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Abstract 

 

The interest of the scientific community in nanotechnology has been growing 

significantly in the last decades, resulting in the development of new nanomaterials and 

nanoparticles which can find a wide variety of applications, ranging from materials 

science to biomedicine.  

Researchers have recently started to investigate the engineering of nanoparticles which 

can be used as pest controls or cargo deliverers to improve agriculture yield and to reduce 

the use of pesticides and fertilizers in favour of more sustainable approaches. 

 

The present work aims to contribute to the advancement of nanotechnology in the context 

of sustainable agriculture by evaluating the viability of lignin nanocapsules (NCs) 

produced by ultrasonication as nanovectors (NVs) for bio-active compounds in plants. 

Different light microscopy and electron microscopy techniques have been used to image 

the roots of Eruca sativa, Eragrostis tef and Arabidopsis thaliana seedlings exposed to 

the NCs in several experiments which investigated the toxicity and uptake extent of the 

particles. 

 

The study revealed that low dilutions of the raw NCs emulsion have toxic effects on roots 

cells and hair and required the administration of highly diluted emulsions to avoid 

detrimental effects. However, the imaging revealed no evidence of NCs uptake and 

internalization in lively cells in any of the conducted experiments. As a consequence, we 

can assert that the main reason for the missed uptake must reside in the size of the 

particles, revealing the necessity of developing a different production process which 

could yield smaller particles.  

 

 

Keywords: agriculture, lignin, microscopy, nanocapsules, nanomaterials, nanoparticles, 

nanotechnology. 
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1. Introduction 

 

 

1.1 Nanotechnology 

 

Nanotechnology is a rapidly developing field of applied science and technology which 

uses matter on an atomic or molecular scale for the fabrication of nanomaterials (NMs) 

with peculiar physical and chemical properties dependant on their size, structure and 

chemical composition (Salata, 2004). The majority of authors consider nanomaterials 

objects which have at least one dimension smaller than 100 nanometres (US Food and 

Drug Administration), while others (Gurr et al., 2005; Jeevanandam et al., 2018; Briolay 

et al., 2021) refer to “nanomaterials” to any particle within 1 to 1000nm size. 

Nanomaterials can range from simple, pure inorganic metallic, ceramic or semiconductor 

nanoparticles (NPs), to carbon or organic, polymeric and lipidic nanoparticles or various 

combinations of the latter with the possible loading of cargos in their inner core or 

functionalised groups on their outer shell. Depending on their nature (Figure 1), 

nanomaterials can be used for the design and engineering of new materials, drug delivery 

vectors for cancer therapy, biosensors, fluorescent probes for biomedical imaging (e.g. 

quantum dots), remedies for environmental pollution, constituents of electronic 

components and energy harvesting and storing devices thanks to their large surface area, 

optical behaviour and catalytic properties (Khan et al., 2019). 

Both naturally-occurring and synthetic nanoparticles and nanomaterials can show toxicity 

for biological systems due to their ability to permeate cell membranes, eventually 

accumulating in certain tissues and interact with biological molecules such as proteins 

and nucleic acids, arising the issue of their impact upon environmental release (Taghavi 

et al., 2013; Bahadar et al., 2016). Their toxicity can be addressed to their interaction with 

biological molecules which depends on their size, shape, curvature, surface charge, free 

energy and the eventual presence of functionalized groups causing unfolding of proteins, 

fibrillation, crosslinking, oxidative damage (Gurr et al., 2005) and deactivation of 

enzymes as well as the possible release of toxic ions as a consequence of the 

thermodynamic properties of the surrounding medium in favour of their dissolution (Xia 

et al., 2008). 
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Figure 1. Types of nanoparticles. Inorganic NPs show high stability and low biodegradability and 

their chemical and optical properties make them suitable for biomedical imaging and theranostics. 

Organic NPs are less stable in biological environments, but have low toxicity and high 

biocompatibility, representing possible vectors for drugs by the functionalization of their outer shell 

or inner core. Image from Briolay et al., 2021. 

 

1.2 Nanovectors applications 

 

The interest in nanoparticles and their applications in cancer and other diseases therapy 

has been rising significantly in the past decades among the scientific community as many 

in vitro and in vivo studies revealed a significant efficacy of drug delivery by artificially 

designed nanovectors (NVs) which can release their cargo to target cells or tissues 

(Faveeuw and Trottein, 2014; Shi et al., 2017). This application field of nanotechnology 

is nowadays referred to as “nanomedicine” (Soares et al., 2018).  

Specific targeting and delivering is a key aspect of cancer treatment which aims to 

maximize the therapy outcome while minimizing the off-target detrimental side effects 
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(Briolay et al., 2021). Recent studies demonstrated that hybrid poly(methacrylic acid)-

grafted gold nanoparticles can be successfully used as radiosensitizers in radiotherapy, 

resulting in a lower radiation dose for the patient and subsequently reduced side effects. 

In addition, the potential to add anticancer compounds such as doxorubicin onto the 

polymeric surface of the particles will allow the combination of radiosensitization and 

chemotherapy (Le Goas et al., 2019). 

To mention another example, silica mesoporous nanocarriers loaded with iron and gallic 

acid have been engineered to selectively dissolve into acidic tumour cells, releasing their 

Fe3+ and gallate which, by a chelation reaction, produce GA-Fe nanocomplex in situ 

which can catalyse the formation of hydroxyl radical, causing fatal oxidative damage to 

tumours cells (Zhou et al., 2021). 

Recent studies (Zhang et al., 2016) found that plant-produced exosomes (PDENs, plant-

derived edible nanoparticles) in grapes, ginger, carrots and other plants are similar to 

exosomes derived from mammalians and can be easily isolated with an eco-friendly 

procedure (Quesenberry et al., 2015) and used as nanovectors to deliver mRNAs, 

miRNAs and bioactive molecules into animal cells, opening up a novel approach in 

nanomedicine. 

The suitability of a nanovector in disease treatment depends on its capability of increasing 

drug solubility and half-life, improve its bioavailability and decrease its off-target and 

side effects while at the same time being able of crossing biological membranes. As a 

consequence, an effective nanovector can selectively target the tumour tissue and 

accumulate the drug within its cells, increasing the specificity and efficacy of the therapy 

(Briolay et al., 2021).  

The recent COVID-19 pandemic has revealed the effectiveness of lipid nanoparticles as 

mRNA vectors in the production of mRNA-based vaccines. Such vectors release the spike 

protein-coding mRNA into the body immune cells, promoting the production of COVID-

19 spike protein and the consequent immune response by activating T-cells and the 

production of specific antibodies (Banerji et al., 2021). 

As a consequence of the promising results of nanomedicine, we can expect a rapid spread 

and development of nanotechnology and new significant discoveries in the near future. 
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1.3 Nanoparticles and nanovectors in agriculture 

 

As the application of nanotechnology in materials science and biomedicine has rapidly 

spread, the interest in its possible applications in agriculture raised considerably in the 

last decade towards the increasing need of a more sustainable agriculture to cover human 

food and vegetal-derived materials production and limit excessive tilling, abuse of 

pesticides and fertilizers in intensive cultivations which can lead to irreversible 

environmental damage such as eutrophication, land degradation and desertification 

(Slegers and Stroosnijder, 2008; Withers et al., 2014), influencing human lives and health 

of entire regions of the globe. 

While the large-scale production and purification process (e.g. separation from the micro-

emulsion in oil, water or other surfactants) of nanoparticles for medical and industrial use 

can be challenging and demanding in terms of resources and environmental impact (Royal 

Society (Great Britain) and Royal Academy of Engineering (Great Britain), 2004), eco-

friendly, green production approaches can be used to synthetize nanoparticles starting 

from plant extracts (Alaa Y Ghidan et al., 2017), drastically limiting the impact of the 

production process and the release of potentially polluting and hazardous compounds in 

the environment (Huang et al., 2015). 

As the scientific community is advancing studies on nanotechnology in agriculture, a 

large number of nanoparticles and applications have already been developed and are 

currently starting to spread as an integrating part of the so called “precision farming” to 

increase crop-yields while preserving the environment (A. Werner and J. Stafford, 2003). 

Magnetite (Fe2O3) nanoparticles have been reported to be effective in increasing plant 

germination and growth in Solanum lycopersicum (tomato) and its biomineralization 

(Shankramma et al., 2016), while CuO, FeO, AlO, MnO, NiO and ZnO NPs revealed 

effective in pest control as aphicidals (Ghidan et al., 2018), while silver have been proven 

to increase wheat growth and yield (Jhanzab et al., 2015). The synthesis of green-

produced bio-nanoparticles of copper oxide (CuO), magnesium hydroxide (MgO), zinc 

oxide (ZnO) and magnesium oxide (MgO) was performed by extraction from Punica 

granatum, Chamaemelum nobile and Olea europaea and, upon foliar spray, proved to be 

effective in aphid pest control and antibacterial activity while no metal nanoparticle 

accumulation was recorded in the threated plants which, in some cases, also showed an 

improvement in growth and better fruits yield (Alaa Y. Ghidan et al., 2017). 

In addition to their insecticidal and antimicrobial activity, other nanoparticles have been 

found to be effective fungicides, like nanosilver particles in the treatment of 
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Colletotrichum gloeosporioides phytopathogen (Madan et al., 2016) and nickel 

nanoparticles consistently inhibited mycelial growth of Fusarium oxysporum f. sp. 

lactucae and Fusarium oxysporum f. sp. lycopersici (Ahmed, 2016).  

In addition to nanomedicine, nanoparticles have lately started to be considered as possible 

nanovectors for the release of RNA and other bioactive molecules into plant cells 

(Cunningham et al., 2018; Demirer et al., 2018). 

DNA nanostructures have recently been used to deliver siRNA to silence target genes to 

confer disease and pest resistance. The role of the DNA nanovectors is to protect the 

siRNA from enzymatic degradation before passing through the cell wall and membrane 

and represent a valid alternative to transgenic modification of plants (Avellan et al., 

2017).  

 

 

Figure 2. Types of nanoparticles used as genetic cargo deliverers (A) and bioactive molecules 

deliverers (B). Figure: Cunningham et al., 2018. 
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In addition, nanovectors have been successfully used to improve the uptake and efficacy 

of nanostructured (Mn, Fe, Cu, Mo, Zn) or traditional fertilizers (Liu and Lal, 2015) and 

a natural polymer such as chitosan have been used to produce NPs capable of controlled 

release of the N, P, K macronutrients (Aziz et al., 2016).  

Besides the positive and encouraging results described so far, research also has to take 

into account the possible toxicity of NPs for plants. It has been reported that the 

accumulation in soil of some Fe, Cu, Zn, Si, Al, ZnO, TiO2, Al2O3 and CeO2 nanoparticles 

had detrimental effects on plants growth and useful soil bacteria, like Pseudomonas 

putida KT2440 (Gajjar et al., 2009), fungi and invertebrates (Frenk et al., 2013; 

Waalewijn-Kool et al., 2013; Shen et al., 2015), making, in practice, their use unviable as 

an eco-friendly approach to agriculture. On the contrary, anti-pest nanovectors have high 

stability, solubility and enhanced uptake and proved to be very effective in the gradual 

release of their cargo (Duhan et al., 2017). As an example, organic or polymeric (e.g. 

poly(epsilon-caprolactone)) nanocapsules (NCs) and nanospheres (NSs) have been used 

as nanocarriers for herbicides like atrazine and triazines with very high biocompatibility 

(Tanaka et al., 2012; Grillo et al., 2015), demonstrating that polymeric nanoparticles 

represent the ideal candidates for cargo delivery in plants. The main advantage of this 

approach is the low production cost due to the use of naturally occurring biopolymers and 

their low environmental impact as a consequence of their biodegradability 

(Sampathkumar et al., 2020). 

 

 

1.4 Lignin nanovectors 

 

1.4.1 Lignin origin and structure 

 

In the context of circular and green economy, the use of lignin as a natural, biodegradable, 

polymer for the fabrication of nanoparticles and nanovectors represent a promising 

approach towards sustainable agriculture (Soppimath et al., 2001). 

Lignin is a natural, low-cost and sustainable by-product of pulp and paper industrial 

processing and constitutes the second most abundant biopolymer available on Earth 

after cellulose. Lignin is deposited in the secondary wall of plants and is the 

fundamental polymeric constituent of water and minerals transporting structures in 
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plants (xylem), as well as providing mechanical resistance (sclerenchyma) and 

protection from abiotic and biotic aggressions (lignified cell walls).  

The chemical structure of lignin is represented by a combination of different acids and 

phenylpropyl alcohols (p-coumaric, coniferyl and sinapyl alcohol) assembled into a three-

dimensional, highly branched and aromatic rings-rich, amorph structure with a multitude 

of different functional groups (carbonyl, methoxy, aliphatic, phenyl and phenolic groups, 

etc.) and a high molecular weight. The fraction of each phenylpropyl alcohol in the 

polymer is variable depending on the tissue, the plant group and the species. Lignin is 

insoluble in acids, but soluble in alkali solutions and organic solvents (Dastpak et al., 

2020).  

Many types of lignin, with variable properties, can also be obtained by different industrial 

production processes such as kraft lignin, lignosulfonate, organosolv lignin and soda 

lignin (Tang et al., 2020). 

 

Figure 3. A possible structure of lignin molecule. Picture by Tang et al., 2020. 

 

 

1.4.2 Production of lignin-based nanoparticles 

 

The minimal cost, abundancy, biocompatibility and its unique antioxidant, antimicrobial, 

emulsifying and UV-blocking properties (Agustin et al., 2019) make lignin a suitable 

candidate for the production of high-value added industrial products as well as 
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nanomaterials with the most diverse applications (Tang et al., 2020). Lignin-based 

nanoparticles and nanocapsules (NCs) have been obtained by different procedures, the 

choice of which is dependent on their final application. Lignin nanoparticles have been 

successfully prepared by acidic precipitation and successive ultrasonication by (Agustin 

et al., 2019) and (Gupta et al., 2014). Lignin colloidal spheres have been assembled 

starting from pulping spent liquor by self-assembly method by Qian et al., 2014 and by 

solvent exchange method by dissolving kraft lignin into tetrahydrofuran (THF) and 

subsequently using dialysis bags immersed in excess water, resulting in very stable 

nanoparticles in water with adjustable size as a function of the starting lignin 

concentration (Lievonen et al., 2016). Ultrasonication for 60 minutes and successive 

drying of a lignin solution resulted in particles of variable size, ranging from 10 to 50 

nanometres (Gilca et al., 2015). Additional methods include cross-linking (Yiamsawas et 

al., 2014) and by using CO2 in a supercritical antisolvent process starting from an 

acetone/lignin solution  (Lu et al., 2012). 

 

1.4.3 Applications of lignin nanoparticles 

 

The scientific community has only recently started to consider lignin as a valid material 

for the fabrication of nanoparticles (Sipponen et al., 2019). Its low cytotoxicity and the 

possibility of incorporating otherwise cytotoxic or unsoluble biomolecules, as well as 

their biocompatibility, represent valuable properties which open up a multitude of 

possible applications in both bionanomedicine and agriculture.  

Colloidal nanospheres obtained with different processes have already shown consistent 

results in encapsulating and releasing drugs like ibuprofen (Li et al., 2017) and resveratrol 

as an anti-cancer treatment (Dai et al., 2017) or for controlled release of pesticides like 

avermectin (Deng et al., 2016; Zikeli et al., 2019). 

Lignin reverse colloidal spheres have revealed to be very effective in sunscreen creams 

thanks to their UV absorbance (Qian et al., 2017). In addition, thanks to the presence of 

methoxy and phenolic hydroxyl groups, lignin nanoparticles can be used, pure or as an 

additive into materials, to engineer various materials with antioxidant properties (Tian et 

al., 2017; Yang et al., 2016). 

Despite many studies have already confirmed the potential of lignin nanoparticles in 

many applications, the use of lignin nanovectors as carriers of active biomolecules in 

plants has still to be investigated in detail (Pérez-de-Luque, 2017). The possibility of 

loading a cargo in hollow-structured lignin nanocapsules and the mobilization of these 
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particles suggest a possible employment in the delivery of biomolecules in plant tissues. 

To fulfill this task, many aspects need to be taken into account when engineering such 

nanovectors. The uptake of extraneous particles from plant roots or leaves involves 

complex processes and depends on the properties of the nanoparticle itself, its interaction 

with the environment, the dispersion method, the composition of the suspension solution 

and the species-specific physiology of the target plant. In addition, once internalized by 

the plant, the movement of the particles can occur by two ways: apoplastic (outside the 

plasma membrane) and/or symplastic (through cell membranes, by clathrin or caveolin 

mediated endocytosis), implying peculiar physiological and morphological events which 

need to be considered when designing a new nanovector and are still partially known 

(Pérez-de-Luque, 2017). Figure 4 shows the possible uptake routes and movements of 

nanoparticles in plants. 

 

 

Figure 4. Various nanoparticles (A), their possible uptake pathways (B), apoplastic and 

symplastic movement (C) and penetration modalities into plant cells (D) are shown. Figure from 

Pérez-de-Luque, 2017. 
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Although challenging, the development of lignin nanovectors could yield many beneficial 

outcomes in sight of a more sustainable agriculture and circular economy. As a 

consequence, further efforts should be directed towards the study of lignin nanoparticles, 

their uptake modalities and their employment as cargo-deliverers in plants. 

 

2. Hypothesis and aims 

  

The purpose of the present work is to investigate the uptake modalities of lignin 

nanocapsules (LNCs) produced according to Falsini et al., 2019 and ascertain their 

possible application as sustainable nanovectors of bioactive molecules such as antibiotics, 

antimicotics or hormones in agriculture. Hence, several experiments, ranging from the 

administration of different dilutions of the LNCs solution, exposure time and 

administration modalities have been carried out on seedlings of Eruca sativa (Mill.), 

Eragrostis tef (Zucc.) and Arabidopsis thaliana (L.). Previous preliminary studies on the 

interaction of these LNCs with young seedlings (Falsini et al., 2020, 2019) revealed the 

presence of the particles in roots and stems, but the modalities of their uptake and 

mobilization in plant tissues have not been investigated yet. The main hypothesis 

comprises a possible uptake route by the entrance through roots hair and roots epidermis, 

with a subsequent apoplastic and/or symplastic movement towards the Casparian strip. In 

addition, in order to reach the xylem vessels and successively be translocated to the upper 

regions of the plant, the particles require to cross the Casparian strip through the 

symplastic way. To allow their localization and visualization, the LNCs have been loaded 

with Fluorol Yellow 088 (Sigma-Aldrich) fluorescent dye during the production process 

in order to be located in plant tissues by fluorescence microscopy. For the imaging, 

different techniques involving both optical and electron microscopy have been chosen. 

Considering that the research and employment of nanoparticles as nanovectors in 

agriculture is still at its dawn, the experiments conducted in this study aim to verify the 

above hypothesis and to contribute to the development of nanotechnologies for improving 

agriculture productivity and sustainability. 
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3. Materials and methods 
 

 

3.1 Plants choice and seedlings incubation 

 

Eruca sativa and Eragrostis tef have been chosen for the experiments for their wide 

consumption as food and Arabidopsis thaliana for its role as model-plant in research. In 

addition, the chosen plants are representative of both monocotyledons (Eragrostis tef) 

and dicotyledons (Eruca sativa, Arabidopsis thaliana). 

Seeds of Eragrostis tef and Eruca sativa were placed on filter paper in petri dishes, kept 

moist in tap water and incubated in an incubation chamber at 26 °C with 14 hours 

photoperiod in the Biomorphologies laboratory of the Department of Biology of the 

University of Florence, while Arabidopsis thaliana seedlings were cultivated on 

Linsmaier and Skoog (LS) medium, pH 5.7, with the addition of 1% agar at the 

Department of “Ortoflorofrutticoltura” of the University of Florence under similar 

conditions. 

 

 

3.2 Preparation of lignin NCs 

 

3.2.1 Production by ultrasonication 

 

Different types of lignin NCs have been prepared by ultrasonication for the experiments: 

 

1) 1% lignin empty NCs (ENCs); 

2) 5% lignin empty NCs; 

3) 1% lignin NCs loaded with Fluorol Yellow 088 (FY088) from Sigma-Aldrich (FNCs); 

4) 5% lignin NCs loaded with Fluorol Yellow 088 from Sigma-Aldrich (FNCs); 

 

Each one of these emulsions was prepared by mixing kraft lignin (Sigma-Aldrich) and 

the oil/acetone/FY088 emulsions in both pH 13.5 and pH 11.7 alkali solutions, obtained 

by dissolving KOH in milli-Q water, resulting in a total of eight different types of NCs 

emulsions. Two different alkali solutions were chosen as lignin solubility in water 

increases with pH. 
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FNCs were prepared by dissolving one part of an acetone/olive oil 1:1 v/v emulsion in 

ten parts of the alkali solution (pH 13.5 or pH 11.7, 1% or 5% lignin). FY088 was 

dissolved in the olive oil at 0.1% w/v concentration beforehand as a fluorescent marker. 

FY088 (C22H16O, mw 296.36) is an effective lipids fluorescent dye with an 

absorption/emission of 450/515nm which allows the localization of the FNCs in plant 

tissues under fluorescence microscopy. 

Emulsions for obtaining ENCs were prepared without the addition of FY088 to the oil. 

The resulting eight emulsions were sonicated by a Branson 450 Digital Sonifier set at 

50% power (200W) for 15 minutes at 1s on/2s off cycles to avoid overheating (Figure 5). 

 

 

 

Figure 5. Lignin nanocapsules production. The lignin/oil/acetone/FY088 emulsion is 

ultrasonicated to obtain lignin hollow structures containing oil marked with the fluorescent dye 

FY088. 

 

The size of the particles was characterized by Dynamic Light Scattering (DLS) on a 

Malvern Zetasizer Nano ZS (Malvern Instruments Southborough, USA) using a 4mW 

He-Ne 633nm laser with backscattering detection. The size distribution resulted in the 

range between about 100-800nm with a peak 232nm and a polydispersity index (PDI) of 

0.251 for the 1% lignin emulsion and a peak of 305nm for the 5% lignin emulsion. Results 

of the analysis are reported in Figure 6. 

. 
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Figure 6. Dynamic Light Scattering of 1% w/v lignin (above) and 5% w/v 

lignin (below) of nanocapsules loaded with Fluorol Yellow088 obtained by 

ultrasonication.  

 

The final pH of all NCs emulsions settled around neutral values and they have been stored 

in vials in a refrigerator at 4 °C after their production. 
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The so obtained NCs were then administered to the seedlings in different modalities and 

dilutions during the experiments (e.g. 1:5, 1:100 v/v in dH2O). 

 

 

3.2.2 Filtration of NCs obtained by ultrasonication 

 

The 1:100 v/v dilution of 1% w/v lignin FNCs obtained by ultrasonication was filtered 

first through 0.45μm syringe filter and successively through a 0.20μm syringe filter to 

discard the bigger sized FNCs. The DLS results after filtration through 0.20μm filter are 

shown in Figure 7, showing a peak diameter of 125nm and a PDI of about 0.2. 

 

 

 

Figure 7. Dynamic Light Scattering of 1:100 v/v dilution of 1% lignin 

FNCs after sieving through a 0.45μm and successively a 0.20μm 

syringe filter. 
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 3.2.3 Production by extrusion 

 

In addition, the NC obtained as described in 3.2.2, were also processed by an extrusion 

device (Figure 8) through 50nm membranes to further reduce their size. The solution was 

passed through the device membrane several times and the DLS showed that the size 

distribution has a skew shape, with a large component below 100nm, with a peak diameter 

of 146.4nm (Figure 9). However, the measured diameter expanded up to about 300nm, 

indicating that extensive size reduction is difficult, probably due to the restraints imposed 

by spontaneous curvature and by the self-assembly requirements themselves. 

 

 

Figure 8. Example of extruder similar to the one used for the experiment. 
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Figure 9. Dynamic Light Scattering results after extrusion through 

50nm pores membrane. 

 

 

3.3 Fluorescence microscopy 

 

Fluorescence microscopy is a valuable imaging tool which is the ideal choice for 

localizing the NCs loaded with a fluorescent marker used in this study. A Leitz DMRB 

fluorescence microscope equipped with a Nikon DS-5M digital camera using 460nm 

excitation light and an emission filter 530/30 to briefly screen the FNCs in samples by 

conventional widefield fluorescence. In addition, different fluorescence microscopy 

techniques have been used depending on instrument availability and investigation 

purpose. All of the reported images are raw images with no software modifications or 
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enhancements and annotations and montages have been done with Fiji 

(https://imagej.net). 

 

3.3.1 Light sheet fluorescence microscopy (LSFM) 

 

Light sheet fluorescence microscopy offers the possibility of imaging large volumes of 

relatively transparent samples by illuminating them with a thin sheet of excitation light 

projected by an illumination objective, while collecting the fluorescence emission with a 

detection objective. In this study, a custom-made confocal light sheet microscope located 

in the European Laboratory for Non-Linear Spectroscopy of the University of Florence, 

Italy, was used to obtain 3D data of seedlings exposed to the FNCs. The system (Figure 

10) is equipped with multiple wavelength excitation lasers (530nm laser was used for the 

experiments), two opposite illumination arms equipped with Nikon 10x/0.3 objectives for 

isotropic illumination of the sample, thus limiting artifacts derived by anisotropic 

illumination, an Olympus 10x/0.6 multi-immersion detection objective and a Hamamatsu 

Orca Flash 4.0 camera for the recording of data. The pixel size of the image is 0.65μm 

and the z-step is 2μm. The excitation light sheet is scanned onto the sample by 

galvanometric scanners. The illumination and detection objectives are placed in a sample 

chamber filled with immersion liquid with a refractive index (RI) matched with the 

refractive index of the quartz cuvettes (1.54) where the samples are placed for the 

imaging. Matching the RI is fundamental for limiting the spherical aberrations derived by 

an eventual mismatch. In such a setup, seedlings were imaged in vivo, immersed in tap 

water inside the quartz cuvette. The system allowed to record large 3D volumes of the 

roots of the samples. 
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Figure 10. Scheme of the scanning light sheet microscope used for the imaging. The illumination 

light sheet is scanned through two illumination objectives (IO) and the fluorescence is captured 

by a detection objective (DO) and the final image is recorded by the camera sensor. Image from 

(Yang et al., 2015). 

 

 

3.3.2 Confocal laser scanning microscopy 

 

Confocal laser scanning microscopy (CLSM) is a point scanning microscopy technique 

which provides optical sectioning imaging by excluding the out-of-focus blur thanks to 

two confocal pinholes of variable size placed on a conjugate image plane in the 

illumination path and in the detection path. As a result, the Airy disks in the PSF are cut 

off and the lateral resolution is increased depending on pinhole size up to about 30% the 

resolution of a standard widefield microscope and can be approximated to: 

Rl =
0.4𝜆

𝑁𝐴
 

 

In addition, the PSF is also stretched in the axial direction, resulting in an increased axial 

resolution and optical sectioning capability of the system and can be described by the 

approximation: 

 

Ra = 
1.4𝜆𝜂

𝑁𝐴2
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Where 𝜂 is the refractive index of the medium. Photomultipliers (PMTs) are used to 

collect and amplify the emission light signal during the raster scanning of the sample, 

converting it into an electron signal which is used to build the final image by a software. 

(“Confocal Microscopy - Resolution and Contrast in Confocal Microscopy | Olympus 

LS,” n.d.). 

In this study a Leica TCS SP5 confocal microscope was chosen for its high resolution and 

optical sectioning capability, allowing to image as deep as about half the thickness of a 

seedling root, depending on species. The imaging was performed with a Leica 40x/1.25 

HCX PL APO CS oil UV objective and a pinhole size corresponding to 67.9μm. The 

excitation wavelength for the FY088-loaded NCs was 458nm and the emission peak was 

calculated by a lambda scan and corresponded to 510nm, slightly diverging from the 

515nm reported by the manufacturer, probably as a result of the chemical surroundings. 

The 5nm resolution of the detection system allowed to easily distinguish the signal from 

the FNCs from the cell walls autofluorescence (530-550nm). 

For propidium iodide (PI, Signma Aldrich) experiments, the 514nm excitation laser set at 

20% power was used and emission was recorded at 615nm peak. 

3D volumes of samples were acquired with a z-step corresponding to 0.5μm. 

 

3.3.2 Two-photon excitation fluorescence microscopy (2PEFM) 

 

Two-photon excitation microscopy, is a fluorescence point scanning technique which 

excites a fluorophore by using two photons carrying approximately half the energy 

(double wavelength) necessary to excite the electron of that fluorophore from its ground 

state to an excited state. In order for this event to occur in one quantum event, the two 

excitation photons need to reach the molecule within one femtosecond time frame. Upon 

relaxation of the excited electrons back to their ground state, a photon of higher energy 

than either of the excitation photons is released, corresponding to the emission 

wavelength of the fluorophore. To achieve this, high power Ti:Sa infrared (~800-

1040nm) pulsed femtosecond lasers (80Mhz pulses, up to 150MW peak power) need to 

be used. Since the probability for simultaneous absorption of two excitation photons is 

very low, the excitation events only occur within a small volume (about one femtoliter) 

at the focal spot of the objective lens, where the photon density is the highest (Figure 11). 

As a consequence, the resulting PSF is stretched both laterally and axially compared to a 



20 

 

conventional widefield microscope, resulting in higher lateral resolution and an optical 

sectioning equivalent to CLSM (“Advanced Applications,” n.d.; Mostany et al., 2015).  

 

 

Figure 11. Single photon (left) and two-photon (right) excitation comparison. In 2PEFM excitation 

(and thus fluorescence) only occurs in a small volume at the focal spot of the objective, while in 

conventional single photon microscopy, excitation occurs along the whole cone of excitation light 

resulting in higher photobleaching and photodamage. Image by Steve Ruzin and Holly Aaron, UC 

Berkeley (https://microscopy.berkeley.edu). 

 

The main advantage of 2PEFM resides in its capacity to image as deep as 1 millimeter 

into a relatively transparent tissue, due to the reduced scattering and increased penetration 

of infrared wavelengths compared to the shorter wavelengths used in conventional 

microscopy. A second advantage is the low photobleaching and phototoxicity, making 

this technique well suited for in vivo imaging. A possible disadvantage can be the heating 

of the sample due to the high laser power and the high absorption of infrared light by 

water (Giguère and Harvey, 1956). 

For the experiments, a custom-made 2PEF microscope located in the European 

Laboratory for Non-Linear Spectroscopy of the University of Florence, Italy, was used to 

localize the FNCs and obtain 3D high resolution datasets of the seedlings in vivo. This 

instrument was chosen for its high resolution and allowed to image up to 180μm deep 

into the plant tissues. Deeper imaging was not possible due to the scattering caused by 

the cell walls and cytoplasm content in uncleared living samples. The excitation 

wavelength of the Ti:Sa laser was set to 900nm and a 520/30nm emission filter was used 

to selectively record the signal from the FNCs. 3D volumes with a z-step of 2μm and 
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pixel size of 440 nm were recorded using a Zeiss plan-apochromat 20x/1.0 water dipping 

microscope objective. Despite autofluorescence from cell walls was also emitting in the 

same wavelength range, its signal was a lot lower than the quantum yield of the 

fluorophore, resulting in a high signal-to-background ratio of the FNCs in the images. 

 

 

3.4 Transmission electron microscopy (TEM) 

 

Transmission electron microscopy provides high magnification and high resolution 

images of the ultrastructure of the sample by letting a beam of accelerated electrons 

through thin sections (<100 nm) instead of light. Thanks to their very low wavelength, 

the resolution of a conventional transmission electron microscope can be as low as 0.1 

nm (1 Å).  The wavelength of an electron, without considering the deterministic effects, 

can be described by: 

 

𝜆 =
ℎ

√2𝑚ⅇ𝑉
 

 

Where ℎ is the Planck’s constant, m the mass of the electron, e the charge of the electron 

and V the accelerating voltage. Considering this, Abbe’s equation for resolution can be 

reformulated for an electron microscope as: 

 

𝑑 =
𝑂. 753

𝑎√𝑉
 

 

Where a is the half aperture angle and V is the accelerating voltage (“Introduction to 

Electron Microscopy - Advanced Microscopy - Imaging Facilities - The University of 

Utah,” n.d.; “MICROSCOPY TECHNIQUES | Electron Microscopy - ScienceDirect,” 

n.d.). 

In this study, a Philips EM201 TEM was used to localize the NCs in plant roots cells and 

to visualize their ultrastructure and the eventual structural modifications at the cell wall 

and plasma membrane level as a consequence of particle internalization.   
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3.5 Sample preparation for microscopy 

 

3.5.1 Sample preparation for optical microscopy 

 

For fluorescence widefield microscopy, seedlings roots, stems and leaves have been cut 

in small pieces about 3-4mm long, put on a microscope slide with tap water as mounting 

medium to avoid osmotic stress and plasmolysis and covered with a coverslip before 

observation (Figure 12). 

 

Figure 12. Sample preparation for fluorescence microscopy. Seedlings grown in petri dishes (a) 

were put in contact with the FNCs emulsion (b). After the administration time, seedlings were cut 

with a disposable razor blades into small pieces (c), put on a microscope slide (d) and observed 

with a Leitz DMRB fluorescence microscope. 

  

Two-photon microscopy, equipped with a water dipping objective, allowed in vivo 

imaging of the seedlings immersed in tap water as medium. Seedlings were placed as 

straight as possible on petri dishes containing a layer of black silicone on which the small 

plants were secure by the mean of small pins as shown in Figure 13. 

 

 

Figure 13. Sample preparation for 2PEFM. Seedlings were kept in position on a petri dish 

containing a silicone layer by metal pins. 
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For LSFM, seedlings were put in a quartz cuvette of 10x10 mm section, immersed in tap 

water for in vivo imaging. The cuvette was placed in the imaging chamber, surrounded 

by the imaging medium having RI matched with quartz RI (Figure 14). 

 

 

Figure 14. Light sheet microscopy sample placement. Seedlings in the quartz cuvette were 

illuminated isotropically by the two illumination objectives and the fluorescent signal was captured 

by the detection objective. Image from (Berthet and Maizel, 2016). 

 

For CLSM, whole seedlings were placed on a microscope slide and covered with a large 

coverslip, mounted in Linsmaier and Skoog 1:1 v/v in water, for in vivo imaging. 

All seedlings, prior to imaging, have been washed two times in the same solution used 

for mounting in order to remove excess FNCs adhering to roots hair, epidermis and 

mucilage.  

 

3.5.2 Sample preparation for TEM 

 

Samples (roots) to be observed by TEM have been cut in 3-4 mm long pieces from living 

seedlings and fixed in PBS 0.1M pH 7.2 with 2.5% glutaraldehyde, washed in PBS and 

post fixed in osmium tetroxide 1% in PBS for 1.5 hours to enhance the contrast of 

membranes. After fixation in osmium, the samples have been washed twice in PBS for 

10’ before dehydration in alcohol series (30%, 40%, 50%, 60%, 70%, 80%, 95% v/v and 

absolute alcohol two times) 10’ in each solution. The choice of many slightly increasing 

alcohol concentration was done to better preserve the ultrastructure of the samples. After 

the last absolute alcohol step, the samples have been immersed two times in propylene 

oxide, 10’ each. Spurr resin (Electron Microscopy Sciences©) was used as embedding 
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medium for the samples. Resin components have been mixed together and put in a 

vacuum chamber to remove air prior to sample embedding. Afterwards, the samples have 

been transferred from the propylene oxide solution to 50%, 70%, 100% v/v 

propylene/resin in 60’ steps before polymerization in embedding molds at 70 °C for 9 

hours.  

After polymerization, the blocks containing the samples were trimmed with a razor blade 

to expose the sample for the cut. Thin sections of about 70 nm thickness were cut with a 

Reichert ultramicrotome and placed on TEM grids. Sections on grids were put on 3% w/v 

lead citrate drops for 10’ and successively stained on 1% w/v potassium permanganate in 

PBS to enhance lignin contrast as suggested by Reza et al., 2015. 

 

 

4. Results 

 

Despite nanotechnology has already found many applications in agriculture (A. Werner 

and J. Stafford, 2003), the development of efficient nanovectors to deliver bioactive 

molecules to plants is still at its dawn and could represent a new frontier towards 

sustainable agriculture.  

The present study aimed to localize the FNCs, prepared as previously described in (3.2), 

in plant tissues and eventually identify their uptake and transport routes into plant vascular 

bundles to evaluate their viability as nanovectors. For the task, several experiments were 

carried out by administering the FNCs prepared in different dilutions and filtrations as 

reported in (3.2). Multiple imaging techniques were used to locate the FNCs, depending 

on the availability of the instrument and on the purpose of the experiment. Most of the 

imaging was performed in the transition zone, above the root apex, where endocytosis 

and uptake are more active. 

 

 

4.1 Preliminary experiment on emulsions toxicity 

 

A preliminary experiment was necessary to evaluate the reaction of Eragrostis tef 

seedlings upon administration of the four NCs emulsions produced in pH 13.5 solution: 

empty NCs (ENCs) and Fluorol Yellow088 loaded NCs (FNCs), with both 1% or 5% 

lignin content for a total of four. Eragrostis tef seedlings which have been incubated for 
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a week were placed into a volume of 150μl of each emulsion in a petri dish for a total of 

three plants for each of the four emulsions. In addition, three seedlings were placed in the 

same tap water they have been incubated with as a control (Figure 15). Afterwards the 

plants were incubated in the same germination chamber for 24 hours before analysis by 

fluorescence microscopy. 

 

 

Figure 15. Seedlings were placed in contact with the four different formulations of 

pH 13.5 lignin NCs and incubated for 24 hours. 

 

After one day of incubation, most of the plants in contact with the NCs emulsions showed 

evidence of death, while the control did not. The roots, stems and leaves of plants exposed 

to NCs showing less evidence of damage, were washed in tap water to remove the excess 

emulsion and inspected by widefield fluorescence microscopy which revealed no 

evidence of the presence of FNCs inside root cells. 

A second experiment was carried out by exposing Eruca sativa 9 days old seedlings to 

each one of the emulsions described in (3.2), thus including NCs produced in both pH 

13.5 and pH 11.7 solutions. Each emulsion has been diluted 1:5 v/v in dH2O before 

administration. Two seedlings have been put in an Eppendorf vial containing 300μl of 

each emulsion and incubated for 24 hours. After the incubation period, all plants exposed 

to pH 13.5 NCs emulsions resulted dead, while those exposed to pH 11.7 emulsions were 
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lively and were observed under fluorescence microscopy which revealed the presence of 

FNCs in plants exposed to both 1% and 5% lignin content emulsions. 

As a consequence of these results, emulsions of NCs produced in pH 13.5 solution were 

discarded for the following experiments. The 5% lignin emulsion was also discarded for 

the presence of abundant undissolved lignin and for the bigger average size of the 

particles (Figure 6). 

 

 

4.2 Preliminary imaging by LSM and 2PEFM 

 

4.2.1 Light-sheet microscopy 

 

Light-sheet microscopy has been chosen to visualize FNCs in a two weeks old Eruca 

sativa seedling root after 24 hours administration of 1% lignin pH 11.7 FNCs emulsion 

diluted 1:5 in dH2O. The experiments were carried on at the European Laboratory for 

Non-Linear Spectroscopy of the University of Florence. 

Light sheet microscopy was chosen for its ability to acquire a large 3D volume of the 

sample in vivo to have an overview of the whole root, including its surrounding hair. The 

seedlings have been placed in Eppendorf vials containing the FNCs emulsion as shown 

in Figure 12b for 24 hours, washed and mounted in the quartz sample chamber for the 

imaging. The recorded images showed the presence of FNCs clusters probably adhering 

to the root hair and to the epidermis of the root as can be seen in Figure 16 and Figure 17, 

but no evidence of internalization of FNCs in both hair and roots cells was observed due 

to the severe scattering probably as a consequence of the presence of the cell wall and 

artifacts produced by the shadowing from external hair. These detrimental effects denied 

the possibility of correctly visualizing the internal layers of roots cells, making it 

impossible in practice to reveal the presence of FNCs. In addition, the low axial resolution 

of the system did not allow to ascertain the presence of FNCs inside root hair. As a 

consequence, LSM was not suited for detailed imaging of the inner cells of the root and 

the poor axial resolution did not allow to establish the presence of particles inside the root 

hair.  

The control did not show any fluorescent particles. 
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Figure 16. LSM external view of roots hair showing a large quantity of FNCs on their surface. 

White arrows indicate clusters of FNCs. 
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Figure 17. LSM focal plane internal to the root, showing clustered FNCs adhering to the outer 

surface of the root cells. Shadowing effects are also visible at the bottom of the image, while the 

scattering from the cell walls and outer hair denies the penetration of light into the deeper cells of 

the root, resulting in blur and poor signal. White arrows indicate external presence of FNCs. 

 

 

4.2.2 Two-photon microscopy 

 

Two-photon microscopy, thanks to the use of an infrared laser, allows excitation light to 

penetrate deeper into tissues and offers higher axial and lateral resolution compared to 

LSM. For these reasons, the technique was tested for in vivo imaging of a two weeks old 

Eruca sativa seedling exposed to the 1% lignin pH 11.7 FNCs emulsion diluted 1:5 v/v 

in dH2O, with the sample prepared as described in 3.5.1 (Figure 13). 

The obtained images resulted in better optical sectioning capability compared to LSM 

and, as a consequence, it was possible to observe the cell wall structure of the cells at 

higher depth into the roots. The data showed a large amount of FNCs adhering to the root 
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epidermis cells and mucilage and to the hair. In addition, it was possible to locate FNCs 

inside some of the root epidermis cells, while no presence of nanocapsules was observed 

in the inner cells (Figure 18 and Figure 19). The bigger particles are probably clusters of 

particles. It is important to notice that despite both cell walls and FNCs emission is in the 

green spectrum, the signal-to-background of FNCs is high enough to distinguish them 

with ease in the image.  

The control did not show any fluorescent elements neither outside nor inside root cells. 

 

 

Figure 18. Optical section of the outer layer of cells of Eruca sativa root epidermis. A large amount 

of FNCs can be seen trapped among the external root hair and the surrounding mucilage. White 

arrows indicate some of the external epidermis cells containing FNCs. 
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Figure 19. Optical section approximately 66μm deep from Eruca sativa root epidermis. White 

arrows indicate some of the epidermis cells containing FNCs, while no presence of nanocapsules 

can be observed in the inner cells. Some of the external cells (on the right) show signs of 

shrinking. 

 

 

4.3 Additional 2PEFM experiment on Eruca sativa and Eragrostis tef 

 

As two-photon microscopy revealed to be a suitable tool for the task, a second experiment 

was set up to better evaluate the entity of the uptake of FNCs which was observed with 

the preliminary experiment. For this test, two weeks old Eruca sativa and Eragrostis tef 

seedlings were put in contact in Eppendorf vials with the 1% lignin pH 11.7 emulsion 

diluted 1:5 v/v in dH2O and incubated for 24, 48 and 72 hours. Three plants for each 

species were exposed for each amount of time, for a total of 18 plants. The controls were 

taken from the plants incubated as reported in (3.1) and samples were prepared as 

described in 3.5.1 (Figure 13). 
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The acquired data revealed that all Eruca sativa samples contained FNCs in both 

epidermis and internal root cells in variable quantity, but not in the vessel elements, as 

well as adhering in large quantity to the external epidermis and hair. The highest presence 

was observed in one of the 48h exposition samples and in one of the 72h exposition 

samples (Figures 20 and 21). Small segments of their roots have been cut and fixed as 

described in (3.5.2) for TEM imaging. Some of the epidermis cells showed evidence of 

shrinkage probably due to plasmolysis and cell death or mechanical damage (Figure 22). 

Quantitative analysis of the presence of FNCs was not possible due to the high signal 

coming from the particles outside the root and for the presence of many artifact black 

vertical stripes as an effect of the saturation of the photomultiplier (PMT). This 

circumstance occurred as it was necessary to set a high gain of the PMT to be able to 

catch the low signal from the autofluorescence of cell walls to be able to visualize them. 

As a consequence, the high signal from the abundant FNCs outside the root, still adhering 

despite the washing steps (probably due to the presence of mucilage), caused the 

saturation of the PMT and the artifacts. 

Eragrostis tef seedlings imaging showed a small presence of FNCs in some epidermis 

cells in only one of the samples, while many capsules were still adhering outside the 

epidermis and on their hair.  

The controls did only show cell walls autofluorescence and no presence of FNCs. 

Due to the large amount of data, only a selection of the most representative frames has 

been reported in figures. 

 

 



32 

 

 

Figure 20. Eruca sativa root after 48h exposure to the FNCs emulsion. Optical section about 

40μm from the epidermis. A large amount of FNCs can be seen adhering outside the root, while 

the white arrows show internal cells where FNCs have been internalized. 
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Figure 21. Eruca sativa root after 72h exposure to the FNCs emulsion. Optical section about 

50μm from the epidermis. As in the previous figure, white arrows indicate internalized FNCs in 

inner cells. 
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Figure 22. Eruca sativa root epidermis cells showing folded cell walls and shrinkage probably 

due to cell death (white arrows). 

 

The experiment confirmed the internalization of FNCs, especially in Eruca sativa, but 

also revealed the presence of some dead cells which requires further investigations. 

 

 

4.4 TEM imaging of Eruca sativa roots 

 

Segments of the roots dissected from 48h and 72h exposition of Eruca sativa seedlings 

observed with two-photon microscopy as reported in (4.3) were prepared for TEM 

imaging as described in (3.5.2). In addition, roots from control plants incubated as 

described in (3.1) were also prepared for the observation. TEM was used to visualize the 

fine structure of the capsules and the ultrastructure of the cells containing them and 

eventually identify vesicles membranes which might have included FNCs by endocytosis. 
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The obtained images allowed us to observe the structure of the FNCs, consisting of a 

hollow lignin shell showing jagged external surface, reflecting the highly branched 

structure of lignin (Figure 23). 

Many capsules have been found in longitudinal sections of the roots, characterized by 

variable size and shape, ranging from round to oblong. An almost complete absence of 

cell ultrastructure was observed in the cells containing the capsules, which must be due 

to cell death, while cell walls were clearly visible thanks to the potassium permanganate 

staining (Figure 24). As opposite, the control which was not exposed to the FNCs 

emulsion, did show typical ultrastructure membranes and structures like nuclei, Golgi 

apparatus, ribosomes and vesicles could be identified (Figure 25). 

The results obtained so far suggest that the 1:5 diluted FNCs emulsion might result toxic 

for plants and cause cell death, especially in Eruca sativa, and led to additional 

experiments where different dilutions have been tested.  
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Figure 23. TEM image showing NCs on the external surface of Eruca sativa root dissected from 

the sample used in two-photon imaging. Notice the hollow structure and the jugged margins of 

the shells. Size and shape are variable. 
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Figure 24. TEM image showing NCs in a longitudinal section of Eruca sativa root dissected from 

the sample used in two-photon imaging. While cell walls are clearly visible, no ultrastructure is 

evident. 
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Figure 25. TEM image of a cross section of Eruca sativa root belonging to the control. Cell walls 

and ultrastructure are clearly visible. 
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4.5 Confocal microscopy experiments 

 

The previous experiments revealed that FNCs can be found in root cells upon 

administration of the 1:5 diluted FNCs emulsion to Eruca sativa seedlings, while 

Eragrostis tef did not seem to internalize them in a considerable amount. Along with 

this, signs of cell shrinkage and death were observed in two-photon microscopy and 

TEM images. Further investigations by confocal microscopy were carried on to test the 

toxicity of the 1:5 diluted FNCs emulsion and different dilutions and to evaluate FNCs 

uptake. In addition, considering particles size the main hindrance to their internalization, 

seedlings have been exposed to emulsions filtered by 0.45μm and 0.20μm syringe filters 

in order to select the smallest fraction of the capsules. 

 

4.5.1 Testing toxicity with propidium iodide 

 

Propidium iodide (PI) is a membrane-impermeable fluorescent dye (497ex/617em) which 

binds to nucleic acids and can be used to spot apoptotic cells. The rupture of plasma 

membrane in plant apoptotic cells allows the diffusion of the dye inside the cell and its 

binding to nuclei and other nucleic acids (included mitochondrial DNA). The 

fluorescence of the dye increases up to 30-fold when bound to nucleic acids. 

In this experiment, 9 days old seedlings of Eruca sativa and Eragrostis tef incubated as 

reported in (3.1) have been exposed to the same 1:5 dilution of FNCs emulsion used in 

the two-photon experiment (4.3) for 24, 48 and 72 hours. Plants were put in larger glass 

containers instead of Eppendorf vials to ease their placement and avoid accidental root 

mechanical damage by tweezers handling and abrupt bends of the roots which might 

cause the rupture of cells. Before imaging, seedlings were washed in tap water and 

incubated for 15 minutes in a propidium iodide solution obtained by adding 5μl/ml from 

a stock solution containing 1mg/ml of PI (Sigma Aldrich) in tap water. Seedlings were 

then mounted on microscope slides for in vivo imaging as described in (3.5.1). Seedling 

of each species which were not put into contact with the FNCs emulsion were also 

incubated for 15 minutes in PI as control. All seedlings have been washed twice in tap 

water before imaging. 

A lambda scan was performed on FNCs from the administered emulsion prior to imaging 

to finely tune the acquisition spectrum to that of FNCs (the microscope recording system 

has 5nm spectral resolution) and revealed a peak emission of the nanocapsules at 510nm. 
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During the imaging, the signal from both the FNCs and PI channels were recorded to 

visualize apoptotic cells and FNCs at the same time. 

Imaging of Eragrostis tef roots revealed sparce apoptotic epidermis cells, while no 

internalization of FNCs was observed in any of the 24, 48 and 72h incubated plants. 

Eruca sativa plants showed clear evidence of shrinkage (Figure 27d) and cell death in 

every sample, with an increment in the severity of the damage after longer exposure times 

to the emulsion. Apoptotic cells were identified by the detection of PI fluorescence from 

nuclei (Figure 26, 27) as well as some other apoptotic bodies probably derived by the 

fragmentation of the nucleus or by the staining of mRNA by PI (Weir, 2001). In addition 

to root cells, many apoptotic and collapsed hair were observed. The shrinkage of the cells 

was evident in the brightfield image as well. 

The simultaneous observation of the two channels (FNCs+PI signal) allowed to detect the 

presence of FNCs inside some of the epidermis and inner apoptotic cells (Figure 27c and 

28), confirming the hypothesis of toxicity of the emulsion arised from the two-photon 

experiment (4.3) and TEM observations (4.4). FNCs were observed in abundance 

adhering to the epidermis and hair as in the previous experiments. 

Both Eruca sativa and Eragrostis tef controls (Figure 29) did not exhibit PI internalization 

and staining of cytoplasmic nucleic acids, revealing that plants which were not put in 

contact with the FNCs emulsion have not been damaged.  

 

 



41 

 

 

Figure 26. CLSM optical section of Eruca sativa root after 48h exposition to the 1:5 FNCs 

emulsion about 6 μm from root surface; a) PI fluorescence revealed nuclei of apoptotic epidermis 

cells (white arrows) and hair; b) fluorescence from FNCs adhering to the epidermis and hair; c) 

overlay of a) and b); c) widefield image. 
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Figure 27. CLSM optical sections of Eruca sativa root after 72h exposition to the 1:5 FNCs 

emulsion; a) PI reveals nuclei of apoptotic cells; b) FNCs were observed inside some apoptotic 

cells; c) overlay of a) and b) shows the presence of FNCs inside apoptotic cells (white arrows); c) 

widefield image reveals severe shrinking of cells and collapsed hair. 
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Figure 28. CLSM optical sections of Eruca sativa root after 72h exposition to the 1:5 FNCs 

emulsion; a) apoptotic cell revealed by PI fluorescence from the nucleus; smaller particles are 

probably PI bound fragments of nuclei or mitochondria totally or partially leaked from apoptotic 

cells. Chances for fluorescence from eventual contamination by bacteria is low as these particles 

were not visible in the control (Figure 29); b) FNCs fluorescence from particles inside apoptotic 

cell; c) overlay of a) and b) revealing the presence of FNCs inside apoptotic cell; c) widefield 

image. 
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Figure 29. CLSM optical sections of Eruca sativa control; a) PI did not stain 

nuclei or nucleic acids from other organelles, indicating vital cells; b) widefield 

image shows no evidence of cell shrinkage or collapsed hair. 
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4.5.2 Toxicity and uptake test at different dilutions 

 

Previous experiments revealed a toxic effect on plants of the 1:5 v/v diluted 1% lignin 

FNCs emulsion and also demonstrated that nanoparticles toxicity can be species-specific 

as reported by Faisal et al., 2018. To address this, new experiments were undertaken by 

administering higher dilutions of the original FNCs emulsion. In addition, the emulsion 

has been filtered through a 0.45μm and successively a 0.20μm syringe filter to exclude 

the higher size fraction of nanocapsules (3.2.2), as size, together with chemical 

composition, is the main factor affecting nanoparticles uptake (Pérez-de-Luque, 2017). 

Toxicity and uptake were tested upon administration of a filtered 1:100 v/v dilution in tap 

water to two weeks old Eruca sativa and Eragrostis tef seedlings and on one week old 

Arabidopsis thaliana seedlings. DSL analysis of such emulsion is reported in Figure 7 

and shows a size peak at 125nm. Imaging was performed after 72h exposition to the 

emulsion and revealed no signs of apoptosis, but also no evidence of FNCs internalization 

in cells in any of the species (Figure 30 and 31). FNCs were observed adhering to the 

external epidermis cell walls and root hair. 

The experiment was replicated on two weeks old Eruca sativa and Eragrostis tef exposed 

to extruded FNCs emulsion as described in (3.2.3) with analogous results. 
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Figure 30. CLSM optical section of Eruca sativa; a) no FNCs signal from 

inner cells was observed; b) widefield image shows no evidence of cell 

apoptosis, cells are turgid and lively. 
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Figure 31. CLSM optical section of Arabidopsis thaliana; a) FNCs have 

been localized only adhering to the outer surface of the root, while no 

evidence of internalization was observed in cells and xylem vessel does 

not contain FNCs; b) widefield image shows intact, lively cells. 
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5. Discussion 
 

The present study tested the viability of lignin NCs produced by ultrasonication (3.2) as 

nanovectors for the delivery of bio-active compounds to plants.  

Preliminary experiments (4.2, 4.3) on plants exposed to the 1:5 v/v dilution in dH2O of 

1% lignin FNCs emulsion revealed the presence of FNCs inside epidermis or inner root 

cells, but at the same time showed evidence of cell apoptosis. TEM images of the plants 

exposed to such emulsion confirmed the absence of observable ultrastructure in cells 

containing the nanocapsules, while cells belonging to the control showed clear 

ultrastructure details. The experiment with propidium iodide as a cell apoptosis marker 

(4.5.1) represented the decisive proof that apoptosis in root cells and hair is consistent as 

a consequence of the exposure to the FNCs 1:5 emulsion. In addition, the overlay of the 

observed internalized FNCs and the PI channel (Figure 27 and 28) demonstrated that the 

presence of FNCs only occurs in apoptotic cells of the tested plants and that toxicity in 

Eragrostis tef resulted considerably lower than in Eruca sativa, confirming the species-

specific effects of nanoparticles which have already been reported in literature (Usman et 

al., 2020).  

As a consequence of the proven adverse effects of the 1:5 FNCs emulsion, a 1:100 v/v in 

dH2O dilution has been used to limit the toxicity and verify the uptake of nanocapsules 

by plants. In addition, as previous experiments did not show any internalization of FNCs 

in living cells and considering the size of the particles as one of the most critical aspects 

involved in the success of their uptake, the smaller fraction of the nanocapsules was 

separated by filtration and extrusion (3.2.2, 3.2.3) prior to the administration in the 

upcoming experiments. Confocal microscopy imaging of the plants exposed to the highly 

diluted, 1:100 FNCs emulsion showed no detrimental effects on cells vitality, but at the 

same time there was no evidence of FNCs uptake (4.5.2). 

The study established that the NCs emulsions produced with the described protocol can 

be toxic for plant cells at high concentrations and their uptake does not occur in living 

root cells upon administration of any of the tested emulsions.  

Addressing the cause of toxicity to a specific factor is not possible with the available data 

and may require further inquiries. However, some elements can be considered. The 

eventual presence of leftovers of acetone used during the production process might be a 

cause, but its high volatility probably determined its total evaporation during the 

sonication process. A second element of toxicity could be derived by the presence of free 

fluorescent dye (FY088) in the final emulsion at a high enough concentration to cause 
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detrimental effects on cells. Lastly, the eventual toxicity of lignin for plants is the less 

plausible cause, being lignin a fundamental polymer of cell walls naturally synthesized 

by plants. 

As the main factors determining the toxicity of the nanocapsules emulsion used in this 

study require additional investigations, the missed uptake of the particles is to be 

attributed with reasonable confidence to their size. The efforts made to select the smallest 

size fraction of the NCs, did not yield any consistent result uptake-wise. Uptake of 

particles ranging from less than 10nm up to 30nm has been reported in literature 

(Corredor et al., 2009; González-Melendi et al., 2008; Sabo-Attwood et al., 2012) and a 

size of 50nm has been determined by some authors as the exclusion limit (Pérez-de-

Luque, 2017). According to this, future design of nanovectors should focus on the 

development of production processes leading to smaller-sized particles.  

In conclusion, we can assert that the application of nanotechnology to agriculture has a 

high potential towards more sustainable practices which could limit the environmental 

impact of human food production activities. The engineering of effective nanovectors will 

open new frontiers for agriculture and the role of research in this field will be decisive in 

the upcoming years.  
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