juice !

ILE1 Pineapple Elderberry juice *'*, cherry juice '°

10R12 Pineapple Pineapple juice '*°

285 Brazilian cheese Elderberry juice %, cherry juice '°

90 Wine Jujube juice 7, apple juice

AFI5 Apple Apple by-product '8

B42 Cheese Orange juice '

B7 Sourdough Bog bilberry juice 2%

BNCC 337796 | Not reported Blackberry juice 2!, blueberry juice 2!

Cl Carrot Elderberry juice, cherry juice '
Myrtus communis berries homogenate %2,

C2 Carrot pomegranate juice °, cherry juice '8 pineapple
juice %

C5 Carrot Cherry juice '3

C8-1 Pickles Bog bilberry juice 2%

GIM1.140 Not reported Papaya puree 2, mango slurry 2
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Strain code  Strain origin Used in material
J26 Fermented dairy Blueberry juice 20
LP09 Commercial strain Pomegranate juice °
) . Mulberry juice 2%, mixed juice (73% of acai
Lp-115 Commercial strain .
berry, 17% of aronia, and 10% of cranberry) 27
LS5 Not reported Sweet lemon juice 2
NCUI116 Chinese sauerkraut  Momordica charantia juice 2
Elderberry juice >4, pomegranate juice 3,
POM1 Tomato
cherry juice '3, cactus cladodes pulp '¥’
ST-1II Kimchi Apple juice 21°
VTT E-78076  Beer Lingonberry mash 2!!
FP3 Sweet cherry Sweet cherry 2'2
KCTC 33131 | Not reported Cherry silverberry puree !?
TMW 1.460 Spoiled beer Cherry juice %

One approach for starter culture selection is to use an autochthonous culture,
i.e. a starter culture isolated from the raw material 6212214, The rationale for this
approach is that the strain or isolate is adapted to the raw material, leading to an
effective fermentation. A second approach is to use a strain with well-known or
desired characteristics °"!%?. The third approach is to use a variety of cultures
from different sources to screen for the strain with optimal properties '°2. The
beneficial characteristics for wine starter culture are listed in Section 2.12.2, and
these overlap to a certain degree with the desired properties for a strain to be used
in fruit or berry fermentation. These properties include, but are not limited to:
growth in and tolerance to low pH, tolerance to low temperature, ability to
complete fermentation, presence of the malolactic gene, ability to tolerate and
metabolize phenolic compounds, ability to synthesize antimicrobial compounds,
activation of heterofermentative metabolism, ability to synthesize odor
compounds or their precursors, lack of biogenic amine formation, ability to
synthesize exo-polysaccharides, and an ability to increase antioxidant activity 2!,

2.8.3.2 Fermentation trial set up

Lactic acid fermentation with L. plantarum has been applied to a variety of fruit
and berry materials with cherry '>?12 and pomegranate juices >!°*?!5 having been
studied by multiple groups. Almost all of the studies retrieved have heat
treatment prior to fermentation in order to remove the natural flora from the raw
material (Table 8). Typically, the materials used were natural, meaning with
little or no additional nutrients, and only in a few studies had the pH been
significantly modified before fermentation. While in wine MLFs fermentation
times of up to several weeks are used 73, in the fermentation of non-alcoholic
fruits and berries short fermentation times are preferred, ranging from 24 to 336
hours with an average of 48 hours.
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Many of the retrieved studies have included a storage trial to test cell viability
during extended storage at +4 °C and monitor changes in chemical composition
throughout the storage as well.

2.8.3.3 Changes in cell numbers, pH, carbohydrates, and organic acids

In the fermentation of berry or fruit materials with L. plantarum, inoculation
levels varied from 4.5 to 8 log CFU/mL, with 7 log CFU/mL (Table 9) being the
most common. The cell count increased in almost all instances during
fermentation, typically 1-2 log CFU/mL, even in materials with an initial pH as
low as 3. Storage trials showed that L. plantarum cell counts remain relatively
stable for up to 60 days in storage at +4 °C. The only exception was made by '*
who reported that no bacteria was detected in pomegranate juice after 28 days of
storage.

As expected, lactic and acetic acids increased in all materials after
fermentation with L. plantarum (Table 10). Change in the content of individual
sugars depended on the material, strain, and starter pH. For example, in the
fermentation of orange juices, the sugar content was reduced in juices from cv.
Washington Navel while no reduction was observed in juices from cv. Tarocco.
The difference was associated with the ability to survive in the material, i.e., cell
numbers increased in the former juice while they decreased in the latter. On the
other hand, fermentation of cherry juice with the strain ILE led to an increase in
the glucose and citric acid contents, while fermentation of the same juice with
the strain C1 led to the opposite result. Related to juice pH, sugars were utilized
more by the strains B8 and C8-1 in bog bilberry juice at pH 2.65 compared to
the metabolic activity in juices a with pH of 3.50.

While MLF was observed in the majority of studies that measured changes in
organic acid content, only a few studies reported significant increase in pH (0.5
units) (Table 9) 2%%2!7. Therefore, in most fruit or berry materials, MLF was
either not intended to or is not appropriate for deacidification purposes.

2.8.3.4 Changes in volatile compound profiles

Depending on the strain or material, the ester content in the raw material is
increased, not affected, or reduced (Table 11). By far the most common esters
formed by L. plantarum in fruit materials are ethyl acetate and ethyl butyrate.
Ethyl acetate is an expected volatile formed by L. plantarum, as both precursors,
acetyl-CoA and ethanol, are derived from heterofermentative pathways of L.
plantarum. Ester formation is not only related to the inherent properties of the
starter culture, as high number of esters were generated by L. plantarum 90 in
jujube juice from fruits belonging to cultivar Muzao, however, the same was not
observed in juices made with the fruits of the cultivar Hetian 7. The impact of
pH on ester formation was observed in bog bilberry juice, as ester biosynthesis
was activated at pH 2.65 while hydrolysis was more prevalent at pH 3.50 2%, In
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general, however, ester biosynthesis by L. plantarum is minor compared to
commonly used yeasts, such as S. cerevisiae ***, and therefore modification of
the aroma profile by L. plantarum via ester biosynthesis is not in general a viable
approach. Unlike in wine MLF, fresh fruit material has a low number of
precursor for ethyl ester biosynthesis (i.e., ethanol) which likely contributes to
the reason why higher rate of ester biosynthesis being reported in general in wine
MLF compared to fermentation of non-alcoholic material.

Increase in the content of volatile acids is often reported in fermented
materials, as L. plantarum produces acetic acid, short-chain fatty acids, and
various ketoacids in its metabolism. Additionally, as esters contribute to the
fruity and floral notes in various berries and fruits 7°, esterases produced by L.
plantarum can hydrolyze these compounds to the corresponding alcohols and
acids %,

Common alcohols produced by L. plantarum during fermentation of fruit and
berry materials include 3-methyl-1-butanol (fruity aroma) and 2-methyl-1-
butanol (roasted aroma), derived from the metabolism of leucine and isoleucine,
respectively. The floral aromatic alcohols phenylethyl alcohol and benzyl
alcohol are commonly reported in materials fermented with L. plantarum as well.
It can be speculated that these odor compounds are derived from the metabolism
of phenylalanine, as phenylpyruvic acid is known to be oxidized to various odor
compounds when exposed to the Mn?" pool of L. plantarum '3 (Section 2.6.2).
The other alcohols commonly present in fruit materials fermented with L.
plantarum include 2-ethyl-1-hexanol (citrus), 1-hexanol (herbal), (Z)-3-hexen-
1-ol (green), which are derived from fatty acid metabolism.

Aldehyde content often decreases during the fermentation of fruit materials
and the compounds are either reduced to alcohols or oxidized to carboxylic acids.
An excepetion to this was made by benzaldehyde (almond), the content of which
was increased in fermented bog bilberry juice, pomegranate juice, and papay
puree (Table 11). Similar to volatile phenolic alcohols, benzaldehyde is likely
derived from phenylalanine metabolism ''*!16, Interestingly, a high content of 2-
methylbenzaldehyde was formed in jujube juice when fermented with L.
plantarum 90, which enhanced the cherry aroma of the material 7. However,
the precursor for this volatile has not been determined.

Effect of L. plantarum on aroma-active furans has been studied to a lesser
extent. A decrease in furan content was reported in pomegranate juice °, while
an increase was reported in watermelon juice after fermentation 222,

While aldehydes are typically decreased in fermented fruit materials, the
total ketone content is almost exclusively increased in the fermented fruit
materials due to the formation of acetoin. As discussed earlier, in the
heterofermentative pathway of L. plantarum, acetoin is the final downstream
product as the species lacks enzymes to generate diacetyl or 2,3-butanediol.
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However, diacetyl is also formed in fermentations with L. plantarum due to
the non-enzymatic oxidation of 2-acetolactate (Fig. 3). While moderate levels of
223 it has not been established
whether formation of acetoin is beneficial for the sensory value of non-alcoholic
fruit materials.

diacetyl improve the sensory value of wines

While various authors promote the use of autochthonous cultures in plant-
based fermentation %196212 3 case was made by Ricci et al. '°*!%° to use dairy
cultures in the fermentation of plant materials, as strains derived from fermented
dairy produced more odor compounds compared to strains isolated from plant
materials. This result was possibly due to the more complex metabolism of
amino acids, as dairy strains have adapted to a protein rich environment.
However, using this approach requires further studies to determine the suitability
of dairy isolates for fermentation of fruit and berry materials.

The formation of volatile phenols in fermented fruit materials are discussed
in the next section.

2.8.3.5 Biotransformation of phenolic compounds

While genomic studies have revealed the presence of a variety of mechanisms in
L. plantarum related to phenolic metabolism, studies considering phenolic
biotransformation in fruit and berry model foods provides highly varying and
even often conflicting results (Table 12).

Studies have commonly focused on changes in phenolic acids during
fermentation. Caffeic, p-coumaric and protocatechuic acids are almost
exclusively metabolized, showing a decrease in concentration after fermentation.
The main metabolites are dihydrocaffeic acid and catechol from caffeic acid and
protocatechuic acid (PCA), respectively '8¢1920 Formation of 4-ethyl phenol
from p-coumaric acid by decarboxylation and reduction, respectively, was
reported in elderberry '3 and cherry juices '°°. However, there was significant
difference between the strains, and therefore, strain selection should consider the
metabolic activity on p-coumaric acid as a factor to avoid formation of ethyl
phenol, as this volatile is considered an off-odor *’. Ricci et al. ' also reported
further metabolism of dihydrocaffeic acid to vinyl catechol.

Strain-dependent variation on phenolic acid metabolism was reported in the
fermentation of cherry juice, as strain 1LE1 increased the content of PCA and
caffeic acid, while strains 285 and POMI1 decreased the content of these
compounds '3

Genomic studies have been unable to detect an effective enzyme from L.
plantarum that effectively hydrolyzes chlorogenic acid (Section 2.4.4). It is
possible that this gene is rare in L. plantarum, since only a few reports exist that
show a significant decrease in chlorogenic acid content after fermentation with

L plantarum 200,201,213,217
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In Section 2.6.5 it was discussed that phenylalanine is a potential precursor
for various odor compounds. Another established pathway is metabolism into
phenyllactic acid '%°, however, only few studies report formation of this
metabolite in fruit materials fermented with L. plantarum %+, In addition,
formation of p-OH-phenyllactic acid from tyrosine was reported in fermented
cherry juice '°.

In the case of the metabolism of flavonols present in berries and fruits by L.
plantarum, several glucosidases and rhamnosidases have been identified that can
metabolize quercetin glycosides (Section 2.5.3.1). However, the author was
unable to discover studies that show direct link between flavonol substrates and
products during the fermentation of fruit materials. Increase in flavonol
aglycones kaempferol and isorhamnetin were reported in cactus cladode pulps
after fermentation '*’. Additionally, several reports have stated an increase in
both flavonol glycoside and aglycone contents 1329217 while other studies report
the opposite result 2°%2!13, The former result was possibly due to the release of
cell-wall bound phenolic compounds either by endogenous or bacterial
enzymatic activity 2%,

Metabolism of proanthocyanidins and other condensed tannins by L.
plantarum in fruit food models is poorly reported. Procyanidin dimers from
cranberry (i.e., A2 and B2) were metabolized by L. plantarum ATCC BAA-793,
yielding 3-(4-hydroxyphenyl)-propionic acid (phloretic acid) and 3-(3,4-
hydroxyphenyl)-propionic acid ??*. Interestingly, the same study reported an
improved utilization of oligosaccharides when L. plantarum was exposed to
proanthocyanidins, showing a novel approach to improve fermentation in
materials rich in fermentable fibers. Phloretic acid has also been reported as
phenolic metabolite in fermented apple homogenate '%%, bitter lemon juice 2%,
and cherry juice %,

2.8.3.6 Changes in antioxidant capacity

Fermentation of plant materials with L. plantarum have often reported a
beneficial impact on the antioxidant capacity, especially with the DPPH radical
scavenging assay (Table 13). Typically, an increase in antioxidant activity has
been associated with biomodification of phenolic compounds present in fruits
and berries. The explanation is that the breakdown of phenolics introduces more
hydroxyl groups that have antioxidant properties *!'37. However, Hur et al. *
discussed in their review that the overall picture is more complex (Fig. 16). For
example, modification of redox balance plays a partial role, and that changes in
pH during fermentation affects the deprotonation of polyphenols, which in turn
affects the radical scavenging activity. Furthermore, while exopolysaccharides

produced by L. plantarum have been shown chelate metal ions 223,
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metal chelating activity is not often beneficially impacted in the fermentation of
fruit materials, since the FRAP results in most studies remain unaffected 2°3 or
are even reduced after fermentation 2% (Table 13).

Several studies have reported a higher content of ascorbic acid in inoculated
fruit materials compared to a control without bacteria after the incubation period
187.208 'While no direct link has been established, it can be speculated that increase
in antioxidant capacity during fermentation protected the ascorbic acid from
oxidation. It was shown by Hashemi et al. that the effect was also apparent during
storage, and after 28 days at +4 °C fermented lemon juice had a higher ascorbic
acid content compared to non-fermented juice, even when the non-fermented
fresh juice initially had a higher concentration 2%8, Other groups of antioxidant
compounds affected by processing and extended storage are anthocyanins and
carotenoids, and protection of these compounds from degradation by isolate L.
plantarum T10 was reported in blueberry juice 2! and by the strain IMR20 in
cactus cladode pulp '*7, respectively. The ability to impact antioxidant activity
and to protect ascorbic acid or anthocyanins from degradation is a strain-
dependent property. For example, in the fermentation of sea buckthorn juice, the
strain DSM 20174 significantly increased the ORAC value while the strain DSM
10492 showed the opposite effect 8.

2.9 Compositional properties of berries

2.9.1 Sugar, sugar alcohols, and organic acids in commercially
important berries

The main sugars in most common berries are glucose, fructose, and sucrose.
Sweet sugar alcohol sorbitol has been detected in substantial amounts in
chokeberry, rowanberry, sweet cherry, and eastern shadbush (Table 14). Citric
acid and malic acid are the main acids in the majority of the commonly cultivated
or wild berries used by the food industry. In addition, some species also produce
substantial amounts of quinic acid (e.g. sea buckthorn) or tartaric acid (grapevine,
cranberry, bilberry).

High amounts of citric acid (> 10 g/kg FW) have been reported in raspberries,
lingonberries, jostaberries, dog rose hips, and gooseberries. Various currants
(black, white, red) contain especially high amounts of citric acid, up to 24 g/kg
FW. Berry species that have shown a high malic acid content (> 10 g/L) include
rowanberry, sour cherry, chokeberry, hardy kiwifruit, jostaberry, sea buckthorn,
red gooseberry, and cranberry (Table 14) 226228 Especially high content of L-
malic acid has been detected in sour cherry with up to 20 g/L of malic acid
reported, and in rowanberry and sea buckthorn,
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with concentrations over 30 g/ FW being reported in berry juices. Benzoic
acid present in cranberry and cloudberry potentially limits the utilization of MLF
at a low pH ?%°.

In addition to berries, apples, regardless of the variety, have consistently high
L-malic acid content (4.40-9.50 g/L) ?33. On the other hand, genotypical
difference in L-malic acid content in apricot varieties grown in China was nearly
10-fold (1.89 and 12.8 g/kg in fruits of ‘Katy’ and ‘Xingmei’, respectively) 2*4.
Therefore, when selecting material for MLF, variation in the sugar and acid
content dependent on the subspecies, therefore the cultivar and growth location
needs be taken into consideration.

For effective MLF to be initiated by L. plantarum, a minimum concentration
of 5 mM of L-malic acid was required, corresponding to 0.67 g/L 3. This means
that with few exceptions almost all common cultivated and wild berry species
would have the necessary L-malic acid content for MLF (Table 14) 226228
However, to maintain the MLF for an extended period, the L-malic content
should be significantly higher.

2.9.2 Free amino acid content of sea buckthorn, chokeberry, and
lingonberry

Typically L. plantarum lacks the ability to cleave large polypeptides 2.

Therefore, the readily available nitrogen sources in berry fermentation would be
the free amino acids. The content of glutamate, branched-chain amino acids (Val,
Ile, Leu), and arginine, are especially important, as the absence of any of the
previously mentioned typically halts growth of L. plantarum. In addition, growth
is reduced in the absence methionine, glycine, phenylalanine, and tryptophan
110,111

In general, the free amino acid composition of berries varies and is dependent
on the genotype and growth conditions (Fig. 17). In sea buckthorn as well as in
lingonberry, aspartaric acid or asparagine are the most abundant amino acids,
and can be up to 85% of the total amino acid content 23>2%, A high relative
content of proline has also been detected in sea buckthorn '°. In sea buckthorn
berries, general lack of glutamic acid is a potential limitation in fermentation.
However, the glutamic acid precursor 2-oxoglutaric acid has been reported from
sea buckthorn berries (unpublished data of this thesis work). Lingonberries are
rich in arginine, but have a low content of leucine and isoleucine, while
chokeberries lack tryptophan 2*¢. Compared to the two previously mentioned
berries, chokeberries have a more diverse amino acid profile, glutamic acid being
present in high amounts in berries from both Poland and South Korea 237238, All
three berry species have either a low or no content of methionine.
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Sea buckthorn
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m cv. Botanicky, Slovakia ~ ®subsp. sinensis, China Zheng et al. 1989
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Chokeberry
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M commercial product, Poland M multiple regions, South Korea
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Lingonberry

15 A

Relative amount (%)
)

ALA ARGASN ASP GLN GLU GLY HIS ILE LEU LYS MET PHEPRO SER THR TRP TYR VAL

M multiple cultivars, USA

Fig. 17. Reported free amino acid profiles (relative abundance (%) out of total
amino acids, w/w) berries of sea buckthorn %23, Aronia melanocarpa *7**, and
lingonberry 2*¢ (average of multiple cultivars).

2.9.3 Phenolic content of sea buckthorn, chokeberry, and
lingonberry

Phenolic compounds are a complex class of plant secondary metabolites that
protect plants from various biotic (e.g., infection) and abiotic (photo-oxidation)
stresses. Earlier, phenolic compounds were considered as anti-nutrients, as they
inhibit various enzymes relevant to metabolism in mammals and reduce the
bioavailability of iron and zinc. However, it has subsequently been discovered
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that phenolic compounds possess various benefits to health due to the strong
antioxidant activity, such as antidiabetic activity 2*°. Recently, plant phenolics
have been shown to promote the growth of the loosely defined beneficial gut
microbiota 2%°. In berries, the important subclasses of phenolics are flavonols,
flavan-3-ols, hydrolyzable tannins, phenolic acids, and anthocyanins 24!
addition to biological activities, many phenolic compounds contribute to the
sensory quality of berries being bitter and/or astringent compounds, depending
on the structure 2*>. Numerous substitutions or ester formations with various
sugars and acyl groups mean that the profile of phenolic compounds in fruits and
berries are often a very complex mixture. However, extraction with various
organic solvents, fractionation of crude extracts with HPLC or column
chromatography, followed by structural elucidation with LC-MS and NMR have
allowed identification and quantification of phenolic compounds in berry and
fruit materials (Table 15) 243244,

. In

2.9.3.1 Phenolic acid content in sea buckthorn berry

Only a few reports exist that describe the phenolic acid content in sea buckthorn
berries in detail 2247 together with several sources that include limited reporting
103.244 (Table 17). In berries belonging to the subspecies turkestanica, 57% the
phenolic acids were present as glycosides 2*°, while phenolic acid esters
accounted for over 50 % of the total in several cultivars belonging to ssp.
mongolica **. In turn, free phenolic acids accounted for 20% but only around 2%
of total acids in % and %%, respectively. The main phenolic acids are typically
hydroxybenzoic acids, which are the derivates of gallic acid and protocatehuic
acid 103245246248 However, in one instance, p-coumaric acid was defined as the
main phenolic acid in berries grown both in Sweden and India 2*’. Additionally,
a high content of salicylic acid was reported in multiple cultivars in berries grown

in Poland and Belarus 24°.

2.9.3.2 Flavonol content of chokeberry and lingonberry

In black chokeberries, flavonols are the fourth most abundant phenolic subclass,
with concentrations ranging between 0.19-0.58 mg/g FW (Table 18). In Aronia
spp., hyperoside (quercetin-3-O-galactoside), rutin (quercetin-3-O-rutinoside),
and isoquercetin (quercetin-3-O-glucoside) are typically reported as the most
abundant flavonol glycosides, making up to 90 % of total flavonols. While the
profile varies depending on the species and the cultivar, quercetin-3-O-
galactoside is, in general, the most abundant flavonol glycoside. Other quercetin
derivates detected in black chokeberry are 3-O-vicianoside and 3-robinobioside
249250 In addition, isorhamnetin derivates with unidentified sugar moieties have
been identified 2.
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As in chokeberries, quercetin-3-galactoside was detected as the main flavonol
in lingonberry cv. Amberland, with quercetin-3-rhamnoside being present in
almost equal amounts. Smaller amounts of quercetin-3-arabinoside was detected
(3% of total flavonols) 2°2. Likewise, the total flavonol content of lingonberries
was similar to chokeberries, 0.26 mg/g FW in Canadian berries 2> and 1.6 mg/g
DW in Finnish berries 7.

2.9.3.3 Flavonol content of sea buckthorn

While the profile of flavonol glycosides in sea buckthorn berries varies
significantly between different subspecies and varieties 2°%2%°, studies of sea
buckthorn berries report high flavonol concentrations, more or less 1 mg/g of the
fresh weight (Table 19). Flavonol production in berries is increased as a response
to abiotic stress, and was increased at increased altitudes and decreased latitudes
263 The majority of flavonol glycosides in SB berries are isorhamnetin and
quercetin derivatives. In addition, myricetin and kaempferol glycosides are
present in lower amounts. The typical sugar moieties are rutinose, rhamnose,
glucose and sophorose usually as mono-, di- or trisaccharides !03243.244.247.258 1y
addition, acylated flavonols with acyl groups of coumaric acid 2*, caffeic acid
244 and sinapic acid >*°® have been detected.

2.9.3.4 Anthocyanin content of chokeberry and lingonberry

Anthocyanins are responsible for the red, blue, and purple colors in various
berries, vegetables, and flowers. These compounds are present typically as
glycosides of delphinidin, cyanidin, and pelargonidin. Due to the strong
antioxidant capacity both in vitro and in vivo, intake of anthocyanins has been
associated with various benefits to the health 2!

While in sea buckthorn berries the color is due to variation in carotenoid
content ', the color of lingonberries and chokeberries are due to anthocyanins
(Table 20). Both lingonberries and chokeberries consist mostly of red-colored
cyanidin glycosides, cyanidin-3-galactoside being the most abundant in both
species, typically followed by cyanidin-3-arabinoside. Apparent differences are
due to cyanidin-3-xyloside, which is absent in lingonberries. Additionally,
lingonberries show a higher relative amount of cyanidin-3-glucoside (Table 20).
Moreover, the total anthocyanin content in chokeberries can be 10-fold
compared to the content in lingonberries; chokeberries appear dark black while
lingonberries have a crimson-red color.

Reported anthocyanin profiles or various cultivars or wild berries of black
chokeberries (4. melanocarpa or A. mitchurinii), despite the genotype and
growth location, share surprisingly high similarity, only differing in the total
anthocyanin content 23, This similarity even seems to extend to multiple species
of Aronia spp »!, suggesting that anthocyanin biosynthesis in Aronia spp. is
genetically conserved.
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2.9.3.5 Complex polyphenols

Complex, polymeric polyphenols are divided into two subclasses, hydrolysable
and condensed tannins. The former group refers to ellagitannins and gallotannins,
which are built up from ellagic acid and gallic acid monomers, respectively,
bound with ester bonds, and usually have a carbohydrate molecule at the center
of the compound 2%. As discussed earlier, L. plantarum produces enzymes that
can hydrolyze the ester bonds in gallotannins (Section 2.4.4). However, in sea
buckthorn, lingonberry and chokeberry, the main oligomeric and polymeric
polyphenols are condensed tannins, and to be more specific, proanthocyanidins,
which consists of two or more subunits of flavan-3-ol, catechin, epicatechin, or
epigallocatechin.

In lingonberries, flavan-3-ols and proanthocyanidins (PAC) are by far the
most abundant phenolic group. Different flavan-3-ol fractions of lingonberry
extract showed that A-type dimers were the most common oligomeric PAC,
while in the polymeric fraction the mean degree of polymerization was 32 237 In
Aronia spp., PAC are among the most abundant phenolic compounds, especially
in the species that produce purple and red berries i.e. produce less anthocyanins
compared to the black chokeberry. However, even in black chokeberry, PAC are
present at equal amounts to anthocyanins 2°!. The PAC in Aronia spp. are present
almost entirely as polymeric (degree of polymerization (DP) > 10), ranging
between 96.9-99.9 % of the total flavan-3-ol content 250-231:256,

Sea buckthorn berries, while showing a lower content of PAC compared to
lingonberries and chokeberries, still contain substantial amounts of flavan-3-ols
(Table 21). Structure and concentrations of oligomeric PAC (DP < 5) have
mainly been reported in sea buckthorn. Berries of ssp. rhammnoides typically
report the highest ratio of PAC trimers 2°2°2) and the epigallocatechin trimer was
the most abundant in Finnish berries belonging to this subspecies ?°!. In addition
to oligomeric flavan-3-ols, the presence of substantial amounts of polymeric
PAC in sea buckthorn berries have been noted 2°!. However, no research
discovered regards the content or structural analysis of polymeric PAC in sea
buckthorn berries.
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2.94 Volatile compound profile of sea buckthorn berries

Depending on the subspecies and growth site, the five most abundant VOCs in
sea buckthorn berries are esters 3-methylbutyl 3-methylbutanoate (3-MB-3MB)
and ethyl esters of 3-methylbutanoic acid (E-3MB), 2-methylbutanoic acid (E-
2MB), hexanoic acid (E-HA), and octanoic acid (E-OA) (Fig. 18) 262 Leung
and Marriott (2015) 2% reported high content of 3-methylbutyl benzoate in
berries grown in the UK while only trace amounts were detected in berries
studied by Socaci et al. 267 and Tiitinen et al. 2%® (< 1 % and <2.4 % of the total
VOC, respectively). Additionally, Tiitinen et al. 2006 reported relatively high
amounts (up to 10% of the total VOC content) of 3-methylbutyl hexanoate in
Russian sea buckthorn cultivars grown in Finland 2%, All the previously
mentioned compounds have a fruity odor descriptor *2.

When 12 cultivars and wild biotypes of sea buckthorn (subspecies carpatica)
grown in Romania where compared, it was observed that the content of E-2MB
and E-HA had inverse correlation with the content of both E-3MB and 3-MB-
3MB. In addition, a weaker but yet negative correlation was also detected
between E-3MB and 3-MB-3MB, suggesting competing pathways in the
biosynthesis of these volatile esters 2¢7.

Significant year-to-year variations in VOC profiles of sea buckthorn berries
have been observed (Fig. 18) 266268 highlighting that VOC formation in sea
buckthorn berries is substantially impacted by environmental factors. A positive
correlation between the total VOC content and number of sunshine hours during
the growth season was observed, suggesting that increased radiation is related to

volatile formation in sea buckthorn 2%, Similar volatile profiles were reported by
266-268

2.9.5 Relationship between chemical composition and sensory value

Multivariate modeling has been used to associate sensory and chemical
parameters of different H. rhamnoides subspecies and hybrids and found that the
sugar/acid ratio (0.39-1.04) predicted the pleasantness of sea buckthorn better
than sugar content alone 2°. A sugar derivative, ethyl B-d-glucopyranoside (E-
B-G), has been detected in sea buckthorn berries. Variation between 0.6 to 19.8
g/L FW in sea buckthorn berries was reported while the pure compound had a
taste threshold of 1.1 £ 1.3 g/L in water with a bitter taste 2**. Moreover, the
bitterness of the juice was correlated with E-B-G content as well as with the ratios

between the E-B-G/acids and E-B-G/sugars 2%,
An addition of 5 % sucrose decreased sourness and improved the preference

for chokeberry juice from weak dislike to weak like. However, neither
sweetening with sucrose nor flavoring with ethyl butyrate blocked the juice
astringency. Moreover, sourness, astringency and bitterness were associated with
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flavonols and hydroxycinnamic acids. Interestingly, proanthocyanidins
correlated with the hedonics and sweetness 3.
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Fig. 18. Profiles of selected VOC (based on abundance) between cultivars and
biotypes of sea buckthorn belonging to A) the subspecies carpatica grown in
Romania 27, and in berries of the subspecies mongolica (RAL, rhamnoides)
collected in Finland during the years B) 2002 and C) 2003 %%, The Y-axis
represents the relative amounts in relation to the total VOC content. For full
cultivar names and additional details, see Supplementary Table S2.
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3 AIMS OF THE STUDY

The overall goal of this work was to develop a protocol for effective fermentation
with L. plantarum for berry materials with low consumer value. The goals were
to decrease acidity with malolactic fermentation, modify the phenolic compound
composition, affect the volatile profile in a positive manner, and to generate
compounds with functional (e.g., antimicrobial, or bioactive) properties.

The goal was to screen for whether or not fresh or enzymatically treated
juices of sea buckthorn, lingonberry, or chokeberry are suitable raw
materials for fermentation with L. plantarum. The metabolism of sugars,
organic acid, sugar alcohols, and phenolic compounds were determined with
qualitative and quantative analysese (I).

Changes in the volatile compound composition of sea buckthorn juice was
determined to screen for potential positive or negative changes in the aroma
profile during fermentation. The importance of strain selection, starter pH,
fermentation time, and basal medium composition in relation to the volatile
profile were discussed (II).

The study endeavored to evaluate the suitability of NMR-based
metabolomics as a holistic analytical tool for fermented sea buckthorn
materials. Change in the chemical composition of sea buckthorn during
fermentation was compared to the existing knowledge related to metabolic
systems of L. plantarum. The importance of strain selection, starter pH,
fermentation time, and basal medium composition were discussed in relation
to the metabolic profiles of fermented juices (II).
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4 MATERIALS AND METHODS

4.1 Berry materials

In this dissertation, the focus was on the berries of sea buckthorn, chokeberry,
and lingonberry, all of which have been reported to contain substantial amounts
of health-promoting bioactive compounds '~'? while having a low consumer
value *~15. Whilst sea buckthorn ?2® and chokeberries ?2° have a high malic acid
content, the most abundant acid in lingonberries is citric acid ??°. Lingonberry is
not therefore optimal for the MLF, but it is by far the most valuable non-timber
forest resource in Finland 27°. Due to the high commercial value, lingonberry is
arelevant target for product development and was therefore included in this work.

In Study I, frozen chokeberries (Aronia mitschurinii ‘Viking’) were
purchased from Vinkkildn luomutuote Oy (Vehmaa, Finland). Frozen wild
lingonberries (Vaccinium vitis-idaea) were purchased from RH Foods OU
(Tallinn, Estonia). Origin of the berries was Lithuania. Frozen sea buckthorn
berries (Hippophaé rhamnoides subspecies mongolica) originating from
Southern Estonia were purchased from Astelpajutooted OU (Tdrva, Estonia). In
Study II and III, frozen sea buckthorn berries (subspecies mongolica), mixture
of cultivars ‘Ljubitelskaja’ and ‘Prozrachnaya’, were acquired from a
professional farmer (Vinkkildn luomutuote, Vehmaa, Finland). In all cases, the
berries were frozen right after picking and stored at —20 °C until use.

4.2  Juice preparation

In Study I, the frozen berries (700-1050 g per batch) were thawed in a
microwave at 650W for 5 min. The berries were made into a mash with an
immersion blender. Juice was extracted from the berry mash with a central screw
basket press. Juices were pasteurized immediately after the extraction, stored
overnight at +4 °C, and inoculated the next day.

Frozen sea buckthorn berries were thawed in a microwave at 600 W for 3.5
min. Next, the berries were made into a mash with a Bamix immersion blender.
The juice was extracted from the mash with a fruit press (Chef Titanium XL with
AT644 attachment, Kenwood, UK) in batches of ~400 g of mash, and the juice
was filtered through a cheesecloth to remove solids. Thereafter juices were
pooled, divided into aliquots for each fermentation batch, and stored at —20 °C
until use (IL, III).
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4.2.1 Pasteurization

After extraction with pressing, juices were pasteurized in an autoclave (Systec
D-150, Linden, Germany) at 85 °C for 5 min. After the pasteurization, the juices
were immediately cooled down in an ice bath (I). In Study II and III, prior to
pasteurization, the juices were diluted 1:1 (w/w) and divided into 30 mL aliquots
in individual glass vials. The juice samples were pasteurized in a water bath
(temperature ~96 °C) until temperature of the juices reached 90 °C, and this was
followed by cooling the juices in an ice bath until 10 °C. The juice temperature
was monitored with a thermometer (TM-947SD, Lutron Electronics, South
Korea) coupled with a thermocouple probe.

4.2.2 Other treatments

In Study I, two types of juices were prepared for each berry: a fresh juice and an
enzyme-treated juice. The latter was prepared by adding 200 pL/kg of pectinase
(Pectinex® Ultra SPL, Novozyme, Bagsvaerd, Denmark) to the berry mash, and
the mash was subsequently incubated at 45 °C for 4 h, followed by extraction
with a manual juice press. In the next two studies, two types of juice were used
for fermentation, one with natural pH (2.7) and the other with pH adjusted to 3.5
with 1 M NaOH (11, IIT).

4.3 Bacterial strains

Initially, Lactiplantibacillus plantarum strains DSM 20174T, DSM 10492, DSM
100813 as well as Lactiplantibacillus argentoratensis strain DSM 163657 were
used in the fermentations. In addition, dehydrated cells of Oenococcus oeni
strains LAB6, LAA1, and B2013, were provided kindly by Lallemand Inc.
(Montreal, Canada) (I).

In the later studies, no O. oeni strains were used in any of the fermentations
but additional L. plantarum strains were purchased (DSM 1055 and DSM 13273)
(IL, D). All L. plantarum stocks were acquired as freeze-dried cultures from the
DSMZ (Braunschweig, Germany), and were revived according to the
manufacturer’s protocol. The revived cultures were stored as 10% (v/v) glycerol
stocks at —80 °C until use (I, IL, III). The dehydrated O. oeni cells were revived
in sterile saline for 30 min. at RT prior to inoculation ().

4.4 Fermentation

The L. plantarum starter culture for the fermentation was prepared by inoculation
of 250 mL of general edible medium (GEM) (soy peptone 30 g L™, dextrose 20
g L1, yeast extract 7 g L™, MgSO4 x 7 H2O 1 g L™!, in potassium phosphate
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buffer 0.01 M, pH 6.3 £ 0.2) with a scrape from a glycerol stock, followed by
incubation at +30 °C for 24 h. The cells were collected with centrifugation (3,360
x g, 5 min, 4 °C) and washed twice with sterile saline. Finally, 1 mL of
concentrated cell suspension was added to a 100 mL juice sample, leading to to
initial cell count of approximately 1 x 10% CFU/mL. In addition, in Study I,
dehydrated O. oeni cells (0.5 g/10 mL) were revived in sterile saline with gentle
mixing for 30 min. at RT, and 200 pL of cell suspension was added to a 100 mL
juice sample, with expected initial cell count of 107 CFU/mL. All samples were
fermented for 72 h at +30 °C in iCinac equipment (Unity Scientific, Milford,
USA) equipped with InLab® Smart Pro-ISM probes for iCinac (ph/redox/Temp)
(Mettler Toledo) and TWS8 water bath (Julabo, Seelbach, Germany). All
fermentations were prepared in duplicates (I).

Study IT and III, MRS plates were initially inoculated with a scrape from
glycerol stock and incubated for 36 h at +30 °C. Next, the growth media, either
general edible medium (GEM) (dextrose 30 g L', soy peptone 20 g L™}, yeast
extract 7 g L', MgSO4 x 7H,0 1 g L', MnSO4 x H20 0.05 g L'! in potassium
phosphate buffer 0.01 M, pH 6.3 + 0.2) or cell acclimation medium (GEM with
additional 4 g/L of L-malic acid, pH adjusted to 4.5 + 0.1) was inoculated with a
single culture from the MRS plate. Inoculated medium was incubated for 24 h at
+30 °C. Next, the cells were collected via centrifugation (4,500 x g, 5 min., RT)
and washed twice with PBS (pH 7.4). The cell count for the fermentation was
standardized with optical density at 600 nm. The target initial cell count in a juice
sample was 2 x 108 CFU/mL. The juice samples were fermented at +30 °C for
36 or 72 hours in a Memmert IF-110Plus incubator. All fermentations were
prepared as triplicates.

Prior to fermentation, the viable cell count of the starter cultures was
confirmed with a viable colony count. Colony counts between 30-300 on each
plate were considered acceptable for enumeration.

4.5 Sample preparation

Simple carbohydrates and non-volatile organic acids were analyzed as TMS-
derivatives. Briefly, aliquots of 300 uL of 5% berry juice (v/v in RO-water) with
xylitol (0.6572 M) and tartaric acid (0.66628 M) were dried under nitrogen flow,
followed by an overnight desiccation to remove residual water. Dry samples
were derivatized with chlorotrimethylsilane reagent with pyridine and
hexamethylsilazane (Tri-Sil HTP, Thermo Scientific, Bellefonte, PA, USA) (I).

To extract the phenolic acids and flavonols, approximately 11 g of juice
sample was extracted with 10 mL of ethyl acetate four times. The sea buckthorn
juice and ethyl acetate formed an emulsion, and 1-2 mL of 4M NaCl was used
to separate the two phases. The extracts were evaporated until dryness in a rotary



Materials and Methods 93

evaporator (Hei-VAP, Heidolph GmbH, Schwabach, Germany) (35 °C, 100 rpm)
and re-dissolved to 3 mL of methanol. The extraction was performed in
quadruplicates. Samples were filtered (0.45 um) and stored at —80 °C until
analyses. For analysis of anthocyanins, juice samples were filtered (0.2 um) and
diluted if needed prior to analysis (I).

For headspace volatile analysis, 2 mL of juice sample was spiked with 10%
(w/v) NaCl and 10 pL ISTD (ethyl propionate 100 ppm; nonane 200 ppm) and
subsequently analyzed with the GC-MS instrument (II).

For the NMR analysis, a clear aqueous phase from turbid sea buckthorn juice
was collected by removing majority of the solids via centrifugation (14,000 x g,
3 min, +4 °C), followed by centrifugal filtration to remove the residual solids.
Next, 300 pL of clarified juice, 70 uL of Chenomx IS-2 (5§ mM DSS-d6, 0.1%
(w/v) NaN3 in D0, pH 7.0), 70 pL of 1.5M K>;HPO4/KHPOs4 buffer (pH 6.5),
70 uL of 1 M maleic acid standard were mixed, pH adjusted to 6.00+0.02 and
brought to final volume of 700 pL with dH>O. Finally, 650 pL of the sample was
transferred to a 5 mm NMR tube (III).

4.6  Analytical methods

Carbohydrates and organic acids were analyzed with a GC-FID instrument. The
GC equipment consisted of an autosampler (AOC-20 s) with an autoinjector
(AOC-20i1), a column oven (Shimadzu GC-2010Plus) and a flame ionization
detector (Shimadzu, Kyoto, Japan). All samples were prepared in triplicates.
TMS-derivatives of sugars and organic acids were separated with a nonpolar
capillary column SPBTM-1 (30m*0.25mm ID, liquid film 0.25 pum, Supelco,
Bellefonte, PA, USA). The analysis was carried out in a split mode with a split
ratio of 15:1, and the injection volume 1 pL (I). In addition, the concentrations
of L-malate, L-lactate, and D-lactate of sea buckthorn juice before and after
fermentation were determined using K-LMAL, K-LATE, K-DATE enzyme kits
(Megazyme, Bray, Ireland), respectively (II).

Flavonols, phenolic acids and anthocyanins were analyzed with a HPLC-
DAD instrument. The HPLC-DAD instrument consisted of a Shimadzu
(Shimadzu Corporation, Kyoto, Japan) SIL-20AC auto sampler, DGU-20A
degasser unit, a sample cooler, two LC-20AD pumps, a CTO-20AC column oven,
an SPD-M20A diode array detector, and a CBM-20A central unit. The system
was operated using the LabSolutions Workstation software. Analytes were
separated with a XB Aeris Peptide C18 column (3.60 um, 150mmx4.60 mm, 100
A; Phenomenex Inc, Torrance, CA) combined with a Phenomenex Security
Guard Cartridge Kit (Torrance, CA). A binary gradient mobile phase system was
used. Solvent A was a mixture of water:formic acid (99:0.1, v/v), and solvent B
was acetonitrile:formic acid (99:0.1, v/v). The flow rate of the mobile phase was
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1 mL/min, the column temperature 30 °C, and the injection volume 10 pL. The
solvent gradient program was: 0—15 min, 2—18% B; 15-25 min, 18% B; 2540
min, 18-60% B; 40—45 min, 60-2% B; 45-50 min, 2% B. UV-vis absorption
spectra were measured within the wavelength range of 190-600 nm with the
DAD (I).

Juice samples were filtered (0.2 pum), diluted if needed, and subsequently
injected directly to the HPLC system. The column was a reverse-phase Kinetex
C18 (2.60 pm, 100mmx3.60 mm, 100 A, Phenomenex Inc, Torrance, CA)
combined with Phenomenex Security Guard Cartridge Kit (Torrance, CA). A
binary gradient mobile phase system was used. Solvent A was 5% formic acid in
MilliQ, water, while solvent B was 5% formic acid in acetonitrile. The flow rate
of the mobile phase was 1 mL/min, the column temperature 30 °C, and the
injection volume 10 pL. The solvent gradient program was: 0—10 min, 5-8% B;
10—15 min, 8% B; 15-20 min, 8-9% B; 20-22 min, 9-12% B; 22-35 min, 12—
60% B; 3540 min, 60—5% B; 40-45 min, 5% B. Photo absorption spectra were
recorded at the wavelength of 515 nm with the DAD (I).

Headspace volatiles were collected with solid phase microextraction (SPME)
with a 2 cm DVB/CAR/PDMS fiber (50/30 pum, Supelco, Bellefonte, PA) at
45 °C for 20 min. Prior to the headspace volatile collection, the juice sample was
incubated 10 min at 45 °C and the fiber conditioned at 230 °C. Analytical
instrument of the headspace volatiles consisted of a Trace 1310 gas
chromatograph coupled with a TSQ 7000 single quadropole mass spectrometer
(Thermo Fisher Scientific, Waltham, MA). The gas chromatograph instrument
was equipped with either DB-WAX polar capillary column (60mx0.25mm
1.d.x0.25 pm film thickness, J&W Scientific, Folsom, CA) or SPB-624 mid-
polarity capillary column (60mx0.25mm i.d.x1.4 um film thickness, Supelco,
Bellefonte, PA). Mass spectra were detected in electron impact mode at 70 eV
with a full scan mode (scan range of 33—-300 m/z) and a scan speed 0.2 s. The
temperatures of the MS transfer line were 200 °C and 210 °C for DB-WAX and
SPB-624 columns, respectively (II).

In Study III, spectra were recorded using a 600 MHz AVANCE-III NMR-
system (Bruker Biospin, Rheinstetten, Germany) equipped with a CryoProbe
Prodigy TCI (Bruker Biospin) and an automated sample changer Samplelet.
Instrument was operated using Topspin (version 4.1.0) and IconNMR softwares
(Bruker Biospin). The proton spectra were acquired at 298.2 K with 1D NOESY
pulse program with presaturation (noesygpprid). The following parameters were
used: size of the FID, 64k; spectral width, 14 ppm; number of scans, 128; number
of dummy scans, 4; 90° proton pulse length 10.98 ps; relaxation delay, 5 s;
mixing time, 0.10 s. Multiplicity edited '"H-'>C heteronuclear single quantum
coherence (HSQC) using echo/antiecho detection and gradient pulses
(hsgcedetgpsisp2.3) was acquired with the following parameters: 90° pulse
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values, 8 us (proton) and 15 Is (carbon); relaxation delay, 2 s; spectral width, 165
ppm (f1) and 16 ppm (f2); data points, 256 increments of 2 k; number of scans,
32. 'TH-"3C heteronuclear multiple-bond connectivity (HMBC) with absolute
value detection (hmbcgplpndqf) was acquired with the parameters: spectral width,
220 ppm (f1) and 10 ppm (f2); data points, 128 increments of 2 k; number of
scans, 64. Homonuclear 'H-"H COSY (cosygpppqf) was acquired with 2048 data
points with increments of 128 and with 16 scans.

4.7 Identification

Authentic standards in addition to literature references were utilized for the
identification various sugars and acids from both the fresh and the fermented
berry juices (I). From the same juices, the flavonol glycosides, anthocyanins, and
hydroxycinnamic and hydroxybenzoic acids were identified using UV—vis
spectra, MS and MS/MS spectra, retention times and by comparison to authentic
standards and literature references (I).

From both the fresh and the fermented sea buckthorn juices, the volatile
compounds were identified by comparing the mass spectra with standard NIST
08 library, literature data and Kovats retention indices (RI). The RIs of the
volatile compounds were calculated based on the retention times of C5-C30
alkane mixture (Sigma-Aldrich, St. Louis, MO) determined using the same gas
chromatographic conditions (II).

From '"H-NOESY NMR spectra of the fresh and fermented sea buckthorn
juices, the metabolite annotation was based on the chemical shift, J-coupling,
heteronuclear coupling (HSQC, HMBC), and homonuclear coupling ('"H-'H
COSY). Spectrum databases of Chenomx NMR Suite software, the Human
Metabolomics Database (http://www.hmdb.ca/) and the Biological Magnetic
Resonance Data Bank (http://www.bmrb.wisc.edu/) were used as the main
references in addition to other literature sources (III).

4.8 Quantification

In the Study I, quantification in GC-FID analyses was made with the internal
standards, xylitol for the sugar compounds, and tartaric acid for the organic acids.
In addition, correction factor for each compound was determined with external
standards with known concentrations. Quantification of the phenolic compounds
in Study I was performed by comparing the peak areas at a selected wavelength
to the linear calibration curves of the external standards. Quercetin derivatives
were quantified with a calibration curve constructed with quercetin 3-O-
rhamnoside (detection wavelength 360 nm, concentration range for constructing
calibration curve: 23.7-3791.4 uM, R2, 0.999), isorhamnetin derivatives with
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isorhamnetin  3-O-rutinoside (360 nm, 12.2-4867.5 uM, R2Z 0.9993),
hydroxycinnamic acids with chlorogenic acid (320 nm, 81.6-13062.0 uM, R2,
0.9995) and hydroxybenzoic acids with protocatechuic acid (260 nm, 180.1—
28808 uM, R?, 0.9995). Anthocyanins were quantified similarly as described
above, using cyanidin-3-O-glucoside as an external standard. A calibration curve
(R? 0.9997) was constructed by analysis of standard solutions of a concentration
range of 0.46—1155.34 uM at wavelength of 515 nm.

From the SPME-GC-MS results, the individual volatile compounds were
semi-quantified (ug/L) by comparing the area of the base peak ion to the area of
the base peak ion of ethyl propionate (internal standard), which was selected due
to the low sample to sample variation in peak area and due to the high number
of esters present in the sea buckthorn juice (II).

Quantification of the selected metabolites from the 1D-NOESY spectra was
performed using the Chenomx software and its profiling tool. The results were
normalized using the peak area of the internal standard, maleic acid (1 mM) (I1I).

4.9 Statistical analysis

Results were reported as mean + standard deviation, determined from biological
duplicates in the Study I and from biological triplicates in the Studies II and III.
The Tukey’s test for population with equal variances was performed for a
multiple comparison. The differences reaching confidence level of p <0.05 was
considered as statistically significant. Statistical analyses were performed
initially with software R (The R Foundation for Statistical Computing, Vienna,
Austria) using the library agricolae with R version 3.2.3 27! (I, II), and later with
the library multcompView with the R version 4.1.0 (III). Default parameters of
the package was used. The following statistical analyses were carried out using
IBM SPSS 25.0 (SPSS, Chicago, IL, USA): A Student’s #-test was used to
compare the juice yields, contents of the lactic and L-malic acid and rate of
malolactic conversion between enzyme treated and fresh juices. General linear
models were used to compare the differences in malolactic conversion rates
dependent on the bacterial strain and juice type (I).

To study differences between the L. plantarum strains (X = 6, n = 24) and the
impact of fermentation time (0 h, n = 12; 36 h, n = 78; 72 h, n = 78), juice pH,
and growth media as combined variable (X = 4, n = 36) in relation to the sums
of volatile compound subgroups, IBM SPSS 26.0 (SPSS, Chicago, IL, USA) was
used. In addition, principal component analysis (PCA) was carried out using the
software Unscrambler X (version 11, Camo Inc., Norway). This was used to
illustrate the relationship between the volatile composition and the treatments
applied in production of the fermented sea buckthorn juice (II).
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All "TH-NMR spectra were processed and analyzed using the Chenomx NMR
Suite Professional software version 7.0 (Chenomx Inc. Edmonton, AB, Canada).
DSS was used as an internal standard for chemical shift referencing (set to 0
ppm). The manual phase and baseline correction were performed on each of the
spectra. All the '"H-NMR FIDs were zero-filled to 64k data points and line
broadned 0.3 Hz. After processing, the spectra were divided into 0.02 ppm-sized
bins, the water region removed, and the data normalized to the total spectral area.
To align the spectral data for untargeted statistical analyses, the dataset was
imported into MATLAB software (version 2020B, Mathworks Inc., Natick, MA,
USA) and processed using the icoshift algorithm. Principal component analysis
and orthogonal principal least squares discrimination (OPLS-DA) of processed
and aligned spectra were carried out using SIMCA (version 16, Umetrics, Umed,
Sweden). Pareto scaling and mean centering were applied to the datasets. The
validation of the OPLS-DA models was performed with internal validation of
100 permutations as well as by determining explained variation (RYeun) and
predictive ability (Q?Yeun) (III).

Besides the multivariate methods, in Study III, paired #-test was used to
compare the means of individual metabolites, grouped by growth medium with
fermentation time and the starter pH set as constant (72 h and 3.5, respectively).
To compare the metabolic responses based on the starter pH of sea buckthorn
juice, hierarchical clustering heatmap analysis was performed with
MetaboAnalyst 5.0 open source platform (https://www.metaboanalyst.ca/) 7.
Data was normalized with auto-scaling.
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S RESULTS AND DISCUSSION

5.1 Sugar, sugar alcohols, and organic acid content of the
berry materials

The pH, sugar, sugar alcohol, and organic acid content was determined in the
juices made from sea buckthorn, chokeberries, and lingonberries. The lowest pH
was observed in lingonberry 2.68, followed by sea buckthorn (2.87) and
chokeberry (3.39). Despite this, the highest total acid content (w/v) was
measured from the SBJ (18.2 g/L). Chokeberries had the lowest acid content
(10.0 g/L) after lingonberry juice (15.9 g/L). In accordance with earlier reports
(Table 14), the main acids in both SBJ and chokeberry juices were L-malic acid
and quinic acid, while the main acid in lingonberry juice was citric acid.

Highest sugar content (sugars + sugar alcohols) was measured from the
chokeberry juice (56.4 g/L), followed by lingonberry (32.8 g/L) and sea
buckthorn (15.5 g/L). The main sugars in chokeberries were sorbitol and glucose,
while glucose and fructose were the most abundant in both sea buckthorn and
lingonberries. Pectinolytic enzyme treatment prior to the juice extraction
significantly increased both the total sugar and the total acid content of
lingonberry juice (I).

The sugars and acids of SBJ were analyzed also in a later study (III). In the
first study, Estonian berries were used (I) while in the later study, Finnish sea
buckthorn berries were used (III). In both instances, the berries belonged to the
subspecies mongolica but were mixture of several cultivars of a Russian origin.
The juice made from Finnish berries had lower pH and lower contents of glucose,
fructose, ascorbic acid, and L-malic acid compared to the juice made from the
Estonian berries. Only the quinic acid content was reported to be higher in the
Finnish berries (IIT) (Table 22).

Table 22. Concentrations of the sugars, sugar alcohols, and organic acids in fresh
sea buckthorn juice (I, III). Juices were diluted with water 1:1 in both instances.

Compound /value Study I, g/L Study I11, g/L
pH 2.87+0.01 2.70 +£0.01
Glucose 11.27+0.13 4.75+0.04
Fructose 2.11+0.06 1.20 £ 0.00
Malic acid 12.09 +0.20 6.84 +0.40
Ethyl glucose 1.27+£0.03 Not reported
L-Quebrachitol 0.75 +0.01 Not reported
Ascorbic acid 0.47+0.01 0.24 +0.00
Quinic acid 5.49+0.16 10.89 + 0.08
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5.2  Success of fermentation
5.2.1 Non-acclimated cells

At the natural pH, the only strain able to fully convert all the malic acid to lactic
acid in SBJ was the strain DSM 10492 (I). However, in later work, none of the
tested strains were able to effectively ferment SBJ under similar circumstances
(II). Differences in the study settings in Study I and Study II were sample
volume (100 and 30 mL, respectively), inoculation level (higher inoculation level
in II), and use of manganese salts in the growth medium (no salts included in the
medium in Study I).

As Mn?" protects L. plantarum from oxidative stress, lack of Mn?" in the
medium in Study I was as a potential stress factor for L. plantarum, leading to
induced expression of Mn?* starvation related genes. Mn?* starvation was shown
to promote morphological and membrane fatty acid changes in L. plantarum *"3;
content of cell wall unsaturated fatty acids and lactobacillic acid were increased,
similar to changes under an acid shock. Thus, lack of Mn?* in the growth medium
potentially worked as an inadvertent acclimation factor to improve fermentation
in sea buckthorn juice. However, this would require confirmation in a separate
study.

Unlike in the fermentation of sea buckthorn juice, high rate of malolactic
conversion in the chokeberry juice was observed by all the tested strains, among
which the strain DSM 20174 showed the highest conversion (100% after 72 h).
Better success in chokeberry juice fermentation in comparison to the
fermentation of sea buckthorn juice was most likely due to the higher natural pH
of CB (3.5) in comparison to SB (2.7) (I).

Treatment with pectinolytic enzymes significantly reduced the malolactic
conversion by 11.7% in samples fermented with the strain DSM 20174 in the
SBIJ. In contrast, fermentation of the enzyme treated SBJ with the strain DSM
100813 resulted to a significantly higher malolactic conversion compared to
metabolic activity in the fresh juice (without enzyme treatment). Treatment with
the pectinolytic enzyme systematically and significantly reduced malolactic
conversion in CB, however, the difference varied greatly between strains. The
strain DSM 20174 suffered a reduction of 1.3% in malolactic conversion rate
when mash wash enzyme-treated prior to the juice extraction, while with the
strain DSM 16365 this reduction was up to 38.8% (I).

Fermentation of lingonberry was not successful in this work, with only a trace
level of lactic acid detected after the fermentation (I). In another instance, the pH
of lingonberry juice was increased to 5.0 to allow fermentation with L. plantarum,
as benzoic acid loses its antimicrobial activity when deprotonated 2!!.
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5.2.2 Acclimated cells

Acclimation of L. plantarum cells prior the fermentation allowed fermentation
of the SB juice with natural pH (2.7) with all the tested strains. Moreover,
excluding the strain DSM 1055, the conversion was almost completed already
within 36 hours of fermentation. Exposure to a reduced pH (4.5) and L-malic
acid before the fermentation likely induced expression of genes related to the
stress tolerance, leading to a better adaptation to the SB juice (IL, III).

5.3 Changes in sugars and acids
5.3.1 Sea buckthorn juice

Besides the conversion of malic acid to lactic acid, statistically significant
increase (4.0-7.4%) of ethyl glucose was observed in the SB samples fermented
with the strains DSM 20174 and DSM 10492. Additionally, a decrease in quinic
acid along with an increase in shikimic acid was detected in the SB juice
fermented with the strains DSM 10492 and DSM 100813. In later work, a
formation of shikimic acid, assumingly from quinic acid, was detected in all the
juices where fermentation was successful (Fig. 19) (III). A second quinic acid
metabolite, 3,4,5-trihydroxycyclohexane-1-carboxylic acid, was also detected
(III). This compound was mainly formed by the strain DSM 13273. It was
observed that the quinic acid metabolism was more effective at pH 3.5 compared
to pH 2.7 (III). The strain DSM 1055 also produced succinic acid up to 0.70 mM
(III) through the partial citric acid cycle of L. plantarum where succinic acid is
the final downstream metabolite (Fig. 20). It was concluded that both the quinic
acid metabolism and succinic acid formation pathways were activated to
consume excess NADH from acetate production (III).

Regarding the metabolism of sugars, fermentation of fructose and glucose was
limited at the natural pH of sea buckthorn juice (I, III), however, sugar utilization
was increased at pH 3.50 (III). Interestingly, the strains DSM 20174 and DSM
100813 preferred fructose while other tested strains fermented mainly glucose
(Fig. 20) (III). While sorbitol from chokeberries was utilized by L. plantarum
(I), there was no sign of utilization of sugar alcohol L-quebrachitol from sea
buckthorn juice (I, III).

Formation of disaccharide trehalose was observed during the fermentation of
sea buckthorn juice with L. plantarum. Highest producer was the strain DSM
10492, which produced trehalose up to 0.13 mM (Fig. 20). In addition, the strain
DSM 20174 further converted trehalose to maltose (III). Both trehalose and
maltose are considered as multi-stress protectors in bacteria, as they can stabilize
the cell wall under ethanol, acid, and osmotic stress due to the high-water holding
capacity.
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Therefore, it was concluded that L. plantarum produced these compounds as
a response to acid stress 24, While no established pathway in L. plantarum
currently exist, it was assumed based on the existing knowledge on trehalose
biosynthesis in other microorganisms that the precursors were D-glucose and
UDP-glucose 74, Recently, accumulation of trehalose by L. plantarum was
reported under ethanol stress 275,

Study by Tkacz et al. '3 had a high similarity with the study setting in our
work (I), as the same strains were used to ferment SBJ without pH adjustment.
In their report, level of MLF was only moderate, and the most effective
fermentation was by the strain DSM 20174 (21% malolactic conversion, 0.1 unit
increase in pH). In the same study, also a mix of sea buckthorn and apple juice
was fermented, which proved to be a more suitable fermentation matrix, showing
an additional approach for improving fermentation besides acclimation or pH
adjustment.

SBJs inoculated with L. plantarum had a significantly higher amount of
ascorbic acid after fermentation compared to the juices incubated without
inoculation. Preservation of ascorbic acid by lactic acid fermentation was
reported earlier by Filannino et al. *’. This work and study from Tkacz et al. 88
together suggest that retaining of the antioxidant compounds (i.e. anthocyanins
and ascorbic acid) during fermentation in berry materials is due to the increased
antioxidant capacity. However, at the same time, in Study I, the strain DSM
10492 had the most dynamic metabolism of phenolic compounds out of all the
tested strains yet showed the lowest protection of ascorbic acid and anthocyanins
from oxidation. This is contradictory to the assumption that the lactic acid
bacteria modify the antioxidant capacity of plant materials though phenolic
metabolism and suggests that there are other underlying mechanisms that play a
role.

5.3.2 Chokeberry juice

The concentrations of total sugars and fructose of the chokeberry juice were
significantly reduced in all fermented chokeberry samples by 6.1-13.7% and
3.9-17.6%, respectively, while glucose and sorbitol were reduced in a varying
degree depending on the material and the strain (4.1-13.6% and 0.5-10.5%,
respectively). Like with SBJ, quinic acid was converted to shikimic acid also
during the fermentation of chokeberry juice, and the content of the latter was
increased from 0.05 to 0.11 g/L (I).
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5.4 Phenolic profile of the berry juices
5.4.1 Chokeberry

Anthocyanins in the chokeberry juices were primarily cyanidin glycosides with
traces of pelargonidin derivatives. The most abundant anthocyanin compounds
detected were in a descending order of abundance cyanidin-3-O-glucoside,
cyanidin-3-O-galactoside,  cyanidin-3-O-xyloside, and  cyanidin-3-O-
rhamnoside. Chlorogenic acid and neochlorogenic were the main
hydroxycinnamic acids detected from the juice with smaller amounts of 3-O-p-
coumaroylquinic acid and caffeic acid also detected. The main flavonol
compounds were in descending order were quercetin-3-O-galactoside, quercetin-
3-O-glucoside, quercetin-rhamnoside-hexoside, quercetin-3-O-rutinoside, and
quercetin-3-O-vicianoside. The main hydroxybenzoic acid was protocatechuic

acid. The phenolic profile of the CB juice was similar to earlier reports 2342,

5.4.2 Sea buckthorn

In the ethyl acetate extracts of SBJ, the most abundant group of phenolic
compounds were flavonols. The major flavonol glycosides were isorhamnetin-
3-O-glucoside, isorhamnetin-3-O-rutinoside, isorhamnetin-3-O-glucose-7-O-
rhamnoside and quercetin-3-O-glucoside, which constituted 78% out of the total
flavonols. Regarding the minor flavonol compounds, two acylated isorhamnetin
derivatives with a substitution group of m/z value 84 were detected. Earlier, a
isorhamnetin derivative with acyl group of a quasimolecular ion of the same m/z
value was identified in sea buckthorn berries ***. From the class of
hydroxybenzoic acids, protocatechuic acid and a gallic acid derivative were
detected. While no other common phenolic acids (ferulic, p-coumaric or cafteic
acid) was detected from SBJ, majority of these compounds are present as bound
compounds (glycosides and esters) in the sea buckthorn berry 24° and were likely
not detected with the methods used in the study (I).

5.4.3 Effect of enzyme treatment on phenolic profile

Pectinolytic enzyme treatment often increases content of phenolic compounds
due the release of bound phenolics from the cell wall matrices and
polysaccharides 2. In this work, enzyme treatment significantly increased the
total contents of anthocyanins, hydroxybenzoic acids, and hydroxycinnamic
acids in the CB juice.

In SBJ, enzyme treatment significantly increased the content of hydroxybenzoic
acids and flavonols. Additionally, enzyme treatment increased the flavonol
aglycone content in both SB and CB juices. Enzyme-treated SBJ had a lower
amount of isorhamentin-3-0O-glucoside-7-O-rhamnoside and isorhamnetin-3-O-
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rutinoside, but a higher amount of isorhamnetin-3-O-glucoside compared to the
fresh juice. This result suggested that the enzyme used in the study possessed an
undeclared rhamnosidase activity, which led to formation of flavonol aglycones
during the incubation period (I).

5.4.4 Changes in anthocyanins during fermentation

The total anthocyanin content was mostly affected by pasteurization, leading to
a reduction from 37.97 + 0.41 to 30.9 + 0.09 mg/100 mL in the fresh juice and
from 56.74 + 0.32 to 37.14 £ 0.48 mg/100 mL in the enzyme-treated juice.
Anthocyanin content continued to decrease during fermentation, to the levels of
20.93 £ 0.13 and 29.77 £ 0.18 mg/100 mL in fresh juice and enzyme-treated
juice, respectively. However, after the fermentation, the samples inoculated with
bacteria had a significantly higher anthocyanin content (except for the DSM
10492) than the control juice without a bacterial inoculation, pointing to a
possible anthocyanin stabilizing factor related to L. plantarum (I).

5.4.5 Changes in flavonols during fermentation

In the chokeberry juice, the strain DSM 10492 significantly decreased the total
content of flavonol glycosides in the fresh juice samples (i.e., no enzyme
treatment), while fermentation with the strains DSM 100813 and DSM 10492
showed significant reduction in the flavonol content in enzyme-treated juices.
Fermentation with the strain DSM 10492 reduced the content of flavonols by 9—
14% in CB juice. No metabolic products from the flavonol glycoside metabolism
were detected (I).

However, in sea buckthorn, there was no statistically significant difference in
the total flavonol content, or in the contents of individual flavonol compounds,
between different treatments (I). The different glycosidases produced by L.
plantarum can be considered the main enzymes for flavonol glycoside
modification. Therefore, reasons for the lack of flavonol modification in SBJ can
be speculated to be several. First, lack of affinity of L. plantarum glycosidases
with isorhamnetin derivatives present in the SBJ. However, formation of the
isorhamnetin aglycone was reported in the fermentation of cactus cladode pulps
187 meaning that L. plantarum has also shown enzymatic activity with
isorhamnetin glycosides. A second potential explanation is the low pH of SBJ
which has either reduced the gene expression of glycosidic enzymes, or has
inhibited the enzymatic activity, or both. Earlier, a low pH (3.2) was reported to
reduce the B-glucosidase activity of L. plantarum in model wines '%. A third
explanation is that the presence of glucose has downregulated the expression of
B-glucosidase or any of the other glycosidase related genes !°. In a material
opposite of SBJ in terms of pH and sugar content, fermentation of silkworm thorn
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leaf infusion with L. plantarum yielded high amounts of quercetin from
quercetin-7-O-glucoside, and kaempferol from kaempferol-3-O-glucoside and
kaempferol-7-O-glucoside 2”7, Plant leaves infusions typically have low acidity,
a low sugar content, and a high phenolic content. Absence of readily available
carbon sources could have increased the expression of glucosidase genes, leading
to an effective conversion of flavonol glycosides to the corresponding aglycones.
In this context, flavonols were largely unaffected in this work possibly due to the
factors that inhibited the expression of glycosidases required for the flavonol
glycoside modification.

5.4.6 Changes in phenolic acid content

Fermentation with the strain DSM 10492 reduced the content of caffeoylquinic
acids and other hydroxycinnamic acids by 20-24% in the chokeberry juice.
However, there was no significant increase in the contents of either caffeic acid
or quinic acid, as the compounds were metabolized further by L. plantarum (I).
While quinic acid metabolism was later investigated (IIT), the metabolic product
of caffeic acid in fermentation of chokeberries was not discovered. If caffeic acid
was reduced to dihydrocaffeic acid ', the loss of side chain double bond caused
absorbance maximum to shift from 325 nm to 206 nm, meaning that the
compound could have not been detected with the photodiodearray detector which
was used in Study I.

So far, no esterase enzyme has been discovered from L. plantarum that is
effective in hydrolyzing caffeoylquinic acids (Section 2.4.4). However, it is still
plausible that the esterases identified earlier from L. plantarum were responsible
for the observed reduction in chlorogenic acid content in the fermentation of
chokeberry juice (I). For example, feroyl esterase Lp 0796 showed a mild
hydrolytic activity on chlorogenic acid 7%”°. However, this gene is commonly
present in L. plantarum and thus does not explain the strain-dependent difference
in the chlorogenic acid metabolism (I). Therefore, it is possible that the strain
DSM 10492 produced an unknown esterase with activity on caffeic acid esters.

While the flavonols in SBJ were unaffected by fermentation (I), increase in
the protocatechuic acid content was detected in SBJ (I, III). It was concluded
that the increase in protocatechuic content acid was due to quinic acid
metabolism. Furthermore, the strain DSM 13273 decarboxylated protocatechuic
acid into catechol (III). Unlike the metabolism of quinic acid into 3,4,5-
trihydroxycyclohexane-1-carboxylic acid through the so-called reductive
pathway, which allows recovery of cofactor NAD* %°, the metabolic benefit of
conversion of quinic acid into protocatechuic acid and catechol is less clear.
Obvious benefit would be a deacidification effect, as protocatechuic acid is a
weaker acid than quinic acid (pKa. 4.48 and 3.46, respectively), and
decarboxylation to catechol removes a proton donating group altogether.
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5.5 Volatile compounds
5.5.1 Volatile profile of fresh sea buckthorn juice (II)

In total, 90 volatile compounds were identified from the fresh sea buckthorn juice,
of which were 53 esters, 7 acids, 6 alcohols, 7 aldehydes, 3 alkenes, 8 ketones, 4
terpenes and 3 sulfur-containing compounds. Non-branched, branched, and
aromatic esters were detected. Identified non-branched fatty acid esters with
varying acyl carbon numbers were, in descending order of abundance, C6, CS8,
C3, C10, C5, C7 and C2. The most abundant branched esters were those with
acyl group of 3-methylbutanoates, 2-methylbutanoates, 2-methylpropanoates, or
3-methyl-2-butenoates. Esters of benzoate were the main aromatic esters.

The most abundant compounds in the GC-MS chromatograms were, in
descending order, 3-methylbutyl 3-methylbutanoate, 3-methylbutyl hexanoate
and ethyl hexanoate. A majority of the tentatively identified esters have fruity
odor descriptor, while esters and terpenes with floral odor descriptor were also
detected.

The main volatile acids detected were acetic acid and medium-chain fatty
acids (C6-C9), while fatty-acid derived aldehydes with the same carbon numbers
were also detected. Other aldehydes detected were benzaldehyde and
acetaldehyde. Fatty acid derived ketones with acyl chain lengths of 3, 4, 5, 7, 9,
and 11 were detected. However, except for ethanol and 1-heptanol, no
corresponding alcohols to aldehydes or ketones were detected.

In earlier reports it has been observed that depending on the cultivar,
subspecies, growth location and growth season, the main volatile compounds in
sea buckthorn juice are ethyl 3-methylbutanoate, ethyl hexanoate, and 3-
methylbutyl 3-methylbutanoate at varying ratios (Fig. 19). Therefore, the
volatile compound profile reported in Study II was in accordance with earlier
reports. Based on the structures of volatile esters present in the sea buckthorn
berry, the precursors are likely derived from the same precursor pool (Fig. 20),
however, further studies are required to identify the cellular mechanisms that
control substrate availability in the ester biosynthesis.

5.5.2 Changes in volatile profile of sea buckthorn juice during
fermentation (II)

Incubation decreased the content of esters and terpenes, whereas fermentation
increased the levels of volatile acids, ketones, and alcohols. Moreover,
fermentation lowered the content of fatty acid-derived aldehydes. Juices
fermented with the strain DSM 1055 had the highest acid and alcohol content
while fermentation with the strain DSM 13273 resulted to the highest content of
ketones (Fig. 21). Compared to inoculation with other strains, fermentation with
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the strains DSM 16365 and DSM 100813 resulted to a rapid MLF, formation of
less volatile acids, and lower loss of esters and terpenes, important for natural
sea buckthorn flavor.

In principal component analysis, fermented samples were associated with 3-
methyl-1-butanol (fermented aroma), ethanol, and benzyl alcohol (floral). 3-
Methyl-1-butanol was possible derived from leucine metabolism (Fig. 12) and/or
ester hydrolysis. As the phenylalanine metabolism by L. plantarum was detected
in sea buckthorn juice in Study III, it can be speculated that phenylalanine was
the precursor for benzyl alcohol detected from fermented SBJ (II). As discussed
earlier, phenylpyruvate, derived from the transamination of phenylalanine, can
be non-enzymatically converted to benzaldehyde when exposed to the Mn?"
reservoir of L. plantarum (Fig. 12). Benzaldehyde can then be reduced to benzyl
alcohol by the benzyl alcohol dehydrogenase (Lp_3054) (Fig. 11). Ethanol was
likely from the heterofermentative pathway of L. plantarum (II).

Increase in the volatile acid content was due to the production of acetic acid,
3-methylbutanoic acid (cheesy aroma) and medium chain fatty acids (fatty and
cheesy aromas). As acetic acid is one of the end-products in the mixed acid
fermentation pathways, it is a common metabolite of L. plantarum. 3-
Methylbutanoic acid was likely derived from same precursos as 3-methyl-1-
butanol, meaning from leucine metabolism and ester hydrolysis (Fig. 12) (II).

Increase in the volatile ketone content especially in juices fermented with the
strain DSM 13273 (Fig. 21) was due to the increase in buttery ketones acetoin
and diacetyl contents. In accordance with earlier studies, the main ketone product
was acetoin. 2-Undecanone (fruity aroma) was positively correlated with
fermented samples in PCA models, however, precursor for this volatile was not
established. No volatile phenols (e.g. 4-ethyl phenol) were detected in any of the
juices (II).

Whether the changes in volatile profiles in Study II were beneficial for overall
aroma of sea buckthorn juice is not clear. While the content of several floral
volatiles was increased, at the same time, increase in volatile acidity (i.e.,
potential off-aromas) was observed. Additionally, loss of the fruity esters during
fermentation could have negative impact on sensory value of SBJ. Due to large
number of samples the juice volume per sample was relatively low (30 mL),
which had a high surface-to-volume ratio. Therefore, it is possible that at larger
volumes, let alone on an industrial scale, the loss of volatiles during fermentation
could be significantly lower compared to the results reported in Study II.

No report apart from this work exist studying change in the volatile profile of
SBJ after fermentation with L. plantarum. However, Tiitinen et al. >’ studied the
impact of MLF with O. oeni on SBJ volatile profile. While the content of various
esters was decreased similary to Study II, increase in concentrations of ethyl
acetate, 3-methylbutyl acetate, and ethyl butanoate were detected.
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Additionally, ethanol and 3-methyl-1-butanol contents were increased, which
was also reported in IL.

All in all, as the odor thresholds of aroma-active volatile compounds vary
significantly between compounds and are strongly dependent on the sample
matrix, further studies are required to determine how MLF affects the aroma and
sensory properties of fermented SBJs.

5.6 Changes in other metabolites

From the 1D-NOESY spectra, several metabolites not yet discussed and not
detected in either Study I or Study II were identified from the fresh sea
buckthorn juice (III). These included free amino acids (methylcysteine, valine,
isoleucine, alanine, tyrosine, asparagine, and phenylalanine), nucleotides
(adenosine, uridine), succinic acid, 2-oxoglutaric acid, choline, fumaric acid,
formic acid, trigonelline, ribose, and methyl glucoside. From all identified
metabolites, trigonelline, asparagine, ethyl glucose, myo-inositol, and L-
quebrachitol showed no significant change after fermentation in any of the
samples (III).

During fermentation, L. plantarum consumed most of the free amino acids,
especially branched-chain amino acids and phenylalanine. Amino acid
catabolism was more pronounced at higher pH. However, asparagine present in
SBJ was not utilized by L. plantarum (I11).

One sulfur-containing amino acid was detected from SBJ (methylcysteine),
which was also absorbed by L. plantarum (Fig. 19) (III). While methionine is a
growth limiting amino acid for L. plantarum, previous studies have suggested
that the species is capable to convert cysteine into methionine (Section 2.6.2).
However, it was not confirmed in this doctoral thesis whether L. plantarum
absorbed methylcysteine only due to the structural similarity to cysteine and
methionine, or if it was able to utilize methylcysteine in its metabolism.

The main metabolite of phenylalanine was 3-phenyllatic acid, produced from
transamination via phenylpyruvate. In the first step, the amino group from
phenylalanine is transferred to 2-oxoglutaric acid, yielding glutamic acid, an
essential amino acid for L. plantarum. Therefore, it was an unexpected result that
2-oxoglutaric acid present in SBJ was only partly absorbed by L. plantarum
during fermentation (III). The only strain that effectively absorbed 2-oxoglutaric
acid was the DSM 10492 (Fig. 19). Whether the the limited uptake in other
strains was controlled (by downregulation of uptake related genes) or not (e.g.,
uptake inhibited due to the acidic conditions) requires further studies. Moreover,
GABA, derived from decarboxylation of glutamic acid, was detected in juices
fermented with strain DSM 1055. Higher yield of GABA was detected at pH 2.7
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compared to pH 3.5, suggesting that the compound was produced to counter the
acid shock (IIT).

The strains DSM 10492 and DSM 13273 produced significantly higher
content of 1,3-dihydroxyacetone (DHA) (0.13-0.14 mM) compared to the other
strains (0—0.05 mM) (Fig. 20). In the case of strains DSM 100813 and DSM 1055,
DHA was produced solely by cells grown in the CAM while little to no
production was detected by cells grown in the GEM. As the CAM-grown cells
were adapted to the acid stress prior to inoculation, it can be speculated that DHA
production was related to cellular stress. Earlier, DHA was detected from
fermented vegetable juice 2%°. One potential source for DHA is from the
oxidation of glycerol with NAD* by the enzyme glycerol dehydrogenase
(encoded by gldA4). While no copy of gld4 gene from L. plantarum was reported
by Doi 2!, UniProt query provided a putative gld4 gene for L. plantarum based
on a sequence homology (accession N692 08665). Rivaldi et al. reported that
the main pathway in glycerol metabolism in L. plantarum under physiological
conditions was formation of glycerol-phosphate by glycerol kinase while very
little glycerol oxidation was observed 2%2. However, further studies are required
to study if metabolic flux is shifted to glycerol oxidation under acid shock, which
would explain DHA accumulation during fermentation of SBJ.

5.7 Methological considerations and limitations of the
study

While this work focused on optimizing multiple fermentation variables (pH,
fermentation time, strain, medium composition), there are numerous other
factors to be considered in the product development of fermented plant-based
foods (Fig. 23). One factor not considered in this work was “optimizing” the
origin of the raw material. The chemical composition of a plant material can be
substantially different depending on the subspecies, cultivar, growth location,
and growth year. As it was discussed in this thesis, there are studies showing that
the fermentation end-product can be significantly different based on the cultivar
of the raw material alone 723,

Another factor not considered in this work was optimizing the inoculation rate
since the initial cell count can affect the overall metabolic activity due to quorum
sensing. This work also did not analyze if the cell number of L. plantarum
decreased, was maintained, or increased during fermentation of sea buckthorn or
chokeberries. This analysis was left out due to the high number of samples. Many
studies related to the fermentation of fruit or berry materials have included a
storage trial after fermentation, which was missing in this work. Future work
should analyze survival of L. plantarum in berry juices both during fermentation
and storage. Storage trial would also allow determination of the residual
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metabolic activity of L. plantarum in sea buckthorn or other similar materials at
low temperature.

Only little phenolic metabolism was detected sea buckthorn juice (I), and thus
this thesis work could be extended by studying whether sea buckthorn flavonol
glycosides are metabolized more effectively at elevated pH or after acclimation.
It was assumed that the glycosidic enzymes of L. plantarum were inhibited due
to presence of sugars and low pH in SBJ, which was the reason for the limited
metabolism of flavonol glycosides. However, further studies would be required
to confirm if this was the case.

Only SBJ was used in Studies II and III, but chokeberry juice was also a
promising matrix for malolactic fermentation with L. plantarum (I). As
chokeberry has a very high phenolic content and subsequent low consumer value
due to the intense bitterness and astringency, further studies to modify the
chokeberry phenolic profile more effectively than in this work could be
worthwhile. Also, one of the key odor compounds in chokeberry juice is
benzaldehyde, making it a potential target to improve sensory value by reducing
this aldehyde to a floral benzyl alcohol with lactic acid bacteria.

Multiple conclusions in this thesis rely on the assumption that fermentation of
sea buckthorn and chokeberry juices with L. plantarum in general improved the
antioxidant capacity. However, no in vitro antioxidant capacity analysis was
performed in this thesis, and thus it would be necessary to confirm the
assumption that protection of ascorbic acid and anthocyanins from oxidation
during fermentation was due to the increased antioxidant capacity. Also, as an
increase in antimicrobial compounds (lactic acid, acetic acid, and 3-phenyllactic
acid) was reported in SBJ after the fermentation (III), antimicrobial trials would
be needed to test if the accumulation of these compounds had any significant
impact on the microbial stability of SBJ.

Analysis of the volatile compounds in fermented sea buckthorn did not
consider whether the changes in the volatile compound profile had impact on the
detectable odor, and the study would have benefitted from a GC-O analysis to
determine the key odorants in both the fresh and the fermented SBJ (II).

Ultimately, the main shortcoming of this work was lack of the sensory
evaluations to confirm whether the observed chemical changes were significant
enough to produce a difference in flavor, and whether the change in flavor was
beneficial or not. Thus, the next step to take this research further would be to
select the most promising samples for sensory and consumer trials.
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6 SUMMARY AND CONCLUSION

This work set out to study the potential of MLF to reduce the acidity of berry
materials, to use fermentation to modify bitter and astringent compounds in
berries (i.e., phenolic compounds), and to determine if compounds that promote
functional properties, such as storage stability, are generated during MLF
Initially, it was concluded that sea buckthorn juice was the optimal material due
to a very high content of malic acid and a low content of sugars. While in wine
MLF pH is typically increased by 0.2 units, an overview of existing literature
revealed that in most studies where L. plantarum is used to ferment non-alcoholic
fruit material, the pH either remains unchanged or decreases. In fact, the increase
in pH observed in this work (0.34 units) is among the highest, if not the highest,
observed pH increase when MLF has been used for deacification. This suggests
that sea buckthorn juice might be one of the few materials where utilization of
this approach is applicable. While the flavonol glycosides and phenolic acids of
chokeberry juice were metabolized by L. plantarum, there was no metabolism of
flavonol glycosides present in fermentation of sea buckthorn juice. It was
speculated that the low pH and the presence of sugars inhibited the B-glucosidase
activity of L. plantarum required for the metabolism of these compounds.

Although not the initial target of the research, it was observed that certain
strains protected ascorbic acid and anthocyanins from degradation during
fermentation. Based on the existing literature, this was thought to be associated
with an increased antioxidant capacity. Typically, this effect by L. plantarum has
been associated with phenolic modification, however, results with the strain
DSM 10492 contradicted this assumption; the strain was most effective in the
metabolism of phenolic compounds but showed the least beneficial impact on
the antioxidant capacity. This suggests that there are other underlying
mechanisms behind the antioxidant capacity modification of L. plantarum.

In this work, acclimation by adding malic acid to the growth medium and
decreasing the pH from 6 to 4.5 was an effective way to improve fermentation
in sea buckthorn juice. The benefit of this approach was that change in the basal
medium composition had no clear negative effect on the microbial growth of L.
plantarum and the acclimation medium could be inoculated with a single colony,
similar to the MRS medium. Therefore, this approach is easy to implement in
both research and product development.

Increasing the juice starter pH from a natural 2.7 to 3.5 improved fermentation
in a similar manner to acclimation. This increased the fermentation of sugars in
sea buckthorn juice, and also allowed more complex metabolic activity during
fermentation. The beneficial changes made by increasing the pH were the
formation of antimicrobial compounds, an increased antioxidant capacity, and an
increased metabolism of the secondary metabolites. At the same time, it was
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observed that in the fermentation of sea buckthorn, L. plantarum utilizes several
approaches to circulate redox cofactors to allow energy production from acetyl-
CoA, including succinic acid and ethanol formation as well as quinic acid
metabolism. Most of the observations mentioned above also showed strain-
dependent variations.

When considering the research field (i.e., fermentation of plant-based
materials with lactic acid bacteria) in general, there is an evident gap between
genomic studies and the practical applications of L. plantarum in food models.
One approach would be to utilize an “omics” approach, combining metabolomics,
transcriptomics, proteomics etc. for a carefully selected strain and a raw material
combination. Another goal would be to establish the metabolic pathways and
genes that are most relevant for fruit and berry fermentations to produce
materials with an enhanced flavor. As discussed in the literature review,
fermentation with L. plantarum has improved flavor in various plant-based
materials. However, the most relevant cellular functions responsible for these
changes should be discovered in addition to what conditions drive the activation
of these metabolic systems. This approach is already in use in wine MLF starter
development, as studies often screen for the presence of specific genes or gene
related activity from starter candidates, such as genes for B-glucosidase,
esterase/alcohol transferase (EstA), and citrate lyase.

There is a growing interest on the exploitation of berry materials using
fermentation, as highlighted by the recent review by Schubertova et al. 2%
focusing on research related to fermented sea buckthorn. This doctoral thesis has
provided new insight into the development of berry-based products using
malolactic fermentation as a bioprocessing method. The conditions were
determined that drive effective deacidification of materials such as sea buckthorn
with L. plantarum without fermentation of sugars. In addition, the conditions that
created additional benefits though potential modification of functional (i.e.
antioxidant and antimicrobial) properties were also determined. Results from this
thesis can be applied to product development of other materials with low pH and
high malic acid content as well, including sour apples, sour cherries, and
cranberries.
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Supplementary Table S2. Full names f the sea buckthorn cultivars and biotypes
abbreviated in the Figure 18 in addition to growth location and subspecies.

Short name | Full name Location  Subspecies  Ref.
AVG Avgustinka Finland | mongolica |*®
BOT Botanicheskaya Finland | mongolica | %%
CHU Chuiskaya Finland  mongolica |
ORA Oranzhevaya Finland | mongolica | *%*
PRE Prevoshodnaya Finland | mongolica | *%
RAI Raisa Finland | rhamnoides | *%
TRO Trofimovskaya Finland | mongolica | *®
AU Auras Romania | carpatica >’
B6AU Auras yellow biotype round fruit | Romania |carpatica %’
B6SER Serpenta biotype-elongate fruit Romania | carpatica | *%
B6VIC Victoria biotype fruit Romania | carpatica %’
BSI Biotype Stiulete 1 Romania | carpatica | *’
BS2 Biotype Stiulete 2 Romania | carpatica %’
ov Ovidiu Romania | carpatica >
RF Red fruits Romania | carpatica %’
SER Serpenta Romania | carpatica | *%
SIL Silvia Romania | carpatica %’
TIB Tiberiu Romania | carpatica %%
VIC Victoria Romania | carpatica %’
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