




DOCTORAL THESES IN FOOD SCIENCES AT THE UNIVERSITY OF TURKU 
Food Development (tech) 

 
 
 
 
 
 
 
 

Bioprocessing of Berry Materials with 
Malolactic Fermentation 

 
NIKO MARKKINEN 

 
 
 
 
 
 
 
 
 
 

 
 

Food Chemistry and Food Development 
Department of Life Technologies 

 
TURKU, FINLAND – 2021 



 

 
 

Food Chemistry and Food Development 
Department of Life Technologies 
University of Turku, Finland 
 
Supervised by  

Professor Baoru Yang, Ph.D. 
Department of Life Technologies 
University of Turku 
Turku, Finland 
Adjunct Professor Oskar Laaksonen, Ph.D. 
Department of Life Technologies 
University of Turku 
Turku, Finland 

Reviewed by  
Professor Giuseppe Spano, Ph.D. 
Department of Agricultural, Food, and Environmental Sciences 
University of Foggia 
Foggia, Italy 
Professor Georgios-Ioannis Nychas, Ph.D. 
Department of Food Science and Human Nutrition  
Agricultural University of Athens 
Athens, Greece 

Opponent 
Professor Marco Gobbetti, Ph.D. 
Faculty of Sciences and Technology 
Free University of Bozen-Bolzano 
Bolzano, Italy 

Research director 
Professor Baoru Yang, Ph.D. 
Department of Life Technologies 
University of Turku 
Turku, Finland 
 

The originality of this dissertation has been checked in accordance with the 
University of Turku quality assurance system using the Turnitin 
OriginalityCheck service 

 
ISBN 978-951-29-8621-7 (print) 
ISBN 978-951-29-8622-4 (pdf) 
ISSN 2323-9395 (print) 
ISSN 2323-9409 (pdf) 
Painosalama Oy – Turku, Finland 2021 



 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table of Contents 

 
 

TABLE OF CONTENTS 

ABSTRACT ......................................................................................................... i 

SUOMENKIELINEN ABSTRAKTI ................................................................. iii 

LIST OF ABBREVIATIONS .............................................................................. v 

LIST OF ORIGINAL PUBLICATIONS .......................................................... vii 

1 INTRODUCTION .......................................................................................... 1 

2 REVIEW OF THE LITERATURE ................................................................ 3 
2.1 General features and taxonomy of Lactiplantibacillus  

plantarum ...................................................................................... 3 
2.2 Carbohydrate metabolism of L. plantarum ................................... 5 

2.2.1 Carbohydrates transport systems .................................... 5 
2.2.2 Homo- and heterolactic fermentation ............................. 5 
2.2.3 Sugar alcohol fermentation ............................................ 6 
2.2.4 Di-, tri-, oligo- and polysaccharide metabolism ............. 7 

2.3 Organic acid metabolism of L. plantarum .................................... 7 
2.3.1 Citrate and tartarate metabolism ..................................... 7 
2.3.2 Quinic acid metabolism ................................................ 11 
2.3.3 Malolactic fermentation (MLF) .................................... 12 

2.4 Volatile and phenolic ester metabolism in L. plantarum ............ 14 
2.4.1 Classification of esterases and lipases .......................... 14 
2.4.2 Acyl transferases and reverse esterases ........................ 14 
2.4.3 Carboxylesterases, arylesterases, and lipases ............... 15 
2.4.4 Feryol esterases and tannases ....................................... 15 

2.5 Phenolic acid metabolism in L. plantarum ................................. 19 
2.5.1 Hydroxybenzoic acid metabolism ................................ 19 
2.5.2 Hydroxycinnamic acid metabolism .............................. 20 
2.5.3 Other metabolic routes of phenolic modification ......... 22 

2.5.3.1 Glycosidases .......................................................... 22 
2.5.3.2 Benzyl alcohol dehydrogenase .............................. 24 

2.6 Protein and amino acid metabolism in L. plantarum .................. 25 
2.6.1 Metabolism of poly- and oligopeptides ........................ 25 
2.6.2 Metabolism of amino acids to flavor compounds ........ 27 
2.6.3 Metabolism of amino acids to biogenic amines and 

ethyl carbamate ............................................................. 31 
2.6.4 Metabolism of amino acids to N-heterocycles ............. 33 
2.6.5 Metabolism of amino acids to antifungal compounds . 34 



Table of Contents 

 
 

2.6.6 Bacteriocin biosynthesis in L. plantarum ..................... 35 
2.7 Stress responses of L. plantarum relevant to plant  

fermentations ............................................................................... 38 
2.8 Fermentation of plant and fungi material with L. plantarum ...... 42 

2.8.1 Vegetables and mushrooms .......................................... 42 
2.8.2 Wine malolactic fermentation ...................................... 43 
2.8.3 Fruits and berries .......................................................... 45 

2.8.3.1 Strain selection ....................................................... 45 
2.8.3.2 Fermentation trial set up ........................................ 46 
2.8.3.3 Changes in cell numbers, pH, carbohydrates, and 

organic acids .......................................................... 50 
2.8.3.4 Changes in volatile compound profiles ................. 50 
2.8.3.5 Biotransformation of phenolic compounds ........... 60 
2.8.3.6 Changes in antioxidant capacity ............................ 61 

2.9 Compositional properties of berries ............................................ 68 
2.9.1 Sugar, sugar alcohols, and organic acids in 

commercially important berries .................................... 68 
2.9.2 Free amino acid content of sea buckthorn, chokeberry, 

and lingonberry ............................................................. 73 
2.9.3 Phenolic content of sea buckthorn, chokeberry, and 

lingonberry ................................................................... 74 
2.9.3.1 Phenolic acid content in sea buckthorn berry ........ 75 
2.9.3.2 Flavonol content of chokeberry and lingonberry .. 75 
2.9.3.3 Flavonol content of sea buckthorn ......................... 78 
2.9.3.4 Anthocyanin content of chokeberry and  

lingonberry ............................................................. 78 
2.9.3.5 Complex polyphenols ............................................ 84 

2.9.4 Volatile compound profile of sea buckthorn berries .... 87 
2.9.5 Relationship between chemical composition and 

sensory value ................................................................ 87 

3 AIMS OF THE STUDY ............................................................................... 89 

4 MATERIALS AND METHODS ................................................................. 90 
4.1 Berry materials ............................................................................ 90 
4.2 Juice preparation.......................................................................... 90 

4.2.1 Pasteurization ............................................................... 91 
4.2.2 Other treatments ........................................................... 91 

4.3 Bacterial strains ........................................................................... 91 
4.4 Fermentation ................................................................................ 91 
4.5 Sample preparation ...................................................................... 92 
4.6 Analytical methods ...................................................................... 93 



Table of Contents 

 
 

4.7 Identification ............................................................................... 95 
4.8 Quantification .............................................................................. 95 
4.9 Statistical analysis ....................................................................... 96 

5 RESULTS AND DISCUSSION ................................................................... 98 
5.1 Sugar, sugar alcohols, and organic acid content of the berry 

materials ...................................................................................... 98 
5.2 Success of fermentation .............................................................. 99 

5.2.1 Non-acclimated cells .................................................... 99 
5.2.2 Acclimated cells .........................................................100 

5.3 Changes in sugars and acids ......................................................100 
5.3.1 Sea buckthorn juice ....................................................100 
5.3.2 Chokeberry juice ........................................................103 

5.4 Phenolic profile of the berry juices ...........................................104 
5.4.1 Chokeberry .................................................................104 
5.4.2 Sea buckthorn .............................................................104 
5.4.3 Effect of enzyme treatment on phenolic profile .........104 
5.4.4 Changes in anthocyanins during fermentation ...........105 
5.4.5 Changes in flavonols during fermentation .................105 
5.4.6 Changes in phenolic acid content ...............................106 

5.5 Volatile compounds ...................................................................107 
5.5.1 Volatile profile of fresh sea buckthorn juice (II) ........107 
5.5.2 Changes in volatile profile of sea buckthorn juice 

during fermentation (II) ..............................................107 
5.6 Changes in other metabolites ....................................................111 
5.7 Methological considerations and limitations of the study .........112 

6 SUMMARY AND CONCLUSION ...........................................................115 

ACKNOWLEDGEMENTS .............................................................................117 

REFERENCES .................................................................................................119 

APPENDIX: Supplementary materials ............................................................137 

APPENDIX: ORIGINAL PUBLICATIONS ..................................................142 



Abstract

 

i 

ABSTRACT 

Malolactic fermentation is used by wine industry to decrease acidity and 
introduce odor compounds through the metabolic activity of ethanol-tolerant 
lactic acid bacteria. In this work, this oenological approach was used to modify 
flavor chemistry of berry materials with low consumer value. The aim was to 
determine fermentation conditions that lead to effective deacidification and 
possibly to other chemical changes that would improve sensory and functional 
properties, and thus consumer value, of various berry materials. 

For the practical work of the thesis, juices from sea buckthorn (Hippophaë 
rhamnoides L.), chokeberry (× Sorbaronia mitschurinii, old name Aronia 
mitchurinii) and lingonberry (Vaccinium vitis-idaea L.) were fermentated with 
multiple strains of Lactiplantibacillus plantarum and Oenococcus oeni, pre-
cultivated either in a typical basal medium or in an acclimation medium. Multiple 
methodologies combining chromatography, mass spectrometry, and nuclear 
magnetic resonance spectroscopy were applied for targeted, semi-targeted, and 
non-targeted analysis of metabolites in the juices before and after fermentation.   

While chokeberry juice was fermentable as such, fermentation of natural sea 
buckthorn juice was ineffective in most cases. However, increasing juice pH 
from natural 2.7 to 3.5 or acclimating cells prior to inoculation allowed 
fermentation of sea buckthorn with all studied strains. At the natural pH of sea 
buckthorn juice, no sugars were fermented or flavonol glycosides metabolized. 
At the natural pH of chokeberry juice, sugars were fermented along with malic 
acid, and quercetin glycosides, chlorogenic acid, and other phenolic acids present 
in the juice were metabolized by L. plantarum. All fermentations that used 
lingonberry as raw material failed due to the high content of benzoic acid. 

During fermentation of sea buckthorn and chokeberry, the metabolism of 
malic acid yielded mainly lactic acid, while the metabolism of quinic acid led to 
the formation of protocatechuic acid, catechol, shikimic acid, and 3,4,5-
trihydroxy-1-cyclohexanoic acid. Other microbe-related metabolites detected in 
the fermented sea buckthorn juice were acetic acid, ethanol, isovaleric acid, 
phenyllactic acid, succinic acid, 1,3-dihydroxyacetone, trehalose, maltose, 
GABA, and oxaloacetic acid. It was concluded that depending on the strain of L. 
plantarum, acetate production during the fermentation of sea buckthorn juice 
was supported by the production of ethanol or succinic acid, or quinic acid 
metabolism, to consume excess NADH. 

Nearly all the identified volatile compounds from sea buckthorn juice were 
esters with a fruity descriptor. Fermentation with L. plantarum increased the 
content of volatile acids, i.e. acetic acid, 3-methylbutanoic acid, and free fatty 
acids as well as the content of buttery ketones (acetoin) and various alcohols. 
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While the concentration of fruity esters was decreased during fermentation, the 
content of benzyl alcohol (floral) and 2-undecanone (fruity) were increased. The 
content of fatty-acid derived aldehydes was decreased in all fermented samples. 

In summary, fermenting sea buckthorn juice for a shorter period (36 h) and at 
a lower pH (2.7) led to an effective deacidification via malolactic fermentation 
without the consumption of sugars. Reducing fermentation time resulted to a 
decrease in formation of volatile acids and less loss of ester compounds present 
in the juices. On the other hand, fermentation for longer time (72 h) and at an 
elevated pH (3.5) led to stronger protection of ascorbic acid from oxidation, 
greater formation of antimicrobial compounds (3-phenyllactic acid, acetic acid, 
lactic acid), and greater metabolism of secondary metabolites (phenolic 
compound and quinic acid metabolism). These results can be applied to the 
product development of novel fermented beverages utilizing acidic berry or fruit 
material rich in malic acid as raw material.  
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SUOMENKIELINEN ABSTRAKTI 

Viiniteollisuus hyödyntää laajasti viinien happamuuden vähentämiseksi ja 
aromin muokkaamiseksi malolaktista fermentaatiota, jonka taustalla ovat 
etanolia sietävät maitohappobakteerit. Tässä työssä tätä viiniteollisuuden 
lähestysmistapaa hyödynnettiin haastavanmakuisten marjojen maku- ja 
aromikemian muokkaamiseen. Työn tavoitteena oli selvittää ne fermentaatio-
olosuhteet, joissa marjojen happamuuden vähentäminen ja muut aistittavan 
laadun kannalta positiiviset muutokset kemiallisessa koostumuksessa saadaan 
aikaan mahdollisimman tehokkaasti. 

Väitöskirjan kokeellisessa osassa tutkittiin soveltuvatko tyrnimarjasta 
(Hippophaë rhamnoides L.), marja-aroniasta (× Sorbaronia mitschurinii, vanha 
nimi Aronia mitchurinii), ja puolukasta (Vaccinium vitis-idae L.) valmistetut 
mehut raaka-aineeksi malolaktiseen fermentaatioon. Mikrobeina käytettiin 
useita eri kantoja lajeista Lactiplantibacillus plantarum ja Oenococcus oeni. 
Mehut valmistettiin joko ilman tai entsyymikäsittelyn avustamana. 
Solukasvatukset tuotettiin tyypillisessä elatusaineessa tai sopeutusliuoksessa. 
Työssä hyödynnettiin laajasti erilaisia analyyttisiä työkaluja, joihin lukeutuvat 
erilaiset kromatografiset menetelmät, massaspektrometria, ja ydinmagneettinen 
resonanssispektroskopia. Kohdennettuilla, osin kohdennettuilla ja 
kohdentamattomilla analyyseillä määritettiin muutokset fermentaation kannalta 
olennaisten aineenvaihduntatuotteiden koostumuksessa. 

Mikrobit pystyivät fermentoimaan aroniamehua sellaisenaan, mutta 
muokkamattoman tyrnimehun fermentaatio onnistui vain vaihtelevasti. 
Tyrnimehun pH:n nosto 2.7:stä 3.5:een ja solujen sopeutus happamiin 
olosuhteisiin ennen fermentaatiota mahdollisivat onnistuneen fermentaation 
kaikilla testikannoilla. Kun tyrnimehua fermentoitiin ilman pH:n säätöä, 
mikrobit eivät metaboloineet sokereita tai tyrnimehun flavonoliglykosideja. Sen 
sijaan L. plantarum metaboloi aroniamehun sokereita, kversetiini glykosideja, 
klorogeniinihappoa ja fenolisia happoja myös mehun luontaisessa pH:ssa. 
Puolukan fermentaatio epäonnistui kaikissa testiolosuhteissa, mikä johtui 
puolukkamehun korkeasta bentsoehappopitoisuudesta. 

Omenahapon aineenvaihdunta tuotti pääasiassa maitohappoa sekä aronia- että 
tyrnimehussa, kun taas kviinihapon metabolia tuotti protokatekiinihappoa, 
sikimihihappoa ja 3,4,5-trihydroksi-1-sykloheksaanihappoa. Muita 
mikrobiperäisiä metaboliitteja, joita fermentoidusta tyrnimehusta tunnistettiin, 
olivat etikkahappo, etanoli, isovaleriaanahappo, fenyylimaitohappo, 
meripihkahappo, dihydroksiasetoni, trehaloosi, maltoosi, γ-aminovoihappo, ja 
oksaloetikkahappo. Tuloksista selvisi, että kannasta riippuen tyrnimehun 
fermentaation aikana L. plantarum tuotti etanolia tai meripihkahappoa, tai 
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metaboloi kviinihappoa, kuluttamaan ylimääräisen NADH-kofaktorin, jota 
muodostui asetaatin tuottamisesta. 

Valtaosa sekä määrällisesti että koostumuksellisesti tyrnimehusta 
tunnistetuista haihtuvista yhdisteistä olivat estereitä, joilla on hedelmäinen 
ominaishaju. Fermentaatio lisäsi haihtuvien happojen määrää, joita olivat tässä 
tapauksessa etikkahappo ja erilaiset vapaat rasvahapot. Tämän lisäksi 
fermentaatiossa vapautui asetoiinia, jolla on voimainen ominaishaju. Vaikka 
hedelmäisten estereiden määrä laski fermentaation aikana, bentsyylialkoholin 
(kukkainen ominaishaju) ja 2-undekanonin (hedelmäinen ominaishaju) 
konsentraatiot kasvoivat. Rasvahappoperäisten aldehydien määrät laskivat 
kaikissa fermentoiduissa mehuissa. 

Tuloksista voitiin päätellä, että tyrnimehun fermentointi lyhyemmän ajan (36 
t) ja pH:ta muokkaamatta (aloitus-pH 2.7) happamuutta voitiin vähentää 
tehokkaasti ilman sokerien fermentointia. Lyhyellä fermentaatioajalla oli myös 
se etu, että tyrnin hedelmäisten esterien määrä tippui vähemmän, ja mehuun ei 
muodustunut yhtä paljon haihtuvia happoja verrattuna pitkään 
fermentaatioaikaan (72 t). Kun mehun pH oli korkeampi fermentaation 
aloitusvaiheessa (3.5) askorbiinihappo hapettui vähemmän fermentaation aikana 
ja mehuun muodostui enemmän antimikrobisia yhdisteitä (3-fenyylimaitohappo, 
etikkahappo, maitohappo). Tämän lisäksi korkeammassa pH:ssa mikrobit 
metaboloivat enemmän sekundäärimetaboliitteja (fenoliset yhdisteet, 
kviinihappo). Tämän väitöskirjan tuloksia voidaan hyödyntää uudenlaisten 
fermentoitujen juomien kehittämiseen, joiden raaka-aineena käytetään paljon 
omenahappoa sisältäviä marja- tai hedelmämateriaaleja.
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1 INTRODUCTION 

Fermentation does not require invention by humans. It is a process that occurs 
naturally in organic material due to the metabolic activity of bacteria and fungi. 
Early humans had no access to our modern understanding of hygiene, 
biochemistry, and microbiology, but presumably by trial and error, they learned 
how to preserve milk and vegetables in a manner that would generate fermented 
foods palatable and safe to consume. Their approach was probably a spontaneous 
fermentation by controlling the temperature or salinity and using a “starter 
culture” from a previous successful batch. Nevertheless, fermentation was used 
in a systematic manner and on a large scale as early as 4000 BCE by the 
Egyptians to produce bread and by the Babylonians to produce beer 1. 

In addition to allowing storage of perishable materials for extended periods, 
fermentation, as a low temperature method, allowed preservation of compounds 
sensitive to heat or oxidation. Thus, foods such as sauerkraut provided a source 
of vitamin C during seasons when fresh fruits and vegetables were not available. 
For the same reason, fermented foods were also significant in the long seafaring 
expeditions during 18th century as they helped to avoid the development of 
scurvy within the crew. Nevertheless, it was not until 1857 that Lois Pasteur 
discovered that micro-organisms were the cause of fermentation and the spoilage 
of foods 1. 

Many traditional fermented foods such as kimchi, soy sauce, and kombucha 
are still produced today either with classical spontaneous fermentation or with 
the help of modern science and research in a highly controlled, hygienic 
environment using micro-organisms developed specifically for a selected 
purpose. The reason why fermentation is still a relevant processing method today 
is primarly because that for the production of many products there is no 
alternative. Wines, cheeses, sourdough bread, and traditional salami can only be 
produced with fermentation 2. 

However, studies related to fermenting fruit materials for other purposes than 
to alcoholic beverages is a rather recent approach. Most of the research on this 
topic have only been published within the last five to ten years. One possible 
explanation is the current global consumer trend related to products that promote 
health and well-being, and fermented foods are often associated with health-
promoting properties 3. 

While the aim of traditional fermentation was to preserve milk or vegetables, 
the fermentation of fruits and berries can be used to improve not only 
microbiological but also oxidative stability, as the fermentation of plant materials 
often leads to increased antioxidant capacity 4. Another approach is to modify 
the flavor of fruit materials. Lactic acid bacteria can deliver beneficial impact on 
odor though the biosynthesis of compounds that complement fruity or floral 
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characteristics of the raw material 5. Malolactic fermentation (MLF) can be 
utilized for deacidication of materials with intense sourness 6 while phenolic and 
flavonoid modification is of interest from both a health and flavor point-of-view 
7. This approach has been adopted from the wine industry, as wines can undergo 
spontaneous secondary fermentation where ethanol-resistant lactic acid bacteria 
present in the wine ferment residual L-malic acid to D/L-lactic acid, modify 
phenolic compounds, and generate aromatic ketones, alcohols, and esters to 
further develop the flavor of the wine 8. If probiotic strains are used for 
fermentation, then the microbe itself can deliver a further health benefit to the 
consumer as an addition to the fermented food 9. 

This doctoral thesis work focused on berry materials that have been described 
as sour, bitter, and/or astringent, including lingonberry, sea buckthorn, and 
chokeberry. All of these berry species have well-established health benefits 10–12, 
but low consumer value due to their unpleasant sensory properties 13–15. The 
approach selected was to focus primarly on the MLF for deacidification purposes, 
and secondarily to the modification of phenolic and other odor compounds. The 
goal was to investigate whether L. plantarum can ferment the berry materials, 
and to measure strain-dependent differences in the modification of the berry 
flavor chemistry. The impact of initial pH, the contents of the basal medium, and 
fermentation time, were also studied to determine the optimal fermentation 
conditions. Both volatile and non-volatile flavor compounds were studied to 
capture the complete picture of changes in chemical composition during 
fermentation. Connections between fermentation factors and chemical 
composition was established using various uni- and multivariate statistical 
methods. Moreover, whenever possible, connections between the observed 
changes were related to the known metabolic pathways of L. plantarum. The 
goal was to provide a systematic approach to flavor modification by binding 
together the substrate-product connection, and to discuss why the specific gene 
expressed in that setting. Therefore, the intention of the literature review of this 
dissertation was not only to report qualitative and quantative changes observed 
in fermented food models but also to establish the metabolic systems of L. 
plantarum relevant to the fermentation of plant-based food materials.
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2 REVIEW OF THE LITERATURE 

2.1 General features and taxonomy of Lactiplantibacillus 
plantarum 

Lactiplantibacillus plantarum (former name Lactobacillus plantarum) is a 
versatile species of lactic acid bacteria that is encountered in a variety of 
environmental niches. It is especially common in spontaneously fermented plant 
foods, where it is important for finishing the fermentation. Such foods include 
sauerkraut, kimchi, table olives, and sourdough bread. Due to its high alcohol 
tolerance, the species is also common in the MLF of wines. Furthermore, L. 
plantarum isolates have been detected in dairy and meat fermentations and are 
also among the species able to colonize the human GI tract, with some strains 
possessing probiotic properties 9,16,17. In addition, some L. plantarum strains are 
able to improve the bioavailability of micronutrients such as iron 18, or are able 
to degrade organophosphorus insecticides 19. 

In 2003, the complete genome of L. plantarum WCFS1 isolated from human 
saliva was sequenced 20. Although Lactobacilli, in general, have a small genome 
9, L. plantarum has one of the largest genomes in lactic acid bacteria, about 3.3 
Mbp 20. The G+C content of the chromosome is 44.5%. Based on the metabolism 
of carbohydrates, the species has been defined as facultative heterofermentive 20. 
By accumulating large intracellular pool of Mn2+, the species is able to tolerate 
oxidative stress, and is thus defined as facultative anaerobe 20. 

The large genome of L. plantarum leads to the ability to utilize a large 
collection of carbon sources and to tolerate stress from acidity, alcohol, salinity, 
and phenolic compounds, among other things. These two characteristics together 
explain why L. plantarum can adapt to a large variety of environments. 
Fermentation with L. plantarum has the potential to improve sensory, nutritional 
and functional properties of the food matrix 21, while the ability to acidify the 
raw material and to produce antifungal acids and antimicrobial plantaricins 
improve shelf-life 9,22,23. 

Lactobacillus plantarum was initially named by Orle-Jensen (1919). 
Currently, two subspecies of L. plantarum have been identified and a number of 
closely taxonomical species (Fig. 1). In 1987, Lactobacillus pentosus (type strain 
124-2 (=DSM 20314)) was identified as a separate species from L. plantarum 24. 
The key difference was the ability of L. pentosus to ferment D-xylose and 
glycerol. However, this difference is not unequivocal, as there are strains of L. 
plantarum that can metabolize glycerol 25. In 1996, a separate species 
Lactobacillus paraplantarum (type strain CST 10961 (=DSM 10667)) was 
identified 26. The main difference was the ability of L. paraplantarum to ferment 
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methyl α-D-glucose, while the majority of L. plantarum strains have no gene for 
the metabolosis of the compound 25. 

Later, a separate subspecies, L. plantarum subsp. argentoratensis was 
identified using phylogenetic analysis; the type strain assigned was DKO 22T (= 
DSM 16365). Other strains not belonging to this subspecies were renamed L. 
plantarum subsp. plantarum 27.  

 
Fig. 1. Phylogenic tree of L. plantarum and the so-called L. plantarum family of 
related species. Accession number in parentheses. Generated with Phylogeny 
Server (https://ggdc.dsmz.de/). 

Later, two additional novel Lactobacillus species with an over 98 % 16S 
rRNA sequence similarity to L. plantarum were detected, Lactobacillus LMG 
24284 which was isolated from cocoa bean fermentations in Ghana 28, and 
another novel strain which was isolated from traditional Chinese pickles 29. 
However, more detailed genomic analyses indicated that they were novel species, 
which were then named Lactobacillus fabifermentans 28 and Lactobacillus 
xiangfangensis 29, respectively. Other species that have so far been identified and 
suggested to belong to the L. plantarum group are L. herbarum, L. plajomi, L. 
modestisalitolerans, and L. mudanjiangensis 30. 

In 2020, a proposal for reclassification of the genus Lactobacillus into 25 
distinct genera based on a polyphasic approach was published 31, in which 
Lactobacillus plantarum subsp. plantarum and Lactobacillus plantarum subsp. 
argentoratensis were renamed as Lactiplantibacillus plantarum and 
Lactiplantibacillus argentoratensis, respectively. For the sake of clarity, the 
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abbreviation L. plantarum according to the previous nomenclature is used 
throughout the thesis for both before-mentioned species. 

2.2 Carbohydrate metabolism of L. plantarum 

Glycolysis is the main form of energy production under anaerobic conditions in 
many lactic acid bacteria, including L. plantarum. The importance of glycolysis 
is emphasized by the fact the presence of glucose downregulates both amino acid 
metabolism 32 and β-glucosidase activity 33. 

2.2.1 Carbohydrates transport systems 

L. plantarum cells uptake carbohydrates either through carbohydrate specific 
transporters or through multiple sugar ABC transporters 20. Genomic analyses of 
L. plantarum WCFS1 has revealed 25 complete PTS enzyme complexes 20. In 
the strain L. plantarum NCU116, a strain-specific fructose/mannose-inducible 
PTS complex has been identified 34. The PTSs are a class of bacterial sugar 
uptake systems that utilize energy from phosphoenolpyruvate (PEP) to 
phosphorylate sugars upon transfer inside the cell. PEP, in turn, is derived from 
the glycolysis pathway. Once inside the cell, sugars are metabolized to produce 
ATP and to maintain NAD+/NADH homeostasis. Additionally, compounds 
derived from sugar catabolism are precursors for many important components 
required for growth, including pyridine, purine and histidine biosynthesis from 
ribulose-5-phopshate, and aromatic amino acid biosynthesis from PEP via 
shikimate pathway 34,35. 

2.2.2 Homo- and heterolactic fermentation 

Typical classification of lactic acid bacteria is based on their glucose/sugar 
metabolism. The two major pathways are homolactic and heterolactic 
fermentation, which produce lactic acid alone, or lactic acid, acetate and ethanol, 
respectively 36. Genomic studies have revealed that L. plantarum possess the 
genes for both homo- and heterolactic fermentation 20,34,37. Therefore, L. 
plantarum is effectively a facultative heterofermentative species. 

In a homofermentative pathway (Fig. 2), glucose is metabolized to pyruvate. 
One mole of glucoses produces two moles of pyruvate. Pyruvate is then reduced 
with NADH to either L-lactate or D-lactate by L-lactate dehydrogenase or D-
lactate dehydrogenase, respectively. The two isomers are produced in equimolar 
amounts 20. Taking into account the sugar transport, the EMP pathway consumes 
two ATP, while producing 4 ATP, leading to a net production of 2 ATP. 
Regarding redox potential, NADH regenerated in the oxidation of 
glyceraldehyde-3-phosphate is converted to NAD+ when pyruvate is reduced to 
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lactate, and thus NAD+/NADH homeostasis is maintained in the 
homofermentative pathway. The presence of multiple copies of lactate 
dehydrogenase genes suggests the preference for pyruvate reduction into lactate 
in L. plantarum. However, pyruvate can also be converted into acetyl-CoA by 
pyruvate dehydrogenase and dihydrolipoamide dehydrogenase. Acetolactate 
synthase on the other hand can catalyze the formation of α-acetolactate from 
pyruvate 34. 

In the heterofermentative pathway, hexoses are first fermented into xylulose-
5-phosphate and ultimately into lactate, acetate, or ethanol through pentose 
phosphate pathway. Acetyl-phosphate is formed through phosphoketolase 
pathway, with either ethanol (from acetyl-CoA) or acetate as the final product. 
Acetyl-CoA is also used for fatty acid synthesis 38. 

 
Fig. 2. The homofermentative Embden–Meyerhof–Parnas (EMP) pathway (red 
arrows) and the heterofermentative pentose phosphate pathway (purple arrows) 
in addition to sugar alcohol utilization identified from L. plantarum. Adapted 
from 39–42. 

2.2.3 Sugar alcohol fermentation 

The sugar alcohols sorbitol and mannitol are transported to cell through D-ribose 
and sorbitol PTS, and this is present in most L. plantarum strains and closely 
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related species (L. pentosus and L. paraplantarum). After transfer into the cell, 
these sugar alcohols are fermented to pyruvate 39. When sugar alcohol 
fermentation was studied in strain L. plantarum NF92, in the early growth stages 
lactic acid was the main end-product. However, in the late growth stages, ethanol 
production was more pronounced as mannitol and sorbitol induced expression of 
aldehyde-alcohol dehydrogenase-encoding gene (adhE). Furthermore, it was 
observed that the expression was mediated through two DNA-binding regulators, 
AcrR (activator) and Rex (repressor).  

Excess NADH accumulation in the early growth stages from mannitol and 
sorbitol utilization removes Rex from its binding site, allowing expression of 
adhE, suggesting that ethanol production is activated to maintain NAD+/NADH 
homeostasis 39. Interestingly, AcrR was also a key expression factor for the 
ethanol tolerance of L. plantarum 43. Therefore, it is seems that in L. plantarum 
AcrR activates pathways related to ethanol production as well as mechanisms to 
protect the cell from the toxic effects of the ethanol. 

2.2.4 Di-, tri-, oligo- and polysaccharide metabolism 

L. plantarum can thrive in a variety of plant materials due to its ability to 
catabolize various more complex carbohydrates into monosaccharides (Table 1). 
L. plantarum is able to degrade lactose via β-glucosidase while maltose and 
trehalose are fermented by α-glucosidase 44. Sucrose, on the other hand, is 
metabolized by β-fructosidase, encoded by gene sacB 45. Glucosidases are also 
important enzymes in the modification of phenolic compounds (Section 2.5.3.1) 
and volatile precursors (Section 2.9). 

Genomic analysis of strain L. plantarum NCU116 revealed genes for α-
amylase, neopullanase, and α-glucan branching enzyme. As this strain was 
extracted from an environment rich in fermentable poly- and oligosaccharides 
(Chinese sauerkraut), it is plausible that the ability to ferment complex 
carbohydrates is beneficial for adaptation to this environmental niche 34. 
Degradation of complex carbohydrates improves digestibility of foods by 
removing fermentable di-, tri- and oligosaccharides that could otherwise cause 
gastrointestinal discomfort 46. 

2.3 Organic acid metabolism of L. plantarum 

2.3.1 Citrate and tartarate metabolism 

The first step of citrate metabolism is transport into the cell by an L. plantarum 
citrate transporter (CitP, lp_1022). The transporter protein has been registered as 
a divalent anion:Na+ symporter 41, meaning that the CitP uptakes deprotonated 
citrate with the concomitant uptake of a sodium ion 47.
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Next, citrate is converted into oxaloacetate and acetate. The reaction is 
catalyzed by citrate lyase, which consists of γ, β and α subunits encoded by citD, 
citE, and citF, respectively 48. In L. plantarum WCFS1, citrate lyase regulator 
(citR) and citrate lyase genes form a gene cluster citR-mae-citCDEF showing 
associated expression with malate dehydrogenase (mae) 20. 

Oxaloacetate is a substrate for various enzymes. One pathway is a 
decarboxylation of oxaloacetate to pyruvate via the Mae enzyme. Citrate 
fermentation can therefore in theory be utilized for energy production, as 
pyruvate can be converted to acetyl-CoA through pyruvate dehydrogenase 
complex, and subsequently to acetate, yielding 1 mole ATP per 1 mol of citrate. 
An oad gene, encoding an oxaloacetate decarboxylase was also identified in L. 
plantarum NCU116 34; this enzyme produces a Na+ gradient which could be used 
for cellular functions related to cytoplasmic membrane 49. 

In lactic acid bacteria, a significant portion of the metabolic flux of pyruvate 
is its reduction into lactate. However, in materials with an initially low pH or 
acidified by fermentation (due to release of lactate from glycolysis), pyruvate 
can be converted to neutral compounds acetoin, diacetyl and 2,3-butanediol 50,51 
in order to maintain internal pH homeostasis (Fig. 3). All three previously 
mentioned compounds contribute to the buttery and caramel notes 52. While 
pyruvate can be generated from various pathways and substrates, in wine MLF, 
accumulation of diacetyl and acetoin is associated with citrate metabolism. 
Therefore, the presence of citrate lyase genes is often screened from strains 
intended for wine MLF 53,54. In L. plantarum, the optimal pH range for citrate 
degradation and subsequent acetoin formation in synthetic wine medium was 
between pH 4–5. In addition, the presence of glucose inhibited acetoin formation 
from citrate while the presence of fructose induced it 48. 

In wines fermented with O. oeni diacetyl is the main component produced in 
the fermentation that contributes to the buttery notes 55. However, since L. 
plantarum lacks genes for the diacetyl reductase (butA) and the 2,3-butanediol 
dehydrogenase (butC) to produce diacetyl and 2,3-butanediol, respectively, the 
main end-product is acetoin (Fig. 3) 34,37. In food fermentations with L. 
plantarum, small amounts of diacetyl have been detected, most likely due non-
enzymatic oxidation of α-acetolactate. Diacetyl has a sensory threshold value of 
0.2–2.8 mg/L, while acetoin and 2,3-butanediol have a sensory threshold of 150 
mg/L and 600 mg/L, respectively 55. Therefore, it can be speculated that L. 
plantarum is a poor contributor to buttery notes compared to O. oeni in MLF. 

L. plantarum contains genes for a partial tricarboxylic acid cycle 56, which is 
relevant for citrate and malate metabolism (Fig. 3). Through this pathway, 
oxaloacetate can be reduced to malate, and further dehydrated and reduced to 
fumarate and succinate, respectively. L. plantarum have been reported to utilize 
this reductive pathway (citrate-to-succinate) to regenerate NAD+ in carrot juice 
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fermentation 35 while the pathway was down-regulated under salt stress 57. In 
addition, citrate metabolism was activated under ethanol toxicity 58. The missing 
pathways in the TCA cycle explains several amino acid auxotrophies of L. 
plantarum (see Section 2.8). 

 
 
 

 
Fig. 3. Citrate, malate and tartarate metabolism pathways in L. plantarum, in 
addition to pathways that lead to acetate and acetoin formation. Genes associated 
with the pathways are marked in green color. Pathways missing in L. plantarum 
are marked with a red cross, and thus the metabolites L. plantarum is unable to 
produce have gray font. Adapted from 34,37,40–42,56. For details of the enzymes and 
genes, see Supplementary Table S1. 

While citrate metabolism by wine bacteria and L. plantarum has been 
extensively studied, there is very little research on tartarate metabolism in L. 
plantarum. Nevertheless, genes for tartarate utilization have been identified from 
L. plantarum WCSF1 20. Tartarate shares the same entry point to citrate in 
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metabolism, as L(+)-tartaric acid is converted to oxaloacetate by tartarate 
dehydrases (ttdAB) (UniProt accession numbers F9UMQ6 and F9UMQ5, 
respectively). Tartarate is transported into the cytoplasm via tartarate transport 
protein (ttdP) (accession number: F9UMQ3). 

2.3.2 Quinic acid metabolism 

Quinic acid metabolism in L. plantarum was first established in the 1970s by 
Whiting and Coggings 59–61 (Fig. 4). It was discovered that quinic acid can be 
metabolized through two separate pathways, in both of which 3-dehydroshikimic 
acid is the intermediate. Dehydration of 3-dehydroshikimic acid ultimately 
yields catechol, referred to as the oxidative pathway as the NADH generated 
upstream is not consumed. The second pathway yields 3,4-dihydroxy-
cyclohexane-1-carboxylic acid as the end-product. As the pathway generates a 
surplus of NAD(P)+, it has been referred to as the reductive pathway. Enzymes 
and genes related to this pathway are yet to be characterized. 

 
Fig. 4. Quinic acid metabolism in L. plantarum. Adapted from 35,60. For details 
of the enzymes (green font) and genes, see Supplementary Table S1. 
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heterofermentive bacteria the ability to utilize alternative electron acceptors, 
such as hydroxycinnamic acids, allows increased ATP production from the 
conversion of acetyl phosphate to acetate 62. Additionally, shikimic acid 
produced in the metabolism of quinic acid can also serve as precursor for the 
biosynthesis of aromatic amino acids 35. 

2.3.3 Malolactic fermentation (MLF) 

L-Malic acid is transported into cell through C4-dicarboxylate permease 
(mleP123), which is induced by L-malate. In L. plantarum, unlike in many other 
malolactic bacteria, mleP is not downregulated by glucose 63. MLF is regulated 
by the MleR 64. 

In L. plantarum, MLF can occur through three separate pathways. First 
pathway is reduction and decarboxylation of malate to pyruvate via malate 
oxaloacetate-decarboxylating malate dehydrogenase (mae, MAE pathway), 
often referred as the ‘malic enzyme’. Pyruvate can in turn be converted to D- or 
L-lactate. However, similar to citrate metabolism, pyruvate can be utilized for 
ATP production through mixed acid fermentation 37. As the name suggests, the 
same enzyme also converts oxaloacetate to pyruvate, and is therefore also 
relevant in citrate metabolism. 

The second pathway, same as previously mentioned, is the conversion of 
malate to pyruvate, but through a different mechanism. Here malate is first 
reduced to oxaloacetate by malolactic dehydrogenase (encoded by mdh), 
followed by decarboxylation to pyruvate. While this activity is typically 
associated with the heterofermentative Lactobacillus species, such as L. 
fermentum, some but not all L. plantarum strains also possess a gene for this 
pathway 34,37. The third pathway is a direct decarboxylation of L-malate to L-
lactate in a Mn2+- and NAD+-dependent reaction by so-called ‘malolactic 
enzyme’, encoded by mleS in L. plantarum (referred here-on-out as the MLE 
pathway) (Fig. 3 and Fig. 5). The exact catalytic mechanism of this single-step 
decarboxylation of the malolactic enzyme remains to be elucidated. 

Earlier it was thought that MLE produces no ATP as there is a lack of substrate 
level phosphorylation but is rather utilized for de-acidification of the growth 
medium 65. However, in O. oeni the MLE system was downregulated in H+-
ATPase deficient mutants, suggesting that in O. oeni MLF is primarily associated 
with metabolic energy production 66. 

In L. plantarum an electrochemical system for ATP production via the MLE 
system has been suggested earlier (Fig. 5) 63. At an optimal pH range for MLF 
(pH 3.5–4.5) 63 the majority of L-malic acid is in monoanionic form (pKa1 = 3.40, 
pKa2 = 5.20). At high malate concentrations, malate(−1) (MAL−) enters the cell 
through diffusion by a malate transporter (MleP). Next, MleS decarboxylates the 
non-α-hydroxy acid group of the malate. Being the carboxylic group that is 
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predominately disassociated at the cytoplasmic pH of L. plantarum, a proton is 
consumed in the process. As lactic acid has pKa of 3.86, at cytoplasmic pH the 
end-product is predominately lactate(−1). Efflux of negatively charged 
lactate(−1) forms the basis of an electrochemical gradient (i.e., proton motive 
force), which in turn enables ATP production by H+-ATPase. In this way 
metabolic energy is produced while maintaining intracellular pH 63. 

Typically, the MLE system is presented with MAL− as the main substrate. 
However, due to higher pH in the cytosol compared to the extracellular space, 
MAL− is, to a large extent, further disassociated to a malate(−2) (MAL2−) and a 
proton. Recently, it was observed that for the O. oeni malolactic enzyme, MAL2− 
is the preferred substate, followed by MAL− and L-malic acid, respectively 67. 
However, no such investigations exist regarding the MleS of L. plantarum. The 
end-product of MleS is lactate(−1) when the substrate is MAL2− and lactic acid 
when the substrate is MAL− or malic acid. If energy production from MLE is as 
Olsen et al. 63 suggested, then it makes no difference whether the substrate is 
MAL− or MAL2−, since the proton released from disassociation of lactic acid or 
MAL−, respectively, is consumed by MleS during decarboxylation. Therefore, a 
more significant role is played by the transportation of L-malic acid (MleP), and 
only the intake of deprotonated forms of L-malic acid would allow energy 
production. In this context, at a very low pH (<3.0), where protonated L-malic 
acid is the predominant form, in theory, the system would become electroneutral 
and would no longer produce ATP. On the other hand, at a higher pH the MLE 
system becomes less effective as well, potentially due to reduced ability to intake 
L-malate. 

 
Fig. 5. Putative electrochemical mechanism of metabolic energy generation from 
the MLE pathway in L. plantarum at a high L-malic acid concentration (> 5 mM) 
63. MleP, L-malate transporter; MleS, malolactic enzyme of L. plantarum. 
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The ATP generating mechanism varies between different bacterial species. In 
L. lactis, MLE utilizes an anion exchange symport, i.e. the intake of malate with 
a simultaneous efflux of lactate 68. In some species MLE pathways exists but 
contributes little to ATP production. For example, in Lactobacillus casei 
inactivation of the MLE pathway increased growth rate by increasing the 
metabolic flux to the MAE pathway. This suggests that in L. casei the MLE 
pathway is utilized for de-acidification 69. 

2.4 Volatile and phenolic ester metabolism in L. 
plantarum 

2.4.1 Classification of esterases and lipases 

This section focuses on a discussion of the relevant genes and enzymes present 
in L. plantarum responsible for hydrolysis and the formation of esters. Small 
volatile esters are important class of odor compounds in wines, fruits, and berries 
70, and thus enzymes that affect these compounds are relevant for flavor 
modification during fermentation. Non-volatile phenolic compounds, such as 
phenolic acids, flavonols and tannins, are responsible not only for the bitter and 
astringent characteristics of wines and plant materials but also for the health 
properties, which are often connected through ester bonds to sugars, alkyl chains 
and other acyl groups. Such compounds include chlorogenic acid, an ester of 
caffeic acid and quinic acid. Therefore, esterases able to hydrolyze phenolic 
compounds, such as tannases, are important in fermentation of plant materials 
for the modification of functional and flavor properties. 

Esterases can be divided to several classes based on the substrate specificity. 
Carboxylesterases hydrolyze water-soluble and short-to-medium-length 
aliphatic esters, while arylesterases hydrolyze aromatic esters. Lipases, on the 
other hand, tend to show high activity with long-chain, fat-soluble esters. Both 
esterases and lipases belong to the α/β hydrolase enzyme superfamily with 
shared catalytic mechanisms for both ester hydrolysis and formation 71. 

2.4.2 Acyl transferases and reverse esterases 

Various reverse esterases and acyl transferases of fermenting yeasts are 
important drivers for wine and beer flavor 72. Chemical analyses have shown that 
malolactic bacteria O. oeni and L. plantarum can facilitate the formation of esters, 
including the formation of ethyl lactate or diethyl succinate 73,74. However, no 
specific enzymes have been characterized from L. plantarum with acyl 
transferase or reverse esterase activities. Cell-free extracts of O. oeni showed 
reverse esterase activity by forming ethyl esters of octanoic, butanoic, and 
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hexanoic acids. In the same study, cell-free extracts of L. plantarum produced 
moderate amounts of ethyl hexanoate. 75 

2.4.3 Carboxylesterases, arylesterases, and lipases 

Genomic studies have revealed various esterases from L. plantarum (Table 2). 
These include carboxylesterases (Cest-2923, Lp_2631), arylesterases (Lp_1002), 
lipases (Lp_3562, Lp_1760), and feryol esterases/tannases (Est_1092, TanA, 
TanB). In general, esterases and lipases of L. plantarum prefer acetates and 
butyrates as substrates (Fig. 6). Arylesterases and carboxylesterases prefer 
shorter alkyl chains, while lipases retain higher activity with more lipophilic 
esters, especially Lp_1760. Indeed, Lp_1760 is among the few lipases of L. 
plantarum with high activity on tributyrin. While this is typically relevant in 
dairy and especially in cheese fermentation, in plant materials with high lipid 
content, such as sea buckthorn or avocado, this lipase might become significant. 

Esterases with the potential to hydrolyze small water-soluble aliphatic esters 
identified in L. plantarum include Lp_0796, LpEst1 and Lp_1002. Apart from 
isobutyl acetate, Lp_1002 had activity with all aliphatic esters within the test 
library, showing wide substrate specificity (Fig. 6). In addition, Lp_1002 retains 
its activity better compared to other esterases at acidic conditions (Fig. 6). 
Therefore, arylesterase Lp_1002 has characteristics that emphasize its relevance 
in the MLF of wine or fruit materials with high acidity. However, it is not clear 
if lp_1002 is a common gene within species and strains belonging to the genus 
Lactiplantibacillus. 

2.4.4 Feryol esterases and tannases 

Relevant to the hydrolysis of hydroxycinnamic acid esters is the fact that gene 
lp_0796 encodes a feruloyl esterase commonly present in L. plantarum 76. 
Furthermore, an uncommon feruloyl esterase/tannase gene est_1092 was 
detected in seven strains of L. plantarum out of the 28 tested. Esterase Est_1092 
was capable not only of hydrolyzing all the tested HCA esters, but also all the 
tested hydroxybenzoic esters and gallotannins, showing a very broad range of 
hydrolytic activity with various phenolic esters (Fig. 7). While the lp_0796 
expression level was not affected by methyl ferulate or methyl gallate, 
expression of est_1092 was induced by the former and inhibited by the latter 77. 
Est_1092 also maintains a relatively high activity in acidic conditions, meaning 
that it retains activity even at low pH fermentations (Fig. 6). While L. plantarum 
have shown the ability to hydrolyze caffeyolquinic acids (i.e., chlorogenic acids), 
no enzyme that is able to hydrolyze the compound effectively has been detected. 
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Besides Est_1092, two tannase genes tanBLp (also known as tanLp1 or 
lp_2956) and tanALp have been identified in L. plantarum. tanBLp hydrolysed 
only substrates with at least two phenolic groups. 

Moreover, the esterified COOH group must be on oxidized benzene ring, and 
must not be in an ortho position to one of the OH rings (Fig. 7). In accordance 
with this, chlorogenic acid, ellagic acid, quercetin, catechin, epicatechin, 
epigallocatechin were resistant to tanLp1 84. While tanBLp is commonly present 
in L. plantarum and in related species (such as L. paraplantarum and L. pentosus) 
85, tanALp was detected only in certain strains of L. plantarum 83. Additionally, 
tanBLp was inducible by methyl gallate, while expression of tanALp was not 
affected by the presence of a substrate. Moreover, tanALp was detected to be an 
extracellular enzyme while tanBLp was considered to be an intracellular enzyme 
83–85. 

While both Est_1092 and tanBLp possess ability to hydrolyze gallic acid and 
protocatechuic acid esters, due to differences in the expression pattern in the 
presence of methyl gallate, and the gene being common in L. plantarum, it is 
likely that tanBLp is among the relevant genes of L. plantarum responsible for 
metabolism of hydroxybenzoic acid esters. 

2.5 Phenolic acid metabolism in L. plantarum 

2.5.1 Hydroxybenzoic acid metabolism  

The main enzyme in L. plantarum that detoxifies hydroxybenzoic acids has been 
identified as thr gallate decarboxylase encoded by lpdBCD (Fig. 8). LpcC was 
identified as the catalytic unit, while the role of LpdB is to generate prenylated 
flavin mononucleotide cofactor for LpcC. The role of LpdD has not been 
established. Expression of lpdBCD was inducible by its substrate, gallic acid 88. 
The gallate decarboxylase of L. plantarum had activity with only gallic acid and 
protocatechuic acid, yielding pyrogallol and catechol, respectively 88,89. This 
suggests that that OH-group in both para- and meta-positions are required for 
the LpdC. For example, p-hydroxybenzoic acid was not metabolized by L. 
plantarum CECT 748T 89. This is in accordance with L. plantarum esterase and 
tannase activities, which have shown preference with gallates and 
protocatechuates (Fig. 7). 

Interestingly, gene for the catalytic unit lpdC and gene encoding inducible 
tannase tanBLp, which catalyzes hydrolysis of gallotannins, are only 6.5 kB 
distant from each other, which suggested concomitant activity 90. This was 
confirmed when a more in-depth understanding of the transcriptomic response 
of L. plantarum to gallate exposure was determined by 90. It was observed that if 
gallic acid content is substantial enough, gallic acid that enters the L. plantarum 
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cell is bound to the TanR protein. This complex in turn binds to the DNA and 
works as a transcriptional factor to induce expression of lpdBCD, tanR, gacP 
(gene for gallate and pyrogallol transport protein), and tanBLp to effectively 
convert gallate to pyrogallol and subsequently remove the latter from the 
intracellular space 90. 

 
Fig. 8. Genomic response to the gallate exposure in L. plantarum to counter 
hydroxybenzoic acid toxicity. Adapted from 88,90. For details of the enzymes and 
genes, see Supplementary Table S1. 

2.5.2 Hydroxycinnamic acid metabolism 

Hydroxycinnamic acids (HCA) are a class of phenolic acids with 3-phenylprop-
2-enoic acid backbone combined with at least one hydroxyl group in the aromatic 
ring, commonly found in fruits, vegetables, coffee, and tea 91. L. plantarum can 
metabolize several HCA either by decarboxylation or by reduction of the side-
chain double bond (Fig. 9). 

The most defined decarboxylase of HCAs in L. plantarum is the p-coumaric 
acid decarboxylase (pdc, lp_3665 or LpPDC) 92. As the name suggests, the main 
substrate is p-coumaric acid (p-CA). The pdc gene is inducible by p-CA 93,94. 
Many HCAs, including p-CA, are toxic to L. plantarum due to the disturbance 
to the lipid bilayer 95. Therefore, it can be speculated that the high toxicity of p-
CA to L. plantarum has created evolutionary pressure to generate effective 
detoxification pathways. Besides p-CA, LpPDC has showed activity equal to p-
CA with caffeic acid. However, depending on the conditions, LpPDC has little 
or no activity with ferulic acid 92,94. Additionally, m- and o-coumaric acids are 
not substrates for this enzyme 92. Therefore, it has been concluded that the 
hydroxyl group in the para-position is necessary for LpPDC. On the other hand, 
reduced hydroxycinnamic acids (e.g. phloretic acid) are not substrates of LpPDC, 
indicating that the double bond in the side chain is also relevant for the activity 
89.  
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Since the knockout mutant of the pdc gene still weakly decarboxylated p-CA 
and ferulic acid, it was reported that another HCA decarboxylase system besides 
LpPDC exists in L. plantarum. Additionally, this system was induced better by 
ferulic acid than p-CA.98 

Besides decarboxylation, the double bond in the side chain of HCA and vinyl 
phenols can be reduced by the enzymes HcrAB and VprA, respectively. HcrAB, 
compared to LpPDC, has a wider number of identified substrates 96. HCA 
reductase activity is not commonly present in lactic acid bacteria; however, it 
seems to be a common trait among L. plantarum. While phenolic acid 
decarboxylases are important to detoxify phenolic acids, the suggested main 
function of phenolic reductases is to regenerate NAD+ 96,97. In optimal growth 
conditions (i.e., in MRS medium), the main metabolites of p-CA and caffeic acid 
by strain L. plantarum TMW 1.460 were vinyl phenol and vinyl catechol, 
respectively, while the main metabolite of ferulic acid was dihydroferulic acid 95. 

Vinyl and ethyl phenols are volatile compounds, and in addition, 4-vinyl 
guaiacol, 4-ethyl guaiacol, 4-vinyl phenol, and 4-ethyl phenol are also aroma-
active 52. While volatile phenols are often considered off-odors and a sign of 
Brettanomyces spoilage in wines 97, 4-vinyl guaiacol is an important compound 
in certain wheat beers to generate “clove”-like aroma 99. 

2.5.3 Other metabolic routes of phenolic modification 

2.5.3.1  Glycosidases 

In berries and fruit, the majority of phenolic compounds such as flavonols and 
flavan-3-ols are naturally present as glycosides 100. Therefore, these compounds 
are potential targets for enzymes related to carbohydrate metabolism, especially 
glycosidases (Fig. 10). 

When glycosidic activity was compared among 20 strains of L. plantarum, all 
the tested strains were able to release β-D-glucose, α-D-glucose, and β-D-
galactose from p-nitrophenol, while lacking activity on glycosides with β-D-
fucose, β-d-xylose and β-D-rhamnose as the sugar moiety. The activity was 
associated with aryl glycosidase lp_3629. Besides p-nitrophenols, β-D-
glycosidic bond of esculin, phloridzin, and quercetin-glycoside were hydrolysed 
101. While no activity on β-D-rhamnoside was detected in the previous study, 
genes encoding two α-rhamnosidases (rhaB1 and rhaB2) have been identified 
from L. plantarum 102. Both enzymes showed preference to the α-1,6-linkage of 
L-rhamnose to β-D-glucose. Therefore, phenolics with rutinose as sugar moiety 
are potential targets. It was found that rutin (quercetin-rutinoside) and hesperidin 
(hespertin-rutinoside) were most affected 102. Rutin is among the most common 
flavonol glycosides in fruits and berries 100, and therefore, depending on substrate 
availability, this enzyme potentially has great significance in flavonol 
transformation of plant material when fermented with L. plantarum.  
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In theory, the activity of RhaB1B2 could be complemented by Lp_3629, as 
the removal of α-rhamnose transforms the compound from rutinoside to β-D-
glucoside, and thus becomes a potential substrate for glycosidase Lp_3629, 
leading to the formation of a phenolic aglycone. 

However, in the fermentation of fruit materials, flavonol glycosides and other 
potential substrates of microbial glycosidases often remain largely unaffected 103. 
For example, β-glucosidase-catalyzed bioconversion of anthocyanins was 
reduced by 65 % in the presence of residual sugar 104. Recently, it was observed 
that the β-glucosidase activity of L. plantarum UNQLp 11 was reduced by low 
pH (3.2 vs. 3.8), but induced by high ethanol content 105. In addition, L. 
plantarum β-glucosidases were inhibited by low pH, ethanol, and sugars 33. 
These factors together (i.e., low ethanol content, high sugar content, and low pH) 
could explain why phenolic glycosides are poorly metabolized by L. plantarum 
in non-alcoholic fruit material. 

2.5.3.2 Benzyl alcohol dehydrogenase 

While uncommon in lactic acid bacteria, the gene for benzyl alcohol 
dehydrogenase enzyme (lp_3054) was identified from L. plantarum WCFS1 by 
Kleerebezem et al. 20. Later, the lp_3054 protein was genetically and 
biochemically characterized by Landete et al. 106. As aromatic alcohols are 
important odor compounds, Lp_3054 is a potential enzyme for flavor 
modification to reversibly oxidize benzyl alcohols to aldehydes with almond, 
green and grain odors. The enzyme can also reduce cis- and trans-geraniol (floral 
aromas) to citral A and citral B with a citrus aroma, respectively (Fig. 11). 

 
Fig. 11. Substrates and products of the benzyl alcohol dehydrogenase (Lp_3054) 
106 and the typical odor descriptor of each compound 52. 

OH

Benzyl alcohol

H

O

Benzaldehyde

OH

Phenylethylalcohol

Phenylethylaldehyde

H

O

OH

cis-Geraniol

OH

trans-Geraniol

O

Citral A

O

Citral B

OH

Cinnamyl alcohol

H

O

Cinnamaldehyde
HO

O
H

O

Coniferyl aldehyde

HO

O
OH

Coniferyl alcohol

🌸 🌸

🍋 🍋

🌸 🌸 🌸

🍏

🌾

🌸 Floral Grain Almond Green Cinnamon Citrus🌾 🍏 🍋
Odor descriptor

NAD+

NADH

NAD+

NADH

NAD+

NADH

NAD+

NADH

NAD+

NADH

NAD+

NADH

Lp_3054

Review of the Literature



 

25 

2.6 Protein and amino acid metabolism in L. plantarum 

2.6.1 Metabolism of poly- and oligopeptides 

Protein catabolism is important for growth and function of micro-organisms, 
providing cells nitrogen and energy source as well as the essential amino acids 
the organisms are unable to produce themselves. Amino acids, whether derived 
from proteins and peptides or de novo synthesized by L. plantarum, however, are 
not only relevant as building blocks for enzymes and proteins, but also 
metabolized through various pathways into biogenic amines (Section 2.6.3), 
various odor compounds (Section 2.6.2) or antifungal compounds (Section 
2.6.5). In addition, peptides, and amino acids, derived from proteolytic activity 
of lactic acid bacteria, have various flavor properties of their own. Therefore, 
understanding proteolytic systems and nitrogen metabolism of the fermentation 
organism is relevant not only for optimizing the biomass production or 
fermentation efficiency, but also for understanding or even predicting changes 
in the chemical composition and flavor properties of the raw material. 

The first step in protein metabolism is to break down the polypeptide chain to 
smaller oligo-, tri and dipeptides with extracellular proteases. However, within 
the genus Lactobacillus, the gene for protease (such as PrtP or PrtM) is absent in 
most species, including L. plantarum 20,37,107. While generally lacking the gene 
for catabolizing large polypeptides, Lactobacillus plantarum has an effective 
peptide transport systems 107,108. Genomic analysis revealed that oligopeptide 
ABC transporters (OppABCDF) common in Lactobacillus were detected in L. 
plantarum 80, a strain isolated from spontaneous cocoa bean fermentation 37. On 
the other hand, the OppABCDF system was missing from the strain L. plantarum 
strain WSCF1. However, copies of multiple di/tripeptide ABC transport systems 
(DppABCDF) were detected in this strain 107. In addition to the before mentioned 
peptide transporters, a di/tripeptide ion-linked transporter (DtpT) was present in 
66 of 71 tested L. plantarum strains 108. 

Once inside the cell, peptides are hydrolyzed with an array of different 
peptidases. Several classes of peptidases, including aminopeptidases (pepC, 
pepM), endopeptidases (pepO), tripeptidase (pepT), and several proline 
peptidases (pepI, pepX) were found commonly present in L. plantarum 37,108. 
From all tested peptidase genes, strain L. plantarum WSCF1 was only missing 
genes for PepA and Pcp, which hydrolyze Glu-Asp and dipeptides containing 
pyroglutamic acid, respectively 107. 

While lactic acid bacteria and L. plantarum thrive in nutrient rich materials, 
L. plantarum WCFS1 has pathways for the biosynthesis of most of the amino 
acids. However, pathways for the branched chain amino acids (BcAA) valine, 
leucine and isoleucine were absent (Table 3) 20. While L. plantarum contains 
pathway to produce the precursors required for BcAA biosynthesis, pyruvate and 
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acetolactate, the fact that it is missing the genes (ilvC and ilvD) required for 
conversion of acetolactate to the necessary α-ketoacids seems to be the cause of 
the auxotrophy 109. In accordance with this, several genes for BcAA transporters 
were detected in genome of L. plantarum WCFS1 20. 

Glutamate auxotrophy is a common, even universal, trait among lactic acid 
bacteria. While L. plantarum possess a partial TCA cycle (Fig. 3), it is unable to 
produce the necessary precursor α-ketoglutarate 110. L. plantarum WCFS1 
contains four complete glutamine transport systems, which suggests that 
glutamine transport is important for regulating nitrogen metabolism 20. 

Table 3. Growth rate of L. plantarum in a minimal medium when amino acids 
are omitted, in addition to the potential precursors in biosynthesis. 
  Growth when omitted  

Amino acid 
Morishita et 
al. 1981111 

Teusink et 
al. 2005110 

Putative precursors in 
biosynthesis34,37,110,111 

Alanine +* 95** Pyruvate (glycolysis), asparate 
Asparagine +  Asparate 
Glycine + 68  

Asparatic acid + 110 Oxaloacetic acid (TCA) 
Proline + 104 Arginine, ornithine 

Serine + 95 
3-Phosphoserine, 3-
phosphohydroxypyruvate 

Phenylalanine - 44 
Chorismate (shikimate pathway), 
phenylpurvate 

Lysine + 105  

Tyrosine +/- 70 
Chorismate (shikimate pathway), 
hydroxyphenylpuryvate 

Threonine + 98 Asparate, homoserine 
Isoleucine - 23  

Tryptophan - 20 Chorismate (shikimate pathway), indole 
Arginine  2  

Glutamatic acid - 1 α-Ketoglutarate 
Glutamine +   

Leucine - 3  

Valine - 4  

Histidine + 93 Ribose-5-phosphate, histinidol 
Cysteine + 92 Sulfite, sulfide, serine 
Methionine - 41 Aspartate, cystathionine, homocysteine 

* Plus-symbol means improved growth and minus-symbol means reduced 
growth. 

** Growth rate in percentage compared to optimal conditions (100% at optimal).  
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2.6.2 Metabolism of amino acids to flavor compounds 

Amino acid metabolism provides an energy and nitrogen source for the cell. 
These metabolic pathways produce aroma-active compounds that are relevant to 
the flavor of fermented foods, especially of protein rich foods such as cheeses. 
Many amino acids, dipeptides, and tripeptides have inherent taste properties 
ranging from sweet to bitter and to umami and kokumi 112. However, due to the 
lack of enzymatic activity to breakdown polypeptides, in fermentations using L. 
plantarum, catabolism of oligopeptides to amino acids and to further 
downstream compounds are the most relevant pathways in terms of modifying 
the flavor of the raw material. 

One pathway for amino acid metabolism is transamination, where the amino 
group is transferred from an amino acid to α-ketoacid, yielding a new amino acid. 
In L. plantarum enzymes for transamination of BcAAs (BcAT, AsAT) and 
aromatic amino acids (ArAT) have been identified, where the amino acid yielded 
is glutamate from α-ketoglutarate. Ketoacids from BcAAs are precursors of 
various flavor-active alcohols, aldehydes, and carboxylic acids (Fig. 12, Table 
4). In addition, non-enzymatic, Mn2+-dependent formation of benzaldehyde 
(almond-like aroma) from phenylpyruvate, α-ketoacid of phenylalanine, was 
observed in L. plantarum LcL1. As large intracellular Mn2+ pool is required for 
the reaction, this pathway is specific to L. plantarum 113. 

As pyruvate and oxaloacetate also possess the α-ketoacid structure, it has been 
proposed that α-ketoacids from BcAA are potential substrates for lactate, malate, 
and pyruvate dehydrogenases. In addition, in Lactococcus lactis, a D-2-
hydroxyacid dehydrogenase with specific activity on BcAA α-ketoacids (PanE) 
has been identified 114. While substrate specificity is yet to be determined, it has 
been speculated that L. plantarum could transform BcAA α-ketoacids into 
methyl propanoic and methyl butanoic acids through a pyruvate oxidation 
pathway; the typical activity of this pathway is to convert pyruvate into acetyl-
CoA. An alternative pathway is through keto-acid decarboxylase (KDC) yielding 
aldehyde which is in turn oxidized to carboxylic acid by aldehyde dehydrogenase 
(Fig. 12). While 115 reported no copies of the KDC gene in L. plantarum WCFS1, 
activation of KDC pathway on BcAA ketoacid metabolism was suggested by 50 
in fermented plant material. Alternatively, aldehyde produced via KDC enzyme 
can be reduced to the corresponding alcohol with NADH by alcohol 
dehydrogenase. Moreover, if the fermenting organism produces esterase with 
alcohol or acyl transferase activity (such as EstA), the carboxylic acids and 
alcohols formed through BcAA metabolism will provide potential substrates to 
ester biosynthesis (ester hydrolysis and formation is discussed in Section 2.6). 
Aldehydes from BcAA typically have an aldehydic aroma with chocolate notes, 
while alcohols in turn have a fermented or whiskey descriptor (Table 4).  
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Table 4. Typical odor descriptors of odor compounds derived from the free 
amino acid catabolism of L. plantarum 52. 

Precursor Product Odor descriptor 
Cysteine Dihydrogensulfide Rotten egg 
Isoleucine 2-methyl butanal  Chocolate, cocoa, coffee 
Isoleucine 2-methyl butanoic acid  Cheesy, dairy, fatty, fruity 
Isoleucine 2-methyl-1-butanol  Roasted, onion, fruity, whiskey 
Leucine 3-methyl butanal  Aldehydic, chocolate, peach 
Leucine 3-methyl butanoic acid  Acidic, fruity, dirty, cheesy 
Leucine 3-methyl-1-butanol  Fermented, whiskey, fruity, banana 
Methionine Methional Vegetable, potato, earthy 
Methionine, cysteine Dimethyldisulfide Sulfurous, cabbage, onion 
Methionine, cysteine Dimethyltrisulfide Alliaceous, sulfurous 
Methionine, cysteine Methanethiol Sulfurous, cabbage, garlic 
Phenylalanine Benzaldehyde Fruity, bitter, almond, cherry  
Phenylalanine Phenylacetic acid Honey, sweet, floral  
Valine 2-methyl propanal  Aldehydic, fresh, herbal 
Valine 2-methyl propanoic acid  Acidic, sour, cheese, dairy 
Valine 2-methyl-1-propanol  Ethereal, whiskey 

BcAA-derived carboxylic acids have acidic and cheese aromas and are 
relevant flavor compounds in cheeses 112. 

In addition to transamination of BCAA, other metabolic pathways of amino 
acid metabolism can be considered relevant for flavor formation in fermentation 
with L. plantarum. Serine (through dehydration and deamination), and asparate 
and alanine (through transamination) are potential precursors for pyruvate. In 
addition, threonine, a potential precursor for pyruvate and acetaldehyde, was 
proposed to be metabolized by L. plantarum through the same metabolic 
pathways as serine 37. However, while serine was metabolized by L. plantarum 
B3089 to ammonia, acetate and formate, no threonine catabolism was detected 
121. 

Metabolism of sulfur-containing amino acids (methionine, cysteine) produce 
compounds with cabbage, onion, and sulfurous notes. To form these compounds, 
methionine is converted first to MeSH which in turn works as precursor for 
various volatile sulfides. However, no copies for the gene of the enzyme 
particularly catalyzing this reaction, methionine γ-lyase, exist in L. plantarum. 
Instead, cystathione β/γ-lyase can also catalyze this reaction, but less effectively 
115,119. It was observed that the main pathway for methionine modification in L. 
plantarum was transamination to 4-methylthio-2-ketobutanoate (KMBA) and 
further reduction to 4-methylthio-2-hydroxybutanoate (HMBA) 119. Even 
lacking methionine γ-lyase activity, L. plantarum was reported to produce sulfur 
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volatiles 117. Therefore, it is possible that the sulfur compounds are formed due 
to the non-enzymatic reactions of HMBA and KMBA in the presence PLP. 

Volatile sulfides were also produced also in the presence of cysteine, 
suggesting conversion of cysteine to methionine via cysthathionine 117. 
Interestingly, while O-succinyl-homoserine is typically presented as co-substrate 
along with cysteine for cystathionine γ-synthase 120, this compound requires 
succinyl-CoA in its biosynthesis; the current assumption is that L. plantarum is 
unable to produce this compound 56. Instead, in L. plantarum, an alternative 
substrate for cysteine to methionine conversion could be O-acetyl-homoserine. 

Formation of N-heterocycles with a mouse-like odor by L. plantarum from L-
lysine and L-arginine is discussed in Section 2.8.4. 

2.6.3 Metabolism of amino acids to biogenic amines and ethyl 
carbamate 

As discussed in the previous section, amino acid metabolism is important for 
flavor formation in certain lactic acid fermented foods. However, food-grade 
lactic acid acid bacteria are known to produce unwanted, even toxic compounds, 
i.e., ethyl carbamate and biogenic amines. The former is especially related to 
arginine metabolism and is formed in a reaction between ethanol and N-carbamyl 
compounds such as carbamyl phosphate and citrulline 122. Biogenic amines on 
the other hand are a product of decarboxylation of amino acids arginine, tyrosine, 
histidine, lysine, and ornithine (Fig. 13). While ethyl carbamate is a known 
carcinogen due to covalently binding to DNA, biogenic amines have an array of 
undesirable biological activities 123 

While L. plantarum strains often possess genes for amino acid 
decarboxylation, an accumulation of toxic levels of biogenic amines is usually 
due to contamination of for example Enterobacteriaceae or food-borne 
pathogens 124. Biogenic amine formation by spoilage micro-organism can be 
either induced or inhibited by the starter culture L. plantarum depending on the 
strain 125. In general, availability of the substrate amino acid, spontaneous 
fermentation, and acid stress or glucose depletion (i.e. conditions that promote 
amino acid utilization) induce biogenic amine formation, while salting seems to 
inhibit formation of biogenic amines by either preventing growth of biogenic 
amine-forming bacteria or directly inhibiting amino acid decarboxylase enzymes 
126,127. However, more frequently toxic levels of biogenic amines are related to 
poor manufacturing practices rather than suboptimal fermentation conditions 125. 

Lack of biogenic amine formation is an important characteristic for wine 
malolactic starter, and thus this characteristic is often determined when new wine 
MLF starters are screened 53.  
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While for wine MLF formation biogenic amines and ethyl carbamate 
precursors are undesirable, in sourdough fermentation, accumulation of ornithine 
is desirable as it is a precursor of 2-acetyl-1-pyrroline, which is an important 
flavor compound in bread 134.  

Depending on the strain, L. plantarum can be a source of biogenic amines, 
especially tyramine and histamine 135. However, some strains L. plantarum have 
the ability to degrade biogenic amines. When 26 L. plantarum wine isolates were 
screened, two isolates, NDT09 and NDT16, showed substantial degradation of 
tyramine and putrescine, respectively 136. An enzyme with the ability to degrade 
biogenic amines via oxidation was isolated from strain J16 CECT 8944 and 
identified as a laccase (multicopper oxidase) by Callejón et al. (Fig. 13) 137. 
Potential biogenic amine degrading candidates, namely 10 amine oxidase 
enzymes were identified from L. plantarum CAU 3823. These were identified as 
different amine and monoamine oxidases 138. In addition, a putative histamine 
degrading glyceraldehyde-3-phosphate dehydrogenase was isolated from L. 
plantarum PP02 139.  

In relation to fermentation of acidic materials, such as berries or sour fruits, 
the increased acidity tolerance in L. plantarum has been associated with 
enhanced amino acid utilization as an alternative energy source and to maintain 
pH homeostasis 140. However, utilization of such strains for fermentation has 
potentially increased the risk of biogenic amine accumulation. A potential 
solution could be to co-inoculate the raw material with biogenic amine degrading 
strain to avoid accumulation of these toxic compounds during fermentation. 

2.6.4 Metabolism of amino acids to N-heterocycles 

N-heterocycle contamination is not a common issue in the MLF of wines, but 
when it occurs, it renders the wine unpalatable by producing a mouse-like off-
odor in the wine. The most common ones detected in wines are 2-
ethyltetrahydropyridine (ETPY), 2-acetyltetrahydropyridine (ACTPY) and 2-
acetyl-1-pyrroline (ACPY) (Fig. 13). Comparison of various lactic acid bacteria 
revealed that heterofermentive Lactobacillus produce higher amounts of these 
compounds compared to Oenococcus spp. and Pediococcus spp. Among 
Lactobacillus, facultative homofermentive L. plantarum L11a produced 
detectable yet low amounts of all previously mentioned N-heterocycles, linking 
formation of these compounds to sugar catabolism 129. A later study presented a 
putative synthesis pathway to N-heterocycles (Fig. 13), where L-lysine was 
suggested as precursor for ETPY and ACTPY and L-ornithine for ACPY. 
Acylation group was proposed to be ethanol and acetaldehyde, produced from 
glucose or fructose via phosphoketolase pathway, explaining why N-
heterocycles were produced in higher amounts in heterofermentive Lactobacillus 
compared to homofermentive species within the same genus 129. Furthermore, 
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presence of ferrous ions was recognized as important for the reaction to initiate. 
Other risk factors were residual sugar or stuck fermentation, high pH, minimal 
sulfite content and moderate temperature (20–30 °C) 130. 

While food fermentations with L. plantarum seem to have a low risk for N-
heterocycle contamination, there are clear risk factors that should be considered. 
Firstly, the presence genes of arcA and arcB in the L. plantarum strain that allow 
conversion of arginine to L-ornithine 133; Secondly, an environment that 
increases the metabolic flux to heterolactic pathways of L. plantarum (for 
example, high content of sugar alcohols 39); Thirdly, the risks mentioned above, 
as identified by 130. 

2.6.5 Metabolism of amino acids to antifungal compounds 

Multiple antifungal compounds produced by L. plantarum have been identified, 
such as phenyllactic acid (PLA), hydroxyphenyllactic acid (OH-PLA), indole 
lactic acid (ILA), cyclic dipeptides and 3-hydroxy fatty acids (Table 5) 141,142. 
Except for the 3-hydroxy fatty acids, the previously mentioned compounds are 
produced through pathways related to protein metabolism. For PLA, OH-PLA 
and ILA, the precursors are the aromatic amino acids phenylalanine, tyrosine, or 
tryptophan, respectively. The amino acids are first converted to keto-acids 
through transamination, and further reduced to corresponding compounds. 
Alternatively, the necessary precursors can also be produced through a shikimate 
pathway 143. Cyclic depeptides are formed through the condensation of two 
amino acids. No putative biosynthesis route for methylhydantoin or 
mevalonolactone have been suggested. The structure of methylhydantoin, 
however, suggests similar mechanism to cyclic dipeptide formation where the 
substrates for condensation would be alanine and carbamoyl-phosphate or 
alanine and citrulline 144. 

Antifungal compounds produced by L. plantarum have shown to inhibit 
growth of Aspergillus and Penicillium as well as inhibit aflatoxin production of 
Aspergillus 145. In addition, a few studies have shown effectiveness with 
Fusarium as well (Table 5). When antifungal activity was compared between 
PLA, OH-PLA and ILA, only PLA inhibited growth of A. flavus (IC90 11.9 
mg/mL) at tested concentration 145. Additionally, the antimicrobial activity of 
PLA was augmented by both lactic and acetic acid 146. Cell-free supernatants of 
L. plantarum lost antifungal 23 and antimicrobial 22 activity after pH 
neutralization, suggesting that the previously mentioned organic acids are 
relevant for the antifungal activity of L. plantarum 23. 

Regarding the antimicrobial potential of L. plantarum derived antifungals, 
pure compounds could be used as novel antimicrobials; alternatively, antifungal 
producing strain can be used as natural preservatives. In fact, sourdough 
produced with L. plantarum FST 1.7 was able to retard growth of Fusarium 141. 
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2.6.6 Bacteriocin biosynthesis in L. plantarum 

Lactic acid bacteria have numerous mechanisms to outcompete other micro-
organisms. One such mechanism is the biosynthesis of antimicrobial peptides, 
known as bacteriocins. Depending on the chemical composition, size and 
mechanism of action, bacteriocins are divided into classes I, II and III, with class 
II further divided into four different subclasses IIa-IId (Table 6) 147. 

Table 5. Antifungal compounds produced by various L. plantarum strains and 
the antifungal activity of the compounds. 
Strain Origin Antifungal compound Effective against Ref. 

L. plantarum
UM55

Phenyllactic acid, 
hydroxylphenyllactic 
acid, indole lactic acid 

145

L. plantarum
FST 1.7

Malted 
barley 

Phenyllactic acid, 
cyclo(Leu-Pro), 
cyclo(Phe-Pro) 

141

L. plantarum
AF1

Kimchi cyclo(Leu-Leu) 148

L. plantarum
MiLAB 14

Lilac 
flowers 

Hydroxy fatty acids 142

L. plantarum
VTTE 78076

Beer 

Benzoic acid, 
methylhydantoin, 
mevalonolactone, 
cyclo(Gly-Leu) 

Aspergillus 

Aspergillus niger, 
Fusarium sp. 

Aspergillus, Penicillium, 
Epicoccum, Cladosporium 

Aspergillus, Penicillium 

Fusarium avenaceum 144

Bacteriocins detected from L. plantarum are known as plantaricins. 
Plantaricins are typically most effective against Gram-positive bacteria, and 
moderately effective against selected Gram-negative bacteria (such as E. coli). 
Their antifungal properties are poorly reported. While the list is not exhaustive, 
plantaricins often seem to be small peptides, ranging between 1–3 kDa in size 
(Table 6). 

Analysis of sixteen L. plantarum strains isolated from table olives and brine 
showed that among the genes belonging to the pln locus, plnG and plnC were the 
most prevalent genes, followed by plnD and plnB. The genes plnE/F and plnI 
were detected in half of the studied strains 149. The plantaricin production 
regulators identified so far are the operons plnABCD and plNC8-plNC8HK 
which are controlled by the autoinducer peptides, PlnA1 or PLNC8IF, 
respectively 150,151. PlnA1 activates histidine kinase PlnB1, leading to 
phosphorylation of PlnC or PlnD, which in turn either activate or repress the 
expression of the pln locus, respectively 152.  
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Recently, acetate was discovered to be an additional activator of histidine 
kinase PlnB1 157. PLNC8IF, on the other hand, activates histidine kinase 
PLNC8HK, leading to phosphorylation of PlnD. 

However, unlike the plnABCD operon, PlnD works as an activator rather than 
repressor for the plNC8-plNC8HK system 151. The third system related to the 
histidine kinase AgrC, activated by autoinducer-2 (AI-2), was not directly 
associated with bacterocin biosynthesis. However, it was speculated that this 
pathway activates metabolic systems that allow bacteriocin biosynthesis i.e., 
amino acid, carbohydrate, and fatty acid metabolism 158.  

Regardless of the plantaricin biosynthesis system present in the L. plantarum 
strain, plantaricin production is regulated by quorum sensing. It has been 
observed that the cell density of both L. plantarum and competing micro-
organism(s) need to be high enough for the threshold for the quorum sensing 
system to be activated which in turn activates plantaricin production 159. 

Plantaricins are potential novel food antimicrobials. However, the ability to 
maintain tertiary structure during food processing is important for peptide-based 
antimicrobials. Several plantaricins have showed high thermal, pH, and 
enzymatic stability 154,155. Besides using the pure compound as a food additive, 
another possibility is to increase shelf-life by using the strain to ferment raw 
material that is known to produce an effective plantaricin. However, the strain 
would need to synthesize the plantaricin at adequate levels to have any practical 
significance for preservative purposes. As plantaricin biosynthesis is regulated 
by quorum sensing, bacteriocin production can be induced by co-culturing L. 
plantarum with another microbial species. For example, more than a 10-fold 
increase in bacteriocin production was observed in L. plantarum CECT4185 
after co-culturing with Lactococcus lactis IL1403 151. The food matrix is also 
relevant as plantaricin production was induced in solid food material even at low 
inoculation levels, while inoculation of 9 log CFU/mL of L. plantarum C2 was 
required to produce detectable plantaricin activity in carrot juice 160. Therefore, 
when using a monoculture of L. plantarum to ferment pasteurized vegetable or 
fruit juices only limited plantaricin production can be expected. In these 
circumstances, one option would be to add exogenous autoinducer peptide (e.g., 
PLNC8IF) if plantaricin activity is desired 159. However, it should be taken into 
account that plantaricin production takes away resources from other cellular 
functions, and therefore may have a negative effect on fermentation especially if 
the medium or the raw material has poor nutrient quality 159. 
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2.7 Stress responses of L. plantarum relevant to plant 
fermentations 

For L. plantarum to adapt to a variety of plant niches, genes for sensing the 
environment and adapting to biotic and abiotic stress are necessary (Fig. 14). In 
the MLF of wines, abilities to tolerate low pH, high ethanol content, phenolic 
acids, and sulfites are necessary. As vegetables and mushrooms are typically 
fermented in brine, protection from osmotic stress becomes relevant, while 
protective metabolic responses to shocks from cold temperature (during food 
storage), stomach acids, and bile acids are important characteristics for probiotic 
L. plantarum strains 9. 

Transcriptional regulators CtsR and HrcA play a key role in the universal 
stress response of L. plantarum, and are relevant for stress adaptation to e.g. heat 
161, cold 162, and ethanol 58. CtsR and HrcA regulate expression of heat-shock 
proteins (hsp1, grpE, dnaK), intracellular proteases (clpC, clpP), and chaperonin 
(dnaJ, groEL, groES) 163. The role of a intracellular protease is to degrade 
nonfunctional proteins while chaperonin aid the folding of proteins during 
cellular stress 20. 

In wine MLF, it was observed that stress-related gene (hsp1, hsp2, ctsR) 
expression in L. plantarum correlated with the ability to tolerate low pH 164. In 
addition, overproduction of Hsp 18.55 and Hsp 19.3 in L. plantarum WCFS1 led 
to an enhanced survival in the presence of butanol (1%, v/v) or ethanol (12%, 
v/v) 162. Heat-shock proteins also seem to play a role in probiosis of L. plantarum 
as hsp knockout mutants showed reduced resistance to oro-gastro-intestinal 
stress, adhesion to enterocytes, and immuno-modulation of macrophages 165. 

The antimicrobial properties of ethanol and phenolic acids are due interaction 
with the lipid bilayer, which increases membrane fluidity and proton 
permeability, disrupting cell functions and ultimately leading to a loss of 
intracellular compounds and cell death 166. Phenolic compounds, especially 
certain phenolic acids, are effectively metabolized by L. plantarum as a 
detoxification mechanism. Under p-coumaric stress especially, the pdc gene 
(lp_3665) was upregulated 112-fold along with increased methionine production 
93. Phenolic compound metabolism is discussed in Section 2.7. 

Despite the high toxicity of ethanol on micro-organisms due to detrimental 
membrane interaction, certain wine lactic acid bacteria including L. plantarum 
and Oenococcus oeni have an ethanol tolerance of up to 14% (v/v) 167. Exposure 
to ethanol induces a variety of changes in the metabolism of ethanol-resistant 
microbes, and 172 genes were found to be differently expressed in L. plantarum 
NF92 after ethanol treatment. Transcription factor AcrR was found to be 
important for ethanol tolerance, as overexpression of AcrR promoted growth of 
L. plantarum NF92 in 9% EtOH. 
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The key genes that were upregulated by AcrR were fabZ1 (unsaturated fatty 

acid biosynthesis), murD (peptidoglycan biosynthesis) and trmFO (protein O-
glycosylation). At the same time, the genes cfa1, cfa2 and tagE6 were 
downregulated by AcrR. Genes cfa12 encode cyclopropane synthases, and the 
enzymes are associated with lactobacillic acid biosynthesis (Fig. 15) 43, which is 
produced from cis-vaccenic acid (18:1, n7, cis) 170. 

 
Fig. 15. Structure of the lactobacillic acid 170. 

Both an increase in unsaturated fatty acid biosynthesis and a reduction in 
formation of lactobacillic acid increased membrane fluidity, which was 
concluded to be a mechanism to counter ethanol toxicity; a more fluid membrane 
is less susceptible to the disruptive effects of ethanol to membrane integrity 43. 
Conversely, van Bokhorst-van de Veen et al. 58 reported that the ratio of 
unsaturated and saturated membrane fatty acids was reduced in L. plantarum 
WCFS1 when exposed to 8% EtOH. 

Acid adaptation and tolerance are not only relevant to the fermentation of 
acidic plant or berry materials, but also for the storage stability and probiotic 
potential of the strain (i.e., ability to tolerate stomach acids), and thus acid 
tolerance is an important characteristic when screening functional strains for the 
food industry. In general, L. plantarum has a good acid tolerance and an ability 
to maintain moderate growth rates at pH 3.5 140 while the optimal growth pH is 
around 6. The ability to tolerate low pH is related to the ability to maintain 
intracellular proton homeostasis. Efflux of excess H+ can be mediated by F0F1-
ATPase and sodium-proton antiporters 20. While under ethanol stress membrane 
fluidity was increased 43, L. plantarum have been reported to decrease membrane 
fluidity as a response to acid stress; rigid membrane reduces proton flow into the 
cell. During storage in acidic fruit juice, the membrane rigidity of L. plantarum 
NCMIB 8826 was enhanced by increasing the biosynthesis of saturated and 
lactobacillic acid, along with a significant upregulation of cyclopropane synthase 
(cfa) 171. 

In L. plantarum, amino acid accumulation and metabolism was increased 
during acid stress 140 while it was decreased under ethanol stress 58. Increased 
transport of proline was detected as a response to osmotic stress 168. As a results 
of metabolism of e.g. serine, arginine and methionine, intracellular pH is 
increased due to decarboxylation and release of ammonia 140. Additionally, 
decarboxylation of glutamate yields γ-aminobyturic acid (GABA), and thus, 
GABA is often detected in fermented foods 169. When acid tolerance of L. 
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plantarum strains ZDY 2013 (acid tolerant) and ATCC 8014 were compared, 
higher intracellular amino acid concentrations were observed in the former 
compared to the latter 140. 

Metabolic pathways related to citrate metabolism were activated under stress 
from ethanol 58 and a low pH 51. In addition, conversion of citrate-to-succinate 
was increased by high salinity 57. The ability of citrate metabolism to generate 
membrane potential (e.g. citrate-sodium symport activity of CitP) and pH 
gradient were suggested as explanations of the pathway activation under ethanol 
stress 58. In addition, some L. plantarum strains, such as NCU116, also express 
a membrane-bound oxaloacetate decarboxylase (oad), which allows conversion 
of citrate-derived oxaloacetate into pyruvate and CO2 while using energy derived 
from the decarboxylation to transport Na+ out of the cell 34. 

One additional mechanism that enhances adaption to low pH is MLF; the pH 
of the raw material is increased due to the decarboxylation of L-malate 172. In 
addition, efflux of lactate generates an electrochemical gradient (i.e., proton 
motive force) across the cell membrane 63. Similar to amino acid metabolism, 
low pH seems to increase the metabolism of organic acids over carbohydrates in 
L. plantarum 103. 

Lyophilized cells are the most practical way for the food and alcohol industry 
to store, transport, and use microorganisms in fermentation. However, freeze-
drying damages bacterial cell walls and thus lyophilized cells are more sensitive 
to environmental stress compared to metabolically active cells. This in turn may 
lead to problems initiating healthy fermentation in challenging materials such as 
wines or berry juices with lyophilized cultures. However, it has been shown that 
acclimation of L. plantarum UNQLp155 cells at 6 % EtOH prior to freeze-drying 
improved adaptation to the freeze-drying process as well as leading to better 
growth in synthetic wine 173. 

2.8 Fermentation of plant and fungi material with L. 
plantarum 

2.8.1 Vegetables and mushrooms 

Table olives, cabbage, cauliflower, and mushroom can be preserved via 
spontaneous lactic acid fermentation. Typically, the material is washed, followed 
by submerging in brine with an additional carbon source (such as sucrose). The 
fermentation of vegetable materials is started at ambient temperature but 
finalized at sub-ambient conditions (~16 °C) 174,175. However, fermentation of 
materials such as table olives maintain ambient temperature throughout the 
fermentation 176. Compared to the fermentation of fruit and berry materials 
(Section 2.8.3), fermentation times of vegetable materials tend to be 
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considerably longer, ranging from a month up to a year, as is the case with table 
olives 17,175,177. 

As vegetables and mushrooms usually have a low initial acidity, the 
conditions at the start of fermentation benefit the mesophilic, halotolerant micro-
organisms, but after acidification, the raw material becomes a hostile 
environment and only micro-organisms able to tolerate both high acidity and 
salinity can thrive. While each spontaneous fermentation has its own unique 
microflora, studies related to bacterial community development in vegetable 
fermentation have revealed several key genus and key species. The main 
contributor to initial acidification in spontaneous vegetable fermentation is 
Leuconostoc spp., especially Leuconostoc mesenteroides. When the pH falls 
below 3.5-4, Lactobacillus spp., especially L. plantarum, L. brevis or both, take 
over and finalize the fermentation 175,178–180. 

When vegetable material was inoculated with L. plantarum, the species 
controlled the LAB fermentation throughout the process 178,180, leading to a more 
predictable fermentation process. This also reduces the risk of unwanted 
contaminations. However, when L. lactis was used as starter culture, the main 
species at the end of fermentation was still L. plantarum 178. Additionally, using 
a starter culture instead of spontaneous fermentation generally leads to lower 
biogenic amine formation 178. Strain-dependent properties can also provide 
further benefits: fermentation of shiitake mushrooms with L. plantarum 
GDM1.191 increased levels of the umami compounds 181 while fermentation of 
pea-protein isolate with L. plantarum was an effective method for off-aroma 
removal 182. 

2.8.2 Wine malolactic fermentation 

For the L. plantarum strain to be utilized as wine MLF starter, it should possess 
very specific traits. Wine being a hostile environment for micro-organisms, the 
fermentation organism is required to tolerate stress from a high ethanol content, 
a low pH, SO2 and lysozyme. Besides ability to survive in wine conditions, the 
micro-organism should be able to metabolize L-malic acid and citric acid. 
Regarding the metabolism of wine phenolics, tannase and phenolic acid 
decarboxylase activity are often screened. While the former allows removal of 
gallotannin, which reduces astringency and haziness in wine, the latter enzyme 
produces volatile phenols. Whether phenolic acid decarboxylase activity has 
positive or negative impact on the sensory value of wine, depends on the 
substrate (Section 2.5.2).  

While amino acid decarboxylation enhances the pH tolerance of L. plantarum 
140, accumulation of biogenic amines is considered a negative trait in an MLF 
starter. Therefore, especially histidine and tyramine decarboxylase activities are 
often screened. To further develop the wine bouquet, β-glucosidase and proline 
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aminopeptidase activity are desired to release bound volatiles from glycosides or 
amino acids, respectively 183. Finally, esterases, especially when accompanied 
with alcoholtransferase activity, are sought after in wine malolactic starters to 
increase the number of fruity esters in the wine 75. 

When 53 wine isolates from Patagonian red wine were analyzed, two strains, 
L. plantarum UNQLp 97 and UNQLp 155 showed promise as wine MLF starters 
167. The former strain exhibited good acid tolerance, while the latter maintained 
almost a full relative growth rate (95%) even at 14% (v/v) EtOH. Both strains 
consumed L-malic acid and degraded gallotannin effectively, and in addition, L. 
plantarum UNQLp 97 showed high β-glucosidase activity as well. In another 
instance, L. plantarum isolates from Patagonian pinot noir wine in general 
showed the presence of beneficial genes for wine MLF (PAD, β-glucosidase, 
citrate lyase, PAP), while O. oeni isolates were especially lacking the PAD and 
PAP activities 53. 

In the MLF of Patagonian Malbec wines, the content of the majority of 
endogenous alcohols and esters decreased with both L. plantarum and O. oeni 73. 
However, increased formation of diethyl succinate (melon aroma) was detected 
in wine fermented with O. oeni or L. plantarum UNQLp155, but not in samples 
fermented with L. plantarum UNQLp11. Succinate was likely derived from 
partial TCA cycle of L. plantarum, subsequently esterified with ethanol at both 
COOH-groups by EstA or similar enzyme. Additionally, mixed culture 
fermentation (L. plantarum + O. oeni) led to increased formation of diethyl 
succinate compared to single strain fermentation. Release of β-citronellol in 
MLF by UNQLp11 and UNQOe73.2 was suggested be derived from β-
glucosidase activity. A similar study setting was applied to Patagonian Pinot noir 
wines 184. Most esters decreased in the Patagonian Pinot noir wine fermented 
with L. plantarum UNQLp11. However, O. oeni UNQOe 73.2 increased the 
content of various odorant ethyl esters, contributing to a notable change in the 
wine’s volatile profile. 

In the MLF of synthetic wine media, it was observed that mle expression in L. 
plantarum was induced at a lower pH (3.2 vs. 3.8) but reduced by increasing 
ethanol content 185. In addition, the ability to tolerate combined stress during 
MLF (ethanol, low pH, malic acid) was higher in L. plantarum than in O. oeni 
when ethanol content was lower than 6 % (v/v). Co-inoculation of S. cerevisiae 
and L. plantarum also reduced the total fermentation time 164. MLF with L. 
plantarum could therefore be more effective with co-inoculation of yeast rather 
than as a sequential fermentation after the primary fermentation. 
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2.8.3 Fruits and berries 

2.8.3.1  Strain selection 

While preservation of vegetables with spontaneous lactic acid fermentation has 
been utilized for several millennia, and is still in common practice today, berries 
and fruits have been traditionally preserved by jamming. In fact, bioprocessing 
of fruits and berries with lactic acid or MLF is a rather recent approach. In more 
recent studies, starter cultures were preferred over spontaneous fermentation, 
either as monocultures or as a mix of several strains or species, monocultures 
being the more common approach. A few strains that have been used extensively 
in a variety of materials include the type strain L. plantarum DSM 20174, the 
strain C2 isolated from carrots, and the strain POM1 isolated from tomatoes 
(Table 7). While the whole genome has been characterized for the strain WCFS1 
20, it has not been applied to food models. 

Table 7. List of strains used in fermentations of various fruit materials, origin of 
strain, and materials it has been utilized in. 
Strain code Strain origin Used in material 

1MR20 Pineapple 
Cherry juice 50,186, pineapple juice 50, cactus 
cladodes pulp 187 

CCM8 Cheese Cherry juice 50,186, pineapple juice 50 

CIL6 Cherry 
Cherry juice 50,186, pineapple juice 50, cactus 
cladodes pulp 187 

DC400 Sourdough Cherry juice 50,186, pineapple juice 50 

DSM 20174 Pickled cabbage  
Sea buckthorn 103,188,189, chokeberry 103, 
lingonberry 103, sea buckthorn / apple mix 188, 
pomegranate juice 190, noni juice 191 

1LE1 Pineapple Elderberry juice 192–194, cherry juice 195 
1OR12  Pineapple Pineapple juice 196 
285 Brazilian cheese Elderberry juice 192–194, cherry juice 195 
90 Wine Jujube juice 197, apple juice 
AFI5 Apple Apple by-product 198 
B42 Cheese Orange juice 199 
B7 Sourdough Bog bilberry juice 200 
BNCC 337796 Not reported Blackberry juice 201, blueberry juice 201 
C1 Carrot Elderberry juice, cherry juice 195 

C2 Carrot 
Myrtus communis berries homogenate 202, 
pomegranate juice 5, cherry juice 50,186, pineapple 
juice 50 

C5 Carrot Cherry juice 186 
C8-1 Pickles Bog bilberry juice 200 
GIM1.140 Not reported Papaya puree 203, mango slurry 204 
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Strain code Strain origin Used in material 
J26 Fermented dairy Blueberry juice 205 
LP09 Commercial strain Pomegranate juice 5 

Lp-115 Commercial strain 
Mulberry juice 206, mixed juice (73% of acai 
berry, 17% of aronia, and 10% of cranberry) 207 

LS5 Not reported Sweet lemon juice 208 
NCU116 Chinese sauerkraut Momordica charantia juice 209 

POM1  Tomato 
Elderberry juice 192–194, pomegranate juice 5, 
cherry juice 195, cactus cladodes pulp 187 

ST-III Kimchi Apple juice 210 
VTT E-78076 Beer Lingonberry mash 211 
FP3 Sweet cherry Sweet cherry 212 
KCTC 33131 Not reported Cherry silverberry puree 213 
TMW 1.460 Spoiled beer Cherry juice 186 

One approach for starter culture selection is to use an autochthonous culture, 
i.e. a starter culture isolated from the raw material 196,212,214. The rationale for this 
approach is that the strain or isolate is adapted to the raw material, leading to an 
effective fermentation. A second approach is to use a strain with well-known or 
desired characteristics 197,199. The third approach is to use a variety of cultures 
from different sources to screen for the strain with optimal properties 192. The 
beneficial characteristics for wine starter culture are listed in Section 2.12.2, and 
these overlap to a certain degree with the desired properties for a strain to be used 
in fruit or berry fermentation. These properties include, but are not limited to: 
growth in and tolerance to low pH, tolerance to low temperature, ability to 
complete fermentation, presence of the malolactic gene, ability to tolerate and 
metabolize phenolic compounds, ability to synthesize antimicrobial compounds, 
activation of heterofermentative metabolism, ability to synthesize odor 
compounds or their precursors, lack of biogenic amine formation, ability to 
synthesize exo-polysaccharides, and an ability to increase antioxidant activity 21. 

2.8.3.2  Fermentation trial set up 

Lactic acid fermentation with L. plantarum has been applied to a variety of fruit 
and berry materials with cherry 195,212 and pomegranate juices 5,190,215 having been 
studied by multiple groups. Almost all of the studies retrieved have heat 
treatment prior to fermentation in order to remove the natural flora from the raw 
material (Table 8). Typically, the materials used were natural, meaning with 
little or no additional nutrients, and only in a few studies had the pH been 
significantly modified before fermentation. While in wine MLFs fermentation 
times of up to several weeks are used 73, in the fermentation of non-alcoholic 
fruits and berries short fermentation times are preferred, ranging from 24 to 336 
hours with an average of 48 hours. 
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Many of the retrieved studies have included a storage trial to test cell viability 
during extended storage at +4 °C and monitor changes in chemical composition 
throughout the storage as well. 

2.8.3.3 Changes in cell numbers, pH, carbohydrates, and organic acids 

In the fermentation of berry or fruit materials with L. plantarum, inoculation 
levels varied from 4.5 to 8 log CFU/mL, with 7 log CFU/mL (Table 9) being the 
most common. The cell count increased in almost all instances during 
fermentation, typically 1–2 log CFU/mL, even in materials with an initial pH as 
low as 3. Storage trials showed that L. plantarum cell counts remain relatively 
stable for up to 60 days in storage at +4 °C. The only exception was made by 190 
who reported that no bacteria was detected in pomegranate juice after 28 days of 
storage. 

As expected, lactic and acetic acids increased in all materials after 
fermentation with L. plantarum (Table 10). Change in the content of individual 
sugars depended on the material, strain, and starter pH. For example, in the 
fermentation of orange juices, the sugar content was reduced in juices from cv. 
Washington Navel while no reduction was observed in juices from cv. Tarocco. 
The difference was associated with the ability to survive in the material, i.e., cell 
numbers increased in the former juice while they decreased in the latter. On the 
other hand, fermentation of cherry juice with the strain ILE led to an increase in 
the glucose and citric acid contents, while fermentation of the same juice with 
the strain C1 led to the opposite result. Related to juice pH, sugars were utilized 
more by the strains B8 and C8-1 in bog bilberry juice at pH 2.65 compared to 
the metabolic activity in juices a with pH of 3.50. 

While MLF was observed in the majority of studies that measured changes in 
organic acid content, only a few studies reported significant increase in pH (0.5 
units) (Table 9) 208,217. Therefore, in most fruit or berry materials, MLF was 
either not intended to or is not appropriate for deacidification purposes. 

2.8.3.4  Changes in volatile compound profiles 

Depending on the strain or material, the ester content in the raw material is 
increased, not affected, or reduced (Table 11). By far the most common esters 
formed by L. plantarum in fruit materials are ethyl acetate and ethyl butyrate. 
Ethyl acetate is an expected volatile formed by L. plantarum, as both precursors, 
acetyl-CoA and ethanol, are derived from heterofermentative pathways of L. 
plantarum. Ester formation is not only related to the inherent properties of the 
starter culture, as high number of esters were generated by L. plantarum 90 in 
jujube juice from fruits belonging to cultivar Muzao, however, the same was not 
observed in juices made with the fruits of the cultivar Hetian 197. The impact of 
pH on ester formation was observed in bog bilberry juice, as ester biosynthesis 
was activated at pH 2.65 while hydrolysis was more prevalent at pH 3.50 200. In 
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general, however, ester biosynthesis by L. plantarum is minor compared to 
commonly used yeasts, such as S. cerevisiae 204, and therefore modification of 
the aroma profile by L. plantarum via ester biosynthesis is not in general a viable 
approach. Unlike in wine MLF, fresh fruit material has a low number of 
precursor for ethyl ester biosynthesis (i.e., ethanol) which likely contributes to 
the reason why higher rate of ester biosynthesis being reported in general in wine 
MLF compared to fermentation of non-alcoholic material. 

Increase in the content of volatile acids is often reported in fermented 
materials, as L. plantarum produces acetic acid, short-chain fatty acids, and 
various ketoacids in its metabolism. Additionally, as esters contribute to the 
fruity and floral notes in various berries and fruits 70, esterases produced by L. 
plantarum can hydrolyze these compounds to the corresponding alcohols and 
acids 80. 

Common alcohols produced by L. plantarum during fermentation of fruit and 
berry materials include 3-methyl-1-butanol (fruity aroma) and 2-methyl-1-
butanol (roasted aroma), derived from the metabolism of leucine and isoleucine, 
respectively. The floral aromatic alcohols phenylethyl alcohol and benzyl 
alcohol are commonly reported in materials fermented with L. plantarum as well. 
It can be speculated that these odor compounds are derived from the metabolism 
of phenylalanine, as phenylpyruvic acid is known to be oxidized to various odor 
compounds when exposed to the Mn2+ pool of L. plantarum 113,116 (Section 2.6.2). 
The other alcohols commonly present in fruit materials fermented with L. 
plantarum include 2-ethyl-1-hexanol (citrus), 1-hexanol (herbal), (Z)-3-hexen-
1-ol (green), which are derived from fatty acid metabolism. 

Aldehyde content often decreases during the fermentation of fruit materials 
and the compounds are either reduced to alcohols or oxidized to carboxylic acids. 
An excepetion to this was made by benzaldehyde (almond), the content of which 
was increased in fermented bog bilberry juice, pomegranate juice, and papay 
puree (Table 11). Similar to volatile phenolic alcohols, benzaldehyde is likely 
derived from phenylalanine metabolism 113,116. Interestingly, a high content of 2-
methylbenzaldehyde was formed in jujube juice when fermented with L. 
plantarum 90, which enhanced the cherry aroma of the material 197. However, 
the precursor for this volatile has not been determined. 

Effect of L. plantarum on aroma-active furans has been studied to a lesser 
extent. A decrease in furan content was reported in pomegranate juice 5, while 
an increase was reported in watermelon juice after fermentation 222.  

  While aldehydes are typically decreased in fermented fruit materials, the 
total ketone content is almost exclusively increased in the fermented fruit 
materials due to the formation of acetoin. As discussed earlier, in the 
heterofermentative pathway of L. plantarum, acetoin is the final downstream 
product as the species lacks enzymes to generate diacetyl or 2,3-butanediol. 
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However, diacetyl is also formed in fermentations with L. plantarum due to 
the non-enzymatic oxidation of 2-acetolactate (Fig. 3). While moderate levels of 
diacetyl improve the sensory value of wines 223, it has not been established 
whether formation of acetoin is beneficial for the sensory value of non-alcoholic 
fruit materials. 

While various authors promote the use of autochthonous cultures in plant-
based fermentation 50,196,212, a case was made by Ricci et al. 193,195 to use dairy 
cultures in the fermentation of plant materials, as strains derived from fermented 
dairy produced more odor compounds compared to strains isolated from plant 
materials. This result was possibly due to the more complex metabolism of 
amino acids, as dairy strains have adapted to a protein rich environment. 
However, using this approach requires further studies to determine the suitability 
of dairy isolates for fermentation of fruit and berry materials. 

The formation of volatile phenols in fermented fruit materials are discussed 
in the next section.  

2.8.3.5  Biotransformation of phenolic compounds 

While genomic studies have revealed the presence of a variety of mechanisms in 
L. plantarum related to phenolic metabolism, studies considering phenolic 
biotransformation in fruit and berry model foods provides highly varying and 
even often conflicting results (Table 12). 

Studies have commonly focused on changes in phenolic acids during 
fermentation. Caffeic, p-coumaric and protocatechuic acids are almost 
exclusively metabolized, showing a decrease in concentration after fermentation. 
The main metabolites are dihydrocaffeic acid and catechol from caffeic acid and 
protocatechuic acid (PCA), respectively 186,195,209. Formation of 4-ethyl phenol 
from p-coumaric acid by decarboxylation and reduction, respectively, was 
reported in elderberry 193 and cherry juices 195. However, there was significant 
difference between the strains, and therefore, strain selection should consider the 
metabolic activity on p-coumaric acid as a factor to avoid formation of ethyl 
phenol, as this volatile is considered an off-odor 97. Ricci et al. 193 also reported 
further metabolism of dihydrocaffeic acid to vinyl catechol. 

Strain-dependent variation on phenolic acid metabolism was reported in the 
fermentation of cherry juice, as strain 1LE1 increased the content of PCA and 
caffeic acid, while strains 285 and POM1 decreased the content of these 
compounds 195. 

Genomic studies have been unable to detect an effective enzyme from L. 
plantarum that effectively hydrolyzes chlorogenic acid (Section 2.4.4). It is 
possible that this gene is rare in L. plantarum, since only a few reports exist that 
show a significant decrease in chlorogenic acid content after fermentation with 
L. plantarum 200,201,213,217. 
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In Section 2.6.5 it was discussed that phenylalanine is a potential precursor 
for various odor compounds. Another established pathway is metabolism into 
phenyllactic acid 146, however, only few studies report formation of this 
metabolite in fruit materials fermented with L. plantarum 194,195. In addition, 
formation of p-OH-phenyllactic acid from tyrosine was reported in fermented 
cherry juice 195. 

In the case of the metabolism of flavonols present in berries and fruits by L. 
plantarum, several glucosidases and rhamnosidases have been identified that can 
metabolize quercetin glycosides (Section 2.5.3.1). However, the author was 
unable to discover studies that show direct link between flavonol substrates and 
products during the fermentation of fruit materials. Increase in flavonol 
aglycones kaempferol and isorhamnetin were reported in cactus cladode pulps 
after fermentation 187. Additionally, several reports have stated an increase in 
both flavonol glycoside and aglycone contents 195,206,217 while other studies report 
the opposite result 200,213. The former result was possibly due to the release of 
cell-wall bound phenolic compounds either by endogenous or bacterial 
enzymatic activity 206. 

Metabolism of proanthocyanidins and other condensed tannins by L. 
plantarum in fruit food models is poorly reported. Procyanidin dimers from 
cranberry (i.e., A2 and B2) were metabolized by L. plantarum ATCC BAA-793, 
yielding 3-(4-hydroxyphenyl)-propionic acid (phloretic acid) and 3-(3,4-
hydroxyphenyl)-propionic acid 224. Interestingly, the same study reported an 
improved utilization of oligosaccharides when L. plantarum was exposed to 
proanthocyanidins, showing a novel approach to improve fermentation in 
materials rich in fermentable fibers. Phloretic acid has also been reported as 
phenolic metabolite in fermented apple homogenate 198, bitter lemon juice 209, 
and cherry juice 186. 

2.8.3.6  Changes in antioxidant capacity 

Fermentation of plant materials with L. plantarum have often reported a 
beneficial impact on the antioxidant capacity, especially with the DPPH radical 
scavenging assay (Table 13). Typically, an increase in antioxidant activity has 
been associated with biomodification of phenolic compounds present in fruits 
and berries. The explanation is that the breakdown of phenolics introduces more 
hydroxyl groups that have antioxidant properties 4,187. However, Hur et al. 4 
discussed in their review that the overall picture is more complex (Fig. 16). For 
example, modification of redox balance plays a partial role, and that changes in 
pH during fermentation affects the deprotonation of polyphenols, which in turn 
affects the radical scavenging activity. Furthermore, while exopolysaccharides 
produced by L. plantarum have been shown chelate metal ions 225,  
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metal chelating activity is not often beneficially impacted in the fermentation of 
fruit materials, since the FRAP results in most studies remain unaffected 203 or 
are even reduced after fermentation 209 (Table 13). 

Several studies have reported a higher content of ascorbic acid in inoculated 
fruit materials compared to a control without bacteria after the incubation period 
187,208. While no direct link has been established, it can be speculated that increase 
in antioxidant capacity during fermentation protected the ascorbic acid from 
oxidation. It was shown by Hashemi et al. that the effect was also apparent during 
storage, and after 28 days at +4 °C fermented lemon juice had a higher ascorbic 
acid content compared to non-fermented juice, even when the non-fermented 
fresh juice initially had a higher concentration 208. Other groups of antioxidant 
compounds affected by processing and extended storage are anthocyanins and 
carotenoids, and protection of these compounds from degradation by isolate L. 
plantarum T10 was reported in blueberry juice 217 and by the strain 1MR20 in 
cactus cladode pulp 187, respectively. The ability to impact antioxidant activity 
and to protect ascorbic acid or anthocyanins from degradation is a strain-
dependent property. For example, in the fermentation of sea buckthorn juice, the 
strain DSM 20174 significantly increased the ORAC value while the strain DSM 
10492 showed the opposite effect 188. 

2.9 Compositional properties of berries 

2.9.1 Sugar, sugar alcohols, and organic acids in commercially 
important berries 

The main sugars in most common berries are glucose, fructose, and sucrose. 
Sweet sugar alcohol sorbitol has been detected in substantial amounts in 
chokeberry, rowanberry, sweet cherry, and eastern shadbush (Table 14). Citric 
acid and malic acid are the main acids in the majority of the commonly cultivated 
or wild berries used by the food industry. In addition, some species also produce 
substantial amounts of quinic acid (e.g. sea buckthorn) or tartaric acid (grapevine, 
cranberry, bilberry).  

High amounts of citric acid (> 10 g/kg FW) have been reported in raspberries, 
lingonberries, jostaberries, dog rose hips, and gooseberries. Various currants 
(black, white, red) contain especially high amounts of citric acid, up to 24 g/kg 
FW. Berry species that have shown a high malic acid content (> 10 g/L) include 
rowanberry, sour cherry, chokeberry, hardy kiwifruit, jostaberry, sea buckthorn, 
red gooseberry, and cranberry (Table 14) 226–228. Especially high content of L-
malic acid has been detected in sour cherry with up to 20 g/L of malic acid 
reported, and in rowanberry and sea buckthorn,  
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with concentrations over 30 g/L FW being reported in berry juices. Benzoic 
acid present in cranberry and cloudberry potentially limits the utilization of MLF 
at a low pH 229. 

In addition to berries, apples, regardless of the variety, have consistently high 
L-malic acid content (4.40–9.50 g/L) 233. On the other hand, genotypical 
difference in L-malic acid content in apricot varieties grown in China was nearly 
10-fold (1.89 and 12.8 g/kg in fruits of ‘Katy’ and ‘Xingmei’, respectively) 234. 
Therefore, when selecting material for MLF, variation in the sugar and acid 
content dependent on the subspecies, therefore the cultivar and growth location 
needs be taken into consideration. 

For effective MLF to be initiated by L. plantarum, a minimum concentration 
of 5 mM of L-malic acid was required, corresponding to 0.67 g/L 63. This means 
that with few exceptions almost all common cultivated and wild berry species 
would have the necessary L-malic acid content for MLF (Table 14) 226–228. 
However, to maintain the MLF for an extended period, the L-malic content 
should be significantly higher. 
 

2.9.2 Free amino acid content of sea buckthorn, chokeberry, and 
lingonberry 

Typically L. plantarum lacks the ability to cleave large polypeptides 20. 
Therefore, the readily available nitrogen sources in berry fermentation would be 
the free amino acids. The content of glutamate, branched-chain amino acids (Val, 
Ile, Leu), and arginine, are especially important, as the absence of any of the 
previously mentioned typically halts growth of L. plantarum. In addition, growth 
is reduced in the absence methionine, glycine, phenylalanine, and tryptophan 
110,111. 

In general, the free amino acid composition of berries varies and is dependent 
on the genotype and growth conditions (Fig. 17). In sea buckthorn as well as in 
lingonberry, aspartaric acid or asparagine are the most abundant amino acids, 
and can be up to 85% of the total amino acid content 235,236. A high relative 
content of proline has also been detected in sea buckthorn 10. In sea buckthorn 
berries, general lack of glutamic acid is a potential limitation in fermentation. 
However, the glutamic acid precursor 2-oxoglutaric acid has been reported from 
sea buckthorn berries (unpublished data of this thesis work). Lingonberries are 
rich in arginine, but have a low content of leucine and isoleucine, while 
chokeberries lack tryptophan 236. Compared to the two previously mentioned 
berries, chokeberries have a more diverse amino acid profile, glutamic acid being 
present in high amounts in berries from both Poland and South Korea 237,238. All 
three berry species have either a low or no content of methionine. 
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Fig. 17. Reported free amino acid profiles (relative abundance (%) out of total 
amino acids, w/w) berries of sea buckthorn 10,235, Aronia melanocarpa 237,238, and 
lingonberry 236 (average of multiple cultivars). 

2.9.3 Phenolic content of sea buckthorn, chokeberry, and 
lingonberry 

Phenolic compounds are a complex class of plant secondary metabolites that 
protect plants from various biotic (e.g., infection) and abiotic (photo-oxidation) 
stresses. Earlier, phenolic compounds were considered as anti-nutrients, as they 
inhibit various enzymes relevant to metabolism in mammals and reduce the 
bioavailability of iron and zinc. However, it has subsequently been discovered 
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that phenolic compounds possess various benefits to health due to the strong 
antioxidant activity, such as antidiabetic activity 239. Recently, plant phenolics 
have been shown to promote the growth of the loosely defined beneficial gut 
microbiota 240. In berries, the important subclasses of phenolics are flavonols, 
flavan-3-ols, hydrolyzable tannins, phenolic acids, and anthocyanins 241. In 
addition to biological activities, many phenolic compounds contribute to the 
sensory quality of berries being bitter and/or astringent compounds, depending 
on the structure 242. Numerous substitutions or ester formations with various 
sugars and acyl groups mean that the profile of phenolic compounds in fruits and 
berries are often a very complex mixture. However, extraction with various 
organic solvents, fractionation of crude extracts with HPLC or column 
chromatography, followed by structural elucidation with LC-MS and NMR have 
allowed identification and quantification of phenolic compounds in berry and 
fruit materials (Table 15) 243,244. 

2.9.3.1 Phenolic acid content in sea buckthorn berry 

Only a few reports exist that describe the phenolic acid content in sea buckthorn 
berries in detail 245–247 together with several sources that include limited reporting 
103,244 (Table 17). In berries belonging to the subspecies turkestanica, 57% the 
phenolic acids were present as glycosides 245, while phenolic acid esters 
accounted for over 50 % of the total in several cultivars belonging to ssp. 
mongolica 246. In turn, free phenolic acids accounted for 20% but only around 2% 
of total acids in 245 and 246, respectively. The main phenolic acids are typically 
hydroxybenzoic acids, which are the derivates of gallic acid and protocatehuic 
acid 103,245,246,248. However, in one instance, p-coumaric acid was defined as the 
main phenolic acid in berries grown both in Sweden and India 247. Additionally, 
a high content of salicylic acid was reported in multiple cultivars in berries grown 
in Poland and Belarus 246. 

2.9.3.2 Flavonol content of chokeberry and lingonberry 

In black chokeberries, flavonols are the fourth most abundant phenolic subclass, 
with concentrations ranging between 0.19-0.58 mg/g FW (Table 18). In Aronia 
spp., hyperoside (quercetin-3-O-galactoside), rutin (quercetin-3-O-rutinoside), 
and isoquercetin (quercetin-3-O-glucoside) are typically reported as the most 
abundant flavonol glycosides, making up to 90 % of total flavonols. While the 
profile varies depending on the species and the cultivar, quercetin-3-O-
galactoside is, in general, the most abundant flavonol glycoside. Other quercetin 
derivates detected in black chokeberry are 3-O-vicianoside and 3-robinobioside 
249,250. In addition, isorhamnetin derivates with unidentified sugar moieties have 
been identified 250.  
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As in chokeberries, quercetin-3-galactoside was detected as the main flavonol 
in lingonberry cv. Amberland, with quercetin-3-rhamnoside being present in 
almost equal amounts. Smaller amounts of quercetin-3-arabinoside was detected 
(3% of total flavonols) 252. Likewise, the total flavonol content of lingonberries 
was similar to chokeberries, 0.26 mg/g FW in Canadian berries 252 and 1.6 mg/g 
DW in Finnish berries 257. 

2.9.3.3  Flavonol content of sea buckthorn 

While the profile of flavonol glycosides in sea buckthorn berries varies 
significantly between different subspecies and varieties 258,260, studies of sea 
buckthorn berries report high flavonol concentrations, more or less 1 mg/g of the 
fresh weight (Table 19). Flavonol production in berries is increased as a response 
to abiotic stress, and was increased at increased altitudes and decreased latitudes 
263. The majority of flavonol glycosides in SB berries are isorhamnetin and 
quercetin derivatives. In addition, myricetin and kaempferol glycosides are 
present in lower amounts. The typical sugar moieties are rutinose, rhamnose, 
glucose and sophorose usually as mono-, di- or trisaccharides 103,243,244,247,258. In 
addition, acylated flavonols with acyl groups of coumaric acid 244, caffeic acid 
244 and sinapic acid 243,258 have been detected. 

2.9.3.4  Anthocyanin content of chokeberry and lingonberry 

Anthocyanins are responsible for the red, blue, and purple colors in various 
berries, vegetables, and flowers. These compounds are present typically as 
glycosides of delphinidin, cyanidin, and pelargonidin. Due to the strong 
antioxidant capacity both in vitro and in vivo, intake of anthocyanins has been 
associated with various benefits to the health 241 

While in sea buckthorn berries the color is due to variation in carotenoid 
content 10, the color of lingonberries and chokeberries are due to anthocyanins 
(Table 20). Both lingonberries and chokeberries consist mostly of red-colored 
cyanidin glycosides, cyanidin-3-galactoside being the most abundant in both 
species, typically followed by cyanidin-3-arabinoside. Apparent differences are 
due to cyanidin-3-xyloside, which is absent in lingonberries. Additionally, 
lingonberries show a higher relative amount of cyanidin-3-glucoside (Table 20). 
Moreover, the total anthocyanin content in chokeberries can be 10-fold 
compared to the content in lingonberries; chokeberries appear dark black while 
lingonberries have a crimson-red color. 

Reported anthocyanin profiles or various cultivars or wild berries of black 
chokeberries (A. melanocarpa or A. mitchurinii), despite the genotype and 
growth location, share surprisingly high similarity, only differing in the total 
anthocyanin content 253. This similarity even seems to extend to multiple species 
of Aronia spp 251, suggesting that anthocyanin biosynthesis in Aronia spp. is 
genetically conserved.
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2.9.3.5  Complex polyphenols 

Complex, polymeric polyphenols are divided into two subclasses, hydrolysable 
and condensed tannins. The former group refers to ellagitannins and gallotannins, 
which are built up from ellagic acid and gallic acid monomers, respectively, 
bound with ester bonds, and usually have a carbohydrate molecule at the center 
of the compound 265. As discussed earlier, L. plantarum produces enzymes that 
can hydrolyze the ester bonds in gallotannins (Section 2.4.4). However, in sea 
buckthorn, lingonberry and chokeberry, the main oligomeric and polymeric 
polyphenols are condensed tannins, and to be more specific, proanthocyanidins, 
which consists of two or more subunits of flavan-3-ol, catechin, epicatechin, or 
epigallocatechin. 

In lingonberries, flavan-3-ols and proanthocyanidins (PAC) are by far the 
most abundant phenolic group. Different flavan-3-ol fractions of lingonberry 
extract showed that A-type dimers were the most common oligomeric PAC, 
while in the polymeric fraction the mean degree of polymerization was 32 257. In 
Aronia spp., PAC are among the most abundant phenolic compounds, especially 
in the species that produce purple and red berries i.e. produce less anthocyanins 
compared to the black chokeberry. However, even in black chokeberry, PAC are 
present at equal amounts to anthocyanins 251. The PAC in Aronia spp. are present 
almost entirely as polymeric (degree of polymerization (DP) > 10), ranging 
between 96.9-99.9 % of the total flavan-3-ol content 250,251,256. 

Sea buckthorn berries, while showing a lower content of PAC compared to 
lingonberries and chokeberries, still contain substantial amounts of flavan-3-ols 
(Table 21). Structure and concentrations of oligomeric PAC (DP < 5) have 
mainly been reported in sea buckthorn. Berries of ssp. rhamnoides typically 
report the highest ratio of PAC trimers 260,262, and the epigallocatechin trimer was 
the most abundant in Finnish berries belonging to this subspecies 261. In addition 
to oligomeric flavan-3-ols, the presence of substantial amounts of polymeric 
PAC in sea buckthorn berries have been noted 261. However, no research 
discovered regards the content or structural analysis of polymeric PAC in sea 
buckthorn berries. 
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2.9.4  Volatile compound profile of sea buckthorn berries 

Depending on the subspecies and growth site, the five most abundant VOCs in 
sea buckthorn berries are esters 3-methylbutyl 3-methylbutanoate (3-MB-3MB) 
and ethyl esters of 3-methylbutanoic acid (E-3MB), 2-methylbutanoic acid (E-
2MB), hexanoic acid (E-HA), and octanoic acid (E-OA) (Fig. 18) 266–268. Leung 
and Marriott (2015) 266 reported high content of 3-methylbutyl benzoate in 
berries grown in the UK while only trace amounts were detected in berries 
studied by Socaci et al. 267 and Tiitinen et al. 268 (< 1 % and <2.4 % of the total 
VOC, respectively). Additionally, Tiitinen et al. 2006 reported relatively high 
amounts (up to 10% of the total VOC content) of 3-methylbutyl hexanoate in 
Russian sea buckthorn cultivars grown in Finland 268. All the previously 
mentioned compounds have a fruity odor descriptor 52. 

When 12 cultivars and wild biotypes of sea buckthorn (subspecies carpatica) 
grown in Romania where compared, it was observed that the content of E-2MB 
and E-HA had inverse correlation with the content of both E-3MB and 3-MB-
3MB. In addition, a weaker but yet negative correlation was also detected 
between E-3MB and 3-MB-3MB, suggesting competing pathways in the 
biosynthesis of these volatile esters 267.  

Significant year-to-year variations in VOC profiles of sea buckthorn berries 
have been observed (Fig. 18) 266,268, highlighting that VOC formation in sea 
buckthorn berries is substantially impacted by environmental factors. A positive 
correlation between the total VOC content and number of sunshine hours during 
the growth season was observed, suggesting that increased radiation is related to 
volatile formation in sea buckthorn 266. Similar volatile profiles were reported by 
266–268. 

2.9.5  Relationship between chemical composition and sensory value 

Multivariate modeling has been used to associate sensory and chemical 
parameters of different H. rhamnoides subspecies and hybrids and found that the 
sugar/acid ratio (0.39-1.04) predicted the pleasantness of sea buckthorn better 
than sugar content alone 269. A sugar derivative, ethyl β-d-glucopyranoside (E-
β-G), has been detected in sea buckthorn berries. Variation between 0.6 to 19.8 
g/L FW in sea buckthorn berries was reported while the pure compound had a 
taste threshold of 1.1 ± 1.3 g/L in water with a bitter taste 264. Moreover, the 
bitterness of the juice was correlated with E-β-G content as well as with the ratios 
between the E-β-G/acids and E-β-G/sugars 264. 

An addition of 5 % sucrose decreased sourness and improved the preference 
for chokeberry juice from weak dislike to weak like. However, neither 
sweetening with sucrose nor flavoring with ethyl butyrate blocked the juice 
astringency. Moreover, sourness, astringency and bitterness were associated with 
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flavonols and hydroxycinnamic acids. Interestingly, proanthocyanidins 
correlated with the hedonics and sweetness 13. 

 
Fig. 18. Profiles of selected VOC (based on abundance) between cultivars and 
biotypes of sea buckthorn belonging to A) the subspecies carpatica grown in 
Romania 267, and in berries of the subspecies mongolica (RAI, rhamnoides) 
collected in Finland during the years B) 2002 and C) 2003 268. The Y-axis 
represents the relative amounts in relation to the total VOC content. For full 
cultivar names and additional details, see Supplementary Table S2. 
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3 AIMS OF THE STUDY 

The overall goal of this work was to develop a protocol for effective fermentation 
with L. plantarum for berry materials with low consumer value. The goals were 
to decrease acidity with malolactic fermentation, modify the phenolic compound 
composition, affect the volatile profile in a positive manner, and to generate 
compounds with functional (e.g., antimicrobial, or bioactive) properties. 
 

The goal was to screen for whether or not fresh or enzymatically treated 
juices of sea buckthorn, lingonberry, or chokeberry are suitable raw 
materials for fermentation with L. plantarum. The metabolism of sugars, 
organic acid, sugar alcohols, and phenolic compounds were determined with 
qualitative and quantative analysese (I). 
 
Changes in the volatile compound composition of sea buckthorn juice was 
determined to screen for potential positive or negative changes in the aroma 
profile during fermentation. The importance of strain selection, starter pH, 
fermentation time, and basal medium composition in relation to the volatile 
profile were discussed (II). 
 
The study endeavored to evaluate the suitability of NMR-based 
metabolomics as a holistic analytical tool for fermented sea buckthorn 
materials. Change in the chemical composition of sea buckthorn during 
fermentation was compared to the existing knowledge related to metabolic 
systems of L. plantarum. The importance of strain selection, starter pH, 
fermentation time, and basal medium composition were discussed in relation 
to the metabolic profiles of fermented juices (II). 
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4 MATERIALS AND METHODS 

4.1 Berry materials 

In this dissertation, the focus was on the berries of sea buckthorn, chokeberry, 
and lingonberry, all of which have been reported to contain substantial amounts 
of health-promoting bioactive compounds 10–12 while having a low consumer 
value 13–15. Whilst sea buckthorn 228 and chokeberries 226 have a high malic acid 
content, the most abundant acid in lingonberries is citric acid 229. Lingonberry is 
not therefore optimal for the MLF, but it is by far the most valuable non-timber 
forest resource in Finland 270. Due to the high commercial value, lingonberry is 
a relevant target for product development and was therefore included in this work. 

In Study I, frozen chokeberries (Aronia mitschurinii ‘Viking’) were 
purchased from Vinkkilän luomutuote Oy (Vehmaa, Finland). Frozen wild 
lingonberries (Vaccinium vitis-idaea) were purchased from RH Foods OÜ 
(Tallinn, Estonia). Origin of the berries was Lithuania. Frozen sea buckthorn 
berries (Hippophaë rhamnoides subspecies mongolica) originating from 
Southern Estonia were purchased from Astelpajutooted OÜ (Tõrva, Estonia). In 
Study II and III, frozen sea buckthorn berries (subspecies mongolica), mixture 
of cultivars ‘Ljubitelskaja’ and ‘Prozrachnaya’, were acquired from a 
professional farmer (Vinkkilän luomutuote, Vehmaa, Finland). In all cases, the 
berries were frozen right after picking and stored at –20 °C until use. 

4.2 Juice preparation 

In Study I, the frozen berries (700–1050 g per batch) were thawed in a 
microwave at 650W for 5 min. The berries were made into a mash with an 
immersion blender. Juice was extracted from the berry mash with a central screw 
basket press. Juices were pasteurized immediately after the extraction, stored 
overnight at +4 °C, and inoculated the next day. 

Frozen sea buckthorn berries were thawed in a microwave at 600 W for 3.5 
min. Next, the berries were made into a mash with a Bamix immersion blender. 
The juice was extracted from the mash with a fruit press (Chef Titanium XL with 
AT644 attachment, Kenwood, UK) in batches of ~400 g of mash, and the juice 
was filtered through a cheesecloth to remove solids. Thereafter juices were 
pooled, divided into aliquots for each fermentation batch, and stored at –20 °C 
until use (II, III). 



 

 

91 

4.2.1 Pasteurization 

After extraction with pressing, juices were pasteurized in an autoclave (Systec 
D-150, Linden, Germany) at 85 °C for 5 min. After the pasteurization, the juices 
were immediately cooled down in an ice bath (I). In Study II and III, prior to 
pasteurization, the juices were diluted 1:1 (w/w) and divided into 30 mL aliquots 
in individual glass vials. The juice samples were pasteurized in a water bath 
(temperature ~96 °C) until temperature of the juices reached 90 °C, and this was 
followed by cooling the juices in an ice bath until 10 °C. The juice temperature 
was monitored with a thermometer (TM-947SD, Lutron Electronics, South 
Korea) coupled with a thermocouple probe. 

4.2.2 Other treatments 

In Study I, two types of juices were prepared for each berry: a fresh juice and an 
enzyme-treated juice. The latter was prepared by adding 200 μL/kg of pectinase 
(Pectinex® Ultra SPL, Novozyme, Bagsvaerd, Denmark) to the berry mash, and 
the mash was subsequently incubated at 45 °C for 4 h, followed by extraction 
with a manual juice press. In the next two studies, two types of juice were used 
for fermentation, one with natural pH (2.7) and the other with pH adjusted to 3.5 
with 1 M NaOH (II, III). 

4.3 Bacterial strains 

Initially, Lactiplantibacillus plantarum strains DSM 20174T, DSM 10492, DSM 
100813 as well as Lactiplantibacillus argentoratensis strain DSM 16365T were 
used in the fermentations. In addition, dehydrated cells of Oenococcus oeni 
strains LAB6, LAA1, and B2013, were provided kindly by Lallemand Inc. 
(Montreal, Canada) (I). 

In the later studies, no O. oeni strains were used in any of the fermentations 
but additional L. plantarum strains were purchased (DSM 1055 and DSM 13273) 
(II, III). All L. plantarum stocks were acquired as freeze-dried cultures from the 
DSMZ (Braunschweig, Germany), and were revived according to the 
manufacturer’s protocol. The revived cultures were stored as 10% (v/v) glycerol 
stocks at –80 °C until use (I, II, III). The dehydrated O. oeni cells were revived 
in sterile saline for 30 min. at RT prior to inoculation (I). 

4.4 Fermentation 

The L. plantarum starter culture for the fermentation was prepared by inoculation 
of 250 mL of general edible medium (GEM) (soy peptone 30 g L−1, dextrose 20 
g L−1, yeast extract 7 g L−1, MgSO4 × 7 H2O 1 g L−1, in potassium phosphate 
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buffer 0.01 M, pH 6.3 ± 0.2) with a scrape from a glycerol stock, followed by 
incubation at +30 °C for 24 h. The cells were collected with centrifugation (3,360 
× g, 5 min, 4 °C) and washed twice with sterile saline. Finally, 1 mL of 
concentrated cell suspension was added to a 100 mL juice sample, leading to to 
initial cell count of approximately 1 × 108 CFU/mL. In addition, in Study I, 
dehydrated O. oeni cells (0.5 g/10 mL) were revived in sterile saline with gentle 
mixing for 30 min. at RT, and 200 µL of cell suspension was added to a 100 mL 
juice sample, with expected initial cell count of 107 CFU/mL. All samples were 
fermented for 72 h at +30 °C in iCinac equipment (Unity Scientific, Milford, 
USA) equipped with InLab® Smart Pro-ISM probes for iCinac (ph/redox/Temp) 
(Mettler Toledo) and TW8 water bath (Julabo, Seelbach, Germany). All 
fermentations were prepared in duplicates (I). 

Study II and III, MRS plates were initially inoculated with a scrape from 
glycerol stock and incubated for 36 h at +30 °C. Next, the growth media, either 
general edible medium (GEM) (dextrose 30 g L−1, soy peptone 20 g L−1, yeast 
extract 7 g L−1, MgSO4 × 7 H2O 1 g L−1, MnSO4 × H2O 0.05 g L-1 in potassium 
phosphate buffer 0.01 M, pH 6.3 ± 0.2) or cell acclimation medium (GEM with 
additional 4 g/L of L-malic acid, pH adjusted to 4.5 ± 0.1) was inoculated with a 
single culture from the MRS plate. Inoculated medium was incubated for 24 h at 
+30 °C. Next, the cells were collected via centrifugation (4,500 × g, 5 min., RT) 
and washed twice with PBS (pH 7.4). The cell count for the fermentation was 
standardized with optical density at 600 nm. The target initial cell count in a juice 
sample was 2 × 108 CFU/mL. The juice samples were fermented at +30 °C for 
36 or 72 hours in a Memmert IF-110Plus incubator. All fermentations were 
prepared as triplicates. 

Prior to fermentation, the viable cell count of the starter cultures was 
confirmed with a viable colony count. Colony counts between 30–300 on each 
plate were considered acceptable for enumeration. 

4.5 Sample preparation 

Simple carbohydrates and non-volatile organic acids were analyzed as TMS-
derivatives. Briefly, aliquots of 300 μL of 5% berry juice (v/v in RO-water) with 
xylitol (0.6572 M) and tartaric acid (0.66628 M) were dried under nitrogen flow, 
followed by an overnight desiccation to remove residual water. Dry samples 
were derivatized with chlorotrimethylsilane reagent with pyridine and 
hexamethylsilazane (Tri-Sil HTP, Thermo Scientific, Bellefonte, PA, USA) (I). 

To extract the phenolic acids and flavonols, approximately 11 g of juice 
sample was extracted with 10 mL of ethyl acetate four times. The sea buckthorn 
juice and ethyl acetate formed an emulsion, and 1–2 mL of 4M NaCl was used 
to separate the two phases. The extracts were evaporated until dryness in a rotary 
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evaporator (Hei-VAP, Heidolph GmbH, Schwabach, Germany) (35 °C, 100 rpm) 
and re-dissolved to 3 mL of methanol. The extraction was performed in 
quadruplicates. Samples were filtered (0.45 μm) and stored at –80 °C until 
analyses. For analysis of anthocyanins, juice samples were filtered (0.2 μm) and 
diluted if needed prior to analysis (I). 

For headspace volatile analysis, 2 mL of juice sample was spiked with 10% 
(w/v) NaCl and 10 µL ISTD (ethyl propionate 100 ppm; nonane 200 ppm) and 
subsequently analyzed with the GC-MS instrument (II). 

For the NMR analysis, a clear aqueous phase from turbid sea buckthorn juice 
was collected by removing majority of the solids via centrifugation (14,000 × g, 
3 min, +4 °C), followed by centrifugal filtration to remove the residual solids. 
Next, 300 µL of clarified juice, 70 µL of Chenomx IS-2 (5 mM DSS-d6, 0.1% 
(w/v) NaN3 in D2O, pH 7.0), 70 µL of 1.5M K2HPO4/KH2PO4 buffer (pH 6.5), 
70 µL of 1 M maleic acid standard were mixed, pH adjusted to 6.00±0.02 and 
brought to final volume of 700 µL with dH2O. Finally, 650 µL of the sample was 
transferred to a 5 mm NMR tube (III). 

4.6 Analytical methods 

Carbohydrates and organic acids were analyzed with a GC-FID instrument. The 
GC equipment consisted of an autosampler (AOC-20 s) with an autoinjector 
(AOC-20i), a column oven (Shimadzu GC-2010Plus) and a flame ionization 
detector (Shimadzu, Kyoto, Japan). All samples were prepared in triplicates. 
TMS-derivatives of sugars and organic acids were separated with a nonpolar 
capillary column SPBTM-1 (30m×0.25mm ID, liquid film 0.25 μm, Supelco, 
Bellefonte, PA, USA). The analysis was carried out in a split mode with a split 
ratio of 15:1, and the injection volume 1 μL (I). In addition, the concentrations 
of L-malate, L-lactate, and D-lactate of sea buckthorn juice before and after 
fermentation were determined using K-LMAL, K-LATE, K-DATE enzyme kits 
(Megazyme, Bray, Ireland), respectively (II). 

Flavonols, phenolic acids and anthocyanins were analyzed with a HPLC-
DAD instrument. The HPLC-DAD instrument consisted of a Shimadzu 
(Shimadzu Corporation, Kyoto, Japan) SIL-20AC auto sampler, DGU-20A 
degasser unit, a sample cooler, two LC-20AD pumps, a CTO-20AC column oven, 
an SPD-M20A diode array detector, and a CBM-20A central unit. The system 
was operated using the LabSolutions Workstation software. Analytes were 
separated with a XB Aeris Peptide C18 column (3.60 μm, 150mm×4.60 mm, 100 
Å; Phenomenex Inc, Torrance, CA) combined with a Phenomenex Security 
Guard Cartridge Kit (Torrance, CA). A binary gradient mobile phase system was 
used. Solvent A was a mixture of water:formic acid (99:0.1, v/v), and solvent B 
was acetonitrile:formic acid (99:0.1, v/v). The flow rate of the mobile phase was 
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1 mL/min, the column temperature 30 °C, and the injection volume 10 μL. The 
solvent gradient program was: 0–15 min, 2–18% B; 15–25 min, 18% B; 25–40 
min, 18–60% B; 40–45 min, 60–2% B; 45–50 min, 2% B. UV–vis absorption 
spectra were measured within the wavelength range of 190–600 nm with the 
DAD (I). 

Juice samples were filtered (0.2 μm), diluted if needed, and subsequently 
injected directly to the HPLC system. The column was a reverse-phase Kinetex 
C18 (2.60 μm, 100mm×3.60 mm, 100 Å, Phenomenex Inc, Torrance, CA) 
combined with Phenomenex Security Guard Cartridge Kit (Torrance, CA). A 
binary gradient mobile phase system was used. Solvent A was 5% formic acid in 
MilliQ, water, while solvent B was 5% formic acid in acetonitrile. The flow rate 
of the mobile phase was 1 mL/min, the column temperature 30 °C, and the 
injection volume 10 μL. The solvent gradient program was: 0–10 min, 5–8% B; 
10–15 min, 8% B; 15–20 min, 8–9% B; 20–22 min, 9–12% B; 22–35 min, 12–
60% B; 35–40 min, 60–5% B; 40–45 min, 5% B. Photo absorption spectra were 
recorded at the wavelength of 515 nm with the DAD (I). 

Headspace volatiles were collected with solid phase microextraction (SPME) 
with a 2 cm DVB/CAR/PDMS fiber (50/30 μm, Supelco, Bellefonte, PA) at 
45 °C for 20 min. Prior to the headspace volatile collection, the juice sample was 
incubated 10 min at 45 °C and the fiber conditioned at 230 °C. Analytical 
instrument of the headspace volatiles consisted of a Trace 1310 gas 
chromatograph coupled with a TSQ 7000 single quadropole mass spectrometer 
(Thermo Fisher Scientific, Waltham, MA). The gas chromatograph instrument 
was equipped with either DB-WAX polar capillary column (60m×0.25mm 
i.d.×0.25 μm film thickness, J&W Scientific, Folsom, CA) or SPB-624 mid-
polarity capillary column (60m×0.25mm i.d.×1.4 μm film thickness, Supelco, 
Bellefonte, PA). Mass spectra were detected in electron impact mode at 70 eV 
with a full scan mode (scan range of 33–300 m/z) and a scan speed 0.2 s. The 
temperatures of the MS transfer line were 200 °C and 210 °C for DB-WAX and 
SPB-624 columns, respectively (II). 

In Study III, spectra were recorded using a 600 MHz AVANCE-III NMR-
system (Bruker Biospin, Rheinstetten, Germany) equipped with a CryoProbe 
Prodigy TCI (Bruker Biospin) and an automated sample changer SampleJet. 
Instrument was operated using Topspin (version 4.1.0) and IconNMR softwares 
(Bruker Biospin). The proton spectra were acquired at 298.2 K with 1D NOESY 
pulse program with presaturation (noesygppr1d). The following parameters were 
used: size of the FID, 64k; spectral width, 14 ppm; number of scans, 128; number 
of dummy scans, 4; 90º proton pulse length 10.98 μs; relaxation delay, 5 s; 
mixing time, 0.10 s. Multiplicity edited 1H–13C heteronuclear single quantum 
coherence (HSQC) using echo/antiecho detection and gradient pulses 
(hsqcedetgpsisp2.3) was acquired with the following parameters: 90º pulse 
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values, 8 μs (proton) and 15 ls (carbon); relaxation delay, 2 s; spectral width, 165 
ppm (f1) and 16 ppm (f2); data points, 256 increments of 2 k; number of scans, 
32. 1H–13C heteronuclear multiple-bond connectivity (HMBC) with absolute 
value detection (hmbcgplpndqf) was acquired with the parameters: spectral width, 
220 ppm (f1) and 10 ppm (f2); data points, 128 increments of 2 k; number of 
scans, 64. Homonuclear 1H–1H COSY (cosygpppqf) was acquired with 2048 data 
points with increments of 128 and with 16 scans. 

4.7 Identification 

Authentic standards in addition to literature references were utilized for the 
identification various sugars and acids from both the fresh and the fermented 
berry juices (I). From the same juices, the flavonol glycosides, anthocyanins, and 
hydroxycinnamic and hydroxybenzoic acids were identified using UV–vis 
spectra, MS and MS/MS spectra, retention times and by comparison to authentic 
standards and literature references (I). 

From both the fresh and the fermented sea buckthorn juices, the volatile 
compounds were identified by comparing the mass spectra with standard NIST 
08 library, literature data and Kovats retention indices (RI). The RIs of the 
volatile compounds were calculated based on the retention times of C5–C30 
alkane mixture (Sigma-Aldrich, St. Louis, MO) determined using the same gas 
chromatographic conditions (II).  

From 1H-NOESY NMR spectra of the fresh and fermented sea buckthorn 
juices, the metabolite annotation was based on the chemical shift, J-coupling, 
heteronuclear coupling (HSQC, HMBC), and homonuclear coupling (1H–1H 
COSY). Spectrum databases of Chenomx NMR Suite software, the Human 
Metabolomics Database (http://www.hmdb.ca/) and the Biological Magnetic 
Resonance Data Bank (http://www.bmrb.wisc.edu/) were used as the main 
references in addition to other literature sources (III). 

4.8 Quantification 

In the Study I, quantification in GC-FID analyses was made with the internal 
standards, xylitol for the sugar compounds, and tartaric acid for the organic acids. 
In addition, correction factor for each compound was determined with external 
standards with known concentrations. Quantification of the phenolic compounds 
in Study I was performed by comparing the peak areas at a selected wavelength 
to the linear calibration curves of the external standards. Quercetin derivatives 
were quantified with a calibration curve constructed with quercetin 3-O-
rhamnoside (detection wavelength 360 nm, concentration range for constructing 
calibration curve: 23.7–3791.4 μM, R2, 0.999), isorhamnetin derivatives with 
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isorhamnetin 3-O-rutinoside (360 nm, 12.2–4867.5 μM, R2, 0.9993), 
hydroxycinnamic acids with chlorogenic acid (320 nm, 81.6–13062.0 μM, R2, 
0.9995) and hydroxybenzoic acids with protocatechuic acid (260 nm, 180.1–
28808 μM, R2, 0.9995). Anthocyanins were quantified similarly as described 
above, using cyanidin-3-O-glucoside as an external standard. A calibration curve 
(R2 0.9997) was constructed by analysis of standard solutions of a concentration 
range of 0.46–1155.34 μM at wavelength of 515 nm. 

From the SPME-GC-MS results, the individual volatile compounds were 
semi-quantified (µg/L) by comparing the area of the base peak ion to the area of 
the base peak ion of ethyl propionate (internal standard), which was selected due 
to the low sample to sample variation in peak area and due to the high number 
of esters present in the sea buckthorn juice (II). 

Quantification of the selected metabolites from the 1D-NOESY spectra was 
performed using the Chenomx software and its profiling tool. The results were 
normalized using the peak area of the internal standard, maleic acid (1 mM) (III). 

4.9 Statistical analysis 

Results were reported as mean ± standard deviation, determined from biological 
duplicates in the Study I and from biological triplicates in the Studies II and III. 
The Tukey’s test for population with equal variances was performed for a 
multiple comparison. The differences reaching confidence level of p < 0.05 was 
considered as statistically significant. Statistical analyses were performed 
initially with software R (The R Foundation for Statistical Computing, Vienna, 
Austria) using the library agricolae with R version 3.2.3 271 (I, II), and later with 
the library multcompView with the R version 4.1.0 (III). Default parameters of 
the package was used. The following statistical analyses were carried out using 
IBM SPSS 25.0 (SPSS, Chicago, IL, USA): A Student’s t-test was used to 
compare the juice yields, contents of the lactic and L-malic acid and rate of 
malolactic conversion between enzyme treated and fresh juices. General linear 
models were used to compare the differences in malolactic conversion rates 
dependent on the bacterial strain and juice type (I). 

To study differences between the L. plantarum strains (X = 6, n = 24) and the 
impact of fermentation time (0 h, n = 12; 36 h, n = 78; 72 h, n = 78), juice pH, 
and growth media as combined variable (X = 4, n = 36) in relation to the sums 
of volatile compound subgroups, IBM SPSS 26.0 (SPSS, Chicago, IL, USA) was 
used. In addition, principal component analysis (PCA) was carried out using the 
software Unscrambler X (version 11, Camo Inc., Norway). This was used to 
illustrate the relationship between the volatile composition and the treatments 
applied in production of the fermented sea buckthorn juice (II). 
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All 1H-NMR spectra were processed and analyzed using the Chenomx NMR 
Suite Professional software version 7.0 (Chenomx Inc. Edmonton, AB, Canada). 
DSS was used as an internal standard for chemical shift referencing (set to 0 
ppm). The manual phase and baseline correction were performed on each of the 
spectra. All the 1H-NMR FIDs were zero-filled to 64k data points and line 
broadned 0.3 Hz. After processing, the spectra were divided into 0.02 ppm-sized 
bins, the water region removed, and the data normalized to the total spectral area. 
To align the spectral data for untargeted statistical analyses, the dataset was 
imported into MATLAB software (version 2020B, Mathworks Inc., Natick, MA, 
USA) and processed using the icoshift algorithm. Principal component analysis 
and orthogonal principal least squares discrimination (OPLS-DA) of processed 
and aligned spectra were carried out using SIMCA (version 16, Umetrics, Umeå, 
Sweden). Pareto scaling and mean centering were applied to the datasets. The 
validation of the OPLS-DA models was performed with internal validation of 
100 permutations as well as by determining explained variation (R2Ycum) and 
predictive ability (Q2Ycum) (III). 

Besides the multivariate methods, in Study III, paired t-test was used to 
compare the means of individual metabolites, grouped by growth medium with 
fermentation time and the starter pH set as constant (72 h and 3.5, respectively). 
To compare the metabolic responses based on the starter pH of sea buckthorn 
juice, hierarchical clustering heatmap analysis was performed with 
MetaboAnalyst 5.0 open source platform (https://www.metaboanalyst.ca/) 272. 
Data was normalized with auto-scaling. 
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5 RESULTS AND DISCUSSION 

5.1 Sugar, sugar alcohols, and organic acid content of the 
berry materials 

The pH, sugar, sugar alcohol, and organic acid content was determined in the 
juices made from sea buckthorn, chokeberries, and lingonberries. The lowest pH 
was observed in lingonberry 2.68, followed by sea buckthorn (2.87) and 
chokeberry (3.39). Despite this, the highest total acid content (w/v) was 
measured from the SBJ (18.2 g/L). Chokeberries had the lowest acid content 
(10.0 g/L) after lingonberry juice (15.9 g/L). In accordance with earlier reports 
(Table 14), the main acids in both SBJ and chokeberry juices were L-malic acid 
and quinic acid, while the main acid in lingonberry juice was citric acid. 

 Highest sugar content (sugars + sugar alcohols) was measured from the 
chokeberry juice (56.4 g/L), followed by lingonberry (32.8 g/L) and sea 
buckthorn (15.5 g/L). The main sugars in chokeberries were sorbitol and glucose, 
while glucose and fructose were the most abundant in both sea buckthorn and 
lingonberries. Pectinolytic enzyme treatment prior to the juice extraction 
significantly increased both the total sugar and the total acid content of 
lingonberry juice (I). 

The sugars and acids of SBJ were analyzed also in a later study (III). In the 
first study, Estonian berries were used (I) while in the later study, Finnish sea 
buckthorn berries were used (III). In both instances, the berries belonged to the 
subspecies mongolica but were mixture of several cultivars of a Russian origin. 
The juice made from Finnish berries had lower pH and lower contents of glucose, 
fructose, ascorbic acid, and L-malic acid compared to the juice made from the 
Estonian berries. Only the quinic acid content was reported to be higher in the 
Finnish berries (III) (Table 22). 

Table 22. Concentrations of the sugars, sugar alcohols, and organic acids in fresh 
sea buckthorn juice (I, III). Juices were diluted with water 1:1 in both instances. 

Compound / value Study I, g/L Study III, g/L 
pH 2.87 ± 0.01 2.70 ± 0.01 
Glucose 11.27 ± 0.13 4.75 ± 0.04 
Fructose 2.11 ± 0.06 1.20 ± 0.00 
Malic acid 12.09 ± 0.20 6.84 ± 0.40 
Ethyl glucose 1.27 ± 0.03 Not reported 
L-Quebrachitol 0.75 ± 0.01 Not reported 
Ascorbic acid 0.47 ± 0.01 0.24 ± 0.00 
Quinic acid 5.49 ± 0.16 10.89 ± 0.08 
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5.2 Success of fermentation 

5.2.1 Non-acclimated cells 

At the natural pH, the only strain able to fully convert all the malic acid to lactic 
acid in SBJ was the strain DSM 10492 (I). However, in later work, none of the 
tested strains were able to effectively ferment SBJ under similar circumstances 
(II). Differences in the study settings in Study I and Study II were sample 
volume (100 and 30 mL, respectively), inoculation level (higher inoculation level 
in II), and use of manganese salts in the growth medium (no salts included in the 
medium in Study I). 

As Mn2+ protects L. plantarum from oxidative stress, lack of Mn2+ in the 
medium in Study I was as a potential stress factor for L. plantarum, leading to 
induced expression of Mn2+ starvation related genes. Mn2+ starvation was shown 
to promote morphological and membrane fatty acid changes in L. plantarum 273;  
content of cell wall unsaturated fatty acids and lactobacillic acid were increased, 
similar to changes under an acid shock. Thus, lack of Mn2+ in the growth medium 
potentially worked as an inadvertent acclimation factor to improve fermentation 
in sea buckthorn juice. However, this would require confirmation in a separate 
study.  

Unlike in the fermentation of sea buckthorn juice, high rate of malolactic 
conversion in the chokeberry juice was observed by all the tested strains, among 
which the strain DSM 20174 showed the highest conversion (100% after 72 h). 
Better success in chokeberry juice fermentation in comparison to the 
fermentation of sea buckthorn juice was most likely due to the higher natural pH 
of CB (3.5) in comparison to SB (2.7) (I). 

Treatment with pectinolytic enzymes significantly reduced the malolactic 
conversion by 11.7% in samples fermented with the strain DSM 20174 in the 
SBJ. In contrast, fermentation of the enzyme treated SBJ with the strain DSM 
100813 resulted to a significantly higher malolactic conversion compared to 
metabolic activity in the fresh juice (without enzyme treatment). Treatment with 
the pectinolytic enzyme systematically and significantly reduced malolactic 
conversion in CB, however, the difference varied greatly between strains. The 
strain DSM 20174 suffered a reduction of 1.3% in malolactic conversion rate 
when mash wash enzyme-treated prior to the juice extraction, while with the 
strain DSM 16365 this reduction was up to 38.8% (I). 

Fermentation of lingonberry was not successful in this work, with only a trace 
level of lactic acid detected after the fermentation (I). In another instance, the pH 
of lingonberry juice was increased to 5.0 to allow fermentation with L. plantarum, 
as benzoic acid loses its antimicrobial activity when deprotonated 211. 
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5.2.2 Acclimated cells 

Acclimation of L. plantarum cells prior the fermentation allowed fermentation 
of the SB juice with natural pH (2.7) with all the tested strains. Moreover, 
excluding the strain DSM 1055, the conversion was almost completed already 
within 36 hours of fermentation. Exposure to a reduced pH (4.5) and L-malic 
acid before the fermentation likely induced expression of genes related to the 
stress tolerance, leading to a better adaptation to the SB juice (II, III). 

5.3 Changes in sugars and acids 

5.3.1 Sea buckthorn juice 

Besides the conversion of malic acid to lactic acid, statistically significant 
increase (4.0–7.4%) of ethyl glucose was observed in the SB samples fermented 
with the strains DSM 20174 and DSM 10492. Additionally, a decrease in quinic 
acid along with an increase in shikimic acid was detected in the SB juice 
fermented with the strains DSM 10492 and DSM 100813. In later work, a 
formation of shikimic acid, assumingly from quinic acid, was detected in all the 
juices where fermentation was successful (Fig. 19) (III). A second quinic acid 
metabolite, 3,4,5-trihydroxycyclohexane-1-carboxylic acid, was also detected 
(III). This compound was mainly formed by the strain DSM 13273. It was 
observed that the quinic acid metabolism was more effective at pH 3.5 compared 
to pH 2.7 (III). The strain DSM 1055 also produced succinic acid up to 0.70 mM 
(III) through the partial citric acid cycle of L. plantarum where succinic acid is 
the final downstream metabolite (Fig. 20). It was concluded that both the quinic 
acid metabolism and succinic acid formation pathways were activated to 
consume excess NADH from acetate production (III). 

Regarding the metabolism of sugars, fermentation of fructose and glucose was 
limited at the natural pH of sea buckthorn juice (I, III), however, sugar utilization 
was increased at pH 3.50 (III). Interestingly, the strains DSM 20174 and DSM 
100813 preferred fructose while other tested strains fermented mainly glucose 
(Fig. 20) (III). While sorbitol from chokeberries was utilized by L. plantarum 
(I), there was no sign of utilization of sugar alcohol L-quebrachitol from sea 
buckthorn juice (I, III). 

Formation of disaccharide trehalose was observed during the fermentation of 
sea buckthorn juice with L. plantarum. Highest producer was the strain DSM 
10492, which produced trehalose up to 0.13 mM (Fig. 20). In addition, the strain 
DSM 20174 further converted trehalose to maltose (III). Both trehalose and 
maltose are considered as multi-stress protectors in bacteria, as they can stabilize 
the cell wall under ethanol, acid, and osmotic stress due to the high-water holding 
capacity. 
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Therefore, it was concluded that L. plantarum produced these compounds as 
a response to acid stress 274. While no established pathway in L. plantarum 
currently exist, it was assumed based on the existing knowledge on trehalose 
biosynthesis in other microorganisms that the precursors were D-glucose and 
UDP-glucose 274. Recently, accumulation of trehalose by L. plantarum was 
reported under ethanol stress 275. 

Study by Tkacz et al. 188 had a high similarity with the study setting in our 
work (I), as the same strains were used to ferment SBJ without pH adjustment. 
In their report, level of MLF was only moderate, and the most effective 
fermentation was by the strain DSM 20174 (21% malolactic conversion, 0.1 unit 
increase in pH). In the same study, also a mix of sea buckthorn and apple juice 
was fermented, which proved to be a more suitable fermentation matrix, showing 
an additional approach for improving fermentation besides acclimation or pH 
adjustment. 

SBJs inoculated with L. plantarum had a significantly higher amount of 
ascorbic acid after fermentation compared to the juices incubated without 
inoculation. Preservation of ascorbic acid by lactic acid fermentation was 
reported earlier by Filannino et al. 187. This work and study from Tkacz et al. 188 
together suggest that retaining of the antioxidant compounds (i.e. anthocyanins 
and ascorbic acid) during fermentation in berry materials is due to the increased 
antioxidant capacity. However, at the same time, in Study I, the strain DSM 
10492 had the most dynamic metabolism of phenolic compounds out of all the 
tested strains yet showed the lowest protection of ascorbic acid and anthocyanins 
from oxidation. This is contradictory to the assumption that the lactic acid 
bacteria modify the antioxidant capacity of plant materials though phenolic 
metabolism and suggests that there are other underlying mechanisms that play a 
role. 

5.3.2 Chokeberry juice 

The concentrations of total sugars and fructose of the chokeberry juice were 
significantly reduced in all fermented chokeberry samples by 6.1–13.7% and 
3.9–17.6%, respectively, while glucose and sorbitol were reduced in a varying 
degree depending on the material and the strain (4.1–13.6% and 0.5–10.5%, 
respectively). Like with SBJ, quinic acid was converted to shikimic acid also 
during the fermentation of chokeberry juice, and the content of the latter was 
increased from 0.05 to 0.11 g/L (I). 
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5.4 Phenolic profile of the berry juices 

5.4.1 Chokeberry 

Anthocyanins in the chokeberry juices were primarily cyanidin glycosides with 
traces of pelargonidin derivatives. The most abundant anthocyanin compounds 
detected were in a descending order of abundance cyanidin-3-O-glucoside, 
cyanidin-3-O-galactoside, cyanidin-3-O-xyloside, and cyanidin-3-O-
rhamnoside. Chlorogenic acid and neochlorogenic were the main 
hydroxycinnamic acids detected from the juice with smaller amounts of 3-O-p-
coumaroylquinic acid and caffeic acid also detected. The main flavonol 
compounds were in descending order were quercetin-3-O-galactoside, quercetin-
3-O-glucoside, quercetin-rhamnoside-hexoside, quercetin-3-O-rutinoside, and 
quercetin-3-O-vicianoside. The main hydroxybenzoic acid was protocatechuic 
acid. The phenolic profile of the CB juice was similar to earlier reports 254,256. 

5.4.2 Sea buckthorn 

In the ethyl acetate extracts of SBJ, the most abundant group of phenolic 
compounds were flavonols. The major flavonol glycosides were isorhamnetin-
3-O-glucoside, isorhamnetin-3-O-rutinoside, isorhamnetin-3-O-glucose-7-O-
rhamnoside and quercetin-3-O-glucoside, which constituted 78% out of the total 
flavonols. Regarding the minor flavonol compounds, two acylated isorhamnetin 
derivatives with a substitution group of m/z value 84 were detected. Earlier, a 
isorhamnetin derivative with acyl group of a quasimolecular ion of the same m/z 
value was identified in sea buckthorn berries 244. From the class of 
hydroxybenzoic acids, protocatechuic acid and a gallic acid derivative were 
detected. While no other common phenolic acids (ferulic, p-coumaric or caffeic 
acid) was detected from SBJ, majority of these compounds are present as bound 
compounds (glycosides and esters) in the sea buckthorn berry 245 and were likely 
not detected with the methods used in the study (I). 

5.4.3 Effect of enzyme treatment on phenolic profile 

Pectinolytic enzyme treatment often increases content of phenolic compounds 
due the release of bound phenolics from the cell wall matrices and 
polysaccharides 276. In this work, enzyme treatment significantly increased the 
total contents of anthocyanins, hydroxybenzoic acids, and hydroxycinnamic 
acids in the CB juice. 
In SBJ, enzyme treatment significantly increased the content of hydroxybenzoic 
acids and flavonols. Additionally, enzyme treatment increased the flavonol 
aglycone content in both SB and CB juices. Enzyme-treated SBJ had a lower 
amount of isorhamentin-3-O-glucoside-7-O-rhamnoside and isorhamnetin-3-O-
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rutinoside, but a higher amount of isorhamnetin-3-O-glucoside compared to the 
fresh juice. This result suggested that the enzyme used in the study possessed an 
undeclared rhamnosidase activity, which led to formation of flavonol aglycones 
during the incubation period (I). 

5.4.4 Changes in anthocyanins during fermentation 

The total anthocyanin content was mostly affected by pasteurization, leading to 
a reduction from 37.97 ± 0.41 to 30.9 ± 0.09 mg/100 mL in the fresh juice and 
from 56.74 ± 0.32 to 37.14 ± 0.48 mg/100 mL in the enzyme-treated juice. 
Anthocyanin content continued to decrease during fermentation, to the levels of 
20.93 ± 0.13 and 29.77 ± 0.18 mg/100 mL in fresh juice and enzyme-treated 
juice, respectively. However, after the fermentation, the samples inoculated with 
bacteria had a significantly higher anthocyanin content (except for the DSM 
10492) than the control juice without a bacterial inoculation, pointing to a 
possible anthocyanin stabilizing factor related to L. plantarum (I). 

5.4.5 Changes in flavonols during fermentation 

In the chokeberry juice, the strain DSM 10492 significantly decreased the total 
content of flavonol glycosides in the fresh juice samples (i.e., no enzyme 
treatment), while fermentation with the strains DSM 100813 and DSM 10492 
showed significant reduction in the flavonol content in enzyme-treated juices. 
Fermentation with the strain DSM 10492 reduced the content of flavonols by 9–
14% in CB juice. No metabolic products from the flavonol glycoside metabolism 
were detected (I).  

However, in sea buckthorn, there was no statistically significant difference in 
the total flavonol content, or in the contents of individual flavonol compounds, 
between different treatments (I). The different glycosidases produced by L. 
plantarum can be considered the main enzymes for flavonol glycoside 
modification. Therefore, reasons for the lack of flavonol modification in SBJ can 
be speculated to be several. First, lack of affinity of L. plantarum glycosidases 
with isorhamnetin derivatives present in the SBJ. However, formation of the 
isorhamnetin aglycone was reported in the fermentation of cactus cladode pulps 
187, meaning that L. plantarum has also shown enzymatic activity with 
isorhamnetin glycosides. A second potential explanation is the low pH of SBJ 
which has either reduced the gene expression of glycosidic enzymes, or has 
inhibited the enzymatic activity, or both. Earlier, a low pH (3.2) was reported to 
reduce the β-glucosidase activity of L. plantarum in model wines 105. A third 
explanation is that the presence of glucose has downregulated the expression of 
β-glucosidase or any of the other glycosidase related genes 104. In a material 
opposite of SBJ in terms of pH and sugar content, fermentation of silkworm thorn 
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leaf infusion with L. plantarum yielded high amounts of quercetin from 
quercetin-7-O-glucoside, and kaempferol from kaempferol-3-O-glucoside and 
kaempferol-7-O-glucoside 277. Plant leaves infusions typically have low acidity, 
a low sugar content, and a high phenolic content. Absence of readily available 
carbon sources could have increased the expression of glucosidase genes, leading 
to an effective conversion of flavonol glycosides to the corresponding aglycones. 
In this context, flavonols were largely unaffected in this work possibly due to the 
factors that inhibited the expression of glycosidases required for the flavonol 
glycoside modification. 

5.4.6 Changes in phenolic acid content 

Fermentation with the strain DSM 10492 reduced the content of caffeoylquinic 
acids and other hydroxycinnamic acids by 20–24% in the chokeberry juice. 
However, there was no significant increase in the contents of either caffeic acid 
or quinic acid, as the compounds were metabolized further by L. plantarum (I). 
While quinic acid metabolism was later investigated (III), the metabolic product 
of caffeic acid in fermentation of chokeberries was not discovered. If caffeic acid 
was reduced to dihydrocaffeic acid 194, the loss of side chain double bond caused 
absorbance maximum to shift from 325 nm to 206 nm, meaning that the 
compound could have not been detected with the photodiodearray detector which 
was used in Study I.  

So far, no esterase enzyme has been discovered from L. plantarum that is 
effective in hydrolyzing caffeoylquinic acids (Section 2.4.4). However, it is still 
plausible that the esterases identified earlier from L. plantarum were responsible 
for the observed reduction in chlorogenic acid content in the fermentation of 
chokeberry juice (I). For example, feroyl esterase Lp_0796 showed a mild 
hydrolytic activity on chlorogenic acid 76,79. However, this gene is commonly 
present in L. plantarum and thus does not explain the strain-dependent difference 
in the chlorogenic acid metabolism (I). Therefore, it is possible that the strain 
DSM 10492 produced an unknown esterase with activity on caffeic acid esters. 

While the flavonols in SBJ were unaffected by fermentation (I), increase in 
the protocatechuic acid content was detected in SBJ (I, III). It was concluded 
that the increase in protocatechuic content acid was due to quinic acid 
metabolism. Furthermore, the strain DSM 13273 decarboxylated protocatechuic 
acid into catechol (III). Unlike the metabolism of quinic acid into 3,4,5-
trihydroxycyclohexane-1-carboxylic acid through the so-called reductive 
pathway, which allows recovery of cofactor NAD+ 60, the metabolic benefit of 
conversion of quinic acid into protocatechuic acid and catechol is less clear. 
Obvious benefit would be a deacidification effect, as protocatechuic acid is a 
weaker acid than quinic acid (pKa 4.48 and 3.46, respectively), and 
decarboxylation to catechol removes a proton donating group altogether. 
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5.5 Volatile compounds 

5.5.1 Volatile profile of fresh sea buckthorn juice (II) 

In total, 90 volatile compounds were identified from the fresh sea buckthorn juice, 
of which were 53 esters, 7 acids, 6 alcohols, 7 aldehydes, 3 alkenes, 8 ketones, 4 
terpenes and 3 sulfur-containing compounds. Non-branched, branched, and 
aromatic esters were detected. Identified non-branched fatty acid esters with 
varying acyl carbon numbers were, in descending order of abundance, C6, C8, 
C3, C10, C5, C7 and C2. The most abundant branched esters were those with 
acyl group of 3-methylbutanoates, 2-methylbutanoates, 2-methylpropanoates, or 
3-methyl-2-butenoates. Esters of benzoate were the main aromatic esters. 

The most abundant compounds in the GC-MS chromatograms were, in 
descending order, 3-methylbutyl 3-methylbutanoate, 3-methylbutyl hexanoate 
and ethyl hexanoate. A majority of the tentatively identified esters have fruity 
odor descriptor, while esters and terpenes with floral odor descriptor were also 
detected. 

The main volatile acids detected were acetic acid and medium-chain fatty 
acids (C6-C9), while fatty-acid derived aldehydes with the same carbon numbers 
were also detected. Other aldehydes detected were benzaldehyde and 
acetaldehyde. Fatty acid derived ketones with acyl chain lengths of 3, 4, 5, 7, 9, 
and 11 were detected. However, except for ethanol and 1-heptanol, no 
corresponding alcohols to aldehydes or ketones were detected. 

In earlier reports it has been observed that depending on the cultivar, 
subspecies, growth location and growth season, the main volatile compounds in 
sea buckthorn juice are ethyl 3-methylbutanoate, ethyl hexanoate, and 3-
methylbutyl 3-methylbutanoate at varying ratios (Fig. 19). Therefore, the 
volatile compound profile reported in Study II was in accordance with earlier 
reports. Based on the structures of volatile esters present in the sea buckthorn 
berry, the precursors are likely derived from the same precursor pool (Fig. 20), 
however, further studies are required to identify the cellular mechanisms that 
control substrate availability in the ester biosynthesis.  

5.5.2 Changes in volatile profile of sea buckthorn juice during 
fermentation (II) 

Incubation decreased the content of esters and terpenes, whereas fermentation 
increased the levels of volatile acids, ketones, and alcohols. Moreover, 
fermentation lowered the content of fatty acid-derived aldehydes. Juices 
fermented with the strain DSM 1055 had the highest acid and alcohol content 
while fermentation with the strain DSM 13273 resulted to the highest content of 
ketones (Fig. 21). Compared to inoculation with other strains, fermentation with 
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the strains DSM 16365 and DSM 100813 resulted to a rapid MLF, formation of 
less volatile acids, and lower loss of esters and terpenes, important for natural 
sea buckthorn flavor. 

In principal component analysis, fermented samples were associated with 3-
methyl-1-butanol (fermented aroma), ethanol, and benzyl alcohol (floral). 3-
Methyl-1-butanol was possible derived from leucine metabolism (Fig. 12) and/or 
ester hydrolysis. As the phenylalanine metabolism by L. plantarum was detected 
in sea buckthorn juice in Study III, it can be speculated that phenylalanine was 
the precursor for benzyl alcohol detected from fermented SBJ (II). As discussed 
earlier, phenylpyruvate, derived from the transamination of phenylalanine, can 
be non-enzymatically converted to benzaldehyde when exposed to the Mn2+ 
reservoir of L. plantarum (Fig. 12). Benzaldehyde can then be reduced to benzyl 
alcohol by the benzyl alcohol dehydrogenase (Lp_3054) (Fig. 11). Ethanol was 
likely from the heterofermentative pathway of L. plantarum (II). 

Increase in the volatile acid content was due to the production of acetic acid, 
3-methylbutanoic acid (cheesy aroma) and medium chain fatty acids (fatty and 
cheesy aromas). As acetic acid is one of the end-products in the mixed acid 
fermentation pathways, it is a common metabolite of L. plantarum. 3-
Methylbutanoic acid was likely derived from same precursos as 3-methyl-1-
butanol, meaning from leucine metabolism and ester hydrolysis (Fig. 12) (II).  

Increase in the volatile ketone content especially in juices fermented with the 
strain DSM 13273 (Fig. 21) was due to the increase in buttery ketones acetoin 
and diacetyl contents. In accordance with earlier studies, the main ketone product 
was acetoin. 2-Undecanone (fruity aroma) was positively correlated with 
fermented samples in PCA models, however, precursor for this volatile was not 
established. No volatile phenols (e.g. 4-ethyl phenol) were detected in any of the 
juices (II).  

Whether the changes in volatile profiles in Study II were beneficial for overall 
aroma of sea buckthorn juice is not clear. While the content of several floral 
volatiles was increased, at the same time, increase in volatile acidity (i.e., 
potential off-aromas) was observed. Additionally, loss of the fruity esters during 
fermentation could have negative impact on sensory value of SBJ. Due to large 
number of samples the juice volume per sample was relatively low (30 mL), 
which had a high surface-to-volume ratio. Therefore, it is possible that at larger 
volumes, let alone on an industrial scale, the loss of volatiles during fermentation 
could be significantly lower compared to the results reported in Study II. 

No report apart from this work exist studying change in the volatile profile of 
SBJ after fermentation with L. plantarum. However, Tiitinen et al. 278 studied the 
impact of MLF with O. oeni on SBJ volatile profile. While the content of various 
esters was decreased similary to Study II, increase in concentrations of ethyl 
acetate, 3-methylbutyl acetate, and ethyl butanoate were detected.  
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Fig. 21.  Sums of the volatile compound subgroups over different fermentation 
variables. Results are mean ± standard deviation. Asterisks mark the groups that 
are statistically different (* p < 0.05; ** p < 0.01; *** p < 0.001). Tukey’s HSD 
test of significance was used for the comparisons. Y-axis represents semi-
quantified volatile content (µg/L).
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Additionally, ethanol and 3-methyl-1-butanol contents were increased, which 
was also reported in II. 

All in all, as the odor thresholds of aroma-active volatile compounds vary 
significantly between compounds and are strongly dependent on the sample 
matrix, further studies are required to determine how MLF affects the aroma and 
sensory properties of fermented SBJs. 

5.6 Changes in other metabolites 

From the 1D-NOESY spectra, several metabolites not yet discussed and not 
detected in either Study I or Study II were identified from the fresh sea 
buckthorn juice (III). These included free amino acids (methylcysteine, valine, 
isoleucine, alanine, tyrosine, asparagine, and phenylalanine), nucleotides 
(adenosine, uridine), succinic acid, 2-oxoglutaric acid, choline, fumaric acid, 
formic acid, trigonelline, ribose, and methyl glucoside. From all identified 
metabolites, trigonelline, asparagine, ethyl glucose, myo-inositol, and L-
quebrachitol showed no significant change after fermentation in any of the 
samples (III). 

During fermentation, L. plantarum consumed most of the free amino acids, 
especially branched-chain amino acids and phenylalanine. Amino acid 
catabolism was more pronounced at higher pH. However, asparagine present in 
SBJ was not utilized by L. plantarum (III). 

One sulfur-containing amino acid was detected from SBJ (methylcysteine), 
which was also absorbed by L. plantarum (Fig. 19) (III). While methionine is a 
growth limiting amino acid for L. plantarum, previous studies have suggested 
that the species is capable to convert cysteine into methionine (Section 2.6.2). 
However, it was not confirmed in this doctoral thesis whether L. plantarum 
absorbed methylcysteine only due to the structural similarity to cysteine and 
methionine, or if it was able to utilize methylcysteine in its metabolism. 

The main metabolite of phenylalanine was 3-phenyllatic acid, produced from 
transamination via phenylpyruvate. In the first step, the amino group from 
phenylalanine is transferred to 2-oxoglutaric acid, yielding glutamic acid, an 
essential amino acid for L. plantarum. Therefore, it was an unexpected result that 
2-oxoglutaric acid present in SBJ was only partly absorbed by L. plantarum 
during fermentation (III). The only strain that effectively absorbed 2-oxoglutaric 
acid was the DSM 10492 (Fig. 19). Whether the the limited uptake in other 
strains was controlled (by downregulation of uptake related genes) or not (e.g., 
uptake inhibited due to the acidic conditions) requires further studies. Moreover, 
GABA, derived from decarboxylation of glutamic acid, was detected in juices 
fermented with strain DSM 1055. Higher yield of GABA was detected at pH 2.7 
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compared to pH 3.5, suggesting that the compound was produced to counter the 
acid shock (III). 

The strains DSM 10492 and DSM 13273 produced significantly higher 
content of 1,3-dihydroxyacetone (DHA) (0.13–0.14 mM) compared to the other 
strains (0–0.05 mM) (Fig. 20). In the case of strains DSM 100813 and DSM 1055, 
DHA was produced solely by cells grown in the CAM while little to no 
production was detected by cells grown in the GEM. As the CAM-grown cells 
were adapted to the acid stress prior to inoculation, it can be speculated that DHA 
production was related to cellular stress. Earlier, DHA was detected from 
fermented vegetable juice 280. One potential source for DHA is from the 
oxidation of glycerol with NAD+ by the enzyme glycerol dehydrogenase 
(encoded by gldA). While no copy of gldA gene from L. plantarum was reported 
by Doi 281, UniProt query provided a putative gldA gene for L. plantarum based 
on a sequence homology (accession N692_08665). Rivaldi et al. reported that 
the main pathway in glycerol metabolism in L. plantarum under physiological 
conditions was formation of glycerol-phosphate by glycerol kinase while very 
little glycerol oxidation was observed 282. However, further studies are required 
to study if metabolic flux is shifted to glycerol oxidation under acid shock, which 
would explain DHA accumulation during fermentation of SBJ. 

5.7 Methological considerations and limitations of the 
study 

While this work focused on optimizing multiple fermentation variables (pH, 
fermentation time, strain, medium composition), there are numerous other 
factors to be considered in the product development of fermented plant-based 
foods (Fig. 23). One factor not considered in this work was “optimizing” the 
origin of the raw material. The chemical composition of a plant material can be 
substantially different depending on the subspecies, cultivar, growth location, 
and growth year. As it was discussed in this thesis, there are studies showing that 
the fermentation end-product can be significantly different based on the cultivar 
of the raw material alone 197,283. 

Another factor not considered in this work was optimizing the inoculation rate 
since the initial cell count can affect the overall metabolic activity due to quorum 
sensing. This work also did not analyze if the cell number of L. plantarum 
decreased, was maintained, or increased during fermentation of sea buckthorn or 
chokeberries. This analysis was left out due to the high number of samples. Many 
studies related to the fermentation of fruit or berry materials have included a 
storage trial after fermentation, which was missing in this work. Future work 
should analyze survival of L. plantarum in berry juices both during fermentation 
and storage. Storage trial would also allow determination of the residual 
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metabolic activity of L. plantarum in sea buckthorn or other similar materials at 
low temperature.  

Only little phenolic metabolism was detected sea buckthorn juice (I), and thus 
this thesis work could be extended by studying whether sea buckthorn flavonol 
glycosides are metabolized more effectively at elevated pH or after acclimation. 
It was assumed that the glycosidic enzymes of L. plantarum were inhibited due 
to presence of sugars and low pH in SBJ, which was the reason for the limited 
metabolism of flavonol glycosides. However, further studies would be required 
to confirm if this was the case. 

Only SBJ was used in Studies II and III, but chokeberry juice was also a 
promising matrix for malolactic fermentation with L. plantarum (I). As 
chokeberry has a very high phenolic content and subsequent low consumer value 
due to the intense bitterness and astringency, further studies to modify the 
chokeberry phenolic profile more effectively than in this work could be 
worthwhile. Also, one of the key odor compounds in chokeberry juice is 
benzaldehyde, making it a potential target to improve sensory value by reducing 
this aldehyde to a floral benzyl alcohol with lactic acid bacteria. 

Multiple conclusions in this thesis rely on the assumption that fermentation of 
sea buckthorn and chokeberry juices with L. plantarum in general improved the 
antioxidant capacity. However, no in vitro antioxidant capacity analysis was 
performed in this thesis, and thus it would be necessary to confirm the 
assumption that protection of ascorbic acid and anthocyanins from oxidation 
during fermentation was due to the increased antioxidant capacity. Also, as an 
increase in antimicrobial compounds (lactic acid, acetic acid, and 3-phenyllactic 
acid) was reported in SBJ after the fermentation (III), antimicrobial trials would 
be needed to test if the accumulation of these compounds had any significant 
impact on the microbial stability of SBJ. 

Analysis of the volatile compounds in fermented sea buckthorn did not 
consider whether the changes in the volatile compound profile had impact on the 
detectable odor, and the study would have benefitted from a GC-O analysis to 
determine the key odorants in both the fresh and the fermented SBJ (II). 

Ultimately, the main shortcoming of this work was lack of the sensory 
evaluations to confirm whether the observed chemical changes were significant 
enough to produce a difference in flavor, and whether the change in flavor was 
beneficial or not. Thus, the next step to take this research further would be to 
select the most promising samples for sensory and consumer trials.
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6 SUMMARY AND CONCLUSION 

This work set out to study the potential of MLF to reduce the acidity of berry 
materials, to use fermentation to modify bitter and astringent compounds in 
berries (i.e., phenolic compounds), and to determine if compounds that promote 
functional properties, such as storage stability, are generated during MLF  
Initially, it was concluded that sea buckthorn juice was the optimal material due 
to a very high content of malic acid and a low content of sugars. While in wine 
MLF pH is typically increased by 0.2 units, an overview of existing literature 
revealed that in most studies where L. plantarum is used to ferment non-alcoholic 
fruit material, the pH either remains unchanged or decreases. In fact, the increase 
in pH observed in this work (0.34 units) is among the highest, if not the highest, 
observed pH increase when MLF has been used for deacification. This suggests 
that sea buckthorn juice might be one of the few materials where utilization of 
this approach is applicable. While the flavonol glycosides and phenolic acids of 
chokeberry juice were metabolized by L. plantarum, there was no metabolism of 
flavonol glycosides present in fermentation of sea buckthorn juice. It was 
speculated that the low pH and the presence of sugars inhibited the β-glucosidase 
activity of L. plantarum required for the metabolism of these compounds. 

Although not the initial target of the research, it was observed that certain 
strains protected ascorbic acid and anthocyanins from degradation during 
fermentation. Based on the existing literature, this was thought to be associated 
with an increased antioxidant capacity. Typically, this effect by L. plantarum has 
been associated with phenolic modification, however, results with the strain 
DSM 10492 contradicted this assumption; the strain was most effective in the 
metabolism of phenolic compounds but showed the least beneficial impact on 
the antioxidant capacity. This suggests that there are other underlying 
mechanisms behind the antioxidant capacity modification of L. plantarum. 

In this work, acclimation by adding malic acid to the growth medium and 
decreasing the pH from 6 to 4.5 was an effective way to improve fermentation 
in sea buckthorn juice. The benefit of this approach was that change in the basal 
medium composition had no clear negative effect on the microbial growth of L. 
plantarum and the acclimation medium could be inoculated with a single colony, 
similar to the MRS medium. Therefore, this approach is easy to implement in 
both research and product development. 

Increasing the juice starter pH from a natural 2.7 to 3.5 improved fermentation 
in a similar manner to acclimation. This increased the fermentation of sugars in 
sea buckthorn juice, and also allowed more complex metabolic activity during 
fermentation. The beneficial changes made by increasing the pH were the 
formation of antimicrobial compounds, an increased antioxidant capacity, and an 
increased metabolism of the secondary metabolites. At the same time, it was 
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observed that in the fermentation of sea buckthorn, L. plantarum utilizes several 
approaches to circulate redox cofactors to allow energy production from acetyl-
CoA, including succinic acid and ethanol formation as well as quinic acid 
metabolism. Most of the observations mentioned above also showed strain-
dependent variations. 

When considering the research field (i.e., fermentation of plant-based 
materials with lactic acid bacteria) in general, there is an evident gap between 
genomic studies and the practical applications of L. plantarum in food models. 
One approach would be to utilize an “omics” approach, combining metabolomics, 
transcriptomics, proteomics etc. for a carefully selected strain and a raw material 
combination. Another goal would be to establish the metabolic pathways and 
genes that are most relevant for fruit and berry fermentations to produce 
materials with an enhanced flavor. As discussed in the literature review, 
fermentation with L. plantarum has improved flavor in various plant-based 
materials. However, the most relevant cellular functions responsible for these 
changes should be discovered in addition to what conditions drive the activation 
of these metabolic systems. This approach is already in use in wine MLF starter 
development, as studies often screen for the presence of specific genes or gene 
related activity from starter candidates, such as genes for β-glucosidase, 
esterase/alcohol transferase (EstA), and citrate lyase. 

There is a growing interest on the exploitation of berry materials using 
fermentation, as highlighted by the recent review by Schubertová et al. 284 
focusing on research related to fermented sea buckthorn. This doctoral thesis has 
provided new insight into the development of berry-based products using 
malolactic fermentation as a bioprocessing method. The conditions were 
determined that drive effective deacidification of materials such as sea buckthorn 
with L. plantarum without fermentation of sugars. In addition, the conditions that 
created additional benefits though potential modification of functional (i.e. 
antioxidant and antimicrobial) properties were also determined. Results from this 
thesis can be applied to product development of other materials with low pH and 
high malic acid content as well, including sour apples, sour cherries, and 
cranberries.

Summary and Conclusion
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Supplementary Table S2. Full names f the sea buckthorn cultivars and biotypes 
abbreviated in the Figure 18 in addition to growth location and subspecies.  

Short name Full name Location Subspecies Ref. 
AVG Avgustinka Finland mongolica 268 
BOT Botanicheskaya Finland mongolica 268 
CHU Chuiskaya Finland mongolica 268 
ORA Oranzhevaya Finland mongolica 268 
PRE Prevoshodnaya Finland mongolica 268 
RAI Raisa Finland rhamnoides 268 
TRO Trofimovskaya Finland mongolica 268 
AU Auraş Romania carpatica 267 
B6AU Auraş yellow biotype round fruit  Romania carpatica 267 
B6SER Serpenta biotype-elongate fruit Romania carpatica 267 
B6VIC Victoria biotype fruit Romania carpatica 267 
BS1 Biotype Ştiulete 1 Romania carpatica 267 
BS2 Biotype Ştiulete 2 Romania carpatica 267 
OV Ovidiu Romania carpatica 267 
RF Red fruits Romania carpatica 267 
SER Serpenta Romania carpatica 267 
SIL Silvia Romania carpatica 267 
TIB Tiberiu Romania carpatica 267 
VIC Victoria Romania carpatica 267 
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